
SeeBeyond Proprietary and Confidential

e*Way Intelligent Adapter for
ODBC User’s Guide

Release 5.0.5 for Schema Run-time Environment (SRE)

e*Way Intelligent Adapter for ODBC User’s Guide 2 SeeBeyond Proprietary and Confidential

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, and e*Way are the registered trademarks of SeeBeyond Technology Corporation in the United States and select
foreign countries; the SeeBeyond logo, e*Insight, and e*Xchange are trademarks of SeeBeyond Technology Corporation. The absence
of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's intellectual property rights
concerning that trademark. This document may contain references to other company, brand, and product names. These company,
brand, and product names are used herein for identification purposes only and may be the trademarks of their respective owners.

© 1999–2004 by SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20050406012757.

Contents

e*Way Intelligent Adapter for ODBC User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Chapter 1

Introduction 8
Using SQL 8

Components 9

Intended Reader 9

Supported Operating Systems 9

System Requirements 10
External System Requirements 10

Chapter 2

Installation 11
Installation Overview 11

Installation Decisions 11
Installing Client and Network Components on Windows 12

Installing the ODBC e*Way on Windows Systems 12
Pre-installation 12
Installation Procedure 13

Installing the ODBC e*Way on UNIX 14
Pre-installation 14
Installation Procedure 14

Merant 4.0 ODBC Drivers 15
Setting up the Shared Library Search Path 15
Setting up the ODBC Data Source Definition File 16

Sample .odbc.ini File 16
Optional Environment Variables 19

The ivtestlib Tool 19
Testing the ODBC Driver 19

Installing the ODBC Drivers for Compaq 20

Oracle Network Components 20
SQL *Net V2 Configuration Files 21
Testing the SQL *Net Configuration 23
Troubleshooting Checklist 23

Contents

e*Way Intelligent Adapter for ODBC User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration 25
Configuration Overview 25

e*Way Configuration Parameters 25
General Settings 26

Journal File Name 26
Max Resends Per Message 26
Max Failed Messages 27
Forward External Errors 27

Communication Setup 27
Start Exchange Data Schedule 27
Stop Exchange Data Schedule 28
Exchange Data Interval 28
Down Timeout 29
Up Timeout 29
Resend Timeout 29
Zero Wait Between Successful Exchanges 29

Monk Configuration 30
Basic e*Way Processes 31
How to Specify Function Names or File Names 38
Additional Path 39
Auxiliary Library Directories 39
Monk Environment Initialization File 39
Startup Function 40
Process Outgoing Message Function 40
Exchange Data with External Function 41
External Connection Establishment Function 42
External Connection Verification Function 42
External Connection Shutdown Function 43
Positive Acknowledgment Function 43
Negative Acknowledgment Function 44
Shutdown Command Notification Function 45

Database Setup 45
Database Type 45
Database Name 45
User Name 46
Encrypted Password 46

Chapter 4

Implementation 47
Using the ETD Editor’s Build Tool 47

The Event Type Definition Files 50
Table or View 51
Dynamic SQL Statement 53
Stored Procedure 54

Vendor-Specific Driver Notes 56
IBM ODBC DB2 Drivers 56

Contents

e*Way Intelligent Adapter for ODBC User’s Guide 5 SeeBeyond Proprietary and Confidential

Support for BLOB and CLOB Data Types 57
Merant ODBC Drivers 57

Support for BLOB and CLOB Data Types 57

Sample One—Publishing e*Gate Events to an ODBC Database 58
Create the Schema 59
Create the Event Type Definitions 60
Add the Event Types 61
Create the Monk Scripts 62
Add and Configure the e*Ways 62
Add the IQs 64
Create the Collaboration Rules 65
Add and Configure the Collaborations 66
Run the Schema 67

Sample Two—Polling from an ODBC Database 68
Create the Schema 70
Create the Event Type Definitions 70
Add the Event Types 71
Create the Monk Scripts 72
Add and Configure the e*Ways 74
Add the IQs 76
Create the Collaboration Rules 77
Add and Configure the Collaborations 77
Run the Schema 79

Chapter 5

ODBC e*Way Functions 81
Basic Functions 81

event-send-to-egate 82
get-logical-name 83
send-external-down 84
send-external-up 85
shutdown-request 86
start-schedule 87
stop-schedule 88

Standard e*Way Functions 89
db-stdver-conn-estab 90
db-stdver-conn-shutdown 92
db-stdver-conn-ver 93
db-stdver-data-exchg 95
db-stdver-data-exchg-stub 96
db-stdver-init 97
db-stdver-neg-ack 98
db-stdver-pos-ack 99
db-stdver-proc-outgoing 100
db-stdver-proc-outgoing-stub 102
db-stdver-shutdown 104
db-stdver-startup 105

General Connection Functions 106
connection-handle? 107
db-alive 108
db-commit 110
db-get-error-str 111

Contents

e*Way Intelligent Adapter for ODBC User’s Guide 6 SeeBeyond Proprietary and Confidential

db-login 113
db-logout 115
db-max-long-data-size 116
db-rollback 117
make-connection-handle 118
statement-handle? 119

Static SQL Functions 120
Static vs. Dynamic SQL Functions 120
ODBC SQL Type Support 125
db-sql-column-names 126
db-sql-column-types 128
db-sql-column-values 129
db-sql-execute 131
db-sql-fetch 132
db-sql-fetch-cancel 133
db-sql-format 134
db-sql-select 136

Dynamic SQL Functions 137
db-stmt-bind 138
db-stmt-bind-binary 139
db-stmt-column-count 140
db-stmt-column-name 141
db-stmt-column-type 142
db-stmt-execute 143
db-stmt-fetch 144
db-stmt-fetch-cancel 145
db-stmt-param-assign 146
db-stmt-param-count 147
db-stmt-param-type 148
db-stmt-row-count 149

Stored Procedure Functions 150
db-proc-bind 151
db-proc-bind-binary 152
db-proc-column-count 153
db-proc-column-name 155
db-proc-column-type 157
db-proc-execute 159
db-proc-fetch 161
db-proc-fetch-cancel 163
db-proc-param-assign 164
db-proc-param-count 166
db-proc-param-io 167
db-proc-param-name 168
db-proc-param-type 169
db-proc-param-value 170
db-proc-return-exist 172
db-proc-return-type 174
db-proc-return-value 176

Message Event Functions 178
db-struct-call 179
db-struct-execute 180
db-struct-fetch 181
db-struct-insert 183
db-struct-select 185
db-struct-update 187

Sample Monk Scripts 189
Initializing Monk Extensions 190
Calling Stored Procedures 191
Inserting Records with Dynamic SQL Statements 193

Contents

e*Way Intelligent Adapter for ODBC User’s Guide 7 SeeBeyond Proprietary and Confidential

Updating Records with Dynamic SQL Statements 195
Selecting Records with Dynamic SQL Statements 197
Deleting Records with Dynamic SQL Statements 199
Inserting a Binary Image to a Database 200
Retrieving an Image from a Database 203
Common Supporting Routines 205

Index 208

e*Way Intelligent Adapter for ODBC User’s Guide 8 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

SeeBeyond™ developed the e*Way Intelligent Adapter for ODBC as a graphically-
configurable e*Way. The ODBC e*Way implements the logic that sends Events (data) to
e*Gate and queues the next Event for processing and transport to the database.

A Monk database access library is available to log into the database, issue Structured
Query Language (SQL) statements, and call stored procedures. The ODBC e*Way uses
Monk to execute user-supplied database access Monk scripts to retrieve information
from or send information to a database. The fetched data (information) can be returned
in a Monk Collaboration which simplifies the accessibility of each column in the
database table. This document describes how to install and configure the ODBC e*Way.

This Chapter Explains:

“Using SQL” on page 8

“Components” on page 9

“Intended Reader” on page 9

“External System Requirements” on page 10

1.1 Using SQL
The ODBC e*Way uses a Monk extension library to issue SQL (Structured Query
Language) statements. The library contains functions to access the database and
generate SQL statements. SQL is the language used to communicate with the database
server to access and manipulate data. By populating a database with the data flowing
through an integration engine, all the information available to an integrated delivery
network (IDN) is stored for evaluation. This allows the ODBC e*Way to operate
independently of the underlying DBMS (database management system).

To access the database, you execute an SQL command, which is the American National
Standards Institute (ANSI) standard language for operating upon relational databases.
The language contains a large set of operators for defining and manipulating tables.
SQL statements can be used to create, alter, and drop tables from a database.

Chapter 1 Section 1.2
Introduction Components

e*Way Intelligent Adapter for ODBC User’s Guide 9 SeeBeyond Proprietary and Confidential

1.2 Components
The ODBC e*Way is comprised of the following:

stcewgenericmonk.exe, the executable component

Configuration files, which the e*Way Editor uses to define configuration
parameters

Monk external function scripts

e*Way Monk functions

A complete list of installed files appears in Table 1 on page 13 or Table 2 on page 15.

1.3 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have expert-level knowledge of
Windows and/or UNIX operations and administration; to be thoroughly familiar with
ODBC and to be thoroughly familiar with Windows-style GUI operations.

1.4 Supported Operating Systems
The ODBC e*Way is available on the following operating systems:

Windows 2000, Windows XP, and Windows Server 2003

HP-UX 11.0, and HP-UX 11i (PA-RISC), and HP-UX 11i v2.0 (11.23)

HP Tru64 V5.1A

IBM AIX 5.1L and 5.2

Sun Solaris 8 and 9

Japanese Windows 2000, Windows XP, and Windows Server 2003

Japanese HP-UX 11.0, and HP-UX 11i (PA-RISC), and HP-UX 11i v2.0 (11.23)

Japanese Sun Solaris 8 and 9

Korean Windows 2000, Windows XP, and Windows Server 2003

Korean HP-UX 11.0, and HP-UX 11i (PA-RISC), and HP-UX 11i v2.0 (11.23)

Korean IBM AIX 5.1L and 5.2

Korean Sun Solaris 8 and 9

Chapter 1 Section 1.5
Introduction System Requirements

e*Way Intelligent Adapter for ODBC User’s Guide 10 SeeBeyond Proprietary and Confidential

1.5 System Requirements
To use the ODBC e*Way, you need the following:

An e*Gate Participating Host.

A TCP/IP network connection.

The client components of the databases with which the e*Way interfaces have their own
requirements; see the appropriate documentation for more details.

1.5.1 External System Requirements
The ODBC e*Way supports the following external databases:

Oracle 8.1.6

Oracle 8.1.7

Sybase 11

Sybase 12

SQL Server 7.0

DB2

Note: DB2 support is provided by using the IBM v5 drivers for UNIX or IBM v7 drivers
for Windows systems.

e*Way Intelligent Adapter for ODBC User’s Guide 11 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter describes the procedures for installing the ODBC e*Way on both Windows
and UNIX systems. A list of the files and directories created by the installation are
included.

This Chapter Explains:

“Installation Overview” on page 11

“Installing the ODBC e*Way on Windows Systems” on page 12

“Installing the ODBC e*Way on UNIX” on page 14

“Merant 4.0 ODBC Drivers” on page 15

“Installing the ODBC Drivers for Compaq” on page 20

“Oracle Network Components” on page 20

2.1 Installation Overview
The installation procedure depends upon the operating system of the Participating
Host on which you are installing this e*Way. You must have Administrator privileges
to install this e*Way on either Windows or UNIX.

2.1.1 Installation Decisions
This section presents decisions to be made before beginning the installation. These
decisions apply to both UNIX and Windows systems:

1 The operating system/platform on which the ODBC e*Way will operate.

2 The database network software required to operate the ODBC e*Way.

For Oracle:

SQL *Net8

For Sybase:

Open Client version11.1.x or 12

3 The Oracle networking options to be installed.

On UNIX:

Chapter 2 Section 2.2
Installation Installing the ODBC e*Way on Windows Systems

e*Way Intelligent Adapter for ODBC User’s Guide 12 SeeBeyond Proprietary and Confidential

SQL *Net8

TCP/IP Protocol Adaptor

On Windows systems:

SQL *Net8

TCP/IP Adapter

OCI

Issue the following command to determine which version of SQL *Net is installed:

On UNIX:

echo $ORACLE_HOME
/opt/oracle/app/oracle/product/8.1.6

The output shows that SQL *Plus Version 8.1.6 is installed.

2.1.2 Installing Client and Network Components on Windows
The following Networking Options must be installed and configured before running
the ODBC e*Way:

The Oracle8 or Oracle8i Oracle Client

Note: The Oracle Client is not required for the ODBC e*Way to communicate with
Microsoft SQL Server. The Oracle Client is required in order to communicate with
any other database.

SQL*Net8 for Oracle8 and 8i

TCP/IP Protocol Adapter

OCI (Oracle Call Interface)

The Sybase Open Client

Note: The ODBC e*Way requires a 32-bit version of the Oracle Client. The 64-bit Oracle
Client is not compatible with this e*Way.

2.2 Installing the ODBC e*Way on Windows Systems

2.2.1 Pre-installation
1 Exit all Windows programs before running the setup program, including any anti-

virus applications.

2 You must have Administrator privileges to install this e*Way.

Chapter 2 Section 2.2
Installation Installing the ODBC e*Way on Windows Systems

e*Way Intelligent Adapter for ODBC User’s Guide 13 SeeBeyond Proprietary and Confidential

2.2.2 Installation Procedure
To install the ODBC e*Way on a Windows systems

1 Log in as an Administrator on the workstation on which you want to install the
e*Way.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s “Autorun” feature is enabled, the setup application should
launch automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or
the Control Panel’s Add/Remove Applications feature to launch the file setup.exe
on the CD-ROM drive.

4 The InstallShield setup application will launch. Follow the on-screen instructions to
install the e*Way.

Note: Be sure to install the e*Way files in the suggested “client” installation directory.
The installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

The ODBC e*Way CD-ROM contains the following files, which the InstallShield
Wizard copies to the indicated directories on your computer, creating them if
necessary.

These files are installed in the Registry during your initial installation. The first time
you access the e*Way to configure it, the following files (with the exception of all the
Monk files) move to the Client directory.

Table 1 Installation Directories and Files (Windows)

Install Directory Files

bin\ stcewgenericmonk.exe
stcstruct.exe
stc_dbapps.dll
stc_dbmonkext.dll
stc_dbodbc.dll
stccdbctest.exe

configs\stcewgenericmonk\ dart.def
dartRule.txt

monk_library\ dart.gui

Chapter 2 Section 2.3
Installation Installing the ODBC e*Way on UNIX

e*Way Intelligent Adapter for ODBC User’s Guide 14 SeeBeyond Proprietary and Confidential

2.3 Installing the ODBC e*Way on UNIX

2.3.1 Pre-installation
You do not require root privileges to install this e*Way. Log in under the user name
that you wish to own the e*Way files. Be sure that this user has sufficient privilege to
create files in the e*Gate directory tree.

2.3.2 Installation Procedure
To install the ODBC e*Way on a UNIX system:

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing:

setup.sh

5 A menu of options will appear. Select the e*Gate Add-on Application option.
Then, follow any additional on-screen directions.

Note: Be sure to install the e*Way files in the suggested “client” installation directory.
The installation utility detects and suggests the appropriate installation directory.
Unless you are directed to do so by SeeBeyond support personnel, do not
change the suggested “installation directory” setting.

monk_library\dart\ db-struct-bulk-insert.monk
db-struct-call.monk
db-struct-execute.monk
db-struct-fetch.monk
db-struct-insert.monk
db-struct-select.monk
db-struct-update.monk
db-stdver-eway-funcs.monk
odbcmsg.ssc
odbcmsg-display.monk
db_bind.monk
db-sanitize-symbol.monk

Table 1 Installation Directories and Files (Windows)

Install Directory Files

Chapter 2 Section 2.4
Installation Merant 4.0 ODBC Drivers

e*Way Intelligent Adapter for ODBC User’s Guide 15 SeeBeyond Proprietary and Confidential

The CD-ROM contains the following files, which are copied to the indicated path on
your computer. Refer to the installation instructions for e*Gate for the most up-to-date
information.

2.4 Merant 4.0 ODBC Drivers
 This section covers installation, setup, and testing of the Merant ODBC Drivers. If you
are using either the Japanese or Korean version of the ODBC e*Way, you will need to
install the Merant 3.6 ODBC drivers. If you are using DB2 with the ODBC e*Way, you
will need to install the Merant 3.6 ODBC drivers.

2.4.1 Setting up the Shared Library Search Path
You must set up the shared library search path used by both the ODBC e*Way and the
Sybase Open Client. The library search path environment variables are required to be
set so that the ODBC core components and drivers can be located at the time of
execution.

You can define these environment variables in .cshrc in the C shell or .profile in the
Korn/Bash shell. Follow these scripts when setting up the shared library search path:

Table 2 Installation Directories and Files (UNIX)

Install Directory Files

bin/ stcewgenericmonk.exe
stc_dbapps.dll
stc_dbmonkext.dll
stc_dbodbc.dll
stc_dbctest.exe
stcstruct.exe
stc_dbodbc.dll

configs/stcewgenericmonk/ dart.def
dartRule.txt

monk_library dart.gui

monk_library/dart/ db-struct-bulk-insert.monk
db-struct-call.monk
db-struct-execute.monk
db-struct-fetch.monk
db-struct-insert.monk
db-struct-select.monk
db-struct-update.monk
db-stdver-eway-funcs.monk
db_bind.monk
odbcmsg.ssc
odbcmsg-display.monk
db-sanitize-symbol.monk

Chapter 2 Section 2.4
Installation Merant 4.0 ODBC Drivers

e*Way Intelligent Adapter for ODBC User’s Guide 16 SeeBeyond Proprietary and Confidential

Korn/Bash Shell

if ["$LD_LIBRARY_PATH" = ""]; then
LD_LIBRARY_PATH=/opt/odbc/lib

else
LD_LIBRARY_PATH=/opt/odbc/lib:$LD_LIBRARY_PATH

fi
export LD_LIBRARY_PATH

C Shell

if ($?LD_LIBRARY_PATH == 1) then
setenv LD_LIBRARY_PATH /opt/odbc/lib:${LD_LIBRARY_PATH}

else
setenv LD_LIBRARY_PATH /opt/odbc/lib

endif

2.4.2 Setting up the ODBC Data Source Definition File
In the UNIX environment, there is no ODBC Administrator. To configure a data source,
you must edit the odbc.ini file, a plain text file that is normally located in the user’s
$HOME directory. This file is maintained using any text editor to define data source
entries as described in the “Connecting to a Data Source Using a Connection String”
section of each driver’s chapter. A sample file (odbc.ini) is located in the driver
installation directory.

UNIX support of the database drivers also allows the use of a centralized .odbc.ini file
that a system administrator can control. This is accomplished by setting the
environment variable ODBCINI to point to the fully qualified pathname of the
centralized file.

The search order for the location of the .odbc.ini file is as follows:

1 Check $ODBCINI

2 Check $HOME/.odbc.ini

There must be an ODBC section in the .odbc.ini file that includes the InstallDir
keyword. The value of this keyword must be the path to the directory under which the
/lib and /messages directories are contained. For example, if you choose the default
install directory, then the following line must be in the [ODBC] section:

InstallDir=/opt/odbc

Sample .odbc.ini File

The following is an .odbc.ini file which contains some sample values to use when
setting these environment variables.

[ODBC Data Sources]
DB2 Wire Protocol=DataDirect 4.00 DB2 Wire Protocol Driver
dBase=DataDirect 4.0 dBaseFile(*.dbf)
Informix=DataDirect 4.0 Informix
Informix Wire Protocol=DataDirect 4.0 Informix Wire Protocol
Oracle=DataDirect 4.0 Oracle
Oracle Wire Protocol=DataDirect 4.0 Oracle Wire Protocol
SQLServer Wire Protocol=DataDirect 4.0 SQL Server Wire Protocol
Sybase Wire Protocol=DataDirect 4.0 Sybase Wire Protocol
Text=DataDirect 4.0 TextFile(*.*)

Chapter 2 Section 2.4
Installation Merant 4.0 ODBC Drivers

e*Way Intelligent Adapter for ODBC User’s Guide 17 SeeBeyond Proprietary and Confidential

[DB2 Wire Protocol]
Driver=/opt/odbc/lib/DGdb217.so
Description=DB2 Wire Protocol Driver
LogonID=uid
Password=pwd
DB2AppCodePage=1252
ServerCharSet=1252
IpAddress=db2host
Database=db
TcpPort=50000
Package=db2package
Action=REPLACE
QueryBlockSize=8
CharSubTypeType=SYSTEM_DEFAULT
ConversationType=SINGLE_BYTE
CloseConversation=DEALLOC
UserBufferSize=32
MaximumClients=35
GrantExecute=1
GrantAuthid=PUBLIC
OEMANSI=1
DecimalDelimiter=PERIOD
DecimalPrecision=15
StringDelimiter=SINGLE_QUOTE
IsolationLevel=CURSOR_STABILITY
ResourceRelease=DEALLOCATION
DynamicSections=32
Trace=0
WithHold=0

[dBase]
Driver=/opt/odbc/lib/DGdbf17.so
Description=dBaseFile(*.dbf)
Database=/opt/odbc/demo
CacheSize=4
Locking=RECORD
CreateType=dBASE5
IntlSort=0
UseLongNames=1
UseLongQualifiers=1
ApplicationUsingThreads=1

[Informix]
Driver=/opt/odbc/lib/DGinf17.so
Description=Informix
Database=db
LogonID=uid
Password=pwd
ServerName=informixserver
HostName=informixhost
Service=online
Protocol=onsoctcp
EnableInsertCursors=0
GetDBListFromInformix=0
CursorBehavior=0
CancelDetectInterval=0
TrimBlankFromIndexName=1
ApplicationUsingThreads=1

[Informix Wire Protocol]
Driver=/opt/odbc/lib/DGifcl17.so
Description=Informix Wire Protocol
Database=db

Chapter 2 Section 2.4
Installation Merant 4.0 ODBC Drivers

e*Way Intelligent Adapter for ODBC User’s Guide 18 SeeBeyond Proprietary and Confidential

LogonID=uid
Password=pwd
HostName=informixhost
PortNumber=1500
ServerName=informixserver
EnableInsertCursors=0
GetDBListFromInformix=0
CursorBehavior=0
CancelDetectInterval=0
TrimBlankFromIndexName=1
ApplicationUsingThreads=1

[Oracle]
Driver=/opt/odbc/lib/DGor817.so
Description=Oracle
LogonID=uid
Password=pwd
ServerName=oraclehost
CatalogOptions=0
ProcedureRetResults=0
EnableDescribeParam=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1

[Oracle Wire Protocol]
Driver=/opt/odbc/lib/DGora17.so
Description=Oracle Wire Protocol
LogonID=uid
Password=pwd
HostName=oracleserver
PortNumber=1521
SID=oraclesid
CatalogOptions=0
ProcedureRetResults=0
EnableDescribeParam=0
EnableStaticCursorsForLongData=0
ApplicationUsingThreads=1

[SQLServer Wire Protocol]
Driver=/opt/odbc/lib/DGmsss17.so
Description=SQL Server Wire Protocol
Database=db
LogonID=uid
Password=pwd
Address=sqlserverhost,1433
QuotedId=No
AnsiNPW=No

[Sybase Wire Protocol]
Driver=/opt/odbc/lib/DGase17.so
Description=Sybase Wire Protocol
Database=db
LogonID=uid
Password=pwd
NetworkAddress=serverhost,4100
EnableDescribeParam=1
EnableQuotedIdentifiers=0
OptimizePrepare=1
RaiseErrorPositionBehavior=0
SelectMethod=0
ApplicationUsingThreads=1

[Text]
Driver=/opt/odbc/lib/DGtxt17.so

Chapter 2 Section 2.4
Installation Merant 4.0 ODBC Drivers

e*Way Intelligent Adapter for ODBC User’s Guide 19 SeeBeyond Proprietary and Confidential

Description=TextFile(*.*)
Database=/opt/odbc/demo
AllowUpdateAndDelete=0
CacheSize=4
CenturyBoundary=20
FileOpenCache=0
UndefinedTable=GUESS
IntlSort=0
ScanRows=25
TableType=Comma
UseLongQualifiers=0
ApplicationUsingThreads=1

[ODBC]
Trace=0
TraceFile=odbctrace.out
TraceDll=/opt/odbc/odbctrac.so
InstallDir=/opt/odbc
ConversionTableLocation=/opt/odbc/tables
UseCursorLib=0

Caution: The “Trace” value must be set to 0. Setting this value to 1 can cause some third-
party applications to interfere with e*Gate.

Optional Environment Variables

Many of the drivers must have environment variables set as required by the database
client components used by the drivers. Consult the system requirements in each of the
individual driver sections for additional information pertaining to individual driver
requirements.

2.4.3 The ivtestlib Tool
The ivtestlib tool is provided to help diagnose configuration problems (such as
environment variables not correctly set or missing database management system client
components) in the UNIX environment. This command will attempt to load a specified
ODBC driver and will print out all available error information if the load fails. For
example, the following command will attempt to load the Oracle driver on Solaris.

ivtestlib /opt/odbc/lib/dgor816.so

The executable [ivtestlib] is located in the /opt/odbc/bin directory

2.4.4 Testing the ODBC Driver
To test if the driver is running correctly, log in as the client (e.g., ODBC) and run the test
program stcodbctest.exe.

stcodbctest data_source user_name password

Example stcodbctest ODBC e*Way

Here’s a typical output message for stcodbctest:

Environment handle allocated.
Connection handle allocated.
Data source: SQL4.0 found.
Database connection established.

