
SeeBeyond Proprietary and Confidential

e*Way Intelligent Adapter for
LDAP User’s Guide

Release 5.0.5 for Schema Run-time Environment (SRE)

Java Version

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology
Corporation. The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's
intellectual property rights concerning that trademark. This document may contain references to other company, brand, and product
names. These company, brand, and product names are used herein for identification purposes only and may be the trademarks of
their respective owners.

© 2005 SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20050406011208.

e*Way Intelligent Adapter for LDAP User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents

e*Way Intelligent Adapter for LDAP User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Chapter 1

Introduction 7
Intended Reader 7

Overview 7
e*Way Intelligent Adapter for LDAP 7
LDAP 8
Java Naming and Directory Interface (JNDI) 10
Referrals 10

LDAP e*Way Components 11

Supported Operating Systems 11

System Requirements 11

External System Requirements 12

Chapter 2

Installation 13
Windows Systems 13

Pre-installation 13
Installation Procedure 13

UNIX Systems 14
Pre-installation 14
Installation Procedure 14

Files/Directories Created by the Installation 15

Chapter 3

Configuration 17
Multi-Mode e*Way Configuration 17

Creating a Multi-Mode e*Way 17
Multi-Mode e*Way Configuration Parameters 18
JVM Settings 18

JNI DLL Absolute Pathname 18
CLASSPATH Prepend 19
CLASSPATH Override 19

Contents

e*Way Intelligent Adapter for LDAP User’s Guide 4 SeeBeyond Proprietary and Confidential

CLASSPATH Append From Environment Variable 20
Initial Heap Size 20
Maximum Heap Size 20
Maximum Stack Size for Native Threads 20
Maximum Stack Size for JVM Threads 20
Disable JIT 21
Remote debugging port number 21
Suspend option for debugging 21

General Settings 21
Rollback Wait Interval 21

e*Way Connection Configuration 22
Creating an e*Way Connection 22

Configuring e*Way Connections 23
Connector 23

Type 23
Class 24
Property.Tag 24
Connection Establishment Mode 24
Connection Inactivity Timeout 24
Connection Verification Interval 25

Connection 25
InitialContextFactory 25
ProviderURL 25
Authentication 26
Principal 26
Credentials 26

Referrals 26
Follow 27
CredentialsFile 27

Referrals Credentials File Utility (RCFUtil) 27

External Configuration Requirements 32

Chapter 4

LDAP ETD Overview 33
LDAP ETD Structure 33

NSClient Root Node 34
Connection Node 35
Search Node 36

LDAPSearchControls 36
SearchOptions 37
AttributesSelection 42
SearchResults 42

AddEntry 44
CompareEntry Node 46
RenameEntry Node 46
RemoveEntry Node 47
ModifyEntry Node 48
LDAP ETD Java Classes 52

Contents

e*Way Intelligent Adapter for LDAP User’s Guide 5 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation 54
LDAP e*Way Implementation 54

Sample Implementations 55
Importing the Sample Schema 55

The Search Sample Schema 56
Creating and Configuring the e*Ways 57
Creating the e*Way Connection 62
Event Types 63

Creating an Event Types Using the Custom ETD Wizard 63
Creating Event Types and Associating Them with an Existing .xsc File 65

Intelligent Queues 66
Creating Collaboration Rules 66

Collaboration Rules Files 67
Creating Business Rules Using the Java Collaboration Rules Editor 70
Creating the Collaborations 73
Executing the Schema 77

Creating the Add, Modify, and Delete Sample Schemas 78
Creating the Add Sample Schema 78

Creating Business Rules for the Add Sample Schema 80
Creating the Modify Sample Schema 81

Creating Business Rules for the Modify Sample Schema 83
Creating the Delete Sample Schema 84

Creating Business Rules for the Delete Sample Schema 86

Chapter 6

LDAP e*Way Classes and Methods 88
LDAP e*Way Classes and Methods: Overview 88

com.stc.eways.jndi.AddAttributesValues Class 89
Methods of the AddAttributesValues Class 90
initialize 90
getSTCEntry 90
getEntryOptions 91
performAddAttributesValues 91
reset 91

com.stc.eways.jndi.AddEntry Class 92
Methods of the AddEntry Class 92
initialize 92
getAddEntryOptions 93
getSTCEntry 93
performAddEntry 93
reset 94

com.stc.eways.jndi.AddEntryOptions Class 94
Methods of the AddEntryOptions Class 94
getIgnoreAlreadyBound 95
setIgnoreAlreadyBound 95

Contents

e*Way Intelligent Adapter for LDAP User’s Guide 6 SeeBeyond Proprietary and Confidential

com.stc.eways.jndi.AttributesSelection Class 95
Methods of the AttributesSelection Class 96
addAttribute 96
removeAttribute 96
clearAttributes 97

com.stc.eways.jndi.CompareEntry Class 97
Methods of the CompareEntry Class 97
initialize 97
getCompareEntryOptions 98
performCompare 98
reset 99

com.stc.eways.jndi.CompareEntryOptions 99
Methods of the CompareEntryOptions Class 99
setEntryName 100
getEntryName 100
setCompareFilter 100
getCompareFilter 101
setTimeLimit 101
getTimeLimit 102

com.stc.eways.jndi.Connection 102
Methods of the Connection Class 103
getProviderURL 103
setProviderURL 103
hasProviderURL 104
omitProviderURL 104
getAuthentication 104
setAuthentication 105
hasAuthentication 105
omitAuthentication 105
getPrincipal 106
setPrincipal 106
hasPrincipal 107
omitPrincipal 107
getCredentials 107
setCredentials 108
hasCredentials 108
omitCredentials 108

com.stc.eways.jndi.EntryOptions 109
Methods of the EntryOptions 109
getIgnoreAttributeIDCase 109
setIgnoreAttributeIDCase 110
getOrderAttributeValues 110
setOrderAttributeValues 111

com.stc.eways.jndi.LDAPSearchControls 111
Methods of the LDAPSearchControls 111
setSortControlAttributes 111
getSortControlAttributes 112
removeSortControlAttributes 112
setPagedResultsControl 113
removePagedResultsControl 113
getPagedResultsControl 114

com.stc.eways.jndi.ModifyEntry 114
Methods of the Modify Entry 115
initialize 115
getAddAttributesValues 115
getRemoveAttributesValues 116
getReplaceValues 116

Contents

e*Way Intelligent Adapter for LDAP User’s Guide 7 SeeBeyond Proprietary and Confidential

reset 116

com.stc.eways.jndi.NSClient 117
Methods of the NSClient 117
initialize 117
terminate 118
getConnection 119
setConnection 119
get$Configuration 119
connect 120
disconnect 120
isConnected 121
getSearch 121
getAddEntry 121
getCompareEntry 122
getRenameEntry 122
getRemoveEntry 123
getModifyEntry 123
reset 123
setConnector 124
getConnector 124

com.stc.eways.jndi.runtime.NSConnector 125
Methods of the NSConnector 125
open 125
open 126
close 126
isOpen 127
getProperties 127
getContext 128
setLastError 128

com.stc.eways.jndi.RCFUtil 129

com.stc.eways.jndi.RemoveAttributesValues 129
Methods of the RemoveAttributesValues 129
initialize 129
getEntry 130
getEntryOptions 130
performRemoveAttributesValues 131
reset 131

com.stc.eways.jndi.RenameEntry 131
Methods of the RenameEntry 132
initialize 132
setOldName 132
getOldName 133
setNewName 133
getNewName 134
performRename 134
reset 134

com.stc.eways.jndi.ReplaceValues 135
Methods of the ReplaceValues 135
initialize 135
getEntry 136
getEntryOptions 136
performReplaceValues 136
reset 137

com.stc.eways.jndi.Result 137
Methods of the Result 137
getName 138
getSTCAttributes 138

Contents

e*Way Intelligent Adapter for LDAP User’s Guide 8 SeeBeyond Proprietary and Confidential

getSTCAttribute 138
countSTCAttribute 139

com.stc.eways.jndi.Search 139
Methods of the Search 139
initialize 140
getLDAPSearchControls 140
getSearchOptions 140
getSearchResults 141
performSearch 141
reset 142

com.stc.eways.jndi.SearchOptions 142
Methods of the SearchOptions 142
getAttributesSelection 143
setContextName 143
getContextName 143
setSearchScope 144
getSearchScope 144
setSearchFilter 145
getSearchFilter 145
setTimeLimit 145
getTimeLimit 146
setCountLimit 146
getCountLimit 147

com.stc.eways.jndi.SearchResults 147
Methods of the SearchResults 148
getResult 148
hasResults 148
hasMoreResults 148
getNextResult 149

com.stc.eways.jndi.STCAttribute 149
Methods of the STCAttribute 149
getSTCValues 150
getName 150
setName 150
countSTCValue 151
getSTCValue 151

com.stc.eways.jndi.STCAttributes 152
Methods of the STCAttributes 152
countSTCAttribute 152
getSTCAttribute 153

com.stc.eways.jndi.STCEntry 153
Methods of the STCEntry 153
setName 153
getName 154
getAttributes 154
getSTCAttribute 155
countAttribute 155
reset 155

com.stc.eways.jndi.STCValue 156
Methods of the STCValue 156
isByteArray 156
isString 157
getStringValue 157
setStringValue 157
getByteValue 158
setByteValue 158
setValue 159

Contents

e*Way Intelligent Adapter for LDAP User’s Guide 9 SeeBeyond Proprietary and Confidential

getValue 159

com.stc.eways.jndi.STCValues 159
Methods of the STCValues 160
countSTCValue 160
getSTCValue 160

com.stc.eways.jndi.StringUtil 161
Methods of the StringUtil 161
toHexString 161

Index 162

e*Way Intelligent Adapter for LDAP User’s Guide 7 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This document describes how to install and configure the Java version of the e*Way
Intelligent Adapter for LDAP (Lightweight Directory Access Protocol), version 3.0.

1.1 Intended Reader
The reader of this guide is presumed:

to be a developer or system administrator with the responsibility of maintaining the
e*Gate system.

to have high-level knowledge of Windows or UNIX operations and administration.

to have high-level knowledge of LDAP directory services.

to be familiar with Transmission Control Protocol/Internet Protocol (TCP/IP).

to be thoroughly familiar with Windows-style GUI operations.

1.2 Overview

1.2.1 e*Way Intelligent Adapter for LDAP
The LDAP e*Way enables e*Gate to exchange data with an LDAP directory. It consists
of two separate components: the LDAP Connector and the LDAP ETD (Event Type
Definition). The LDAP ETD utilizes the LDAP Connector to connect to a particular
LDAP server. An instance of an LDAP ETD utilizes only one instance of an LDAP
Connector.

In addition, the LDAP ETD exposes the API for accessing the LDAP directory. The
LDAP ETD enables a user to write Java collaboration rules to execute operations such
as searching the directory, adding entries to a directory, and modifying entries in the
directory. See Figure 1 for the architecture of the LDAP e*Way.

Chapter 1 Section 1.2
Introduction Overview

e*Way Intelligent Adapter for LDAP User’s Guide 8 SeeBeyond Proprietary and Confidential

Figure 1 Architecture of the LDAP e*Way:

By connecting to an LDAP server, the LDAP e*Way provides a powerful addition to the
e*Gate platform by enabling e*Gate to search, compare, and modify an LDAP directory
using the LDAP protocol. For example, the LDAP e*Way, in conjunction with e*Gate,
can be used to make a company’s employee directory available on an intranet Web site.
With the click of a button in a web browser, a user with the appropriate permissions
can access thousands of employee records.

Note: The LDAP e*Way supports subcollaborations. For further information on using
Subcollaboration Rules see the e*Gate Integrator User’s Guide.

Sample schemas for the Java enabled LDAP e*Way are included on the installation CD-
ROM which demonstrate how simple scenarios are managed.

The following sections discuss LDAP and the e*Way in further detail.

1.2.2 LDAP
LDAP is a directory service protocol that runs over TCP/IP. A directory service is a
distributed database application designed to manage the entries and attributes in a
directory. LDAP allows clients to access different directory services based on entries,
and makes the entries and their attributes and values available to users and other
applications.

Entries, Attributes and Values

An LDAP directory has entries which contain information pertaining to some entity.
Each of the entry’s attributes has a name and one or more values. The names of

e*Way
Connection

LDAP
ETD LDAP

Server

LDAP
Database

LDAP v3 Connection

Java
Collaboration

e*Gate

Chapter 1 Section 1.2
Introduction Overview

e*Way Intelligent Adapter for LDAP User’s Guide 9 SeeBeyond Proprietary and Confidential

attributes are most often mnemonic strings, such as “cn“ for common name, or “mail“
for email address.

For example, a company may have an employee directory. Each entry in the employee
directory represents an employee. The employee entry contains such information as the
name, mail, and phone number, as shown in the following example:

cn: John Doe
mail: johndoe@seebeyond.com
mail: jdoe@stc.com
telephoneNumber: 471-6000 x.1234

Each part of the descriptive information, such as an employee’s name, is known as an
attribute. In the example above, the Common Name (cn) attribute, represents the name
of the employee. The other attributes are mail and telephoneNumber.

Each attribute can have one or more values. For example, an employee entry may
contain a mail attribute whose values are johndoe@seebeyond.com and
jdoe@stc.com. In the example above, the mail attribute contains two mail values.

LDAP Directory Structure

The organization of a directory is a tree structure. The topmost entry in a directory is
known as the root entry. This entry normally represents the organization that owns the
directory.

Entries at the higher level of hierarchy, represent larger groupings or organizations.
Entries under the larger organizations represent the smaller organizations that
compose the larger ones. The leaf nodes (or entries) of the tree structure represent the
individual people or resources.

Distinguished Names and Relative Distinguished Names

An entry is made up of a collection of attributes that have a unique identifier called a
distinguished name (DN). A DN consists of a name that uniquely identifies the entry at
that hierarchical level. In the example above, John Doe and Jane Doe are different
common names (cn) that identify different entries at that same level. A DN is also a
fully qualified path of names that trace the entry back to the root of the tree. For
example, the distinguished name of the John Doe entry is “cn=John Doe,
ou=People, dc=seebeyond.com“.

A relative distinguished name (or RDN) is a component of the distinguished name. For
example, “cn=John Doe, ou=People“ is a RDN relative to the root RDN
“dc=seebeyond.com“. DNs are used to describe the fully qualified path to an entry
while an RDN is used to describe the partial path to the entry relative to another entry
in the tree.

Figure 2 illustrates an example of an LDAP directory structure with distinguished
names and relative distinguished names.

Chapter 1 Section 1.2
Introduction Overview

e*Way Intelligent Adapter for LDAP User’s Guide 10 SeeBeyond Proprietary and Confidential

Figure 2 LDAP Directory Structure

LDAP Service and LDAP Client

A directory service is a distributed database application designed to manage the entries
and attributes in a directory. A directory service also makes the entries and attributes
available to users and other applications. OpenLDAP server is an example of a
directory service. Other directory services include Sun ONE™ (formerly iPlanet™)
Directory Service and Microsoft® Active Directory.

A directory client accesses a directory service using the LDAP protocol. A directory
client may use one of several client APIs available in order to access the directory
service.

1.2.3 Java Naming and Directory Interface (JNDI)
The LDAP e*Way uses Sun's Java Naming and Directory Interface™ (JNDI) LDAP
provider. JNDI is an API published by Sun. This set of APIs allows a Java program to
store objects and lookup objects using multiple naming services in a standard manner.

The JNDI is included in the Java 2 SDK version 1.3 that is installed as part of e*Gate.

Examples of other available APIs include Netscape® Directory SDK (C and Java
software libraries), and Novell® Java LDAP (JLDAP). These are not used or supported
by the LDAP e*Way.

1.2.4 Referrals
The native APIs developed for the LDAP e*Way query the results of a search based on
specified criteria. The search results may consist of a number of referrals.

A referral is an entity that is used to redirect a client's request to another server. A
referral contains the names and locations of other objects. For example, an LDAP server
sends a referral to the client to indicate that the information that the client has
requested can be found at another location (or locations), possibly at another server or
several servers.

R o o t

d c = s e e b e y o n d . c o m

o u = P e o p le o u = G r o u p s

c n = J o h n D o e c n = J a n e D o e

Chapter 1 Section 1.3
Introduction LDAP e*Way Components

e*Way Intelligent Adapter for LDAP User’s Guide 11 SeeBeyond Proprietary and Confidential

The referral contains the URL of the LDAP server which holds the actual entry. The
LDAP URL contains the server's host/port and an object's DN.

For e*Way connection configuration for referrals, see Referrals on page 26.

1.3 LDAP e*Way Components
The LDAP e*Way is comprised of the following components:

Jar files containing the logic required by the e*Way to gain access to LDAP:

stcnsclient.jar, the executable component.

stcnsconnector.jar, contains the classes that implement the LDAP connector.

The LDAP e*Way Connection which provides access to information necessary for
connecting to specified external LDAP server connections.

A complete list of installed files appears in Table 1 on page 15.

1.4 Supported Operating Systems
The LDAP e*Way is available on the following operating systems:

Windows 2000, Windows XP, and Windows Server 2003

HP-UX 11.0 and 11i (PA-RISC)

Sun Solaris 8 and 9

1.5 System Requirements
To use the LDAP e*Way, you need the following:

An e*Gate Participating Host.

A TCP/IP network connection.

A computer running Windows, to allow you to use the e*Gate Schema Designer
and ETD Editor.

Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes. The amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

Open and review the Readme.txt for the LDAP e*Way for any additional
requirements prior to installation. The Readme.txt is located on the Installation
CD_ROM at setup\addons\ewldap.

Chapter 1 Section 1.6
Introduction External System Requirements

e*Way Intelligent Adapter for LDAP User’s Guide 12 SeeBeyond Proprietary and Confidential

Installed on the Participating Host

Java JDK version 1.3.1

The e*Way must be configured and administered using the Schema Designer.

1.6 External System Requirements
LDAP server supporting LDAP Version 3.0

Note: LDAP Version 2 is not currently supported by the e*Way Intelligent Adapter for
LDAP. However, relevant operations for LDAP Version 2 servers will perform
satisfactorily with the e*Way.

To enable the e*Way to communicate properly with the LDAP system, the following
are required:

Host on which the LDAP server is running

Port location on which the LDAP server is listening

Authentication information

Understanding of LDAP directory structure being used

e*Way Intelligent Adapter for LDAP User’s Guide 13 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter describes the procedures for installing the LDAP e*Way.

“Windows Systems” on page 13

“UNIX Systems” on page 14

“Files/Directories Created by the Installation” on page 15

2.1 Windows Systems

2.1.1 Pre-installation
Exit all Windows programs before running the setup program, including any
antivirus applications.

You must have Administrator privileges to install this e*Way.

2.1.2 Installation Procedure
To install the LDAP e*Way on a Windows system

1 Log in as an Administrator to the workstation on which you are installing the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application launches
automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application launches. Follow the installation instructions
until you come to the Please choose the product to install dialog box.

5 Select e*Gate Integrator, then click Next.

6 Follow the on-screen instructions until you come to the second Please choose the
product to install dialog box.

7 Clear the check boxes for all selections except Add-ons, and then click Next.

Chapter 2 Section 2.2
Installation UNIX Systems

e*Way Intelligent Adapter for LDAP User’s Guide 14 SeeBeyond Proprietary and Confidential

8 Follow the on-screen instructions until you come to the Select Components dialog
box.

9 Select (but do not check) e*Ways, and then click the Change button. The SelectSub-
components dialog box appears.

10 Select the LDAP e*Way. Click the continue button to return to the Select
Components dialog box, then click Next.

11 Follow the rest of the on-screen instructions to install the LDAP e*Way. Be sure to
install the e*Way files in the suggested client installation directory. The installation
utility detects and suggests the appropriate installation directory. Unless you are
directed to do so by SeeBeyond support personnel, do not change the suggested
installation directory setting.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, see the online Help.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.2 UNIX Systems

2.2.1 Pre-installation
Root privileges are not required to install this e*Way. Log in under the user name that
you wish to own the e*Way files. Be sure that this user has sufficient privileges to create
files in the e*Gate directory tree.

2.2.2 Installation Procedure
To install the LDAP e*Way on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing

setup.sh

5 A menu of options will appear. Select the Install e*Way option. Then, follow the
additional on-screen directions.

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation

e*Way Intelligent Adapter for LDAP User’s Guide 15 SeeBeyond Proprietary and Confidential

Note: Be sure to install the e*Way files in the suggested client installation directory. The
installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

6 After installation is complete, exit the installation utility and launch the Schema
Designer.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, see the online Help system.

For more information about configuring e*Ways or how to use the e*Way Editor, see
the e*Gate Integrator User’s Guide.

2.3 Files/Directories Created by the Installation
The LDAP e*Way installation process installs the files shown in Table 1 within the
e*Gate directory tree. Files are installed within the egate\client tree on the
Participating Host and committed to the default schema on the Registry Host.

The ldapbp.jar file

The LDAP e*Way includes the ldapbp.jar JAR file, which contains the necessary LDAP
control classes used by the e*Way.

In addition, the ldapbp.jar JAR file contains the LDAP “booster“ pack, which provides
extensions to the LDAP service provider. The “booster“ pack allows using server side
controls and increases performance greatly. For example, when using a paging control,
the client sends a page control request to the server such that the server can return
results on a page-by-page basis when a search returns too many results. See
“LDAPSearchControls” on page 36 for more information about LDAP controls.

Table 1 Files Created by the Installation

e*Gate Directories File(s)

\classes\ stcnsclient.jar
stcnsconnector.jar

\etd\ stcewldap.ctl

\configs\ldap ldap.def

\etd\ldap\ ldap.xsc

\ThirdParty\jndi\ldap1.2.4\classes ldapbp.jar

\ThirdParty\gnu-getopt\classes gnu-getopt.jar

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation

e*Way Intelligent Adapter for LDAP User’s Guide 16 SeeBeyond Proprietary and Confidential

Note: The LDAP service provider is included in the Java 2 SDK installed as part of
e*Gate. See the e*Gate Integrator Installation Guide for more information on
installing Java 2 SDK.

e*Way Intelligent Adapter for LDAP User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

This chapter describes how to configure the following components of the LDAP e*Way.

Multi-Mode e*Way Configuration on page 17

e*Way Connection Configuration on page 22

3.1 Multi-Mode e*Way Configuration
A Multi-Mode e*Way is a multi-threaded component used to route and transform data
within e*Gate. Unlike traditional e*Ways, Multi-Mode e*Ways can use multiple
simultaneous e*Way Connections to communicate with several external systems, as
well as IQs or JMS IQ Managers. The following describes how to create and configure
the Multi-Mode e*Way component for the LDAP e*Way. Multi-Mode e*Way properties
are set using the Schema Designer.

3.1.1 Creating a Multi-Mode e*Way
1 Select the Navigator’s Components tab.

2 Open the host on which you want to create the e*Way.

3 On the Palette, click on the Create a New e*Way button to create a new e*Way.

4 Enter the name of the new e*Way, then click OK.

5 Select the new e*Way component, right-click, and select Properties. The e*Way
Properties dialog box opens.

6 The Executable File field defaults to stceway.exe. (stceway.exe is located in the
“bin\” directory).

7 Type any additional command line arguments that the e*Way may require in the
Additional Command Line Arguments field, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have specific need to do so.

8 Click New under the Configuration File field to create a new configuration file,
Find to select an existing configuration file, or Edit to edit the currently selected file.
The Editor opens to edit settings for the Multi-Mode e*Way. The Multi-Mode
e*Way Configuration Editor opens. The following section provides more
information on these parameters.

Chapter 3 Section 3.1
Configuration Multi-Mode e*Way Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 18 SeeBeyond Proprietary and Confidential

9 After selecting the desired parameters, Save the configuration file and select
Promote to Run Time. Click OK to close the e*Way Properties Window.

For more information on Multi-Mode e*Way settings and properties see the e*Gate
Integrator User’s Guide, the Standard e*Way Intelligent Adapter User’s Guide or consult the
e*Way Editor’s online Help.

