
SeeBeyond eBusiness
Integration Suite
Deployment Guide

Release 5.0.5 for Schema Run-time Environment (SRE)
SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology
Corporation. The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's
intellectual property rights concerning that trademark. This document may contain references to other company, brand, and product
names. These company, brand, and product names are used herein for identification purposes only and may be the trademarks of
their respective owners.

© 2005 SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20050505155758.

SeeBeyond eBusiness Integration Suite
Deployment Guide 2 SeeBeyond Proprietary and Confidential

Contents
Contents

List of Figures 12

List of Tables 16

Chapter 1

Introduction 17
About This Deployment Guide 17

Contents of This Guide 18

Writing Conventions 18

Supporting Documents 20

SeeBeyond Web Site 21

Chapter 2

Overview of the eBI Suite 22
Introduction: The eBI Suite 22

About e*Gate 23
Architectural Overview 23
View Layer 26

Schema Designer 26
e*Gate Editors 26
Schema Manager 27
e*Gate Alert Agent 27
e*Gate SNMP Agent 28
Command Line’s stccmd 28

Control Layer 28
Registry 28
Control Brokers 28

Business Rules and Data Processing Layer 29
Collaborations 29
Unicode Support 29

Intelligent Queuing Layer 29
IQs 30

Application Connectivity Layer 30
e*Way Component Operation 30
SeeBeyond eBusiness Integration Suite
Deployment Guide 3 SeeBeyond Proprietary and Confidential

Contents
BOBs 32

About e*Insight 32
Managing Business Processes 32
Ensuring Process Integrity 33
Benefits to You 33
The e*Insight Schema 34

About e*Xchange 34
Exchanging Partner Information 35
e*Xchange Features 35

About e*Xpressway 35
e*Xpressway Integrator Server 36
e*Xpressway Integrator OnRamp 36
Hosting e*Xpressway Integrator 36

Deployment: Getting Started 36

Chapter 3

Analysis and Planning 38
Introduction: Analysis and Planning 38

Gathering Information 39
Research and Interviews 40
Surveys 40

Analyzing Your Requirements 40
System-Specific Needs 41
Operation and Performance Needs 42
Personnel and Training Needs 44
Business Planning Needs 45
e*Insight Deployment 46

Sample Business Process 46
e*Xchange Deployment 47

Business-to-Business Integration 47
An eBI Example 47
e*Xchange Deployment Methodology 49

e*Xpressway Deployment 49
Deployment at a Glance 49
Basic Deployment Considerations 50

Planning Your Deployment 51
Setting Up Overall Objectives 51
Identifying and Scheduling Tasks 52

Beginning Deployment 52
Deployment Documents 53

Determining When Objectives Are Met 58
SeeBeyond eBusiness Integration Suite
Deployment Guide 4 SeeBeyond Proprietary and Confidential

Contents
Chapter 4

Determining System Requirements 60
Introduction: System Requirements 60

Initial Considerations 61

Estimating Processor Requirements 61
Consideration Factors 61
General Guidelines 62

Estimating RAM 63
Preliminary Estimates 64
Monk Environment Calculation 64

Parsing and Population of Monk Events 64
Interpretation of Monk Code 66

Total Memory Requirement Estimation 66

Hard Disk Estimation 66
Component Storage 67
Operational Data 67

Log File Requirements 67
Estimating Operational Data Space Requirements 67

Total Disk Space Requirement Estimation 68

Configuring for Performance Optimization 68
Increasing Efficiency 68
Optimizing IQs and IQ Managers 69
Monk Functions 69
Hard Disk Access 69

e*Insight, e*Xchange, and e*Xpressway Requirements 69
e*Insight 70
e*Xchange 70
e*Xpressway 71

System Requirements: Summary 72
Registry and Participating Hosts 72
Client Systems 73
Additional eBI Suite Applications 73

Chapter 5

Designing and Developing the eBI Suite Environment 74
An Overview of eBI Suite Design 74

Distributed Architecture Considerations 76
Distributed Architecture in e*Gate: Overview 76
Basic Architecture 78

Schema and Component Organization 79
High Availability Features 79

System Registry 79
Registry Replication 80
SeeBeyond eBusiness Integration Suite
Deployment Guide 5 SeeBeyond Proprietary and Confidential

Contents
Network Port and Firewall Considerations 81
Clustering and Storage Area Network Considerations 84

Methodology Considerations 84
What is Topology? 84

Elements of Topology 84
Sample Topologies 84

Three Basic Steps 85
Identifying External Systems 86
Configuring eBI Suite Components 86
Hardware and Network Connections 86

Performance Considerations 86
Basic e*Way Operation 87
Basic BOB Operation 89
Basic IQ Operation 89
Virtual Memory 90
Event Parsing 92
IQ Subscriber Pooling 92
Hardware Distribution 94
Performance Summary 95

Designing Your System 96
Determining e*Way Topology 96

External System Interfaces 96
Volume of Data 96
Time Windows 97

Determining BOB Topology 97
Number of Data Transformations 98
Data Urgency and Availability 99
Amount of Data 101
Multi-Source Transformations 101

Determining IQ Topology 101
Using e*Gate Java Features 102
Accommodating External System Constraints 102
System Topology and Business Organization 103

Optimizing Your System 104
Using Parallel Data Threads 105
Improving IQ Performance 106
Optimizing Event Parsing 108

Avoiding Excessive Parsing 108
Batching Events 110
Event Serialization and Delivery 111

Monk Optimization 113
Optimizing Performance Using Hardware 116
e*Insight Engine Optimization 117
e*Xchange Optimization 117

System Development Considerations 119
Overview of e*Gate Development 119

e*Gate GUIs 120
Setup Steps 120

Setting Up Users, Roles, and Privileges 121
Role-Based Security 121
Example—Supply Chain Scenario 121
SeeBeyond eBusiness Integration Suite
Deployment Guide 6 SeeBeyond Proprietary and Confidential

Contents
Modeling Business Processes with e*Insight 123
e*Insight Operating Modes 124
e*Insight GUI Features 125
Automatic Component Generation 126

Overview of e*Xchange Implementation 127
Types of e*Xchange Implementations 128
Implementation Road Map 128
Step 1: Determine the Scope of the Project 129
Step 2: Create Trading Partner Profiles 129
Step 3: Copy the eXSchema 130
Step 4: Configure the e*Gate Components 130
Step 5: Test and Tune the System 130

Overview of e*Xpressway Implementation 131
Trading Exchange Web Site 131
Setting Up Your e*Xpressway Web Site 131
e*Xpressway Integrator OnRamp Overview 131
Working with a Solution Provider 132
Trading Partners: Getting Started 132

Case Study Examples 133
Case Study 1: Web Order Scenario 133

Background 133
Functional Requirements 134
Designing Communication Topology 134
Designing Component Topology 135
Designing Hardware Topology 138

Case Study 2: Expanded Web Order Scenario 139
Background 139
Functional Requirements 139
Designing Communication Topology 139
Designing Component Topology 140
Designing Hardware Topology 143

Case Study 3: Tracking Timecards and Payroll Scenario 144
Background and Functional Requirements 145
Designing Communication Topology 145
Designing Component Topology 145
Creating Event Types and Java ETDs 148
Creating the Collaboration Rules and Java Collaboration Rules Classes 148
Adding the e*Ways 149
Adding the IQs 149
Adding the Collaborations 149
Designing Hardware Topology 149

Case Study 4: Receiving and Purchasing Scenario 149
Background 149
Functional Requirements 150
Designing Communication Topology 150
Designing Component Topology 151
Creating Event Types and Java ETDs 154
Creating the Collaboration Rules and Java Collaboration Rules Classes 155
Adding and Configuring e*Ways, BOBs, and IQs 157
Adding Collaborations That Route the Data 158
Designing Hardware Topology 159
SeeBeyond eBusiness Integration Suite
Deployment Guide 7 SeeBeyond Proprietary and Confidential

Contents
Chapter 6

Testing, Transition to Production, and Maintenance 161
Introduction: Transition to Production 161

Pre-Transition Testing 163
Testing Methodology 163
Test Plan 163

Type of Data To Use 164
Testing the Output 164
Responsibility for Testing 164

Unit Testing 164
Monk Test Console 165
Using stctrans 166
Java Code Testing 167
Testing e*Way Configuration Files 167

Integration Testing 169
Partial Integration Testing 169
Complete System Testing 169
Performance Testing 169

Acceptance Testing 170
Troubleshooting 170

Schema Manager GUI 170
Using Log Files 170

Transition to Production 172
Role of e*Insight 172

Exporting Business Processes 173
Integrated Monitoring 173

Export Operations 174
Exporting Trading Partner Profiles 175
Exporting e*Gate Schemas 175

Moving Files 176
Import Operations 176

Importing Business Processes 177
Importing Trading Partner Profiles 177
Importing e*Gate Schemas 177

Export/Import Using e*Xchange 178
Running the Schema 179

Post-Transition Maintenance 180
Monitoring System Activity 180

Using the Schema Manager 180
e*Insight Monitoring Mode 181

e*Xchange Message Tracking 184
Using Message Tracking 184
Error Tracking 190

Implementing Changes 190

Case Study Examples 190
Case Study 1: Web Order Scenario 191

Pre-Transition Testing 191
Transition to Production 194
Post-Transition Maintenance 195
SeeBeyond eBusiness Integration Suite
Deployment Guide 8 SeeBeyond Proprietary and Confidential

Contents
Assessing Future Needs 196
Case Study 2: Expanded Web Order Scenario 196

Pre-Transition Testing 196
Transition to Production 197
Post-Transition Maintenance 198
Assessing Future Needs 198

Case Study 3: Tracking Timecards and Payroll Scenario 198
Pre-transition Testing 199
Transition to Production 199
Post-Transition Maintenance 200
Assessing Future Needs 200

Case Study 4: Receiving and Purchasing Scenario 200

Transition to Production: Summary 200

Chapter 7

Frequently Asked Questions 201
Introduction: Using These FAQs 201

Deployment FAQs 202
Setting Up eBI Suite FAQs 202
Performance Tuning FAQs 204
Hardware FAQs 206

General FAQs 206

Service FAQs 208

Chapter 8

Deploying for High Availability 209
High Availability in e*Gate: Overview 209

Product Features, e*Gate, and High Availability 209
The e*Gate Registry 210
Registry Replication 210
Multiple Participating Hosts 210
IQ Subscriber Pooling 211
System High Availability Methodology 211

Sample Scenarios 212
e*Gate with Standby Host 212

Example Characteristics 212
High Availability Processes 213

Subscriber Pooling Without Server High Availability 214
Example Characteristics 215
High Availability Processes 215

Subscriber Pooling With Partial High Availability 216
SeeBeyond eBusiness Integration Suite
Deployment Guide 9 SeeBeyond Proprietary and Confidential

Contents
Appendix A

Deployment Surveys 218
System-Specific Information 219

Operation and Performance 222

Personnel and Training 225

Business Planning 226

Appendix B

Sample QA Report 229
Introduction 230

Background 230
Objectives 230
Approach 230
Document Inputs 231

Schema Components 231
General 231
Event Types 231
ETDs 232

LOB Structures 232
XML Structures 233

Collaborations 233
Collaboration Rules 233
Monk Library 234
e*Way Configurations 234

Overall Design Objectives 235
Performance 235
Error Handling 236
Component Failure and System Fail-Safe 237

Environments and Source Control 238

Run-Time Management 238

Appendix C

Installing e*Gate on Windows 2000 Clusters 240
e*Gate with Microsoft Clustering 240

Implementation Procedures 241
General Considerations 241
Procedure 241
SeeBeyond eBusiness Integration Suite
Deployment Guide 10 SeeBeyond Proprietary and Confidential

Contents
Glossary 246

Index 259
SeeBeyond eBusiness Integration Suite
Deployment Guide 11 SeeBeyond Proprietary and Confidential

List of Figures
List of Figures

Figure 1 e*Gate Architecture 25

Figure 2 eBI Suite Deployment Phases 39

Figure 3 Analysis of Requirements Phase/Information-Gathering Cycle 45

Figure 4 Business Process Example 46

Figure 5 Web Retailer Business Process 48

Figure 6 Trading Partner Relationships 49

Figure 7 Sample e*Xpressway Deployment Plan 50

Figure 8 e*Gate Environment—General Diagram 55

Figure 9 Sample e*Xchange and e*Insight Installations Diagram 56

Figure 10 Deployment Planning Phase Steps 59

Figure 11 System Design and Development Phase 75

Figure 12 Common View of Software Systems 77

Figure 13 e*Gate Distributed Environment 78

Figure 14 Overview: e*Gate Network with Distributed Registry 80

Figure 15 e*Gate Component Relationships 82

Figure 16 Communicating Through a Firewall 83

Figure 17 Examples of Topologies 85

Figure 18 Basic e*Way Operation 88

Figure 19 Basic BOB Operation 89

Figure 20 Memory Swapping 91

Figure 21 Components Without Subscriber Pooling 93

Figure 22 Components with Subscriber Pooling 93

Figure 23 Subscriber Pooling over Multiple Hosts 94

Figure 24 Eliminating Duplicated Collaborations 99

Figure 25 Eliminating Delayed Acknowledgments 100

Figure 26 BOBs and Multi-Source Transformations 101

Figure 27 Scheduled Two-Way Order System 103

Figure 28 Using Parallel Data Threads 105
SeeBeyond eBusiness Integration Suite
Deployment Guide 12 SeeBeyond Proprietary and Confidential

List of Figures
Figure 29 Using Multiple Threads per BOB 106

Figure 30 Optimizing IQs: Using Multiple IQs 107

Figure 31 Optimizing IQs: One IQ per Publisher and Event Type 108

Figure 32 Optimizing IQs: One IQ and Event Type per Subscriber 108

Figure 33 Node Consolidation 109

Figure 34 Non-Batched Separate Events 110

Figure 35 Events Batched into One Event 110

Figure 36 Non-Serial Event Sequence 112

Figure 37 Precalculating Node Lengths 114

Figure 38 e*Xchange System Defaults—Editing Window 118

Figure 39 e*Way Editor for Batch e*Way 119

Figure 40 e*Gate Setup Road Map 120

Figure 41 e*Insight Main Window (Design Mode) 125

Figure 42 Business Process Model Example 126

Figure 43 e*Xchange Implementation Road Map 129

Figure 44 Communication Topology for Business Process Modeling: Case 1 134

Figure 45 Component Topology for Business Process Modeling: Case 1 135

Figure 46 Hardware Topology for Business Process Modeling: Case 1 138

Figure 47 Communication Topology for Business Process Modeling: Case 2 140

Figure 48 Component Topology for Business Process Modeling: Case 2 141

Figure 49 Hardware Topology for Business Process Modeling: Case 2 144

Figure 50 HR Business Need 145

Figure 51 Tracking Timecards and Payroll Scenario Overview 146

Figure 52 Receiving and Purchasing Business Requirements 150

Figure 53 ELS Solution 151

Figure 54 Receiving and Purchasing Scenario Overview 151

Figure 55 Event Types and Java ETDs 154

Figure 56 Java ETD Editor—Completed Rec ETD 155

Figure 57 Java ETD Editor—Completed Pur ETD 155

Figure 58 Collaboration Rules and Java Collaboration Rules Class 156

Figure 59 Java Collaboration Rules Editor—After Compiling 157

Figure 60 e*Ways, BOBs, and IQs 158

Figure 61 Collaborations Showing Pub/Sub Relationships 159

Figure 62 Data in Multi-Host e*Gate Environment with ELS 160
SeeBeyond eBusiness Integration Suite
Deployment Guide 13 SeeBeyond Proprietary and Confidential

List of Figures
Figure 63 Testing, Transition, and Maintenance Phases 162

Figure 64 Change Management Cycle 163

Figure 65 Monk Test Console—Setup Tab 165

Figure 66 Monk Test Console—Input Tab 166

Figure 67 Monk Test Console—Output Tab 166

Figure 68 SAP-to-Accounting Bridge 167

Figure 69 SAP ALE e*Way Test Setup 167

Figure 70 Sample Error Log 171

Figure 71 e*Insight Main Window (Monitoring Mode) 173

Figure 72 Export Business Process Version 174

Figure 73 Export Business Process Dialog Box 175

Figure 74 Completed Export File 175

Figure 75 Import Business Process Dialog Box 177

Figure 76 Import Wizard Welcome page 178

Figure 77 e*Xchange Repository Manager Window 179

Figure 78 Schema Manager Main Window 180

Figure 79 e*Insight Monitor—List View 181

Figure 80 e*Insight Monitor—Diagram View 182

Figure 81 Business Process Properties 183

Figure 82 e*Xchange Trading Partner Profile Selection 184

Figure 83 e*Xchange Message Profile Selection 185

Figure 84 e*Xchange Message Details Window 185

Figure 85 e*Xchange View Original Message Window, Inbound 186

Figure 86 e*Xchange Acknowledgement Message Window 186

Figure 87 e*Xchange Message Details Window with Acknowledgements 187

Figure 88 e*Xchange View Original Message Window, Outbound 187

Figure 89 e*Xchange View Enveloped Message Window 188

Figure 90 e*Xchange View Acknowledgement Message Window 189

Figure 91 e*Xchange View Extended Attributes Window 189

Figure 92 e*Xchange View Error Data Window 190

Figure 93 Monk Test Console—Setup Tab 192

Figure 94 Monk Test Console—Input Tab 193

Figure 95 Monk Test Console—Output Tab 193

Figure 96 e*Gate in Clustered Environment with Standby Host 212
SeeBeyond eBusiness Integration Suite
Deployment Guide 14 SeeBeyond Proprietary and Confidential

List of Figures
Figure 97 e*Gate in Clustered Environment Failed-Over State 213

Figure 98 Subscriber-Pooled Configuration for Parallel Processing 214

Figure 99 Subscriber-Pooled Configuration with Non-IQ Failure 215

Figure 100 Subscriber-Pooled Configuration with IQ Failure 216

Figure 101 IQ Subscriber Pooling with High Availability 217

Figure 102 e*Gate Environment with Windows 2000 Clustering Software 240

Figure 103 Windows Control Panel Services 243

Figure 104 e*Gate Schema Designer with Modifications 245
SeeBeyond eBusiness Integration Suite
Deployment Guide 15 SeeBeyond Proprietary and Confidential

List of Tables

SeeBeyond eBusiness Integration Suite
Deployment Guide 16 SeeBeyond Proprietary and Confidential

List of Tables

Table 1 Deployment Project Plan 53

Table 2 Functional Requirements Specification 54

Table 3 Technical Requirements Specification 57

Table 4 Test Plan Requirements Specification 57

Table 5 Default e*Gate Port Usage 81

Table 6 Supply Chain Scenario Components 122

Table 7 Component Relationships: e*Gate to e*Insight 127

Table 8 ETDs for Case 1 136

Table 9 Collaborations for Case 1 137

Table 10 Monk Functions for Inbound e*Ways: Case 1 137

Table 11 Monk Functions for Outbound e*Ways: Case 1 137

Table 12 ETDs for Case 2 142

Table 13 Collaborations for Case 2 142

Table 14 Monk Functions for Inbound e*Ways: Case 2 143

Table 15 Monk Functions for Outbound e*Ways: Case 2 143

Table 16 Tracking Timecards and Payroll Scenario Components 146

Table 17 SysB ETD Fixed-Node Properties 148

Table 18 Receiving and Purchasing Scenario Components 152

Chapter 1

Introduction

Welcome to the eBusiness Integration Suite Deployment Guide. This chapter provides an
overview of the purpose and contents of this guide. You will also find references for
related documentation and the writing conventions used in this guide.

In This Chapter

About This Deployment Guide on page 17

Contents of This Guide on page 18

Writing Conventions on page 18

Supporting Documents on page 20

SeeBeyond Web Site on page 21

1.1 About This Deployment Guide
The Deployment Guide provides deployment planning guidelines and deployment
strategies for the SeeBeyondTM eBusiness Integration (eBITM) Suite. This guide is
designed for management, system administrators, and others who are tasked with
deployment of the eBI Suite. The purpose of this guide is to help you successfully
complete the following stages of deployment:

Analyzing the requirements

Planning the deployment

Determining system requirements

Designing and developing the eBI Suite environment

Testing the eBI Suite

Transition to production

Maintaining the eBI Suite environment

Note: This guide does not discuss deployment of e*IndexTM Global Identifier. For more
information about this product, refer to the e*Index documentation.
SeeBeyond eBusiness Integration Suite
Deployment Guide 17 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.2
Introduction Contents of This Guide
1.2 Contents of This Guide
This document includes the following information:

Chapter 1, “Introduction” provides an overview of this document’s purpose,
contents, writing conventions, and supported documents.

Chapter 2, “Overview of the eBI Suite” discusses the general features and
architecture of the eBI Suite.

Chapter 3, “Analysis and Planning” explains how to analyze your current business
processes and IS setup in order to plan your eBI Suite deployment.

Chapter 4, “Determining System Requirements” helps you gather relevant
information and make decisions to determine what the type of hardware required
to support your eBI Suite environment.

Chapter 5, “Designing and Developing the eBI Suite Environment” explains how
to design and develop and create an eBI Suite environment to best meet your
overall business and IS needs. It also contains valuable system optimization
information.

Chapter 6, “Testing, Transition to Production, and Maintenance” tells you what to
do during the final phases of your eBI Suite deployment, including pre-transition
testing, the transition to production, and post-transition maintenance.

Chapter 7, “Frequently Asked Questions” provides a list of FAQs with answers to
common questions to provide helpful hints, best practices, and information about
obtaining the best eBI Suite performance. It is recommended that you read this
chapter before starting deployment.

Chapter 8, “Deploying for High Availability” explains ways you can design your
e*Gate system for high availability in case of failure.

Appendix A, “Deployment Surveys” contains a Deployment Survey Questionnaire
you can print and photocopy for your own use.

Appendix B, “Sample QA Report” has a sample quality-assurance report on
optimizing a sample system.

Appendix C, “Installing e*Gate on Windows 2000 Clusters” explains how to
configure e*Gate for Windows 2000 with Microsoft clustering software.

This guide also includes a Glossary on page 246. The glossary provides definitions of
the eBI Suite terminology.

1.3 Writing Conventions
The writing conventions listed in this section are observed throughout this document.
SeeBeyond eBusiness Integration Suite
Deployment Guide 18 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.3
Introduction Writing Conventions
Hypertext Links

When you are using this guide online, cross-references are also hypertext links and
appear in blue text as shown below. Click the blue text to jump to the section.

For information on these and related topics, see “Parameter, Function, and
Command Names” on page 20.

Command Line

Text to be typed at the command line is displayed in a special font as shown below.

java -jar ValidationBuilder.jar

Variables within a command line are set in the same font and bold italic as shown
below.

stcregutil -rh host-name -rs schema-name -un user-name
-up password -ef output-directory

Code and Samples

Computer code and samples (including printouts) on a separate line or lines are set in
Courier as shown below.

Configuration for BOB_Promotion

However, when these elements (or portions of them) or variables representing several
possible elements appear within ordinary text, they are set in italics as shown below.

path and file-name are the path and file name specified as arguments to -fr in the
stcregutil command line.

Notes and Cautions

Points of particular interest or significance to the reader are introduced with Note,
Caution, or Important, and the text is displayed in italics, for example:

Note: The Actions menu is only available when a Properties window is displayed.

User Input

The names of items in the user interface such as icons or buttons that you click or select
appear in bold as shown below.

Click Apply to save, or OK to save and close.

File Names and Paths

When names of files are given in the text, they appear in bold as shown below.

Use a text editor to open the ValidationBuilder.properties file.

When file paths and drive designations are used, with or without the file name, they
appear in bold as shown below.

In the Open field, type D:\setup\setup.exe where D: is your CD-ROM drive.
SeeBeyond eBusiness Integration Suite
Deployment Guide 19 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.4
Introduction Supporting Documents
Parameter, Function, and Command Names

When names of parameters, functions, and commands are given in the body of the text,
they appear in bold as follows:

The default parameter localhost is normally only used for testing.

The Monk function iq-put places an Event into an IQ.

You can use the stccb utility to start the Control Broker.

Additional Conventions

This guide uses the term “Windows” to refer to Windows 2000, Windows XP, and
Windows 2003.

1.4 Supporting Documents
For more information about the eBI Suite, refer to the following documents:

Creating an End-to-end Scenario with e*Gate Integrator

e*Gate Integrator Alert Agent User’s Guide

e*Gate Integrator Alert and Log File Reference Guide

e*Gate Integrator Collaboration Services Reference Guide

e*Gate Integrator Installation Guide

e*Gate Integrator Intelligent Queue Services Reference Guide

e*Gate Integrator SNMP Agent User’s Guide

e*Gate Integrator System Administration and Operations Guide

e*Gate Integrator Upgrade Guide

e*Gate Integrator User’s Guide

e*Insight Business Process Manager Implementation Guide

e*Insight Business Process Manager User's Guide

e*Xchange Partner Manager Implementation Guide

e*Xchange Partner Manager User’s Guide

e*Xpressway Integrator OnRamp Setup Guide for Trading Partners

e*Xpressway Integrator Server Setup and Maintenance Guide for Trading Exchanges

e*Xpressway Integrator OnRamp Customization Guide for Solution Providers

Monk Developer’s Reference

SeeBeyond eBusiness Integration Suite Primer

SeeBeyond JMS Intelligent Queue User’s Guide

Standard e*WayTM Intelligent Adapters User’s Guide
SeeBeyond eBusiness Integration Suite
Deployment Guide 20 SeeBeyond Proprietary and Confidential

Chapter 1 Section 1.5
Introduction SeeBeyond Web Site
XML Toolkit

See the SeeBeyond eBusiness Integration Suite Primer for a complete list of eBI Suite-
related documentation. You can also refer to the appropriate Microsoft Windows,
UNIX, or Linux documents, if necessary.

Note: For information about using a specific add-on, such as an e*Way Intelligent Adapter
or Intelligent Queue (IQTM), refer to the user’s guide for that add-on.

1.5 SeeBeyond Web Site
The SeeBeyond Web site is your best source for up-to-the-minute product news and
technical support information. The Web site’s URL is http://www.seebeyond.com.
SeeBeyond eBusiness Integration Suite
Deployment Guide 21 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com

Chapter 2

Overview of the eBI Suite

This chapter gives a general overview of the eBI Suite, including system descriptions,
general operation, and basic features.

In This Chapter

“About e*Gate” on page 23

“About e*Insight” on page 32

“About e*Xchange” on page 34

“About e*Xpressway” on page 35

“Deployment: Getting Started” on page 36

2.1 Introduction: The eBI Suite
The eBI Suite is a group of products that merges traditional Enterprise Application
Integration (EAI) and business-to-business (B2B) interactions into multi-enterprise
eBusiness Integration (eBI). eBI makes eBusiness attainable for organizations with
complex and dynamic partner relationships, and provides the ability to create and
manage virtual organizations across the entire supply chain.

e*Gate Integrator (e*Gate)

e*Gate is a robust eBusiness Integration platform that solves complex connectivity
issues and enables the dynamic, guaranteed delivery of information across applications
and systems, to partners and customers with unmatched performance, flexibility, and
speed of implementation.

e*Insight Business Process Manager (e*Insight)

e*Insight facilitates the automation and administration of business process flow across
eBusiness activities. Through graphical modeling and monitoring, business analysts
can quickly assess the detailed state of a business process instance and identify
bottlenecks in the process.

e*Xchange Partner Manager (e*Xchange)

Conducting eBusiness over the public domain requires secure transmissions and
utilization of standard business process protocols. The e*Xchange application provides
features to ensure full security and non-repudiation of data. This system supports
numerous messaging protocols, all of which are accepted industry standards.
SeeBeyond eBusiness Integration Suite
Deployment Guide 22 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of the eBI Suite About e*Gate
e*Xpressway Integrator (e*Xpressway)

e*Xpressway enables rapid trading-partner connectivity and integration through a
comprehensive B2B implementation methodology, graphical configuration wizards,
and downloadable partner connectivity software.

This chapter contains basic background information about the eBI Suite you need to
know and review before you begin your deployment project.

2.2 About e*Gate
The basic purpose of e*Gate is to automate the exchange of information between
systems, within its own data Events. e*Gate is based on a distributed and open
architecture, allowing components to reside on different workstations within a global
network. Based on which communication protocols and adapters you choose, e*Gate
can communicate with and link multiple applications and databases across a variety of
operating systems.

e*Gate performs effectively with a wide variety of hardware, Event standards,
operating systems, databases, and communication protocols in both real-time and
batch and scheduled integration modes. e*Gate bridges legacy and new systems,
resulting in a centrally managed, intelligent, unified enterprise. This architecture gives
network administrators the flexibility to incorporate best of breed technology into their
business strategy, without any need to uproot legacy IS investments.

e*Gate system components are organized into schemas. A schema is a configuration
scheme that contains all the modules and configuration parameters that control, route,
and transform data as it travels through the e*Gate system. Schemas also maintain the
relationships between the components, including the publish and subscribe (pub/sub)
information that is at the heart of the data transportation process.

e*Gate delivers a high level of performance and flexibility in the control of cross-
application business processes.

2.2.1 Architectural Overview
The e*Gate system implements a “transparent” architecture, which is well-suited for
distributed network architecture. This means the different components of an e*Gate
environment do not have to all reside on the same system; instead they can be
distributed across several different systems in the network.

Principal features of this type of architecture include:

High scalability

Parallelism

High availability

Protection through isolation

Extensibility
SeeBeyond eBusiness Integration Suite
Deployment Guide 23 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of the eBI Suite About e*Gate
Avoidance of data processing bottlenecks and single points of failure

e*Gate Layers

The e*Gate architecture consists of the following primary layers:

View

Control

Business rules and data processing

Intelligent queuing

Application connectivity

Figure 1 shows each of these layers.
SeeBeyond eBusiness Integration Suite
Deployment Guide 24 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of the eBI Suite About e*Gate
Figure 1 e*Gate Architecture

e*Gate Architecture

Business Rules and
Data Processing

e*Way/BOB

Control

Application
Connectivity

External
Systems

Collaboration

Registry Service Registry

Databases Internet
ORBs

ERP Apps

Check Customer Credit

Receive Purchase Order

Update Customer Info

Schedule Shipment

Check Inventory

Existing Applications

View

SNMP
Agent

e*Gate Enterprise
Manager

Alert Agente*Gate
Monitor

stccmd

Control
Brokers

e*Way e*Way

IQ

Collaboration

e*Ways e*Ways e*Ways e*Ways e*Ways e*Ways

 EDI Networks

Intelligent Qeuing
SeeBeyond MQSybaseOracleJMS
SeeBeyond eBusiness Integration Suite
Deployment Guide 25 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of the eBI Suite About e*Gate
2.2.2 View Layer
The View layer contains those components users interact with, such as user interfaces.
Most View layer components implement graphical user interfaces (GUIs), including
Java programming language-based features, to simplify their use. Specifically, these
components are:

e*Gate Schema Designer

SeeBeyond Java Collaboration Rules Editor

SeeBeyond Java Event Type Definition (ETD) Editor

SeeBeyond Monk Collaboration Rules Editor

SeeBeyond Monk ETD Editor

e*Way Editor

Schema Manager

e*Gate Alert Agent configuration tool

e*Gate SNMP Agent

Command-line interface monitoring tool stccmd

Schema Designer

The Schema Designer allows users to create and configure the components of the
e*Gate system. In the Schema Designer, users define and maintain configuration
schemes (schemas) that contain the parameters of all the components that control,
route, and transform data as it travels through the system.

There are GUI features in the Schema Designer, which allow easy access to all its
operations. A Navigator feature organizes all system components into a tree structure,
similar to the one in Windows Explorer. An Editor feature displays additional details
about the selected component or the subsidiary components that the selected element
controls.

The Navigator feature allows the following views of your e*Gate system:

Component provides views of all elements in the schema (that is, system
configuration) based on logical components.

Network provides a visualization of the e*Gate system based on physical resources.

Note: See the e*Gate Integrator User’s Guide for illustrations of the GUI features
discussed in this section, as well as information on how to use them.

e*Gate Editors

e*Gate systems implement several distinct, specialized editors to allow users to view
and revise each element in the system. e*Gate provides the following editors:

Collaboration Rules Editors (Java and Monk)

ETD Editors (Java and Monk)
SeeBeyond eBusiness Integration Suite
Deployment Guide 26 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of the eBI Suite About e*Gate
e*Way Editor

The e*Gate editors allow users to define the topology of the data processing
environment and the relationships among various data processing components. They
specify static routes between stages of data processing, when the user knows at
configuration time which components feed into others. They also define pub/sub
relationships. The remainder of this section provides details on each of the editors.

Collaboration Rules Editors

Available in Java and Monk versions, the Collaboration Rules Editors define the low-
level rules that make up Collaboration Rules. These rules specify how application
programming interfaces (APIs) are invoked, how data is transformed or operated on,
what information is placed in headers, and so on.

The rules can be as general (n to m apps) or as specific (1 to 1) as required. Users can use
ETDs provided by SeeBeyond, ETDs generated through e*Gate system tools, or their
own creations built through an ETD Editor when defining Collaboration Rules input-
output logic.

ETD Editors

Also available in Java and Monk versions, the ETD Editors set up data-processing logic.
ETDs visually represent the hierarchy of data fields as nodes in a tree structure. e*Gate
systems use them at run time to parse buffers into data units that the rules can be
applied to. Libraries of prebuilt structures already exist for common message/Event
format standards including X12, HL7, SWIFT, cXML, and UN/EDIFACT.

Additionally, SeeBeyond provides tools for automatically generating these structures
from database tables, stored procedure definitions, proprietary application
programming interfaces (APIs), and electronic specifications distributed by standard
bodies. For example, an XML Builder tool is available for generating e*Gate ETDs from
XML DTDs and schemas, in Java and in Monk.

e*Way Editor

The e*Way Editor configures the communication parameters necessary for establishing
and maintaining e*Ways. These e*Gate components enable connectivity with systems
and applications external to the e*Gate system. Users see different parameters in the
editor window, depending on the external system type. Users can edit the values
associated with these parameters or accept provided defaults.

Schema Manager

The Schema Manager provides all basic monitoring and control functions for e*Gate
systems. This feature displays status and alert Events for all components across the
enterprise and provides high-level control of data processes (for example, start,
suspend, and shutdown).

e*Gate Alert Agent

The e*Gate Integrator Alert Agent provides advanced routing services, delivering alert
Events via page, e-mail, print, fax, or telephone (synthesized speech). This feature
alleviates the need for a dedicated resource to be continuously located near a GUI
SeeBeyond eBusiness Integration Suite
Deployment Guide 27 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of the eBI Suite About e*Gate
display. The Alert Agent has one primary function, to collect error and informational
Events from monitored systems and forward them to a repository.

e*Gate SNMP Agent

The e*Gate Integrator SNMP Agent is available for users who require the ability to
forward status and alert Events to a central, third party, SNMP-compliant monitor. The
SNMP Agent forwards Monitoring Events to external monitoring systems. The SNMP
Agent is compatible with systems which support SNMP protocol version 1.

Command Line’s stccmd

e*Gate systems include stccmd, a command-line API that assists the user in
administering and monitoring e*Gate systems in situations where low-bandwidth
remote administration is necessary.

2.2.3 Control Layer
The Control layer is responsible for storing and dynamically distributing all system
configuration information, starting up and shutting down e*Gate processes, enforcing
various access control mechanisms, and the selective forwarding of metadata. Control
layer components include:

Registry, including the Registry Service

Control Brokers

APIs that are exposed at the Control layer are necessary for broad extensibility in
e*Gate systems. APIs permit access to run-time processes, including user, IQs, and
message/Event queues. APIs also allow the Registry to be implemented as either a
relational database or a flat-file.

Registry

The e*Gate Registry is the store for all configuration details, either through references
to supplemental configuration files or direct containment. The Registry Service handles
all requests for configuration updates, changing the content of the Registry when new
information is provided and forwarding these updates to the appropriate clients as
necessary. The Registry Service is multi-threaded and handles all configuration
updating and distribution.

The Registry employs a “Team Registry” concept. The Registry itself is divided into
Sandbox areas for user-specific file development and an area for the run-time
environment. This subdivision separates work-in-progress files from those used in the
production schema.

Control Brokers

The Control Broker in a schema is responsible for starting and stopping processes, and
selectively forwarding metadata (alert, status, and configuration Events) to authorized
SeeBeyond eBusiness Integration Suite
Deployment Guide 28 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of the eBI Suite About e*Gate
user interfaces. Control Brokers route operational Events to scripts, invoking control
APIs to perform basic maintenance or administrative actions.

e*Gate systems support over 80 system-standard Events, such as the detection of disk-
space usage beyond a configurable limit, detecting data content of interest, Event
creation volume, Event receipt volume, numerous IQ operations, and so on. e*Ways
add many application-specific Events to this set and implement user-defined Events.

2.2.4 Business Rules and Data Processing Layer
The Business Rules and Data Processing layer uses Collaborations, Collaboration Rules,
Business Object Brokers (BOBs), and e*Ways to implement user-defined business logic
in response to input Events.

The business rules and data processing layer contains instructions specifying the
details of how applications work together. These instructions are referred to as
Collaboration Rules. Examples of Collaboration Rules include data identification and
transformation rules, invoking application Events through APIs.

Collaboration Rules are defined with the SeeBeyond Collaboration Rules Editors,
which allow the point-and-click/drag-and-drop definition of business rules. The
Collaboration Rules are processed by e*Gate and are designed to handle any data
format with the highest level of functional abstraction, reducing the amount of user
configuration required to a minimum.

Collaborations

Collaborations use Collaboration Rules, which allow users to define how data is to be
mapped from n input Events to m output Events. They also define how databases are
queried in response to request Events and how APIs to one or more applications are
invoked for coordinated action, and so on.

The same Collaborations can be simultaneously used in multiple BOBs or e*Ways,
providing business process services that can be tapped into by any number of
distributed components. Conversely, multiple Collaborations can be loaded into a
single e*Way or BOB, as both components are multi-threaded.

For more information, see the e*Gate Integrator Collaboration Services References Guide.

Unicode Support

The e*Gate product suite supports Unicode, Extended UNIX Code (EUC) and Shift-
Japanese Industrial Standard (SJIS) multi-byte encoding methods, which allows the
handling of Kanji data.

2.2.5 Intelligent Queuing Layer
e*Gate IQ Services act as powerful facilitators of reliable interprocess communication.
The intelligence arises from the persistent recording of Event-state information. This
state information is necessary to ensure that subscribers acquire the Events they expect,
SeeBeyond eBusiness Integration Suite
Deployment Guide 29 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of the eBI Suite About e*Gate
in the proper sequence and without risk of duplication, even when recovering from
hardware failure.

APIs exposed at the Intelligent Queuing layer allow users to implement IQs in a
medium-independent manner. e*Gate IQs interface with libraries written for various
data-storage implementations, including SeeBeyond's default (a B+ tree design),
Sybase-CTLib, Oracle-OCI, OracleAQ (available in a future add-on), and IBM-
MQSeries. These APIs also support any custom IQ inspection and interaction logic the
user develops.

IQs

IQs provide a smart store-and-forward mechanism for e*Gate Events by supporting
pub/sub processing and providing a form of interprocess communication for more
reliable delivery of Events. Publisher components populate IQs with Events. IQs have
control of when Events are made available to subscribers.

IQ Services

The standard e*Gate installation includes SeeBeyond IQs for all-purpose data handling,
as well as specialized Services, for example Sybase and Oracle, that handle data related
to specific applications. For more information, see the e*Gate Integrator Intelligent Queue
Services Reference Guide.

IQ Administrator

e*Gate provides a specialized GUI utility, available through the Schema Manager,
which allows you to check the status of an IQ or observe the journaled Event properties
of an IQ. For more information, see the e*Gate Integrator User’s Guide.

SeeBeyond JMS IQ

In e*Gate, you can implement the Java Message Service (JMS) using IQ Managers, IQs,
and a special e*Way connection to SeeBeyond’s standard Multi-Mode e*Way. For more
information, see the SeeBeyond JMS Intelligent Queue User’s Guide.

2.2.6 Application Connectivity Layer
The Application Connectivity layer consists of one or more e*Ways, components that
connect e*Gate and business applications, and optional BOBs, components that
implement high-performance, distributed, and complex processing of data flow.

e*Way Component Operation

e*Ways connect business applications with the e*Gate system, communicating with
both external applications and IQs. When integrating different systems, the appropriate
e*Way on each end of the route provides the adaptation necessary for seamless Event
flow, allowing the integration of applications and databases without changing them.

e*Ways establish connectivity with business applications, using whatever
communication protocol is appropriate. Some examples of communication details
managed by e*Ways include rules for responding to or generating positive and
negative acknowledgments, resend and reconnect criteria, time-out logic, data
SeeBeyond eBusiness Integration Suite
Deployment Guide 30 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.2
Overview of the eBI Suite About e*Gate
envelope parsing and reformatting rules, permitted buffer size, retrieval/transmission
schedules, and error logging and alerting.

SeeBeyond provides hundreds of application-specific e*Ways. The diversity of e*Ways
already available ensures that an organization can use an extensive, available coding
library as a basis when integrating a new system. Furthermore, SeeBeyond provides
prebuilt Collaboration Rules that define business rules and logic commonly associated
with given e*Ways.

APIs provide users with the ability to extend e*Way functionality, particularly when
applications expose APIs themselves. Additionally, standard libraries and templates
enable users to build custom e*Ways that take full advantage of the e*Way framework.

e*Ways for Database Access

These e*Ways deliver a powerful dimension of business process automation by
enabling administrators to incorporate relational database access into enterprise-wide
application integration strategies.

ETDs are generated by the database converter in the ETD Build tool. The ETDs map
table columns, stored procedures and SQL statements, allowing users to gain access to
databases or invoke stored procedures by manipulating them graphically rather than
with complex database programming. These e*Ways can query a database and
automatically generate a GUI tree representation of database access objects and
populate the structure with the actual data values during run time. No SQL coding is
required, but these e*Ways do support the full set of SQL operations, so advanced users
can engage them directly.

The e*Ways for database access use the same GUI paradigm as the rest of the e*Gate
system to describe Event flows through the entire enterprise. This enables business
analysts to define the relationships between a database and relevant applications
simply by dragging and dropping elements between tree structures.

SeeBeyond provides a number of specific e*Way Intelligent Adapters for database
access, for example, Oracle, Sybase, and ODBC. These intelligent e*Ways extend the
benefits of database connectivity to all databases (Oracle, Sybase, or ODBC,
respectively) that communicate with the e*Gate system, without requiring users to
purchase additional third party software

e*Ways for SAP

The e*Ways for SAP have been specifically designed to connect e*Gate to SAP R/3
enterprise management software within a network of diverse hardware and software
systems. Using one or more e*Ways for SAP, e*Gate can act as a hub between SAP R/3
and other software systems, or between differently configured SAP R/3 systems.

These e*Ways control the communication protocol layer between the SAP host and
e*Gate, and can be configured to process data in either direction. As with other e*Ways,
they contain their own Monk engine to process mapping Collaborations without
drawing on e*Gate resources.

Generic e*Way Extension Developer’s Kits

These Kits provide templates for users to design and build custom e*Ways for their
specific business requirements. The resulting e*Ways can incorporate core e*Gate
SeeBeyond eBusiness Integration Suite
Deployment Guide 31 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.3
Overview of the eBI Suite About e*Insight
technology, using the e*Gate editors for configuration and the Schema Manager to
provide extensive viewing and monitoring capabilities.

The Kits also provides a standard component within which to implement standard
communication interfaces. It is tightly integrated with other e*Gate components, acting
as a producer and consumer.

Users can configure e*Ways created with these Kits using the standard e*Way Editor.
They can then extend those e*Ways by modifying their related Java, Monk, or other
programming-language environments.

Additional e*Ways

SeeBeyond is continually developing new e*Ways to address special needs. See the
SeeBeyond Web site at:

http://www.seebeyond.com/

Also, you can contact SeeBeyond directly for the most current information on product
availability.

BOBs

A BOB is similar to an e*Way in that it establishes connectivity. BOBs only
communicate with IQs within e*Gate, they do not communicate with external systems
as e*Ways do.

You can add BOBs to an environment if you prefer to abstract some portion of the data
processing from the e*Ways, either to set up easily maintainable modularized
processing or to optimize system performance by using multiple processes.

2.3 About e*Insight
A business process is a collection of activities and messages that flow in a defined
sequence to produce an end result. Within an eBusiness Integration framework,
e*Insight helps you organize these processes into message-based integration solutions. The
message-based process modeling you do in e*Insight determines how data messages
flow from activity to activity.

Note: The rest of this guide provides diagrams, procedures, and discussions of specific
system features, deployment methodologies, and architectures discussed in this
section.

2.3.1 Managing Business Processes
Business process management (BPM) is strategically automating the movement of
information and the flow of complex processes between participants (systems, users,
and organizations) to accomplish larger business objectives. e*Insight is also a BPM
solution that delivers management and optimization by providing a clarity of view into
the internal and external processes of an organization.
SeeBeyond eBusiness Integration Suite
Deployment Guide 32 SeeBeyond Proprietary and Confidential

http://www.seebeyond.com/

Chapter 2 Section 2.3
Overview of the eBI Suite About e*Insight
For example, you can use e*Insight to streamline operations, reduce costs, and increase
customer satisfaction. In this context, e*Insight creates a layer of enterprise information
flow and business logic that exists above an organization’s current system-level
processes. In this way, e*Insight can help you reach outward to include both customers
and trading partners.

Using e*Insight to implement a BPM layer removes inefficiencies by orchestrating
business processes into a unified work flow. This flow can include multiple systems
and users, therefore extending to customers.

2.3.2 Ensuring Process Integrity
e*Insight can provide you with real-time monitoring and management that ensures
process integrity. This application also includes sophisticated reporting tools and a
complete business management environment. Using e*Insight, you can flexibly change,
enhance, and integrate business processes as your enterprise grows and evolves.
e*Insight enables clear visualization, monitoring, management, and optimization of
business processes, spanning within and beyond the enterprise.

2.3.3 Benefits to You
e*Insight offers you the following important benefits:

Modeling: UML-compliant graphical modeling and documentation of business
processes that seamlessly integrate system and user activities

Synergy with e*Gate: Automatic generation of e*Gate integration components
allowing the rapid implementation of business process models

Monitoring: Real-time graphical visibility and monitoring of running business
processes spanning the enterprise, which allows for human interaction with the
monitoring operation

Security: The ability to assign levels of security for specific items, such as business
process models, to users and groups

Exception Management: Robust management of long-lived business processes to
ensure process integrity, including the ability to roll back failed operations

Analysis and Reporting: Graphical Wizards and reports for analyzing business
processes, to identify trends and optimize results

These eBusiness Integration features in turn enable organizations to:

Allow for meaningful human interaction with the ongoing business process

Transform applications into components for both reuse and increased flexibility to
adapt to change

Increase visibility and improve the management of critical business processes with
auditability and traceability for each participant’s activity

Optimize processes through reporting and analysis over time

Enhance customer service and provide for customer self-service
SeeBeyond eBusiness Integration Suite
Deployment Guide 33 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.4
Overview of the eBI Suite About e*Xchange
Increase utilization of critical assets and improve operational efficiency

Expand capabilities to deliver new products and services at Internet speeds

2.3.4 The e*Insight Schema
The e*Insight Schema is the e*Gate schema that implements a particular e*Insight
installation. The starting point for a working e*Gate schema for e*Insight are the e*Gate
schemas provided with the product. These schemas are:

eIJSchema (Java)

eISchema (Classic)

These schemas contain a number of pre-configured and partially pre-configured e*Gate
components used by e*Insight. In addition to the components that are provided, a
complete e*Insight implementation requires several other e*Gate components that are
added to the e*Insight schema during the implementation process. The pre-configured
components that are used, as well as the additional e*Gate components that are added
to make up the final working e*Insight schema, depends entirely on the specifics of the
implementation.

The eIJSchema was introduced for 4.5.2. It is designed specifically to be used in a Java
environment and all the components provided are Java based. The eISchema can be
used in a combined Monk and Java environment.

The e*Insight database holds information about your e*Insight implementation,
including configuration information and run-time messages. The common database
model is automatically created when a business process is first created. This can be
used with no modifications. However, a model specific database can be used which
uses an optimized structure for the attributes. This can improve performance.

For complete information on e*Insight implementation, see the e*Insight Business Process
Manager Implementation Guide.

2.4 About e*Xchange
e*Xchange provides eBusiness protocol support, allows effective partner management,
and ensures secure eBusiness communications. It manages trading partner profiles and
supports standard eBusiness process protocols, for example, ASC X12, RosettaNet, and
UN/EDIFACT. e*Xchange includes a Validation Rules Builder tool to assist in creating
X12 validation Collaborations.

Note: The rest of this guide provides diagrams, procedures, and discussions of specific
system features, deployment methodologies, and architectures discussed in this
section.
SeeBeyond eBusiness Integration Suite
Deployment Guide 34 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.5
Overview of the eBI Suite About e*Xpressway
2.4.1 Exchanging Partner Information
The e*Xchange system allows you to set up and store information about each of your
trading partners so you can exchange (send and receive) messages. e*Xchange also
includes features to assist you with managing and troubleshooting the information
exchange process.

2.4.2 e*Xchange Features
Specifically, e*Xchange allows you to:

Receive, process, and route inbound and outbound transactions in batch, fast batch,
and interactive transmission modes

Use a Web-based management environment to allow configuration and support
from any location that has an Internet connection

Validate and translate messages/Events based on libraries of ETDs and
Collaboration scripts that conform to eBusiness process protocols such as
ANSI X12, CIDX, RosettaNet, and UN/EDIFACT

Use a database (Oracle, SQL Server, DB2 UDB, or Sybase) to store trading partner
information, transactions, acknowledgments, and errors

Automatically generate and reconcile acknowledgments

Handle and report errors

Define and maintain trading partner profiles

Generate custom reports that have been predefined in Seagate Crystal Reports

Automatically support message enveloping as specified by the supported
standards

Monitor and view messages in Message Tracking

Create and respond to action items

Provide secure communications via the eSecurity Manager

Note: The e*Gate system moves its own data in packages called Events. Similar types of
data packages outside e*Gate can be called messages.

For complete information on e*Xchange implementation, see the e*Xchange Partner
Manager Implementation Guide.

2.5 About e*Xpressway
One of the most significant eBI challenges faced by eMarketplaces and Global 2000
businesses is connecting trading partners quickly. To meet this challenge, the eBI Suite
includes e*Xpressway, the most powerful Web-based, trading partner on-ramp feature
SeeBeyond eBusiness Integration Suite
Deployment Guide 35 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.6
Overview of the eBI Suite Deployment: Getting Started
available for Global 2000 business and B2B marketplaces. This application provides
secure marketplace connectivity through file-based software packages.

e*Xpressway enables rapid trading partner connectivity and integration through a
comprehensive B2B implementation methodology, graphical configuration wizards,
and downloadable partner connectivity software. Trading partners follow an intuitive,
step-by-step process for registering their company profile, configuring connectivity and
integration software, then quickly installing their personalized software.

Note: The rest of this guide provides diagrams, procedures, and discussions of specific
system features, deployment methodologies, and architectures discussed in this
section.

