
Getting Started
with

SonicMQ

Copyright© 2000 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This man-

ual is also copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied, photocopied,

translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from

Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no

responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

Progress® is a registered trademark of Progress Software Corporation.

SonicMQ™, AppServer™, ProVision™, ProVision Plus™, Progress SmartObjects™, Apptivity™, and all other

Progress product names are trademarks of Progress Software Corporation.

Progress SonicMQ™ contains the IBM® XML Parser for Java Edition and the IBM® Runtime Environment for

Windows®, Java™ Technology Edition Version 1.1.8 Runtime Modules.© Copyright IBM Corporation 1998-1999.

All rights reserved. U.S. Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA

ADP Schedule Contract with IBM Corp.

IBM® is a registered trademark of IBM Corporation. Java™ is a trademark of Sun Microsystems Inc. Windows® is a

registered trademark of Microsoft Corp. All other company and product names are the trademarks or registered trade-

marks of their respective companies.

Printed in U.S.A.

November 2000

Getting Started with SonicMQ 3

Contents

Preface . 7
About This Manual . 7
Conventions in This Manual . 8

Typographical Conventions and Syntax Notation. 8
Note, Important, and Warning Flags . 9

Available Documentation . 10
Worldwide Technical Support . 11

Chapter 1: Introducing Progress SonicMQ . 13
Overview . 13

Evolution of Business Data Communications. 14
SonicMQ: The Software for E-business Messaging . 17

Massive Scalability . 17
NonStop Availability . 18
Guaranteed Reliability . 18
Very High Performance . 18
End-to-end Security . 19
Adherent to Connectivity and Application Standards . 19
Bridges for Extended Data Integration . 20

Concepts. 20
Direct Application Integration. 21
Message Server Distributed Application Structure . 22
Clustered Message Servers . 24
Client Applications . 25

Agent Applications . 25

Contents

4 Getting Started with SonicMQ

Transformation Applications .26
Routing Applications .28
Dynamic Routing Applications .29

Trading Partners and Portals. .30
How SonicMQ Works .33

Connections and Sessions .33
Producers and Consumers .35
Destinations .37
Publish and Subscribe Messaging: Broadcast the Message. .38
Point-to-point Messaging: There is Only One Message .41
Messages .45
Request/Reply .46
Quality of Service .46
Quality of Protection .47
Security .47

Chapter 2: Setting Up SonicMQ Developer Edition 49
Contrasting Developer Edition and Other Editions .49
First Steps with SonicMQ Developer Edition. .50

Requirements for SonicMQ Developer Edition .50
Deciding How to Setup the SonicMQ Developer Edition .52
Installing SonicMQ Developer Edition .54
After the Installation Is Complete. .55
Starting the Message Server .57

What’s Next?. .57
Running the SonicMQ Client Samples. .57
Using the SonicMQ Explorer .58

Closing the SonicMQ Explorer .61

Chapter 3: SonicMQ at Work .63
Trying Out the SonicMQ Samples .63

Publish and Subscribe Domains (TopicPubSub Folder) .63
Queue Point-to-Point Domains (QueuePTP Folder) .64

Getting Started with SonicMQ 5

Contents

Using the SonicMQ Samples . 65
Starting the Message Server . 66
Client Console Windows. 66
Using the Sample Scripts . 67

Topic Publish and Subscribe Samples . 68
Chat Application . 68
Message Monitor . 70
Durable Chat Application . 72
Reliable Chat Application . 75
Selector Chat Application . 76
Hierarchical Chat Application. 77
TransactedChat Sessions . 78
Request and Reply. 79
XML Messages . 81

Queue Point-to-Point Samples. 83
Talk Application . 84
Queue Monitor . 85
Reliable Talk Application . 87
Selector Talk Application . 88
Transacted Talk Sessions . 89
Request and Reply. 90
XML Messages . 92
Map Messages . 93
Queue Round Trip Test Application . 94

Stopping Client Sessions and the Message Server . 95

Chapter 4: Next Steps. 97
Overview . 97

Online Books and API Documentation . 97
Web Sites. 97
Technical and Pre-sales Support . 97

Uninstalling SonicMQ . 98

Glossary . 99

Index . 123

Contents

6 Getting Started with SonicMQ

List of Figures

Figure 1. Distributed Application Structure .21
Figure 2. Message Server Structure .22
Figure 3. Message Servers in a Clustered Architecture .24
Figure 4. Agent Application .25
Figure 5. Transformation Application .26
Figure 6. Routing Application .28
Figure 7. Dynamic Routing’s Store-and-forward mechanism .29
Figure 8. Portal and Trading Partners .30
Figure 9. JMS Session on a Connection .33
Figure 10. Producers and Consumers .36
Figure 11. Concept of Publish and Subscribe Messaging Topics .38
Figure 12. Publishing and Subscribing on a Topic Connection .39
Figure 13. Publishing Messages to Topics for Subscribers .40
Figure 14. Concept of Point-to-point Messaging Queues .41
Figure 15. Sending and Receiving on a Queue Connection .43
Figure 16. Sending Messages to Queues for Receivers .44
Figure 17. A System with the Developer Edition Server and Clients .52
Figure 18. Two Systems With the Developer Edition Node and Clients .53
Figure 19. Two Developer Edition Nodes on One System .53
Figure 20. Two SonicMQ Developer Edition Nodes on Two Systems .54
Figure 21. SonicMQ Developer Edition Start Menu Commands .56
Figure 22. Diagram of the Chat Application Functions .68
Figure 23. Message Monitor Window .71
Figure 24. Sequence Diagram for the DurableChat Application .73
Figure 25. QueueMonitor Window .86
Figure 26. Using the Explorer to Shutdown the Message Server .95

List of Tables

Table 1. The SonicMQ Documentation Set .10
Table 2. Progress Software International Offices .12
Table 3. Java Resources .51

Getting Started with SonicMQ 7

Preface

This Preface contains the following sections:

n “About This Manual” describes this manual and its intended audience.

n “Conventions in This Manual” describes the text formatting, syntax
notation, and flags used in this manual.

n “Available Documentation” describes the printed and online
documentation that accompanies SonicMQ.

n “Worldwide Technical Support” provides information on contacting
technical support.

About This Manual
Progress SonicMQ is a fast, flexible, scalable E-Business Messaging Server
designed to simplify the development and integration of today’s highly
distributed enterprise applications and Internet-based business solutions.
SonicMQ is a complete implementation of the Java Message Service v1.0.2,
an API for accessing enterprise messaging systems from Java programs.

This book provides an overview of the Progress SonicMQ software for
developers, development managers, and enterprise IT managers.

After presenting the features and concepts of SonicMQ, this guide details the
steps to install, set up, and start SonicMQ Developer Edition. Sample programs
demonstrate implementations of SonicMQ and usage scenarios.

The glossary of terms used throughout SonicMQ is included in this book.

Preface

8 Getting Started with SonicMQ

Conventions in This Manual
In this section, you will find a description of the text-formatting conventions
used in this manual and a description of notes, warnings, and important
messages.

Typographical Conventions and Syntax Notation
This manual uses the following typographical conventions:

n Bold typeface in this font indicates keyboard key names (such as Tab or
Enter) and the names of windows, menu commands, buttons, and other
SonicMQ user interface elements. For example, “From the File menu,
choose Open.”

Bold typeface is also used to highlight new terms when they are
introduced in conceptual and overview sections.

n Monospace typeface is used to indicate text that might appear on a
computer screen other than the names of SonicMQ user interface elements,
including all of the following:

– Code examples

– Code that the user must enter

– System output (such as responses, error messages, and so on)

– Filenames and pathnames

– Software component names, such as class and method names

Essentially, monospace typeface indicates anything that the computer is
“saying,” or that must be entered into the computer in a language that the
computer “understands.”

Bold monospace typeface is used to supply emphasis to text that would
otherwise appear in monospace typeface.

Monospace typeface in italics or Bold monospace typeface in italics
(depending on context) indicates variables or placeholders for values you
supply or that might vary from one case to another.

Getting Started with SonicMQ 9

Conventions in This Manual

➤ This symbol and font introduce a multi-step procedure:

1. This is a first step.

1.1 This is a step within a step.

2. This is a second step.

➤ This symbol and font introduce a single-step procedure:

� This symbol starts a single-step procedure.

This manual uses the following syntax notation conventions:

n Where command-line examples are provided, a backslash character (\)
indicates line continuation. It should not be entered on the actual command
line.

n Brackets ([]) in syntax statements indicate parameters that are optional.

n Braces ({ }) indicate that one (and only one) of the enclosed items is
required. A vertical bar (|) separates required items.

n Ellipses (...) indicate that you can choose one or more of the items.

Note, Important, and Warning Flags
This manual highlights special kinds of information by using shading, placing
horizontal rules above and below the text, and using a flag in the left margin to
indicate the kind of information.

Note A Note flag indicates information that complements the main text flow. Such
information is needed to understand the concept or procedure being discussed.

Important An Important flag indicates information that must be acted upon within the
given context for the procedure or task (or other) to be successfully completed.

Warning A Warning flag indicates information that can cause loss of data or other
damage if ignored.

Preface

10 Getting Started with SonicMQ

Available Documentation
Table 1 lists the documentation supplied with SonicMQ. In addition to the
documentation listed in this table, SonicMQ comes with sample files. All
documentation is included with the SonicMQ media.

Table 1. The SonicMQ Documentation Set

Document Description

SonicMQ Documentation Portal
(SonicMQ_Help.htm)

Describes and links all SonicMQ online documentation
components.

Getting Started with SonicMQ Presents an introduction to the scope and concepts of the SonicMQ
software and its packaging. Lists the features and benefits of
SonicMQ in terms of its adherence to the Sun JMS specification and
the extensions that make SonicMQ a richer, more useful messaging
software.

SonicMQ Installation and
Administration Guide

Describes configuration of various SonicMQ client types, clusters,
and the message server and data stores. The administration chapters
fully document server management using both the command-line
interface and the graphical user interface administration tools.
Covers security concepts and installation and administration of
security features.

SonicMQ Programming Guide Presents the SonicMQ sample applications and then shows how the
programmer can enhance the samples, focusing on clients,
connections, sessions, messages (including XML), transactions, and
hierarchical topics.

SonicMQ Deployment Guide The first part describes general deployment issues, including
security. The second part concerns deployment issues for setting up
dynamic routing for a B2B infrastructure.

SonicMQ API Reference Contains information on the SonicMQ API that supplements the
other manuals.

SonicMQ Product Update Bulletin Describes enhancements to SonicMQ that are new with this release.

SonicMQ Release Notes Provides late-breaking information and known issues.

Getting Started with SonicMQ 11

Worldwide Technical Support

Worldwide Technical Support
Progress Software’s support staff maintains a wealth of information at
http://www.sonicmq.com to assist you with resolving any technical problems
that you encounter when installing or using SonicMQ Developer Edition.

From the SonicMQ home page, click on Developer Exchange to take
advantage of resources for developers such as forums, downloads, tips,
whitepapers, and code snippets.

For technical support for the SonicMQ Professional Developer Edition or the
SonicMQ E-Business Edition, visit our TechSupport Direct Web page at
http://techweb.progress.com. When contacting Technical Support, please
provide the following information:

n The release version number and serial number of SonicMQ that you are
using. This information is listed at the top of the Start Broker console
window and might appear as follows:

SonicMQ E-Business Edition [Serial Number 25677051]
Release nnn Build Number nnn Protocol nnn

n Your first and last name.

n Your company name, if applicable.

n Phone and fax numbers for contacting you.

n Your e-mail address.

n The platform on which you are running SonicMQ, as well as any other
environment information you think might be relevant.

n The Java Virtual Machine (JVM) you are using.

To determine the JVM you are using, open a console window, go to the
directory SONICMQ_JRE (default install-dir\Java\bin), and issue the
command .\jre -d.

http://sonicmq.com
http://techweb.progress.com

Preface

12 Getting Started with SonicMQ

Table 2 provides information about Progress Software Corporation and its
international offices.

Table 2. Progress Software International Offices

Locale, Office Name, and Address Contact Information

North and Latin America:

Progress Software Corporation

14 Oak Park

Bedford, MA 01730

USA

Pre-sales:

Telephone: 800 477 6473 ext. 4900

e-mail: sonicmqpresales@progress.com

Technical Support for Professional Developer Edition
and E-Business Edition:

Telephone: 781 280 4999

Fax: 781 280 4543

e-mail: support@progress.com

Europe, the Middle East, Africa (EMEA):

Progress Software Europe B.V.

P.O. Box 8644

Schorpioenstraat 67

3067 GG Rotterdam

THE NETHERLANDS

Pre-sales:

e-mail: sonicmqpresales-emea@progress.com

Technical Support for Professional Developer Edition
and E-Business Edition:

Telephone: 31 10 286 5222

Fax: 31 10 286 5225

e-mail: emeasupport@progress.com

Asia/Pacific:

Progress Software Pty. Ltd.

1911 Malvern Road

Malvern East, VIC

Box 3145, AUSTRALIA

Technical Support for Professional Developer Edition
and E-Business Edition:

Telephone: 613 9885 0199

e-mail: aussupport@melbourne.progress.com

Getting Started with SonicMQ 13

Chapter 1 Introducing Progress SonicMQ

Overview
Welcome to Progress® SonicMQ™, the leading E-business messaging
infrastructure for the reliable, scalable and secure transport of business-critical
data over the Internet.

Messaging is a system of asynchronous requests, reports, or events that are
used by enterprise applications. It is an event-driven communications layer that
lets applications—whether on the same system, the same network, or loosely
connected through the Internet—transfer information as securely as needed
and at whatever pace the one or many interacting systems can maintain.

SonicMQ is designed for use primarily with Java™ applications. It allows
development and deployment of an efficient, secure messaging system that
makes it possible for organizations to effectively (and reliably) communicate
with various types of business systems over the Internet.

Chapter 1: Introducing Progress SonicMQ

14 Getting Started with SonicMQ

Evolution of Business Data Communications
Messages have always been a fundamental part of business. Whether scanning
barcodes, buying from a catalog, or signing contractual documents, business
relies on mutual acceptance of a set of information as the basis for an exchange
of goods and wealth. Sound business practice has some basic principles:

n Every facet of every exchange must minimize time required to gain value
as well certify that the goods and parties can deliver as intended.

n When all potential parties to a transaction can compete for the supporting
services—financing, transport, warehousing, security, settlement—that
comprise the total business venture, every transaction is more efficient.

n A portion of business time must be devoted to assess the business climate,
knowing when to explore new channels and when to close existing ones,
how to prepare for huge growth spurts and how to contain fixed costs.

n Merging and divesting businesses seems as easy as a handshake but the
underlying accounting and auditing systems are often far less adaptive.

n Business policies must be codified to assure consistent application by all
agents who act on behalf of the business.

Electronic commerce between businesses, E-business, maintains those
principles yet changes the way businesses form and maintain relationships with
other businesses.

In the new millennium, the Internet has become fundamental to every
E-business initiative. Applications must exchange business data on the
Internet. Much more than WebSite presence and consumer catalogs, businesses
see the strategic importance of the emerging industry exchanges and supply
chain integration. Two categories of businesses are forming: those that
participate in and propagate sophisticated, adaptable global E-business
exchanges and supply chains... and those that don’t. One category will utterly
dominate in less than a decade.

Before the emergence of the Internet, large businesses established extensive
private networks to facilitate communication between business partners. This
Electronic Data Interchange (EDI) required large startup costs and
correspondingly large maintenance costs as each participant had to conform to
the preset communication and application interfaces. EDI was—and still is—

Getting Started with SonicMQ 15

Overview

reliable. But shifting business alliances and expanding world markets chafe at
the rigidity and ponderous infrastructure of traditional EDI.

To open up from the tightly synchronized hardware and communications of
EDI, Messaging-Oriented Middleware (MOM) provided the reliable data
delivery mechanisms yet let the systems be loosely-coupled—not always
operating at the same speed, sometimes disconnected, and not having the
recipient synchronously lock until the communication was completed. MOMs
coordinate message traffic between distributed applications, handling all
network communications so that application developers need not be concerned
with the underlying transport. Originally designed for the asynchronous
exchange of information between mainframes in a corporate network,
traditional MOM vendors focused on:

n Loose coupling of internal application processes

n Reliable exchange of information within the corporate network

n A high-level applications interface

n Quality of Service guarantees in Service Level Agreements

n Event-driven processing

Broadly accepted for internal application integration projects, companies are
expanding their view of integration beyond the enterprise. To participate
effectively in B2B commerce initiatives over the Internet, companies must
adopt a global view of application integration that demands new capabilities
from the underlying message transport.

Two primary, and fundamentally polar, models of messaging evolved:

n Publishing messages — Publication is much like broadcasting: A select
set of information is sent to message servers. Active subscribers each get a
copy of the message from the message server. The publishing model is
appropriate for catalog updates, requests for bids or proposals, promotions,
and financial updates.

Some publish implementers describe a push-model where only known
internet addresses or subnets are sent the message where routers might run
daemons that monitor the subscriber base. The “serverless” publishing
model is best for blasting streams of data such as complete stock activities,
movies, television, and music.

Chapter 1: Introducing Progress SonicMQ

16 Getting Started with SonicMQ

n Queuing messages — Queues are destinations for messages that maintain
each message as a unique object that will only be delivered to one
recipient. Authorized receivers monitor relevant queues through filters,
selecting to receive qualified messages. When a message is not
acknowledged as received, it must return to the queue. When a message
expires or becomes undeliverable, it can be transferred to special handling
as well as trigger notifications. Sophisticated queue implementers, such as
IBM® MQSeries®, enable messages to be routed through a message server
to a queue on a remote server. The queuing paradigm with an extensible
architecture enables E-business Messaging.

With the Internet emerging as a secure and reliable communications
infrastructure, businesses can transfer data to partners and associates
worldwide. Businesses can get data at their own pace and flow it into
applications. But the Internet alone is a transport, usually doing little more than
putting e-mail in front of people and web pages into browser windows.

An E-business Internet is possible when two other technologies are interwoven
with it:

n XML — The data format of business, XML together with its associated
stylesheets, parsers, object models, and data definitions, lets industries
define data structures, making it easier for disparate applications to
dynamically exchange information. XML files provide links to their
validation structure so that the data can be mapped into the industry model
and then into the application data formats.

n Java Message Service (JMS) — JMS is a standards-based Internet
message service for Java that specifies the behaviors and mechanisms that
enable both messaging paradigms to interact under the most sophisticated
security and acknowledgement service levels. Among the advantages of
JMS are:

– Native support for Internet protocols and standards

– Straightforward porting to new hardware platforms

– Easy integration into heterogeneous networks

– Standards-based technology in a family of business software solutions

Getting Started with SonicMQ 17

Overview

SonicMQ: The Software for E-business Messaging
SonicMQ delivers everything a business needs to evaluate, design, deploy, and
maintain all the most desirable features for high-performance and high-
reliability E-business:

n Certified JMS implementation that provides a Queue Point-to-point
messaging as well as a Publish/Subscribe domain.

n Extended client/server features that enable hierarchical security
management.

n Guaranteed message persistence over the Internet

n High scalability to support rapid topology expansion as well as intense
changes in message volumes.

n Industry-leading message security, encryption, and certificate
management.

n Built-in XML messaging and integration with XML parsers.

n SonicMQ’s Dynamic Routing Architecture (DRA) lets enterprises
participate in global E-business exchanges through a single message
server. When trading domains come online, SonicMQ dynamically
discovers their destinations and delivers messages between the servers on
an optimized routing path.