3.1.2 Multi-Mode e*Way Configuration Parameters
The Multi-Mode e*Way configuration parameters are organized in the following
sections:

JVM Settings on page 18

General Settings on page 21

3.1.3 JVM Settings
The JVM Settings control basic Java Virtual Machine settings. The JVM Settings section
contains the following parameters:

JNI DLL Absolute Pathname on page 18

CLASSPATH Prepend on page 19

CLASSPATH Override on page 19

CLASSPATH Append From Environment Variable on page 20

Initial Heap Size on page 20

Maximum Heap Size on page 20

Maximum Stack Size for Native Threads on page 20

Maximum Stack Size for JVM Threads on page 20

Disable JIT on page 21

Remote debugging port number on page 21

Suspend option for debugging on page 21

JNI DLL Absolute Pathname

Description

Specifies the absolute pathname to where the JNI DLL installed by the Java 2 SDK 1.3 is
located on the Participating Host.

Required Values

A valid pathname.

Additional Information

The JNI dll name varies on different O/S platforms:

Chapter 3 Section 3.1
Configuration Multi-Mode e*Way Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 19 SeeBeyond Proprietary and Confidential

The value assigned can contain a reference to an environment variable, by enclosing the
variable name within a pair of % symbols. For example:

%MY_JNIDLL%

Such variables can be used when multiple Participating Hosts are used on different
platforms.

To ensure that the JNI DLL loads successfully, the Dynamic Load Library search path
environment variable must be set appropriately to include all the directories under the Java 2
SDK (or JDK) installation directory that contain shared libraries (UNIX) or DLLs (Windows).

CLASSPATH Prepend

Description

Specifies the paths to be prepended to the CLASSPATH environment variable for the
Java VM.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

If left unset, no paths will be prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_PRECLASSPATH%

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the Java VM. This
parameter is optional. If left unset, an appropriate CLASSPATH environment variable
(consisting of required e*Gate components concatenated with the system version of
CLASSPATH) will be set.

Note: All necessary JAR and ZIP files needed by both e*Gate and the Java VM must be
included. It is advised that the CLASSPATH Prepend parameter should be used.

Required Values

An absolute path or an environmental variable. This parameter is optional.

OS Java 2 JNI DLL Name

Windows jvm.dll

Solaris libjvm.so

HP-UX libjvm.sl

Chapter 3 Section 3.1
Configuration Multi-Mode e*Way Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 20 SeeBeyond Proprietary and Confidential

Additional Information

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of % signs. For example:

%MY_CLASSPATH%

CLASSPATH Append From Environment Variable

Description

Specifies whether the path is appended for the CLASSPATH environmental variable to
jar and zip files needed by the Java VM.

Required Values

YES or NO. The configured default is YES.

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value of the maximum heap size in bytes. If set to 0 (zero), the preferred
value for the maximum heap size of the Java VM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for Native Threads

Description

Specifies the value of the maximum stack size in bytes for native threads. If set to 0
(zero), the default value will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for JVM Threads

Description

Specifies the value of the maximum stack size in bytes for JVM threads. If set to 0 (zero),
the preferred value for the maximum heap size of the Java VM will be used.

Chapter 3 Section 3.1
Configuration Multi-Mode e*Way Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 21 SeeBeyond Proprietary and Confidential

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler will be disabled.

Required Values

YES or NO.

Note: This parameter is not supported for Java Release 1.

Remote debugging port number

Description

Specifies the port number for the remote debugging of the JVM.

Required Values

An integer between 2000 and 65536.

Suspend option for debugging

Description

Specifies whether the option for debugging will be enabled or suspended upon JVM
startup.

Required Values

YES or NO.

3.1.4 General Settings
General Settings controls the period of time the workslice waits before it re-posts a
message once a rollback has occurred. The General Settings section contains the
following parameter:

Rollback Wait Interval on page 21

Rollback Wait Interval

Description

Specifies the period of time in milliseconds, that the workslice waits before it re-posts a
message once a rollback has occurred.

Required Values

An integer between 0 and 99999999.

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 22 SeeBeyond Proprietary and Confidential

3.2 e*Way Connection Configuration
e*Way Connections are the encoding of access information for specific external
connections. The e*Way Connection configuration file contains the parameters
necessary for connecting with a specific external system. e*Way Connection parameters
are set using the Schema Designer.

Creating an e*Way Connection

1 In the Schema Designer’s Component editor, select the e*Way Connections folder.

2 On the palette, click the Create a New e*Way Connection button.

3 The New e*Way Connection Component dialog box opens. Enter a name for the
new e*Way Connection and click OK.

4 Double-click on the new e*Way Connection. The e*Way Connection Properties
dialog box opens.

Figure 3 e*Way Connection Properties

5 From the e*Way Connection Type drop-down box, select LDAP.

6 Enter the Event Type “get” interval in the dialog box provided. The configured
default is 10000 milliseconds.

7 Click New under the e*Way Connection Configuration File field to create a new
configuration file, Find to select an existing configuration file, or Edit to edit the
currently selected file. The e*Way Connection Configuration Editor opens. The

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 23 SeeBeyond Proprietary and Confidential

following section provides more information on these e*Way Connection
parameters.

8 After selecting the desired parameters, Save the configuration file and select
Promote to Run Time. Click OK to close the e*Way Connection Properties
Window.

Note: If changes are made to an existing e*Way Connection file, any e*Ways using the
revised e*Way Connection must be restarted.

3.2.1 Configuring e*Way Connections
The LDAP e*Way Connection configuration parameters are organized into the
following sections:

Connector on page 23

Connection on page 25

Referrals on page 26

3.2.2 Connector
The LDAP Connector is associated with the ldap.def file. The ldap.def file is a template
loaded by the e*Gate Schema Designer which enables the user to specify the LDAP
connection properties when creating an instance of an LDAP Connector. The class
implementing the LDAP Connector is:

com.stc.eways.jndi.runtime.NSConnector

The Connector defines the parameters for the LDAP connector class being used. It also
defines the Connection Management properties for the Connection Manager facilities.
This section contains a set of top level parameters:

type

class

Property.Tag

Connection Establishment Mode

Connection Inactivity Timeout

Connection Verification Interval

Important: Do not change the default values for the following three parameters: type, class, and
Property.Tag. These parameters relay information to the LDAP ETD about the
LDAP Connector being used.

Type

Description

Specifies the connector type.

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 24 SeeBeyond Proprietary and Confidential

Required Values

The default is LDAP Connector for Java LDAP connections.

Class

Description

Specifies the class name of the LDAP connector object.

Required Values

The default is com.stc.eways.jndi.runtime.NSConnector.

Property.Tag

Description

Specifies the data source identity. This parameter is required by the current
EBobConnectorFactory.

Required Values

A valid data source package name.

Connection Establishment Mode

Description

Specifies how the connection with the LDAP server is established and closed.

Automatic indicates that the connection is automatically established when the
collaboration is started, and maintains the connection as needed.

OnDemand indicates that the connection is established on demand as business
rules requiring a connection to the external system are performed. The connection is
closed once the methods are complete.

Manual indicates that the user will explicitly call the connection open and close
methods in the collaboration as business rules.

Required Values

Automatic, OnDemand or Manual. Automatic is the default.

Connection Inactivity Timeout

Description

Specifies timeout in milliseconds for the Automatic connection establishment mode. If
it is not set, or set to zero, the continuous connection will not timeout due to inactivity.
However if the connection goes down, it will automatically attempt to reestablish the
connection. If a nonzero value is specified, the connection manager monitors for any
inactivity and stops the connection if it reaches the specified value.

Required Values

An integer in the range of 0 to 864000.

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 25 SeeBeyond Proprietary and Confidential

Connection Verification Interval

Description

Specifies the minimum period of time in milliseconds between checks for connection
status to the LDAP server. If the connection to the server is detected to be down during
verification, the collaboration’s onConnectionDown method is called. If the connection
comes from a previous connection error, the collaboration’s onConnectionUp method
is called. If no value is specified, it defaults to 60000 milliseconds.

Required Values

An integer in the range of 0 to 864000.

3.2.3 Connection
This section contains a set of top level parameters:

InitialContextFactory

ProviderURL

Authentication

Principal

Credentials

InitialContextFactory

Description

Creates the initial context to the LDAP server. The default value should not be changed.

Required Values

com.sun.jndi.ldap.LdapCtxFactory or other valid context factory

ProviderURL

Description

Specifies the URL connection string to create the initial context to the LDAP server.

For example, ldap://ldap.seebeyond.com:389/dc=seebeyond,dc=com.

The intial context is “dc=seebeyond,dc=com”.

Note: The initial context is optional, depending on what context is established in the
collaboration.

Required Values

A valid URL text string.

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 26 SeeBeyond Proprietary and Confidential

Authentication

Description

Specifies the authentication mechanism required for connecting to the LDAP server.

none specifies no authentication required to connect to the server.

simple specifies simple username and password authentication for connecting to
the server.

Required Values

Either none or simple.

Principal

Description

Specifies the principal (for example, username) when using an authentication
mechanism other than anonymous login.

Required Values

A valid text string.

Credentials

Description

Specifies the credentials (for example, password) when using an authentication
mechanism other than anonymous login.

Required Values

A valid encrypted text string.

3.2.4 Referrals
When the LDAP e*Way searches a directory for specific entries it may encounter a
referral. Referrals are special entries in a directory that contain an LDAP URL
referencing an actual entry on another LDAP directory. A referral can be automatically
processed or followed by the e*Way, or it can be returned as a plain text entry. If the
e*Way is configured to follow referrals, the e*Way will connect to the referred LDAP
directory prior to executing the search on the referred LDAP directory.

Important: Referrals are only valid for LDAP version 3 servers.

This section allows the user to specify the behavior of the e*Way when it searches a
directory for specific entries and encounters a referral. It contains a set of top level
parameters:

Follow

CredentialsFile

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 27 SeeBeyond Proprietary and Confidential

Follow

Description

Specifies the behavior for LDAP version 3 referrals. If set to No, any referral entries in
the directory will be ignored and returned as plain entries. If set to Yes, then the referral
will be automatically followed.

Required Values

Yes or No. The configured default is Yes.

Note: If the credentials specified in the Connection parameter are used for authentication
when following the referrals, then do not specify the credentials file in the
CredentialsFile parameter. If the referrals being followed require credentials that
are different from the ones specified in the Connection parameter, then these
credentials must be specified in the credentials file. The credentials file is specified
using the CredentialsFile parameter. If set to Yes, and no credentials file is
specified, then the LDAP e*Way will attempt to follow the referral using
anonymous login.

CredentialsFile

Description

Specifies the credentials file used when following any referrals in the directory. If this
parameter is not set, then the credentials specified in the Connection section will be
used for authentication when following the referrals. If this parameter is set with a
credentials file, then the file will be used when following a referral.

Required Values

A valid full path to the credentials file.

Note: If the credentials specified in the Connection section are used for authentication
when following the referrals, then there is no need to specify the credentials file in
the CredentialsFile parameter. If the referrals being followed require credentials
that are different from the ones specified in the Connection section, then these
credentials must be specified in the Credentialsfile parameter.

The referral credentials file listed in the Help Tips for the CredentialsFile parameter
can be created using the com.stc.eways.jndi.RCFUtil command-line interactive utility.
See the following section “Referrals Credentials File Utility (RCFUtil)”.

3.2.5 Referrals Credentials File Utility (RCFUtil)
This section explains what to do for referrals that cannot be followed by specifying the
Principal and Credential parameter settings. If the referrals can be followed using the
Principal and Credentials specified in the Connection settings, then see “Connection”
on page 25.

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 28 SeeBeyond Proprietary and Confidential

Referrals that require different credentials from the initial credentials used to create the
initial connection, must be specified using a referrals credentials file. This file can be
generated and maintained using a utility class called com.stc.eways.jndi.RCFUtil.

This utility is an interactive command-line program that stores the credentials in an
encrypted format. To run this utility, set the Java classpath to the stcnsclient.jar,
stcjcs.jar, and gnu-getopt.jar files. These JAR files are included in the e*Way
installation and are located in eGate/client/classes and eGate/client/ThirdParty/gnu-
getopt/classes respectively. See “Files/Directories Created by the Installation” on
page 15.

Getting the Help Message

To display the help message describing the usage on com.stc.eways.jndi.RCFUtil,
type:

java com.stc.eways.jndi.RCFUtil --help

The following message appears:
---+ RCFUtil (c) 2002 SeeBeyond +---

Interactive command line utility for creating and managing file(s)
containing credentials information to follow LDAP referrals. File(s)
generated can be used by the Java LDAP e*Way for following referrals
that required credentials different from those used to create the
connection to the initial LDAP server.

Usage : java com.stc.eways.jndi.RCFUtil OPTIONS -- <filename>

OPTIONS:
--create Create a new referral credentials file.
--add Add an entry to the referral credentials file.
--list Print a list of entries in the referral credentials file.
--remove Remove an entry from the referral credentials file.
--modify Modify an entry in the referral credentials file.
--decrypt When displaying credentials, decrypt the credentials.
--username<username> Specify the username; if not specified, it'll be prompted.
--password<password> Specify the password; if not specified, it'll be prompted.
--help Print this usage.
filename:
 The full path to the referral credentials file.

The options are in GNU style and are specified using the long form (an option is
prefixed with a double dash "--"). The credentials file is specified after the options with
a terminating double dash at the end of the command line. When the credentials file is
initially created, the utility requires a username and password. The username and
password used to create the credentials file are required whenever the file is accessed.
The options --username and --password can be used to specify the username and
password at the command line. If the username and password are not specified with
these options, then the utility will prompt for the username and password before
proceeding. The --decrypt option can be used to tell the utility to display the
Credentials as un-encrypted. This option can be used whenever the utility displays the
Credentials.

Creating a Referrals Credentials File

Before beginning with a credentials file, it must be created using the
com.stc.eways.jndi.RCFUtil utility.

The command for creating an RCF file and what displays is shown below:

java com.stc.eways.jndi.RCFUtil --create --username admin --
ldapRCF.rcf
Creating file ldapRCF.rcf...
Enter password >> seebeyond
File created!

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 29 SeeBeyond Proprietary and Confidential

The --create option is used to create a new referrals credentials file. The --
username option is specified with "admin" as the username. The utility prompts for
the password because the password was not specified with the --password option.

The name of the file created is ldapRCF.rcf under the current directory. The filename
can be any valid filename on the OS platform and does not require any special
conventions or extensions. A full path to the file can also be specified, for example,
C:\eGate\client\misc\ldapRCF.rcf on Windows. Once created, entries can be added
to the file and eventually used by the LDAP e*Way.

Adding a Credential to the Referrals Credentials File

When the LDAP e*Way encounters a referral and must authenticate the referred LDAP
server, it looks up the referrals credentials file. The e*Way searches for an entry in the
file with the matching host name and the port number it received from the referral. It
then retrieves the Principal and Credentials from the matching entry and uses them to
authenticate the referred LDAP server.

Note: The user must know in advance which possible LDAP servers the e*Way may refer
to as well as the required credentials for each LDAP server. The user cannot add an
entry to the credentials file for each of the LDAP servers without this information.

Figure 4 is an example of the structure of an LDAP server with referrals to other
servers.

Figure 4 LDAP Server with Referrals

Using the information shown in Figure 4, the following section tells how to add entries
to the credentials file.

1 To add myserver2 listening on port 389, issue the following command:

java com.stc.eways.jndi.RCFUtil --add -- ldapRCF.rcf

LDAP e*Way LDAP Server
Myserver1

Myserver 2
listening on port 389
Principal cn=someuser,
dc=com
Credentials pass2

Myserver 3
listening on port 489
Principal cn=jdoe,
dc=acme, dc=com
Credentials pass2

referra
ls

referrals

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 30 SeeBeyond Proprietary and Confidential

The utility then prompts for the following information:

LDAP Host

LDAP Port

Principal

Credentials.

Adding a referral credentials entry...
Enter username >> admin
Enter password >> seebeyond
Enter LDAP Host >> myserver2
Enter LDAP Port >> 389
Enter the Principal >> cn=someuser,dc=acme,dc=com
Enter the Credentials >> pass1

Done.

2 To add myserver3 listening on port 489, issue the following command:

java com.stc.eways.jndi.RCFUtil --add -- ldapRCF.rcf

Again, the utility then prompts for the following information:

LDAP Host

LDAP Port

Principal

Credentials.

Adding a referral credentials entry...
Enter username >> admin
Enter password >> seebeyond
Enter LDAP Host >> myserver3
Enter LDAP Port >> 489
Enter the Principal >> cn=jdoe,dc=acme,dc=com
Enter the Credentials >> pass2

Done.

Note: To add an entry that uses anonymous login, do not enter the Principal information
and press the <return> key.

Displaying The Contents Of A Referrals Credentials File

The entries in the credentials file can be displayed by issuing the following command:

java com.stc.eways.jndi.RCFUtil --list -- ldapRCF.rcf

The entries are listed in no particular order. Each of the fields for an entry are separated
by the pipe '|' character. The first field is the hostname, the second field is the port
number, the third field is the Principal, and the fourth field is the encrypted
Credentials.

Listing entries in the referral credentials file...
Enter username >> admin
Enter password >> seebeyond
1> myserver3 | 489 | cn=jdoe,dc=acme,dc=com | 05EDBA8021C7
2> myserver2 | 389 | cn=someuser,dc=acme,dc=com | 05EDBA80004D

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for LDAP User’s Guide 31 SeeBeyond Proprietary and Confidential

To display the credentials in plain text, issue the following command:

java com.stc.eways.jndi.RCFUtil --list --decrypt -- ldapRCF.rcf

The -decrypt option tells the utility to display the encrypted credentials in plain text.

Listing entries in the referral credentials file...
Enter username >> admin
Enter password >> seebeyond
1> myserver3 | 489 | cn=jdoe,dc=acme,dc=com | pass2
2> myserver2 | 389 | cn=someuser,dc=acme,dc=com | pass1

Modifying An Entry In A Referrals Credentials File

The Principal and the Credentials entries are the only entries in the credentials file that
can be modified with the RCFUtil utility. If the host and port number need to be
changed, remove the existing entry matching that host and port number and then add
an entry with the new host and/or port number. See Removing An Entry From A
Referrals Credentials File on page 31 on how to remove an entry.

To modify either or both the Principal and Credentials information, issue the following
command:

java com.stc.eways.jndi.RCFUtil --modify --username admin --password
seebeyond -decrypt
-- ldapRCF.rcf

The utility will display a list of entries in the credentials file. Select the entry number
you want to modify. Then the utility will prompt for the new Principal and Credentials
information. To change an entry to use anonymous login, do not enter the Principal and
press <return>. The utility will ask for confirmation to change the entry to anonymous
login.

Modifying entry from the referral credentials file...
NOTE : Only the Principal and Credentials can be modified.
 Use --remove to remove an entry.
1> myserver3 | 489 | cn=jdoe,dc=acme,dc=com | pass2
2> myserver2 | 389 | cn=someuser,dc=acme,dc=com | pass1
Enter number from list to modify>> 1
[myserver3:489] Principal >> cn=jdoe,dc=acme,dc=com
[myserver3:489] Enter new Principal >> cn=john doe,dc=acme,dc=com
[myserver3:489] Credentials >> pass2
[myserver3:489] Enter new Credentials >> pass3
Done.

Removing An Entry From A Referrals Credentials File

To remove an entry from the credentials file, issue the following command:

java com.stc.eways.jndi.RCFUtil --remove --username admin --password
seebeyond --decrypt -- ldapRCF.rcf

The utility will display a list of entries available in the credentials file. Select the
number of the entry to remove.

Removing entry from the referral credentials file...
1> myserver3 | 489 | cn=john doe,dc=acme,dc=com | pass3
2> myserver2 | 389 | cn=someuser,dc=acme,dc=com | pass1
Enter number from list to remove>> 1
Done.

Chapter 3 Section 3.3
Configuration External Configuration Requirements

e*Way Intelligent Adapter for LDAP User’s Guide 32 SeeBeyond Proprietary and Confidential

3.3 External Configuration Requirements
There are no configuration changes required in the external system. All necessary
configuration changes can be made within e*Gate.

e*Way Intelligent Adapter for LDAP User’s Guide 33 SeeBeyond Proprietary and Confidential

Chapter 4

LDAP ETD Overview

This chapter provides an overview of the LDAP ETD hierarchy structure, including the
nodes, available methods and properties, and their application. For a more detailed
description of each method see “LDAP e*Way Classes and Methods” on page 88.

4.1 LDAP ETD Structure

The LDAP Event Type Definition (ETD) exposes the APIs for accessing an LDAP
directory in the e*Gate Java collaboration environment. It is an uneditable read-only
ETD. There are two components to the LDAP ETD: the ldap.xsc file, which exposes the
structures and methods, and the Java classes, which implement those structures and
methods. The following sections describe the LDAP ETD in detail and how to use the
LDAP ETD in order to build a Java Collaboration rule for accessing an LDAP directory.

See next page

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 34 SeeBeyond Proprietary and Confidential

This section explains the structure and layout of the LDAP ETD (ldap.xsc file). Figure 5
shows an example of the LDAP ETD in the e*Gate Schema Designer ETD Editor Main
window.

Figure 5 LDAP ETD in ETD Editor

The following is the general outline of the ETD and the methods and properties
exposed on each node.

4.1.1 NSClient Root Node
NSClient is the root node and provides a graphical representation of the interface.
Expanding the node reveals all the methods and attributes on the interface, which are
themselves represented as nodes. A node representing a method is normally
expandable and reveals all the parameters for the method, as well as the return value (if
present).

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 35 SeeBeyond Proprietary and Confidential

4.1.2 Connection Node
The Connection node populates the information required to connect to an LDAP
server. This node specifies connection information when using the e*Way in Manual
mode, where the connection to the LDAP server is handled manually by the user. The
Connection node can only be used when the LDAP e*Way Connector is configured as
"Manual" in the "Connection Establishment Mode" property of the "connector"
properties. See “Connector” on page 23 for details on this property.

Figure 6 shows the Connection node in its expanded form.

Figure 6 Connection Node in LDAP ETD

The Connection node has the following fields:

ProviderURL

Authentication

Principal

Credentials

The user must set the ProviderURL and the Authentication mechanism fields.
Additionally, the user may be required to set the Principal and Credentials fields if the
Authentication mechanism specified requires them. See “Connection” on page 25 for
details on the field properties.

Methods Under the Connection Node

Table 2 describes the exposed methods that manage connections to an LDAP server.

Table 2 Connection Node

Method Name Description

connect Creates a connection to the LDAP server using the specified parameters.

disconnect Manually closes the connection to the LDAP server.

isConnected Determines if the current connection to the LDAP server is still connected.

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 36 SeeBeyond Proprietary and Confidential

4.1.3 Search Node
The Search node is specific to operations that are done once the e*Way is connected to
the LDAP server. The Search node corresponds to performing searches for an entry or
multiple entries of the LDAP directory.

To perform a search, the user specifies the name context or starting entry for the search,
the search scope or the boundaries to which the search is limited, and some search
criteria known as a search filter.

The Search node, its leaf nodes, and fields are described in the following sections.

Figure 7 shows the Search node in its expanded form.

Figure 7 Search Node

The Search node has three nodes:

LDAPSearchControls

SearchOptions

SearchResults,

and one method:

performSearch.

To perform a search, the user first specifies any LDAP search controls to use, then
specifies the search options such as the search filter, and then calls the performSearch
method. Upon successfully returning from the performSearch method, the user can
retrieve the results of the search by utilizing the SearchResults node.

LDAPSearchControls

Figure 8 shows the LDAPSearchControls node in its expanded form.

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 37 SeeBeyond Proprietary and Confidential

Figure 8 LDAPSearchControls Node

Important: LDAP version 3 provides a way of extending functionality through the use of
controls. Not all LDAP servers support controls or extensions. Before using
controls, be sure to find out whether the LDAP server supports the controls being
used. In addition, do not enable a particular control if the LDAP server does not
support that particular control. Doing so will cause the e*Way to fail with an
exception.

Table 3 describes the fields exposed on the LDAPSearchControls Node.

Note: Microsoft Active Directory requires the PagedResultsControl or else only a
maximum of 1000 entries are returned even if there are more than 1000 entries.

