
eData E ngine

OS/390 Reference Guide

eXadasTM Data Integrator
Version 2.2
October, 2002

eData  E n gine

PN 012071.224.1002



October, 2002

Copyright  1993–2002 CrossAccess Corporation. All rights reserved. 

This publication may not be reproduced, stored in a retrieval system or transmitted in whole or part, in any 
form or by any means, electronic, photocopy, recording or otherwise, without the prior written consent of 
CrossAccess Corporation.

The CrossAccess Corporation logo, eXadas, eXadas Data Integrator, and XDi are trademarks of 
CrossAccess Corporation. Other products and services referred to herein are or may be the trademarks of 
their respective owners.

CrossAccess Corporation
One Tower Lane, Suite1700
Oak Brook Terrace IL 60181
(630) 928-3708 or (800) 427-6774
FAX: (630) 954-0554

CrossAccess Corporation
2900 Gordon Ave., Suite 100
Santa Clara CA 95051
(408) 735-7545 or (800) 982-9911
FAX: (408) 735-0328

Technical Support: (800) 982-9911



Table of Contents

Chapter 1 Overview................................................................................................... 1

Introduction to eXadas ...................................................................................... 1

Product Overview..................................................................................................2

Operational Components...................................................................................  3

eXadas Server ..................................................................................................3

Region Controller .......................................................................................4
Connection Handlers...................................................................................4

Query Processor..........................................................................................5
Logger .........................................................................................................6

Initialization Services .................................................................................6
Enterprise Server..............................................................................................7

Client Interface Module ...................................................................................7

Client Connectors.............................................................................................8

Application Components ...................................................................................  9

Administrative Components..............................................................................  9

DataMapper......................................................................................................9

Chapter 2 Deploying Applications.......................................................................... 13
Introduction to Deploying Applications .........................................................  13

Departments and Responsibilities...................................................................  14

Application Models ..........................................................................................  16

Types of Applications ....................................................................................16

Selecting an Interface.....................................................................................16

Connectors ................................................................................................16

Precompiler...............................................................................................17
Initial Development ..........................................................................................  17

Creating Your Own Server ............................................................................18

Mapping Your Data .......................................................................................19

Mapping Verification.....................................................................................20

Creating Your Own Queries ..........................................................................22

General Considerations.............................................................................22

Limiting Query Output and Performance Monitoring..............................23
IMS Recommendations..................................................................................24
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    iii



Table of Contents
Developing Your Application........................................................................25

Deployment .......................................................................................................  26

Determining How Many Servers Your Site Requires....................................27

Server Deployment Options........................................................................... 27

Creating Production Servers ..........................................................................28

Server Set-up Worksheet Instructions ........................................................... 30

eXadas Enterprise Server Set-up Worksheet Instructions .............................31

Operations.........................................................................................................  33

Starting the Servers ........................................................................................ 33

Monitoring and Control .................................................................................33

Dynamic Configuration .................................................................................34

Chapter 3 Server Setup for IMS Access .................................................................35
Introduction to Server Setup for IMS Access ................................................  35

DRA Support ....................................................................................................  36

DBCTL .......................................................................................................... 36

DRA ............................................................................................................... 36

Setting Up the DRA for Use by eXadas..........................................................  37

Configuration....................................................................................................  38

BMP/DBB Support...........................................................................................  40

Configuration ................................................................................................. 40

Chapter 4 Server Setup for IDMS Access ..............................................................43

Introduction to Server Setup for IDMS Data Access....................................  43

APF Authorization of the IDMS.LOADLIB .................................................  44

Setting up Security for IDMS Access .............................................................  45

User ID/Password Validation ........................................................................45

Passing the Correct User Context To IDMS In Run-Units............................ 45

Setting up a Server to Access an IDMS Central Version..............................  46

Mapping IDMS Data for SQL Access ............................................................  46

Running the Meta Data Utility (METAU) with IDMS Meta
Data Grammar................................................................................................ 47

How IDMS Paths Are Converted Into SQL Rows ........................................  48

Accessing Multiple Databases in an IDMS Central Version ........................  48

Accessing Multiple IDMS Central Versions from a Single Server ..............  49

Chapter 5 Server Setup for CA-DATACOM/DB ..................................................51
Introduction to Server Setup for CA-DATACOM/DB .................................  51

Define the Datacom Initialization Service to the Server...............................  52

Ensure the Multi-User Facility Is Running Authorized ...............................  52
iv eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Table of Contents
CA-DATACOM/DB Data Access ....................................................................  53

Setting Up CA-DATACOM/DB Security .......................................................  54

Chapter 6 Communication Configuration............................................................. 55
Introduction to Communication Configuration ............................................  55

Communications Options ................................................................................  56

Cross Memory................................................................................................57

IBM MQ Series ..............................................................................................57

Conceptual Overview ...............................................................................58

Prerequisites to Using MQ Series.............................................................62
OS/390 Queue Manager Definitions.........................................................62

TCP/IP............................................................................................................63

Selecting a Communications Option ..............................................................  64

Bandwidth ......................................................................................................64

TCP/IP Use Of Hostnames vs. IP Addresses .................................................64

Server Configuration .......................................................................................  65

Cross Memory................................................................................................65

IBM MQ Series ..............................................................................................66

TCP/IP............................................................................................................67

Chapter 7 SQL Security .......................................................................................... 69
Introduction to SQL Security..........................................................................  69

eXadas Security Concepts................................................................................  70

User Types .........................................................................................................  70

Database Objects ..............................................................................................  71

Defining User Privileges...................................................................................  72

System Privileges ...........................................................................................72

Database Privileges ........................................................................................74

Stored Procedures Privileges .........................................................................76

Table and View Privileges .............................................................................78

Authorization Requirements ...........................................................................  81

SQL Security and the eXadas SAF Exit.........................................................  82

Summary ...........................................................................................................  83

Chapter 8 Mapping Data......................................................................................... 85
Introduction to Mapping Data ........................................................................  85

The Data Mapping Process..................................................................................86

DataMapper ......................................................................................................  87

General Data Mapping ...................................................................................87

Meta Data Utility..............................................................................................  88
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    v



Table of Contents
Advanced Mapping Considerations ...............................................................  89

Defining Indexes............................................................................................89

Multi-Part Keys ........................................................................................ 89
VSAM Indexes ......................................................................................... 90

IMS Indexes.............................................................................................. 90
IDMS Indexes ........................................................................................... 91

Occurs Processing ..........................................................................................92

Record Arrays........................................................................................... 92
Multiple Record Arrays in a Single Database Record .............................. 94

Record Typing ..........................................................................................95
IMS Segment Mapping Considerations......................................................... 96

Chapter 9 Optimization............................................................................................97

Introduction to Optimization ..........................................................................  97

Query Optimization .........................................................................................  98

Using Keys.....................................................................................................98

JOIN Optimization...........................................................................................  99

Query Processor Optimization......................................................................  101

Immediate Return of Data............................................................................ 102

Static Catalogs ............................................................................................. 102

Result Set Staging ........................................................................................103

IMS Data Access Optimization .....................................................................  103

General Guidelines....................................................................................... 103

IMS Native Access .................................................................................103

Using Primary Indexes ........................................................................... 104
Using Secondary Indexes ....................................................................... 104

Defining IMS Indexes With the USE INDEX Statement....................... 104
Using Search Fields ................................................................................ 105

Partial Key Support ................................................................................ 105
Path Calls ................................................................................................ 106

HDAM/HIDAM Access Considerations ................................................ 106
DEDB Considerations ............................................................................ 107

PCB Selection Options ................................................................................ 108

PCB Selection by Verification ................................................................ 108

PCB Selection by Name ......................................................................... 109
PSB Scheduling ........................................................................................... 109

Using the ASMTDL/I Interface ................................................................... 110

Using the DRA Interface ............................................................................. 111

VSAM Data Access Optimization.................................................................  112

General Guidelines....................................................................................... 112

Primary and Alternate Indexes ............................................................... 113
vi eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Table of Contents
Partial Key Support................................................................................. 114
VSAM Query Processor Optimizations.......................................................115

VSAM Service .............................................................................................115

Server Execution.............................................................................................  115

Dispatching Priority .....................................................................................115

WLM Support ..............................................................................................116

Chapter 10 Server Operations ................................................................................ 117
Introduction to Server Operations ...............................................................  117

Starting Servers ..............................................................................................  118

Monitoring and Controlling Servers ............................................................  118

Displaying Active Services in a Server........................................................119

Displaying Users Connected to a Server......................................................119

Displaying Configurations ...........................................................................120

Modifying Configuration Parameters ..........................................................122

Displaying Memory Utilization ...................................................................123

Starting and Stopping Individual Services ..................................................  124

Stopping the Server........................................................................................  125

Chapter 11 Views ..................................................................................................... 127
Introduction to Views.....................................................................................  127

What is a View? ..............................................................................................  128

How the Query Processor Handles Views ...................................................129

Advantages and Disadvantages of Views ....................................................130

How to Create a View.....................................................................................  130

Using Views for Record and Column Filtering ...........................................132

Horizontal Views ....................................................................................132
Vertical Views.........................................................................................133

Row/Column Subset Views ....................................................................133
Grouped Views .......................................................................................133

Using Views for Security .............................................................................134

Joined Views....................................................................................................  134

Dropping Views ..............................................................................................  135

Chapter 12 Server Logging ..................................................................................... 137
Introduction to Server Logging.....................................................................  137

Controlling Logged Information .......................................................................138

The Log Print Utility......................................................................................  139

Log Print Filtering .........................................................................................  140
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    vii



Table of Contents
Chapter 13 Utilities ...................................................................................................141

Introduction to Utilities .................................................................................  141

Meta Data Utility............................................................................................  142

Meta Data Grammar .................................................................................... 144

Running the Meta Data Utility..................................................................... 145

USE TABLE Statement Syntax ................................................................... 150

Table Source Definitions ........................................................................151
Column Definitions ................................................................................ 161

Record Arrays .............................................................................................. 176

USE [UNIQUE] INDEX Statement Syntax ................................................ 180

Defining VSAM Indexes ........................................................................182

Defining IMS Indexes............................................................................. 182
DROP TABLE Statement Syntax................................................................ 182

DROP INDEX Statement Syntax ................................................................ 183

DB2 Grammar................................................................................................  184

CONNECT TO DB2 Statement Syntax....................................................... 185

IMPORT DB2 TABLE Statement Syntax................................................... 186

IMPORT DB2 INDEX Statement Syntax ................................................... 188

CICS VSAM Grammar .................................................................................  190

ADABAS USE Statement Generator ...........................................................  192

Chapter 14 Open Catalog.........................................................................................197

Introduction to Open Catalog .......................................................................  197

Open Catalog Overview.................................................................................... 198

Objects Used to Define and Access a Table..................................................  202

What are Fragments? ....................................................................................  204

IMS Example ............................................................................................... 205

IDMS Example ............................................................................................ 206

Record Arrays ................................................................................................  208

Differences With Meta Data Tables..............................................................  210

VARCHAR Columns................................................................................... 211

Use of NULL IS Definitions........................................................................211

Use of the REMARKS Column................................................................... 212

Predefined Table Names .............................................................................. 213

Use of Indexes.............................................................................................. 213

Ability to Delete Meta Data Tables .............................................................214

Installing Meta Table in the eXadas System Catalog..................................  214

Chapter 15 System Exits ..........................................................................................219
Introduction to System Exits .........................................................................  219
viii eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Table of Contents
Security: SAF Exit Specifics ..........................................................................  220

Activating the SAF Exit...............................................................................221

SAF Exit API Overview ..............................................................................224

SAF Exit Initialization ............................................................................225

SAF Exit Validation ................................................................................226
SAF Exit Termination .............................................................................228

Accounting: SMF Exit Specifics....................................................................  228

Activating the SMF Exit ..............................................................................228

SMF Exit API Overview..............................................................................231

Initialization ............................................................................................233

Validation/Accounting ............................................................................233
Authorization Violations.........................................................................235

Termination.............................................................................................235
CPU Resource Governor ...............................................................................  235

Activating the CPU Resource Governor Exit ..............................................236

CPU Resource Governor Exit API Overview..............................................238

Initialization ............................................................................................240
Validation/Accounting ............................................................................240

Termination.............................................................................................242
Workload Manager Exit ................................................................................  242

Activating the WLM Exit ............................................................................243

WLM Exit API Overview ............................................................................247

Initialization .................................................................................................248

Management/Reporting................................................................................249

TCB Initialization/Termination...............................................................249

User Connect/Disconnect .......................................................................250
SQL Statement Processing......................................................................250

Termination..................................................................................................251

DB2 Thread Management Exit .....................................................................  251

Activating the DB2 Thread Management Exit ............................................252

Developing Your Own DB2 Thread Management Exit...............................254

Record Processing Exit ..................................................................................  256

Initialization .................................................................................................257

Process .........................................................................................................258

Termination..................................................................................................258

Update ..........................................................................................................258

Verification ..................................................................................................258

Performance Considerations ........................................................................259
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    ix



Table of Contents
Chapter 16 Stored Procedures.................................................................................261

Introduction to Stored Procedures ...............................................................  261

Stored Procedure Overview .............................................................................. 262

General Concepts ......................................................................................... 262

Residency and Language Environment ....................................................... 264

Interfacing with CICS.................................................................................. 267

Interfacing With IMS................................................................................... 269

Interfacing with CA-DATACOM/DB ......................................................... 271

Support Routines..........................................................................................272

Samples ........................................................................................................ 273

Defining Stored Procedures...........................................................................  274

CREATE PROCEDURE Syntax and Description....................................... 275

DROP PROCEDURE Syntax and Description............................................ 281

Deactivating the LE Environment ...............................................................282

Specifying CICS Transaction Scheduling Information ............................... 282

Specifying CA-DATACOM/DB Resource Information ............................. 283

Writing Stored Procedures............................................................................  284

Invoking Stored Procedures ..........................................................................  292

CALL Statement Syntax .............................................................................. 293

ODBC Stored Procedure Support ................................................................ 295

CICS Interface Description ...........................................................................  297

CACSPBR Interface Description................................................................. 297

Parameters Passed to the CICS Application Program ................................. 303

Compiling and Linking Applications that Use CACSPBR .........................304

CACSPBR Return Codes............................................................................. 305

CACSP62 Abend Codes .............................................................................. 306

CA-DATACOM/DB Interface Description ..................................................  310

CACTDCOM Interface Description ............................................................ 311

Compiling and Linking Applications That Use CACTDCOM ................... 315

CACTDCOM Return Codes ........................................................................316

IMS DRA Interface Description ...................................................................  320

CACTDRA Interface Description................................................................ 321

Compiling and Linking Applications That Use CACTDRA....................... 323

CACTDRA Return Codes............................................................................ 324

Invoking Existing IMS Transactions ............................................................  325

APPC/IMS Overview................................................................................... 326

APPC/MVS Overview .................................................................................327

Configuring APPC/IMS and APPC/MVS ................................................... 327
x eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Table of Contents
Application Design Requirements ...............................................................327

Stored Procedure Limitations.......................................................................328

Testing APPC/MVS Stored Procedures.......................................................329

Sample Stored Procedures ...........................................................................330

Adding Transaction Security ..................................................................330
Sync-Point Conversations.......................................................................331

Support Routine Descriptions .......................................................................  331

Get RUN OPTIONS (CACSPGRO) Calling Conventions..........................332

Get User ID (CACSPGUI) Calling Conventions.........................................332

Get User Password (CACSPGPW) Calling Conventions............................333

Chapter 17 Enterprise Server ................................................................................. 335
Introduction to Enterprise Server Installation and Configuration ...........  335

Deployment of the Enterprise Server ...........................................................  336

Deployment Steps ........................................................................................337

Operations.......................................................................................................  339

Starting OS/390 Enterprise Servers .............................................................339

Monitoring and Controlling Enterprise Servers...........................................340

Displaying Active Services in an Enterprise Server ...............................341
Displaying Servers Connected to an Enterprise Server ..........................341

Displaying Configurations......................................................................342
Modifying Configuration Parameters .....................................................343

Displaying Memory Utilization ..............................................................343
Starting and Stopping Individual Services...................................................343

Stopping the Enterprise Server ....................................................................344

Integration and Configuration......................................................................  345

Base System Configuration Review ............................................................345

Parameter Correlation .............................................................................345
Supported Protocols................................................................................346

Communication Value Formats ..............................................................346
Enterprise Server Integration .......................................................................  347

The Mechanics of a Transparent Integration ...............................................347

Data Source Handler Service Configuration ...............................................  347

Dynamic eXadas Server Scheduling.............................................................  348

Expanded Scheduling and Connection Balancing With Cross 
Memory ...........................................................................................................  349

Using IMS DBB Access in a DBRC FORCE=YES Environment ..............350

Chapter 18 SQL Update .......................................................................................... 353
Introduction to SQL Update .........................................................................  353

Transactions ....................................................................................................  354
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    xi



Table of Contents
SQL Update Statements ................................................................................  355

INSERT........................................................................................................ 355

UPDATE...................................................................................................... 356

DELETE ...................................................................................................... 356

COMMIT ..................................................................................................... 356

ROLLBACK ................................................................................................ 357

SQL Update and Mapped Tables ..................................................................  357

Mappings Containing Multiple Records......................................................357

Insert Positioning ......................................................................................... 358

Data Defaulting in Database Records on INSERT ...................................... 359

Update and Delete Behavior ........................................................................359

Update and NULL Records ......................................................................... 359

Mappings Containing Record Arrays .......................................................... 359

Group Items and Overlapping Fields........................................................... 360

General Recommendations .......................................................................... 360

Adabas Update Considerations.....................................................................  360

CA-DATACOM/DB Update Considerations ...............................................  360

DB2 Update Considerations ..........................................................................  362

IDMS Update Considerations .......................................................................  362

General IDMS Update Considerations ........................................................ 363

SQL INSERT Considerations ......................................................................363

SQL DELETE Considerations..................................................................... 364

IMS Update Considerations ..........................................................................  364

IMS PSB Considerations ............................................................................. 365

Update and Non-Update SQL Requests in a Single Transaction ................365

PCB Processing Options .............................................................................. 365

CICS VSAM Update Considerations ...........................................................  366

Transport Protocol ....................................................................................... 366

Flow of Interactions ..................................................................................... 367

Chapter 19 Using Field Procedures ........................................................................369
Introduction to Using Field Procedures .......................................................  369

Specifying a Field Procedure.........................................................................  370

When Exits are Taken....................................................................................  370

Execution Environment .................................................................................  371

The Field Procedure Parameter List (FPPL)................................................ 371

The Work Area ............................................................................................ 372

The Field Procedure Information Block (FPIB) .......................................... 372

Value Descriptors......................................................................................... 373
xii eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Table of Contents
Field-Encoding (Function Code 0)................................................................  374

Field-Decoding (Function Code 4) ................................................................  376

Sample Field Procedures ...............................................................................  378

Sample Field Procedure CACFP001............................................................379

Sample Field Procedure CACFP999............................................................379

Appendix A Configuration Parameters................................................................... 381
Introduction to Configuration Parameters ..................................................  381

Configuration Parameter Format.................................................................  382

Configuration Parameter Relationships ......................................................  383

Configuration Parameter Descriptions ........................................................  385

BTREE BUFFERS.......................................................................................385

CPU Governor..............................................................................................385

DATASOURCE...........................................................................................386

Sample Address Field for TCP/IP Protocol with data source 
name, CACSAMP...................................................................................386

Sample Address field for Cross Memory Protocol with data 
source name, CACSAMP .......................................................................386

Sample Address Field for MQ Series Protocol with data 
source name, CACSAMP .......................................................................387

DECODE BUFFER SIZE............................................................................387

DEFLOC ......................................................................................................388

FETCH BUFFER SIZE ...............................................................................388

INTERLEAVE INTERVAL........................................................................389

JOIN MAX TABLES ANALYZED............................................................390

LD TEMP SPACE .......................................................................................391

LOCALE......................................................................................................392

MAX ROWS EXAMINED .........................................................................393

MAX ROWS EXCEEDED ACTION..........................................................393

MAX ROWS RETURNED .........................................................................394

MESSAGE POOL SIZE ..............................................................................395

NL ................................................................................................................395

NL CAT .......................................................................................................395

PDQ..............................................................................................................396

RESPONSE TIME OUT..............................................................................397

SAF EXIT ....................................................................................................397

SERVICE INFO ENTRY ............................................................................398

SMF EXIT....................................................................................................402

STATEMENT RETENTION ......................................................................402

STATIC CATALOGS .................................................................................403
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    xiii



Table of Contents
TASK PARAMETERS................................................................................ 404

TRACE LEVEL........................................................................................... 405

USER CONFIG ........................................................................................... 405

USERID ....................................................................................................... 406

USERPASSWORD...................................................................................... 407

VSAM AMPARMS ..................................................................................... 407

WLM UOW .................................................................................................409

Appendix B Sample  Stored Procedure VTAM and CICS Definitions .................411
Introduction to Sample Stored Procedure VTAM and CICS 
Definitions .......................................................................................................  411

VTAM Resource Definitions .........................................................................  412

CICS Resource Definitions ............................................................................  414

Appendix C MTO Command Reference..................................................................423
Introduction to MTO Commands.................................................................  423

MTO Facility..................................................................................................... 424

Commands ......................................................................................................  424

SET,NAME=name, ORD=number, VALUE=value ................................... 424

CANCEL,USER=userid .............................................................................. 425

CANCEL,SESSIONID=sessionid ...............................................................425

DISPLAY,QUERIES................................................................................... 426

CANCEL,QUERY=name,SESSIONID=sessionid ..................................... 426

MODIFY,servicename,TRACELEVEL=number ....................................... 426

MODIFY,servicename,TRIGGER START=number ..................................427

MODIFY,servicename,TRIGGER STOP=number ..................................... 427

MODIFY,servicename,OUTPUT=DISPLAY.............................................427

MODIFY,servicename,OUTPUT=DEFAULT ...........................................428

MODIFY,servicename,FLUSH ................................................................... 428

FLUSH,NAME=name .................................................................................428

DISPLAY, {SERVICES | USERS | CONFIG=name | CONFIGS | 
MEMORY | ALL } ...................................................................................... 428

START,SERVICE=name ............................................................................ 430

STOP, {TASKID=tasknumber | SERVICE=name | ALL} .........................430

Appendix D Sample SERVICE INFO ENTRY Definitions ...................................431
Introduction ....................................................................................................  431

Region Controller and Logger .......................................................................... 432

Query Processor .............................................................................................  432

Connection Handler .......................................................................................  432

Cross Memory Transport Layer ................................................................... 433
xiv eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Table of Contents
TCP/IP Transport Layer...............................................................................433
MQ Series ....................................................................................................433

IMS Interface Initialization Services............................................................  433

CACIMSIF...................................................................................................434

CACDRA .....................................................................................................434
DB/2 Access.....................................................................................................  434

Datacom Initialization Service ......................................................................  434

VSAM Service.................................................................................................  435

Work Load Manager Initialization Service .................................................  435

Language Environment Initialization Service .............................................  436

Multiple Catalog Support ..............................................................................  436

Appendix E Meta Table Definitions ........................................................................ 439
Introduction ....................................................................................................  439

Index......................................................................................................................... 559
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    xv



Table of Contents
xvi eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



1

Overview

Introduction to eXadas
This chapter provides an overview of the eXadas™ eData Engine and includes the 
following topics:

• “Product Overview,” on page 2,

• “Operational Components,” on page 3,

• “Application Components,” on page 9, and

• “Administrative Components,” on page 9.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 1



Chapter 1. Overview
Product Overview
eXadas is a powerful, efficient, and easy-to-implement eData solution. End-users 
and developers can transparently access distributed mission critical information 
using the desktop and Internet tools and applications of their choice. The 
following figure demonstrates how eXadas can be used to access relational and 
non-relational data.

Figure 1:  Accessing Data With eXadas

eXadas is a complete, high-powered, eData solution that delivers:

• SQL access to relational and legacy data;

• a scalable, high-performance, easy-to-use product;

• a standards-based solution introducing no new application interfaces (APIs); 
and

• a modular solution that integrates easily with existing environments.

The eXadas eData Engine contains the following major components:

• Server,

• Enterprise Server,

• Client Interface Module,

• C Precompiler,

• Connectors (ODBC and JDBC), and

• DataMapper.

These components are grouped into three functional areas:

• Operational, which process requests for data and deliver the results to the 
client tool or application.

• Administrative, which configure components and manage system data.

• Application-enabling, which provide a 3GL hook into the eData Engine.

This chapter provides an overview and summary-level description of these 
components.
2 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 1. Overview
Operational Components
Operational components provide the processing required to connect tools and 
applications with data. They are responsible for:

• accepting and validating SQL from the application or tool,

• communicating between the end-user and data source platforms,

• accessing the appropriate data source(s), and

• converting results into a consistent relational format.

The Operational components include:

• Server,

• Enterprise Server,

• Client Interface Module, and

• Connectors (ODBC and JDBC).

These modules are discussed in the sections that follow.

eXadas Server

All data access is performed by platform-specific eXadas Servers. A Server is 
responsible for the following functions:

• Accepting SQL queries from clients.

• Determining the type of data to be accessed.

• Rewriting the SQL query into the native file or database access language 
needed. 

• Query optimization based on generic SQL query rewrite and file or database 
specific optimization.

• Querying multiple data sources for JOINs.

• JOIN optimization based on index statistics held in the eXadas Meta Data 
Catalog.

• Translating result sets into a consistent relational format. For non-relational 
data sources this involves restructuring data into columns and rows. For 
relational data sources, result sets are translated into a single relational format.

• Post Query processing of result sets as needed. For example, ORDER BY 
sorting.

A Server accepts connection requests from client applications. Client applications 
can access a Server using either a CrossAccess-supplied Connector or applications 
developed using the C precompiler. Precompiler-developed applications can either 
reside on the same platform that the Server is executed on or on a remote platform.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    3



Chapter 1. Overview
There are five types of tasks that can run in the Server:

• Region Controller, which includes an MTO Operator Interface,

• Connection Handlers,

• Query Processors,

• Logger, and

• Initialization Services.

These tasks are described in the sections that follow.

Region Controller

The Server has multiple tasks running within it. The main task is the Region 
Controller. The Region Controller is responsible for starting, stopping, and 
monitoring the other tasks running within the Server. The Region Controller 
determines which tasks to start based on configuration parameter settings. See 
Appendix A, “Configuration Parameters,” for more information on configuration 
parameters.

The Region Controller also supplies an OS/390 MTO (Master Terminal Operator) 
interface that can be used to monitor and control a Server address space.

Connection Handlers

A Connection Handler (CH) task is responsible for listening for connection 
requests from client applications and routing them to the appropriate Query 
Processor task.

eXadas contains four typical transport layer modules that can be loaded by the 
Connection Handler task:

• TCP/IP,

• OS/390 Cross Memory Services, and

• MQ Series.

A local OS/390 client application can connect to a Server using any of these 
methods (the recommended approach is to use OS/390 Cross Memory Services). 
Remote client applications (running under Windows, a UNIX platform, or a 
different OS/390 image) use TCP/IP or MQ Series to communicate with a remote 
server.
4 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 1. Overview
Figure 2:  Sample Communication Implementation

Query Processor

The Query Processor is the subcomponent of the Server that is responsible for 
translating client SQL into database and file-specific data access requests. The 
Query Processor uses native database and file facilities that maintain both the 
structural integrity and the performance characteristics of the data source. Figure 
3: “Operational Processing Flow,” on page 6, shows the operational processing 
flow.

The Query Processor treats the different database/file systems as a single data 
source and is capable of processing SQL statements that access either a single type 
of database/file system or reference multiple types of databases/file systems. The 
Query Processor also supports SQL update operations (DELETE, INSERT, and 
UPDATE).

To process SQL data access requests, data definitions must be mapped to logical 
tables. The eXadas DataMapper tool is used in conjunction with the eXadas Meta 
Data Utility to perform this mapping. This information is stored in eXadas-
generated Meta Data Catalogs, which emulate DB2 system catalogs. See 
“DataMapper,” on page 9, for more information.

UNIX

ODBC/JDBC Client

TCP/IP

eXadas Server

OS/390PC

ODBC/JDBC Client

TCP/IP
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    5



Chapter 1. Overview
Figure 3:  Operational Processing Flow

Logger

A single Logger task can be running within a Server. The Logger reports on 
Server activities and is also used in error diagnosis situations.

Initialization Services

Initialization Services are special tasks used to prepare the Server execution 
environment to:

• access IMS data,

• access DB2 data,

• access CA-DATACOM/DB data, 

• initialize high-level language environments for use by exits,

• or allow the Server to use the OS/390 Work Load Manager (WLM) services to 
process queries in WLM goal mode. 

Currently, the following Initialization Services are supplied:

• IMS BMP/DBB Initialization Service is used to initialize the IMS Region 
Controller to access IMS data using an ASMTDLI interface.

• IMS DRA Initialization Service is used to initialize the DRA interface and to 
connect to an IMS DBCTL region to access IMS data using the DRA 
interface.