The SonicMQ architecture sets a foundation for high-throughput E-business
integration by robustly providing five E-business essentials: scalability,
availability, reliability, performance, and security.

Massive Scalability

With SonicMQ’s Dynamic Routing Architecture, a B2B exchange can readily
scale to thousands then tens of thousands of trading partners without requiring
changes to the routing architecture or the trading applications. Effective
connect-time load balancing and continued performance leadership allow
SonicMQ to deliver the massive scalability required for E-business messaging.

Chapter 1: Introducing Progress SonicMQ

18 Getting Started with SonicMQ

NonStop Availability

The SonicMQ messaging infrastructure is up 7 days a week, 24 hours a day.
SonicMQ’s clustering allows multiple message servers to operate as a single
routing node while managed from a centralized configuration server.When
clustering techniques are implemented, a client application can detect dropped
connections, dictate load balancing algorithms, and get failover support from
the cluster. It’s enhanced fault resilience that has no single point of failure.

Guaranteed Reliability

Messages can be guaranteed to persist when a message is sent to a queue with
requests for persistence and capture in a dead message queue when
undeliverable. Messages will be logged to SonicMQ’s embedded database (or
a database of the developer's choosing) to protect against system failure. When
persistent messages are used with message server clusters, clients are
guaranteed to receive all messages pertaining to their chosen destination.
Persistent messaging ensures that messages are never lost due to network or
hardware failure.

Mobile users, although connected to the network frequently, need not be
concerned that they missed out on messages published when they were unable
to receive them. In a sometimes-connected world, a subscriber to a topic can
express to a message server that selected messages should be retained under a
durable subscription.

Very High Performance

Benchmark results confirm SonicMQ’s superior performance. Metrics show
that a SonicMQ message server can support up to 2,000 concurrent
connections with a 10 MB per second throughput. SonicMQ maximizes server
stability through effective use of flow control which throttles client send rates
to avoid message loss and ensures consistently high performance.

SonicMQ also implements an optimized persistence mechanism to maximize
server performance for guaranteed message delivery. With its Concurrent
Transacted Cache technology, SonicMQ utilizes both an in-memory cache
and high-speed log files to increase throughput for short-duration persistent
messages. Long-duration persistence—typically required for disconnected

Getting Started with SonicMQ 19

Overview

users—is supported through the embedded relational database or other JDBC-
compliant databases.

End-to-end Security

Security is crucial in a global trading environment. And SonicMQ provides
security levels required by these systems:

n SonicMQ message servers, clusters, and dynamic routing nodes manage
access control to servers and destinations. A challenge-and-response
protocol is implemented for user authentication.

n Message security can use certificate-based mutual authentication through
RSA’s SSL implementation to get full server-server and client-server
security including certificate identity management and certificate
generation.

n A message payload can be encrypted with an associated digest so that both
message privacy and integrity are certifiable. (56-bit MD5/DES).

n SonicMQ’s SSL protocol implementation supports up to 128-bit
encryption.

n SonicMQ provides transport protocols that leverage popular Internet
security mechanisms for messages and transport through multiple firewalls
using flexible HTTP/HTTPS tunneling with forward and reverse proxy
support.

n Message server-to-client authentication through PKI (public key) is also
supported.

Adherent to Connectivity and Application Standards

SonicMQ has taken a leading role in its support for:

n JMS Specification — The Java Message Service v1.0.2 specification is
fundamental to the architecture and interfaces of SonicMQ.

n JNDI — The Java Naming and Directory Interface is used throughout
SonicMQ.

Chapter 1: Introducing Progress SonicMQ

20 Getting Started with SonicMQ

n Internet Protocols — SonicMQ supports standard Internet Protocols
including Secure Socket Layers (SSL), HTTP tunneling, encryption, TCP,
and security.

n Internet Security — Firewall tunneling, SSL, and digital certificates are
supported with SonicMQ.

n XML Message Type — This emerging standard for distributed application
communication is built into the SonicMQ XML message type and DOM-
capable client.

n 100% Java — SonicMQ’s pure Java implementation is consistent so that
development tools, platforms, and other applications that maintain this
rigorous purity are not only easier to work with and easier to integrate—
applications are easy to port to other platforms.

Bridges for Extended Data Integration

n ActiveX/COM Client API

n Thin C-Client

n Bridges — SonicMQ offers bridges to native MQSeries implementations,
JMS-compliant messaging systems, and e-mail services under SMTP,
IMAP, and POP3.

Concepts
SonicMQ implements standardized messaging concepts, providing the
developer an easy-to-use set of interfaces and administrative tools. The
Application Programming Interfaces comply with the standards in the Sun
Java Message Service specification v1.0.2.

The following information describes the messaging concepts from the general
toplogy to connectivity to the alternative messaging behaviors to the attributes
and characteristics that enable secure, reliable messages.

Getting Started with SonicMQ 21

Concepts

Direct Application Integration
When messaging is not implemented and distributed applications are
integrated, as shown in Figure 1, every client application maintains a
connection to every other client application.

Once applications are linked together, they might be secure, fast, and reliable.
But any advantages of direct peer-to-peer communications are compromised
by several limitations:

n Bringing large integrated systems online is often so expensive and time
consuming that systems threaten to become obsolete as soon as they start
to amortize their costs.

n Outsourcing business processes is resisted because re-architecting
communications and data transfer protocols is too costly.

n Modifying application software with hard-coded communication
mechanisms is tedious and error prone.

Figure 1. Distributed Application Structure

Client
Application

F

Client
Application

C

Client
Application

A

Client
Application

B

Client
Application

E

Client
Application

D

Chapter 1: Introducing Progress SonicMQ

22 Getting Started with SonicMQ

Message Server Distributed Application Structure
The message server architecture, shown in Figure 2, considers every entity in
its local topology to be a client except the message server—the entity to which
every client connects, thereby providing connection services to every other
client.

Aside from the savings in connections (this topology needs only n connections
for n clients), the messaging system is far more efficient for several reasons:

n The message server manages connection logistics and protocols, providing
the latest connections to clients.

n Security is maintained at the central hub, the message server.

The message server structure can expand to increase reliability and
performance, yet the clients need only know how to connect to the appropriate
port on their preferred message server system.

The components that are needed to implement and manage a JMS application
are supplied by the JMS provider. This includes the JMS Client API and the
SonicMQ Client Run Time accessed from within the client application, the
communications layer between the client and the message server, and the
message server architecture. The message server listens on a port on its host

Figure 2. Message Server Structure

Message
Server

Client
Application

F

Client
Application

C

Client
Application

A

Client
Application

B

Client
Application

E

Client
Application

D

Getting Started with SonicMQ 23

Concepts

system to provide services to its clients. The message server architecture and
services are central to SonicMQ’s messaging security, efficiency, scalability,
and performance.

The SonicMQ message server does the following:

n Manages the persistent data store. Types of data that are persisted include:

– Message Store — Stores and retrieves connection factories, queues,
queued messages, and messages held for durable subscribers and their
subscriptions.

– Security Database — When security is enabled, manages the Access
Control Lists for authentication of users and permission for users to
read and write to queues and topics.

– Configuration Server — When server cluster activities are enabled,
maintains the configuration so that multiple message servers can
interact, enabling robust and secure cluster topologies.

n Provides simultaneous multi-protocol support for TCP and HTTP
connections, HTTP tunneling, and Secure Socket Layers (SSL).

n Logs activities.

Administration

The administration tools—the command-line Admin tool, the GUI Explorer,
and the methods in the Management API—provide secure access to the
configuration database, the security database, and the message store to control:

n Queues and topics including the security and Quality of Protection
settings.

n Routing users, connections, and global destinations.

n Message server and cluster configurations.

n Users, groups, and access control lists.

n Administrative notices and monitoring of the dead message queue.

n Metrics and performance.

Chapter 1: Introducing Progress SonicMQ

24 Getting Started with SonicMQ

Persistent Data Stores

A data source bound to a message server provides the repository for all the
administered data, the security database, and the message store.

See the SonicMQ Installation and Administration Guide for more information
about persistent data stores.

Clustered Message Servers
Message servers can be linked together to provide a unified set of services for
clients. With cross-server awareness (advertising) of queue destinations,
clusters provide failover and load balancing mechanisms yet are viewed in the
messaging topology as a single routing node.

In a clustered architecture, SonicMQ also manages the persistent data store for
the configuration server . The configuration lets multiple message servers
interact, enabling robust and secure cluster topologies.

Figure 3. Message Servers in a Clustered Architecture

Application C
PTP 1

Message Servers
in a Clustered Architecture

Message
Store

Message
Store

Message
Store

Config

Security

Application B
Pub/Sub 1

JMS Connection
host:port .

JMS Connection

host:port

 .

Application A
PTP

JMS Connection host:port .
Configuration

Server

Getting Started with SonicMQ 25

Concepts

Client Applications
Client software sends and receives messages in a network of message traffic.
A single client application could perform three distinct functions:

n Interface with a business application to maintain business records.

n Assess the content of a message to determine where some or all of the
message content should be forwarded.

n Examine routing information to forward unopened messages.

Agent Applications

Systems that are linked to record-keeping systems are normally the starting
point and endpoint in a message lifecycle. Realtime devices and accounting
document lifecycles create messages—counters, metrics, and switches on
devices, and accounting purchase orders, bids, invoices, backorders,
production scheduling, packing orders, bills of lading, shipping, duty fees,
quality control, receipts, and inventory changes—that are moved into the
messaging stream by agent applications. Correspondingly, receivers gather
appropriate messages to funnel into their controlling application, possibly
returning an audit trail identifier when the accounting records are updated.

Figure 4 shows a Business Application using agent application A to produce
and consume messages at destinations on message server 1.

Figure 4. Agent Application

A

1

Business
Application

Chapter 1: Introducing Progress SonicMQ

26 Getting Started with SonicMQ

Transformation Applications

A technique in messaging that has great value is a transformation
application. Transformers watch for messages that their embedded business
logic might be able to break into pieces appropriate for several messaging
channels. By exposing the granularity of the message, each element of a
message might proceed on to a different path.

For example, a construction requirements message—when formatted in
industry-approved XML tagged text—might be broken out into architectural
phases so that appropriate subcontractor bids can be sent as separate messages.

As Figure 5 illustrates, an application receives a message from a message
server and breaks up the message through connection to other message servers,
effectively consuming and reproducing the message. But the services that were
associated with the original message could be seriously compromised in this
step. And the complete content of the original message could be lost. While
transformations are a nifty way to split messages across business realms, they
are inappropriate for any concerted effort to construct a complete E-business.

Figure 5. Transformation Application

B

A

C

1

2

 3
D

Getting Started with SonicMQ 27

Concepts

In Figure 5, a message is transformed from its sender to its ultimate recipients
as follows:

n Application A sends a message to a queue on its local message server,
server 1.

n Application B receives the message from server 1, examines it and
determines that it can send part of the message to server 2 and the other
remainder to server 3. Application B then acknowledges the receipt of the
original message from message server 1.

n Application C receives the message from the queue on message server 2.

n Application D receives the message from the queue on message server 3.

Chapter 1: Introducing Progress SonicMQ

28 Getting Started with SonicMQ

Routing Applications

When an application works with messages for the sole purpose of forwarding
the message without touching its content and without changing the intended
service levels, that application is a routing application.

Every message has information exposed in its metadata—the message header
fields, and the properties—that enable a routing application to choose
messages by defining qualified messages that it will receive in a message
selector string. When a message is received by the routing application, it clones
the message, looks up the data that tells it what the next destination should be,
updates the message’s destination, sends out the clone and then acknowledges
and discards the original message.

In Figure 6, the transformation at application B is a transformation of only
routing information in the message header. The message is routed from its
sender to its ultimate recipients as follows:

n Application A sends a message to a queue on its local message server,
server 1.

n Application B receives the message from server 1 because B’s selector
knows that the message can be forwarded to server 2. Application B then
acknowledges the receipt of the original message from message server 1.

n Application C receives the message from the queue on message server 2.

Figure 6. Routing Application

A

B

C 2

1

Getting Started with SonicMQ 29

Concepts

Dynamic Routing Applications

SonicMQ’s Dynamic Routing Architecture enables messages to be routed
across nodes so that the messaging flow from the sender to the ultimate
recipient is more efficient, and enforceable by the administrator of the routing
node. In Figure 7, message server 1 has a routing table—a list of servers and
queues that the sender can request and the server can handle—that enables the
originator of the message to present the message to the server whose tasks are
to first validate that the target queue on message server 2 is a registered
destination, and then to “store and forward” the message to server 2 on behalf
of the sender.

In Figure 7, a message is addressed by its sender directly to a queue on a
message server that is accessed by its recipient, as follows:

n Application A sends a message to its local message server, 1 with a
destination name preceded by “2::”.

n Message server 1 consults its routing table and verifies that the intended
queue on message server 2 is an acceptable destination so it stores the
message in its database (if requested to do so) then acknowledges the
sender. Message server 1 forwards the message to the queue on server 2.

n Application B receives the message from the queue on message server 2.

Figure 7. Dynamic Routing’s Store-and-forward mechanism

A

B

1

2

Chapter 1: Introducing Progress SonicMQ

30 Getting Started with SonicMQ

Trading Partners and Portals
The Dynamic Routing Architecture enables sophisticated topologies for
E-business that are reliable and manageable. A trading partner and portal
structure provides a central business hub that manages data flow through
portal applications that can transfer a message in a queue on the portal
message server to the message server of a trading partner.

In this architecture, the portal brokers communications between trading
partners without the partners having to be concerned about each other.

In Figure 8, a message is addressed by its sender directly to a queue on the
portal where one of its trading partners will be the recipient, as follows:

n Application A sends a message to its local message server, server 1 with a
destination name “Portal::Yx”.

Figure 8. Portal and Trading Partners

A

Portal
Trading
Partners

B

1

2

Routing
App

Global
Routing
Queues

Yx

Routing
Table

z

Yz

x

Getting Started with SonicMQ 31

Concepts

n Message server 1 consults its routing table and verifies that the Yx queue
on the Portal is an acceptable destination so it stores the message in its
database (if requested to do so) then releases the sender. Message server 1
then forwards the message to the Yx queue on the Portal.

n A Routing App is authorized to work directly on the portal monitors. It
listens on the Yx queue, selecting messages with attributes described in the
message’s metadata—the system defined messaging properties as well as
special properties known to the trading partners. It receives the message.

n The routing app preserves the message content and intended services and
determines from business rules where to forward the message. The
message is cloned, its destination restated as “2::z” and the message is sent.

n The Portal consults its routing table and verifies that the Yz queue on the
message server 2 is an acceptable destination so it stores the message in its
database (if requested to do so) then releases the sender. The Portal then
forwards the message to the z queue on message server 2.

n or The Portal authenticates connections by the trading partners. The Portal
looks at message attributes and then examines business relationships
between partners. Business logic is applied to forwarding messages to
appropriate partners and services of the Portal.

n Application B receives the message from the z queue on message server 2.

Advantages of Trading Partners and Portals

Trading partners and portals use the Dynamic Routing Architecture (DRA) to
ensure reliable messaging between message servers that can be independently
configured and administered. With the DRA, thousands of companies can
work together through portals. Trading partners become clients to the portal
message server.

Chapter 1: Introducing Progress SonicMQ

32 Getting Started with SonicMQ

In a portal-and trading-partner architecture, basic messaging services enable:

n Local Management — Each trading partner can maintain its own local
message server and control access to that local server.

n Disconnected Service — Each trading partner has a Store-and-Forward
feature so that disconnection from the portal is not an issue.

n Complete Security — Each trading partner can implement security
firewalls, secured destinations and rigorous access control. Similarly, the
portal, as a hub, can maintain a firewall, secured destinations and rigorous
access control.

n Routing — The Portal acts as a router in the marketplace by determining
how to send messages between partners.

n Scalability — The whole messaging infrastructure must be able to expand
to accommodate the growth of E-business exchanges while still providing
service to many more users and partners.

n Management and tuning — Several features of SonicMQ make
deployments of E-business exchanges easier to monitor and adjust:

– Flow control — Clients and servers can choose to how to react when
message throughput gets clogged.

– Load balancing — Several servers can be listed as alternative
connection routes to balance individual server outages or overloads.

– Failover mechanisms — Clustered server mechanisms can re-route
server traffic during outages.

– Dead message queues — Messages can be set to transfer to a special
persistent queue if the message expires or cannot reach its destination.

– Management notifications — Notifications to administrators when
messages are undeliverable can highlight emerging problems.

– Performance tools — Special software tools that assess flows and
traffic can assist administrators in fine tuning system performance.

– Instrumentation — Metrics on messaging activity provide a visual
log of messaging system activity.

– Management API — Many administrator functions can, under
appropriate authorization, be coded into management applications.

Getting Started with SonicMQ 33

Concepts

How SonicMQ Works
When you understand the mechanisms and behaviors of SonicMQ
applications, you are knowledgeable about the Java Message Service 1.0.2
specification. Several concepts in SonicMQ are presented here that are
extensions of the JMS specification—such as the XML message type, prefetch,
single message acknowledgement, flow control, and load balancing—that can
make better, more efficient implementations. There are a few features of the
JMS specifications that are optional and not yet implemented in SonicMQ,
such as XA transactions and server session pools.

The rest of this chapter shows you how SonicMQ works.

Connections and Sessions

A SonicMQ application starts by accessing a ConnectionFactory to create a
connection that binds the client to the message server. ConnectionFactories are
administered objects, objects with connection configuration parameters that
have been defined by an administrator.

Within a connection, one or more sessions can be created. Each session
establishes a context for one thread where messages might be sent or received.
Figure 9 shows a client application where one connection has been made
through which one session has been established. The client application uses
programmatic interfaces to the JMS Client API that are executed through the
SonicMQ client run time on the session.

Figure 9. JMS Session on a Connection

Client Application

JMS Client API

SonicMQ Client
Run Time

C
O
N
N
E
C
T
I
O
N

Message
Server

S
E
S
S
I
O
N

Chapter 1: Introducing Progress SonicMQ

34 Getting Started with SonicMQ

Concurrency

A client can create multiple sessions within a connection to the message server,
each independently sending and receiving messages. Sessions execute in
parallel so that multiple threads are active concurrently, letting developers
optimize thread usage for co-dependent activities.

For example, a connection might have two sessions where one has a registered
listener for receiving messages while the other is dedicated to listening to
standard input and sending messages, thus removing the possibility of
concurrent activities on a single thread.