Once the controls are set, subsequent searches will send the control information to the
server. To remove the controls, use the removeSortControlAttributes or
removePagedResultsControl methods. After a control is removed, subsequent searches
will not send the information for removed control to the server.

SearchOptions

The SearchOptions node specifies the search criteria such as the scope of the search and
the search filter.

Figure 9 shows the SearchOptions node in its expanded form.

Table 3 LDAPSearchControls Node

Field Name Description

SortControlAttributes Used to request that the results returned be sorted according to the
attributes specified. To use sort control, set the SortControlAttributes field
with a String consisting of attributes each separated by a pipe '|' character.
Example: to sort entries returned by the attribute “cn” followed by the
attribute mail, set SortControlAttributes with a String that looks like
"cn|mail".

PagedResultsControl Used to request that the results be returned in pages. Potentially, a search
can result in hundreds or thousands of entries. If the server supports
paged controls, then the user can set the PageResultsControl field with a
number representing the number of entries returned per page of results.

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 38 SeeBeyond Proprietary and Confidential

Figure 9 SearchOptions Node

Table 4 describes the fields exposed on the LDAPSearchOptions Node.

Table 4 LDAPSearchOptions Node

Field Name Description

ContextName Used to set the root of the search in the directory.The context name is relative to
the context specified in the ProviderURL. If the context name is not set correctly,
then the e*Way will not be able to properly resolve the context name relative to
the initial e*Way Connection.
Example of a context name:"ou=MyOrg", where "ou=MyOrg" is relative to
ldap://myldapserver1:389/dc=acme,dc=com. In this case,
"ou=MyOrg,dc=acme,dc=com" is the Distinguished Name.

SearchScope Used to set the scope or boundary of the search. When sending a search
request, you must specify the scope of the search to identify the boundary of the
search. This field is an integer type. For more information, see “SearchOptions
Scopes” on page 39.

SearchFilter Used to specify the search filter for the search, and is of type String. The basic
search syntax is:

(attribute operator value)
Attribute is one of the possible attributes that an entry may have.
Operator defines the comparison value such as '='.
Value is a value that an attribute may have.

Example: (cn=John Doe)
In the example, cn is the attribute, = is the operator, and John Doe is the value.
The search filter specifies for entries where the attribute cn is equal to John Doe.
For more information, see “SearchFilter Binary Operators” on page 40 and
“SearchFilter Binary Operators” on page 40.

Note: The search filter syntax is described by RFC 2254. For more
information, refer to this RFC on www.ietf.org.

TimeLimit Used to specify the timeout in milliseconds for a search. If the search exceeds
the set time limit, performSearch() will return without results.

CountLimit Defines the maximum number of entries that can be returned on a search result.

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 39 SeeBeyond Proprietary and Confidential

SearchOptions Scopes

The following section describes the scope parameters OBJECT_SCOPE,
ONELEVEL_SCOPE, and SUBTREE_SCOPE. Each figure shows a dotted box
highlighting the scope and the entries covered for that scope parameter. To specify the
scope of the search, type in the ETD field one of the following values described below
as the scope parameter.

com.stc.eways.jndi.SearchOptions.OBJECT_SCOPE

SearchOptions.OBJECT_SCOPE tells the e*Way to search only within the named
object, defined with ContextName. Using this scope essentially compares the
named object for some particular attribute and/or value. See Figure 10.

Figure 10 OBJECT_SCOPE

com.stc.eways.jndi.SearchOptions.ONELEVEL_SCOPE

SearchOptions.ONELEVEL_SCOPE tells the e*Way to search for entries one level
below the named object. See Figure 11.

Root

dc=seebeyond.com

ou=People ou=Groups

cn=John Doe cn=Jane Doe

Starting Point
"dc=seebeyond.com" and

scope is OBJECT_SCOPE

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 40 SeeBeyond Proprietary and Confidential

Figure 11 ONELEVEL_SCOPE

com.stc.eways.jndi.SearchOptions.SUBTREE_SCOPE

SearchOptions.SUBTREE_SCOPE tells the e*Way to search for all entries starting
from the named object and all descendants below the named object. See Figure 12.

Figure 12 SUBTREE_SCOPE

SearchFilter Binary Operators

Additional operators that can be used in a filter expression are listed in Table 5.

Root

dc=seebeyond.com

ou=People ou=G roups

cn=John Doe cn=Jane Doe

Starting Point
"dc=seebeyond.com "

Scope is
O NELEVEL_SCOPE

R o o t

d c=see beyond .co m

ou= P eop le ou= G roups

cn= John D oe cn= Jane D oe

S ta rtin g P o in t
"dc= seeb eyon d .co m "

S cope is
S U B TR E E _S C O P E

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 41 SeeBeyond Proprietary and Confidential

Note: Not all servers will support all the operators described in the LDAP e*Way User’s
Guide. See your LDAP server administrator on what search operators are
supported.

SearchFilter Boolean Operators

Different conditions can be defined using binary operators combined with boolean
operators. The syntax for using Boolean operators is:

(Boolean_operator (filter) (filter)…(filter))

In this example of syntax, filter is an expression using one of the binary operators and
the Boolean_operator is one of the following: &, |, !. For example, (| (cn=John
Doe)(sn=Smith)), will get the entries with attribute "cn" equal to "John Doe" or
entries with attribute "sn" equal to "Smith".

Note: As already mentioned, the search filter syntax is described by RFC 2254. For more
information, refer to this RFC on www.ietf.org.

Boolean operators that can be used in a filter expression are listed in Table 6.

Table 5 Search Filter Binary Operators

Operator Comments Example

= Get entries that have a particular attribute
equaling the specified value.

(sn=Doe) will get the entry with
the attribute "sn" which equals
"Doe"

>= Get entries that have a particular attribute
whose value is greater than or equal to the
specified value.

(sn>=Doe) will get all the entries
whose attribute sn falls between
sn="Doe" and sn="Z…" (D is less
than Z)

 <= Get entries that have a particular attribute
whose value is less than or equal to the
specified value.

(sn<=Doe) will get all the entries
whose attribute sn falls between
sn="A…" and sn="Doe" (A is less
than D)

 =* Get entries that have a particular attribute
that has any value.

(sn=*) will get all the entries
whose attribute sn has some value

 ~= Get entries that have a particular attribute
that has some value similar to the specified
value. This is used for approximate matches.

(sn~=Doa) will return the entry
"sn=Doe". "Doa" matches
approximately to "Doe"

Table 6 Search Filter Boolean Operators

Operator Comments Example

& Get all entries that match all the search filter
criteria.

(&
(sn=Smith)(telephoneNumber=44
4-4444)) will get entries with sn
equal to Smith and
telephoneNumber equal to 444-
4444

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 42 SeeBeyond Proprietary and Confidential

AttributesSelection

Under the SearchOptions node, the AttributesSelection node is used to restrict which
attributes will be returned on a search. AttributesSelection is a collection of attribute
IDs (names) that can be managed by using the AddAttribute, RemoveAttribute, and
ClearAttributes methods.

AddAttribute takes an attribute name, as an argument, of type java.lang.String.

RemoveAttribute also takes an attribute name as an argument which is of type
java.lang.String.

ClearAttributes does not take any arguments and will remove any attributes
added.

Important: If AddAttributesSelection is not used, then all attributes are returned by default.

SearchResults

The SearchResults node enables the user to retrieve the results returned by the search.

Figure 13 shows the SearchResults node in its expanded form.

Figure 13 SearchResults Node

The SearchResults node has the Result leaf node, and the following three methods:

| Get entries that match one or more of the
search filter criteria.

(|(sn=Smith)(sn=Doe)) will get
entries with sn equal to Smith or
sn equal to Doe

! Get entries that do not match the search filter
criteria. Only one search filter can be
specified (i.e., (! (filter)) is allowed but
(!(filter)(filter)) is NOT allowed).

(! (sn=Smith)) gets all entries with
attribute sn not equal to Smith

Table 6 Search Filter Boolean Operators

Operator Comments Example

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 43 SeeBeyond Proprietary and Confidential

hasResults

hasMoreResults

getNextResult

After performSearch() has been called, the resultant entries are stored internally for
retrieval in SearchResults.

To determine whether any results were returned from a search:

1 Call the hasResults method, which returns true if any results are returned, or false
otherwise.

2 To iterate through all the entries, call hasMoreResults() and getNextResult() within
a while loop.

The following example, taken from a Java collaboration rule, illustrates how to iterate
through all the entries.

if (getLDAP().getSearch().getSearchResults().hasResults())
 {
 while (getLDAP().getSearch().getSearchResults().hasMoreResults())
 {
 getLDAP().getSearch().getSearchResults().getNextResult();
 System.out.println ("Entry>>>> " +
getLDAP().getSearch().getSearchResults().getResult().getName());
 System.out.println ("Attribute count : " +
getLDAP().getSearch().getSearchResults().getResult().countSTCAttribute());
 for(int i=0;i <
getLDAP().getSearch().getSearchResults().getResult().countSTCAttribute();i++)
 {
 System.out.println (" Attribute : " +
getLDAP().getSearch().getSearchResults().getResult().getSTCAttribute(i).getName());
 System.out.println (" Value count : " +
getLDAP().getSearch().getSearchResults().getResult().getSTCAttribute(i).countSTCValue());
 for(int j=0;j <
getLDAP().getSearch().getSearchResults().getResult().getSTCAttribute(i).countSTCValue();j++)
 {
 if
(getLDAP().getSearch().getSearchResults().getResult().getSTCAttribute(i).getSTCValue(j).isString()
)
 {
 System.out.println (" Value [String]: " +
getLDAP().getSearch().getSearchResults().getResult().getSTCAttribute(i).getSTCValue(j).getStringVa
lue());
 }
 else
 {
 System.out.println (" Value [byte array] : " +
StringUtil.toHexString(getLDAP().getSearch().getSearchResults().getResult().getSTCAttribute(i).get
STCValue(j).getByteValue()));
 }
 }
 }
 }
 }

The sample code listed above indicates the following:

the call to hasResults() determines whether there are results and uses
hasMoreResults() as the condition for the while loop.

Within the while loop, a call to getNextResult() populates the Result node with the
next resultant entry.

Once getNextResult() is called, the Result object is accessed.

The following sample code displays the name of the result with the Java code:
System.out.println ("Entry>>>> " + getLDAP().getSearch().getSearchResults().getResult().getName());

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 44 SeeBeyond Proprietary and Confidential

Result

As already mentioned, calling getNextResult() populates Result with the next result.
The Result node has the Name field, of type java.lang.String, which holds the
Distinguished Name of the entry.

Result has the STCAttribute node which is a collection of attributes. To determine the
number of STCAttribute in the collection, call the countSTCAttribute() method that
returns an integer.

STCAttribute

Each STCAttribute has an attribute name, held in the Name field, and contains a
collection of STCValue. To determine the number of STCValue in the collection, call the
countSTCValue() method which returns an integer.

STCValue

Each STCValue represents the value of an attribute. A value can either be of type
java.lang.String or a byte array (byte []). The user can determine the value type by
calling the isString() method which will return true if the value is of type
java.lang.String or false if the value is of type byte array (byte []). With the type
determined, the user can retrieve the appropriate value using StringValue or ByteValue
fields.

Retrieving Values for Attributes

Taking the example Java collaboration rule from the previous section, the following line
of code shows how to retrieve the value for an attribute:

if(getLDAP().getSearch().getSearchResults().getResult().getSTCAttribute(i).getSTCValue(j).isString
())

 {

 System.out.println (" Value [String]: " +
getLDAP().getSearch().getSearchResults().getResult().getSTCAttribute(i).getSTCValue(j).getStringValu
e());

 }

4.1.4 AddEntry
The AddEntry node is used to add entries to a directory. When adding an entry, there
are different options available. To add an entry, specify the name of the entry to add
(RDN relative to the initial context), the attributes and values for each attribute, and
then call the performAddEntry() method.

Figure 14 shows the AddEntry node in its expanded form.

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 45 SeeBeyond Proprietary and Confidential

Figure 14 AddEntry Node

Table 7 describes the nodes and fields exposed on the AddEntry Node.

Table 7 AddEntry Node

Name Description

AddEntryOptions node Used to add entries to a directory and contains options when
adding an entry.

 IgnoreAttributeIDCase field Tells the e*Way to ignore the case-sensitivity of the attribute
IDs (names) that are defined. This field is of type Boolean; set
this field to true to ignore case-sensitivity or false to NOT
ignore case-sensitivity. The default value for
IgnoreAttributeIDCase is true.

OrderAttributeValues field Tells the e*Way to order the values for each attribute. This
field is of type Boolean; set this field to true to order the
values of each attribute or false to ignore the order of the
values. The default value for OrderAttributeValues is false.

IgnoreAlreadyBound field Set to true to ignore an AlreadyBoundException exception to
be thrown if the entry to be added already exists in the
directory. Set this field to false to force the e*Way to throw a
CollabDataException when adding an already existed entry.
An exception will be thrown if any other internal errors have
occurred.

STCEntry node Defines the entry to be added. The STCEntry node contains a
collection of STCAttribute that can be used to define
attributes for adding an entry.

Name field Holds the name of the entry to be added and is of type
java.lang.String. The name should be a RDN relative to the
initial context created when the e*Way connected to the
directory.

STCAttribute Each STCAttribute has a Name field of type java.lang.String
that holds the name of the attribute. In addition, each
STCAttribute contains a collection of STCValue.

STCValue Each STCValue holds either a java.lang.String or byte array
(bye []) value. The correct type of value can be defined by
setting either the StringValue or ByteValue field appropriately.

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 46 SeeBeyond Proprietary and Confidential

4.1.5 CompareEntry Node
The CompareEntry node is used to check for existing attribute(s) that have value(s). To
compare an entry, the user specifies the RDN of the entry to compare and the "search"
filter for the comparison. The user then invokes the performCompare() method that
returns true if the specified entry has a matching attribute(s) with the values as
specified in the filter.

Figure 15 shows the CompareEntry node in its expanded form.

Figure 15 CompareEntry Node

Table 8 describes the nodes and fields exposed on the CompareEntry Node.

4.1.6 RenameEntry Node
The RenameEntry node can be used rename an existing entry with a new name. To
rename an entry, the user specifies the RDN of the entry to rename, the new RDN of the

Table 8 CompareEntry Node

Name Description

CompareEntryOptions node Used to check for existence of attribute(s) that have value(s).

 EntryName field The DN of the entry to compare.

CompareFilter field Consists of the attribute(s) and value(s) to search.
Example: if EntryName is "cn=John Doe, ou=People,
dc=acme, dc=com" and the CompareFilter is
"(password=jdoepassword)", then performCompare() will
return true if the specified entry, "cn=John Doe, ou=People,
dc=acme, dc=com", has an attribute called "password" whose
value is equal to "jdoepassword". If the specified entry does not
have matching attributes and values, then peformCompare() will
return false. An exception will be thrown if there were other
internal errors.
Example: comparing an entry that does not exist in the directory
will result in a CollabDataException exception thrown because
of a NameNotFoundException internal exception.

TimeLimit field Used to specify the timeout in milliseconds for a compare. If the
compare exceeds the set time limit, performSearch() will return
without results

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 47 SeeBeyond Proprietary and Confidential

entry, and call the performRename() method. The parent context specified by the new
RDN must already exist.

For example, if the old RDN is "cn=John Doe, ou=People" and the new RDN is
"cn=John Doe, ou=Staff", then the parent context, "ou=Staff", must already
exist in the directory or else performRename() will fail with an exception.

Figure 16 shows the RenameEntry node in its expanded form.

Figure 16 RenameEntry Node

Table 9 describes the fields exposed on the RenameEntry Node.

For both OldName and NewName fields, upon successfully renaming the entry,
performRename() will return true; otherwise false is returned. An exception will be
thrown if any other internal errors have occurred. For example, renaming an entry that
does not exist in the directory will result in a CollabDataException exception thrown
because of a NameNotFoundException internal exception.

4.1.7 RemoveEntry Node
The RemoveEntry node can be used to remove an entry from the directory. To remove
an entry, the user specifies the RDN of the entry to remove and calls the
performRemove() method.

Figure 17 shows the RemoveEntry node in its expanded form.

Table 9 RenameEntry Node

Field Name Description

OldName The entry's existing name. Prior to calling the performRename()
method, set the OldName field.

NewName The entry's new name. Prior to calling the performRename()
method, set the NewName field.

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 48 SeeBeyond Proprietary and Confidential

Figure 17 RemoveEntry Node

The RemoveEntry node has the Name field. The user can set the name of the entry to
remove in the Name field. Once the name is set, call the performRemove() method to
remove the specified entry from the directory. If the specified entry does not exist in the
directory, then nothing occurs and there will be no exceptions thrown. An exception
will be thrown if any other internal errors occur.

4.1.8 ModifyEntry Node
The ModifyEntry node is to modify an existing entry in the directory. The following
modifications can be made to an entry:

1 Add attribute(s) to an entry.

2 Add value(s) to attribute(s) of an entry.

3 Remove attribute(s) from an entry.

4 Remove value(s) from attribute(s) of an entry.

5 Replace all existing value(s) of attribute(s) with new value(s) for an entry.

Modifications 1 and 2 are accomplished by using ModifyEntry's node called
AddAttributesValues. Modifications 3 and 4 are accomplished by using ModifyEntry's
node called RemoveAttributesValues. Modification 5 is accomplished by using
ModifyEntry's node called ReplaceValues.

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 49 SeeBeyond Proprietary and Confidential

Figure 18 shows the ModifyEntry node in its expanded form.

Figure 18 ModifyEntry Node

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 50 SeeBeyond Proprietary and Confidential

Table 10 describes the nodes and fields exposed on the ModifyEntry Node.

Table 10 ModifyEntry Node

Name Description

AddAttributesValues node Used to specify the entry to modify and the attributes or
values that the user wants to add to the specified entry. To
add attributes or values to an entry, specify the options,
specify the name of the entry to modify, specify the
attributes and values, and then call the
performAddAttributesValues() method. If the modification
is successful, then performAddAttributesValues() will return
true. Otherwise, an exception will be thrown or false will be
returned.

How It Works
If values are specified for an attribute and the attribute does
not exist for the entry, then the attribute and values are
added for that entry. If values are specified for an attribute
and the attribute does exist for the entry, then only the
values are added to the attribute. An exception is thrown if
no value(s) are specified for an attribute.

Note: Attempting to add an existing value
will result in an exception caused by an
AttributeInUseException exception.

RemoveAttributesValues node Used to specify the entry to modify and the attributes or
values that the user wants to remove from the specified
entry. To remove attributes or values from an entry, specify
the options, specify the name of the entry to modify, specify
the attributes and values, and then call the
performRemoveAttributesValues() method. If the
modification is successful, then
performRemoveAttributesValues() will return true.
Otherwise, an exception will be thrown or false will be
returned.

How It Works
If values are specified for an attribute, then the values are
removed. If all the values of the attribute are removed, then
the attribute itself will also be removed. To remove an
attribute, do not specify any values for that attribute, but
rather specify the attribute name that you want to remove.

Note: Attempting to remove a non-existing
value or attribute will result in an
exception caused by a
NoSuchAttributeException exception.

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 51 SeeBeyond Proprietary and Confidential

ReplaceValues node Used to specify the entry to modify and the values for each
of the attributes to replace. To replace the values of an
attribute for an entry, specify the options, specify the name
of the entry to modify, specify the attribute and values, and
then call the performReplaceValues() method. If the
modification is successful, then performReplaceValues ()
returns true. Otherwise, an exception is thrown or false will
be returned.
All existing values of an attribute are replaced by the newly
specified values.

 EntryOptions node Used to specify options when adding or removing attributes
and/or values to an entry. The following options can be set:

IgnoreAttributeIDCase
This field tells the e*Way to ignore the case-sensitivity of the
defined attribute IDs (names). This field is of type Boolean;
set this field to true to ignore case-sensitivity or false to NOT
ignore case-sensitivity. The default value for
IgnoreAttributeIDCase is true.

OrderAttributeValues
This field tells the e*Way to order the values for each
attribute.This field is of type Boolean; set this field to true to
order the values of each attribute or false to ignore the order
of the values. The default value for OrderAttributeValues is
false.

STCEntry node The entry to modify, along with the attributes and/or
values to add, remove or replace, can be specified using
the STCEntry node. The STCEntry node contains the Name
field. This field is of type java.lang.String and holds the
name of the entry to be modified. The name should be a
RDN relative to the initial context created when the e*Way
connected to the directory.
The STCEntry node contains a collection of STCAttribute
that can be used to define attributes to be added or
modified.
Each STCAttribute has a Name field of type java.lang.String
that holds the name of the attribute.
In addition, each STCAttribute contains a collection of
STCValue. Each STCValue holds either a java.lang.String or
byte array (bye []) value. The correct type of value can be
defined by setting either the StringValue or ByteValue
field appropriately.

performAddAttributesValues()
method

The method to add attributes and/or values. See
“AddAttributesValues node”.

performRemoveAttributesValues()
method

The method to remove attributes and/or values. See
“RemoveAttributesValues node”.

performReplaceValues()method The method to replace values of an attribute. See
“ReplaceValues node”.

Table 10 ModifyEntry Node

Name Description

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 52 SeeBeyond Proprietary and Confidential

4.1.9 LDAP ETD Java Classes
The LDAP .xsc structure, described in the previous sections, allows the user to perform
drag and drop operations on the LDAP objects to create a Java Collaboration Rule. The
code generated by the GUI will be compiled and requires the Java classes to implement
the objects exposed in the ldap.xsc file.

The following table describes the Java classes that implement the LDAP ETD.

Table 11 LDAP ETD Java Classes

Class Name Description

NSClient.java Implements the ETDExt.java interface. It is the outer most class which
holds an instance to each of the following classes:

Search.java
AddEntry.java
CompareEntry.java
ModifyEntry.java
RemoveEntry.java
RenameEntry.java
ReplaceValues.java

Each class corresponds to each of the nodes of the LDAP NSClient node
in the ldap.xsc file.

Connection.java Implements the LDAP connection properties set by the user to
manually connect to the LDAP server.

Search.java Implements the search functionality and holds an instance to each of
the following classes:

LDAPSearchControls.java
SearchOptions.Java
Result.Java

LDAPSearchControls.java Implements the LDAP search controls to set and send to the LDAP
server when invoking an LDAP search.

SearchOptions.java Implements the search options to set when invoking an LDAP search.
Options such as search filter, context name, and search scope are
encapsulated with this class. SearchOptions.java holds an instance of
an AttributesSelection.java class that implements the collection of
desired attributes of a search result.

Result.java Implements the LDAP search result object to use to iterate through the
search results. Holds an instance of STCEntry.java class.

AddEntry.java Implements the entry add functionality and holds an instance to each of
the following classes:

AddEntryOptions.java
STCEntry.java.

AddEntryOptions.java Implements the options set when adding an entry.

CompareEntry.java Implements the entry compare functionality and holds an instance to
CompareEntryOptions.java class. The CompareEntryOptions.java class
implements the options to set when comparing an entry.

Rename.java Implements the entry rename functionality.This class does not hold any
references to any other classes.

Chapter 4 Section 4.1
LDAP ETD Overview LDAP ETD Structure

e*Way Intelligent Adapter for LDAP User’s Guide 53 SeeBeyond Proprietary and Confidential

Note: For more information on ETD nodes and methods, see the e*Gate Integrator
User’s Guide. For more information on Java classes and methods, see “LDAP
e*Way Classes and Methods” on page 88.

Remove.java Implements the entry removal functionality. This class does not hold
any references to any other classes.

ModifyEntry.java Implements the entry modification functionality and holds an instance
to each of the following classes:

AddAttributesValues.java
RemoveAttributesValues.java
ReplaceValues.java

AddAttributesValues.java Implements the functionality for adding attributes to an entry or adding
values to the attributes of an entry.

RemoveAttributesValues.
java

Implements the functionality for removing attributes from an entry or
removing values from the attributes of an entry. It holds an instance to
each of the following classes:

EntryOptions.java
STCEntry.java

ReplaceValues.java Implements the functionality for replacing existing values of attributes
of an entry with new values. It holds an instance to each of the
following classes:

EntryOptions.java
STCEntry.java

EntryOptions.java Implements the options set prior to invoking the entry modification.