• VSAM Initialization Service is used to initalize the Region Controller to 
access VSAM data.

• CAF Initialization Service is used to connect to a DB2 subsystem to 
access/update DB2 data using the DB2 Call Attach Facility.

• Datacom Initialization Service is used to initialize the Server for connections 
to the CA-DATACOM/DB Multi-User Facility (MUF) using the CA-
DATACOM/DB DBNTRY interface for native command processing.
6 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 1. Overview
• WLM Initialization Service is used to initialize and register with the OS/390 
Work Load Manager subsystem (using the WLM System Exit). This allows 
individual queries to be processed in WLM goal mode.

• The Language environment Initialization Service is used to initialize IBM’s 
Language Environment or COBOL II, which allows exits to be written in a 
high-level language.

Enterprise Server

The Enterprise Server is an optional component. The Enterprise Server can be 
used to manage a large number of concurrent users across multiple data sources. 
An Enterprise Server contains the same tasks that a Server uses, with the 
exception of the Query Processor and the Initialization Services.

Like a Server, the Enterprise Server’s Connection Handler is responsible for 
listening for client connection requests. However, when a connection request is 
received, the Enterprise Server does not forward the request to a Query Processor 
task for processing, instead the connection request is forwarded to a Data Source 
Handler (DSH) and then to a Server for processing. The Enterprise Server 
maintains the end-to-end connection between the client application and the target 
Server. It is responsible for sending/receiving messages between the client 
application and the Server.

The Enterprise Server is also used to perform load balancing. Using configuration 
parameters, the Enterprise Server determines the locations of the Servers that it 
will be communicating with and whether those Servers are running on the same 
platform as the Enterprise Server. 

The Enterprise Server can automatically start a local Server if there are no 
instances active. It can also start additional instances of a local Server when the 
currently active instances have reached the maximum number of concurrent users 
they can service, or the currently active instances are all busy.

Client Interface Module

The Client Interface Module is eXadas-supplied code that is linked with a user 
written client program to establish and maintain connections with Servers and 
Enterprise Servers. 

The Client Interface Module performs the following functions: 

• Determining and loading the appropriate transport layer module, based on 
configuration.

• Establishing communications with a Server or Enterprise Server.

• De-referencing host variables in SQL statements.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    7



Chapter 1. Overview
• Storing and retrieving data in the application storage area(s).

• Presenting error and feedback information to the application.

The Client Interface Module can establish multiple connections to a Server or 
Enterprise Server(s) on behalf of a single application program.

Client Connectors

Desktop tools and applications can issue SQL data access requests to a Server 
through an eXadas ODBC or JDBC client.

The ODBC and JDBC clients provide a single interface between end-user tools 
and applications and other eXadas operational components. Fast performance and 
application integrity are provided by the 32-bit thread safe ODBC and JDBC 
Connectors. A single client can access all data sources on all platforms.

The eXadas client serves as both an ODBC or JDBC Connector and a Connection 
Handler to other platforms, leveraging the underlying TCP/IP or MQ Series 
communications backbone.

Five software components interact to enable data access using eXadas:

• A platform-specific ODBC Driver Manager that loads Connectors on behalf 
of an application. This component is delivered with the operating system for 
all Windows platforms (for ODBC only).

• The ODBC and JDBC Connector that processes function calls, submits SQL 
requests to a specific data source, and returns results to the application.

• Data source definitions that consist of the name and location of the data the 
user wants to access. The required data source definitions consist of a data 
source name and communications parameters (TCP/IP or MQ Series). The 
data source name is used to identify a specific Server or Enterprise Server that 
will be used to service data access requests.

• The Client Interface Module that is used to bridge from the ODBC or JDBC 
client to the Query Processor task running in a Server.

• The Connection Handler that is used to communicate with a Server or 
Enterprise Server. eXadas supplies a Connection Handler that supports 
TCP/IP or MQ Series implementations.

For more information on the eXadas ODBC or JDBC Connectors, see the eXadas 
Connectors Guide.
8 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 1. Overview
Application Components
Application-enabling components provide developers with a means of using 
eXadas’ data delivery capabilities within 3GL applications. The eXadas C 
precompiler enables applications using embedded SQL to access data sources that 
span platforms using a single, standard API.

An application is written as if all data being accessed is in a single relational 
database.The eXadas precompilers convert SQL into calls to eXadas components. 
Multiple data sources that reside on local or remote platforms can be accessed by 
the application without regard to location or the type of file or database to be 
accessed.

The precompiler enables mainframe applications to access LAN-based data as 
easily as they enable UNIX-based applications to access mainframe data.

Administrative Components
Administrative Components are tools and utilities used to perform the 
housekeeping and data administration required to define an installation’s 
environment as well as the data to be accessed by eXadas. The eXadas 
DataMapper is one of these administrative components.

DataMapper

The DataMapper is a Microsoft Windows-based application that automates many 
of the tasks required to create logical table definitions for non-relational data 
structures. The objective is to view a single file or portion of a file as one or more 
relational tables. The mapping must be accomplished while maintaining the 
structural integrity of the underlying database or file.

The DataMapper interprets existing physical data definitions that define both the 
content and the structure of the data. The tool is designed to minimize 
administrative work, using a definition-by-default approach. 

The DataMapper accomplishes the creation of logical table definitions for the 
supported data structures by creating Meta Data Grammar from existing data 
definitions (COBOL copybooks). The Meta Data Grammar is used as input to the 
Meta Data Utility to create a Meta Data Catalog that defines how the data 
structure is mapped to an equivalent logical table. The Meta Data Catalogs are 
used by Query Processor tasks to facilitate both the access and translation of the 
data structure into relational result sets. 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    9



Chapter 1. Overview
The DataMapper import utilities create initial logical tables from COBOL 
copybooks. A point-and-click environment is used to refine these initial logical 
tables to match site- and user-specific requirements. You can utilize the initial 
table definitions automatically created by DataMapper, or customize those 
definitions as needed.

A sample mapping of the Fields within the Segments of a hierarchical IMS 
database to two logical tables are shown in Figure 4: “Sample Mapping from 
Hierarchical IMS DB to Logical Table.”

Figure 4:  Sample Mapping from Hierarchical IMS DB to Logical Table

Multiple logical tables can be created that map to a single physical file or 
database. 

For example, a site may choose to create multiple table definitions that all map to 
an employee VSAM file:

• One table is used by department managers who need access to information 
about the employees in their departments, 

• another by HR managers who have access to all employee information, 

• another by HR clerks who have access to information that is not considered 
confidential, and 

• another by the employees themselves who can query information about their 
own benefits structure. 

Customizing these table definitions to the needs of the user is not only beneficial 
to the end-user, but is recommended. 

Figure 5: “DataMapper Workflow,” shows the Data Administration workflow 
with DataMapper.

Table-1:
Customer Master, Name

Customer Master, Address

Customer Orders, Order-Date

Customer Orders, Order-Amount

Customer Orders, Order-Number

Ordered Items, Item-Number

Ordered Items, Item-Description

Table-2:
Customer Master, Name

Customer Master, Phone

Customer Receivables, Amount Due

Customer Receivables, Outstanding

Customer Invoices, Invoice-Number

Customer Invoices, Invoice-Date

Customer Invoices, Order Number

Customer
Master

Customer
Orders

Customer
Locations

Customer
Receivables

Ordered
Items

Shipping 
Locations

Stocking
Warehouse

Customer
Invoices

Cash
Postings
10 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 1. Overview
Figure 5:  DataMapper Workflow

NOTE: The DataMapper contains embedded FTP support to facilitate file transfer to and 
from the mainframe.

The steps in Figure 5: “DataMapper Workflow,” are:

1. Import existing descriptions of your non-relational data into DataMapper. 
COBOL copybooks, IMS-DL/I Database Definitions (DBDs), and IDMS 
schema/subschema into the DataMapper. 

The DataMapper creates default logical table definitions from the COBOL 
copybook information. If these default table definitions are suitable for end-
users, skip to Step 3.

2. Refine or customize the default table definitions as needed by the users. For 
example, importing the record layout for the VSAM customer master file 
creates the default Customer_Table. Two additional tables can also be 
created from the original:

• Marketing_Customer_Table containing only those data items 
required by the marketing department.

• Service_Customer_Table containing only those data items required 
by support representatives.

3. Export the logical table definitions to the mainframe where the database/file 
resides. These definitions are then used as input to the Meta Data Utility, 
which creates the Meta Data Catalogs.

After completing these steps, you are ready to use eXadas operational components 
with your tools and applications to access your data.

For step-by-step information on how to use the DataMapper to map data to logical 
tables, see the eXadas DataMapper Guide.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    11



Chapter 1. Overview
12 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



2

Deploying Applications

Introduction to Deploying Applications
This chapter begins by identifying the different departments within your 
organization that may need to be involved in order to quickly develop and deploy 
an eXadas-based application. 

Developing your own applications is discussed from a Rapid Application 
Development (RAD) perspective. The goal is to assist you in determining which 
of the available eXadas interfaces to use and then to allow you to quickly develop 
your application using eXadas. The chapter also describes how to refine your 
application for optimum performance and how to get your eXadas-based 
application into production. The chapter concludes with a brief overview of the 
options for monitoring and controlling your application(s) for day-to-day 
operations.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 13



Chapter 2. Deploying Applications
This chapter contains the following topics:

• “Departments and Responsibilities,” on page 14, discusses the departments 
and organizations that may be involved in developing and implementing an 
eXadas-based application.

• “Application Models,” on page 16, describes the different types of 
applications that you are likely to develop using eXadas and provides 
recommendations about the different eXadas-supported application 
programming interfaces (APIs) that you can use for these applications.

• “Initial Development,” on page 17, provides a set of guidelines that allows 
you to rapidly develop a proof-of-concept prototype of the eXadas-based 
application that meets your business needs.

• “Deployment,” on page 26, provides guidelines for the steps required to put 
your eXadas-based applications into production for medium to large scale 
deployments on a single OS/390 system.

• “Operations,” on page 33, includes an overview of the steps required to run 
your applications on a day-to-day basis and the features available to monitor, 
control, and troubleshoot your applications using eXadas.

Departments and Responsibilities
The majority of this guide focuses on how to use eXadas to develop your own 
applications. In general, to successfully install, use, and implement eXadas-based 
applications, several resources may need to be involved including:

• developers,

• system programmers,

• security administrators,

• database administrators,

• network administrators, and

• operations staff.

Different terms may be used at your site to describe the various individuals (or 
group of individuals) in the preceding list. The term developers is used to refer to 
the individuals that are responsible for the coordination of the implementation of 
the eXadas system and site applications.
14 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 2. Deploying Applications
The following table describes the various departments and individuals involved in 
the process.

NOTE: Depending on the eXadas components that you have purchased, not all of these 
individuals will need to be involved with the implementation of eXadas. Check 
with your CrossAccess sales representative or CrossAccess Technical Support for 
more information on the individuals required for the modules purchased at your 
site.

Table 1: Departments and Responsibilities

Departments/Individuals Responsibilities

Developers • Verify the eXadas installation.

• Learn the eXadas components.

• Create Server(s) instance(s).

• Define data sources.

• Map data.

• Identify remote connectivity requirements.

• Configure the Server.

• Develop applications that use eXadas.

• Implement eXadas-based applications.

• Tune eXadas-based applications.

Systems Programmers • Install the OS/390 Server infrastructure.

• Customize system exits to meet site requirements.

• Provide tuning assistance for eXadas-based applications.

Security Administrators • Provide authorization for Server components.

• Provide authorization for file access by Server(s).

• Provide authorization for IMS PSBs accessed by Server(s).

IMS Database Administrators • Set up the IMS environment for use by eXadas.

• Verify eXadas data access does not violate site standards.

• Provide tuning assistance for eXadas-based applications accessing 
data.

Network Administrators • Setting up the infrastructure for communication protocols.

• Providing assistance in tuning eXadas-based applications.

Operations • Monitor and control Servers.

• Set Server dynamic configuration.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    15



Chapter 2. Deploying Applications
Application Models
There are several different types of applications that you are likely to develop 
using eXadas. The type of application and the client platforms that you are 
planning to use determine the type of eXadas programming interface you can or 
should use. Each of these topics is discussed in more detail in the sections that 
follow.

Types of Applications

eXadas is particularly well-suited for use in developing the following types of 
applications:

• Decision Support Systems (DSS),

• Client and Server Applications,

• Executive Information Systems (EIS),

• Web-based Applications,

• Data Warehouses, 

• DataMarts, and 

• Application Migration.

The platform on which your eXadas-based client application is deployed largely 
determines which eXadas programming interface you use. The available options 
are discussed in the section that follows.

Selecting an Interface

There are several different application programming interfaces (APIs) that you 
can use to develop eXadas-based client applications. You have the following 
options for developing your own client applications using eXadas programming 
interfaces.

• ODBC,

• JDBC, and

• Precompiler.

Each of these options is discussed in the sections that follow.

Connectors

If you are planning to use eXadas from a Graphical User Interface (GUI) running 
on Windows 95 or Windows NT, you must use the eXadas ODBC or JDBC 
16 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 2. Deploying Applications
Connector to access a server. eXadas also supports ODBC or JDBC access on 
several UNIX platforms. If you are planning to deploy an eXadas client on UNIX, 
consult the eXadas Connectors Guide for the UNIX platform(s) that you plan to 
use to determine whether a Connector is available on that platform.

Precompiler

A C precompiler is available for all platforms. If you are planning to create 
UNIX-, NT-, or OS/390-based client applications, then you need to use a 
precompiler-based application.

Initial Development
CrossAccess recommends that you develop a proof-of-concept prototype of the 
application you are planning to create using eXadas. Very little of the development 
work required to create a proof-of-concept prototype will be lost when you start 
developing the real application. Most of the tasks discussed in the section involve 
merely setting up the infrastructure for the final application. The following topics 
are discussed:

• “Creating Your Own Server,” on page 18, provides tips and guidelines for 
setting up your own Server environment(s) for use in developing your 
eXadas-based application.

• “Mapping Your Data,” on page 19, provides tips and guidelines on how to 
map your data so that it can be accessed by eXadas.

• “Mapping Verification,” on page 20, recommends steps that you should 
perform to ensure that the data has been mapped correctly. By verifying your 
mappings up front you can save yourself a lot of time and effort later.

• “Creating Your Own Queries,” on page 22, provides tips and guidelines for 
prototyping or modeling your queries before you start developing your 
application. By prototyping/modeling your queries up-front you can ensure 
that you have mapped all of the data that you need to access. By 
prototyping/modeling your queries up-front you can also start optimizing your 
eXadas environment early in the development life cycle so that eXadas is 
ready to go into production when your application is complete.

• “IMS Recommendations,” on page 24, provides tips and guidelines on how to 
access IMS data while you are developing your application.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    17



Chapter 2. Deploying Applications
Creating Your Own Server

When developing your own applications, CrossAccess recommends that you 
create your own development Server for each application. If you are creating a 
group of related applications, then you should only create one Server to handle all 
of these applications.

You should clone one of the supplied Server jobs/procedures to create your new 
Server. For initial development, CrossAccess recommends using a batch job-
oriented Server. Using a batch job allows you to have more control over 
starting/stopping the Server (than using a started task Server) and makes any 
troubleshooting easier. See “Server Set-up Worksheet Instructions,” on page 30, 
for additional information.

NOTE: If you are planning to access IMS data with your new application, see the section 
“IMS Recommendations,” on page 24, for additional tips on how to set up your 
development Server for IMS data access.

As part of Server set-up, make sure you configure an initial Query Processor data 
source and the appropriate communication services so that your client 
applications can communicate with the Server/Query Processor. For more 
information on configuring a data source in the Server, see the eXadas OS/390 
Getting Started Guide. For more information on configuring Server 
communications interfaces see Chapter 6, “Communication Configuration.”

If you are going to develop client applications on the same OS/390 system, 
CrossAccess recommends that you use a Cross Memory services 
Communications Handler to communicate with the Server. When configuring 
your development Server, you will need to define a unique Cross Memory 
services data space name and queue name.

If you are going to develop remote client applications, CrossAccess recommends 
that you use a TCP/IP Connection Handler Service for initial development.

Before configuring a TCP/IP Connection Handler Service, contact your network 
administrator to obtain the hostname or IP address where you will be running the 
Server. Also ask your network administrator for a unique port number that is not 
being used by any other applications on that OS/390 system. The hostname/IP 
address and port number are required to configure your client application. For 
more information on TCP/IP Connection Handler set-up requirements, see 
Chapter 6, “Communication Configuration.”

If you are planning to use an MQ Series Connection Handler, contact your MQ 
Series administrator to have them create a Local Queue for use by your Server. 
You do not need to create another Model Queue since Servers can share Model 
Queues. Obtain the names of the Local and Model Queues that your Server should 
use. For more information on MQ Series communications see Chapter 6, 
“Communication Configuration.”

You may want to inform your network administrator about the communications 
required to deploy your application into production. CrossAccess recommends 
that you create separate development and production Server(s). You will continue 
18 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 2. Deploying Applications
to use the development Server during the refinement process and can use the 
development Server when your application(s) are in production in troubleshooting 
situations.

When you discuss production deployment of your application, inform the network 
administrator of the communications protocol(s) you are planning to use for your 
production system, and the estimated number of users that your application is 
planning to support. As a rule-of-thumb, assume that a single Server can support 
about 50 concurrent users, unless you are planning on accessing IMS data using a 
BMP or DBB interface. In that situation assume that a Server can only support one 
user. Depending on the number of concurrent users your application will support, 
you can easily compute the number of TCP/IP ports or LUs that your production 
application requires.

After customizing your Server JCL and completing the configuration process, 
submit/start your new Server to verify that you have customized the JCL correctly 
and that you have not created any invalid configuration parameters. Once you 
have started your Server you can use the MTO Operator Interface to verify that the 
query processors and Connection Handlers that you have configured are 
operational. For more information on using the MTO Operator Interface, see 
Chapter 10, “Server Operations.”

Additionally, if you have configured a TCP/IP Connection Handler you can use 
the TSO NETSTAT SOCKET command to verify that the Connection 
Handler(s) are listening for connections on the proper hostname/IP address and 
port number. 

Once you have created your development Server and verified that it is operational, 
you can move on to the next step of mapping your data.

Mapping Your Data

The next step in creating your own eXadas-based application is to map your data 
into a format that eXadas can understand. For an overview of how to map your 
data, see Chapter 8, “Mapping Data.” For details on how to use the DataMapper, 
see the eXadas DataMapper Guide.

You have several options for mapping your data. If your application’s access 
requirements are well-defined, you can perform the mapping process in a single 
operation. If the access requirements are fluid, then mapping will be an iterative 
process as you identify new information to be accessed by your application.

You also need to decide whether to create a new set of Meta Data Catalogs. If your 
application uses unique logical table names and the data that you will be mapping 
is static, then you should use the same set of Meta Data Catalogs that were created 
as part of the eXadas installation, customization, and verification process. Using 
the same set of catalogs makes troubleshooting easier when CrossAccess 
Technical Support personnel are involved.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    19



Chapter 2. Deploying Applications
If your logical table names will not be unique across multiple production data 
servers and/or your project will be delivered in multiple phases, create a new set 
of Meta Data Catalogs. For more information about creating new Meta Data 
Catalogs see Chapter 13, “Utilities.”

NOTE: If you create a new set of Meta Data Catalogs, ensure that your application’s 
Server JCL is updated to reference the new Meta Data Catalogs after they have 
been created. Also ensure that the Server is stopped and then restarted before you 
attempt to access any of the new logical tables that you have mapped for your 
application. Failure to perform both of these steps results in query failure when 
you issue a query against the new logical tables, or, even worse, an 
incorrect/invalid result set may be returned. These situations can be very 
confusing when they occur. If either situation occurs, verify that the Server is set 
up properly.

The need to create multiple sets of Meta Data Catalogs can occur when your 
company has segregated the same types of files/databases based on size, 
organization, and/or department that you want to access using the same logical 
table name. In these situations, you have no choice but to create multiple sets of 
Meta Data Catalogs, each of which can either be referenced by a different Server, 
or reference multiple sets in a single Server. For additional information, see 
Chapter 13, “Utilities.” For your own development needs, you may need to only 
create a single Server and set of Meta Data Catalogs, unless the contents of the 
data varies by organization or department. In these situations, for development 
and testing purposes, you will also need to create multiple Servers.

Once you have completed mapping a logical table, or set of logical tables the next 
step is to verify that the data has been mapped properly. This process is discussed 
next.

Mapping Verification

Once you have completed mapping a logical table or set of logical tables, verify 
that the data has been mapped properly by issuing a simple query against each 
logical table and reviewing the result set output to verify that the data looks 
correct.

You can either use the eXadas CACSAMP sample application to issue the 
verification query or, if you have purchased an eXadas Connector, you can use a 
query tool (like Microsoft Query, Microsoft Access, or Brio Query) to issue the 
verification query. If your tables contain a large number of columns, then using a 
query tool is highly recommended, as these tools do a much better job of 
formatting and presenting your data than the CACSAMP application.

The content of the data that you have mapped determines the type of verification 
query you need to create. If the data contains multiple formats based on one or 
more views, then this data is referred to as partitioned data. You must map a 
different logical table for each different record type that you plan to access.
20 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 2. Deploying Applications
If you have non-partitioned data then, for the verification query, you do not have 
to supply a WHERE clause. If your data is partitioned, you need to define a view 
on the table or the query specifying a WHERE clause that filters out the other 
types of records contained in the database/file. If you don’t use a view, you also 
have to supply the same type of WHERE clause filtering when you create your 
own queries for the application you are developing.

For the verification query, retrieve a representative sample of your data (a hundred 
records or so). You can do this by using the configuration parameter-based 
governor features that eXadas supports. This requires setting the MAX ROWS 
EXAMINED configuration parameter to the number of records you want returned 
and specifying RETURN on the MAX ROWS EXCEEDED ACTION. Setting 
these parameters in such a fashion tells eXadas to only read the requested number 
of records/segments from the database/file and then return the result set. For more 
information on these configuration parameters, see Appendix A, “Configuration 
Parameters.”

NOTE: If you set the MAX ROWS EXCEEDED ACTION to RETURN, remove this 
configuration parameter and/or set the action to ABORT when you are developing 
your own application and when you deploy the application into production. 
Failure to do so results in getting an invalid result set returned to your application. 
You will receive truncated data without any indication that not all of your data was 
returned.

Look at each column of the data returned from the verification query and verify 
that the data looks correct. If the data looks garbled, then the mapping was not 
performed properly. In this case, you may want to dump your physical data and 
compare it against what was returned from the verification query and compare the 
offsets and lengths reported in the DataMapper (for each column) against the 
physical data.

If there are discrepancies between the information in the DataMapper and the 
physical data, then your logical table needs to be re-mapped, the table dropped 
from the Meta Data Catalogs (using the DROP TABLE statement), and the table 
re-added using the Meta Data Utility. You then need to run the verification query 
again to see if this has corrected the problem(s). For more information on using 
the Meta Data Utility, see Chapter 13, “Utilities.”

If the mapping offsets and lengths are correct, you need to verify that the SQL data 
type that you have assigned (to the column) is compatible with the physical data. 
If an incorrect SQL data type has been assigned, the SQL data type needs to be 
corrected, the logical table dropped, and the table re-added to the Meta Data 
Catalogs. You then need to run the verification query again to see if this has 
corrected the problem(s). For more information about eXadas SQL data type 
conversions see Chapter 13, “Utilities.”

Once you have verified that the data is mapped correctly, you can start developing 
your own queries against the table(s) you have defined.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    21



Chapter 2. Deploying Applications
Creating Your Own Queries

This section contains guidelines for developing queries for use in your own 
application. It includes some general considerations about how to create sample 
queries that your application will issue. It also discusses limiting the amount of 
data retrieved and performance monitoring.

General Considerations

The programming interface you are using to develop your eXadas-based 
applications determines how you will develop your own queries. CrossAccess 
recommends that you prototype your queries. 

If you are using a tool like MS Query, you can directly develop your queries using 
these types of front-end tools. If you are using a GUI-based tool like Visual Basic 
or Power Builder, or plan to use an ADK-based programming interface, model 
your queries using CACCSAMP. CACCSAMP allows you to supply a SQL 
SELECT statement with a maximum length of 16,384 bytes. This should be 
sufficient for most queries that you will develop for one of your own applications.

The reason to model/prototype your queries is to identify the different types of 
queries that your application uses and for each query to verify that the correct data 
is being retrieved, in the correct sequence. This modeling/prototyping should be 
done early in the development process before you develop your application logic 
that will be wrapped around the query. Once you have identified your queries, you 
can concurrently go on to develop the remainder of your application and also start 
refining your eXadas definitions to get the best performance for each query.

If you use CACCSAMP to model your queries, there are certain limitations. These 
primarily have to do with queries that use parameter markers to supply input to the 
query and in situations where your application uses inner/outer cursor loops. 
Recommendations on how to model each type of query follows.

Parameter Markers

Parameter markers are often used in queries to supply run-time values in a 
WHERE clause. For example, suppose that your application displays a list of 
employee names and social security numbers. The user selects an employee to get 
further detail information about the employee. These are referred to as drill down 
queries. In a drill down situation the application would typically issue a query 
like:

SELECT EMPNO, LAST_NAME, FIRST_NAME, MI FROM EMPLOYEE_TABLE;

The result set returned from the above query would be displayed to the end user. 
When the user selected one of the names listed, the following type of query would 
be issued:

SELECT EMPNO, START_DATE, …. FROM EMPLOYEE_TABLE WHERE EMPNO 
=?;
22 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 2. Deploying Applications
The parameter would be supplied on the SQL OPEN statement using a host 
variable reference that contains the employee number whose detail information is 
to be retrieved. CACCSAMP does not support the use of parameter markers. In 
this situation, model the second query by supplying a valid key value in place of 
the parameter marker. This simulates the way the second select statement will 
work in your application and allows you to verify that the correct detail data has 
been mapped and is being returned.

Inner/Outer Cursor Loops

For most applications, you can issue a join or union between two or more tables in 
order to obtain the information you need in a single SQL statement. However, 
some types of applications need to issue multiple queries simultaneously in order 
to obtain the data that they need. These types of queries are referred to as 
inner/outer cursor loops. In these situations, one query is issued that causes 
multiple rows of data to be retrieved. This query is referred to as the outer query. 
For each row retrieved, zero, one, or more queries are issued based on the data 
returned from the original query. These queries are referred to as the inner 
query(s). Once an inner query completes, another row of data is retrieved from 
the outer query. This process continues until all result set rows have been retrieved 
in the outer query loop.

The CACCSAMP program also does not support the use of inner/outer cursor 
requests. You can model these queries like the drill down queries covered earlier. 
You would issue the outer query and then issue one or more inner queries where 
the WHERE clause has been modified to supply representative input values that 
have been retrieved by the outer query.

Limiting Query Output and Performance Monitoring

When initially modeling/prototyping your queries, you should limit the amount of 
output returned for each query. You can use the same types of governors that you 
used to verify that the data was mapped correctly. 

NOTE: Setting governor limits can be extremely important when your queries contain 
joins and/or unions. If done incorrectly these queries can generate Cartesian 
products from the tables being joined. If you are using governors, turn these 
governors off before performing pre-production testing of your application.

When you run your model/prototype queries you may want to monitor each 
query’s performance. This can be as simple as running each query in a separate 
CACCSAMP run and recording the elapsed time each query takes, or if you are 
using an ODBC or JDBC interface recording the elapsed time from when you 
issued the query and the result set is returned (you will probably want to use a stop 
watch for this). 

You can also monitor the Server using SDSF. You can record the CPU time used 
before and after the query is issued as well as the EXCP counts. This kind of 
monitoring is valuable only when you have a single user accessing the 
development Server.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    23



Chapter 2. Deploying Applications
Alternately, you can use the SMF or WLM System Exits to monitor your queries 
running in the Server. The SMF Exit collects CPU and elapsed (wall clock) times 
for individual users. To use the SMF Exits, you will need to connect and 
disconnect from the Server for each query in order to obtain accurate statistics for 
each of your queries. You will also need to execute the Query Processor tasks in 
single-user mode, where only one user is sharing an instance of a Query Processor 
TCB. Once you have collected SMF data, extract the eXadas-generated SMF 
records from the SMF data sets so that you can analyze the information collected. 
For more information on the SMF System Exits, see Chapter 15, “System Exits.”

The WLM Exit can also be used to obtain performance information. This 
information includes elapsed time, CPU time, service units, I/Os, and other 
system information. To obtain this information, the WLM system Exit must use a 
reporting service class. You will also need to execute the Query Processor tasks in 
single-user mode, where only one user is sharing an instance of a Query Processor 
TCB. You can use the RMF Monitor II/III reporting facilities to view the 
information captured by WLM for your queries. For more information about the 
WLM System Exit, see Chapter 15, “System Exits.”

If your queries are running too slowly, you may want to start the refinement 
process to improve query performance. See “Deployment,” on page 26, for more 
information about the refinement process. This may be especially necessary if you 
are using an ODBC or JDBC front-end tool and you expect to demo the system to 
your end users. For additional information about queries, see Chapter 9, 
“Optimization.”