2.5.1 e*Xpressway Integrator Server
e*Xpressway Integrator Server hosts the Trading Exchange Web site, which consists of
an administration area where the administrator host controls membership and the
contents of the download packages. This Web site provides both public and members-
only services.

2.5.2 e*Xpressway Integrator OnRamp
e*Xpressway Integrator OnRamp is an extremely light-footprint solution that provides
rapid eMarketplace connectivity through a standard or proprietary protocol-based
exchange. e*Xpressway consists of an e*Gate schema—using a variety of e*Ways, such
as HTTPs, Batch, CGI, and Apache Web Server—and a Java-based configuration tool
for configuring connectivity parameters.

2.5.3 Hosting e*Xpressway Integrator
The Trading Exchange customer purchases the e*Xpressway Integrator Server,
allowing them to host e*Xpressway and the Web site.

For more information on e*Xpressway, see:

e*Xpressway Integrator Server Setup and Maintenance Guide for Trading Exchanges

e*Xpressway Integrator OnRamp Customization Guide for Solution Providers

e*Xpressway Integrator OnRamp Setup Guide for Trading Partners

2.6 Deployment: Getting Started
This chapter provided a comprehensive overview of the eBI Suite, its features, and its
functionality. The rest of this guide explains generally how to deploy and implement
your e*Gate environment.
SeeBeyond eBusiness Integration Suite
Deployment Guide 36 SeeBeyond Proprietary and Confidential

Chapter 2 Section 2.6
Overview of the eBI Suite Deployment: Getting Started
Moving Forward

The following chapters cover all phases of planning and implementation for the eBI
Suite deployment project:

Analysis and Planning: For specific information on deployment planning and
determining your system’s general requirements, see Chapter 3. This chapter
describes how you start deployment.

Hardware Requirements: For information on planning your hardware
requirements, see Chapter 4.

System Design and Transition to Production: For information on these topics, see
Chapter 5 (design) and Chapter 6 (transition).
SeeBeyond eBusiness Integration Suite
Deployment Guide 37 SeeBeyond Proprietary and Confidential

Chapter 3

Analysis and Planning

This chapter explains how to analyze your current business systems and processes in
order to plan the optimum eBI Suite design and deployment to meet your stated
requirements.

In This Chapter

“Introduction: Analysis and Planning” on page 38

“Gathering Information” on page 39

“Analyzing Your Requirements” on page 40

“Planning Your Deployment” on page 51

3.1 Introduction: Analysis and Planning
Deploying the eBI Suite requires completion of the following phases:

1 Analysis of requirements

2 Deployment planning

3 System design and development

4 Pre-transition testing

5 Transition to production

6 Post-transition maintenance

Figure 2 on page 39 shows a diagram of these six deployment phases. This chapter
explains the first two phases, which are:

Analysis of requirements phase: This deployment guide seeks to give you a road
map of how to deploy an eBI Suite. First, to use a road map, you have to know
where you are (analysis) and where you are going (planning). In other words, find
out everything you can about your information system (IS) setup and business
processes. Then, you can decide what IS and business process needs you want the
eBI Suite to meet.

Deployment planning phase: Deployment begins when you plan out and schedule
how, in view of your analysis information and allocated resources, you want to
implement your eBI Suite environment. During this phase, you set up the operation
procedure and schedule for the entire deployment project.
SeeBeyond eBusiness Integration Suite
Deployment Guide 38 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.2
Analysis and Planning Gathering Information
The first two phases are the most important in the deployment project. This chapter
discusses these phases in detail (later chapters treat the rest of the phases). Analysis and
planning are information-gathering operations. Poor planning can cause serious
problems during the later phases, but a good planning process can make system design
and deployment easier, more efficient, and less costly. Thorough, comprehensive
analysis and planning techniques lay a solid foundation for the entire deployment
project.

Figure 2 eBI Suite Deployment Phases

3.2 Gathering Information
You must prepare for your deployment project by gathering as much relevant
information as possible. The more comprehensive your analysis and data are, the
better. For best results, use the most modern survey and polling tools available to your
organization to obtain the information you need, discarding unnecessary data.

Phase 1:

Analysis of Requirements

Phase 2:

Development Planning

Phase 3:

System Design and Development

Phase 4:

Pre-Transition Testing

Phase 5:

Transition to Production

Phase 6:

Post-Transition Maintenance
SeeBeyond eBusiness Integration Suite
Deployment Guide 39 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Analysis and Planning Analyzing Your Requirements
Information-Gathering Tools

Use the following tools to assemble your deployment research:

Research and interviews

Surveys

3.2.1 Research and Interviews
These methods are the time-honored, traditional ways of gathering information. Use
them as diligently as a college student writing a term paper. Your company has reams
of paper, cabinets full of files, and databases overflowing with useful information, from
management directives to marketing papers to MIS memoranda. Much important
deployment information exists here, provided that you make good use of it.

Interview and talk to the employees of your organization. Find out what they do and
what their IS needs are. Of course, input from relevant management and MIS people is
necessary, but do not forget marketing employees, secretaries, and anyone else in touch
with data flow needs. You want to put together a complete picture of your
organization’s current and future IS/business process requirements.

SeeBeyond’s Professional Services department can help you in answering specific
questions on how to gather data and what kinds of data are relevant for your own
deployment project. You can utilize this resource, as necessary.

3.2.2 Surveys
Formal surveys are excellent tools for getting information. Surveys allow you to
organize your own thoughts and processes, as well as helping to gather the desired
information from others. There is a lot of helpful literature available on creating, giving,
and analyzing polls and surveys. Reading some of this literature can provide a helpful
background for doing these tasks.

Appendix A contains a sample survey. You can employ it as a self-survey or use
modified versions of it to research and gather information from others. Feel free to
print, copy, and use it as desired.

3.3 Analyzing Your Requirements
In gathering and analyzing information on your eBI Suite needs, you must first know
what kind of information you need. Remember that the eBI Suite links to your current
networks, business systems, and applications together into a single, seamless IS. The
purpose of this system is to facilitate your current and future business process needs. In
other words, in as much detail as possible, find out where you are and what you need.

In addition, e*Xchange links you to other businesses, trading partners, and systems
outside of your organization, such as the Internet.
SeeBeyond eBusiness Integration Suite
Deployment Guide 40 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Analysis and Planning Analyzing Your Requirements
Examining Your Needs

During the analysis of requirements phase, you examine your needs and define the
properties that the system must possess to meet those needs. Also, you identify system
constraints and performance requirements. Define what functions you want the
deployed system to perform but not how the functions work (this task happens during
the design and development phase; see Chapter 5).

This section tells you what kinds of information you need to gather to facilitate your eBI
Suite deployment, by posing a series of relevant questions. Make sure you answer all
these questions as thoroughly and correctly as possible and discard any information
that does not help you in answering them.

These questions fall into the following general categories:

System-specific

Operation and performance

Personnel and training

Business planning

Note: Appendix A poses important questions under these categories, in survey form.

Keep in mind that examples given in this section are general and are only meant to start
you thinking in the right direction. You must begin by assembling general information
on your needs, categorize that information, and expand on it by filling in necessary
details to fully explain each category. See Chapter 5 for more detailed examples of
specific information you must put together.

3.3.1 System-Specific Needs
These needs are the basic IS, network, and database-related requirements you want
your eBI Suite to meet. Determine your system-specific needs by asking the following
questions:

What existing systems do we need to connect?

Create a complete picture of your current IS setup. Include applications, networks,
systems, platforms, and outside information pathways.

Example: An Intel PC LAN with Windows XP network connecting workgroups with
office applications, a UNIX system with an Oracle database containing customer
information, and UNIX system with IMS tracking financial transactions.

How do we want to do the connecting?

Find out how you want your various systems to talk to each other (communication
protocols), which systems must be linked, and the direction of communication.

Example: We have systems A, B, C, and D. Systems A and B use TCP/IP, C uses SNA,
and D uses SAP. All systems must talk to each other except system D which only needs
to communicate with A. All communication in all systems is two-way, except that
system C only needs to receive information from the others and not send it.
SeeBeyond eBusiness Integration Suite
Deployment Guide 41 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Analysis and Planning Analyzing Your Requirements
What are our data requirements?

What types of data do you use, how much, and when?

Example: Our system uses HL7 and X12 data types. On average, our system needs to
move about 100,000 Events per day at about 5 MB per message, with 90 percent of that
data moving between 8 a.m. and 5 p.m. every Monday through Friday. Peak data loads
are generally between 2 and 4 p.m. on weekdays (60 percent of volume).

What are our system/hardware limitations and constraints?

Installing eBI Suite requires that you have the necessary hardware and operating
system (OS) software and purchase (and install if necessary) additional hardware and
software to contain the eBI Suite. Do you want UNIX or Windows? What is your
budget for additional hardware and software? Do you have any space limitations in the
area where this hardware will reside?

Example: We have compiled a detailed checklist showing all the hardware and
software necessary to install and operate the eBI Suite.

Note: Planning for hardware needs requires special considerations, for example, how
many systems you need, memory (RAM) required, the number of CPUs you need,
and total disk space. Chapter 4 discusses in detail how to analyze and plan for these
additional hardware and system-sizing needs.

3.3.2 Operation and Performance Needs
Do you have any specific system operation and performance issues? Now is the time to
discover, organize, and itemize them by asking the following questions:

What are our system performance requirements?

Ultimate system performance comes down to a trade-off between speed and
maintainability. This fact is true overall, as well as being true for the operation of
individual system component operations. You must prioritize these needs specifically.

Example: Our customer databases must be totally accurate and detailed because the
information is often used and vital to the company. Detailed maintenance of this data is
more important than speed of processing. However, our moment-by-moment stock
quotations have to be fast and up-to-the minute. Maintainability here is negligible
because this data changes so fast that long-term retrieval is not an issue.

What are our internal security requirements?

The eBI Suite has access security, that is, special features allowing only certain persons
to log on to the system and different persons to have specific privileges after the log on.

Example: We will only allow five people to log on to the system: one with system
administrator privileges, two with operator privileges, and two with monitor
privileges.

Do we need to trade large amounts of data with other businesses?

The e*Xchange application allows you to manage trading partner profiles and support
standard eBusiness process protocols.
SeeBeyond eBusiness Integration Suite
Deployment Guide 42 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Analysis and Planning Analyzing Your Requirements
Example: We need to manage a large number and many different types of data
exchanges with our trading partners. We have a detailed list of how many and what
kinds of transactions these are, including the types of data involved.

What are our data security needs in transactions with other businesses?

The eSecurity Manager (part of e*Xchange) allows you to send and receive secure
transmissions of B2B exchanges over public domains, for example, the Internet.

Example: We must be able to exchange financial data with our trading partners, when
necessary, via the Internet. We know how much data needs to be exchanged, what kind
of data, and when the transactions take place.

What are our error-handling and data validation requirements?

How, when, and where in the system do you want data checked for errors and
validated? Keep in mind that processing speed decreases as checking instances and the
detail of error checking increases.

Example: All data passing through our eBI Suite must be validated to the most
thorough extent possible. To facilitate this process, we have compiled a complete list of
all the different types of data that need to be validated.

What are our auditing requirements to maintain historical data?

How long does your organization need to maintain auditing data that has passed
through the e*Xchange Engine for non-repudation purposes and accountability?
Keeping large amounts of data within the database eventually causes performance
problems and could demand additional hardware resources (for example, disk space
and processor capacity). Think about how often you need to archive data to keep the
database optimal and how it can be stored so it can be easily de-archived if auditing
needs demand data availability.

Example: We expect to do around 1,000,000 transactions per week and have calculated
that our Oracle database and hardware can accommodate approximately 25,000,000
transactions online without causing any problems. Based on these calculations, we will
schedule to run an archiving routine every two weeks to remove transactions older
than six months. Each of these archive files will be saved to tape and stored for seven
years in the off-site safe. This process will not replace any of our standard backup and
recovery procedures.

Do any of our trading partners want to connect their back-end systems through to us?

e*Xchange can greatly facilitate the management of trading partner definitions and
associated validation, security, and auditing. However, some of your trading partners
may also want to provide the capability for them to connect their systems through to
your trading environment. In such cases, you must assess what systems trading
partners have and whether they need a tighter integration environment to trade with
you. Using e*Xpressway you can facilitate these needs. Also, try to categorize the
different types of integration your trading partners need.

Example: We have 1000 trading partners. Approximately 90 percent of them will just
want simple Web-based access that we can provide via e*Xchange and custom
solutions within e*Gate. However, 10 percent want to connect their own systems. Many
of them have file-based X12, but some trading partners have custom file formats. We
will need to document these integration requirements and ensure that OnRamp
SeeBeyond eBusiness Integration Suite
Deployment Guide 43 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Analysis and Planning Analyzing Your Requirements
Solution Packages are built to fulfill each custom need. We also need to identify who
will help us build/provide these solutions to the trading partners.

What kinds of transactions do we need to handle?

Within the supported eBusiness protocols in e*Xchange, there are many different
transaction sets within each protocol. It is extremely helpful to determine in advance
which standards are needed and which versions and transaction sets you have to
support, so you can set them up for your trading partners.

Example: Most of our partners in Europe use UN/EDIFACT 99a or 00a and many in
the U.S. use X12 4010, 4020 and 4041. We will be exchanging orders with all of our
suppliers and confirming those orders, with acknowledgement handling. Therefore,
our common set of transactions for UN/EDIFACT must be ORDERS, ORDRSP, and
CONTRL. For X12, we have to support 850, 855, 857 and 997. Additional transactions
will be supplied on an as-needed basis by each trading partner.

What communications protocols do our trading partners require?

With the core e*Xchange application, you can support HTTP, HTTPS, SMTP, and FTP
Batch for many of the eBusiness protocols. Determine which communications protocol
each trading partner wishes to use and how best to set-up the e*Xchange Engine to
support them.

Example: Many of our trading partners want FTP connectivity. For each one, we will
set-up a special directory where they can put their files to be picked up in batch mode
by e*Xchange (and define this in their profile setup). For our HTTPS users, we will need
their certificate to store in the Repository, as well as supplying them with a URL that
they can point their products to, to send us data. We will also need to obtain their URLs
so we can POST data to them.

3.3.3 Personnel and Training Needs
Deploying the eBI Suite may require some expanded personnel needs, so you must ask
yourself the following questions:

Do we have personnel trained and able to deploy the system?

Deploying the eBI Suite does require some training of current personnel and may
require the hiring of additional persons, depending on the size of the system you are
planning and implementing.

Example: We will need two persons to deploy and later operate the new system. One
new person will have to be hired. All three will need to take the basic eBI Suite class
(offered by SeeBeyond) and one will additionally have to take the advanced class (also
offered by SeeBeyond). The new hire must be thoroughly trained in and familiar with
UNIX (training in UNIX is not offered by SeeBeyond).

Do we have personnel trained and able to maintain the system after deployment?

Post-transition maintenance of the eBI Suite could also require additional personnel
and training.

Example: In addition to the people we hired to deploy the system, we need to train one
additional person to learn how to operate it, in order to enable long-term maintenance
of the system.
SeeBeyond eBusiness Integration Suite
Deployment Guide 44 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Analysis and Planning Analyzing Your Requirements
3.3.4 Business Planning Needs
The eBI Suite can help you facilitate and improve your overall business processes.
Assess your needs in these areas by asking the following questions:

What business processes do we want the eBI Suite to help us enable?

e*Insight allows you to design your business process models. Before starting this
design process, you must know the overall flow of business processes you want the eBI
Suite to help you maintain and enhance, including future needs you want the eBI Suite
to help you meet. e*Insight allows you to map out these business work flows in great
detail.

Example: We primarily need to facilitate the flow of data from the Sales Department to
Customer Service and Orders Processing, so the different departments can access one
another’s data, and we can easily keep track of each of our customers and their
interactions with all these areas of our company. This is a complex, detailed work flow
that requires precision planning and analysis. Using e*Insight helps us diagram and
evaluate this work flow and its attendant business processes.

What are our record-keeping and documentation needs?

Make sure you set up a system for documenting your eBI Suite operation.

Example: We must put a new system in place to document and diagram the total
operation of the eBI Suite. In addition we must keep complete records on that
operation.

How do we create a deployment road map?

Plan your deployment well. Choose a Deployment Project Team (for a small
deployment, one person could do this task) to carry out the project, and make sure you
document your plan in writing. Flowcharts and system diagrams are definitely helpful
(see “Planning Your Deployment” on page 51).

Example: Figure 3 shows a diagram of the information-gathering cycle in the
deployment project’s analysis of requirements phase.

Figure 3 Analysis of Requirements Phase/Information-Gathering Cycle

Needs
Analysis

System-
Specific Concerns

Operation and
Performance

Personnel and
Training

Business
Planning
SeeBeyond eBusiness Integration Suite
Deployment Guide 45 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Analysis and Planning Analyzing Your Requirements
As you continue the analysis process, allow the results to feed back into your overall
analysis. If necessary, start the process over again to fine-tune the information you have
gathered. This method allows you to ensure the accuracy and usability of the
requirements you collect.

Once we have the information, what do we do with it?

Complete the process of documenting and organizing your information as correctly
and comprehensively as possible. When you are finished with the analysis of
requirements phase, you will use this information to help you with the next phase,
planning your eBI Suite deployment project.

3.3.5 e*Insight Deployment
This section explains additional considerations to help you in planning to deploy
e*Insight along with your total eBI Suite.

Sample Business Process

Successfully deploying e*Insight requires that you think through and analyze your
entire business process. You can easily make this analysis operation a part of your
overall eBI Suite deployment planning. Because e*Insight allows you to graphically
model your business processes, this application, once it is installed and operating, can
be a useful tool in your overall planning process.

For example, as demonstrated in the business process example shown in Figure 4,
information critical to customer satisfaction must flow from the customer, across
several internal systems, and out to business partners, such as credit agencies, alternate
suppliers, and product shippers.

Figure 4 Business Process Example

To efficiently and reliably manage the information as it flows from system to system,
this type of complex business process clearly benefits from a single, automated process-
management application. Without this infrastructure in place to deliver process
management services, significant additional custom development is required to
remove or minimize the otherwise manual steps.

Trading Partner
(Shipper)

Web Retailer

Check
Inventory Response

Check
Credit

Response
Order

Order
Status

Product
Shipped

Inventory

Trading Partner
(Customer)

Trading Partner
(Credit Company)

$

SeeBeyond eBusiness Integration Suite
Deployment Guide 46 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Analysis and Planning Analyzing Your Requirements
e*Insight allows you to create, automate, manage, and optimize cross-application and
cross-enterprise business processes involving systems, users, and external
organizations.

For more information on e*Insight, see the e*Insight Business Process Manager User’s
Guide and e*Insight Business Process Manager Implementation Guide. In addition, refer to:

“Modeling Business Processes with e*Insight” on page 123

“Role of e*Insight” on page 172

3.3.6 e*Xchange Deployment
This section explains additional considerations to help you in planning to deploy
e*Xchange along with your total eBI Suite.

Business-to-Business Integration

Electronic Business-to-Business (B2B) Integration, or eBI, does more than allow one
business to send electronic documents to another. eBI automates and integrates the
entire business supply chain so that a business process that uses external trading
partners can be managed as a single process. The purpose of e*Xchange is to facilitate
and integrate the many trading partner relationships in a business.

In moving from intra-business to inter-business, the integrator must overcome several
challenges, most of which stem from the need to use infrastructure that is outside one’s
control. Once these challenges are overcome, the enterprise can manage the entire
end-to-end business process. Using e*Xchange, the enterprise can extend the proven
planning and cost savings abilities of Enterprise Application Integration (EAI) to the
larger world of eBI.

An eBI Example

The need to integrate a number of trading partners is an essential requirement in the
realm of internet retailing. For example, consider a Web retailer that sells sports
equipment online. This retailer sets up an electronic storefront that allows a customer to
browse an online catalog of items and place orders for them.

After securing payment via credit card, the items are shipped to the customer, along
with the status of the order. Figure 5 on page 48 shows a flow chart of the web retailer’s
business process outlining the steps involved in a typical transaction.
SeeBeyond eBusiness Integration Suite
Deployment Guide 47 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Analysis and Planning Analyzing Your Requirements
Figure 5 Web Retailer Business Process

Three out of the five steps in this business process (checking credit, stock availability,
and shipping to the customer) are outside the Web retailer’s enterprise.

However, from the customer’s point of view, the entire transaction is handled by the
online retailer. The Web retailer’s business model depends on the efficient use of
trading partners to fulfill parts of the business transaction that he does not handle
directly.

Receive
Order

Credit OK?

In Stock?

Yes

Ship
Order

Yes

Send Order
Status

No

No
SeeBeyond eBusiness Integration Suite
Deployment Guide 48 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Analysis and Planning Analyzing Your Requirements
Figure 6 shows the interrelationships between the retailer and the trading partners:

Figure 6 Trading Partner Relationships

e*Xchange Deployment Methodology

The goal of e*Xchange is to successfully integrate a business’ many composite trading-
partner relationships into a single overall business process. The successful deployment
of e*Xchange creates a composite eApplication that orders and automates these many
“chains,” making them easily manageable.

Therefore, planning your e*Xchange deployment entails knowing, documenting, and
preferably diagramming (see Figure 6) these relationships in as much detail as possible
before starting.

For more information on e*Xchange, see the e*Xchange Parner Manager User’s Guide and
e*Xchange Partner Manager Implementation Guide. In addition, refer to:

“Overview of e*Xchange Implementation” on page 127

“e*Xchange Message Tracking” on page 184

3.3.7 e*Xpressway Deployment
This section explains additional considerations to help you in planning to deploy
e*Xpressway along with your total eBI Suite.

Deployment at a Glance

Deploying e*Xpressway requires that you take the following planning steps:

1 Identify your trading partners who need e*Xpressway or could benefit both your
business processes by using it.

2 Analyze and, if necessary, document how they can configure e*Xpressway to
improve your joint business processes.

3 Determine what you will require to host e*Xpressway.

Partner C
(Shipper)

Web Retailer Check
Credit

Response
Order

Order
Status Product

Shipped

Customer

Partner A
(Credit Company)

$

Purchase
Order

Invoice

Partner B
(Supplier)

Carrier Invoice

Product Delivered

End-To-End Supply Chain
SeeBeyond eBusiness Integration Suite
Deployment Guide 49 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.3
Analysis and Planning Analyzing Your Requirements
Basic Deployment Considerations

Deploying e*Xpressway requires the following prior considerations:

1 You need a Solution Provider (a consultant with e*Gate experience) to customize
the OnRamp base schema within e*Gate to provide custom e*Xpressway OnRamp
Solution Packages. Your Solution Provider must work with you to create the
OnRamp template schemas and Solution Packages.

2 You need to know what systems your trading partners are using. You want your
system to be able to communicate with the applications and platforms likely to be
used by your trading partners.

3 Your Solution Provider needs to create OnRamp Solution Packages specific to each
of your trading partners for uploading to the Web site (and for them to download).

Figure 7 shows a diagram of a sample e*Xpressway deployment plan.

Figure 7 Sample e*Xpressway Deployment Plan

For more information about using and implementing e*Xpressway, see the following
references:

e*Xpressway Integrator Server Setup and Maintenance Guide for Trading Exchanges

e*Xpressway Integrator OnRamp Customization Guide for Solution Providers

e*Xpressway Integrator OnRamp Setup Guide for Trading Partners

In addition, refer to:

“Overview of e*Xpressway Implementation” on page 131

Customer Hosted—Managed by Trading Exchange Administrator

e*Xpressway Servere*Xpressway
Administrator
Creates customer

account

Solution
Provider

Creates e*Gate
OnRamp Solution;

Packages with
Packager Tool and

Uploader

OnRamp
Solution Center

Member Site

Trading Partner
Requests account;

Downloads
OnRamp Solution

Package; Uses
Config Manager
e*Expressway

OnRamp

Trading
Exchange

Transacts with
trading partners

Public Site

HTTPS
SeeBeyond eBusiness Integration Suite
Deployment Guide 50 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Analysis and Planning Planning Your Deployment
3.4 Planning Your Deployment
The deployment planning phase is the next major step in your eBI Suite deployment
project. In planning your deployment, you create a road map of what that deployment
will look like. You must include criteria like resources, schedules, goals, and objectives.
The primary purpose of this phase is to initiate the project, define the integrated system
to be developed, create top-level design documents, and create a formal project plan or
road map.

In creating your deployment road map, you provide a detailed description of the
integrated eBI Suite to be developed. This plan serves the following primary purposes:

Designing what your future system looks like

Showing you the resource allocation needed to implement the design

If analysis is finding out where you are, planning tells you where you want to go and
how to get there. You can obtain help, when necessary, from SeeBeyond’s Professional
Services and other SeeBeyond representatives. Thorough and comprehensive planning
helps to ensure a smooth-running and satisfactory deployment project.

The major steps in deployment planning are:

Setting up overall objectives

Identifying and scheduling tasks

Determining when objectives are met

3.4.1 Setting Up Overall Objectives
This step of the deployment planning phase entails the following operations:

1 Achieve a consensus on the implemented eBI Suite’s overall functionality and scope
by taking the following steps:

Set up organized technical and functional teams or roles to handle individual
phases and aspects of the deployment.

Note: For a small deployment, one person could handle the tasks of a team.

Ensure that the system’s functionality is clearly stated and agreed upon.

Document the functionality and scope of the project based on analysis
information, as well as match this information against the scope of the project as
stated in the “Approved Proposal.”

Resolve any differences between the “Approved Proposal” scope and your
prepared analysis and requirements information (see “Analyzing Your
Requirements” on page 40), if necessary.

2 Create a general model of what the system will do. This model serves the following
purposes:

Serves as the foundation architectural plan for all eBI Suite design (see
Chapter 5).
SeeBeyond eBusiness Integration Suite
Deployment Guide 51 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Analysis and Planning Planning Your Deployment
Consists of diagrams and supporting documentation that represents the design
strategy for any required eBI Suite interfaces.

3 Set up a Design and Development Team or role and provide this team/role with an
understanding of the application domain. Also provide them with approved,
clearly stated, top-level design documentation of requirements for the eBI Suite
domain.

4 At this point, the groups and persons meeting together must formulate a basis of
validation of the final product during acceptance testing (see Chapter 6). This
validation process includes the testing required to validate the functionality of the
system and that it works as stated in the “Approved Proposal.”

3.4.2 Identifying and Scheduling Tasks
This step of the deployment planning phase includes:

Deployment initiation steps

Creation of deployment documents

Beginning Deployment

Begin the deployment project via the following actions:

Hold a Project Kick-off Meeting: This meeting will identify all members of the
Deployment Project Team or role. The analysis tasks and responsibilities
assigned to each resource will also be identified. The purpose of this task is to
outline the reporting structure for the project and identify whom the Project
Manager will communicate with to ensure that other tasks in the project are
being completed as planned. In addition, documentation standards and the
project reporting structure are established at this time.

Ensure Software and Hardware Installation: The purpose of this task is to
ensure that your hardware and software is in place and ready for the eBI Suite
installation. This process includes ensuring that the eBI Suite software is fully
supported on your hardware platform and operating system and that the
software has been shipped.

Complete Installation Test, Installation, and Checklist: The eBI Suite
installation task is completed during the deployment planning phase to ensure
there are no issues with your technical environment. You can use a deployment
checklist to detail the exact hardware and operating systems where the
installation will be performed. This task includes the following steps:

The total eBI Suite environment must be installed and tested. The
deployment checklist is updated to identify what items were completed and
document outstanding issues that may have kept any items from being
completed.

The production, training and test (pre-production) hardware, software and
network requirements (current and planned) are identified and verified.
SeeBeyond eBusiness Integration Suite
Deployment Guide 52 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Analysis and Planning Planning Your Deployment
The end-to-end communications with your other systems are also tested to
ensure that communications are set up correctly and systems are
exchanging messages correctly according to the communication protocol
being invoked.

Any communications with other businesses or trading partners are tested in
the same way.

Establish the Change Management: A critical factor through all phases of the
project is change management. Change management identifies and track all
changes for a project that depart from the original deployment plan. All changes
must be identified and tracked because many small changes can and will impact
a deployment project in the same way as a more easily identifiable large-scale
change. Tracking all changes allows the project manager to plan and control a
project and keep track of all changes in the project’s scope.

Deployment Documents

You must document the deployment project. This step requires that you create the
following documents:

Preparing the Deployment Project Plan – This document lists a set of tasks for
establishing a baseline reference plan. It is your road map for the deployment
project. The roles and responsibilities of each organization, schedule of tasks, and
any estimates must be defined in this plan.

It is best that this plan be as detailed as possible. Any project risks must be assessed
and documented. Your necessary resources are budgeted using this plan (or
validated if you have already created a budget).

The deployment project plan must be reviewed and agreed on by all the
organizations involved in the project. It must be communicated to all affected
organizations. The following table shows a list of the subject matter the plan must
contain.

Table 1 Deployment Project Plan

Contents Description/Methods

 Scope of work This item must be based on the purchase contract, “Approved
Proposal,” or any equivalent document.

 Project organization Include the deployment project team (or the person responsible for
a small deployment), development organization, review
organization and any external organizations involved in the project.
The roles and responsibilities must be clearly defined.

 Delivery schedule Indicate the schedules for all specified eBI Suite deliverables,
including the final delivery date after all validation and verification
tasks are complete.

 Estimates This section includes a work breakdown structure (WBS).
SeeBeyond eBusiness Integration Suite
Deployment Guide 53 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Analysis and Planning Planning Your Deployment
Functional Requirements Specification: In creating this document, you identify
and analyze your specific system requirements. The behavior of the various
application components (Event, process, and associated data) are carefully
analyzed and documented. You must check and verify each of these components.

The functional requirements specification, along with technical requirements
specification, helps form the basis for system design and final project acceptance.
The typical subtasks in creating this document are:

Studying and identifying system requirements to derive the business process
functionality required and identify the system architecture needed to meet
functional requirements.

Creating an eBI Suite architecture model to show the proposed integrated
system.

Creating eBI Suite interface models to define interface requirements.

Being sure that, at every step in its creation, you are allowed to review, give
input to, and sign off on this document. Table 2 shows a list of this document’s
contents.

 Overall schedule This section contains a schedule for all deployment project tasks
including resource assignments; key phase completion milestones
must be indicated. This schedule will be further elaborated by
developing various phase work plans (the use of Microsoft Project
is recommended).

Resource requirements Include the manpower, hardware, and software resources required
for the testing phase before transition to production.

Issues and risks Potential project issues and risks must be identified, and
contingency plans must be drawn up for any risks.

Organizational interfaces The dependencies on other projects and information needed from
other organizations must be clearly identified, documented, and
conveyed to any affected parties.

Table 2 Functional Requirements Specification

Contents Description/Methods

Statement of requirements Define the objectives you want the eBI Suite to meet.

Proposed eBI Suite architecture Show a summary design model of the sending and receiving
systems, e*Way Intelligent Adapters to be used, and interfaces
that take place.

Proposed directory structure
and Events that trigger eBI Suite
processing

Provide a map of the external sending/receiving systems,
directory structures, and the business/processing Events,
including what eBI Suite processing will be initiated by the
Events.

Exception processing Define requirements for processing errors or Events.

Table 1 Deployment Project Plan (Continued)

Contents Description/Methods
SeeBeyond eBusiness Integration Suite
Deployment Guide 54 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Analysis and Planning Planning Your Deployment
The general design model provided by this document forms the starting basis of the
next deployment step, the system design and development phase. See Chapter 5 for
details on how to use this model as the foundation for your complete eBI Suite
architecture. For examples, see the following figures:

Figure 8 shows a sample diagram of an e*Gate environment.

Figure 9 on page 56 shows a sample diagram of e*Xchange and e*Insight
installations.

Figure 8 e*Gate Environment—General Diagram

Constraints Define data volumes, performance, and any backup/archive
requirements.

Interface diagrams Produce a diagram for each proposed interface, showing the
sending/receiving system, Event processing, and any
interdependencies.

Hardware/software diagrams Show the hardware/software environment and high-level related
schematics for development, testing, and production systems.

Table 2 Functional Requirements Specification (Continued)

Contents Description/Methods

e*Gate Environment

Participating HostParticipating Host

Alert
Agent

e*Gate Enterprise
Manager

e*Way

External
System

SNMP
Monitor

External
System

SNMP
Agent

e*Way

e*Gate Monitor

Registry Host

e*Gate Registry

Control
Broker

BOB

Control
Broker

e*Way

External
SystemMonitoring

Information

Data

Email
Pager
Fax

Voicemail
Printer

IQ IQ
SeeBeyond eBusiness Integration Suite
Deployment Guide 55 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Analysis and Planning Planning Your Deployment
Figure 9 Sample e*Xchange and e*Insight Installations Diagram

Note: The eSecurity Manager is a part of the e*Xchange Partner Manager system. See the
e*Xchange Partner Manager User’s Guide for details.

Technical Requirements Specification: In creating this document, you identify
and analyze your specific technical requirements. The behavior of the various
application components (Event, process, and associated data) are carefully
analyzed and documented.

Of course, you have input on and verify the need for each of these components.
This technical requirements specification, along with the functional requirements
specification, helps form the basis for system design and final project acceptance.
The typical subtasks in creating this document are:

Creating a hardware/software model to define the environment that eBI Suite
will process in.

Being sure that, at every step in its creation, you are allowed to review, give
input to, and sign off on this document. The following table shows a list of this
document’s contents.

eBi Suite

e*Gate Integrator

Suppliers Customers

BOB BOB BOB

eSecurity
Manager

e*Xchange
Partner Manager

RosettaNet
EDI Support

e*Insight Business Process Manager

Model Design
Model Execution
Model Monitoring
Model Analysis

eSecurity
Manager

e*Xchange
Partner Manager

RosettaNet
EDI Support

e*Waye*Waye*Way

ApplicationERPDatabase

End-To-End Supply Chain
SeeBeyond eBusiness Integration Suite
Deployment Guide 56 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Analysis and Planning Planning Your Deployment
Test Plan Requirements Specification Document: A high-level test plan must be
produced, highlighting the testing tasks to be performed during each phase. This
document specifies the test approach, the type of tests to be carried out, and the
organization responsible to carry out the tests for each test phase.

Important: A detailed test plan is developed during the design phase (see Chapter 5). The
actual testing is carried out during the testing phase before transition to production
(see Chapter 6).

The test plan requirements specification can be a single document, or it can consist
of a separate document per project for all the test phases, or one document per
phase, depending on the size and complexity of the deployment project. Table 4
shows a list of this document’s contents.

Chapter 6 contains a complete description of the testing, transition to production,
and post-transition maintenance phases of the deployment project.

Note: The tasks stated in this guide walk through the steps required for developing and
delivering the eBI Suite interfaces. This document addresses the interfaces as a total
system, and so presents the deployment planning phase as being completed before
the system design and development phase. In an actual deployment, there is
probably overlap between the two phases. This fact, of course, applies to all the
phases.

Table 3 Technical Requirements Specification

Contents Description/Methods

Technical requirements
specification

Requirements for security, system availability, and the technology
being used to meet these requirements.

Any additional related requirements.

Table 4 Test Plan Requirements Specification

Contents Description/Methods

Test plan Contains a general description of the testing phase of the deployment
project; this plan is preferably produced by an independent test team
or role based on your requirements for the testing of applications and
their process for promoting applications to production.

Test phases Includes the programmer test, unit test, integration test, system test,
roll-out test, operation readiness test, and so on.

Test approach Details whether there will be manual or automated testing and the
validation process for each test performed.

Organization Includes the testing team or role (functional and technical).

Schedule Defines the system availability for test data and system resources
needed for the different test phases.

Resource requirements Defines system, individual, and team resources needed for the test
phases.
SeeBeyond eBusiness Integration Suite
Deployment Guide 57 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Analysis and Planning Planning Your Deployment
3.4.3 Determining When Objectives Are Met
All deployment planning phase objectives have been met when the following steps are
completed:

1 The deployment project is successfully initiated, including the following completed
tasks:

Your deployment project team and eesign and development team are set up,
and their assignments and responsibilities are identified.

Note: For a small deployment, one person could substitute for each of these teams.

The deployment checklist is completed.

The prerequisite hardware and software has been identified, installed, and
tested.

A working change management process is established.

2 The deployment project plan has been completed, updated (if necessary), and
approved by deployment project leadership and your management.

3 The functional, technical, and test plan requirements specifications are completed
and approved by deployment project leadership and your management.

4 The deployment project leadership must review and approve the following
requirements:

Architecture design documents must be completed and approved.

Test requirements must be identified, documented, and approved.

All analysis information must be verified as detailed and accurate enough to
predict the deployment’s cost and duration.

5 Any subsequent issues resulting in a change of the project scope and resources
must be communicated and signed off, including approval by deployment project
leadership and your management.

Figure 10 on page 59 shows a complete diagram of the steps of the deployment
planning phase, as discussed in this section.
SeeBeyond eBusiness Integration Suite
Deployment Guide 58 SeeBeyond Proprietary and Confidential

Chapter 3 Section 3.4
Analysis and Planning Planning Your Deployment
Figure 10 Deployment Planning Phase Steps

Moving Forward

Once all the members of your management and deployment project team (or
responsible person) agree that these objectives have been met, you have successfully
finished the deployment planning phase of your eBI Suite deployment. You have
already created a complete deployment road map, the “deployment project plan,”
along with some general designs for your completed system.

Hardware Needs: An important part of planning for your system and deployment is
how to determine your hardware requirements. If you need additional information on
planning for and determining your system’s hardware requirements, see Chapter 4.

The rest of the chapters in this guide treat the eBI Suite deployment project under the
following topics:

System Design: For a discussion of the next phase of your deployment project,
including system design architecture and development, see Chapter 5. In this
phase, you broaden and fill in the details of the general designs you created during
planning.

Testing and Transition to Production: For a discussion of the testing, transition
(go-live), and maintenance (fine-tuning) phases of your system deployment, see
Chapter 6. These phases follow the system design and development phase.

Helpful Tips: Chapter 7 “Frequently Asked Questions” gives you some helpful
hints and tips for best practices.

Set Up Deployment Objectives

1. Get consensus on overall functionality
2. Create system model
3. Set up design and development team
4. Create basis for validation

Identify and Schedule Tasks

1. Hold project kick-off meeting
2. Ensure software and hardware installation
3. Complete installation test, installation, and checklist
4. Establish change management
5. Prepare deployment documents

Determine When Objectives Are Met

1. All tasks are identified and scheduled
2. Deployment project plan is completed
3. Requirements specifications are completed
4. Deployment project leader has approved:

· System model
· Test requirements
· Cost/duration requirements

5. All change issues are approved
SeeBeyond eBusiness Integration Suite
Deployment Guide 59 SeeBeyond Proprietary and Confidential

Chapter 4

Determining System Requirements

This chapter offers guidelines to help you determine the system requirements for the
deployment of the eBI Suite.

In This Chapter

“Introduction: System Requirements” on page 60

“Initial Considerations” on page 61

“Estimating Processor Requirements” on page 61

“Estimating RAM” on page 63

“Hard Disk Estimation” on page 66

“Configuring for Performance Optimization” on page 68

“e*Insight, e*Xchange, and e*Xpressway Requirements” on page 69

“System Requirements: Summary” on page 72

4.1 Introduction: System Requirements
This chapter explains how to assess your needs for the following types of hardware:

CPUs

Hard disk space

Random access memory (RAM)

There are many variables and factors to consider in order to adequately determine the
hardware requirements for your particular system. As such, this discussion will be
limited to issues as they relate directly to the eBI Suite.

This chapter does not consider networking topology, and does not address such issues
as shared applications, how resources are distributed throughout a network, and how
many workstations are included in the network. Furthermore, in the case of databases,
it is assumed that each database management system is installed on a separate host. See
Chapter 5 for details on these considerations.
SeeBeyond eBusiness Integration Suite
Deployment Guide 60 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.2
Determining System Requirements Initial Considerations
4.2 Initial Considerations
The eBI Suite merges traditional Enterprise Application Integration (EAI) and Business-
to-Business (B2B) interactions into a multi-enterprise eBusiness system. The eBI Suite
includes, among other components, e*Insight for managing business processes,
e*Xchange for managing connectivity to external systems, and eSecurity Manager (part
of e*Xchange).

Depending on the number of external connections, the type of data being processed,
and how the data is processed, the required resources can vary. Take the following
points into account as you begin estimating your hardware requirements:

Each eBI Suite deployment is different. Obviously, this is true when custom systems
and enhancements to existing systems are present. The configuration of each
deployment is unique because there are varying numbers of components as well as
variances in interconnectivity. Some components are bidirectional and complex,
while others merely pass data through.

In addition to differences in configuration, the computational requirements will
differ both in scope and complexity. The high-performance architecture of the eBI
Suite is net-centric, not server-centric, not client-centric, and not hub-based, which
makes the eBI Suite highly flexible. It is this flexibility that makes predicting the
general requirements of hardware a complex task.

The eBI Suite solution is distributed via run-time components and is platform-
independent. System stability and redundancy are important considerations. Server
requirements vary greatly, depending on the components resident on the server,
the archiving requirements configured on the customer's system and other factors.

Instead of only referring to absolute minimum requirements, it is more meaningful
to discuss the hardware needs of an installation in terms of recommendations. By
using the methods set forth in this chapter, a system analyst can estimate the
required resources for a given configuration, from a simple deployment to a
complex deployment, and thereby define an initial recommendation. Once
installed, the eBI Suite can be fine-tuned, both in terms of hardware and software,
to optimize performance.

4.3 Estimating Processor Requirements
The eBI Suite has been deployed in a wide variety of environments, from simple
deployments of a single system with a single CPU to highly sophisticated
configurations consisting of 64 500-MHz CPUs that process one billion transactions per
day.

4.3.1 Consideration Factors
Because the eBI Suite is a general-purpose toolkit that supports multiple languages
with a scripting language, and is completely flexible in its deployment and
SeeBeyond eBusiness Integration Suite
Deployment Guide 61 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.3
Determining System Requirements Estimating Processor Requirements
configuration, estimating the processor requirements is a challenge. There are infinite
possibilities and numerous factors with complex interactions that affect the estimations.
Some of the factors are more critical than others, depending on the circumstances.

For example, the effect of limited RAM resources that create a paging/swapping
situation could completely hide the effects of a complex ETD or a poorly written
function. Some of the factors that affect performance in the eBI Suite are:

CPU type and architecture

CPU speed

Presence of a CPU cache and its size

Number of CPUs

Physical memory size

Swap size

Disk subsystem, that is, bandwidth, latency, block size, RPM, seek time, and the
presence and size of the cache

Network bandwidth and load

Number of external systems and their latencies in servicing messages and
acknowledgements

Complexity and amount of processing to be performed by each component

Event volume, size, and distribution through the day

Throughput and response-time requirements

Complexity of Events, including the number of nodes and complexity of regular
expressions

Bundling of Events, that is, more than one logical record in one physical record

Number of transitions between components for a given Event (for example, moving
data from an e*Way to an IQ to an e*Way or BOB)

Type of IQs used

Number of subscribers to each publication

Amount of the implementation that can utilize parallel processing

Other loads on the Participating Hosts (for example, IQ reorganization schedules,
back-ups, and other processes)

Dispersion of solution across multiple CPUs and systems

Number and architecture of eBI Suite subcomponents participating in the schema

Not only are there more factors, but these factors need to be assessed for each
Participating Host in a distributed eBI Suite deployment.

4.3.2 General Guidelines
There is no standard benchmark in the EAI industry like there is in the Database
Management System (DBMS) industry, that is, the Transaction Processing Performance
SeeBeyond eBusiness Integration Suite
Deployment Guide 62 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Determining System Requirements Estimating RAM
Council (TPC) benchmark. It is debatable whether a benchmark can ever be developed,
which could accurately and reliably predict the processing requirement for a given
integration implementation. This difficulty results from the number and complexity of
factors that could affect performance. The resulting equation would be impractical to
use because of the large number of parameters and their weights.

Because there are many areas in which the architecture can be tuned to achieve further
performance gains, each time a new change is made, the performance characteristics
may be different. Another problem is that any benchmarking equation would rely on
other measures that are just as problematic, for example, measuring program
complexity lines of code (LOCs) or function points (FPs).

Pragmatic Approach

A more pragmatic approach is to start with a good base configuration as a development
system and use that configuration to predict the processor requirements for a
production system for your unique implementation. The minimum hardware
requirements for a typical e*Gate configuration of 20 interfaces would be one of the
following systems:

Windows XP/2000/2003 system running on dual Pentium III-class 866-MHz CPUs

e*Gate-supported UNIX system running on two 400-to-500-MHz CPUs

Both of the above requirements with 1 GB (1000 MB) of RAM and 20 GB of hard
disk space, preferably in a hardware chassis that supports more than two CPUs

The recommended methodology is to implement a representative number of interfaces
(that exercise a good sample of the various data transformations and communication
requirements of the implementation) on this system, run representative data files
through the system, and record the CPU load. From these measures, you can project
what the final production load will be and therefore the CPU requirement. Of course,
the architecture can be tuned to achieve more efficiency using this same technique.

One of the advantages of the eBI Suite’s distributed-and-scalable architecture is that
hardware does not need to be replaced but can be included in a multi-system
implementation. Therefore, as processing requirements grow, you can easily add new
hardware.

4.4 Estimating RAM
UNIX and Windows-based operating systems differ in how they use memory during
run time. In UNIX, memory allocated to a process is not released to the operating
system until that process terminates. Under Windows, there are mechanisms that
return some memory to the OS before the process terminates.

These different memory allocation models, in addition to the unique memory allocation
schemes of each OS, make it difficult to interpret absolute memory requirements.
Because of the virtually infinite variety of types of data and processing requirements, it
is difficult to exactly estimate the maximum amount of memory required by specific
eBI Suite components for the data that will be flowing through them.
SeeBeyond eBusiness Integration Suite
Deployment Guide 63 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Determining System Requirements Estimating RAM
Best Estimate: To arrive at the best RAM estimation, calculate the minimum of RAM
consumed by a given eBI Suite deployment. Because of the way each OS allocates
memory, an absolute or maximum RAM requirement is extremely hard to determine.

4.4.1 Preliminary Estimates
To arrive at a recommendation for total RAM installation for a given eBI Suite
deployment, assemble the following information:

Number and type of executable components: In the eBI Suite, there are, for
example, BOBs, e*Ways, Registry daemons, a Control Broker, e*Insight Engines,
and IQs. Further, some of these components may be Java-based, C-based, or based
on Monk, SeeBeyond’s script language.

For lists of current SeeBeyond products, see the SeeBeyond Web site. Chapter 2 of
this guide lists and explains the eBI Suite product components.

Size of the files corresponding to components: For the files installed by individual
e*Gate components (for example, e*Ways) and their memory requirements, see the
appropriate user’s guide for that component or the user’s guide that explains the
component. The installation guides for e*Xchange, e*Insight, and e*Gate give total
memory requirements for the programs and their individual parts.

Size of the Monk environment: In the case of Monk-enabled components, a
separate calculation must be performed. The method of calculation is explained in
“Monk Environment Calculation” on page 64.

4.4.2 Monk Environment Calculation
Following are the distinct processing paradigms in Monk that require special
consideration to determine the actual RAM requirements of any given eBI Suite
configuration:

Parsing and population of Monk Events

Interpretation of Monk code

Parsing and Population of Monk Events

The parsing and population of a Monk Event is usually performed by a Monk
Collaboration processing an inbound Event. After Monk business rules are applied to
the inbound Event, an outbound Event is created and returned to the process that
called the Collaboration Service. Up to five instances of the data could be allocated in
this process.

Inbound Event Map Structure

During the processing of a Collaboration, a map structure is created to represent the
internalized ETD representing the inbound Event. This map is the result of processing
an .ssc file. This is the map into the actual Event data. This map is created once and is
reused for the life of the Collaboration in its particular Monk engine.

The RAM requirement is dynamically determined as the Collaboration reads in the .ssc
file and interprets the definition contained within it. Each time the processor
SeeBeyond eBusiness Integration Suite
Deployment Guide 64 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.4
Determining System Requirements Estimating RAM
determines it has read a node, it allocates 144 bytes (132 bytes for node information,
12 bytes for system allocation, and 4 bytes for children pointers). A mechanism is
required to track all the child nodes per parent, and this mechanism requires memory.

Use the following formula to calculate the size of the map structure:

map_structure_size = [#_of_nodes x (132 + 12 + 4)] + (#_of_nodes_w/children x 12)

Inbound Event Data Tree

Each time an Event is parsed, a data tree is created. This data tree points to data in the
inbound data buffer. To determine the size of a data tree, the following guidelines must
be applied:

Each data node is 28 bytes plus 4 bytes for each child node. To simplify matters,
allocate the space required by the parent node to the child node. The result is that
each node is 32 bytes (28 plus 4).

An internal heap management system is used by the parsing process to reduce the
overhead required to allocate the space for the Event. Memory is allocated for
nodes in blocks of 1000. Each of these blocks of 1000 nodes is allocated an additional
12 bytes for management. The memory allocated by the system is never freed, as it
is assumed that additional inbound Events will contain similar numbers of nodes.

Use the following formula to determine the size of the data tree:

data_tree_size = (maximum_#_of_nodes x 32) + [(#_of_nodes / 1000) x 12] +
(#_of_nodes_w/children x 12)

Note: The maximum number is used here because the Events to be parsed can be dynamic
and vary per instance. Also, if the result of the equation (#_of_nodes/1000) is less
than 1.0, you must subtract 1.0 from the result.

Outbound Event Map Structure

The map of the outbound Event is created identically to the inbound Event map. Use
the same method to calculate the size for the outbound Event as you used for the
inbound Event.

Outbound Event Data Tree

When an outbound Collaboration is processed, the size of the outbound Event cannot
be determined. However, a tree can be allocated based on the nodes in the
map_structure that are required and have a minimum repetition greater than one. If the
minimum and maximum repetitions are equal, space for the repeated nodes can be
allocated. Otherwise, the space for the nodes is created as the nodes are written to.

As data is written to the outbound Event, space for that node is dynamically allocated.
This operation allocates space equal to the size of the node plus 12 bytes for system
tracking. Each time another repetition is added or an existing field is concatenated to an
existing node, a realloc operation is executed.

You can use the inbound formula to determine the size of the outbound data tree.

Note: To allow for the dynamic and unpredictable nature of the outbound data, dynamic
allocations are used. Consequently, the allocation process can become time intensive.
Memory can also become fragmented because of the number of realloc calls.
SeeBeyond eBusiness Integration Suite
Deployment Guide 65 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Determining System Requirements Hard Disk Estimation
Interpretation of Monk Code

In addition to the resources allocated during the parsing and population of Monk
Events, space is also allocated for the interpretation of Monk code. Also note that some
Monk-enabled components, like e*Ways and the Alert Agent, may not utilize
Collaborations, but they still have Monk environments.

Each Monk object is allocated 16 bytes for control information. If the object is not a
mediate type like an integer or character, another 88 bytes are allocated for special
control information. This control space is allocated in groups of 1000 bytes. The actual
value or data of each non-mediate type is stored via a special lookup table that requires
12 bytes plus the size of the data per object.

To arrive at the total RAM required, aggregate the requirements of all the Monk objects,
including procedural code that is interpreted into the objects (includes the standard
Monk libraries as well as user-defined ones).

4.4.3 Total Memory Requirement Estimation
After you have determined the total Monk environment size, estimating the total
memory requirement is a simple task, as explained in this section.