Chapter 2 Section 2.5
Installation Installing the ODBC Drivers for Compaq

e*Way Intelligent Adapter for ODBC User’s Guide 20 SeeBeyond Proprietary and Confidential

ODBC Driver Information:
 Driver Name : DGSS617.DLL
 Driver Version : 04.00.0004
 Driver Manager ODBC Version : 03.52.0000
 Driver ODBC Version : 03.51
 Driver ODBC API Conformance : Level 1 supported
 Driver ODBC SQL Conformance : Core grammar supported
 Driver ODBC Procedure Support : Yes

DBMS Product Information:
 DBMS Name : Microsoft SQL Server
 DBMS Version : 08.00.0194

Data Source Information:
 Data Source Name : SQL4.0
 Server Name : anu2000
 Database Name : pubs
 User Name : dbo
 Transaction Support : Both DML and DDL statements
are supported

ODBC Function Information:
 SQLNumResultCols : supported
 SQLDescribeCol : supported
 SQLBindCol : supported
 SQLNumParams : supported
 SQLDescribeParam : not supported
 SQLBindParameter : supported
 SQLProcedures : supported
 SQLProcedureColumns : supported

Database connection terminated.
Connection handle freed.

It is important that all of the above ODBC Function Information parameters indicate
that they are supported.

Note: In order to assure that the latest statement functionality is available, the
SQLDescribeParam line item must be present, and indicate "supported".

2.5 Installing the ODBC Drivers for Compaq
To operate the ODBC e*Way on Compaq Tru64 systems, obtain the Compaq ODBC
drivers from the following location:

http://tru64unix.compaq.com/data-access/download.htm

You will be required to register prior to downloading the drivers.

2.6 Oracle Network Components
Install the following Oracle networking options when running as a client database.

http://tru64unix.compaq.com/data-access/download.htm

Chapter 2 Section 2.6
Installation Oracle Network Components

e*Way Intelligent Adapter for ODBC User’s Guide 21 SeeBeyond Proprietary and Confidential

SQL *Net8 (Oracle8)

TCP/IP Protocol Adapter

Note: Install SQL *PLUS to test out the connection.

2.6.1 SQL *Net V2 Configuration Files
Before you can configure SQL *Net8 you must have the following files ready:

listener.ora

tnsnames.ora

sqlnet.ora

Example Listener configuration file—listener.ora

LISTENER.ORA Configuration
File:/opt/oracle/app/oracle/product/8.1.6/network/admin/listener.ora
Generated by Oracle configuration tools.

LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))
)
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = circe)(PORT = 1521))
)
)
 (DESCRIPTION =
 (PROTOCOL_STACK =
 (PRESENTATION = GIOP)
 (SESSION = RAW)
)
 (ADDRESS = (PROTOCOL = TCP)(HOST = circe)(PORT = 2481))
)
)

SID_LIST_LISTENER =
 (SID_LIST =
 (SID_DESC =
 (SID_NAME = PLSExtProc)
 (ORACLE_HOME = /opt/oracle/app/oracle/product/8.1.6)
 (PROGRAM = extproc)
)
 (SID_DESC =
 (ORACLE_HOME = /opt/oracle/app/oracle/product/8.1.6)
 (SID_NAME = orcl816)
)
)

LISTENER is the default listener name, which is recommended by Oracle in a standard
installation that requires only one listener on a machine.

Listener address section ADDRESS specifies what address to listen to. The listener
listens for inter-process calls (IPC’s) as well as calls from other nodes.

Two IPC addresses are created for each database that a listener listens to. In one, the
key value is equal to the service name (e.g., finance.world). It is used for connections

Chapter 2 Section 2.6
Installation Oracle Network Components

e*Way Intelligent Adapter for ODBC User’s Guide 22 SeeBeyond Proprietary and Confidential

from other applications on the same node. The other IPC address (e.g., orcl) is used by
the database dispatcher to identify the listener.

For communication with other nodes, listener listens to the host (e.g.,
finance.company.com) at a particular port (e.g., 1521) using the specified protocol (e.g.,
TCP/IP).

The section SID_LIST_LISTENER is used to describe the SID (system identified) of the
databases (e.g., orcl) on which the listener listens. The service name (e.g.,
finance.world) is used as the global name.

The control parameter STARTUP_WAIT_TIME_LISTENER sets the number of seconds
that the listener sleeps before responding to the first listener control status command.
This feature assures that a listener with a slow protocol will have had time to start up
before responding to a status request. The default is 0.

CONNECT_TIMEOUT_LISTENER sets the number of seconds that the listener waits to
get a valid SQL*Net connection request before dropping the connection.

TRACE_LEVEL_LISTENER indicates the level of detail the trace facility records for
listener events. ADMIN is the highest.

Example Client file—tnsnames.ora

TNSNAMES.ORA Configuration
File:/opt/oracle/app/oracle/product/8.1.6/network/admin/tnsnames.ora
Generated by Oracle configuration tools.

CIRCE =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = circe)(PORT = 1521))
 (CONNECT_DATA = (SERVICE_NAME = orcl816))
)
ENIGMA =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = enigma)(PORT = 1521))
 (CONNECT_DATA = (SID = orcl8))
)
LAMBDA =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(Host = lambda)(Port = 1521))
 (CONNECT_DATA = (SERVICE_NAME = LAMBDA))
)

All connect distributors are assigned service names (e.g., finance.world). The user
specifies the service name to identify the service to which the user wants to connect.
The ADDRESS section specifies the listener address. See listener.ora above for listener
address.

The CONNECT_DATA section specifies the SID (system identified) by the remote
database.

Network component file—sqlnet.ora

File: sqlnet.ora
################
Filename......: sqlnet.ora
Node..........: local.world
Date..........: 24-MAR-98 13:21:20
################
AUTOMATIC_IPC = OFF
TRACE_LEVEL_CLIENT = OFF

Chapter 2 Section 2.6
Installation Oracle Network Components

e*Way Intelligent Adapter for ODBC User’s Guide 23 SeeBeyond Proprietary and Confidential

names.directory_path = (TNSNAMES)
names.default_domain = world
name.default_zone = world
sqlnet.expire_time = 10

The sqlnet.expire_time parameter determines how often SQL*Net sends a probe to
verify that a client-server connection is still active. A value of 10 (minutes) is
recommended by Oracle.

After you have generated the required configuration files, do the following:

On the server side, move all three files to:

$ORACLE_HOME/network/admin

On the client side, distribute tnsnames.ora and sqlnet.ora and put them in:

$ORACLE_HOME/network/admin

Verify that the file/etc/services has the entry LISTENER 1521/tcp.

2.6.2 Testing the SQL *Net Configuration
Before you can use SQL*Net with the server, you need to start a listener on the server.
A listener is used by SQL*Net on the server side to receive an incoming connection
from SQL*Net clients.

To start a listener, enter the following command in the server:

lsnrctl start listener name

Where <listener name> is optional for the default listener. For example, to start up the
default LISTENER in the machine enterprise, the command would be:

lsnrct start

When you are running as a client, if the listener starts up successfully, you can use
SQL*Plus on the client side to test whether SQL*Net is configured properly by
establishing a connection with the server. For example:

sqlplus hcaufield/phoebie@oracle.world

This command will start up sqlplus in the client machine enterprise and connect to the
server specified by oracle.world as user hcaufield with password phoebie. The syntax of
the command is:

sqlplus user name/password@service name

Note: The $ORACLE_HOME/network/admin/tnsnames.ora defines the service name for
each Oracle data source.

2.6.3 Troubleshooting Checklist
Ensure you have protocol-level connectivity (for TCP/IP, connectivity can be tested
using the ping utility).

Ensure client machine has configuration files (TNSNAMES.ORA and
SQLNET.ORA) in the $ORACLE_HOME/network/admin directory. Also check
that the server has the configuration files (LISTENER.ORA, TNSNAMES.ORA, and
SQLNET.ORA) in its default directory.

Chapter 2 Section 2.6
Installation Oracle Network Components

e*Way Intelligent Adapter for ODBC User’s Guide 24 SeeBeyond Proprietary and Confidential

Check whether the listener is "listening" for the same protocol the client is trying to
connect through.

Verify that both server and client are running either Net8 or SQL *Net V2. Net 8 and
SQL *Net V2 can communicate to each other. Verify the version by running the
Oracle Universal Installer.

Ensure that you have the necessary Net8 protocol support installed. Verify by
running the Oracle Universal Installer.

Verify that the net service name is typed correctly. The net service name should be
listed under the Net Service Names folder in the Net8 Assistant.

check to see if the default domain in your profile is set. If it is, then the net service
names will have the same value appended to them. For example, if the default
domain in your profile is set to ACME.COM, then all net service names will have
the.ACME.COM extension appended.

If you are using TCP/IP, try replacing the HOST name in the net service name
address with the IP address of the server machine.

For more information on specific error messages or technical bulletins on errors
received when performing these diagnostics tests, refer:

The Net8 Administrator’s Guide

e*Way Intelligent Adapter for ODBC User’s Guide 25 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

Before you can run the ODBC e*Way, you must configure it using the e*Way Editor,
which is accessed from the e*Gate Schema Designer GUI. The ODBC e*Way package
includes a default configuration file which you can modify using this window.

This chapter describes the procedure for configuring a new e*Way. You can also edit an
existing e*Way and rename an e*Way. Procedures for creating and editing e*Gate
components are provided in the Schema Designer’s online help.

This Chapter Explains:

“Configuration Overview” on page 25

“General Settings” on page 26

“Communication Setup” on page 27

“Monk Configuration” on page 30

“Database Setup” on page 45

3.1 Configuration Overview
Before you can run the ODBC e*Way, you must configure it using the e*Way Edit
Settings window, which is accessed form the e*Gate Schema Designer GUI. The ODBC
e*Way package includes a default configuration file which you can modify using this
window.

3.2 e*Way Configuration Parameters
e*Way configuration parameters are set using the e*Way Editor.

To change e*Way configuration parameters:

1 In the Schema Designer’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 26 SeeBeyond Proprietary and Confidential

3 In the Additional Command Line Arguments box, type any additional command line
arguments that the e*Way may require, taking care to insert them at the end of the
existing command-line string. Be careful not to change any of the default arguments
unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the Working with e*Ways chapter in the e*Gate Integrator User’s Guide.

The e*Way’s configuration parameters are organized into the following sections:

General Settings

Communication Setup

Monk Configuration

Database Setup

3.2.1 General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file, which will store messages that are not picked up
from the queue.

Required Values

A valid filename, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file will be stored in the
e*Gate “SystemData” directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations. If the directory does not
exist, the e*Way will create it.

Additional Information

The Journal File is used for the following conditions:

Journal a message when it exceeds the number of retries.

When its receipt is due to an external error, but Forward External Errors is set to
No. (See “Forward External Errors” on page 27 for more information.)

Max Resends Per Message

Description

Specifies the maximum number of times the e*Way will attempt to resend a message to
the external system after receiving an error. When this maximum number is reached,
the message is considered “failed” and will be written to the journal file.

Required Values

An integer between 1 and 1,024. The default is 5.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 27 SeeBeyond Proprietary and Confidential

Max Failed Messages

Description

Specifies the maximum number of failed messages the e*Way will allow. When the
specified number of failed messages is reached and journaled, the e*Way will shut
down and exit.

Required Values

An integer between 1 and 1,024. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string DATAERR that are received
from the external system will be queued to the e*Way’s configured queue. See
“Exchange Data with External Function” on page 41 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages will not be forwarded.

See “Schedule-driven data exchange functions” on page 36 for information about how
the e*Way uses this function.

3.2.2 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties in the Schema Designer controls
when the e*Way executable will run. The schedule you set within the parameters
discussed in this section (using the e*Way Editor) determines when data will be
exchanged. Be sure you set the "exchange data" schedule to fall within the "run the
executable" schedule.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function.

Required Values

One of the following:

One or more specific dates/times

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

.Since months do not all contain equal numbers of days, be sure not to provide
boundaries that would cause an invalid date selection (i.e. the 30th of every month
would not include February).

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 28 SeeBeyond Proprietary and Confidential

Also required: If you set a schedule using this parameter, you must also define all three
of the following:

Exchange Data with External Function on page 41

Positive Acknowledgment Function on page 43

Negative Acknowledgment Function on page 44

If you do not do so, the e*Way will terminate execution when the schedule attempts to
start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an ACK
or NAK to the external system (using the Positive and Negative Acknowledgment
functions) and whether the connection to the external system is active. If no ACK/NAK
is pending and the connection is active, the e*Way immediately executes the Exchange
Data with External function. Thereafter, the Exchange Data with External function
will be called according to the Exchange Data Interval parameter until the Stop
Exchange Data Schedule time is reached.

See “Exchange Data with External Function” on page 41, “Exchange Data Interval”
on page 28, and “Stop Exchange Data Schedule” on page 28 for more information.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following:

One or more specific dates/times

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Since months do not all contain equal numbers of days, be sure not to provide
boundaries that would cause an invalid date selection (i.e. the 30th of every month
would not include February).

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 29 SeeBeyond Proprietary and Confidential

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting will be ignored
and the e*Way will invoke the Exchange Data with External Function immediately.

If this parameter is set to zero, there will be no exchange data schedule set and the
Exchange Data with External Function will never be called.

See “Start Exchange Data Schedule” on page 27 and “Stop Exchange Data Schedule”
on page 28 for more information about the data-exchange schedule.

Down Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External
Connection Establishment function. See “External Connection Establishment
Function” on page 42 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Up Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External
Connection Verification function to verify that the connection is still up. See “External
Connection Verification Function” on page 42 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way will wait between attempts to resend a
message to the external system, after receiving an error message from the external.

Required Values

An integer between 1 and 86,400. The default is 10.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 30 SeeBeyond Proprietary and Confidential

Required Values

Yes or No. If this parameter is set to Yes, the e*Way will immediately invoke the
Exchange Data with External function if the previous exchange function returned
data. If this parameter is set to No, the e*Way will always wait the number of seconds
specified by Exchange Data Interval between invocations of the Exchange Data with
External function. The default is No.

See “Exchange Data with External Function” on page 41 for more information.

3.2.3 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system.

Architecturally, an e*Way can be viewed as a multi-layered structure, consisting of one
or more layers that handle communication with the external application, built upon an
e*Way Kernel layer that manages the processing of data and subscribing or publishing
to other e*Gate components (see Figure 1).

Figure 1 Typical e*Way Architecture

Each layer contains Monk scripts and/or functions, and makes use of lower-level Monk
functions residing in the layer beneath. You, as user, primarily use the highest-level
functions, which reside in the upper layer(s).

The upper layers of the e*Way use Monk functions to start and stop scheduled
operations, exchange data with the external system, package data as e*Gate “Events,”
send those Events to Collaborations, and manage the connection between the e*Way
and the external system (see Figure 2 on page 31).

Additional Layer
such as API Model

Communications
Layer

such as Remote
Function Call (RFC)

Transport

e*Way Kernel Layer

e*GateExternal
Application

PUB/SUB

RFC

Typical e*Way

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 31 SeeBeyond Proprietary and Confidential

Figure 2 Basic e*Way Operations

Configuration options that control the Monk environment and define the Monk
functions used to perform these basic e*Way operations are discussed in Chapter 4.
You can create and modify these functions using the SeeBeyond Collaboration Rules
Editor or a text editor (such as Microsoft Wordpad or Notepad).

The upper layers of the e*Way are single-threaded. Functions run serially, and only one
function can be executed at a time. The e*Way Kernel is multi-threaded, with one
executable thread for each Collaboration. Each thread maintains its own Monk
environment; therefore, information such as variables, functions, path information, and
so on cannot be shared between threads.

The basic set of e*Way Kernel Monk functions is described in Chapter 5. Generally,
e*Way Kernel Monk functions should be called directly only when there is a specific
need not addressed by higher-level Monk functions, and should be used only by
experienced developers.

Basic e*Way Processes

The Monk functions in the “communications half” of the e*Way fall into the following
groups:

Type of Operation Name

Initialization Startup Function on page 40
(also see Monk Environment Initialization
File on page 39)

Connection External Connection Establishment Function
on page 42
External Connection Verification Function on
page 42
External Connection Shutdown Function on
page 43

External
Application

Event

Communications Layer

Event

e*GatePUB/SUB

e*Way Kernel Layer

Collaboration

Collaboration

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 32 SeeBeyond Proprietary and Confidential

A series of figures on the next several pages illustrates the interaction and operation of
these functions.

Initialization Functions

Figure 3 illustrates how the e*Way executes its initialization functions.

Schedule-driven data
exchange

Exchange Data with External Function on
page 41
Positive Acknowledgment Function on
page 43
Negative Acknowledgment Function on
page 44

Shutdown Shutdown Command Notification Function
on page 45

Event-driven data exchange Process Outgoing Message Function on
page 40

Type of Operation Name

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 33 SeeBeyond Proprietary and Confidential

Figure 3 Initialization Functions

Connection Functions

Figure 4 illustrates how the e*Way executes the connection establishment and
verification functions.

Start e*Way

Load
"Monk Initialization"

file

Execute any Monk function
having the same name as

the initialization file

Load "Startup" file

Execute any Monk function
having the same name as

the startup file

Load
"Auxiliary Library Directories"

files

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 34 SeeBeyond Proprietary and Confidential

Figure 4 Connection establishment and verification functions

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 6 on page 36 and Figure 8 on
page 38 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See and send-
external-up on page 85 send-external-down on page 84 for more information.

Figure 5 illustrates how the e*Way executes its “connection shutdown” function.

Figure 5 Connection shutdown function

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No

Control Broker issues
"Suspend" command

Call External Connection Shutdown
function with parameter

"SUSPEND_NOTIFICATION"

e*Way closes connection

Return any value

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 35 SeeBeyond Proprietary and Confidential

Schedule-driven Data Exchange Functions

Figure 6 (on the next page) illustrates how the e*Way performs schedule-driven data
exchange using the Exchange Data with External Function. The Positive
Acknowledgement Function and Negative Acknowledgement Function are also
called during this process.

“Start” can occur in any of the following ways:

The “Start Data Exchange” time occurs

Periodically during data-exchange schedule (after “Start Data Exchange” time, but
before “Stop Data Exchange” time), as set by the Exchange Data Interval

The start-schedule Monk function is called

After the function exits, the e*Way waits for the next “start schedule” time or
command.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 36 SeeBeyond Proprietary and Confidential

Figure 6 Schedule-driven data exchange functions

Shutdown Functions

Figure 7 illustrates how the e*Way implements the shutdown request function.

Increment "Failed
Message" counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
"Connection

Down"

CONNERR

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

No

Call Exchange Data with
External function

Return

Yes

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 37 SeeBeyond Proprietary and Confidential

Figure 7 Shutdown functions

Event-driven Data Exchange Functions

Figure 8 on the next page illustrates event-driven data-exchange using the Process
Outgoing Message Function.

Every two minutes, the e*Way checks the “Failed Message” counter against the value
specified by the Max Failed Messages parameter. When the “Failed Message” counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function
with parameter

"SHUTDOWN_NOTIFICATION"

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 38 SeeBeyond Proprietary and Confidential

Figure 8 Event-driven data-exchange functions

How to Specify Function Names or File Names

Parameters that require the name of a Monk function will accept either a function name
or a file name. If you specify a file name, be sure that the file has one of the following
extensions:

.monk

.tsc

.dsc

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection

Down"

Maximum
Resends per Message

exceeded?

Increment "Failed
Message" counter

Create journal
entry

Null
string

No
Journal

enabled?

End

Roll back Event
to its publishing

IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend"
counter

RESENDCONNERR DATAERR

Yes

No

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 39 SeeBeyond Proprietary and Confidential

Additional Path

Description

Specifies a path to be added to the “load path,” the path Monk uses to locate files and
data (set internally within Monk). The directory specified in Additional Path will be
searched before the default load path.

Required Values

A pathname, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Additional information

The default load paths are determined by the “bin” and “Shared Data” settings in the
.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for
more information about this file.

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories will automatically be loaded into the e*Way’s Monk environment.

Required Values

A pathname, or a series of paths separated by semicolons. (The default is
monk_library/dart.)

Additional information

To specify multiple directories, manually enter the directory names rather than
selecting them with the “file selection” button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

This parameter is optional and may be left blank.

Monk Environment Initialization File

Specifies a file that contains environment initialization functions, which will be loaded
after the auxiliary library directories are loaded. Use this feature to initialize any global
Monk variables that are used by the Monk Extension scripts.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 40 SeeBeyond Proprietary and Confidential

Required Values

A filename within the “load path”, or filename plus path information (relative or
absolute). If path information is specified, that path will be appended to the “load
path.” See Additional Path on page 39 for more information about the “load path.”(The
default is db-stdver-init on page 97.)

Additional information

Any environment-initialization functions called by this file accept no input, and must
return a string. The e*Way will load this file and try to invoke a function of the same
base name as the file name (for example, for a file named my-init.monk, the e*Way
would attempt to execute the function my-init).

Typically, it is a good practice to initialize any global Monk variables that may be used
by any other Monk Extension scripts.

The internal function that loads this file is called once when the e*Way first starts up
(see Figure 3 on page 33).

Startup Function

Description

Specifies a Monk function that the e*Way will load and invoke upon startup or
whenever the e*Way’s configuration changes before it enters into its initial
communication state. This function is used so that the external system can be initialized
before message exchange starts.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function.(The default is
db-stdver-startup on page 105.)

Additional information

The function accepts no input, and must return a string.

The string “FAILURE” indicates that the function failed; any other string (including a
null string) indicates success.

This function will be called after the e*Way loads the specified “Monk Environment
Initialization file” and any files within the specified Auxiliary Directories.

The e*Way will load this file and try to invoke a function of the same base name as the
file name (see Figure 3 on page 33). For example, for a file named my-startup.monk,
the e*Way would attempt to execute the function my-startup.

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven (unlike the Exchange
Data with External function, which is schedule-driven).

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 41 SeeBeyond Proprietary and Confidential

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. You may not leave this field blank. (The
default is db-stdver-proc-outgoing on page 100 or db-stdver-proc-outgoing-stub on
page 102.)

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Schema Designer). The function
returns one of the following (see Figure 8 on page 38 for more details):

Null string: Indicates that the Event was published successfully to the external
system.

“RESEND”: Indicates that the Event should be resent.

“CONNERR”: Indicates that there is a problem communicating with the external
system.

“DATAERR”: Indicates that there is a problem with the message (Event) data itself.

If a string other than the following is returned, the e*Way will create an entry in the
log file indicating that an attempt has been made to access an unsupported
function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events. See event-send-to-egate on page 82 for more information.

Exchange Data with External Function

Description

Specifies a Monk function that initiates an exchange of data with an external
system.This function can exchange Events either inbound or outbound. This function is
used with schedule based exchanges of data, predominantly inbound.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. (The defaults are db-stdver-data-exchg on
page 95 or db-stdver-data-exchg-stub on page 96.)

Additional Information

The function accepts no input and must return a string (see Figure 6 on page 36 for
more details):

Null string: Indicates that the data exchange was completed successfully. No
information will be sent into the e*Gate system.

“CONNERR”: Indicates that a problem with the connection to the external system
has occurred.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 42 SeeBeyond Proprietary and Confidential

“DATAERR”: Indicates that a problem with the data itself has occurred. The e*Way
handles the string “DATAERR” and “DATAERR” plus additional data differently;
see Figure 6 on page 36 for more details.

Any other string: The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Data Exchange schedule or manually by
the Monk function start-schedule. After the function has returned true and the data
received by this function has been ACKed or NAKed (by the Positive
Acknowledgment Function or Negative Acknowledgment Function, respectively),
the e*Way checks the Zero Wait Between Successful Exchanges parameter. If this
parameter is set to Yes, the e*Way will immediately call the Exchange Data with
External function again; otherwise, the e*Way will not call the function until the next
scheduled “start exchange” time or the schedule is manually invoked using the Monk
function start-schedule (see start-schedule on page 87 for more information).

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way will call to establish (or re-establish) a
connection to the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This field cannot be left blank. (The default is
db-stdver-conn-estab on page 90.)

Additional Information

The function accepts no input and must return a string:

“SUCCESS” or “UP”: Indicates that the connection was established successfully.

Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.

External Connection Verification Function

Description

Specifies a Monk function that the e*Way will call to confirm that the external system is
operating and available.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 43 SeeBeyond Proprietary and Confidential

Required Values

The name of a Monk function. This function is optional; if no External Connection
Verification function is specified, the e*Way will execute the External Connection
Establishment function in its place. (The default is db-stdver-conn-ver on page 93.)

Additional Information

The function accepts no input and must return a string:

“SUCCESS” or “UP”: Indicates that the connection was established successfully.

Any other string (including the null string): Indicates that the attempt to establish
the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The External Connection Establishment function (see above) is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way will call to shut down the connection to the
external system.