Another way to improve performance for queries that generate large result sets is 
to use the Hiperspace feature. This feature takes advantage of OS/390 expanded 
memory as an alternative to OS/390 temporary files. It allows fast access to data 
stored in temporary storage. On large machines, it is mapped over page data sets. 
Typical queries that benefit are those with GROUP BY and ORDER BY clauses 
and any large table query when PDQ is off. 

NOTE: PDQ is automatically disabled when GROUP BY and/or ORDER BY clauses are 
present.

Hiperspace is enabled using the LD TEMP SPACE parameter. For more 
information on LD TEMP SPACE, see Appendix A, “Configuration Parameters.”

IMS Recommendations

If you are accessing IMS data, during initial development, use a DBB interface to 
access your data. When using a DBB interface, an IMS Region Controller is 
loaded in the Server’s address space. The databases that you will be accessing are 
either explicitly allocated in the Server’s JCL, or if your IMS environment was set 
up properly, the database(s) to access can be dynamically allocated by IMS.

Using a DBB interface is easier to set up and modify (no IMS STAGE 1 
generations are required). This allows you to easily modify the PSB that is used as 
24 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 2. Deploying Applications
your access requirements change during the development process. Additionally, 
using a DBB interface does not have potential performance impacts on your other 
production IMS applications, which can occur when you use a BMP or DRA 
interface to access your IMS data. Using a DBB interface restricts the number of 
users that can concurrently use a Server based on the number of PCBs that have 
been defined in the PSB that the IMS Region Controller has loaded. The PSB 
name is specified in the Server’s JCL. 

If your application is accessing multiple databases, then you must manually create 
a composite PSB that contains PCBs for all of the databases and secondary index 
paths that your application will use. You may want to create a composite PSB that 
contains 10 PCBs for each database/secondary index you will be accessing, or you 
can modify the number of PCBs to fit your own needs.

You can compute the number of PCBs that are required using the following 
formula:

Number of IMS tables referenced in an SQL query x Number of 
concurrent users

For example, if you have a query that joins 3 IMS tables together and you have 5 
developers that will be using the Server for development purposes you will need 
15 PCBs that have sensitivity to the database/secondary index paths for the 3 
databases participating in the join. Typically, your application issues multiple 
different types of queries probably accessing several different databases so that 
actual number of PCBs will be larger than the 15 computed above. Another 
consideration is that the number of PCBs that are required is dependent upon the 
number of concurrent users issuing queries. It is unlikely that all 5 developers will 
be issuing the same types of queries simultaneously so that the actual number of 
PCBs that are needed may be less than the computed maximum. If you run out of 
PCBs, the person issuing a query that runs out of PCBs receives the message: All 
PCBs in use and the query is not processed.

As a general rule, if you create 10 PCBs per database/secondary index and give 
each PCB access to all paths in the database being referenced you should not run 
into any problems. If you follow this advice you will typically create a very large 
composite PSB. While using a large PSB in a DBB environment is acceptable for 
use in a development environment, this situation is not acceptable in a production 
environment. Use a DRA interface for the majority of your queries in a production 
environment. Converting your application from using a DBB interface to using a 
DRA interface is discussed in detail later in “Deployment,” on page 26.

Developing Your Application

If you have followed the development strategy outlined in the preceding sections 
then 

• you have created the infrastructure for your eXadas-based application, 

• you have a development Server in place and operational, 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    25



Chapter 2. Deploying Applications
• you have defined (mapped) the data that your application will access, and 

• you have prototyped/modeled the queries that your application will issue.

If you are developing an application using a front-end query tool like MS Access 
or Brio Query, your application is probably almost complete and you are ready to 
proceed to the refinement phase. If you are using an an ODBC or JDBC 
programming tool like Visual Basic or Power Builder or developing an ADK-
based application, you can start refining these applications since you can be 
reasonably sure that your access requirements have been defined and verified 
using the modeling/prototyping approach discussed earlier. In either case you are 
ready to move on to the refinement phase where you will tune your eXadas 
environment to get the best performance. The refinement phase should be 
performed in conjunction with the remainder of your application development 
work. 

Deployment
Once you have finished the refinement process and completed your other 
application development activities, you are ready to deploy your eXadas-based 
application into production. As part of completing your development activities 
you will probably want to run some full scale unit and system tests. When you run 
these tests make sure to remove any governor limits that you were using so that 
you get an accurate picture of how your application will perform in a production 
environment. Additionally, make sure you reset all trace levels to their default 
value of 4.

You should also consult with your operations staff and security administrators to 
determine which, if any, of the system exits require activation for your 
application. eXadas contains a set of sample exits that can be used for security 
authorization, SMF reporting, and WLM goal mode support. An exit is also 
supplied that allows you to limit the amount of CPU time that can be used to 
process queries. For more information about system exits, see Chapter 15, 
“System Exits.”

You have different options on how to configure and deploy your eXadas-based 
system into a production environment. The two variables that have the most 
impact are:

• the number of concurrent users you need to service and, 

• (for IMS access) whether all users will be accessing data using the DRA 
interface or whether some will be using a BMP/DBB interface.

Rules for determining how many Servers you need to define and configure is 
discussed next, followed by the options that you have for deploying individual 
Servers.
26 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 2. Deploying Applications
Determining How Many Servers Your Site 
Requires

The Server is designed to support 50 concurrent users accessing Sequential files, 
VSAM files, and/or IMS databases using the DRA interface in a single address 
space using 32 megabytes of memory. The Server may need more memory than 
this depending upon how many queries are being executed concurrently and 
whether these queries contain an ORDER BY clause or other predicates that 
requires sorting. However, for planning purposes you can assume that a single 
Server can handle 50 users.

The 50 user rule is not valid if you are using a DBB or BMP interface to access 
IMS data. As has been previously discussed, in these IMS environments a large 
composite PSB is required for all the databases that your application is accessing 
and a sufficient number of PCBs must be defined to service all queries that are 
active concurrently within the Server. Although CrossAccess recommends using a 
DBB interface with a fairly large PSB for development purposes, this practice is 
not advised in a production environment. Instead, CrossAccess recommends that 
if you are planning on using a DBB or BMP interface to access IMS data, that you 
set up those Servers to execute in single-user mode. This allows you to create a 
much smaller PSB and when using a BMP interface, have much less impact on 
your other IMS production applications.

Based on the above information you can calculate how many Servers you are 
going to need for your application. The formula is as follows:

(Number of concurrent users / 50 + 1) + Number of concurrent 
IMS DBB/BMP users.

NOTE: If you have created multiple sets of system catalogs, you will have to perform the 
above calculation for each set of system catalogs that exist in your production 
environment.

The next topic discusses the different options you have for deploying the number 
of Servers you need.

Server Deployment Options

You can run your Servers as either started tasks or batch jobs. Your operations 
staff should be consulted as to which options should be used.

If you are deploying a large number of Servers, especially Servers that will be 
using a DBB/BMP interface to access IMS data, you probably want to also use the 
Enterprise Server to control your Servers. The Enterprise Server is capable of 
starting/stopping Servers (on the same OS/390 image) and performs automatic 
load balancing based on data source names. For more information about the 
Enterprise Server see the Chapter 17, “Enterprise Server.”
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    27



Chapter 2. Deploying Applications
NOTE: If you are accessing IMS data using a DBB/BMP interface, it is highly 
recommended that you use an Enterprise Server. In a DBB/BMP situation without 
an Enterprise Server, you have to pre-start all of these types of Servers and assign 
them to individual users. If you attempt to share single user Servers between 
multiple client applications, then if the Server is already servicing one client when 
another attempts to connect to the Server, that user will receive an error stating 
that the Server is already in use.

Creating Production Servers

Once you have determined how many Servers you need, what kind of Servers 
they will be (batch job or started task), and whether or not you are going to use an 
Enterprise Server, you are ready to start setting up and configuring these servers. 
Once this is completed, you can start configuring your client applications to 
communicate with these Servers and Enterprise Servers.

You can clone the production Server JCL from the one used for development or 
create brand new ones based on the sample JCL that was provided when eXadas 
was installed. You also need to create Master Configuration Members for each 
Server and the Enterprise Server. You may also have to increase service override 
configuration member(s) for one or more of the data sources that will be serviced 
in each Server.

CrossAccess has supplied the following two worksheets to assist you in setting up 
your Server(s) and Enterprise Server and for configuring your client application. 
The first worksheet can be used when you are only deploying Servers for your 
28 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 2. Deploying Applications
application. The second worksheet should be used when you are going to use an 
Enterprise Server.

Data Server Set-up Worksheet

Data Server Name: Master Configuration Member Name:

Data Source Name Protocol Address Service Override
# Tasks/Users

Min. Max. Users

Enterprise Server Set-up Worksheet

Enterprise Server Name: Master Configuration Member Name:

Data Source Name Prot.
Address/
# Tasks/Users DS Name/T

XM Name/
# Tasks/Users MCM Override
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    29



Chapter 2. Deploying Applications
Server Set-up Worksheet Instructions

You need to create a separate Server Set-up Worksheet for each of the Servers that 
you are setting up. Enter the name of the Server batch job name or started task 
PROC name in the Server Name field. Enter the name of the Master 
Configuration Member that Server will use in the Master Configuration Member 
Name field. 

Then, for each data source that you have defined:

1. Fill in the data source name in the Data Source Name field. In the Master 
Configuration Member, you have to create a Query Processor SERVICE 
INFO ENTRY definition for each Data Source. For more information on the 
Query Processor SERVICE INFO ENTRY parameter see Appendix A, 
“Configuration Parameters.”

2. Identify the type of communications protocol that will be used to 
communicate with the Server in the Protocol field. These will either be TCP 
(for TCP/IP) for remote clients, or XM1 for OS/390 local clients.

3. Enter the TCP/IP hostname/IP address and port number/port name, or XM 
Data Space Name and Queue name in the Address field depending upon the 
type of protocol you entered in the Protocol field.

4. Identify the number of Query Processor Tasks and users that will be serviced 
by the Query Processor. The Min field should specify how many Query 
Processor Tasks are to be started during Server initialization. The Max field 
should specify the maximum number of query Processor Tasks that can be 
started. The Users field should specify the number of users to be serviced by 
each Query Processor Task. These values should be specified on fields 4 
through 6 of the Query Processor SERVICE INFO ENTRY definition. For 
more information on the Query Processor SERVICE INFO ENTRY parameter 
see Appendix A, “Configuration Parameters.”

5. To use different configuration parameters for the data source, enter the name 
of the Service Override member that will contain these override parameters. 
This member name must be specified on field ten (task data field) in the 
Query Processors SERVICE INFO ENTRY definition.

For each unique Protocol/Address field combination you have to define the 
appropriate SERVICE INFO ENTRY definition in the Master Configuration 
Member. Although not shown on the worksheet you need to specify the minimum 
number of threads, maximum number of threads, and maximum number of users 
that will be serviced by each communications interface. For more information on 
defining Connection Handler Services SERVICE INFO ENTRY definitions see 
Appendix A, “Configuration Parameters.”

If your Server is accessing IMS data you need to create either a DBB/BMP 
Initialization SERVICE INFO ENTRY definition or a DRA Initialization 
SERVICE INFO ENTRY definition in order to be able to access your IMS data. 
For more information on defining IMS initialization SERVICE INFO ENTRY 
definitions see Appendix A, “Configuration Parameters.”
30 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 2. Deploying Applications
Once you have created the Server’s JCL, the Master Configuration Member, and 
any Service Override members, you can start the Server. You can then start 
configuring your client applications. 

If you are using Preprocessor-based clients, create a DATASOURCE entry in the 
client configuration file for each data source that the client application will be 
accessing. On the DATASOURCE definition specify the Data Source Name from 
the form and fill in the appropriate Protocol type and protocol specific Address 
information.

Refer to the appropriate client manual on how to specify DATASOURCE 
definitions for the platform that the client will run on.

For ODBC or JDBC clients, create a data source definition for each Data Source 
Name (from the form) that the workstation that you are configuring communicates 
with. 

Define the data source name from the worksheet form, select the appropriate 
protocol (TCP/IP or MQ Series) and fill in the information for the Address field.

For more information on configuring ODBC or JDBC data sources, see the 
eXadas Connectors Guide.

Once these steps have been performed, the client is ready to communicate with the 
Server and use your new application.

eXadas Enterprise Server Set-up 
Worksheet Instructions

When using an Enterprise Server, you need to fill out one Enterprise Server Set-up 
Worksheet per Enterprise Server you will use. Enter the name of the Enterprise 
Server batch job or stated task PROC name in the Enterprise Server Name field. 
Enter the name of the Enterprise Server’s Master Configuration Member in the 
Master Configuration Member Name field. 

Then, for each of the data sources that you have defined:

1. Enter the name of the data source in the Data Source Name field. In the 
Enterprise Server’s Master Configuration Member you have to create a DSH 
SERVICE INFO ENTRY definition. Additionally, you will have to create a 
Query Processor SERVICE INFO ENTRY definition in the Server(s) Master 
Configuration Member with the same Data Source Name. See Chapter 17, 
“Enterprise Server,” for more information on how to define DSH SERVICE 
INFO ENTRY definitions and Appendix A, “Configuration Parameters,” for 
information on how to define Query Processor SERVICE INFO ENTRY 
definitions.

2. In the Prot. field, identify the communications protocol that client applications 
will be using to communicate with the Enterprise Server. The protocol will 
either be TCP (for TCP/IP) or XM1 for local OS/390 client applications.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    31



Chapter 2. Deploying Applications
3. Enter the TCP/IP hostname/IP address and port number/port name, or XM 
Data Space Name and Queue name in the Address field, depending upon the 
type of protocol you entered in the Protocol field.

4. Under the Address information, specify the Minimum/Maximum Number of 
Tasks and the number of Users that must be serviced for that data source by 
the DSH. The Minimum Number of Tasks identifies the number of DSHs to 
be started during Enterprise Server initialization. The Maximum Number of 
Tasks identifies how many users are serviced by each DSH task. This 
information must be specified in fields 4 - 6 on the DSH SERVICE INFO 
ENTRY definition.

5. Enter the name of the Server batch job or started task in the DS Name/T field 
that the DSH entry will be managing. Also identify the type of Server that the 
DSH will be managing. If the Servers will be run as batch jobs, the type 
should be 1; for started tasks, it should be 2.

6. Identify the Cross Memory Data Space Name and Queue Name that the DSH 
will use to communicate with the Server.

7. Under the SM Name information, specify the Minimum/Maximum Number 
of Tasks and Number of Users that will be serviced by the Server for that data 
source. The Minimum Number of Tasks identifies how many Query Processor 
tasks will be started during Server initialization. The Maximum Number of 
Tasks identifies how many Query Processors the Server is allowed to start. 
The Number of Users identifies how many users are serviced by each Query 
Processor Task. The numbers entered here should be specified in fields 4 
through 6 on the Query Processor SERVICE INFO ENTRY definition. 
Additionally, the Number of Users values must be specified in the Task Data 
field for the associated DSH SERVICE INFO ENTRY definition. The 
Number of Users specifies load balancing information the DSH uses to 
determine when to start new Server instances.

8. Identify the name of the Master Configuration Member that the Server 
identified in the DS Name field will use.

9. If the Data Source Name is using a Service Override Member to supply 
custom tuning parameters, identify the name of the Service Override Member 
in the Override field. This member name must be specified on the Query 
Processor SERVICE INFO ENTRY definition (field 10) in the Server’s 
Master Configuration Member.

For each unique Prot./Address field combination, you will have to define the 
appropriate SERVICE INFO ENTRY definition in the Enterprise Server’s Master 
Configuration Member. Although not shown on the worksheet, you must specify 
the minimum number of threads, maximum number of threads, and maximum 
number of users that will be serviced by each Connection Handler. For more 
information on defining Connection Handler Services SERVICE INFO ENTRY 
definitions, see Appendix A, “Configuration Parameters.”

You then need to create the Enterprise Server’s JCL and Master Configuration 
Member. Then, for each of the Servers that you have identified, create their 
execution JCL, Master Configuration Member, and any Service Override 
Member(s). Additionally, if a Server is accessing IMS data create either a 
32 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 2. Deploying Applications
DBB/BMP Initialization SERVICE INFO ENTRY definition or a DRA 
Initialization SERVICE INFO ENTRY definition in order to access your IMS 
data. See Appendix A, “Configuration Parameters,” for more information on 
defining Query Processor SERVICE INFO ENTRY definitions and for 
information on how to define IMS initialization SERVICE INFO ENTRY 
definitions.

Once the above steps have been completed you can start the Enterprise Server. For 
client configuration, follow the same instructions that were described for the 
Server set-up process.

Operations
This section provides an overview of how to run your Server/Enterprise Servers in 
a production environment. Topics covered include:

• “Starting the Servers,” on page 33,

• “Monitoring and Control,” on page 33, and

• “Dynamic Configuration,” on page 34.

You can find more information about these activities in Chapter 10, “Server 
Operations.” For Enterprise Server operations see Chapter 17, “Enterprise 
Server.”

Starting the Servers

If you are not using an Enterprise Server, then each of your production Servers 
must be pre-started before your client applications can be used. If you are using an 
Enterprise Server, then only the Enterprise Server must be pre-started. The 
Enterprise Server automatically starts Servers based on the minimum number of 
threads information specified on the DSH SERVICE INFO ENTRY definitions in 
the Enterprise Servers Master Configuration Member and as the number of 
concurrent users increases.

Monitoring and Control

The Servers and the Enterprise Server are designed to run continuously. In the 
current version, eXadas supplies an OS/390 MTO (Master Terminal Operator) 
interface that can be used to monitor and control Server/Enterprise Server 
operations. Using the MTO interface, you can issue commands to display the 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    33



Chapter 2. Deploying Applications
different services that are active within a Server/Enterprise Server, the number of 
users that are currently using a Server/Enterprise Server, and the amount of 
memory that is available. You can also issue commands to start and stop services.

In the current version of eXadas, individual MTO commands must be issued 
against each Server or Enterprise Server that is executing. For more information 
on the monitoring and control commands that are available see Appendix C, 
“MTO Command Reference.”

Dynamic Configuration

With eXadas, you can dynamically modify the configuration parameters that a 
Server/Enterprise Server is using with the MTO interface. Using these commands, 
you can add new SERVICE INFO ENTRY definitions, and then with the 
monitoring and control commands, activate these services. 

You can also display the individual tuning configuration parameter definitions that 
are active in the Master Configuration Member and any/all Service Override 
Members that are currently in use. Using the MTO interface, individual 
configuration parameter settings can be modified. Some of these settings take 
effect immediately, while others take effect when the next query is processed for a 
particular user, or the next time a service is started.

When you modify a configuration parameter definition, the modified value is only 
stored in core and will be lost when the Server/Enterprise Server is stopped. The 
MTO interface also allows you to permanently save configuration member 
updates to disk. This should only be performed after your production system is 
stable since all comments (including commented-out configuration parameter 
definitions) are lost when a configuration member is dynamically saved to disk 
For more information on the dynamic configuration commands that are available 
see Appendix C, “MTO Command Reference.”
34 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



3

Server Setup for IMS Access

Introduction to Server Setup for IMS 
Access

This chapter discusses the options available for accessing IMS data, the set-up 
requirements for each type of access technique, and the configuration steps that 
are required depending upon the access technique that you select. The following 
topics are discussed:

• “DRA Support,” on page 36,

• “Setting Up the DRA for Use by eXadas,” on page 37,

• “Configuration,” on page 38, and

• “BMP/DBB Support,” on page 40.

You can access IMS data using either the eXadas DRA interface, which is similar 
to the one used by CICS, or its standard ASMTDLI programming interface. When 
using a DRA interface, you must configure and activate an IMS DRA 
Initialization Service in order to access your IMS data. When using the 
ASMTDLI interface you can access IMS data in a BMP or DBB environment. In 
these environments you must configure and activate an IMS BMP/DBB 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 35



Chapter 3. Server Setup for IMS Access
Initialization Service to access your IMS data. For both interfaces, the Server JCL 
requires alteration.

A description of the setup requirements and the steps required to configure each of 
the IMS access methods supported in eXadas is described in the sections that 
follow.

DRA Support
This overview section discusses:

• the IMS facility DBCTL (Database Control),

• the DRA (Database Resource Adapter), which is the interface between the 
Server and DBCTL.

Following this section, additional setup requirements for accessing IMS data 
using the DRA interface are discussed as well as the configuration steps required 
for the Server to access IMS data using DRA.

DBCTL

DBCTL is an IMS database manager subsystem that runs in its own address 
space. DBCTL must be configured and running to use the eXadas IMS DRA 
interface. For more information on DBCTL, see the IBM IMS documentation.

DRA

The DRA is the interface between the Server and DBCTL. The DRA start-
up/router program is supplied with the IMS product and executes within the 
Server Address Space. In IMS terms, this address space is known as a 
coordinator controller (CCTL).

The functions of the DRA include:

• Establishing contact with the DBCTL address space and loading the DRA 
start-up parameter table. The DRA start-up parameter table provides the 
parameters needed to define this interface to a DBCTL subsystem.

• Requesting connection to, and disconnection from, DBCTL.
36 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 3. Server Setup for IMS Access
• Managing threads to DBCTL. The minimum and maximum threads defined to 
DBCTL are specified in the DRA start-up table. The maximum threads 
specified determines the maximum number of concurrent IMS PSBs that can 
be scheduled by the Server.

• Informing the Server when a shutdown of DBCTL has been requested or if 
DBCTL has failed.

Setting Up the DRA for Use by eXadas
To enable the DRA for use by eXadas:

1. Make the DRA start-up/router (load module DFSPRRC0) accessible to the 
Server by either: 

a. copying DFSPRRC0 from the IMS.RESLIB library (built by the IMS 
generation process) into the SCACLOAD load library, or

b. by concatenating the IMS.RESLIB library to the SCACLOAD STEPLIB.

2. Make the DRA start-up table (load module DFSPZPxx) accessible to the 
Server.

The SERVICE INFO ENTRY parameter for DRA specifies the suffix xx for 
the start-up table name. 

The default load module, DFSPZP00, is in the IMS.RESLIB library. For an 
example of DFSPZP00, see the IBM IMS/ESA Installation Volume 2: System 
Definition and Tailoring.

DFSPZP00 contains default values for the DRA initialization parameters. The 
remainder of the DRA modules reside in a load library that is dynamically 
allocated by DFSPRRC0 (the start-up/router). The default DDNAME and 
DSNAME of this load library (IMS.RESLIB) are specified in the default start-up 
table DFSPZP00.

To specify values other than the defaults:

1. Code a new start-up table, naming it, for example, DFSPZP01. You may want 
to use the supplied default module, DFSPZP00, as an example. For a detailed 
description of each DRA start-up table parameter, see the IBM IMS/ESA 
Customization Guide.

2. Specify the desired values.

3. Copy any unchanged values from the default table.

4. Assemble and link the new module into a load library accessible to eXadas. 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    37



Chapter 3. Server Setup for IMS Access
If the new module was named DFSPZP01, the IMS DRA Initialization, SERVICE 
INFO ENTRY parameter would then specify a value of 01 in the DRA Start-up 
Table Suffix field.

NOTE: For discussions on performance tuning issues related to database management that 
may be controlled using the DRA start-up table, see Topic 4.5 “Database 
Management” in the IBM CICS/ESA V4R1 Performance Guide.

Configuration
This section of the document discusses how to configure the Server to access IMS 
data using the DRA interface. You must configure the IMS DRA SERVICE INFO 
ENTRY parameter in the Server before you can access IMS data. Only one IMS 
SERVICE INFO ENTRY parameter can be active in the Server. 

NOTE: All sample JCL, configuration files, and sample application programs referenced 
in this chapter can be found in the SCACSAMP and SCACCONF libraries 
included with your eXadas software shipment.

The following steps identify how to configure the Server for DRA access.

1. Edit the Server configuration member (SCACCONF member CACDSCF). 

The sample configuration member supplied contains default parameter values 
for the key configuration parameters that are required to execute a Server. The 
sample configuration member also contains a set of SERVICE INFO 
ENTRYs that are commented out. In this section we will be activating the 
DRA Initialization Service, which allows you to access IMS data using a 
DRA interface.

2. Activate the IMS DRA Initialization Service.

Uncomment the SERVICE INFO ENTRY for the IMS DRA Initialization 
Service Task. This SERVICE INFO ENTRY can be identified by the 
comments in the configuration member.
38 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 3. Server Setup for IMS Access
In the Task Data field of the SERVICE INFO ENTRY parameter, you need to 
specify additional information that is used to initialize the DRA interface. The 
following information must be supplied:

• DRA Start-up Table Suffix: Modify SF to specify the last two characters 
of the load module name created in DRA Setup, Step 2. If you are using 
the default DRA start-up table load module, specify 00.

• DRA user ID: Modify DRAUSER to specify the default DRA user ID that 
is used to connect to and register with DBCTL. The DRAUSER is the 
name by which the Server is known to DBCTL.

• Default PSB Name: Modify DEFPSB to specify the name of a PSB to be 
used when an IMS table is referenced whose Meta Data Grammar 
contains no PSB name. For more information about PSB scheduling when 
using a DRA interface, see Chapter 8, “Mapping Data,” and Chapter 9, 
“Optimization.”

3. Save the configuration member.

The following steps describe how to customize the Server JCL that can be used to 
access IMS data using the DRA interface. 

To customize the JCL to run the Server as a batch job:

1. Edit the IMS DRA Server JCL stream (SCACSAMP member CACDS).

This member executes the Server as a batch job that is capable of accessing 
IMS data using the DRA interface. 

2. Supply a valid job card.

3. Modify the JCL to conform to site specifications and specify the following 
parameters at the beginning of the in-stream procedure:

• eXadas high-level qualifier (CAC).

• SYSOUT class (SOUT).

4. Supply additional IMS information.

The high level qualifier for IMS data sets (IMS) must be supplied.

5. Save the changes. 

You are now ready to run the Server. Before submitting the JCL for execution, 
ensure that the operational environment has been properly set up by performing 
the following steps.

1. Ensure that the SCACLOAD library has been APF-authorized.

If the SCACLOAD library is not APF-authorized you will receive a S047 
abend when you attempt to run the Server.

NOTE: IMS libraries concatenated to SCACLOAD must also be APF-
authorized.

2. Ensure that the Server has access and execute authority for the data sets 
referenced in the Server JCL.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    39



Chapter 3. Server Setup for IMS Access
Contact your security administrator and verify that the user ID the Server will 
run with has been granted access and execute authority for the data sets 
referenced in the Server JCL.

3. Submit the Server for execution.

If all of the steps have been performed properly, the Server starts up. 

To verify that the Server is operational, select the job (while it is executing). You 
should see the following message near the top of the listing:

CAC00103I EXADAS SERVER: V2.2.4 READY

To shut down the Server you can use the OS/390 MTO interface and issue a 
STOP command. If you do not have MTO authority simply cancel the Server job.

BMP/DBB Support
To use the BMP/DBB interface you must perform the following set-up tasks 
before attempting to access IMS data:

• configure the BMP/DBB initialization service and

• modify the BMP/DBB Server JCL.

The steps are described in the sections that follow.

Configuration

This section discusses how to configure the Server to access IMS data using either 
a DBB or BMP interface. You must configure the IMS BMP/DBB Initialization 
Service in the Server before you can access data. Only one IMS SERVICE INFO 
ENTRY parameter can be active in the Server. 

To configure the Server for BMP/DBB access:

1. Edit the Server configuration member (SCACCONF member CACDSCF). 

The sample configuration member supplied contains default parameter values 
for the key configuration parameters that are required to execute a Server. The 
sample configuration member also contains a set of SERVICE INFO 
ENTRYs that are commented out. In this section we will be activating the 
BMP/DBB Initialization Service, which allows you to access IMS data. 

2. Activate the IMS BMP/DBB Initialization Service.
40 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 3. Server Setup for IMS Access
Uncomment the SERVICE INFO ENTRY for the IMS BMP/DBB 
Initialization Service Task. This SERVICE INFO ENTRY can be identified by 
the comments in the configuration member.

3. Save the configuration member.

The following two steps describe how to access IMS data using an IMS/BMP 
and DBB interface.

4. Modify the JCL for BMP Access. 

This step applies to IMS BMP JCL only. For instructions on modifying the 
JCL for DBB access, skip to step 5.

a. Edit the IMS BMP Server JCL stream (SCACSAMP member CACBMP).

This member executes the Server as a batch job that is capable of 
accessing IMS data using a BMP interface. 

b. Supply a valid job card.

c. Modify the JCL to conform to site specifications and specify the 
following parameters at the beginning of the in-stream procedure:

• eXadas high-level qualifier (CAC).

• SYSOUT class (SOUT).

d. Supply additional IMS information.

1. The high level qualifier for IMS data sets (IMS) must be supplied.

2. A PSB name.

NOTE: Indicate an Application Group Name (AGN) if your site 
requires it. Otherwise the server will fail with a U0437 
abend.