Determine the number and size of non-Monk components as explained in “Preliminary
Estimates” on page 64. This preliminary estimate is the sum total of the sizes of all files
corresponding to all non-Monk components. Run-time observations of the actual RAM
consumed can help you refine these numbers.

The total memory requirement is the sum of the preliminary estimate and total Monk
environment size. Each specific operating system supported by e*Gate has its own run-
time RAM requirements as well as any other application that will be run
simultaneously on the system with e*Gate. These requirements need to be added to the
e*Gate requirement to get the overall system RAM requirement.

Note: This calculation will have to be done for each Participating Host defined in the
production schema. Empirical observations have suggested that Participating Hosts
operate more efficiently if at least 256 MB of RAM per CPU are available on
multiple-CPU systems. This requirement supersedes any RAM calculation that
yields a smaller amount.

Finally, this calculation only gives the minimum amount of RAM needed. The actual
amount depends on the OS and its memory allocation scheme, as explained under
“Estimating RAM” on page 63.

4.5 Hard Disk Estimation
Estimating the eBI Suite required free hard disk space can be divided into two
requirements:

Component storage
SeeBeyond eBusiness Integration Suite
Deployment Guide 66 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.5
Determining System Requirements Hard Disk Estimation
Operational data

4.5.1 Component Storage
The space required for the actual installation and for the corresponding configuration
files, must be estimated in terms of workstations and hosts. A safe estimate is at least
4 GB (4000 MB) per workstation. The Registry Host requires at least 500 MB, and each
Participating Host also requires 500 MB. The hard disk requirements for the eBI Suite’s
configuration files are hard to predict, but given the cost of the medium, 4 to 8 GB
would be an appropriate start.

4.5.2 Operational Data
In terms of operational data, the following must be accurately determined for each IQ:

Maximum number of Events, including active and journaled Events

Average Event size

Number of components publishing data (publishers)

Number of subscribers that receive data (subscribers)

Log file requirements

Publisher and subscriber configuration data each utilize 256 bytes of hard disk space.

Log File Requirements

The hard disk space required for log files is an important consideration. The estimation
of the disk requirements for log files is very specific to each component that is creating
a log file. Each component has its own unique number of messages that can be written
to the log file, and users can add to that total by writing out messages from their
Collaborations and functions.

Logging for any one component can range from almost nothing to over 180 MB per
hour, with all debug messages turned on. Do live monitoring of the size of log files,
with the debug flags that you assume to be the ones most commonly used, and project
the size of the file before it is archived.

Estimating Operational Data Space Requirements

To estimate operational data hard disk space requirements

1 Multiply the number of publishers by 256 bytes.

2 Multiply the number of subscribers by 256 bytes.

3 Add the results of step 1 and step 2.

4 Add the average Event size to the sum resulted in step 3.
SeeBeyond eBusiness Integration Suite
Deployment Guide 67 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.6
Determining System Requirements Configuring for Performance Optimization
5 Multiply the result in step 4 by the maximum number of Events.

6 Add the log file requirements to the result of step 5.

Express all answers in bytes.

Note: The previous steps must be completed for each IQ.

The total operational data space requirement is the sum of the requirements for all IQs.

4.5.3 Total Disk Space Requirement Estimation
To estimate the total free disk space, use the following calculation:

The component storage requirement plus the operational data requirement

Additional space may be required for log files, but the requirement varies, depending
on logging levels and the number of components writing log entries. A safe estimate is
an additional 1 GB (1000 MB).

4.6 Configuring for Performance Optimization
The main intent of considering CPU, RAM, and hard disk configurations is to optimize
performance of the eBI Suite. This section briefly offers suggestions for optimizing the
use of resources discussed earlier. These suggestions will consider the following:

Efficient use of the eBI Suite

Parallel processing

IQs and IQ Managers

Monk code

Hard disk space usage

4.6.1 Increasing Efficiency
The premise of the eBI Suite is the efficient processing of data and Events. As such, we
recommend that Events are parsed only when absolutely necessary.

When appropriate, pre-format data files prior to sending this information to e*Xchange,
e*Insight, or e*Gate. This will save considerable processing time and requirements.
Also, consider consolidating the functionality of Collaborations. For example, you
could combine the functions of different Collaborations into a single Collaboration.

As log files rapidly grow in size, it is recommended that you lower the journal
expiration times. See the e*Gate Integrator System Administration and Operations Guide for
details about log files and log file maintenance.

There are technical details that are discussed later in this guide (see Chapter 5 and
Chapter 6), but briefly stated, it is highly recommended that you employ subscriber
SeeBeyond eBusiness Integration Suite
Deployment Guide 68 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.7
Determining System Requirements e*Insight, e*Xchange, and e*Xpressway Requirements
pooling, and that Event flows are segmented. For more advanced techniques, you can
consider creating parallel routes and segmenting Event flows.

4.6.2 Optimizing IQs and IQ Managers
It is recommended that you use no more than a total of 50 different publisher and
subscriber Collaborations per IQ and three IQs per IQ Manager. However, to maximize
efficiency, it is advisable that you use only two IQs per IQ Manager, if possible. For
extremely high throughput, you may consider using only one publisher and one
subscriber per IQ.

The frequency with which a subscribing Collaboration queries an IQ greatly impacts
system performance and may significantly decrease processing speed. For that reason,
the polling frequency of each subscriber to an IQ must kept to a minimum.

Perform a clean-up of each IQ after it handles every 1000 Events or after every 10 min
of elapsed time, whichever happens first.

4.6.3 Monk Functions
To increase processing speed, minimize the number of times an Event is parsed, or
reduce the number of calls to iq-put and iq-get (Monk functions). For example,
multiple data transactions can be bundled into a single Event (see “Event Parsing” on
page 92). Test the efficiency by first bundling 100,000, then 50,000, and finally 200,000
data transactions.

When necessary or more efficient, rewrite Monk functionality as C functions, either
within .dll files or in Collaboration scripts. For more information on Monk functions,
see the Monk Developer’s Reference.

4.6.4 Hard Disk Access
To optimize hard disk access times, observe the following general guidelines:

Use nonvolatile caches on disks.

Place IQ data on high-RPM disks.

Use a multi-controller system with many disk partitions.

Deploy IQs across multiple partitions.

4.7 e*Insight, e*Xchange, and e*Xpressway Requirements
This section lists the basic requirements for each of the e*Insight, e*Xchange, and
e*Xpressway systems. For convenience, this section lists software, as well as hardware
requirements.
SeeBeyond eBusiness Integration Suite
Deployment Guide 69 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.7
Determining System Requirements e*Insight, e*Xchange, and e*Xpressway Requirements
4.7.1 e*Insight
The corresponding version of e*Gate must be installed before installing e*Insight. For
example, e*Insight version 4.5.2 requires e*Gate version 4.5.2.

Hardware Requirements

The e*Insight GUIs must be installed on a Windows workstation that includes the
following minimum requirements:

Pentium-class CPU, 300 MHz or higher

128 MB RAM

70 MB disk space

1024 by 768 pixel monitor resolution

Software Requirements

e*Insight requires that the following applications and components be installed before
installing the e*Insight components:

e*Gate version 4.5.2

Note: For detailed information on e*Gate and other requirements, see the e*Insight
Business Process Manager Installation Guide.

One of the following applications:

Oracle 8.1.6 or 8.1.7

Sybase 11.9

SQL Server 7 or SQL Server 2000

Note: For sizing requirements associated with databases, see the user guides for the desired
application. For complete details on e*Insight system requirements, see the
e*Insight Business Process Manager Installation Guide.

4.7.2 e*Xchange
The corresponding version of e*Gate must be installed before installing e*Xchange. For
example, e*Xchange version 4.5.2 requires e*Gate version 4.5.2.

Hardware Requirements

The e*Xchange GUIs must be installed on a Windows workstation that includes the
following minimum requirements:

Pentium-class CPU, 300 MHz or higher

128 MB RAM

70 MB disk space
SeeBeyond eBusiness Integration Suite
Deployment Guide 70 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.7
Determining System Requirements e*Insight, e*Xchange, and e*Xpressway Requirements
Software Requirements

e*Xchange requires that the following applications and components be installed before
installing the e*Xchange components:

e*Gate version 4.5.2

Note: For information on the required e*Gate components, as well as detailed information
on other requirements, see the e*Xchange Partner Manager Installation Guide.
This guide also lists all the platforms that e*Xchange supports.

Oracle 8i (Server, 8.1.6 or 8.1.7), SQL Server 7.0 (Server), SQL Server 2000,
Sybase 11.9 (Server), or DB2 Universal Database

Java Runtime Environment for Java 1.3.x (for the Validation Rules Builder)

Web Interface

Java SDK version 1.3.x.

Note: For sizing requirements associated with databases and other programs, see the user
guides for the desired application. For complete details on e*Xchange system
requirements, see the e*Xchange Partner Manager Installation Guide.

4.7.3 e*Xpressway
The corresponding version of e*Gate must be used with e*Xpressway. For example,
e*Xpressway version 4.5.2 requires e*Gate version 4.5.2.

Solution Provider

Local installation of e*Xpressway Integrator Packager Tool

Version 4.5.2 of the SeeBeyond eBI Suite

A high-speed TCP/IP network connection

Trading Partner

Hardware:

Dedicated, clean system

Intel Pentium III or equivalent AMD Processor, 800 MHz minimum

512 MB RAM

1 GB free disk space for installation and operational data

Software:

Windows 2000 with Service Pack 2, Windows XP, or Windows 2003

Microsoft Internet Explorer 5.0 or later

A file archive utility, such as WinZip, Jar, or the equivalent

The trading partner also needs a TCP/IP network connection and a highly available,
high-speed Internet service (for example, T1 or DSL).
SeeBeyond eBusiness Integration Suite
Deployment Guide 71 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.8
Determining System Requirements System Requirements: Summary
Note: Clean means a system with no applications other than an OS running on it. For
trading partners, do not install OnRamp on any system that already has e*Gate
installed.

Trading Exchange

Hardware:

Same as the trading partner

Software:

e*Xpressway Integrator Server, version 4.5.2

e*Gate version 4.5.2

Windows 2000 with Service Pack 2, Windows XP, or Windows 2003

Microsoft Internet Explorer 5.0 or later

Java Development Kit (JDK) Release 1.3 or later

HTTPS, CGI, and Batch e*Ways

Oracle 8i database

Oracle SQL client on the installation system

The Trading Exchange also needs a TCP/IP network connection and a highly available,
high-speed Internet service (for example, T1 or DSL).

4.8 System Requirements: Summary
This section summarizes eBI Suite deployment system requirements.

Registry and Participating Hosts

SeeBeyond recommends the following minimum Registry and Participating Host
hardware requirements for a typical current e*Gate configuration of 20 to 30 interfaces:

Windows

1 GB (1000 M) RAM

20 GB disk space

Pentium III-class CPU, 866 MHz

UNIX

1 GB RAM

20- to 30-GB hard disk space

CPU, 400 to 450 MHz
SeeBeyond eBusiness Integration Suite
Deployment Guide 72 SeeBeyond Proprietary and Confidential

Chapter 4 Section 4.8
Determining System Requirements System Requirements: Summary
Note: A second CPU is recommended if you are using the SeeBeyond Standard
IQ Manager (that is, if you are not using the SeeBeyond JMS IQ Manager or
MQSeries JMS e*Way Connection).

Throughput performance can vary depending on the size and complexity of data.
Additional memory or CPUs may be necessary, depending on the specific throughput
requirements. e*Gate also needs a TCP/IP network connection.

Client Systems

SeeBeyond recommends the following as a comfortable configuration for client
(Windows 2000, Windows XP, or Windows 2003 for GUI) systems:

512 MB RAM (minimum)

8-GB hard disk space

Pentium III-class CPU, 700 to 866 MHz

19-in. monitor

Important: You must install the e*Gate GUI applications on a Windows system to configure
and monitor UNIX e*Gate components. For a complete list of e*Gate system
requirements (hardware and software) and supported platforms, see the e*Gate
Integrator Installation Guide.

Additional eBI Suite Applications

Take into account the system requirements for e*Insight, e*Xchange, and e*Xpressway
(see “e*Insight, e*Xchange, and e*Xpressway Requirements” on page 69) if you are
using any of these applications.

Going Forward

Once you have finished all elements of your deployment planning, including having a
complete determination of your hardware requirements, you are ready to go on to the
system design and development phase of the project.

System Design and Development: For a discussion of the next phase your deployment
project, including system design architecture and development, see Chapter 5. In this
phase, you broaden and fill in the details of the general designs and overall model you
created during planning.

The next chapters in this guide treat the eBI Suite deployment project under the
following topics:

Testing and Transition to Production: For a discussion of the testing, transition
(go-live), and maintenance (fine-tuning) phases of your system deployment, see
Chapter 6. These phases follow the system design and development phase.

Helpful Tips: Chapter 7 “Frequently Asked Questions” gives you some helpful
hints and tips for best practices.
SeeBeyond eBusiness Integration Suite
Deployment Guide 73 SeeBeyond Proprietary and Confidential

Chapter 5

Designing and Developing the eBI Suite
Environment

This chapter explains how to design and develop a complete, functioning eBI Suite
based on your deployment analysis and planning.

In This Chapter

“An Overview of eBI Suite Design” on page 74

“Distributed Architecture Considerations” on page 76

“Methodology Considerations” on page 84

“Designing Your System” on page 96

“Optimizing Your System” on page 104

“System Development Considerations” on page 119

“Case Study Examples” on page 133

5.1 An Overview of eBI Suite Design
After the analysis and planning phase has been completed, your next major step is the
system design and development phase. In many ways, this work is the heart of the eBI
Suite deployment operation. During this phase, you flesh out the essential system
architecture that implements your business plans and processes.

Designing the deployment of an eBI Suite environment requires a series of successive
refinements applied to your initial summary plan (“Functional Requirements
Specification” document as outlined in Table 2 on page 54). Your design must start
with the broadest view of the system then proceed to the details.

Applying this top-down approach to deploying an eBI Suite environment results in the
most effective application of its technology to the integration of your existing systems
and applications. Total system design and development include the following basic
steps:

Planning general hardware configuration

System design methodology

Software installation and development
SeeBeyond eBusiness Integration Suite
Deployment Guide 74 SeeBeyond Proprietary and Confidential

System optimization

However, keep in mind that these steps are not necessarily an exact sequence. The
entire design and development operation requires that you occasionally “back-track”
to earlier steps and look forward to later steps, to implement the correct design
refinements your system requires.

Figure 11 shows where the system design and development phase fits into the overall
eBI Suite Deployment operation.

Figure 11 System Design and Development Phase

System Design

Because you can distribute a single eBI Suite environment over as many hosts as you
need to provide sufficient computing power, this chapter guides the decisions you
must make to deploy an effective e*Gate environment, including:

Choice of the number of hosts to employ

Choice of the number and types of schemas and components to build

The chapter also presents a methodology for designing an eBI Suite environment. The
methodology involves the following well-defined steps:

Phase 1:

Analysis of Requirements

Phase 2:

Development Planning

Phase 3:

System Design and Development

Phase 4:

Pre-Transition Testing

Phase 5:

Transition to Production

Phase 6:

Post-Transition Maintenance
SeeBeyond eBusiness Integration Suite
Deployment Guide 75 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Designing and Developing the eBI Suite Environment Distributed Architecture Considerations
Describing the communication topology

Designing the hardware topology

Designing the component topology

Planning the eBI Suite components

System optimization

System Development

Development proceeds after completion of design tasks and consists of a list of tasks to
create each component of the eBI Suite. The section on development explains how you
create the task list, including the completion order for the tasks.

The entire system design and development phase methodology is illustrated in later
sections with examples for the following SeeBeyond products:

e*Gate

e*Insight

e*Xchange

e*Xpressway

Case Study Examples

“Case Study 1: Web Order Scenario” on page 133

“Case Study 2: Expanded Web Order Scenario” on page 139

“Case Study 3: Tracking Timecards and Payroll Scenario” on page 144

“Case Study 4: Receiving and Purchasing Scenario” on page 149.

5.2 Distributed Architecture Considerations
The power of the eBI Suite lies in its fundamental design that includes:

Distributed architecture

Central management of computing

High availability and firewall management

This section explains e*Gate’s distributed network architecture and how to take
advantage of its specific features in your deployment.

5.2.1 Distributed Architecture in e*Gate: Overview
A common view of software systems starts with a box representing a computer host.
Programs or processes are added to the computer host and are represented as smaller
boxes inside the bigger box.

Multiple software systems are typically spread out over several physical hosts with no
relationship or connection between the hosts. Figure 12 shows the conceptual
SeeBeyond eBusiness Integration Suite
Deployment Guide 76 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Designing and Developing the eBI Suite Environment Distributed Architecture Considerations
relationship among several different software systems that are commonly built to
support business needs.

While it is possible to connect many different types of systems such as those in Figure
12, it is inconvenient and costly to manage the connections without a central point of
access.

In addition, economies of scale gained through reusable components are unlikely to
exist in the typical hub-and-spoke architecture that these types of systems require.

Figure 12 Common View of Software Systems

The eBI Suite turns this typical view around. The eBI Suite can be understood as
encompassing all participating computer hosts. From this viewpoint, the eBI Suite
becomes the connection that brings many disparate computer hosts and processes
together.

As a result, diagrams describing a deployment of the eBI Suite show the system as a
large box encompassing the systems that it connects.

Although the eBI Suite is represented as a large box, this portrayal is not meant to
suggest that the system runs on its own dedicated host. The power of the eBI Suite is
that its components can be distributed over several hosts as needed. The components
communicate with each other and with a GUI that provides a central point of access to
an integrated system.

Using the e*Gate environment as an example, Figure 13 shows computer hosts
connected through the eBI Suite as boxes inside the main box.

Accounting Host

Accounting
System

Database Host

Customer
Database

Marketing
Database

Sales and Inventory Host

Inventory
Control

Orders and
Sales
SeeBeyond eBusiness Integration Suite
Deployment Guide 77 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Designing and Developing the eBI Suite Environment Distributed Architecture Considerations
Figure 13 e*Gate Distributed Environment

Multiple Participating Hosts

In e*Gate, the various components are managed in this distributed-network
environment. All system components, including Control Brokers, have logical names
that are independent of physical host (computer) location. At the configuration level,
the system’s publish-and-subscribe information is dependent on logical names, not
host names.

Participating Hosts have one property that sets the host name. e*Gate components find
each other purely through host names and port numbers. As a result, it is easy to
reassign host names or ports, or move e*Gate components to other systems without any
change to the basic e*Gate configuration.

5.2.2 Basic Architecture
You can scale an existing eBI Suite environment containing e*Gate simply by adding
more memory, processors, and computer hosts to the total system. Any of these actions
results in incremental benefits. Two examples are:

If your company acquires a new business unit and needs to integrate its systems to
an existing configuration, you network these systems to the existing e*Gate hosts
and add new components to service the acquired systems.

If your business experiences growth in computer traffic, and you need more
computing power to service it, you can add another processor to an existing host.
Also, you can add one or more hosts then move or duplicate some of the existing
components to any new host.

In both of the previous examples, the existing e*Gate components do not change. As
you read the diagrams in this chapter, understand that e*Gate represents the “big box.”
One or more computer hosts are shown as smaller boxes in the big e*Gate box.

e*Gate Environment

Accounting Host

Accounting
System

Database Host

Customer
Database

Marketing
Database

Sales and Inventory Host

Inventory
Control

Orders and
Sales
SeeBeyond eBusiness Integration Suite
Deployment Guide 78 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Designing and Developing the eBI Suite Environment Distributed Architecture Considerations
For example, you can configure Participating Hosts to refer to any Registry Host,
primary or secondary, as your installation requires. Also, you can point multiple
Participating Hosts to the same Registry.

Schema and Component Organization

The eBI Suite components are organized into schemas. A schema is a configuration
scheme that contains all the modules and configuration parameters that control, route,
and transform data as it travels through the overall system.

A schema also maintains the relationships between its internal components, including
the publish/subscribe information that is at the heart of e*Gate’s data transportation
process.

The number, design, location, and component makeup of your schemas is a function of
your overall design methodology, as explained under “Methodology Considerations”
on page 84.

Role of Control Broker

The Control Broker component manages schema operation in e*Gate. An e*Gate
environment requires that you can run only one Control Broker per host per schema,
and the Schema Designer enforces this restriction. However, a single host can support
multiple schemas and run more than one Control Broker.

5.2.3 High Availability Features
You can minimize loss of critical operations by distributing the operations over
multiple systems. Using this setup, you can design the eBI Suite so that if one system
has any problems, another can take over the critical operation entirely.

This section provides a summary of how these features operate. For more information
on implementing high availability in e*Gate, see Chapter 8.

Note: e*Gate has not been fully tested for UNIX high availability products.

System Registry

The e*Gate Registry holds all the necessary information for every component in the
system to run. All Participating Hosts authenticate with the Registry through the
schema name and Control Broker’s logical name. As a result, all e*Gate Participating
Hosts have the potential to run any e*Gate Control Broker and schema.

The key idea is that no configuration is tied to the files on the Participating Host. Even
if you lost all systems in a given environment except the Registry Host, you could
install new systems as Participating Hosts and then give them the names of the original
systems or change the host names configured in the e*Gate schema. This would
reproduce all the original configurations by connecting to the Registry through the
same logical component names.
SeeBeyond eBusiness Integration Suite
Deployment Guide 79 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Designing and Developing the eBI Suite Environment Distributed Architecture Considerations
Registry Replication

You can install the e*Gate Registry in a replicated configuration. To do so, designate a
primary Registry that sends all schema changes to one or more secondary Registries.
Also, you can assign the e*Gate Control Brokers and other components to more than
one Registry.

The components attempt connecting to the first Registry in their Registry list. If this
action fails, the components attempt the next Registry in the list. If the Registry
processor is not on the same system as any Participating Host, you can use this feature
to reduce the Registry connection as a point of failure.

This architecture allows you to employ a distributed Registry with Registry Replication
for added system redundancy and software-based high availability capability. Figure
14 on page 80 illustrates a typical eBI Suite network with these features.

Note: For more information on Registry replication and the distributed Registry, see the
e*Gate Integrator System Administration and Operations Guide.

Figure 14 Overview: e*Gate Network with Distributed Registry

Clustering in e*Gate

You can also take advantage of Microsoft clustering software in designing your system.
You may want critical operations performed by hardware to be backed up by

Enterprise Manager

Primary Registry Host

Enterprise Manager

Secondary Registry Host

Participating Host

Secondary Registry Host

Participating HostParticipating Host

e*Gate Monitor
SeeBeyond eBusiness Integration Suite
Deployment Guide 80 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Designing and Developing the eBI Suite Environment Distributed Architecture Considerations
additional systems, where necessary. See the Appendix C for an explanation of how to
design and use this clustering software.

5.2.4 Network Port and Firewall Considerations
e*Gate components exchange data and control information using a TCP-based protocol.
This transport requires reservation ports on the systems where the components reside.
Table 5 shows the default listen ports used by e*Gate components.

The reason there are two ports that connect to the Registry is similar to the NETD
process on UNIX (see the appropriate UNIX user’s guides for details). That is, if one of
the Control Brokers fails during the initial connection to the Registry, it may cause the
initial connection port (23001) to hang.

If, during that time, the Registry goes down, it cannot come back up because the initial
port it attempts to bind to is unavailable. This problem occurs because the
malfunctioning Control Broker process has control of that port.

The secondary reason for the two-port connection Registry is for scaling, particularly, if
in the future, the e*Gate environment can dynamically allocate ports, for example, if the
system has more than 1000 components.

Table 5 Default e*Gate Port Usage

Component Default Port

Control Broker 4000

Registry 23001
23002
23101

IQ Manager 24053 (+ if other ports)

SNMP Agent 1501
SeeBeyond eBusiness Integration Suite
Deployment Guide 81 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Designing and Developing the eBI Suite Environment Distributed Architecture Considerations
All other e*Gate components initiate TCP connections and thus do not need a reserved
number. Figure 15 shows components of e*Gate and how they are governed by the
Registry or Control Broker.

Figure 15 e*Gate Component Relationships

Figure 16 shows a typical firewall configuration.

Enterprise Manager Registry

Monitor Registry and Control Broker

e*Ways Control Broker
SeeBeyond eBusiness Integration Suite
Deployment Guide 82 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.2
Designing and Developing the eBI Suite Environment Distributed Architecture Considerations
Figure 16 Communicating Through a Firewall

Control Broker

4000
Receive

Initiate

Registry

23001
Receive

23101
Receive

23002
Receive

e*WayInitiate

Monitor

Enterprise
ManagerInitiate

InitiateFirewall
Firewall

Alert Agent

SNMP Agent

15001
Receive

Initiate

Local OS SNMP
Service

Initiate

IQ Manager

24053
Receive

InitiateNote: Outbound ports must be opened
on the initiating side of the connection
SeeBeyond eBusiness Integration Suite
Deployment Guide 83 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Designing and Developing the eBI Suite Environment Methodology Considerations
5.2.5 Clustering and Storage Area Network Considerations
The logging features of certain network volume management products (such as
VERITAS Volume Manager™) have a negative impact on IQ performance. It is advisable
to turn these logs off for volumes that host IQ files.

5.3 Methodology Considerations
Methodology means the ways or methods to figure out how to design the eBI Suite to
best meet your business and information system (IS) needs.

5.3.1 What is Topology?
Topology refers to the pattern of connections between interrelated objects. Topology
considers only relationships between objects and ignores the location of the objects.

Because the eBI Suite is centrally managed, the location of a Participating Host is
insignificant in designing the system. Understanding the meaning of topology is
important in providing a conceptual framework for discussing design considerations
for your total system.

Elements of Topology

A topology exists between the following elements:

Computer Systems Related by Communication
This is a data-flow topology because the only concern is which system is
communicating with which other system. Communications topology is therefore only
logical because it has no reality in hardware.

Computer Hosts Related by Physical Network Connections
This is a hardware topology because it concerns the relationship between physical
computer hosts.

e*Gate Components Related by Publication and Subscription
This is a component topology because it concerns the pub/sub relationship between
components.

Sample Topologies

The figure on this page shows three sample topologies. The first two examples are
identical because distance and location are irrelevant in describing a topology. Only
relationships matter and the relationships described by the arrows connect the same
systems in the same way between the first two examples. The third example is different
SeeBeyond eBusiness Integration Suite
Deployment Guide 84 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Designing and Developing the eBI Suite Environment Methodology Considerations
from the first two because it contains an additional connection from System C to
System B.

Figure 17 Examples of Topologies

In these diagrams, the direction in which each external system exchanges data with
another is identified with an arrow connecting the data publisher to the data subscriber
(see the previous figure). The arrow points in the direction that data flows.

5.3.2 Three Basic Steps
The basic steps in designing an eBI Suite are:

Identify all external systems to be connected.

System A System C System B

Topology 2

System A System CSystem B

Topology 1

System A System CSystem B

Topology 3
SeeBeyond eBusiness Integration Suite
Deployment Guide 85 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Designing and Developing the eBI Suite Environment Methodology Considerations
Define the configuration of eBI Suite components.

Define the configuration of hardware and network connections.

This section explains these steps in detail.

Identifying External Systems

The first step in designing an eBI Suite is to identify all the external systems to be
connected to each other through the system. The resulting set of interconnected
systems is called the communication topology. The communication topology exists
without regard for the hardware hosts where components execute and without regard
for the format of data exchanged between systems.

Configuring eBI Suite Components

The second step is to define a configuration of e*Gate components, for example, e*Way
Intelligent Adapters, BOBs, e*Insight Engines, and IQ Managers, to run on the
respective hosts in the hardware topology. The component arrangement is called the
component topology.

Efficiencies at this stage are gained by choosing the simplest ETDs and Collaborations.
Defining the most efficient component topology depends upon the relationship of data
formats. Therefore, defining Event Types is an integral part of designing the
component topology.

In addition, you also want to determine and define the interaction between e*Gate,
e*Insight, e*Xchange, and e*Xpressway, if you are using any of these applications.

Hardware and Network Connections

The third step is to define a configuration of hardware and network connections that
enable the external systems to communicate as required by the communications
topology. This hardware configuration is called the hardware topology.

As explained earlier, the eBI Suite is designed to run as a distributed system with
central management. Only network performance and the demands on each host are
relevant considerations in defining hardware topology. Because of the distributed
architecture of the total system, the hardware topology is not rigidly defined. It can be
adjusted as needed when system demands change. For example, increased demands on
the e*Gate environment can be met by distributing processing across more CPUs.

For more information on how to determine and meet your hardware requirements, see
Chapter 4.

5.3.3 Performance Considerations
As with all computer systems, performance improvements can be achieved by
optimizing memory usage and computational efficiency. In this section we consider
impacts of the following eBI Suite performance-related issues:

Virtual memory
SeeBeyond eBusiness Integration Suite
Deployment Guide 86 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Designing and Developing the eBI Suite Environment Methodology Considerations
Event parsing

Subscriber pooling

Hardware distribution

Before delving into this level of detail, this section outlines the basic operation of
e*Ways, BOBs, and IQs. The rest of this section explains these components then
provides some performance and application guidelines.

Basic e*Way Operation

An e*Way is used to communicate between an external system and the rest of the
e*Gate environment. An e*Way provides both communication and data transformation
capabilities.

Communication and Collaboration Functions

An e*Way is architecturally divided into two parts, the Communication and
Collaboration halves. In Figure 18 on page 88, the e*Way is represented by a split box.
The Communication part is the left half of the box. The Collaboration half is the right
half of the box.

These two parts of an e*Way function as follows:

Communication half is responsible for communicating with the external system.
Through the use of configuration parameters and user-programmed functionality,
the Communication half can be configured to meet any business requirements.

Collaboration half is responsible for exchanging Events with the rest of the e*Gate
environment. The Collaboration half can execute one or several Collaborations on
any Event. Collaborations are fully configurable and can be as complex or as simple
as needed.

The simplest transformation you can use in the Collaboration half is called the Pass
Through Service. This Collaboration Service receives an Event from, or sends an Event to
the Communications half without transforming the Event in any way. Using the Pass
Through Service, the Event sent on by a Collaboration is an exact copy of the Event
received.
SeeBeyond eBusiness Integration Suite
Deployment Guide 87 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Designing and Developing the eBI Suite Environment Methodology Considerations
Figure 18 Basic e*Way Operation

Figure 18 shows both an inbound and an outbound e*Way. In practice, a single e*Way
can be used to support both inbound and outbound Events. Generally, it is better
design practice to configure inbound and outbound e*Ways.

These e*Way types function as follows:

Inbound e*Ways: For an inbound Event, the Event first passes to an e*Way’s
Communication half, that is, the e*Way subscribes to the external system. A function
can execute to transform the Event, after which the results flow to one or more
Collaborations in the Collaboration half, or the Event can simply “pass through.”
The results of a Collaboration are published (sent) to an IQ.

Outbound e*Ways: For an outbound Event, an Event is fetched from an IQ and
processed by an e*Way’s Collaboration half. In the Collaboration half, the Event can
be transformed by one or more Collaborations or can go through the Pass Through
Service. The result of the Collaboration is passed to the Communication half where
it is published to the External system.

The use of IQs guarantees delivery of an Event, or else notification if the Event cannot
be delivered. Under no circumstances is an Event ever lost. See “Basic IQ Operation”
on page 89 for more information on IQs and their functions.

Each e*Way has associated documentation explaining how to operate and configure the
e*Way. Refer to the appropriate e*Way user’s guide for detailed information on
configuring an e*Way.

Note: Subsequent figures provide a simplified version of the e*Way diagrams shown here.
Although most diagrams show a single Collaboration, this does not imply a
limitation on e*Way capabilities. Many Collaborations are possible.

Inbound e*Way

External
System

Collaboration

Pass Through

Collaboration

Communication
Communication

with External

Outbound e*Way

External
System

Collaboration

Pass Through

Collaboration

Communication
Communication

with External IQ

IQ
SeeBeyond eBusiness Integration Suite
Deployment Guide 88 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Designing and Developing the eBI Suite Environment Methodology Considerations
Basic BOB Operation

A BOB is used to move data within the e*Gate environment. Unlike an e*Way, a BOB
provides only data transformation capabilities. BOBs provide intermediate data
transformation capabilities or allow for helping with load distribution. A BOB
subscribes to one or more IQs, fetches Events from these same IQs, processes Events
through one or more Collaborations, and publishes the result to one or more
additional IQs.

Like those in an e*Way, BOB Collaborations are fully programmable and can be as
complex or as simple as needed. In Figure 19 on page 89, a BOB is represented as a
rounded box. Unlike an e*Way, which is architecturally split into two halves, a BOB
contains just a single part to execute Collaborations. One or many Collaborations can be
configured in a single BOB.

Note: Subsequent figures show a simplified version of the BOB diagrams in Figure 19 on
page 89. These figures sometimes show a single Collaboration for ease of
clarification; this is not be a limitation of a BOB. Many Collaborations or Pass
Through services are possible.

Figure 19 Basic BOB Operation

Basic IQ Operation

An IQ is an on-disk repository of transient data. Events written to an IQ stay there until
picked up by all subscribers to the same Event Type. Because Events stay in the IQ only
until passed on, they are considered transient.

Events sent through e*Gate are guaranteed not to be lost. Either they succeed in
arriving at their destination or they are stored on disk while an acknowledgment of the
delivery failure is returned. Storing Events in IQs makes this functionality possible.

Note: In e*Gate release 5.0 SRE or later, you can ensure the once-only delivery of every
Event. See “Using Guaranteed Exactly Once Delivery” on page 113 for
details.

Because of this feature, within e*Gate every BOB and e*Way must publish to at least one
IQ and subscribe to at least one IQ. This architecture provides support for transferring
Events internally. Your design considerations determine how many IQs each e*Way
and BOB publish and subscribe to.

Also, an IQ can be configured so that an Event fetched by a single subscribing process is
removed from the IQ. For more information on this feature, see “IQ Subscriber
Pooling” on page 92.

BOB

Collaboration

Pass Through IQ 1IQ 2
SeeBeyond eBusiness Integration Suite
Deployment Guide 89 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Designing and Developing the eBI Suite Environment Methodology Considerations
Note: For simplicity, figures which illustrate a configuration of e*Ways or BOBs do not
display the IQ unless the IQ is relevant to the performance issue under discussion.
However, keep in mind that at least one IQ is always present when a BOB and an
e*Way exchange Events.

Virtual Memory

Each process requires memory for its executable code and for its data. Components in
e*Gate that require executable processes include:

e*Ways

BOBs

IQ Managers

Control Brokers

Collaboration Services (including Java, C, and Monk)

Note: In e*Gate, these types of components are also called modules.

Because the entire eBI Suite, including e*Gate, e*Insight, e*Xchange, and e*Xpressway,
is distributed across an integrated network of computers, e*Gate memory usage affects
the entire system. Extending memory by moving information between the RAM and
the hard disk is called memory swapping. Memory management for e*Gate processes
requires memory swapping in the host computer’s RAM, as this section explains.

Memory Allocation

Once loaded, the RAM space required by executable code remains fixed. However,
data memory is dynamically allocated and can grow. If a Collaboration processes an
Event that is too large for the currently available memory, additional memory is
allocated to the process to meet the increased need.

Ideal performance requires that all memory used by all processes fit into physically
available RAM. This ideal circumstance is rarely achieved because most systems trade
some of their speed for increased flexibility in memory management. This management
allows for memory swapping and reserves a region of hard disk storage space to use as
an extension of RAM.

Memory Swapping Process

If physical memory available on a computer is, for example, 50 MB but the memory
required by a program and its data is 100 MB, the program and data that it operates on
cannot fit into the available memory. In this circumstance, the operating system loads
just a portion of the program and start execution on a portion of data.

Figure 20 shows a process that uses nine blocks of memory but can only fit three blocks
into the RAM.
SeeBeyond eBusiness Integration Suite
Deployment Guide 90 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Designing and Developing the eBI Suite Environment Methodology Considerations
Figure 20 Memory Swapping

When the computer is instructed to access executable code that does not exist in the
portion of code that was loaded, or when the computer must use data has not been read
in, the operating system intervenes as shown in the previous figure. It chooses some
block of data or code in memory (block 3 in the previous figure) and writes it to the
disk, thus freeing up space in memory. It then finds the required block of data or code
(block 7 in the previous figure) on the disk and reads it into the newly available
memory. This process is memory swapping, and the blocks of data are called “memory
pages”.

Memory swapping by the operating system is costly in time because accessing the disk
is comparatively slow. This swapping can be avoided completely if all code and data fit
into the memory available on the host.

Memory Estimates

For performance reasons, memory allocated by the system on behalf of a process is
reused by that process as ETDs are freed. On some systems, memory is never released
and returned to the system. If more memory is required by a process than the current
“high-water mark,” additional memory is allocated, and the high-water mark is
increased.

Thus, memory demands from an eBI Suite start out at a certain level but increase if
large Events are processed. This process simplifies memory management and speeds
performance but could require that total, long-term memory usage be well understood
and that the configuration be designed to avoid memory swapping whenever possible.
When accounting for the space taken by data, you must base your estimates on space
determined up to an estimated high-water mark.

1

8

5

2

7

4

9

3

6

Com puter Host

Disk Storage

1

3
2

CPU

RAM

1

8

5

2

7

4

9

3

6

Com puter Host

Disk Storage

1

7
2

CPU

RAM

Step 1: W rite block 3 to disk Step 2: Read block 7 from disk
SeeBeyond eBusiness Integration Suite
Deployment Guide 91 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Designing and Developing the eBI Suite Environment Methodology Considerations
Event Parsing

In e*Gate, when a Collaboration Rule script processes an Event, it must first match the
contents of the Event to an ETD that describes how the Event is structured. If the Event
contains a name field and an address field, for example, the ETD describes where those
fields can be found.

Parsing and Collaborations

An e*Gate installation provides extensive libraries of ETDs to describe many
standardized Event Types including Events complying with the EDIFACT, X12, and
HL7 standards. Events defined in these and other standard schemes can be quite
complex and contain hundreds or thousands of individual nodes.

The process of matching an Event to its definition, or Event parsing, must take place
before individual fields are referenced in a Collaboration Rule. Parsing an Event
enables a Collaboration Rule to resolve a path name like:

input%CustOrder.Customer[0].fullname

into the data that is found in that location, for example:

“George Washington”

Matching an ETD to an Event involves inspecting the contents or format of the Event
for certain kinds of data or delimiters. If the ETD allows for optional nodes, parsing can
be much more complex, because many more possibilities must be considered before
determining whether an optional node exists within the given Event.

Parsing and Memory

When parsed, each node within an ETD occupies a certain amount of memory. The
memory location holds identifying information about the node and its contents. More
nodes in an ETD translate into more computation and more memory usage.

Therefore it makes sense to use an ETD that defines only those fields actually
referenced in the Collaboration Rule. If you are using an ETD provided as part of a
library, you can copy it under a new name then prune its unnecessary nodes. When
deploying e*Gate, create the simplest ETDs needed for each Collaboration Rule script.

IQ Subscriber Pooling

Distributed processing eliminates bottlenecks. Because the eBI Suite is a distributed
system, no single process can block the execution of other processes.

However, the component topology in e*Gate is related to the Event Types that must be
processed. Typically, most or all Events of a particular type take the same route
through the e*Gate environment. If there is an Event Type that is especially complex,
and there are many Events of that particular type, there could be times when the
processes supporting that route cannot keep up with the demand.

Eliminating Data Bottlenecks

IQ Subscriber pooling solves this problem by permitting routes through duplicate
Collaborations, possibly on separate hosts, so that no single route is able to create a
bottleneck. The following figure shows how components might be arranged without
using subscriber pooling.
SeeBeyond eBusiness Integration Suite
Deployment Guide 92 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Designing and Developing the eBI Suite Environment Methodology Considerations
Figure 21 Components Without Subscriber Pooling

In this arrangement, the inbound e*Way receives data from an external system. It
writes Events to IQ 1. BOB 1 fetches Events from IQ 1, processes the Events through its
Collaboration and publishes the new Event to IQ 2. The outbound e*Way fetches
Events from IQ 2 and publishes them to its external system.

While the arrangement shown in Figure 21 does not restrict the processing of other
Events, BOB 1 can cause a bottleneck if many complex, computation-intensive Events
must be processed through its Collaboration.

To break up the bottleneck, use IQ subscriber pooling and distribute the processing
burden over more than one BOB. When subscriber pooling is used, all BOBs must be
configured to execute the same Collaboration. Figure 22 shows subscriber pooling with
two BOBs running on the same Participating Host.

Figure 22 Components with Subscriber Pooling

If the reason for the bottleneck in Figure 21 is because BOB 1 must wait for a reply from
the inbound e*Way. For example, the e*Way has to query an external database or
reference a file at a distant location on a network, and then has to run BOB 2 on the
same Participating Host is an effective way to distribute the load. When BOB 1 is
waiting for specified responses from the e*Way, BOB 2 runs using available CPU cycles
to process other Events.

On the other hand, what if the reason for the bottleneck is because there is not enough
CPU power on Participating Host 1 to meet the need? In other words, what if BOB 1 is

e*Gate Environment

Participating Host 1

BOB

IQ 1 Outbound
e*Way

Inbound
e*Way IQ 2Data In Data Out

e*Gate Environment

Participating Host 1

BOB 1

IQ 1 Outbound
e*Way

Inbound
e*Way IQ 2Data In Data Out

BOB 2
SeeBeyond eBusiness Integration Suite
Deployment Guide 93 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Designing and Developing the eBI Suite Environment Methodology Considerations
not waiting for the inbound e*Way’s response to an external system but is forced to
wait for CPU cycles from its own host?

In this case, adding a second BOB to the same Participating Host does not improve
matters because there is no extra CPU power available. Instead, you can add a BOB but
have it run on a different Participating Host, as Figure 23 shows.

IQ subscriber pooling and distributing components over several Participating Hosts
provides the following efficiencies:

When you use subscriber pooling, you can add as many additional, but identical,
BOBs and distribute them over as many Participating Hosts as you need.

By adding BOBs and Participating Hosts, you can distribute the load and increase
the computing power of your e*Gate environment as the need arises.

Figure 23 Subscriber Pooling over Multiple Hosts

Subscriber Pooling Options

When subscriber pooling is disabled, an Event must be picked up by all subscribing
Collaborations before it is removed from the IQ. When subscriber pooling is enabled,
an Event is removed from the IQ (when it expires) after it has been picked up by the
first subscribing Collaboration.

To take advantage of distributed processing shown in Figure 22 on page 93 and Figure
23, subscriber pooling must be enabled. Then an Event that is picked up by BOB 1 is not
processed by BOB 2, or any other BOBs that can process Events from the same IQ. In
other words, the Event is processed exactly once as required, and not multiple times.

Note: There are some situations when subscriber pooling can impede performance. See
“Event Serialization and Delivery” on page 111 for details.

Hardware Distribution

The hardware distribution of an eBI Suite depends upon the following considerations:

Physical location

e*Gate Environment

Participating Host 1

BOB 1

IQ 1 Outbound
e*Way

Inbound
e*Way IQ 2Data In Data Out

Participating Host 2

BOB 2
SeeBeyond eBusiness Integration Suite
Deployment Guide 94 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.3
Designing and Developing the eBI Suite Environment Methodology Considerations
Hardware burden

Isolation concerns of other software systems

Distributing Hosts

If your organization has a central office along with branch offices, you can install
e*Gate on one or more hosts in the central office and on one or more hosts at any of the
branch offices. Every host, local or remote, can be a Participating Host. Components
that belong on any particular host can be those components most closely related to the
external systems that they service, but this is not a requirement. When necessary, you
can distribute a BOB or IQ Manager on any networked host.

If a single Participating Host becomes overburdened because of Event volume or
complexity, one or more components can be moved to a different host to distribute the
processing load. The Participating Host receiving the share of the computing burden
can exist in the same location or be remote. In either case, ensure that the network
connection can sustain the traffic that you are routing to the new host.

Management Requirements

Different software systems have different management requirements. To avoid
conflicting requirements, run some software systems on a separate Participating Host.
For example, some database systems undergo periodic backup and put a heavy load on
the host input/output during the backup time. This burden can reduce the
performance of the entire eBI Suite, if the demand from the database backup is too
great.

For more information on how to determine and meet your hardware requirements, see
Chapter 4.

Performance Summary

You can employ the following guidelines to improve the efficiency of the eBI Suite:

Eliminate unnecessary parsing by using the simplest ETDs that are able to meet
your requirements (see “Optimizing Event Parsing” on page 108).

Eliminate bottlenecks by distributing processing (including BOBs) required for
complex Event Types across multiple hosts and using IQ subscriber pooling.

Reduce or eliminate memory swapping by:

Increasing the physical memory in the host

Distributing the e*Gate environment across multiple hosts

Moving non-e*Gate processes to other hosts

Reduce the processing burden on a single host by distributing e*Gate components
across multiple Participating Hosts.
SeeBeyond eBusiness Integration Suite
Deployment Guide 95 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Designing and Developing the eBI Suite Environment Designing Your System
5.4 Designing Your System
As explained earlier in this chapter, the topology of e*Ways, IQs, and BOBs constitutes
the foundation of your system design (see Figure 22 on page 93). As you plan an e*Gate
environment to meet your business and IS needs, how you set up and order these
components determines the basic architecture of that system.

Another important consideration is accommodating the constraints of specific
communication technologies inherent in an external system (as well as business
organization needs). This section explains how to design system topology, taking all
these factors into account.

Note: During the design operation, it is a good idea to allow for the later implementation
of any methodologies that can improve or optimize your system’s performance. See
“Optimizing Your System” on page 104 for details.

5.4.1 Determining e*Way Topology
It is preferable to use at least one inbound and one outbound e*Way for each external
system interface when two-way data flow is needed. You could need additional
outbound and inbound e*Ways depending on:

Number of interfaces with each external system/application

Volume of data each interface handles

Time window of processing for each external system/application

External System Interfaces

One system can have multiple interface capabilities. An external system could need
several interfaces depending on the application or applications involved, the number of
applications, the system architecture, and the type of operation involved. For example,
one system with three different applications requires six e*Ways if you want an
inbound and outbound interface with each application.

The type of system itself can require more than one interface. Some systems demand
multiple interfaces because of their basic configuration or architecture. In such cases,
you must use an inbound and outbound (if necessary) e*Way for each interface.

You must allow for the interface technology of the connecting application or system
according to its own interface needs. If the technology of an external system demands
at least two interfaces, use at least two e*Ways or sets of e*Ways for each interface,
depending on the need for inbound/outbound data flow.

Volume of Data

The volume of data is a critical consideration in assessing needs for the number and
arrangement of e*Ways. You must allow for peak data volume handling needs and
plan your e*Way topology accordingly.
SeeBeyond eBusiness Integration Suite
Deployment Guide 96 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Designing and Developing the eBI Suite Environment Designing Your System
For example, at peak data-handling periods, if you determine the data volume can
overwhelm a single e*Way or set of e*Ways, you must plan for one or more additional
e*Ways. If the added e*Way or e*Ways are not enough, more are required. See
“IQ Subscriber Pooling” on page 92 for additional details on how to handle data
volume and distribution within the e*Gate environment.

Time Windows

Depending on how an external system processes information, data can only be
available from that system to e*Gate at certain times. Time windows affect data
volume. Obviously, if a flood of data is available at certain times and little or no data at
others, you must first consider the data volume impact (see the previous section).

In addition, set up your e*Way design to allow for this data availability. Even if one or
more e*Ways interfacing with this “schedule-driven” data flow does little or no work
much of the time, it is best to set up a dedicated set of e*Ways and IQs (and BOBs, if
necessary) that only handles this interface. Otherwise, conflicting data schedules could
overburden any of the e*Ways in the flow. Also, dedicating one set of e*Ways to a
single “schedule-driven” application makes maintainability and troubleshooting much
easier.

5.4.2 Determining BOB Topology
The primary purpose of e*Ways is connecting with external systems and applications.
However, you could also want to have Collaborations associated with e*Ways doing
one or more transformations of data (using Collaboration Rules) along the way. Every
task added to an e*Way slows its response time. Too many tasks overload an e*Way
and impede data communication to/from the external interface.

The solution to these problems is to create BOBs within your e*Gate environment.
These components perform data transformations and decrease the processing load
from your e*Ways. This feature frees e*Ways to handle connectivity and data-flow
processes with a minimum of impediments.

The number and arrangement of BOBs you need depends on the following factors:

Number of data transformations: If the same Collaboration runs in multiple
e*Ways, the system can simplify by having a BOB execute the Collaboration.

Data urgency and availability: If an e*Way spends an large amount of time
processing a complex Collaboration, having a BOB execute that Collaboration
permits the e*Way to focus on communication.

Amount of data: If a route from one external system to another transfers a large
amount of data with complex transformations in between, using one or more BOBs
can allow you to distribute the processing over multiple Participating Hosts.

Coordinated processing needs: If Events from multiple sources must be joined into
a single data flow before being sent on, a BOB can be created and configured to help
this happen.
SeeBeyond eBusiness Integration Suite
Deployment Guide 97 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Designing and Developing the eBI Suite Environment Designing Your System
Number of Data Transformations

You can use BOBs to eliminate duplicate data transformations. The main purpose of
BOBs is to handle Event transformations in the place of e*Ways. An e*Way functions in
two halves that operate as follows:

A communications half coordinates interfacing with an external system. This half
faces outward and links up with communication from outside e*Gate.

A Collaboration half transforms data and passes it on to the rest of e*Gate. This half
faces inward and ensures correct linkage with the e*Gate environment

If several e*Ways execute the same Collaboration, you can reorganize your system to
have a BOB perform the Collaboration rather than each of the e*Ways (see Figure 24 on
page 99). The upper part of the figure shows three e*Ways that execute Collab 1,
Collab 2 and Collab 3.

If Collab 1, Collab 2, and Collab 3 are identical and need to change, the e*Gate
programmer must make the same changes to all three Collaborations, an error-prone
and tedious task. Moreover, to execute this configuration, three Collaboration Services
must be loaded, one for each Collaboration. This design increases the memory
demands and processing overhead in the Participating Host.

The lower part of Figure 24 on page 99 shows how the system can be reorganized to
eliminate the duplication. Three Collaborations become a single Collaboration
executing in a BOB, which is easier to manage and more efficient to run. Where the
e*Ways formerly executed identical Collaborations, they now simply pass the Event
through (Pass Through Service) unchanged.

Note: See the appropriate e*Way user’s guide for a full description of the rules of
processing performed by that e*Way.
SeeBeyond eBusiness Integration Suite
Deployment Guide 98 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Designing and Developing the eBI Suite Environment Designing Your System
Figure 24 Eliminating Duplicated Collaborations

Data Urgency and Availability

You can use a BOB to speed the response time of an e*Way. The urgency and need for
certain types of data also affects your number and arrangement of BOBs. For example,
data that only goes into an archiving database has little urgency and does not need to
be readily available. On the other hand, stock-market quotes must have immediate
availability and are urgently needed on a constant basis.