Required Values

The name of a Monk function. (The default is db-stdver-conn-shutdown on page 92.)

Additional Information

This function requires a string as input, and may return a string.

This function will only be invoked when the e*Way receives a “suspend” command
from a Control Broker. When the “suspend” command is received, the e*Way will
invoke this function, passing the string “SUSPEND_NOTIFICATION” as an argument.

Any return value indicates that the “suspend” command can proceed and that the
connection to the external system can be broken immediately.

Note: Include in this function any required “clean up” that must be performed as part of
the shutdown procedure, but before the e*Way exits.

Positive Acknowledgment Function

Description

Specifies a Monk function that the e*Way will call when all the Collaborations to which
the e*Way sent data have processed and enqueued that data successfully.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined. (The default is db-stdver-pos-ack on page 99.)

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 44 SeeBeyond Proprietary and Confidential

Additional Information

The function requires a non-null string as input, and returns a string.

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

“CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the Positive Acknowledgment function will
be called again, with the same input data.

Null string: The function completed execution successfully.

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function (otherwise, the e*Way executes the Negative Acknowledgment function).

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Negative Acknowledgment Function

Description

Specifies a Monk function the e*Way will call when the e*Way fails to process and
queue data from the external system.

Required Values

The name of a Monk function, or the name of a file (optionally including path
information) containing a Monk function. This parameter is required if the Exchange
Data with External function is defined. (The is default is db-stdver-neg-ack on
page 98.)

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

“CONNERR”: Indicates a problem with the connection to the external system.
When the connection is re-established, the function will be called again.

Null string: The function completed execution successfully.

This function is only called during the processing of inbound Events. After the
Exchange Data with External function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. If the Event’s processing is not completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Negative Acknowledgment
function (otherwise, the e*Way executes the Positive Acknowledgment function).

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 45 SeeBeyond Proprietary and Confidential

The e*Way will exit if it fails its attempt to invoke this function or this function returns
a FAILURE string.

Shutdown Command Notification Function

Description

Specifies a Monk function that will be called when the e*Way receives a “shut down”
command from the Control Broker. This parameter is optional.

Required Values

The name of a Monk function. (The default is db-stdver-shutdown on page 104.)

Additional Information

When the Control Broker issues a shutdown command to the e*Way, the e*Way will
call this function with the string “SHUTDOWN_NOTIFICATION” passed as a
parameter.

The function accepts a string as input and must return a string:

A null string or “SUCCESS”: Indicates that the shutdown can occur immediately.

Any other string: Indicates that shutdown must be postponed. Once postponed,
shutdown will not proceed until the Monk function shutdown-request is executed.

Note: If you postpone a shutdown using this function, be sure to use
the (shutdown-request) function to complete the process in a timely manner.

3.2.4 Database Setup

Database Type

Description

Specifies the type of database.

Required Values

DB2, ODBC, ORACLE7, ORACLE8, ORACLE8i, SYBASE11, or SYBASE12

Note: Any other value is effectively equal to ODBC.

Database Name

Description

The name of the database.

Required Values

None. Any valid string.

Chapter 3 Section 3.2
Configuration e*Way Configuration Parameters

e*Way Intelligent Adapter for ODBC User’s Guide 46 SeeBeyond Proprietary and Confidential

User Name

Description

The name used to access the database.

Required Values

None. Any valid string.

Encrypted Password

Description

The password that provides access to the database.

Required Values

Any valid string.

Note: Changes to Monk files can be made using the Collaboration Rules Editor (available
from within the Schema Designer) or with a text editor. However, if you use a text
editor to edit Monk files directly, you must commit these changed files to the e*Gate
Registry or your changes will not be implemented.

For more information about committing files to the e*Gate Registry, see the Schema
Designer’s online Help system, or the “stcregutil” command-line utility in the
e*Gate Integrator System Administration and Operations Guide.

e*Way Intelligent Adapter for ODBC User’s Guide 47 SeeBeyond Proprietary and Confidential

Chapter 4

Implementation

This chapter contains information explaining the use of the ETD Editor’s Build Tool as
well as two sample ODBC e*Way scenarios.

This Chapter Explains:

“Using the ETD Editor’s Build Tool” on page 47

“Vendor-Specific Driver Notes” on page 56

“Sample One—Publishing e*Gate Events to an ODBC Database” on page 58

“Sample Two—Polling from an ODBC Database” on page 68

4.1 Using the ETD Editor’s Build Tool
The Event Type Definition Editor’s Build tool automatically creates an Event Type
Definition file based on the tables in an existing database. The Event Type
Definition (ETD) can be created based on one of (or a combination of) the following
criteria:

Table or View – Displays all of the columns in the specified table or view.

Dynamic SQL Statement – Displays the format of the results of a SQL statement.
This can be used to return only a few of the columns in a table.

Stored Procedure – Displays the format of the results of a SQL Stored Procedure.
This option is only available for Delimited messages.

The results of these three types of message criteria are explained in “The Event Type
Definition Files” on page 50.

To create an Event Type Definition using the Build tool:

1 Launch the ETD (Event Type Definition) Editor.

2 On the ETD Editor’s Toolbar, click Build.

The Build an Event Type Definition dialog box appears.

3 In the File name box, type the name of the ETD file you wish to build. Do not specify
any file extension—the Editor will supply an "ssc" extension for you.

4 Under Build From, select Library Converter.

5 Under Select a Library Converter, select DART Converter.

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for ODBC User’s Guide 48 SeeBeyond Proprietary and Confidential

6 Click Finish.

7 The Converter Wizard will launch.

Figure 9 Converter Wizard Subordinate Dialog Box

8 Enter the Data Source.

9 Enter the User Name.

10 Enter the Password.

11 Select the DART Library. You must have the corresponding e*Way installed prior to
your selection.

12 Select the correct Message Type.

Note: It is important to enter the correct Data Source and Message Type. For Oracle the
Data Source is in the Servicename.world format
The Fixed-length Message Type is used for DART bulk insert only.
The Delimited Message Type is for all other DART structure calls.
See Figure 9 on page 48

If you select Delimited Message Type the following dialog box will appear.

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for ODBC User’s Guide 49 SeeBeyond Proprietary and Confidential

Figure 10 Converter Wizard Delimited Message Type Dialog Box

13 Select or Add the correct Table or View

14 Select or Add the correct SQL Statement

15 Select or Add the correct Stored Procedure.

If you select the Fixed-Length Message Type the following dialog box will appear.

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for ODBC User’s Guide 50 SeeBeyond Proprietary and Confidential

Figure 11 Converter Wizard Fixed-Length Message Type Dialog Box

16 Select or Add the correct Table or View

17 Select or Add the correct SQL Statement

18 Edit or Finish your selections.

Note: The (#) character cannot be used in the node name of the .ssc file. The Oracle e*Way
will be unable to generate the correct node name for the column name of a table that
contains the (#) character, as Monk will filter out the character.

For Oracle, ($), or (#) can be used in a name, although the Oracle User’s Guide strongly
discourages their use.

4.1.1 The Event Type Definition Files
The DART Converter Build Tool will create a different ETD based on the criteria that
was specified in the Build Tool Wizard (see Figure 10 on page 49 and Figure 11 on
page 50).

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for ODBC User’s Guide 51 SeeBeyond Proprietary and Confidential

Table or View

Entering a table or view name as a selection criteria will display all of the columns in
that table or view. This is useful when you want to access an entire record from the
table as an e*Gate Event. The criteria shown in Figure 12 generates the ETD shown in
Figure 13.

Figure 12 Table or View Selection

Selection criteria

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for ODBC User’s Guide 52 SeeBeyond Proprietary and Confidential

Figure 13 Table or View ETD

The ETD that is generated by the DART Converter Build Tool using the Table or View
criteria contains the elements shown in the table below.

Table 3 Elements of the Table or View ETD

Element Description

ETD Name This is the root node of the Event Type Definition.

Table Name This node displays the name of the table or view.

Column Name This is the name of the column(s) in the selected table or view.

Field Value This is the value of the data in the column. This can be thought of as
the payload data for this column.

Data Type This node designates the type of data contained in the value field.

Constraint Code The constraint codes are based on the column constraints in the table.
The possible codes are:

I – Insert operations are allowed in this column.
U – Update operations are allowed in this column.
N – Neither insert nor update operations are allowed in this column.
B – Both insert and update operations are allowed in this column.

Table Name

ETD Name

Column Names

Data Type

Constraint Code

Field Value

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for ODBC User’s Guide 53 SeeBeyond Proprietary and Confidential

Dynamic SQL Statement

Entering an SQL statement as a selection criteria will display the format of the results of
that SQL statement. This is useful when you only want to access certain columns from
the table for a particular e*Gate Event.

To use this type of ETD, you should use the db-stmt-bind function to bind the dynamic
statement and db-struct-execute function to execute the SQL statement. For more
information, see db-stmt-bind on page 138 and db-struct-execute on page 180.

The SQL statement shown in Figure 14 generates an ETD that returns specific records
from the table based on the selection criteria (which is represented by a question
mark “?”). The resulting ETD is shown in Figure 15 on page 54.

Note: It is not necessary to include the terminating semi-colon as part of the SQL
statement.

Figure 14 Dynamic SQL Statement Select

Selection criteria

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for ODBC User’s Guide 54 SeeBeyond Proprietary and Confidential

Figure 15 Dynamic SQL Statement ETD

The PARAM0 node in the ETD shown in Figure 15 represents the criteria specified in
the SQL statement. Additional criteria would be represented in additional nodes
(PARAM1, PARAM2, and so forth). For example, using the following SQL statement:

SELECT * FROM db_employee WHERE last_name = ? AND first_name = ?

the Build Tool would generate an ETD with two input parameter nodes (PARAM0 and
PARAM1)—one for each of the criteria (?). The VALUE nodes of these input parameter
nodes are used to carry the payload of the selection statement.

Stored Procedure

Entering a stored procedure name as a selection criteria will generate an ETD that will
access a stored procedure in the external database. This is useful when you want to
access the results of a stored procedure.

The stored procedure specified in Figure 16 generates an the ETD shown in Figure 17.
Below is the contents of the sample stored procedure:

procedure VARIABLE_NUM_NEW_PROC
(
 BATCH_SIZE in integer,
 FOUND in out integer,
 DONE_FETCH out integer,
 INT_RET out integer,
 FLOAT_RET out float,
 SMALL_INT_RET out smallint,
 DOUBLE_RET out double precision,
 REAL_RET out real,
 DECIMAL_RET out decimal,
 DECIMAL_PRECISE_RET out decimal,
 NUMBER_RET out number,
 NUMBER_PRECISE_RET out number
)
as
 temp int := 0;
 cursor GET_COUNT IS
 select count(*) from NUM_TABLE;
 cursor GET_TYPE IS
 select INT_NUM, FLOAT_NUM, SMALL_INT_NUM, DOUBLE_NUM, REAL_NUM,
 DECIMAL_NUM, DECIMAL_PRECISE, NUM_NUM, NUM_PRECISE
 from NUMBER_TYPE;
begin
 OPEN GET_COUNT;
 fetch GET_COUNT into temp;
 CLOSE GET_COUNT;

Chapter 4 Section 4.1
Implementation Using the ETD Editor’s Build Tool

e*Way Intelligent Adapter for ODBC User’s Guide 55 SeeBeyond Proprietary and Confidential

 DONE_FETCH := temp;
 if temp = 0
 then
 FOUND := 0;
 else
 FOUND := 1;
 end if;
 OPEN GET_TYPE;
 fetch GET_TYPE into INT_RET, FLOAT_RET, SMALL_INT_RET, DOUBLE_RET,
 REAL_RET, DECIMAL_RET, DECIMAL_PRECISE_RET, NUMBER_RET,
 NUMBER_PRECISE_RET;
 CLOSE GET_TYPE;
end;

Figure 16 Stored Procedure Selection

Chapter 4 Section 4.2
Implementation Vendor-Specific Driver Notes

e*Way Intelligent Adapter for ODBC User’s Guide 56 SeeBeyond Proprietary and Confidential

Figure 17 Stored Procedure ETD

This Event Type Definition is used to pass certain input to the stored procedure. The
nodes with types of “IN” or “INOUT” are used as input. The results are returned to the
“OUT” or “INOUT” nodes.

4.2 Vendor-Specific Driver Notes
Certain functions are known to behave differently based on the type of ODBC drivers
being used on the client machine. These differences in functionality are explained
below.

4.2.1 IBM ODBC DB2 Drivers
The following issues are known to exist with the IBM DB2 ODBC drivers.

Possible types of node values
are IN, INOUT, and OUT.

Chapter 4 Section 4.2
Implementation Vendor-Specific Driver Notes

e*Way Intelligent Adapter for ODBC User’s Guide 57 SeeBeyond Proprietary and Confidential

Support for BLOB and CLOB Data Types

The IBM ODBC DB2 drivers support BLOB (Binary Large Object) or CLOB (Character
Large Object) data only if specifically configured to do so.

Note: Large records (CLOB or BLOB) should be inserted by using the db-stmt-bind and
db-stmt-execute functions. For more information on these functions, see “db-
stmt-bind” on page 138 and “db-stmt-execute” on page 143.

Follow the procedures below for configuring your client workstation to support BLOB
and CLOB data.

Configuring a Windows Client to Support Long Objects

1 Open the Control Panel.

2 Open the Administrative Tools (Windows 2000 only).

3 Open the ODBC Data Sources.

4 Select the System DSN tab.

5 Select appropriate driver for your IBM DB2 implementation (such as “IBM_UDB2”)
and click Configure.

6 Enter the appropriate username and password to connect to the DB2 data source.

7 Select the Data Type tab.

8 Select the Long object binary treatment parameter.

9 Choose the As LONGVAR data setting.

10 Save the settings and close the ODBC configuration utility.

Configuring a UNIX Client to Support Long Objects

1 Use a text editor to open the db2cli.ini file.

2 Add the following line:

LONGDATACOMPAT = 1

Note: Large records using the CLOB data type are limited to approximately 1GB in size.
Larger records should not be inserted.

4.2.2 Merant ODBC Drivers
The following issues are known to exist with the Merant ODBC drivers.

Support for BLOB and CLOB Data Types

The Merant ODBC drivers do not support BLOB (Binary Large Object) or CLOB
(Character Large Object) data. This affects the size and type of large records that can be
inserted into tables from a client using the Merant ODBC drivers.

Chapter 4 Section 4.3
Implementation Sample One—Publishing e*Gate Events to an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 58 SeeBeyond Proprietary and Confidential

4.3 Sample One—Publishing e*Gate Events to an ODBC
Database

This section describes how to use the ODBC e*Way in a sample implementation. This
sample schema demonstrates the publishing of e*Gate Events to an external database.

This scenario uses a file e*Way to load an input file containing employee information
and generate the initial Event. The ODBC e*Way subscribes to the Event and inserts the
employee records into the external database.

Figure 18 Publishing to an External Database

Overview of Steps

The sample implementation follows these general steps:

“Create the Schema” on page 59

“Create the Event Type Definitions” on page 60

“Add the Event Types” on page 61

“Create the Monk Scripts” on page 62

“Add and Configure the e*Ways” on page 62

“Add the IQs” on page 64

“Create the Collaboration Rules” on page 65

“Add and Configure the Collaborations” on page 66

“Run the Schema” on page 67

e*Gate

ODBC
 e*Way
dart_rcv

Input File
e*Way

FileIn

Pub

Sub

IQ

Pub

Sub
Outbound

ODBC
Collaboration

Sub

Input File
Collaboration

Pub
External
Database

Input
File

External

Chapter 4 Section 4.3
Implementation Sample One—Publishing e*Gate Events to an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 59 SeeBeyond Proprietary and Confidential

Figure 19 Schema Configuration Steps

4.3.1 Create the Schema
The first step in deploying the sample implementation is to create a new Schema. After
installing the ODBC e*Way Intelligent Adapter, do the following:

1 Launch the e*Gate Schema Designer GUI.

2 When the Schema Designer prompts you to log in, select the Registry Host, User
Name, and Password to be used to log in and click Log In.

3 From the list of Schemas, click New to create a new Schema.

Create Schema

Create Event Type
Definitions

Add Event Types

Create Monk Scripts

Add and Configure
e*Ways

Add IQs

Create Collaboration
Rules

Add and Configure
Collaborations

Run the Schema

Chapter 4 Section 4.3
Implementation Sample One—Publishing e*Gate Events to an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 60 SeeBeyond Proprietary and Confidential

4 For this sample implementation, enter the name ODBC_Sample1 and click Open.

The Schema Designer will launch and display the newly created Schema.

4.3.2 Create the Event Type Definitions
Three Event Type Definitions are used in this sample. The ETDs are:

EventMsg.ssc – This standard ETD is used by the FileInEvent Event Type.

db_rcv_in.ssc – This user-created ETD contains basic employee information such as
name, rate, and date.

db_rcv_struct.ssc – This user-created ETD contains the same basic employee
information formatted appropriately for the external data source.

To create the db_rcv_in ETD:

1 From the e*Gate Schema Designer, click to launch the ETD Editor.

2 Click to create the new ETD.

The New ETD dialog will be displayed.

3 Enter db_rcv_in.ssc as the file name for the ETD.

4 Add the nodes and subnodes to create an ETD with the structure shown below:

Figure 20 The db_rcv_in.ssc ETD

5 Click to save the ETD.

6 From the File menu, select Promote to Run Time. Click Yes to confirm the
promotion of the file.

To create the db_rcv_struct ETD:

1 From the e*Gate Schema Designer, click to launch the ETD Editor.

2 Click to create the new ETD.

The New ETD dialog will be displayed.

3 Enter db_rcv_struct.ssc as the file name for the ETD.

4 Add the nodes and subnodes to create an ETD with the structure shown below:

Chapter 4 Section 4.3
Implementation Sample One—Publishing e*Gate Events to an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 61 SeeBeyond Proprietary and Confidential

Figure 21 The db_rcv_struct.ssc ETD

5 Click to save the ETD.

6 From the File menu, select Promote to Run Time. Click Yes to confirm the
promotion of the file.

4.3.3 Add the Event Types
Three Event Types are used in this sample. The Event Types are:

FileInEvent – This Event Type represents the inbound data from an external input
file. This Event Type uses the EventMsg.ssc ETD.

db_rcv_in – This Event Type represents the data transported by the input file
e*Way. This Event Type uses the db_rcv_in.ssc ETD.

db_rcv_struct – This Event Type represents the transformed Event that will be
written to the external database. This Event Type uses the db_rcv_struct.ssc ETD.

To add the Event Types:

1 In the components pane of the Schema Designer, select the Event Types folder.

2 Click to add a new Event Type.

3 Enter FileInEvent and click OK.

Chapter 4 Section 4.3
Implementation Sample One—Publishing e*Gate Events to an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 62 SeeBeyond Proprietary and Confidential

4 Select the newly created Event Type and click to display the Event Type’s
properties.

5 Click Find to display the list of Event Types.

6 Navigate to the monk_scripts\common folder, select EventMsg.ssc, and click
Select.

7 Click OK to close the Event Type’s properties.

Repeat these steps for the db_rcv_in and db_rcv_struct Event Types using the
appropriate Event Type Definition files.

4.3.4 Create the Monk Scripts
This sample implementation uses a DART script (db_rcv.dsc) to communicate with the
external Oracle database.

To create the DART script:

1 From the e*Gate Schema Designer, click to launch the Collaboration Rules
Editor.

2 Click to create a new DART script.

The New Collaboration Rules Script dialog will be displayed.

3 Enter the name db_rcv (with no file extension) as the File name.

4 Select DART Send from the list of file types. The extension .dsc will be appended to
the file name.

5 Click to display the list of source files. Select db_rcv_in.ssc as the source file.

6 Click to display the list of destination files. Select db_rcv_struct.ssc as the
destination file.

7 Enter the rules.

8 Click to save the script.

9 Close the Collaboration Rules Script Editor.

4.3.5 Add and Configure the e*Ways
The sample Schema uses two e*Ways: FileIn and ODBC_rcv. The FileIn e*Way reads
in the input data file and queues it for the ODBC e*Way. The ODBC_rcv e*Way writes
the records to the db_employee table in the external database.

To add and configure the FileIn e*Way:

1 In the components pane of the Schema Designer, select the Control Broker and click

 to add a new e*Way.

Chapter 4 Section 4.3
Implementation Sample One—Publishing e*Gate Events to an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 63 SeeBeyond Proprietary and Confidential

2 Enter FileIn for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewfile.exe as the executable file.

5 Click New to create a new configuration file.

6 Enter the parameters for the e*Way as shown in Table 4.

7 Select Save from the File menu. Enter FileIn as the file name and click Save.

8 Select Promote to Run Time from the File menu. Click OK to continue.

9 A message will notify you that the file has been promoted to run time. Click OK to
close the e*Way configuration file editor.

10 In the Start Up tab of the e*Way properties, select the Start automatically check
box.

11 Click OK to save the e*Way properties.

To add and configure the ODBC_rcv e*Way:

1 In the components pane of the Schema Designer, select the Control Broker and click

 to add a new e*Way.

2 Enter ODBC_rcv for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewgenericmonk.exe as the executable file.

5 Click New to create a new configuration file.

6 Select the dart e*Way template and click OK. See Figure 22.

Table 4 FileIn e*Way Parameters

Section Name Parameter Value

General Settings AllowIncoming YES

AllowOutgoing NO

PerformanceTesting default

Outbound (send) settings All default

Poller (inbound) settings PollDirectory c:\egate\data\dart

InputFileMask *.dat

All others default

Performance Testing All default

Chapter 4 Section 4.3
Implementation Sample One—Publishing e*Gate Events to an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 64 SeeBeyond Proprietary and Confidential

Figure 22 DART e*Way Template Selection

7 Enter the parameters for the e*Way as shown in Table 5.

Note: Use the appropriate Database Name, User Name, and Encrypted Password
according to your local ODBC configuration.

8 Save the e*Way’s configuration file and promote it to run time.

9 In the Start Up tab of the e*Way properties, select the Start automatically check
box.

10 Click OK to save the e*Way properties.

4.3.6 Add the IQs
The sample Schema requires one Intelligent Queue—ODBC_IQ.

To add the IQ:

1 In the components pane of the Schema Designer, select the IQ manager. Click to
create the new IQ.

2 Enter the name ODBC_IQ and click OK to save the IQ.

Table 5 ODBC_rcv e*Way Parameters

Section Name Parameter Value

General Settings All default

Communication Setup Start Exchange Data
Schedule

Repeatedly, every 1
minute

All others default

Monk Configuration Process Outgoing
Message Function

monk_scripts\common\
db_rcv.dsc

Exchange Data With
External Function

monk_scripts\common\
db_rcv.dsc

All others default

Database Setup Database Type ODBC

All others Use local settings

Chapter 4 Section 4.3
Implementation Sample One—Publishing e*Gate Events to an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 65 SeeBeyond Proprietary and Confidential

3 Select the IQ Manager and click to display the IQ Manager’s properties.

4 In the Start Up tab of the IQ Manager’s properties, select the Start automatically
check box.

5 Click OK to save the IQ Manager’s properties.

4.3.7 Create the Collaboration Rules
This sample schema uses two Collaboration Rules:

InboundEvent – This Collaboration Rule is used by the FileIn e*Way’s
collaboration to transform the FileInEvent Events into db_rcv_in Events.

OutboundEvent – This Collaboration Rule is used by the ODBC_rcv e*Way’s
collaboration to transform the db_rcv_in Events into db_rcv_struct Events.

To add the InboundEvent Collaboration Rule:

1 In the components pane of the Schema Designer, select the Collaboration Rules
folder.

2 Click the button to create a new Collaboration Rule.

3 Enter the name InboundEvent and click OK.

4 Select the newly created Collaboration Rule and click to display the
Collaboration Rule’s properties.

5 In the General tab, select the Pass Through service.

6 Under the Subscriptions tab, select the FileInEvent Event Type.

7 Under the Publications tab, select the db_rcv_in Event Type.

8 Click OK to save and close the Collaboration Rule.

To add the OutboundEvent Collaboration Rule:

1 In the components pane of the Schema Designer, select the Collaboration Rules
folder.

2 Click the button to create a new Collaboration Rule.

3 Enter the name OutboundEvent and click OK.

4 Select the newly created Collaboration Rule and click to display the
Collaboration Rule’s properties.

5 In the General tab, select the Pass Through service.

6 Under the Subscriptions tab, select the db_rcv_in Event Type.

7 Under the Publications tab, select the db_rcv_struct Event Type.

8 Click OK to save and close the Collaboration Rule.

Chapter 4 Section 4.3
Implementation Sample One—Publishing e*Gate Events to an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 66 SeeBeyond Proprietary and Confidential

4.3.8 Add and Configure the Collaborations
Each of the two e*Ways uses one Collaboration to route the Events through the sample
Schema.

FileIn_collab – This collaboration is used by the FileIn e*Way to process the
inbound Event and queue it for the ODBC_rcv e*Way.

ODBC_rcv_collab – This collaboration subscribes to the Event from the
FileIn_collab and publishes the Event to the external database.