STCEntry.java Implements the LDAP entry object. It contains a collection of attributes
implemented by the STCAttributes.java class.

STCAttritubes.java Holds instances of STCAttribute.java objects. Each STCAttribute.java
object holds a collection of values implemented by the STCValues.java
class.

STCValues.java Holds instances of STCValue.java objects. Each STCValue.java object
holds the actual value of either type java.lang.String or byte array
(byte[]).

Table 11 LDAP ETD Java Classes

Class Name Description

e*Way Intelligent Adapter for LDAP User’s Guide 54 SeeBeyond Proprietary and Confidential

Chapter 5

Implementation

This chapter presents information pertinent to implementing the Java-enabled LDAP
e*Way in a production environment. The chapter provides an introduction to the
e*Way components by demonstrating an implementation of the Search, Add, Modify,
and Delete sample schemas.

The following assumptions apply to this implementation:

The LDAP e*Way has been successfully installed.

The executable and the configuration files have been appropriately assigned.

All necessary .jar files are accessible.

5.1 LDAP e*Way Implementation
To complete the implementation of the LDAP e*Way, you will do the following:

Make sure that the Control Broker is activated.

In the e*Gate Schema Designer, define and configure the following as necessary:

Inbound and outbound e*Ways using stcewfile.exe.

The Multi-Mode e*Way component.

The e*Way Connection as described in Chapter 3.

Collaboration Rules to process Events.

Collaborations, to be associated with each e*Way component, to apply the
required Collaboration Rules.

The destination to which data will be published prior to being sent to the
external system.

The following sections describe how to define and associate each of the above
components.

Chapter 5 Section 5.2
Implementation Sample Implementations

e*Way Intelligent Adapter for LDAP User’s Guide 55 SeeBeyond Proprietary and Confidential

5.2 Sample Implementations
Five sample schemas for the LDAP e*Way are available in ..\samples\ewldap\.. on the
installation CD-ROM. The sample implementations illustrate how to use e*Gate to
search, add, delete, and modify the entries on an LDAP directory.

The “The Search Sample Schema” on page 56 demonstrates how the e*Way runs
the business logic to search entries to an LDAP directory. The results of the search
are then published to the JMS Queue, where they are picked up and published to a
file.

The Search sample schema with Referrals demonstrates how the e*Way runs the
business logic to search entries to an LDAP directory with referrals. The results of
the search are then published to the JMS Queue, where they are picked up and
published to a file.

Note: This sample has its own readme.txt file which explains how the sample schema is
created. It is available in ..\samples\ewldap\.. on the installation CD-ROM.

The Add sample schema is described in “Creating the Add, Modify, and Delete
Sample Schemas” on page 78. The Add sample demonstrates how the e*Way runs
the business logic to add entries to an LDAP directory. The results of the addition
are then published to the JMS Queue, where they are picked up and published to a
file.

The Modify sample schema “Creating the Add, Modify, and Delete Sample
Schemas” on page 78 demonstrates how the e*Way runs the business logic to
modify entries to an LDAP directory. The results of the modification are then
published to the JMS Queue, where they are picked up and published to a file.

The Delete sample schema is described in “Creating the Add, Modify, and Delete
Sample Schemas” on page 78 demonstrates how the e*Way runs the business logic
to delete entries to an LDAP directory. The results of the deletion are then
published to the JMS Queue, where they are picked up and published to a file.

5.2.1 Importing the Sample Schema
The following pages describe how the components for the LDAP e*Way sample schema
are created.

A Readme.txt is available in ..\setup\addons\ewldap\readme.txt on the installation
CD-ROM. It provides the latest information on required ESRs and recent changes to the
e*Way.

Note: The Host and Control Broker are automatically created and configured during the
e*Gate installation. The default name for each is the name of the host on which the
e*Gate Schema Designer GUI is installed. For more information about creating or
modifying any component within the e*Gate Schema Designer, see the e*Gate
Schema Designer’s online Help system.

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 56 SeeBeyond Proprietary and Confidential

The first task in deploying the sample implementation is to create a new schema name.
While it is possible to use the default schema for the sample implementation, it is
recommended that you create a separate schema for testing purposes. After you install
the LDAP e*Way, do the following:

1 Start the e*Gate Schema Designer GUI.

2 When the Schema Designer prompts you to log in, select the host that you specified
during installation, and enter your password.

3 You will then be prompted to select a schema. Click New.

4 Enter a name for the new Schema. In this case, enter LDAP_Sample, or any name as
desired.

5 To import the sample schema select Create from Export, and use Find to locate and
select the sample .zip file on the CD-ROM. For Windows or UNIX operating
systems select LDAP_Java.zip. Click Open.

Note: If already running e*Gate, select File, New Schema to import the sample schema.

The e*Gate Schema Designer opens under your new schema.

5.3 The Search Sample Schema
For the most part, all e*Way components are created when the sample schema is
imported into e*Gate. This section describes in detail how the components are created
and configured using the Search sample schema.

The Search sample demonstrates how the e*Way searches entries on an LDAP
directory. The sample searches sample data entries and returns the results of the search
in a file.

Figure 19 shows the flow of the e*Way: the inbound Feeder e*Way reads the sample file
and publishes to the JMS Queue. The LDAP e*Way subscribes to the JMS Queue and
sends a request to the LDAP directory. The LDAP directory returns the results and the
LDAP e*Way publishes it to the JMS Queue. The Outbound Eater e*Way subscribes to
the Queue and writes the results to file.

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 57 SeeBeyond Proprietary and Confidential

Figure 19 Schema Sample Component Architecture

Once the sample has been successfully imported into e*Gate, the user must configure it
to correspond to the system as necessary. The following sections provide directions for
creating the LDAP e*Way components used by the sample schema.

5.3.1 Creating and Configuring the e*Ways
Component e*Ways connect with external systems to poll or send data. They also
transform and route data. Multi-Mode e*Ways are used to run Java Collaborations that
utilize e*Way Connections to send and receive Events to and from multiple external
systems.

The Search sample schema contains three e*Ways, two of which are file-based
(ewFeeder and ewEater) and one Multi-Mode (ewLDAP).

Creating the Inbound e*Way (ewFeeder)

1 Select the Navigator's Components tab.

2 Open the host on which you will create the e*Ways.

3 Select the Control Broker that will manage the new e*Ways.

4 On the palette, click the Create a New e*Way button.

5 Enter the name of the new e*Way (in this case “ewFeeder”), then click OK.

6 Right-click the new e*Way and select Properties to edit its properties.

7 The e*Way Properties window opens. Click the Find button beneath the Executable
File field, and select stcewfile.exe as the executable file.

colFeeder
(crpassthrough)

GenericOutEvent

et
LD

A
P

G
en

er
ic

O
ut

E
ve

nt

LDAP e*WayFeeder e*Way Eater e*Way

Ge
ne

ric
Ou

tE
ve

nt

File File
Generic
Event in

colLDAP
(crldap)

colEater
(crpassthroughout)

etL
DAP

GenericOut
Event

JMS
Queue

R
eq

ue
st

R
ep

ly

LDAP
Directory
Server

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 58 SeeBeyond Proprietary and Confidential

Figure 20 Inbound e*Way Properties dialog box

8 Under the Configuration File field, click the New (or Edit for saved e*Ways)
button. The Configuration Editor opens. Select the following settings for this
configuration file.

:

Table 12 Configuration Parameters for the Inbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming YES

AllowOutgoing NO

Outbound Settings Default

Poller Inbound Settings

PollDirectory C:\INDATA (input file folder)

InputFileExtension *.fin (input file extension)

PollMilliseconds 1000

Remove EOL YES

MultipleRecordsPerFile YES

MaxBytesPerLine 4096

BytesPerLineIsFixed NO

File Records Per eGate Event 1

Performance Testing Default

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 59 SeeBeyond Proprietary and Confidential

9 After selecting the desired parameters, save the configuration file (as “ewFeeder”).

10 Click File, Promote to Run Time. This will close the Configuration Editor.

11 In the e*Way - Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for each e*Way you configure.

A Use the Startup tab to specify whether the e*Way starts automatically, or
restarts after abnormal termination or due to scheduling, and so forth.

B Use the Advanced tab to specify or view the activity and error logging levels, as
well as the Event threshold information.

C Use Security to view or set privilege assignments.

12 Select OK to close the e*Way Properties window.

Creating the Outbound e*Way (Eater)

1 On the palette, click the Create a New e*Way button to create another e*Way.

2 Enter the name of the new e*Way (in this case “ewEater”), then click OK.

3 Select the new e*Way, right-click and select Properties. Click Find under the
Executable File field and select stcewfile.exe as the executable file.

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 60 SeeBeyond Proprietary and Confidential

Figure 21 Outbound e*Way Properties dialog box

4 Under the Configuration File field, click the New button. The Configuration Editor
opens. Select the following settings for this configuration file.

:

5 Save the .cfg file as ewEater, and click Promote to Run Time to move the file to the
runtime environment and close the Configuration Editor.

6 In the e*Way - Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for the e*Way.

Table 13 Configuration Parameters for the Outbound e*Way

Parameter Value

General Settings (unless otherwise stated, leave settings as default)

AllowIncoming NO

AllowOutgoing YES

Outbound Settings

OutputDirectory C:\INDATA

OutputFileName output%d.dat

MultipleRecordsPerFile YES

MaxRecordsPerFile 10000

AddEOL YES

Poller Inbound Settings Default

Performance Testing Default

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 61 SeeBeyond Proprietary and Confidential

7 Click OK to close the e*Way Properties window.

Creating the Multi-Mode e*Way

1 Select the Control Broker that will manage the new e*Way.

2 On the palette, click the Create a New e*Way button.

3 Enter the name of the new e*Way (in this case, “ewLDAP”), then click OK.

4 Right-click the new e*Way and select Properties to edit its properties.

5 When the e*Way Properties window opens, click the Find button beneath the
Executable File field, and confirm that stceway.exe is the executable file
(stceway.exe is the default).

Figure 22 Multi-Mode e*Way Properties dialog box.

6 To edit the JVM Settings, select New (or Edit if you are editing the existing .cfg file)
under Configuration file. The Multi-Mode e*Way Configuration Editor opens.

See Multi-Mode e*Way Configuration Parameters on page 18 for details on the
parameters associated with the Multi-Mode e*Way.

7 Save the .cfg file (ewLDAP.cfg), and Promote to Run Time.

8 In the e*Way Properties window, use the Startup, Advanced, and Security tabs to
modify the default settings for each.

9 Click OK to close e*Way Properties window.

For more information on the Multi-Mode e*Way configuration settings see the e*Gate
Integrator User’s Guide.

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 62 SeeBeyond Proprietary and Confidential

5.3.2 Creating the e*Way Connection
An e*Way Connection is the encoding of access information for an external connection.
The e*Way Connection configuration file contains the settings necessary for connecting
with an LDAP server.

The searchLDAPconn e*Way Connection must be created for the Search sample. Use
the following procedure to create the searchLDAPconn e*Way Connection.

1 Select the e*Way Connection folder on the Components tab of the e*Gate
Navigator.

2 On the palette, click the Create a New e*Way Connection button.

3 Enter the name of the e*Way Connection (for this sample, “searchLDAPconn”),
then click OK.

4 Double-click the new e*Way Connection to edit its properties.

5 The e*Way Connection Properties window opens. Select LDAP from the e*Way
Connection Type drop-down menu.

6 Enter the Event Type ''get'' interval in the dialog box provided. 10000 milliseconds
is the configured default. The ''get'' interval is the intervening period at which,
when subscribed to, the e*Way connection is polled.

7 Under e*Way Connection Configuration File, click the New (Edit) button.

8 The e*Way Connection Editor opens. Select the following parameters listed in Table
14.

Important: The LDAP e*Way enables the e*Gate system to contact the root directory identified
by distinguished names. To search, modify, or perform other operations, the contact
distinguished name must reside in a position above the subordinate node being
accessed. Access to the various distinguished names is defined within the LDAP
Server.

9 For more information on the LDAP e*Way Connection parameters, see e*Way
Connection Configuration on page 22.

Table 14 e*Way Connection Configuration Parameters

Parameter Value

connector (unless otherwise stated, leave settings as default)

type LDAP Connector

class com.stc.eways.jndi.runtime.NSConnector

Connection Establishment Mode Automatic

Connection

Initial Context Factory com.sun.jndi.ldap.LdapCtxFactory

ProviderURL ldap://eGate1.stc.com:12222/

Authentication Simple

Principal cn=root, o=STC, c=US

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 63 SeeBeyond Proprietary and Confidential

10 Save the .cfg file (searchldapconn.cfg) and Promote to Run Time.

Note: The Provider URL parameter listed in Table 14 is used solely for the purpose of the
Search sample. The Provider URL will vary based on the URL of the LDAP server.

5.3.3 Event Types
The LDAP e*Way uses an Event Type Definition to parse, validate, and (if necessary)
transform Events. For an overview of the LDAP ETD, see Chapter 4.

Each packet of data within e*Gate is referred to as an Event. An Event Type is a class of
Events with a common data structure. The e*Gate system packages data within Events
and categorizes them into Event Types. What these Events have in common defines the
Event Type and comprises the ETD.

As described in LDAP ETD Structure on page 33, the ldap.xsc in not editable, and is a
built-in component of the LDAP e*Way. However, additional custom ETDs must be
created for the Search sample.

Creating an Event Types Using the Custom ETD Wizard

The following procedures show how to create an ETD (Event Type Definition) using
the Custom ETD Wizard.

1 Highlight the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button.

3 Enter the name of the Event, then click OK. For the purpose of this sample the
Event Type is defined as Blob.

4 Double-click the new Event Type to edit its properties. The Event Type Properties
dialog box opens.

5 Click the New button. The ETD Editor opens.

Referrals

Follow NO

Table 14 e*Way Connection Configuration Parameters

Parameter Value

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 64 SeeBeyond Proprietary and Confidential

6 Select New from the File menu. The New Event Type Definition window opens.

Figure 23 Event Type Definition Wizards

7 Select the Custom ETD wizard.

8 Enter the Root Node Name (for this case, “blob”).

9 Enter a package name where the ETD Editor can place all the generated Java classes
associated with the created ETD. (For this sample, use Blob as the package name.)
Click Next and Finish to close the wizard.

10 Right click Blob in the Event Type Definition pane of the ETD Editor, and select
Add Field, as Child Node.

11 Triple-click on Field1, and rename it data.

12 Select the data node. The properties for the data node are displayed in the
Properties pane. Change the structure property to “fixed.”

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 65 SeeBeyond Proprietary and Confidential

Figure 24 Event Type Definition Editor

13 From the File menu, click Compile and Save. Save the .xsc file as blob.xsc.

14 From the File menu, click Promote to Run Time to move the file to the run time
environment.

15 Close the ETD Editor.

16 Click OK on the Event Type Properties dialog.

Creating Event Types and Associating Them with an Existing .xsc File

The following procedure shows how to create an Event Type Definition (ETD) from an
existing .xsc file.

1 Select the Event Types folder on the Components tab of the e*Gate Navigator.

2 On the palette, click the Create a New Event Type button.

3 Type the name of the Event Type as etLDAP in the New Event Type Component
window, then click OK.

4 Double-click the new Event Type to edit its properties. The Event Type Properties
dialog box opens.

5 Click the Find button under the Event Type Definition field.

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 66 SeeBeyond Proprietary and Confidential

6 Browse to and select ldap.xsc.

7 Click OK to close the Event Type Properties dialog box.

5.3.4 Intelligent Queues
The next step is to create and associate Intelligent Queues (IQs). IQs manage the
exchange of information between components within the e*Gate system and provide
non-volatile storage for data as it passes from one component to another. IQs use IQ
Services to transport data. IQ Services provide the mechanism for moving Events
between IQs, and for handling the low-level implementation of data exchange (such as
system calls to initialize or reorganize a database).

The Java implementation of the LDAP e*Way uses the SeeBeyond JMS (Java Message
Service) IQ Service. For more information on the SeeBeyond JMS IQ see the SeeBeyond
JMS Intelligent Queue User’s Guide.

Creating the Intelligent Queue

1 Select the Navigator's Components tab.

2 Open the host on which you want to create the IQ.

3 Open a Control Broker.

4 Select an IQ Manager.

5 On the palette, click the Create a New IQ button.

6 Enter the name of the new IQ (in this case “iqJMS”), then click OK.

7 Double-click the new IQ to edit its properties.

8 The Service defaults to STC_JMS_IQ and cannot be changed. This is true for any IQ
created for an IQ Manager with the type SeeBeyond_JMS.

9 Set the initialization string and the Event Type Get Interval if necessary. The default
Event Type Get Interval of 100 Milliseconds is satisfactory for the purposes of this
implementation.

10 On the Advanced tab, make sure that Simple publish/subscribe is checked under
the IQ behavior section.

11 Click OK to close the IQ Properties window

5.3.5 Creating Collaboration Rules
The next step is to create the Collaboration Rules that will extract and process selected
information from the source Event Type defined above, according to its associated
Collaboration Service. Creating Collaboration Rules includes assigning the subscription
and publication instance name, Event Type, and specifying the e*Way Connection as
either the source or the destination in the Collaboration. This binds the e*Way
connection to the Collaboration Rule, enabling the collaboration to find the LDAP
directory at runtime.

From the Schema Designer Task Bar, select Options and click Default Editor. The
default should be set to Java.

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 67 SeeBeyond Proprietary and Confidential

Note: Though the Default Editor can be set to either Monk or Java, the sample schemas
require that the default be set to Java.

The Search sample schema calls for the creation of three Collaboration Rules files.

crPassThroughOut (Pass Through)

crPassThroughIn (Pass Through)

crLDAPsearch (Java)

Collaboration Rules Files

crPassThroughOut (Pass Through)

1 Select the Navigator's Components tab in the e*Gate Schema Designer.

2 In the Navigator, select the Collaboration Rules folder.

3 On the palette, click the Create New Collaboration Rules button.

4 Enter the name of the new Collaboration Rule Component (for this case
“crPassThroughOut”), then click OK.

5 Double-click the new Collaboration Rules Component. The Collaboration Rules
Properties window opens.

Figure 25 Collaboration Rules Properties - Pass ThroughOut

6 The Service field defaults to Java. From the Service field drop-down box, change to
Pass Through.

7 Go to the Subscriptions tab. Select etLDAP under Available Input Event Types,
and click the right arrow to move it to Selected Input Event Types. The box under
Triggering Event should be checked. See Figure 26

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 68 SeeBeyond Proprietary and Confidential

Figure 26 Collaboration Properties--Subscriptions

8 Go to the Publications tab. Select GenericOutEvent under Available Output Event
Types, and click the right arrow to move it to Selected Output Event Types. Make
sure that GenericOutEvent is selected as the default. See Figure 27.

Figure 27 Collaboration Properties--Publications

9 Click OK to close the Collaboration Rules - crPassThroughout Properties window.

crPassThroughIn (Pass Through)

1 To create the crPassThroughin Collaboration Rules repeat steps 1–9, substituting:

crPassThroughIn for the name in step 4.

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 69 SeeBeyond Proprietary and Confidential

GenericInEvent for the Selected Input Event in step 7.

GenericOutEvent for the Selected Output Event in step 8.

crLDAPsearch (Java)

1 To create the Java Collaboration Rules select the Collaboration Rules folder.

2 On the palette, click the Create New Collaboration Rules button.

3 Enter the name of the new Collaboration Rule, then click OK (for this case, use
crLDAPsearch).

4 Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties window opens.

5 The Service field defaults to Java.

6 In the Initialization string field, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

7 Select the Collaboration Mapping tab.

8 Using the Add Instance button, create instances to coincide with the Event Types.
For this sample, do the following.

9 In the Instance Name column, enter LDAP for the instance name.

10 Click Find, navigate to and double-click ldap.xsc. This adds ldap.xsc to the ETD
column for this instance.

11 In the Mode column, select Out from the drop–down list box. To access the drop-
down list box, click the right portion of the Mode field for this instance.

12 In the Trigger column, make sure that the checkbox is cleared (no trigger N/A).

13 In the Manual Publish column, make sure the checkbox is cleared (no Manual
Publish).

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 70 SeeBeyond Proprietary and Confidential

Figure 28 Collaboration Rules - crLDAPSearch Properties Collaboration Mapping

14 Repeat steps 9–13 using the following values:

Instance Name — in

ETD — Blob.xsc

Mode — In

Trigger — selected

Manual Publish - N/A

15 Repeat steps 9–13 again using the following values:

Instance Name — out

ETD — Blob.xsc

Mode — Out

Trigger — N/A

Manual Publish - clear

The following section describes how the business logic for the Search sample schema is
set up using the Java Collaboration Rules Editor.

5.3.6 Creating Business Rules Using the Java Collaboration Rules
Editor

The section provides an example of how to create business rules using the Java
Collaboration Rules Editor. The completed Collaboration Rules .xpr file is included

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 71 SeeBeyond Proprietary and Confidential

with the Search sample schema on the installation CD-ROM. Refer to the completed
class, cr_ldap_search.class when completing the Collaboration Rules Properties.

1 From the General tab, click the New or Edit button under the Collaboration Rules
field. The Java Collaboration Rules Editor opens to the cr_LDAP_search.xpr from
the Collaboration Rules Properties dialog box. Expand to full size for optimum
viewing, expanding the Source and Destination Events as well.

Figure 29 The Collaboration Rules Editor

2 All of the user–defined business rules are added as part of execute business rules ().
To view the created code in the Business Rules window, click View on the Menu
bar and select Display Code.

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 72 SeeBeyond Proprietary and Confidential

Figure 30 Collaboration Rules Editor – Business Rules

Each new rule is created by clicking the rule button on the Business Rules toolbar,
or by dragging and dropping one object to another from the Source and Destination
Events panes. The following steps introduce how to create the crLDAPsearch.xpr
business rules.

3 Click Rule. Drag ContextName located under LDAP [NS Client] (Destination
Events) into the Rule pane. Type the value "o=STC,c=US" to create the following
code:

getLDAP().getSearch().getSearchOptions().setContextName
("o=STC,c=US")

4 Click Rule. The set SearchScope rule is created by dragging SearchScope located
under LDAP [NS Client] (Destination Events) into the Rule pane. Type the scope
parameter to create the following code:

getLDAP().getSearch().getSearchOptions().setSearchScope(1)

Note: See “SearchOptions Scopes” on page 39 for more information on scope
parameters.

5 Click Rule. The set SearchFilter rule is created by dragging SearchFilter located
under LDAP [NS Client] (Destination Events) into the Rule pane. Type the
operator value to create the following code:

getLDAP().getSearch().getSearchOptions().setSearchFilter("name=*")

6 Click Rule. The set Time Out rule is created by dragging TimeLimit located under
LDAP [NS Client] (Destination Events) into the Rule pane. Type the number value
to create the following code:

getLDAP().getSearch().getSearchOptions().setTimeLimit(50000)

7 Click Rule. The set CountLimit rule is created by dragging CountLimit located
under LDAP [NS Client] (Destination Events) into the Rule pane. Type the number
value to create the following code:

getLDAP().getSearch().getSearchOptions().setCountLimit(100)

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 73 SeeBeyond Proprietary and Confidential

8 Click Rule. The set SortOrder("position|uid") rule is created by dragging
SortControlAttributes located under LDAP [NS Client] (Destination Events) into
the Rule pane. Type the value to create the following code:

getLDAP().getSearch().getLDAPSearchControls().setSortControlAttrib
utes("position|uid")

9 Click Rule. The exe Search rule is created by dragging performSearch located
under LDAP [NS Client] (Destination Events) into the Rule pane.

getLDAP().getSearch().performSearch()

It then invokes the method.

Create the remaining business rules by using the business logic demonstrated in steps
1-9. You can also refer to the code of the crldapsearch.xpr business rules, available
in ..\samples\ewldap\.. on the installation CD-ROM.

When all the business logic has been defined, compile the code by selecting Compile
from the File menu. The Save menu opens. Provide a name for the .xpr file.

Note: For more information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide.