3. Save the changes.

5. Edit the IMS DBB Server JCL stream (SCACSAMP member CACDBB). 

This step applies to IMS DBB JCL only. For instructions on modifying the 
JCL for BMP access, see step 4.

This member executes the Server as a batch job that is capable of accessing 
IMS data using a DBB interface. 

a. Supply a valid job card.

b. Modify the JCL to conform to site specifications and specify the 
following parameters at the beginning of the in-stream procedure:

• eXadas high-level qualifier (CAC).

• SYSOUT class (SOUT).

c. Supply additional IMS information.

1. The high-level qualifier for IMS data sets (IMS) must be supplied.

2. Specify a PSB name.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    41



Chapter 3. Server Setup for IMS Access
3. Specify the correct ACB library for DBB access.

4. If dynamic allocation is not being used (databases not defined to 
IMS), include DD statements for the database files.

NOTE: When running IMS DBB with IRLM=Y, IMS requires the 
Server address space be non-swappable. CrossAccess 
strongly recommends setting the JCL SWAP parameter to 
SWAP=N so IMS will automatically make the address space 
non-swappable at initialization time. Otherwise, IMS will 
automatically make the region non-swappable when the first 
DL/I call is issued, which may result in a significant delay in 
processing the call. In addition, the IMS BATCH service 
definition in the Server configuration file should be placed 
immediately after the logger service to ensure the shortest 
possible timeframe in making the region non-swappable.

d. Save the changes.
42 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



4

Server Setup for IDMS Access

Introduction to Server Setup for IDMS 
Data Access

This chapter describes IDMS access in eXadas. The following topics are 
discussed:

• “APF Authorization of the IDMS.LOADLIB,” on page 44,

• “Setting up Security for IDMS Access,” on page 45,

• “Setting up a Server to Access an IDMS Central Version,” on page 46,

• “Mapping IDMS Data for SQL Access,” on page 46,

• “How IDMS Paths Are Converted Into SQL Rows,” on page 48,

• “Accessing Multiple Databases in an IDMS Central Version,” on page 48, and

• “Accessing Multiple IDMS Central Versions from a Single Server,” on page 
49.

The IDMS access component runs under the eXadas Query Processor service in a 
Server. This component supports multiple users without any special eXadas 
configuration requirements and there are no special initialization services 
required.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 43



Chapter 4. Server Setup for IDMS Access
IDMS access is accomplished using the CrossAccess-supplied batch access 
module IDMS. This module can access IDMS data in either central version or 
local mode. By default, all JCL and examples provided with eXadas are 
configured to access IDMS in central version mode. If you have a specific need 
for local mode access, see the IDMS manuals for the necessary JCL changes 
necessary to allocate and access IDMS databases in local mode.

The underlying access to IDMS is through native DML calls. Since this access is 
non-SQL, the eXadas Meta Data Utility must be run to map data from the IDMS 
database and information placed in the eXadas catalogs.

In central version mode, the IDMS data access component in the Server connects 
to the IDMS DC/UCF system as external run-units. These run-units are 
established when the eXadas client issues an SQL OPEN on an IDMS mapped 
table. At the data access level, the run-unit is created when eXadas issues a BIND 
request for the subschema name defined in the table mapping.

The number of run-units available in a single IDMS DC/UCF region is an IDMS 
configurable value. Each active DC/UCF system has a MAXERUS (maximum 
external run-units) value, which limits the number of concurrent external 
connections. This value governs ALL external connection sources, such as batch 
jobs and CICS.

Set up and configuration of the Server requires analyzing the MAXERUS value 
for IDMS central versions accessed and possibly increasing the value for eXadas’ 
use. In general, the number of Query Processor Services running in a Server is the 
maximum number of concurrent run-units that may be active to IDMS at any 
point in time. SQL JOINS of IDMS mapped tables will result in the creation of 
extra run-units, so additional run-units should be available to handle any expected 
JOINS. In most cases, JOINS will be infrequent as most IDMS databases usually 
have very few foreign keys on which to JOIN.

APF Authorization of the IDMS.LOADLIB
Certain eXadas functions such as cross memory services and the security exit 
CACSX04 require the Server’s STEPLIB to be APF-authorized. The 
IDMS.LOADLIB is not usually APF-authorized and some utility programs in that 
library will fail if they are run from an APF-authorized STEPLIB concatenation.

If you plan to use eXadas APF-authorized services, you may want to create a 
separate authorized copy of the IDMS.LOADLIB for eXadas’ use. In this case, 
you may also comment out the IDMS.DBA.LOADLIB in the Server JCL, as it is 
not necessary for central version access to IDMS.
44 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 4. Server Setup for IDMS Access
Setting up Security for IDMS Access
Securing IDMS data through the Server involves the following:

• ensuring the UserID/Password combination passed from the client is an 
authorized user of the OS/390 System and

• passing the correct user context in all run-units established with the IDMS 
central version.

User ID/Password Validation

The system exit CACSX04 automatically validates all user IDs and passwords 
when a user establishes a connection to the Server. In addition, this exit will 
validate that the user has READ access rights to the catalog when catalog queries 
are issued. See Chapter 15, “System Exits,” for additional information about 
system exits.

Passing the Correct User Context To IDMS 
In Run-Units

By default, all IDMS batch run-units connect to IDMS with a blank user context. 
This is interpreted in IDMS as PUBLIC access to the data. To establish the correct 
user name for each run-unit created under the Server, the IDMS.LOADLIB 
module IDMSSTRT must be re-linked with a USRIDXIT module supplied by 
CrossAccess. This IDMSSTRT module is for use by eXadas only and should be 
placed in a library other than the CA supplied IDMS.LOADLIB. 

To create a new IDMSSTRT module, assemble the CACIDUXS assembler source 
supplied by CrossAccess and re-link the CrossAccess module IDMSSTRT, 
including the CACIDUXS module using the SAMPLIB member, CACIDUXT.

The new IDMSSTRT module can be linked into the eXadas load library if desired. 
Otherwise, the library containing the new IDMSSTRT module must be placed in 
the STEPLIB concatenation above the IDMS.LOADLIB. If a separate APF-
authorized copy of IDMS.LOADLIB has been created for eXadas use only, you 
can replace IDMSSTRT in that library if desired.

NOTE: The creation of an IDMSSTRT module only ensures that all run-units established 
with an IDMS central version have the correct user name associated with them. It 
does not ensure securing of the IDMS data itself. In order for data to be secure, the 
IDMS central version must have security enforcement active. See your IDMS 
System Administrator to validate that IDMS data security is enforced.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    45



Chapter 4. Server Setup for IDMS Access
Setting up a Server to Access an IDMS 
Central Version

The JCL changes required to access an IDMS central version are as follows:

1. Add the IDMS.DBA.LOADLIB and IDMS.LOADLIB to the STEPLIB 
concatenation.

2. Add a SYSCTL DD statement and allocate the SYSCTL file used by the 
central version you need access to.

3. Add a SYSIDMS DD statement with a 'DBNAME=default database 
name' card so tables mapped without an explicit database name have a 
default.

NOTE: The IDMS.LOADLIB is a non-APF-authorized library, and will remove 
authorization from STEPLIB if allocated to STEPLIB. If the Server is using any 
eXadas authorized services (Cross Memory Services and any SAF Exits such as 
CACSX04 and CACSX07), S047 abends will occur.

Mapping IDMS Data for SQL Access
Mapping IDMS data for use by eXadas includes defining logical tables which 
access single records or a specific path through an IDMS database. To define a 
mapping, the eXadas DataMapper loads an IDMS schema and subschema report 
and converts record layouts into SQL columns definitions. When mapping a path 
of records, mapping starts with a single record and traverses sets to additional 
records in the schema.

IDMS schema and subschema reports are produced by running the IDMS schema 
and subschema compilers and capturing the punched output into an OS/390 data 
set. JCL to punch these reports can be found in SAMPLIB with the member name 
CACIDPCH.

NOTE: Before running the supplied JCL, you must know which databases, schemas, and 
subschemas you want to map. 

The basic steps required to map IDMS Data are:

1. Punch IDMS schema and subschema reports on the mainframe.

2. Transfer schema/subschema reports to the PC on which the eXadas 
DataMapper is installed*.

3. Start the DataMapper.

4. Load the schema/subschema report for which you want to create logical 
mappings.
46 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 4. Server Setup for IDMS Access
5. Create a Data Catalog of type IDMS.

6. Create logical tables for any desired records/paths through the schema.

7. Import the columns from the schema report.

8. Generate the Meta Data Grammar statements.

9. Transfer the generated Meta Data Grammar back to the mainframe*.

10. Run the eXadas Meta Data Utility to populate the system catalogs used by the 
Server.

* TCP/IP users can transfer mainframe files between host systems and the PC 
from within the DataMapper using an FTP facility included in the DataMapper.

See the IDMS tutorial in the eXadas DataMapper Guide for more specific details 
about using the DataMapper to map IDMS Data.

Running the Meta Data Utility (METAU) 
with IDMS Meta Data Grammar

In addition to the Meta Data Grammar created by the DataMapper, the Meta Data 
Utility requires access to the IDMS schema/subschema reports and access to the 
IDMS central version. IDMS central version access is required only if mapping 
schema records have SYNONYMS for a SHARED STRUCTURE. These 
SYNONYMS require central version access to determine whether any prefixes or 
suffixes are defined for the elements in a record. For the prefix/suffix look up to 
work correctly, the SYSIDMS DD statement in the Meta Data Utility JCL must 
contain a 'DBNAME=xxxxxx' specification for the dictionary database name that 
contains the mapped schemas.

To set up the Meta Data Utility for IDMS mapping, make the following 
changes to the standard Meta Data Utility JCL:

1. Add a DDLPUNCH DD statement and allocate all schema and subschema 
report files referenced in the Meta Data Grammar. Multiple schemas and 
subschemas can be concatenated to this DD name if the Meta Data Grammar 
apply to more than one schema/subschema combination.

2. Add a SYSCTL DD statement referencing the central version from which the 
schema/subschema reports were produced. 

3. Add a SYSIDMS DD statement with a DBNAME=dictionary-name 
specification where dictionary name is the name of the dictionary containing 
the schemas reports included in the DDLPUNCH DD statement. 

While the server itself can access multiple IDMS central versions, the Meta Data 
Utility is restricted to a single dictionary in a single central version for 
SYNONYM lookup purposes. Therefore, you must restrict the schemas and table 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    47



Chapter 4. Server Setup for IDMS Access
definitions for each run of the Meta Data Utility to a single dictionary in a single 
IDMS central version. 

How IDMS Paths Are Converted Into SQL 
Rows

Each IDMS Table represents a single record or path through an IDMS schema. A 
path is defined by starting with a single record, and then navigating sets to 
additional records in the schema. 

When the server returns SQL rows for a logical table mapped to a path, it returns 
an instance of the first record type mapped with each instance of related records 
down the defined path. For example, given the following path:

Employee RECORD → Empl_Dep SET → Dependent RECORD

if the database contains the following records:

Employee Empl_Dep SETDependent
SET relationships
BILL SMITH→MARTHA

BILLY
SALLY

JANE WHELAN→
SANDRA JONES→ROBERT

The Query to retrieve all the rows in the mapped table returns:

EMPL_NAME        DEPENDENT NAME
BILL SMITH       MARTHA
BILL SMITH       BILLY
BILL SMITH       SALLY
JANE WHELAN      ------
SANDRA JONES     ROBERT

Total Rows Fetched: 5

Accessing Multiple Databases in an 
IDMS Central Version

Each active IDMS central version generally provides access to multiple databases. 
As described earlier, each SQL OPEN of an IDMS mapped table in eXadas 
48 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 4. Server Setup for IDMS Access
creates a run-unit by binding to a subschema in an IDMS central version. A 
database name is also passed in the BIND if it is specified in the Meta Data 
Grammar in the logical definition.        

By explicitly specifying the appropriate database name for IDMS mapped tables, 
you can access as many databases as desired in a single IDMS central version. 
Tables without an explicit database name require a default database name defined   
for the server. This name can be specified in the SYSIDMS JCL DD allocation as 
a 'DBNAME=xxxxxx' card or in a custom IDMS access module containing an 
IDMSOPTI specification.

Accessing Multiple IDMS Central 
Versions from a Single Server

The SYSCTL data set allocated to the server identifies the default IDMS central 
version to communicate with. If desired, multiple SYSCTL data sets with unique 
DD names can be allocated to a single Server and selected on a table-by-table 
basis using custom built IDMS ACCESS LOADMODs that reference the 
appropriate SYSCTL DD name.

To build and reference a custom access load module whose SYSCTL DD 
name is SYSCTL1 instead of the default value of SYSCTL:

1. Code up an assembler IDMSOPTI module containing the following assembler 
macro statement.

IDMSOPTI CENTRAL=YES,SYSCTL=SYSCTL1 
END

2. Assemble the IDMSOPTI module using the supplied SAMPLIB member 
CACIDACM.

3. Re-link the CrossAccess-supplied batch access module named IDMS and 
include the IDMSOPTI module assembled in step 2. Sample link-edit control 
statements to build the new access module are:

• INCLUDE IDMSLOAD (IDMS)

• ENTRY IDMS

• NAME CACIDMS (R)

Be sure to create a new name for the IDMS module as the default module 
should be left as-is for other IDMS batch applications.

4. Use the eXadas DataMapper to specify the new batch access module name by 
specifying an Access Module Name of IDMSCTL1.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    49



Chapter 4. Server Setup for IDMS Access
5. Generate the new Meta Data Grammar and rerun the eXadas Meta Data 
Utility to update the eXadas catalogs with the new access module.

IDMSOPTI modules can also be used to manage default databases and other 
IDMS specific parameters as well. For more information, see the CA/IDMS 
System Operations manual.
50 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



5

Server Setup for CA-DATACOM/DB

Introduction to Server Setup for CA-
DATACOM/DB

This chapter describes how to set up the Server to enable CA-DATACOM/DB 
support. 

Configuring CA-DATACOM/DB support in eXadas requires you to:

• Define the Datacom Initialization Service for the Server.

• Ensure the CA-DATACOM/DB Multi-User Facility is running authorized. 
See the CA-DATACOM/DB Database and System Administrator Guide for 
more details. 

• Set up CA-DATACOM/DB data access.

• Set up security for CA-DATACOM/DB access (this is an optional step). For 
more information, see the CA-DATACOM/DB SQL User Guide, CA-
DATACOM/DB Security Guide and other appropriate CA-DATACOM/DB 
documentation. 

These steps are described in the sections that follow.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 51



Chapter 5. Server Setup for CA-DATACOM/DB
Define the Datacom Initialization Service 
to the Server

CA-DATACOM/DB access requires a SERVICE INFO ENTRY in the Server 
configuration file for the Datacom Initialization Service.

As mentioned previously, CA-DATACOM/DB database connections are created 
and managed by a separate Datacom Initialization Service. The following 
example shows the configuration of this service:

SERVICE INFO ENTRY = CACDCI DCOMIS 2 1 1 50 4 5M 5M 4

This service has a minimum task count of 1, a maximum task count of 1 and a 
maximum connections count of 50. The initialization task requires the maximum 
tasks (field 5) to be 1 as only one instance of this service is required to handle any 
number of connections.

Field 10 contains a numeric value. It is the total number of CA-DATACOM/DB 
task areas to be acquired and initialized for use by the Query Processor. This value 
defines how many concurrent connections can be attained with 
CA-DATACOM/DB. Based on the example definitions shown above, a maximum 
of 4 connections can exist with the CA-DATACOM/DB system at any given time. 

Ensure the Multi-User Facility Is Running 
Authorized

CA recommends authorizing the CA-DATACOM/DB load library because certain 
Multi-User Facility options are operational only when the Multi-User Facility is 
authorized. If authorization is not present when the Multi-User Facility is started, 
the MUF issues the following message: 

DB00210I - MULTI-USER NOT RUNNING AUTHORIZED. 

See the CA-DATACOM/DB Database and System Administrator Guide for more 
detail. 
52 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 5. Server Setup for CA-DATACOM/DB
CA-DATACOM/DB Data Access
In the Query Processor, CA-DATACOM/DB table information is mapped into 
eXadas system catalogs by the Meta Data Utility. Access to the data is processed 
through the Query Processor. This processing parses SQL queries and converts 
them into native CA-DATACOM/DB commands for database access. The benefit 
of this approach is that it provides the capability of joining CA-DATACOM/DB 
data with other data types.

The Query Processors in a single Server are restricted to accessing the same CA-
DATACOM/DB Multi-User Facility. To access a different Multi-User Facility 
requires a second server referencing a different CA-DATACOM/DB control 
library. For information on how to access a different CA-DATACOM/DB MUF, 
see “Modifying DBSIDPR Parameters” in the CA-DATACOM/DB Database and 
System Administrator Guide. 

Access to CA-DATACOM/DB data is handled by a series of CA-DATACOM/DB 
supplied interface modules. The actual database connections are provided using 
pre-allocated task areas. Each separate task area represents a TCB communicating 
between the eXadas Query Processor and the CA-DATACOM/DB Multi-User 
Facility. The number of task areas for use by the Query Processor is defined in the 
SERVICE INFO ENTRY for the Datacom Initialization Service and it limits the 
number of concurrent connections to a CA-DATACOM/DB MUF. 

Task areas assigned for use by the Query Processor can be shared by non-update 
queries requiring the same User Requirements Table. A query containing update 
type statements requires a single non-shared task area. It is difficult, based upon 
the possible mix of queries, to calculate the limiting factor that controls the 
maximum total number of users allowed a connection to CA-DATACOM/DB at 
any given instant.

Assuming all queries are non-update and all queries require a different User 
Requirements Table, the maximum total number of users allowed a connection 
would be the smaller of the following: 

• the number of Query Processor instances times the maximum number of 
connections per instance or

• the number of task areas assigned for use by the Query Processor. 

Attempts to connect to either the Query Processor or to CA-DATACOM/DB that 
exceed the maximum thresholds you specify in your configuration file values will 
be rejected with an error message.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    53



Chapter 5. Server Setup for CA-DATACOM/DB
Setting Up CA-DATACOM/DB Security
Your choices for security implementation include internal CA-DATACOM/DB 
security (not recommended by CrossAccess), external security (RACF, ACF-2 or 
Top Secret), or no security at all.

If you chose an external type security package, each user must have a unique 
identity. Servers run as either an OS/390 started task or a batch job. The primary 
authorization ID, from either of these types of tasks, is the user of the started task 
or batch job and in many installations, the user for started tasks is specified as plus 
signs ('++++++++'). Since the Server is a multi-user system, accessing 
CA-DATACOM/DB under the authorization ID of the Server itself will not 
provide adequate security for your installation’s data. 

Therefore, eXadas has a mechanism for each user of the server to be identified by 
the user ID supplied when they connect to the Server. This user ID and the 
associated password must be verified using RACF, or the security system installed 
at your site, as part of the connection processing. This validation is enabled by 
specifying SAF Exit = CACSX04 in the master configuration file for the Server. 
To extend user level security checking to each database request, the ACEE created 
during this security checking must be made available outside the security exit. All 
database processing is then done under the particular user ID identified in the 
ACEE.

If you chose no security at the database level and the SAF Exit is active in the 
Server configuration file, you must indicate to the SAF Exit that the Query 
Processor should not be provided with security information. You do this by 
providing a keyword parameter (EXCLUDE = n) in the SAF Exit configuration 
file entry. For detail information on how to specify this parameter see “SAF Exit 
API Overview,” on page 224.
54 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



6

Communication Configuration

Introduction to Communication 
Configuration

This chapter describes the communication configuration options as well as the 
Server configuration required to achieve Cross Memory, IBM MQ Series, or 
TCP/IP communications. The following topics are discussed:

• “Communications Options,” on page 56,

• “Selecting a Communications Option,” on page 64, and

• “Server Configuration,” on page 65.

A Server can accept communication connections from both local and/or remote 
client applications. Configuration parameters, on the server and the client, provide 
for the connections.

Three parameters are involved in configuring a client application to Server 
connection, the DATASOURCE parameter in the client and two SERVICE INFO 
ENTRY parameters in the Server, one for a Query Processor (CACQP), and the 
other for a Connection Handler Service (CACINIT).
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 55



Chapter 6. Communication Configuration
The client’s DATASOURCE parameter specifies two subparameters:

• a data source name and

• a communications compound address field.

The parameter descriptions follow.

The Data Source Name field is used to identify which Query Processor service 
task in the targeted server handles requests for this client application. The server 
configuration must include a SERVICE INFO ENTRY for a Query Processor, 
with a matching data source name specified as the Service Name for a connection 
to be established.

The Communication’s Compound Address field is used to establish a 
communications path to the server that contains the targeted Query Processor task. 
The Server configuration must include a SERVICE INFO ENTRY for a 
Connection Handler task (CACINIT) that specifies this compound address in its 
field 10. A Server configured in this way will listen for connections on that 
address. A client application then connects to that address and a communication 
session results.

The following table illustrates the relationship between the three parameters.

Figure 6:  Communication Configuration Parameter Relationships

Communications Options
eXadas supports the following communications options:

• Cross Memory,

• IBM MQ Series,

• TCP/IP.

DATASOURCE = name communication information 

SERVICE INFO ENTRY = CACQP name ...

Client

Services

SERVICE INFO ENTRY = CACINIT ... communication information
56 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 6. Communication Configuration
Cross Memory

There are no additional set-up requirements to use the OS/390 Cross Memory 
interface, such as those required for TCP/IP. This interface uses OS/390 data 
spaces and OS/390 token naming services for communications between client 
applications and Servers. The components of the communications compound 
address field specific to Cross Memory are the Cross Memory protocol identifier 
(XM1), the data space name, and the queue name. This compound string 
represents a unique address that must match in the corresponding parameters 
within the client application and Server configurations (as described previously) 
for a connection to take place. The data space and the queue name fields each have 
a maximum length of four characters.

Each Cross Memory Data Space can support up to a maximum of 400 concurrent 
users, although in practice this number may be lower due to resource limitations. 
To support user populations in excess of this number on a Server, configure 
multiple Connection Handler services, each with a different data space name.

The communications compound protocol field consists of several fields. The 
first field identifies the protocol. The remaining fields are particular to that 
protocol. An example of the communications compound address field follows:

XM1/DataSpace/Queue

IBM MQ Series

eXadas supports IBM MQ Series messaging middleware as an alternative to the 
existing TCP/IP or OS/390 Cross Memory Services transport services that are 
used for client-server intercommunications. MQ Series support is provided 
between OS/390 servers/clients and NT ODBC clients.

CrossAccess assumes that you are familiar with MQ Series concepts and 
terminology. You should have a working knowledge of how to configure and 
operate MQ Series on OS/390. For additional information on MQ Series, see the 
IBM MQ Series documentation.

The following are supported MQ Series release levels for OS/390 and NT:

• OS/390: eXadas supports MQ Series Release 1 Version 2, or above.

• NT: eXadas supports MQ Series Clients or Servers running MQ Series 
Release 5 Version 0, or above.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    57



Chapter 6. Communication Configuration
The following topics are discussed in this section:

• “Conceptual Overview,” on page 58, describes how eXadas uses MQ Series 
as a transport mechanism.

• “Prerequisites to Using MQ Series,” on page 62, describes the infrastructure 
that must be in place before eXadas can use MQ Series.

• “OS/390 Queue Manager Definitions,” on page 62, provides sample queue 
definitions that allows an eXadas Server, Enterprise Server, or MQ Series 
Client to communicate with an OS/390 Server using MQ Series.

Conceptual Overview

eXadas uses MQ Series as a transport mechanism between clients and Server. 
Clients can use MQ Series to communicate with an OS/390 Server and can be 
deployed on OS/390 or on NT.

The eXadas MQ Series implementation is referred to as a transport layer since 
eXadas does not use any advanced MQ Series facilities, such as message 
persistence or two-phase commit protocols. For NT clients, using MQ Series as a 
transport mechanism still uses TCP/IP as the underlying transport mechanism 
between the client and Server.

The advantage of using MQ Series as a transport mechanism is that you use MQ 
Series to configure connectivity between the client and server in the same manner 
that you configure other applications that use MQ Series. Additionally, MQ Series 
provides protocol independence between client and server. For example, you can 
use TCP/IP for communications between an eXadas client and an NT MQ Series 
server. You can also multi-hop over multiple OS/390 MQ Series servers, if 
desired. In all instances, eXadas is not aware of the underlying protocols being 
used.

For eXadas to use MQ Series as a transport vehicle, at a minimum two queue 
definitions are required. One of these queue definitions is a local queue that the 
server listens on for requests from clients. The other queue is a temporary 
dynamic model queue that is used by clients. The client connects to the local 
queue definition and sends messages to that queue for processing by the server. 
The server puts response messages on the instance of the temporary dynamic 
queue (that is created when the client opens the temporary dynamic model queue) 
which the client subsequently retrieves and processes. Figure 7: “Basic eXadas 
MQ Series Architecture,” on page 59, shows how clients and servers 
communicate using MQ Series.
58 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 6. Communication Configuration
Figure 7:  Basic eXadas MQ Series Architecture

Figure 7: “Basic eXadas MQ Series Architecture,” shows the basic MQ Series 
architecture that is required for a local OS/390 eXadas client or remote NT eXadas 
client (either ODBC or JDBC) to communicate with an OS/390 server using MQ 
Series. The diagram shows that two queues are defined to the OS/390 MQ Series 
Queue Manager. The queue named CAC.SERVER is the local queue definition 
that the CAC MQ Series Transport Module accesses to receive SQL requests from 
OS/390 or NT clients. 

In the diagram, the CAC.CLIENT queue is the temporary dynamic model queue 
that the Server places messages on in response to SQL Requests from a client. 
During initialization processing, the client opens the CAC.CLIENT temporary 
dynamic queue that causes MQ Series to create a unique queue name for use by 
the client. When the client sends a message to the CAC.SERVER local queue, the 
MQ message header contains the name of the reply-to queue, which in this case is 
the unique name of the CAC.CLIENT queue assigned to the client by MQ Series. 
Once the Server has finished processing a client SQL request, the OS/390 MQ 
Series Transport Module sends a message to the reply-to queue name identified in 
the originating message from the client.

NOTE: You can use any queue name that you like for the local and temporary dynamic 
queue names. The use of CAC.CLIENT and CAC.SERVER are for illustrative 
purposes only.

Figure 7: “Basic eXadas MQ Series Architecture,” shows MQ Series Clients 
directly connecting to the OS/390 MQ Series Queue Manager. The following 
figure shows another common implementation where an intermediate queue 
manager is used.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    59



Chapter 6. Communication Configuration
Figure 8:  Using Two Queue Managers

Figure 8: “Using Two Queue Managers,” shows an implementation that uses an 
intermediate NT MQ Series Queue Manager. In this diagram, the MQ Series 
Client would connect to the NT MQ Series Queue Manager using TCP/IP or a 
LAN-based protocol like NetBIOS or SPX. As can be seen in this diagram, there 
are three queue definitions that are required. Additionally, the temporary dynamic 
model queue is now defined to the NT MQ Series Queue Manager. In this 
implementation, a remote queue definition is also required at the NT MQ Series 
Queue manager that references the CAC.SERVER local queue that is defined on 
OS/390.

Communications between the eXadas Client and Server is similar to that shown in 
Figure 7: “Basic eXadas MQ Series Architecture.” In this scenario the eXadas 
Client is configured to open and send messages to the CAC.REMOTE queue. This 
causes messages to be sent to the CAC.SERVER queue on OS/390 where the 
Server can pick these messages up for processing. The Server sends replies to the 
SQL requests sent by the client. Using standard MQ Series routing protocols the 
SQL Responses are sent to the instance of the temporary dynamic model queue 
that was created on NT when the client opened the CAC.CLIENT queue.

As in the previous diagram, the queue names CAC.CLIENT, CAC.LOCAL and 
CAC.REMOTE are for illustrative purposes only. You can assign any name to 
these queue definitions.

The following figure shows one possible configuration when an Enterprise Server 
has been deployed and you want to use MQ Series for communications between 
the eXadas Client, the Enterprise Server and an eXadas server.
60 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 6. Communication Configuration
Figure 9:  Sample Enterprise Server Configuration

Figure 9: “Sample Enterprise Server Configuration,” shows that an NT (or 
OS/390) MQ Series Client is directly connecting to the Enterprise Server. In this 
configuration, two local queues are defined to the OS/390 MQ Series Queue 
Manager. Clients send messages to the Enterprise Server using the 
CAC.ESERVER local queue. The CAC.DSERVER local queue is used by the 
Data Server to receive and process messages sent by the Enterprise Server. 

In the diagram, a single temporary dynamic model queue has been defined on 
OS/390. The eXadas Client and the eXadas Server/Enterprise Server return SQL 
Responses and both use the CAC.CLIENT queue. In actuality two queue instances 
are used. The first is for messages sent by the Enterprise Server for pick-up by the 
client. The second is for eXadas Server responses to the Enterprise Server.