A single session can be used for sending and receiving if careful programming
ensures that more than one thread will not have access to session at one time.

Session Type

Each session is established with a declared intention for acknowledgement of
messages. A session is can be transacted or non-transacted, in which case one
of several modes can be specified for acknowledging messages.

n Transacted Session — A SonicMQ session can be specified as
transacted. The technology of transaction processing significantly
reduces the effort required to build applications by allowing applications
to combine a group of one or more messages with publisher-to-message
server ACID properties:

– Atomic — Either all the messages are delivered or all are ignored.

– Consistent — Business rules ensure the receiver does the right thing.

– Isolated — Transacted messages will be delivered serially.

– Durable — The messages are all persistent.

When a transaction commits, its atomic unit of input is acknowledged and
its series of messages is sent. If a transaction rolls back, its produced
messages (if any) are destroyed. The completion of a session's current
transaction automatically begins the next transaction.

A transacted session is a good example of a session function that can take
advantage of sending and receiving in a single session. When a transacted
session commits, all the sent messages in the session are released on the
server destinations and all the received messages are acknowledged.

Getting Started with SonicMQ 35

Concepts

n Non-transacted Session Acknowledgement Mode — When a
nontransacted session is created, the client application can set the type of
acknowledgement it expects when messages are delivered:

– Auto — The session automatically acknowledges the client's receipt of
a message when the session has successfully returned from a call to
receive, or the MessageListener, called to process messages,
successfully returns.

– Client — The acknowledgement of a received message automatically
acknowledges the receipt of all messages that have been delivered to a
consumer by its session. A session can recover so that it restarts with
its first unacknowledged message.

– Single Message — Explicit acknowledgement of one message.

– Dups_OK — The session “lazily” acknowledges the delivery of
messages to consumers, possibly allowing some duplicate messages
after a system outage is experienced. In systems such as market quote
streamers, duplicates are acceptable if faster system recovery is the
trade-off.

While acknowledgement sets standards for message delivery, there is no reply
to the sender. If a reply to the sender is required, a message attribute is reserved
for the request. The requestor can also append a correlation identifier in the
message’s header that will ensure that the reply matches its request.

Producers and Consumers

The traffic on a session thread to the message server, as shown in Figure 10,
could consist of a message producer delivering a message to its message server
or a message server delivering a message to an application that will consume it.

Chapter 1: Introducing Progress SonicMQ

36 Getting Started with SonicMQ

The producer of the message packages and encrypts the message body,
identifies the service level and protection for the outbound message, and then
sends the message to its destination (a specified location in the message
server’s realm).

The consumer of a message binds to a destination to receive a message and
then implements the message’s delivery method:

n Synchronous delivery — The client requests the next message using a
receive method that polls the session’s MessageConsumer for a
destination. Synchronous delivery waits for its reply, the fundamental
problem with traditional system interconnections. The connection could be
blocked indefinitely.

n Asynchronous delivery — The client registers a MessageListener. As
messages arrive, SonicMQ calls the listener’s onMessage method. With an
asynchronous connection, if the connection is in any way impaired,
messages that are guaranteed will wait—in the message server’s
database—for a connection to be re-established. The producer can
determine how long a message will wait for a consumer so that backlogs
can be avoided.

Delivery Mode

When a message is sent to a destination, additional effort can be applied to
assuring that the message will always be stored in a local log or data store
before it is acknowledged as being transferred. This PERSISTENT delivery mode

Figure 10. Producers and Consumers

Message
Server

Messages
CONSUMER subscribes, receives

DESTINATION

PRODUCER publishes, sends

C
O
N
N
E
C
T
I
O
N

S
E
S
S
I
O
N

S
E
S
S
I
O
N

Getting Started with SonicMQ 37

Concepts

ensures that a message is safe from normal system outages and interruptions—
whether in its initial transfer to the message server, in durable subscriptions or
queues on the server, and even in transfers to other message servers and queues.

When messages have a NON-PERSISTENT delivery mode, the message throughput is
faster but messages are volatile—they might not be recoverable from an outage.

A message can also be NON-PERSISTENT_ASYNC, an even faster delivery mode
where the producer does not get blocked on its thread to the server when a
message is produced, effectively choosing no acknowledgement at all. As a
result, a strong flow of messages can be pushed to the server without delay.

Destinations

Destinations are the delivery labels in messaging. Rather than the place where
the message is ultimately delivered, a destination is the commonly understood
staging area for the message.

The overview of SonicMQ distinguishes the two JMS messaging domains:

n Publish and Subscribe (Pub/Sub) — Produces messages to a topic.
Prospective consumers of messages addressed to a topic simply subscribe
to the topic. While a message can have many subscribers (one-to-many),
the producer does not know how many subscribers, if any, exist for a topic.

n Point-to-point (PTP) — Produces messages to a named queue, placing
new messages at the back of the queue. Prospective consumers of
messages addressed to a queue can either receive the frontmost message
(thereby removing it from the queue) or browse through all the messages
in the queue, causing no changes. While several clients can access a queue,
a message is received by only one (one-to-one communication).

These messaging domains are substantially the same (except for some
semantic and syntactic differences) in terms of connection and session
management, message structure (types, headers, and properties), delivery
mode options, and delivery methods (blocking or asynchronous).

Chapter 1: Introducing Progress SonicMQ

38 Getting Started with SonicMQ

Publish and Subscribe Messaging: Broadcast the Message

The Publish and Subscribe messaging model involves a broadcast of messages:
Many subscribers get precisely the same message, as shown in Figure 11.

The Publish and Subscribe diagram shows three subscribers who have each
received message A and are about to receive message B then message C:

n A synchronous subscriber waits for a message - for a specified time or
forever - and then blocks to receive again after processing a message.

n A durable subscriber recorded an interest in receiving messages from the
message server on the selected topic, even when disconnected. Messages
are saved for durable subscribers, although a saved message can expire
while waiting for the durable subscriber to reconnect.

n An asynchronous subscriber has set up a message listener. When a
message arrives, the onMessage method delivers the message to the

Figure 11. Concept of Publish and Subscribe Messaging Topics

Message Server

Synchronous Subscriber

Asynchronous Durable Subscriber

Asynchronous Subscriber with
inclusive Message Selector

Message Subscribers
to Topic One

A

A

A

Topic One
A content node on a Message Server where

interested parties subscribe and listen for messages

B
C

Message Publisher
to Topic One

Getting Started with SonicMQ 39

Concepts

consumer process. In the diagram, this subscriber is noted to have a
message selector. The subscriber provided a string in SQL syntax as a
parameter when the subscriber was created. If the selection criteria are not
met, the application’s consumer does not take delivery of that message.

In the Pub/Sub model, a topic might have anywhere from no subscribers to
millions of subscribers. There is no statistical feedback to the publisher to
indicate demand but there is also no burden on the publisher when the number
of subscribers increases sharply.

How Publish and Subscribe Works

In the Pub/Sub paradigm, a producer is known as a publisher and a consumer
is a subscriber. A publisher initiates a message by sending an instance of a
message type object that has the appropriate body content as a payload and
header and property data exposed to aid in delivery and tracking. The publisher
declares the quality of service—delivery mode, time-to-live, and priority—as
well as whether a reply is requested from the consumer. The message server
returns a message identifier, and immediately distributes the message to all
consumers of that topic. If the delivery mode is PERSISTENT, the message is
placed in the message server’s log or message store before starting delivery.

In Figure 12, the Pub/Sub session thread has publishers producing messages to
topics maintained by the message server and subscribers consuming messages
that the message server delivered from topics where the session is subscribed.

After delivery of the message, the message server checks to see if any of the
subscribers to the topic are durable subscribers—subscribers who expressed

Figure 12. Publishing and Subscribing on a Topic Connection

C
O
N
N
E
C
T
I
O
N

Message
Server

Messages
SUBSCRIBER subscribes to Topics

Topic

PUBLISHER publishes messages to Topics

S
E
S
S
I
O
N

S
E
S
S
I
O
N

Chapter 1: Introducing Progress SonicMQ

40 Getting Started with SonicMQ

a durable interest in the message’s topic. If, after initial delivery, any durable
subscribers did not acknowledge delivery, the message is retained until the
expiration time in anticipation that a durable subscriber will connect to the
message server and accept delivery. The expiration time is calculated from the
time-to-live beyond the time of publication. A message can be set to live
forever but will still be discarded as soon as delivery to all current subscribers
and all durable subscribers is complete.

Asynchronous subscribers use a message Event Listener that will deliver the
message to the subscriber’s application for interpretation—de-encryption,
parsing, and passing to the message consumer’s methods.

Subscribers can filter the messages they receive by qualifying their
subscriptions with message selectors that will evaluate message headers and
properties (but not the content) with expression strings created with a subset of
SQL-92 semantics.

SonicMQ extends the JMS standard topic naming mechanism with
topic hierarchies (also referred to as hierarchical name spaces) specified
with a dot-delimited name string like Orders.Euro.Gov. The effort is minimal
for the publisher, yet there are significant administrative security advantages to
the client subscription. The subscribers to the topic node can, if granted
authority to do so, subscribe to all orders (Orders.#), only Euro orders
(Orders.Euro.#), all government messages (#.gov), or many other
combinations with a few simple template characters. Subscribers to the root
topic (““) get all messages by using (#).

Figure 13. Publishing Messages to Topics for Subscribers

Message Server

 Topics Subscribers
Durable Subscription fulfilled
within time-to-live of message

Publishers
Subscribers

Getting Started with SonicMQ 41

Concepts

Figure 13 describes how publishers send messages to topics and how the
messages are routed to normal and durable subscribers:

n Publishers are sending messages to specific topics.

n The message server is keeping track of messages and security for both
active and durable subscribers to topics and topic name spaces.

n As soon as messages are published they are distributed to the subscribers.
Durable subscribers who were inactive get messages when they reconnect
within a specified time.

Point-to-point Messaging: There is Only One Message

The Point-to-point messaging model ensures a singular delivery of a unique
message. A message is intended to be delivered to a single consumer.

Figure 14. Concept of Point-to-point Messaging Queues

Synchronous Receiver
polling for a message

Receiver with
an exclusive Message Selector

Receiver with
PreFetch Count="2"

Message Senders
to Queue One

Queue One
A known destination on a Message Server,

a staging area where receivers take unique messages.

Message Receivers
on Queue One

front

Prefetch
buffer

A
B

F

G

B

A

E

CDE

H

Chapter 1: Introducing Progress SonicMQ

42 Getting Started with SonicMQ

In Figure 14, the message senders send new messages to QueueOne, a
destination on the message server. The message server, unless advised that
there is a request for priority treatment, places new messages at the back of the
queue.

The messages in this illustration are being removed from the queue by three
receivers:

n A synchronous receiver waits for a message—for a specified time or
forever—and then blocks to receive again after processing a message. The
queue state above indicated that message E was the frontmost message
because messages A and B—while still in the queue—are awaiting
acknowledgement from another receiver.

n A receiver browsing with a Message Selector reviews qualified messages
on the queue to determine if any of them are messages that it wants to
process. In this example, the receiver selected and acknowledged messages
C and D. Assuming message F does not meet its criteria, this receiver
perceives a momentarily empty queue.

By also using a QueueBrowser, this receiver can scan through a queue
capturing the ever-changing queue image as it progresses. The
QueueBrowser mechanism can also let the sender peruse the queue to see
how message traffic is moving.

n A receiver with a PreFetch count of 2 took messages A and B off the
queue. Message B is held aside while message A is processed. When
message B enters processing, the threshold trigger compels the receiver to
draw off two more messages. The message server can keep track of these
messages in process and, unless acknowledgement is received, the
messages will be reinstated into the queue.

In the PTP model, each message is a unique item. But messages can disappear
without ever getting delivered. A message will simply expire when its time to
live has passed.

A message could, in more complex server exchange architectures discussed
later in this chapter, get stuck in a position where the sender is given confidence
that the message server accepted the message but other message servers,
routes, or destinations could create a state of doubt about final delivery. An
application can send messages with properties that express an intent to have the

Getting Started with SonicMQ 43

Concepts

dead message preserved or at least tell the administrator the reason it was
undelivered.

This concept, a Dead Message Queue, can work in concert with other Quality
of Service features to provide guaranteed persistence in the always-active yet
sometimes-disconnected networking environment of modern computing.

How Point-to-Point Communication Works

In the PTP paradigm, a producer is known as a sender and a consumer is a
receiver. Point-to-point messaging queues are explicitly created by the
administrator to allow for sequential caching of messages for their receiver.
While only one receiver will consume the latest message, several receivers
could be reading from the queue, taking turns consuming the latest message. A
PTP message producer sets headings, properties, and body content in much the
same way as Pub/Sub producers.

In Figure 15, the PTP session thread has senders producing messages to
destinations maintained by the message server, and receivers consuming
messages that the message server forwarded from queues where the session is
waiting to receive messages.

The receiver of a queued message, however, notices a remarkable difference
between the Pub/Sub and PTP paradigms. In PTP:

n The first message received is the first message delivered.
This FIFO technique makes the second through nth messages endure until
that first message is consumed. Even when no clients express interest in

Figure 15. Sending and Receiving on a Queue Connection

C
O
N
N
E
C
T
I
O
N

Message
Server

Messages
RECEIVER receives messages from Queues

Queue

SENDER sends messages to Queues

S
E
S
S
I
O
N

S
E
S
S
I
O
N

Chapter 1: Introducing Progress SonicMQ

44 Getting Started with SonicMQ

receiving messages from a queue, messages wait for a receiver until the
message expires. When a message’s delivery mode is set to PERSISTENT, the
message is stored so that even a message server shutdown will not put it at
risk.

n There is only one message consumer for a given message. Many
prospective receivers can balance the load, but only one takes delivery of
the message.

n When the message is acknowledged as delivered, it is removed from the
queue permanently. No one else sees it and no one else gets it.

Authorized users of the Queue Browser, a mechanism that examines queues,
can take advantage of durable sequential queues, to allow scanning messages
without destroying them.

In Figure 16, several FIFO queues are shown that might exist in a message
server’s queue session management. The queues are shown to have different
depths, portraying that the stack of messages persists until receivers take
messages off the queue as fast as they are added. The queues also show a
receiver taking a message.

The receiver could be one of many receivers who are standing by to receive the
topmost message. On the middle queue (BQ) in Figure 16, multiple receivers
are allowed but only one receiver gets the message: A queued message gets
delivered only once.

Figure 16. Sending Messages to Queues for Receivers

Message Server

Queues

AQ

BQ

CQ

Senders
Receivers

Getting Started with SonicMQ 45

Concepts

Queues are the preferred load-balancing paradigm when many diverse systems
can share processing operations mandated by heavy trading activities, credit
card charges, online shopping carts, auctions, reservations, and ticketing.

Messages

A SonicMQ message is fully compliant with the JMS specification of a
message with all attributes implemented plus a few important extensions. The
message types are:

n Message — Basic message where no body is required.

n TextMessage — A standard java.lang.String.

n XMLMessage — A SonicMQ-specific derivation of the TextMessage type,
specifically attuned to interpretation of the text as XML-tagged text.

n ObjectMessage — Serializable Java objects.

n StreamMessage — Stream of Java primitives, read sequentially.

n MapMessage — Set of name-value pairs where the values are Java
primitives.

n BytesMessage — Stream of uninterpreted bytes.

Structure

A message is comprised of a set of header fields, a set of extensible property
fields, and—in most cases—the body of the message:

n Header — A message header contains name-value pairs used by both
producers and consumers to identify and route messages. JMS-standard
header fields are JMSCorrelationID, JMSDestination, JMSDeliveryMode,
JMSMessageID, JMSTimestamp, JMSReplyTo, JMSRedelivered, JMSType,
JMSExpiration, and JMSPriority.

n Properties — Message properties can be any of several data types:
boolean, byte, short, int, long, float, double, or String. Custom-defined
properties provide name-value pairs that can be named, typed, populated,
sent, and then coerced by the receiver into other acceptable data types.
SonicMQ defines a few properties that it uses to control and manage
undeliverable messages.

Chapter 1: Introducing Progress SonicMQ

46 Getting Started with SonicMQ

n Body — The message body is a set of bytes interpreted as its message type.
SonicMQ provides the five message types defined by JMS and extends the
TextMessage type to implement the XMLMessage type. The message body is
actually optional: You can send a body-less message where the header and
property values contain all intended information.

Request/Reply

A message producer can declare that it wants more than just acknowledgement
from the message server that it received the message. The producer can set a
flag indicating that it would like any consumer of the message to provide an
explicit acknowledgement directly to the producer at a stated destination.

To confirm delivery to its consumer, the message field JMSReplyTo is used as an
indicator that a response is anticipated from the consumer and where that
response message should be sent. The action is in effect a reversal of roles
whereby the consumer is asked to produce the reply message and the original
message producer waits at the temporary destination to consume the return
message. While this certifies delivery, in its simplest form it is synchronous and
therefore a blocking action for the original producer. However, there are
mechanisms that enable asynchronous requests and replies.

Quality of Service

Each client application can independently configure the type of message
delivery for a particular destination. Quality of Service is supported by session
options and producer parameters:

n Acknowledgement Mode — The session option determines whether the
acknowledgment of communications between the client and the server are
controlled by the client, the server, or are simply done with reasonable
efforts.

n Message Expiration — Messages can be sent with a specific life span to
ensure that clients do not receive out-of-date information. When a message
expires, it is dropped from the queue or from the unfulfilled durable
subscriptions.

n Delivery Mode — A persistent message is stored in the message server’s
logs and repository for later delivery to potentially disconnected users.
This action provides a higher quality of service yet produces a

Getting Started with SonicMQ 47

Concepts

corresponding decrease in performance. A persistent message will survive
a system disconnection or unexpected restart. Persistence is maintained as
a message moves across servers as it is routed.

n Guaranteed Persistence — To make sure that a message will be delivered
or exist on a queue, a message can be flagged for transfer to the system
dead message queue when it expires or gets into an undeliverable
situation. On the DMQ, a message never expires and can only be discarded
by explicit action by the administrator.

n Priority — Messages can be sent with a priority value that encourages the
message server to position that message ahead of other messages in the
same queue or topic.

n Redelivery — The message server can make repeated attempts to redeliver
messages to each client that has not acknowledged receipt.

In addition, SonicMQ has features that enable application design patterns to
monitor the client server connection and take efforts to reconnect on a different
server when a server loses a connection.

Quality of Protection

Even when assured of persistence, message integrity can be compromised such
that unauthorized entities can read or change the message. SonicMQ provides
features that enable a message to have an enhanced Quality of Protection (QoP)
level:

n Integrity — The contents of the message cannot be altered without the
recipient (and possibly the sender) being informed of the changes.

n Privacy — The content of any individual message cannot be viewed by
anyone other than the intended recipient. When SonicMQ applies Privacy,
it includes Integrity as well.