BOB-1

Collab 1

Rest of e*Gate

Rest of e*Gate

e*WayIn 1

Collab 1Communication
with External

e*WayIn 3

Pass ThroughCommunication
with External

e*WayIn 1

Pass ThroughCommunication
with External

e*WayIn 2

Pass ThroughCommunication
with External

e*WayIn 3

Collab 1Communication
with External

e*WayIn 2

Collab 1Communication
with External
SeeBeyond eBusiness Integration Suite
Deployment Guide 99 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Designing and Developing the eBI Suite Environment Designing Your System
e*Way Architecture Considerations

The architecture of an e*Way is designed to guarantee data delivery if possible or to
guarantee appropriate negative acknowledgment if delivery does not succeed. This
operation happens as follows:

For an Event sent by an external system an acknowledgment is returned to the
external system if the e*Way successfully processes the Event.

Successful processing means that the appropriate Collaboration has executed and
that the resulting Event has been published to the IQ.

Message processing must successfully complete before the acknowledgment is sent.

The requirements of guaranteed delivery, when combined with a Collaboration that
takes a long time to run, can cause the e*Way to fail to acknowledge successful receipt
of the Event soon enough. The external system sending the Event could think that the
Event was not successfully sent.

In effect, the Collaboration becomes a bottleneck preventing the timely delivery of an
acknowledgment. To solve this problem, you can make the e*Way execute simple Pass-
Through processing and have a BOB execute the Collaboration. Figure 25 shows how
this type of design works.

Figure 25 Eliminating Delayed Acknowledgments

In the upper part of the previous figure, the e*Way executes Collab 1 then writes the
result to the IQ before the rest of e*Gate environment does any processing. In the lower
part of Figure 25, the e*Way passes the Event through unchanged then writes it to an
IQ.

The BOB fetches the Event from the IQ, and applies Collab 1 to it before sending it on to
the e*Gate environment. The net change is that the Event is written to an IQ before
Collab 1 is applied, allowing the Event to be acknowledged sooner.

Rest of e*Gate

Rest of e*Gate

BOB

Collab1

e*WayIn

Pass ThroughCommunication
with External

e*WayIn

Collab 1Communication
with External IQ

IQ
SeeBeyond eBusiness Integration Suite
Deployment Guide 100 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Designing and Developing the eBI Suite Environment Designing Your System
Amount of Data

You can use BOBs to distribute processing when you have a large amount of data. The
BOBs are able to aid one another in a load-sharing arrangement that helps speed their
general processing work. For more information on load-sharing techniques, see “Using
Parallel Data Threads” on page 105.

Data volume considerations for BOBs are basically the same as those for e*Ways. See
“IQ Subscriber Pooling” on page 92 for an explanation of how that e*Gate feature can
help you in handling data volume needs.

Multi-Source Transformations

You can use a BOB to join the results of two or more e*Ways. BOBs can bring together
data from many different inbound e*Ways and do multiple transformations on this
data if necessary, before sending it along to an outbound e*Way (see the following
figure).

Figure 26 BOBs and Multi-Source Transformations

In the previous figure, the Events sent to the external system by the outbound e*Way
are comprised of data from both of the other external systems. The BOB gathers data
from each source. Using the scenario outlined in Figure 26, you can also send the data
to multiple outbound e*Ways, if necessary, using the same BOB.

For more examples, see the case studies under “Case Study Examples” on page 133.
Also, see “System Topology and Business Organization” on page 103 for details on
system design and business organization.

5.4.3 Determining IQ Topology
This chapter has already treated the primary use of IQs in load balancing and how to
design their topology under “IQ Subscriber Pooling” on page 92. The following
additional considerations are helpful in determining your IQ topology:

If you have data flowing in from one source but going out to several destinations,
use one IQ to control this flow.

If you have information from many destinations that must be consolidated into a
single flow, use one IQ to control this flow.

S1 Event
BOB

Source 1

Source 2

DestinationCombined
EventS2 Event

e*Way

e*Way

IQ

Two external systems

BOB performs multiple
data transformations

e*Way

Single external system
SeeBeyond eBusiness Integration Suite
Deployment Guide 101 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Designing and Developing the eBI Suite Environment Designing Your System
If neither of the previous situations is a concern, you can use several IQs for load
balancing in a subscriber pooling setup.

If you have sensitive data (for example, confidential corporate records) that you
want to keep out of the rest of the system, dedicate one or more IQs only to this
data.

If possible, do not use more than three IQs per one IQ Manager. For the most
efficient results, configure the IQ Manager and its associated IQs on the same
computer.

Note: For more information on IQs and high availability, see the Appendix C. For
complete information on IQs and how to configure them, see the e*Gate Integrator
Intelligent Queue Services Reference Guide.

5.4.4 Using e*Gate Java Features
Release 4.5 of e*Gate (and later) allows you to create ETDs and Collaboration Rules
using the Java programming language, as well as e*Gate’s original language, Monk.
Using the SeeBeyond Java Message Service (JMS) IQ Manager and Service features can
significantly improve your system performance.

Note: In e*Gate release 4.5.1 and later, the JMS IQ Manager and Service are configurable
on all e*Gate-supported platforms.

If your available human resources are Java-oriented and have more experience using
this language, you can use these features to streamline your deployment without the
“ramp-up” time required for programmers to learn a new language.

For a sample case study using Java ETDs and Collaborations, see section “Case Study
3: Tracking Timecards and Payroll Scenario” on page 144.

For complete information on how to use the GUI Java features in e*Gate, see the e*Gate
Integrator User’s Guide.

5.4.5 Accommodating External System Constraints
In designing overall system topology, you must factor in external system constraints.
Ensure that your number and arrangement of e*Ways and BOBs takes these system and
application needs and limitations into account.

First Example

For example, you have a Siebel system used for placing new customer orders that must
immediately go to an SAP system whose purpose is to fulfill those orders. The orders
must be filled and the products shipped out right away. No data transformations are
necessary along the way. For this purpose:

Dedicate a single inbound e*Way to the Siebel system.

Dedicate a single outbound e*Way to the SAP system.

Link the two e*Ways via a single IQ.
SeeBeyond eBusiness Integration Suite
Deployment Guide 102 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.4
Designing and Developing the eBI Suite Environment Designing Your System
Dedicate this arrangement only to this purpose. Using such a setup, orders can proceed
quickly and efficiently. In this case, your business process is enhanced, and the needs of
the external systems are satisfied.

Second Example

On the other hand, in another example, you have a Siebel system that needs to
synchronize customer orders every six hours. These orders must flow into an SAP
system on the same schedule. Using that schedule, feedback is necessary from the
Orders Fulfillment Department back to the Customer Order Department. Data
transformations are required in both data flows.

An arrangement to meet these needs could look something like Figure 27.

Figure 27 Scheduled Two-Way Order System

As in the previous example, it is best to dedicate this system (Figure 27) only for this
purpose. In such a setup, orders can proceed as scheduled, with data appropriately
transformed in both directions. The BOBs help to synchronize and control the data
flow. In this case, once again, your business process is enhanced, and the needs of the
external systems are satisfied.

5.4.6 System Topology and Business Organization
Early on in the design process, you are thinking about technical considerations, such as
data volume, external system interfaces, and the number of data transformations you
need. Once you have allowed for all these factors, you must start to consider the
“bigger picture.” System design topology must also take into account your company’s
organizational needs. Good planning for these considerations greatly enhances your
e*Gate environment’s long-term maintainability and supportability.

e*Gate Environment

BOB

IQOutbound
e*Way

IQ

Inbound
e*Way

Siebel SAP

Inbound
e*Way

Outbound
e*Way

BOB
SeeBeyond eBusiness Integration Suite
Deployment Guide 103 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
Right Topology for Your Business

No one recipe can take care of everyone’s business organization needs. However, the
following general considerations help:

Set up at least one (or two for a two-way data flow) e*Way for each organizational
unit of any importance in your business. These units could be teams, departments,
management groups, or any major unit in your organization. This setup allows for
easier maintainability and accountability. If there is a need or problem with the
system in one group, that group can be responsible for taking care of it. Several
groups sharing one e*Way or set of e*Ways could lead, later on, to a lack of
accountability.

Allow for as much needed redundancy as possible. If a data connection is vitally
important to your business or if you need it to be open continually for any reason,
make sure you have enough e*Ways on hand to back up this connection in case it
needs maintenance. This allowance makes supportability easier and minimizes
problems in case of trouble.

Set up your schema structure to reflect related processes. In other words, if you
create more than one schema, assign components with common purposes and
functions to each schema. For example, you could set up a schema to handle
accounts payable operations and another to handle accounts receivable. Also, if you
have many processes contributing data to a single database, configure all these
processes to take place in a single schema.

Major operations or business processes with a high priority require additional
e*Ways and, if necessary, BOBs. After you determine the e*Way demands for your
peak usage, add one or two more e*Ways to your total number. Remember that
peak demands can sometimes be exceeded. Allowing for this possibility enhances
total system supportability and also maintainability.

5.5 Optimizing Your System
Once you have set up your overall eBI Suite design, you then need to go back over the
entire setup and determine where you can optimize and improve system performance.
This important step ensures the highest-quality results once your system goes into
operation.

However, keep in mind that when you do your original system design, it is good
practice to allow for the optimization plans explained in this section. System
optimization is not just a single step. It is instead an ongoing process that you can
implement in various ways during all phases of deployment and beyond.

This section provides general guidelines on system optimization, listed topically by
each area and application where key improvements can be realized.

Determining an Optimization Plan

All the optimization methods described in this section improve data throughput. In
deciding on and choosing optimization plans, you must first determine whether the
improvement you seek is worth the cost. Different types of cost can be:
SeeBeyond eBusiness Integration Suite
Deployment Guide 104 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
Monetary, for example, using faster hard disk controllers.

Performance, not in data throughput but in other ways of measuring performance,
such as:

Increased latency, that is, total throughput improves, but individual
transactions during low-volume periods can be delayed longer than they would
be without the optimization method

Increased complexity could improve, for example, total throughput, but the
schema is more difficult to support

In other words, when designing your eBI Suite environment, do not plan to implement
as many different methods as possible. Instead, decide on acceptable levels of data
throughput, latency, complexity, and cost. Next, find a balanced mix of these
optimizations to achieve desired efficiencies.

The rest of this section provides tips on optimization and how to balance this mix,
along with examples.

5.5.1 Using Parallel Data Threads
One of the simplest ways to improve e*Gate performance is to set up parallel data
threads through your system. This principle works in basically the same way as adding
more lanes to a freeway, allowing traffic to move faster. See Figure 28.

Figure 28 Using Parallel Data Threads

The type of data distribution shown in the previous figure is called load balancing. You
can create and configure as many different data threads and components on as many
different systems as your overall resources allow. Test your results, because if you are
straining these resources, adding more threads can decrease instead of increasing
performance quality.

Multi-threaded BOBs: Keep in mind that you can adjust the number of threads per
BOB as well as the number of BOBs. See Figure 29 on page 106.

This setup increases data
throughput over using a single
thread; traffic flows faster over
more pathways

e*Gate Environment

BOB

External
System

External
System 2

3

2

1

3

1

BOB

BOB

2e*Way
1

3
e*Way

1
2
3

SeeBeyond eBusiness Integration Suite
Deployment Guide 105 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
Figure 29 Using Multiple Threads per BOB

Depending on your needs, you can use more BOBs with fewer threads or vice versa.
Determine which of these setups you need as follows:

Use several, single-threaded BOBs if you are using a single-threaded library, for
example, HTTP, or if you need to start and start BOBs individually as necessary.

Use fewer, multi-threaded BOBs for multi-threaded libraries, for example, database
libraries.

In general, fewer BOBs and more threads use system resources more efficiently than
fewer threads and more BOBs.

5.5.2 Improving IQ Performance
The following list provides some helpful tips on how to improve IQ performance in the
eBI Suite:

Empirical evidence has determined that using two to three IQs per IQ Manager
produces optimum results.

If the total number of your CPUs is not an issue, it is advisable to add IQ Managers
whenever possible. Keep track of the CPU use of the IQ Managers and decide how
many you can add based on that calculation.

Make sure you create an IQ Manager on the same host computer as its associated
IQs to allow for unrestricted access between the two components.

e*Gate Environment

e*Waye*Way External
System

External
System

3

2

1

3

2

1

3

2BOB 2

External
System

External
System

e*Way

e*Waye*Way

e*Way

External
System

External
System

This setup allows you to
take advantage of any
BOB's ability to handle
more than one data flow at
a time.

1

1

3

SeeBeyond eBusiness Integration Suite
Deployment Guide 106 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
When an IQ Manager puts an Event into an IQ, it briefly locks the IQ from all other
publishers. Using multiple IQs reduces the possible number of lock contentions for
IQs, across all publishers to those IQs. See Figure 30.

Figure 30 Optimizing IQs: Using Multiple IQs

Hardware vendors like Sun Microsystems, Hewlett Packard, and IBM have hard
disk storage solutions that utilize nonvolatile caches on the disk controllers.
Although this is an expensive solution, it can significantly improve IQ performance,
because IQ Managers usually write a large volume of small-set bytes as part of their
updating Event states in the IQ.

Try to reduce the number of puts and gets to the IQ as follows:

Try batching Events together. Whenever you can afford to batch Events then do
so. See “Batching Events” on page 110 for more information.

Use IQ subscriber pooling to streamline system processing by making it
parallel. See “IQ Subscriber Pooling” on page 92 for more information.

Note: Subscriber pooling may not be appropriate if Event serialization is a priority. See
“Event Serialization and Delivery” on page 111 for details.

If you do not need to retain Events in an IQ for long time periods, set the Events’
expiration for a shorter time period. Then, set the IQ Manager to clean up its IQs at
multiple times per hour or per day. Whether you do IQ cleanup per hour or day
depends on the system’s total data volume and peak times.

Note: Do not set IQ cleanup to less than a 5-min interval. Verify that the IQ Events’
expiration period is longer than the IQ cleanup time or Events can expire during
cleanup. Also, keep in mind that the larger the number of Events an IQ handles, the
longer the IQ Manager takes to clean up its IQs.

The cleanup process reduces the size of live index files in the SeeBeyond Standard
IQs, making the IQ-put actions go faster. Otherwise, these files can keep on
growing and taking up more hard disk space, causing performance degradation.

Handling High Volume Throughput

If you need to handle high-volume throughput in any e*Way or BOB in your system,
and you have a small number of sources and source Events, use the following
guidelines:

IQ Manager
Publisher

Publisher

IQ

Event

Event

IQ Manager

Publisher

Publisher

IQ

IQEvent

Event

Two Events contending for
the same IQ

Two Events put into separate
IQs
SeeBeyond eBusiness Integration Suite
Deployment Guide 107 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
Use one IQ per publisher. This setup helps increase the throughput and also
reduces risk. If an IQ becomes unavailable, only one link to an internal component
or external application is affected or goes down.

For extra-high data throughput, use one IQ per publisher and Event Type. See the
example shown in the following figure.

Figure 31 Optimizing IQs: One IQ per Publisher and Event Type

Too many subscribers using the same IQ can stifle the responsible IQ Manager. To
avoid this problem, create multiple IQs and, if necessary, an Event Type for each
IQ. This setup takes advantage of multiple threads in the IQ Manager. The
following figure shows an example.

Figure 32 Optimizing IQs: One IQ and Event Type per Subscriber

In any case, the maximum number of client connections per IQ Manager is
approximately 50. The total number of client connections equals the total number of
Events handled by the IQ Manager regardless of direction. For example, in the
previous figure, the IQ Manager has four client connections.

5.5.3 Optimizing Event Parsing
Whenever an eBI Suite Collaboration utilizes an Event for any kind of Service other
than Pass Through, the Collaboration must first parse the Event. To do this operation,
the system reads and processes structural information within that Event.

Every parsing action takes time and system resources. To optimize performance, you
must avoid unnecessary parsing. Verify that each Collaboration is only parsing every
Event as much as necessary to do the assigned transformation and no more.

Avoiding Excessive Parsing

Here is a checklist of steps you can take to avoid unnecessary Event parsing:

Publisher
Event Type A

IQ Mgr

IQ 1

IQ 2

Subscriber 1

Subscriber 2

Event Type B

Event Type A

Event Type B

Event Type A

Event Type B

Publisher
Event Type A

IQ Mgr IQ 1

IQ 2

Subscriber 1

Subscriber 2

Event Type B

Event Type A

Event Type BIQ Mgr

Event Type A

Event Type B
SeeBeyond eBusiness Integration Suite
Deployment Guide 108 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
Choose efficient functions, as in the following examples:

Use the Monk function db-struct-bulk-insert to transport Events into a
database e*Way (for example, an Oracle e*Way) works more efficiently than
db-sql-execute.

The Monk function $event-clear causes all available memory for an ETD to be
released. If the Event’s ETD is to be reused in the same Collaboration, instead of
$event-clear, use a statement like:

(copy " " ~evt%root:0-END)

Note: For more information on Monk functions and statements, see the Monk
Developer’s Reference Guide.

Grouping too few records in a bulk-insert statement is inefficient, but too many has
a significant message-parsing overhead. There is a good average to aim for, which
is probably data-dependent, but has been observed in many tests to be
approximately 500 records per insert region.

Consolidating nodes where possible. Create new ETDs based on original (full)
ETDs by consolidating the original ETD nodes in these new ETDs. Make sure the
parent node has its length set to the total lengths of its children. See the following
figure.

Figure 33 Node Consolidation

For example, if you only need to process the data in the first child node, you could
consolidate the nodes in the way shown in the previous figure. Consolidate nodes
in this way only if processing data in the other nodes is not necessary.

Stopping unnecessary parsing: If child and leaf nodes are not referenced, eliminate
those nodes from the ETD. Also, use the Pass Through Service whenever possible.
For more information, see “Event Parsing” on page 92.

Checking node lengths: When parsing a fixed-length Event generated by a
database ETD builder, check all node lengths carefully. Try to make the parent node
or unspecified length the same as the “value” node and not 0 (zero). With e*Gate
version 4.1.0 especially, this setting has a significant positive effect on the speed of
message parsing.

For example, if node 0 represents the rest of the data in an Event, and we know we
only need 100 bytes more of this data, it would be more efficient to represent this
node as node 100.

Avoiding multiple IQ read-writes: Configuring multiple small read-write actions
in a single IQ uses inordinate system resources. Try to batch as many small Events

Parent = 30

Child = 10Child = 10 Child = 10

Parent = 30

Child = 10 Child = 10

The parent node with fewer child
nodes (right) still has the same
length but is parsed more efficiently
SeeBeyond eBusiness Integration Suite
Deployment Guide 109 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
as possible into a single larger Event that contains a repeating node. For more
information, see “Batching Events” on page 110.

Consolidating Collaborations wherever possible. Also, the use of additional BOBs
does not always improve performance; there is a point where returns diminish. Test
added BOBs and their Collaborations, and if their use degrades performance,
consolidate them wherever possible. For example, if you have two or more BOBs
doing the same operation, you could combine them and their Collaborations into a
single BOB and Collaboration.

Avoiding expanding ETDs: Dynamically growing ETDs, that is, those that add
more repeating nodes, are expensive in terms of RAM management. Only create
these types of ETDs if it is absolutely necessary.

Batching Events

Bundling multiple Events into a single Event when it enters e*Gate is called Event
batching. You then design the system to split them apart when they leave e*Gate. This
process restores the Events to their original separate state.

For example, you could have a system with Events entering the system separately as
shown in Figure 34. This setup causes a separate disk write for each of the three Events
when it is handled by an IQ.

Figure 34 Non-Batched Separate Events

To improve efficiency, you can create a Collaboration (in the inbound e*Way or in a
BOB) to join them into a single Event when they enter the e*Gate environment. The
resulting Event appears as shown in Figure 35. This setup causes only a single disk
write for the batch Event when it is handled by an IQ.

Figure 35 Events Batched into One Event

Then, you can have the batched Event sent through the e*Gate environment in any way
you want, keeping the contained Events together. To unbundle a batched Event before
it leaves the system, create another Collaboration (in the outbound e*Way or in a BOB)
to split it apart into its original separate Events.

Advantages of Batching

The advantage of Event batching is speed. In most cases, batching Events greatly
improves data throughput and, as a result, overall system performance. Publishing

Event BEvent A Event C
Each parent node is actually an
Event "root" node that can contain
as many or few child nodes as
desired

Batch

Event BEvent A Event C

All three original Events are now
bundled together as children of a
new "root" node parent in a single
new Event
SeeBeyond eBusiness Integration Suite
Deployment Guide 110 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
fewer, larger Events to IQs uses less system-resource overhead than publishing more,
smaller Events. Actual experience has shown that as many as 10,000 smaller Events can
be efficiently batched into a single “parent” Event.

Note: Carefully test a Collaboration’s batching script or program before using it. A flawed
batching process can cost you all the benefits Event batching has to offer.

Event Serialization and Delivery

Events can take different routes through an e*Gate environment. As a result, there is no
guarantee that they all arrive at their final destination in the same order they started out
with. If Event order is not important, you can use Event batching, as well as IQ
subscriber pooling as desired, to improve system performance and move Events along
independent threads through e*Gate.

Note: See “IQ Subscriber Pooling” on page 92 for more information on IQ subscriber
pooling.

For example, suppose Events arrive at e*Gate in the following order: 1, 2, and 3. Event 1
could take an independent side trip to an external database while Events 2 and 3
proceed directly. Thus, the final order they are received in could be 2, 3, and 1. If order
is not important, this processing topology is no problem.

But what if Event 1 carries information needed to interpret Event 2? Then, there could
be problems if you do not guarantee that Events end up in the same order they had
when they started.

Guaranteeing Serialization

Ensuring Event serialization means guaranteeing, through your system design, that
Events are received in the order they are sent. Of course, Event serialization is only a
consideration in situations where the order of Event processing is critical.

Using a more specific example, if you are processing account transactions where credits
are entered first before debits (especially at high speeds), naturally you want Events
processed in exact time sequence. Otherwise, a debit Event that arrives too soon could
“bounce” because the destination system does not yet know the money is there.
SeeBeyond eBusiness Integration Suite
Deployment Guide 111 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
The following figure shows a sample non-serial Event sequence.

Figure 36 Non-Serial Event Sequence

In the previous figure, Event 1 was sent first but may not arrive at its final destination
ahead of the other two Events. Avoid too many such “detours” for Events when they
must arrive in sequence. See “Using Parallel Data Threads” on page 105 for
information on load balancing and how to allow for Events’ being processed in parallel
threads.

Using e*Gate features, you can guarantee Event serialization by:

Sending all Events you want to keep in serial order to a single IQ

Assigning these Events to a single Event Type

If, in Figure 36 the Events leave e*Gate in 1-2-3 order, that is, in the same order they
entered, they have been serialized or sequenced.

Using Event Linking and Sequencing

Using e*Gate’s Event Linking and Sequencing (ELS) feature ensures that your data
arrives at its destination in the desired sequence, after leaving e*Gate. This feature is a
part of the Java Collaboration Service (available in e*Gate release 4.5 or later).

This feature allows you to create Event sequences with greater complexity and
flexibility than those available only in Monk. For example, Java Collaborations allow
you to transform one Event Type to many, many to one, or many to many instead of the
simple one-to-one correspondence available with Monk.

ELS is configurable using the Java Collaboration Rules Editor in e*Gate. The case study
example that begins later in this chapter shows an example using this feature. See
“Case Study 3: Tracking Timecards and Payroll Scenario” on page 144 for a sample
deployment of ELS in e*Gate via a Java-enabled configuration.

For more information, see the following references:

e*Gate Integrator Collaboration Services Reference Guide for an explanation of the Java
Collaboration Service and ELS

e*Gate Integrator User’s Guide for an explanation of Java Collaborations and the Java
Collaboration Rules Editor

e*Gate Environment

BOB

External
System

External
System 2

3

2

1

3

1

e*Way
1

3
e*Way

1
2
3

e*Way

External
System

1 1
SeeBeyond eBusiness Integration Suite
Deployment Guide 112 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
Using Guaranteed Exactly Once Delivery

e*Gate allows you to use the system’s Guaranteed Exactly Once Delivery feature that
ensures the once-only delivery of each Event. If your system requirements dictate that
every Event that leaves e*Gate be delivered to its destination system only once, you can
use this feature to achieve that result.

Note: The use of Guaranteed Exactly Once Delivery may slow system performance
somewhat. Only configure this feature where its need is dictated by specific business
requirements.

XA-aware features are available using the SeeBeyond JMS IQ Manager and Service. See
the SeeBeyond JMS Intelligent Queue User’s Guide for detailed information on the JMS
IQ Manager and Service and how to configure Guaranteed Exactly Once Delivery.

Possible IQ-pooling Problems

Using IQ subscriber pooling can cause problems with Event serialization. Once Events
go into an IQ “pool,” Collaborations pick them up as they are able and not in time
sequence. For situations where Event serialization is necessary, the subscriber pooling
feature may not be desirable. In such cases, consider Event sequencing when deciding
whether to use this feature.

5.5.4 Monk Optimization
There is no definitive formula optimizing Monk-related operations in the eBI Suite.
Keep in mind that the best way to optimize programming is to first program the code
so that it works correctly, even if not efficiently. Once you have a program that operates
well, then you can concentrate on optimization.

Note: This section assumes that the reader at least has some familiarity with Monk
programming. For more information on using Monk, see the Monk Developer’s
Reference.

The following list explains some handy Monk optimizations you can apply in your
deployment:

Internalize slow functions: Use the C Collaboration Service to write a C-language
function that replaces appropriate Monk functions with those contained in
compiled .dll files. Then, use the Monk Invoke function to load the .dll files.

Minimize path access: Using strings or byte offsets instead of paths speeds Monk
processing considerably. In cases where Monk maps a string, have it map the string
SeeBeyond eBusiness Integration Suite
Deployment Guide 113 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
or byte offset directly instead of by path. For example, suppose you need to find an
employee number in an ETD. The following line shows the map by path:

employee
(
firstname 5
lastname 6
IDnum 14

(
number 10
type 1
checkdigit 1
)

)

The following line shows the map by string:

input%employee.IDnum.number

The following line shows the map by byte offset:

input%employee[13,10]

For better efficiency, use the second type of mapping shown in the examples above.
The byte offset method only applies to fixed-format ETDs.

Eliminate duplicated collaborations: If more than one Collaboration serves the
same purpose, consolidate them into a single Collaboration. See “Number of Data
Transformations” on page 98 for details.

Precalculate node lengths in fixed ETDs: This optimization streamlines Monk's
mapping processes. It does so by letting the system know beforehand how many
bytes of data to pass on to a fixed-length parent node with fixed-length children.
The children make up a parent by the sum of their sizes. Give the parent a length
equal to the sum of its children's length (see the following figure).

Figure 37 Precalculating Node Lengths

This operation is similar to the node-parsing example shown in Figure 33 on
page 109 (see that section for related information). This type of shortcut can
improve mapping speed by several times.

Similarly, you can ask the system to map by byte offset. For example, suppose you
want the system to map a zip code in an address in a Level 2 node of a fixed-format
ETD. You could “find” the zip code as follows:

input%msg.region.company.zip

Or if you know the zip code is always at byte 68, you could direct the system to it as
follows:

input%msg[68]

Parent = 30

Child = 10Child = 10 Child = 10

The parent node informs the
environment how many bytes of
data its child nodes possess
SeeBeyond eBusiness Integration Suite
Deployment Guide 114 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
By using the second method shown above, you allow the system to go to desired
point directly (and more efficiently), instead of its having to completely map every
node on the path.

Avoid unnecessary memory allocations: Reading numerous blocks of data from a
file and appending it to a Monk string variable can hurt the Monk program’s
performance. The amount of allocation and reallocation Monk has to do in such
cases consumes extra system resources. A good alternative is to pre-allocate a large
block of memory space using the make-string function and by using a combination
of string-copy! and string-length! functions to manage the data.

Here are some examples of these functions:

(define xxx (make-string 10))
(string-copy! xxx 0 "1234567890")
(display xxx)(newline)
(string-copy! xxx 4 "abc")
(display xxx)(newline)
(string-length! xxx 5)
(display xxx)(newline)

In the previous example, the code writes the following string to a log file after line
three:

1234567890

In the previous example, the code writes the following string to the log file after line
five:

1234abc890

In the previous example, the code writes the following string to the log file after line
six:

1234a

Using functions in this way prevents Monk from doing any further reallocation to
the string variable to come up with the same results.

Use variables in loop conditions: Often you must use loops where the stopping
criteria depends on the length of a string or the number of times a certain node
repeats. In these cases, pre-calculate the length of the number of iterations in a
Monk variable and use the variable in the stopping criteria. This optimization
prevents Monk from having to recalculate the same value, when it can be stored in
a variable once then referenced later on.

In the next example, the variable number_of_repetition stores the actual repetition
count. The purpose of the program is to avoid evaluating the count-rep expression
every time the test condition of the do rule is not evaluated to #t (true).

(set! number_of_repetition (count-rep
~input%root.node_that_repeat))
(do ((index 0 (+ index 1))) ((>= index number_of_repetition))
(display (string-append "Repetition Data [" (number->string index)

"] = "))
(display ~input%root.node_that_repeat[<index>])
(newline)

Use Monk map caching: In some situations, the same Monk ETD and the same data
are used by several functions, either sequentially or hierarchically. Here, you can
allow the first function that maps the input data to cache the input ETD. Then, this
SeeBeyond eBusiness Integration Suite
Deployment Guide 115 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
function can globally share this cache with the remaining functions that use the
same ETD. The rest of the data transformations must then be converted to database-
access poll functions to bypass the input data mapping process.

Monk Map Caching Examples

The previous example creates a Monk ETD and assigns the function’s input variable to
it. The cached ETD contains everything as input.

The previous example uses the database-access poll function. The input variable gets
assigned the cache. At the end of the function, the input must be set to output.

5.5.5 Optimizing Performance Using Hardware
Here are a few brief tips on how to optimize your general eBI Suite hardware
performance:

Disk speed is often a limiting factor; use the fastest hard disks possible.

Linear scalability (increasing CPU yields, therefore increasing data throughput) can
only be observed when disk speed is not a limiting factor.

Keep IQs and their IQ Managers on the same computer. Separating them onto
different systems can degrade performance.

Use fast hard disks with battery-powered caches if possible. This improvement is
especially beneficial to IQ performance (see “Hard Disk Access” on page 69).

(define bbdl_process_request
(let ((input ($make-event-map bbdl_request-delm

bbdl_request-struct))
(output ($make-event-map bbdl_response-delm

bbdl_response-struct))
)

(lambda (message-string)
($event-parse input message-string)
($event-clear output)
(begin
(define cached-struct ($make-event-map bbdl_request-delm

bbdl_request-struct))
(set! cached-struct input)
(sub-xlate)
:
:

This operation
expends more
system resources
than the sub-call
shown in the next
example.

(define sub-xlate
(let ((input ($make-event-map bbdl_request-delm

bbdl_request-struct))
(output ($make-event-map bbdl_response-delm

bbdl_response-struct))
)

(lambda ()
($event-clear output)
(begin
(set! input cached-struct)
:
:
:
(set! input output)

This sub-call,
does not contain
the expensive
$event-parse
operation and
instead uses the
cache, expending
fewer system
resources
SeeBeyond eBusiness Integration Suite
Deployment Guide 116 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
Note: See Chapter 4 for detailed information on how to optimize your eBI Suite hardware
setup.

5.5.6 e*Insight Engine Optimization
This section explains e*Insight Engine features you can use to optimize your system
performance. These features are:

e*Insight Engine Affinity allows e*Insight Engines in a multi-engine e*Gate
schema to cache information about particular Business Process Instances (BPIs) as
they flow through an e*Gate schema. Using e*Insight Engine Affinity can possibly
improve performance. Using this topology, if an Engine is shut down for some
reason, the instances associated with that Engine will not finish being processed
until the Engine is manually restarted using the Schema Manager GUI.

Instance Caching lets you use a single e*Insight Engine to cache information about
BPIs. Using this feature, you can reduce system disk-access instances and therefore
improve general system performance. Employ this feature with any use of the
e*Insight Engine, even it you are only using a single Engine in an e*Gate schema.

Adding additional e*Insight Engines combined with Instance Caching offers the
benefits from reduced disk access and load balancing. e*Insight Engine Affinity
allows an e*Insight Engine in multi-engine e*Gate schema to start and finish
particular BPIs as they flow through a business process and e*Gate schema. Using
this topology, if an e*Insight Engine is shut down for some reason, the instances
associated with that Engine will not finish being processed until the Engine is
manually restarted using the Schema Manager GUI.

For more information on how to set up, configure, and use all these features, see the
e*Insight Business Process Manager Implementation Guide.

5.5.7 e*Xchange Optimization
Trading Partner Profile Caching

If you are deploying a large number of trading partners, this feature minimizes
database lookups for partner profile information, which can be costly in a high-volume
environment.

The system default settings for this feature are:

Expiration Time of trading partner profile in Cache

Maximum trading partner profiles in Cache
SeeBeyond eBusiness Integration Suite
Deployment Guide 117 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.5
Designing and Developing the eBI Suite Environment Optimizing Your System
Figure 38 shows the GUI that allows you to access these settings.

Figure 38 e*Xchange System Defaults—Editing Window

These settings define how many profiles are held in memory and when they are
expired if not used. This feature also operates, using a least-used algorithm, so if all the
memory slots allocated are used, and a new profile is loaded, the least-used profiles in
memory are removed.

Multiple Batch e*Way Instances

When dealing with high volume batch connections, consider using more than the
standard base Batch e*Way. Using the batching facility, you can create a multiple Batch
e*Way and give each one a unique instance number within the batch. For example, in a
deployment with ten batch e*Ways, you can assign each one a unique instance number
between 1 and 10 (see Figure 39 on page 119).
SeeBeyond eBusiness Integration Suite
Deployment Guide 118 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
Figure 39 e*Way Editor for Batch e*Way

When batch messages are being processed, e*Xchange applies a modular calculation to
split transactions across multiple e*Ways. This process can greatly improve
performance. It is also possible to set the maximum number of messages in a batch,
which can improve the batch processing of messages.

5.6 System Development Considerations
This section discusses some important guidelines for e*Gate development, that is, how
to set up and configure e*Gate for your deployment.

5.6.1 Overview of e*Gate Development
As described earlier, setting up e*Gate requires a step-by-step approach to system
design, architecture, and planning for component interaction. Once you have created a
basic system design, you must build on that plan by developing your complete e*Gate
system. Then use the e*Gate GUIs to create and set up all the needed system
components.

You must configure most e*Gate components before the system can use them correctly.
Configuring e*Gate components utilizes the same GUIs as system setup. Access
e*Gate’s system development and setup features via the Schema Designer GUI.
SeeBeyond eBusiness Integration Suite
Deployment Guide 119 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
e*Gate GUIs

In addition to the Schema Designer, e*Gate uses the following GUIs for setting up,
configuring, and editing its components:

ETD Editors (Monk and Java)

Collaboration Rules Editors (Monk and Java)

Collaboration-ID Rules Editor (for backwards-compatibility with e*Gate
Version 3.6 only)

e*Way Editor

Each of these GUIs has its own window and pane features as well as an online Help
system. Also, all the GUIs, including the Schema Designer, have properties and other
dialog boxes that aid in the e*Gate component creation, editing, and configuration
operations.

Setup Steps

The Figure 40 on page 120 shows basic e*Gate setup steps in the form of a road map.

Figure 40 e*Gate Setup Road Map

As discussed earlier, analysis, planning, and system design are basic phases of the
deployment project. In addition, actual system development requires the following
steps:

Creating schemas

Creating Event Types and their definitions (ETDs)

Creating Collaboration Rules and scripts

1

2

3

Business Analysis
and Planning

System Design

Creating Schemas 4

5
Creating

Collaboration
Rules and Scripts

Creating Event
Types and Their

Definitions

6

Adding e*Ways
and BOBs

7

8Adding
Collaborations

Adding Intelligent
Queues

Reviewing and
Testing the

System

9

SeeBeyond eBusiness Integration Suite
Deployment Guide 120 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
Adding e*Ways and BOBs

Adding IQs

Adding Collaborations

Reviewing and testing the system

See Chapter 6 for complete information on system testing and review. For specific
information on how to create, configure, and operate the e*Gate components in the
previous list, see the e*Gate Integrator User’s Guide.

5.6.2 Setting Up Users, Roles, and Privileges
The e*Gate Access Control List (ACL) feature defines users’ privileges to take specified
actions on components. This is e*Gate’s basic security feature that controls
development activities, such as creating or modifying components, and operation
activities, such as starting or shutting down components. For example, using the ACL,
you can permit one or more users to create or modify certain e*Gate components and
other users to only start up or shut down certain e*Gate components.

Note: ACL security features explained in this section only apply to e*Gate release 4.1.2 or
later. For details on e*Gate’s ACL features, including assigning schema-level
security in release 5.0 SRE or later, see the e*Gate Integrator System
Administration and Operations Guide.

Role-Based Security

The ACL is defined through assigning roles to users. Privileges such as creating
e*Ways, modifying ETDs, or reorganizing IQs are assigned to a role. In turn, roles are
associated with one or more users. Users can then access objects according to the
privileges they receive through the role.

When deploying an e*Gate environment, you define roles principally according to your
users’ predefined responsibilities; that is, what each user is expected to be able to do. To
set up users, roles, and privileges, you must consider:

Access
Whether you wish to permit one or more users to access portions of the schema or the
whole schema

Privileges
Whether you wish to permit one or more users to exercise all privileges (actions) or a
portion of privileges pertaining to any component or category of components

The next section contains an example showing how to deploy the ACL security feature.

Example—Supply Chain Scenario

In this example, the Supply Chain System consists of these subsystems:

Orders
SeeBeyond eBusiness Integration Suite
Deployment Guide 121 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
Inventory

Shipping

Implementing this scenario involves the components shown in the following figure.

In this example, you want “developer” users (use the e*Gate default Administrator role
as a guide) to be able to make changes to the e*Ways and their Collaborations.
However, you only want them to carry out these changes in their own departments.

Define the following developer roles:

DevOrder

DevInvent

DevShipping

Then assign view and edit privileges to the e*Ways as follows:

Orders subsystem e*Ways to the DevOrder role

Inventory subsystem e*Ways to the DevInvent role

Shipping subsystem e*Ways to the DevShipping role

Also, if desired, you can set up one or more “operator” roles for these departments in
the same way (use the e*Gate default Operator role as a guide). You can then associate
the remaining privileges (start, shutdown, suspend, continue, reload, and status) with
the e*Ways and with each of your operator roles. Users with these roles are only able to
do routine operations with the e*Ways and cannot make changes.

If you create a new role with view permissions associated with each component, the
user will be able to change the logging levels and debug flags. This is especially useful
for a “night administrator” or any other user that needs log level authority without
allowing them to change the configuration.

Finally, you can assign only operator’s roles to certain users, only developer’s roles, or
both roles to desired users. These users are then be able to control the e*Ways only
according to their assigned roles.

Table 6 Supply Chain Scenario Components

e*Way Collaboration

Orders subsystem

ewOrderIn colOrderToInv

ewOrderOut colCustResp

Inventory subsystem

ewInventIn colInventResp

ewInventOut colInventQuery

Shipping subsystem

ewShippingIn colShipOrder

ewShippingOut colShipOrderResp
SeeBeyond eBusiness Integration Suite
Deployment Guide 122 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
5.6.3 Modeling Business Processes with e*Insight
Once you have e*Insight installed and running, along with e*Gate, this application can
help you with the design phase of your deployment. You can use e*Insight to build
graphical models of all your business processes.

The e*Insight Main window GUI offers you GUI tools you can use to create a working
business-process model for your work flow. Using its Configuration mode, this
application allows you to do the following operations:

Create new business processes

List these processes

Diagram process models

Document your business processes
SeeBeyond eBusiness Integration Suite
Deployment Guide 123 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
Advantages of e*Insight Models

Once a business process model is in place, you can set properties and attributes for each
activity then generate the components that make up the actual integration layer.
Through this configuration process, the activities created in e*Insight automatically
generate the appropriate e*Gate components. You can model and view a summary of
the process flow or drill down to the detailed implementation of the activities.

eBusiness Integration

e*Insight has been designed and developed to provide tight, seamless integration of
systems directly out of the box, to accelerate eBusiness Integration. Used with e*Insight,
business process management requires little configuration and transformation
development work in order to integrate back-office, Internet, or B2B applications into a
total business process.

With e*Insight's automatic services in place, the more flexible process-driven
integrations require no greater effort to implement than traditional messaging
integrations.

Full UML Compliance

e*Insight is fully Unified Modeling Language (UML) compliant in its graphical display
of business processes as activities, decision gates, sub-processes, and flow-control
arrows.

e*Insight Operating Modes

The e*Insight application has the following modes of operation:

Design Mode (see Figure 41 on page 125)

Monitoring Mode (see Figure 71 on page 173)

For more information on how e*Insight’s Monitoring mode can help in your
deployment operation, see “Transition to Production” on page 172.
SeeBeyond eBusiness Integration Suite
Deployment Guide 124 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
Figure 41 e*Insight Main Window (Design Mode)

Use the e*Insight Configuration mode to create your graphical business process model.
for more information on how to use this GUI, see the e*Insight Business Process Manager
User’s Guide.

e*Insight GUI Features

As shown in the previous figure, the Main window’s Design Mode has the following
GUI features:

Tree View displays a hierarchical representation of all the business process models
within e*Insight and their associated activities. This view allows you to see at a
glance what is currently being displayed on the modeling canvas.

Documentation Box manages comments and free-text descriptions about the
business process version and its elements. This documentation is directly associated
with the business processes overall and each of its activities can be used to support
compliance documentation.

Modeling Canvas is the portion of e*Insight where you graphically create the
business process model in the form of a UML Activity diagram.

The ability to graphically model and implement a business process improves
understanding of the process by both business and technical users while increasing the
flexibility to adapt to change. As you elevate your business logic into the process layer,
you can directly change business processes to reduce both the time to implement new
processes and the effort to modify existing processes.

Tree View Modeling Canvas

Documentation Box
SeeBeyond eBusiness Integration Suite
Deployment Guide 125 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
Design Management

As your business processes evolve in response to changes, the e*Insight database
facilitates your efforts by managing all versions of business processes as they change
over time. You can manage multiple versions of business process templates, exporting
and importing them to and from e*Insight as needed.

Figure 42 shows a graphical example of an e*Insight business process model.

Figure 42 Business Process Model Example

e*Gate Implementation

Once you have finished modeling your business processes using the e*Insight
Configuration mode, you can then generate the e*Gate components from within
e*Insight.

Automatic Component Generation

e*Insight automatically generates the reusable e*Gate integration components for each
Activity needed to implement the actual business process. Because this implementation
is automated (and therefore accelerated), no effort trade-off decisions are necessary.
Direct system integration and process management become one.

Once you have created the business process, any system designer can set the Activity
properties and generate the e*Gate integration schema to support the business process
model’s activities. Through this configuration process, the Activities created in
e*Insight are transformed into either e*Ways or BOBs with Collaborations in e*Gate.

Transition from e*Insight to e*Gate

You can easily transition your business-process models from e*Insight to e*Gate, using
the following e*Insight features:

Start Activity

Links

Operator End Activity
SeeBeyond eBusiness Integration Suite
Deployment Guide 126 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
e*Gate Configuration GUI allows you to review the configuration settings for all
the business process-related Activities and next choose which e*Gate components
to generate.

Activity Properties GUI allows you to configure how each specific Activity is
implemented.

See the e*Insight Business Process Manager Implementation Guide for more information on
implementing e*Insight features in e*Gate.

Defining Component Relationships

The following table clarifies the relationship of e*Insight components to their
corresponding e*Gate components:

After you have fully implemented your e*Insight business processes in e*Gate, you can
monitor these processes as you watch them operate in real time.

Note: For more information on e*Insight and e*Gate implementation, see Chapter 6.

For detailed information on implementing e*Insight with e*Gate, see the e*Insight
Business Process Manager Implementation Guide.

5.6.4 Overview of e*Xchange Implementation
Implementing an e*Xchange system is the process of translating the vision of the
business analyst into a functioning system. Once the analyst has determined that a
certain business task must be accomplished with e*Xchange, it is the job of the
implementor to make this a reality.

Table 7 Component Relationships: e*Gate to e*Insight

e*Insight Component e*Gate Component

Business Process Template Becomes a schema. A specific schema is a
collection of e*Gate components (Hosts,
e*Ways, IQs, and so on) configured to work
together as a logical group. A schema can
include the components for one or more
business processes.

Activities Become e*Ways, BOBs, and Event Types within a
schema.

Operators Include business logic that is run within the
e*Gate e*Insight Engine.

Links Become the publish/subscribe relationships that
determine the routing between components
and other participants.

Attributes Become the input and output values used in
Collaboration Rules to interact with external
systems (external to e*Gate).

Business Process Instances Become e*Gate Events, that is, actual messages
being processed through the system.
SeeBeyond eBusiness Integration Suite
Deployment Guide 127 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
You implement e*Xchange by using the e*Xchange GUIs to enter the relevant data into
the e*Xchange database. Then you combine the e*Xchange e*Gate components with
other e*Gate components you add to create a complete e*Xchange schema.

The e*Xchange components are mostly pre-configured and do not require any (or very
slight) modification by the implementor. The components that you add are completely
user-defined. However, the e*Xchange GUIs and this guide provide a framework for
integrating these user-defined components into a working e*Xchange system.

Types of e*Xchange Implementations

The e*Xchange system is designed for the large-scale integration of information
systems, both inside and outside of an enterprise, in order to run and monitor business
processes. The details of the business processes themselves depend on the nature of the
business.

Not every business process takes advantage of every feature built into e*Xchange.
Therefore, some e*Xchange implementations can use a simplified eXSchema.

Implementation Road Map

Clearly, each type of implementation involves a different approach. However, at a high
level, there are certain similarities.

In general, the work of implementing an end-to-end scenario with e*Xchange involves
taking what is created in e*Xchange and integrating it into a working e*Gate schema.
e*Gate powers every e*Xchange scenario, and a successful e*Xchange implementation
is dependent on a successful e*Gate implementation.

To give you an overview of the complete process, the implementation road map shown
in Figure 43 on page 129 contains high-level steps for a full e*Xchange implementation.
This road map is further refined and given more detail in the sections that follow.
SeeBeyond eBusiness Integration Suite
Deployment Guide 128 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
Figure 43 e*Xchange Implementation Road Map

Step 1: Determine the Scope of the Project

Determine the type of implementation

The tasks involved in implementing e*Xchange differ depending on the type of
implementation.

Analyze the business process

The business analyst must perform the standard tasks of analysis to develop a clear
representation of the business process. It is a good idea to have diagrams of the process
and a list of the data that must be tracked within the business process. Your detailed
plans and diagrams provide highly beneficial starting points for working with the
e*Xchange GUIs.

For more information on analyzing your business processes, see Chapter 3.

Note: e*Insight can help you in analyzing and diagramming your business processes. See
“e*Insight Deployment” on page 46 for details.

Step 2: Create Trading Partner Profiles

1 Create the custom validation Collaborations you need. For X12 protocol
implementations, use the Validation Rules Builder tool to help create these
validation Collaborations.

2 Enter the trading partner information into the e*Xchange database.

Configure the e*Gate
Components

Copy the eXSchema

Determine the Scope of
the ProjectStep 1

Create Trading Partner
ProfilesStep 2

Step 3

Step 4

Test the EnvironmentStep 5
SeeBeyond eBusiness Integration Suite
Deployment Guide 129 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
Step 3: Copy the eXSchema

When beginning an integration project, make a copy of the e*Xchange schema,
eXSchema, that is installed from the CD-ROM. Do not make any modifications to
eXSchema itself; keep it as a template. Make changes to the copy of the eXSchema that
you create. Use this copy as your starting point in e*Gate for supporting e*Xchange.

Use the following procedure to create a copy of the eXSchema:

1 Open the eXSchema in the e*Gate Schema Designer GUI.

Start the e*Gate Schema Designer.

Log in to eXSchema.

2 Export the eXSchema to a file c:\eGate\client\eXSchema backup file name.

Select Export Schema Definitions to File from the File pull-down menu.

In the Select archive File dialog box enter eXSchema backup file name in the File
name text box, then click Save.

3 Create a new schema using the eXSchema export file as a template.

Select New Schema from the File pull-down menu.

Enter new e*Xchange schema name in the text box.

Mark the Create from export check box.

Click Find and browse for the eXSchema backup file name file created in step 2.

Click Open.

The Schema Designer creates a copy of the eXSchema with the schema name you
entered.

Step 4: Configure the e*Gate Components

Configuring the e*Gate components forms the majority of the integration work done. In
this step, you can:

Add and configure the e*Ways that send data into and out of the e*Xchange system

Make all user-configurable associations in the e*Gate GUI

Step 5: Test and Tune the System

It is a good idea to test the system in stages. For example, make sure that one activity
works correctly before you try to run the entire business process. One good approach is
to start with the “upstream” activities at the beginning of the business process, and
work your way down to the last activity.

Once you have the entire system working, make adjustments, as necessary, to improve
performance. For detailed information on all these implementation steps, see the
e*Xchange Partner Manager User’s Guide and e*Xchange Partner Manager Implementation
Guide.
SeeBeyond eBusiness Integration Suite
Deployment Guide 130 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
5.6.5 Overview of e*Xpressway Implementation
This section contains lists of basic steps and considerations you and your trading
partners must take into account to design your e*Xpressway implementation
methodology.

Trading Exchange Web Site

e*Xpressway Integrator Server hosts the Trading Exchange Web site that provides the
following functioning areas:

Administration, where your administrator host controls Trading Exchange
membership and the contents of the download packages

Public, where trading partners can register and request information

Members-only, where authorized trading partners can download and test the
e*Xpressway customized OnRamp Solution Packages

Setting Up Your e*Xpressway Web Site

You, as the Trading Exchange customer, purchase e*Xpressway Integrator Server,
allowing you to host e*Xpressway. This gives you full control over all hosting features.

Using the Server: e*Xpressway Integrator Server provides Web-based tools that let you
manage your own Trading Exchange Web site. You can develop solutions for the
transaction file format differences that may exist between you and your trading
partners.

e*Xpressway Integrator OnRamp Overview

e*Xpressway Integrator OnRamp is an e*Gate-based application used by your trading
partners to facilitate data transport. You must ensure that the OnRamp is customized to
create an e*Xpressway Integrator OnRamp Solution Package for each of your trading
partners. Once a customized Solution Package is uploaded to the Web site, a trading
partner can then download and use it to access your Trading Exchange.

e*Xpressway Integrator OnRamp Schema

Each Solution Package is actually a small-footprint e*Gate schema (e*Gate version 4.5.2
or later) that enables communication from one URL to another, over the Internet. See
“Schema and Component Organization” on page 79 for more information on e*Gate
schemas. Every Solution Package contains all the modules and configuration
parameters needed to control, route, and transform data as it travels through the e*Gate
environment. These Solution Packages are maintained by the Configuration Manager.

Web Site Management

The e*Xpressway Web site has the following tools that allow you to manage it on a
continuing basis:

OnRamp Customization Management page lets you view the OnRamp Solution
Packages your Solution Provider (for more information this role, see “Working
with a Solution Provider” on page 132) has uploaded, the trading partner to which
SeeBeyond eBusiness Integration Suite
Deployment Guide 131 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.6
Designing and Developing the eBI Suite Environment System Development Considerations
they are assigned, and the OnRamp Solution Package translation information. This
page also lets you download or delete OnRamp Solution Packages and view notes.