In this scenario, the client sends messages to local queue CAC.ESERVER. When 
the client opens the CAC.CLIENT queue a unique queue name is assigned that the 
Enterprise Server uses to route SQL responses back to the client. Based on 
configuration information in the Enterprise Server’s master configuration 
member, when a client connects to the Enterprise Server, the Enterprise Server 
will:

1. Open a temporary dynamic model queue (in the diagram CAC.CLIENT) for 
SQL Responses from the eXadas Server.

2. Forward the message to the Server’s local queue (in the diagram 
CAC.DSERVER).

3. Wait for responses on the temporary dynamic model queue from the Server.

When a response is received from the Server, the message is picked up from the 
temporary dynamic model queue. The Enterprise Server then puts the message on 
the client’s temporary dynamic model queue so that the client can pick up the SQL 
Response.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    61



Chapter 6. Communication Configuration
NOTE: When MQ Series is used for communications between an Enterprise Server and 
an eXadas Server, the Enterprise Server can start a single instance of the eXadas 
Server. If multiple instances of the Server are started then client messages placed 
on the Server’s local queue definition are processed randomly by the different 
Server instances that are running. This causes failures in the client and 
unpredictable results in the eXadas Server.

It is also possible to create a configuration, using the Enterprise Server and an 
intermediate queue manager. Using Figure 8: “Using Two Queue Managers,” on 
page 60 as an example, define a temporary dynamic model queue (CAC.CLIENT) 
at the NT MQ Series Queue Manager. Then create a remote queue definition 
(CAC.REMOTE) that references the local queue used by the Enterprise Server 
(CAC.ESERVER). At the OS/390 MQ Series Queue Manager, you would define 
the queues shown in “Sample Enterprise Server Configuration,” on page 61.

Prerequisites to Using MQ Series

In the previous section we discussed and showed several typical configurations 
that you may use to establish connectivity between an eXadas Client and OS/390 
Server/Enterprise Server using MQ Series. Before you attempt to implement any 
of these configurations, you must have the infrastructure in place to allow 
communications between the different MQ Series components. 

The following should be in place prior to implementing a configuration using MQ 
Series:

1. The MQ Series OS/390 Queue Manager has been installed and configured for 
communications between any other queue managers that eXadas will be using 
(or passing through) and/or the MQ Series clients that will be connecting to 
the OS/390 Queue Manager.

2. The MQ Series Client (or an NT MQ Series Server) has been installed on the 
NT workstation where the eXadas client is/will be installed.

3. You have tested connectivity between all MQ Series components by putting 
and getting messages with the MQ Series supplied utility programs.

NOTE: If you do not have your own queues for test purposes you can put and get test 
messages from the local queue that the eXadas Server will be using. When the 
server starts up, it will retrieve the test messages, determine that a reply-to queue 
does not exist, and then discard the message(s) from the local queue.

OS/390 Queue Manager Definitions

eXadas requires two queues to be defined on the OS/390 MQ Series Server: 

• a local queue definition, and

• a model queue definition.

The names of these queues are not restricted. In the following example the queue 
named CAC.SERVER is used for the local queue definition and CAC.CLIENT 
for the model queue definition.
62 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 6. Communication Configuration
The command line definitions for both of these queues are as follows:

DEFINE QLOCAL(CAC.SERVER) DEFSOPT(SHARED) SHARE

DEFINE QMODEL(CAC.CLIENT)

You can either use the default STGCLASS or set this parameter to one of your 
custom STGCLASS definitions.

NOTE: If you are using intermediate queue managers (as shown in Figure 9: “Sample 
Enterprise Server Configuration,” on page 61), the CAC.CLIENT model queue 
definition is the same. Additionally, you are responsible for defining the remote 
queue definition that is associated with the CAC.SERVER local queue definition. 
For the remote queue definition you must identify a transmission queue that has 
connectivity to the OS/390 MQ Series Queue Manager that eXadas is using.

After issuing the two DEFINE commands shown above, you can use the 
DISPLAY QLOCAL(CAC.SERVER) and DISPLAY 
QMODEL(CAC.CLIENT) MQ Series MTO commands to verify that queues 
have been defined properly.

TCP/IP

TCP/IP communications requires the definition of the IP address of the TCP/IP 
communications stack that the Server is running on and the specification of a 
listen port number, in addition to the TCP/IP protocol identifier, for example, TCP. 
The IP address can be specified using dot-decimal notation, for example, 
011.022.033.044, or as a hostname. The port number can be specified as a four 
digit value, for example 9999, or as a service name. 

A single TCP/IP Connection Handler Service can service 255 concurrent users.

Multiple sessions are created on the specified port number. The number of 
sessions carried over the port is the number of concurrent users to be supported 
plus one for the listen session the Connection Handler uses to accept connections 
from remote clients. If the TCP/IP implementation you are using requires the 
specification of the number of sessions that can be carried over a single port, you 
must ensure that the proper number of sessions have been defined. Failure to do so 
will result in a connection failure when a client application attempts to connect to 
the server.

The IP address and port number are specified in the service information field of 
the SERVICE INFO ENTRY parameter in the Server. Failure to define a correct 
IP address causes the Connection Handler Service (in the Server) to fail during 
initialization. Specification of a port number that has been assigned to another 
application causes unpredictable results for both the Server and the application 
that is using the port. 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    63



Chapter 6. Communication Configuration
The following example shows a TCP/IP communications compound address field:

TCP/119.23.1.2/5000

Selecting a Communications Option
Proper selection and configuration of a Connection Handler Service can have a 
dramatic affect on query performance. If you are accessing an OS/390 Server 
locally, then CrossAccess recommends you use a Cross Memory Connection 
Handler Service. If your application is accessing a Server remotely you need to 
consider the following options in order to obtain the best query performance.

Bandwidth

The more bandwidth that is available the faster a query will be processed. This is 
especially true when the number of concurrent users is large. If the client 
applications are physically close, use of an ESCON channel is recommended. For 
clients that are farther away, use of ATM or frame relay is recommended. For dial-
up clients, use of ISDN or the fastest modem that is available is recommended.

TCP/IP Use Of Hostnames vs. IP 
Addresses

Using a hostname requires the availability of a configured local HOSTS file or a 
domain name server. If a domain name server is involved, then there is some 
overhead required to resolve the HOST name to the correct IP address. However, 
CrossAccess recommends the use of hostnames in remote client configuration 
files for readability and ease of future configuration changes.

Specifying a hostname for the Server’s SERVICE INFO ENTRY for the 
Connection Handler Service that the remote clients will use to connect to the 
Server does not affect overall Server performance. CrossAccess recommends 
using hostnames for Server Connection Handler Service configuration since it 
makes it easier to verify that the remote clients are communicating with the 
correct OS/390 Initiator instance.

Using hostnames also makes it easier to change IP addresses if the environment 
changes. If hostnames are used, frequently the Server/remote clients will not have 
to be reconfigured. eXadas can be brought down and the network administrator 
can change the IP address for a hostname in the OS/390 and client domain name 
64 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 6. Communication Configuration
server(s). When the Server is restarted it will automatically listen on the new IP 
address for connection requests from remote clients. When a remote client 
connects to the Server it will automatically use the new IP address that has been 
assigned to the hostname.

Server Configuration
This section describes how to configure a Server to allow remote access from 
client applications. Step-by-step instructions on how to configure Cross Memory, 
IBM MQ Series, and TCP/IP connectivity are provided.

WARNING: Remote access can only be configured after your network administrator has set up 
the network infrastructure to allow remote clients to communicate with the 
OS/390 host system.

Cross Memory

To configure the server for Cross Memory:

1. Edit the Server master configuration member (SCACCONF member 
CACDSCF). 

NOTE: All sample JCL, configuration files, and sample application programs 
referenced in this chapter can be found in the SCACSAMP and 
SCACCONF libraries included with your eXadas software shipment.

The sample master configuration member supplied contains default parameter 
values for the configuration parameters that are required for Server 
installation verification. The sample master configuration member also 
contains a number of SERVICE INFO ENTRIES that are commented out. 
These SERVICE INFO ENTRIES are for use by the eXadas sample 
application (CACCLNT). Once fully-activated, you will be able to access the 
eXadas database/files both locally and remotely.

2. Activate the default Cross Memory Connection Handler Service.

Uncomment the SERVICE INFO ENTRY for the Cross Memory Connection 
Handler Service. This SERVICE INFO ENTRY can be identified by the 
comments in the master configuration member. 

In the task data field the name of the Cross Memory compound address 
(XM1/data space/queue names) that the Connection Handler Service uses to 
communicate with client applications is specified. In the sample, the queue 
name is CAC. This name must also be specified in the local client’s 
configuration file. The data space/queue name pair must be unique for each 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    65



Chapter 6. Communication Configuration
configured connection with a maximum length of four characters for each 
field.

3. Save the master configuration member.

The Server is now configured for Cross Memory communication. In order for the 
Server to pick up the new definition you must stop/start the Server. Alternately, 
you can use the MTO interface to activate the connection.

IBM MQ Series

The following steps describe how to configure the Server to support IBM MQ 
Series communications from a local OS/390 client or a remote client application.

1. Modify the Server JCL

You may have to modify the eXadas-supplied sample JCL for the Server. Any 
OS/390 component using MQ Series must have access to the following MQ 
Series libraries:

• thlqual.SCSQANLx and

• thlqual.SCSQAUTH

where thlqual is replaced with the high-level qualifier for your MQ Series 
installation and x is replaced with the language letter to be used (probably E).

If these libraries are globally available (in LPA) then no JCL modifications 
are required. Otherwise the eXadas Server/Enterprise Server must have the 
previous two libraries concatenated into the STEPLIB DD statement for the 
first step in the Server’s JCL (EXEC PGM=CACCNTL). 

NOTE: If you are planning to configure CACCLNT to use MQ Series, the 
above libraries must also be accessible. If the libraries are not 
globally available modify the JCL and concatenate the MQ Series 
libraries on the STEPLIB DD statement.

2. Obtain the name of the Local Queue name that the Server will use.

Contact your MQ Series administrator and obtain the names set up for use by 
eXadas. A different Local Queue name is required for each MQ Series 
Connection Handler Service that you configure in the Server.

3. Edit the Server master configuration member (SCACCONF member 
CACDSCF)

The sample master configuration member supplied contains default parameter 
values for the key configuration parameters that are required to execute a 
Server. The sample master configuration member also contains a set of 
SERICE INFO ENTRIES that are commented out. These SERVICE INFO 
ENTRIES apply to the eXadas sample applications. Once fully activated, you 
will be able to access eXadas database/files both locally and remotely.

4. Activate the IBM MQ Series Connection Handler Service
66 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 6. Communication Configuration
Uncomment the SERVICE INFO ENTRY for the IBM MQ Series Connection 
Handler Service. This SERVICE INFO ENTRY can be identified by the 
comments in the master configuration member.

The last field in the SERVICE INFO ENTRY (the task data field) parameter 
specifies the name of the local queue used to accept connections from local 
and remote client applications. This name, in addition to a model queue name, 
must also be specified in the local or remote client’s configuration file on the 
DATASOURCE parameter.

For more information on the SERVICE INFO ENTRY parameter see 
Appendix A, “Configuration Parameters.”

5. Save the master configuration member.

The Server is now configured for IBM MQ Series connectivity. In order for the 
Server to pick up the new Connection Service Handler definition you must stop 
and restart the Server.

TCP/IP

To configure the server to support TCP/IP communications from a remote 
client application:

1. Obtain the name/IP address of the OS/390 machine and the port number that 
the Server will use.

Contact your network administrator and obtain the name or IP address of the 
OS/390 system that the server is running on. Also obtain the port number or 
service name that has been assigned for use by eXadas. A separate service 
name/port number is required for each TCP/IP Connection Handler Service 
that you configure in the Server.

2. Edit the Server master configuration member (SCACCONF member 
CACDSCF). 

The sample master configuration member supplied contains default parameter 
values for the key configuration parameters that are required to execute a 
Server. The sample master configuration member also contains a set of 
SERVICE INFO ENTRIES that are commented out. These SERVICE INFO 
ENTRIES are for the eXadas sample applications. Once fully activated, you 
will be able to access the eXadas database/files both locally and remotely.

3. Activate the TCP/IP Connection Handler Service.

Uncomment the SERVICE INFO ENTRY for the TCP/IP Connection Handler 
Service. This SERVICE INFO ENTRY can be identified by the comments in 
the master configuration member.

The last two fields in the SERVICE INFO ENTRY (the task data field) 
parameter specify the name/IP address of the OS/390 host machine and the 
service name/port number that is used to accept connections from remote 
client applications. The same name/IP address and service name/port number 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    67



Chapter 6. Communication Configuration
must also be specified in the remote client’s configuration file on a DATA 
SOURCE parameter.

For more information on the SERVICE INFO ENTRY parameter see 
Appendix A, “Configuration Parameters.”

NOTE: The port number or service name must not be in use by any other 
application, and should be greater than 1024. (The port numbers 1 
through 1024 are reserved by convention for well-known TCP/IP 
systems services.)

If your OS/390 TCP/IP system is using off-load gateways ensure that 
the IP address that is specified reflects the IP address of the OS/390 
TCP/IP stack, not the address of an off-load gateway device’s IP 
stack.

If you are using Interlink TCP/IP then the hostname must be 
specified as an IP address in dot-decimal notation and must be all 
zeros (000.000.000.000). See your Interlink documentation for 
information on configuring a server application.

4. Save the master configuration member.

You have completed configuring the Server for TCP/IP connectivity. For the 
Server to pick up the new Connection Handler Service definition you need to stop 
and restart the server. Alternately, you can use the MTO interface to activate the 
Connection Handler Service. For more information on using the MTO interface to 
perform dynamic configuration, see Chapter 10, “Server Operations.”
68 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



7

SQL Security

Introduction to SQL Security
Security of your data is of primary importance, particularly in an SQL-based 
DBMS, because interactive SQL makes database access very easy. The security 
requirements of production databases can include such things as data in any given 
table accessible to some users, but denied to others and some users allowed to 
update data in a table, while others are only able to view data.

SQL security provides protection for these scenarios. This chapter describes:

• “eXadas Security Concepts,” on page 70,

• “User Types,” on page 70,

• “Database Objects,” on page 71,

• “Defining User Privileges,” on page 72,

• “Authorization Requirements,” on page 81,

• “SQL Security and the eXadas SAF Exit,” on page 82, and

• “Summary,” on page 83.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 69



Chapter 7. SQL Security
eXadas Security Concepts
SQL security in eXadas is similar to DB2 security. Implementing security and 
enforcing security restrictions are the responsibility of the DBMS software. SQL 
defines an overall framework for database security and SQL statements are used 
to specify security access and restrictions. 

There are several key concepts to understanding SQL security:

• Users are the actors in the database. When the DBMS retrieves, inserts, 
deletes, or updates data, it does so on behalf of a user or group of users. The 
DBMS permits or denies user actions depending on which user makes the 
request. eXadas allows you to define users and user groups based on five user 
types.

• Database objects are the items to which SQL security can be applied. 
Security is usually applied to tables, views, and stored procedures. Most users 
have permission for certain database objects, but are denied access to others.

• Privileges are the actions that a user is permitted to carry out for a particular 
database object. For example, a user may have permission to SELECT and 
INSERT rows in one table, but lack permission to DELETE or UPDATE rows 
in that table. These privileges are allowed or disallowed by using the GRANT 
and REVOKE SQL statements.

• SQL Security and the SAF Exit work together in eXadas to ensure that the 
user ID and its password are checked prior to allowing access to particular 
database objects.

• Enabling SQL Security in eXadas is required since eXadas is delivered with 
Security completely disabled. 

These concepts are described in detail in the remainder of this chapter.

User Types
Each user or group of users in the database is assigned a user ID that identifies the 
user to the DBMS. The user ID is the heart of security in SQL. In eXadas, each 
user ID is associated with a particular user type. 

There are five categories of user types you may assign in eXadas:

• SYSADM. This is the system administrator and has privileges for all objects 
including the ability to grant authorizations to other users. The first user to run 
the Meta Data Utility is granted SYSADM authority. See “Summary,” on 
page 83, for additional information about enabling security.

• SYSOPR. This user type has remote operator privileges to display and 
manage an active Server. 
70 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 7. SQL Security
• DISPLAY. This user type has remote operator privileges for display 
commands only on an active Server.

• DBADM. This user type has mapping/VIEW creation privileges for specific 
database types. 

• PUBLIC. Limited to privileges explicitly granted to their user names or to 
PUBLIC.

User types are assigned to individual users or groups of users by the SQL GRANT 
command of the type authority (GRANT SYSADM TO user_or_group_name, 
GRANT SYSOPR TO user_or_group_name, GRANT DBADM ON DATABASE 
database_name to user_or_group_name, etc.). The user ID determines whether the 
statement will be permitted or prohibited by the DBMS. In production databases, 
user IDs are assigned by the database administrator. For additional information 
about the user privileges, see “Defining User Privileges,” on page 72.

Database Objects
Catalog database types are database objects to which security can be applied. In 
order to manage or secure the eXadas Meta Data Utility for mapping purposes, the 
following implicit database names were added to the system catalogs. These 
system catalogs map one-to-one with the eXadas Data Savants.

NOTE: The $CFI type does not map to a Data Savant because it is the SYSTEM 
CATALOG.

The eXadas catalog database types are:

• $ADABAS for ADABAS database mappings. 

• $CFI for SYSTEM CATALOG.

• $DATACOM for Datacom database mappings. 

• $IDMS for IDMS database mappings. 

• $IAM for IAM database mappings.

• $IMS for IMS database mappings.

• $SEQUENT for Sequential database mappings.

• $SP for Stored Procedure definitions.

• $VSAM for VSAM database mappings.

Database types are specified in the GRANT DBADM SQL command. For 
example:

GRANT DBADM ON DATABASE $IMS TO USER1
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    71



Chapter 7. SQL Security
For eXadas, users mapping tables must have SYSADM authority to run the Meta 
Data Utility as the Meta Data Utility does not have database level security access 
checking. DBADM granting is only used for DROP commands.

Defining User Privileges
Privileges are the set of actions that a user can carry out against a database object. 
Privileges are defined for users with the SQL commands GRANT and REVOKE. 
GRANT assigns one or more privileges to specific users. REVOKE removes one 
or more privileges from specific users. eXadas allows you to GRANT or 
REVOKE the following privileges for a user:

• System,

• Database,

• Stored Procedures, and

• Tables or Views.

GRANT and REVOKE statements can be issued in the Meta Data Utility or 
issued interactively. They are executable statements that can be dynamically 
prepared.

A GRANT is the granting of a specific privilege by a specific grantor to a specific 
user. By the same token, a REVOKE is the revoking of specific privileges by a 
specific grantor from a specific user, with the restriction that a privilege can only 
be REVOKEd if it has first been GRANTed.

System Privileges

System privileges allow or deny access to a specific set of catalogs within a 
Server. The syntax for a GRANT or REVOKE of user types for system privileges 
is shown in the figure that follows.
72 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 7. SQL Security
Figure 10:  GRANT/REVOKE System Privileges Syntax Diagram

The statements and their descriptions are included in the table that follows.

Table 2: GRANT/REVOKE System Privileges Syntax Statement Descriptions

Statement Description

GRANT GRANT privileges to user IDs or groups of user IDs.

REVOKE REVOKE privileges from user IDs or groups of user IDs. 

DISPLAY GRANT/REVOKE the privileges to remotely issue all forms of 
the DISPLAY command to a Server.

SYSOPR GRANT/REVOKE the privilege to remotely issue all commands 
to a Server including the commands to start/stop services and 
shutdown the Server. 

NOTE: Commands issued from the system console are not 
secured.

SYSADM GRANT/REVOKE system administrator authority.

TO authorization-name GRANT authority to a particular user or group of users.

FROM authorization-name REVOKE authority from a particular user or group of users.

PUBLIC GRANT/REVOKE authority to all users or groups of users on a 
system.

,

GRANT DISPLAY TO authorization-name

REVOKE SYSOPR

SYSADM

FROM PUBLIC

WITH GRANT OPTION (1)

BY ALL

authorization-name

,

(1) GRANT ONLY
(2) REVOKE ONLY (only revokes privileges granted by that user)

(2)
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    73



Chapter 7. SQL Security
Database Privileges

You can GRANT or REVOKE specific privileges within a particular database. 
The syntax for GRANTing/REVOKEing database privileges for the DBADM 
user type is shown in the following figure.

Figure 11:  GRANT/REVOKE Database Privileges  Syntax Diagram

WITH GRANT OPTION GRANT authority to a particular user or group of users to 
GRANT authority to other users or other groups of users in the 
system.

Although this option can be specified when granting the 
SYSADM privilege, it has no effect on the SYSADM’s 
privileges as the SYSADM privilege has ALL access privileges 
available in the Server.

BY ALL authorization-name BY revokes each named privilege that was explicitly granted to 
some named user or group of users by one of the named grantors. 
Only an authorization ID with SYSADM authority can use BY, 
even if the authorization ID names only itself in the BY clause.

ALL then revokes each named privilege from all named users or 
group of users.

authorization-name lists one or more authorization IDs of users 
or group of users who were the grantors of the privileges named. 

Do not use the same authorization ID more than once. Each 
grantor listed must have explicitly granted some named privilege 
to all named users or group of users.

Table 2: GRANT/REVOKE System Privileges Syntax Statement Descriptions

Statement Description

GRANT DBADM ON DATABASE database-name

,

REVOKE

TO authorization-name

,

FROM PUBLIC WITH GRANT OPTION (1)
74 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 7. SQL Security
The statements and their descriptions are included in the table that follows.

Table 3: GRANT/REVOKE Database Privileges Syntax Statement Descriptions

Statement Description

GRANT DBADM GRANT database administrator authority to a user.

REVOKE DBADM REVOKE database administrator authority to a user.

GRANT ON DATABASE database-
name

Identifies database types on which privileges are to be 
GRANTed. For each named database types, the grantor must 
have all the specified privileges with the GRANT option. This 
privilege is used to secure the mappings of tables and dropping 
of mapped tables. The types are as follows:

• $ADABAS (for Adabas mappings), 

• $CFI (for system catalog mappings)

• $DATACOM (for Datacom mappings), 

• $IAM (for IAM mappings),

• $IDMS (for IDMS mappings), 

• $IMS (for IMS mappings),

• $SEQUENT (for Sequential),

• $SP (for Stored Procedures), and

• $VSAM (for VSAM).

REVOKE ON DATABASE 
database-name

Identifies database type on which you are revoking the 
privileges. For each database type you identify, you (or the 
indicated grantors) must have granted at least one of the 
specified privileges on that database to all identified users 
(including PUBLIC, if specified). The same database type must 
not be identified more than once. The database-names are the 
same as those listed for the GRANT ON DATABASE database-
name option.

TO authorization-name

      PUBLIC

Specifies to what authorization IDs the privileges are granted.

authorization-name lists one or more authorization IDs. 

FROM authorization-name

           PUBLIC

Specifies to what authorization IDs the privileges are revoked. 
authorization-name lists one or more authorization IDs.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    75



Chapter 7. SQL Security
Stored Procedures Privileges

Stored Procedure privileges allow or deny access to a particular stored procedure. 
The syntax for a GRANT or REVOKE of user types for stored procedure 
privileges is shown in the figure that follows.

WITH GRANT OPTION Allows the named users to grant the database privileges to 
others. Granting an administrative authority with this option 
allows the user to specifically grant any privilege belonging to 
that authority. If you omit WITH GRANT OPTION, the named 
users cannot grant the privileges to others unless they have that 
authority from some other source.

BY ALL authorization-name BY revokes each named privilege that was explicitly granted to 
some named user or group of users by one of the named grantors. 
Only an authorization ID with SYSADM authority can use BY, 
even if the authorization ID names only itself in the BY clause.

ALL then revokes each named privilege from all named users or 
group of users.

authorization-name lists one or more authorization IDs of users 
or group of users who were the grantors of the privileges named. 

Do not use the same authorization ID more than once. Each 
grantor listed must have explicitly granted some named privilege 
to all named users or group of users.

Table 3: GRANT/REVOKE Database Privileges Syntax Statement Descriptions

Statement Description
76 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 7. SQL Security
Figure 12:  GRANT/REVOKE Stored Procedures Privileges Syntax Diagram

The statements and descriptions are included in the table that follows.

Table 4:  GRANT/REVOKE Stored Procedure Syntax Statement Descriptions

Statement Description

GRANT EXECUTE Grants authority to execute a stored procedure.

REVOKE EXECUTE Revokes authority to execute a stored procedure.

ON PROCEDURE 
procedure-name

Identifies the procedure for which you are granting or revoking 
privileges.

TO authorization-name

      PUBLIC

Specifies to what authorization IDs the privileges are granted.

authorization-name lists one or more authorization IDs. 

FROM authorization-name

           PUBLIC

Specifies to what authorization IDs the privileges are revoked. 
authorization-name lists one or more authorization IDs.

WITH GRANT OPTION Allows the named users to grant the stored procedure privileges to 
others. Granting an administrative authority with this option allows the 
user to specifically grant any privilege belonging to that authority. If 
you omit WITH GRANT OPTION, the named users cannot grant the 
privileges to others unless they have that authority from some other 
source.

GRANT EXECUTE

 
REVOKE

TO authorization-name

,

FROM PUBLIC WITH GRANT OPTION (1)

ON procedure-name
PROCEDURE ,

BY ALL

authorization-name

(1) GRANT ONLY
(2) REVOKE ONLY (only revokes privileges granted by that user)

(2)
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    77



Chapter 7. SQL Security
Table and View Privileges

Table and View privileges allow or deny access to specific tables and views. 

The syntax for a GRANT of user types for table or view privileges is shown in 
Figure 13: “GRANT Table and View Privileges Syntax Diagram ,” and described 
in Table 5, “GRANT Table and View Syntax Statement Descriptions.” The syntax 
for a REVOKE of user types for table or view privileges is shown in Figure 14: 
“REVOKE Table and View Privileges Syntax Diagram,” and described in Table 6, 
“REVOKE Table and View Syntax Statement Descriptions.”

Figure 13:  GRANT Table and View Privileges Syntax Diagram

The statements and descriptions are included in the table that follows.

NOTE: ON table-name/view-name can be specified as a list of tables and views, separated 
by commas. The same is true for authorization name. 

For example:

GRANT SELECT ON TABLE SYSIBM.SYSTABLES, SYSIBM.SYSCOLUMNS, 
SYSIBM.SYSPROCEDURES TO USER1, USER2, USER3, USER4;

GRANT ALL
PRIVILEGES

,

DELETE

INSERT

SELECT

UPDATE

ON
TABLE

table-name

view-name

TO authorization-name

PUBLIC

,

,

78 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 7. SQL Security
Table 5: GRANT Table and View Syntax Statement Descriptions

Statement Description

GRANT ALL PRIVILEGES Grants all table or view privileges for which you have GRANT 
authority, for the tables and views named in the ON clause.

DELETE Grants privileges to use the DELETE statement.

INSERT Grants privileges to use the INSERT statement.

SELECT Grants privileges to use the SELECT statement.

UPDATE Grants privileges to use the UPDATE statement.

ON TABLE table-name

                  view-name

Names the tables or views on which you are granting the 
privileges. The list can be a list of table names or view names, 
or a combination of the two.

TO authorization-name

      PUBLIC

Specifies to what authorization IDs the privileges are granted.

authorization-name lists one or more authorization IDs. 

FROM authorization-name

           PUBLIC

Specifies to what authorization IDs the privileges are revoked. 
authorization-name lists one or more authorization IDs.

WITH GRANT OPTION Allows the named users to grant the table/view privileges to 
others. Granting an administrative authority with this option 
allows the user to specifically grant any privilege belonging to 
that authority. If you omit WITH GRANT OPTION, the named 
users cannot grant the privileges to others unless they have that 
authority from some other source.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    79



Chapter 7. SQL Security
Figure 14:  REVOKE Table and View Privileges Syntax Diagram

The statements and descriptions are included in the table that follows.

Table 6: REVOKE Table and View Syntax Statement Descriptions

Statement Description

REVOKE ALL 
PRIVILEGES

Revokes all table or view privileges for which you have GRANT 
authority, for the tables and views named in the ON clause.

DELETE Revokes privileges to use the DELETE statement.

INSERT Revokes privileges to use the INSERT statement.

SELECT Revokes privileges to use the SELECT statement.

UPDATE Revokes privileges to use the UPDATE statement.

ON TABLE table-name

                  view-name

Names the tables or views on which you are granting the privileges. 
The list can be a list of table names or view names, or a combination of 
the two.

REVOKE ALL
PRIVILEGES

,

DELETE

INSERT

SELECT

UPDATE

ON
TABLE

table-name

view-name

FROM authorization-name

PUBLIC

,

,

BY authorization-name

ALL

,

80 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 7. SQL Security
Authorization Requirements
In order to issue GRANT, REVOKE, SELECT, CALL, INSERT, UPDATE, or 
DELETE statements, users must have proper authorization. The following is a list 
of the user authorizations required to issue each of these statements.