Security

SonicMQ allows an administrator to associate a security policy with every
destination, determining which entities can produce or consume messages to
topics and queues. SonicMQ’s Access Control Lists (ACLs) manage the
authentication of usernames and the events and destinations where a user is
authorized to perform actions.

Chapter 1: Introducing Progress SonicMQ

48 Getting Started with SonicMQ

Getting Started with SonicMQ 49

Chapter 2 Setting Up SonicMQ Developer Edition

Contrasting Developer Edition and Other Editions
Consult your Progress representative to learn more about the SonicMQ
products and appropriate DBMS vendors for the persistent message store and
security database.

There are three editions of SonicMQ available:

n SonicMQ Developer Edition is fully functional as a basic message server
and is designed for easy installation. It is intended to let you get acquainted
with SonicMQ and to explore its features and performance by building and
testing a fully-functioning messaging system. The Developer Edition
server is constrained to accepting a modest number of clients, 100, but
every client connection must initiate from the same specified IP address.
The Developer Edition clients and the associated client resources are
common to all editions except that advanced security features are disabled.

SonicMQ Developer Edition requires no additional resources and will get
you working with SonicMQ quickly. As a result, you will be better
prepared to move to the next step: developing your complete application
with SonicMQ Professional Developer Edition and then deploying the
messaging server with the SonicMQ E-Business Edition.

n SonicMQ Professional Developer Edition is a fully-featured
development environment. This edition supports unlimited physical
connections, the Dynamic Routing Architecture, unlimited clustering, and
security with 40-bit encryption and 56-bit encryption but does not support
the deployment of applications. When you are ready to deploy, you can

Chapter 2: Setting Up SonicMQ Developer Edition

50 Getting Started with SonicMQ

move up to the SonicMQ E-Business Edition. See the SonicMQ
Installation and Administration Guide for more information about
SonicMQ Professional Developer Edition.

n SonicMQ E-Business Edition is a fully-featured deployment
environment. Designed for complex and high-use deployments, this
edition supports unlimited physical connections, the Dynamic Routing
Architecture, unlimited clustering, and security with 40-bit encryption and
56-bit encryption. See the SonicMQ Installation and Administration Guide
for more information about SonicMQ E-Business Edition.

When you realize that SonicMQ is the solution you need for your clients or for
your own business, Progress Software Corporation and its partners worldwide
are ready to help you plan your development, configuration, and deployment.

First Steps with SonicMQ Developer Edition
Getting started with Progress SonicMQ requires just a few of the common
steps for installing applications from media.

Requirements for SonicMQ Developer Edition
SonicMQ Developer Edition has been tested in a well-defined environment to
ensure straightforward setup and initialization. As a 100% Java solution,
various Java virtual machines and Java versions are compatible with SonicMQ.

The SonicMQ Developer Edition software contains all the required software
and documentation for installing, setting up, and running SonicMQ Developer
Edition including:

n Java Runtime Environment — The preferred JRE is installed and set up
for easy access by the SonicMQ Developer Edition.

Important See the SonicMQ Release Notes on the distribution media or www.sonicmq.com
for more information about the recommended SonicMQ Developer Edition
environments:
- Platform specifics.
- Disk and RAM requirements.

http://www.sonicmq.com

Getting Started with SonicMQ 51

First Steps with SonicMQ Developer Edition

Other Java Runtime Environments might be packaged on the distribution
media. See the SonicMQ Release Notes for information about installing
and setting up any of these alternate virtual machines.

n XML Parser —The IBM® XML Parser for Java Edition is installed and
set up for easy access by the SonicMQ Developer Edition.

Additional Software

While the preferred Java Runtime Environment is set during installation, you
might want to access other Java resources, as listed in Table 3, to modify the
samples and develop new JMS applications.

Important See the SonicMQ Release Notes or www.sonicmq.com for the latest data about
Java resources.

Table 3. Java Resources

Type Comments

Java Compiler No compiler is required or installed with the SonicMQ
distribution software. The samples consider
notepad.exe or vi as the basic editor.

JavaSoft
Java Development Kit
(JDK)

If you have the appropriate JavaSoft JDK installed on
your system, you can use its resources.

Java Virtual Machines
(JVM)

Multiple instances of disparate JVMs can run
concurrently on a single system.

Java Development
Environment (JDE)

Commercially available Java development
environments can be used to modify and compile
sample files and any Java files you create.

http://www.sonicmq.com

Chapter 2: Setting Up SonicMQ Developer Edition

52 Getting Started with SonicMQ

Deciding How to Setup the SonicMQ Developer Edition
The SonicMQ Developer Edition let you explore SonicMQ message server
capability fully and completely—excepting advanced security—from a set of
client applications on a single computer.

The Developer Edition can use a very robust system in terms of disk and
memory to perform effectively under some setups. This is because the only real
constraint in the this edition is that it accepts clients from a single IP address.
The first client connection to a server accepting connections declares the
accepted IP address for that server process. The following figures and
discussions explore what set ups are possible in the Developer Edition.

In Figure 17, the basic installation of the Developer Edition installs one
message server then creates several client applications that connect to that
server, all on the same system.

Figure 17. A System with the Developer Edition Server and Clients

IP Identity 1.1.1.1

Message
ServerClient F Client C

Client A Client B

Client E Client D

Getting Started with SonicMQ 53

First Steps with SonicMQ Developer Edition

You can extend the message server by installing more instances of the message
server on the same system and then relating them together to form a cluster.
Under that setup, you could create the cluster on one system and connect from
another system, as shown in Figure 18.

If you have the system resources and want to explore multiple nodes, you can
create multiple nodes and clients on one system, as shown in Figure 19.

Figure 18. Two Systems With the Developer Edition Node and Clients

Figure 19. Two Developer Edition Nodes on One System

Node
One

Client 2C

Client 2A

Client 2B

IP Identity 1.1.1.1 IP Identity 2.2.2.2

Node
One

Client A Client B

Client C Client D

Node
Two

Client W Client X

Client Y Client Z

IP Identity 1.1.1.1

Chapter 2: Setting Up SonicMQ Developer Edition

54 Getting Started with SonicMQ

When you want multiple nodes and want to get beyond a single local host, you
can alternate the systems where the nodes and clients reside.

When you decide how you are going to install the SonicMQ Developer Edition,
proceed to the registration and installation procedures.

Installing SonicMQ Developer Edition
If you have the required hardware, you are ready to install the SonicMQ
software. This installation of SonicMQ Developer Edition software is pre-
configured to use the embedded database that is packaged with the installer.
Consult your Progress Software representative or http://www.sonicmq.com
if you want to know more about other platforms and databases.

➤ To get a license key for a SonicMQ Developer Edition installation

You need a license key to extract the software from the media.

� Register your SonicMQ Developer Edition at http://www.sonicmq.com.

As soon as you register your SonicMQ product and provide your email
address, your license key will be sent to your e-mail address.
You will also gain access to the information and services for registered users

Figure 20. Two SonicMQ Developer Edition Nodes on Two Systems

Node
Two

Node
One

Client 2C

Client 2A

Client 2B

IP Identity 1.1.1.1 IP Identity 2.2.2.2

Client 1A

Client 1C

Client 1B

http://www.sonicmq.com
http://www.sonicmq.com

Getting Started with SonicMQ 55

First Steps with SonicMQ Developer Edition

including download access for the latest documentation, software upgrades,
and the online Developers Exchange.

➤ To install Progress SonicMQ Developer Edition from a CD

1. Insert the SonicMQ distribution CD into the system where you want to
perform a SonicMQ installation.

2. Use the Windows Explorer to locate setup.bat on the distribution media.

3. Double-click on the setup file to launch it. The SonicMQ Installer wizard
opens.

4. Follow the wizard prompts for installing SonicMQ.

5. When requested, enter the license key for your installation.

➤ To install Progress SonicMQ Developer Edition from a downloaded file

1. Use the Windows Explorer to locate the downloaded executable on your
system.

2. Double-click on the downloaded executable file name to launch it.
The SonicMQ Installer wizard opens.

3. Follow the wizard prompts for installing SonicMQ.

4. When requested, enter the license key for your installation. When
installation is finished the documentation portal page displays in your
default browser.

After the Installation Is Complete
When the Progress SonicMQ Developer Edition installation has completed
successfully, the software is ready to run. You do not need to reboot the
machine. The documentation page is displayed in your default browser.

The installed SonicMQ Developer Edition has the following characteristics:

n Connections are limited — One hundred concurrent client connections
allowed, all initiating connection from a single IP address.

n Security is not enabled — While you could reinitialize the database to
implement security, the basic install defers security to a later exercise after

Chapter 2: Setting Up SonicMQ Developer Edition

56 Getting Started with SonicMQ

exploring the samples. See the SonicMQ Programming Guide to learn how
to extend the samples by implementing security.

n Message Server database is ready — The database drivers are installed
and the embedded database instance has been initialized.

n Windows Start menu commands — The Windows Start Menu
commands are shown in Figure 21.

The Windows Start menu commands are:

– Admin Shell — Opens the Admin command-line console window
where you can enter administrator functions.

– Documentation — Accesses the Progress SonicMQ help
documentation portal that links to all the online documentation and
related Web sites.

– Explorer — Opens the administrator Java window for listing and
maintaining administered objects, security objects, and configurations.

– Start Broker — Starts the SonicMQ Message Server.

– Uninstall — Starts the process to remove the Progress SonicMQ
installation. You are asked to confirm this action to start the process.

Figure 21. SonicMQ Developer Edition Start Menu Commands

Getting Started with SonicMQ 57

What’s Next?

Starting the Message Server
You can now start the SonicMQ Message Server from the Windows Start menu
or from a Command Prompt window.

➤ Starting the message server from the Windows Start menu

� Choose Start > Programs > Progress SonicMQ > Start Broker.

➤ Starting the message server from a Windows console window

� In a new Command Prompt window set to the SonicMQ install directory,
type startbr.bat and press Enter.

➤ Starting the message server from a UNIX or Linux console window

� In a new console window set to the SonicMQ install directory, type
startbr.sh and press Return.

The Start Broker console opens and displays its information as the server starts
up. The message server is ready when it displays:

SonicMQ Broker started, now accepting tcp connections on port 2506...

You can minimize the Command Prompt window. Closing the window,
however, will stop the message server.

What’s Next?
When the message server is accepting, you can:

n Run the SonicMQ sample applications

n Take a minute to work with the SonicMQ Explorer

Running the SonicMQ Client Samples
The sample files provided with SonicMQ are ready to demonstrate the JMS
concepts on the server that is now running. See Chapter 3, “SonicMQ at Work”
to start using these samples.

Chapter 2: Setting Up SonicMQ Developer Edition

58 Getting Started with SonicMQ

Using the SonicMQ Explorer
The SonicMQ Explorer is a client that connects to a specific server. Designed
to perform administrator tasks as well as client tasks, the Explorer becomes
more valuable when you have created some content and better understand
some of the JMS client functions. To experience how the SonicMQ Explorer
can provide insight into messaging features, do the following procedures.

➤ Procedure 1: Start the SonicMQ Explorer under Windows NT

� Choose Start > Programs > Progress SonicMQ > Explorer.
The SonicMQ Explorer window opens at its root level.

➤ Procedure 2: Create a Connection

1. Click on Message Brokers in the Explorer tree.

2. Enter Broker Host localhost:2506.

3. Type Conn1 as the ConnectID.

4. Choose Connect. The Explorer view shows the connection:

➤ Procedure 3: Create a Session on the Connection

1. Click on the server you just connected to: localhost:2506:Conn1.

2. Type Sess1 for the Name of the new session.

Getting Started with SonicMQ 59

What’s Next?

3. Click Create. The Explorer view shows the new session:

➤ Procedure 4: Create a Publisher in the Session

1. Click on Publishers.

2. Type Topic1 as the Topic.

3. Click Create. The Explorer view shows the new publisher:

Chapter 2: Setting Up SonicMQ Developer Edition

60 Getting Started with SonicMQ

➤ Procedure 5: Create a Subscriber in the Session

1. Click on Subscribers.

2. Type Topic1 as the Topic then click Create. The Explorer view shows the
new subscriber:

➤ Procedure 6: Publish a simple Text message

1. Click on the line in the tree you just created: Publisher:Topic1.

2. Click the Body tab, click in the text box and then type Hello world.

3. Click Send. The Explorer view shows the new Text message:

Getting Started with SonicMQ 61

What’s Next?

➤ Procedure 7: View the message received as a Subscriber to the Topic

1. Click on the Subscriber:Topic1 you just created.

2. Select the one Received Message in the list.

3. Click the Body tab. Hello world. displays.

Closing the SonicMQ Explorer

After completing the Explorer set of procedures, feel free to explore the header,
properties, and body of a message. Before you go ahead to the next chapter to
see how the sample applications present the features of SonicMQ, close the
SonicMQ Explorer to recover concurrent clients and free system resources.

➤ To close the SonicMQ Explorer

The Explorer is a client. Closing the Explorer does not stop the message server.

� In the SonicMQ Explorer window, click the close box:

Note The basic Explorer functions are available for any Explorer login until the
administrator denies these privileges. Many other Explorer functions are
reserved for administrators. See the SonicMQ Installation and Administration
Guide for more information about the SonicMQ Explorer.

Chapter 2: Setting Up SonicMQ Developer Edition

62 Getting Started with SonicMQ

Getting Started with SonicMQ 63

Chapter 3 SonicMQ at Work

Trying Out the SonicMQ Samples
After you have successfully installed and started SonicMQ, it is time to get
acquainted with what SonicMQ can do for your business. The SonicMQ
samples are simple applications that demonstrate typical messaging features.

The samples in this book are grouped into sets of samples for each messaging
domain. Publish and Subscribe samples are presented first followed by the
Point-to-point samples.

Publish and Subscribe Domains (TopicPubSub Folder)
In the Publish and Subscribe domain, several sample applications run in
multiple console windows to demonstrate how messages are produced and
consumed through topics:

n Chat Application — When sessions are running Chat, a message entered
in one session is displayed in all windows.

n Message Monitor — The MessageMonitor sample uses a Java window to
monitor the messages in the entire topic name space.

n Durable Chat Application — When sessions are running, DurableChat
messages look similar to Chat, but if one of the sessions is interrupted,
messages are retained for it by the message server.

n Reliable Chat Application — The ReliableChat sample application
shows how to implement tactics that make connections more resilient.

Chapter 3: SonicMQ at Work

64 Getting Started with SonicMQ

n Selector Chat Application — Message delivery is constrained by the
defined message selection criteria in the SelectorChat sample.

n Hierarchical Chat Application — The HierarchicalChat sample
application demonstrates the advantages of using SonicMQ topic trees
over message selectors.

n Transacted Session — In a TransactedChat session, a set of entries is
buffered until a command indicates that the set of messages can be either
sent (committed) or ignored (rolled back). The buffer then flushes. This
sample uses two sessions to separate message producers and consumers.

n Request and Reply — A Replier is set up to consume a text message,
convert it to all uppercase characters, and then publish it to the topic where
the Requestor said it would wait for reply.

n XML Messages — In XMLChat, messages are translated into XML format
for publication and then interpreted when received by a subscriber.

Queue Point-to-Point Domains (QueuePTP Folder)
In the Point-to-Point domain, replicas of the Pub/Sub samples are run in
multiple console windows to see how messages are produced and consumed
through queues:

n Talk Application — When sessions are running Talk, a message entered
in one session is displayed in one other receiver window.

n Queue Monitor — The QueueMonitor sample uses a Java window to
review the messages waiting on a specified queue. While sessions are
running Talk without queue receivers, the messages that are waiting in the
queue are browsed.

n ReliableTalk Application — In ReliableTalk, a series of messages are
sent and received under specified settings to reveal basic performance in
the Point-to-point messaging domain.

n Selector Talk Application — Message delivery is constrained by the
defined message selection criteria in the SelectorTalk sample.

n Transacted Session — In TransactedTalk, a set of entries is stored until a
command indicates that the set of messages can be either sent (committed)
or ignored (rolled back). The buffer then flushes. This sample uses two
sessions to separate message producers and consumers.

Getting Started with SonicMQ 65

Using the SonicMQ Samples

n Request and Reply — A Replier is set up to consume a text message,
convert it to all uppercase characters, and then send it to the temporary
queue where the Requestor said it would wait for reply.

n XML Messages — XMLTalk messages are translated into XML format for
publication and then interpreted when received by the message’s
consumer.

n Map Messages — MapTalk messages are translated into map format—
name-value pairs—for publication and then interpreted when received by
the message’s consumer.

n Queue Round Trip Application — In RoundTripTalk, a series of
messages are sent and received under specified settings to reveal basic
performance in the Point-to-point messaging domain.

Using the SonicMQ Samples

If you installed the Professional Developer or the E-Business Edition:

n On Windows — The samples in this chapter work as described.

n With a Security database initialized — The samples in this chapter work
as described if usernames with a password are set up in the security
database.

n On a UNIX or Linux platform — The samples in this chapter work as
described but you must:

– Use the shell scripts (*.sh) rather than the batch files (*.bat).

– Substitute a forward slash (/) for any instance of a backslash (\).

Important The SonicMQ samples in this book are attuned to the SonicMQ Developer
Edition and the standards used on a Windows system.

Chapter 3: SonicMQ at Work

66 Getting Started with SonicMQ

Starting the Message Server
If the message server is not already running, start the SonicMQ message server
before running any of the samples. The following procedures are appropriate
for all types of SonicMQ installations.

➤ Starting the message server process from the Windows Start menu

� Choose Start > Programs > Progress SonicMQ > Start Broker.

➤ Starting the message server process from a Linux or UNIX console
window

� In a new console window set to the SonicMQ install directory, type
startbr.sh and press Return.

The console window is dedicated to the process and displays the message:
SonicMQ Broker started, now accepting tcp connections on port 2506...

Client Console Windows
Each sample application instance is intended to run in its own console window
with the current path in the selected sample directory, for example,
<install-dir>\samples\TopicPubSub\Chat

You can stop a sample application and reuse the console window.

Important The samples default to localhost:2506—a message server using port 2506 on
the same system, localhost. If you use a different host or port, you need to
specify the message server parameter when you start each sample; for
example:

 ..\..\SonicMQ Chat -u Market_Maker -b Eagle:2345

Warning You can minimize the console window. Closing the window, however, will stop
the message server.

Getting Started with SonicMQ 67

Using the SonicMQ Samples

Using the Sample Scripts
Each of the sample class files is located in a folder of the same name within its
domain. Accompanying each .class file are its Java source file and a
readme.txt file. For example, the Publish and Subscribe sample Chat is:

<install-dir>\samples\TopicPubSub\Chat\Chat.class

A universal script handler is installed at the Samples directory level. This script,
SonicMQ, sets the local Java \bin path, sets the local CLASSPATH, and then invokes
the executable with its parameters, the CLASSPATH, and a list of variables. The
script runs the sample applications but you might need to adjust it if you use
long parameter lists. Standard invocation of the script from a sample folder is
two levels down:

..\..\SonicMQ application parameter1_name parameter1_value ...