To create the FileIn_collab Collaboration:

1 In the components pane of the Schema Designer, select the FileIn e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name FileIn_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select InboundEvent from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the FileInEvent Event Type and the <External> source.

8 Click Add to add a new Publication.

9 Select the db_rcv_in Event Type and the ODBC_IQ destination.

10 Click OK to close the Collaboration’s properties.

To create the ODBC_rcv_collab Collaboration:

1 In the components pane of the Schema Designer, select the ODBC_rcv e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name ODBC_rcv_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select OutboundEvent from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the db_rcv_in Event Type and the FileIn_collab source.

8 Click Add to add a new Publication.

9 Select the db_rcv_struct Event Type and the <External> destination.

10 Click OK to close the Collaboration’s properties.

Chapter 4 Section 4.3
Implementation Sample One—Publishing e*Gate Events to an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 67 SeeBeyond Proprietary and Confidential

4.3.9 Run the Schema
Running the sample Schema requires a sample input file to be created. Once the input
file has been created, you can start the Control Broker from a command prompt to
execute the Schema. After the Schema has been run, you can use a query utility to query
the results in the external database.

The sample input file

Use a text editor to create an input file to be read by the inbound file e*Way (FileIn).
The file must be formatted to match the ETD used by the DART script (see Figure 20 on
page 60). An example of an input file is shown in Figure 23. Save the file to the
directory specified in the e*Way’s configuration file (such as c:\egate\data\dart).

Figure 23 Sample Input File

To run the Control Broker:

From a command line, type the following command:

stccb -ln logical_name -rh registry -rs schema -un user_name -up
password

where

logical_name is the logical name of the Control Broker,

registry is the name of the Registry Host,

schema is the name of the Registry Schema, and

user_name and password are a valid e*Gate username/password combination.

To verify the results:

Use an SQL query utility (such as Oracle SQL Plus) to query the results of the output to
the Oracle database. Figure 24 shows an example of a query to verify the results of the
schema’s output based on the input file used by this example.

Chapter 4 Section 4.4
Implementation Sample Two—Polling from an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 68 SeeBeyond Proprietary and Confidential

Figure 24 Sample Output Console

4.4 Sample Two—Polling from an ODBC Database
This section describes how to use the ODBC e*Way in a sample implementation. This
sample schema demonstrates the polling of records from an external ODBC database
and converting the records into e*Gate Events.

This scenario uses a file e*Way to load an input file containing employee numbers.
These employee numbers are converted into e*Gate Events. The ODBC e*Way uses
these inbound Events to poll employee records from the external database. As the
records are returned to the ODBC e*Way, the Events are published to the outbound IQ.
The Outbound file e*Way finally writes the employee records to the output file.

Chapter 4 Section 4.4
Implementation Sample Two—Polling from an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 69 SeeBeyond Proprietary and Confidential

Figure 25 Polling from an External Database

Inbound File
e*Way

ODBC e*Way

Outbound
File e*Way

IQ

e*Gate

External
Database

Output
File

IQ

Intput
File

Chapter 4 Section 4.4
Implementation Sample Two—Polling from an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 70 SeeBeyond Proprietary and Confidential

Overview of Steps

This sample implementation follows these general steps:

“Create the Schema” on page 70

“Create the Event Type Definitions” on page 70

“Add the Event Types” on page 71

“Create the Monk Scripts” on page 72

“Add and Configure the e*Ways” on page 74

“Add the IQs” on page 76

“Create the Collaboration Rules” on page 77

“Add and Configure the Collaborations” on page 77

“Run the Schema” on page 79

Note: The procedures outlined in this sample are not explained in the same level of detail
as in Sample One—Publishing e*Gate Events to an ODBC Database on
page 58. For additional information regarding the configuration of e*Gate
components, see Creating an End-to-End Scenario with e*Gate Integrator.

4.4.1 Create the Schema
The first step in deploying this sample implementation is to create a new Schema.

To add the new Schema:

1 Log into the e*Gate Schema Designer.

2 When you are prompted to select a Schema, click New to add a new Schema.

3 Name the Schema ODBC_Sample2.

4.4.2 Create the Event Type Definitions
The sample scenario requires two Event Type Definitions. The ETDs are:

db_request.ssc – This ETD is used to format the inbound request Events.

db_reply.ssc – This ETD is used to format the outbound reply Events.

To create the db_request ETD:

1 From the e*Gate Schema Designer, click to launch the ETD Editor.

2 Create a new ETD named db_request.ssc.

3 Add the nodes and subnodes to create an ETD with the structure shown below:

Figure 26 The db_request.ssc ETD

Chapter 4 Section 4.4
Implementation Sample Two—Polling from an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 71 SeeBeyond Proprietary and Confidential

4 Save the ETD and promote it to Run Time.

To create the db_reply ETD:

1 From the e*Gate Schema Designer, click to launch the ETD Editor.

2 Create a new ETD named db_reply.ssc.

3 Add the nodes and subnodes to create an ETD with the structure shown below:

Figure 27 The db_reply.ssc ETD

4 Save the ETD and promote it to Run Time.

4.4.3 Add the Event Types
The sample scenario requires six Event Types. The Event Types are:

InboundFile – This Event Type represents the inbound file as it is loaded from the
file system.

InboundEvent – This Event Type represents the inbound record that has been
converted to an e*Gate Event.

PollRequest – This Event Type represents the request that is sent to the external
database.

Chapter 4 Section 4.4
Implementation Sample Two—Polling from an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 72 SeeBeyond Proprietary and Confidential

PollReply – This Event Type represents the reply that is returned by the external
database.

OutboundEvent – This Event Type represents the outbound Event to be sent to the
external file system.

4.4.4 Create the Monk Scripts
This sample implementation uses a DART script (db_poll.dsc) to poll the external
database.

To create the DART script:

1 From the e*Gate Schema Designer, click to launch the Collaboration Rules
Editor.

2 Click to create a new DART script.

The New Collaboration Rules Script dialog will be displayed.

3 Enter the name db_poll (with no file extension) as the File name.

4 Select DART Poll from the list of file types. The extension .dsc will be appended to
the file name.

5 Click to display the list of source files. Select db_request.ssc as the source file.

6 Click to display the list of destination files. Select db_struct.ssc as the
destination file.

7 Enter the rules as shown in Figure 28.

Note: The rules shown in Figure 28 use a table named db_employee. In order for this
sample to work correctly, you must either create a table in your external database
called db_employee or change each of the references to the table name in your
DART script rules as appropriate.

Chapter 4 Section 4.4
Implementation Sample Two—Polling from an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 73 SeeBeyond Proprietary and Confidential

Figure 28 The db_poll.dsc DART script

Chapter 4 Section 4.4
Implementation Sample Two—Polling from an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 74 SeeBeyond Proprietary and Confidential

8 Click to save the script.

9 Close the Collaboration Rules Script Editor.

4.4.5 Add and Configure the e*Ways
The sample Schema uses three e*Ways:

FileIn – The FIleIn e*Way reads in the input data file and queues it for the ODBC
e*Way.

ODBC – The ODBC e*Way polls the db_employee table in the external database
and queues the returned data for the outbound file e*Way.

FileOut – The FileOut e*Way writes the records returned by the ODBC e*Way to
the output text file.

To add and configure the FileIn e*Way:

1 In the components pane of the Schema Designer, select the Control Broker and click

 to add a new e*Way.

2 Enter FileIn for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewfile.exe as the executable file.

5 Click New to create a new configuration file.

6 Enter the parameters for the e*Way as shown in Table 6.

7 Save the e*Way’s configuration file and promote it to run time.

8 In the Start Up tab of the e*Way properties, select the Start automatically check
box.

9 Click OK to save the e*Way properties.

Table 6 FileIn e*Way Parameters

Section Name Parameter Value

General Settings AllowIncoming Yes

AllowOutgoing No

Performance Testing default

Outbound (send)
settings

All settings default

Poller (inbound)
settings

PollDirectory c:\egate\data\dart

OutputFileName *.dat

AllOthers default

Performance Testing All settings default

Chapter 4 Section 4.4
Implementation Sample Two—Polling from an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 75 SeeBeyond Proprietary and Confidential

To add and configure the ODBC e*Way:

1 In the components pane of the Schema Designer, select the Control Broker and click

 to add a new e*Way.

2 Enter ODBC for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewgenericmonk.exe as the executable file.

5 Click New to create a new configuration file.

6 Select the dart e*Way template and click OK. See Figure 29.

Figure 29 DART e*Way Template Selection

7 Enter the parameters for the e*Way as shown in Table 7.

Note: Use the appropriate Database Name, User Name, and Encrypted Password
according to your local ODBC configuration.

8 Save the e*Way’s configuration file and promote it to run time.

9 In the Start Up tab of the e*Way properties, select the Start automatically check
box.

10 Click OK to save the e*Way properties.

Table 7 ODBC e*Way Parameters

Section Name Parameter Value

General Settings All default

Communication Setup Start Exchange Data
Schedule

Repeatedly, 30 seconds

All others default

Monk Configuration Process Outgoing
Message Function

monk_scripts\common\
db_poll.dsc

All others default

Database Setup Database Type ODBC

All others Use local settings

Chapter 4 Section 4.4
Implementation Sample Two—Polling from an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 76 SeeBeyond Proprietary and Confidential

To add and configure the FileIn e*Way:

1 In the components pane of the Schema Designer, select the Control Broker and click

 to add a new e*Way.

2 Enter FileOut for the component name and click OK.

3 Select the newly created e*Way and click to display the e*Way’s properties.

4 Use the Find button to select stcewfile.exe as the executable file.

5 Click New to create a new configuration file.

6 Enter the parameters for the e*Way as shown in Table 6.

7 Save the e*Way’s configuration file and promote it to run time.

8 In the Start Up tab of the e*Way properties, select the Start automatically check
box.

9 Click OK to save the e*Way properties.

4.4.6 Add the IQs
This sample Schema requires two Intelligent Queues: ODBC_1IQ and ODBC_2IQ.

To add the IQs:

1 In the components pane of the Schema Designer, select the IQ manager. Click to
create the first new IQ.

2 Enter the name ODBC_1IQ and click Apply to save the first IQ.

3 Enter the name ODBC_2IQ and click OK to save the second IQ.

4 Select the IQ Manager and click to display the IQ Manager’s properties.

5 In the Start Up tab of the IQ Manager’s properties, select the Start automatically
check box.

Table 8 FileOut e*Way Parameters

Section Name Parameter Value

General Settings AllowIncoming No

AllowOutgoing Yes

Performance Testing default

Outbound (send)
settings

OutputDirectory c:\egate\data\dart

OutputFileName PollOutput%d.dat

All Others default

Poller (inbound)
settings

All default

Performance Testing All default

Chapter 4 Section 4.4
Implementation Sample Two—Polling from an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 77 SeeBeyond Proprietary and Confidential

6 Click OK to save the IQ Manager’s properties.

4.4.7 Create the Collaboration Rules
This sample schema uses four Collaboration Rules:

FileIn – This Collaboration Rule is used by the FileIn e*Way’s Collaboration to
transform the InboundFile Events into InboundEvent Events.

ODBCRequest – This Collaboration Rule is used by the ODBC e*Way’s
Collaboration to transform the InboundEvent Events into PollRequest Events.

ODBCReply – This Collaboration Rule is used by the ODBC e*Way’s Collaboration
to transform the PollRequest Events into PollReply Events.

FileOut – This Collaboration Rule is used by the FileOut e*Way’s Collaboration to
transform the PollReply Events into OutboundEvent Events.

To add the FileIn Collaboration Rule:

1 In the components pane of the Schema Designer, select the Collaboration Rules
folder.

2 Click the button to create a new Collaboration Rule.

3 Enter the name FileIn and click OK.

4 Select the newly created Collaboration Rule and click to display the
Collaboration Rule’s properties.

5 In the General tab, select the Pass Through service.

6 Under the Subscriptions tab, select the InboundFile Event Type.

7 Under the Publications tab, select the InboundEvent Event Type.

8 Click OK to save and close the Collaboration Rule.

To add the remaining Collaboration Rules:

Follow the same steps used to add the FileIn Collaboration Rule using the names and
Event Types shown at the beginning of this section.

4.4.8 Add and Configure the Collaborations
This sample schema uses four Collaborations:

FileIn_collab – This Collaboration is used to transform the InboundFile Events into
InboundEvent Events.

ODBCRequest_collab – This Collaboration is used to transform the InboundEvent
Events into PollRequest Events.

ODBCReply_collab – This Collaboration is used to transform the PollRequest
Events into PollReply Events.

FileOut_collab – This Collaboration is used to transform the PollReply Events into
OutboundEvent Events.

Chapter 4 Section 4.4
Implementation Sample Two—Polling from an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 78 SeeBeyond Proprietary and Confidential

To create the FileIn_collab Collaboration:

1 In the components pane of the Schema Designer, select the FileIn e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name FileIn_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select InboundFile from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the InboundEvent Event Type and the <External> source.

8 Click Add to add a new Publication.

9 Select the InboundEvent Event Type and the ODBC_1IQ destination.

10 Click OK to close the Collaboration’s properties.

To create the ODBCRequest_collab Collaboration:

1 In the components pane of the Schema Designer, select the ODBC e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name ODBCRequest_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select ODBCRequest from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the InboundFile Event Type and the FileIn_Collab source.

8 Click Add to add a new Publication.

9 Select the ODBCRequest Event Type and the <External> destination.

10 Click OK to close the Collaboration’s properties.

To create the ODBCReply_collab Collaboration:

1 In the components pane of the Schema Designer, select the ODBC e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name ODBCReply_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select ODBCReply from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the ODBCRequest Event Type and the <External> source.

Chapter 4 Section 4.4
Implementation Sample Two—Polling from an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 79 SeeBeyond Proprietary and Confidential

8 Click Add to add a new Publication.

9 Select the ODBCReply Event Type and the ODBC_2IQ destination.

10 Click OK to close the Collaboration’s properties.

To create the FileOut_collab Collaboration:

1 In the components pane of the Schema Designer, select the FileOut e*Way.

2 Click the button to create a new Collaboration.

3 Enter the name FileOut_collab and click OK.

4 Select the newly created Collaboration and click to display the Collaboration’s
properties.

5 Select FileOut from the list of Collaboration Rules.

6 Click Add to add a new Subscription.

7 Select the ODBCReply Event Type and the ODBCReply_collab source.

8 Click Add to add a new Publication.

9 Select the OutboundEvent Event Type and the <External> destination.

10 Click OK to close the Collaboration’s properties.

4.4.9 Run the Schema
Running the sample Schema requires a sample input file to be created. Once the input
file has been created, you can start the Control Broker from a command prompt to
execute the Schema. After the Schema has been run, you can view the results in the
output file.

The sample input file

Use a text editor to create an input file to be ready by the inbound file e*Way (FileIn).
The file must be formatted to match the simple ETD used by the DART script (see
Figure 26 on page 70). An example of an input file is shown in Figure 30. Save the file to
the directory specified in the e*Way’s configuration file (such as c:\egate\data\dart).

Note: The “employee numbers” used in this example must exist in your external database.
The sample shown below uses employee numbers that exist from the records in the
previous sample schema.

Figure 30 Sample Input File

Chapter 4 Section 4.4
Implementation Sample Two—Polling from an ODBC Database

e*Way Intelligent Adapter for ODBC User’s Guide 80 SeeBeyond Proprietary and Confidential

To run the Control Broker:

From a command line, type the following command:

stccb -ln logical_name -rh registry -rs ODBC_Sample2 -un user_name
-up password

where

logical_name is the logical name of the Control Broker,

registry is the name of the Registry Host, and

user_name and password are a valid e*Gate username/password combination.

To verify the results:

Use a text editor to view the records that were written to the output file specified by the
FileOut e*Way. The records should correspond to the records in the external database.

e*Way Intelligent Adapter for ODBC User’s Guide 81 SeeBeyond Proprietary and Confidential

Chapter 5

ODBC e*Way Functions

The functions described in this chapter control the ODBC e*Way’s basic operations as
well as those needed for database access.

Note: The functions described in this section can only be used by the functions defined
within the e*Way’s configuration file. None of the functions are available to
Collaboration Rules scripts executed by the e*Way.

This Chapter Explains:

Basic Functions on page 81

Standard e*Way Functions on page 89

General Connection Functions on page 106

Static SQL Functions on page 120

Dynamic SQL Functions on page 137

Stored Procedure Functions on page 150

Message Event Functions on page 178

Sample Monk Scripts on page 189

5.1 Basic Functions
The functions in this category control the e*Way’s most basic operations.

The basic functions are:

event-send-to-egate on page 82

get-logical-name on page 83

send-external-down on page 84

send-external-up on page 85

shutdown-request on page 86

start-schedule on page 87

stop-schedule on page 88

Chapter 5 Section 5.1
ODBC e*Way Functions Basic Functions

e*Way Intelligent Adapter for ODBC User’s Guide 82 SeeBeyond Proprietary and Confidential

event-send-to-egate

Syntax

(event-send-to-egate string)

Description

event-send-to-egate sends an Event from the e*Way. If the external collaboration(s) is
successful in publishing the Event to the outbound queue, the function will return #t,
otherwise #f.

Parameters

Return Values

Boolean
Returns #t when successful and #f when an error occurs.

Throws

None.

Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

Name Type Description

string string The data to be sent to the e*Gate
system

Chapter 5 Section 5.1
ODBC e*Way Functions Basic Functions

e*Way Intelligent Adapter for ODBC User’s Guide 83 SeeBeyond Proprietary and Confidential

get-logical-name

Syntax

(get-logical-name)

Description

get-logical-name returns the logical name of the e*Way.

Parameters

None.

Return Values

string
Returns the name of the e*Way (as defined by the Schema Designer).

Throws

None.

Chapter 5 Section 5.1
ODBC e*Way Functions Basic Functions

e*Way Intelligent Adapter for ODBC User’s Guide 84 SeeBeyond Proprietary and Confidential

send-external-down

Syntax

(send-external-down)

Description

send-external down instructs the e*Way that the connection to the external system is
down.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.1
ODBC e*Way Functions Basic Functions

e*Way Intelligent Adapter for ODBC User’s Guide 85 SeeBeyond Proprietary and Confidential

send-external-up

Syntax

(send-external-up)

Description

send-external-up instructs the e*Way that the connection to the external system is up.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.1
ODBC e*Way Functions Basic Functions

e*Way Intelligent Adapter for ODBC User’s Guide 86 SeeBeyond Proprietary and Confidential

shutdown-request

Syntax

(shutdown-request)

Description

shutdown-request completes the e*Gate shutdown procedure that was initiated by the
Control Broker but was interrupted by returning a non-null value within the
Shutdown Command Notification Function (see “Shutdown Command Notification
Function” on page 45). Once this function is called, shutdown proceeds immediately.

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.1
ODBC e*Way Functions Basic Functions

e*Way Intelligent Adapter for ODBC User’s Guide 87 SeeBeyond Proprietary and Confidential

start-schedule

Syntax

(start-schedule)

Description

start-schedule requests that the e*Way execute the Exchange Data with External
Function specified within the e*Way’s configuration file. Does not effect any defined
schedules.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.1
ODBC e*Way Functions Basic Functions

e*Way Intelligent Adapter for ODBC User’s Guide 88 SeeBeyond Proprietary and Confidential

stop-schedule

Syntax

(stop-schedule)

Description

stop-schedule requests that the e*Way halt execution of the Exchange Data with
External Function specified within the e*Way’s configuration file. Execution will be
stopped when the e*Way concludes any open transaction. Does not effect any defined
schedules, and does not halt the e*Way process itself.

Parameters

None.

Return Values

None.

Throws

None.

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 89 SeeBeyond Proprietary and Confidential

5.2 Standard e*Way Functions
The functions in this category control the e*Way’s standard operations.

The standard functions are:

db-stdver-conn-estab on page 90

db-stdver-conn-shutdown on page 92

db-stdver-conn-ver on page 93

db-stdver-data-exchg on page 95

db-stdver-data-exchg-stub on page 96

db-stdver-init on page 97

db-stdver-neg-ack on page 98

db-stdver-pos-ack on page 99

db-stdver-proc-outgoing on page 100

db-stdver-proc-outgoing-stub on page 102

db-stdver-shutdown on page 104

db-stdver-startup on page 105

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 90 SeeBeyond Proprietary and Confidential

db-stdver-conn-estab

Syntax

(db-stdver-conn-estab)

Description

db-stdver-conn-estab is used to establish external system connection.The following
tasks are performed by this function:

construct a new connection handle

call db-long to connect to database

setup timestamp format if required

setup maximum long data buffer limit if required

bind dynamic SQL statement and stored procedures.

Parameters

None.

Return Values

A string
UP or SUCCESS if connection established, anything else if connection not established.

Throws

None.

Additional Information

In order to use the standard database time format, the following function call has been
added to this function (immediately before the call to the db-bind function):

(db-std-timestamp-format connection-handle)

To override the use of the standard database time format, the db-std-timestamp-format
function call should be removed.

For "Maximum Long Data Size" the ODBC library allocates an internal buffer for each
SQL_LONGVARCHAR and SQL_LONGVARBINARY data, when the SQL statement
or stored procedure that contains these data types are bound. The default size of each
internal data buffer is 1024K(1048576) bytes. If the user needs to handle long data larger
than this default value, add the following function call to specify the maximum data
size:

(db-max-long-data-size connection-handle maximum-data-size)

See db-max-long-data-size on page 116 for more information.

Examples

(define db-stdver-conn-estab
 (lambda ()
 (let ((result "DOWN")(last_dberr ""))
 (display "[++] Executing e*Way external connection establishment
function.")
 (display "db-stdver-conn-estab: logging into the database with:\n")
 (display "DATABASE NAME = ")

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 91 SeeBeyond Proprietary and Confidential

 (display DATABASE_SETUP_DATABASE_NAME)
 (newline)
 (display "USER NAME = ")
 (display DATABASE_SETUP_USER_NAME)
 (newline)
 (set! connection-handle (make-connection-handle))
 (if (connection-handle? connection-handle)
 (begin
 (if (db-login connection-handle DATABASE_SETUP_DATABASE_NAME
DATABASE_SETUP_USER_NAME DATABASE_SETUP_ENCRYPTED_PASSWORD)
 (begin
 (db-bind)
 (set! result "UP")
)
 (begin
 (set! last_dberr (db-get-error-str connection-handle))
 (display last_dberr)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_CANTCONN"
"ALERTINFO_FATAL" "0" "Cannot connect to database" (string-append
"Failed to connect to database: " DATABASE_SETUP_DATABASE_NAME "with
error" last_dberr) 0 (list))
 (newline)
 (db-logout connection-handle)
 (set! result "DOWN")
)
)
)
 (begin
 (set! result "DOWN")
 (display "Failed to create connection handle.")
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_UNUSABLE"
"ALERTINFO_FATAL" "0" "database connection handle creation error"
"Failed to create database connection handle" 0 (list))
)
)
 result
)
))

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 92 SeeBeyond Proprietary and Confidential

db-stdver-conn-shutdown

Syntax

(db-stdver-conn-shutdown string)

Description

db-stdver-conn-shutdown is called by the system to request that the interface
disconnect from the external system, preparing for a suspend/reload cycle. Any return
value indicates that the suspend can occur immediately, and the interface will be
placed in the down state.

Parameters

Return Values

A string
A return of "SUCCESS" indicates that the external is ready to suspend.

Throws

None.

Examples

(define db-stdver-conn-shutdown
 (lambda (message-string)
 (let ((result "SUCCESS"))
 (comment "Std e*Way connection shutdown function" "[++] Usage:
Function called by system to request that the interface disconnect
from the external system, preparing for a suspend/reload cycle. Any
return value indicates that the suspend can occur immediately, and the
interface will be placed in the down state. [++] Input to expect:
Function should not expect input. [++] Expected return values:
anything indicates that the external is ready to suspend.n")
 (comment "db-stdver-conn-shutdown [++] Implementation specific
comment" "none")
 (display "[++] Executing e*Way external connection shutdown
function.")
 (display message-string)
 (db-logout connection-handle)
 result
)
))

Name Type Description

string string When the e*Way calls this function, it will pass the
string "SUSPEND_NOTIFICATION" as the
parameter.

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 93 SeeBeyond Proprietary and Confidential

db-stdver-conn-ver

Syntax

(db-stdver-conn-ver)

Description

db-stdver-conn-ver is used to verify whether the external system connection is
established.

Parameters

None.

Return Values

A string
UP or SUCCESS if connection established, anything else if connection not established.

Throws

None.

Additional Information

To use standard database time format, add the following function call to this function:
(db-std-timestamp-format connection-handle) after the (db-bind) call.

This SQL statement is designed for DBMSs other than Oracle; the use of this function
occasionally results in an error in the e*Way’s log file. Despite the error, the function
will complete successfully.

Note: To users of earlier versions of DART: db-check-connect calls should be replaced
with db-alive calls.