FROM authorization-name

           PUBLIC

Specifies to what authorization IDs the privileges are revoked. 
authorization-name lists one or more authorization IDs.

BY ALL authorization-name BY revokes each named privilege that was explicitly granted to some 
named user or group of users by one of the named grantors. Only an 
authorization ID with SYSADM authority can use BY, even if the 
authorization ID names only itself in the BY clause.

ALL then revokes each named privilege from all named users or group 
of users.

authorization-name lists one or more authorization IDs of users or 
group of users who were the grantors of the privileges named. 

Do not use the same authorization ID more than once. Each grantor 
listed must have explicitly granted some named privilege to all named 
users or group of users.

Table 7: Authorization Requirements for SQL Statements

Statement Authorization Required

GRANT To GRANT a privilege, you must have SYSADM authority or you 
must have been granted the privilege itself with the WITH GRANT 
option.

REVOKE To REVOKE a privilege, you must have SYSADM authority or be the 
user who originally granted the privilege being revoked. The BY ALL 
clause requires SYSADM authority because you are revoking 
privileges granted by users other than yourself.

SELECT SYSADM authority or specific privilege is required; SELECT 
authority on all tables and views referenced in the SELECT statement.

CALL SYSADM authority or specific privilege is required; EXECUTE 
authority on the procedure being called.

Table 6: REVOKE Table and View Syntax Statement Descriptions

Statement Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    81



Chapter 7. SQL Security
SQL Security and the eXadas SAF Exit
SQL Security is designed to be used in conjunction with the eXadas SAF security 
exit. SQL security only validates which user IDs have access to which catalog 
information. It does not validate that the user names are valid users of the system. 
It also does not validate user passwords. The SAF Exit is required to validate 
passwords at Server connection. Explicit resource checking between user names 
and system resources, such as VSAM files or IMS PSBs, can be disabled in the 
SAF Exit if SQL security is used.

Use both types of security to ensure that security is maintained. See “Security: 
SAF Exit Specifics,” on page 220, for additional information about the SAF Exit 
and how it can be used to implement external security to validate user passwords.

Activation of the SAF Exit also allows you to administer SQL security at a group 
level as opposed to the individual user (ID) level. The SAF Exit has been 
modified to return a group name when it is called to perform initialization 
processing. This name, in addition to the user ID, is used to determine whether the 
user is authorized to perform the operation they are attempting.

The supplied SAF Exit returns the ACEEGRPN field from the ACEE created 
during initialization processing, if the ACEEGRPL field (in the ACEE) is not 
zero. The value in ACEEGRPN is the default group name for the user ID that was 
passed to the SAF Exit. You can customize this exit if you want it to return a 
different name.

Security administration is easier since you only need to GRANT privileges to the 
group name and all users associated with that group name automatically pick up 
those privileges. Likewise, to remove a privilege, just remove it from the group 
name and then all users associated with that group name also lose that privilege. 
When you need to authorize access to new users, use your external security 
package and assign the new user to the default group name.

INSERT SYSADM authority or specific privilege is required; INSERT 
authority on the Table being inserted into.

UPDATE SYSADM authority or specific privilege is required; UPDATE 
authority on the Table being updated and SELECT authority on all 
tables reference in the WHERE clause.

DELETE SYSADM authority or specific privilege is required; DELETE 
authority on the table in which rows are to be deleted; SELECT 
authority on all tables referenced in the WHERE clause.

Table 7: Authorization Requirements for SQL Statements

Statement Authorization Required
82 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 7. SQL Security
Additionally, in this release of eXadas, the SMF Exit has been enhanced to be 
called from the Query Processor when an authorization violation is detected. The 
eXadas-supplied SMF Exit generates an SMF record that logs the user ID, type of 
authorization failure, and the name of the object for which authorization failed. 
These records use the same SMF record type as the standard accounting record 
generated by previous versions of the SMF Exit. The USRTYPE field contains the 
type of authorization violation and instead of containing the aggregate CPU time, 
a new field (OBJNAME) has been added to the record definition that identifies the 
name of the object for which authorization failed.You can modify the sample exit 
to generate a different type of SMF record if desired.

See “Accounting: SMF Exit Specifics,” on page 228, for additional details on how 
the SMF Exit works.

Summary
The SQL language is used to specify the security restrictions for an SQL-based 
database. The SQL security is built around privileges that can be granted to 
specific users and to particular database objects, like tables or views. Views can be 
used to restrict access to data for specific users. All of this is accomplished 
through GRANTing to or REVOKEing privileges from particular users or groups 
of users.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    83



Chapter 7. SQL Security
84 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



8

Mapping Data

Introduction to Mapping Data
This chapter discusses the following topics:

• “The Data Mapping Process,” on page 86,

• “DataMapper,” on page 87,

• “Meta Data Utility,” on page 88, and

• “Advanced Mapping Considerations,” on page 89.

NOTE: For information on why you would want to map data, see Chapter 1, “Overview” 
and Chapter 2, “Concepts,” in the eXadas OS/390 Getting Started Guide.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 85



Chapter 8. Mapping Data
The Data Mapping Process
The data mapping process involves gathering information about your existing 
database(s) and assigning SQL names to the data. The information is stored in a 
DB2-like system catalog where it can be queried in the same fashion as a DB2 
catalog itself. The following figure shows the process of mapping data with 
eXadas.

Figure 15:  Mapping Data With eXadas

NOTE: The DataMapper contains embedded FTP support to facilitate file transfer to and 
from the mainframe.

The eXadas DataMapper is a Windows application that takes information about 
your databases and generates Meta Data Grammar into an ASCII text file. The 
Meta Data Grammar is then processed by a Meta Data Utility to populate the 
DB2-like catalog files. The catalog files contain the DB2 system tables. These 
files are used by the server’s Query Processor component to identify tables and 
columns referenced in SQL statements.

In addition to DB2 table and column information, these catalogs also store 
internal information such as OS/390 file names and record offsets necessary to 
convert data into SQL column data. These database-specific fields are not visible 
to the user in the catalog interface, as the DB2 catalogs themselves do not have 
column definitions for this type of information.

The Meta Data Utility is a program that runs on the server host and populates the 
DB2-like catalogs. The input to this utility is a text file containing grammar for 
defining DB2-like tables and columns and database-specific information 
necessary to successfully convert database fields into SQL columns. While it is 
possible to key in this grammar using any standard text editor, the process is 
extremely time-consuming and error prone. Therefore, it is recommended that you 
use the DataMapper application to create all Meta Data Grammar. This 
application can quickly convert COBOL copybooks into Meta Data Utility 
Grammar. Even if you do not have copybooks for your application, the 
DataMapper is a full function editor that will assist you to define tables and 
columns as well as to generate syntactically-correct Meta Data Grammar for input 
to the Meta Data Utility.
86 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 8. Mapping Data
DataMapper
This section describes the DataMapper utility and how to use the utility to map 
data to relational views.

General Data Mapping

The eXadas DataMapper is a Microsoft Windows application that automates many 
of the tasks required to create a DB2-equivalent logical table for data structures. 
The DataMapper accomplishes this by creating Meta Data Grammar from existing 
data definitions (copybooks and DBDs). The Meta Data Grammar is used as input 
to the eXadas Meta Data Utilities to create Meta Data Catalogs that define how the 
data structure is mapped to an equivalent logical table. The Meta Data Catalogs 
are used by a server to facilitate translation of the data from the data structure into 
relational columns.

The DataMapper import utilities create initial logical tables from COBOL 
copybooks and IMS DBD source. You then use the DataMapper graphical user 
interface to refine these initial logical tables to create as many views of your data 
as your facility requires.

The DataMapper functions include:

• Creating data catalogs. A data catalog is a collection of tables for a particular 
database type, for example VSAM or IMS.

• Creating a table. A table is created by mapping one or more data structures 
from a data structure into a single eXadas table.

• Creating a column (optional). A column can represent one or more data items 
in the corresponding data structure. Columns can be defined manually or 
automatically created when importing a copybook.

• Importing a copybook. A copybook refers to a COBOL copybook that is 
transferred from the mainframe to the workstation for use by the DataMapper. 
Importing COBOL copybooks automatically creates column definitions.

• Loading DBDs for reference (IMS only). DBD refers to data base definitions 
that are transferred from the mainframe to the workstation for use by the 
DataMapper. This allows the DataMapper to use the information as reference 
when creating relational data. The DataMapper does not store IMS DBD 
source, so you must reload the source each time you reopen a repository.

• Generating Meta Data Grammar. Meta Data Grammar, also known as USE 
statements or USE Grammar, is generated by the DataMapper for all of the 
tables in a specific data catalog. When Meta Data Grammar has been created, 
it is subsequently transferred from the workstation to the mainframe. It is 
required as input to the eXadas Meta Data Utility that is run on the mainframe 
to create tables used as relational-equivalent data maps for their corresponding 
non-relational files.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    87



Chapter 8. Mapping Data
• File transfer of data from the workstation to the mainframe. The DataMapper 
facilitates file transfers from the workstation to the mainframe through its 
built-in FTP facility. Transfer of copybooks or DBD source and generated 
USE Grammar can be performed.

• Creating a relational view. By transferring the Meta Data Grammar to the host 
system and running the Meta Data Utility with this input, you are able to 
create a relational view from non-relational data. This relational view is 
ultimately used by a server to enable SQL access to the mapped data structure.

• Creating an index. An eXadas index is a logical SQL index that maps an 
existing physical index on a target database or file system, for example IMS 
and VSAM. A DataMapper index is the mapping of an eXadas index.

The tutorial chapters of the eXadas DataMapper Guide include step-by-step 
information on how to use the DataMapper utility to map data to a relational view.

Meta Data Utility
When the data mapping process is complete, Meta Data Grammar must be 
generated for input to the Meta Data Utility. This grammar is passed as input to 
the utility for updating the DB2-like Meta Data Catalogs on the system running 
the Server. Since the DataMapper repository stores all information gathered at 
mapping time, any changes or additions to the mapping can be easily made in the 
DataMapper and regenerated for updating the system catalog information.

The DataMapper generates Meta Data Utility Grammar for each defined data 
catalog separately. Meta data catalogs on a Server host can include tables defined 
for as many DataMapper data catalogs as desired. Each run of the Meta Data 
Utility only updates those tables for which Meta Data Grammar information is 
supplied. For example, if you have built the host Meta Data Catalog from 3 
separate DataMapper data catalogs, you can update the tables for one of the data 
catalogs by changing the tables and regenerating the Meta Data Grammar for that 
data catalog. You then run the Meta Data Utility with the new generated output to 
update only those table definitions in the DataMapper data catalog. Table 
definitions contained in the host Meta Data Catalog from other DataMapper data 
catalogs will remain unchanged.

For more information on the Meta Data Utility, see Chapter 13, “Utilities.”
88 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 8. Mapping Data
Advanced Mapping Considerations
This section describes the considerations you should make prior to mapping 
databases into SQL tables and columns.

Before mapping any data, CrossAccess strongly recommends that you gather and 
fully understand the end-user application’s requirements for data. As in building 
any end-user application, analysis is required to ensure the appropriate correlation 
between existing application data and the new uses you will be creating for the 
data. Given existing non-relational data, there are numerous ways to map data for 
the use of new applications. Attempts to map data simply by importing COBOL 
copybooks into the eXadas DataMapper application are likely to produce 
mappings that are unwieldy or totally unusable, depending upon the complexity of 
the copybooks.

This section includes the following topics:

• “Defining Indexes,” on page 89,

• “Occurs Processing,” on page 92, and

• “IMS Segment Mapping Considerations,” on page 96.

Defining Indexes

Indexes will dramatically speed up queries that contain qualification information 
on indexed data. In most cases, indexes must be defined to eXadas during data 
mapping before they can be used by the server.

Most non-relational databases include support for indexing. eXadas also supports 
the definition of indexes in the DataMapper and in the generated Meta Data 
Grammar. 

NOTE: eXadas does not actually index non-relational data, it only utilizes existing 
indexes on the data. Logical indexes defined in the DataMapper must match 
existing physical indexes placed on the underlying database system, itself.

After defining the columns for a logical table, you can add index definitions to the 
table to map existing indexes on the underlying non-relational data. Each logical 
index consists of an SQL name for the index and a list of one or more columns that 
comprise the index. Like table and column definitions, index definitions also have 
database-specific information required at definition time. This information varies 
based on the underlying database type. 

Multi-Part Keys

Like DB2, eXadas supports index definitions that are made up of multiple fields in 
the database record. These fields must first be mapped as logical SQL columns, 
which can then be referenced as index columns in an index definition. Generally, 
the Meta Data Utility automatically compares the column definitions, based on 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    89



Chapter 8. Mapping Data
their offset and length definitions, against the underlying database index to 
validate that the index definition exactly matches the database index.

In many cases, the columns comprising the index do not have to match one-for-
one the database field definitions implementing the index. For example, if a 12 
character database field is indexed, eXadas allows you to map the field as three 
CHAR(4) columns and then referencing these columns as an index. It is also 
possible to mix data types in the columns as long as the column definitions match 
the data type in the underlying database record. For example, a 12 byte index may 
be sub-defined as DECIMAL(7,2), followed by a CHAR(8) column, and then 
referenced in an index definition.

Optimization of queries using partial key information is automatically performed 
providing there is key information available for the first column referenced in the 
index definition. In cases where multiple indexes could potentially be used to 
optimize a query, precedence is given to any index that has qualification of the 
whole key over partial key information.

NOTE: Unlike DB2, eXadas supports re-mapping fields in a database multiple times. For 
example, an 8-byte character field can be mapped as a single 8-byte column and 
two 4-byte columns. If you re-map the columns that comprise an index, you must 
define a separate logical index definition for each re-mapping in order to ensure 
index optimization for all mappings.

VSAM Indexes

Index definitions on VSAM files can be performed on the primary index of a 
KSDS and on alternate indexes for any VSAM file. When defining a VSAM 
alternate index, the PATH name for the index must be supplied in the Meta Data 
Grammar in order to process the index at query execution time.

IMS Indexes

Index definitions for an IMS table must map either the primary index of HIDAM 
database or a secondary index on any IMS database. The key names in a primary 
index DBD cannot match the key names in a secondary index DBD. The mapped 
columns in an index are compared to the IMS FIELDs in a primary HIDAM index 
or XDFLD based on offset and length information to ensure that the index 
definition is valid. FIELDs in an IMS DBD can be subdivided into multiple 
column definitions as long as the columns map the complete underlying database 
FIELD and are listed in the index in the correct order. 

For example, in the DBD:

DBD   NAME=...
DATASET  DD1=...
SEGM     NAME=ROOT,PARENT=0,BYTES=20...
FIELD    NAME=FLD1,TYPE=C,BYTES=3,START=1
FIELD    NAME=FLD2,TYPE=C,BYTES=7,START=4
FIELD    NAME=FLD3,TYPE=C,BYTES=10,START=11
XDFLD    NAME=IDX1,SRCH=(FLD3,FLD2)...
...
90 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 8. Mapping Data
The columns mapping DBD FIELDS FLD3 and FLD2 might be:

FLD2 SOURCE DEFINITION ENTRY ROOT
 DATAMAP OFFSET 3 LENGTH 7 DATATYPE C
 USE AS CHAR(7),
FLD31 SOURCE DEFINITION ENTRY ROOT
 DATAMAP OFFSET 10 LENGTH 3 DATATYPE C
 USE AS CHAR(3),
FLD32 SOURCE DEFINITION ENTRY ROOT
 DATAMAP OFFSET 13 LENGTH 3 DATATYPE UP
 USE AS DECIMAL(5),
FLD34 SOURCE DEFINITION ENTRY ROOT
 DATAMAP OFFSET 16 LENGTH 4 DATATYPE C
 USE AS CHAR(4) 

The index definition for the XDFLD would be:

 USE INDEX IMS_INDEX ON IMS_TABLE
( FLD31, FLD32, FLD33, FLD2 )

WARNING: Some IMS indexes contain a different number of index entries than there are 
actual target segments in the database. Mapping these indexes can result in a 
different number of rows being retrieved when accessed through the index, rather 
than through the primary database DBD. These indexes include sparse indexes 
and indexes whose source data is derived from segments other than the target 
segment of the index. To ensure a consistent result set whenever accessing the 
logical table, CrossAccess strongly recommends that all access to the logical table 
be through the specified index whenever you are mapping these types of indexes. 
The PCBPREFIX parameter on the table can be used to make all table access use 
a PCB with the correct secondary index PROCSEQ.

IDMS Indexes 

By default, the Meta Data Utility automatically creates index definitions for 
SYSTEM owned sets indexing the first record of an IDMS mapped table. If the 
fields listed in the KEY IS clause of the index set definition are mapped as 
columns in the table definition, then SQL queries referencing these fields will 
automatically use the index. However, if any explicity USE INDEX statements are 
defined for a table, only those explicitly-defined indexes are used for SQL access.

If sub-fields or group-level fields of those listed in the KEY IS clause are mapped, 
then you must include an explicitly USE UNIQUE INDEX definition in the 
mapping grammar for the SQL queries to index access using these fields.

For example, PART-NUMBER is an index defined as follows:

ADD
SET NAME IS ...
  OWNER IS SYSTEM
  MEMBER IS RECORD1
    KEY IS(PART-NUMBER ASCENDING)...

Its record layout definition is:

03 PART-NUMBER
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    91



Chapter 8. Mapping Data
  05 PART-GROUP    PICXX.
  05 PART-NUM      PICX(5).

Its mapped columns include:

USE TABLE ...
PART_NUMBER SOURCE DEFINITION ENTRY
   RECORD1 PART-NUMBER
   USE AS CHAR(7),
PART_GROUP SOURCE DEFINITION ENTRY
   RECORD1 PART-GROUP
   USE AS CHAR(2),
PART_NUM SOURCE DEFINITION ENTRY
   RECORD1 PART-NUM
   USE AS CHAR(5),
.
.
.

By default, the following query will result in keyed access:

SELECT * FROM CAC.PARTS WHERE PART_NUMBER LIKE "01%";

The following query will not result in keyed access unless PART_GROUP and 
PART_NUM are explicitly defined as an index with a USE INDEX statement:

SELECT * FROM CAC.PARTS WHERE PART_GROUP = "01";

To ensure both index mappings can be used in SQL queries, the following USE 
UNIQUE INDEX definition must be defined when mapping the IDMS table:

USE UNIQUE INDEX index1 ON tablename (PART_NUMBER);
USE UNIQUE INDEX index2 ON tablename (PART_GROUP, PART_NUM);

Occurs Processing

Occurs processing for this release of eXadas is achieved by adding the following 
statements to the existing Meta Data Grammar.

• BEGINLEVEL starts the definition of a group of repeating fields.

• ENDLEVEL ends the definition of a group of repeating fields.

The begin and end level statement block column definitions that can occur more 
than one time in a data record. These groups of repeating fields are referred to as 
record arrays.

Record Arrays

A group of data items in a database that have multiple occurrences within a single 
record in the database are referred to as record arrays. For example, a record 
could be defined for an employee to include the employee’s dependent 
information (spouse and children) in the record. Since an employee may have 
92 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 8. Mapping Data
multiple dependents, you can declare an array of dependent information within the 
actual employee record by specifying a COBOL OCCURS clause. In the 
following example, an array of exactly 20 dependents has been declared in the 
record.

01  EMPLOYEE-RECORD.
05 EMP-LAST-NAME               PIC X(20).
05 EMP-FIRST-NAME              PIC X(20).
05 EMPSSN                      PIC 9(9).
......
05 DEPENDENTS-ARRAY OCCURS 20 TIMES 
10 DEP-SSN                   PIC 9(9).
10 DEP-NAME                  PIC X(20).
10 DEP-DOB                   PIC 9(6).
10 DEP-RELATIONSHIP-TO-EMPL  PIC X.

Another common record array construct defines variably recurring data. The 
record contains up to 20 occurrences of the array data. The actual number of 
occurrences is dependent on the value of some other data item. A variably 
recurring dependent array is defined as follows:

01 EMPLOYEE-RECORD.
05 EMP-LAST-NAME PIC X(20).
05 EMP-FIRST-NAME PIC X(20).
05 EMP-SSN PIC 9(9).
.......
05 NUMBER-OF-DEPENDENTS PIC 9(4) COMP.
05 DEPENDENTS-ARRAY OCCURS 1 TO 20 TIMES
   DEPENDING ON NUMBER-OF-DEPENDENTS.
10 DEP-SSN PIC 9(9).
10 DEP-NAME PIC X(20).
10 DEP-DOB PIC 9(6).
10 DEP-GENDER PIC X.
.......

An example of the Meta Data Grammar that maps a subset of the data items in the 
preceding COBOL copybook is:

USE TABLE CAC.EMPL .....

(
  /* COBOL Name EMP-SSN */
  EMP_SSN SOURCE DEFINITION
   DATAMAP OFFSET 40 LENGTH 9 DATATYPE C /* Zoned Decimal */
   USE AS CHAR(9),
  /* COBOL Name NUMBER-OF-DEPENDENTS */
  NUMBER_OF_DEPENDENTS SOURCE DEFINITION
   DATAMAP OFFSET 49 LENGTH 2 DATATYPE H 
   USE AS SMALLINT,  
 BEGINLEVEL 1 OFFSET 51 LENGTH 36 OCCURS 20
   DEPENDING ON COLUMN NUMBER_OF_DEPENDENTS,
  /* COBOL Name DEP-SSN */
  DEP_SSN SOURCE DEFINITION
   DATAMAP OFFSET 0 LENGTH 9 DATATYPE C
   USE AS CHAR(9),
  /* COBOL Name DEP-NAME */
  DEP_NAME SOURCE DEFINITION
   DATAMAP OFFSET 9 LENGTH 20 DATATYPE C
   USE AS CHAR(20),
 ENDLEVEL 1
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    93



Chapter 8. Mapping Data
)

The example only maps the employee’s social security number field, the COBOL 
depending on variable, the dependent social security number field, and the 
dependent name field. The items in the OCCURS clause DEPENDENTS-
ARRAY are contained within a BEGINLEVEL, ENDLEVEL block of statements. 
This identifies a group of data items that repeat. When converting this mapping 
from a COBOL record to SQL columns, eXadas takes each occurrence of the 
DEPENDENT-ARRAY and combines it with the non-array data items to create 
SQL rows. In this case, each occurrence of the array data items DEP-SSN and 
DEP-NAME is combined with the non-array data items EMP-SSN and 
NUMBER-OF-DEPENDENTS.

For example, if the record in the database for the employee SSN '123456789' 
contains three dependents, three distinct rows are returned for that particular 
record. 

The query:

SELECT EMP_SSN, NUMBER_OF_DEPENDENTS, DEP_SSN, DEP_NAME FROM 
CAC.EMPL WHERE EMP_SSN = '123456789';

returns the result set:

EMP_SSN   NUMBER_OF_DEPENDENTS  DEP_SSN   DEP_NAME
123456789        3              111223333 Depen1
123456789        3              222334444 Depen2
123456789        3              333445555 Depen3

eXadas does not support nested OCCURS DEPENDING ON definitions. In 
addition, you cannot define a table that contains fixed columns after an OCCURS 
DEPENDING ON construct.

Record arrays containing a fixed number of occurrences can include a NULL IS 
definition, which results in array occurrences being skipped as SQL ROW 
candidates at runtime. The NULL IS definition identifies a comparison value for 
the array itself or a column in the array that identifies an instance of the array as 
NULL. NULL instances of a record array are not returned as a row in the result set 
unless ALL instances of the array are NULL. If all instances of the array are 
NULL, then eXadas returns a single row for the non-array information in the 
record and the array data items, each set to NULL.

Multiple Record Arrays in a Single Database Record

If the record layout for a database contains multiple record arrays, these arrays can 
all be mapped into a single logical table providing they are not defined as COBOL 
OCCURS DEPENDING ON clauses. However, before mapping multiple arrays 
in a single logical table definition, it is important to understand the implication of 
multiple arrays on the result set.
94 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 8. Mapping Data
Returning to the example in the previous topic, assume that the employee record 
layout includes a second OCCURS clause as follows:

  01  EMPLOYEE-RECORD.
      ...
      05  DEPENDENTS-ARRAY OCCURS 20 TIMES.
      ...
      05  HOBBIES-ARRAY OCCURS 5 TIMES PIC X(10).

If you use the DataMapper COBOL copybook Import facility to create a table 
definition for this record layout, it will, by default, map both the DEPENDENTS-
ARRAY and HOBBIES-ARRAY into the same table.

Generally, this will not be the desired mapping as now the result set for a single 
record for the database will be the Cartesian product of the dependents array and 
the hobbies array, which is 100 rows for each database record.

In this case, it makes more sense to create multiple tables from the single record 
layout. Each table would include either the DEPENDENTS-ARRAY, or the 
HOBBIES-ARRAY, or possibly neither array if only employee information is 
desired.

Record Typing

Many COBOL record layouts contain layout information to map different record 
types within a single physical file. In these cases, converting these layouts to table 
definitions is not as simple as importing the COBOL copybook into the 
DataMapper. Whenever record types are defined in a copybook, create a separate 
table for each value the record type field can contain and import only the COBOL 
fields associated with a specified value into each table. 

Consider the following COBOL record layout:

   01  DATABASE-RECORD.
     05 RECORD-KEY    PIC X(8).
     05 RECORD-TYPE   PIC X.
        88 EMPLOYEE-RECORD  VALUE '1'.
        88 DEPENDENT-RECORD VALUE '2'.
        88 HOBBY-RECORD     VALUE '3'.
     05 EMPLOYEE-DATA.
        10 EMP-LAST-NAME    PIC X(20).
        10 EMP-FIRST-NAME   PIC X(20).
        10 EMP-SSN          PIC 9(9).
     05 DEPENDENT-DATA REDEFINES EMPLOYEE-DATA.
        10 DEP-SSN          PIC 9(9).
        10 DEP-NAME         PIC X(20).
        10 DEP-DOB          PIC 9(6).
        10 DEP-GENDER       PIC X.
     05 HOBBY-DATA REDEFINES EMPLOYEE-DATA.
        10 HOBBY-NAME       PIC X(10).

The most logical mapping for this record layout is to create a logical table for each 
of the three discrete record types in the file (EMPLOYEE, DEPENDENT, and 
HOBBY). In each case, the DataMapper can assist in the mapping by importing 
specific group level items EMPLOYEE-DATA, DEPENDENT-DATA, and 
HOBBY-DATA, rather than the complete copybook. For more information on 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    95



Chapter 8. Mapping Data
importing selected group items from a COBOL copybook, see the eXadas 
DataMapper Guide or its associated Help File.

WARNING: You must ensure that the WHERE clause only selects the proper record type for 
each table mapped. The following examples show different ways to retrieve 
Employee data:

SELECT * FROM CAC.EMPLOYEE WHERE RECORD_TYPE=’1’;

Alternately, a view could be defined for this table by using the following 
statement in the Meta Data Utility:

CREATE VIEW CAC.EMPLOYEE_INFO AS SELECT * FROM CAC.EMPLOYEE 
WHERE RECORD_TYPE = ‘1’;

The following query could then be used to retrieve the data:

SELECT * FROM CAC.EMPLOYEE_INFO;

IMS Segment Mapping Considerations

Each logical table that maps an IMS database represents a path of one or more 
segments in the database. The path is defined by a leaf segment and all segments 
up the parent chain to the root segment of the hierarchy. The selected leaf segment 
can be any segment in the DBD.

Columns are mapped from segments in the selected hierarchy. They can be 
mapped from any or all segments in the selected path. When converting the IMS 
path to SQL rows, eXadas combines all occurrences of child segments with their 
respective parent occurrences as a separate row in the result set. For example, in a 
two-level hierarchy where a second level child is selected as the leaf segment for 
the table, assuming the first root in the database has 3 child occurrences, three 
distinct rows are returned with the root segment information duplicated with each 
occurrence of the child information returned. If a root segment exists with no 
child occurrences, a single row is returned containing the root segment 
information and null columns for those columns that map child segment data.

When mapping tables using IMS secondary indexes, IMS inverts the hierarchy if 
the index is not on the root segment. The index segment becomes the implied root 
of the new IMS hierarchy. In this case, all access to the defined table must be 
through the selected secondary index. This requirement ensures a consistent 
hierarchical view of the IMS database. The hierarchical view of the database is 
determined at Meta Data Utility runtime based on the index defined for the logical 
table. If no index is defined, access is assumed to be through the physical 
hierarchical view as defined in the IMS DBD. For more information on IMS 
secondary indexes and database inversion behavior with secondary indexes, see 
the appropriate IBM IMS manuals.

NOTE: See Chapter 9, “Optimization,” for additional information on how mapping non-
relational data affects query optimization.
96 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



9

Optimization

Introduction to Optimization
Like any database system, eXadas performance varies based on the type of data 
and how the data is accessed. The single most important task with regard to 
performance is ensuring that the underlying data has been mapped correctly. This 
includes assuring that any indexes, keys, and/or units of data that are defined to 
the underlying database or file system are defined to the server when mapping the 
data. All other optimization built into the server is based on the assumption that 
these tasks have been performed to their fullest extent.