Note Consider all text to be case-sensitive. While there may be some platforms and
names where case is not distinguished, it is good practice to always use case
consistently.

Chapter 3: SonicMQ at Work

68 Getting Started with SonicMQ

Topic Publish and Subscribe Samples

Chat Application
The Chat application shows the most basic Publish and Subscribe activity:
whenever anyone sends a text message to a given topic, all active users receive
that message as subscribers to that topic.

Figure 22. Diagram of the Chat Application Functions

- create topic in the hierarchical name space for topics
- create publisher for a publishable topic
- create subscriber to a topic using the Message Listener
- start the MessageListener

Receive
message
for topic.

-THEN-

Publish
message to
subscribers

to topic.

Client

Create a Connection and Sessions

Create a Publisher and Subscriber

User Entity
as Publisher

if (stdin > null)

User Entity
as Subscriber

 onMessage (msg)

publisher.publish(msg)

getText

 system.out.println (string)

Start the Connection

Produce Message(s)

Listen and Receive Message(s)

Close the Connection

Connection Factory

Consume Message(s)

Message

Message Server

msg=username+":"+stdin

- create factory for message server and application
- create connect for authorized user
- create sessions (nontransacted, automatic acknowledgement):
 - Producer session for input and publishing
 - Consumer session for message listener on subscription

- connect.start()

- onMessage event, get the message
- read the message header, properties, and body type

string = textMessage.getText()

- create a message
- when message is ready, set header and property values
- publish the message

- connect.close()

- Do action (message)

Message

Getting Started with SonicMQ 69

Topic Publish and Subscribe Samples

In the Chat Session diagram shown in Figure 22, each of the groups of steps
describes a process in the Chat application running on the client system while
it communicates with the message server system. The processes that involve
both the client and the message server are noted with process blocks. The
extent of the active connection is highlighted in gray.

➤ Starting Chat

1. Open a console window to the Chat folder.

2. Enter ..\..\SonicMQ Chat -u Market_Maker

3. Open another console window to the Chat folder.

4. Enter ..\..\SonicMQ Chat -u OTC_Ticker

➤ Chatting

1. In one of the Chat windows, type text and then press Enter. The text is
displayed in both Chat windows preceded by the user name that initiated
that text.

2. In the other Chat window, type text and then press Enter. The text is
displayed in both Chat windows preceded by the user name that initiated
that text.

After running the Chat sample, consider that message services enable inter-
application communications without synchronous threads. For example, stock
quotes from markets could be streaming to subscribers in other markets who
display them on scrolling arrays. If they miss some of the messages, they just
pick up the latest whenever they reconnect to the message server. The message
volume could be huge, so no messages are retained and no messages are
guaranteed to be delivered.

Leave the Chat sessions running and proceed to the next sample where you
will start a Java window that will monitor the message traffic.

Note User names cannot contain the reserved characters period (.), pound (#), dollar
sign ($), or asterisk (*).

Chapter 3: SonicMQ at Work

70 Getting Started with SonicMQ

Message Monitor
An example of a supervisory application with a graphical interface is
MessageMonitor where the application listens for any message topic activity—
by subscribing to all topics in the topic hierarchy—and then displays each
message in its window:

n What messages are displayed? Messages that have been delivered.

n When does the display update? When a message is published to a
subscribed topic, it is added to the displayed list.

n What happens when the message server and monitor are restarted? As
messages are listed at the moment they are delivered, there are no
messages in the MessageMonitor until new deliveries occur.

➤ Running MessageMonitor

1. Open a console window to the MessageMonitor folder then enter:
..\..\SonicMQ MessageMonitor

The console window indicates that it has subscribed to #, the wildcard
character that means that all topics at all levels will be displayed.

The MessageMonitor window opens.

Now send some Chat messages.

➤ Chatting

1. In one of the Chat windows, type text and then press Enter. The text is
displayed in both Chat windows and the MessageMonitor window.

2. In the other Chat window, type text and then press Enter. The text is
displayed in both Chat windows and the MessageMonitor.

Getting Started with SonicMQ 71

Topic Publish and Subscribe Samples

The message traffic displays in the window. Figure 23 shows how several
messages might appear in the MessageMonitor window that were published to
the Chat topic, jms.samples.chat.

Leave the Chat sessions and the MessageMonitor running and proceed to the
next sample where you will publish and subscribe to a different topic.

Figure 23. Message Monitor Window

Chapter 3: SonicMQ at Work

72 Getting Started with SonicMQ

Durable Chat Application
When messages are published, they are delivered to all active subscribers.
Some subscribers register an interest in receiving messages that were sent
while they were inactive. They create durable subscriptions, permanent
records in the message server’s database. The DurableChat sample publishes its
messages to the topic jms.samples.durablechat.

Whenever a subscriber reconnects to the topic under the registered name, all
undelivered messages to that topic that are still alive will be delivered
immediately. The administrator can terminate durable subscriptions or a client
can use the unsubscribe method to close the durable subscription.

Getting Started with SonicMQ 73

Topic Publish and Subscribe Samples

Figure 24 shows what occurs when the subscriber requests an extra effort to
ensure delivery.

Figure 24. Sequence Diagram for the DurableChat Application

Y E S

C o n n ectio n

topic

acknow le dge

Y E S
Is the subscriber
sess ion ac tive?

Are there
m essages w aiting?

Server’s
P ersisten t
D ata S to re

top ic

C onnection :
- S tart

M es sag e Serve r
p ro cess

Publisher:
- P ub lish m essage to top ic

S ubscriber:
- L is ten (asynch)
- C onsum e

- A cknow ledge

S top and R estart
- C onnec tion and S ess ion

S ubscriber
- C reate Durab le S ubscrip tion
- C onsum e m essages sent to
 top ic by o ther publishers
- A cknow ledge

Session O bjects
- C rea te Top ic

- C rea te P ublisher

- C rea te S ubscription
- C rea te D urable S ubscription

C onnection :
- F ac tory ob jec t
- N ew C onnec tion
- S e t C lien tId
- N ew sessions :
 P ub lisher
 S ubscriber

T im e
to
live

produce
m essage

top ic
fo r

 durab le
 subscribers

C o n n ec tio n
F a cto ry

top ic

reques t connection

topic

nam e,
top ic ,
user

consum e
m essage

a ckn ow ledge

nam e, topic , user

P u b lish e r
Sessio n

Su b scrib er
Sessio n P u b lish er Su b scrib er

consum e
m essage

 nam e,
 topic ,
 user

top ic

Chapter 3: SonicMQ at Work

74 Getting Started with SonicMQ

➤ Starting DurableChat Sessions

1. Open a console window to the DurableChat folder, then enter:
..\..\SonicMQ DurableChat -u AlwaysUp

2. Open another console window to the DurableChat folder, then enter:
..\..\SonicMQ DurableChat -u SometimesDown

3. In the AlwaysUp window, type text and then press Enter.
The text is displayed on both subscriber’s consoles.

4. In the SometimesDown window, type text and then press Enter.
The text is displayed on both subscriber’s consoles.

5. Stop the SometimesDown sessions by pressing Ctrl+C.

6. In the AlwaysUp window, send one or more messages.
The text is displayed on that subscriber’s console.

7. In the window where you stopped the DurableChat session, restart the
session under the same name.

When the DurableChat session reconnects, the retained messages are
delivered and then displayed unless the messages have expired. The
publisher of the message decided to set the time-to-live parameter to
1,800,000 milliseconds (thirty minutes).

Note that the MessageMonitor, as a subscriber to all topics, displays all
messages from both the Chat sessions and the DurableChat sessions plus system
administrator messages. But, because Chat subscribes to jms.samples.chat and
DurableChat subscribes to jms.samples.durablechat, Chat messages are only
displayed in Chat sessions and DurableChat messages in their sessions.

You can stop the Chat sessions, the MessageMonitor, and the DurableChat
sessions before proceeding to the next sample.

➤ Stopping Sessions

� In a console window, press Ctrl+C. The application stops.

Note While at least one hundred clients can be active on any edition of SonicMQ,
the necessity of running each console window under a separate JVM instance
can exceed memory capacity when five or ten windows are running samples.

Getting Started with SonicMQ 75

Topic Publish and Subscribe Samples

Reliable Chat Application
The ReliableChat sample ensures the robustness of the JMS connection by
monitoring the connection for exceptions, and re-establishing the connection if
it has been dropped.

➤ Starting a ReliableChat Session

1. Open a console window to the TopicPubSub\ReliableChat folder, then
enter:

..\..\SonicMQ ReliableChat -u MustBeConnected

2. Type text and then press Enter. The text is displayed, preceded by the user
name that initiated that text. The message was sent from the client
application to the message server and then returned to the client as a
subscriber to that topic. The connection is active.

3. Stop the message server by pressing Ctrl+C in the message server window.
The connection is broken. The ReliableChat application tries repeatedly to
reconnect.

4. Restart the message server by using its Windows Start menu command or
the startbr script. The ReliableChat application reconnects.

You can stop the ReliableChat session before proceeding to the next sample.

➤ Stopping ReliableChat

� In the console window, press Ctrl+C. The application stops.

Note The next step presents an aggressive technique for emulating an unexpected
message server interruption. The proper technique for shutdown is to log in the
SonicMQ Explorer to the message server and then choose Shutdown. If you
are demonstrating this sample in a production environment, providing an
orderly shutdown will still demonstrate the intended application behavior.

Chapter 3: SonicMQ at Work

76 Getting Started with SonicMQ

Selector Chat Application
The SelectorChat application demonstrates how messages can be sent to a
single topic yet subscribers can select messages that they want to see. The
publisher assigns a value to a property in the message header. The subscriber
examines that property by declaring the selector (-s) that it wants to apply.

➤ Starting SelectorChat

1. Open a console window to the SelectorChat folder then enter:
..\..\SonicMQ SelectorChat -u Factory -s Specs

2. Open another console window to the SelectorChat folder then enter:
..\..\SonicMQ SelectorChat -u Support -s Recalls

➤ Chatting

1. In one of the SelectorChat windows, type text and then press Enter. The
text is only displayed in that SelectorChat window. The subscriber is
selecting messages based on a different selector string.

2. Stop the Support session by pressing Ctrl+C.

3. Restart the session, changing the selector string, as follows:
..\..\SonicMQ SelectorChat -u Support -s Specs and press Enter.

4. In either SelectorChat window, type text and then press Enter. The text is
displayed in both SelectorChat windows. The publisher set the property
value to the same value that the subscriber used to select messages.

You can stop the SelectorChat sessions before proceeding to the next sample.

➤ Stopping SelectorChat sessions

� In a console window, press Ctrl+C. The application stops.

Getting Started with SonicMQ 77

Topic Publish and Subscribe Samples

Hierarchical Chat Application
SonicMQ’s lets an application have the power of a message selector plus a
more streamlined way to often get the same result: A hierarchical topic
structure that allows wildcard subscriptions. In this sample, each application
instance creates two sessions, one for the publish topic (-t) and one for the
subscribe topic (-s).

➤ Starting HierarchicalChat Sessions

1. Open a console window to the HierarchicalChat folder, then enter:
..\..\SonicMQ HierarchicalChat -u HQ -t sales.corp -s sales.*

2. Open another console window to the HierarchicalChat folder.

3. Enter:
..\..\SonicMQ HierarchicalChat -u America -t sales.usa -s sales.usa

➤ Chatting

1. In the HQ window, type text and then press Enter. The text is displayed in
only the HQ window because it subscribes to all topics in the sales
hierarchy.

2. In the America window, type text and then press Enter. The text is
displayed in both windows.

You can stop the HierarchicalChat sessions before proceeding to the next
sample.

➤ Stopping HierarchicalChat Sessions

� In a console window, press Ctrl+C. The application stops.

Chapter 3: SonicMQ at Work

78 Getting Started with SonicMQ

TransactedChat Sessions
Transacted messages involve a session where groups of messages are buffered
on the message server until either of two conditions is met:

n The signal to commit the set of messages (in this sample, the string OVER)
is entered. To commit, the series of messages held by the message server
is released serially to subscribers, although not as a bound set.

n The signal to roll back the set of messages (in this sample, the string
OOPS!) is entered. To roll back, the message server is told to flush the series
of held messages without sending them to anyone.

After either a commit or a rollback, the session starts a new transaction.

➤ Starting TransactedChat

1. Open a console window to the TransactedChat folder.

2. Enter: ..\..\SonicMQ TransactedChat -u Audit

3. Open another console window to the TransactedChat folder.

4. Enter: ..\..\SonicMQ TransactedChat -u Orders

➤ Building a Transaction Then Committing It

1. In one of the TransactedChat windows, type text and then press Enter.
Notice that the text is not displayed in the other TransactedChat windows.

2. Again enter text in that window and then press Enter.
The text is still not displayed in the other TransactedChat windows.

3. Enter OVER

All of the lines you had entered are published to a topic and then delivered to
subscribers with the transaction setting marked true. The transaction buffer is
cleared. Subsequent entries will accrue into a new transaction.

Note Multiple Sessions — The TransactedChat sample wants to be able to commit
or roll back published messages but not affect messages received by
subscribers. The application creates two sessions—publishSession and
subscribeSession—on the one topic connection.

Getting Started with SonicMQ 79

Topic Publish and Subscribe Samples

➤ Building a Transaction Then Rolling It Back

1. In one of the TransactedChat windows, type text and then press Enter.

2. Again enter text in that window and then press Enter.

3. Enter OOPS!

Nothing is published. The transaction buffer is cleared. Subsequent entries will
accrue into a new transaction. After a commit or rollback, the session begins
accruing messages again for the next transaction.

All the samples that are running can be stopped now.

➤ Stopping TransactedChat sessions

� In a console window, press Ctrl+C. The application stops.

Request and Reply
While the producer of a message can provide for long-lived messages to
durable subscribers and acknowledgement from the message server, neither of
these techniques confirms to the sender that a message was delivered. To solve
this, SonicMQ lets you request a reply when a message is sent. The request sets
up a temporary topic for that request, and then the header information
compels the subscriber to publish a reply to the publisher of the original
message. A correlation identifier can be used to coordinate the activities.

In this simple example the replier is set up to simply fold the case—receive text
and send back the same text as either all uppercase characters or all lowercase
characters—of the requestor’s message and then publish the message to the
temporary topic that was set up for the reply.

➤ Starting the Pub/Sub Replier

1. Open a console window to the RequestReply folder.

2. Enter: ..\..\SonicMQ Replier

The default value is allowed for the result mode: uppercase.

Warning Start the replier before the requestor so that the replier’s message listener can
receive the message and release the blocked requestor.

Chapter 3: SonicMQ at Work

80 Getting Started with SonicMQ

➤ Starting the Pub/Sub Requestor

1. Open another console window to the RequestReply folder.

2. Enter: ..\..\SonicMQ Requestor

➤ Testing a Pub/Sub request and reply

� In the Requestor window, enter AaBbCc and then press Enter.

The Replier window reflects the activity, displaying:

[Request] SampleRequestor: AaBbCc

The replier does its operation (converts the text to uppercase) and sends the
result in a message to the requestor. The requestor window gets the reply
from the replier:

[Reply] Uppercasing-SAMPLEREQUESTOR: AABBCC

All the samples that are running can be stopped now.

➤ Stopping the Pub/Sub Replier

� In a Replier window, type EXIT, and press Enter. The application cleans up
the resources then closes the connection.

➤ Stopping the Pub/Sub Requestor

� In a console window, press Ctrl+C. The application stops.

This level of message certification adds considerable performance overhead to
message systems but is appropriate to financial transactions that must be
audited and reconciled, resulting in overall savings in time and the cost of
audits.

Getting Started with SonicMQ 81

Topic Publish and Subscribe Samples

XML Messages
XML documents are text documents composed of tagged text blocks that
provide a logical way to interpret the content of the message. An XML
processor, acting on behalf of an application, interprets the data structure by
parsing both the standard XML syntax and the Document Type Definitions
(DTD’s)—sets of rules that define the elements used in a document and their
relationships.

The Document Object Model (DOM) is an application programming interface
(API) for XML documents specified by the World Wide Web Consortium. It
defines the logical structure of documents and the way a document is accessed
and manipulated. The DOM is an object model that represents XML
documents in an application-independent form as a hierarchy of objects. The
sample application takes the input text, formulates it into XML syntax, and
displays it as DOM nodes.

➤ Starting an XMLChat Publisher

� Open a console window to the XMLChat folder then enter:
..\..\SonicMQ XMLChat -u Catalog_Update

➤ Starting an XMLChat Subscriber

� Open another console window to the XMLChat folder then enter:
..\..\SonicMQ XMLChat -u Aggregator

➤ Starting a Chat Subscriber

� Open a console window to the Chat folder then enter:
..\..\SonicMQ Chat -u Just_Text

Chapter 3: SonicMQ at Work

82 Getting Started with SonicMQ

➤ Sending an XML Message

� In the Catalog_Update window, type text—for example,
Gadget 1.00—and then press Enter. The text entry is formulated into
simple yet complete XML syntax.

n The Catalog_Update and Aggregator windows display the input as
Document Object Model Element nodes:

[XML from ’Catalog_Update’] Gadget 1.00
ELEMENT: message
 |--NEWLINE
 +--ELEMENT: sender
 |--TEXT_NODE: Catalog_Update
 |--NEWLINE
 +--ELEMENT: content
 |--TEXT_NODE: Gadget 1.00

n The Just_Text window, while it subscribes to same topic, does not
invoke the XML parser. It simply displays the XML data:

<?xml version="1.0"?>
<message>
 <sender>Catalog_Update</sender>
 <content>Gadget 1.00</content>
</message>

➤ Sending a TextMessage to the XML sessions

� In the Just_Text window, type text—for example, Hello—and then press
Enter. The TextMessage is sent to the subscribers.

n Both XMLChat sessions, Catalog_Update and Aggregator, handle the
instance of a TextMessage in its prescribed way:
[TextMessage] Just_Text: Hello

n The Just_Text Chat window displays the text in its usual way:
Just_Text: Hello

➤ Stopping a Sample

� In a console window, press Ctrl+C. The application stops.

All the samples that are running can be stopped now.

Getting Started with SonicMQ 83

Queue Point-to-Point Samples

Queue Point-to-Point Samples
In SonicMQ, a queue cannot be created dynamically from a client session. The
administrator must create a static queue before a queue can be used by a client.
The following samples assume that the sample queues were set up in the
message server database when SonicMQ was installed.

➤ To Review the Sample Queues

1. In Windows, choose Start > Programs > Progress SonicMQ > Explorer. The
SonicMQ Explorer window opens at root level.

2. Click on Message Brokers in the Explorer tree.

3. Type localhost:2506 in the Broker Host text box.

4. Enter any Connect ID text such as Conn1 then choose Connect.

5. Click on the message server you just connected to: localhost:2506:Conn1.

6. Click on Queues. The Explorer view lists the sample queues (SampleQ1,
SampleQ2, SampleQ3, and SampleQ4). Notice that each queue’s Exclusive
option is cleared to allow multiple concurrent receivers on that queue.