5.3.7 Creating the Collaborations
Collaborations are the components that receive and process Event Types and forward
the output to other e*Gate components or to an external. Collaborations consist of the
Subscriber, which “listens” for Events of a known type (sometimes from a given
source) and the Publisher, which distributes the transformed Event to a specified
recipient.

Creating the colFeeder e*Way Collaboration

1 In the e*Gate Schema Designer, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration, and select the
Control Broker.

3 Select the ewFeeder e*Way to assign its Collaboration.

4 On the palette, click the Create a New Collaboration button.

5 Enter the name of the new Collaboration (for the sample, “colFeeder”) then click
OK.

6 Double-click the new Collaboration to edit its properties. The Collaboration
Properties dialog box opens, as displayed in Figure 31.

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 74 SeeBeyond Proprietary and Confidential

Figure 31 Collaboration Properties colFeeder

7 From the Collaboration Rules drop-down list box, select the Collaboration Rules
file that you previously created (for the sample, “crPassThroughIn”).

8 In the Subscriptions area, click Add to define the input Event Type to which this
Collaboration will subscribe.

A From the Event Type drop-down list box, select the Event Type
“GenericInEvent.”

B Select the Source from the Source drop-down list box. In this case, it should be
<External>.

9 In the Publications area, click Add to define the output Event Type that this
Collaboration will publish.

A From the Event Type list, select the Event Type “GenericOutEvent.”

B Select the publication destination from the Destination list. In this case, it
should be “iqJMS.”

C The value in the Priority column defaults to 5.

Creating the colLDAP e*Way Collaboration

1 In the e*Gate Schema Designer, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration, and select the
Control Broker.

3 Select an e*Way to assign the Collaboration (for this sample, “ewLDAP”).

4 On the palette, click the Create a New Collaboration button.

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 75 SeeBeyond Proprietary and Confidential

5 Enter the name of the new Collaboration, then click OK. (For the sample,
“colLDAP”)

6 Double-click the new Collaboration to edit its properties. The Collaboration
Properties dialog box opens, as displayed in Figure 32.

Figure 32 Collaboration Properties colLDAP

7 From the Collaboration Rules drop-down list box select the Collaboration Rules
file that you created previously (for the sample, “crLDAPsearch”).

8 In the Subscriptions area, click Add to create an Instance Name to coincide with the
Event Type. For this sample, type “in” for the Instance Name.

9 Define the input Event Type to which this Collaboration will subscribe.

A From the Event Type drop-down list box, select the Event Type
“GenericOutEvent” provided with the sample schema.

B From the Source drop-down list box, select the source (for this sample
“colFeeder”).

10 In the Publications area, click Add to create an Instance Name to coincide with the
Event Type. For this sample, type “out” for the Instance Name.

11 Define the output Event Type that this Collaboration will publish.

A From the Event Type drop-down list box, select the Event Type “etLDAP”
provided with the sample schema.

B Select the publication destination from the Destination drop-down list box. In
this case, it should be “<iqJMS>.”

C The value in the Priority column defaults to 5.

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 76 SeeBeyond Proprietary and Confidential

12 In the Publications area, click Add to create another Instance Name to coincide
with the Event Type. For this sample, type “LDAP” for the Instance Name.

13 Define the output Event Type that this Collaboration will publish.

A From the Event Type drop-down list box, select the Event Type
“GenericOutEvent” provided with the sample schema.

B Select the publication destination from the Destination drop-down list box. In
this case, it should be “<searchLDAPconn>.”

C The value in the Priority column defaults to 5.

14 Click the Apply button and click OK to close the Collaboration Properties dialog
box.

Creating the colEater e*Way Collaboration

1 In the e*Gate Schema Designer, select the Navigator's Components tab.

2 Open the host on which you want to create the Collaboration, and select the
Control Broker.

3 Select an e*Way to assign the Collaboration (for this sample, “ewEater”).

4 On the palette, click the Create a New Collaboration button.

5 Enter the name of the new Collaboration, then click OK. (For the sample,
“colEater”)

6 Double-click the new Collaboration to edit its properties. The Collaboration
Properties dialog box opens, as displayed in Figure 32.

Chapter 5 Section 5.3
Implementation The Search Sample Schema

e*Way Intelligent Adapter for LDAP User’s Guide 77 SeeBeyond Proprietary and Confidential

Figure 33 Collaboration Properties colEater

7 From the Collaboration Rules drop-down list box select the Collaboration Rules
file that you created previously (for the sample, “crPassThroughOut”).

8 In the Subscriptions area, click Add to define the input Event Type to which this
Collaboration will subscribe.

A From the Event Type drop-down list box, select the Event Type “etLDAP”
provided with the sample schema.

B From the Source drop-down list box, select the source (for this sample
“colLDAP”).

9 In the Publications area, click Add to define the output Event Type that this
Collaboration will publish.

A From the Event Type drop-down list box, select the Event Type
“GenericOutEvent” provided with the sample schema.

B Select the publication destination from the Destination drop-down list box. In
this case, it should be “<External>.”

C The value in the Priority column defaults to 5.

5.3.8 Executing the Schema
To execute the LDAP_Sample schema, do the following:

1 Go to the command line prompt, and enter the following:

stccb -rh hostname -rs LDAP_Sample -un username -up user password
-ln hostname_cb

Chapter 5 Section 5.4
Implementation Creating the Add, Modify, and Delete Sample Schemas

e*Way Intelligent Adapter for LDAP User’s Guide 78 SeeBeyond Proprietary and Confidential

Substitute hostname, username and user password as appropriate.

2 Start the Schema Manager GUI.

3 When prompted, specify the hostname which contains the Registry Host started in
Step 1 above.

4 Select the LDAP_Sample schema.

5 After you verify that the Control Broker is connected (the message in the Control
tab of the console will indicate command succeeded and status as up), select the IQ
Manager, hostname_igmgr, then right-click, and select Start.

6 Select each of the e*Ways, right-click, and select Start.

7 To view the output, copy the output file (specified in the Outbound e*Way
configuration file). Save to a convenient location, open.

Note: Opening the destination file while the schema is running will cause errors.

5.4 Creating the Add, Modify, and Delete Sample Schemas
The Add, Modify, and Delete sample schemas contain e*Ways configured to add,
modify, or delete the entries of an LDAP directory.

Note: Modifying and deleting entries require that certain records and attributes be present
on the LDAP server. Modifying and deleting entries should only be done once
entries have been added to an LDAP directory, otherwise Java will throw an
exception. The suggested running order is to first add, then modify or delete.

The sections covering the Add, Delete, and Modify sample schemas only describe the
aspects unique to those operations--the collaboration rules and the business rules.

However, these sample schemas have the same configuration parameters for the
e*Ways and for the e*Way connections as the Search sample schema. For the e*Way
configuration parameters, see “Creating and Configuring the e*Ways” on page 57 and
for the e*Way connection configuration parameters, see “Creating the e*Way
Connection” on page 62.

For more detailed information on the steps required to create the sample schemas, refer
to the “The Search Sample Schema” on page 56, which details each step involved in
creating the Search sample schema. These same steps can be used to recreate each of the
following sample schemas outlined in the following sections.

5.4.1 Creating the Add Sample Schema
The Add sample schema calls for the creation of three Collaboration Rules files.

crPassThroughOut (Pass Through)

See “crPassThroughOut (Pass Through)” on page 67.

crPassThroughIn (Pass Through)

Chapter 5 Section 5.4
Implementation Creating the Add, Modify, and Delete Sample Schemas

e*Way Intelligent Adapter for LDAP User’s Guide 79 SeeBeyond Proprietary and Confidential

See “crPassThroughIn (Pass Through)” on page 68.

crLDAPadd (Java)

For crLDAPadd, do the following:

1 To create the Java Collaboration Rules select the Collaboration Rules folder.

2 On the palette, click the Create New Collaboration Rules button.

3 Enter the name of the new Collaboration Rule, then click OK (for this case, use
crLDAPadd).

4 Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties window opens.

5 From the Service field drop-down box, select Java. The Collaboration Mapping tab
is now enabled, and the Subscriptions and Publications tabs are disabled.

6 In the Initialization string field, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

7 Select the Collaboration Mapping tab.

8 Using the Add Instance button, create instances to coincide with the Event Types.
For this sample, do the following.

9 In the Instance Name column, enter LDAP for the instance name.

10 Click Find, navigate to and double-click ldap.xsc. This adds ldap.xsc to the ETD
column for this instance.

11 In the Mode column, select Out from the drop–down list box. To access the drop-
down list box, click the right portion of the Mode field for this instance.

12 In the Trigger column, make sure that the checkbox is cleared (no trigger N/A).

13 In the Manual Publish column, make sure the checkbox is cleared (no Manual
Publish).

Chapter 5 Section 5.4
Implementation Creating the Add, Modify, and Delete Sample Schemas

e*Way Intelligent Adapter for LDAP User’s Guide 80 SeeBeyond Proprietary and Confidential

Figure 34 Collaboration Rules - crLDAPadd Properties Collaboration Mapping

14 Repeat steps 9–13 using the following values:

Instance Name — in

ETD — etdLDAPadd.xsc

Mode — In

Trigger — selected

Manual Publish - N/A

15 Repeat steps 9–13 again using the following values:

Instance Name — out

ETD — GenericOutEvent.xsc

Mode — Out

Trigger — N/A

Manual Publish - clear

The following section describes how the business logic for the Add sample schema is
set up using the Java Collaboration Rules Editor.

Creating Business Rules for the Add Sample Schema

The section provides an example of how to create the business rules for the Add sample
schema using the Java Collaboration Rules Editor. The completed Collaboration
Rules .xpr file is included with the Add sample schema on the installation CD-ROM.

Chapter 5 Section 5.4
Implementation Creating the Add, Modify, and Delete Sample Schemas

e*Way Intelligent Adapter for LDAP User’s Guide 81 SeeBeyond Proprietary and Confidential

Refer to the completed class, crLDAPadd.class when completing the Collaboration
Rules Properties.

1 Click the New or Edit button under the Collaboration Rules field. The Java
Collaboration Rules Editor opens to the crLDAPadd.xpr from the Collaboration
Rules Properties dialog box. Expand to full size for optimum viewing, expanding
the Source and Destination Events as well.

Figure 35 Collaboration Rules Editor crLDAPadd

Using the principles of the business logic detailed in the section “Creating Business
Rules Using the Java Collaboration Rules Editor” on page 70, apply the business logic
to create the crLDAPadd sample schema.

To create the Collaboration for Add sample schema, follow the steps in “Creating the
Collaborations” on page 73. For step 8b, use “colLDAPadd” as the source type.

To execute the Add sample schema, see “Executing the Schema” on page 77.

5.4.2 Creating the Modify Sample Schema
The Modify sample schema calls for the creation of three Collaboration Rules files.

crPassThroughOut (Pass Through)

See “crPassThroughOut (Pass Through)” on page 67.

crPassThroughIn(Pass Through)

Chapter 5 Section 5.4
Implementation Creating the Add, Modify, and Delete Sample Schemas

e*Way Intelligent Adapter for LDAP User’s Guide 82 SeeBeyond Proprietary and Confidential

See “crPassThroughIn (Pass Through)” on page 68.

crLDAPmodify (Java)

1 To create the Java Collaboration Rules select the Collaboration Rules folder.

2 On the palette, click the Create New Collaboration Rules button.

3 Enter the name of the new Collaboration Rule, then click OK (for this case, use
crLDAPmodify).

4 Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties window opens.

5 From the Service field drop-down box, select Java. The Collaboration Mapping tab
is now enabled, and the Subscriptions and Publications tabs are disabled.

6 In the Initialization string field, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

7 Select the Collaboration Mapping tab.

8 Using the Add Instance button, create instances to coincide with the Event Types.
For this sample, do the following.

9 In the Instance Name column, enter LDAP for the instance name.

10 Click Find, navigate to and double-click ldap.xsc. This adds ldap.xsc to the ETD
column for this instance.

11 In the Mode column, select Out from the drop–down list box. To access the drop-
down list box, click the right portion of the Mode field for this instance.

12 In the Trigger column, make sure that the checkbox is cleared (no trigger N/A).

13 In the Manual Publish column, make sure the checkbox is cleared (no Manual
Publish).

Chapter 5 Section 5.4
Implementation Creating the Add, Modify, and Delete Sample Schemas

e*Way Intelligent Adapter for LDAP User’s Guide 83 SeeBeyond Proprietary and Confidential

Figure 36 Collaboration Rules - crLDAPmodify Properties Collaboration Mapping

14 Repeat steps 9–13 using the following values:

Instance Name — in

ETD — etdLDAPmodify.xsc

Mode — In

Trigger — selected

Manual Publish - N/A

15 Repeat steps 9–13 again using the following values:

Instance Name — out

ETD — etdBlob.xsc

Mode — Out

Trigger — N/A

Manual Publish - clear

The following section describes how the business logic for the Modify sample schema is
set up using the Java Collaboration Rules Editor.

Creating Business Rules for the Modify Sample Schema

The section provides an example of how to create the business rules for the Modify
sample schema using the Java Collaboration Rules Editor. The completed Collaboration
Rules .xpr file is included with the Modify sample schema on the installation CD-ROM.

Chapter 5 Section 5.4
Implementation Creating the Add, Modify, and Delete Sample Schemas

e*Way Intelligent Adapter for LDAP User’s Guide 84 SeeBeyond Proprietary and Confidential

Note: While modifying entries, be careful not to add an existing value. This will result in
an exception caused by an Attribute In Use Exception exception. See
“ModifyEntry Node” on page 48 for details.

Refer to the completed class, crLDAPmodify.class when completing the Collaboration
Rules Properties.

1 Click the New or Edit button under the Collaboration Rules field. The Java
Collaboration Rules Editor opens to the crLDAPmodify.xpr from the Collaboration
Rules Properties dialog box. Expand to full size for optimum viewing, expanding
the Source and Destination Events as well.

Figure 37 Collaboration Rules Editor crLDAPmodify

Using the principals of the business logic detailed in the section “Creating Business
Rules Using the Java Collaboration Rules Editor” on page 70, apply the business logic
to create the crLDAPmodify sample schema.

To create the Collaboration for Modify sample schema, follow the steps in “Creating
the Collaborations” on page 73. For step 8b, use “colLDAPmodify” as the source type.

To execute the Modify sample schema, see “Executing the Schema” on page 77.

5.4.3 Creating the Delete Sample Schema
The Delete sample schema calls for the creation of three Collaboration Rules files.

Chapter 5 Section 5.4
Implementation Creating the Add, Modify, and Delete Sample Schemas

e*Way Intelligent Adapter for LDAP User’s Guide 85 SeeBeyond Proprietary and Confidential

crPassThroughOut (Pass Through)

See “crPassThroughOut (Pass Through)” on page 67.

crPassThroughIn(Pass Through)

See “crPassThroughIn (Pass Through)” on page 68.

crLDAPcompareNdelete (Java)

1 To create the Java Collaboration Rules select the Collaboration Rules folder.

2 On the palette, click the Create New Collaboration Rules button.

3 Enter the name of the new Collaboration Rule, then click OK (for this case, use
crLDAPcompareNdelete).

4 Double-click the new Collaboration Rules Component to edit its properties. The
Collaboration Rules Properties window opens.

5 From the Service field drop-down box, select Java. The Collaboration Mapping tab
is now enabled, and the Subscriptions and Publications tabs are disabled.

6 In the Initialization string field, enter any required initialization string that the
Collaboration Service may require. This field can be left blank.

7 Select the Collaboration Mapping tab.

8 Using the Add Instance button, create instances to coincide with the Event Types.
For this sample, do the following.

9 In the Instance Name column, enter LDAP for the instance name.

10 Click Find, navigate to and double-click ldap.xsc. This adds ldap.xsc to the ETD
column for this instance.

11 In the Mode column, select Out from the drop–down list box. To access the drop-
down list box, click the right portion of the Mode field for this instance.

12 In the Trigger column, make sure that the checkbox is cleared (no trigger N/A).

13 In the Manual Publish column, make sure the checkbox is cleared (no Manual
Publish).

Chapter 5 Section 5.4
Implementation Creating the Add, Modify, and Delete Sample Schemas

e*Way Intelligent Adapter for LDAP User’s Guide 86 SeeBeyond Proprietary and Confidential

Figure 38 Collaboration Rules - crLDAPcompareNdelete Properties Collaboration Mapping

14 Repeat steps 9–13 using the following values:

Instance Name — in

ETD — GenericInEvent.xsc

Mode — In

Trigger — selected

Manual Publish - N/A

15 Repeat steps 9–13 again using the following values:

Instance Name — out

ETD — GenericOutEvent.xsc

Mode — Out

Trigger — N/A

Manual Publish - clear

The following section describes how the business logic for the Delete sample schema is
set up using the Java Collaboration Rules Editor.

Creating Business Rules for the Delete Sample Schema

The section provides an example of how to create the business rules for the Delete
sample schema using the Java Collaboration Rules Editor. The completed Collaboration
Rules .xpr file is included with the Delete sample schema on the installation CD-ROM.

Chapter 5 Section 5.4
Implementation Creating the Add, Modify, and Delete Sample Schemas

e*Way Intelligent Adapter for LDAP User’s Guide 87 SeeBeyond Proprietary and Confidential

Refer to the completed class, crldapcompareNdelete.class when completing the
Collaboration Rules Properties.

1 Click the New or Edit button under the Collaboration Rules field. The Java
Collaboration Rules Editor opens to the crLDAPcompareNdelete.xpr from the
Collaboration Rules Properties dialog box. Expand to full size for optimum
viewing, expanding the Source and Destination Events as well.

Figure 39 Collaboration Rules Editor crLDAPcompareNdelete

Using the principals of the business logic detailed in the section “Creating Business
Rules Using the Java Collaboration Rules Editor” on page 70, apply the business logic
to create the crLDAPdelete sample schema.

To create the Collaboration for Delete sample schema, follow the steps in “Creating the
Collaborations” on page 73. For step 8b, use “colLDAPdelete” as the source type.

To execute the Delete sample schema, see “Executing the Schema” on page 77.

e*Way Intelligent Adapter for LDAP User’s Guide 88 SeeBeyond Proprietary and Confidential

Chapter 6

LDAP e*Way Classes and Methods

This chapter explains the Java classes and methods contained in the e*Way Intelligent
Adapter for LDAP, which are used to extend the functionality of the e*Way.

6.1 LDAP e*Way Classes and Methods: Overview
For any e*Way, communication takes place both on the e*Gate system and the external
system side. Communication between the e*Way and the e*Gate environment is
common to all e*Ways, while the communication between the e*Way and the external
system is different for each e*Way.

For the LDAP e*Way, the stceway.exe file (Multi-Mode e*Way, see Chapter 3) is used
to communicate between the e*Way and e*Gate, and a Java Collaboration is utilized to
keep the communication open between the e*Way and the LDAP server.

Using Java Methods

Java methods have been added to make it easier to set information in the LDAP e*Way
Event Type Definition (ETD), as well as get information from it. The nature of this data
transfer depends on the configuration parameters (see Chapter 3) you set for the e*Way
in the e*Gate Schema Designer’s e*Way Editor.

The Schema Designer’s Collaboration Editor allows you to call Java methods by
dragging and dropping an ETD node into the Rules dialog box.

Note: The node name can be different from the Java method name.

After you drag and drop, the actual conversion takes place in the ldap.xsc file. To view
the ldap.xsc file, use the Schema Designer’s ETD Editor and Collaboration Rules Editor.
See “ETD Structure” on page 29 for more information.

For example, if the node name is Connection, the associated javaName is Connection.
If you want to get the node value, use the Java method called getConnection. If you
want to set the node value, use the Java method called setConnection.

Java Classes

The LDAP e*Way contains Java methods that are used to extend the functionality of the
e*Way. These methods are contained in the following classes:

com.stc.eways.jndi.AddAttributesValues Class on page 89

Chapter 6 Section 6.2
LDAP e*Way Classes and Methods com.stc.eways.jndi.AddAttributesValues Class

e*Way Intelligent Adapter for LDAP User’s Guide 89 SeeBeyond Proprietary and Confidential

6.2 com.stc.eways.jndi.AddAttributesValues Class
This class implements the Add attributes and/or values portion of the ETD to allow for
adding attributes and/or values to an existing entry in the directory.

java.lang.Object
|
+ - - com.stc.eways.jndi.AddAttributesValues

Direct Known Subclasses

public class AddAttributesValues

extends java.lang.Object

performAddAttributesValues on page 91

com.stc.eways.jndi.AddEntryOptions Class on page 94

com.stc.eways.jndi.AttributesSelection Class on page 95

com.stc.eways.jndi.CompareEntry Class on page 97

com.stc.eways.jndi.CompareEntryOptions on page 99

com.stc.eways.jndi.Connection on page 102

com.stc.eways.jndi.EntryOptions on page 109

com.stc.eways.jndi.LDAPSearchControls on page 111

com.stc.eways.jndi.ModifyEntry on page 114

com.stc.eways.jndi.NSClient on page 117

com.stc.eways.jndi.runtime.NSConnector on page 125

com.stc.eways.jndi.RCFUtil on page 129

com.stc.eways.jndi.RemoveAttributesValues on page 129

com.stc.eways.jndi.RenameEntry on page 131

com.stc.eways.jndi.ReplaceValues on page 135

com.stc.eways.jndi.Result on page 137

com.stc.eways.jndi.Search on page 139

com.stc.eways.jndi.SearchOptions on page 142

com.stc.eways.jndi.SearchResults on page 147

com.stc.eways.jndi.STCAttribute on page 149

com.stc.eways.jndi.STCAttributes on page 152

com.stc.eways.jndi.STCEntry on page 153

com.stc.eways.jndi.STCValue on page 156

com.stc.eways.jndi.STCValues on page 159

com.stc.eways.jndi.StringUtil on page 161

Chapter 6 Section 6.2
LDAP e*Way Classes and Methods com.stc.eways.jndi.AddAttributesValues Class

e*Way Intelligent Adapter for LDAP User’s Guide 90 SeeBeyond Proprietary and Confidential

Methods of the AddAttributesValues Class

These methods are described in detail on the following pages:

initialize

Description

Initialize.

Syntax

public void initialize (NSClient nsClient)

Parameters

Return Values

None.

Throws

None.

getSTCEntry

Description

Gets the entry.

Syntax

public STCEntry getSTCEntry()

Parameters

None.

Return Values

STCEntry

Throws

None.

getEntryOptions on page 91 getSTCEntry on page 90
performAddAttributesValues on
page 91

initialize on page 90

reset on page 91

Name Type Description

nsClient NSClient The naming service client object.

Chapter 6 Section 6.2
LDAP e*Way Classes and Methods com.stc.eways.jndi.AddAttributesValues Class

e*Way Intelligent Adapter for LDAP User’s Guide 91 SeeBeyond Proprietary and Confidential

getEntryOptions

Description

Gets the options object for setting options.

Syntax

public EntryOptions getEntryOptions()

Parameters

None.

Return Values

EntryOptions

Throws

None.

performAddAttributesValues

Description

Adds attributes and/or values to an existing entry. If a particular attribute does not
exist, the attribute and its values will be added for that entry. If a particular attribute
already exists, then it attempts to add the specified values for that attribute.

If a particular attribute already exists and the specified value(s) already exists, then an
exception will be thrown. An attribute with no values specified will also result in an
exception being thrown.

The entry can be defined by calling getSTCEntry() and setting the appropriate entry
name, attributes, and values, prior to calling this method.

Syntax

public boolean performAddAttributesValues()

Parameters

None.

Return Values

boolean

Throws

com.stc.common.collabService.CollabDataException

reset

Description

Resets and clears everything previously set.

Chapter 6 Section 6.3
LDAP e*Way Classes and Methods com.stc.eways.jndi.AddEntry Class

e*Way Intelligent Adapter for LDAP User’s Guide 92 SeeBeyond Proprietary and Confidential

Syntax

public void reset()

Parameters

None.

Return Values

None.

Throws

None.

6.3 com.stc.eways.jndi.AddEntry Class
This class implements the Add entry portion of the ETD to allow for adding an entry to
the directory.

java.lang.Object
|
+ - - com.stc.eways.jndi.AddEntry

Direct Known Subclasses

public class AddEntry

extends java.lang.Object

Methods of the AddEntry Class

These methods are described in detail on the following pages:

initialize

Description

Initialize.