Examples

(define db-stdver-conn-ver
 (lambda ()
 (let ((result "DOWN")(last_dberr ""))
 (display "[++] Executing e*Way external connection verification
function.")
 (display "db-stdver-conn-ver: checking connection status...\n")
 (cond ((string=? STCDB "SYBASE") (db-sql-select connection-handle
"verify" "select getdate()")) ((string=? STCDB "ORACLE8i") (db-sql-
select connection-handle "verify" "select sysdate from dual"))
((string=? STCDB "ORACLE8") (db-sql-select connection-handle "verify"
"select sysdate from dual")) ((string=? STCDB "ORACLE7") (db-sql-
select connection-handle "verify" "select sysdate from dual")) (else
(db-sql-select connection-handle "verify" "select {fn NOW()}")))
 (if (db-alive connection-handle)
 (begin
 (db-sql-fetch-cancel connection-handle "verify")
 (set! result "UP")
)
 (begin
 (set! last_dberr (db-get-error-str connection-handle))
 (display last_dberr)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_LOSTCONN"
"ALERTINFO_FATAL" "0" "Lost connection to database" (string-append

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 94 SeeBeyond Proprietary and Confidential

"Lost connection to database: " DATABASE_SETUP_DATABASE_NAME "with
error" last_dberr) 0 (list))
 (set! result "DOWN")
)
)
 result
)
))

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 95 SeeBeyond Proprietary and Confidential

db-stdver-data-exchg

Syntax

(db-stdver-data-exchg)

Description

db-stdver-data-exchg is used for sending a received Event from the external system to
e*Gate. The function expects no input.

Parameters

None.

Return Values

A string
A message-string indicates a successful operation. The Event is sent to e*Gate

An empty string indicates a successful operation. Nothing is sent to e*Gate.

CONNERR indicates the loss of connection with the external, client moves to a down
state and attempts to connect. Upon reconnecting, this function will be re-executed
with the same input message.

Throws

None.

Examples

(define db-stdver-data-exchg
 (lambda ()
 (let ((result ""))
 (display "[++] Executing e*Way external data exchange function.")
 result
)
))

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 96 SeeBeyond Proprietary and Confidential

db-stdver-data-exchg-stub

Syntax

(db-stdver-data-exchg-stub)

Description

db-stdver-data-exchg-stub is used as a place holder for the function entry point for
sending an Event from the external system to e*Gate. When the interface is configured
as an outbound only connection, this function should not be called. The function
expects no input.

Parameters

None.

Return Values

A string
A message-string indicates a successful operation. The Event is sent to e*Gate

An empty string indicates a successful operation. Nothing is sent to e*Gate.

CONNERR indicates the loss of connection with the external, client moves to a down
state and attempts to connect. Upon reconnecting, this function will be re-executed
with the same input message.

Throws

None.

Examples

(define db-stdver-data-exchg-stub
 (lambda ()
 (let ((result ""))
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_INTEREST"
"ALERTINFO_NONE" "0" "Possible configuration error." "Default eway
data exchange function called." 0 (list))
 result
)
))

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 97 SeeBeyond Proprietary and Confidential

db-stdver-init

Syntax

(db-stdver-init)

Description

db-stdver-init begins the initialization process for the e*Way. The function loads all of
the monk extension library files that the other e*Way functions will access.

Parameters

None.

Return Values

A string
If a FAILURE string is returned, the e*Way will shutdown. Any other return indicates
success.

Throws

None.

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 98 SeeBeyond Proprietary and Confidential

db-stdver-neg-ack

Syntax

(db-stdver-neg-ack message-string)

Description

db-stdver-neg-ack is used to send a negative acknowledgement to the external system,
and for post processing after failing to send data to e*Gate.

Parameters

Return Values

A string
An empty string indicates a successful operation.

CONNERR indicates a loss of connection with the external, client moves to a down
state and attempts to connect, on reconnect neg-ack function will be re-executed.

Throws

None.

Examples

(define db-stdver-neg-ack
 (lambda (message-string)
 (let ((result ""))
 ((display "[++] Executing e*Way external negative acknowledgment
function.")
 (display message-string)
 result
)
))

Name Description

message-string The Event for which a negative acknowledgment is sent.

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 99 SeeBeyond Proprietary and Confidential

db-stdver-pos-ack

Syntax

(db-stdver-pos-ack message-string)

Description

db-stdver-pos-ack is used to send a positive acknowledgement to the external system,
and for post processing after successfully sending data to e*Gate.

Parameters

Return Values

A string
An empty string indicates a successful operation. The e*Way will then be able to
proceed with the next request.

CONNERR indicates a loss of connection with the external, client moves to a down
state and attempts to connect, on reconnect pos-ack function will be re-executed.

Throws

None.

Examples

(define db-stdver-pos-ack
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external positive acknowledgement
function.")
 (display message-string)
 result
)
))

Name Description

message-string The Event for which an acknowledgment is
sent.

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 100 SeeBeyond Proprietary and Confidential

db-stdver-proc-outgoing

Syntax

(db-stdver-proc-outgoing message-string)

Description

db-stdver-proc-outgoing is used for sending a received message (Event) from e*Gate to
the external system.

Parameters

Return Values

A string
An empty string indicates a successful operation.

RESEND causes the message to be immediately resent. The e*Way will compare the
number of attempts it has made to send the Event to the number specified in the Max
Resends per Messages parameter, and does one of the following:

1 If the number of attempts does not exceed the maximum, the e*Way will pause the
number of seconds specified by the Resend Timeout parameter, increment the
“resend attempts” counter for that message, then repeat the attempt to send the
message.

2 If the number of attempts exceeds the maximum, the function returns false and rolls
back the message to the e*Gate IQ from which it was obtained.

CONNERR indicates that there is a problem communicating with the external system.
First, the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way will call the External Connection Establishment function
according to the Down Timeout schedule, and will roll back the message (Event) to
the IQ from which it was obtained.

DATAERR indicates that there is a problem with the message (Event) data itself. First,
the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way increments its “failed message (Event)” counter, and rolls
back the message (Event) to the IQ from which it was obtained. If the e*Way’s journal is
enabled (see Journal File Name on page 26) the message (Event) will be journaled.

If a string other than the following is returned, the e*Way will create an entry in the log
file indicating that an attempt has been made to access an unsupported function.

Throws

None.

Examples

(define db-stdver-proc-outgoing

Name Type Description

message-string string The Event to be processed.

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 101 SeeBeyond Proprietary and Confidential

 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external process outgoing message
function.")
 (display message-string)
 result
)
))

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 102 SeeBeyond Proprietary and Confidential

db-stdver-proc-outgoing-stub

Syntax

(db-stdver-proc-outgoing-stub message-string)

Description

db-stdver-proc-outgoing-stub is used as a place holder for the function entry point for
sending an Event received from e*Gate to the external system. When the interface is
configured as an inbound only connection, this function should not be used. This
function is used to catch configuration problems.

Parameters

Return Values

A string
An empty string indicates a successful operation.

RESEND causes the message to be immediately resent. The e*Way will compare the
number of attempts it has made to send the Event to the number specified in the Max
Resends per Messages parameter, and does one of the following:

1 If the number of attempts does not exceed the maximum, the e*Way will pause the
number of seconds specified by the Resend Timeout parameter, increment the
“resend attempts” counter for that message, then repeat the attempt to send the
message.

2 If the number of attempts exceeds the maximum, the function returns false and rolls
back the message to the e*Gate IQ from which it was obtained.

CONNERR indicates that there is a problem communicating with the external system.
First, the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way will call the External Connection Establishment function
according to the Down Timeout schedule, and will roll back the message (Event) to
the IQ from which it was obtained.

DATAERR indicates that there is a problem with the message (Event) data itself. First,
the e*Way will pause the number of seconds specified by the Resend Timeout
parameter. Then, the e*Way increments its “failed message (Event)” counter, and rolls
back the message (Event) to the IQ from which it was obtained. If the e*Way’s journal is
enabled (see Journal File Name on page 26) the message (Event) will be journaled.

If a string other than the following is returned, the e*Way will create an entry in the log
file indicating that an attempt has been made to access an unsupported function.

Throws

None.

Name Type Description

message-string string The Event to be processed.

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 103 SeeBeyond Proprietary and Confidential

Examples

(define db-stdver-proc-outgoing-stub
 (lambda (message-string)
 (let ((result ""))
 (display "[++] Executing e*Way external process outgoing message
function stub.")
 (display message-string)
 (event-send "ALERTCAT_OPERATIONAL" "ALERTSUBCAT_INTEREST"
"ALERTINFO_NONE" "0" "Possible configuration error." (string-append
"Default eway process outgoing msg function passed following message:
" msg) 0 (list))
 result
)
))

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 104 SeeBeyond Proprietary and Confidential

db-stdver-shutdown

Syntax

(db-stdver-shutdown shutdown_notification)

Description

db-stdver-shutdown is called by the system to request that the external shutdown, a
return value of SUCCESS indicates that the shutdown can occur immediately, any
other return value indicates that the shutdown Event must be delayed. The user is then
required to execute a shutdown-request call from within a monk function to allow the
requested shutdown process to continue.

Parameters

Return Values

A string
SUCCESS allows an immediate shutdown to occur, anything else delays shutdown
until (shutdown-request) is executed successfully.

Throws

None.

Examples

(define db-stdver-shutdown
 (lambda (message-string)
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external shutdown command
notification function.")
 result
)
))

Name Type Description

shutdown_notification string When the e*Way calls this function, it will pass
the string "SHUTDOWN_NOTIFICATION" as the
parameter.

Chapter 5 Section 5.2
ODBC e*Way Functions Standard e*Way Functions

e*Way Intelligent Adapter for ODBC User’s Guide 105 SeeBeyond Proprietary and Confidential

db-stdver-startup

Syntax

(db-stdver-startup)

Description

db-stdver-startup is used for instance specific function loads and invokes setup.

Parameters

None.

Return Values

A string
FAILURE causes shutdown of the e*Way. Any other return indicates success.

Throws

None.

Examples

(define db-stdver-startup
 (lambda ()
 (let ((result "SUCCESS"))
 (display "[++] Executing e*Way external startup function.")
 result
)
))

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 106 SeeBeyond Proprietary and Confidential

5.3 General Connection Functions
The functions in this category control the e*Way’s database connection operations.

The general connection functions are:

connection-handle? on page 107

db-alive on page 108

db-commit on page 110

db-get-error-str on page 111

db-login on page 113

db-logout on page 115

db-max-long-data-size on page 116

db-rollback on page 117

make-connection-handle on page 118

statement-handle? on page 119

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 107 SeeBeyond Proprietary and Confidential

connection-handle?

Syntax

(connection-handle? any-variable)

Description

connection-handle? determines whether or not the input argument is a connection
handle datatype.

Parameters

This function requires a single variable of any datatype.

Return Values

Boolean
Returns #t (true) if the argument is a connection handle; otherwise, returns #f (false).
Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

Explanation

The above example creates a connection handle called hdbc. An error message is
displayed if the newly defined hdbc is not a connection handle.

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 108 SeeBeyond Proprietary and Confidential

db-alive

Syntax

(db-alive connection-handle)

Description

db-alive is used to determine if the cause of a failing ODBC operation is due to a
broken connection. It returns whether or not the database connection was alive during
the last call to any ODBC procedure that sends commands to the database server.

Parameters

Return Values

Boolean
Returns #t (true) if the connection to the database server is still alive; otherwise, returns
#f (false) if the connection to the database server is either dead or down. Use db-get-
error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc “dsn” “uid” “pd”)
 (begin
 (define sql_statement “select * from person where sex = ‘M’”)
 (do ((status #t)) ((not status))
 (if (db-sql-select hdbc “male” sql_statement)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (set! status (db-alive hdbc))
)
)
)
 (display “lost database connection !\n”))
 (db-logout hdbc))
)
)

Explanation

The example above illustrates an application that is looking for a certain record in the
person table of the “Payroll” database. The function will exit the loop only if it loses the
connection to the database.

Notes

1 Most ODBC procedures can detect a dead connection handle except db-commit
and db-rollback. Therefore, when the ODBC procedure returns false, users must
check for loss of connection.

Name Type Description

connection-handle connection handle A connection handle to the database.

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 109 SeeBeyond Proprietary and Confidential

2 Once the db-alive returns #f to indicate either a dead connection handle or an un-
available database server, all the subsequent ODBC function calls associated with
that connection handle will not be executed, with the exception of db-logout. Each
of these procedures will return false with a “lost database connection” error
message.

3 Once the ODBC e*Way determines the connection handle is not alive, the only
course of action the user can take is to log out from that connection handle, redefine
a new connection handle, and try to reconnect to the database.

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 110 SeeBeyond Proprietary and Confidential

db-commit

Syntax

(db-commit connection-handle)

Description

db-commit performs all transactions specified by the connection.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if
 (and
 (db-sql-execute hdbc “delete from employee where first_name =
‘John’”)
 (db-sql-execute hdbc “update employee set first_name = ‘Mary’
where ssn = 123456789”)
)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (db-rollback hdbc)
)
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” and
update “Mary’s record” it will commit the transaction specified by the connection.
Otherwise, it prints out the error message and rolls back the transaction.

Name Type Description

connection-handle connection handle A connection handle to the database.

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 111 SeeBeyond Proprietary and Confidential

db-get-error-str

Syntax

(db-get-error-str connection-handle)

Description

db-get-error-str returns the last error message, and is used when the function returns a
#f value.

Parameters

Return Values

A string
A simple error message is returned.

To parse the return error message when it contains an error, use the two standard files
that define the error message structure and display the contents of each component of
the error message.

ODBC - odbcmsg.ssc, odbcmsg_display.monk

Throws

None.

Examples

Scenario #1 — sample code for db-get-error-str

...
(if (db-sql-execute hdbc "delete from employee" where
first_name=‘John’)
 (db-commit hdbc)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” it
will commit the transaction. Otherwise, the application will print out the error message
and roll back the same transaction. Each commit begins a new transaction
automatically.

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (if (db-sql-execute hdbc "INSERT INTO UNKNOWN VALUES (NULL)")
 (db-commit hdbc)
 (odbcmsg-display (db-get-error-str hdbc))
)
 (if (not (db-logout hdbc))
 (odbcmsg-display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 112 SeeBeyond Proprietary and Confidential

)
 (odbcmsg-display (db-get-error-str hdbc))
)

Program output of the above example:

Output of (db-get-error-str hdbc)
ODBC|S0002|942|INTERSOLV|ODBC Oracle driver|Oracle|ORA-00942: table
or view does not exist
DART|63|STCDB_X_conn_sql_exec_len||unable to execute SQL statement

Output of (odbcmsg-display (db-get-error-str hdbc))
ODBC message #0:
msg_source : ODBC
sql_state : S0002
native_code : 942
drv_vendor : INTERSOLV
component : ODBC Oracle driver
err_source : Oracle
msg_string : ORA-00942: table or view does not exist

DART message #0:
msg_source : DART
msg_number : 63
function : STCDB_X_conn_sql_exec_len
err_item :
msg_string : unable to execute SQL statement

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 113 SeeBeyond Proprietary and Confidential

db-login

Syntax

(db-login connection-handle data-source user-name password)

Description

db-login allocates the resources and performs login to a database system.

This function requires an encrypted password. If you have specified a password in the
Database Setup section of the e*Way Editor, it has already been encrypted. (See
“Database Setup” on page 45.)

If you define the password within a monk function (which is not encrypted), you must
use the monk function encrypt-password found in the e*Gate Monk extension library
stc_monkext.dll:

encrypt-password encryption key plain password

where encryption key is public knowledge, i.e., in this case user id, and plain
password is the password to be encrypted.

The standard encrypt-password function returns an encrypted password string to be
used with db-login.

 Parameters

Note: The data_source, user_name, and password must not be an empty string.

Return Values

Boolean
Returns #t (true) if the argument is a connection handle; otherwise, returns #f (false).
Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

...
(define hdbc (make-connection-handle))
(define uid "James")
(define pwd (encrypt-password uid "12345"))
(if (db-login hdbc ”Payroll” “James” “12345”)
 ...
)

Name Type Description

connection-handle connection handle A connection handle to the database.

data-source string The name of the data source.

user-name string The database user login name.

password string The database user login password.

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 114 SeeBeyond Proprietary and Confidential

Explanation

The above example shows how to use the connection handle (hdbc) to log into the data
source “Payroll” as “James” with the password “12345.”

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 115 SeeBeyond Proprietary and Confidential

db-logout

Syntax

(db-logout connection-handle)

Description

db-logout performs a disconnect from the database system and releases the connection
handle resources.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(define hdbc (make-connection handle))
(define uid "James")
(define pwd (encrypt-password uid "12345"))
(if (db-login hdbc “Payroll” “James” “12345”)
 ...
 (db-logout hdbc)
)
...

Explanation

The above example shows how to disconnect from a database. For every db-login,
there should be a corresponding db-logout.

Notes

Make sure you roll back or commit a transaction before you call db-logout. If a
transaction is neither committed nor rolled back, it will be automatically rolled back
before logout.

Name Type Description

connection-handle connection handle A connection handle to the database.

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 116 SeeBeyond Proprietary and Confidential

db-max-long-data-size

Syntax

(db-max-long-data-size connection-handle size)

Description

db-max-long-data-size specifies the maximum buffer size for the long
data.(SQL_LONGVARCHAR, SQL_LONGVARBINARY) Long data may have a range
in size up to 2 gigabytes (2x109). In order to limit the memory consumption of the
ODBC library, it is necessary to use this function to specify the maximum data size
expected. Long data larger than the specified size will be truncated. This data size will
be used for buffer allocation for both long data columns as well as long data
parameters.

Parameters

Return Values

Boolean
Returns #t (true) if successful; and If unsuccessful, returns #f (false). Use db-get-error-
str to retrieve the error message.

Throws

None.

Additional Information

The default maximum buffer size for long data type is 1 megabyte (1048576). It is not
necessary to call this function unless the long data is in excess of 1 megabyte.

Name Type Description

connection-handle connection handle A connection handle to the database.

size integer This parameter is used to identify the
buffer size of the specified long data
type. Note: The default buffer size is
1 megabyte.

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 117 SeeBeyond Proprietary and Confidential

db-rollback

Syntax

(db-rollback connection-handle)

Description

db-rollback rolls back the entire transaction for the connection.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if
 (and
 (db-sql-execute hdbc “delete from employee where first_name =
‘John’”)
 (db-sql-execute hdbc “update employee set first_name = ‘Mary’
where ssn = 123456789”)
)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
 (db-rollback hdbc)
)
)
...

Explanation

This example shows that if the application can successfully delete “John’s record” and
update “Mary’s record,” it will commit the transaction specified by the connection.
Otherwise, it prints out the error message and rolls back the transaction.

Name Type Description

connection-handle connection handle A connection handle to the database.

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 118 SeeBeyond Proprietary and Confidential

make-connection-handle

Syntax

(make-connection-handle)

Description

make-connection-handle constructs the connection handle.

Parameters

None.

Return Values

A handle
Returns a connection-handle if successful, otherwise;

Boolean
Returns #f (false) if the function fails to create a connection-handle. Use db-get-error-str
to retrieve the error message.

Throws

None.

Examples

(let ((hConnection (make-connection-handle)))
(if (connection-handle? hConnection)

(begin
(display “Established a valid connection handle\n”)

)
(begin

(display “Failed to get a connection handle: “)
(display (db-get-error-str connection-handle))
(newline)

)
)

)

Explanation

The above example creates a connection handle variable called hConnection. The
results are verified by using the connection-handle? function to check the type of the
hConnection variable. If the results are a connection handle, then the message
“Established a valid connection handle” is displayed. If the return value is not a
connection handle, then the message “Failed to get a connection handle:” and the error
string are displayed.

Chapter 5 Section 5.3
ODBC e*Way Functions General Connection Functions

e*Way Intelligent Adapter for ODBC User’s Guide 119 SeeBeyond Proprietary and Confidential

statement-handle?

Syntax

(statement-handle? any-variable)

Description

statement-handle? determines whether or not the input argument is a statement
handle datatype.

Parameters

This function requires a single variable of any datatype.

Return Values

Boolean
Returns #t (true) if the argument is a statement handle; otherwise, returns #f (false). Use
db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define hstmt (db-proc-bind hdbc “test”))
(if (not (statement-handle? hstmt))
 (display (db-get-error-str hdbc))
)

Explanation

The above example creates a statement handle called hstmt, then it displays an error
message if the newly defined hstmt is not a statement handle.

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 120 SeeBeyond Proprietary and Confidential

5.4 Static SQL Functions
The functions in this category control the e*Way’s interaction with static SQL
commands.

The static SQL functions are:

db-sql-column-names on page 126

db-sql-column-types on page 128

db-sql-column-values on page 129

db-sql-execute on page 131

db-sql-fetch on page 132

db-sql-fetch-cancel on page 133

db-sql-format on page 134

db-sql-select on page 136

Static vs. Dynamic SQL Functions

Dynamic SQL statements are built and executed at run time versus Static SQL
statements that are embedded within the program source code. Dynamic statements do
not require knowledge of the complete structure on an SQL statement before building
the application. This allows for run time input to provide information about the
database objects to query.

The application can be written so that it prompts the user or scans a file for information
that is not available at compilation time.

In Dynamic statements the four steps of processing an SQL statement take place at run
time, but they are performed only once. Execution of the plan takes place only when
EXECUTE is called. Figure 34 on page 124 shows the difference between Dynamic SQL
with immediate execution and Dynamic SQL with prepared execution.

Benefits of Dynamic SQL

Using dynamic SQL commands, an application can prepare a “generic” SQL statement
once and execute it multiple times. Statements can also contain markers for parameter
values to be supplied at execution time, so that the statement can be executed with
varying inputs.

Limitations of Dynamic SQL

The use of dynamic SQL commands has some significant limitations. A dynamic SQL
implementation of an application generally performs worse than an implementation
where permanent stored procedures are created and the client program invokes them
with RPC (remote procedure call) commands.

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 121 SeeBeyond Proprietary and Confidential

Figure 31 Calling a Stored Procedure (Oracle)

Process Flow Chart
for Calling a Stored

Procedure
For Oracle DBMS

db-proc-bind

db-proc-
param-assign

db-proc-
column-count >

0

db-proc-
fetch

Is the result a
boolean value?

db-proc-execute

Yes

No

db-proc-param-count
db-proc-param-name
db-proc-param-type
db-proc-param-io
db-proc-return-exist
db-proc-return-type

db-proc-
fetch-cancel

End Of
Fetch Cycle

Yes

db-proc-param-
value

End Of Execution
Cycle

db-proc-return-
value

Yes

NoNo

Yes

No

db-proc-return-
exist?

Are there any
output

parameters?

T h e f u n c t i o n s
enclosed in the box
to the left (outlined in
a b r o k e n l i n e
pattern) are for the
Oracle version of
DART only.

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 122 SeeBeyond Proprietary and Confidential

Figure 32 Calling a Stored Procedure (Sybase)

Process Flow Chart
for Calling a Stored

Procedure For Sybase DBMS

db-proc-bind

db-proc-
param-assign

db-proc-
execute

db-proc-
column-count >

0

db-proc-
fetch

Is result a
boolean?

End of Fetch
Cycle

db-proc-param-count
db-proc-param-name
db-proc-param-type
db-proc-param-io
db-proc-return-exist
db-proc-return-type

Are there any
output

parameters?

db-proc-
param-value

Yes

End of Execution
Cycle

db-proc-return-
exist?

db-proc-return-
value

Yes

Yes

No

db-proc-
fetch-cancel

Yes

No No

No

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 123 SeeBeyond Proprietary and Confidential

Figure 33 Dynamic Statement Flow Chart

db-stmt-param-assign

db-stmt-execute

db-stmt-column-count
> 0?

db-stmt-fetch

Is result
a boolean?

db-stmt-fetch-cancel

End of
execution cycle Yes

No

Yes
No

OR

db-stmt-bind

db-stmt-param-count
db-stmt-param-type

db-stmt-column-count
db-stmt-column-name
db-stmt-column-type

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 124 SeeBeyond Proprietary and Confidential

Figure 34 Example of Dynamic SQL processing

Select A,B,C
From X, Y
Where A<500
AND C = 'EFG'

Parse Statement

Validate
Statement

Optimize
Statement

Generate access
plan

Execute access
plan

SQL Statement Dynamic SQL

Runtime
PREPARE statement

EXECUTE
IMMEDIATE
statement

EXECUTE
IMMEDIATE
statement

db-sql-execute

db-stmt-bind

db-stmt-execute

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 125 SeeBeyond Proprietary and Confidential

ODBC SQL Type Support

The following table shows the supported SQL datatypes and the corresponding native
datatype for the database.

*Oracle float (p) specifies a floating point number with precision range from 1 to 126.

+Oracle uses number (p) to define datatypes that span TININT, BIGINT, SMALLINT,
and INTEGER. Oracle int type is internally mapped to NUMBER (38) which will be
returned as SQL_DECIMAL.

Note: All variable precision datatypes require precision values.

SQL_DECIMAL and SQL_NUMERIC datatypes require specification of scale which
indicates the number of digits to the right of the decimal point.