You can close the Explorer before continuing with the samples.

Warning If the sample queues are not listed, you need to create the queues. See the
SonicMQ Installation and Administration Guide for information about setting
up queues.

Chapter 3: SonicMQ at Work

84 Getting Started with SonicMQ

Talk Application
The Talk application seems similar to the Chat application where the Publish
and Subscribe paradigm is used. The difference that is immediately noticeable
is that the queue names are parameters when the Talk application is started.
You must specify either or both a queue for sending and one for receiving.

In Talk, two console sessions are started, each with a receiver and a sender
where one’s sender queue is the other’s receiver queue. Then, when you type
text and press Enter, the message is sent only to the indicated Talk partner. If
you started several receivers, only one of them would receive the message.

➤ Starting Talk

1. Open two console windows to the QueuePTP\Talk folder.

2. In one window, enter:
..\..\SonicMQ Talk -u Sales -qr SampleQ1 -qs SampleQ2

3. In the other window, enter:
..\..\SonicMQ Talk -u Orders -qr SampleQ2 -qs SampleQ1

➤ Talking

1. In the Sales window, type Here is an order. and then press Enter.
The text displays in the receiver’s console, Orders.

2. In the Orders window, type Order is confirmed. and then press Enter.
The text displays in the receiver’s console, Sales.

Stop the samples that are running now.

➤ Stopping a Sample

� In a console window, press Ctrl+C. The application stops.

Getting Started with SonicMQ 85

Queue Point-to-Point Samples

Queue Monitor
The QueueMonitor displays messages much like the Message Monitor sample
shown in the Topic Pub/Sub sample, MessageMonitor. But the nature of the two
monitors underscores fundamental differences between the two messaging
models:

n What messages are displayed? Messages that are not yet delivered.

n When does the display update? When you click the Browse Queues
button, the list is refreshed.

n When does the message go away? When the message is delivered (or
when it expires.)

n What happens when the message server and monitor are restarted?
Listed messages are in the message server database if they were sent with
the delivery mode PERSISTENT. These messages are redisplayed when the
message server and the QueueMonitor restart and then you choose to
browse queues.

➤ Starting QueueMonitor

1. Open a console window to the QueuePTP\QueueMonitor folder.

2. Enter: ..\..\SonicMQ QueueMonitor

The console displays the list of queues that it will monitor and then opens
the QueueMonitor window.

➤ Starting a Talk Session without a Receiver

Start a Talk application sending to SampleQ1 but no receiver queue.

1. Open a console window to the QueuePTP\Talk folder.

2. Enter: ..\..\SonicMQ Talk -u RFP -qs SampleQ1

➤ Queuing Messages and Browsing the Queue

1. In the Talk window, type First and then press Enter.

2. Type Second and then press Enter.

3. Type Third and then press Enter.

Chapter 3: SonicMQ at Work

86 Getting Started with SonicMQ

4. In the QueueMonitor Java window, click Browse Queues to scan the queues
and display their contents.

5. The QueueMonitor list the messages in a display similar to the window
shown in Figure 25.

➤ Receiving the Queued Messages

The messages that are waiting on the queue will get delivered to the next
receiver who chooses to receive from that queue.

1. Open a console window to the Talk folder.

2. Enter: ..\..\SonicMQ Talk -u FlushQ1 -qr SampleQ1

The queued messages are all delivered to the sole receiver on the queue.

You can close the QueueMonitor if you need to conserve memory resources.

➤ Stopping the QueueMonitor

� Close the QueueMonitor window.

Figure 25. QueueMonitor Window

Warning If you do not perform this procedure the stored messages will be received in
the next sample application that receives on that queue.

Getting Started with SonicMQ 87

Queue Point-to-Point Samples

Reliable Talk Application
The ReliableTalk sample ensures the robustness of the connection by
monitoring the connection for exceptions, and re-establishing the connection if
it has been dropped.

➤ Starting a ReliableTalk Session

1. Open a console window to the QueuePTP\ReliableTalk folder, then start a
session that sends and receives on the same queue by entering:
..\..\SonicMQ ReliableTalk -u EverReady -qr SampleQ1 -qs SampleQ1

2. Type text and then press Enter. The text is displayed, preceded by the user
name. The message was sent from the client application to the message
message server and then returned to the client as a receiver on that queue.
The connection is active.

3. Stop the message server by pressing Ctrl+C in the message server window.
The connection is broken. The ReliableTalk application tries repeatedly to
reconnect.

4. Restart the message server by using its Windows Start menu command or
the startbr script. The ReliableTalk application reconnects.

Stop the ReliableTalk session before proceeding to the next sample.

➤ Stopping ReliableTalk

� In the console window, press Ctrl+C. The application stops.

Note The next step presents an aggressive technique for emulating an unexpected
message server interruption. The proper technique for shutdown is to log in the
SonicMQ Explorer to the message server and then choose Shutdown. If you
are demonstrating this sample in a production environment, providing an
orderly shutdown will still demonstrate the intended application behavior.

Chapter 3: SonicMQ at Work

88 Getting Started with SonicMQ

Selector Talk Application
The SelectorTalk application demonstrates sending messages using
Point-to-point (Queues) with a Message Selector. When messages are sent to a
queue, a property is set in the message header to a value specified on the
command line. A separate command line value (-s) is used as a message
selector for messages in the receive queue.

➤ Starting SelectorTalk

1. Open a console window to the QueuePTP\SelectorTalk folder then enter:
..\..\SonicMQ SelectorTalk -u Factory -s Specs -qr SampleQ1 -qs SampleQ2

2. Open another console window to the SelectorTalk folder then enter:
..\..\SonicMQ SelectorTalk -u Support -s Recalls -qr SampleQ2 -qs SampleQ1

➤ Talking

1. In one of the SelectorTalk windows, type text and then press Enter. The
text is only displayed in that SelectorTalk window. The other subscriber
is selecting messages based on a different selector string.

2. Stop the Support session by pressing Ctrl+C.

3. Restart the session, changing the selector string by entering:
..\..\SonicMQ SelectorTalk -u Support -s Specs -qr SampleQ2 -qs SampleQ1

Notice that the messages that were waiting for receivers of specs on
SampleQ2 are now delivered to the session.

4. In either SelectorTalk window, type text and then press Enter. The text is
displayed in both SelectorTalk windows. The publisher set the property
value to the same value that the subscriber used to select messages.

You can stop the SelectorTalk sessions before proceeding to the next sample.

➤ Stopping SelectorTalk sessions

� In a console window, press Ctrl+C. The application stops.

Getting Started with SonicMQ 89

Queue Point-to-Point Samples

Transacted Talk Sessions
Transacted messages involve a session where groups of messages are stored in
the queue on the message server until the transactions are either committed as
a set or rolled back as a set. The TransactedTalk sample intends to commit or
roll back messages sent but not affect messages received. The application
creates two sessions—sendSession and receiveSession—on the one queue
connection.
When the notice to commit is entered, the series of messages held by the
message server is released serially to receivers, although not as a bound set. If,
at any point, the notice to roll back the set of messages is entered, the message
server is told to clear the series of messages from the queue. After either a
commit or a rollback, the session starts a new transaction.

➤ Starting TransactedTalk sessions

1. Open a console window to the TransactedTalk folder then enter:
..\..\SonicMQ TransactedTalk -u Accounting -qr SampleQ1 -qs SampleQ2

2. Open another console window to the TransactedTalk folder the enter:
..\..\SonicMQ TransactedTalk -u Operations -qr SampleQ2 -qs SampleQ1

➤ Building a Transaction Then Committing It

1. In one of the TransactedTalk windows, type text and then press Enter.
Notice that the text is not displayed in the other TransactedTalk windows.

2. Again type text in that window and then press Enter.
The text is still not displayed in the other TransactedTalk windows.

3. Enter OVER

All of the lines you had entered are sent to the designated queue and then
delivered to receivers with the transaction setting marked TRUE. The transaction
buffer is cleared. Subsequent entries will accrue into a new transaction.

Note When you start these sessions after running the SelectorChat samples, you
may find that the queue receivers get delivery of messages that were not
qualified by the selective receivers.

Chapter 3: SonicMQ at Work

90 Getting Started with SonicMQ

➤ Building a Transaction Then Rolling It Back

1. In one of the TransactedTalk windows, type text and then press Enter.

2. Again type text in that window and then press Enter.

3. Enter OOPS!

Nothing is published. The transaction buffer is cleared. Subsequent entries will
accrue into a new transaction. After a commit or rollback, the session begins
accruing messages again for the next transaction.

You can stop the TransactedTalk sessions before proceeding to the next
sample.

➤ Stopping TransactedTalk

� In a console window, press Ctrl+C. The application stops.

Request and Reply
In Point-to-point domains, the producer of a message can provide for long-
lived messages that persist in the queue’s datastore. The queue can be browsed
to see if the message is still on the queue. But once the message is delivered,
there is no implicit mechanism for reporting to the producer that the
application or client received it.

Much like its Publish and Subscribe counterpart, requesting a reply when a
message is sent sets up a temporary queue for that request; then the header
information compels the receiver to send a reply to the sender of the original
message. A correlation identifier can be used to coordinate the activities.

In this simple example the replier is set up to simply fold the case—receive text
and send back the same text as either all uppercase characters or all lowercase
characters—of the requestor’s message and then send the message to the
temporary queue that was set up for the reply.

The fundamental difference between the messaging domains is apparent in the
expected reply volume:

n Point-to-point (PTP)— At most, one reply can occur.

n Publish and Subscribe (Pub/Sub) — Any number (none to many) of
replies can occur.

Getting Started with SonicMQ 91

Queue Point-to-Point Samples

➤ Setting up PTP Request Reply sessions

� Open two (or more) console windows to the RequestReply folder.

➤ Starting the PTP Replier

� Enter ..\..\SonicMQ Replier -u QReplier in one of the windows.

➤ Starting the PTP Requestor

� Enter ..\..\SonicMQ Requestor -u QRequestor in the other window.

➤ Testing a PTP request and reply

� In the Requestor window, type AaBbCc and press Enter.

The Replier window reflects the activity, displaying:

[Request] QRequestor: AaBbCc

The replier does its operation (converts text to uppercase) and sends the
result in a message to the requestor. The requestor window gets the reply
from the replier:

[Reply] Uppercasing-QREQUESTOR: AABBCC

You can stop the sessions before proceeding to the next sample.

➤ Stopping the PTP Replier

� In a Replier window, type EXIT and then press Enter.

➤ Stopping the PTP Requestor

� In a Requestor window, press Ctrl+C. The Requestor application stops.

This level of message certification adds considerable performance overhead to
message systems but is appropriate to financial transactions that must be
audited and reconciled, resulting in overall savings in time and the cost of
audits.

Note It was important in the Pub/Sub Replier to prevent blocking by starting the
replier before the requestor sends a message. Under PTP, the queue sender
(PTP Requestor) is not blocked. The requestor can send a message before the
replier is available.

Chapter 3: SonicMQ at Work

92 Getting Started with SonicMQ

XML Messages
XML documents are text documents composed of tagged text blocks that
provide a logical way to interpret the content of the message. An XML
processor, acts on behalf of an application, to interpret the data structure by
parsing both the standard XML syntax and the Document Type Definitions
(DTD’s), rules that define the elements in a document and their relationships.

The Document Object Model (DOM) is an application programming interface
(API) for XML documents specified by the World Wide Web Consortium. It
defines the logical structure of documents and the way a document is accessed
and manipulated. The DOM is an object model that represents XML
documents in an application-independent form as a hierarchy of objects. The
sample application takes the input text, formulates it into XML syntax, and
displays it as DOM nodes.

➤ Starting an XMLTalk Publisher

� Open a console window to the XMLTalk folder then enter:
..\..\SonicMQ XMLTalk -u Supplier -qr SampleQ1 -qs SampleQ2

➤ Starting an XMLTalk Subscriber

� Open another console window to the XMLTalk folder then enter:
..\..\SonicMQ XMLTalk -u Picklist -qr SampleQ2 -qs SampleQ1

➤ Sending an XML Message

� In the Supplier window, enter text—for example,
2mm Widget, lot 50000, US$ 300 /M —and then press Enter. The text entry
is formulated into simple yet complete XML syntax.

The Aggregator window displays the input as nodes in a Document Object
Model Element tree:

[XML from ’Supplier’] 2mm Widget, lot 50000, US$ 300 /M
ELEMENT: message
 |--NEWLINE
 +--ELEMENT: sender
 |--TEXT_NODE: Supplier
 |--NEWLINE
 +--ELEMENT: content
 |--TEXT_NODE: 2mm Widget, lot 50000, US$ 300 /M
</message>

You can stop the XMLTalk sessions before proceeding to the next sample.

Getting Started with SonicMQ 93

Queue Point-to-Point Samples

➤ Stopping the Samples

� In a console window, press Ctrl+C. The application stops.

Map Messages
Map messages are message types that transfer a collection of assigned names
and their respective values. The names and values are assigned by set methods
for the Java primitive data type of the value.

For example:

MapMessage.setInt("FiscalYearEnd", 10)

MapMessage.setString("Distribution", "global")

MapMessage.setBoolean("LineOfCredit", TRUE)

The MapMessage name-value pairs are sent in the message body.

Application developers, defining the receiver functions for Map messages, can
extract the data from the received message in any order.

The MapMessage sample demonstrates that an instance of a MapMessage must be
received as a MapMessage to use its contents. The sample, however, is
constrained to accepting standard text input from the console.

Other data types and multiple data elements are easier to demonstrate when
you modify the Java source program to perform strongly-typed setting and
getting of name-value pairs in a Map message.

See the SonicMQ Programming Guide for information about Map messages.

Chapter 3: SonicMQ at Work

94 Getting Started with SonicMQ

Queue Round Trip Test Application
The QueueRoundTrip application sends and receives using multiple sessions and
a temporary queue. A temporary queue can guarantee that each instance of this
sample receives its own messages only. This sample shows the round trip time
for a message being sent to a queue on the message server and then received
from that queue.

➤ Starting QueueRoundTrip

When you simply start the text, the default number of messages is 100.

1. Open a console window to the QueueRoundTrip folder then enter:
..\..\SonicMQ QueueRoundTrip

2. Observe the statistics displayed:

Sending Messages to Temporary Queue...

Time for 100 sends and receives: ...ms

Average Time per message: ...ms

3. Press Enter.

4. You can specify the number of messages you prefer, for example 1000.
Enter: ..\..\SonicMQ QueueRoundTrip -n 1000

5. Observe the statistics displayed:
Sending Messages to Temporary Queue...

Time for 1000 sends and receives: ...ms

Average Time per message: ...ms

6. Press Enter.

Getting Started with SonicMQ 95

Stopping Client Sessions and the Message Server

Stopping Client Sessions and the Message Server
➤ Stopping client sessions and connections

1. In an active client console window, press Ctrl+C.

➤ Stopping the message server with the Explorer

1. Choose Start > Programs > Progress SonicMQ > Explorer.
The SonicMQ Explorer window opens.

2. Click on Message Brokers in the Explorer tree.

3. Connect to the Broker Host that you want to shut down, for example
localhost:2506.

The Explorer window appears similar to the one shown in Figure 26.

4. Choose Shutdown. The selected SonicMQ Broker Host shuts down.

Figure 26. Using the Explorer to Shutdown the Message Server

Chapter 3: SonicMQ at Work

96 Getting Started with SonicMQ

Getting Started with SonicMQ 97

Chapter 4 Next Steps

Overview
When you complete working through this Getting Started with SonicMQ
guide, there are several resources where you can learn more about Progress
SonicMQ and how Progress Software is committed to delivering
performance—not promises—with its e-Business Messaging Server.

Online Books and API Documentation
Open the Progress SonicMQ Documentation portal page, SonicMQ_Help.htm,
at the top of the installed SonicMQ directory to access all the distributed
documents— everything from the SonicMQ Release Notes to PDF-formatted
books to the online API files.

Web Sites
The latest SonicMQ information and downloads are always accessible by
registering at http://www.sonicmq.com. You can also search the
KnowledgeBase and visit the SonicMQ Developer Exchange.

Technical and Pre-sales Support
Our professional sales and support staff are ready to help you complete your
testing, purchase, and implementation of Progress SonicMQ.

In the USA, call 800.477.6473 ext. 4900 or email:
sonicmqpresales@progress.com for more information.

http://sonicmq.com

Chapter 4: Next Steps

98 Getting Started with SonicMQ

Uninstalling SonicMQ
If you need to remove Progress SonicMQ and want to recapture the disk space
and resources that the installation uses, follow these steps:

1. Stop all SonicMQ servers and clients.

2. Choose Start > Programs > Progress SonicMQ > Uninstall.

The SonicMQ Uninstall wizard opens.

3. You are asked to confirm that you want to uninstall SonicMQ:

– If you choose not to uninstall, nothing happens and the wizard closes.

– If you do want to uninstall, the wizard continues.

4. Follow the uninstaller wizard steps.

When you have completed the uninstall process, Progress SonicMQ is
removed from your system.

Getting Started with SonicMQ 99

Glossary

 A B C D E F G H I J K L M
 N O P Q R S T U V W X Y Z

A
Acceptor An object that listens for clients or for other servers.

Acknowledgement
Mode

In a nontransacted session, the type of acknowledgement a client application
expects when a message is delivered. In SonicMQ, the client application can
set one of the following for types of acknowledgement:

n AUTO_ACKNOWLEDGE

n CLIENT_ACKNOWLEDGE

n DUPS_OK_ACKNOWLEDGE

n SINGLE_MESSAGE_ACKNOWLEDGE

ACL Access Control List. The set of user/group privileges stored for security-
enabled SonicMQ servers or clusters.

ActiveX/COM A type of control that allows Windows users to run SonicMQ-enabled
components in applications like Progress 4GL, Microsoft Office, Internet
Explorer, Lotus® Notes, Lotus SmartSuite®, and Sybase® PowerBuilder.

Adjacent Routing
Node

Adjacent routing nodes are those nodes that have a server-to-server
connection with the current node.

Admin Tool A tool which provides a command-line or script-driven interface for the
administration of SonicMQ.

Glossary

100 Getting Started with SonicMQ

Administered Object Also called JMS administered object. An Object that is defined
independently of a SonicMQ server. Within the JMS specification, the
objects that can be administered are:

n ConnectionFactories: TopicConnectionFactory, QueueConnectionFactory

n Destinations: Topic, Queue

Administered Object
Store

A data store for administered objects. The object store can exist in either a
file system or a Java Naming and Directory Interface (JNDI) name space.

Administrative Client
Connection

A special kind of client connection used for Explorer, Admin Tool, or clients
that use the Management API.

Administrative
Notification

A management event the SonicMQ server generates when it finds messages
that have expired or that cannot be routed due to a network error.

Administrator A special user created by the installation of SonicMQ. Administrator is
established with all permissions on existing topics and queues.