Syntax

public void initialize (NSClient nsClient)

Parameters

getAddEntryOptions on page 93 getSTCEntry on page 93

initialize on page 92 performAddEntry on page 93

reset on page 94

Name Type Description

nsClient NSClient The naming service client object.

Chapter 6 Section 6.3
LDAP e*Way Classes and Methods com.stc.eways.jndi.AddEntry Class

e*Way Intelligent Adapter for LDAP User’s Guide 93 SeeBeyond Proprietary and Confidential

Return Values

None.

Throws

None.

getAddEntryOptions

Description

Gets the add entry options.

Syntax

public EntryOptions getEntryOptions()

Parameters

None.

Return Values

EntryOptions

Throws

None.

getSTCEntry

Description

Gets the entry.

Syntax

public getSTCEntry()

Parameters

None.

Return Values

getSTCEntry

Throws

None.

performAddEntry

Description

Adds the entry. The entry can be defined by calling getSTCEntry() and setting the
appropriate values for name, attributes, and values, prior to calling this method.

Chapter 6 Section 6.4
LDAP e*Way Classes and Methods com.stc.eways.jndi.AddEntryOptions Class

e*Way Intelligent Adapter for LDAP User’s Guide 94 SeeBeyond Proprietary and Confidential

Syntax

public boolean performAddEntry()

Parameters

None.

Return Values

boolean

Throws

com.stc.common.collabService.CollabDataException

reset

Description

Resets and clears everything previously set.

Syntax

public void reset()

Parameters

None.

Return Values

None.

Throws

None.

6.4 com.stc.eways.jndi.AddEntryOptions Class
This class implements the Add entry options for customizing the characteristics for
adding the entry.

java.lang.Object
|
+ - - com.stc.eways.jndi.AddEntryOptions

Direct Known Subclasses

public class AddEntryOptions

extends java.lang.Object

Methods of the AddEntryOptions Class

These methods are described in detail on the following pages:

getIgnoreAlreadyBound on page 95 setIgnoreAlreadyBound on page 95

Chapter 6 Section 6.5
LDAP e*Way Classes and Methods com.stc.eways.jndi.AttributesSelection Class

e*Way Intelligent Adapter for LDAP User’s Guide 95 SeeBeyond Proprietary and Confidential

getIgnoreAlreadyBound

Description

Gets the boolean flag which indicates whether or not to ignore the
NameAlreadyBoundException when attempting to add an entry that already exists.

Syntax

public boolean getIgnoreAlreadyBound()

Parameters

None.

Return Values

boolean

Throws

None.

setIgnoreAlreadyBound

Description

Sets the boolean flag which indicates whether or not to ignore the
NameAlreadyBoundException when attempting to add an entry that already exists.

Syntax

public void setIgnoreAlreadyBound(boolean ignoreAlreadyBound)

Parameters

None.

Return Values

True.

Throws

None.

6.5 com.stc.eways.jndi.AttributesSelection Class
This class implements the attributes selection list.

java.lang.Object
|
+ - - com.stc.eways.jndi.AttributesSelection

Direct Known Subclasses

public class AttributesSelection

extends java.lang.Object

Chapter 6 Section 6.5
LDAP e*Way Classes and Methods com.stc.eways.jndi.AttributesSelection Class

e*Way Intelligent Adapter for LDAP User’s Guide 96 SeeBeyond Proprietary and Confidential

Methods of the AttributesSelection Class

These methods are described in detail on the following pages

addAttribute

Description

Adds an attribute to the attributes list for the attributes to be returned after the search.

Syntax

public void addAttribute(java.lang.String attribute)

Parameters

Return Values

None.

Throws

None.

removeAttribute

Description

Removes an attribute from the attributes list for the attributes to be returned after the
search.

Syntax

public void removeAttribute(java.lang.String attribute)

Parameters

Return Values

None.

Throws

None.

addAttribute on page 96 clearAttributes on page 97

removeAttribute on page 96

Name Type Description

attribute java.lang.String The attribute to add to the list of
attribute constraints.

Name Type Description

attribute java.lang.String The attribute to remove from the list
of attribute contraints.

Chapter 6 Section 6.6
LDAP e*Way Classes and Methods com.stc.eways.jndi.CompareEntry Class

e*Way Intelligent Adapter for LDAP User’s Guide 97 SeeBeyond Proprietary and Confidential

clearAttributes

Description

Clears the attributes list so that searches would return all attributes.

Syntax

public void clearAttributes()

Parameters

None.

Return Values

None.

Throws

None.

6.6 com.stc.eways.jndi.CompareEntry Class
This class implements the Compare entry portion of the ETD to allow for doing entry
compares.

java.lang.Object
|
+ -- com.stc.eways.jndi.CompareEntry

Direct Known Subclasses

public class CompareEntry

extends java.lang.Object

Methods of the CompareEntry Class

These methods are described in detail on the following pages

initialize

Description

Initialize.

Syntax

public void initialize (NSClient nsClient)

getCompareEntryOptions on page 98 initialize on page 97

performCompare on page 98 reset on page 99

Chapter 6 Section 6.6
LDAP e*Way Classes and Methods com.stc.eways.jndi.CompareEntry Class

e*Way Intelligent Adapter for LDAP User’s Guide 98 SeeBeyond Proprietary and Confidential

Parameters

Return Values

None.

Throws

None.

getCompareEntryOptions

Description

Gets the CompareEntryOption object for the compare options.

Syntax

public CompareEntryOptions getCompareEntryOptions()

Parameters

None.

Return Values

CompareEntryOptions
The compare options as a CompareEntryOptions object.

Throws

None.

performCompare

Description

Determines whether the particular entry specified has an attribute/values pair (defined
by filter).

Syntax

public boolean performCompare()

Parameters

None.

Name Type Description

nsClient NSClient The naming service client object.

Chapter 6 Section 6.7
LDAP e*Way Classes and Methods com.stc.eways.jndi.CompareEntryOptions

e*Way Intelligent Adapter for LDAP User’s Guide 99 SeeBeyond Proprietary and Confidential

Return Values

boolean

Throws

com.stc.common.collabService.CollabDataException

reset

Description

Resets compare.

Syntax

public void reset()

Parameters

None.

Return Values

None.

Throws

None.

6.7 com.stc.eways.jndi.CompareEntryOptions
This class implements the Compare entry portion of the ETD to allow for testing
whether an entry has a specific attribute/values pair.

java.lang.Object
|
+ -- com.stc.eways.jndi.CompareEntryOptions

Direct Known Subclasses

public class CompareEntryOptions

extends java.lang.Object

Methods of the CompareEntryOptions Class

These methods are described in detail on the following pages

getCompareFilter on page 101 getEntryName on page 100

getTimeLimit on page 102 setCompareFilter on page 100

setEntryName on page 100 setTimeLimit on page 101

Chapter 6 Section 6.7
LDAP e*Way Classes and Methods com.stc.eways.jndi.CompareEntryOptions

e*Way Intelligent Adapter for LDAP User’s Guide 100 SeeBeyond Proprietary and Confidential

setEntryName

Description

Sets the name of the entry for comparing.

Syntax

public void setEntryName(java.lang.String entryName)

Parameters

Return Values

None.

Throws

None.

getEntryName

Description

Returns the name of the entry for the compare. Returns null if the name was not
previously set.

Syntax

public java.lang.String getEntryName()

Parameters

None.

Return Values

java.lang.String.
Returns the name of the entry for the compare. Returns null if the name was not
previously set.

Throws

None.

setCompareFilter

Description

Sets the compare filter for the compare.

Syntax

public void setCompareFilter(java.lang.String filter)

Name Type Description

entryName java.lang.String The name of the entry for the
compare.

Chapter 6 Section 6.7
LDAP e*Way Classes and Methods com.stc.eways.jndi.CompareEntryOptions

e*Way Intelligent Adapter for LDAP User’s Guide 101 SeeBeyond Proprietary and Confidential

Parameters

Return Values

None.

Throws

None.

Example

(sn=Doe)

getCompareFilter

Description

Gets the compare filter for the compare.

Syntax

public java.lang.String getCompareFilter()

Parameters

None.

Return Values

java.lang.String.

Throws

None.

setTimeLimit

Description

Sets the timeout in milliseconds for the compare operation.

Syntax

public void setTimeLimit(int timeLimitMilliSec)

Name Type Description

filter java.lang.String The filter expression to use for the
compare; may not be null.

Chapter 6 Section 6.8
LDAP e*Way Classes and Methods com.stc.eways.jndi.Connection

e*Way Intelligent Adapter for LDAP User’s Guide 102 SeeBeyond Proprietary and Confidential

Parameters

Return Values

integer
Returns the timeout value in milliseconds.

Throws

None.

getTimeLimit

Description

Gets the timeout in milliseconds for the compare operation.

Syntax

public int getTimeLimit()

Parameters

None.

Return Values

integer
Returns the timeout value in milliseconds.

Throws

None.

6.8 com.stc.eways.jndi.Connection
This class implements the connection properties for connecting to the naming service.

java.lang.Object
|
+ -- com.stc.jcsre.cfg.ConnConfigBase

|
+ -- com.stc.eways.jndi.Connection

Direct Known Subclasses

public class Connection

extends com.stc.jcsre.cfg.ConnConfigBase

Name Type Description

timeLimitMilliSec int The timeout value in milliseconds. If
0 is specified, then the compare will
wait indefinitely; this is the default.

Chapter 6 Section 6.8
LDAP e*Way Classes and Methods com.stc.eways.jndi.Connection

e*Way Intelligent Adapter for LDAP User’s Guide 103 SeeBeyond Proprietary and Confidential

Methods of the Connection Class

These methods are described in detail on the following pages

getProviderURL

Description

Gets the Provider URL string to get to the initial context.

Syntax

public java.lang.String getProviderURL()

Parameters

None.

Return Values

java.lang.String.

Throws

None.

setProviderURL

Description

Sets the Provider URL string to get to the initial context.

Syntax

public void setProviderURL(java.lang.String val)

Parameters

Return Values

None.

getAuthentication on page 104 getCredentials on page 107

getPrincipal on page 106 getProviderURL on page 103

hasAuthentication on page 105 hasCredentials on page 108

hasPrincipal on page 107 hasProviderURL on page 104

omitAuthentication on page 105 omitCredentials on page 108

omitPrincipal on page 107 omitProviderURL on page 104

setAuthentication on page 105 setCredentials on page 108

setPrincipal on page 106 setProviderURL on page 103

Name Type Description

val java.lang.String The Provider URL string.

Chapter 6 Section 6.8
LDAP e*Way Classes and Methods com.stc.eways.jndi.Connection

e*Way Intelligent Adapter for LDAP User’s Guide 104 SeeBeyond Proprietary and Confidential

Throws

None.

hasProviderURL

Description

Determines whether the Provider URL was set for the Connection.

Syntax

public boolean hasProviderURL()

Parameters

None.

Return Values

boolean

Throws

None.

omitProviderURL

Description

Deletes the Provider URL property from the Connection object.

Syntax

public void omitProviderURL()

Parameters

None.

Return Values

None.

Throws

None.

getAuthentication

Description

Gets the Authentication method for connecting to the naming service.

Syntax

public java.lang.String getAuthentication()

Parameters

None.

Chapter 6 Section 6.8
LDAP e*Way Classes and Methods com.stc.eways.jndi.Connection

e*Way Intelligent Adapter for LDAP User’s Guide 105 SeeBeyond Proprietary and Confidential

Return Values

java.lang.String.

Throws

None.

setAuthentication

Description

Sets the Authentication method for connecting to the naming service.

Syntax

public void setAuthentication(java.lang.String val)

Parameters

Return Values

None.

Throws

None.

hasAuthentication

Description

Determines whether the Authentication method was set.

Syntax

public boolean hasAuthentication()

Parameters

None.

Return Values

boolean

Throws

None.

omitAuthentication

Description

Deletes the Authentication property from the Connection object.

Name Type Description

val java.lang.String The Authentication method string.

Chapter 6 Section 6.8
LDAP e*Way Classes and Methods com.stc.eways.jndi.Connection

e*Way Intelligent Adapter for LDAP User’s Guide 106 SeeBeyond Proprietary and Confidential

Syntax

public void omitAuthentication()

Parameters

None.

Return Values

None.

Throws

None.

getPrincipal

Description

Gets the Principal for connecting to the naming service.

Syntax

public java.lang.String getPrincipal()

Parameters

None.

Return Values

java.lang.String.

Throws

None.

setPrincipal

Description

Sets the Principal for connecting to the naming service.

Syntax

public void setPrincipal(java.lang.String val)

Parameters

Return Values

None.

Name Type Description

val java.lang.String The principal used for
authentication when connecting to
the naming service.

Chapter 6 Section 6.8
LDAP e*Way Classes and Methods com.stc.eways.jndi.Connection

e*Way Intelligent Adapter for LDAP User’s Guide 107 SeeBeyond Proprietary and Confidential

Throws

None.

hasPrincipal

Description

Determines whether the Principal was set.

Syntax

public boolean hasPrincipal()

Parameters

None.

Return Values

boolean

Throws

None.

omitPrincipal

Description

Deletes the Principal property from the Connection object.

Syntax

public void omitPrincipal()

Parameters

None.

Return Values

None.

Throws

None.

getCredentials

Description

Gets the Credentials for connecting to the naming service.

Syntax

public java.lang.String getCredentials()

Parameters

None.

Chapter 6 Section 6.8
LDAP e*Way Classes and Methods com.stc.eways.jndi.Connection

e*Way Intelligent Adapter for LDAP User’s Guide 108 SeeBeyond Proprietary and Confidential

Return Values

java.lang.String.

Throws

com.stc.common.collabService.CollabConnException

setCredentials

Description

Sets the Credentials for connecting to the naming service.

Syntax

public void setCredentials(java.lang.String val)

Parameters

None.

Return Values

None.

Throws

None.

hasCredentials

Description

Determines whether the Credentials was set.

Syntax

public boolean hasCredentials()

Parameters

None.

Return Values

boolean

Throws

None.

omitCredentials

Description

Deletes the Credentials property from the Connection object.

Chapter 6 Section 6.9
LDAP e*Way Classes and Methods com.stc.eways.jndi.EntryOptions

e*Way Intelligent Adapter for LDAP User’s Guide 109 SeeBeyond Proprietary and Confidential

Syntax

public void omitCredentials()

Parameters

None.

Return Values

None.

Throws

None.

6.9 com.stc.eways.jndi.EntryOptions
This class implements the entry options.

java.lang.Object
|
+ -- com.stc.eways.jndi.EntryOptions

Direct Known Subclasses

public class EntryOptions

extends java.lang.Object

Methods of the EntryOptions
These methods are described in detail on the following pages

getIgnoreAttributeIDCase

Description

Get the boolean flag which indicates whether or not the case sensitivity for the
attributes are ignored.

Syntax

public boolean getIgnoreAttributeIDCase()

Parameters

None.

getIgnoreAttributeIDCase on
page 109

getOrderAttributeValues on page 110

setIgnoreAttributeIDCase on
page 110

setOrderAttributeValues on page 111

Chapter 6 Section 6.9
LDAP e*Way Classes and Methods com.stc.eways.jndi.EntryOptions

e*Way Intelligent Adapter for LDAP User’s Guide 110 SeeBeyond Proprietary and Confidential

Return Values

boolean

Throws

None.

setIgnoreAttributeIDCase

Description

Sets the boolean flag which indicates whether or not the case sensitivity for the
attributes are ignored.

Syntax

public void setIgnoreAttributeIDCase(boolean ignoreCase)

Parameters

Return Values

None.

Throws

None.

getOrderAttributeValues

Description

Get the boolean flag which indicates whether or not the values for each attribute are
ordered.

Syntax

public boolean getOrderAttributeValues()

Parameters

None.

Return Values

boolean

Throws

None.

Name Type Description

ignoreCase boolean True if case sensitivity is ignored,
false if case sensitivity is not
ignored.

Chapter 6 Section 6.10
LDAP e*Way Classes and Methods com.stc.eways.jndi.LDAPSearchControls

e*Way Intelligent Adapter for LDAP User’s Guide 111 SeeBeyond Proprietary and Confidential

setOrderAttributeValues

Description

Sets the boolean flag which indicates whether or not the values for each attribute are
ordered.

Syntax

public void setOrderAttributeValues(boolean orderValues)

Parameters

Return Values

None.

Throws

None.

6.10 com.stc.eways.jndi.LDAPSearchControls
java.lang.Object
|
+ -- com.stc.eways.jndi.LDAPSearchControls

Direct Known Subclasses

public class LDAPSearchControls

extends java.lang.Object

Methods of the LDAPSearchControls

These methods are described in detail on the following pages

setSortControlAttributes

Description

Set the attributes to sort the results on an LDAP search.

Name Type Description

orderValues boolean True if case sensitivity is ignored,
false if case sensitivity is not
ignored.

getPagedResultsControl on page 114 getSortControlAttributes on page 112

removeSortControlAttributes on
page 112

removePagedResultsControl on
page 113

setSortControlAttributes on page 111 setPagedResultsControl on page 113

Chapter 6 Section 6.10
LDAP e*Way Classes and Methods com.stc.eways.jndi.LDAPSearchControls

e*Way Intelligent Adapter for LDAP User’s Guide 112 SeeBeyond Proprietary and Confidential

Syntax

public void setSortControlAttributes(java.lang.String sortAttrs)

Parameters

Return Values

None.

Throws

com.stc.common.collabService.CollabDataException

getSortControlAttributes

Description

Gets the attributes to sort the results on an LDAP search.

Syntax

public java.lang.String getSortControlAttributes()

Parameters

None.

Return Values

java.lang.String

Throws

None.

removeSortControlAttributes

Description

Removes the sort attributes previously set.

Syntax

public void removeSortControlAttributes()

Parameters

None.

Name Type Description

sortAttrs java.lang.String A list of attributes to specify the sort
order based on the attribute values.
Each attribute in the list is separated
by a ‘|’ character. For example,
“cn|sn” will sort the results based
on the ‘cn’ attribute first and then
sort on the ‘sn’ attribute after
sorting on ‘cn’.

Chapter 6 Section 6.10
LDAP e*Way Classes and Methods com.stc.eways.jndi.LDAPSearchControls

e*Way Intelligent Adapter for LDAP User’s Guide 113 SeeBeyond Proprietary and Confidential

Return Values

None.

Throws

com.stc.common.collabService.CollabDataException

setPagedResultsControl

Description

Sets the size of the paged results for an LDAP search result.

Syntax

public void setPagedResultsControl(int size)

Parameters

None.

Return Values

None.

Throws

com.stc.common.collabService.CollabDataException

removePagedResultsControl

Description

Set the size of the paged results for an LDAP search result.

Syntax

public void removePagedResultsControl()

Parameters

None.

Return Values

None.

Name Type Description

size int An integer for the maximum
number of results returned.

Chapter 6 Section 6.11
LDAP e*Way Classes and Methods com.stc.eways.jndi.ModifyEntry

e*Way Intelligent Adapter for LDAP User’s Guide 114 SeeBeyond Proprietary and Confidential

Throws

com.stc.common.collabService.CollabDataException

getPagedResultsControl

Description

Gets the size of the paged results for an LDAP search result.

Syntax

public int getPagedResultsControl()

Parameters

None.

Return Values

integer
Returns the size of the paged results for an LDAP search result.

Throws

None.

6.11 com.stc.eways.jndi.ModifyEntry
This class implements the Modify Entry portion of the ETD to allow for doing entry
modifications to attributes and/or values.

java.lang.Object
|
+ -- com.stc.eways.jndi.ModifyEntry

Direct Known Subclasses

public class LDAPSearchControls

extends java.lang.Object

Chapter 6 Section 6.11
LDAP e*Way Classes and Methods com.stc.eways.jndi.ModifyEntry

e*Way Intelligent Adapter for LDAP User’s Guide 115 SeeBeyond Proprietary and Confidential

Methods of the Modify Entry

These methods are described in detail on the following pages

initialize

Description

Initialize.

Syntax

public void initialize(NSClient nsClient)

Parameters

Return Values

None.

Throws

None.

getAddAttributesValues

Description

Get the AddAttributesValues object for specifying the entry and attributes or values for
adding.

Syntax

public AddAttributesValues getAddAttributesValues()

Parameters

None.

Return Values

AddAttributesValues

Throws

None.

getAddAttributesValues on page 115 getRemoveAttributesValues on
page 116

getReplaceValues on page 116 initialize on page 115

reset on page 116

Name Type Description

nsClient NSClient The naming service client object.

Chapter 6 Section 6.11
LDAP e*Way Classes and Methods com.stc.eways.jndi.ModifyEntry

e*Way Intelligent Adapter for LDAP User’s Guide 116 SeeBeyond Proprietary and Confidential

getRemoveAttributesValues

Description

Get the RemoveAttributesValues object for specifying the entry and attributes or values
for removal.

Syntax

public RemoveAttributesValues getRemoveAttributesValues()

Parameters

None.

Return Values

RemoveAttributesValues

Throws

None.

getReplaceValues

Description

Get the ReplaceValues object for specifying the entry and attribute values for replacing.

Syntax

public ReplaceValues getReplaceValues()

Parameters

None.

Return Values

ReplaceValues

Throws

None.

reset

Description

Reset rename.

Syntax

public void reset()

Parameters

None.

Chapter 6 Section 6.12
LDAP e*Way Classes and Methods com.stc.eways.jndi.NSClient

e*Way Intelligent Adapter for LDAP User’s Guide 117 SeeBeyond Proprietary and Confidential

Return Values

None.

Throws

None.

6.12 com.stc.eways.jndi.NSClient
This class implements the ETDExt interface in order to expose the APIs for the JNDI
e*Way.

java.lang.Object
|
+ -- com.stc.jcsre.SimpleETDImpl

|
+ -- com.stc.eways.jndi.NSClient

Direct Known Subclasses

public class NSClient

extends com.stc.jcsre.SimpleETDImpl

Methods of the NSClient

These methods are described in detail on the following pages

initialize

Description

Called by external (collab service) to initialize the ETD object.

Syntax

public void initialize(com.stc.common.collabService.JCollabController
jcollabControl java.lang.String key, int mode)

connect on page 120 disconnect on page 120

getAddEntry on page 121 get$Configuration on page 119

getCompareEntry on page 122 getConnection on page 119

getConnector on page 124 getModifyEntry on page 123

getRemoveEntry on page 123 getRenameEntry on page 122

getSearch on page 121 initialize on page 117

reset on page 123 setConnection on page 119

setConnector on page 124 terminate on page 118

Chapter 6 Section 6.12
LDAP e*Way Classes and Methods com.stc.eways.jndi.NSClient

e*Way Intelligent Adapter for LDAP User’s Guide 118 SeeBeyond Proprietary and Confidential

Parameters

Return Values

None.

Throws

com.stc.common.collabService.CollabConnException,
com.stc.common.collabService.CollabDataException

Specified by

initialize in interface com.stc.jcsre.ETD

Overrides

initialize in class com.stc.jcsre.SimpleETDImpl

terminate

Description

Called by external (collab service) prior to terminating the collaboration.

Syntax

public void terminate()

Parameters

None.

Return Values

None.

Throws

com.stc.common.collabService.CollabConnException

Specified by

terminate in interface com.stc.jcsre.ETD

Overrides

terminate in class com.stc.jcsre.SimpleETDImpl

Name Type Description

cntrCollab java.lang.String The Java Collaboration Controller
object.

key java.lang.String The key.

mode java.lang.String The mode.

Chapter 6 Section 6.12
LDAP e*Way Classes and Methods com.stc.eways.jndi.NSClient

e*Way Intelligent Adapter for LDAP User’s Guide 119 SeeBeyond Proprietary and Confidential

getConnection

Description

Gets the connection instance to allow the user for setting the connection attributes for
connecting to the naming service.

Syntax

public Connection getConnection()

Parameters

None.

Return Values

Connection

Throws

None.

setConnection

Description

Sets the connection instance defining the connection parameters for connecting to the
naming service.