Based upon the above requirements, query optimization varies based upon how 
the eXadas Enterprise Servers, Servers, and Client applications are tuned. Most 
important is how the Query Processor SIEs are tuned. See Chapter 2, “Deploying 
Applications,” for more information on tuning server and application components 
including the Query Processor service.

This chapter covers some of the table definition and query writing techniques that 
can help ensure the best performance from eXadas. The following topics are 
discussed:

• “Query Optimization,” on page 98,

• “JOIN Optimization,” on page 99,
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 97



Chapter 9. Optimization
• “Query Processor Optimization,” on page 101,

• “IMS Data Access Optimization,” on page 103,

• “VSAM Data Access Optimization,” on page 112,

• “VSAM Query Processor Optimizations,” on page 115, and

• “Server Execution,” on page 115.

Query Optimization
The performance of SQL queries can vary based on how the queries themselves 
are written. This is true of most relational databases and eXadas as well. The 
eXadas Query Processor optimizes queries on underlying data. However, this 
optimization is limited to the information it has about the underlying databases 
and the organization of the databases themselves.

eXadas query optimization is based on the extent to which the filtering required to 
obtain the final result set will be performed by the underlying database/file 
system. For example, take a three segment IMS HIDAM DBD that contains 
10,000 instances of the lowest level segment (also called the leaf segment). If the 
Query Processor can build an SSA containing a search argument for every 
segment, then only a single access is required to retrieve the final result set, 
without the requirement of further filtering by the Data Savant or the Query 
Processor. If no SSA can be built, then 10,000 IMS GET commands will be 
issued; then that intermediate result set must be filtered by the Data Savant and/or 
the Query Processor to obtain that single row result set. This full retrieval of the 
mapped segments (or an entire VSAM file) is referred to as a full table scan. The 
IMS retrieval of the single row for the SSA example will be even faster if the SSA 
contains primary or secondary index fields. The scenario is the same for VSAM 
access, involving primary and alternate indexes as opposed to SSAs.

NOTE: Information regarding the filtering utilized to obtain the final result set is written 
to the log if the trace level field of the Query Processor SERVICE INFO ENTRY 
(for IMS, it is the IMS SERVICE INFO ENTRY) is set to 2. For more information 
about logging, see Chapter 12, “Server Logging.”

The remainder of this section provides tips for writing effective queries and how 
to define logical tables to eXadas to obtain optimum query performance. 

Using Keys

Whenever possible, keys should be passed in queries to the database(s) to be 
accessed. Keys are identified to eXadas by the inclusion of index definitions on 
logical tables. Defining index information often allows front-end tools that access 
98 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 9. Optimization
eXadas to create optimized keyed access queries based on the 
SYSIBM.SYSINDEXES and SYSIBM.SYSKEYS information stored in the 
eXadas Meta Data Catalogs. For more information on how to create an Index see 
Chapter 8, “Mapping Data.”

NOTE: Index definitions to eXadas do not actually index the underlying data, they merely 
describe existing underlying physical index(s) on the data.

When queries are performed without qualifying WHERE clause information on 
those indexes, nor any qualifying information on non-indexed columns, eXadas 
must scan the entire logical table in order to process the query. To perform this 
scan, eXadas must read the entire portion of the database/file that the involved 
table(s) define. The scanning process can result in poor performance on large 
databases. This is particularly true in cases where an SQL join is performed and an 
inner table must be scanned multiple times. See “JOIN Optimization,” on page 99, 
for tips on how to optimize queries that contain joins.

NOTE: Because eXadas adds a new method of accessing existing data, it may be 
necessary to add additional indexes to your underlying data to meet the needs of 
certain queries. Review the types of queries you expect to be issued to determine 
whether new indexes can improve performance without impacting any other 
application’s use of the data.

JOIN Optimization
This section describes the methods used to optimize SQL JOINs. For this 
discussion, JOIN optimization refers only to JOINs that are passed to the client 
without previous decomposition into single table queries at the server level.

JOIN processing utilizes the nested loop access method for all queries containing 
joined columns. Nested loop processing for a two table JOIN involves reading an 
outer table and, for each row selected in that table, reading the inner table to JOIN 
with that row, based on the JOIN column(s). This processing involves creating a 
row in the result table with the requested columns of both inner and outer tables. 
This processing applies to every row of the inner table where the value of its JOIN 
column(s) satisfy the specified relational conditions with the correlating JOIN 
column(s) of the selected row of the outer table. The next row of the outer table is 
selected and this process is repeated until there are no more rows to be selected 
from the outer table.

For example, the query:

SELECT A.COL_A1, B.COL_B1 FROM TABLE1 A, TABLE2 B

will by default read all rows in TABLE1, and for each row in TABLE1, read all 
rows in TABLE2 to join every row in TABLE1 with every row in TABLE2. If 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    99



Chapter 9. Optimization
TABLE1 has 100 rows and TABLE2 has 100 rows, the result set contains 10,000 
rows for this query. 

The number of rows is calculated as:

(number of rows in TABLE1) x (number of rows in TABLE2)
(100) x (100) = 10,000

The actual number of database reads is 10,100 (100 for the outer table and 10,000 
(100 x 100) for the inner table).

While this sort of Cartesian join is not commonly performed in SQL queries, it 
does show what can happen in worst case scenarios for JOIN queries. 

For example, if we change the previous query to:

SELECT A.COL_A1, B.COL_B1 FROM TABLE1 A, TABLE2 B
WHERE A.COL_A1 = B.COL_B1

the new query may only return a handful of rows. However, because there are no 
other qualifications for TABLE1 nor TABLE2, nested loop JOIN processing may 
still require reading every row from TABLE1 and matching it with every row of 
TABLE2 (10,100 reads). This is especially true if the JOIN column in the inner 
table (COL_B1 in TABLE2) is not indexed.

If COL_B1 in TABLE2 is a uniquely indexed column, the number of reads 
necessary is reduced in the previous query from 10,100 to 200 by reading each 
row in the outer table (TABLE1) once and doing a single indexed read to the inner 
table (TABLE2). 

However, even with a unique index on COL_B1 in TABLE2, if the outer and 
inner tables are switched as follows:

SELECT B.COL_B1, A.COL_A1 FROM TABLE2 B, TABLE1 A
WHERE B.COL_B1 = A.COL_A1

and the column COL_A1 in TABLE1 is not indexed, then 10,100 rows are read. 
This is because the inner table (which is now TABLE1) must be scanned for each 
row in the outer table TABLE2. Again, this assumes COL_A1 is not an indexed 
column in TABLE1 whereas COL_B1 in TABLE2 is indexed.

When eXadas receives a JOIN table, ordering optimization is based on 
information in the WHERE clause. This optimization is attempted in two phases.

In the first phase of optimization, the optimizer checks to see if the default outer 
table in the JOIN has any WHERE clause information that is not part of a JOIN 
condition with a column in another table. If there is no non-JOIN WHERE 
information, the optimizer will check the remaining tables referenced in the query 
and use the first table with non-JOIN WHERE information as the outer table in 
the JOIN.

If Phase 1 of the optimization reorders the default outer-inner table processing of 
the JOIN and there are more than two tables referenced in the JOIN, Phase 2 of 
the optimization is run. In Phase 2, the optimizer attempts to order all of the inner 
100 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 9. Optimization
tables of the JOIN such that each inner table processed contains a column joined 
with a table that precedes it in the outer to inner order. This second phase helps 
ensure that filtering of rows from outer to inner table processing is maximized 
such that the number of access reads is kept to a minimum.

Query Processor Optimization
The Query Processor executes SQL queries. The Meta Data Catalogs are accessed 
during Query Processing. During execution, the Query Processor calls database 
specific components, referred as Data Savants. A Data Savant is responsible for 
accessing the physical database/file associated with a logical table referenced in 
the query. The Data Savant uses the information in the WHERE clause to attempt 
to access the database/file in an optimum fashion.

The data returned from the Data Savant is then inspected to determine whether it 
meets the WHERE qualification, if any was supplied. The data that remains is 
then staged. Once all the data has been read, and staged, any post-processing that 
is required is then performed and those results are staged. Once the Query 
Processor has completed processing, the staged result set is returned to the client 
application.

The Data Savants automatically optimize Query Processor performance based on 
index information. Even if the Data Savant cannot perform optimized access to the 
database/file, the Data Savant still attempts to filter the number of records returned 
to the Query Processor, based on analyzing the WHERE clause against the data 
returned from the database/file system. If the Data Savant can successfully filter 
the records that will be returned, it informs the Query Processor. The 
corresponding instructions within the Query Processor that would have filtered the 
returned data are then skipped.

The Query Processor supports several different techniques for optimizing 
execution and for returning the result set data to the client application. Whether 
these optimization strategies work depends on the query that is issued and the size 
of the expected result set. Therefore, eXadas has made activation of these different 
optimization strategies optional by using configuration parameters to activate 
them. The different optimization strategies available are:

• Immediate return of data (PDQ),

• Static catalog Access, and

• Result set staging.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    101



Chapter 9. Optimization
Immediate Return of Data

The Immediate Return of Data option attempts to eliminate the intermediate result 
set staging process in the Query Processor. When active, a row of the result set is 
returned to the client application as soon as it has been returned from a Data 
Savant. Immediate Return of Data is activated using the PDQ configuration 
parameter. For syntax information see “PDQ,” on page 396.

When active, the query is inspected to determine whether staging is required. If 
staging is not required, immediate return of data processing is invoked. 
Otherwise, normal Query Processor execution is performed. The inclusion of an 
ORDER BY clause requires the rows to be staged, thus preventing the immediate 
return of data.

Using Immediate Return of Data dramatically improves query performance for 
medium to large result sets. For small result sets (less than a single fetch buffer) 
activation of immediate return of data processing does not significantly improve 
query performance.

Static Catalogs

Identifying the Meta Data Catalogs accessed by the Query Processor as being 
static optimizes the Query Processor compilation process. Usually, the Query 
Processor opens and closes the Meta Data Catalogs for each logical table 
referenced in a query during the Query Processor compilation process. 
Additionally, ENQUEUE READ locks must be established on the Meta Data 
Catalogs to ensure that a Meta Data Utility does not update the catalogs while they 
are being accessed by a Query Processor. 

When you indicate that the catalogs are static, the Meta Data Catalog files are 
opened once when a user issues their first query and then are closed when the user 
disconnects from the Query Processor. Identification that the catalogs are static is 
performed using the STATIC CATALOGS configuration parameter. For syntax 
information see Appendix A, “Configuration Parameters.”

Identifying that the catalogs are static dramatically increases query performance 
when client applications issue several queries that return small result sets. 

NOTE: Once catalogs are defined as static, eXadas does not allow updates from any 
source while the Server is active.

You can further optimize by creating linear versions of the Meta Data Catalog 
files. Linear catalogs are created and accessed in memory rather than via disk. 
eXadas provides a sample JCL member, CACLCAT, in the SCACSAMP dataset 
to create linear catalogs.
102 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 9. Optimization
Result Set Staging

If you do not activate immediate return of data processing, or a query cannot have 
immediate return of data processing applied to it, a query’s result set is staged 
before it is returned to the client application. Most of the columns in a result set 
row are written to a B-tree file. 

eXadas includes a set of configuration parameters that allow you to trade off 
between using virtual storage and DASD resources to stage data. Configuration 
parameters are supplied to control the number of B-tree buffer caches that are 
used, and the physical type, size, and placement of the temporary DASD storage 
that is used after all memory cache is exhausted. See Appendix A, “Configuration 
Parameters,” for additional information on the following parameters used to 
process result set staging.

• BTREE BUFFERS,

• FETCH BUFFER SIZE

• LD TEMP SPACE.

IMS Data Access Optimization
This section describes how to optimize access to IMS data. The following topics 
are discussed in this section:

• “General Guidelines,” on page 103, discusses how to get the best performance 
using IMS indexes, keys and search fields. 

• “PCB Selection Options,” on page 108, discusses the options that you have in 
the methods that eXadas uses to select a PCB to access a logical table’s IMS 
data.

• “PSB Scheduling,” on page 109.

General Guidelines

This section describes some general guidelines for optimizing access to your IMS 
databases. This optimization relies on the keyed access techniques that are 
available within IMS. 

IMS Native Access

For optimum performance, the columns referenced in a WHERE clause should 
supply a key value or multiple key values. The same holds true in JOIN situations, 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    103



Chapter 9. Optimization
if the inner tables in a JOIN have key information so that a qualified SSA call can 
be used to optimize access. A qualified SSA is only generated (for either 
condition) when index information is available in the eXadas catalogs for the 
logical table(s) referenced in an SQL statement.

eXadas includes several options for optimizing access to the underlying database. 
It relies on the IMS index and SSA features to optimize access to IMS data 
whenever possible. Guidelines for using primary indexes, secondary indexes, and 
search fields are discussed in the next section.

Using Primary Indexes

Defining columns that map to the primary index field in an IMS database will 
optimize queries that contain WHERE and JOIN qualification on those columns. 
eXadas creates qualified SSAs when a query contains the key values in the 
WHERE clause. This is also true in a JOIN situation when the tables from the 
outer loops supply a unique key for the inner loop sub-queries.

WARNING: HDAM databases do not have a primary index. They use a key-hashing technique 
to gain fast access to data. Logical tables mapped to an HDAM database might not 
necessarily be retrieved in ascending key sequence because the key sequence is a 
function of the HDAM randomizer, which is an IMS user exit. It is possible to 
order keys in an HDAM database either by specifying an ORDER BY clause in 
the SELECT statement or by specifying the name of a column that maps an 
XDFLD whose source is the HDAM primary key.

Using Secondary Indexes

eXadas automatically uses secondary indexes when they are defined for a table 
with the USE INDEX statement. The query optimizer automatically optimizes 
using secondary indexes based on WHERE information supplied in each query. In 
cases where both a primary sequence field and secondary index are provided to 
access IMS data, the primary sequence field is given precedence.

WARNING: If an IMS secondary index is defined using a USE INDEX statement, the PSB 
used to access the target table must contain one or more PCBs with the correct 
processing sequence (PROCSEQ). If the PSB does not contain one or more proper 
PCBs, a runtime error will occur whenever the Query Processor selects the 
mapped index for keyed processing.

Defining IMS Indexes With the USE INDEX Statement

You can use the USE INDEX statement to define the primary sequence field on a 
HIDAM database or XDFLDs for either HIDAM or HDAM databases. This 
statement may not be used to define the sequence field on an HDAM database. 
There are specific limitations on keyed access in HDAM that could mislead 
optimization algorithms if the primary sequence field was defined as an index to 
eXadas.

NOTE: HDAM keyed access will still be used whenever possible even though it cannot be 
defined with the USE INDEX statement.
104 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 9. Optimization
When defining an IMS index, the columns specified in the USE INDEX statement 
must match either the sequence field for a HIDAM root segment or the SRCH 
fields defined on an XDFLD statement in the DBD. The Meta Data Utility 
validates all USE INDEX statements against the DBD by matching up column 
offset and length information against the offset and length information defined for 
sequence and SRCH fields within the DBD. This matching is only performed 
against the root segment for the defined table, as specified by the INDEXROOT in 
the actual USE TABLE Statement (defaults to the physical ROOT if no 
INDEXROOT is specified).

The column(s) specified in a USE INDEX statement may sub-define sequence or 
SRCH fields in the DBD, if desired. For example, a primary HIDAM sequence 
field defined as 8 bytes may be mapped as two 4-character columns.

NOTE: The order of the columns in a USE INDEX definition is significant to the 
matching process. Columns that match sequence or SRCH fields but are in the 
incorrect order will be flagged as an error in the Meta Data Utility.

Using Search Fields

eXadas will also use an IMS search field to optimize access to your IMS data. If 
you define a search field as a column in the Meta Data Grammar and then 
reference that column in a WHERE clause, eXadas generates an SSA that contains 
the WHERE qualification for the search field.

eXadas does not distinguish between a search field associated with the primary 
key for the root segment of an IMS database, a search field associated with a key 
for a subordinate segment, or a search field that is defined for a non-key field. 
Therefore, it is highly recommended that the WHERE clause in a query contain a 
reference to the column(s) associated with the root segment primary index, or a 
secondary index that maps to the root segment of the database (when using a 
secondary index, the DBD hierarchy may have been inverted). For optimum 
performance, include WHERE qualification on subordinate segment key fields or 
normal search fields in the root or subordinate segments. This allows eXadas to 
build a single SSA that causes IMS to return only the segments that match the 
qualification in the WHERE clause, and thereby eliminate or minimize any Query 
Processor and Data Savant filtering required.

NOTE: For more information, see “Advanced Mapping Considerations,” on page 89.

Partial Key Support

eXadas supports mapping multiple columns against an IMS field (this can be the 
primary key, a secondary index (XDFLD), or a normal search field). When 
multiple columns are mapped to a single IMS field and a WHERE clause 
references a sub-set of those column(s) mapped to that IMS field, then this is 
referred to as a partial key situation.

eXadas attempts to optimize access using the partial key information supplied in a 
WHERE clause. This is accomplished by generating a key range based on the 
parts of the key supplied in the WHERE clause. The key range will specify the 
lowest and highest key values based on the values given for the columns specified 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    105



Chapter 9. Optimization
in the WHERE clause. eXadas can only perform this optimization and generate 
SSA(s) when the partial keys are supplied in the sequence that they map to the 
IMS field, starting from the beginning of the field. 

For example, if you have an IMS field (named FIELD1) that is 10 bytes long and 
you map three columns to the IMS field in the following order:

• COLUMN1 = bytes 1-3, 

• COLUMN2 = bytes 4-5, and

• COLUMN3 = bytes 6-10.

and you issue the following query:

WHERE COLUMN1 = ‘abc’ and COLUMN2 = ‘00’

then eXadas generates the following SSA: 

FIELD1 >= abc00(low values) & FIELD1 =< abc00(high values). 

This causes IMS to only return the segments that match the WHERE 
qualification. However, if you only specify a WHERE clause that references 
COLUMN2 and/or COLUMN3, eXadas cannot generate an SSA and instead must 
retrieve all the mapped segments and must perform all filtering logic within the 
Query Processor and Data Savant.

Path Calls

eXadas uses path calls to access databases whenever there are WHERE 
qualification criteria for segments at levels other than the root of the hierarchy. 
The number of DLI calls required in these cases can be significantly reduced by 
using path calls. In order to take advantage of this feature, PSBs used to access 
IMS databases must contain PCBs defined with a PROCOPT value including P.

For example:

PCB DBDNAME=dbdname,PROCOPT=GOTP

If you have questions regarding whether your specific PSBs support path calls, 
review the PSBs in question with your IMS database administrator.

HDAM/HIDAM Access Considerations

eXadas IMS data access optimization primarily focuses on the HIDAM and 
HDAM types of DBDs. The previous topics in this section detailed how access to 
IMS data is optimized by passing SSAs to IMS whenever possible. This topic 
discusses the differences in optimization when accessing HIDAM versus HDAM 
databases and the reasons behind the HDAM limitations.
106 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 9. Optimization
In the case of HIDAM databases, SSAs are built for WHERE clauses containing 
columns that map to FIELDs and:

• reads on fields containing EQ, LT, LE, GT, GE operators with any 
combination of AND and OR conditions against any combination of mapped 
segments in the database.

Queries are optimized against HDAM databases for:

• simple keyed reads with the EQ operator and no AND or OR conditions for 
the key field.

• AND and OR conditions for other fields in any mapped segment as outlined 
for HIDAM databases.

NOTE: The WHERE clause cannot result in the request for a range of HDAM keys for 
optimization to take place. SSA support for HDAM databases is more restrictive 
due to the restrictions within IMS itself.

Full table scans may occur for many HDAM queries, as the default HDAM 
RANDOMIZER may not store keys in sequenced order. For example, a segment 
with a key field of 4 does not necessarily come sequentially after a segment with a 
key field of 3. So, while IMS allows OR conditions on an HDAM key 
qualification in the SSA, there are no guarantees that the correct result set will be 
returned from IMS. Rows that satisfy the WHERE clause might not be returned by 
IMS. This is a direct and documented limitation of IMS HDAM processing. 

Therefore, the only way for eXadas to ensure that the correct result set is returned 
is: 

• not to pass qualification information, thus forcing a full table scan.

• to access the database through a secondary index on the primary root key. The 
secondary index provides direct access to the correct result set, and is subject 
to the same optimization rules as a HIDAM secondary index.

For further information on HDAM processing, see the IMS/ESA Application 
Programming: Database Manager Guide. 

DEDB Considerations

IMS Fastpath DEDB databases can be accessed as either BMPs or by using the 
DRA interface provided with eXadas.

High-Speed Sequential Processing

When accessing DEDBs as a BMP service, high-speed sequential processing 
(HSSP) must be disabled in order to successfully process databases. PCBs are 
defined as HSSP when the PROCOPT keyword parameter includes the value H. 
To disable HSSP in a BMP, include a DFSCTL JCL statement in the Server start-
up JCL with a SETO control statement. 

An example of the SETO statement is:

//DFSCTL DD *
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    107



Chapter 9. Optimization
SETO DB=IVPDB3,PCB=HSSP,NOPROCH

Failure to disable PROCOPT=H PCBs results in an FY status call when accessing 
the DEDB and an unexpected DLI status error messages.

See the IBM IMS/ESA Installation Volume 2: System Definition and Tailoring 
for more information about the SETO control statement.

Fast Path Buffers

When running as either a BMP or using DRA Access, fast path buffers must be 
available to process DEDB databases. If IMS runs out of buffers during a query, 
an FR status code is returned while processing a DLI call. The eXadas client 
returns an unexpected status code error message.

To set the buffers in a BMP environment, the NBA and OBA keyword parameters 
may be set in the Server JCL for passing to IMS at BMP start-up time. For a 
description of these parameters, see the description of the IMSBATCH procedure 
in the IBM IMS/ESA Installation Volume 2: System Definition and Tailoring 
guide.

To set the buffers in the DRA environment, the CNBA and FPBxx parameters in 
the DFSPRP macro must be defined when generating the DRA start-up table used 
by the Server. For more information on the DRA startup table, see “Setting Up the 
DRA for Use by eXadas,” on page 37.

PCB Selection Options

This section describes the options available to determine how the query processor 
selects a PCB to access the segments mapped by a logical table or column. The 
query processor can use either of the following methods to select a PCB:

• PCB selection by verification or

• PCB selection by name.

Selection by name is the faster PCB selection option; however, it requires 
PSB/PCB definition work by the IMS DBA and careful coordination of its 
specification as well as the related table definitions within eXadas. An overview 
of the processing performed for each option is described in the sections that 
follow.

PCB Selection by Verification

PCB selection by verification involves the Query Processor issuing DL/I calls to 
verify that the PCB selected can successfully access the database path that the 
logical table will access. PCB verification also requires the proper PROCSEQ to 
be specified if a column(s) that maps to an XDFLD is specified in a WHERE 
clause. This is the default method that the Query Processor uses to select a PCB 
for processing.
108 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 9. Optimization
PCB Selection by Name

PCB selection by name, unlike PCB selection by verification, does not issue DL/I 
calls to verify the database path but selects the PCB by a partial PCB name 
associated with a logical table or index. The PCB name selection option is faster 
but takes more administrative work to set up. PCB name selection uses the 
AIBTDL/I interface to locate an appropriate PCB.

Activating the PCB selection by name option requires you to:

• Specify a PCBPREFIX parameter in your Meta Data Grammar. See Chapter 
8, “Mapping Data,” for additional information.The following Meta Data 
Grammar elements support the PCB prefix:

• Table source definitions and

• Index source definitions.

• Create PCB names with the appropriate PCB prefix and sequence numbers.

NOTE: If an invalid PCB prefix name is specified, queries against the 
associated local table or column will fail with a negative SQLCODE 
returned to users and applications. A negative SQLCODE also is 
returned if all PCBs for a given prefix are in use. 

The PCB prefix is a one-to-seven character alphanumeric string that conforms to 
IMS PCBNAME naming conventions. The specified value does not have to be 
unique. In fact, the same PCB prefix name should be used for all logical tables that 
access the same logical or physical DBD using the same primary or secondary 
index.

The PCB prefix is used to generate a unique PCB name by appending a sequence 
number to the prefix. The sequence number begins with zero. 

For example, if you specify a PCB prefix of EMPL, the PCB names will be:

• EMPL0, 

• EMPL1, 

• EMPL2, and so on for the number of concurrent accesses that are required to 
the logical tables or columns associated with the EMPL PCB prefix.

WARNING: While PCB selection by name is faster than selection by verification, if the PCB 
selected does not have the correct IMS path access for the table (SENSEGs), an 
error is returned when attempting to query the table. Care must be used to ensure 
the named PCB has correct access for the defined table(s).

PSB Scheduling

The PCBs whose selection was discussed in the previous topic are contained 
within PSBs. A PSB is the unit of access that a given program uses to interface 
with IMS. This interfacing process is called PSB scheduling. The processes 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    109



Chapter 9. Optimization
involved in scheduling a PSB for a Server, and how you specify which PSB a 
Server will use, differ according to which eXadas IMS interface is utilized.

The ASMTDLI interface allows only a single PSB to be scheduled per server 
instance, which is specified within the Server startup JCL. This is the interface 
that is used to allow a Server to access IMS in much the same manner as a CICS 
region accesses IMS.

For more information regarding other aspects of IMS interfaces eXadas offers, see 
Chapter 3, “Server Setup for IMS Access.”

Using the ASMTDL/I Interface

The ASMTDL/I interface allows the Server instance to access IMS as a BMP, 
DBB, or DL/I region. To use this interface, an IMS region controller is loaded into 
the Server address space by activating the IMS BMP/DBB/DL/I Initialization 
Service Info Entry. The type of IMS region controller: BMP, DBB, or DL/I, that is 
activated is determined by parameter specification within the Server startup JCL, 
the same way a non-eXadas IMS region controller determines this information. 
See Chapter 3, “Server Setup for IMS Access,” for more information.

Access to IMS data using an ASMTDL/I interface is limited to a single PSB for an 
instance of a Server. This is because the IMS region controller only allows a 
single PSB to be scheduled within itself (or by itself), and has a limit of one 
instance of an IMS region controller per OS/390 address space.

If you:

• require access to multiple DBDs,

• plan on performing JOINs of IMS data, and/or

• plan on supporting multiple users,

then the PSB scheduled in this environment must contain enough PCBs to support 
all concurrent user access to the IMS data. Since very large PSBs require 
significant IMS resources, CrossAccess strongly recommends using the DRA 
interface to access IMS data, when possible. If this is not possible at your site, 
then it is strongly recommended that you configure Servers using the ASMTDL/I 
interface as single-user servers. This requires a smaller number of PCBs to be 
defined within the PSB, which results in a smaller PSB that requires significantly 
less resources for the Server instance. See Chapter 3, “Server Setup for IMS 
Access,” or Chapter 17, “Enterprise Server,” for more information about 
configuring Data and Enterprise Servers as single or multi-user servers.
110 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 9. Optimization
Using the DRA Interface

Data access to IMS using the DRA interface is the preferred IMS data access 
approach. DRA is the most scalable solution in that it allows the scheduling of 
multiple IMS PSBs from a single Server and can support multiple user 
connections at a time.

The ability to schedule multiple PSB(s) also allows the PSB(s) to be small in size 
and thus reduces the IMS resources required for a query against IMS data. This 
topic discusses the PSB scheduling options that you have when using the DRA 
interface.

The Meta Data Grammar for an IMS logical table allows for the association of two 
PSB(s) with each logical table. This is done on the SCHEDULEPSB parameter. 
The first PSB that you specify is referred to as the standard PSB, the second PSB 
is the JOIN PSB. 

When a query is received that does not contain a JOIN between two or more IMS 
logical tables, the standard PSB is scheduled to service the query. This PSB only 
needs to contain a single PCB that has sensitivity to the segments that make up the 
IMS path that the IMS logical table maps.

When a query is received that contains a join between two or more IMS logical 
tables and a JOIN PSB is specified for the first table in the JOIN, eXadas 
schedules the JOIN PSB. The assumption is that the JOIN PSB will contain 
multiple PCB(s), at least one for each IMS logical table referenced in the JOIN.

When eXadas attempts to schedule a PSB for a second, third, or additional time to 
access the IMS logical table referenced in the JOIN, the PSB(s) that are already 
scheduled (to service the query) are inspected to see if they contain a PCB that can 
be used to service the query. If an available PCB is found, then eXadas does not 
schedule another PSB and instead uses the PCB that it has located to issue IMS 
calls for access to the referenced table. If a PCB cannot be located, and a JOIN 
PSB is specified for this table as well, eXadas schedules that JOIN PSB. If no 
JOIN PSB is specified, eXadas schedules the standard PSB associated with that 
logical table. 

The DRA interface also allows a default PSB to be specified in the SERVICE 
INFO ENTRY parameter used to initialize the DRA interface. If an IMS logical 
table does not have a Standard PSB defined, then eXadas schedules the default 
PSB and inspects it to determine whether there is a PCB that can be used to 
service the query. If a default PSB is used, then it should contain PCB(s) for all 
IMS databases/segment paths/secondary indexes that need to be accessed. This is 
very similar to the type of PSB that is required if the ASMTDL/I interface is used 
to access your IMS data.