Administrators A group created in the installation of SonicMQ. The Administrators group is
established with all permissions on existing topics, and contains the
principal user Administrator. Only members of this group can use the
Admin> or Explorer tools to maintain users, groups, and topics in security
enabled databases.

Advertising A flag in the routing information of a routing node. When advertising is
turned on, information about all known global queues in the node is sent to
the routing destination node for dynamic routing configuration purposes.
When advertising is turned off, the information is not sent.

Asynchronous
Delivery

See Delivery Method.

Authentication The process by which an entity proves its identity such as providing a
password. See Authorization.

Authorization The granting of specific rights to a user. Authorization generally involves the
administration of an access control list. For authorization to be secure, you
must use an authentication mechanism to prevent an attacker from assuming
a trusted user’s identity. See Authentication, Access Control List.

Auto Acknowledge See Acknowledgement Mode.

Getting Started with SonicMQ 101

Glossary

B
B2B Business to Business. (Also B to B.) Loosely-coupled applications in diverse

organizations that perform secure business transactions across disparate
hardware and software architectures.

Base64 Encoding A method for encoding binary files so they may be transferred easily. For
example, base64-encoded binary files can be sent in the body of an email
message.

Bastion Host A host machine that is a known entity on the Internet. It is highly exposed
and will be the point at which potential attackers will gain access to your
internal network and applications. It must be highly fortified.

Binary File See DER Encoded File.

Broker The SonicMQ message broker is also referred to as “message server.” See
Message Server.

Bytes Message A stream of uninterpreted bytes. This is useful when target applications
cannot read Java types or 16-bit Unicode encodings.

C
Client An application connected through an open connection to a JMS provider’s

service daemon. Clients may produce messages to, or receive messages
from, a destination on a connected message server.

Client Acknowledge See Acknowledgement Mode.

Client Connection A connection between a client and a message server or cluster.

Client Identifier
(ClientID)

An identifier associated with a client that, together with a subscription name
that the client assigns and the username, identifies a durable subscription.
The ClientID acts as a unique identifier when many clients might be using
the same user name and subscription name.

Cluster A collection of inter-connected servers. Each server within the cluster
communicates directly with every other server in the cluster.

Commit In a transacted session, sends a series of messages to consumers and disposes
of the series of messages consumed since the last call.

Glossary

102 Getting Started with SonicMQ

Configuration
Connection

A connection between a message server and its configuration server.

Configuration Server A SonicMQ server that controls the configuration of a server cluster. If
security is enabled, the configuration server administers security for the
entire cluster.

Connect ID A SonicMQ value that controls whether the server allows multiple
connections for users in a client application.

Connect URL An address that a server specifies for incoming routing connections. This is
advertised to the remote server when the current server first connects.

Connection A communications thread between a client and a server. Each connection is
used either in Pub/Sub messaging or in PTP messaging. The connection is a
single point for all communications between the client application and the
server.

Connection Factory An administered object that encapsulates a set of configuration parameters.
A JMS administrator can create Connection Factories for use by JMS clients.
A client application can choose to control the Connection Factories
explicitly. In SonicMQ there are two types of Connection Factories:

n In the Publish and Subscribe domain, a Connection Factory is a
TopicConnectionFactory. See Topic, Pub/Sub.

n In the Point-to-point domain, a Connection Factory is a
QueueConnectionFactory. See Queue, Point-to-Point.

Connection Protocol The protocol used to establish a connection; either TCP, SSL, or HTTP.

Consumer Recipient of messages sent by a producer to a server destination. The
consumer binds to a server destination to receive a message, then
implements the message’s delivery method. See Delivery Method,
Destination, Producer.

Correlation Identifier Used in request-and-reply messaging; a designated identifier that certifies
that each replier is referred to its original requestor.

Getting Started with SonicMQ 103

Glossary

D
Dead Message Queue

(DMQ)
A queue to store messages that are either destined to expire or considered
undeliverable. These messages include in-doubt messages and unroutable
messages.

Decryption The process of restoring the original text of a message from the encrypted
version. See Encryption.

Delivery Method The method selected by the client for message delivery. In SonicMQ, clients
can select from two types of delivery methods:

n Synchronous delivery — The client requests the next message using a
receive method that polls the session’s MessageConsumer for a
destination, then waits for a reply. A possible disadvantage to this
method is that the connection could be blocked indefinitely while the
MessageConsumer waits for a reply.

n Asynchronous delivery — The client registers a MessageListener. As
messages arrive, the provider calls the listener’s onMessage method. In
the case of an impaired connection, guaranteed messages remain in the
message server’s database until a connection is re-established. To avoid
backlogs, the producer determines how long a message will wait for a
consumer.

Delivery Mode A message producer parameter that specifies to the server whether the
message is non-persistent (volatile) or persistent. A message’s deliveryMode
is effective throughout its lifespan. The delivery mode for a message can be
one of the following:

n NON_PERSISTENT

n PERSISTENT

n NON_PERSISTENT_ASYNC

De-Militarized Zone
(DMZ)

A network layer added between the outside network (least secure) and
internal network (most secure) in order to add a level of security protection.

DER Encoded File A type of file for holding SSL certificates and private keys. Also referred to
as raw, DER encoded, or binary files.

Glossary

104 Getting Started with SonicMQ

DES Data Encryption Standard. A NIST-standard secret key cryptography
method that uses a 56-bit key. DES is based on an IBM algorithm which was
further developed by the U. S. National Security Agency. DES is very fast
and widely used. See Triple DES.

Destination The delivery labels in messaging. The producer sends a message to a
destination; the consumer then receives the message from this location. In
SonicMQ there are two types of destinations:

n Topic — Producers deliver messages to topics in Pub/Sub messaging.
See Topic, Pub/Sub.

n Queue — Producers deliver messages to queues in Point-to-Point
messaging. See Queue, Point-to-Point.

Digital Certificate An electronic identification that establishes a user's credentials when
transacting business on the Web. A certification authority issues a digital
certificate. It contains the user's name, a serial number, expiration dates, a
copy of the certificate holder's public key (used for encrypting and
decrypting messages and digital signatures), and the digital signature of the
certificate-issuing authority so that a recipient can verify that the certificate
is real.

Direct Access Queue In a trading partner portal application, a server in a portal cluster supports a
uniquely named direct access queue that enables applications to address
messages back to this server.

DOM Document Object Model. The parsed interpretation of well-formed XML
data into a tree structure that is easily incorporated into applications.

Domain The distinctive JMS models of messaging that describe each of the two
dominant approaches to messaging currently in use, Point-to-point (PTP)
and Publish-and-Subscribe (Pub/Sub).

DTD Document Type Definition. A structured text file that contains information
to validate the defined elements and attributes in an XML file.

DTP Distributed Transaction Processing. Covers the reference documents within
the specifications covering Communications Resource Manager interfaces
for transaction management: TX, CPI-C, XATMI, TxRPC, and XA.

Getting Started with SonicMQ 105

Glossary

Duplicates OK
Acknowledgement

Also called Dups_OK. See Acknowledgement Modes.

Durable Subscription A subscription where the client wants to receive all messages published on a
topic even if the client connection is not active. The server notes the durable
subscription and ensures that all messages from the topic’s publishers are
retained until either they are acknowledged by the durable subscriber or the
messages have expired. A durable subscription is not allowed for a
temporary topic. See Inactive Durable Subscription, Subscriber.

Dynamic Routing A remote server connecting with a routing node may use connections
initiated from the routing destination node.

Dynamic Routing
Architecture (DRA)

A multi-node architecture. Each cluster of servers or unclustered server is a
node. DRA provides a robust secure way to send messages from a server on
one node to a destination on another node.

E
Encryption Any method of encoding information so that it cannot be read except by the

intended recipient. The intended recipient must be able to decrypt the
received message.

Enterprise-Level
Connection Security

A condition where connections are made secure at the enterprise level, not at
the level of the ultimate user. This is essential for inter-enterprise secure
communication, because one enterprise generally will have no way to
authorize and authenticate individual users in the other enterprise.

Events List A table in the SonicMQ Explorer which displays the following types of
server events:

n Connect, which records every time a connection is opened

n Disconnect, which records every time a connection is closed

n Drop, which records every time a connection is lost without the client
being disconnected, for example, if the client dies

n Reject, which records every time a connection is rejected

Explorer A Graphical User Interface for the administration of SonicMQ.

Exterior Router A router that protects the inside network from the Internet.

Glossary

106 Getting Started with SonicMQ

F
Failover Connect-time failover is based on a client (or server acting as a client)

specifying a list of servers in a cluster to which it may initially connect. If
one connection fails, other connections from the list will be tried until either
a connection is made, or a timeout condition terminates the attempts.

Firewall A single component or a system of many components that protect a network
from other networks, or more specifically protects a private network from the
Internet. A private network is a network that you want to protect from
attacks. A firewall restricts access to a private network to specific access
points.

Flow Control The ability of a message server to refrain from accepting messages sent to a
destination when the physical resources allocated to the destination are
below a specified level. This technique tries to moderate spikes in message
traffic. Applications can choose to either accept the delays and proceed as
slowly as traffic permits or throw an exception and handle the result.

G
Global Destination When two routing nodes connect, they can optionally advertise to each other

the names of the remote queues that each supports. These become the list of
Global Destinations known to a server.

Group A collection of one or more users. See principal.

H
Header See Message Header.

Hierarchical
Namespace

A naming technique that SonicMQ uses to allow subscriptions to multiple
topics. In a hierarchical namespace, topics are arranged in a tree structure, so
each topic (except the root) is the child of another. In SonicMQ, a child topic
inherits security from its parent topic. Hierarchical namespaces let the
SonicMQ Security Administrator assign security using wildcard matching to
specify all children, or all descendents, of a given topic. Hierarchical
namespaces can also be used to assign security to queues.

Getting Started with SonicMQ 107

Glossary

Hop Count The number of routing connections traversed by a message. Each forwarded
destination message increments the hop count. This allows shortest paths to
be detected and saved for routing.

HTTP Tunneling For security reasons, many firewalls are configured to restrict traffic to a
single port, typically port 80, and only if the traffic protocol is HTTP. With
HTTP tunneling, traffic is converted to HTTP and directed to port 80 so it
can pass through the firewall.

I
Identifier A value returned to indicate a successful or failed function call. A non-

negative identifier indicates a successful function call; an identifier with a
negative value indicates a failure. Identifiers are defined for the SonicMQ
ActiveX/COM control so that its API flattens the object-oriented structure of
the JMS API, thus creating a single API.

Inactive Durable
Subscription

A durable subscription that exists but does not currently have a message
consumer subscribed to it. See Durable Subscription.

In-doubt Message A message whose delivery has been interrupted by network or hardware
failure. In either case, a message has been forwarded to another routing
connection, but the handshaking needed to ensure exactly-once delivery
does not occur.

Inherit Describes the way that the default security policy of a topic or queue is
propagated from the policy of its parents in the topic or queue tree.

Also refers to a particular kind of permission that may be given to a user for
publishing, subscribing, sending, or receiving. If a user has Inherit
permission, then:

n The user is granted permission if at least one group to which the user
belongs has Grant permission.

n The user is denied permission otherwise.

Integrity See Quality of Protection.

Glossary

108 Getting Started with SonicMQ

Interior Router A router that is placed at the point of entry to an inside network.

Interserver
Connection

A connection between a message server and its peers in a SonicMQ cluster.
Servers connected through an interserver connection form a SonicMQ
cluster.

J
JMS Java Message Service.

JMS Administered
Object

An object containing JMS configuration information that is created by a JMS
administrator and later used by a JMS client. Defined in the Java Messaging
Service, Version 1.0.2.

JNDI Java Naming and Directory Interface.

L
Load Balancing A method of distributing connections over several message servers in a

cluster to avoid creating a bottleneck that might result from overloading a
server.

Local Management Describes the situation in an inter-enterprise messaging system where each
enterprise controls access using a locally-maintained list of access control
rights.

Log May refer to a server log or a server recovery log. A server log is an optional
text file containing output that would otherwise be sent to the console. A
server recovery log is a binary file that allows a server to recover its state in
the event of a system crash.

Logical Queue An individual physical queue for which you want to specify nondefault
security using the Queue Security tab in the Explorer.

Lookup Name A symbolic name which lets a JMS client retrieve the data necessary to make
connections to a server and produce and consume. The SonicMQ Admin
Tool and SonicMQ Explorer can set up the association between a lookup
name and the data.

Getting Started with SonicMQ 109

Glossary

M
Map Message A set of name-value pairs where names are strings and values are Java

primitive types.

Message A package of bytes that encapsulates the message body and then exposes
metadata that identify, at a minimum, the following message components:

n timestamp

n priority

n destination

n message type

n message body (for most message types)

Message
Authentication Code

(MAC)

A code used to check the integrity of encrypted file, based on a secret key.

Message Body A set of bytes interpreted as the message type. SonicMQ provides the five
message types defined by JMS, and extends the Text type to implement the
XML message type. See Message Type.

Message Header Contains values used by both clients and servers to identify and route
messages. JMS-standard header fields are JMSCorrelationID, JMSDestination,
JMSDeliveryMode, JMSMessageID, JMSTimestamp, JMSReplyTo,
JMSRedelivered, JMS Type, JMSExpiration, JMSPriority.

Message Listener Invoked by a topic subscriber to initiate asynchronous monitoring of the
session thread for subscriber messages. When the listener is assigned just
after the topic subscriber is created for the session, the listener is bound to
that topic.

Message Properties Can be any of the following data types: boolean, byte, short, int, long, float,
double, String. Customer-defined properties provide name-value pairs that
message producers can name, type, populate, and send. Receivers can coerce
these custom-defined properties into other acceptable data types. Some
property names are reserved for JMS optional properties used by SonicMQ
(JMS_SonicMQ_*) such as those used by dead message queues.

Glossary

110 Getting Started with SonicMQ

Message Receiver A synchronous call to fetch messages for a topic subscriber. In SonicMQ
there are three methods to manage message receipt:

n Receive — Receives the nest message produced for the subscriber. This
call blocks indefinitely until a message is produced. When a receive
method is called in a transacted session, the message remains with the
subscriber until the transaction commits.

n Receive with Timeout — Receives the next message within a specified
time interval and causes a timeout when the interval has elapsed.

n Receive No Wait — Receives the next available message immediately or
instantly times out.

Message Selector Used by message consumers to filter messages. Message selectors evaluate
message headers and properties with expression strings created with a subset
of SQL-92 semantics. Message selectors do not evaluate message content.

Message Server Listens on a port on its host system to provide server services to its clients.
The SonicMQ message server does the following:

n Manages the persistent data store. See Persistent Data Store

n Provides simultaneous multi-protocol support for connections (TCP to
HTTP & SSL)

n Logs activities

Message Type In SonicMQ there are seven message types:

n Message — Basic message; no body is required

n TextMessage — Standard java.lang.String

n XMLMessage — SonicMQ-specific derivation of the Text type;
specifically attuned to interpretation of the text as XML-tagged text

n ObjectMessage — Serializable Java objects

n StreamMessage — Stream of Java primitives, read sequentially

n MapMessage — Set of name-value pairs where the values are Java
primitives

n BytesMessage — Stream of uninterpreted bytes

Getting Started with SonicMQ 111

Glossary

Metric Generic term for a statistic captured by the Explorer for monitoring a
SonicMQ server. SonicMQ captures the following metrics:

n Memory Usage

n Physical Connections

n Msgs Rcvd

n Msgs Rcvd/sec

n Bytes Rcvd/sec

n Msgs Dlvd

n Msgs Dlvd/sec

N
Node A single server or cluster of servers where configuration can be centrally

administered, and where clients and servers can be seamlessly connected.
In the Dynamic Routing Architecture approach, each cluster of servers or
unclustered server functions as a node in a routing network.

NT Service A Windows NT feature. Once you have set up a server as a Windows NT
service, it can be automatically or manually launched and shut down by
using the Services application in the Control Panel group.

O
Object Message A message that contains a serializable Java object.

P
Packet Data to be transferred across a network is broken up into parts called packets.

These packets are sent across the wire separately. This system of packets is
necessary for many systems to share a network and be fair about sending
data between them.

Packet Filtering
Router

A special kind of router. In addition to asking the question, "Where do I send
this packet?" it asks, "Should I send this packet?" It answers this question by
checking the security rules that are defined for it. See Router.

Glossary

112 Getting Started with SonicMQ

PBETool A command line tool to DES-encrypt and DES-decrypt a broker.ini file.

Permission In SonicMQ the administrator of a security-enabled server may grant or deny
various permissions to users or groups. These are permissions to publish or
subscribe to a topic and to send or receive to a queue. If a permission is
neither granted nor denied, it will be inherited. See Inherit.

Persistent Data Store A data source bound to a message server that provides the repository for all
the administered data, the security database, and the message store.

Persistent Data SonicMQ has three types of persistent data:

n Message Store — Stores and retrieves queues, persistent queued
messages, and messages held for durable subscribers and their
subscriptions.

n Security Database — When security is enabled, manages the Access
Control Lists for authentication of users and permission for users to read
and write to queues and topics.

n Configuration Server — When multi-server activities are enabled,
maintains the configuration so that multiple servers can interact,
enabling robust and secure server cluster topologies.

Ping A method that lets the application detect when a connection gets dropped by
setting an interval to check the presence and alertness of the message server
on a connection. This technique is particularly useful for connections that
listen for messages, but do not send messages.

Point-to-Point (PTP) A type of messaging, in which a producer delivers a message to a specified
static queue at the message server, placing new messages at the back of the
queue. Consumers can either receive the first message in the queue or browse
through all the messages in the queue. When a consumer receives a message,
that message is removed from the queue. Point-to-Point is referred to as one-
to-one communication because, although multiple consumers can access a
queue, each message is received by one and only one consumer.

Portal A server that has a routing queue. The term Marketplace Portal may be used
to describe a portal in some architectures.

Getting Started with SonicMQ 113

Glossary

Prefetch Count The number of messages that the receiver will take off the queue to buffer
locally for consumption and acknowledgment. The default PrefetchCount
value is 3.

Prefetch Threshold The minimum number of messages in the local buffer that will allow a new
receiver to append more messages to the buffer. The default
PrefetchThreshold value is 1.

Principal The term used in SonicMQ for an individual user or group.

Prior Connections
Table

While connecting to servers, Explorer maintains a list of known hosts,
Application IDs, and users in the explorer.ini file of the working directory.
This data is known as the prior connections table and is read when Explorer
starts to initialize the connection table.

Priority A message producer parameter that determines the position of the message
in the delivery waiting list. When messages for a message consumer are
awaiting delivery, the higher priority messages move to the front of the
delivery waiting list, which is otherwise ordered First In First Out (FIFO).
See Queue.

Privacy See Quality of Protection.

Producer Sends messages to a specified destination in the server. These messages are
received by consumers from the server destination. The producer packages
and encrypts the message body, and identifies the service level and
protection for the outbound message. See Consumer, Destination.