Syntax

public void setConnection(Connection val)

Parameters

Return Values

None.

Throws

None.

get$Configuration

Description

Retrieves the Connector Configuration node object.

Syntax

public com.stc.jcsre.cfg.ConnConfigBase get$Configuration()

Name Type Description

Val Connection object for specifying
connection parameters.

Chapter 6 Section 6.12
LDAP e*Way Classes and Methods com.stc.eways.jndi.NSClient

e*Way Intelligent Adapter for LDAP User’s Guide 120 SeeBeyond Proprietary and Confidential

Parameters

None.

Return Values

Connector Configuration node object

Throws

None.

Specified by

get$Configuration in interface com.stc.jcsre.ETDExt

connect

Description

Manually connects to the LDAP server.

Syntax

public void connect()

Parameters

None.

Return Values

None.

Throws

com.stc.common.collabService.CollabConnException

disconnect

Description

Manually disconnects from the LDAP server.

Syntax

public void disconnect()

Parameters

None.

Return Values

None.

Chapter 6 Section 6.12
LDAP e*Way Classes and Methods com.stc.eways.jndi.NSClient

e*Way Intelligent Adapter for LDAP User’s Guide 121 SeeBeyond Proprietary and Confidential

Throws

com.stc.common.collabService.CollabConnException

isConnected

Description

Checks the connection to the LDAP server.

Syntax

public boolean isConnected()

Parameters

None.

Return Values

boolean

Throws

com.stc.common.collabService.CollabConnException

getSearch

Description

Gets the Search object for the search functionality.

Syntax

public Search getSearch()

Parameters

None.

Return Values

Search
The Search object for searches.

Throws

None.

getAddEntry

Description

Gets the AddEntry object for the add functionality.

Syntax

public AddEntry getAddEntry()

Chapter 6 Section 6.12
LDAP e*Way Classes and Methods com.stc.eways.jndi.NSClient

e*Way Intelligent Adapter for LDAP User’s Guide 122 SeeBeyond Proprietary and Confidential

Parameters

None.

Return Values

AddEntry
The AddEntry object for adding an entry.

Throws

None.

getCompareEntry

Description

Gets the CompareEntry object for the compare functionality.

Syntax

public CompareEntry getCompareEntry()

Parameters

None.

Return Values

CompareEntry
The CompareEntry object for comparing an entry.

Throws

None.

getRenameEntry

Description

Gets the RenameEntry object for the rename functionality.

Syntax

public RenameEntry getRenameEntry()

Parameters

None.

Return Values

RenameEntry
The RenameEntry object for renaming an entry.

Throws

None.

Chapter 6 Section 6.12
LDAP e*Way Classes and Methods com.stc.eways.jndi.NSClient

e*Way Intelligent Adapter for LDAP User’s Guide 123 SeeBeyond Proprietary and Confidential

getRemoveEntry

Description

Gets the RemoveEntry object for the remove functionality.

Syntax

public RemoveEntry getRemoveEntry()

Parameters

None.

Return Values

RemoveEntry
The RemoveEntry object for removing an entry.

Throws

None.

getModifyEntry

Description

Get the ModifyEntry object for the entry modification functionality.

Syntax

public ModifyEntry getModifyEntry()

Parameters

None.

Return Values

ModifyEntry
The ModifyEntry object for modifying an entry.

Throws

None.

reset

Description

Resets data content of entire ETD.

Syntax

public boolean reset()

Parameters

None.

Chapter 6 Section 6.12
LDAP e*Way Classes and Methods com.stc.eways.jndi.NSClient

e*Way Intelligent Adapter for LDAP User’s Guide 124 SeeBeyond Proprietary and Confidential

Return Values

boolean
True if successfully reset.

Throws

None.

Specified by

reset in interface com.stc.jcsre.ETD

Overrides

reset in class com.stc.jcsre.SimpleETDImpl

setConnector

Description

Sets the EBobConnectorExt object that is associated with the ETD.

Syntax

public void setConnector(com.stc.jcsre.EBobConnectorExt conn)

Parameters

Return Values

None.

Throws

None.

Specified by

setConnector in interface com.stc.jcsre.ETDExt

getConnector

Description

Retrieves the EBobConnectorExt object that's associated with the ETD.

Syntax

public com.stc.jcsre.EBobConnectorExt getConnector()

Parameters

None.

Name Type Description

conn com.stc.jcsre.EbobConnectorExt The EBobConnectorExt object.

Chapter 6 Section 6.13
LDAP e*Way Classes and Methods com.stc.eways.jndi.runtime.NSConnector

e*Way Intelligent Adapter for LDAP User’s Guide 125 SeeBeyond Proprietary and Confidential

Return Values

com.stc.jcsre.EBobConnectorExt
The EBobConnectorExt object

Throws

None.

Specified by

getConnector in interface com.stc.jcsre.ETDExt

6.13 com.stc.eways.jndi.runtime.NSConnector
This class implements the EBobConnector interface in order to provide a connector
object for LDAP.

java.lang.Object
|
+ -- com.stc.jcsre.EBobConnectorExtImpl

|
+ -- com.stc.eways.jndi.runtime.NSConnector

Direct Known Subclasses

public class NSConnector

extends com.stc.jcsre.EBobConnectorExtImpl

Methods of the NSConnector

These methods are described in detail on the following pages

open

Description

Opens the connector for accessing the external system.

Syntax

public void open(boolean intoEgate)

Parameters

None.

close on page 126 getContext on page 128

getProperties on page 127 isOpen on page 127

open on page 125 open on page 126

setLastError on page 128

Chapter 6 Section 6.13
LDAP e*Way Classes and Methods com.stc.eways.jndi.runtime.NSConnector

e*Way Intelligent Adapter for LDAP User’s Guide 126 SeeBeyond Proprietary and Confidential

Return Values

None.

Overrides

open in class com.stc.jcsre.EBobConnectorExtImpl

Throws

com.stc.jcsre.EBobConnectionException

open

Description

Opens the connector for accessing the external system.

Syntax

public void open(java.util.Properties connectProps)

Parameters

Return Values

None.

Overrides

open in class com.stc.jcsre.EBobConnectorExtImpl

Throws

com.stc.jcsre.EBobConnectionException

close

Description

Closes the connector to the external system and releases resources.

Syntax

public void close()

Parameters

None.

Return Values

None.

Name Type Description

connectProps A Properties object containing the
connection parameters for
establishing the connection to the
external system.

Chapter 6 Section 6.13
LDAP e*Way Classes and Methods com.stc.eways.jndi.runtime.NSConnector

e*Way Intelligent Adapter for LDAP User’s Guide 127 SeeBeyond Proprietary and Confidential

Overrides

close in class com.stc.jcsre.EBobConnectorExtImpl

Throws

com.stc.jcsre.EBobConnectionException

isOpen

Description

Verifies that the connector to the external system is still available.

Syntax

public boolean isOpen()

Parameters

None.

Return Values

boolean
True if the connector is still open and available, false if otherwise.

Overrides

isOpen in class com.stc.jcsre.EBobConnectorExtImpl

Throws

com.stc.jcsre.EBobConnectionException

getProperties

Description

Retrieves the connection properties (stored by the constructor) used by the connector to
access the external system.

Syntax

public java.util.Properties getProperties()

Parameters

None.

Return Values

java.util.Properties
Connection properties of the external system.

Overrides

getProperties in class com.stc.jcsre.EBobConnectorExtImpl

Throws

None.

Chapter 6 Section 6.13
LDAP e*Way Classes and Methods com.stc.eways.jndi.runtime.NSConnector

e*Way Intelligent Adapter for LDAP User’s Guide 128 SeeBeyond Proprietary and Confidential

getContext

Description

Gets the initial context.

Syntax

public javax.naming.Context getContext()

Parameters

None.

Return Values

javax.naming.Context
A context object for a connection with the naming service.

Overrides

getProperties in class com.stc.jcsre.EBobConnectorExtImpl

Throws

com.stc.jcsre.EBobConnectionException

setLastError

Description

Sets the most recent error (resulted from an operation).

Syntax

public void setLastError(java.lang.Throwable lastError)

Parameters

Return Values

None.

Overrides

setLastError in class com.stc.jcsre.EBobConnectorExtImpl

Throws

None.

Name Type Description

ex The exception resulted from the last
operation.

Chapter 6 Section 6.14
LDAP e*Way Classes and Methods com.stc.eways.jndi.RCFUtil

e*Way Intelligent Adapter for LDAP User’s Guide 129 SeeBeyond Proprietary and Confidential

6.14 com.stc.eways.jndi.RCFUtil
This utility class can be used to create and manage a LDAP referral credentials file.

java.lang.Object
|
+ -- com.stc.eways.jndi.RCFUtil

Direct Known Subclasses

public class RCFUtil

extends java.lang.Object

6.15 com.stc.eways.jndi.RemoveAttributesValues
This class implements the remove attributes and/or values portion of the ETD to allow
for removing attributes and/or values to an existing entry in the directory.

java.lang.Object
 |
 +--com.stc.eways.jndi.RemoveAttributesValues

Direct Known Subclasses

public class RemoveAttributesValues

extends java.lang.Object

Methods of the RemoveAttributesValues

These methods are described in detail on the following pages

initialize

Description

Initialize.

Syntax

public void initialize(NSClient nsClient)

getEntry on page 130 getEntryOptions on page 130

initialize on page 129 performRemoveAttributesValues on
page 131

reset on page 131

Chapter 6 Section 6.15
LDAP e*Way Classes and Methods com.stc.eways.jndi.RemoveAttributesValues

e*Way Intelligent Adapter for LDAP User’s Guide 130 SeeBeyond Proprietary and Confidential

Parameters

Return Values

None.

Throws

None.

getEntry

Description

Get the entry.

Syntax

public STCEntry getEntry()

Parameters

None.

Return Values

STCEntry

Throws

None.

getEntryOptions

Description

Get the options object for setting options.

Syntax

public EntryOptions getEntryOptions()

Parameters

None.

Return Values

EntryOptions

Throws

None.

Name Type Description

nsClient NSClient The naming service client object.

Chapter 6 Section 6.16
LDAP e*Way Classes and Methods com.stc.eways.jndi.RenameEntry

e*Way Intelligent Adapter for LDAP User’s Guide 131 SeeBeyond Proprietary and Confidential

performRemoveAttributesValues

Description

Removes attributes and/or values from an existing entry. If the specified attribute(s)
exists and the specified value(s) for each attribute exists, then the corresponding
value(s) will be removed for each of those corresponding attribute(s). Deleting the last
value for an attribute, that does not require at least one value, will delete the attribute
as well. If the specified attribute(s) exists and at least one specified value for a particular
attribute does not exist, then an exception will be thrown and nothing will be removed.
If a particular attribute does not have any values specified, then that attribute will be
removed if that attribute exists; an exception will be thrown if that attribute does not
exist.

Syntax

public boolean performRemoveAttributesValues()

Parameters

None.

Return Values

boolean

Throws

com.stc.common.collabService.CollabDataException

reset

Description

Reset and clear everything previously set.

Syntax

public void reset()

Parameters

None.

Return Values

None.

Throws

None.

6.16 com.stc.eways.jndi.RenameEntry
This class implements the Rename entry portion of the ETD to allow for doing entry
renames.

Chapter 6 Section 6.16
LDAP e*Way Classes and Methods com.stc.eways.jndi.RenameEntry

e*Way Intelligent Adapter for LDAP User’s Guide 132 SeeBeyond Proprietary and Confidential

java.lang.Object
 |
 +--com.stc.eways.jndi.RenameEntry

Direct Known Subclasses

public class RenameEntry

extends java.lang.Object

Methods of the RenameEntry

These methods are described in detail on the following pages

initialize

Description

Initialize.

Syntax

public void initialize(NSClient nsClient)

Parameters

Return Values

None.

Throws

None.

setOldName

Description

Sets the name of the entry to rename.

Syntax

public void setOldName(java.lang.String.oldName)

getOldName on page 133 getNewName on page 134

initialize on page 132 performRename on page 134

reset on page 134 setNewName on page 133

setOldName on page 132

Name Type Description

nsClient NSClient The naming service client object.

Chapter 6 Section 6.16
LDAP e*Way Classes and Methods com.stc.eways.jndi.RenameEntry

e*Way Intelligent Adapter for LDAP User’s Guide 133 SeeBeyond Proprietary and Confidential

Parameters

Return Values

None.

Throws

None.

getOldName

Description

Gets the name of the entry to rename.

Syntax

public java.lang.String getOldName()

Parameters

None.

Return Values

java.lang.String

Throws

None.

setNewName

Description

Sets the new name for the entry that is to be renamed.

Syntax

public void setNewName(java.lang.String newName)

Parameters

Return Values

None.

Throws

None.

Name Type Description

oldName java.lang.String The name of the entry to rename.

Name Type Description

newName java.lang.String The new name for the entry.

Chapter 6 Section 6.16
LDAP e*Way Classes and Methods com.stc.eways.jndi.RenameEntry

e*Way Intelligent Adapter for LDAP User’s Guide 134 SeeBeyond Proprietary and Confidential

getNewName

Description

Gets the new name for the renamed entry previously set.

Syntax

public java.lang.String getNewName()

Parameters

None.

Return Values

java.lang.String

Throws

None.

performRename

Description

Renames an entry from the old name to the new name.

Syntax

public boolean performRename()

Parameters

None.

Return Values

boolean

Throws

com.stc.common.collabService.CollabDataException

reset

Description

Reset rename.

Syntax

public void reset()

Parameters

None.

Return Values

None.

Chapter 6 Section 6.17
LDAP e*Way Classes and Methods com.stc.eways.jndi.ReplaceValues

e*Way Intelligent Adapter for LDAP User’s Guide 135 SeeBeyond Proprietary and Confidential

Throws

None.

6.17 com.stc.eways.jndi.ReplaceValues
This class implements the Replace attribute values portion of the ETD to allow for
replacing the values of an attribute of an entry in the directory.

java.lang.Object
 |
 +--com.stc.eways.jndi.ReplaceValues

Direct Known Subclasses

public class ReplaceValues

extends java.lang.Object

Methods of the ReplaceValues

These methods are described in detail on the following pages

initialize

Description

Initialize.

Syntax

public void initialize(NSClient nsClient)

Parameters

Return Values

None.

Throws

None.

getEntry on page 136 getEntryOptions on page 136

initialize on page 135 performReplaceValues on page 136

reset on page 137

Name Type Description

nsClient NSClient The naming service client object.

Chapter 6 Section 6.17
LDAP e*Way Classes and Methods com.stc.eways.jndi.ReplaceValues

e*Way Intelligent Adapter for LDAP User’s Guide 136 SeeBeyond Proprietary and Confidential

getEntry

Description

Gets the entry.

Syntax

public STCEntry getEntry()

Parameters

None.

Return Values

STCEntry

Throws

None.

getEntryOptions

Description

Get the options object for setting options.

Syntax

public EntryOptions getEntryOptions()

Parameters

None.

Return Values

EntryOptions

Throws

None.

performReplaceValues

Description

Replaces values for the specified attribute(s). If a particular attribute exists, then all
existing values for that attribute will be replaced by the specified value(s). If a
particular attribute does not exist, then the side effect is that the attribute will be added
along with the specified values. If a particular attribute does not have values defined,
then an exception will be thrown. The entry can be defined by calling getSTCEntry()
and setting the appropriate entry name, attributes, and values, prior to calling this
method.

Syntax

public boolean performReplaceValues()

Chapter 6 Section 6.18
LDAP e*Way Classes and Methods com.stc.eways.jndi.Result

e*Way Intelligent Adapter for LDAP User’s Guide 137 SeeBeyond Proprietary and Confidential

Parameters

None.

Return Values

boolean

Throws

com.stc.common.collabService.CollabDataException

reset

Description

Reset and clear everything previously set.

Syntax

public void reset()

Parameters

None.

Return Values

None.

Throws

None.

6.18 com.stc.eways.jndi.Result
This class implements the Result node of the ETD where the next results will be
populated.

java.lang.Object
 |
 +--com.stc.eways.jndi.Result

Direct Known Subclasses

public class Result

extends java.lang.Object

Methods of the Result

These methods are described in detail on the following pages

setSearchScope on page 144 getAttributesSelection on page 143

getContextName on page 143 setContextName on page 143

Chapter 6 Section 6.18
LDAP e*Way Classes and Methods com.stc.eways.jndi.Result

e*Way Intelligent Adapter for LDAP User’s Guide 138 SeeBeyond Proprietary and Confidential

getName

Description

Gets the name of the current result.

Syntax

public java.lang.String getName()

Parameters

None.

Return Values

java.lang.String

Throws

None.

getSTCAttributes

Description

Gets the collection of attributes.

Syntax

public STCAttributes getSTCAttributes()

Parameters

None.

Return Values

STCAttributes

Throws

None.

getSTCAttribute

Description

Gets the attribute specified by the index position. If one does not exist, then an empty
one will be created.

Syntax

public STCAttribute getSTCAttribute()

Chapter 6 Section 6.19
LDAP e*Way Classes and Methods com.stc.eways.jndi.Search

e*Way Intelligent Adapter for LDAP User’s Guide 139 SeeBeyond Proprietary and Confidential

Parameters

Return Values

STCAttribute

Throws

java.lang.IndexOutOfBoundsException

countSTCAttribute

Description

Gets the number of attributes available.

Syntax

public int countSTCAttribute()

Parameters

None.

Return Values

integer

Throws

None.

6.19 com.stc.eways.jndi.Search
This class implements the Search portion of the ETD to allow for doing directory
searches.

java.lang.Object
 |
 +--com.stc.eways.jndi.Search

Direct Known Subclasses

public class Search

extends java.lang.Object

Methods of the Search

These methods are described in detail on the following pages

Name Type Description

i int The integer index specifying the
position of the attribute to return.

getLDAPSearchControls on page 140 getSearchOptions on page 140

Chapter 6 Section 6.19
LDAP e*Way Classes and Methods com.stc.eways.jndi.Search

e*Way Intelligent Adapter for LDAP User’s Guide 140 SeeBeyond Proprietary and Confidential

initialize

Description

Initialize.

Syntax

public void initialize(NSClient nsClient)

Parameters

Return Values

None.

Throws

None.

getLDAPSearchControls

Description

If using an LDAP provider, gets the LDAPSearchControls object for the search controls
option.

Syntax

public LDAPSearchControls getLDAPSearchControls()

Parameters

None.

Return Values

LDAPSearchControls
The LDAP search options as a LDAPSearchControls object.

Throws

None.

getSearchOptions

Description

Gets the SearchOption object for the search options.

getSearchResults on page 141 initialize on page 140

performSearch on page 141 reset on page 142

Name Type Description

nsClient NSClient The naming service client object.

Chapter 6 Section 6.19
LDAP e*Way Classes and Methods com.stc.eways.jndi.Search

e*Way Intelligent Adapter for LDAP User’s Guide 141 SeeBeyond Proprietary and Confidential

Syntax

public SearchOptions getSearchOptions()

Parameters

None.

Return Values

SearchOptions
The search options as a SearchOptions object.

Throws

None.

getSearchResults

Description

Gets the SearchResults object for the search results.

Syntax

public SearchResults getSearchResults()

Parameters

None.

Return Values

SearchResults
The search results as a SearchResults object.

Throws

None.

performSearch

Description

Performs a directory search for entries in the directory that match the criteria
previously defined.

Syntax

public void performSearch()

Parameters

None.

Return Values

None.

Chapter 6 Section 6.20
LDAP e*Way Classes and Methods com.stc.eways.jndi.SearchOptions

e*Way Intelligent Adapter for LDAP User’s Guide 142 SeeBeyond Proprietary and Confidential

Throws

com.stc.common.collabService.CollabDataException

reset

Description

Resets search.

Syntax

public void reset()

Parameters

None.

Return Values

None.

Throws

None.

6.20 com.stc.eways.jndi.SearchOptions
This class implements the SearchOptions for the Search functionality.

java.lang.Object
 |
 +--com.stc.eways.jndi.SearchOptions

Direct Known Subclasses

public class SearchOptions

extends java.lang.Object

Methods of the SearchOptions

These methods are described in detail on the following pages

getAttributesSelection on page 143 getContextName on page 143

getCountLimit on page 147 getSearchFilter on page 145

getSearchScope on page 144 getTimeLimit on page 146

setContextName on page 143 setCountLimit on page 146

setSearchFilter on page 145 setSearchScope on page 144

setTimeLimit on page 145

Chapter 6 Section 6.20
LDAP e*Way Classes and Methods com.stc.eways.jndi.SearchOptions

e*Way Intelligent Adapter for LDAP User’s Guide 143 SeeBeyond Proprietary and Confidential

getAttributesSelection

Description

Gets the attributes selection list previously set or null if not previously set.

Syntax

public AttributesSelection getAttributesSelection()

Parameters

None.

Return Values

AttributesSelection

Throws

None.

setContextName

Description

Sets the name of the context for the search (where to start searching).

Syntax

public void setContextName(java.lang.String contextName)

Parameters

Return Values

None.

Throws

None.

getContextName

Description

Returns the name of the context for the search. Returns null if context name was not
previously set.

Syntax

public java.lang.String getcontextName()

Name Type Description

name java.lang.String The name of the context for the
search.

Chapter 6 Section 6.20
LDAP e*Way Classes and Methods com.stc.eways.jndi.SearchOptions

e*Way Intelligent Adapter for LDAP User’s Guide 144 SeeBeyond Proprietary and Confidential

Parameters

None.

Return Values

java.lang.String

Throws

None.

setSearchScope

Description

Sets the search scope for the search.

Syntax

public void setSearchScope

Parameters

Return Values

None.

Throws

None.

getSearchScope

Description

Gets the search scope for the search.

Syntax

public int getSearchScope()

Parameters

None.

Return Values

integer

Throws

None.

Name Type Description

scope int The scope of the directory search.
Valid values are OBJECT_SCOPE,
ONELEVEL_SCOPE, or
SUBTREE_SCOPE.

Chapter 6 Section 6.20
LDAP e*Way Classes and Methods com.stc.eways.jndi.SearchOptions

e*Way Intelligent Adapter for LDAP User’s Guide 145 SeeBeyond Proprietary and Confidential

setSearchFilter

Description

Sets the search filter for the search.

Syntax

public void setSearchFilter (java.lang.String filter)

Parameters

Return Values

None.

Throws

None.

getSearchFilter

Description

Gets the search filter for the search.

Syntax

public java.lang.String getSearchFilter()

Parameters

None.

Return Values

java.lang.String

Throws

None.

setTimeLimit

Description

Sets the timeout in milliseconds for the search operation.

Syntax

public void setTimeLimit (int timeLimitMilliSec)

Name Type Description

filter java.lang.String The filter expression to use for the
search; may not be null. For
example, see RFC 2254 for LDAP.

Chapter 6 Section 6.20
LDAP e*Way Classes and Methods com.stc.eways.jndi.SearchOptions

e*Way Intelligent Adapter for LDAP User’s Guide 146 SeeBeyond Proprietary and Confidential

Parameters

Return Values

None.

Throws

None.

getTimeLimit

Description

Gets the timeout in milliseconds for the search operation.

Syntax

public int getTimeLimit()

Parameters

None.

Return Values

integer

Throws

None.

setCountLimit

Description

Sets the size limitation on the search results for the search operation.

Syntax

public void setCountLimit (int timeLimitMilliSec)

Name Type Description

timeLimitMilliSec int The timeout value in milliseconds. If
0 is specified, then the search will
wait indefinitely; this is the default.

Chapter 6 Section 6.21
LDAP e*Way Classes and Methods com.stc.eways.jndi.SearchResults

e*Way Intelligent Adapter for LDAP User’s Guide 147 SeeBeyond Proprietary and Confidential

Parameters

Return Values

None.

Throws

None.

getCountLimit

Description

Gets the size limitation on the search results for the search operation.

Syntax

public int getCountLimit()

Parameters

None.

Return Values

integer

Throws

None.

6.21 com.stc.eways.jndi.SearchResults
This class implements the SearchResults for the Search functionality.

java.lang.Object
 |
 +--com.stc.eways.jndi.SearchResults

Direct Known Subclasses

public class SearchResults

extends java.lang.Object

Name Type Description

resultsLimit int The maximum number of results
returned for the search. If 0 is
specified, then return all results if
there are any results; this is the
default.