Table 9 ODBC SQL Type Support

SQL Type Name SQL Datatype Oracle Datatype

SQL_BIT BIT N/A

SQL_BINARY BINARY (n) N/A

SQL_VARBINARY VARBINARY (n) RAW (n)

SQL_CHAR CHAR (n) CHAR (n)

SQL_VARCHAR VARCHAR (n) VARCHAR2 (n)

SQL_DECIMAL DECIMAL (p, s) NUMBER (p, s)

SQL_NUMERIC NUMERIC (p, s) N/A

SQL_TINYINT TINYINT +

SQL_BIGINT BIGINT +

SQL_SMALLINT SMALLINT +

SQL_INTEGER INTEGER +

SQL_REAL REAL *

SQL_FLOAT FLOAT(p) FLOAT(b)

SQL_DOUBLE DOUBLE PRECISION FLOAT

SQL_DATE DATE N/A

SQL_TIME TIME N/A

SQL_TIMESTAMP TIMESTAMP DATE

SQL_LONGVARCHAR LONG VARCHAR LONG

SQL_LONGVARBINARY LONG VARBINARY LONG RAW

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 126 SeeBeyond Proprietary and Confidential

db-sql-column-names

Syntax

(db-sql-column-names connection-handle selection-name)

Description

db-sql-column-names returns a vector of column names which are the result of an SQL
SELECT statement identified by the parameter selection-name. This procedure can be
called after a SQL SELECT statement has been issued successfully.

Parameters

Return Values

A string
This function returns a vector of column names in string format if successful.

Boolean
If the selection-name string is unavailable for any reason, this function returns a #f
(false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define selection “select * from person where title=’manager’”)
(if (db-login hdbc “dsn” “uid” “pwd”)
 (begin
 (if (db-sql-select hdbc “manager” selection)
 (begin
 (define name-array (db-sql-column-names hdbc
“manager”))
 (if (vector? name-array)
 (begin
 (display “name of the first column: ”)
 (display (vector-ref name-array 0))
 (newline)
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (if (db-alive hdbc)
 (begin

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 127 SeeBeyond Proprietary and Confidential

 ...
)
)
 (db-logout hdbc)
)
)

Explanation

This example shows that after issuing a successful SQL SELECT statement, the
program will display the name of the first column.

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 128 SeeBeyond Proprietary and Confidential

db-sql-column-types

Syntax

(db-sql-column-types connection-handle selection-name)

Description

db-sql-column-types returns a vector of column types which are the result of an SQL
SELECT statement identified by the parameter selection-name. This procedure can be
called after a SQL SELECT statement has been issued successfully. Refer to the
description for db-bind-proc for a list of SQL-type names.

Parameters

A string
This function returns a vector of column types in string format if successful.

Boolean
If the string type is unavailable for any reason, this function returns a #f. Use db-get-
error-str to retrieve the error message.

Throws

None.

Examples

(define selection “select * from person where title= ‘manager’”)
 (define type-array (db-sql-column-types hdbc “manager”))
 (if (vector? type-array)
 (begin
 (display “type of the first column:”)
 (display (vector-ref type-array 0))
 (newline)
 ...
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 (display (db-get-error-str hdbc))
)
)
 (if (db-alive hdbc)
 (begin
 ...

Explanation

This example shows that after issuing a successful SQL SELECT statement, the
program will display the first column type.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 129 SeeBeyond Proprietary and Confidential

db-sql-column-values

Syntax

(db-sql-column-values connection-handle selection-name)

Description

db-sql-column-values returns a vector of column values, which is the result of an SQL
FETCH statement identified by the parameter selection-name. This procedure can be
called after a SQL FETCH statement has been issued successfully.

Parameters

Return Values

A string
Returns a vector of SQL values in string format if successful.

Boolean
If the values string is unavailable for any reason, this function returns a #f (false).Use
db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define selection "select * from person where title= 'manager'")

(if (db-sql-select hdbc "manager" selection)
 (do ((result "") (value-array 0)) ((boolean? result))
 (set! result (db-sql-fetch hdbc "manager"))
 (if (not (boolean? reslt))
 (begin
 (set! value-array (db-sql-column-values hdbc "manager"))
 (do (
 (index 0 (+ index 1))
 (count (vector-length value-array))
)
 ((= index count))
 (display (vector-ref value-array index))
 (display "\t")
)
 (newline)
)
 (if (not result) (display (db-get-error-str hdbc)))
)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 130 SeeBeyond Proprietary and Confidential

)

Explanation

This example shows that after issuing a successful SQL SELECT statement, the
program will loop through a fetch cycle. Within each fetch loop, the program displays
the value of each column in the same line, separated by a tab character.

Notes

1 A successful db-sql-fetch call returns a string which contains the concatenation of
all column values with the comma (,) character as the separator. Although this
single string is suitable for display purposes, the user must parse the result string to
retrieve the value of each column.

2 If the value of the column contains the comma (,) character, the user will be unable
to differentiate the comma data from the comma separator. Therefore, db-sql-
column-values returns the result as a vector of values in string type to allow the
user to make use of the vector-ref function to retrieve the value of each column and
avoid any parsing problem.

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 131 SeeBeyond Proprietary and Confidential

db-sql-execute

Syntax

(db-sql-execute connection-handle SQL-stmt)

Description

db-sql-execute executes the specified SQL statement.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if (db-login hdbc "Payroll" "James" "12345")
 (begin
 ...
 (if (db-sql-execute hdbc "insert into employee
values(‘John’...)")
 (db-commit hdbc)
)

)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that if the application can successfully log into the data source
“Payroll,” it will insert a record into the table “employee.”

Notes

Use the db-sql-select function to execute a select statement.

The db-sq.-execute function can no longer be used to commit and roll back
transactions. Instead, use db-commit or db-rollback.

Note: The Merant ODBC drivers limit the size of the SQL statement to 32 Kbyte.

Name Type Description

connection-handle connection handle A connection handle to the database.

SQL-stmt string The SQL statement being executed.

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 132 SeeBeyond Proprietary and Confidential

db-sql-fetch

Syntax

(db-sql-fetch connection-handle selection-name)

Description

db-sql-fetch “fetches” the result of a SELECT statement. The statement handle is “free”
after the function fetches the last record.

Parameters

Return Values

A string
Returns a comma, delimited string containing all the column values for the record.

Boolean
Returns #t (true) at the end of the “fetch cycle,” when no more records are available to
“fetch"; otherwise, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc “GreaterThan25” “select * employee where age
> 25”)
 (begin
 (display (db-sql-fetch hdbc “GreaterThan25”))
 (newline)
 (db-sql-fetch-cancel hdbc “GreaterThan25”)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the record once and cancelling the rest of the records.

Notes

The return result is temporarily stored in RAM. The buffer is allocated when db-sql-
select is called. The maximum size of the buffer is determined by the operating system.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 133 SeeBeyond Proprietary and Confidential

db-sql-fetch-cancel

Syntax

(db-sql-fetch-cancel connection-handle selection-name)

Description

db-sql-fetch-cancel closes the cursor associated with an SQL SELECT statement and
cancels the fetch command. It also frees up the memory allocation for the selection.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc “GreaterThan25” “select * employee where age
> 25”)
 (begin
 (define result (db-sql-fetch hdbc “GreaterThan25”))
 (if (not (boolean? result))
 (db-sql-fetch-cancel hdbc “GreaterThan25”)
 (if (not result)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the record once and cancelling the rest of the records.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 134 SeeBeyond Proprietary and Confidential

db-sql-format

Syntax

(db-sql-format data-string SQL-type)

Description

db-sql-format returns a formatted string of the data-string, so it can be used in an SQL
statement as a literal value of a corresponding SQL-type.

In the current implementation, only the SQL_CHAR, SQL_VARCHAR, SQL_DATE,
SQL_TIME, and SQL_TIMESTAMP SQL-types will be formatted. If the data-string is an
empty string, the procedure will return a NULL value for all SQL datatypes except
SQL_CHAR and SQL_VARCHAR.

Parameters

Return Values

A string
Returns a formatted string used as a data value in an SQL statement.

Throws

None.

Examples

(define last-name (db-sql-format “O’Reilly” “SQL_VARCHAR”))
(define timestamp (db-sql-format “1998-02-19 12:34:56”
SQL_TIMESTAMP”))
(define sql-stmt (string-append “update employee set lastname =
“last-name “, MODIFYTIME = “timestamp “WHERE SSN = 123456789”))
(if (db-login hdbc “Payroll” “user” “password”)
 (begin
 (if (db-sql-execute hdbc sql-stmt)
 (db-commit hdbc)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
 (db-rollback hdbc)
)
)
 ...
 (db-logout hdbc)
)
)

Explanation

The example above illustrates how the program uses db-sql-format to format the last
name and the timestamp and use the results as part of an SQL statement.

Name Type Description

data-string string A data string to be used as a literal
value in an SQL statement.

SQL-type string An SQL datatype string, i.e.,
SQL_VARCHAR.

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 135 SeeBeyond Proprietary and Confidential

Notes

1 For SQL_CHAR and SQL_VARCHAR (SQL datatypes) db-sql-format will place a
single quotation mark (‘) before and after the <data-string>, and expand each single
quotation mark in the <data-string> to two single quotation mark characters.

2 If you use the (timestamp) Monk built-in function to insert the timestamp to an
Event Type Definition, you should specify the following format for it to be accepted
by the db-sql-format function:

“%Y-%m-%d %H:%M:%S”

For SQL_CHAR and SQL_VARCHAR (SQL datatypes) db-sql-format will place a
single quotation mark (‘) before and after the data-string, and expand each single
quotation mark in the data-string to two single quotation mark characters.

The following table shows the typical data-string and the corresponding results of
the formatting for the OBDC e*Way.

Table 10 SQL Statement Format

SQL_type Value Data_string Value Formatted Result String

SQL_CHAR This is a string ‘This is a string.’

SQL_VARCHAR O’Reilly ‘O’ ‘Reilly’

SQL_DATE 1998-02-19 {d ‘1998-02019’}

SQL_DATE 19980219 {d ‘1998-02-19’}

SQL_TIME 12 :34:56 {t ‘12:34:56’}

SQL_TIME 1234 {t ‘12:34:00’}

SQL_TIMESTAMP 1998-02-19 12:34:56.789 {ts ‘1998-02-19
12:34:56.789’}

Chapter 5 Section 5.4
ODBC e*Way Functions Static SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 136 SeeBeyond Proprietary and Confidential

db-sql-select

Syntax

(db-sql-select connection-handle selection-name SQL-statement)

Description

db-sql-select executes an SQL SELECT statement.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

...
(if (db-sql-select hdbc “GreaterThan25” “select * employee where age
> 25”)
 (begin
 (display (db-sql-fetch hdbc “GreaterThan25”))
 (newline)
 (db-sql-fetch-cancel hdbc “GreaterThan25”)
)
 (display (db-get-error-str hdbc))
)
...

Explanation

This example shows that the application selects the first record of employees who are
older than age 25, by fetching the records one at a time and cancelling the remainder of
the return records.

Note: The Merant ODBC drivers limit the size of the SQL statement to 32 Kbyte.

Name Type Description

connection-handle connection handle A connection handle to the database.

selection-name string The name that identifies the
selection.

SQL-statement string The SELECT statement.

Chapter 5 Section 5.5
ODBC e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 137 SeeBeyond Proprietary and Confidential

5.5 Dynamic SQL Functions
The function sin this category control the e*Way’s interaction with dynamic SQL
commands. For information about the differences between static and dynamic SQL
functions, see “Static vs. Dynamic SQL Functions” on page 120.

The dynamic SQL functions are:

db-stmt-bind on page 138

db-stmt-bind-binary on page 139

db-stmt-column-count on page 140

db-stmt-column-name on page 141

db-stmt-column-type on page 142

db-stmt-execute on page 143

db-stmt-fetch on page 144

db-stmt-fetch-cancel on page 145

db-stmt-param-assign on page 146

db-stmt-param-count on page 147

db-stmt-param-type on page 148

db-stmt-row-count on page 149

Chapter 5 Section 5.5
ODBC e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 138 SeeBeyond Proprietary and Confidential

db-stmt-bind

Syntax

(db-stmt-bind connection-handle dynamic-SQL-statement)

Description

db-stmt-bind binds the dynamic statement specified. The binary data type should be
input or output parameters with hexadecimal format.

Parameters

Return Values

Statement handle
The statement handle that identifies the dynamic statement specified.

Boolean
If unsuccessful, returns #f (false).Use db-get-error-str to retrieve the error message.

Throws

None.

Additional Information

 If the user needs to input /output binary data in the raw (binary) format, they should
use db-stmt-bind-binary.

Notes

1 Oracle OCI API is unable to report the datatype for each bound parameter in a
dynamic statement. All bound parameters will default to VARCHAR datatypes.
This will allow Oracle to implicitly convert the data string of each parameter into
the correct data value of the parameter at the execution of the dynamic statement.

2 If the user needs to select the long datatype column, the long column should appear
at the end of the selection list.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic-SQL-statement string The dynamic statement to be bound.

Chapter 5 Section 5.5
ODBC e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 139 SeeBeyond Proprietary and Confidential

db-stmt-bind-binary

Syntax

(db-stmt-bind-binary connection-handle dynamic-SQL-statement)

Description

db-stmt-bind-binary binds the dynamic statement specified. The binary data type will
be input and output with raw format.

Parameters

Return Values

Statement handle
The statement handle that identifies the dynamic statement specified.

Boolean
If unsuccessful, returns #f (false).Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic-SQL-statement string The dynamic statement to be bound.

Chapter 5 Section 5.5
ODBC e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 140 SeeBeyond Proprietary and Confidential

db-stmt-column-count

Syntax

(db-stmt-column-count connection-handle statement-handle)

Description

db-stmt-column-count returns the number of columns in the return result set.

Parameters

Return Values

A number
Returns a number greater than zero (0) when the record set is available.

Boolean
If no record set is available, the return value will be #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

Chapter 5 Section 5.5
ODBC e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 141 SeeBeyond Proprietary and Confidential

db-stmt-column-name

Syntax

(db-stmt-column-name connection-handle statement-handle index)

Description

db-stmt-column-name returns the name string of the specified column in the result set.

Parameters

Return Values

A string
Returns the name string if successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.

index integer An integer equal to -- 0 to db-stmt-
column-count minus 1.

Chapter 5 Section 5.5
ODBC e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 142 SeeBeyond Proprietary and Confidential

db-stmt-column-type

Syntax

(db-stmt-column-type connection-handle statement-handle index)

Description

db-stmt-column-type returns the SQL datatype of the specified column in the record
set.

Parameters

Return Values

A string
Returns a string of SQL datatype when successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.

index integer An integer equal to -- 0 to db-stmt-
column-count minus 1.

Chapter 5 Section 5.5
ODBC e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 143 SeeBeyond Proprietary and Confidential

db-stmt-execute

Syntax

(db-stmt-execute connection-handle statement-handle)

Description

db-stmt-execute executes the dynamic statement of a specified statement-handle.

Parameters

Return Values

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

Chapter 5 Section 5.5
ODBC e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 144 SeeBeyond Proprietary and Confidential

db-stmt-fetch

Syntax

(db-stmt-fetch connection-handle statement-handle)

Description

db-stmt-fetch retrieves the column values of the record set.

Parameters

Return Values

A Vector and a Boolean
Returns a vector containing all the column values and at the end of the “fetch cycle”
returns #t (true) when no more records are available to “fetch.”

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

Chapter 5 Section 5.5
ODBC e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 145 SeeBeyond Proprietary and Confidential

db-stmt-fetch-cancel

Syntax

(db-stmt-fetch-cancel connection-handle statement-handle)

Description

db-stmt-fetch-cancel terminates the current “fetch” cycle.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

Chapter 5 Section 5.5
ODBC e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 146 SeeBeyond Proprietary and Confidential

db-stmt-param-assign

Syntax

(db-stmt-param-assign connection-handle statement-handle index value)

Description

db-stmt-param-assign assigns the parameter and executes the dynamic statement of a
specified parameter.

Parameters

Return Values

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

index integer The number between 0 and db-stmt-
param-count minus 1.

value string The value to be assigned to the
parameter.

Chapter 5 Section 5.5
ODBC e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 147 SeeBeyond Proprietary and Confidential

db-stmt-param-count

Syntax

(db-stmt-param-count connection-handle statement-handle)

Description

db-stmt-param-count retrieves the number of parameters in the dynamic statement.

Parameters

Return Values

An Integer
Returns a number, which represents the number of parameters for the dynamic
statement specified, when successful.

Boolean
If unsuccessful, returns #f (false).Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

Chapter 5 Section 5.5
ODBC e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 148 SeeBeyond Proprietary and Confidential

db-stmt-param-type

Syntax

(db-stmt-param-type connection-handle statement-handle index)

Description

db-stmt-param-type retrieves the SQL datatype of the specified parameter.

Parameters

Return Values

A string
If successful, db-stmt-param-type returns a string which represents the SQL datatype.

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle string The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
stmt-bind.

index integer The number between 0 and db-stmt-
param-count minus 1.

Chapter 5 Section 5.5
ODBC e*Way Functions Dynamic SQL Functions

e*Way Intelligent Adapter for ODBC User’s Guide 149 SeeBeyond Proprietary and Confidential

db-stmt-row-count

Syntax

(db-stmt-row-count connection-handle statement-handle index)

Description

db-stmt-row-count returns the number of rows affected by the execution of the SQL
statement.

Parameters

Return Values

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.

index integer An integer equal to -- 0 to db-stmt-
column-count minus 1.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 150 SeeBeyond Proprietary and Confidential

5.6 Stored Procedure Functions
The functions in this category control the e*Way’s interaction with stored procedures.

The stored procedure functions are:

db-proc-bind on page 151

db-proc-bind-binary on page 152

db-proc-column-count on page 153

db-proc-column-name on page 155

db-proc-column-type on page 157

db-proc-execute on page 159

db-proc-fetch on page 161

db-proc-fetch-cancel on page 163

db-proc-param-assign on page 164

db-proc-param-count on page 166

db-proc-param-io on page 167

db-proc-param-name on page 168

db-proc-param-type on page 169

db-proc-param-value on page 170

db-proc-return-exist on page 172

db-proc-return-type on page 174

db-proc-return-value on page 176

Benefits of Stored Procedures

When a stored procedure is created for an application, SQL statement compilation and
optimization are performed once when the procedure is created. With a dynamic SQL
application, compilation and optimization are performed every time the client program
runs. A dynamic SQL implementation also incurs database space overhead because
each instance of the client program must create separate compiled versions of the
application’s prepared statements. When you design an application to use stored
procedures and RPC commands, all instances of the client program can share the same
stored procedure.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 151 SeeBeyond Proprietary and Confidential

db-proc-bind

Syntax

(db-proc-bind connection-handle procedure-name)

Description

db-proc-bind binds the input/output parameters of the stored procedure specified.

Parameters

Return Values

Boolean
Returns a proc-handle if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(define hstmt (db-proc-bind hdbc “test”)
(if (not (statement-handle? hstmt)
 (display “fail to bind stored procedure test\n”)
)

Notes

ODBC does not recognize any procedure inside the PACKAGE of the Oracle DBMS.
Therefore, you cannot bind any procedure defined inside the PACKAGE of the Oracle
DBMS.

The procedure name is limited to 30 characters.

Name Type Description

connection-handle connection handle A connection handle to the database.

procedure-name string The stored procedure to be bound.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 152 SeeBeyond Proprietary and Confidential

db-proc-bind-binary

Syntax

(db-proc-bind-binary connection-handle dynamic-SQL-statement)

Description

db-proc-bind-binary binds the dynamic statement specified. The format of the input
and output data is binary.

Parameters

Return Values

A string
Returns a statement-handle when successful; otherwise

Boolean
Returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the database.

dynamic-SQL-statement string The dynamic statement to be bound

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 153 SeeBeyond Proprietary and Confidential

db-proc-column-count

Syntax

(db-proc-column-count connection-handle statement-handle)

Description

db-proc-column-count retrieves the number of columns in the return result set.

Parameters

Return Values

A number
Returns a number greater than zero (0) when the record set is available.

Boolean
If no record set is available, the return value will be #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display “column “)
 (display (db-proc-column-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 154 SeeBeyond Proprietary and Confidential

)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

1 The Oracle procedure to return the result set is given here:

oracle_odbc.sql

2 The ODBC configuration parameter to set up the return result set must show

ProcedureRetResult = 1

For more information see “Sample .odbc.ini File” on page 16.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 155 SeeBeyond Proprietary and Confidential

db-proc-column-name

Syntax

(db-proc-column-name connection-handle statement-handle column-
index)

Description

db-proc-column-name retrieves the name string of the specified column in the result
set.

Parameters

Return Values

A string
Returns the name string if successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display “column “)
 (display (db-proc-column-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

column-index string SQL datatype of the specified
column in the results set --0 to db-
proc-column-count minus 1.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 156 SeeBeyond Proprietary and Confidential

 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

Since the result set of a stored procedure is returned through the parameters of the
PL/SQL table type, the name of the table type parameter will be returned.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 157 SeeBeyond Proprietary and Confidential

db-proc-column-type

Syntax

(db-proc-column-type connection-handle statement-handle column-
index)

Description

db-proc-column-type retrieves the SQL datatype of the specified column in the record
set.

Parameters

Return Values

A string
Returns a string of SQL datatype when successful.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display “column “)
 (display (db-proc-column-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

column-index string SQL datatype of the specified
column in the record set --0 to db-
proc-column-count minus 1.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 158 SeeBeyond Proprietary and Confidential

 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

Since the result set of the stored procedure is returned through the parameters of the
PL/SQL table type, a PL/SQL table can only contain one standard Oracle datatype.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 159 SeeBeyond Proprietary and Confidential

db-proc-execute

Syntax

(db-proc-execute connection-handle statement-handle)

Description

db-proc-execute executes out a stored procedure.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 ...
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
 (db-logout hdbc)
)
 (display (db-get-error-str hdbc))
)

Notes

The default precision for number or real type is 38 for a column in the table. This is
important when executing a stored procedure that retrieves values from that column in
the table. The db-proc-execute function will fail if the exponential part of the value is
larger than 38.

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 160 SeeBeyond Proprietary and Confidential

For example:

1.555E+38 is acceptable

1.55E+39 will prevent the successful retrieval of the column values

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 161 SeeBeyond Proprietary and Confidential

db-proc-fetch

Syntax

(db-proc-fetch connection-handle statement-handle)

Description

db-proc-fetch retrieves the column values of the record set.

Parameters

Return Values

A vector and Boolean
Returns a vector containing all the column values and at the end of the “fetch cycle”
returns #t (true) when no more records are available to “fetch.”

Boolean
If unsuccessful, this function returns #f (false). Use db-get-error-str to retrieve the error
message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result) (begin (display result)
(newline)))
 (display result
 (newline)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 162 SeeBeyond Proprietary and Confidential

)
 (display (db-get-error-str hdbc)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

1 The Oracle procedure to return result set is given here:

oracle_odbc.sql

2 ODBC configuration parameter to set up the capability of return result set must
show

ProcedureRetResult = 1

For more information see Sample .odbc.ini “Sample .odbc.ini File” on page 16.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 163 SeeBeyond Proprietary and Confidential

db-proc-fetch-cancel

Syntax

(db-proc-fetch-cancel connection-handle statement-handle)

Description

db-proc-fetch-cancel terminates the current “fetch” cycle.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (db-proc-fetch-cancel hdbc hstmt)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)
)
 (display (db-get-error-str hdbc)
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 164 SeeBeyond Proprietary and Confidential

db-proc-param-assign

Syntax

(db-proc-param-assign connection-handle statement-handle param-
index param-value)

Description

db-proc-param-assign "assigns" the value of an IN or INOUT parameter and places
that value into internal storage.

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false). Use db-get-error-str to
retrieve the error message.

Throws

None.

Examples

Scenario #1 — sample code for db-proc-param-assign

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 ...
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
 (db-logout hdbc)
)
 (display (db-get-error-str hdbc))

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.

param-value string The input value of the IN or INOUT
parameter.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 165 SeeBeyond Proprietary and Confidential

)

Scenario #2 — sample code for db-proc-param-assign with
multiple input arguments

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (and
 (db-proc-param-assign hdbc hstmt 0 “5”)
 (db-proc-param-assign hdbc hstmt 2 “O’REILLY”)
 (db-proc-param-assign hdbc hstmt 7 “1998-11-22
12:34:56”)
 (db-proc-param-assign hdbc hstmt 8 “1A2B78F0”)
)
 (if (db-proc-execute hdbc hstmt)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Notes

The value for the param-value argument should be entered as a string, without
enclosure in single quotation marks (‘) for SQL_CHAR and SQL_VARCHAR.

The literal value for SQL_BINARY and SQL_VARBINARY should be a hexadecimal
string. Refer to Scenario #2 on above.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 166 SeeBeyond Proprietary and Confidential

db-proc-param-count

Syntax

(db-proc-param-count connection-handle statement-handle)

Description

db-proc-param-count retrieves the number of parameters in the stored procedure.

Parameters

Return Values

A number
Returns a number, which represents the number of parameters for the stored procedure
specified, when successful.

Boolean
If the number is unavailable due to a problem within one of the arguments, the function
returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 167 SeeBeyond Proprietary and Confidential

db-proc-param-io

Syntax

(db-proc-param-io connection-handle statement-handle param-index)

Description

db-proc-param-io retrieves the IO type for the specified parameter.