OnRamp Solution Tools page provides everything your Solution Provider needs
to create OnRamp Solution Packages for additional trading partners, including the
OnRamp software environment and all executables that Solution Providers need to
create custom OnRamp solutions. The OnRamp Solution Tools consist of:

OnRamp template schema are included in the base package to give Solution
Providers a head start on creating made-to-order OnRamp Solution Packages.

Packager Tool executables that your Solution Provider can use to create
OnRamp Solution Packages for uploading to your Web site and downloading
by your trading partners.

Working with a Solution Provider

Your Solution Provider (probably a consultant) must meet the following requirements:

Unrestricted access to e*Gate, including the e*Ways

Expertise in customizing e*Gate schemas

Expertise and resources relevant to your likely trading partners’ applications and
platforms

Via your Web site, you provide the e*Xpressway Packager Tool to your Solution
Provider. Using this tool, the Solution Provider can create OnRamp Solutions Packages
for your trading partners.

Provide your Solution Provider with all the information and resources necessary to
create the OnRamp solutions your trading partners need. Using the Packager Tool, the
Solution Provider must create types of OnRamp Solution Packages for different
categories of trading partners. These Solution Packages can be reused by all the trading
partners who fall within the various categories.

Note: Ensure that the Solution Provider thoroughly tests every OnRamp Solution
Package before uploading it to the Web site. Complete testing before uploading
ensures that trading partners do not have problems later on. Trading exchange
sample schemas are also included on the CD-ROM for testing purposes.

Trading Partners: Getting Started

The trading partners take the following general steps to begin using e*Xpressway:

1 Trading partners hear about e*Xpressway from the Trading Exchange and decide to
use it. They are made aware of the URL for the Web site.

2 A trading partner enters the Web site’s public area and applies to the Trading
Exchange.

3 The trading partner receives approval (or denial) e-mail from you, depending on
your decision.

4 The trading partner enters the Web site’s member area and takes the following
steps:
SeeBeyond eBusiness Integration Suite
Deployment Guide 132 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
A readiness assessment in preparation for installing

Downloading and installing e*Xpressway Integrator OnRamp

Selecting, downloading, and configuring a customized OnRamp Solution
Package

Returning to the Web site and signing up by supplying their e*Xpressway
OnRamp URL

Awaiting notification that they have had their URL added to the Trading
Exchange

Testing communication to and from your Trading Exchange

Troubleshooting (if needed)

Going live

5.7 Case Study Examples
The rest of this chapter provides the following examples of deploying the eBI Suite:

First Scenario uses e*Gate and e*Insight; see “Case Study 1: Web Order Scenario”
on page 133.

Second Scenario uses e*Gate, e*Insight, and e*Xchange; see “Case Study 2:
Expanded Web Order Scenario” on page 139.

Third Scenario uses e*Gate with Java features, including the Guaranteed Exactly
Once Delivery of Events; see “Case Study 3: Tracking Timecards and Payroll
Scenario” on page 144.

Fourth Scenario uses e*Gate with Java features, including ELS; see “Case Study 4:
Receiving and Purchasing Scenario” on page 149.

Note: See Chapter 6 for a continuation of each of these examples into the transition-to-
production phase of deployment.

5.7.1 Case Study 1: Web Order Scenario
The eBI Suite provides the tools to create a supply-chain system that supports customer
and corporate demands. In particular, e*Insight provides the ability to configure
business rules through a GUI and to track individual items as they proceed through the
supply chain. The scenario discussed in this section provides an example.

Background

Electronic commerce provides a competitive advantage to those companies that can
provide a functioning electronic forum. Customers have come to expect rapid response
time to orders processing and comprehensive orders tracking. An integration project
that models business processes has a potentially high return on investment.
SeeBeyond eBusiness Integration Suite
Deployment Guide 133 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Modeling a business process like a supply chain frequently requires the integration of
several different types of systems. The eBI Suite is ideally suited to the task because it is
flexible, general, and centrally managed.

This section shows by example how to determine the components you can build to
create a supply-chain system with e*Insight.

Functional Requirements

Electronic business process modeling applied to the supply chain for the Web Order
scenario integrates these systems:

Web orders

Inventories

Shipping

Customer billing and accounting

e*Insight database (configured as order tracking)

Customer response

Designing Communication Topology

As explained earlier (see “Identifying External Systems” on page 86), communication
topology is the relationship among external systems without regard for the connections
provided by the eBI Suite. It is basically a representation of the communication
requirements met by the system.

The requirements described under “Functional Requirements” on page 134 lead to the
Web Order scenario communication topology shown in Figure 44.

Figure 44 Communication Topology for Business Process Modeling: Case 1

The communication topology shown in the previous figure includes an e*Insight
database and GUI. Although these systems are included in the topology they are not
separate items because they are all installed as part of the total eBI Suite.

Web Orders
External System

Email Client
External System

Shipping
External System

Inventory
External System

e*Insight
Database

7) Customer Response Request

6) Report Out of Inventory

5) Shipping Confirmation
4) Shipping Order

3) Inventory Response
2) Inventory Query

Management
System

1) Customer Order e*Insight GUI

Check_inv

DEC

Out_of_invShip_Order

MERGE

Send_Status
SeeBeyond eBusiness Integration Suite
Deployment Guide 134 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Business Process Implementation

As shown in Figure 44, e*Insight implements the following business process:

1 The Web order system sends each customer order Event to the e*Insight database.

2 e*Insight sends a query Event to the inventory system to verify the availability of
items desired.

3 The inventory system sends a response Event to the e*Insight database.

4 If goods are available, the e*Insight database sends a shipping-request Event to the
shipping system.

5 The shipping system sends a response Event to e*Insight when the customer order
is shipped.

6 The e*Insight database sends a billing-request Event to the accounting system.

7 The e*Insight database sends a customer-response-request Event to the customer
response system to generate confirming email.

Designing Component Topology

A component topology is the relationship among the e*Gate, e*Insight, and e*Xchange
components that support that topology. It is influenced by the Event Types that are
exchanged among components.

The figure below shows the component topology in the Web Order scenario.

Figure 45 Component Topology for Business Process Modeling: Case 1

In the component topology shown in the previous figure, all e*Ways publish their data
to the same IQ. This decision represents the simplest deployment but could also create
a performance bottleneck. Two alternatives are:

e*Gate Environment

Web Orders
External System

Shipping
External System

Inventory
External System

e*Insight
Database

Email Client
External System

Management
System

Customer Order
e*Way

e*Insight GUI

DEC

Check_inv

MERGE

Out_of_invShip_Order

Send_Status

 e*Insight Engine

Inventory e*Way

Shipping e*Way

Billing e*Way

Send Status e*Way

IQ
SeeBeyond eBusiness Integration Suite
Deployment Guide 135 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Create multiple IQs managed by one IQ Manager

Create multiple IQs managed by more than one IQ Manager

If there is sufficient RAM to support more than one IQ Manager without causing
memory swapping it would probably be advantageous to do so.

Collaboration Components

The final part of establishing the component topology is designing the following
Collaboration components:

ETDs

Collaboration Rules/scripts (Monk and Java)

Monk function definitions

ETDs: Each data flow in a diagram such as Figure 44 on page 134 is associated with one
or more Event Types. Along a specific data route, where the content of Events at several
stages along the route is related, it is sometimes possible to use the same Event Type for
more than one step along the route.

In the Web Order scenario example, the format of data exchanged between external
systems is of the same type as that written to (or read from) the IQ. This is frequently
not the case but leads to simplification of the overall system where it occurs.

Note that, for performance reasons (see “Event Parsing” on page 92), it is often
advantageous to define more Event Types if by doing so you can define simpler Event
Types that take less CPU time to parse, using less memory. The following figure lists
the Event Types required by the Web Order scenario.

Collaboration Rules: Collaborations take an input Event and convert it into an output
Event. As described earlier, the input and output Event Types for each Collaboration
are identical in the Web Order scenario example.

Typically, there is one Collaboration for each inbound Event and one Collaboration for
each outbound Event. This amounts to seven Collaborations for the example.

Table 8 ETDs for Case 1

Name of Event Types Contents

etd_CustOrder Order ID, customer information such as name;
order information such as items and quantity.

etd_InventoryReq Order ID, item, and quantity information.

etd_InventoryResp Order ID and inventory response.

etd_ShippingReq Order ID, customer information, item, and
quantity information.

etd_ShippingResp Order ID and shipping response.

etd_BillingReq Order ID, customer information, item, quantity
and price information.

etd_CustomerResp Order ID, customer information, and response
type (for example, order sent or items on back
order).
SeeBeyond eBusiness Integration Suite
Deployment Guide 136 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Collaboration Rules and Event Types passed between the e*Insight engine and its
database are not included in the next table because they are under the control of the
e*Insight database. The table does list the Collaborations required for the Web Order
scenario system.

Monk function definitions: Each e*Way uses several Monk functions to define its
specific behavior. The Exchange Data with External function is used to process data
inbound from the external system. The Process Outgoing Message function is used to
process data sent by the e*Way to the external system.

For more information on these functions, how to create them and how to configure the
e*Way to use them, see the documentation specific to the e*Way being used.

The next table lists the e*Ways that need to have an Exchange Data with External
function defined and provides sample functionality for what the Monk function is
required to do.

The next table lists the e*Ways that need to have a Process Outgoing Message function
defined and provides sample functionality for what the Monk function can be required
to do.

Table 9 Collaborations for Case 1

Collaboration Rules Input Event Types Output Event Types

cr_CustOrderIn etd_CustOrder etd_CustOrder

cr_EXch2Invent etd_InventoryReq etd_InventoryReq

cr_Invent2EXch etd_InventoryResp etd_InventoryResp

cr_EXch2Shipping etd_ShippingReq etd_ShippingReq

cr_Shipping2EXch etd_ShippingResp etd_ShippingResp

cr_EXch2Billing etd_BillingReq etd_BillingReq

cr_EXch2CustResp etd_CustomerResp etd_CustomerResp

Table 10 Monk Functions for Inbound e*Ways: Case 1

Inbound e*Ways Exchange Data with External Functionality

Customer Order e*Way Execute required business rules applicable to fetching customer orders
from the Web server.

Inventory e*Way Execute business rules applicable to transforming the query response
provided by the inventory system.

Shipping e*Way Execute business rules applicable to transforming the query response
provided by the shipping system.

Table 11 Monk Functions for Outbound e*Ways: Case 1

Outbound e*Ways Process Outgoing Message Functionality

Inventory e*Way Execute business rules applicable to making a request of the inventory
system.
SeeBeyond eBusiness Integration Suite
Deployment Guide 137 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Designing Hardware Topology

The hardware topology is the distribution of components across hardware systems. In
the e*Insight example, the database must segregated from the e*Ways, for reasons
described earlier. As a result, you need two Participating Hosts:

The first Participating Host runs the database software required to support the
e*Insight database. Because of the close relationship between the e*Insight
database, its engine, and GUI, it is best to run all these components on the same
host.

The second Participating Host runs the e*Ways that communicate with the external
systems and the IQ Manager.

Figure 46 shows the final configuration.

Figure 46 Hardware Topology for Business Process Modeling: Case 1

Shipping e*Way Execute business rules applicable to making a request to ship customer
goods.

Billing e*Way Execute business rules applicable to making a request to bill the customer.

Send Status e*Way Execute business rules applicable to sending a response to the customer.

Table 11 Monk Functions for Outbound e*Ways: Case 1 (Continued)

Outbound e*Ways Process Outgoing Message Functionality

e*Gate Environment

e*Way Host e*Insight Host

e*Insight
Database

 e*Insight Engine

e*Insight GUI

DEC

Check_inv

MERGE

Out_of_invShip_Order

Send_Status

Customer Order
e*Way

Inventory e*Way

Shipping e*Way

Billing e*Way

Send Status e*Way

IQ
SeeBeyond eBusiness Integration Suite
Deployment Guide 138 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
5.7.2 Case Study 2: Expanded Web Order Scenario
Electronic commerce involves not only integrating systems within an organization but
also systems between organizations. In other words, transmitting information between
trading partner is an important type of integration that can bring additional benefits.
The example provided in this section expands the previous scenario to create a new
scenario including this integration.

Background

As before, the e*Insight system creates and configures the e*Ways that support the
business process that is modeled. This case study builds on the previous example by
showing how the e*Insight engine module is also incorporated into the supply-chain
project to provide secure data exchange with security organizations.

Functional Requirements

Electronic business process modeling applied to the supply chain for the Expanded
Web Order scenario integrates these systems:

Web order

Inventory

Shipping

Customer billing and accounting

e*Insight database (configured as order tracking)

Customer response

Trading partner manager

Designing Communication Topology

As explained earlier (see “Designing Communication Topology” on page 134)
communication topology is the relationship among external systems without regard for
the connections provided by the eBI Suite. It is basically a representation of the
communication requirements met by the system.

There is an additional external system that must be integrated into the scenario, using
e*Xchange. This application is the system connecting to the trading partner’s systems.
Incorporating the trading partner’s external systems leads to the communication
topology in Figure 47.
SeeBeyond eBusiness Integration Suite
Deployment Guide 139 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Figure 47 Communication Topology for Business Process Modeling: Case 2

The communication topology shown in the previous figure includes the e*Insight
database, the e*Insight GUI, e*Xchange, and the trading partner (external system)
components.

Business Process Implemented

As Figure 47 shows, the eBI Suite implements the following business process:

1 The Web order system sends a customer-order Event to the e*Insight database.

2 e*Insight sends a query Event to the inventory system to verify the availability of
the items desired.

3 The inventory system sends a response Event to the e*Insight database.

4 If goods are available, the e*Insight database sends a shipping-request Event to the
shipping system.

5 The shipping system sends an Event to e*Insight when the customer order is
shipped.

6 If goods are unavailable, the e*Insight database sends an Event to the management
system informing it of the state of the inventory-and-billing-request Event to the
accounting system.

7 If specific goods are unavailable, an automatic order is placed to one of the trading
partners by sending an Event to the external system servicing the trading partner’s
system. The e*Xchange application manages communications with the trading
partner.

8 The e*Insight database sends a customer-response-request Event to the customer
response system to generate confirming e-mail.

Designing Component Topology

A component topology is the relationship among the e*Gate and e*Insight components
that support that topology. It is influenced by the Event Types that are exchanged
among components.

Web Orders
External System

Email Client
External System

Shipping
External System

Inventory
External System

e*Insight
Database

7) Customer Response Request

6) Report Out of Inventory

5) Shipping Confirmation
4) Shipping Order

3) Inventory Response
2) Inventory Query

Management
System

1) Customer Order e*Insight GUI

Check_inv

DEC

Out_of_invShip_Order

MERGE

Send_Status
Trading Partner
External System

e*Xchange
SeeBeyond eBusiness Integration Suite
Deployment Guide 140 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
The following figure shows the component topology in the Expanded Web Order
scenario.

Figure 48 Component Topology for Business Process Modeling: Case 2

In the component topology shown in the previous figure, all e*Ways originally created
by e*Insight publish their data to one IQ. e*Xchange and its supporting components
communicate through a second IQ. Also, e*Xchange supports communication with the
trading partner via an additional e*Way.

In terms of the hardware topology, it makes logical sense for the two IQs to exist on
separate systems. Therefore, there are at least two IQ Managers, also on separate
systems.

Collaboration Components

The final part of establishing the component topology is describing the following
Collaboration components:

ETDs

Collaboration Rules/scripts (Monk and Java)

Monk function definitions

ETDs: Each data flow in a diagram such as Figure 47 on page 140 is associated with one
or more Event Types. Along a specific data route, where the content of Events at several
stages along the route is related, it is sometimes possible to use the same Event Type for
more than one step along the route.

e*Gate Environment

e*Insight
Database

e*Insight GUI

DEC

Check_inv

MERGE

Out_of_invShip_Order

Send_Status

Trading Partner
External System

Web Orders
External System

Shipping
External System

Inventory
External System

Email Client
External System

Management
System

Customer Order
e*Way

Inventory e*Way

Shipping e*Way

Billing e*Way

Send Status e*Way

 e*Insight Engine

e*Xchange

eX_Batch_to_
Trading_Partner

IQ

IQ
SeeBeyond eBusiness Integration Suite
Deployment Guide 141 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
In the Expanded Web Order scenario example, the format of data exchanged between
external systems is of the same type as that written to (or read from) the IQ. This is
frequently not the case but leads to simplification of the overall system where it occurs.

Note that, for performance reasons (see “Event Parsing” on page 92), it is often
advantageous to define more Event Types if by doing so you can define simpler Event
Types that take less CPU time to parse using less memory. The following table lists the
Event Types required by the Expanded Web Order scenario.

Collaboration Rules: Collaborations take an input Event and convert it into an output
Event. As described earlier, the input and output Event Types for each Collaboration
are identical in the Expanded Web Order scenario example.

Typically, there is one Collaboration for each inbound Event and one Collaboration for
each outbound Event. This amounts to seven Collaborations for the Expanded Web
Order scenario.

Collaboration Rules and Event Types passed between the e*Insight engine and the
e*Insight database are not included in the next table because they are under the control
of the e*Insight database. This table does list the Collaborations required for the
Expanded Web Order scenario system.

Table 12 ETDs for Case 2

Name of Event Types Contents

etd_CustOrder Order ID, customer information such as name;
order information such as items and quantity.

etd_InventoryReq Order ID, item, and quantity information.

etd_InventoryResp Order ID and inventory response.

etd_ShippingReq Order ID, customer information, item, and
quantity information.

etd_ShippingResp Order ID and shipping response.

etd_BillingReq Order ID, customer information, item, quantity
and price information.

etd_CustomerResp Order ID, customer information, and response
type (for example, order sent or items on back
order).

etd_Batch Inventory ID and information about goods
supplied by the trading partner.

Table 13 Collaborations for Case 2

Collaboration Rules Input Event Types Output Event Types

cr_CustOrderIn etd_CustOrder etd_CustOrder

cr_EXch2Invent etd_InventoryReq etd_InventoryReq

cr_Invent2EXch etd_InventoryResp etd_InventoryResp

cr_EXch2Shipping etd_ShippingReq etd_ShippingReq

cr_Shipping2EXch etd_ShippingResp etd_ShippingResp
SeeBeyond eBusiness Integration Suite
Deployment Guide 142 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Monk function definitions: Each e*Way uses several Monk functions to define its
specific behavior. The Exchange Data with External function is used to process data
inbound from the external system. The Process Outgoing Message function is used to
process data sent by the e*Way to the external system.

For more information on these functions, how to create them and how to configure the
e*Way to use them, see the documentation specific to the e*Way being used.

The next table lists the e*Ways which need to have an Exchange Data with External
function defined and provides sample functionality for what the Monk function can be
required to do.

The following table lists the e*Ways that need to have a Process Outgoing Message
function defined and provides sample functionality for what the Monk function can be
required to do.

Designing Hardware Topology

The hardware topology is the distribution of components across hardware systems. In
the e*Insight example, the database must be segregated from the e*Ways, for reasons

cr_EXch2Billing etd_BillingReq etd_BillingReq

cr_EXch2CustResp etd_CustomerResp etd_CustomerResp

Table 14 Monk Functions for Inbound e*Ways: Case 2

Inbound e*Ways Exchange Data with External Functionality

Customer Order e*Way Execute required business rules applicable to fetching customer
orders from the Web server.

Inventory e*Way Execute business rules applicable to transforming the query
response provided by the inventory system.

Shipping e*Way Execute business rules applicable to transforming the query
response provided by the shipping system.

Table 15 Monk Functions for Outbound e*Ways: Case 2

Outbound e*Way Process Outgoing Message Functionality

Inventory e*Way Execute business rules applicable to making a request of the
inventory system.

Shipping e*Way Execute business rules applicable to making a request to ship
customer goods.

Information e*Way Execute business rules applicable to informing management about
shortages in inventory.

Send Status e*Way Execute business rules applicable to sending a response to the
customer.

Table 13 Collaborations for Case 2 (Continued)

Collaboration Rules Input Event Types Output Event Types
SeeBeyond eBusiness Integration Suite
Deployment Guide 143 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
described earlier. Also, communicating with the trading partner forms another logical
separation. As a result, you need three Participating Hosts:

The first Participating Host runs the database software required to support the
e*Insight database. Because of the close relationship between the e*Insight
database, its engine, and GUI, it is best to run all these components on the same
host.

The second Participating Host runs the e*Ways that communicate with the external
systems and the IQ Manager.

The third Participating Host runs e*Xchange, as well as the e*Ways and IQ Manager
that enable communication with the trading partner.

Figure 49 shows the final configuration.

Figure 49 Hardware Topology for Business Process Modeling: Case 2

5.7.3 Case Study 3: Tracking Timecards and Payroll Scenario
A company’s Human Resources (HR) department needs a more effective system for
keeping track of employees’ hours, their timecards, and ensuring accurate payroll. The
department has two systems for performing these operations, but these systems are
extremely dissimilar. Data must be delivered accurately for payment to be exact. This
scenario shows how e*Gate can help solve these problems using the Java-based
Collaborations.

e*Gate Environment

e*Insight/e*Xchange Host

e*Insight/
e*Xchange
Databases

 e*Insight Engine

e*Insight GUI

DEC

Check_inv

MERGE

Out_of_invShip_Order

Send_Status

e*Xchange IQ Host

e*Way Host

Customer Order
e*Way

Inventory e*Way

Shipping e*Way

Billing e*Way

Send Status e*Way

e*Xchange

eX_Batch_to_
Trading_Partner

IQ

IQ
SeeBeyond eBusiness Integration Suite
Deployment Guide 144 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Background and Functional Requirements

This HR Department has two systems. System A keeps track of the hours employees
work per week; System B is responsible for paying them. The data from system A is in a
delimited format and must be converted to B’s fixed format. In addition, system B can
only accept four fields: first name, last name employee number and amount. system A
does not have an “amount” field, so one must also calculate the value for the amount
field before sending it to B.

e*Gate Solution

The proposed e*Gate solution makes use of the e*Gate release 5.0 SRE (and later)
enhanced Java Collaboration Service to transform the data from system A’s format to
system B’s format. e*Gate is very flexible about where the actual transformation
processing can occur as the data moves from system A to system B.

Designing Communication Topology

The following figure graphically depicts the data to be sent from a simple timecard
system to a simple payroll system, showing the HR Department’s business need.

Figure 50 HR Business Need

Designing Component Topology

This solution uses the Multi-Mode e*Way as the main transformation component and
two simple file e*Ways to bring data into and send data out from the e*Gate
environment. Figure 51 shows all the components and their relationships in the e*Gate
schema.

System B
Fixed Format

EmpNo

FName
LName

Amt

System A
Comma Delimited

*

EmployeeNumber

HoursWorked

FirstName

JobTitle

LastName

Rate
SeeBeyond eBusiness Integration Suite
Deployment Guide 145 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Figure 51 Tracking Timecards and Payroll Scenario Overview

Notes on the Tracking Timecards and Payroll Scenario Overview

1 ew_FileIn brings data from System A into e*Gate.

The col_FileIn Collaboration in the ew_FileIn e*Way subscribes to a location on the
local file system. It polls this location for a text file with extension “.fin” containing
data from System A, packages the data as a SysA Event, and then publishes the
Event to the iq_1 IQ.

2 ew_JavaA2B (Multi-Mode e*Way) changes the data format and calculates the
amount.

The col_JavaA2B in the ew_JavaA2B subscribes to SysA Events published by
col_FileIn. It uses the Java Collaboration Rule cr_JavaA2B to change SysA Events
into SysB Events. This rule uses the JavaA2B.class which implements the
transformation. cr_JavaA2B also computes the SysB amount field by multiplying
the hours and the rate from SysA. Finally, col_JavaA2B publishes the SysB Event to
the iq_2 IQ.

3 ew_FileOut writes the transformed data out to local file system.

The cr_FileOut Collaboration in the ew_FileOut e*Way subscribes to SysB Events
published by col_JavaA2B. The cr_FileOut Collaboration Rule uses the Pass
Through service to move the data without modifying it. When a SysB Event is
retrieved, the e*Way packages it as a text file and writes it to the specified location
on the local file system, completing the end-to-end scenario.

The following table lists all the components for the schema. Substitute the name of the
system running the schema for host-name where applicable.

Table 16 Tracking Timecards and Payroll Scenario Components

Component Logical Name Settings

Schema JavaE2E

Control Broker host-name_cb

IQ Manager host-name_iqmgr Start Up = Auto

Event Type et_SysA

et_SysB

ew_JavaA2Bew_FileIn ew_FileOut

col_FileOutcol_FileIn

et_SysA pub

su
b

 et
_S

ys
A

col_JavaA2B

sub et_SysA

et_SysB pub

pu
b

et_
Sy

sB

sub et_SysB

cr_FileIn

Pass
Through

cr_FileOut
cr_JavaA2B

JavaA2B.class

SysA.xsc

SysB.xsc

Local File
System

Local File
System

Pass
Through

iq_1 iq_2
SeeBeyond eBusiness Integration Suite
Deployment Guide 146 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Setting Up the Scenario

Use the following general steps to design and set up this scenario:

Create the Event Types and Java ETDs.

Create the Collaboration Rules and Java Collaboration Rules Classes.

Add and configure the e*Ways, BOBs, and IQs.

Java ETD SysA.xsc Package Name = SysApackage

SysB.xsc Package Name = SysBpackage

Collaboration Rule cr_FileIn Service = Pass Through
Sub = et_SysA
Pub = et_SysA

cr_JavaA2B Service = Java
Instance1 et_SysA In Trigger
Instance2 et_SysB Out

cr_FileOut Service = Pass Through
Sub = et_SysB
Pub = et_SysB

Java Collaboration
Rule Class

JavaA2B.class Source = Instance1
Destination = Instance2

Inbound e*Way ew_FileIn Executable = stcewfile.exe
Config file = ew_FileIn.cfg
Start Up = Auto
Collaboration = col_FileIn

Outbound e*Way ew_FileOut Executable = stcewfile.exe
Config file = ew_FileOut.cfg
Start Up = Auto
Collaboration = col_FileOut

Multi-Mode e*Way ew_JavaA2B Executable = stceway.exe
Config file = ew_JavaA2B.cfg
Start Up = Auto
Collaboration = col_JavaA2B

IQ iq_1 Service = STC_Standard

iq_2 Service = STC_Standard

Collaboration col_FileIn Collab Rule = cr_FileIn
Sub = et_SysA from <EXTERNAL>
Pub = et_SysA to iq_1

col_JavaA2B Collab Rule = cr_JavaA2B
Sub = et_SysA from col_FileIn
Pub = et_SysB to iq_2

col_FileOut Collab Rule = cr_FileOut
Sub = et_SysB from col_JavaA2B
Pub = et_SysB to <EXTERNAL>

Table 16 Tracking Timecards and Payroll Scenario Components (Continued)

Component Logical Name Settings
SeeBeyond eBusiness Integration Suite
Deployment Guide 147 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Add and define the Collaborations that route the data.

Note: For complete information on how to create and configure e*Gate’s Java-enabled
components, see the e*Gate Integrator User’s Guide.

Creating Event Types and Java ETDs

This scenario uses two Event Types, each with its own ETD. The first Event Type,
et_SysA, models the comma-delimited format of the data received from System A. The
second Event Type, et_SysB, models the fixed-length data format required by
System B.

In addition, you need to create and configure the following ETDs:

SysA.xsc

SysB.xsc

You need to create nodes in your SysA.xsc ETD (corresponding to System A) to track
the following data:

LastName

FirstName

JobTitle

HoursWorked

Rate

You also need to create nodes in your SysB.xsc ETD (corresponding to System B) to
track the data shown in the following table:

Creating the Collaboration Rules and Java Collaboration Rules Classes

This scenario uses three Collaboration Rules: two Pass Through rules and one that uses
a Java Collaboration Rule Class. The Pass Through rules, cr_FileIn and cr_FileOut, are
used to route the Events through the e*Gate environment and the Java Collaboration
Rule cr_JavaA2B is used to transform the Event from Event Type et_SysA to et_SysB.

Note: The procedure for creating a Java Collaboration Rule is different from creating
Monk Collaboration Rules. For complete information on creating and configuring
all Collaboration Rules, see the e*Gate Integrator User’s Guide.

You must create the following components:

Table 17 SysB ETD Fixed-Node Properties

Node Name Structure Length Offset

FName fixed 25 0

LName fixed 25 25

EmpNo fixed 10 50

Amt fixed 10 60
SeeBeyond eBusiness Integration Suite
Deployment Guide 148 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
cr_FileIn and cr_FileOut Collaboration Rules

JavaA2B.class in the Java Collaboration Rules Editor

Adding the e*Ways

You must add and configure:

ew_FileIn file e*Way

ew_FileOut file e*Way

ew_JavaA2B Multi-Mode e*Way

Adding the IQs

Add the following IQs:

iq_1

iq_2

Adding the Collaborations

Add and configure the following Collaborations:

col_FileIn

col_JavaA2B

col_FileOut

After you have completed these steps, the HR Department’s schema is finished.

Designing Hardware Topology

The hardware topology is the distribution of components across hardware systems. In
this scenario, the desired operations must correlate and synchronize the appropriate
data.

Hardware topology for this scenario would be similar to that given for the “Designing
Hardware Topology” on page 159. See that section for additional details.

5.7.4 Case Study 4: Receiving and Purchasing Scenario
A company’s Sales Department needs a way to track whether an entire purchase order
for office supplies has been filled. The problem to solve with this deployment is how to
correlate individual line items ordered by Purchasing with those taken in by Receiving.
This scenario shows how e*Gate’s ELS feature can be used to fulfill this requirement.

Background

This company’s receiving-and-purchasing system operates as follows:
SeeBeyond eBusiness Integration Suite
Deployment Guide 149 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Purchasing buys office supplies for the company. The orders generated by the
purchasing system have multiple line items.

Receiving processes the items as they are delivered.

Typically, only individual line items are delivered, not entire purchase orders.

Purchasing only pays purchase orders that are completely fulfilled.

Functional Requirements

The following figure shows a general diagram of how the Sales Department’s office-
supply receiving/purchasing process must operate to completely track the receiving
and purchasing of these supplies for the Sales Department.

Figure 52 Receiving and Purchasing Business Requirements

Solution Provided by ELS

The proposed e*Gate solution makes use of the e*Gate release 5.0 SRE (and later)
enhanced Java Collaboration Service and the ELS methods added to the Java
Collaboration. These features allow you to combine the data from Events that have the
same order number into a single Event. e*Gate is flexible about where the actual ELS
processing can occur, as the data moves from the receiving system to the purchasing
system.

Designing Communication Topology

As explained earlier (see “Designing Communication Topology” on page 134)
communication topology is the relationship among external systems without regard for
the connections provided by the eBI Suite. It is basically a representation of the
communication requirements met by the system.

In the case of the Sales Department, when all the line items for a specific purchase order
have all been received, a combined Event can be sent to Purchasing. Purchasing uses
the receipt of this Event to trigger payment of the purchase order (see Figure 53 on
page 151).

Purchasing

PO_Num

Receiving

Order

Total

LineItem All_Items
SeeBeyond eBusiness Integration Suite
Deployment Guide 150 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Figure 53 ELS Solution

Designing Component Topology

The following figure shows all the components and their relationships to one another in
the complete e*Gate schema for the Sales Department’s receiving and purchasing
scenario.

Figure 54 Receiving and Purchasing Scenario Overview

The solution in this deployment uses a BOB component as the main transformation
component and two simple file e*Ways to bring data into and send data out from the
e*Gate environment.

Notes on Receiving and Purchasing Scenario Overview

ew_Rec brings data from the receiving system into e*Gate.

The col_Rec Collaboration in the ew_Rec e*Way subscribes to a location on the
local file system. It polls this location for a text file with extension “.fin” containing
data from the receiving system, packages the data as an et_Rec Event then
publishes the Event to the iq_1 IQ.

bob_ELS combines Events with matching order numbers into a single Event.

Output
Events

10001|1,2,3

10002|1,2

Input Events
10001,1,3

10002,2,2

10002,1,2

10001,2,3

10001,3,3 ELS

ELS

bob_ELSew_Rec ew_Pur

col_Purcol_Rec

et_Rec pub

su
b

 et
_R

ec

col_ELS

sub et_Rec

et_Pur pub

pu
b

et_
Pu

r

sub et_Pur

cr_Rec

Pass
Through

cr_Pur
cr_ELS

ELS.class

Rec.xsc

Pur.xsc

Local File System

Pass
Through

iq_1 iq_2

RecIn.fin

Local File System
PurOut.txt

1
2

3

1

2

SeeBeyond eBusiness Integration Suite
Deployment Guide 151 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
The col_ELS in the bob_ELS subscribes to et_Rec Events published by col_Rec. It
uses an ELS-enabled Java Collaboration Rule cr_ELS to temporarily store et_Rec
Events. Once all the Events associated with a specific order are received, cr_ELS
publishes a combined Event, et_Pur, to the iq_2 IQ. This Collaboration Rule uses
the ELS.class file that implements the business logic.

ew_Pur writes the combined Event out to local file system.

The col_Pur Collaboration in the ew_Pur e*Way subscribes to et_Pur Events
published by col_ELS. The cr_Pur Collaboration Rule uses the Pass Through
service to move the data without modifying it. When a et_Pur Event is retrieved,
the e*Way packages it as a text file and writes it to the specified location on the local
file system, completing the end-to-end scenario.

Table 18 lists all the components for the schema. Substitute the name of the system
running the schema for the host-name where applicable.

Table 18 Receiving and Purchasing Scenario Components

Component Logical Name Settings

Schema ELS_E2E

Control Broker host-name_cb

IQ Manager host-name_iqmgr Start Up = Manual

Event Type et_Rec

et_Pur

Java ETD Rec.xsc Package Name = RecPackage

Pur.xsc Package Name = PurPackage

Collaboration
Rule

cr_Rec Service = Pass Through
Sub = et_Rec
Pub = et_Rec

cr_ELS Service = Java

Instance Name = Root_In
ETD = Rec.xsc
Mode = In
Trigger = Yes
Manual Publish = No

Instance Name = Root_Out
ETD = Pur.xsc
Mode = Out
Trigger = No
Manual Publish = No

cr_Pur Service = Pass Through
Sub = et_Pur
Pub = et_Pur

Java Collaboration
Rule Class

ELS.class Source = Root_In (Rec)
Destination = Root_Out (Pur)

3

SeeBeyond eBusiness Integration Suite
Deployment Guide 152 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Setting Up the Scenario

Use the following general steps to design and set up this receiving and purchasing
scenario using Java and ELS:

Create the Event Types and Java ETDs.

Create the Collaboration Rules and Java Collaboration Rules Classes.

Add and configure the e*Ways, BOBs, and IQs.

Add and define the Collaborations that route the data.

The rest of this section explains how to design and set up the basic components of this
Sales Department’s business scenario. For complete information on how to create and
configure e*Gate’s Java-enabled components, see the e*Gate Integrator User’s Guide.

Creating the Schema

This scenario would typically be part of a larger e*Gate environment and deployment.
However, to help you keep track of this operation separately, you can set it up as a
separate schema, as it is shown in this example. An e*Gate deployment can consist of
one, two, or many schemas, depending on your system design.

Inbound e*Way ew_Rec Executable = stcewfile.exe
Config file = ew_Rec.cfg
Start Up = Manual
Collaboration = col_Rec

Outbound e*Way ew_Pur Executable = stcewfile.exe
Config file = ew_Pur.cfg
Start Up = Manual
Collaboration = col_Pur

BOB bob_ELS Start Up = Manual
Collaboration = col_ELS

IQ iq_1 Service = STC_Standard

iq_2 Service = STC_Standard

Collaboration col_Rec Collab Rule = cr_Rec
Sub = et_Rec from <EXTERNAL>
Pub = et_Rec to iq_1

col_ELS Collab Rule = cr_ELS
Sub = et_Rec from col_Rec
Pub = et_Pur to iq_2

col_Pur Collab Rule = cr_Pur
Sub = et_Pur from col_ELS
Pub = et_Pur to <EXTERNAL>

Table 18 Receiving and Purchasing Scenario Components (Continued)

Component Logical Name Settings
SeeBeyond eBusiness Integration Suite
Deployment Guide 153 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Creating Event Types and Java ETDs

This scenario uses two Event Types, each with its own ETD. The first Event Type,
et_Rec, models the format of the data sent by the receiving system. The second Event
Type, et_Pur, models the format used by the purchasing system.

The following figure shows where these components fit into the collection of
interrelated components that make up the finished schema.

Figure 55 Event Types and Java ETDs

You must create the following ETDs:

Rec.xsc

Pur.xsc

bob_ELSew_Rec ew_Pur

sub et_Pur

pu
b

et

_P
ur

col_Pur

et_Rec pub

su
b

et
_R

ec

col_Rec

sub et_Rec

et_Pur pub

col_ELS

cr_Rec

Pass
Through

cr_Pur
cr_ELS

ELS.class

Rec.xsc

Pur.xsc

Local File System

Pass
Through

iq_1 iq_2

RecIn.fin

Local File System
PurOut.txt
SeeBeyond eBusiness Integration Suite
Deployment Guide 154 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Use the Schema Designer’s Java ETD Editor to create these ETDs. When finished the
completed Rec ETD looks like the one shown in the following figure.

Figure 56 Java ETD Editor—Completed Rec ETD

Figure 57 below shows the Pur ETD.

Figure 57 Java ETD Editor—Completed Pur ETD

Creating the Collaboration Rules and Java Collaboration Rules Classes

This scenario uses the following Collaboration Rules:
SeeBeyond eBusiness Integration Suite
Deployment Guide 155 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
cr_Rec

cr_Pur

cr_ELS

The rules cr_Rec and cr_Pur are Pass Through rules and are used to route the Events
through the e*Gate environment. The Java Collaboration Rule cr_ELS, which uses a
Java Collaboration Rule Class (CRC), is used to combine the individual line item Events
into a single complete purchase order Event.

The following figure shows where these parts fit into the collection of interrelated
components that make up the finished schema.

Figure 58 Collaboration Rules and Java Collaboration Rules Class

Pass Through Collaboration Rules are used to bring data into and take data away
from the e*Gate environment. They do not change the data and therefore do not need
the overhead of a sophisticated Collaboration environment such as Java or Monk.

Java Collaboration Rule: The procedure for creating a Collaboration Rule that uses the
Java Collaboration Service is different from creating other e*Gate Collaboration Rules.
See the e*Gate Integrator User’s Guide for complete instructions on how to create this
type of Collaboration Rule.

Use the following general steps to create the Java Collaboration Rules component for
this scenario:

1 To create a Java Collaboration Rules component, you must also create a CRC. Use
the Java Collaboration Rules Editor to create a new CRC with Root_In (Rec) as the
source ETD and Root_Out (Pur) as the destination ETD.

2 You must now enter the logic used to combine the appropriate Events. You do this
by adding the appropriate business rules (Java programming) using the Java
Collaboration Rules Editor.

3 You must save and compile the Java source code. When the compiler is finished
“Compile Completed” is displayed in the compile pane. The compile pane also

bob_ELSew_Rec ew_Pur

sub et_Pur

pu
b e

t_P
ur

col_Pur

et_Rec pub

su
b

et_
Re

c

col_Rec

et_Pur pub

sub et_Rec

col_ELS

cr_Rec

Pass
Through

cr_Pur
cr_ELS

ELS.class

Rec.xsc

Pur.xsc

Local File System

Pass
Through

iq_1 iq_2

RecIn.fin

Local File System
PurOut.txt
SeeBeyond eBusiness Integration Suite
Deployment Guide 156 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
displays any errors generated by the compilation process in the Java Collaboration
Rules Editor (see the following figure).

Figure 59 Java Collaboration Rules Editor—After Compiling

4 Finish this operation using the Schema Designer’s Collaboration Rules Properties
dialog box for cr_ELS. In the dialog box, collaboration_rules\cr_ELS.class is
entered in the Collaboration Rules pane and collaboration_rules\cr_ELS.ctl is
entered in the Initialization File pane.

Note: For more information on how to create Collaboration Rules for ELS, see the e*Gate
Integrator Collaboration Rules Reference Guide.

Adding and Configuring e*Ways, BOBs, and IQs

Once you have created your ETDs and Collaborations, you are ready to add and
configure the e*Gate components that use these parts.
SeeBeyond eBusiness Integration Suite
Deployment Guide 157 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
The following figure highlights the components added in this step.

Figure 60 e*Ways, BOBs, and IQs

Create and configure the following file e*Ways:

ew_Rec file

ew_Pur

Create and configure the following BOB:

bob_ELS

Create and configure the following IQs:

iq_1

iq_2

Add these IQs under the IQ Manager hostname_iqmgr.

Note: For details on how to create and configure these components, see the e*Gate
Integrator User’s Guide.

Adding Collaborations That Route the Data

Collaborations are used by the e*Ways and BOBs to route the data through the e*Gate
environment. Typically, the collaborations are configured in upstream-to-downstream
order. Figure 61 shows the relationships of the Collaborations to the remainder of the
parts that make up the complete schema.

bob_ELSew_Rec ew_Pur

sub et_Pur

pu
b e

t_P
ur

col_Pur

et_Rec pub

su
b

et_
Re

c
col_Rec

sub et_Rec

et_Pur pub

col_ELS

cr_Rec

Pass
Through

cr_Pur
cr_ELS

ELS.class

Rec.xsc

Pur.xsc

Local File System

Pass
Through

iq_1 iq_2

RecIn.fin

Local File System
PurOut.txt
SeeBeyond eBusiness Integration Suite
Deployment Guide 158 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Figure 61 Collaborations Showing Pub/Sub Relationships

Create and configure the following Collaborations:

col_Rec to bring the data into the e*Gate environment

col_ELS to change the data from the et_Rec Event Type to the et_Pur Event Type

col_Pur to send the transformed data out of the e*Gate environment

Note: For details on how to create and configure Collaborations, see the e*Gate
Integrator User’s Guide.

Designing Hardware Topology

The hardware topology is the distribution of components across hardware systems. In
this scenario, the desired operations must correlate and synchronize the appropriate
data. Keep in mind that this scenario can be just a small part of a much larger
deployment.

The hardware distribution of your e*Gate components can dictate the need for ELS. For
example, your system could have pre-sequenced data passing through components on
two or more different hosts. Suppose you need to send all of that data to an external
system in the same sequence (see Figure 62 on page 160).

bob_ELSew_Rec ew_Pur

sub et_Pur

pu
b e

t_P
ur

col_Pur

et_Rec pub
su

b
et_

Re
c

col_Rec

sub et_Rec

et_Pur pub

col_ELS

cr_Rec

Pass
Through

cr_Pur
cr_ELS

ELS.class

Rec.xsc

Pur.xsc

Local File System

Pass
Through

iq_1 iq_2

RecIn.fin

Local File System
PurOut.txt
SeeBeyond eBusiness Integration Suite
Deployment Guide 159 SeeBeyond Proprietary and Confidential

Chapter 5 Section 5.7
Designing and Developing the eBI Suite Environment Case Study Examples
Figure 62 Data in Multi-Host e*Gate Environment with ELS

In the previous figure, BOB 3 resides on a separate host. You can configure the e*Way
with an ELS Collaboration to regather the data and send it to external system B in a
predetermined sequence. You could also create an additional BOB 4 (if desired) with an
ELS Collaboration to gather the data in the same way. In this case, the outbound (Pass
Through) e*Way could subscribe to BOB 4.

For best results, use hardware with maximum memory and speed capabilities (see
“System Requirements: Summary” on page 72) to sustain the ELS data traffic.

Note: You can mix ELS scenarios with non-ELS scenarios in a single deployment.

Going Forward

After you have completed the total, detailed, design model of your environment and
have finished creating that environment’s architecture in e*Gate, e*Insight, and
e*Xchange, you have successfully finished the design and development phase of your
eBI Suite deployment. You are now ready to move into the final phases of your
deployment project.

The rest of the chapters in this guide treat the eBI Suite deployment project under the
following topics:

Testing and transition to production: For a discussion of the testing, transition
(go-live), and maintenance (fine-tuning) phases of your system deployment, see
Chapter 6. These phases complete your deployment project.

Helpful tips: Chapter 7 “Frequently Asked Questions” gives you some helpful
hints and tips for best practices.

e*Gate Environment

BOB

External
System

External
System BOB

BOB

Inbound
e*Way

ELS
e*Way

Outbound e*Way

Separate Host
SeeBeyond eBusiness Integration Suite
Deployment Guide 160 SeeBeyond Proprietary and Confidential

Chapter 6

Testing, Transition to Production, and
Maintenance

This chapter explains the transition-to-production phase of eBI Suite deployment,
including how to perform pre-transition testing, the transition operation, and post-
transition maintenance procedures.

In This Chapter

“Introduction: Transition to Production” on page 161

“Pre-Transition Testing” on page 163

“Transition to Production” on page 172

“Post-Transition Maintenance” on page 180

“Case Study Examples” on page 190

“Case Study 1: Web Order Scenario” on page 191

“Case Study 2: Expanded Web Order Scenario” on page 196

“Case Study 3: Tracking Timecards and Payroll Scenario” on page 198

“Case Study 4: Receiving and Purchasing Scenario” on page 200

“Transition to Production: Summary” on page 200

6.1 Introduction: Transition to Production
After the analysis, planning, and design/development have been completed, there are
three remaining deployment phases. Figure 63 on page 162 shows a diagram of the six
deployment phases. This chapter explains these remaining three phases:

Pre-transition testing: It is crucial to the success of a project to fully test the system
prior to transitioning from a lab to a production environment. This testing phase
includes unit testing, system testing, and performance testing. This chapter explains
the possible methods of testing an eBI Suite environment in the lab.

Transition to production: After the system is fully tested, it must be transitioned, or
migrated, from the lab to its ultimate production environment. This chapter covers
the procedures and considerations for performing the transition to production.
Another term for this phase is the “go-live” operation.
SeeBeyond eBusiness Integration Suite
Deployment Guide 161 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.1
Testing, Transition to Production, and Maintenance Introduction: Transition to Production
Post-transition maintenance: Once the system has been migrated to its production
environment, it must be monitored for correct performance, the need for changes,
and possible errors. System monitoring is a critical step in the long-term success of
the eBI Suite. Routine checks and fine-tuning help to establish long-term
performance benchmarks and aid in identifying undesirable changes.

Figure 63 Testing, Transition, and Maintenance Phases

Change Management

An important part of the entire deployment project is change management. In the Event
that changes are required, they must be processed through the same cycle of planning,
development and configuration, testing, transition to production, and maintenance
monitoring as the rest of deployment. Figure 64 on page 163 illustrates this cycle of
change management.

Phase 1:

Analysis of Requirements

Phase 2:

Development Planning

Phase 3:

System Design and Development

Phase 4:

Pre-Transition Testing

Phase 5:

Transition to Production

Phase 6:

Post-Transition Maintenance
SeeBeyond eBusiness Integration Suite
Deployment Guide 162 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Testing, Transition to Production, and Maintenance Pre-Transition Testing
Figure 64 Change Management Cycle

6.2 Pre-Transition Testing
An essential part of the implementation of any complicated system is thorough testing.
You must do the following types of testing:

Unit testing, testing of individual components and code in isolation

Integration testing, testing of groups of components together, up to and including
the entire system

Acceptance testing, testing of a completed system (or portion thereof) to ensure
that it meets the requirements established for it

For the most part, unit and integration testing are done in the development phase of the
implementation, while acceptance testing is done as a final check before putting the
system into production.

6.2.1 Testing Methodology
While how a system is tested varies, depending on the particulars of the specific
system, certain methodologies apply to all system testing.

Parts to Whole

In general you must test the individual parts of the system before testing the entire
system. Also along these lines, test individual components and blocks of code in
isolation before testing them in a broader context.

6.2.2 Test Plan
Planning for system testing begins with a careful examination of the requirements of
the system. A test plan is created in the analysis phase of the implementation. This test
plan specifies how the system is tested and what requirements the system must meet
before it is put into production (see Chapter 3). This test plan is further refined in the
design phase of the implementation.

Configuration

Testing Performance
Monitoring

Identify Needed
Changes

Planning

Go-Live!
SeeBeyond eBusiness Integration Suite
Deployment Guide 163 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Testing, Transition to Production, and Maintenance Pre-Transition Testing
The functional and technical specifications outline the exact procedure used to conduct
the tests, both at a component level and at a integrated system level. These
specifications include:

Type of data to use

Expected output

Who is responsible for the test

Type of Data To Use

The test plan specifies the type of data to use when testing they system. It is very
important both at the component level and the integration level to work with data that
is typical of the data that the system is designed to process. If possible, use real data
from your pre-existing systems. Vary the data varied enough so that all possible types
of processing implemented by the system are tested.

In addition to real-life typical data, use data designed to test the system’s error
handling. This data may have to be specially constructed.

Testing the Output

The test plan includes specifications for:

Proper error handling

Transaction processing speed

Correct routing of information

Correct transformation of data

Any other special requirements

Responsibility for Testing

Who is responsible for a test depends on what type of test is done. In general, the
responsibility for testing an individual component belongs to the developer who works
on it. Whereas the responsibility for the testing of the entire system may fall to the
project manager or the technical lead for the project. Acceptance testing is done by or in
conjunction with people for whom the system is being created. Often this is the person
or persons who are using the system when it is put in production.

6.2.3 Unit Testing
Unit testing checks the individual parts of a larger system for correct functioning prior
to integration testing.

Each component and block of code used in the system must be unit-tested and its
functionality verified before it can be used in the integrated system.

Unit testing is done as part of the development phase by the developer responsible for
creating the component or code block in question. If the functional or technical
specifications give a procedure for testing a particular component, this procedure must
SeeBeyond eBusiness Integration Suite
Deployment Guide 164 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Testing, Transition to Production, and Maintenance Pre-Transition Testing
be followed. If the specifications do not specify test procedures for a component, at a
minimum the test must verify that the component or code block performs as outlined in
the functional and technical specifications, testing individual parts of a system.

The tools used to test each part are different, depending on what the part is designed to
do in the system. In addition, though all are designed to verify correct functioning, the
methods employed vary, depending on the component being tested.

Monk Test Console

Use the Monk Test Console in the e*Gate Schema Designer to test each e*Way
Intelligent Adapter or BOB component’s operation for correct data transformation. The
procedures that follow explain how to test the sample Start_Looping.tsc Monk
Collaboration Rules (data transformation) script using the Monk Test Console.

To test a Collaboration Rule script using the Monk Test Console

1 From the Schema Designer, open the Monk Test Console window (see Figure 65 on
page 165).

2 Enter the name of the transformation you want to test in the Input Script text box
(see the following figure).

Figure 65 Monk Test Console—Setup Tab
SeeBeyond eBusiness Integration Suite
Deployment Guide 165 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Testing, Transition to Production, and Maintenance Pre-Transition Testing
3 Select Input Data Files and use the file selection controls to specify a text file to use
as input, or select User Data and enter the input directly in the text box (see the
following figure).

Figure 66 Monk Test Console—Input Tab

4 Select the Output check box then click Run to test the transformation.

The results of the transformation are displayed in the top text box (see the following
figure).

Figure 67 Monk Test Console—Output Tab

See the e*Gate Integrator User’s Guide for more information on how to use the Monk Test
Console.