Chapter 6 Section 6.21
LDAP e*Way Classes and Methods com.stc.eways.jndi.SearchResults

e*Way Intelligent Adapter for LDAP User’s Guide 148 SeeBeyond Proprietary and Confidential

Methods of the SearchResults

These methods are described in detail on the following pages

getResult

Description

Gets the current result.

Syntax

public Result getResult()

Parameters

None.

Return Values

Result.

Throws

None.

hasResults

Description

Checks to see if any results were returned by the search.

Syntax

public boolean hasResults()

Parameters

None.

Return Values

boolean.

Throws

None.

hasMoreResults

Description

Checks to see if there are still any pending results returned by the search.

getNextResult on page 149 getResult on page 148

hasResults on page 148 hasMoreResults on page 148

Chapter 6 Section 6.22
LDAP e*Way Classes and Methods com.stc.eways.jndi.STCAttribute

e*Way Intelligent Adapter for LDAP User’s Guide 149 SeeBeyond Proprietary and Confidential

Syntax

public boolean hasMoreResults()

Parameters

None.

Return Values

boolean.

Throws

java.lang.Exception

getNextResult

Description

Gets the next result returned by the search. Populates the results for retrieval.

Syntax

public boolean getNextResult()

Parameters

None.

Return Values

boolean.

Throws

com.stc.common.collabService.CollabDataException

6.22 com.stc.eways.jndi.STCAttribute
This class implements the Attribute of an Entry.

java.lang.Object
 |
 +--com.stc.eways.jndi.STCAttribute

Direct Known Subclasses

public class STCAttribute

extends java.lang.Object

Methods of the STCAttribute

These methods are described in detail on the following pages

countSTCValue on page 151 getName on page 150

getSTCValue on page 151 getSTCValues on page 150

Chapter 6 Section 6.22
LDAP e*Way Classes and Methods com.stc.eways.jndi.STCAttribute

e*Way Intelligent Adapter for LDAP User’s Guide 150 SeeBeyond Proprietary and Confidential

getSTCValues

Description

Gets the collection of values for the attribute.

Syntax

public STCValues getSTCValues()

Parameters

None.

Return Values

STCValues

Throws

None.

getName

Description

Gets the name of the attribute.

Syntax

public java.lang.String getName()

Parameters

None.

Return Values

java.lang.String

Throws

None.

setName

Description

Sets the name of the attribute.

Syntax

public void setName (java.lang.String name)

setName on page 150

Chapter 6 Section 6.22
LDAP e*Way Classes and Methods com.stc.eways.jndi.STCAttribute

e*Way Intelligent Adapter for LDAP User’s Guide 151 SeeBeyond Proprietary and Confidential

Parameters

Return Values

None.

Throws

None.

countSTCValue

Description

Gets the number of values available.

Syntax

public int countSTCValue()

Parameters

None.

Return Values

integer

Throws

None.

getSTCValue

Description

Gets the value specified by the index position.

Syntax

public STCValue getSTCValue (int j)

Name Type Description

name java.lang.String The name of the attribute.

Chapter 6 Section 6.23
LDAP e*Way Classes and Methods com.stc.eways.jndi.STCAttributes

e*Way Intelligent Adapter for LDAP User’s Guide 152 SeeBeyond Proprietary and Confidential

Parameters

Return Values

STCValue.

Throws

java.lang.IndexOutOfBoundsException.

6.23 com.stc.eways.jndi.STCAttributes
This class implements the Attribute collection for an entry.

java.lang.Object
 |
 +--com.stc.eways.jndi.STCAttributes

Direct Known Subclasses

public class STCAttributes

extends java.lang.Object

Methods of the STCAttributes

These methods are described in detail on the following pages

countSTCAttribute

Description

Gets the number of attributes available.

Syntax

public int countSTCAttribute()

Parameters

None.

Return Values

integer

Throws

None.

Name Type Description

j int The integer index specifying the
position of the value to return.

countSTCAttribute on page 152 getSTCAttribute on page 153

Chapter 6 Section 6.24
LDAP e*Way Classes and Methods com.stc.eways.jndi.STCEntry

e*Way Intelligent Adapter for LDAP User’s Guide 153 SeeBeyond Proprietary and Confidential

getSTCAttribute

Description

Gets the attribute specified by the index position. If one does not exist, then an empty
one will be created.

Syntax

public STCAttribute getSTCAttribute(int i)

Parameters

Return Values

STCAttribute

Throws

java.lang.IndexOutOfBoundsException.

6.24 com.stc.eways.jndi.STCEntry
This class implements an entry.

java.lang.Object
 |
 +--com.stc.eways.jndi.STCEntry

Direct Known Subclasses

public class STCEntry

extends java.lang.Object

Methods of the STCEntry

These methods are described in detail on the following pages

setName

Description

Sets the name for the entry.

Name Type Description

i int The integer index specifying the
position of the attribute to return.

countAttribute on page 155 getAttributes on page 154

getName on page 138 setStringValue on page 157

reset on page 137 isByteArray on page 156

Chapter 6 Section 6.24
LDAP e*Way Classes and Methods com.stc.eways.jndi.STCEntry

e*Way Intelligent Adapter for LDAP User’s Guide 154 SeeBeyond Proprietary and Confidential

Syntax

public void setName(java.lang.String name)

Parameters

Return Values

None.

Throws

None.

getName

Description

Gets the name for the entry.

Syntax

public java.lang.String getName()

Parameters

None.

Return Values

java.lang.String

Throws

None.

getAttributes

Description

Gets the attribute associated with this entry.

Syntax

public STCAttributes getSTCAttributes()

Parameters

None.

Return Values

STCAttributes

Throws

None.

Name Type Description

name java.lang.String The name of the entry.

Chapter 6 Section 6.24
LDAP e*Way Classes and Methods com.stc.eways.jndi.STCEntry

e*Way Intelligent Adapter for LDAP User’s Guide 155 SeeBeyond Proprietary and Confidential

getSTCAttribute

Description

Gets the attribute specified by the index position. If one does not exist, then an empty
one will be created.

Syntax

public STCAttribute getSTCAttribute(int i)

Parameters

Return Values

STCAttribute

Throws

java.lang.IndexOutOfBoundsException.

countAttribute

Description

Gets the number of attributes available.

Syntax

public int countAttribute()

Parameters

None.

Return Values

integer

Throws

None.

reset

Description

Clears entry name and deletes all attributes (and the associated values) from the entry
instance.

Syntax

public void reset()

Name Type Description

i int The integer index specifying the
position of the attribute to return.

Chapter 6 Section 6.25
LDAP e*Way Classes and Methods com.stc.eways.jndi.STCValue

e*Way Intelligent Adapter for LDAP User’s Guide 156 SeeBeyond Proprietary and Confidential

Parameters

None.

Return Values

None.

Throws

None.

6.25 com.stc.eways.jndi.STCValue
This class implements the value for an attribute.

java.lang.Object
 |
 +--com.stc.eways.jndi.STCValue

Direct Known Subclasses

public class STCValue

extends java.lang.Object

Methods of the STCValue

These methods are described in detail on the following pages

isByteArray

Description

Determines whether the value returned is a byte array or a string.

Syntax

public boolean isByteArray()

Parameters

None.

getByteValue on page 158 getStringValue on page 157

getValue on page 159 isByteArray on page 156

isString on page 157 setByteValue on page 158

setStringValue on page 157 setValue on page 159

Chapter 6 Section 6.25
LDAP e*Way Classes and Methods com.stc.eways.jndi.STCValue

e*Way Intelligent Adapter for LDAP User’s Guide 157 SeeBeyond Proprietary and Confidential

Return Values

boolean

Throws

java.lang.Exception

isString

Description

Determines whether the value returned is a string or a byte array.

Syntax

public boolean isString()

Parameters

None.

Return Values

boolean

Throws

java.lang.Exception

getStringValue

Description

Gets the value that is of type java.lang.String.

Syntax

public java.lang.String getStringValue()

Parameters

None.

Return Values

java.lang.String

Throws

java.lang.Exception

setStringValue

Description

Sets the value that is of type java.lang.String.

Chapter 6 Section 6.25
LDAP e*Way Classes and Methods com.stc.eways.jndi.STCValue

e*Way Intelligent Adapter for LDAP User’s Guide 158 SeeBeyond Proprietary and Confidential

Syntax

public void setStringValue(java.lang.String strVal)

Parameters

Return Values

java.lang.String

Throws

None.

getByteValue

Description

Gets the value that is of type byte array (byte[]).

Syntax

public byte[] getByteValue()

Parameters

None.

Return Values

byte

Throws

java.lang.Exception

setByteValue

Description

Sets the value that is of type byte array (byte[]).

Syntax

public void setByteValue(byte[] byteVal)

Parameters

Return Values

None.

Name Type Description

strVal java.lang.String The value of type String.

Name Type Description

byteVal byte[] The value of type byte array.

Chapter 6 Section 6.26
LDAP e*Way Classes and Methods com.stc.eways.jndi.STCValues

e*Way Intelligent Adapter for LDAP User’s Guide 159 SeeBeyond Proprietary and Confidential

Throws

None.

setValue

Description

Sets the value object.

Syntax

public void setValue(java.lang.Object val)

Parameters

Return Values

None.

Throws

java.lang.Exception

getValue

Description

Gets the value object.

Syntax

public java.lang.Object getValue()

Parameters

None.

Return Values

java.lang.Object

Throws

java.lang.Exception

6.26 com.stc.eways.jndi.STCValues
This class implements the collection of values for an attribute.

java.lang.Object
 |
 +--com.stc.eways.jndi.STCValues

Name Type Description

val java.lang.String The value of type Object.

Chapter 6 Section 6.26
LDAP e*Way Classes and Methods com.stc.eways.jndi.STCValues

e*Way Intelligent Adapter for LDAP User’s Guide 160 SeeBeyond Proprietary and Confidential

Direct Known Subclasses

public class STCValues

extends java.lang.Object

Methods of the STCValues

These methods are described in detail on the following pages

countSTCValue

Description

Gets the number of values available.

Syntax

public int countSTCValue()

Parameters

None.

Return Values

integer

Throws

None.

getSTCValue

Description

Gets the value specified by the index position.

Syntax

public STCValue getSTCValue(int j)

countSTCValue on page 160 getSTCValue on page 160

Chapter 6 Section 6.27
LDAP e*Way Classes and Methods com.stc.eways.jndi.StringUtil

e*Way Intelligent Adapter for LDAP User’s Guide 161 SeeBeyond Proprietary and Confidential

Parameters

Return Values

STCValue

Throws

java.lang.IndexOutOfBoundsException

6.27 com.stc.eways.jndi.StringUtil
This class provides String conveniences utilities.

java.lang.Object
 |
 +--com.stc.eways.jndi.StringUtil

Direct Known Subclasses

public class StringUtil

extends java.lang.Object

Methods of the StringUtil

These methods are described in detail on the following pages

toHexString

Description

Converts a byte array to an equivalent Hex String.

Syntax

public static java.lang.String toHexString(byte[] b)

Parameters

None.

Return Values

java.lang.String

Throws

None.

Name Type Description

j int The integer index specifying the
position of the value to return.

toHexString on page 161

Index

e*Way Intelligent Adapter for LDAP User’s Guide 162 SeeBeyond Proprietary and Confidential

Index

B
business rules

Using the Java Collaboration Rules Editor
Business Rules 70

C
Classpath Override 19
Classpath Prepend 19
clearAttributes 97
close 126
Collaboration Rules 66

creating 66, 67
properties 66

connect 120
countAttribute 155
countSTCAttribute 139, 152
countSTCValue 151, 160

D
directories

created by installation 15
Disable JIT 21
disconnect 120

E
e*Way Connection

creating 62
e*Way Connection parameters 22
e*Ways

creating and configuring 57
Inbound e*Way 57
Multi-Mode e*Way 61
Outbound e*Way 59

ETD structure, overview 34
ETDs 63
event type

from XSC 65
Event Type Definitions 63
Event Types 63

F
files

created by installation 15

G
get 119
getAddAttributesValues 115
getAddEntry 121
getAddEntryOptions 93
getAttributes 154
getAttributesSelection 143
getAuthentication 104
getByteValue 158
getCompareEntry 122
getCompareEntryOptions 98
getCompareFilter 101
getConnection 119
getConnector 124
getContext 128
getContextName 143
getCountLimit 147
getCredentials 107
getEntry 130, 136
getEntryName 100
getEntryOptions 130, 136
getIgnoreAlreadyBound 95
getIgnoreAttributeIDCase 109
getLDAPSearchControls 140
getModifyEntry 123
getName 138, 150, 154
getNewName 134
getNextResult 149
getOldName 133
getOrderAttributeValues 110
getPagedResultsControl 114
getPrincipal 106
getProperties 127
getProviderURL 103
getRemoveAttributesValues 116
getRemoveEntry 123
getRenameEntry 122
getReplaceValues 116
getResult 148
getSearch 121
getSearchFilter 145
getSearchOptions 140
getSearchResults 141
getSearchScope 144
getSortControlAttributes 112
getSTCAttribute 138, 153, 155
getSTCAttributes 138
getSTCEntry 93

Index

e*Way Intelligent Adapter for LDAP User’s Guide 163 SeeBeyond Proprietary and Confidential

getSTCValue 151, 160
getSTCValues 150
getStringValue 157
getTimeLimit 102, 146
getValue 159

H
hasCredentials 108
hasMoreResults 148
hasPrincipal 107
hasProviderURL 104
hasResults 148

I
implementation 54

samples 55
importing the sample schema 55
Initial Heap Size 20
initialize 90
installation

directories created by 15
files created by 15

Intelligent Queues 66
creating 66

IQs 66
creating 66

isByteArray 156
isConnected 121
isOpen 127
isString 157

J
Java Methods 88
Java methods and classes, overview 88
Java methods, using 88
JNI DLL Absolute Pathname 18
JVM settings 18

M
Maximum Heap Size 20
Multi-Mode e*Way

parameters 18

O
omitCredentials 108
omitPrincipal 107
omitProviderURL 104
open 125

P
parameters

Connector 23
Class 24
Type 23

Multi-Mode e*Way
CLASSPATH Override 19
CLASSPATH prepend 19
Disable JIT 21
Initial Heap Size 20
JNI DLL absolute pathname 18
JVM settings 18
Maximum Heap Size 20

Property.Tag 24
performAddAttributesValues 91
performAddEntry 93
performCompare 98
performRemoveAttributesValues 131
performRename 134
performReplaceValues 136
performSearch 141
pre-installation

UNIX 14
Windows 13

R
removePagedResultsControl 113
removeSortControlAttributes 112
reset 91

S
Sample schema 78
sample schema

executing the schema 77
importing 55

samples
Add

parameters 78
Add Schema

Business Rules 80
Delete Sample Schema

Business Rules 86
parameters 84

Modify Sample Schema
Business Rules 83

Modify Schema
parameters 81

schema
importing 55

setAuthentication 105
setByteValue 158

Index

e*Way Intelligent Adapter for LDAP User’s Guide 164 SeeBeyond Proprietary and Confidential

setCompareFilter 100
setConnection 119
setConnector 124
setContextName 143
setCountLimit 146
setCredentials 108
setEntryName 100
setIgnoreAlreadyBound 95
setIgnoreAttributeIDCase 110
setLastError 128
setName 150, 153
setNewName 133
setOldName 132
setOrderAttributeValues 111
setPagedResultsControl 113
setPrincipal 106
setProviderURL 103
setSearchFilter 145
setSearchScope 144
setSortControlAttributes 111
setStringValue 157
setTimeLimit 101, 145
setValue 159
Supported Operating Systems 11
system requirements 11

T
terminate 118
toHexString 161

U
UNIX

pre-installation 14

W
Windows

pre-installation 13

	e*Way Intelligent Adapter for LDAP User’s Guide
	Contents
	Introduction
	1.1 Intended Reader
	1.2 Overview
	1.2.1 e*Way Intelligent Adapter for LDAP
	1.2.2 LDAP
	1.2.3 Java Naming and Directory Interface (JNDI)
	1.2.4 Referrals

	1.3 LDAP e*Way Components
	1.4 Supported Operating Systems
	1.5 System Requirements
	1.6 External System Requirements

	Installation
	2.1 Windows Systems
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 UNIX Systems
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Configuration
	3.1 Multi-Mode e*Way Configuration
	3.1.1 Creating a Multi-Mode e*Way
	3.1.2 Multi-Mode e*Way Configuration Parameters
	3.1.3 JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	CLASSPATH Append From Environment Variable
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Disable JIT
	Remote debugging port number
	Suspend option for debugging

	3.1.4 General Settings
	Rollback Wait Interval

	3.2 e*Way Connection Configuration
	Creating an e*Way Connection
	3.2.1 Configuring e*Way Connections
	3.2.2 Connector
	Type
	Class
	Property.Tag
	Connection Establishment Mode
	Connection Inactivity Timeout
	Connection Verification Interval

	3.2.3 Connection
	InitialContextFactory
	ProviderURL
	Authentication
	Principal
	Credentials

	3.2.4 Referrals
	Follow
	CredentialsFile

	3.2.5 Referrals Credentials File Utility (RCFUtil)

	3.3 External Configuration Requirements

	LDAP ETD Overview
	4.1 LDAP ETD Structure
	4.1.1 NSClient Root Node
	4.1.2 Connection Node
	4.1.3 Search Node
	LDAPSearchControls
	SearchOptions
	AttributesSelection
	SearchResults

	4.1.4 AddEntry
	4.1.5 CompareEntry Node
	4.1.6 RenameEntry Node
	4.1.7 RemoveEntry Node
	4.1.8 ModifyEntry Node
	4.1.9 LDAP ETD Java Classes

	Implementation
	5.1 LDAP e*Way Implementation
	5.2 Sample Implementations
	5.2.1 Importing the Sample Schema

	5.3 The Search Sample Schema
	5.3.1 Creating and Configuring the e*Ways
	5.3.2 Creating the e*Way Connection
	5.3.3 Event Types
	Creating an Event Types Using the Custom ETD Wizard
	Creating Event Types and Associating Them with an Existing .xsc File

	5.3.4 Intelligent Queues
	5.3.5 Creating Collaboration Rules
	Collaboration Rules Files

	5.3.6 Creating Business Rules Using the Java Collaboration Rules Editor
	5.3.7 Creating the Collaborations
	5.3.8 Executing the Schema

	5.4 Creating the Add, Modify, and Delete Sample Schemas
	5.4.1 Creating the Add Sample Schema
	Creating Business Rules for the Add Sample Schema

	5.4.2 Creating the Modify Sample Schema
	Creating Business Rules for the Modify Sample Schema

	5.4.3 Creating the Delete Sample Schema
	Creating Business Rules for the Delete Sample Schema

	LDAP e*Way Classes and Methods
	6.1 LDAP e*Way Classes and Methods: Overview
	6.2 com.stc.eways.jndi.AddAttributesValues Class
	Methods of the AddAttributesValues Class
	initialize
	getSTCEntry
	getEntryOptions
	performAddAttributesValues
	reset

	6.3 com.stc.eways.jndi.AddEntry Class
	Methods of the AddEntry Class
	initialize
	getAddEntryOptions
	getSTCEntry
	performAddEntry
	reset

	6.4 com.stc.eways.jndi.AddEntryOptions Class
	Methods of the AddEntryOptions Class
	getIgnoreAlreadyBound
	setIgnoreAlreadyBound

	6.5 com.stc.eways.jndi.AttributesSelection Class
	Methods of the AttributesSelection Class
	addAttribute
	removeAttribute
	clearAttributes

	6.6 com.stc.eways.jndi.CompareEntry Class
	Methods of the CompareEntry Class
	initialize
	getCompareEntryOptions
	performCompare
	reset

	6.7 com.stc.eways.jndi.CompareEntryOptions
	Methods of the CompareEntryOptions Class
	setEntryName
	getEntryName
	setCompareFilter
	getCompareFilter
	setTimeLimit
	getTimeLimit

	6.8 com.stc.eways.jndi.Connection
	Methods of the Connection Class
	getProviderURL
	setProviderURL
	hasProviderURL
	omitProviderURL
	getAuthentication
	setAuthentication
	hasAuthentication
	omitAuthentication
	getPrincipal
	setPrincipal
	hasPrincipal
	omitPrincipal
	getCredentials
	setCredentials
	hasCredentials
	omitCredentials

	6.9 com.stc.eways.jndi.EntryOptions
	Methods of the EntryOptions
	getIgnoreAttributeIDCase
	setIgnoreAttributeIDCase
	getOrderAttributeValues
	setOrderAttributeValues

	6.10 com.stc.eways.jndi.LDAPSearchControls
	Methods of the LDAPSearchControls
	setSortControlAttributes
	getSortControlAttributes
	removeSortControlAttributes
	setPagedResultsControl
	removePagedResultsControl
	getPagedResultsControl

	6.11 com.stc.eways.jndi.ModifyEntry
	Methods of the Modify Entry
	initialize
	getAddAttributesValues
	getRemoveAttributesValues
	getReplaceValues
	reset

	6.12 com.stc.eways.jndi.NSClient
	Methods of the NSClient
	initialize
	terminate
	getConnection
	setConnection
	get$Configuration
	connect
	disconnect
	isConnected
	getSearch
	getAddEntry
	getCompareEntry
	getRenameEntry
	getRemoveEntry
	getModifyEntry
	reset
	setConnector
	getConnector

	6.13 com.stc.eways.jndi.runtime.NSConnector
	Methods of the NSConnector
	open
	open
	close
	isOpen
	getProperties
	getContext
	setLastError

	6.14 com.stc.eways.jndi.RCFUtil
	6.15 com.stc.eways.jndi.RemoveAttributesValues
	Methods of the RemoveAttributesValues
	initialize
	getEntry
	getEntryOptions
	performRemoveAttributesValues
	reset

	6.16 com.stc.eways.jndi.RenameEntry
	Methods of the RenameEntry
	initialize
	setOldName
	getOldName
	setNewName
	getNewName
	performRename
	reset

	6.17 com.stc.eways.jndi.ReplaceValues
	Methods of the ReplaceValues
	initialize
	getEntry
	getEntryOptions
	performReplaceValues
	reset

	6.18 com.stc.eways.jndi.Result
	Methods of the Result
	getName
	getSTCAttributes
	getSTCAttribute
	countSTCAttribute

	6.19 com.stc.eways.jndi.Search
	Methods of the Search
	initialize
	getLDAPSearchControls
	getSearchOptions
	getSearchResults
	performSearch
	reset

	6.20 com.stc.eways.jndi.SearchOptions
	Methods of the SearchOptions
	getAttributesSelection
	setContextName
	getContextName
	setSearchScope
	getSearchScope
	setSearchFilter
	getSearchFilter
	setTimeLimit
	getTimeLimit
	setCountLimit
	getCountLimit

	6.21 com.stc.eways.jndi.SearchResults
	Methods of the SearchResults
	getResult
	hasResults
	hasMoreResults
	getNextResult

	6.22 com.stc.eways.jndi.STCAttribute
	Methods of the STCAttribute
	getSTCValues
	getName
	setName
	countSTCValue
	getSTCValue

	6.23 com.stc.eways.jndi.STCAttributes
	Methods of the STCAttributes
	countSTCAttribute
	getSTCAttribute

	6.24 com.stc.eways.jndi.STCEntry
	Methods of the STCEntry
	setName
	getName
	getAttributes
	getSTCAttribute
	countAttribute
	reset

	6.25 com.stc.eways.jndi.STCValue
	Methods of the STCValue
	isByteArray
	isString
	getStringValue
	setStringValue
	getByteValue
	setByteValue
	setValue
	getValue

	6.26 com.stc.eways.jndi.STCValues
	Methods of the STCValues
	countSTCValue
	getSTCValue

	6.27 com.stc.eways.jndi.StringUtil
	Methods of the StringUtil
	toHexString

	Index
	B
	C
	D
	E
	F
	G
	H
	I
	J
	M
	O
	P
	R
	S
	T
	U
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