Parameters

Return Values

A string
Returns an IO type string as IN, OUT, or INOUT

Boolean
otherwise, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 168 SeeBeyond Proprietary and Confidential

db-proc-param-name

Syntax

(db-proc-param-name connection-handle statement-handle param-
index)

Description

db-proc-param-name retrieves the name of the specified parameter.

Parameters

Return Values

A string
Returns the string containing the name of the parameter.

Boolean
Returns #f (false) if unable to return the string containing the name of the parameter.
Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.

param-index integer The number between 0 and db-proc-
param-count minus 1.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 169 SeeBeyond Proprietary and Confidential

db-proc-param-type

Syntax

(db-proc-param-type connection-handle statement-handle param-
index)

Description

db-proc-param-type retrieves the SQL datatype of the specified parameter.

Parameters

Return Values

A string
If successful, db-proc-param-type returns a string which represents the SQL datatype.

Boolean
If an error occurred, returns #f (false). Use db-get-error-str to obtain the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (do ((i 0 (+ i 1))) ((= i (db-proc-param-count hdbc hstmt)))
 (display “parameter ”)
 (display (db-proc-param-name hdbc hstmt i))
 (display “: type = ”)
 (display (db-proc-param-type hdbc hstmt i))
 (display “, io = ”)
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 170 SeeBeyond Proprietary and Confidential

db-proc-param-value

Syntax

(db-proc-param-value connection-handle statement-handle param-index)

Description

db-proc-param-value is used to retrieve the value of the OUT or INOUT parameter.

Parameters

Return Values

A string
Returns a string which represents the value of the OUT or INOUT parameter.

Boolean
If unsuccessful, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count hdbc hstmt))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (define prm-count (db-proc-param-count hdbc hstmt))
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (if (not (equal? (db-proc-param-io hdbc hstmt i)
“IN”))
 (begin
 (display “output parameter ”)
 (display (db-proc-param-name hdbc hstmt i))

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

param-index integer The number between 0 and db-proc-
param-count minus 1.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 171 SeeBeyond Proprietary and Confidential

 (display “ = ”)
 (display (db-proc-param-value hdbc hstmt i))
 (newline)
)
)
)
 ...
 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 172 SeeBeyond Proprietary and Confidential

db-proc-return-exist

Syntax

(db-proc-return-exist connection-handle statement-handle)

Description

db-proc-return-exist determines whether or not the stored procedure has a return
value.

Parameters

Return Values

Boolean
Returns #t (true) if a return value exists or #f (false) when no return value exists or an
error occurs. Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display “return type = ”)
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display “ return value = ”)
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the dynamic statement specified.
This is the handle produced by db-
proc-bind.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 173 SeeBeyond Proprietary and Confidential

 ...
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 174 SeeBeyond Proprietary and Confidential

db-proc-return-type

Syntax

(db-proc-return-type connection-handle statement-handle)

Description

db-proc-return-type determines the SQL datatype for the return value.

Parameters

Return Values

A string
Returns a SQL datatype string, i.e., SQL_VARCHAR.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "database login succeed !\n")
 (define hstmt (db-proc-bind hdbc "TEST_PROC"))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 "5")
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return type = ")
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display "return value = ")
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...
 ...
)

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 175 SeeBeyond Proprietary and Confidential

 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 176 SeeBeyond Proprietary and Confidential

db-proc-return-value

Syntax

(db-proc-return-value connection-handle statement-handle)

Description

db-proc-return-value retrieves the return value (return status) for the stored
procedure.

Parameters

Return Values

A string
Returns a string which represents the return value.

Throws

None.

Examples

(if (db-login hdbc dsn uid pwd)
 (begin
 (display “database login succeed !\n”)
 (define hstmt (db-proc-bind hdbc “TEST_PROC”))
 (if (statement-handle? hstmt)
 (if (db-proc-param-assign hdbc hstmt 0 “5”)
 (if (db-proc-execute hdbc hstmt)
 (begin
 (define col-count (db-proc-column-count))
 (if (and (number? col-count) (> col-count 0))
 (do ((result (db-proc-fetch hdbc hstmt) (db-proc-
fetch hdbc hstmt)))
 ((boolean? result))
 (display result)
 (newline)
)
)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display “return type = ”)
 (display (db-proc-return-type hdbc hstmt))
 (newline)
 (display “ return value = ”)
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
 ...
 ...

Name Type Description

connection-handle connection handle A connection handle to the database.

statement-handle statement handle The statement handle that identifies
the stored procedure specified. This
is the handle produced by db-proc-
bind.

Chapter 5 Section 5.6
ODBC e*Way Functions Stored Procedure Functions

e*Way Intelligent Adapter for ODBC User’s Guide 177 SeeBeyond Proprietary and Confidential

)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 ...
 ...
)
 (display (db-get-error-str hdbc)
)

Notes

1 Stored procedures can return an integer value called a return status. This status
indicates that the procedure completed successfully or shows the reason for failure.
The SQL Server has a defined set of return values; or users can define their own
return values.

2 The SQL Server reserves 0 to indicate a successful return, and negative values in the
range of -1 to -99 are assigned to a listing of reasons for failure. Numbers 0 and -1 to
-14 are in use currently (see below).

Value Meaning

0 procedure executed without error

-1 missing object

-2 datatype error

-3 process was chosen as deadlock victim

-4 permission error

-5 syntax error

-6 miscellaneous user error

-7 resource error, such as out of space

-8 non-fatal internal problem

-9 system limit was reached

-10 fatal internal inconsistency

-11 fatal internal inconsistency

-12 table or index is corrupt

-13 database is corrupt

-14 hardware error

Chapter 5 Section 5.7
ODBC e*Way Functions Message Event Functions

e*Way Intelligent Adapter for ODBC User’s Guide 178 SeeBeyond Proprietary and Confidential

5.7 Message Event Functions
The functions in this category control the e*Way’s message Event operations.

The message Event functions are:

db-struct-call on page 179

db-struct-execute on page 180

db-struct-fetch on page 181

db-struct-insert on page 183

db-struct-select on page 185

db-struct-update on page 187

Chapter 5 Section 5.7
ODBC e*Way Functions Message Event Functions

e*Way Intelligent Adapter for ODBC User’s Guide 179 SeeBeyond Proprietary and Confidential

db-struct-call

Syntax

(db-struct-call connection-handle statement-handle procedure-path)

Description

db-struct-call calls the stored procedure using the value from the procedure-path node
of the DART Event Type Definition, retrieves all procedure output and places this
information into the DART Event Type Definition

Parameters

Return Values

Boolean
Returns #t (true) if successful; otherwise, returns #f (false).Use db-get-error-str to
retrieve the error message.

Name Type Description

connection-handle connection handle A connection handle to the
database.

statement-handle statement handle The statement handle that
identifies the stored
procedure specified. This is
the handle produced by db-
proc-bind.

procedure-path path The absolute path to the
procedure nodes in the Event
Type Definition.

Chapter 5 Section 5.7
ODBC e*Way Functions Message Event Functions

e*Way Intelligent Adapter for ODBC User’s Guide 180 SeeBeyond Proprietary and Confidential

db-struct-execute

Syntax

(db-struct-execute connection-handle statement-handle statement-path)

Description

db-struct-execute calls the dynamic statement using the value from the statement-path
node of the DART Event Type Definition, retrieves all dynamic statement output and
places this information into the DART Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) when successful; otherwise #f (false).

 Throws

None.

Name Type Description

connection-handle connection handle A connection handle to the
database.

statement-handle statement handle The statement handle that
identifies the stored
procedure specified. This is
the handle produced by db-
stmt-bind.

statement-path statement path The absolute path to the
statement nodes in the Event
Type Definition.

Chapter 5 Section 5.7
ODBC e*Way Functions Message Event Functions

e*Way Intelligent Adapter for ODBC User’s Guide 181 SeeBeyond Proprietary and Confidential

db-struct-fetch

Syntax

(db-struct-fetch connection-handle table-path)

Description

db-struct-fetch composes and executes an SQL FETCH statement according to the
information and data carried under the table-path node of an Event Type Definition,
and stores the return column values inside each of the column nodes.

Parameters

Return Values

Path
Returns the table path if the execution of the SQL FETCH statement is successful, or

Boolean
Returns #t (true) when the end of the fetch cycle is reached; otherwise, returns #f (false).
Use db-get-error-str to retrieve error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-select hdbc ~output%out.dbo.table2)
 (do ((result ““) ((boolean? result))
 (set! result (db-struct-fetch hdbc
~output%out.dbo.table2))
 (if (boolean? result))
 (if (not result)
 (begin
 (display “db-struct-fetch
failed!\n”)
 (display (db-get-error-str hdbc))

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node in an Event Type
Definition.

Chapter 5 Section 5.7
ODBC e*Way Functions Message Event Functions

e*Way Intelligent Adapter for ODBC User’s Guide 182 SeeBeyond Proprietary and Confidential

 (newline)
)
 (begin
 ...
)
)
 (begin
 (display result)
 (newline)
)
)
)
)
 ...
 (insert ”” ~output%out ””)
)
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the output defined by out.ssc is an Event Type
Definition. After clearing the output Event-string with the output Event Type
Definition, the Collaboration procedure uses db-struct-select to issue an SQLSELECT
statement based on the information carried under Event- path
[~output%out.dbo.table2].

It repeatedly uses db-struct-fetch to issue the SQL FETCH statement and store the
resulting column values inside each column node under the table path
[~output%out.dbo.table2] until there are no more records to fetch.

Chapter 5 Section 5.7
ODBC e*Way Functions Message Event Functions

e*Way Intelligent Adapter for ODBC User’s Guide 183 SeeBeyond Proprietary and Confidential

db-struct-insert

Syntax

(db-struct-insert connection-handle table-path)

Description

db-struct-insert composes and executes an SQL INSERT statement according to the
information and data carried under the table-path node of an Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL INSERT statement is successful; otherwise,
returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-insert hdbc ~input%in.dbo.table2)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 ...
 (insert ”” ~output%out ””)
)
)
)

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node in an Event Type
Definition.

Chapter 5 Section 5.7
ODBC e*Way Functions Message Event Functions

e*Way Intelligent Adapter for ODBC User’s Guide 184 SeeBeyond Proprietary and Confidential

)

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the input Event Definition defined by “in.ssc” is
an Event Type Definition. After parsing the input Event-string with the input Event
Definition, the Collaboration procedure uses db-struct-insert to issue an SQL INSERT
statement based on the information carried under Event path [~input%in.dbo.table2].

Chapter 5 Section 5.7
ODBC e*Way Functions Message Event Functions

e*Way Intelligent Adapter for ODBC User’s Guide 185 SeeBeyond Proprietary and Confidential

db-struct-select

Syntax

(db-struct-select connection-handle table-path where-clause)

Description

db-struct-select composes and executes an SQL SELECT statement according to the
information and data carried under the table-path node of an Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL SELECT statement is successful; otherwise,
returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 ($event-parse output (event->string output))
 (begin
 (if (db-struct-select hdbc ~output%out.dbo.table2 “ID
= 5”)
 (begin
 (db-struct-fetch hdbc ~output%out.dbo.table2)
 ...
 (db-sql-fetch-cancel hdbc “dbo.table2”)
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node in an Event Type
Definition.

where-clause string The where clause of the SQL
SELECT statement.

Chapter 5 Section 5.7
ODBC e*Way Functions Message Event Functions

e*Way Intelligent Adapter for ODBC User’s Guide 186 SeeBeyond Proprietary and Confidential

)
 ...
 (insert ”” ~output%out ””)
)
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rules file that uses
the Event Type Definition. In this example, the output defined by out.ssc is an Event
Type Definition. After clearing the output Event-string, the Collaboration procedure
uses db-struct-select to issue an SQL SELECT statement based on the information
carried under the Event-path [~output%out.dbo.table2]. The selection was cancelled by
db-sql-fetch-cancel with “dbo.table2” as the selection name.

Notes

1 Both db-struct-select, and db-struct-fetch use the same algorithm to generate the
selection name for the db-sql-select and db-sql-fetch procedure call. If the table
path is a table node under an owner (schema) node the selection name will be
owner.table.

2 If the table path does not have an owner node above it, the selection name will be
table. You must issue a db-sql-fetch-cancel call with either owner.table or table as
the selection name, if you want to cancel the selection.

Chapter 5 Section 5.7
ODBC e*Way Functions Message Event Functions

e*Way Intelligent Adapter for ODBC User’s Guide 187 SeeBeyond Proprietary and Confidential

db-struct-update

Syntax

(db-struct-update connection-handle table-path where-clause)

Description

db-struct-update composes and executes an SQL UPDATE statement according to the
information and data carried under the table-path node of an Event Type Definition.

Parameters

Return Values

Boolean
Returns #t (true) if the execution of the SQL UPDATE statement is successful;
otherwise, returns #f (false). Use db-get-error-str to retrieve the error message.

Throws

None.

Examples

(define input-event-format-file-name “in.ssc”)
(define output-event-format-file-name “out.ssc”)
(load “in.ssc”)
(load “out.ssc”)
(define src-collapsed-nodes ‘())
(define dest-collapsed-nodes ‘())
(define collapsed-rules ‘())
(define xlate
 (let ((input ($make-event-map in-delm in-struct))
 (output ($make-event-map out-delm out-struct)))
 (lambda ($make-event-string)
 ($event-parse input $make-event-string)
 ($event-clear output)
 (begin
 (if (db-struct-update hdbc ~input%in.dbo.table2 “ID =
5”)
 (begin
 ...
)
 (begin
 (display (db-get-error-str hdbc))
 (newline)
)
)
 ...
 (insert ”” ~output%out ””)

Name Type Description

connection-handle connection handle A connection handle to the
database.

table-path Event path A table node in an Event Type
Definition.

where-clause string The where clause of the SQL
SELECT statement.

Chapter 5 Section 5.7
ODBC e*Way Functions Message Event Functions

e*Way Intelligent Adapter for ODBC User’s Guide 188 SeeBeyond Proprietary and Confidential

)
)
)
)

Explanation

The example above shows a typical code segment of a Collaboration Rule that uses the
Event Type Definition. In this example, the input defined by in.ssc is an Event Type
Definition. After parsing the input Event-string with the input Event Type Definition,
the Collaboration procedure uses db-struct-update to issue an SQL UPDATE statement
based on the information carried under the Event-path [~input%in.dbo.table2].

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 189 SeeBeyond Proprietary and Confidential

5.8 Sample Monk Scripts
This section includes sample Monk scripts which demonstrate how to use the ODBC
e*Way’s Monk functions. These Monk scripts demonstrate the following activities:

“Initializing Monk Extensions” on page 190

“Calling Stored Procedures” on page 191

“Inserting Records with Dynamic SQL Statements” on page 193

“Updating Records with Dynamic SQL Statements” on page 195

“Selecting Records with Dynamic SQL Statements” on page 197

“Deleting Records with Dynamic SQL Statements” on page 199

“Inserting a Binary Image to a Database” on page 200

“Retrieving an Image from a Database” on page 203

“Common Supporting Routines” on page 205

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 190 SeeBeyond Proprietary and Confidential

5.8.1 Initializing Monk Extensions
The sample script shows how to initialize the Monk extensions. This function is used by
many of the other sample Monk scripts shown in this chapter.

To use this sample script in an actual implementation, modify the following values:

EGATE – This designates the location of the e*Gate client.

dsn – This is he name of the data source.

uid – This is the user name.

pwd – This is the login password.

;demo-init.monk

(define EGATE "/eGate/client")

; routine to load DART Monk extension
(define (load-library extension)
 (define filename (string-append EGATE "/bin/" extension))
 (if (file-exists? filename)
 (load-extension filename)
 (begin
 (display (string-append "File " filename " does not
exist.\n"))
 (abort filename)
)
)
)

(load-library "stc_monkext.dll")

;;
;; define STCDB variables, data source, user ID, and password
;;

(define STCDB "ORACLE8")

(load-library "stc_dbmonkext.dll")

(define dsn "database")
(define uid "Administrator")
(define pwd (encrypt-password uid "password"))

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 191 SeeBeyond Proprietary and Confidential

5.8.2 Calling Stored Procedures
This script gives an example of calling Stored Procedures. See “Stored Procedure
Functions” on page 150 for more details.

;demo-proc-execute.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; call stored procedure and display results
(define (execute-procedure hdbc hstmt)
 (let ((prm-count (db-proc-param-count hdbc hstmt)))
 (if (db-proc-execute hdbc hstmt)
 (begin
 (do ((col-count (db-proc-column-count hdbc hstmt) (db-
proc-column-count hdbc hstmt)))
 ((or (not (number? col-count)) (= col-count 0)))
 (display-proc-column-property hdbc hstmt col-count)
 (display-proc-column-value hdbc hstmt col-count)
)
 (display-proc-parameter-output-value hdbc hstmt prm-count)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return: value = ")
 (display (db-proc-return-value hdbc hstmt))
 (newline)
)
)
)
 (display (db-get-error-str hdbc))
)
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the stored procedure
 (define hstmt1 (bind-procedure hdbc "PERSONNEL.GET_EMPLOYEES"))

 ; call the stored procedure if the binding is successful
 (if (statement-handle? hstmt1)
 (begin
 (display "call PERSONNEL.GET_EMPLOYEES to get all sales
...\n\n")
 (if (and
 (db-proc-param-assign hdbc hstmt1 0 "30")
 (db-proc-param-assign hdbc hstmt1 1 "10")
)
 (execute-procedure hdbc hstmt1)
 (display (db-get-error-str hdbc))
)
)
)

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 192 SeeBeyond Proprietary and Confidential

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 193 SeeBeyond Proprietary and Confidential

5.8.3 Inserting Records with Dynamic SQL Statements
;demo-stmt-insert.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "INSERT INTO SCOTT.BONUS SELECT ENAME, JOB, SAL, COMM
FROM SCOTT.EMP WHERE DEPTNO = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statement
 (define hstmt1 (bind-statement hdbc stmt1))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nInsert accounting department into bonus table
...\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "10")
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the insertions ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)

 (display "\nInsert sales department into bonus table
...\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "20")
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the insertions ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 194 SeeBeyond Proprietary and Confidential

)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 195 SeeBeyond Proprietary and Confidential

5.8.4 Updating Records with Dynamic SQL Statements
;demo-stmt-update.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "UPDATE SCOTT.BONUS SET COMM = ? WHERE JOB = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statement
 (define hstmt1 (bind-statement hdbc stmt1))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nUpdate commission of manager ...\n")
 (if
 (and
 (db-stmt-param-assign hdbc hstmt1 0 "10")
 (db-stmt-param-assign hdbc hstmt1 1 "MANAGER")
)
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the updates ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)

 (display "\nUpdate commission of clerk ...\n")
 (if
 (and
 (db-stmt-param-assign hdbc hstmt1 0 "20")
 (db-stmt-param-assign hdbc hstmt1 1 "CLERK")
)
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the updates ...\n")

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 196 SeeBeyond Proprietary and Confidential

 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 197 SeeBeyond Proprietary and Confidential

5.8.5 Selecting Records with Dynamic SQL Statements
;demo-stmt-select.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-column-value hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "SELECT EMPNO, ENAME, JOB FROM SCOTT.EMP WHERE JOB = ?")
(define stmt2 "SELECT ENAME, DNAME, JOB, HIREDATE FROM SCOTT.EMP,
SCOTT.DEPT WHERE EMP.DEPTNO = DEPT.DEPTNO AND DEPT.DNAME = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statements
 (define hstmt1 (bind-statement hdbc stmt1))
 (define hstmt2 (bind-statement hdbc stmt2))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nList all salesman ...\n\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "SALESMAN")
 (if (not (execute-statement hdbc hstmt1))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (display "\nList all manager ...\n\n")
 (if (db-stmt-param-assign hdbc hstmt1 0 "MANAGER")
 (if (not (execute-statement hdbc hstmt1))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (statement-handle? hstmt2)
 (begin
 (display "\nList employee of accounting department
...\n\n")
 (if (db-stmt-param-assign hdbc hstmt2 0 "ACCOUNTING")
 (if (not (execute-statement hdbc hstmt2))
 (display (db-get-error-str hdbc))

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 198 SeeBeyond Proprietary and Confidential

)
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 199 SeeBeyond Proprietary and Confidential

5.8.6 Deleting Records with Dynamic SQL Statements
;demo-stmt-delete.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

; execute dynamic statement and display results
(define (execute-statement hdbc hstmt)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (display-stmt-row-count hdbc hstmt)
 #t
)
 #f
)
)

; make new connection handle
(define hdbc (make-connection-handle))
(if (not (connection-handle? hdbc))
 (display (db-get-error-str hdbc))
)

(define stmt1 "DELETE FROM SCOTT.BONUS WHERE ENAME IS NOT NULL")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")

 ; bind the dynamic statement
 (define hstmt1 (bind-statement hdbc stmt1))

 ; assign parameter and execute the dynamic statement
 (if (statement-handle? hstmt1)
 (begin
 (display "\nDelete records from scott.bonus table ...\n")
 (if (execute-statement hdbc hstmt1)
 (begin
 (display "\nCommit the deletions ...\n")
 (if (not (db-commit hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 200 SeeBeyond Proprietary and Confidential

5.8.7 Inserting a Binary Image to a Database
This sample shows how to insert a Binary Image into a Database. It uses both Static and
Dynamic SQL functions. See “Static SQL Functions” on page 120 and “Dynamic SQL
Functions” on page 137 for more details.

;demo-image-insert.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

(define (query-exist hdbc hstmt id)
 (let ((rec-count 0) (result '#()))
 (if (db-stmt-param-assign hdbc hstmt 0 id)
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (set! result (vector-ref (db-stmt-fetch hdbc hstmt) 0))
 (set! rec-count (string->number result))
 (set! result (db-stmt-fetch-cancel hdbc hstmt))
 (if (> rec-count 0)
 (begin
 (display "image already exist\n")
 #t
)
 #f
)
)
 (begin
 (display (db-get-error-str hdbc))
 #f
)
)
 (begin
 (display (db-get-error-str hdbc))
 #f
)
)
)
)

(define (execute-statement hdbc hstmt)
 (let ((col-count (db-stmt-column-count hdbc hstmt)) (row-count 0))
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (if (> col-count 0)
 (if (not (display-stmt-column-value hdbc hstmt col-
count))
 (display (db-get-error-str hdbc))
)
)
 (set! row-count (db-stmt-row-count hdbc hstmt))
 (if (boolean? row-count)
 (display (db-get-error-str hdbc))
 (display (string-append "number of image insert = "
(number->string row-count) "\n"))
)
 (newline)
 #t
)
 #f
)
)

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 201 SeeBeyond Proprietary and Confidential

)

(define (bind-image-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind-binary hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
; (db-stmt-param-bind hdbc hstmt 0 "SQL_INTEGER" 4 0)
; (db-stmt-param-bind hdbc hstmt 1 "SQL_VARCHAR" 20 0)
; (db-stmt-param-bind hdbc hstmt 2 "SQL_VARCHAR" 10 0)
; (db-stmt-param-bind hdbc hstmt 3 "SQL_INTEGER" 38 0)
; (db-stmt-param-bind hdbc hstmt 4 "SQL_INTEGER" 38 0)
; (db-stmt-param-bind hdbc hstmt 5 "SQL_INTEGER" 10 0)
 (db-stmt-param-bind hdbc hstmt 6 "SQL_LONGVARBINARY"
2000000 0)
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

(define image1-id "7100")
(define image1-name "Coast")
(define image1-type "JPEG")
(define image1-width "1280")
(define image1-height "1024")
(define image1-file (string-append image1-name ".jpg"))

(define image-port (open-input-file image1-file))
(define image1-data (read image-port 1000000))
(close-port image-port)
(define image1-size (number->string (string-length image1-data)))

(define image2-id "7200")
(define image2-name "Launch")
(define image2-type "JPEG")
(define image2-width "2000")
(define image2-height "1600")
(define image2-file (string-append image2-name ".jpg"))

(define image-port (open-input-file image2-file))
(define image2-data (read image-port 2000000))
(close-port image-port)
(define image2-size (number->string (string-length image2-data)))

(define hdbc (make-connection-handle))
(display (connection-handle? hdbc)) (newline)

(define stmt0 "select count(0) from SCOTT.IMAGE where PIX_ID = ?")
(define stmt1 "insert into SCOTT.IMAGE (PIX_ID, PIX_NAME, PIX_TYPE,
BYTE_SIZE, PIX_WIDTH, PIX_HEIGHT, PIX_DATA) values (?, ?, ?, ?, ?, ?,
?)")