Using stctrans

Monk functions can also be run from the command line using the stctrans command.
This program functions in the same way as the Monk Test Console, without the GUI.
See the e*Gate Integrator System Administration and Operations Guide for information on
its usage.
SeeBeyond eBusiness Integration Suite
Deployment Guide 166 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Testing, Transition to Production, and Maintenance Pre-Transition Testing
Java Code Testing

The Java Collaboration Rules Editor automatically provides messages telling you the
errors in any code, when you compile. You can also use the Java Debugger feature
available in the Schema Manager GUI to debug Java Collaborations. For details on how
to use these features, see the e*Gate Integrator User’s Guide.

Testing e*Way Configuration Files

Once the transformations used by an e*Way have been tested, you must run the e*Way
to test whether it has been properly configured to communicate with the external
system to which it connects. A BOB, because it does not connect to an external system,
does not have a configuration (.cfg) file.

Note: If the system is small and uncomplicated, you may wish to skip this test and move
directly to integration testing, because of the additional time it takes to set up this
test for each component.

Testing an e*Way’s configuration requires the use of an additional component, a file
e*Way (stcewfile.exe), that is used to pass data to or take data away from the e*Way
being tested.

For example, Figure 68 shows the components in a simple end-to-end scenario.

Figure 68 SAP-to-Accounting Bridge

In this example the SAP ALE e*Way receives a purchase order in IDoc format from the
SAP system. It converts the data to an X12 850 purchase order and publishes it to the
Intelligent Queue (IQ). The Oracle e*Way retrieves the X12 data from the IQ and inserts
it into the accounting application’s database.

To test just the SAP ALE e*Way, we replace the Oracle e*Way with the simple file
e*Way that writes a text file containing the X12 data published by the SAP ALE e*Way.
You can then visually inspect the text file to see if it contains the correct data (see Figure
69).

Figure 69 SAP ALE e*Way Test Setup

The advantage of this type of test is that, in addition to testing the transformation, the
e*Way’s configuration file that contains the information the e*Way uses to

SAP System Accounting
Application

Oracle
e*Way

SAP ALE
e*Way IQ

SAP System File
e*Way

SAP ALE
e*Way IQ Text

File
SeeBeyond eBusiness Integration Suite
Deployment Guide 167 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Testing, Transition to Production, and Maintenance Pre-Transition Testing
communicate to the external system is also tested. In addition, this test also tests the
data routing up to the point that the data is stored in the IQ.

To test an inbound e*Way

1 Set up the external system to which the e*Way connects.

2 Create or edit the e*Way’s configuration file.

3 Add an outbound file e*Way to the schema containing the e*Way you wish to test.
This file e*Way subscribes to the Event published by e*Way you are testing and
writes the Event information to a text file without doing any transformation (Pass-
through Service).

4 Set the file e*Way, the e*Way you are testing, and the IQ to automatically start when
the Control Broker starts. The other components in the schema must be set not to
start automatically.

5 Start the schema.

6 If possible, verify the connectivity between the external system and the inbound
e*Way you are testing, before sending in data. There are various ways to do this
depending on the particular e*Way. For example, some e*Ways write an entry into
their log file if the connection to the external system is successful. In other cases you
can use the external system to verify connectivity.

7 Use the external system to send data to the e*Way.

8 Verify that a text file with the correctly processed data is created by the file e*Way.

To test an outbound e*Way reverse the direction the data flows in the previous
procedure.

To test an outbound e*Way

1 Set up the external system to which the e*Way connects.

2 Create or edit the e*Way’s configuration file.

3 Create a test file that duplicates the information contained in an Event that the
e*Way would normally pick up from an IQ.

4 Add an inbound file e*Way to the schema. This file e*Way picks up the test file and
publishes it to the IQ without any transformation (Pass-through Service).

5 Make sure that only the components used in the test (the file e*Way, the e*Way
being tested, and the IQ) are set to start automatically when the Control Broker is
started.

6 Start the schema.

7 If possible, verify connectivity before sending data to the external system.

8 Make the input file available to the file e*Way. Do this by copying the file to the
polling location or changing the name of a properly located file to a name to be
picked up by the file e*Way.

9 Verify that the data is correctly translated and transferred to the external system.
SeeBeyond eBusiness Integration Suite
Deployment Guide 168 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Testing, Transition to Production, and Maintenance Pre-Transition Testing
6.2.4 Integration Testing
Integration testing verifies how well the new components work together and with the
existing eBI Suite’s infrastructure.

If the system is large and complex, you can break the integration testing into pieces
designed to test a self-contained portion of the system.

Partial Integration Testing

Partial integration testing verifies correct data movement from one external system to
another, that is, a complete data path. For example, you have a system that brings in
data from a single external system then sends it to several other external systems. A
partial test of this system would be to test whether the data can be sent to one of the
external systems.

Complete System Testing

Complete system testing tests the entire system including the interaction with all the
external systems. If the system is large and complex, this type of test requires a great
deal of coordination. Set up this test to duplicate the actual production system. In fact,
in many cases it is used as a dry run prior to doing the actual acceptance test.

Performance Testing

Closely related to integration testing is performance testing. Integration testing tests
whether the system works, performance testing tests whether the system works fast
enough. This type of testing must be done once a component or system is functioning
correctly and transforming the data properly. It is important that you do this type of
testing in the context of integration testing, because many factors in combination affect
performance. Just speeding up one component may not speed up the performance of
the entire system.

The exact requirement or goal in terms of the system’s performance must be specified
in the test plan. Whether you meet the goal determines whether you pass the test. An
additional goal in performance testing is to find the slow spots in the system.
Uncovering these slow spots allows additional system resources to be allocated
intelligently in order to improve processing.

Speed Testing

This operation tests whether the system processes data fast enough. Make sure that the
logging is set to normal levels before doing a speed test, because higher-than-normal
levels of logging can seriously degrade system performance and slow processing
speed.

Stress Testing

This operation tests whether the system can handle the expected load. Similar to speed
testing, this type of testing attempts to overload the system with data to see whether or
how it could fail. Many times, network bottlenecks can be uncovered this way. The test
plan describes the methodology to employ for this type of test.
SeeBeyond eBusiness Integration Suite
Deployment Guide 169 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Testing, Transition to Production, and Maintenance Pre-Transition Testing
6.2.5 Acceptance Testing
This test is done before moving the system into production and is used as a final check
to prove to its end-users that it performs according to plan.

Acceptance testing can be for a partial system or for a complete system. If the entire
system is not being put into production at the same time, acceptance testing can be
done on the portion of the system going into production.

The test plan specifies all conditions the system has to meet to be acceptable to put into
production (see Table 4 on page 57). In addition, the test plan specifies the person or
persons who must approve the system and must be involved in the test.

6.2.6 Troubleshooting
You have the following powerful tools at your disposal for finding and correcting
errors in your individual components and in your integrated eBI Suite:

Schema Manager

Log files created by individual components

e*Gate Integrator Alert Agent

e*Gate Integrator SNMP Agent

Schema Manager GUI

The Schema Manager GUI gives you control over the components in an e*Gate schema.
The Schema Manager alerts you to the status of these components, for example whether
they are running, and it allows you to send commands to them, such as to start or shut
down. See the e*Gate Integrator Alert and Log File Reference Guide for information on how
to use the Schema Manager’s features.

When you use the Schema Manager to troubleshoot running components, you can see
at a glance whether any components are working. If a component has been set to auto-
start and remains down after the Control Broker has been started, it is likely there is a
configuration issue that is prEventing the component from starting properly. You can
verify that this is the case by sending a “start” command to the component. If the
component starts briefly then goes down, suspect a schema configuration problem.

For more information on using the Schema Manager GUI, see “Using the Schema
Manager” on page 180.

Using Log Files

To gain further information you must use the log files created by the component that
has failed. When a component or system is not working errors are written to the log file
to help you diagnose the problem. In a normally functioning system, only the most
serious errors are written to the log, such as a shut-down component, because each
entry written to the log uses up system resources and slows processing. To learn more
about a malfunctioning component, you can enable the system to log more information.
SeeBeyond eBusiness Integration Suite
Deployment Guide 170 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.2
Testing, Transition to Production, and Maintenance Pre-Transition Testing
See the e*Gate Integrator Alert and Log File Reference Guide for information on
troubleshooting e*Gate and how to use log files. This document also contains
information on how to activate the component-logging and debug features.

In general, there are two categories of errors that you can find in the log files.
Configuration errors (including communication errors) and transformation errors.

Configuration Errors

These errors can be traced to a faulty system setup or a bad e*Way configuration file.
For example, an “unable to load module work slice” entry in the log file indicates that
there is a problem with the publication-and-subscription information for that
component. The figure below shows a sample log file with a configuration error.

Figure 70 Sample Error Log

The “unable to load module work slice” error can also indicate that the configuration
file has not been committed to the Registry. See the e*Gate Integrator User’s Guide and
e*Gate Integrator System Administration and Operations Guide for information on
committing files to the Registry.

Transformation Errors

These are errors with the transformation associated with the component. These errors
are documented in the component’s log. The quantity and detail of the information in
the log depends on the options selected. For transformation errors, having the Monk
(MNK) and Monk verbose (MNKV) channels selected results in the most information.

You can use this information to make changes to your transformation then retry the
scenario.
SeeBeyond eBusiness Integration Suite
Deployment Guide 171 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Testing, Transition to Production, and Maintenance Transition to Production
6.3 Transition to Production
After fully verifying the performance and reliability of the system, the next step is to
transition it to the live production environment, the transition-to-production phase,
also call the go-live phase. This process can be affected by various factors, such as the
proximity of the lab to the production location and the amount of equipment and
information to move.

Items to Migrate

The items that have to be moved from the lab to the production environment are:

e*Insight business process files

e*Xchange trading partner profile files

e*Gate Registry files

Third-party data sources files

Related hardware (equipment)

Migration Tools

Use the following tools to assist you in your migration:

e*Insight export/import features

e*Xchange Repository Manager features

e*Gate Registry utility (stcregutil.exe) or the e*Gate Schema Designer GUI export/
import features

Note: For more information about e*Insight and e*Xchange, refer to the e*Insight
Business Process Manager User’s Guide and the e*Xchange Partner Manager
User’s Guide.

General Transition Steps

When transitioning your system from the lab to a production environment, follow
these general steps:

1 Export the business processes, trading partner profiles, and schemas

2 Move the exported files from the lab to the production environment

3 Import the business processes, trading partner profiles, and schemas in the
production hosts

These steps are explained in greater detail in the rest of this section.

6.3.1 Role of e*Insight
When e*Insight is combined with e*Gate, once you have modeled your business flow,
you can use the e*Insight GUI to monitor the execution of the components of the model
on a real-time basis.
SeeBeyond eBusiness Integration Suite
Deployment Guide 172 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Testing, Transition to Production, and Maintenance Transition to Production
Exporting Business Processes

e*Insight export/import features make it simple to move a business process from one
host to another. Use these features to migrate the business processes from your lab to
the production environment. See the e*Insight Business Process Manager User’s Guide for
details.

Note: e*Xchange also allows you to export and import, using its Repository Manager
feature (see “Export/Import Using e*Xchange” on page 178). For details on
how to use the e*Xchange Repository Manager, see the e*Xchange Partner
Manager User’s Guide.

Integrated Monitoring

The monitoring component of e*Insight provides a clear, step-by-step, color-coded
graphical representation of each Business Process Instance (BPI). This feature allows
you to identify processes that need intervention, repair, or authorization.

For example, e*Insight allows you to do the following operations:

Analyze the contents of an operation that failed to be processed

Modify (repair) that operation

Restart the failed activity within a BPI, taking into account the modified operation

Figure 71 shows an example of the e*Insight Main window in the Monitoring mode of
operation.

Figure 71 e*Insight Main Window (Monitoring Mode)
SeeBeyond eBusiness Integration Suite
Deployment Guide 173 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Testing, Transition to Production, and Maintenance Transition to Production
For more information on monitoring your system using e*Insight, see “e*Insight
Monitoring Mode” on page 181.

6.3.2 Export Operations
This section explains the process of exporting:

Business processes, using e*Insight

Trading partner profiles

Schemas

It is not necessary to perform these exports in the order shown in the previous list.
These elements can be exported in any convenient sequence.

To export a business process version from e*Insight

1 In the configuration mode of e*Insight Tree view, select the business process
version you want to export.

Note: Take care when migrating a business process from a lab environment not to export
the instance data. Otherwise, the lab’s test data can be imported into your
production host.

2 Right-click the business process version and click the Export Business Process
Version command on the pop-up menu. The following figure shows an example of
exporting a business process version.

Figure 72 Export Business Process Version

A dialog box appears (see Figure 73 on page 175), allowing you to export the
business process instance data, as well as the business process definition.

To export the business process definition only, ensure that the Export Business
Process Instances and Archive check boxes are not checked. The Export Business
Process dialog box also allows you to define the file name and path for the export
file.
SeeBeyond eBusiness Integration Suite
Deployment Guide 174 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Testing, Transition to Production, and Maintenance Transition to Production
Figure 73 Export Business Process Dialog Box

3 A command prompt window appears while export files are being created. When
the export is complete, a message box appears showing the name of the export file
(see the following figure).

Figure 74 Completed Export File

Exporting Trading Partner Profiles

To export the e*Xchange trading partner profiles, use the e*Xchange Repository
Manager export feature. Create an .exp file to import into the production host.

Exporting e*Gate Schemas

To export an e*Gate schema, type the following at the command prompt:

stcregutil.exe -rh registry -rs schema-name -un user-name
-up password -rt -usr -e file-name

Where:

registry is the name of the Registry Host

schema-name is the name of the schema you wish to export

user-name and password are valid a e*Gate username/password combination, and

file-name is the name of the ASCII text file to which the schema data is written.

The -rt and -usr parameters are used to export the resource table as well as the user
names. For more information on using stcregutil.exe, see the e*Gate Integrator System
Administration and Operations Guide.
SeeBeyond eBusiness Integration Suite
Deployment Guide 175 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Testing, Transition to Production, and Maintenance Transition to Production
Important: This method for moving an e*Gate schema assumes that at least one of the following
facts is true:

The default schema for the source and target Registry Hosts are identical.

The schema that is being moved relies upon no files that are stored in the default schema.
In other words, all the files that the schema requires are stored in the schema directory
rather than in the \default directory.

A schema can also be exported from within the e*Gate Schema Designer using the
Export Schema Definitions feature. For more information on the schema export feature,
see the e*Gate Integrator System Administration and Operations Guide.

6.3.3 Moving Files
Depending on the size and amount of the files created during the export, they can be
moved from the lab via floppy disk, tape, CD, or LAN connection.

Note: The archiving tool you use must be able to archive and restore files that have long
file names, that is, names longer than “8.3” restrictions allow. Archiving tools that
store files in 8.3 format may not restore the schema files properly to the destination
Registry Host.

The files to be moved are:

e*Insight: The .xml file created by the business process version export. By default,
the file name is the same as the business process name. For example, when
exporting a business process called “WesternAlliance,” a file called
WesternAlliance.xml is created, unless you defined a different name.

e*Xchange: The .exp file created by the e*Xchange Repository Manager export
feature.

e*Gate: The .zip file created by the e*Gate full schema export and containing the
schema definitions (.exp file) and associated Registry (and Sandbox) files. For
example, when exporting a schema, you need the .zip file created by the schema
export.

Note: Where necessary, take care to restore any files to the appropriate locations on the
production host computer.

See the e*Insight Business Process Manager User’s Guide, e*Xchange Partner Manager User’s
Guide, and e*Gate Integrator System Administration and Operations Guide for more
information file export and import.

6.3.4 Import Operations
Before importing the exported files to the production host computers, you must first
install all the application software. Install the e*Gate Registry Host, Participating Host,
add-ons, e*Insight, and e*Xchange on the production hosts exactly the way they were
installed on the lab computers.
SeeBeyond eBusiness Integration Suite
Deployment Guide 176 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Testing, Transition to Production, and Maintenance Transition to Production
Similarly, any third-party software (such as Oracle and the OBDC drivers) must be
installed as well. You must install all these items before any files from the lab hosts are
imported.

Importing Business Processes

To import a business process version to e*Insight

1 In the Configuration mode, on the File menu, click the Import command.

2 The Import Business Process dialog box appears (see the following figure).

Figure 75 Import Business Process Dialog Box

3 Click Browse.

The Open dialog box displays.

4 Locate the file you want to import and click OK.

5 Verify that the Import business process instances check box is unselected (in case
the instances were exported from the lab by accident).

6 Click OK.

The business process is added to the Tree view of the e*Insight GUI.

Importing Trading Partner Profiles

To import e*Xchange trading partner profiles, use the e*Xchange Repository Manager
import feature, and import the .exp file that was copied from the lab host. This is
described in “Export/Import Using e*Xchange” on page 178.

Importing e*Gate Schemas

To import the e*Gate schema and all associated files

1 Log on to the e*Gate Schema Designer.

Note: Using the Import Wizard GUI is not only the easiest way to import a schema, but it
also allows you to change the host, Control Broker, or IQ Manager name, as well as
change the port numbers.

2 Create a new, empty schema then give it the desired name.

3 Select the Components tab.
SeeBeyond eBusiness Integration Suite
Deployment Guide 177 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Testing, Transition to Production, and Maintenance Transition to Production
4 On the File menu, click the Import Definitions from File command.

The Import Wizard Welcome page appears (see Figure 76).

Figure 76 Import Wizard Welcome page

5 Follow the prompts and complete the procedures the wizards tell you to do.

6 Verify that you restored all files from the lab into the newly created schema
directory. Verify that the original directory structure from the lab environment has
been maintained.

For details on how to use this import feature, see the e*Gate Integrator System
Administration and Operations Guide.

6.3.5 Export/Import Using e*Xchange
You can use the Java-enabled e*Xchange Repository Manger feature to conveniently
handle importing, exporting, archiving, and de-archiving in this application. For
example, you can use it to export/import trading partner profiles. Figure 77 on
page 179 shows an example of this GUI feature.

Note: See the e*Xchange Partner Manager User’s Guide for details on how to use the
Repository Manager.
SeeBeyond eBusiness Integration Suite
Deployment Guide 178 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.3
Testing, Transition to Production, and Maintenance Transition to Production
Figure 77 e*Xchange Repository Manager Window

6.3.6 Running the Schema
Now the production hosts is ready to run. e*Insight, e*Xchange, and e*Gate have all
been installed. Any business processes, trading partner profiles, and schemas have all
been migrated from the lab hosts to the production environment. Now it is time to
activate the production system.

Switch the Control Broker On

It is common to start an e*Gate schema’s Control Broker from the command line using
stccb.exe in a lab environment. However, in the production environment, start the
Control Broker as a service (on Windows platforms). For detailed instructions on
starting the Control Broker as a service, see the e*Gate Integrator System Administration
and Operations Guide.

e*Insight/e*Xchange Oracle Database

Before running any schemas that use e*Insight and e*Xchange, ensure that your Oracle
database is up and running. With the Oracle database running, you can start the e*Gate
Control Broker. This action runs the schema that activates e*Insight and e*Xchange. See
the appropriate e*Insight and e*Xchange implementation guide for details.
SeeBeyond eBusiness Integration Suite
Deployment Guide 179 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Testing, Transition to Production, and Maintenance Post-Transition Maintenance
6.4 Post-Transition Maintenance
With your eBI Suite up and running, it is important to monitor the system’s
performance, check for errors, and make any needed changes. Figure 64 on page 163
shows the overall steps to take when changes are required. Such changes must be put
through the same high scrutiny as the original system design — from analysis to testing
to the eventual transition to production.

6.4.1 Monitoring System Activity
Monitoring system performance is a critical step in the long-term success of the system.
Routine checks help to establish long-term performance benchmarks. Such benchmarks
are helpful in identifying undesirable changes. If you don’t have a good feel for a
healthy system’s vital signs, you may have a harder time recognizing when your
system could need some attention.

Using the Schema Manager

You can use the Schema Manager GUI feature to view the status of the components in
an e*Gate schema. The Figure 78 on page 180 shows a schema and all of its running
components. Components that are running are displayed in their normal colors, but
components that are stopped appear in red.

Figure 78 Schema Manager Main Window

The Schema Manager can also be used to start and stop e*Gate components. Any Alerts
can be viewed and marked as resolved after the appropriate corrective action has been
taken.

Note: See the following guides for more information on how to use the Schema Manager
feature:
e*Gate User’s Guide for basic information, for examples, menu and toolbar
SeeBeyond eBusiness Integration Suite
Deployment Guide 180 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Testing, Transition to Production, and Maintenance Post-Transition Maintenance
operation
e*Gate Integrator Alert and Log File Reference Guide for how to interpret
Alerts and troubleshoot e*Gate

e*Insight Monitoring Mode

The e*Insight Monitoring mode displays the business process instances. The instances
can be viewed in the diagram, or list panes. The List pane (see Figure 79 on page 181)
displays a list of all business process instances. A List wizard makes it easy to configure
the view and layout in the List pane.

Figure 79 e*Insight Monitor—List View

To view a graphic representation of a business process instance

1 Select a specific business process instance in the List pane of the e*Insight Monitor
(see Figure 79).

List View
SeeBeyond eBusiness Integration Suite
Deployment Guide 181 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Testing, Transition to Production, and Maintenance Post-Transition Maintenance
A diagram of the business process instance appears (see Figure 80). The completed
business process Activities are displayed in green. Failed Activities are displayed in
red.

Figure 80 e*Insight Monitor—Diagram View

You can configure business processes to process failed instances manually or
automatically as follows:

Automatic: Failed instances in business processes configured as automatic are
rolled back through a series of “undo” Events. The undo logic is performed for the
failed activity and each of the upstream activities until the effects of the entire
business process instance have been reversed (undone).

Manual: Failed instances in business processes configured as manual are
suspended. They then wait for user interaction. The properties for the failed
instances can be viewed and the values edited (see the next figure). This feature

Workflow Diagram in
Modeling Canvas
SeeBeyond eBusiness Integration Suite
Deployment Guide 182 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Testing, Transition to Production, and Maintenance Post-Transition Maintenance
makes it possible to manually repair the failed instance so that it continues to be
processed by e*Insight.

Figure 81 Business Process Properties

e*Insight Analysis and Reporting Features

e*Insight provides GUI wizards for analyzing historical business processes to enable
process optimization over time. This tracking and measurement capability of business
process performance is also useful for demonstrating returns on investments for
eBusiness initiatives.

You can create a complete historical picture by tracking and storing all process
instances and their associated attributes across all the integrated systems, often
providing a reporting and analysis view that was previously unavailable to the
enterprise because of the lack of integrated data.

e*Insight’s reporting features allow you to view and track data values across business-
process instances. You can also use these features to analyze historical execution trends
and identify possible bottlenecks in the business process.

Report Wizard: e*Insight provides a Report Wizard that guides you through the report
creation process to create both Chart and Tabular views of your eBusiness process
information. You can also readily export information directly into a Microsoft Excel or
other spreadsheet to utilize analysis features such as pivot tables.

Using e*Insight in the e*Gate Environment

The e*Insight components run within the e*Gate environment and are made up of the
following major elements:

e*Gate Schemas: Logical grouping of integration components that implement the
configuration of your business processes.
SeeBeyond eBusiness Integration Suite
Deployment Guide 183 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Testing, Transition to Production, and Maintenance Post-Transition Maintenance
e*Insight Database: Oracle, SQL Server, or Sybase database of e*Insight’s
configuration, including the business-process templates and their run-time
instances; this database also serves as a data warehouse for the business-process
tracking and analysis.

e*Insight Engine: Implements and manages the information-process flows and
business rules; all business-process communications flow through the e*Insight
Engine for monitoring, management, and analysis.

e*Ways: Used to implement business-process Activities that perform actions
requiring communications with external systems; e*Insight automatically generates
the e*Ways needed to implement your business process.

For more information on implementing and using e*Insight with e*Gate, see the
e*Insight Business Process Manager Implementation Guide.

6.4.2 e*Xchange Message Tracking
The Message Tracking features in e*Xchange are used to drill down to specific
e*Xchange messages. These features are especially helpful in finding and resolving
failed messages.

Using Message Tracking

e*Xchange can help you track the messages for your company and a trading partner,
using the Microsoft Internet Explorer. Message Tracking helps you trace message trails
and track down possible errors.

To use this feature, first select a trading partner profile (see Figure 82).

Figure 82 e*Xchange Trading Partner Profile Selection
SeeBeyond eBusiness Integration Suite
Deployment Guide 184 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Testing, Transition to Production, and Maintenance Post-Transition Maintenance
Next select the desired message profile (see Figure 83).

Figure 83 e*Xchange Message Profile Selection

In the window shown previously, you can see that, for this company and the current
trading partner, the following messages are tracked:

Inbound Acknowledgments

Inbound Orders

Order/Response Message Example: The rest of this section uses Orders and Order
Responses as examples.

Using the Message Details window, you can see that if the company receives an order
message, a response is required, which later becomes an Outbound message. Figure 84
shows this window.

Figure 84 e*Xchange Message Details Window

For example, if you need to learn more about an inbound message, you can access the
following information:

Original message received by the company (see Figure 85) in the View Original
Message window
SeeBeyond eBusiness Integration Suite
Deployment Guide 185 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Testing, Transition to Production, and Maintenance Post-Transition Maintenance
Acknowledgement generated (see Figure 86 on page 186) in the View
Acknowledgement Message window

Figure 85 e*Xchange View Original Message Window, Inbound

Figure 86 e*Xchange Acknowledgement Message Window
SeeBeyond eBusiness Integration Suite
Deployment Guide 186 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Testing, Transition to Production, and Maintenance Post-Transition Maintenance
The information shown in the previous figures makes it easy to see all the information
relating to a given message.

If you want to look at any outbound messages for example, use the Message Profile
Selection window to change from inbound to outbound messages (see Figure 83 on
page 185).

Figure 87 below shows that the selected outbound message contains both
acknowledgements and order responses sent back to order requests as inbound
messages.

Figure 87 e*Xchange Message Details Window with Acknowledgements

Checking the View Original Message window again allows you to view the original
message as shown below.

Figure 88 e*Xchange View Original Message Window, Outbound
SeeBeyond eBusiness Integration Suite
Deployment Guide 187 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Testing, Transition to Production, and Maintenance Post-Transition Maintenance
If you want additional information on this outbound message, you can access the
following information:

Enveloped messages in the View Enveloped Message window (Figure 89)

Acknowledgement messages in the View Acknowledgement Messages window
(Figure 90 on page 189)

Extended attributes in the View Extended Attributes window (Figure 91 on
page 189)

Figure 89 e*Xchange View Enveloped Message Window
SeeBeyond eBusiness Integration Suite
Deployment Guide 188 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.4
Testing, Transition to Production, and Maintenance Post-Transition Maintenance
Figure 90 e*Xchange View Acknowledgement Message Window

Figure 91 e*Xchange View Extended Attributes Window
SeeBeyond eBusiness Integration Suite
Deployment Guide 189 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Testing, Transition to Production, and Maintenance Case Study Examples
Error Tracking

You can use the e*Xchange View Error Data window as a troubleshooting tool, to view
error details (see Figure 92) when any errors or problems occur with trading partner
messages (click the red Yes in the Message Details window to access this GUI).

Figure 92 e*Xchange View Error Data Window

6.4.3 Implementing Changes
After a period of time, you may have to make changes to the eBI Suite. Changes are
common as the needs of your end-users evolve and as additional external systems are
added.

Do not make changes to the system hastily. Handle changes using the same process
that was originally used to deploy your eBI Suite. Consider the change management
process illustrated in Figure 64 on page 163. Applying this same process of planning,
configuration, testing, migration, monitoring, and re-evaluation ensures a sensible
deployment.

See Appendix B for a sample QA report that addresses continuing system maintenance
and change issues.

6.5 Case Study Examples
The rest of this chapter provides the following examples of deploying the eBI Suite:
SeeBeyond eBusiness Integration Suite
Deployment Guide 190 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Testing, Transition to Production, and Maintenance Case Study Examples
Scenario: Uses e*Gate and e*Insight; see “Case Study 1: Web Order Scenario” on
page 191.

Scenario: Uses e*Gate, e*Insight, and e*Xchange; see “Case Study 2: Expanded
Web Order Scenario” on page 196.

Scenarios: Use e*Gate with Java-based features; see “Case Study 3: Tracking
Timecards and Payroll Scenario” on page 198 and “Case Study 4: Receiving and
Purchasing Scenario” on page 200.

For the rest of this chapter, we provide examples of the Pre-transition Testing,
Transition to Production, and Post-transition Maintenance phases of deployment. This
section uses and continues the case study examples from Chapter 5.

6.5.1 Case Study 1: Web Order Scenario
In Chapter 5, we created an eBI Suite by using e*Insight and e*Gate. This system is used
to process electronic orders placed via the company’s Web site. At this point, the system
has been designed, installed, and configured in the lab. The remaining steps are:

Conduct unit, integration, and acceptance testing

Export the entire lab system

Migrate the export files to the production environment

Import the configuration files in the production environment

Monitor the performance of the live system

Pre-Transition Testing

Before transitioning the system to the production environment, the user performs all
tests according to the test plan created during the design and development phase. The
three types of testing to be performed are:

Unit testing

Integration testing

Acceptance testing

Unit Testing

According to the test plan, the following components must be unit tested:

eX_Check_Inv (e*Way)

eX_from_Check_Inv.tsc (Collaboration Rules script)

eX_to_Check_Inv.tsc (Collaboration Rules script)

eX_Ship_Ord (e*Way)

eX_from_Ship_Ord.tsc (Collaboration Rules script)

eX_to_Ship_Ord.tsc (Collaboration Rules script)

eX_Out_of_Inv (e*Way)
SeeBeyond eBusiness Integration Suite
Deployment Guide 191 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Testing, Transition to Production, and Maintenance Case Study Examples
eX_from_Out_of_Inv.tsc (Collaboration Rules script)

eX_to_Out_of_Inv.tsc (Collaboration Rules script)

eX_Send_Status (e*Way)

eX_from_Send_Status.tsc (Collaboration Rules script)

eX_to_Send_Status.tsc (Collaboration Rules script)

Testing the Collaboration Rules Scripts: The Collaboration Rules scripts are tested
using the Monk Test Console. The best way to do this operation is to test each of the
Collaboration Rules scripts in the order in which their Collaborations would execute.
Start with the Collaboration that starts the business process—in this case the
START_BP Collaboration in the START_BP e*Way.

The Monk Test Console requires properly formatted input. The input can be a file or it
can be entered directly into the test console. By default, the output is displayed in the
window. However, you can also redirect the output to a log file. This is a handy way to
create the input file for the next Collaboration to be tested.

To test the script

1 Enter the name of the script you wish to test (WebOrderIn.tsc) in the Input Script
box (see the following figure).

Figure 93 Monk Test Console—Setup Tab
SeeBeyond eBusiness Integration Suite
Deployment Guide 192 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Testing, Transition to Production, and Maintenance Case Study Examples
2 Select Input Data Files and use the file selection controls to specify a text file to use
as input (see the following figure).

Figure 94 Monk Test Console—Input Tab

The input file mimics the data received from the Web server when an order is
received.

3 Select the Output check box, and click Run to test the script (see Figure 95 on
page 193).

Note: For more information about the Monk Test Console, refer to the e*Gate Integrator
User’s Guide.

Figure 95 Monk Test Console—Output Tab

The results of the transformation appear in the top text box. If the results are correct,
select the Log to file check box to redirect the output to a text file. This text file is the
input source for the next Collaboration you test.
SeeBeyond eBusiness Integration Suite
Deployment Guide 193 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Testing, Transition to Production, and Maintenance Case Study Examples
Repeat this process for each of the Collaborations in the schema. Take care to test all
conditional paths of the business process. For example, make sure you test both
possible results of the decision gate: Ship_Ord and Out_of_Inv.

Testing the e*Ways: The previous process only tested the Collaboration Rules scripts
for each of the Collaborations; it did not test the configuration files for the e*Ways. To
test the e*Ways’ configuration files, you must send actual Events through the e*Ways
and examine the output.

This can be done by substituting file e*Ways for some of the other components in the
schema. Figure 69 on page 167 and Figure 69 on page 167 illustrate how file e*Ways
can be used to test an e*Way. The inbound file e*Ways can use the output files created
by the Monk Test Console during the Collaboration Rules script testing.

Use the “Testing an inbound e*Way” procedure on page 168 and “Testing an outbound
e*Way” procedure on page 168 to test each of the e*Ways in the schema.

Integration Testing

Now we have tested the Collaboration Rules scripts and the configuration files for all
the components. However, we have not tested the logical routing between each of the
components. The logical routing can be verified through integration testing.

Integration testing is the process of running the entire system through all of its paces in
a lab environment. This can be challenging with complex systems. This emphasizes the
importance of creating a thorough test plan during the planning phase. Use your test
plan to test every possible condition that may arise in your system.

Acceptance Testing

After fully testing the system, the end-user who worked with you to create the test plan
returns to the lab and conducts acceptance testing. The user must test the system
according to the testing plan they helped to create. This may help avoid issues that can
arise after the system is transitioned to the production environment.

Transition to Production

After fully completing the testing phase, the next step is to migrate the system to our
production environment. In this scenario, the users must migrate the e*Insight Business
Process and e*Gate schema to the final production location. The focus of this phase is to
create a production system identical to the lab system.

To transition the system to production, use the following general steps:

Export the business process and e*Gate schema

Move the files to the production system

Import the business process and schema into the production servers

Exporting the Lab System

Exporting the Web Order lab system requires the e*Insight business process as well as
the e*Gate schema to be exported. These export files are copied over to the production
environment before going live.
SeeBeyond eBusiness Integration Suite
Deployment Guide 194 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Testing, Transition to Production, and Maintenance Case Study Examples
Exporting the Business Process: Use the e*Insight export feature to export the business
process to an .xml file. In this case, we don’t want to include the instance data; the
instance data includes all the test instances from the lab testing.

The .xml file is, by default, named after your business process (Web_Order.xml) and is
saved to the \eInsight directory.

Exporting the Schema: Click the Export Schema Definitions to File on the File menu
and use the export GUI feature in the e*Gate Schema Designer. See the e*Gate Integrator
System Administration and Operations Guide details.

Moving the Files

The business process export file (Web_Order.xml) and the e*Gate schema export file
(Web_Order.txt or Web_Order.exp) are both relatively small. They can be archived
and transferred using simple utilities such as Winzip and floppy diskettes. Take care to
note the location of the files on the lab server. The files must be restored to the same
locations on the production server.

The Registry files are larger — approximately 15 MB to 20 MB. Use the LAN connection
to transfer these files.

Importing the Configuration Files

The business process and schema have been exported and copied from the lab server.
The next step is to import these files into the production server.

Importing the Business Process: Use the e*Insight import feature to import the
business process file (\eInsight\Web_Order.xml) into e*Insight. Use the same
business process name as was used in the lab environment: Web_Order. Also, do not
select the Import business process instances option.

Importing the Schema: Next, you must import the e*Gate schema and all of its
associated files.

To import the schema

1 Click Import Definitions from File on the File menu.

The Import Wizard GUI appears.

Note: For information about importing e*Gate schemas, refer to the e*Gate Integrator
System Administration and Operations Guide.

2 Follow the easy steps provided by the wizard GUIs to import the schema and its
associated files.

3 Create a new directory for the schema files. Name the directory

\eGate\Server\registry\repository\Web_Order

4 Restore all the files from the lab into the newly-created directory. Take care to
maintain the original directory structure from the lab environment.

Post-Transition Maintenance

With the system up and running, it is important to monitor the system’s performance,
check for errors, and make any needed changes.
SeeBeyond eBusiness Integration Suite
Deployment Guide 195 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Testing, Transition to Production, and Maintenance Case Study Examples
Monitoring the Business Process

Use the e*Insight monitor mode to monitor the status of the business process instances.
The Detail view can be used to view the specific progress of a particular business
process instance (see “e*Insight Monitoring Mode” on page 181 for details).

Monitoring the Schema

Use the Schema Manager to view the status of the individual e*Gate components, such
as e*Ways, BOBs, IQ Managers, and IQs. Problems with a specific component can be
viewed in the Status tab (see “Schema Manager GUI” on page 170 and “Using the
Schema Manager” on page 180 for details).

Assessing Future Needs

As the use of the system evolves, changes may eventually be needed. New external
systems, new data requirements, and changes in policies can all lead to the need for
changes in the business process. Use the change management process illustrated in
Figure 64 on page 163 to properly process any changes to the system.

6.5.2 Case Study 2: Expanded Web Order Scenario
The second scenario involves a system using e*Insight, e*Xchange, and e*Gate. This
scenario takes the Web Order scenario from our previous case study and adds the
element of communicating with trading partners. In Chapter 5, we designed, installed,
and configured the system in the lab. The remaining steps are:

Conduct performance testing and validation testing

Export the entire lab system

Migrate the export files to the production environment

Import the configuration files in the production environment

Monitor the performance of the live system

This case study highlights the differences brought about by the introduction of
e*Xchange to the scenario.

Pre-Transition Testing

The pre-transition testing process for this scenario is similar to those in the previous
one. The introduction of e*Xchange has little impact on the testing methods used. The
Collaboration Rules scripts and e*Ways are put through the same unit testing
procedures as those used in the previous scenario.

The process of integration testing is slightly different, because data movement must be
tested as the e*Insight business process instance triggers an outgoing message to the
trading partner via e*Xchange.

Once the unit and system tests are complete, the end-user can be brought in to perform
the acceptance testing. The system is tested against the standards previously defined in
the testing plan.
SeeBeyond eBusiness Integration Suite
Deployment Guide 196 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Testing, Transition to Production, and Maintenance Case Study Examples
Transition to Production

The process of migrating the expanded Web Order system to the production
environment is similar to the previous scenario. The main difference is that the trading
partner profiles in e*Xchange are exported, copied, and imported to the production
environment.

Exporting the Lab System

The process of exporting the configuration files in this scenario is nearly identical to the
previous one. The additional steps for this scenario have to do with migrating the
trading partner profiles.

Exporting the business process: Follow the same procedure to export the e*Insight
business process to the .xml file as in the previous scenario (see “Exporting the Lab
System” on page 194).

Exporting the trading partner profiles: Use the e*Xchange GUI to export the
e*Xchange trading partner profiles to a .exp file. Take care to note the name and
location of the file.

Exporting the schema: Follow the same procedure to export the business process to an
export file as in the previous scenario (see “Exporting the Lab System” on page 194).

Moving the Files

With the addition of e*Xchange .exp file, the amount of data to be transferred from the
lab environment to the production server has grown to the point where the data must
be transferred via a LAN connection or with a mass storage device such as tape,
CD-ROM, or Zip drive.

The files to be transferred are:

e*Insight business process .xml file

e*Xchange trading partner profile .exp file

e*Gate full schema export .zip file

Verify the files are restored to the same path location as their original location on the
lab server.

Importing the Configuration Files

The process of exporting the configuration files in this scenario is very similar to the
previous one. Again, the main difference is in the importing of the e*Xchange trading
partner profiles.

Importing the business process: Follow the same procedure to import the .xml file as
in the previous scenario (see “Importing the Configuration Files” on page 195).

Importing the trading partner profiles: Use the e*Xchange GUI to import the .exp file
into e*Xchange.

Importing the schema: Follow the same procedure to import the schema export file as
in the previous scenario (see “Importing the Configuration Files” on page 195). Also
copy the Registry files into the proper location on the production server.
SeeBeyond eBusiness Integration Suite
Deployment Guide 197 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Testing, Transition to Production, and Maintenance Case Study Examples
Post-Transition Maintenance

With the system up and running, it is important to monitor the eBI Suite’s performance,
check for errors, and make any needed changes.

Monitoring the Business Process

Use the e*Insight monitor mode to monitor the status of the business process instances.
The Detail view can be used to view the specific progress of a particular business
process instance (see “e*Insight Monitoring Mode” on page 181 for details).

Monitoring e*Xchange Messages

Use the e*Xchange Message Tracking feature to view the status of e*Xchange messages.
Take note of any messages with errors and take the necessary corrective actions (see
“e*Xchange Message Tracking” on page 184 for details).

Monitoring the Schema

Use the Schema Manager to view the status of the individual e*Gate components, such
as e*Ways, BOBs, IQ Managers, and IQs. Problems with a specific component can be
viewed in the Status tab (see “Schema Manager GUI” on page 170 and “Using the
Schema Manager” on page 180 for details).

Assessing Future Needs

As the use of the system evolves, changes may eventually have to be made. New
external systems, new data requirements, and changes in policies can all lead to
modifications in the business process. Use the change management process illustrated
in Figure 64 on page 163 to correctly process any changes to the system.

6.5.3 Case Study 3: Tracking Timecards and Payroll Scenario
The third scenario involves a process using only e*Gate and is part of a larger system.
This scenario sets up a communication example where requests for information are
processed, and the results are forwarded to another external system for distribution. In
Chapter 5, we designed, installed, and configured the system in the lab. The remaining
steps are:

Conduct performance testing and validation testing

Export this modular operation/schema along with the entire lab system

Migrate the export files to the production environment

Import the configuration files in the production environment

Monitor the performance of this operation as a part of the entire live system

Keep in mind that the transition-to-production steps for this system are similar to those
in the previous case studies (1 and 2) except without e*Insight or e*Xchange plus with
the addition of an extra components, that is, a BOB.
SeeBeyond eBusiness Integration Suite
Deployment Guide 198 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.5
Testing, Transition to Production, and Maintenance Case Study Examples
Pre-transition Testing

The pre-transition testing process for this scenario is similar to the previous case
studies. In addition to the Collaborations and e*Ways, you must also set up the BOB
and the Java Business Rules (in the Java Collaboration within the BOB) through the
same unit testing procedures as those used in the previous scenario.

The process of integration testing is slightly different, because data movement is tested
only in e*Gate (and not with e*Insight or e*Xchange).

Once the unit tests and system tests are complete, the end-user can be brought in to
perform the acceptance testing. The system is tested against the standards that were
previously defined in the testing plan.

Transition to Production

The process of migrating the Tracking Timecards and Payroll example to the
production environment is similar to the previous two case studies. The main
difference is that the additional components (the Java Business Rules/Collaborations
and BOB) are exported, copied, and imported to the production environment.

Exporting the Lab System

The process of exporting the configuration files in this scenario is nearly identical to the
previous one. The extra steps involve the additional components.

Exporting the Schema: Follow the same procedure to export the schema file as in the
previous scenarios (see “Exporting the Lab System” on page 194).

Moving the Files

Again, the process of moving the files in this scenario is virtually identical to the
previous two. The amount of data to be transferred from the lab environment to the
production server may entail using a LAN connection or with a mass storage device
such as tape, CD-ROM, or Zip drive.

The files that to be transferred are:

e*Gate schema export file

e*Gate Registry directory and files:
\eGate\Server\Registry\Repository\Expanded_Web_Order

Take care to restore the files to the same path location as their original location on the
lab server. Keep in mind that if this operation is part of a larger deployment, the
Registry directory and files encompass the entire e*Gate environment.

Importing the Configuration Files

The process of exporting the configuration files in this scenario is very similar to the
previous two. Again, the main difference is in the importing of the extra components.

Importing the Schema: Follow the same procedure to import the schema export file as
in the previous scenarios (see “Importing the Configuration Files” on page 195). Also
copy the Registry files into the proper location on the production server.
SeeBeyond eBusiness Integration Suite
Deployment Guide 199 SeeBeyond Proprietary and Confidential

Chapter 6 Section 6.6
Testing, Transition to Production, and Maintenance Transition to Production: Summary
Post-Transition Maintenance

With the system up and running, it is important to monitor the e*Gate environment’s
performance, check for errors, and make any needed changes.

Monitoring the Schema

Use the Schema Manager to view the status of the individual e*Gate components such
as e*Ways, BOB, IQ Manager, and IQs. Problems with a specific component can be
viewed in the Status tab.

Assessing Future Needs

As the use of the system evolves, you may eventually have to make changes. New
external systems, new data requirements, and changes in policies can all lead to
modifications in the business process. Use the change management process illustrated
in Figure 64 on page 163 to correctly process any changes to the system.

6.5.4 Case Study 4: Receiving and Purchasing Scenario
Steps involved in this scenario are similar to the previous one, so little additional
commentary is necessary.

As the use of the system evolves, you may eventually have to make changes. New
external systems, new data requirements, and changes in policies can all lead to
modifications in the business process. Use the change management process illustrated
in Figure 64 on page 163 to correctly process any changes to the system.

6.6 Transition to Production: Summary
The proper use of a lab environment provides an excellent opportunity to verify and
refine the system configuration that was implemented earlier in the deployment
process. Focusing on the deployment plan ensures the smoothest possible eBI Suite
deployment.

By thoroughly unit testing and system testing the system in the lab, costly errors are
avoided and the end users are much more satisfied with the final results.

Going Forward

Once all the members of your management, your Deployment Project Team, and the
end-users agree that the system is up and running according to plan, you have
successfully finished the deployment of your eBI Suite.

If you have any questions about further system operation and maintenance, see the
appropriate documents listed in “Supporting Documents” on page 20 or contact
SeeBeyond.

Note: Chapter 7 “Frequently Asked Questions” gives you some helpful hints and tips for
best practices. Appendix B “Sample QA Report” also provides an example of the
Quality Assurance report completed following an eBI Suite deployment.
SeeBeyond eBusiness Integration Suite
Deployment Guide 200 SeeBeyond Proprietary and Confidential

Chapter 7

Frequently Asked Questions

This chapter lists some common questions that may be encountered during an eBI Suite
deployment, and the answers to those questions. Here you can find a reference with
good tips, helpful hints, and best practices.

Note: It is recommended that you read this chapter before beginning your deployment.

In This Chapter

“Introduction: Using These FAQs” on page 201

“Deployment FAQs” on page 202

“Setting Up eBI Suite FAQs” on page 202

“Performance Tuning FAQs” on page 204

“Hardware FAQs” on page 206

“General FAQs” on page 206

“Service FAQs” on page 208

7.1 Introduction: Using These FAQs
The purpose of this chapter is to make you aware of some of the questions to ask
yourself prior to deploying the eBI Suite. They are a combination of hints, tips, and
ways to obtain optimum performance from your system. This information can greatly
help you deploy your system in the most efficient manner, and, at the same time, aid
you in spotting problems to avoid.
SeeBeyond eBusiness Integration Suite
Deployment Guide 201 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Frequently Asked Questions Deployment FAQs
7.2 Deployment FAQs
This section answers commonly asked questions about eBI Suite deployment
procedures.

7.2.1 Setting Up eBI Suite FAQs
1 Do we need a deployment road map? If so, how detailed does the map need to

be?

Yes. Detailed, careful planning will result in a successful deployment of your
system. Include the following in your deployment road map:

Analysis of Requirements Phase

The analysis of requirements phase initiates the project, defines the integrated
system to be developed, creates top-level design documents, and produces a
formal project plan. During this phase:

Examine your business needs.

Define the properties for your system to meet those needs, such as your
performance requirements and system constraints.

Deployment Planning Phase

The deployment planning phase is the process of planning how the system will
be built; that is, determining the procedural and data components needed and
how these components will be assembled to form your integrated systems
solution. It includes:

The development of design documents and diagrams that describe:

What each interface component will do.

How it will be done.

How each interface component works within the design architecture.

System Design and Development Phase

The system design and development phase begins after your system design
plan has been worked out and management approved. It includes:

Filling in the details of the general system designs created during planning.

Coding and testing of interfaces and supporting architecture.

Integrating of the various components into your system and the testing of
these components.

Documenting of all interfaces and components.

Building and testing of your environment.

Creation of a test plan to validate your system.
SeeBeyond eBusiness Integration Suite
Deployment Guide 202 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Frequently Asked Questions Deployment FAQs
Pre-Transition Testing Phase

The pre-transition testing phase (also called the customer testing phase) uses
the requirements that were developed during the deployment planning phase,
along with the test plans that were developed during the system design and
development phase, to test the design and code against your requirements to
ensure compliance. Your staff will be involved in this testing.

Transition-to-Production Phase

The transition-to-production phase is when you move your interfaces into
production.

Post-Transition Maintenance Phase

The post-transition maintenance phase provides for fine-tuning your system
after the transition to production.

2 Should we chart how our eBI Suite flows?

Yes. When creating the diagrams of your eBI Suite, make sure you chart all your
incoming and outgoing processes as this gives you an idea of where your traffic is
heaviest.

Include the following charts:

External systems

Include the type of data these systems will generate or receive.

Include a communications diagram of everything that is outside of your eBI
Suite.

eBI Suite

Include the Collaborations that will transform the data in your external
systems chart.

Include a components diagram with e*Way Intelligent Adapters and shows
the direction in which data will flow within e*Gate and your eBI Suite.

As your system grows, the information you chart can be invaluable when deciding
how to divide it up over additional computers (Participating Hosts). For more
information on what to look for and make special note of in charting data flow, see
Chapter 3.

3 If we underestimate our total hardware needs for our eBI Suite, will this cause us
trouble later?

Hardware underestimation generally does not cause any problems. Because the eBI
Suite is easily expandable, it can offer a performance boost when you add new
processors and distribute your processes across your processors. In addition, you
can add one or more computers (Participating Hosts) at any time and distribute
your processes across them.

When planning hardware distribution, keep in mind that it is best to keep the
network traffic between computers to a minimum, because this precaution lowers
the chances of data-bottleneck problems between computers.
SeeBeyond eBusiness Integration Suite
Deployment Guide 203 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Frequently Asked Questions Deployment FAQs
4 If we do not sign up for e*Insight and e*Xchange, is it difficult to add them later?

The e*Insight and e*Xchange systems are layered on top of e*Gate, which means
that e*Gate must be installed first. There are not any problems with adding
e*Insight or e*Xchange to your system at a later date. Depending on your hardware
capacity and configuration, you may need additional computers and capacity to
make these additions.

5 What do I do if, later on, my total amount of data traffic grows? What if I want to
add additional e*Gate components?

Either case is not a problem. If, at any time you need to add additional e*Gate
components to your system, such as e*Ways or BOBs, you can do so easily, using
the Schema Designer. Keep in mind that any later redesign of your overall system
capacity and configuration could entail the addition of extra hardware capacity.
However, if you planned for later expansion during your deployment, such
additions probably will not be necessary.

6 How do I plan for redundancy and fail-over capabilities in e*Gate?

The e*Gate environment has the following fail-over features:

Distributed operation: This “normal” feature of e*Gate allows you to plan
built-in fail-over features as a part of your overall system design. See
“Distributed Architecture Considerations” on page 76 for details.

Registry Replication: See the e*Gate Integrator System Administration and
Operations Guide for details.

Use of the Alert Agent: See the e*Gate Integrator Alert Agent User’s Guide for
details.

General fail-over features: See Chapter 8 for details.

You can also run e*Gate release 5.0 SRE and later at multiple sites in cooperation
with a third-party high availability software. Specifically, e*Gate is completely
compatible with the Microsoft clustering software. See Appendix C for details.

7.2.2 Performance Tuning FAQs
1 What is a JMS IQ? Can it help with my system’s performance?

The Java Message Service (JMS) IQ is a new feature with e*Gate release 4.5 and
later. Yes, they can help improve overall system performance. They are designed to
store data better in memory and on the disks. These IQs generally run faster than
SeeBeyond Standard IQs. You can view and administer them using the
JMS Administrator GUI.