Proxy Server Software that is in charge of dealing with external (least secure) servers on
behalf of internal (most secure) clients. Proxy servers relay requests for
information from your site to other sites and then relay requested
information back to your site. In short, a proxy server talks with other
Internet sites on behalf of your site. This software is often part of a firewall.

PTP See Point-to-Point.

Pub/Sub See Publish and Subscribe.

PUBLIC A special group that is established when SonicMQ is installed. PUBLIC
represents all authenticated users in the system and by default, members in
this group are given all permissions on all topics.

Glossary

114 Getting Started with SonicMQ

Publish and Subscribe
(Pub/Sub)

In Pub/Sub messaging a producer (publisher) delivers a message to a
specified topic at the message server. Consumers (subscribers) subscribe to
a topic to receive messages published to that topic. Pub/Sub is referred to as
one-to-many communication because all consumers subscribed to a topic
receive all messages published to that topic.

Publisher A message producer in Pub/Sub messaging. The publisher declares the
quality of service (delivery mode, time-to-live, and priority), as well as
whether a reply is requested from a consumer (subscriber).

Q
Quality of Protection

(QoP)
The type of security protection afforded to a message. SonicMQ allows three
levels of QoP:

n None.

n Integrity — The message is guaranteed not to have been changed in
transit.

n Privacy — The message is encrypted so that even if it is intercepted, it
can not be read as sent. In SonicMQ, whenever a message has privacy it
also has integrity.

Quality of Service
(QoS)

The set of services that exchange time and resource overhead for a deeper
commitment to secure, accurate message delivery. The advantage of a broad
QoS is that simple information updates can be expedited and crucial business
information can be micro-managed.

Queue In PTP messaging, messages are produced to a named queue. New messages
are placed at the back of the queue unless they have a specified priority
higher than other messages in the queue. Prospective consumers either
receive the frontmost message from the queue (thereby removing it from the
queue), or browse through all the messages in the queue, causing no changes.

n Global queue — A queue that can be accessed from remote routing
nodes.

n Local queue — A queue that can only be reached from direct clients of
the server.

See Point to Point, Priority.

Getting Started with SonicMQ 115

Glossary

Queue Browser A mechanism that examines queues and allows users to scan messages
without destroying them. Users must be authorized to use this tool.

Queue Connection An active PTP connection to a SonicMQ message server.

Queue Group Queue groups are created automatically when servers within a routing node
advertise global support for identically named queues, called replicated
global queues.

QueueConnection
Factory

An administered object used to create a connection that binds a PTP client
to a message server at runtime.

R
Random List Access A method for accessing a connection URL list. The server to be tried first

will be selected randomly. Random start can be used to increase throughput
for high-traffic scenarios by not overloading the servers at the start of the list.

Raw File See DER Encoded File.

Receiver A consumer in Point-to-point messaging. The message server forwards
messages to the receiver from queues where the session is waiting to receive
messages. There is one and only one receiver for each message in a queue.

Recover A session’s recover method is used to stop a session and restart it with its first
unacknowledged message. This method is helpful in the case where a large
number of unacknowledged messages has accumulated. Recover methods
are most often needed when the acknowledgement mode is
CLIENT_ACKNOWLEDGE.

Remote Queue A queue used for sending messages to remote routing nodes. A Remote
Queue name is composed of a routing node name and a queue name,
separated by double-colons (::). You can create a QueueSender for a Remote
Queue, but not a QueueBrowser or QueueReceiver.

Remote Server The actual server at the other end of a routing connection. SonicMQ log
messages typically refer to a Remote Server by showing the routing node
name and the server name, separated by a colon, for example
Portal:serverA.

Reply A message sent in response to a request.

Glossary

116 Getting Started with SonicMQ

Request A message expecting a response. Requests contain a JMSreplyTo value in the
header, specifying a destination to which a reply to that message should be
sent. If the JMSreplyTo value is null, no reply is expected.

Retrieve Threshold When the total size of messages, in KB, stored in memory is less than or
equal to Retrieve Threshold, messages in the database are downloaded into
memory, subject to the restriction that there can be no more than Save
Threshold KB of messages in memory. See Save Threshold.

Rollback In a transacted session, destroys the series of messages staged since the last
call without sending them. In a session that is both sending and receiving, a
rollback destroys the produced messages staged since the last call, and
redelivers the series of consumed messages retained since the last call.

Route Table A table used to dynamically maintain information on global queues for
routing purposes. It allows the routing queue to determine where messages
should be sent during routing.

Route Table
Forwarder (RTF)

The propagation of routing information is handled by the route table
forwarder (RTF) and is referred to as advertising. The RTF accepts route
information from other servers in the system, and forwards this information
to other servers. The RTF is responsible for updating the information in the
Route Table as informational messages are processed. The RTF also obtains
current route information from neighboring servers when the routing system
is initialized. The RTF needs access to the logical connections in a server.

Router Either a separate piece of hardware or a piece of software running on a host
machine that decides where to send packets that are directed to it. The
packets travel from router to router until they reach their destination. Each
router in the network seeks to answer one question: "Where do I send this
packet?" Each router interfaces with other routers to find out the answer.

Getting Started with SonicMQ 117

Glossary

Routing A routing definition includes the following information for a node:

n A list of connection URLs

n A username associated with the routing

n A flag which indicates whether the node allows connections URLs to
servers in the node to be reset for load balancing

n A flag which specifies whether connection URLs to servers in the node
are made sequentially or randomly

n A connection timeout

n A flag which specifies whether advertising is turned on or off

n A flag which specifies whether the routing is static or dynamic

The SonicMQ administrative tools set the routing information for a routing
node. See Username, Advertising, Static Routing, Dynamic Routing.

Routing Connection Routing connections map a given routing node name to a list of possible
connection URLs (for example, ssl://marketplace.progress.com:2506).
When a routing connection to a routing node is required, a server cluster
connection is made using one of these connection URLs. When a routing
connection is active, then the active connection is used and the connection
URL list is not examined.

Routing Connection
Table

For pre-configured connections, a table of connection routing information
called the routing connection table is stored with the configuration database.
In a clustered configuration the routing connection table is centrally
administered in the configuration server. It defines the connection
parameters and options used to establish new connections to a given routing
node, if no active connections exist.

Routing Node A message server (standalone or as a member of a cluster) that is configured
to allow server-to-server queue routing. A routing node has an associated
routing node name shared by all servers in the routing node.

Routing Node Name The name used to identify a routing node. When two servers connect for
queue routing, each can advertise the list of remote queues supported. You
can configure servers to disable this routing.

Glossary

118 Getting Started with SonicMQ

Routing Queue A SonicMQ system queue that the message server populates with messages
that are destined for a remote queue. The routing queue, which is
automatically created on servers in a routing node, stores the messages until
a routing connection is established and the messages are forwarded to the
remote routing node. The defaule routing queue name is
SonicMQ.routingQueue.

Routing User A special user stored in a SonicMQ security database that is authorized to
connect server-to-server for routing purposes. When a server has security
enabled, all connections from other routing nodes must identify themselves
with a valid routing user name. A routing user has one and only one
associated routing node name by which this user can by identified.

S
Save Threshold The maximum total size of messages, in KB, that can reside in memory at

one time. As additional messages are sent to the queue, they are saved in the
database. See Retrieve Threshold.

Scalability Used to describe an architecture where you can effectively add resources as
traffic increases.

Secure Socket Layer
(SSL)

A protocol that enables encrypted, authenticated communications across the
Internet.

In an SSL connection, each side of the connection must have a Security
Certificate, which each side’s software sends to the other. Each side then
encrypts what it sends using information from both its own and the other
side’s Certificate, ensuring that:

n Only the intended recipient can decrypt it.

n The other side can be sure the data came from the place it claims to have
come from.

n No one has tampered with the message.

Security
Administrator

A person whose job it is to administer security. The SonicMQ Security
Administrator manages security by using the SonicMQ Explorer, the Admin
Tool, or the Management API.

Getting Started with SonicMQ 119

Glossary

Security Policy A set of rules that defines access to and from a corporate network. A security
policy must balance the risks and benefits of distributed information and
establish acceptable guidelines for employee behavior. A security policy
often limits the freedom that external (typically Internet) users have to
corporate data and limits the access that internal users have to corporate or
external sources of data.

Sender A message producer in Point-to-point messaging. The sender sets headings,
properties, and body content for the messages, then produces the messages
to destinations maintained by the message server.

Sequential List Access A method for accessing a connection URL list. The first server in the list will
be tried first. Sequential start is simple and works well for most applications.

Server See Configuration Server, Message Server.

Session A JMS session represents a single thread of activity. All messaging is done
through a session object. Each message handler is associated with a single
session; a session can have multiple message handlers. The session interface
is determined by the messaging paradigm chosen for the connection (either
Pub/Sub or PTP).

Single Message
Acknowledge

See Acknowledgement Modes.

SSL Acronym for Secure Sockets Layer.

Static Routing For a static routing connection, a remote server connecting with the routing
node always establishes a connection to a server that you specify.

Stream Message A stream of Java unkeyed primitive values that is filled and accessed
sequentially.

Subscriber A message consumer in Pub/Sub messaging that receives messages when it
is active and has specified an interest in a topic. See Durable Subscription.

Subscription Name The arbitrary string name that identifies a durable subscription and its
message selector string. Typically used as a title for the message selector
string, perhaps on a server.

Synchronous Delivery See Delivery Method.

Glossary

120 Getting Started with SonicMQ

T
Template Character See Wildcard.

Text Message A message containing a java.lang.String or String.

Time to Live (TTL) A long value set by the message producer that, when added to the timestamp
from the client system, determines the expiration time of the message. The
time to live value is set in milliseconds, and can be any positive integer. A
value of zero retains the message indefinitely.

Topic Objects that provide the publisher, server, and subscriber with a destination
for JMS methods. Topics can be static objects under administrative control,
dynamic objects created as needed, or temporary objects created for very
limited use. The topic name is a string of any javax.jms.String length. See
Unbound Topic.

Topic Hierarchy See Hierarchical Namespace.

TopicConnection
Factory

An administered object used to create a connection that binds a Pub/Sub
client to a message server at runtime.

Trading Partner An organization that communicates with other trading partners through a
portal.

Transacted Session Combines a group of one or more messages with client-to-server ACID
properties: Atomic, Consistent, Isolated, and Durable.

When a session is transacted, message input and output are staged on the
message server system but not completed until you call the method to
complete the transaction; either Commit or Rollback. See Commit, Rollback.

Triple DES An enhancement to DES that provides considerably more security than
standard DES, which uses only one 56-bit key. Triple DES encrypts a
message three times. There are several triple DES methods. See DES.

Getting Started with SonicMQ 121

Glossary

U
Unattended
Installation

An installation that presents no GUI and can be run unattended, so you can
use it for remote installations or in a script so that many installations can be
performed without user intervention. Also called batch or silent installation.

Unbound Destination A null destination name that, for example, establishes the QueueRequestor to
bind to that queue space. Often referenced as an unbound topic or an
unbound queue. See Topic or Queue.

Unicode An international 16-bit character code standard.

Unroutable Message A message that arrives at a routing queue where there is no information
about the routing connection specified.

User Name Defines an entity’s identity. Maintained by the SonicMQ server’s security
database to authenticate a user with the SonicMQ server and to establish
privileges and access rights.

V
View A feature of the Metrics node of the SonicMQ Explorer which provide a

dynamic graphical plot of a metric value over a selected time span.

W
Wildcard One of the characters asterisk (*) or pound sign (#) that have special meaning

in topic or queue names. A wildcard stands for an arbitrary string, subject to
restrictions. With a wildcard, a client can subscribe at once to any number of
topics whose name has a given form. Wildcards also enable an administrator
to assign permissions to all topics or queues of a given form. Wildcards are
also known as template characters.

X
XML Message A message type that contains tagged text that intends to be well-formed

XML that can be parsed into a Document Object Model.

Glossary

122 Getting Started with SonicMQ

Getting Started with SonicMQ 123

Index

A
access control list 47
acknowledgement 35
ActiveX/COM 20
administration 22
advertising 24
agent applications 25
asynchronous 36
automatic acknowledgement 35

B
body of a message 46
browser 44
Bytes message 45

C
client acknowledgement 35
clusters 18, 24
commit

definition 34
example in PTP 89
example in Pub/Sub 78

concurrency 34
Concurrent Transacted Cache 18
configuration server 23, 24
connection 33

console windows 66
consumer 36

D
dead message queue 32, 43
delivery mode 36, 37, 39
deployment 50
destination 36
destinations 37
Developer Edition 49
Document Object Model 81, 92
Document Type Definition 81, 92
documentation, available 10
dropped connection

sample application 75, 87
duplicates_OK acknowledgement 35
durable subscribers 72

definition 39
Dynamic Routing Architecture 17, 29

E
E-Business Edition 50
editions of SonicMQ 50
encryption

in SonicMQ editions 49, 50
types available 19

expiration

Index

124 Getting Started with SonicMQ

definition 40
effect on Quality of Service 46

Explorer
setting up queues 83
shutting down the message server 95
starting 58

F
failover 32
FIFO 43

H
header 45
hierarchical name spaces

definition 40
HierarchicalChat 77
HTTP tunneling 19

I
integrity 47

J
Java

Compiler 51
JDE 51
JDK 51
JMS 16, 19
JNDI 19
JRE 50
JVM 51

JMS provider 22
JVM

identifying 11

L
lazy acknowledgement 35
license key 54
life span of a message 39
Linux

using shell scripts 65
listener 36
log 23

M
management API 32
Map message

message type 45
sample 93

Message 45
message

body 46
header fields 45
properties 45

message server
features under other editions 66
minimizing the console window 66
overview 22
stopping 95
topology 22

message store 23
message traffic

Pub/Sub 70
message types 45

N
non-persistent 37

O
Object message 45

Getting Started with SonicMQ 125

Index

P
persistent 36

delivery mode 39
message 46

persistent data store 24
Point-to-point 37
portal 30
prefetch 42
privacy 47
producer 36
Professional Developer Edition 49
properties 45
public key 19
Publish/Subscribe 37
publisher 39

Q
Quality of Protection 47
Quality of Service 15, 46
queue

browser 44
defaults 83
definition 37

Queue Round Trip 94
QueueMonitor 85

R
receiver 43
ReliableChat 75
ReliableTalk 87
remote host 66
request and reply 35, 46

example in PTP 91
example in Pub/Sub 79

rollback
definition 34

routing 29
routing application 28
routing table 29

S
samples

Chat (Pub/Sub) 68
DurableChat (Pub/Sub) 72
HierarchicalChat (Pub/Sub) 77
Map Message (PTP) 93
MessageMonitor (Pub/Sub) 70
QueueMonitor (PTP) 85
QueueRoundTrip (PTP) 94
ReliableChat (Pub/Sub) 75
ReliableTalk (PTP) 87
Request and Reply (PTP) 90
Request and Reply (Pub/Sub) 79
SelectorChat (Pub/Sub) 76
SelectorTalk (PTP) 88
Talk (PTP) 84
TransactedChat (Pub/Sub) 78
TransactedTalk (PTP) 89
XML Messages (Pub/Sub) 92
XMLChat (Pub/Sub) 81
XMLTalk (PTP) 92

scripts 67
security

database 23, 65
overview 47

security features 19
selector 39, 42
SelectorChat 76
SelectorTalk 88
sender 43
session

definition 33
single message acknowledgement 35
SonicMQ.bat 67
SonicMQ.sh 67
SSL protocol 19
store-and-forward 29
Stream message 45
subscriber 39
subscribers

durable 72
support, technical 11
synchronous 36
syntax notations used in this manual 8

Index

126 Getting Started with SonicMQ

T
Talk 84
technical support 11
temporary destination 46
temporary queue 90
temporary topic 79
Text message 45
time-to-live

DurableChat sample 74
topic

definition 37
topic hierarchies

feature of Publish and Subscribe 40
trading partners 30
transacted session

definition 34
example in PTP 89
example in Pub/Sub 78

transformation applications 26
typographical conventions 8

U
uninstalling SonicMQ 98
UNIX

starting the broker 57
using shell scripts 65

W
Windows

starting the broker 57

X
XML 16
XML message

example 81, 92
message types 45

XML parser
example 82
installed software 51

	Preface
	About This Manual
	Conventions in This Manual
	Typographical Conventions and Syntax Notation
	Note, Important, and Warning Flags

	Available Documentation
	Worldwide Technical Support

	Chapter�1 Introducing Progress SonicMQ
	Overview
	Evolution of Business Data Communications
	SonicMQ: The Software for E-business Messaging
	Massive Scalability
	NonStop Availability
	Guaranteed Reliability
	Very High Performance
	End-to-end Security
	Adherent to Connectivity and Application Standards
	Bridges for Extended Data Integration

	Concepts
	Direct Application Integration
	Message Server Distributed Application Structure
	Administration
	Persistent Data Stores

	Clustered Message Servers
	Client Applications
	Agent Applications
	Transformation Applications
	Routing Applications
	Dynamic Routing Applications

	Trading Partners and Portals
	Advantages of Trading Partners and Portals

	How SonicMQ Works
	Connections and Sessions
	Concurrency
	Session Type

	Producers and Consumers
	Delivery Mode

	Destinations
	Publish and Subscribe Messaging: Broadcast the Message
	How Publish and Subscribe Works

	Point-to-point Messaging: There is Only One Message
	How Point-to-Point Communication Works

	Messages
	Structure

	Request/Reply
	Quality of Service
	Quality of Protection
	Security

	Chapter�2 Setting Up SonicMQ Developer Edition
	Contrasting Developer Edition and Other Editions
	First Steps with SonicMQ Developer Edition
	Requirements for SonicMQ Developer Edition
	Additional Software

	Deciding How to Setup the SonicMQ Developer Edition
	Installing SonicMQ Developer Edition
	After the Installation Is Complete
	Starting the Message Server

	What’s Next?
	Running the SonicMQ Client Samples
	Using the SonicMQ Explorer
	Closing the SonicMQ Explorer

	Chapter�3 SonicMQ at Work
	Trying Out the SonicMQ Samples
	Publish and Subscribe Domains (TopicPubSub Folder)
	Queue Point-to-Point Domains (QueuePTP Folder)

	Using the SonicMQ Samples
	Starting the Message Server
	Client Console Windows
	Using the Sample Scripts

	Topic Publish and Subscribe Samples
	Chat Application
	Message Monitor
	Durable Chat Application
	Reliable Chat Application
	Selector Chat Application
	Hierarchical Chat Application
	TransactedChat Sessions
	Request and Reply
	XML Messages

	Queue Point-to-Point Samples
	Talk Application
	Queue Monitor
	Reliable Talk Application
	Selector Talk Application
	Transacted Talk Sessions
	Request and Reply
	XML Messages
	Map Messages
	Queue Round Trip Test Application

	Stopping Client Sessions and the Message Server

	Chapter�4 Next Steps
	Overview
	Online Books and API Documentation
	Web Sites
	Technical and Pre-sales Support

	Uninstalling SonicMQ

	Glossary
	Index