(if (db-login hdbc dsn uid pwd)
(begin
(display "\ndatabase login succeed !\n")
(display (db-dbms hdbc)) (newline)

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 202 SeeBeyond Proprietary and Confidential

(display (db-std-timestamp-format hdbc)) (newline)
(display (db-max-long-data-size hdbc 2000000)) (newline)

; bind the query and insert statement
(define hquery (bind-statement hdbc stmt0))
(define hinsert (bind-image-statement hdbc stmt1))

(if (and
(statement-handle? hquery)
(statement-handle? hinsert)

)
(begin
(if (not (query-exist hdbc hquery image1-id))
(begin
(display (string-append "insert image " image1-file "\n"))
(if (and

(db-stmt-param-assign hdbc hinsert 0 image1-id)
(db-stmt-param-assign hdbc hinsert 1 image1-name)
(db-stmt-param-assign hdbc hinsert 2 image1-type)
(db-stmt-param-assign hdbc hinsert 3 image1-size)
(db-stmt-param-assign hdbc hinsert 4 image1-width)
(db-stmt-param-assign hdbc hinsert 5 image1-height)
(db-stmt-param-assign hdbc hinsert 6 image1-data)

)
(if (execute-statement hdbc hinsert)
(db-commit hdbc)
(display (db-get-error-str hdbc))

)
(display (db-get-error-str hdbc))

)
)

)

(if (not (query-exist hdbc hquery image2-id))
(begin
(display (string-append "insert image " image2-file "\n"))
(if (and

(db-stmt-param-assign hdbc hinsert 0 image2-id)
(db-stmt-param-assign hdbc hinsert 1 image2-name)
(db-stmt-param-assign hdbc hinsert 2 image2-type)
(db-stmt-param-assign hdbc hinsert 3 image2-size)
(db-stmt-param-assign hdbc hinsert 4 image2-width)
(db-stmt-param-assign hdbc hinsert 5 image2-height)
(db-stmt-param-assign hdbc hinsert 6 image2-data)

)
(if (execute-statement hdbc hinsert)
(db-commit hdbc)
(display (db-get-error-str hdbc))

)
(display (db-get-error-str hdbc))

)
)

)
)

)

(if (not (db-logout hdbc))
(display (db-get-error-str hdbc))

)
)
(display (db-get-error-str hdbc))

)

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 203 SeeBeyond Proprietary and Confidential

5.8.8 Retrieving an Image from a Database
This sample shows how to Retrieve an image from a Database. It uses both Static and
Dynamic SQL functions. See “Static SQL Functions” on page 120 and “Dynamic SQL
Functions” on page 137 for more details.

;demo-image-select.monk

; load Monk database extension
(load "demo-init.monk")
(load "demo-common.monk")

(define (get-image hdbc hstmt)
 (do (
 (result (db-stmt-fetch hdbc hstmt) (db-stmt-fetch hdbc
hstmt))
 (first_name "")
 (file_type "")
 (file_name "")
 (width "")
 (height "")
 (output_port '())
)
 ((boolean? result) result)
 (set! first_name (vector-ref result 0))
 (set! file_type (strip-trailing-whitespace (vector-ref result
1)))
 (set! width (strip-trailing-whitespace (vector-ref result 2)))
 (set! height (strip-trailing-whitespace (vector-ref result 3)))
 (cond
 ((string=? file_type "JPEG") (set! file_name (string-append
first_name ".jpg")))
 ((string=? file_type "GIF") (set! file_name (string-append
first_name ".gif")))
 ((string=? file_type "BITMAP") (set! file_name (string-append
first_name ".bmp")))
 ((string=? file_type "TIFF") (set! file_name (string-append
first_name ".tif")))
 (else (set! file_name (string-append first_name ".raw")))
)
 (if (file-exists? file_name)
 (file-delete file_name)
)
 (display (string-append "picture name = " file_name "\n"))
 (display (string-append "picture size = " width " x " height
"\n\n"))
 (set! output_port (open-output-file file_name))
 (display (vector-ref result 4) output_port)
 (close-port output_port)
)
)

(define (execute-statement hdbc hstmt)
 (let ((col-count (db-stmt-column-count hdbc hstmt)) (row-count 0))
 (if (db-stmt-execute hdbc hstmt)
 (begin
 (if (> col-count 0)
 (if (not (get-image hdbc hstmt))
 (display (db-get-error-str hdbc))
)
)
 (set! row-count (db-stmt-row-count hdbc hstmt))
 (if (boolean? row-count)

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 204 SeeBeyond Proprietary and Confidential

 (display (db-get-error-str hdbc))
 (display (string-append "number of image retrieved = "
(number->string row-count) "\n"))
)
 (newline)
 #t
)
 #f
)
)
)

(define hdbc (make-connection-handle))
(display (connection-handle? hdbc)) (newline)

(define stmt "select PIX_NAME, PIX_TYPE, PIX_WIDTH, PIX_HEIGHT,
PIX_DATA from SCOTT.IMAGE where PIX_ID = ?")

(if (db-login hdbc dsn uid pwd)
 (begin
 (display "\ndatabase login succeed !\n")
 (display (db-dbms hdbc)) (newline)
 (display (db-std-timestamp-format hdbc)) (newline)
 (display (db-max-long-data-size hdbc 2000000)) (newline)

 ; bind the select statement
 (define hselect (bind-binary-statement hdbc stmt))

 ; execute the dynamic statement
 (display "select IMAGE table\n")
 (if (statement-handle? hselect)
 (begin
 (if (db-stmt-param-assign hdbc hselect 0 "7100")
 (if (not (execute-statement hdbc hselect))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
 (if (db-stmt-param-assign hdbc hselect 0 "7200")
 (if (not (execute-statement hdbc hselect))
 (display (db-get-error-str hdbc))
)
 (display (db-get-error-str hdbc))
)
)
)

 (if (not (db-logout hdbc))
 (display (db-get-error-str hdbc))
)
)
 (display (db-get-error-str hdbc))
)

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 205 SeeBeyond Proprietary and Confidential

5.8.9 Common Supporting Routines
This sample script displays and defines values and parameters for stored procedures.
The routines contained in this script are used by many of the Monk samples in this
chapter. For more details about functions used in this script, see “Stored Procedure
Functions” on page 150

;demo-common.monk

;;
;; stored procedure auxiliary functions
;;

; display parameter properties of the stored procedure
(define (display-proc-parameter-property hdbc hstmt prm-count)
 (display "parameter count = ") (display prm-count) (newline)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (display "parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-param-type hdbc hstmt i))
 (display ", io = ")
 (display (db-proc-param-io hdbc hstmt i))
 (newline)
)
)

; display value of output parameters from stored procedure
(define (display-proc-parameter-output-value hdbc hstmt prm-count)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (if (not (equal? (db-proc-param-io hdbc hstmt i) "IN"))
 (begin
 (display "output parameter ")
 (display (db-proc-param-name hdbc hstmt i))
 (display " = ")
 (display (db-proc-param-value hdbc hstmt i))
 (newline)
)
)
)
)

; display column properties of the return result set
(define (display-proc-column-property hdbc hstmt col-count)
 (display "column count = ") (display col-count) (newline)
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display "column ")
 (display (db-proc-column-name hdbc hstmt i))
 (display ": type = ")
 (display (db-proc-column-type hdbc hstmt i))
 (newline)
)
 (newline)
)

; display column value of the return result set of the stored
procedure
(define (display-proc-column-value hdbc hstmt col-count)
 (define (fetch-next)
 (let ((result (db-proc-fetch hdbc hstmt)))
 (if (boolean? result)
 result
 (begin (display result) (newline) (fetch-next))

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 206 SeeBeyond Proprietary and Confidential

)
)
)
 (fetch-next)
 (newline)
)

; bind stored procedure and display parameter properties
(define (bind-procedure hdbc proc)
 (let ((hstmt (db-proc-bind hdbc proc)))
 (if (statement-handle? hstmt)
 (begin
 (display (string-append "bind stored procedure : " proc
"\n"))
 (define prm-count (db-proc-param-count hdbc hstmt))
 (display-proc-parameter-property hdbc hstmt prm-count)
 (newline)
 (if (db-proc-return-exist hdbc hstmt)
 (begin
 (display "return: type = ")
 (display (db-proc-return-type hdbc hstmt))
 (newline)
)
)
 (newline)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

;;
;; dynamic statement auxiliary functions
;;

; display parameter properties of the SQL statement
(define (display-stmt-parameter-property hdbc hstmt prm-count)
 (display "parameter count = ") (display prm-count) (newline)
 (do ((i 0 (+ i 1))) ((= i prm-count))
 (display "parameter #")
 (display i)
 (display ": type = ")
 (display (db-stmt-param-type hdbc hstmt i))
 (newline)
)
 (newline)
)

; display column properties of the SQL statement
(define (display-stmt-column-property hdbc hstmt col-count)
 (display "column count = ") (display col-count) (newline)
 (do ((i 0 (+ i 1))) ((= i col-count))
 (display "column ")
 (display (db-stmt-column-name hdbc hstmt i))
 (display ": type = ")
 (display (db-stmt-column-type hdbc hstmt i))
 (newline)
)
 (newline)
)

Chapter 5 Section 5.8
ODBC e*Way Functions Sample Monk Scripts

e*Way Intelligent Adapter for ODBC User’s Guide 207 SeeBeyond Proprietary and Confidential

; display column value of the return result set of the SQL statement
(define (display-stmt-column-value hdbc hstmt)
 (define (fetch-next)
 (let ((result (db-stmt-fetch hdbc hstmt)))
 (if (boolean? result)
 result
 (begin (display result) (newline) (fetch-next))
)
)
)
 (fetch-next)
 (newline)
)

; display row count affected by the execution of the SQL statement
(define (display-stmt-row-count hdbc hstmt)
 (let ((row-count (db-stmt-row-count hdbc hstmt)))
 (cond
 ((= row-count 0) (display "\n(no row affected)\n"))
 ((= row-count 1) (display "\n(1 row affected)\n"))
 (else (display (string-append "\n(" (number->string row-
count) " rows affected)\n")))
)
)
)

; bind dynamic statement and display paramters and column properties
(define (bind-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

; bind dynamic statement to input/output raw binary data
(define (bind-binary-statement hdbc stmt)
 (let ((hstmt (db-stmt-bind-binary hdbc stmt)))
 (display (string-append "\nDynamic statement : " stmt "\n"))
 (if (statement-handle? hstmt)
 (begin
 (define prm-count (db-stmt-param-count hdbc hstmt))
 (display-stmt-parameter-property hdbc hstmt prm-count)

 (define col-count (db-stmt-column-count hdbc hstmt))
 (display-stmt-column-property hdbc hstmt col-count)
)
 (display (db-get-error-str hdbc))
)
 hstmt
)
)

Index

e*Way Intelligent Adapter for ODBC User’s Guide 208 SeeBeyond Proprietary and Confidential

Index

A
additional path 39
auxiliary library directories 39

B
basic functions

event-send-to-egate 82
get-logical name 83
send-external-down 84
send-external-up 85
shutdown-request 86
start-schedule 87
stop-schedule 88

build an event type 47

C
calling stored procedures, sample 191
common supporting routines, sample 205
communication setup 27

down timeout 29
exchange data interval 28
resend timeout 29
start exchange data schedule 27
stop exchange data schedule 28
up timeout 29
zero wait between successful exchanges 29

components 9
configuration 25
configuration file

sqlnet.ora 22
configuration parameters 25
connection-handle? 107
converter, DART 47

D
DART

converter 47
library 48

database access functions
db-proc-bind 151, 152
db-stmt-bind 138

db-stmt-bind-binary 139
db-stmt-column-count 140
db-stmt-column-name 141
db-stmt-fetch-cancel 145

database functions
connection-handle? 107
db-alive 108
db-commit 110
db-get-error-str 111
db-login 113
db-logout 115
db-max-long-data-size 116
db-proc-column-count 153
db-proc-column-name 155
db-proc-column-type 157
db-proc-execute 159
db-proc-fetch 161
db-proc-fetch-cancel 163
db-proc-param-assign 164
db-proc-param-count 166
db-proc-param-io 167
db-proc-param-name 168
db-proc-param-type 169
db-proc-param-value 170
db-proc-return-exist 172
db-proc-return-type 174
db-proc-return-value 176
db-rollback 117
db-sql-column-names 126
db-sql-column-types 128
db-sql-column-values 129
db-sql-execute 131
db-sql-fetch 132
db-sql-fetch-cancel 133
db-sql-format 134
db-sql-select 136
db-stmt-bind-binary 139
db-stmt-execute 143
db-stmt-fetch 144
db-stmt-param-assign 146
db-stmt-param-count 147
db-stmt-param-type 148
make-connection-handle 118
statement-handle? 119

database name 45
database setup 45

database name 45
database type 45
encrypted password 46
user name 46

database type 45
db-alive 108
db-commit 110
db-get-error-str 111

Index

e*Way Intelligent Adapter for ODBC User’s Guide 209 SeeBeyond Proprietary and Confidential

db-login 113
db-logout 115
db-max-long-data-size 116
db-proc-bind 151, 152
db-proc-column-count 153
db-proc-column-name 155
db-proc-column-type 157
db-proc-execute 159
db-proc-fetch 161
db-proc-fetch-cancel 163
db-proc-param-assign 164
db-proc-param-count 166
db-proc-param-io 167
db-proc-param-name 168
db-proc-param-type 169
db-proc-param-value 170
db-proc-return-exist 172
db-proc-return-type 174
db-proc-return-value 176
db-rollback 117
db-sql-column-names 126
db-sql-column-types 128
db-sql-column-values 129
db-sql-execute 131
db-sql-fetch 132
db-sql-fetch-cancel 133
db-sql-format 134
db-sql-select 136
db-stdver-conn-estab 90
db-stdver-conn-shutdown 92
db-stdver-conn-ver 93
db-stdver-data-exchg 95
db-stdver-data-exchg-stub 96
db-stdver-init 97
db-stdver-neg-ack 98
db-stdver-pos-ack 99
db-stdver-proc-outgoing 100
db-stdver-proc-outgoing-stub 102
db-stdver-shutdown 104
db-stdver-startup 105
db-stmt-bind 138
db-stmt-bind-binary 139
db-stmt-column-count 140
db-stmt-column-name 141
db-stmt-execute 143
db-stmt-fetch 144
db-stmt-fetch-cancel 145
db-stmt-param-assign 146
db-stmt-param-count 147
db-stmt-param-type 148
db-struct-call 179
db-struct-execute 180
db-struct-fetch 180, 181
db-struct-insert 183

db-struct-select 185
db-struct-update 187
deleting records, sample 199
down timeout 29

E
encrypted password 46
environment variables

Merant drivers 19
ETD Editor 47
event-send-to-egate 82
exchange data interval 28
exchange data with external function 41
external connection shutdown function 43
external connection verification function 42
external system requirements 10

F
forward external errors 27
functions

connection-handle? 107
db-alive 108
db-commit 110
db-get-error-str 111
db-login 113
db-logout 115
db-max-long-data-size 116
db-proc-bind 151, 152
db-proc-column-count 153
db-proc-column-name 155
db-proc-column-type 157
db-proc-execute 159
db-proc-fetch 161
db-proc-fetch-cancel 163
db-proc-param-assign 164
db-proc-param-count 166
db-proc-param-io 167
db-proc-param-name 168
db-proc-param-type 169
db-proc-param-value 170
db-proc-return-exist 172
db-proc-return-type 174
db-proc-return-value 176
db-rollback 117
db-sql-column-names 126
db-sql-column-types 128
db-sql-column-values 129
db-sql-execute 131
db-sql-fetch 132
db-sql-fetch-cancel 133
db-sql-format 134
db-sql-select 136

Index

e*Way Intelligent Adapter for ODBC User’s Guide 210 SeeBeyond Proprietary and Confidential

db-stdver-conn-estab 90
db-stdver-conn-shutdown 92
db-stdver-conn-ver 93
db-stdver-data-exchg 95
db-stdver-data-exchg-stub 96
db-stdver-init 97
db-stdver-neg-ack 98
db-stdver-pos-ack 99
db-stdver-proc-outgoing 100
db-stdver-proc-outgoing-stub 102
db-stdver-shutdown 104
db-stdver-startup 105
db-stmt-bind 138
db-stmt-bind-binary 139
db-stmt-column-count 140
db-stmt-column-name 141
db-stmt-execute 143
db-stmt-fetch 144
db-stmt-fetch-cancel 145
db-stmt-param-assign 146
db-stmt-param-count 147
db-stmt-param-type 148
db-struct-call 179
db-struct-execute 180
db-struct-fetch 180, 181
db-struct-insert 183
db-struct-select 185
db-struct-update 187
event-send-to-egate 82
get-logical-name 83
make-connection-handle 118
send-external-down 84
send-external-up 85
shutdown-request 86
start-schedule 87
statement-handle? 119
stop-schedule 88

G
general settings 26

forward external errors 27
journal file name 26
max failed messages 27
max resends per message 26

get-logical-name 83

I
Implementation 47
initialization functions (Monk) 39
initializing Monk extensions, sample 190
inserting records, sample 193
installation 11

Windows 12
intended reader 9
introduction 8
ivtestlib tool

uses 19

J
journal file name 26

L
library converter 47
library directories 39
library, DART 48
load path 39

M
make-connection-handle 118
max failed messages 27
max resends per message 26
monk configuration 30

additional path 39
auxiliary library directories 39
exchange data with external function 41
external connection 43
external connection verification function 42
monk environment initialization file 39
negative acknowledgment function 44
positive acknowledgment 43
process outgoing event function 40
shutdown command notification 45
startup function 40

monk environment initialization file 39

N
negative acknowledgment function 44

O
ODBC e*Way 13
odbc.ini

sample file 16
odbcmsg_display.monk 111

P
parameters

additional path 39
auxiliary library directories 39
communication setup 27

Index

e*Way Intelligent Adapter for ODBC User’s Guide 211 SeeBeyond Proprietary and Confidential

database name 45
database setup 45
database type 45
down timeout 29
encrypted password 46
exchange data interval 28
exchange data with external function 41
external connection shutdown function 43
external connection verification function 42
forward external errors 27
general settings 26
journal file name 26
max failed messaged 27
max resends per message 26
monk configuration 30
monk environment initialization file 39
negative acknowledgment function 44
positive acknowledgment function 43
process outgoing event function 40
resend timeout 29
shutdown command notification function 45
start exchange data schedule 27
startup function 40
stop exchange data schedule 28
up timeout 29
user name 46
zero wait between successful exchanges 29

positive acknowledgment function 43
process outgoing event function 40

R
resend timeout 29

S
sample

calling stored procedures 191
common routines 205
common supporting routines 205
deleting records with dynamic SQL statements

199
dynamic SQL statements 193, 195, 197, 199
initializing Monk extensions 190
inserting binary images 200
inserting records with dynamic SQL statements

193
retrieving images 203
selecting records with dynamic SQL statements

197
stored procedures 191
updating records with dynamic SQL statements

195
selecting records, sample 197

send-external-down 84
send-external-up function 85
shutdown command notification function 45
shutdown-request 86
SQL 8
standard functions

db-stdver-conn-estab 90
db-stdver-conn-shutdown 92
db-stdver-conn-ver 93
db-stdver-data-exchg 95
db-stdver-data-exchg-stub 96
db-stdver-init 97
db-stdver-neg-ack 98
db-stdver-pos-ack 99
db-stdver-proc-outgoing 100
db-stdver-proc-outgoing-stub 102
db-stdver-shutdown 104
db-stdver-startup 105

start exchange data schedule 27
starting a listener 23
start-schedule 87
startup function 40
statement-handle? 119
stcewgenericmonk.exe 9
stop exchange data schedule 28
stop-schedule 88
stored procedures, sample 191
structure functions

db-struct-call 179
db-struct-fetch 180, 181
db-struct-insert 183
db-struct-select 185
db-struct-update 187

supported variable SQL datatypes 125

T
testing

ODBC Driver 19

U
up timeout 29
updating records, sample 195
user name 46
using SQL 8

W
Windows 12

Index

e*Way Intelligent Adapter for ODBC User’s Guide 212 SeeBeyond Proprietary and Confidential

Z
zero wait between successful exchanges 29

	e*Way Intelligent Adapter for ODBC User’s Guide
	Contents
	Introduction
	1.1 Using SQL
	1.2 Components
	1.3 Intended Reader
	1.4 Supported Operating Systems
	1.5 System Requirements
	1.5.1 External System Requirements

	Installation
	2.1 Installation Overview
	2.1.1 Installation Decisions
	2.1.2 Installing Client and Network Components on Windows

	2.2 Installing the ODBC e*Way on Windows Systems
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Installing the ODBC e*Way on UNIX
	2.3.1 Pre-installation
	2.3.2 Installation Procedure

	2.4 Merant 4.0 ODBC Drivers
	2.4.1 Setting up the Shared Library Search Path
	2.4.2 Setting up the ODBC Data Source Definition File
	Sample .odbc.ini File
	Optional Environment Variables

	2.4.3 The ivtestlib Tool
	2.4.4 Testing the ODBC Driver

	2.5 Installing the ODBC Drivers for Compaq
	2.6 Oracle Network Components
	2.6.1 SQL *Net V2 Configuration Files
	2.6.2 Testing the SQL *Net Configuration
	2.6.3 Troubleshooting Checklist

	Configuration
	3.1 Configuration Overview
	3.2 e*Way Configuration Parameters
	3.2.1 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	3.2.2 Communication Setup
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Exchange Data Interval
	Down Timeout
	Up Timeout
	Resend Timeout
	Zero Wait Between Successful Exchanges

	3.2.3 Monk Configuration
	Basic e*Way Processes
	How to Specify Function Names or File Names
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	3.2.4 Database Setup
	Database Type
	Database Name
	User Name
	Encrypted Password

	Implementation
	4.1 Using the ETD Editor’s Build Tool
	4.1.1 The Event Type Definition Files
	Table or View
	Dynamic SQL Statement
	Stored Procedure

	4.2 Vendor-Specific Driver Notes
	4.2.1 IBM ODBC DB2 Drivers
	Support for BLOB and CLOB Data Types

	4.2.2 Merant ODBC Drivers
	Support for BLOB and CLOB Data Types

	4.3 Sample One-Publishing e*Gate Events to an ODBC Database
	4.3.1 Create the Schema
	4.3.2 Create the Event Type Definitions
	4.3.3 Add the Event Types
	4.3.4 Create the Monk Scripts
	4.3.5 Add and Configure the e*Ways
	4.3.6 Add the IQs
	4.3.7 Create the Collaboration Rules
	4.3.8 Add and Configure the Collaborations
	4.3.9 Run the Schema

	4.4 Sample Two-Polling from an ODBC Database
	4.4.1 Create the Schema
	4.4.2 Create the Event Type Definitions
	4.4.3 Add the Event Types
	4.4.4 Create the Monk Scripts
	4.4.5 Add and Configure the e*Ways
	4.4.6 Add the IQs
	4.4.7 Create the Collaboration Rules
	4.4.8 Add and Configure the Collaborations
	4.4.9 Run the Schema

	ODBC e*Way Functions
	5.1 Basic Functions
	event-send-to-egate
	get-logical-name
	send-external-down
	send-external-up
	shutdown-request
	start-schedule
	stop-schedule

	5.2 Standard e*Way Functions
	db-stdver-conn-estab
	db-stdver-conn-shutdown
	db-stdver-conn-ver
	db-stdver-data-exchg
	db-stdver-data-exchg-stub
	db-stdver-init
	db-stdver-neg-ack
	db-stdver-pos-ack
	db-stdver-proc-outgoing
	db-stdver-proc-outgoing-stub
	db-stdver-shutdown
	db-stdver-startup

	5.3 General Connection Functions
	connection-handle?
	db-alive
	db-commit
	db-get-error-str
	db-login
	db-logout
	db-max-long-data-size
	db-rollback
	make-connection-handle
	statement-handle?

	5.4 Static SQL Functions
	Static vs. Dynamic SQL Functions
	ODBC SQL Type Support
	db-sql-column-names
	db-sql-column-types
	db-sql-column-values
	db-sql-execute
	db-sql-fetch
	db-sql-fetch-cancel
	db-sql-format
	db-sql-select

	5.5 Dynamic SQL Functions
	db-stmt-bind
	db-stmt-bind-binary
	db-stmt-column-count
	db-stmt-column-name
	db-stmt-column-type
	db-stmt-execute
	db-stmt-fetch
	db-stmt-fetch-cancel
	db-stmt-param-assign
	db-stmt-param-count
	db-stmt-param-type
	db-stmt-row-count

	5.6 Stored Procedure Functions
	db-proc-bind
	db-proc-bind-binary
	db-proc-column-count
	db-proc-column-name
	db-proc-column-type
	db-proc-execute
	db-proc-fetch
	db-proc-fetch-cancel
	db-proc-param-assign
	db-proc-param-count
	db-proc-param-io
	db-proc-param-name
	db-proc-param-type
	db-proc-param-value
	db-proc-return-exist
	db-proc-return-type
	db-proc-return-value

	5.7 Message Event Functions
	db-struct-call
	db-struct-execute
	db-struct-fetch
	db-struct-insert
	db-struct-select
	db-struct-update

	5.8 Sample Monk Scripts
	5.8.1 Initializing Monk Extensions
	5.8.2 Calling Stored Procedures
	5.8.3 Inserting Records with Dynamic SQL Statements
	5.8.4 Updating Records with Dynamic SQL Statements
	5.8.5 Selecting Records with Dynamic SQL Statements
	5.8.6 Deleting Records with Dynamic SQL Statements
	5.8.7 Inserting a Binary Image to a Database
	5.8.8 Retrieving an Image from a Database
	5.8.9 Common Supporting Routines

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	W
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