Note: For more information on the JMS IQ, see the SeeBeyond JMS Intelligent Queue
User’s Guide. For more information on the IQ Viewer, see the e*Gate Integrator
Intelligent Queue Services Reference Guide.

2 How many IQs can my IQ Manager handle?

We do not recommend putting more than three IQs under the same IQ Manager. If
the IQs are high-volume in nature, two is the maximum.
SeeBeyond eBusiness Integration Suite
Deployment Guide 204 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.2
Frequently Asked Questions Deployment FAQs
3 How would you recommend setting polling frequency?

Set the polling frequency of a route as close to real time as you want it. For example:
1 per sec or 1 per 15 min.

4 What is subscriber pooling?

Subscriber pooling is a method of distributing Events (packages of data) among
multiple e*Ways for efficient processing (see “IQ Subscriber Pooling” on page 92).

5 Is it possible to distribute components across multiple hosts?

Yes. If your Registry Host slows down because your system is running out of
memory or CPU cycles, you can distribute e*Gate components (e*Ways, BOBs,
IQ Managers, and Monitors) to a Participating Host or Hosts. Distribute the
components by moving them to the desired Participating Host in the Schema
Designer.

6 When setting up Event Type Definitions (ETDs), what are my parsing
considerations?

Parsing considerations can be memory intensive. Because of this, when you set up
your ETDs, you must decide what is more important: performance or
maintainability.

If performance is more desirable, define the simplest ETD possible for your
Collaboration to work. This design allows your Collaboration to perform quickly.
At the same time, the lack of detail will make your Collaboration hard to maintain.

7 Can I configure e*Gate to notify me when my disk is full?

Yes. The disk-usage thresholds mechanism in e*Gate sends out an alert notification
when disk usage on a selected drive or partition exceeds or drops below the set
maximum and minimum limits that are set in the Disk Threshold Settings dialog
box in the Schema Designer.

After the disk or partition threshold has been set, the setting can be reset. To do this,
on the Disk Threshold Settings dialog box, select a disk or partition to monitor and
click Change. When the Threshold Properties dialog box opens, reset the threshold
limits.

8 How can I configure e*Gate to notify me when an e*Way receives too many or too
few Events?

When the number of Events exceeds or drops below the set threshold limits and a
notification has been sent, e*Gate creates a script that either creates an additional
BOB to handle the overload or shuts down the BOB that is currently not needed.

9 Is there a way to configure e*Ways and BOBs to improve performance?

Yes. If there are certain times during the day when e*Ways and BOBs are not used,
you can configure them to shut down.

The e*Gate interactive monitors have three commands (reload, suspend, and
activate) that enable you to control when e*Ways and BOBs are active. The suspend
command takes a component “off-line” but does not end the executing process until
the component finishes processing any in-process Events, at which point it goes
into a “wait” state. The activate command brings the component back on-line. The
SeeBeyond eBusiness Integration Suite
Deployment Guide 205 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Frequently Asked Questions General FAQs
reload command only reloads e*Ways for which you must explicitly reload
configuration changes.

7.2.3 Hardware FAQs
1 Are there set hardware size limitations?

You must ask yourself, “Is my system adequate for my eBusiness requirements?”
To answer this, you must carefully plan your system prior to deploying it.

2 How much CPU speed, RAM, and disk space are needed to run the eBI Suite?

For Windows

1 GB of RAM

20 GB disk space

Pentium III-class 866 MHz CPU

For UNIX

1 GB of RAM

20 to 30 GB disk space

400 to 450 MHz CPU

3 What is the smallest size monitor I can use?

17-inch color monitor

Note: For complete details on determining your eBI Suite hardware requirements, see
Chapter 4.

7.3 General FAQs
1 Is it possible for me to generate an Event or an Alert?

Yes. An iq-put (Monk function) generates an Event by placing it on the output IQ,
but does not commit it to the IQ until the Monk transformation or identification
function returns successfully.

If the Monk function is operating under the Monk Collaboration service and the
transformation only generates a single Event, it does not have to make an explicit
call to iq-put to forward the Event to the queuing system.

Include this call if a Monk Collaboration generates more than one output Event.

The Monk Collaboration Service enqueues the returned string to the default Event
Type vector. The output Event Type and input Event Type must be from the list of
configured Event Types that the component is able to receive and produce. The
input Event Type is included to help maintain the history of the Event as it passes
through the system.
SeeBeyond eBusiness Integration Suite
Deployment Guide 206 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.3
Frequently Asked Questions General FAQs
All Events of lower priority level are dequeued before any Events of a higher
priority level. Priority zero Events are dequeued first. In typical usage, all calls to
this function will be made with the same priority level.

An Event-send issues a Monitoring Event from any Monk script, which in turn
generates an Alert.

Events can use the standard SeeBeyond Event codes, or a “user Event” code you
can use to communicate status conditions of user-created applications. For more
information on Monk functions, see the Monk Developer’s Reference. For more
information on monitoring e*Gate, see the e*Gate Integrator Alert and Log File
Reference Guide.

2 Is it possible to execute Java using e*Gate?

Yes. The Java Collaboration Service (JCS) enables you to develop external
Collaboration/Business Rules that will execute e*Gate business logic using Java.
The JMS IQ Manager provides a point of contact for one or more external
applications. In general, JCS is appropriate for internal (to e*Gate) Java processing
or synchronous processing with external applications.

e*Gate has GUI support for Java programming using the Java Collaboration Rules
Editor in the Schema Designer. You can also create Java-based ETDs using the Java
ETD Editor. For details, see the e*Gate Integrator User’s Guide.

Note: For detailed information on the operation of e*Gate’s Java-enabled features, see the
e*Gate Integrator Collaboration Services Reference Guide. The Java Generic
e*Way Extension Kit Developer’s Guide is also included on the installation
CD-ROM.

3 Can I call a Java application on a different computer? For example, if e*Gate is
running on Windows XP and the Java application is running on a UNIX
computer.

The Java entry points must run in an e*Gate component. However, they may invoke
a remote Java service, such as an EJB.

4 Is it possible to execute C language using e*Gate?

Yes. The C Collaboration Service (CCS) enables you to develop external
Collaboration/Business Rules that will execute e*Gate business logic using
C language. See the e*Gate Integrator Collaboration Services Reference Guide for details.

5 What is the advantage or disadvantage of using non-standard IQs, such as Oracle
IQ or MQSeries IQ?

There may be some compelling reasons to use the database IQs. For example, if
your organization has invested in monitoring, optimization, or recovery tools. In
general, however, SeeBeyond Standard IQs are the simplest while JMS IQs are the
fastest. See the e*Gate Integrator Intelligent Queue Services Reference Guide for details.

6 Why do some Java ETDs appear to be read-only?

When you create a new ETD using the ETD Builder Wizards, the ETD you create is
read-only (with rare exceptions). You can use read-only ETDs as source and
destination Event Types in Collaboration Rules. You can also use read-only ETDs as
SeeBeyond eBusiness Integration Suite
Deployment Guide 207 SeeBeyond Proprietary and Confidential

Chapter 7 Section 7.4
Frequently Asked Questions Service FAQs
external templates for a custom ETD, but you cannot make or save any changes to
the structure or elements of a read-only ETD. For more information on creating an
ETD with the ETD Builder wizards, see the e*Gate Integrator User’s Guide.

Note: In some cases, .xsc files in the default schema can only be opened in read-only mode.

7 How can I get data from an Access database to my application running on UNIX?

In order to access any database from a different platform using ODBC, you can use
an ODBC driver.

Because Access does not provide any communications layer, you cannot access it
remotely. You must run the ODBC e*Way on the server that runs Windows XP,
Windows 2000, or Windows 2003. If it runs Windows 95, you can share the drive
with the XP computer where your e*Way is running and access it from
Windows XP.

For more information on determining hardware requirements, see Chapter 4.

7.4 Service FAQs
1 Does SeeBeyond offer any services that could help me with my deployment?

Yes. SeeBeyond offers the following services:

Architecture Review Service
SeeBeyond's Architecture Review service provides you with a configuration
and deployment road map to help you achieve your company’s goals.
SeeBeyond's experienced consultants examine your architecture and network
design to assess suitability and determine the best use of SeeBeyond products
within this architecture.

Implementation Service
As a follow-up to the Architecture Review, SeeBeyond can provide consultants
to contribute to the successful deployment of your new or modified
architecture. SeeBeyond consultants participate as members of your
Deployment Project Team to guide the development process, assist in
SeeBeyond software configuration, and transfer SeeBeyond product
implementation skills to your staff. SeeBeyond project managers, system
analysts, and application developers work closely with your staff to accelerate
the project schedule and ensure success.

2 Can you tell me about your service team?

SeeBeyond's Professional Services division is composed of experienced, technically
savvy integration professionals. Our consultants excel in developing and deploying
eBusiness integration solutions, as well as supporting the strategic and tactical
goals of your organization.
SeeBeyond eBusiness Integration Suite
Deployment Guide 208 SeeBeyond Proprietary and Confidential

Chapter 8

Deploying for High Availability

This chapter describes how you can design eBI Suite for high availability in case of
failure.

In This Chapter

“High Availability in e*Gate: Overview” on page 209

“Product Features, e*Gate, and High Availability” on page 209

“Sample Scenarios” on page 212

8.1 High Availability in e*Gate: Overview
Implementing high availability in an e*Gate deployment involves eliminating single
points of failure in the network configuration. e*Gate’s architecture lends itself to a
distributed and redundant configuration that is fault tolerant, which addresses certain
high availability issues. However, high availability requires a complex network
solution that goes beyond the e*Gate application itself.

Note: For details about configuring the basic e*Gate environment, see the e*Gate
Integrator User’s Guide.

High availability solutions are a combination of hardware, network configuration, and
software to manage the high availability, as well as the applications that must be failed
over. This chapter clarifies the role e*Gate plays in a high availability configuration. It
also includes examples of e*Gate environments that take advantage of e*Gate’s built-in
high availability features.

For information about implementing Microsoft Windows 2000 clustering software,
refer to Appendix C.

8.2 Product Features, e*Gate, and High Availability
This section describes the e*Gate features that a high availability design must address.
SeeBeyond eBusiness Integration Suite
Deployment Guide 209 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Deploying for High Availability Product Features, e*Gate, and High Availability
8.2.1 The e*Gate Registry
The e*Gate Registry holds all the necessary information for each e*Gate component to
run. Each Participating Host (also called a node) authenticates with the Registry
through the schema name and logical Control Broker name. For these reasons, all
e*Gate Participating Hosts have the potential to run the e*Gate Control Broker and any
schema.

The key design criterion is to ensure that no configuration is tied to the files on any
given physical Participating Host. If you lose all systems except the Registry, you can
install new systems as Participating Hosts, name them the same as the original systems
(or change the host names configured in the e*Gate schema), and take on all the original
configurations by connecting to the Registry through the same logical component
names.

8.2.2 Registry Replication
The e*Gate Registry can be installed in a replicated configuration. A primary Registry
sends all schema changes to one or more secondary Registries. e*Gate Control Brokers
and other components can be assigned to more than one Registry. The components
attempt connection to the first Registry in their Registry list. If this attempt fails, the
component attempts the next Registry in the list. Assuming that the failing Registry
process is not on the same computer as the Participating Host, this feature eliminates
the Registry connection as a point of failure.

You can use the Registry Replication option independently or in conjunction with the
scenarios described in this chapter. The main purpose of Registry Replication is to
duplicate the Registry contents in additional locations and allow the other e*Gate
components — for example, Control Brokers, e*Way Intelligent Adapters, e*Way
Connections, Multi-Mode e*Ways, and IQ Managers — when necessary, to attempt to
connect to a list of Registry Hosts instead of a single Registry Host.

Note: Registry Replication does not allow Participating Hosts to implement high
availability, nor does it cause the replication (backup) of transaction data in the IQs.
For more information on Registry Replication, see the e*Gate Integrator System
Administration and Operations Guide.

8.2.3 Multiple Participating Hosts
Management of e*Gate components in a distributed network environment is dependent
upon the number of Participating Hosts and their configured resources. All
distributable components, including Control Brokers, have logical names that are
independent of physical location. This feature results in a configuration where publish-
and-subscribe information is dependent on logical names and independent of host
names.

Participating Hosts have one property that sets the host name, and it is this name that
e*Gate components use to find one another, along with the port number. Because of
this property, it is easy to reassign host names and ports, or move e*Gate components
to other computers without changing the basic e*Gate configuration.
SeeBeyond eBusiness Integration Suite
Deployment Guide 210 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.2
Deploying for High Availability Product Features, e*Gate, and High Availability
8.2.4 IQ Subscriber Pooling
A typical load-balancing scenario involves an Event (unit of work or data package)
being published as a shared Event Type. Then, multiple components can subscribe to
the same Event. If the first component is busy processing the Event when the next
Event is published, a peer component in the IQ subscriber pool can read the new Event
and process it in parallel.

On a single computer, replications can be scaled up, as necessary, until you reach the
memory resource limits and the CPU is fully utilized. In addition, the distributed
architecture of e*Gate allows subscriber pooling to continue across additional
computers, effectively removing such resource limitations.

Note: For more information on IQ subscriber pooling, see “IQ Subscriber Pooling” on
page 92. For additional details, see the e*Gate Integrator Intelligent Queue
Services Reference Guide.

8.2.5 System High Availability Methodology
In the event of a failure, unaffected e*Gate components continue to run independently
of the Control Broker of the host (node) suffering the failure. Therefore, consider the
following general maximum-availability design methodologies:

If an e*Gate host suffers a failure causing it to be inaccessible, enable all of its critical
processes to provide high availability to other hosts. If any non-critical processes
are involved, do not cause them to fail over. This design lessens the additional load
on remaining active hosts.

The system attempts to restart the e*Gate Registry (service or daemon) several
times after it goes down. After several unsuccessful restarts, you can then allow the
Registry to fail over to the Secondary Host.

The system attempts to restart an e*Gate Control Broker several times after it goes
down. If the Control Broker cannot be restarted, do not allow it to independently
fail over to a Secondary Host.

Note: If a down Control Broker cannot be restarted, the NotificationQueue directory in
the client directory of the Control Broker may need to be deleted.

Control Broker High Availability

If a down Control Broker is failed over, the child processes, such as e*Way Connections,
Multi-Mode e*Ways, and BOBs may be left running on the failed host. When the failed
host’s Control Broker is restarted, these processes are likely to be non-responsive. The
high availability policy for a Control Broker must include additional scripting to ensure
any child processes on the failed host are stopped before the Control Broker is
restarted.

Note: High availability software can define different policies for which conditions may
activate the feature, retry behavior on the services/daemons, and dependencies
between the services/daemons.
SeeBeyond eBusiness Integration Suite
Deployment Guide 211 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Deploying for High Availability Sample Scenarios
8.3 Sample Scenarios
These scenarios discuss e*Gate high availability configurations and their related
characteristics, as examples only. They are meant to show possible high availability
design methodologies and do not constitute recommendations or preferred practices.

8.3.1 e*Gate with Standby Host
The following figure shows an example of how to configure e*Gate hosts in a clustered
environment that provides a standby host.

Figure 96 e*Gate in Clustered Environment with Standby Host

Example Characteristics

This example has the following hardware and software configuration:

Two servers (Primary and Secondary Host)

An external storage array in a redundant (RAID 1-5) configuration to allow the
array to become available independently of the servers

Each server (5 GB of RAM) with the equivalent amount of swap

Each server with a local disk where the operating system (OS) is installed

Each server with two network interface cards (NICs) in a redundant configuration

Third-party high availability software (for example, HACMP, Verta, or Microsoft)
installed on the servers’ disks with the OS

The following sample software is installed on the external array:

e*Gate Integrator

e*Gate command scripts

This e*Gate environment has the following high availability characteristics:

 Volume A:
e*Gate Registry
eGate/server directories

e*Gate Participating Host:
eGate/client/directories

IQs
logs
bin
(and so on)

Primary
NIC - IPA1

e*Gate
processes:
stcregd,
stcinstd,

stccb , (and
so on)

Secondary
NIC - IPA2

Primary
NIC - IPB1

Secondary
NIC - IPB2

VolumeA VolumeBHostnameA HostnameB
SeeBeyond eBusiness Integration Suite
Deployment Guide 212 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Deploying for High Availability Sample Scenarios
The e*Gate Registry and e*Gate Participating Host processes are running on the
Primary Host.

All the e*Gate files, such as binaries, log files, and IQs, are located on the storage
array.

Two TCP/IP addresses and host names are assigned to the Primary Host.

Two TCP/IP addresses and host names are assigned to the Secondary (standby)
Host.

Figure 97 on page 213 shows the clustered environment with e*Gate failed over to the
Secondary Host.

Figure 97 e*Gate in Clustered Environment Failed-Over State

High Availability Processes

If the Primary Host goes down, the following high availability process takes place:

The Secondary (standby) Host computer takes over the primary IP address and
Primary Host name.

With two NICs, it is possible for both host names and both IP addresses to resolve
to the Secondary Host.

High Availability software calls scripts to start up e*Gate processes on the
Secondary Host. The e*Gate Registry starts up as the same Registry name. Because
the Primary Host name has been taken over, the Participating Host processes start
up with the same host-name parameters they had on the Primary Host.

Pre-existing processes on the Secondary Host can continue to run after maximum-
availability processes have been implemented. However, keep in mind that these
processes must share the memory and CPU with the failed-over processes. To avoid
this problem, you can fail over to a continually running (reserve) standby host or to

Primary
NIC - IPA1

Secondary
NIC - IPA2

e*Gate
processes:
stcregd,
stcinstd,

stccb (and
so on)

Primary
NIC - IPB1

Secondary
NIC - IPA1

VolumeA VolumeB
HostnameAHostnameB

 Volume A:
e*Gate Registry
eGate/server directories

e*Gate Participating Host:
eGate/client/directories

IQs
logs
bin
(and so on)
SeeBeyond eBusiness Integration Suite
Deployment Guide 213 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Deploying for High Availability Sample Scenarios
a test computer where the former processes can be cleared to make room for the
failed-over processes.

Pre-existing processes on the Secondary Host can continue to run after maximum-
availability processes are implemented. Therefore, it is important to remember that
these processes share the memory and CPU with the failed-over processes. To
avoid this situation you may want to consider the alternative of failing-over to a
continually running (reserve) standby host or to a test computer where the former
processes can be cleared to make room for the failed-over processes. Another
possibility is to run both the primary and secondary as peers that share the load at
all times, but are sized so that either one can handle the entire load. If one fails, the
other can just work harder.

If a test instance of e*Gate already exists on the Secondary Host, it may need to be
shut down and cleared before starting up the failed-over e*Gate processes. You can
ensure this precaution using high availability scripts.

8.3.2 Subscriber Pooling Without Server High Availability
The primary purpose of IQ subscriber pooling is to foster load balancing. Operations
that require processing transactions in sequence may have limitations that warn against
parallel processing with subscriber pooling. However, SeeBeyond provides techniques
and functions to ensure that the proper sequence in processing is achieved.

In some cases, these sequencing techniques and functions may negate the advantages
of subscriber pooling. For this reason, do not consider IQ subscriber pooling as a general-
purpose alternative to high availability.

The following figure shows a system where IQ subscriber pooling is used for general
parallel processing

Figure 98 Subscriber-Pooled Configuration for Parallel Processing

e*Way e*Way

BOB

e*Way e*Way

BOB

Subscriber Pooled IQs

IQ Mgr IQ Mgr

IQIQ
SeeBeyond eBusiness Integration Suite
Deployment Guide 214 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Deploying for High Availability Sample Scenarios
Example Characteristics

Hardware: This example has three host computers, and two of them are processors.
The BOBs and e*Ways process data on theses computers. One computer is for IQs only.

Configuration: The subscriber components are redundant and run from both the host
computers.

The IQs are configured as follows:

They are subscriber-pooled so their operation is load-balanced across software
processes and also across host computers.

The writes to the IQs must travel via the network, so there is some processing
overhead used in writing to IQs across two computers versus writing only to a local
hard disk.

High Availability Processes

Figure 99 shows how the IQ subscriber pooling configuration operates if one non-IQ
host computer fails.

Figure 99 Subscriber-Pooled Configuration with Non-IQ Failure

In this type of setup, the distributed configuration allows the remaining host computer
to continue processing, but now it handles the entire load. The throughput of Events
may decrease by a small amount, but none of the functionality is lost.

e*Way e*Way

BOB

e*Way e*Way

BOB

Subscriber Pooled IQs

IQ Mgr IQ Mgr

IQIQ
SeeBeyond eBusiness Integration Suite
Deployment Guide 215 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Deploying for High Availability Sample Scenarios
However, the following figure shows what happens if the host computer with the IQs
fails.

Figure 100 Subscriber-Pooled Configuration with IQ Failure

In this case, if the IQs are writing to a local hard disk, they become unavailable.

8.3.3 Subscriber Pooling With Partial High Availability
To avoid the problem shown in Figure 100 on page 216, you must combine some type
of additional high availability process with IQ subscriber pooling.

e*Way e*Way

BOB

e*Way e*Way

BOB

Subscriber Pooled IQs

IQ Mgr IQ Mgr

IQIQ
SeeBeyond eBusiness Integration Suite
Deployment Guide 216 SeeBeyond Proprietary and Confidential

Chapter 8 Section 8.3
Deploying for High Availability Sample Scenarios
The following figure shows the same subscriber-pooling configuration as the one
explained in the previous example, except that additional maximum-availability
characteristics have been designed in the e*Gate environment.

Figure 101 IQ Subscriber Pooling with High Availability

As shown in the previous figure, you can use IQ subscriber pooling for application-
level high availability. External storage and additional setup is required to remove all
single points of failure. In this scenario, subscriber pooling is used in conjunction with
an external hard disk array and high availability software. The additional software
ensures a smooth, immediate transition of processes to the external disks, in case high
availability is needed.

e*Way e*Way

BOB

IQ Mgr IQ Mgr

e*Way e*Way

BOB

Hostname B

Control
Broker

Disk Stack A
Control
Broker

IQIQ

Control
Broker

Primary
NIC - IPB1

Secondary
NIC - IPB2

Data Processing Layer
SeeBeyond eBusiness Integration Suite
Deployment Guide 217 SeeBeyond Proprietary and Confidential

Appendix A

Deployment Surveys

The following pages contain a sample survey. Surveys are excellent tools to gather
information from a variety of people and departments in your organization. Use this
information to help you take their needs and requirements into account during the
analysis and planning phases of the eBI Suite deployment (see Chapter 3).

You can copy these pages and use them, or you can use this survey as a guide to help
you make up questions of your own.

In This Chapter

“System-Specific Information” on page 219

“Operation and Performance” on page 222

“Personnel and Training” on page 225

“Business Planning” on page 226
SeeBeyond eBusiness Integration Suite
Deployment Guide 218 SeeBeyond Proprietary and Confidential

Appendix A Section A.1
Deployment Surveys System-Specific Information
A.1 System-Specific Information
What existing systems/applications do we need to connect?

How do we want to connect to these systems/applications?

What person (or department) is in charge of these existing systems/applications?
SeeBeyond eBusiness Integration Suite
Deployment Guide 219 SeeBeyond Proprietary and Confidential

Appendix A Section A.1
Deployment Surveys System-Specific Information
What are our data requirements in terms of the types of data we need to process?

What are our data requirements in terms of the processing speeds we need and the
volume of data we need to handle?

What are our current system/hardware limitations and constraints?
SeeBeyond eBusiness Integration Suite
Deployment Guide 220 SeeBeyond Proprietary and Confidential

Appendix A Section A.1
Deployment Surveys System-Specific Information
Is our existing equipment capable of scaling up to meet future demands?
SeeBeyond eBusiness Integration Suite
Deployment Guide 221 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Deployment Surveys Operation and Performance
A.2 Operation and Performance
What are our system performance requirements?

What are our internal security requirements?

Do we need to trade large amounts of data with other businesses?
SeeBeyond eBusiness Integration Suite
Deployment Guide 222 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Deployment Surveys Operation and Performance
What are our data security needs in transactions with other businesses?

Do we have all the necessary information regarding these trading partners’ data formats?

What are our error-handling and data validation requirements?
SeeBeyond eBusiness Integration Suite
Deployment Guide 223 SeeBeyond Proprietary and Confidential

Appendix A Section A.2
Deployment Surveys Operation and Performance
Can we bring all of our external systems online with eBI Suite at once, or do we need to
roll out in phases? Have these phases been identified?
SeeBeyond eBusiness Integration Suite
Deployment Guide 224 SeeBeyond Proprietary and Confidential

Appendix A Section A.3
Deployment Surveys Personnel and Training
A.3 Personnel and Training
Do we have personnel trained and able to deploy the eBI Suite and what are their names?

Do we have personnel trained and able to maintain the system after deployment and what
are their names?

Have we scheduled any necessary training classes with outside vendors?
SeeBeyond eBusiness Integration Suite
Deployment Guide 225 SeeBeyond Proprietary and Confidential

Appendix A Section A.4
Deployment Surveys Business Planning
A.4 Business Planning
What business processes do we want the eBI Suite to help us enable? Do we have any
documents that describe our business processes?

Do we currently have the facilities in place to house the equipment needed for a
Production environment? Have we allowed space for a Sandbox/lab environment?
SeeBeyond eBusiness Integration Suite
Deployment Guide 226 SeeBeyond Proprietary and Confidential

Appendix A Section A.4
Deployment Surveys Business Planning
Are these facilities scalable enough to grow as our systems grow?

What are our record-keeping and documentation needs for the deployment project?

What will our record-keeping and documentation needs be after deployment?

What important time/schedule and resource allocation issues do we need to take into
SeeBeyond eBusiness Integration Suite
Deployment Guide 227 SeeBeyond Proprietary and Confidential

Appendix A Section A.4
Deployment Surveys Business Planning
account in creating our Deployment Project Plan?

Are there additional issues we need to know and take into account not addressed earlier in
this questionnaire? Can you give us information on these issues?
SeeBeyond eBusiness Integration Suite
Deployment Guide 228 SeeBeyond Proprietary and Confidential

Appendix B

Sample QA Report

The following pages contain a sample Quality Assurance report. This type of QA report
would typically be created following an eBI Suite deployment. QA reports provide a
useful record of the deployment process and any remaining punch-list items for all
parties involved. Such a report can also be useful in the event of personnel changes
where details of the deployment need to be retrieved in the future.

This section is based on an actual QA report created following an eBI Suite
implementation. The company name has been changed.

Although this QA report documents an e*Gate deployment, the same principles would
apply to a deployment using the e*Insight Business Process Manager and the
e*Xchange Partner Manager.

Note: The actual company’s name in the report has been replaced by the fictional
“Diamond Financial.”

In This Chapter

“Introduction” on page 230

“Schema Components” on page 231

“Overall Design Objectives” on page 235

“Environments and Source Control” on page 238

“Run-Time Management” on page 238
SeeBeyond eBusiness Integration Suite
Deployment Guide 229 SeeBeyond Proprietary and Confidential

Appendix B Section B.1
Sample QA Report Introduction
B.1 Introduction

B.1.1 Background
The e*Gate environment provides the Event transformation and bridging services used
to integrate Diamond Financial’s “Diamond Sales Force” (DSF) client/server and
mainframe applications which utilize MSMQ and MQSeries messaging technologies.
The Application Architecture has identified many messaging transactions that will
employ e*Gate, spanning the Intuitive MSMQ client/server domain, Diamond client/
server systems, and Diamond's on-line and batch mainframe applications.

B.1.2 Objectives
This QA report was commissioned by Diamond Financial to examine the current
implementations and usage of e*Gate with the following objectives:

Recommend improvements for the ongoing development

Identify good features/practices to be promoted in future developments

B.1.3 Approach
Information on the current development project was collated from various sources for
analysis:

Two day on-site visit participating in a single development cycle from development
to Model Office test environments

One day on-site visit for detailed examination of the e*Gate environments,
configuration, structures and rules

Existing project documentation (detailed in “Document Inputs” on page 231)
SeeBeyond eBusiness Integration Suite
Deployment Guide 230 SeeBeyond Proprietary and Confidential

Appendix B Section B.2
Sample QA Report Schema Components
B.1.4 Document Inputs

B.2 Schema Components

B.2.1 General
Diamond's schema design employs a strong naming convention that identifies:

Type of component (e*Way, Event Type, Collaboration, and so on)

Source and target application system (DSF or LOB)

Host name/number (DSFGWST01 or DSFGWST02; 01 or 02)

Direction of data flow relative to e*Gate (IN or OUT)

Application function name or transaction ID (ALEADSALE, CLOASGTPOL, and so
on)

Other functional areas (ERROR, GENERIC, LOADBAL, and so on)

A well-defined naming convention has the following advantages:

Easy identification of an existing component's purpose within the schema

“Automatic” allocation of names to new components

Guaranteed uniqueness for component names

Clarification of relationships between components

Self-documentation at the outline level

Ease of maintenance

The naming convention has been applied consistently throughout the schema at the
component level. A few naming irregularities were noted at the sub-component level
(for example, the root node of the etdDSF_GENERIC_IN definition is named
LOBResponse_XML); however, these are not considered significant.

B.2.2 Event Types
Event Types fulfill a fundamental role within the e*Gate schema, driving the publish-
and-subscribe mechanism used to route data between components. An Event Type
name is effectively a label, which is attached to an Event when it is published to an IQ.
A subscribing component declares which Event Types it wants to receive, with the
option of taking Events from any source (anonymous subscription) or from specified

Document Version Date

e*Gate Detailed Configuration Design 1.1 05.25.2000

Detailed e*Gate Schema Design for Diamond Financial 1.0 06.06.2000
SeeBeyond eBusiness Integration Suite
Deployment Guide 231 SeeBeyond Proprietary and Confidential

Appendix B Section B.2
Sample QA Report Schema Components
sources (defined as source Collaborations and providing pre-defined, point-to-point
routing).

The Diamond schema utilizes the following algorithm for generating Event Type
names directly based on Event content. Inbound Event Types are named:

etLOB_<function name>_IN

etDSF_<transaction id>_IN

where the “function name” or “transaction id” is extracted from the meta-data fields at
the start of the Event. Such a formulaic approach to applying Event Type names has
two significant advantages:

Event Type identification scripts (crDSF_GENERIC_DSF.isc and
crLOB_GENERIC_LOB.isc) require few lines of code and are therefore highly
efficient.

The addition of new transactions/functions in future developments will not require
any amendment of the identification scripts.

B.2.3 ETDs
ETDs are classes of Event structures. They fall into two categories in the Diamond
schema:

Fixed-format Events for the back-end LOB applications

Delimited XML Events for the front-end DSF applications

Both categories include a set of meta-data fields that are used to pass identification,
routing, and error information.

LOB Structures

The fixed-format LOB structures have been manually built in the e*Gate ETD Editor
based on documented transaction specifications produced by the DSF project.
Abstracting common or repeating sub-structures into templates can optimize manually
built ETDs. The use of templates reduces future maintenance work as template
modifications are automatically promoted to parent structures.

Sub-structures that are common across different ETDs must be abstracted as global
templates (saved as separate .ssc files). Sub-structures that are repeated within a single
ETD must be abstracted as local templates (saved within the parent .ssc file).

The LOB structures utilize one global template, tLOB_META_DATA.ssc, which
defines the meta-data fields common across all LOB transactions. There is scope for
further abstraction of templates as several ETDs share common fields outside the set of
meta-data fields.

For example, the following ETDs share at least nine common fields:

etdLOB_CNONPENS01_IN.ssc

etdLOB_CNONPENS02_IN.ssc

etdLOB_CNONPENS03_IN.ssc
SeeBeyond eBusiness Integration Suite
Deployment Guide 232 SeeBeyond Proprietary and Confidential

Appendix B Section B.2
Sample QA Report Schema Components
etdLOB_CNONPENS04_IN.ssc

XML Structures

The XML structures have been automatically built with the e*Gate XML Converter tool
based on document type definitions (DTDs) produced by the DSF project. The
optimization of XML structures is achieved mainly through the generic features of the
XML definition. A common data format can be defined based on the optional elements
and element attributes of XML. Diamond's XML structures already exhibit strong
optimization, for example, the etdDSF_POLREQ_IN.ssc structure is associated with
15 Event Types.

B.2.4 Collaborations
The Diamond schema uses point-to-point subscriptions (Event Type and source
Collaboration defined) for all Collaborations. This mode provides a precise statement
of the Event flows that will be handled by the running schema.

For future developments it would be worth considering the alternative of anonymous
subscriptions (Event Type only defined). This mode is chiefly intended to provide an
independent relationship between publishers and subscribers that has the following
advantages:

Only one subscription needs to be defined for each Event Type (using source
<ANY>).

New publishers of an Event Type can be added to the schema without any
requirement to modify subscriber details.

The multiple subscriptions defined for the “PARSE_ERROR” Collaborations are a close
candidate for anonymous subscription. However, as the same Event Types are used on
both Participating Hosts, such a change would cause PARSE_ERROR Events to flow
between the hosts and duplicate the delivery of Events to the cloned e*Ways. This point
illustrates that careful consideration is required at an early stage in the schema design
before opting for anonymous subscription.

B.2.5 Collaboration Rules
The Collaboration Rules scripts for the Diamond schema exhibit good abstraction of
common functionality. This has produced transformation and identification scripts that
are simple to comprehend and easy to maintain, consisting mainly of COPY statements
and calls to abstracted functions.

Opportunities for further abstraction still exist. For example, the copying of meta-data
fields is repeated across all transformation scripts (19 copying LOB to DSF, 3 copying
DSF to LOB). A change in the meta-data field specification could potentially require
changes to 22 Collaboration Rules scripts. Abstracting these copying requirements to
two functions would greatly reduce the potential maintenance overhead.
SeeBeyond eBusiness Integration Suite
Deployment Guide 233 SeeBeyond Proprietary and Confidential

Appendix B Section B.2
Sample QA Report Schema Components
B.2.6 Monk Library
As already noted in the previous section, the Diamond schema shows good abstraction
of functions, which promotes code reusability and ease of maintenance. Functions have
been developed to convert currency amounts, date formats and MSMQ Event IDs.

Some tidying up of the function library is desirable. Monk functions are automatically
loaded from the monk_library directory and therefore duplicate copies of the function
files (for example, in monk_scripts\common) must be removed. Also functions and
function files prefixed with the developer's name must be removed before final testing
and going live.

B.2.7 e*Way Configurations
The Diamond schema consists of two cloned sets of five e*Ways, each set running on
one of the clone servers. Each set consists of:

Inbound MSMQ e*Way receiving DSF transaction requests

Outbound MSMQ e*Way sending DSF transaction replies and LOB application
errors

Outbound MSMQ e*Way sending DSF Event parse errors

Outbound MQSeries e*Way sending LOB transaction requests and LOB Event
parse errors

Inbound MQSeries e*Way receiving LOB transaction replies and LOB application
errors

The Event parse errors are generated within the confines of the running e*Gate schema.
For example, a DSF Event parse error can be generated by the inbound MSMQ e*Way
or the outbound MQSeries e*Way when processing a DSF transaction request.

This design is relatively easy to comprehend and certainly keeps both development
and run-time maintenance to a minimum by reducing the number of active e*Ways.
The design could be made slightly more transparent and symmetrical by adding a
separate outbound MQSeries e*Way to handle LOB Event parse errors.

Both types of e*Way, MSMQ and MQSeries, are installed with a set of standard version
functions that handle the requirements of interacting with the external system
(connection establishment and verification, getting and putting of Events,
acknowledgements and shutdown). Modifications to the standard functions have been
implemented for both types of e*Way in the Diamond schema.

The outbound MQSeries e*Way utilizes a modification to the Process Outgoing
Message Function which sets the MQ Event priority when putting an Event on the IQ
(function name: MQ-stdver-proc-outgoing-set-priority). Modifications were
previously recommended to implement the MQ WaitInterval option on MQGET and
the use of transactional Units of Work on both MQGET and MQPUT. These
recommendations were reported as implemented but not observed on the
“diam015054” workstation.

The MSMQ e*Ways utilize a modification to the External Connection Establishment
Function which extracts the IQ global unique identifier (GUID) from a flat file based on
SeeBeyond eBusiness Integration Suite
Deployment Guide 234 SeeBeyond Proprietary and Confidential

Appendix B Section B.3
Sample QA Report Overall Design Objectives
a logical IQ name (function name: MSMQ-stdver-conn-estab-get-guid-from-file; file
name: MSMQ-Queue-Name.init). As IQ GUIDs are reassigned whenever the IQs are
recreated, this enhancement allows the e*Ways to pick up the new GUIDs without
invoking the e*Way configuration tool. Note, however, that the logical IQ names no
longer reflect the names displayed in the MSMQ Explorer, which provides potential for
future confusion when updating the MSMQ-Queue-Name.init file.

The inbound MSMQ e*Way also utilizes the following modified functions:

MSMQ-stdver-data-exchg-get-id
Pre-pends the Event ID to the incoming Event.

MSMQ-stdver-neg-ack-errq
Puts an Event to the MSMQ error IQ when the incoming Event has failed to be
committed to the e*Gate IQ.

MSMQ-stdver-pos-ack-pers
Removes the MSMQ journal file after successfully committing to the e*Gate IQ.

The outbound MSMQ e*Way for error messages utilizes the following modified
function:

MSMQ-stdver-proc-outgoing-with-label
Puts the Event into the IQ using the prefixed error message as the Event label.

B.3 Overall Design Objectives

B.3.1 Performance
The Diamond schema employs a two-stage process flow aimed at achieving
performance efficiencies. The first stage, handled by the inbound e*Way, involves
identification of the incoming Event Type through parsing of the meta-data fields. The
second stage, handled by the outbound e*Way, involves function-specific
transformations based on the Event Type assigned in the preceding stage. This design
provides the following efficiencies:

The Event parsing load during the first stage is restricted to the meta-data portion
of the structure through the use of generic ETDs.

The allocation of each Event Type to a separate Collaboration in the second stage
gives multi-threading of the transformation processes (each outbound
Collaboration runs in a separate thread).

These performance efficiencies could be further improved by converting the inbound
and outbound e*Ways to Pass-Through services and introducing a third stage to handle
all parsing and transformations. The third stage would consist of a subscriber pool of
BOBs, subscribing to Events from the inbound e*Way and publishing Events for the
outbound e*Way. Each BOB in the subscriber pool would use the same Collaboration
Rules, which would do the following:
SeeBeyond eBusiness Integration Suite
Deployment Guide 235 SeeBeyond Proprietary and Confidential

Appendix B Section B.3
Sample QA Report Overall Design Objectives
Extract the function name or transaction id using a string search or very restricted
Event parse

Use the extracted string to generate the name of a translation function

Invoke the translation function to do a full Event parse and transformation (input =
inbound Event string; output = transformed Event string)

Publish the transformed Event as the appropriate Event Type

The translation functions would be the Collaboration Rules scripts that have already
been created with the Collaboration Rules Editor for the outbound e*Ways.

These changes would provide the following efficiencies:

Each Event restricted to a single parse during its lifetime

Minimum loading on inbound and outbound e*Ways as the Pass-Through service
has no parsing overhead

Multi-threading of parsing and transformation processing through the use of a
subscriber pool

The opportunity to dynamically respond to variable Event loads through the use of
Event Thresholds and Alert scripts to change the size of the subscriber pool

B.3.2 Error Handling
The Diamond schema makes good use of the exception-handling facility to trap and
process error conditions. User-specified exceptions are currently defined in the file,
define-exceptions.monk, for the following conditions:

amount-format
Thrown by currency format conversion function.

date-format
Thrown by date format conversion functions.

invalid-func-name
Thrown by get-Root-Node function (currently unused).

msgid-length
Thrown by MSMQ Event ID conversion function.

Every Collaboration Rules script utilizes a function-level try-catch statement to trap the
above exceptions and additionally the system-defined exception-mapping condition
(Event parsing failure). Trapped errors are handled by generating and publishing an
error message (Event Types: etDSF_PARSE_ERROR and etLOB_PARSE_ERROR).

Note:

The date format conversion functions are currently throwing the amount-format
exception. Change this to the date-format exception.

The invalid-func-name exception could be utilized by the identification scripts.
SeeBeyond eBusiness Integration Suite
Deployment Guide 236 SeeBeyond Proprietary and Confidential

Appendix B Section B.3
Sample QA Report Overall Design Objectives
B.3.3 Component Failure and System Fail-Safe
The current design for component failure is based on the launch of BOBs from an Alert
script for the purpose of rerouting Event loads between the two clone servers. If an
outbound e*Way fails, a BOB on the local server is launched to publish incoming
Events to the clone IQ on the remote server. If an inbound e*Way fails, a BOB on the
remote server is launched to subscribe to Events coming from the clone inbound e*Way
and publish them to the local IQ.

This design has the following problems:

It assumes that the external system which is served by the failing e*Way can also
reroute its Event load through the clone e*Way. Each e*Way connects with a unique
IQ-manager/IQ, for example:

ewLOB_IN_01 connects with PAST01T0/EGATE.PAST01T0.FROMLOB

ewLOB_IN_02 connects with PAST02T0/EGATE.PAST02T0.FROMLOB

It is not clear whether the back-end LOB application could swap between these IQs
when an e*Way fails:

Rerouting Events through a clone e*Way will increase the Event load on the e*Way
and degrade overall system performance.

Parse error Events are not currently included in the design.

A more resilient design would be to have both sets of cloned e*Ways defined for each
Participating Host with only one set active on each host under normal processing
conditions. For example:

cbDSFGWST01 has ewLOB_IN_01 which is auto-started and ewLOB_IN_02_B
which requires a manual start

cbDSFGWST02 has ewLOB_IN_02 which is auto-started and ewLOB_IN_01_B
which requires a manual start

When ewLOB_IN_01 fails on DSFGWST01, ewLOB_IN_01_B would be launched on
DSFGWST02 from an Alert script.

Effectively all components, e*Ways, BOBs, and IQ Managers, would be duplicated on
each server. Only one set is auto-started—components in the other set are started from
scripts when a failure condition is realized.

The current design makes no allowance for a system fail-safe; however, the previously
recommended design is compatible with a fail-safe strategy. In the case of a complete
server failure, all duplicate components on the clone server could be started to take
over processing. This design would require an additional component of a heartbeat
mechanism so that each server could detect the failure of the other clone server.

Finally, give some consideration to resilience of the Registry Host. From e*Gate
release 4.1.0 onward, a facility for distributing and replicating the Registry is provided.
This allows mirror copies of the master Registry to be created on multiple hosts with
automatic propagation of changes from the primary Registry Host to secondary
Registry Hosts. Participating Hosts can then load their configuration from any
available Registry Host.
SeeBeyond eBusiness Integration Suite
Deployment Guide 237 SeeBeyond Proprietary and Confidential

Appendix B Section B.4
Sample QA Report Environments and Source Control
B.4 Environments and Source Control
Diamond's working procedures exhibit carefully planned division into multiple
development and test (Model Office) environments. There are the following types of
development environments:

One using file-based e*Ways

One using IQ-based e*Ways

This setup provides an effective mechanism for separately testing Event identification/
transformation/routing and the interactions with external systems.

There are well-documented procedures for the migration of development phases from
the IQ-based development environment to the test environment. These procedures
cover the export and import of the schema data and file repository, and the registration
of Control Broker and Installer services. The particular procedures required for
migrations between the file-based and IQ-based environments are not documented.
Caution is necessary for this migration; transfer only a subset of the components. Do
not include file or IQ-specific components.

All development and testing work is conducted under the Administrator user, with
changes promoted to run time before testing. Use the Team Registry feature for future
development work, especially when more than one developer is concurrently making
changes. Each developer would use their own user Sandbox area for making and
testing changes before promoting the changes into the run time (shared) area. When
commencing work on an existing component, a developer would be advised if the
component was currently locked for update by another developer.

Source control of development phases is currently based on duplication of schemas in
the Model Office test environment. Whenever a phase is migrated to the Model Office,
it is imported as a new schema and repository. Schema names contain number suffixes
to indicate the progression of phases. This is a secure (although coarse-grained) method
of controlling source changes; however, there is a requirement to document the steps
required to downgrade a development environment to a previous phase saved in the
Model Office.

B.5 Run-Time Management
Specific monitoring and alerting requirements have as yet to be defined and
implemented. The following issues need to be considered:

Which error conditions require alert notification

Which notifications must be resolved automatically through the script channel and
which require manual intervention

Which notification channels are to be utilized (interactive monitors, email, pager,
fax, and so on)

What escalation levels are required
SeeBeyond eBusiness Integration Suite
Deployment Guide 238 SeeBeyond Proprietary and Confidential

Appendix B Section B.5
Sample QA Report Run-Time Management
What levels of logging or audit trail information are required

The Detailed Configuration Design document notes a possible requirement for
reporting status and error notifications to an external system management tool (the
DSF infrastructure). Handle this via the SNMP Agent notification channel, which is
configured in the following places:

During installation of the e*Gate SNMP Agent

By adding an SNMP Agent component in the schema at the host level

By modifying the SNMP Agent channel section in the Notification Routing script

Other run-time issues to be considered are:

What disk utilization thresholds are required on each Participating Host

What notification expiration and cleanup schedules are required

What start/stop schedules and restart intervals are required for e*Ways, IQ
Managers and BOBs

What Event thresholds are required for e*Ways and BOBs

What active and journaled Event Type expiration intervals are required

What IQ cleanup schedules are required
SeeBeyond eBusiness Integration Suite
Deployment Guide 239 SeeBeyond Proprietary and Confidential

Appendix C

Installing e*Gate on Windows 2000 Clusters

This appendix explains how to implement Microsoft Windows 2000 network clustering
software.

In This Chapter

“e*Gate with Microsoft Clustering” on page 240

“Implementation Procedures” on page 241

C.1 e*Gate with Microsoft Clustering
As discussed in Chapter 8, you can design an e*Gate environment to take advantage of
a third-party clustering or high availability applications. The examples in that chapter
show how this software can enhance IQ-related fail over. This appendix provides
additional detail about designing a simple failover environment with Microsoft
clustering software.

Note: e*Gate has not been fully tested for UNIX high availability products.

The following figure shows a sample e*Gate environment in a Windows 2000 cluster.

Figure 102 e*Gate Environment with Windows 2000 Clustering Software

Host 1 and host 2 are sharing a single secure hard disk. Use the following general steps
to set e*Gate up in this environment:

1 Set up the desired cluster of computers and verify that they are communicating and
working properly.

2 Install e*Gate on host 2, but installing to the shared hard disk. Verify that the hard
disk has a secure redundancy capability.

Host 1 Host 2

SCSI
Cable

SCSI
Cable

Shared Disk
Drive
SeeBeyond eBusiness Integration Suite
Deployment Guide 240 SeeBeyond Proprietary and Confidential

Appendix C Section C.2
Installing e*Gate on Windows 2000 Clusters Implementation Procedures
3 Install e*Gate on host 1 to the shared hard disk. Use the same directory locations.

4 Ensure that the OS registry entries are the same for both hosts.

5 Run e*Gate on host 1, using host 2 as a backup in case host 1 fails.

The rest of this appendix explains these steps in greater detail.

Note: Microsoft has a certification program for hardware vendors that supply a “cluster
system.” When you go to a vendor to buy computers for a cluster, the vendor has to
sell you two computers, set up in the specific way dictated by Microsoft. See the
appropriate Microsoft documentation or Web page for details.

C.2 Implementation Procedures
This section explains specific procedures necessary to implement Microsoft clustering.

C.2.1 General Considerations
Before implementing Microsoft clustering software in your e*Gate environment, verify
that:

The shared hard disk is used for installation, instead of local drives (see Figure 102
on page 240)

You edit the Windows registry entries (the rest of this section gives details)

When setting up the Participating Host inside the schema, you give it the cluster
name used in the Microsoft software, instead of the individual computer name

You set up the e*Gate services as resources for each cluster, using the Microsoft
Cluster Administrator feature

You begin the e*Gate installation on host 2 and use the Cluster Administrator to
activate the default group the “Cluster Group” on host 2

C.2.2 Procedure
This section provides step-by-step instructions for making the e*Gate environment
Microsoft clustering compliant

Note: This procedure explains e*Gate installation and configuration with Microsoft
clustering. For instructions on how to install and set up the Microsoft software, see
the appropriate Microsoft documentation.

To set up Microsoft Windows clustering

1 Begin the e*Gate installation on host 2 with installation disk No. 1 as shown in
Figure 102 on page 240.
SeeBeyond eBusiness Integration Suite
Deployment Guide 241 SeeBeyond Proprietary and Confidential

Appendix C Section C.2
Installing e*Gate on Windows 2000 Clusters Implementation Procedures
Use the same host names in the Microsoft software as you do in e*Gate. Using the
same host naming convention in both systems avoids confusion later on. In this
example, the naming convention is:

Host 1 = WIN2KCLUSTER1

Host 2 = WIN2KCLUSTER2

Note: You must start with host 2 (WIN2KCLUSTER2) to proceed with the e*Gate
installation on an active-passive cluster configuration because only one computer at
a time has access to the shared SCSI drive. This installation order gives host 2 access
to the shared hard disk. This hard disk is a resource in “Cluster Group.”

2 For the Registry Host, use the following options:

No Registry Replication

Destination folder: S:\eGate\Server

where drive S: stands for shared hard disk. This drive can have any letter
designation, as long as it is the shared drive.

Platforms: Windows 2000

3 For the Participating Host, use the following options:

Destination folder: S:\eGate\client

Host name: WIN2KCLUSTER2 (for this example); the Control Broker name
then becomes win2kcluster2_cb

Do not specify secondary Registry Hosts

Leave password path as default (S:\eGate\client)

Note: When installing, enter the user name “Administrator” and password “STC.”

4 In the Windows Control Panel Services, set all e*Gate services (stcregd, stcreginst,
stccb) to manual start instead of automatic (see Figure 103 on page 243).

For complete instructions on setting Windows Services properties, see the
appropriate Microsoft Windows 2000 documentation.
SeeBeyond eBusiness Integration Suite
Deployment Guide 242 SeeBeyond Proprietary and Confidential

Appendix C Section C.2
Installing e*Gate on Windows 2000 Clusters Implementation Procedures
Figure 103 Windows Control Panel Services

5 Reboot host 2.

Note: These settings cause the default cluster group to fail over to host 1. Once host 2 is
rebooted, you can use the Cluster Administrator to make “Cluster Group” active on
host 2 again.

6 Insert the e*Gate installation disk with the GUI.

Note: To ensure the correct disk order, for example, which disk contains the GUI, see the
e*Gate Integrator Installation Guide (Windows installation chapter).

7 Choose to install e*Gate Schema Designer and Schema Manager.

8 When prompted, answer “Yes” to install Exceed and use the destination
C:\EXCEED.

e*Gate GUI destination S:\eGate\client

e*Gate Registry Host name: WIN2KCLUSTER2 (for this example)

Install the SeeBeyond Editors and use the destination S:\eGate\client\bin (the
default)

9 Reboot host 2 again.

10 After this restart, when you log back on to host 2, the message “Preparing to install”
appears in a dialog box with the title “SeeBeyond Editors.” To continue, cancel this
and any additional related dialog boxes.

Note: These messages mean that host 2 has become passive and no longer has access to the
S drive after restarting. Windows does not like this condition and tries to install the

Change setting to Manual

Under Windows 2000, stcregd, stcreginst, and stccb run as services
SeeBeyond eBusiness Integration Suite
Deployment Guide 243 SeeBeyond Proprietary and Confidential

Appendix C Section C.2
Installing e*Gate on Windows 2000 Clusters Implementation Procedures
SeeBeyond Editors again. Canceling these dialog boxes and continuing does not
interfere with your installation.

11 Use the Cluster Administrator to move “Cluster Group” to host 1 (named
WIN2KCLUSTER1 in e*Gate and the Microsoft software).

12 Proceed with an identical e*Gate installation on host 1, following the previous steps
in this procedure, with the following exceptions:

In this example, use WIN2KCLUSTER1 for the host name (win2kcluster1_cb
for the Control Broker).

During the Registry Host installation, answer “Yes” to the .rdb file-related
questions.

13 Ensure that all .egate.store files point to the S: drive on the shared hard disk instead
of to the C: drive.

Once you have installed e*Gate on both systems, modify the Windows registry, also on
both systems.

To modify the Windows registry

1 Find the services key for “stcregd(cluster2)” on host 2 and “stcregd(cluster1)” on
host 1, at the following location:

HKEY_LOCAL_COMPUTER\SYSTEM\CurrentControlSet\Services
\stcregd(win2kcluster2)

2 Change both key names to “stcregd(clusterX).” This action allows the Cluster
Administrator to find the same service (now named identically) on both computers.

3 Change –ln parameter of the ImagePath value from “cluster1” to
“WIN2KCLUSTER” on both computers. The point of giving the hosts similar names
is to make the names simple and easy to change without confusion.

Next, you must make a few changes in the e*Gate Schema Designer GUI.

To modify the Schema Designer

1 Activate host 1 (WIN2KCLUSTER1 in this example), using the Cluster
Administrator.

2 Rename the WIN2KCLUSTER1 Participating Host to WIN2KCLUSTER. Also
rename the host 1 Control Broker to WIN2KCLUSTER_cb and the IQ Manager to
WIN2KCLUSTER_iqmgr.

3 Change the host 1 Participating Host network host name to WIN2KCLUSTER (see
Figure 104 on page 245).
SeeBeyond eBusiness Integration Suite
Deployment Guide 244 SeeBeyond Proprietary and Confidential

Appendix C Section C.2
Installing e*Gate on Windows 2000 Clusters Implementation Procedures
Figure 104 e*Gate Schema Designer with Modifications

Next, run the following two commands at the command line.

To run the commands

1 On both computers, run the following command:

stcinstd -rh WIN2KCLUSTER -rs schema-name -un Administrator
-up STC -ss

2 On both computers, run the following command:

stccb -rh WIN2KCLUSTER -rs schema-name -un Administrator -up STC
-ln WIN2KCLUSTER_cb -sm

Finally, you need to make some additional changes in the Microsoft clustering
software.

To modify the Cluster Administrator

1 Using the Cluster Administrator, add a new resource in the default group “Cluster
Group” called “e*Gate Registry Service.”

2 Specify all other resources in the group as dependencies.

3 Specify the name of the service for this group as “stcregd(ClusterX)”.

4 Add the resource in the Cluster Administrator for the WIN2KCLUSTER_cb
Control Broker.

5 Specify all other resources in the group as dependencies, including the e*Gate
Registry resource.

Note: Make sure that you set up the resources cluster IP address and cluster name as
dependencies, so these resources always start before e*Gate.
SeeBeyond eBusiness Integration Suite
Deployment Guide 245 SeeBeyond Proprietary and Confidential

Glossary

access control list (ACL)
In e*Gate, a security list that determines user access to schemas, components, features,
and operations in the system; in the e*Xchange Partner Manager, a list of information
associated with a trading partner profile component (company, trading partner, outer
envelope, or inner envelope) that specifies which users and user groups have
permission to access the components and what specific access rights they have (add,
edit, full control, or read).

action item
A task request that you can save in the e*Xchange Partner Manager database for
subsequent retrieval by you or another user. You can track the status of action items
and use them to create electronic reminder lists for yourself.

activity
An activity is an organizational unit for performing a specific function.

activity direction
Defines the Activity as Input, Output, or Input/Output.

Administrator
In e*Gate, a user with full access rights to the system; in e*Insight Business Process
Manager, a user with full access rights who sets up users in the e*Xchange
Administrator interface and has full rights within e*Insight. Administrators within
e*Xchange Partner Manager are also able to set up users and perform application setup
functions.

agent (Alert, SNMP)
A stand-alone application that monitors processes and resources and sends
Notifications to e*Gate users, informing them of system status (for example, when a
preset disk space level is exceeded).

application programming interface (API)
A set of protocols, routines, and tools for building software applications. The
e*Xchange Partner Manager API consists of a set of Monk functions that can be called
from custom validation Collaborations to interface with the database.

attribute
Attributes pass user-defined control information (programming arguments) to and
from the e*Insight Business Process Manager and its activities.
SeeBeyond eBusiness Integration Suite
Deployment Guide 246 SeeBeyond Proprietary and Confidential

Section
Glossary
B2B Protocol
The trading partner in e*Xchange profile component that you use to enter technical
information about the exchange of messages between you and your trading partner.
The type of eBusiness protocol you agree to use, such as ANSI X12, UN/EDIFACT,
RosettaNet, or BizTalk, is an example of a B2B Protocol characteristic.

Business Object Broker (BOB)
A BOB component is similar to an e*Way in the sense that it establishes connectivity
and is capable of data transformation. BOBs use Collaborations to route and transform
data within the e*Gate environment. They have the following properties:

They only communicate with IQs within e*Gate. They do not communicate with
external applications as e*Ways do.

They are optional by design. You can add them to an environment to remove some
load from your e*Ways, either to set up easily maintainable data processing or to
enable multiple internal processes.

business process instance (BPI)
A single instance of an executed Business Process Version. See business process
version.

business process version
A form or variant of the original business process model.

Business Rules pane
Use the Business Rules pane in the Java Collaboration Rules Editor to navigate and edit
the Java code of a Collaboration.

Business Rules Toolbar
Use the buttons on the Business Rules Toolbar in the Java Collaboration Rules Editor to
add corresponding Java statements to a Collaboration.

byte length
Length in bytes of the string or regular expression to be matched within an ETD. e*Gate
measures fixed-length data from byte 1.

byte offset
The beginning byte location of the string or regular expression to be verified within an
ETD, beginning at byte 0.

child node
Node that is below a given node within the same branch of the ETD tree. Child nodes
can inherit certain properties, such as delimiters, from their parent nodes.

code table
The mechanism used to customize values that appear in e*Xchange Partner Manager
drop-down lists.
SeeBeyond eBusiness Integration Suite
Deployment Guide 247 SeeBeyond Proprietary and Confidential

Section
Glossary
Collaboration
The component within an e*Way or BOB that performs data transformation and
routing. It is the business logic that is applied to an Event in the course of delivery from
a publisher to a subscriber. Collaboration components do the following functions:
Subscriber components receive Events of a known type while publisher components
distribute the transformed Events to a specified recipient. See also Collaboration Rule.

Collaboration Rules Editor
The GUI used to work with Collaboration Rules scripts in the Java and Monk
programming languages. See also Collaboration Rules script.

Collaboration-ID Rules Editor
The GUI used to create Collaboration Rules scripts in the Monk programming language
for e*Gate Version 3.6 only. See also Collaboration Rules script.

Collaboration Rule
The program logic that instructs a Collaboration how to execute the business logic
required to support e*Gate’s data transformation and routing. See also Collaboration
and Collaboration script.

Collaboration Rules script
A Collaboration script (program) written using the Collaboration Rules Editor feature.

Collaboration script
The data flow and transformation logic contained in and configured by an e*Gate
Collaboration and written as a program in any of the following programming
languages: Monk, Java, or C.

Collaboration Service
Libraries that provide the low-level facilities by which Collaborations execute
Collaboration Rules, for example, issuing system-specific terminate calls.

command line
A tool for monitoring and controlling e*Gate by entering application programming
interface (API) commands at a DOS or DOS-type prompt.

committing files
Takes them out of the run-time schema and places them in the Sandbox. See also,
Sandbox and run time.

Control Broker
An automatically generated e*Gate component that starts and monitors e*Ways and
BOBs. At least one Control Broker must be running on each host within a schema.

command line
A tool for monitoring and controlling e*Gate by entering application program interface
(API) commands at a DOS or DOS-type prompt.
SeeBeyond eBusiness Integration Suite
Deployment Guide 248 SeeBeyond Proprietary and Confidential

Section
Glossary
Company
An organization with which you conduct electronic business (eBusiness). A company
can consist of one or more trading partners. See also Trading partner.

delimiter
A special character assigned to mark the boundary of an Event node.

delimiter declaration field
In the HL7 standard, the location within an Event where a character is to be used as a
delimiter. Also refers to the ETD node boundary it marks.

destination
Pertaining to the primary output ETD within a Collaboration Rules component or
Collaboration Rules script.

e*Way Connection
An e*Way Connection is the encoding of the access information for one particular
external connection or SeeBeyond JMS IQ Manager. In terms of content, it is similar to an
e*Way configuration file, in defining enough information to be able to “login” or connect
to the particular system. However, unlike e*Way configuration files, there is no schedule
information. The idea is that the e*Way Connection will be information shared across
multiple interfaces.

e*Way Editor
The GUI used to configure e*Ways.

e*Way Intelligent Adapter
A component that provides a noninvasive point of contact between an e*Gate
environment and an external business application (often abbreviated as e*Way).
e*Ways establish connectivity with applications, using whatever communication
protocol is appropriate. e*Ways perform the following main functions: (1) receiving
unprocessed data from external components, transforming it into Events, and
forwarding it to other components within e*Gate via IQs; and (2) sending processed
data to external components (can also include data transformation).

e*Insight Business Process Manager (e*Insight)
An application within the eBI Suite that facilitates the automation of the business
process flow of eBusiness activities.

eBusiness protocol
An eBusiness protocol is a generally accepted standard for formatting and exchanging
electronic messages between trading partners. ANSI X12, UN/EDIFACT, RosettaNet,
and BizTalk are examples of eBusiness protocols.

e*Xchange Partner Manager (e*Xchange)
An application within the eBI Suite, that you use to set up and maintain trading partner
profiles and view processed messages. e*Xchange also processes inbound and
outbound messages according to certain eBusiness protocols and your validation
Collaborations.
SeeBeyond eBusiness Integration Suite
Deployment Guide 249 SeeBeyond Proprietary and Confidential

Section
Glossary
Error table
The mechanism used to define error messages that you can use with custom validation
Collaborations.

eSecurity Manager (eSM)
An add-on to e*Xchange that secures transmission of business-to-business exchanges
over public domains such as the Internet.

Schema Designer
The e*Gate GUI that allows you to create, configure, and modify all components of an
e*Gate environment.

Event
A unit package of data processed by the e*Gate environment. This data has a defined
structure, for example, a known number of fields with known characteristics and
delimiters. Events are classified by Event Type and exchanged within e*Gate as ETDs.

Event, delimited
A variable-length Event made up of nodes whose boundaries are marked by delimiters.

Event, fixed
An Event of prescribed length. Each node within a fixed ETD is identified by its length
and location within that ETD.

Event Linking and Sequencing (ELS)
Event Linking and Sequencing is a feature that allows for Events that arrive from
independent input streams to be delivered to subscribers as related units. Complex
Linking and Sequencing can be configured using the e*Gate 4.5 Java Collaboration
Rules Editor, so that n different input streams can be linked and sequenced according
to rules based on any combination of content or time-out rules.

Event, monitoring
An Event sent from one e*Gate component to another that describes an internal e*Gate
condition, such as “component up” or “component down.”

Event Type
A class of Events with common characteristics. An Event Type is also a logical name
entry in e*Gate that points to a single ETD.

Event Type Definition (ETD)
A programmatic representation of an Event Type that Collaboration Rules can use
when parsing, transforming, or routing data.

EDT Editor
The GUI used to configure ETDs in the Java and Monk programming languages;
abbreviated as ETD Editor. See also Event Type Definition.

ETD node
A segment of an ETD that is represented graphically as a node in an ETD tree in the
ETD Editor window, and represents a portion of an Event.
SeeBeyond eBusiness Integration Suite
Deployment Guide 250 SeeBeyond Proprietary and Confidential

Section
Glossary
EDT tree
The graphical or logical representation of the ETD and its hierarchy.

extended attribute
Information you can store at the company, trading partner, B2B protocol, and Message
Profile levels, as needed for your business. For companies and trading partners, you
can create extended attributes to store specific information about the company or
trading partner. For B2B protocol and Message Profile, the extended attributes are
specific to a particular eBusiness protocol. Characteristics of ANSI X12 Interchange,
Functional Group, and Transaction Set envelopes are examples of extended attributes
you need to enter if you exchange X12 messages with a trading partner. Contrast with
General attributes.

external system
A system that sends or receives data and is outside of the e*Gate environment.

general attributes
Basic information in e*Xchange that identifies companies and trading partners. For B2B
protocol and Message Profile, this includes the information you enter for a trading
partner profile that is necessary for the exchange of messages but is not specific to a
particular eBusiness protocol. The direction of a transmission or the password needed
to send messages to an FTP site are examples of general attributes. Contrast with
Extended attributes.

Guaranteed Exactly Once Delivery (GEOD)
Using XA, GEOD guarantees once and only once delivery. Guaranteed Exactly Once
Delivery refers to the usage of XA-compliant e*Gate and external components to ensure
the delivery occurs once regardless of failures.

GUI
Graphical User Interface. A type of computer interface that enables the user to perform
actions via the use of symbols, visual metaphors and pointing devices.

ignore
When a file from the run-time schema, which already carries an advisory lock, is
checked out. The advisory lock stays with the original user who checked out the file,
and does not transfer to the new user.

hash
Hashing is the transformation of a string of characters into a usually shorter, fixed-
length value that represents the original string. The hash is a mathematical summary of
the original message and is created by a hash function.

A cryptographically strong hash function has a number of requirements: It is easy to
compute, one-way, and collision-free. This means that it is computationally infeasible
to find a message that corresponds to a known hash, or to compose two messages
whose hash values are the same.
SeeBeyond eBusiness Integration Suite
Deployment Guide 251 SeeBeyond Proprietary and Confidential

Section
Glossary
The fixed-length hash value makes message authentication through the use of digital
signatures possible, because only a small number of bytes must be used in a
computationally expensive public key operation, rather than the entire message.

The most common cryptographic hash functions in use today are SHA-1 (the Secure
Hash Algorithm Standard) and MD5 (Message Digest #5).

implementation guide
A document, published for a particular electronic message standard by an industry
subcommittee, that describes the structure and content of a specific message type. You
can use the Validation Rules Builder to convert electronic versions of ANSI X12
implementation guides to validation Collaborations used by e*Xchange.

instance
A specific node within a series of repeating nodes.

Intelligent Queue (IQ)
A standard e*Gate component that manages the exchange of information between
components within the e*Gate environment, providing nonvolatile storage for data as it
passes from one component to another.

IQ Manager
A standard e*Gate component that reorganizes IQs, archives queue information upon
request to save disk space, and locks the queues when maintenance is performed.

IQ Service
A utility that provides the transport of components within IQs, handling the low-level
implementation of data exchange, such as system calls to initialize or reorganize a
database.

Java Message Service (JMS)
See SeeBeyond JMS for the e*Gate implementation of JMS.

log file
A text file that contains a record of all actions taken by an e*Way. Use log files to
troubleshoot any problems in the system and discover how to solve them.

message log
A record of inbound and outbound electronic transactions processed by the e*Xchange
Partner Manager. This is implemented as the message tracking facility e*Xchange.

Message Protocol
An Message Protocol definition is a set of parameters and other information you enter
about each electronic inner envelope you process with e*Xchange Partner Manager.
This definition associates the validation Collaborations that are needed to validate each
kind of message.

The version number of the eBusiness protocol that applies to the message and whether
the message will be transmitted interactively or in batch are examples of Message
Protocol characteristics.
SeeBeyond eBusiness Integration Suite
Deployment Guide 252 SeeBeyond Proprietary and Confidential

Section
Glossary
message tracking attribute
An attribute you can define to identify messages stored in the e*Xchange Partner
Manager database. Special message tracking extended attributes can be set up and
associated with a specific message type (protocol, version, and direction). Examples of
attributes that are set up at the message tracking attribute level are Process Instance ID
and Activity Instance ID for RosettaNet and FG and TS control numbers for X12.

Monitor
An executable e*Gate component that enables users to view messages that describe the
state of e*Gate internal components. Interactive monitors also enable users to send
commands to e*Gate components; non-interactive monitors only enable users to view
notifications.

monitoring Event
An Event, sent by one e*Gate component to another (usually to the Control Broker) that
describes occurrences within the e*Gate environment. Monitoring Events include error
messages, such as “component down” or “component lost;” status messages such as
“component up” or “contact re-established;” system performance messages, such as
“Event processing below preset threshold” or “disk space low;” and miscellaneous
messages such as scheduled timers, configuration changes, or “Event content of
interest.”

Monk
SeeBeyond’s Event-processing language.

Monk Test Console
A GUI test feature for testing Monk functions and Collaboration scripts before
introducing them into the run-time environment.

Navigator Tree
The tree-like graphical display in the Navigator/Components pane of the Schema
Designer window. This display shows the components of the e*Gate environment and
how they relate to each other in pictorial form using an icon to represent each
component.

node
See ETD node.

node set
A group of associated nodes that are order-independent, or that repeat.

non-repudiation
The inability of a sender to refute a message—that is, to claim at a later date that the
sender was not the originator of the message. This is implemented through the use of a
digital signature attached to the message. The signature can be used by the recipient to
prove that the sender positively wrote the message, and that its contents were not
tampered with after it was signed.
SeeBeyond eBusiness Integration Suite
Deployment Guide 253 SeeBeyond Proprietary and Confidential

Section
Glossary
The sender of a message can also obtain irrefutable proof of receipt of the original
message. Non-repudiation of receipt is implemented using an acknowledgment to the
sender. This acknowledgment contains the digital signature of the message, and is also
digitally signed by the receiver of the original message.

notification
A notification sent to the user by the e*Gate environment.

notification routing
The Collaboration Rules script that specifies how monitoring Events are translated into
notifications.

operator
An operator controls the logical flow of data-based decisions in the business process
model. An operator outputs specific information when specified input conditions are
met.

parent node
Node that is above a given node within the same branch of the ETD tree.

Participating Host
A client computer that supports an e*Gate environment, as opposed to the Registry
Host, which acts as a server to the Participating Host. See also, Registry Host.

Partner Manager Envelope Profile
A partner manager envelope profile is a set of default extended attribute values that
you define for a trading partner profile component (company, trading partner, outer
envelope, or inner envelope).

PKCS
An acronym for Public-Key Cryptography System. PKCS is a set of informal
intervendor standard protocols developed by RSA Security, the licensers of the RSA
public key cryptosystem, for making secure information exchange on the Internet
possible. The standards include RSA encryption, password-based encryption, extended
certificate syntax, and cryptographic message syntax for S/MIME, RSA’s proposed
standard for secure email.

PKI
A PKI (public key infrastructure) enables users of a basically unsecured public network
such as the Internet to securely and privately exchange data and money through the
use of a public and a private cryptographic key pair that is obtained and shared
through a trusted authority.

It is a networked system of certification authorities (CAs), registration authorities
(RAs), certificate management systems (CMSs), and X.500 directories (specialized
distributed databases). It enables two parties unknown to each other to exchange
sensitive information and money over an unsecured network.
SeeBeyond eBusiness Integration Suite
Deployment Guide 254 SeeBeyond Proprietary and Confidential

Section
Glossary
promoting files
Update the run-time schema to use the new file or files. If the file already exists in the
run-time schema, that file is replaced with the file from the Sandbox. Promoting a file
automatically removes it from the user’s Sandbox and, if the user has locked the file,
releases the lock. When you delete a file from the Sandbox without promoting it to the
run-time schema, you remove the file. If the file was locked, the lock is released.

public key encryption
Encryption using PKCS. See PKCS.

publish
See publish/subscribe.

publish/subscribe
Abbreviated as pub/sub; subscriber components retrieve Events. Publisher
components make Events available to other e*Gate components. See also
Collaboration.

Registry
The storage place (in a directory) for all e*Gate configuration details, including file
containment.

Registry Host
A computer that is running the e*Gate Registry daemon/service (stcregd.exe) and acts
as the e*Gate environment server; a system that provides Registry services to other
systems running e*Gate applications. See also, Participating Host.

Registry Service
The service that handles all requests for updates to the e*Gate registry and forwards
updated files to Participating Hosts (clients) as necessary.

regular expression
A pattern representing a set of strings to be matched.

removing files
Delete a file from the Sandbox without promoting it to the run-time schema. If the user
carried the advisory lock for the file, the lock is released.

Report List
A list of reports that can be generated by an e*Xchange Partner Manager user.

run time
The environment in the Registry shared by all users of that Registry. The run time
contains parameters that run for each instance of e*Gate unless the controlling user has
a parameter in his or her own Sandbox, in which case the Sandbox is overridden. The
run time is the production environment of a schema. See also, Team Registry.
SeeBeyond eBusiness Integration Suite
Deployment Guide 255 SeeBeyond Proprietary and Confidential

Section
Glossary
Sandbox
A user’s local development area. Each user has his own Sandbox. Files in a user’s
Sandbox are available for testing the functions in the file themselves, but they are
unavailable to the run-time schema. A user can test some parameters in the Sandbox
while insulating other users from these changes. See also, Team Registry.

schema
Includes files and associated stores created by e*Gate, which contain the parameters of
all the components that control, route, and transform data as it moves through e*Gate
in a predefined system configuration.

Schema Manager
A standard e*Gate component that provides graphical access to e*Gate environments
and e*Gate status information, state control, and troubleshooting log files and journals.

SeeBeyond JMS
e*Gate implementation of the Java Message Service (JMS) using IQ Managers, IQs, and a
special e*Way Connection.

sibling node
Node that is a child of the same parent node.

SEF
See Standard Exchange Format (SEF).

signature key
The key used to encode a message signature. The signature key might be the same as
the encryption key; but when two different keys are used for different purposes, this is
known as a dual-key system. See also key.

S/MIME
An acronym for Secure/Multipurpose Internet Mail Extensions; it is an Internet email
security standard that makes use of public key encryption.

source
Pertaining to the primary input Event or ETD within a Collaboration or Collaboration
script.

.ssc file
See Event Type Definition (ETD).

Standard Exchange Format (SEF)
The Standard Exchange Format (SEF) is a flat file representation of an EDI
implementation guideline. It is a standard that defines how data segments and data
elements are structured so that the message can be understood between trading
partners. It also includes validation rules, for example what are the valid values for a
data element, or conditions such as if Field A is present then Field B is required.
SeeBeyond eBusiness Integration Suite
Deployment Guide 256 SeeBeyond Proprietary and Confidential

Section
Glossary
The purpose of SEF is to put the EDI implementation guidelines in a file in computer
readable format so that translators can directly import the file and use the
implementation guidelines to translate or map the EDI file. The file can also be used as
a means to exchange the implementation guidelines between trading partners, and can
be posted on a public bulletin board or on the company's Web site in the Internet to
convey to the public the implementation guidelines used by the company.

The SEF format was developed by Foresight Corporation and is now in the public
domain. Programs that can directly import SEF files can save users considerable time in
developing new translations or maps.

subnode
A node that is connected through parent-child relationships to another node that is
higher in the ETD tree.

subnode set
A set of order-independent or repeating ETD nodes one level below the currently
selected node in the ETD tree.

subscribe
See publish/subscribe.

Team Registry
Allows multiple users to develop components of a single schema simultaneously by
compartmentalizing the e*Gate Registry into work-in-progress and run-time
environment areas, implemented by the Sandbox and run-time environments.

Trading Partner component
The trading partner profile component that you use to enter business information about
your trading partner. The name of the trading partner, which could be a subdivision of
a company, and the people you want to contact are examples of information you enter
for a trading partner component.

transaction set
In X12, each business grouping of data is called a transaction set. For example, a group
of benefit enrollments sent from a sponsor to a payer is considered a transaction set.
Each transaction set contains groups of logically related data in units called segments.
For example, the N4 segment conveys the city, state, ZIP code, and other geographic
information.

A transaction set contains multiple segments, so the addresses of the different parties,
for example, can be conveyed from one computer to the other. An analogy would be
that the transaction set is like a freight train; the segments are like the train’s cars, and
each segment can contain several data elements in the same way that a train car can
hold multiple crates.

Specifically, in X12, the transaction set is comprised of segments ST through SE.

.tsc file
A Collaboration Rules file. A .tsc file is a Monk translation sub-file.
SeeBeyond eBusiness Integration Suite
Deployment Guide 257 SeeBeyond Proprietary and Confidential

Section
Glossary
user group
User groups allow you to grant access permissions to a set of users with similar
processing needs without having to specify individual privileges for each user. For
example, the User Administrator can set up a group for users who need full access to a
specific trading partner profile, but who must not be able to view information about
any other profile.

The User Administrator assigns each user that meets this criterion to a particular user
group. Then, your e*Xchange Administrator (or another user who has been granted
appropriate privileges) grants access privileges to this user group so that all members
of the group can view and modify the desired information.

validation Collaboration
A Collaboration that you create to define the syntax and validate the content of
electronic business-to-business (B2B) messages. One validation Collaboration is
required for each type of electronic message to be processed by e*Xchange. You can use
the Validation Rules Builder to automatically generate a validation Collaboration for a
specific kind of X12 transaction, according to specific implementation guidelines.

Validation Rules Builder
An e*Xchange Partner Manager tool for converting electronic EDI implementation
guides into files that are compatible for use with e*Xchange. This conversion tool
accepts Standard Exchange Format (SEF) version 1.4 or 1.5 files and converts then into
e*Gate ETD and Collaboration Rules files.

value added network (VAN)
A private network provider that offers secure electronic data interchange (EDI) services
to companies. VANs often offer EDI translation, encryption, secure email, management
reporting, and other extra services for their customers.

XML
Extensible Markup Language. RosettaNet PIPs are written in XML. XML is different
from String in that XML messages can contain both content and information about the
content.
SeeBeyond eBusiness Integration Suite
Deployment Guide 258 SeeBeyond Proprietary and Confidential

Index
Index

A
acceptance testing 170
access control 28
acknowledgments

negative 30
positive 30

Alert Agent 26, 27, 170
Alerts 27, 206, 207
analysis and planning overview 38
analysis of needs cycle 46
analysis of requirements categories 41
Analysis of Requirements Phase definition 38
ANSI X12 35
Application Connectivity layer 30
application program interface (API) 27, 28, 29, 30, 31
application programming interface (API) 27
Approved Proposal 51, 52
architecture, e*Gate 23
automatic generation of Event Type Definitions 27
avoidance of data duplication 30

B
basing memory estimates 91
batching Events 110
best practices 18, 59, 73, 201
BOB operation 89
buffer size, e*Ways 31
business logic 27, 29, 31
Business Object Brokers (BOBs) 29, 32

improved performance 205
business process 32
business process management 32
business processes

exporting 173
importing 177

Business Rules and Data Processing layer 29

C
C Collaboration Service 207
C Language

executing 207
case studies 190–200

change management 53, 58, 162
charting eBI Suite flow 203
CIDX 35
clustering 84, 240–245

See Maximum Availability
Collaboration Editors 120
Collaboration Rules 29, 31, 233
Collaboration Rules Editors, SeeBeyond 26
Collaboration-ID Rules Editor 120
Collaborations 29, 233
component failure 237
components

BOB 86
distribute across multiple hosts 205
e*Way 86
IQ Managers 86

Components Editor 26
configuration files, testing e*Way 167
connectivity, e*Ways 30
Control Broker 28
Control layer 28
conventions, writing in document 18
CPU

estimating requirements 61
custom e*Ways 31
cXML message format 27

D
data duplication, avoidance of 30
data processing logic 27
data urgency considerations 99
database access e*Ways 31
databases 29, 31

IBM MQSeries 30
Oracle 30
Sybase 30

DB2 UDB 35
deployment

estimating CPU requirements 61
gathering information 39
overview of phases 39
planning steps 51

Deployment Checklist 52, 58
Deployment Planning Phase definition 38
Deployment Project Plan 53, 58, 59
Deployment Project Team 45, 52, 53, 58, 59
deployment road map

Analysis of Requirements Phase 202
Deployment Planning Phase 202
Post-transition Maintenance Phase 203
Pre-transition Testing Phase 203
System Design and Development Phase 202
transition-to-production phase 203
SeeBeyond eBusiness Integration Suite
Deployment Guide 259 SeeBeyond Proprietary and Confidential

Index
deployment survey
sample 218
sample questionnaire

business planning 226
operation and performance 222
personnel and training 225
system-specific information 219

Design and Development Team 52, 58
disk threshold settings 205
distributed systems introduction 76
document purpose and scope 17

E
e*Gate

architecture 23
execute using Java 207
overview 23

e*Gate Alert Agent 26, 170
e*Gate layers 24

Application Connectivity 30
Business Rules and Data Processing 29
Control 28
Intelligent Queuing 29
View 26

e*Gate schemas
exporting 175
importing 177

e*Gate SNMP Agent 26, 28, 170, 239
e*Insight

monitor mode 181
e*Insight analysis and reporting features 183
e*Insight and deployment Analysis and Planning
Phase 46
e*Insight Business Process Manager

adding the product 204
e*Insight Business Process Manager overview 32–34
e*Insight Engine Affinity 117
e*Insight Engines

adding 117
optimization 117

e*Insight implementation, overview 123–127
e*Insight Instance Caching 117
e*Insight, role in monitoring e*Gate 172
e*Insight, using with e*Gate 183
e*Way configurations 234
e*Way Editor 26, 27, 120
e*Way operation 87
e*Ways 29, 30, 31

buffer size 31
connectivity 30
custom 31
error logging 31
Generic e*Way Extension Kit 31

improve performance 205
reconnect criteria 30
resend criteria 30
SAP 31
scheduling 31
TCP/IP 32
timeout logic 30

e*Xchange
message tracking 184

e*Xchange and deployment Analysis and Planning
Phase 47
e*Xchange eBI Suite

PC memory requirements 206
e*Xchange implementation, overview 127–130
e*Xchange Partner Manager

adding the product 204
e*Xchange Partner Manager overview 34–35
e*Xpressway and deployment Analysis and
Planning Phase 49
e*Xpressway implementation, overview 131–133
e*Xpressway Integrator, overview 35
eBusiness Integration 47
EDIFACT 35
eliminating data transformations 98
Engine Affinity 117
environment and source control 238
error handling 236
error logging 31
ETD Editor 26, 27
ETDs 232

parsing considerations 205
read-only 208

EUC (Extended UNIX Code) 29
Event batching 110
Event Linking and Sequencing (ELS) 112
Event sequencing 111
Event serializing 111
Event Type Definition (ETD) Editors 120
Event Type Definition Editors, SeeBeyond 26
Event Type Definitions 27, 232

automatic generation 27
libraries 27

Event Types 206, 231
Events 206

mapping 29
parsing 92
setting threshold limits 205

event-send 207
example

expanded Web order scenario 139
background 139
business process 140
Collaborations 142
communication topology 139
SeeBeyond eBusiness Integration Suite
Deployment Guide 260 SeeBeyond Proprietary and Confidential

Index
Event Type Definitions 141
functional requirements 139
Monk function definitions 143

Purchasing and Receiving scenario
designing hardware topology 159

Receiving and Purchasing scenario 149
background 149
communication topology 150
component topology 151
functional requirements 150

tracking timecards and payroll scenario 144, 145,
148, 149

Web order scenario 133
background 133
business process 135
Collaborations 136
communication topology 134
component topology 135
Event Type Definitions 136
functional requirements 134
hardware topology 138

excessive Event parsing, avoiding 108
export operations 174–176
exporting

business processes 173
e*Gate schemas 175
Trading Partner Profiles 175

eXSchema, copying 130

F
failed messages, e*Xchange 184
fail-over in e*Gate

sample scenarios 240
FAQs 201

deployment 202
general 206
hardware 206
performance tuning 204
service 208

Functional Requirements Specification 54, 56, 58

G
gathering deployment information

introduction 39
research and interviews 40
surveys 40

Generic e*Way Extension Kit 31
Guaranteed Exactly Once Delivery (GEOD) 113

H
HA 79, 204, 240

See Maximum Availability
hardware

determining requirements 60
initial considerations 61
minimum requirements 61
size limitations 206

hardware requirements, summary
client machines 73
Registry and Participating Hosts 72

high availability 79, 204, 240
See Maximum Availability

HL7 message format 27

I
IBM MQSeries 30
implementation

copying the eXSchema 130
import operations 176–178

business processes 177
e*Gate schemas 177
Trading Partner Profiles 177

importing an e*Gate schema 177
inbound e*Ways, testing 168
installation, software and hardware 52
Instance Caching 117
integration testing 169
Intelligent Queues. See IQs
Intelligent Queuing layer 29
IQ Operation 89
IQ Services 29
iq-put 206
IQs 30

non-standard 207
on IQ Manager 204

J
Java 32

entry points 207
executing 207

Java Collaboration Service 207
JMS Intelligent Queue 204

K
Kanji data 29

L
load balancing 105
SeeBeyond eBusiness Integration Suite
Deployment Guide 261 SeeBeyond Proprietary and Confidential

Index
log files 170
logging 84
logging errors 31, 170

M
maintainability and performance 205
mapping Events 29
maximum availability 76, 79–??, 204, 209–217, 240

See Clustering
general features 79
overview 209
product features 209

IQ subscriber pooling 211
methodology 211
multiple Participating Hosts 210
Registry 210
Registry Replication 210

sample scenarios 212
e*Gate with standby node 212
IQ subscriber pooling with partial fail-over

216
IQ subscriber pooling without server cluster-

ing 214
memory swapping 90
message formats

cXML 27
HL7 27
SWIFT 27
UN/EDIFACT 27
X12 27

message tracking, e*Xchange 184
methodology example types 133, 190
methodology, deployment

basic steps 85
configuring components 86
hardware and network connections 86
identifying external systems 86
introduction 84
performance considerations 86

distributing computer hosts 95
event parsing 92
hardware 94
management requirements 95
memory allocation 90
parsing 92
performance bottleneck 92
subscriber pooling 92–94
summary 95
swapping 90
virtual memory 90

sample topologies 84
topology definition 84

elements 84

Microsoft Windows 2000 network clustering 240–
245

See Maximum Availability
migration tools 172
migration. See transition to production
monitor

recommended minimum size 206
monitor mode, e*Insight 181
Monitoring Events, standard 29
Monk 31, 32
Monk library 234
Monk Test Console 165–166
MQSeries 30
MS SQL Server 35
MSMQ-stdver-data-exchg-get-id 235
MSMQ-stdver-neg-ack-errq 235
MSMQ-stdver-pos-ack-pers 235
MSMQ-stdver-proc-outgoing-with-label 235
multi-source transformations 101

N
negative acknowledgments 30
Network View 26

O
ODBC 208
optimization, system

determining plan 104
Event parsing 108
introduction 104
IQ performance 106
using hardware 116
using Monk 113

Oracle 30, 35
outbound e*Ways, testing 168

P
parallel data threads 105
parsing Events 92
Pass Through Service 87
performance 235
performance and maintainability 205
performance testing 169
planning deployment

determining when objectives are met 58
identifying and scheduling tasks 52

deployment documents 53
deployment initiation 52

overview of steps 51, 59
setting up overall objectives 51
SeeBeyond eBusiness Integration Suite
Deployment Guide 262 SeeBeyond Proprietary and Confidential

Index
polling frequency 205
positive acknowledgments 30
processes

distributing across processors 203
distributing across servers 203

product architecture, e*Gate 23–24
Professional Services Department, SeeBeyond 40, 51
project manager 52, 53
pub/sub 27, 30
Purchasing and Receiving scenario

designing hardware topology 159

Q
QA report

sample 229
approach 230
background 230
document inputs 231
environment and source control 238
objectives 230
overall design objectives 235

component failure 237
error handling 236
performance 235
system fail-safe 237

run-time management 238
schema components 231

Collaboration Rules 233
Collaborations 233
e*Way configurations 234
ETDs 232
Event Types 231
Monk library 234

why use 229

R
read-only 208
Receiving and Purchasing scenario

background 149
communication topology 150
component topology 151
functional requirements 150
overview 149

reconnect criteria, e*Ways 30
Registry 28

run-time 28
Sandbox 28

Registry Service 28
registry utility, SeeBeyond. See stcregutil
Repository Manager, e*Xchange 178
requirements, analyzing for deployment

business planning needs 45

introduction 40
operation and performance needs 42
personnel and training needs 44
system-specific needs 41

resend criteria, e*Ways 30
RosettaNet 35
run-time environment 28
run-time management 238

S
Sandbox 28
SAP e*Ways 31
SAP R/3 systems 31
scaling, examples 78
scheduling, e*Ways 31
schema 26, 28
Schema Designer 26

Editor 26
Navigator 26

Schema Manager 26, 27, 170, 180
commands

activate 205
reload 205
suspend 205

Schema Manager GUI 170
schema, copying 130
schema, running 179
SeeBeyond Collaboration Rules Editor 27, 29
SeeBeyond eBI Suite

charting flow 203
hardware needs 203
introduction 22
multi-threaded 203

SeeBeyond JMS IQ Manager and Service 102, 113
SeeBeyond services

Architecture Review Service 208
Implementation Service 208
service team 208

SeeBeyond Web site
additional information 21
e*Ways 32

sequencing Events 111
serializing Events 111
setting up users, roles, and privileges

example, supply chain scenario 121
overview 121
role-based security 121

SJIS (Shift-Japanese Industrial Standard) 29
SNMP Agent 26, 28, 170, 239
software systems, common view 76
speed testing 169
SQL 31
SQL Server 35
SeeBeyond eBusiness Integration Suite
Deployment Guide 263 SeeBeyond Proprietary and Confidential

Index
standard system events 29
starting deployment 36
stccmd 26, 28
stcregutil 172, 175
storage area network considerations 84
stress testing 169
subscriber pooling 92–94, 205
supporting documents 20
SWIFT message format 27
Sybase 30, 35
system architecture, e*Gate 23–24
system basic architecture 78
system configuration 28
system design

introduction 74
methodology 75

system design topology
accommodating external system constraints 102
BOBs 97
business organization 103
e*Ways 96
IQs 101
overview 96

system development
methodology 76

system development overview
e*Gate GUIs 120
introduction 119
setup steps 120

system fail-safe 237
system model/diagram 55
system requirements

e*Insight 70
e*Xchange 70
e*Xpressway 71

system testing 169

T
TCP/IP e*Way 32
Team Registry 28
Technical Requirements Specification 56, 58
test plan 163
Test Plan Requirements Specification 57, 58
testing 163–171

acceptance testing 170
configuration files, e*Way 167
inbound e*Ways 168
integration testing 169
Monk Test Console 165–166
outbound e*Ways 168
performance testing 169
speed testing 169
stress testing 169

system testing 169
test plan 163
unit testing 164

Testing Team 57
timeout logic, e*Ways 30
tracking timecards and payroll scenario

adding the Collaborations 149
adding the e*Ways 149
adding the IQs 149
background and functional requirements 145
creating Collaboration Rules and Java

Collaboration Rules classes 148
creating Event Types and Java ETDs 148
designing communication topology 145
designing hardware topology 149
overview 144

trading partner profile 175, 179
Trading Partner Profiles

exporting 175
importing 177

transition to production 172–179
troubleshooting 170

U
UDB 35
UN/EDIFACT 35
UN/EDIFACT message format 27
Unicode 29
unit testing 164
Universal Database 35

V
View layer 26
volume management 84

W
Web order scenario 133

background 133
Collaborations 136
communication topology 134
component topology 135
Event Type Definitions 136
functional requirements 134
hardware topology 138

X
X12 35
X12 message format 27
XML Builder tool 27
SeeBeyond eBusiness Integration Suite
Deployment Guide 264 SeeBeyond Proprietary and Confidential

	SeeBeyond eBusiness Integration Suite Deployment Guide
	Contents
	List of Figures
	List of Tables
	Introduction
	1.1 About This Deployment Guide
	1.2 Contents of This Guide
	1.3 Writing Conventions
	1.4 Supporting Documents
	1.5 SeeBeyond Web Site

	Overview of the eBI Suite
	2.1 Introduction: The eBI Suite
	2.2 About e*Gate
	2.2.1 Architectural Overview
	2.2.2 View Layer
	Schema Designer
	e*Gate Editors
	Schema Manager
	e*Gate Alert Agent
	e*Gate SNMP Agent
	Command Line’s stccmd

	2.2.3 Control Layer
	Registry
	Control Brokers

	2.2.4 Business Rules and Data Processing Layer
	Collaborations
	Unicode Support

	2.2.5 Intelligent Queuing Layer
	IQs

	2.2.6 Application Connectivity Layer
	e*Way Component Operation
	BOBs

	2.3 About e*Insight
	2.3.1 Managing Business Processes
	2.3.2 Ensuring Process Integrity
	2.3.3 Benefits to You
	2.3.4 The e*Insight Schema

	2.4 About e*Xchange
	2.4.1 Exchanging Partner Information
	2.4.2 e*Xchange Features

	2.5 About e*Xpressway
	2.5.1 e*Xpressway Integrator Server
	2.5.2 e*Xpressway Integrator OnRamp
	2.5.3 Hosting e*Xpressway Integrator

	2.6 Deployment: Getting Started

	Analysis and Planning
	3.1 Introduction: Analysis and Planning
	3.2 Gathering Information
	3.2.1 Research and Interviews
	3.2.2 Surveys

	3.3 Analyzing Your Requirements
	3.3.1 System-Specific Needs
	3.3.2 Operation and Performance Needs
	3.3.3 Personnel and Training Needs
	3.3.4 Business Planning Needs
	3.3.5 e*Insight Deployment
	Sample Business Process

	3.3.6 e*Xchange Deployment
	Business-to-Business Integration
	An eBI Example
	e*Xchange Deployment Methodology

	3.3.7 e*Xpressway Deployment
	Deployment at a Glance
	Basic Deployment Considerations

	3.4 Planning Your Deployment
	3.4.1 Setting Up Overall Objectives
	3.4.2 Identifying and Scheduling Tasks
	Beginning Deployment
	Deployment Documents

	3.4.3 Determining When Objectives Are Met

	Determining System Requirements
	4.1 Introduction: System Requirements
	4.2 Initial Considerations
	4.3 Estimating Processor Requirements
	4.3.1 Consideration Factors
	4.3.2 General Guidelines

	4.4 Estimating RAM
	4.4.1 Preliminary Estimates
	4.4.2 Monk Environment Calculation
	Parsing and Population of Monk Events
	Interpretation of Monk Code

	4.4.3 Total Memory Requirement Estimation

	4.5 Hard Disk Estimation
	4.5.1 Component Storage
	4.5.2 Operational Data
	Log File Requirements
	Estimating Operational Data Space Requirements

	4.5.3 Total Disk Space Requirement Estimation

	4.6 Configuring for Performance Optimization
	4.6.1 Increasing Efficiency
	4.6.2 Optimizing IQs and IQ Managers
	4.6.3 Monk Functions
	4.6.4 Hard Disk Access

	4.7 e*Insight, e*Xchange, and e*Xpressway Requirements
	4.7.1 e*Insight
	4.7.2 e*Xchange
	4.7.3 e*Xpressway

	4.8 System Requirements: Summary
	Registry and Participating Hosts
	Client Systems
	Additional eBI Suite Applications

	Designing and Developing the eBI Suite Environment
	5.1 An Overview of eBI Suite Design
	5.2 Distributed Architecture Considerations
	5.2.1 Distributed Architecture in e*Gate: Overview
	5.2.2 Basic Architecture
	Schema and Component Organization

	5.2.3 High Availability Features
	System Registry
	Registry Replication

	5.2.4 Network Port and Firewall Considerations
	5.2.5 Clustering and Storage Area Network Considerations

	5.3 Methodology Considerations
	5.3.1 What is Topology?
	Elements of Topology
	Sample Topologies

	5.3.2 Three Basic Steps
	Identifying External Systems
	Configuring eBI Suite Components
	Hardware and Network Connections

	5.3.3 Performance Considerations
	Basic e*Way Operation
	Basic BOB Operation
	Basic IQ Operation
	Virtual Memory
	Event Parsing
	IQ Subscriber Pooling
	Hardware Distribution
	Performance Summary

	5.4 Designing Your System
	5.4.1 Determining e*Way Topology
	External System Interfaces
	Volume of Data
	Time Windows

	5.4.2 Determining BOB Topology
	Number of Data Transformations
	Data Urgency and Availability
	Amount of Data
	Multi-Source Transformations

	5.4.3 Determining IQ Topology
	5.4.4 Using e*Gate Java Features
	5.4.5 Accommodating External System Constraints
	5.4.6 System Topology and Business Organization

	5.5 Optimizing Your System
	5.5.1 Using Parallel Data Threads
	5.5.2 Improving IQ Performance
	5.5.3 Optimizing Event Parsing
	Avoiding Excessive Parsing
	Batching Events
	Event Serialization and Delivery

	5.5.4 Monk Optimization
	5.5.5 Optimizing Performance Using Hardware
	5.5.6 e*Insight Engine Optimization
	5.5.7 e*Xchange Optimization

	5.6 System Development Considerations
	5.6.1 Overview of e*Gate Development
	e*Gate GUIs
	Setup Steps

	5.6.2 Setting Up Users, Roles, and Privileges
	Role-Based Security
	Example-Supply Chain Scenario

	5.6.3 Modeling Business Processes with e*Insight
	Advantages of e*Insight Models
	e*Insight Operating Modes
	e*Insight GUI Features
	Automatic Component Generation

	5.6.4 Overview of e*Xchange Implementation
	Types of e*Xchange Implementations
	Implementation Road Map
	Step 1: Determine the Scope of the Project
	Step 2: Create Trading Partner Profiles
	Step 3: Copy the eXSchema
	Step 4: Configure the e*Gate Components
	Step 5: Test and Tune the System

	5.6.5 Overview of e*Xpressway Implementation
	Trading Exchange Web Site
	Setting Up Your e*Xpressway Web Site
	e*Xpressway Integrator OnRamp Overview
	Working with a Solution Provider
	Trading Partners: Getting Started

	5.7 Case Study Examples
	5.7.1 Case Study 1: Web Order Scenario
	Background
	Functional Requirements
	Designing Communication Topology
	Designing Component Topology
	Designing Hardware Topology

	5.7.2 Case Study 2: Expanded Web Order Scenario
	Background
	Functional Requirements
	Designing Communication Topology
	Designing Component Topology
	Designing Hardware Topology

	5.7.3 Case Study 3: Tracking Timecards and Payroll Scenario
	Background and Functional Requirements
	Designing Communication Topology
	Designing Component Topology
	Creating Event Types and Java ETDs
	Creating the Collaboration Rules and Java Collaboration Rules Classes
	Adding the e*Ways
	Adding the IQs
	Adding the Collaborations
	Designing Hardware Topology

	5.7.4 Case Study 4: Receiving and Purchasing Scenario
	Background
	Functional Requirements
	Designing Communication Topology
	Designing Component Topology
	Creating Event Types and Java ETDs
	Creating the Collaboration Rules and Java Collaboration Rules Classes
	Adding and Configuring e*Ways, BOBs, and IQs
	Adding Collaborations That Route the Data
	Designing Hardware Topology

	Testing, Transition to Production, and Maintenance
	6.1 Introduction: Transition to Production
	6.2 Pre-Transition Testing
	6.2.1 Testing Methodology
	6.2.2 Test Plan
	Type of Data To Use
	Testing the Output
	Responsibility for Testing

	6.2.3 Unit Testing
	Monk Test Console
	Using stctrans
	Java Code Testing
	Testing e*Way Configuration Files

	6.2.4 Integration Testing
	Partial Integration Testing
	Complete System Testing
	Performance Testing

	6.2.5 Acceptance Testing
	6.2.6 Troubleshooting
	Schema Manager GUI
	Using Log Files

	6.3 Transition to Production
	6.3.1 Role of e*Insight
	Exporting Business Processes
	Integrated Monitoring

	6.3.2 Export Operations
	Exporting Trading Partner Profiles
	Exporting e*Gate Schemas

	6.3.3 Moving Files
	6.3.4 Import Operations
	Importing Business Processes
	Importing Trading Partner Profiles
	Importing e*Gate Schemas

	6.3.5 Export/Import Using e*Xchange
	6.3.6 Running the Schema

	6.4 Post-Transition Maintenance
	6.4.1 Monitoring System Activity
	Using the Schema Manager
	e*Insight Monitoring Mode

	6.4.2 e*Xchange Message Tracking
	Using Message Tracking
	Error Tracking

	6.4.3 Implementing Changes

	6.5 Case Study Examples
	6.5.1 Case Study 1: Web Order Scenario
	Pre-Transition Testing
	Transition to Production
	Post-Transition Maintenance
	Assessing Future Needs

	6.5.2 Case Study 2: Expanded Web Order Scenario
	Pre-Transition Testing
	Transition to Production
	Post-Transition Maintenance
	Assessing Future Needs

	6.5.3 Case Study 3: Tracking Timecards and Payroll Scenario
	Pre-transition Testing
	Transition to Production
	Post-Transition Maintenance
	Assessing Future Needs

	6.5.4 Case Study 4: Receiving and Purchasing Scenario

	6.6 Transition to Production: Summary

	Frequently Asked Questions
	7.1 Introduction: Using These FAQs
	7.2 Deployment FAQs
	7.2.1 Setting Up eBI Suite FAQs
	7.2.2 Performance Tuning FAQs
	7.2.3 Hardware FAQs

	7.3 General FAQs
	7.4 Service FAQs

	Deploying for High Availability
	8.1 High Availability in e*Gate: Overview
	8.2 Product Features, e*Gate, and High Availability
	8.2.1 The e*Gate Registry
	8.2.2 Registry Replication
	8.2.3 Multiple Participating Hosts
	8.2.4 IQ Subscriber Pooling
	8.2.5 System High Availability Methodology

	8.3 Sample Scenarios
	8.3.1 e*Gate with Standby Host
	Example Characteristics
	High Availability Processes

	8.3.2 Subscriber Pooling Without Server High Availability
	Example Characteristics
	High Availability Processes

	8.3.3 Subscriber Pooling With Partial High Availability

	Deployment Surveys
	A.1 System-Specific Information
	A.2 Operation and Performance
	A.3 Personnel and Training
	A.4 Business Planning

	Sample QA Report
	B.1 Introduction
	B.1.1 Background
	B.1.2 Objectives
	B.1.3 Approach
	B.1.4 Document Inputs

	B.2 Schema Components
	B.2.1 General
	B.2.2 Event Types
	B.2.3 ETDs
	LOB Structures
	XML Structures

	B.2.4 Collaborations
	B.2.5 Collaboration Rules
	B.2.6 Monk Library
	B.2.7 e*Way Configurations

	B.3 Overall Design Objectives
	B.3.1 Performance
	B.3.2 Error Handling
	B.3.3 Component Failure and System Fail-Safe

	B.4 Environments and Source Control
	B.5 Run-Time Management

	Installing e*Gate on Windows 2000 Clusters
	C.1 e*Gate with Microsoft Clustering
	C.2 Implementation Procedures
	C.2.1 General Considerations
	C.2.2 Procedure

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