CrossAccess strongly recommends that you create standard PSB(s) for all IMS 
logical tables if you are going to use the DRA interface and you will be joining 
IMS data together with composite JOIN PSB(s) that can be used to eliminate the 
need to schedule multiple PSB(s) in JOIN situations.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    111



Chapter 9. Optimization
NOTE: It is not necessary to create individual PSB(s) for each logical table. You can share 
the same standard or JOIN PSB among multiple logical tables. Additionally, if 
you are accessing multiple paths in the same IMS database using multiple logical 
tables, you may want to create a single PSB that contains one or more PCB(s) that 
maps all paths in the DBD to be accessed. You can then associate this PSB with all 
of the logical tables that are mapped to that database. This same recommendation 
also applies to all of the logical tables that are mapped to a DBD that will use the 
same secondary index.

VSAM Data Access Optimization
This section describes how to optimize access to VSAM data. The following 
topics are discussed in this section:

• “General Guidelines,” on page 112, provides tips for using primary and 
alternate indexes as well as partial keys to optimize VSAM access. 

• “VSAM Query Processor Optimizations,” on page 115, discusses the VSAM 
AMPARMS parameter that can be used to optimize VSAM access.

• “VSAM Service,” on page 115, discusses how the VSAM service allows 
multiple concurrent users to share files that are already opened.

The optimization techniques discussed in this section also apply to IAM files. 
IAM (Innovation Access Method) is supplied by Innovation Data Processing and 
is a reliable, high-performance disk file manager that can be used in place of 
VSAM KSDS and ESDS data sets. Innovation Data Processing also provides an 
optional Alternate Index feature that is supported by eXadas. An exception is any 
reference to VSAM RRDS support, which currently is not supported by IAM.

General Guidelines

This section describes general guidelines about optimizing access to your VSAM 
data. These techniques only work for VSAM KSDS data sets. ESDS and RRDS 
data sets require the entire contents of the files to be read to process a query, as 
there is no direct access to the data. The exception to this rule is accessing an 
ESDS through an alternate index. This type of access mimics accessing a KSDS 
using an alternate index. Any discussion in this section regarding the use of an 
alternate index refers to ESDS or KSDS alternate indexes. 

The best way to optimize access is to utilize keyed access techniques available in 
VSAM. eXadas supports VSAM keyed access using either a primary index or an 
alternate index. Additionally, eXadas supports access using either of these index 
types when only part of the key is supplied. These different options are discussed 
in the sections that follow.
112 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 9. Optimization
Primary and Alternate Indexes

There are two types of VSAM indexes: primary and alternate. The query 
processor supports both primary and alternate indexes when processing SQL 
requests. Although these indexes are usually transparent to the end user, queries 
that exploit primary and/or alternate indexes can enjoy substantial improvements 
in performance when retrieving data from large VSAM files particularly during 
JOIN processing. 

For a query to qualify for the optimizations described in “Query Optimization,” on 
page 98, the following requirements must be met:

• a column(s) that maps to a primary or secondary index must be referenced in a 
WHERE clause or as a JOIN column, and

• the index that the columns map must be defined in the Meta Data Catalog.

The remainder of this section discusses how a VSAM index is defined to the Meta 
Data Catalog.

The primary index is determined automatically by the Meta Data Utility during 
the USE TABLE processing and stored in the eXadas system catalog for use by 
the Query Processor. No explicit definition using Meta Data Grammar is required.

Alternate indexes are defined by supplying an appropriate USE INDEX 
statement to the Meta Data Utility. Index definitions created by eXadas are stored 
in the SYSIBM.SYSINDEXES and SYSIBM.SYSKEYS tables.

NOTE: Index definitions to eXadas do not actually create an index of the underlying data. 
They merely describe an existing physical index to the data.

WARNING: If an index is defined on a field that is not an actual VSAM index, the query may 
behave unpredictably.

As part of the USE INDEX statement, either the data set name or the DD name of 
a DD pointing to the VSAM Alternate Index PATH data set must be specified. 
This information is stored in the eXadas system catalog for use by the Query 
Processor when accessing that alternate index.

Primary Indexes

The utilization of primary indexes is determined by the query processor at 
execution time. This is based on the existence of index information that defines 
the columns making up the key and by supplying key values in the SQL WHERE 
clause. The query processor automatically performs keyed reads of the data set, if 
possible.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    113



Chapter 9. Optimization
Alternate Indexes 

Alternate indexes can also be used by the Query Processor. An alternate index is 
used to satisfy an SQL query if the following conditions are met:

• A column in the WHERE clause maps to an alternate index field.

• The VSAM alternate index path data set or DD name that was supplied in the 
INDEX definition is accessible by the Server.

Partial Key Support

eXadas supports mapping multiple columns against both primary and alternate 
indexes. When multiple columns are mapped to an index, and a WHERE clause 
references a sub-set of the column(s) mapped to the index, this is referred to as a 
partial key situation.

eXadas attempts to optimize VSAM access using the partial key information 
supplied in the WHERE clause. This is accomplished by generating a key range 
based on the parts of the key supplied in the WHERE clause. The key range will 
specify the lowest and highest key values based on the values provided for those 
columns specified in the WHERE clause. eXadas can only perform this 
optimization when the columns that make up the partial key are supplied in the 
sequence they are mapped to the index, starting from the beginning of the index. 

For example, if you have a primary index that is 10 bytes long and you map three 
columns to the index in the following order:

• COLUMN1 = bytes 1-3, 

• COLUMN2 = bytes 4-5, and

• COLUMN3 = bytes 6-10.

and you issue the following query:

WHERE COLUMN1 = ‘abc’ and COLUMN2 = ‘00’

then eXadas generates the following key: ‘abc00x’, padded to the right with low 
values (X’00’) for the length of the key. This key is used for the initial read of the 
VSAM file. Processing of the VSAM file then continues sequentially with the key 
of each returned record being compared to a high key value that eXadas 
generated. In this example, the high key value would be ‘abc00x’ padded to the 
right with high values (X’FF’) for the length of the key. The records are read until 
the returned record’s key exceeds this generated value or the end of the file is 
reached. 

NOTE: If you specify a WHERE clause that only references COLUMN2 and/or 
COLUMN3 without referencing COLUMN1, eXadas cannot generate a key range 
and instead must process the entire VSAM file sequentially and perform any 
record filtering within the Data Savant and/or QP.
114 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 9. Optimization
VSAM Query Processor Optimizations

The VSAM AMPARMS parameter is a Query Processor related configuration 
parameter that can be used to optimize access to your VSAM files. VSAM 
AMPARMS allows you to specify the number of in-core buffers used to cache 
VSAM index and data components and the overall amount of memory that VSAM 
can use for buffer caching. For more information about the syntax of this 
parameter see Appendix A, “Configuration Parameters.”

The VSAM AMPARMS parameter is used to specify VSAM buffering 
information for VSAM files. If a large number of records will be read, increasing 
the size of the VSAM data buffer pool can substantially improve query 
performance since more of the VSAM data can be cached in core. 

VSAM Service

The VSAM service allows multiple concurrent users to share files that are already 
opened via either local VSAM or VSAM through CICS. This reduces overhead as 
open and closes are done less often. This is particularly useful in join situations 
where a VSAM file is joined to itself.

To enable the VSAM service, uncomment the Service Info Entry in the Server 
configuration file. See “SERVICE INFO ENTRY,” on page 398, for more 
information on the Service Info Entry.

Server Execution
Executing the server at a proper dispatching priority can have a dramatic affect on 
query performance. Additionally, a Work Load Manager (WLM) sample system 
exit is provides that allows you to place the individual queries that your users issue 
into WLM goal mode. Each of these topics are discussed in the sections that 
follows.

Dispatching Priority

The dispatching priority that a server executes in and the paging class that the 
server is assigned can dramatically improve performance. eXadas is very much 
like a transaction processing system, such as DB2, CICS, or IMS. 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    115



Chapter 9. Optimization
The lower the dispatching priority that the server runs in the better it will execute. 
CrossAccess recommends that the Server dispatching priority be set greater than 
the operating system and the TCP/IP sub-systems that are used by eXadas to 
communicate with remote clients. The dispatching priority should be set at or 
above the dispatching priorities of the CICS, IMS, and/or DB2 sub-systems that 
you have running at your OS/390 site. Consult your data center personnel to select 
an appropriate dispatching priority that does not adversely affect the other 
applications running at your OS/390 site.

WLM Support

eXadas includes a sample Workload Manager (WLM) system exit that allows the 
individual queries that your users issue to be placed in WLM goal mode. Placing 
queries in goal mode allows WLM to control the amount of resources that are 
available for the query to use. eXadas WLM support uses enclave TCBs, which 
are available in OS/390 version 2, release 3, or higher. 

The WLM exit allows you to place the users of a query processor into different 
service classes. Each service class can have different rules for the amount of 
resources that are assigned (by OS/390) to execute the query. This also allows 
OS/390 to apply period switching rules for each query that is executed. Typically, 
when running in goal mode using period switching, the longer a query runs the 
less resources it gets. This allows you to set up a service class for small queries 
that need to execute quickly (and will therefore be given more resources). For 
longer running queries you can assign these queries to a different DATASOURCE 
name, with a different service class that allows OS/390 to reduce the amount of 
resources these queries get the longer they run, without impacting the small high 
performance queries.

For more information on WLM support see Chapter 15, “System Exits.”
116 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



10

Server Operations

Introduction to Server Operations
This chapter provides a brief overview of running servers in a test and production 
environment. The following topics are covered:

• “Starting Servers,” on page 118,

• “Monitoring and Controlling Servers,” on page 118,

• “Starting and Stopping Individual Services,” on page 124, and

• “Stopping the Server,” on page 125.

For a list of MTO commands, see Appendix C, “MTO Command Reference.” For 
additional information on the Enterprise Server, see Chapter 17, “Enterprise 
Server.”

OS/390 Servers can be run as either an OS/390 batch job or as a started task. Like 
any batch job or started task, the user ID of the server itself is based on the 
submitter of the batch job or the task name of a started task. While authorization 
to access databases and files is based on the user ID of the client task, the server 
must have authority to access all STEPLIB files as well as the server 
configuration data set. In addition, if you want to make configuration changes 
while the server is running and then write the changes back to the configuration 
data set, the server must also have update authority for the configuration data set.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 117



Chapter 10. Server Operations
Starting Servers
If you are not using an Enterprise Server, then each of your production servers 
must be pre-started before your client applications can be used. If you are using an 
Enterprise Server, then only the Enterprise Server must be pre-started. The 
Enterprise Server automatically starts Servers based on the DSH SERVICE INFO 
ENTRY parameter definitions in the Enterprise Server’s Master Configuration 
member. The Enterprise Server can communicate with servers on other machines 
as well. For information on Enterprise Server Operations or configuration 
settings, see Chapter 17, “Enterprise Server.”

Once a server is started, it is ready to accept client connections and requests for 
data.

Monitoring and Controlling Servers
The servers and the eXadas Enterprise Server are designed to run continuously. In 
the current version, eXadas supplies an OS/390 MTO (Master Terminal Operator) 
interface that can be used to monitor and control Server/Enterprise Server 
operations. 

Using the MTO interface you can issue commands to:

• display active services in a server,

• display users connected to a server,

• display configurations,

• modify configuration parameters,

• display memory utilization,

• START and STOP individual services, and

• STOP the Server.

The basic format of an OS/390 MTO command is:

F servername,command,[subcommand1,subcommand2,...]

When executing these commands under IBM’s SDSF, you must precede the 
command with the slash (/) character, as shown in the following example:

/F CACDS,DISPLAY,SERVICES

For more information regarding specific MTO commands, see Appendix C, 
“MTO Command Reference.”
118 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 10. Server Operations
Displaying Active Services in a Server

At start-up, the server processes the Master configuration file and starts services 
defined with SERVICE INFO ENTRY parameter values. The number of services 
started depends on the minimum tasks entry (field 4) in each SERVICE INFO 
ENTRY. 

NOTE: This field can be set to 0 when you do not want the service started automatically at 
Server initialization. For more information on the SERVICE INFO ENTRY 
parameter settings, see Appendix A, “Configuration Parameters.”

To display the active services, issue the DISPLAY,SERVICES command from 
the OS/390 Master Console or SDSF. An example of the output from the 
DISPLAY,SERVICES command is shown in the following example and a 
sample of the available services for the DISPLAY command are described in 
Table 8, “Available Services With the DISPLAY Command.”

F servername,DISPLAY,SERVICES 

NOTE: The active service display only shows services that are currently running in the 
server. To view all services defined to a server, you must display the master 
configuration with the command DISPLAY,CONFIG=MASTER. For more 
information on displaying configurations, see “Displaying Configurations,” on 
page 120.

Displaying Users Connected to a Server

Once a server is started, it is ready to accept user connects. These connections may 
come from local OS/390 clients; ODBC or JDBC clients; AIX clients; or any 

Table 8: Available Services With the DISPLAY Command

Service Type TASKID TASKNAME Status User

LOGGER CACLOG 9392624 CACLOG READY

IMSDRA CACDRA 9272720 CACDRA READY

CACSAMP CACQP 9270608 CACQP READY

CACSAMP CACQP 9269664 CACQP OPEN 
CURSOR

CACUSER5

TCPIP CACINIT 9214680 CACINIT READY

DSN CACCAF 9213312 CACCAF READY

DSN CACCAF 9170568 CACCAF READY

DCOMIS CACDCI 9275696 CACDCI READY
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    119



Chapter 10. Server Operations
other eXadas-supported platform. To determine if any connections exist, you can 
issue the DISPLAY,USERS command.

An example of the DISPLAY,USERS command follows. The sample output is 
described in Table 9, “DISPLAY,USERS Command Output.”

F servername,DISPLAY,USERS

The SERVICE field in the DISPLAY,USERS command identifies the query 
Processor task that receives and responds to all of the user’s SQL requests. This 
information is valuable in determining the number of users that are currently 
sharing any particular instance of a Query Processor service.

While each user is assigned a particular service for processing SQL requests, 
other services may also be required for the user to successfully receive SQL 
results. 

These services include:

• Connection Handlers (service type CACINIT): manages the session with the 
user’s client process.

• Database Interface Services: databases, such as IMS and DB2 may require 
additional services to manage specific data requests on behalf of a Query 
Processor service.

For more information on Connection Handlers and Database Interface services, 
see the SERVICE INFO ENTRY parameter description in Appendix A, 
“Configuration Parameters.”

Displaying Configurations

Configuration information is loaded from members of the VHSCONF data set at 
Server initialization time. To display active configurations while a Server is 
running, issue the DISPLAY,CONFIGS command. 

Table 9: DISPLAY,USERS Command Output

USER SESSIONID
HOST
NAME

PROCESSID THREADID SERVICE TASKID

CACUSER5 92115632 P390 74 9397120 CACSAMP 9269664

CACUSER1 91659664 P390 42 9397112 CACSAMP 9270608

CACUSER3 91319456 P390 80 9396976 CACSAMP 9269664

Total Number of USERS: 3
120 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 10. Server Operations
The following is an example of the command with five active configurations:

F servername,DISPLAY,CONFIGS

Active Configurations:

• MASTER: always active while a Server is running.

• CACQPCF: active when a Query Processor is running and its service 
information field contains a configuration override name of CACQPCF (as 
shown in the DISPLAY,CONF=MASTER example). 

• CACUSCF1: a user currently connected to the Server. 

• CACUSCF3: a user currently connected to the Server. 

• CACUSCF5: a user currently connected to the Server. 

These configurations remain active until the corresponding users disconnect from 
the Server.

The initial member identified in the VHSCONF DD is known as the master 
configuration member. Minimally, there is a master configuration active in all 
running Servers.

To display the master configuration, issue the following MTO command:

F servername,DISPLAY,CONFIG=MASTER

The output from this command follows:

*(1)MESSAGE POOL SIZE = 7000000
 (2)TASK PARAMETERS = NULL
*(3)USER CONFIG = 0
*(4)STATIC CATALOGS = 1
*(5)NL = US ENGLISH
*(6)NL CAT = DD:CACCAT
*(7)BTREE BUFFERS = 4
*(8)LD TEMP SPACE = ALCUNIT=CYL,SPACE=20,UNIT=SYSDA,EXTEND=5
 (9)SAF EXIT = NULL
 (10)SMF EXIT = NULL
*(11)MAX ROWS EXAMINED = 0
*(12)MAX ROWS RETURNED = 500
 (14)MAX ROWS EXCEEDED ACTION = ABORT
 (15)JOIN MAX TABLES ANALYZED = 4
 (16)CPU GOVERNOR = NULL
 (17)LOCALE = NULL
 (18)WLM UOW = NULL
 (19)VSAM AMPARMS = NULL
*(101)SERVICE INFO ENTRY = CACCNTL CNTL 0 1 1 100 4 5M 5M 
NO_DATA
*(102)SERVICE INFO ENTRY = CACLOG LOGGER 1 1 1 100 4 5M 5M 4K
*(103)SERVICE INFO ENTRY = CACIMSIF IMS 2 0 1 50 4 5M 5M 
NO_DATA
*(105)SERVICE INFO ENTRY = CACQP CACSAMP 2 2 4 50 4 5M 5M 
CACQPCF
*(106)SERVICE INFO ENTRY = CACINIT XMNT 2 0 1 50 4 5M 5M 
XM1/CACQA/CACQA
*(107)SERVICE INFO ENTRY = CACINIT TCPIP 2 1 10 50 4 5M 5M 
TCP/199.242.140.11/7067
*(108)SERVICE INFO ENTRY = CACCAF DSN 2 2 5 1 4 5M 5M CACPLAN
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    121



Chapter 10. Server Operations
*(109)SERVICE INFO ENTRY = CACDCI DCOM 2 1 1 50 4 5M 5M 4

Lines in the output display prefixed by an asterisk (*) denote configuration values 
that were either read in at initialization time or updated by an MTO operator SET 
command. All other configuration items are set to their default value as defined in 
Appendix A, “Configuration Parameters.”

Displaying the master configuration is the only way to view all the SERVICE 
INFO ENTRYs defined to a running server. While many services can be viewed 
with a DISPLAY,SERVICES command, services that are not running cannot be 
viewed.

In addition to the master configuration, there are also service level configurations 
and user level configurations. Both service level and user level configurations are 
used to override specific configuration values in the MASTER configuration at 
runtime. Service level configurations are defined in the service data of a Query 
Processor service and are activated each time an instance of that service is started. 
User level configurations are activated each time a user connects to a Query 
Processor whose configuration USER CONFIG value is set to 1.

Unlike the master configuration, service and user-level configurations do not have 
SERVICE INFO ENTRY values. These configurations are strictly used for 
overriding the non SERVICE INFO ENTRY and USER CONFIG descriptions as 
described in Appendix A, “Configuration Parameters.”

Modifying Configuration Parameters

Any active configuration can be dynamically modified with the MTO SET 
command. The format of the SET command is as follows:

F 
servername,SET,NAME=configname,ORD=ordinalnumber,VALUE=’valu
e’

WARNING: Dynamic modification of production servers is not recommended unless the full 
impact of configuration changes is known.

Configurations are generally static, and modification at runtime is not necessary. 
To set a configuration value to its system default value, you can issue the SET 
command and pass a VALUE=NULL as the configuration parameter’s value. The 
SERVICE INFO ENTRY is updated in memory by specifying its associated 
ordinal value in the SET command. 

For example, to replace the SERVICE INFO ENTRY for the Query Processor, 
issue the following command:

F servername,SET,NAME=MASTER,ORD=105,VALUE=’CACQP CACSAMP/  
2 2 10 100 4 5M 0M CACQPCF’
122 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 10. Server Operations
New service info entries can also be created by specifying an ordinal VALUE 
greater than the largest existing ordinal. For example, to create a new Query 
Processor for a location named MYNEWLOC, issue the command:

F servername,SET,NAME=MASTER,ORD=999,VALUE=’CACQP MYNEWLOC/ 
2 2 10 100 4 5M 0M NO_DATA’

Changes made to a Master or Query Processor configuration can be written back 
out to the configuration data set with the MTO FLUSH command. If changes 
were made to the master configuration and you want to have those changes written 
back to the associated VHSCONF member, issue the command:

F servername,FLUSH,NAME=MASTER

This command writes out each configuration item in the display that contains an 
asterisk (*), which denotes a modification. 

WARNING: Configurations written with the FLUSH command will not contain any comment 
lines, even if the original configuration contained comments. For this reason, we 
recommend backing up configuration data sets prior to issuing the FLUSH 
command.

In order for the FLUSH command to work successfully, the user ID associated 
with the Server task must have update authority for the configuration data set.

Displaying Memory Utilization

The server runs with a fixed pool of memory that must be shared by all services 
and users. The size of the Server Memory Pool is defined by the MESSAGE 
POOL SIZE parameter in the MASTER configuration file. 

To display the current memory utilization from the message pool, issue the 
command:

F servername,DISPLAY,MEMORY

The output of the command is as follows:

TOTAL MEMORY 2048K, USED 229K (11%), MAX USED 958K (46%)

The memory display includes:

• the total size of the pool, 

• the amount of memory used by services and users,

• the percentage of the pool used,

• the maximum amount of memory used since the Server was activated, and

• the percentage of the maximum used in relation to the total storage pool. 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    123



Chapter 10. Server Operations
While memory requirements vary based on the number of user connections and 
size of SQL queries, this command can be useful in estimating the maximum 
number of users allowable for a given Server.

NOTE: The MESSAGE POOL SIZE for a Server must be at least two megabytes less than 
the actual region size for the server as memory must also be available for load 
modules, C runtime stacks, and OS/390 control blocks.

Starting and Stopping Individual 
Services

Using the MTO interface, you can issue commands to start and stop individual 
services defined in the MASTER configuration. 

NOTE: Additional information on the available MTO commands can be found in 
Appendix C, “MTO Command Reference.”

To start a new instance of a service, issue the command:

F servername,START,SERVICE=servicename

For example, to start a new instance of the service CACSAMP as shown in 
“Displaying Configurations,” on page 120, issue the following command:

F servername,START,SERVICE=CACSAMP

When starting a service, the region controller first checks the number of active 
instances of the service and the maximum task count for the service before 
attempting to start a new instance. If the service has not reached its defined 
maximum task count, the Region Controller starts a new instance of the service.

Stopping a service can be performed either by its service name or its task ID. If a 
service is stopped by its service name, all active instances of the service are 
stopped. The formats of the STOP command for individual services are as 
follows:

F servername,STOP,SERVICE=servicename
F servername,STOP,TASKID=taskid 

WARNING: The STOP command cancels any user activity in an active service and disconnects 
all active users from the stopped service.

Uses for the START and STOP commands include:

• starting additional instances of a Query Processor;

• stopping idle instances of a Query Processor;
124 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 10. Server Operations
• stopping a Query Processor that is processing an unusually large query;

• switching from IMS Batch access to IMS DRA access by stopping the Batch 
service instance and starting the IMS DRA instance; and

• starting new connection handlers, such as Cross Memory and TCP/IP.

Stopping the Server
To stop the Server, issue the following command:

F servername,STOP,ALL

WARNING: The STOP command cancels any user activity in the Server and disconnects all 
active users.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    125



Chapter 10. Server Operations
126 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



11

Views

Introduction to Views
Database tables define the structure and organization of the data it contains. Using 
SQL, you can look at the stored data in other ways by defining alternative views 
of the data. A view is an SQL query that is stored in the database and assigned a 
name, similar to a table name. The results of the stored query are then visible 
through the view, and SQL lets you access these query results as if the results 
were a real table in the database. 

Views allow you to:

• tailor the appearance of a database so that different users see if from different 
perspectives;

• restrict access to data, allowing different users to see only certain rows or 
certain columns of a table; and

• simplify database access by presenting the structure of the stored data in the 
way that is most natural for each user.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 127



Chapter 11. Views
This chapter describes how to use views to simplify processing and how to use 
them for record and column filtering. It includes the following topics:

• “What is a View?,” on page 128,

• “How the Query Processor Handles Views,” on page 129,

• “How to Create a View,” on page 130,

• “Advantages and Disadvantages of Views,” on page 130,

• “Using Views for Record and Column Filtering,” on page 132,

• “Joined Views,” on page 134, and

• “Dropping Views,” on page 135.

What is a View?
A view is a virtual table in the database whose contents are defined by a query. To 
the database user, the view appears to be a real table, with named columns and 
rows of data. Unlike a real table, a view does not exist in the database as a stored 
set of data values. Instead, the rows and columns of data visible through the view 
are the results of an SQL query defining the view. This view looks like a table 
because the SQL query gives it a table name and stores the definition of the view 
in the database. 

The following two-table query produces the view shown in Figure 16: “View With 
Two Source Tables,” on page 129. The view is given the name REPDATA.

SELECT NAME, CITY, REGION, QUOTA, SALESREPS.SALES
  FROM SALESREPS, OFFICES
  WHERE REP_OFFICE = OFFICE

The data in the view comes from the SALESREPS and OFFICES tables. These 
tables are called source tables for this view because they are the source of the data 
in the view. This view contains one row of information per salesperson, extended 
with the name of the city and region of the salesperson. The view appears as a 
table and its contents look just like the query results that would be obtained if the 
query were actually run.
128 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 11. Views
Figure 16:  View With Two Source Tables

Once a view is defined, you can use it in a SELECT statement, just like a real 
table.

How the Query Processor Handles Views

When the Query Processor encounters a reference to a view in an SQL statement, 
it finds the definition of the view stored in the database. Then the Query Processor 
translates the request that references the view into an equivalent request against 
the source tables of the view and then carries out that request. The Query 
Processor maintains the illusion of the view while maintaining the integrity of the 
source tables.

SALESREPS Table
EMPL_NUM  NAME              AGE   QUOTA  SALES

105                 Bill Adams       37       350000  367911
109                 Mary Jones      31       300000  392725
102                Sue Smith         48       350000  474050 
106                 Sam Clark        52       275000  299912 
104                 Bob Smith        33       200000  142594

NAME              CITY            REGION           QUOTA SALES

Mary Jones     New York     Eastern            300000      392725
Sam Clark       New York     Eastern            275000       299912
Bob Smith       Chicago       Eastern            200000       142594
Bill Adams      Atlanta         Eastern            350000       367911
Sue Smith       San Diego    Western           350000       474050

OFFICES Table

REPDATA View

OFFICE CITY REGION MGR

11 New York Eastern 106
12 Chicago Eastern 104
21 San Diego Western 108
13 Atlanta Eastern NULL

REP_OFFICE

13
11
21
11
12
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    129



Chapter 11. Views
Advantages and Disadvantages of Views

Views provide a variety of benefits and can be useful for many types of databases. 
In a personal computer database, views are usually a convenience, defined to 
simplify requests to databases. In production database installation, views can play 
an important role in defining the structure of the database for users or groups of 
users and can enforce the database security. 

Views provide the following benefits:

• Built-in security by giving each user permission to access the database only 
through a small set of views containing the specific data the user or group of 
users is authorized to see, restricting user access to other data.

• Simplicity for queries because a view can draw data from several tables and 
present it as a single table, simplifying the information and turning multi-table 
queries into single-table queries for a view.

• Simplicity in structure because views give users a specific view of the 
database structure, presenting the database as a set of virtual tables specific to 
particular users or groups of users.

• Stabilization of information because views present a consistent, unchanged 
image of the database structure, even if underlying source tables are changed.

Although there are many advantages to views, the main disadvantage to using 
views, rather than real tables is performance degradation. Since views only create 
the appearance of a table, not a real table, the Query Processor must still translate 
queries against the view into queries against the underlying source tables. If the 
view is defined by a complex, multi-table query, then even simple queries against 
the view become complicated joins that may take a long time to complete.

How to Create a View
eXadas supports the creation and management of DB2-compatible views using 
either the eXadas Meta Data Utility or any eXadas client connected to the Server. 
Although any client can create a view with standard SQL processing, the Meta 
Data Utility is a more controlled mechanism for creating and managing views. 
CrossAccess recommends that you use the Meta Data Utility to create views. 

This section describes how to create a simple view, how to use views for record 
filtering, and a brief description about using views for security.

The CREATE VIEW statement can optionally assign a name to each column in 
the newly created view. If a list of column names is specified, it must have the 
same number of items as the number of columns produced by the query. Only 
column names are specified, the data type, length, and other characteristics of the 
columns are derived from the definition of the columns in the source tables. If the 
130 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 11. Views
list of column names is not included in the CREATE VIEW statement, each 
column in the view will have the name of the corresponding column in the query. 
The list of column names must be specified if the query includes calculated 
columns or if it produces two columns with identical names.

The CREATE VIEW statement can be embedded in an application program or 
issued interactively. It is an executable statement that can be dynamically 
prepared. 

The CREATE VIEW syntax diagram and the descriptions follow.

Figure 17:  CREATE VIEW Statement Syntax Diagram

Table 10: CREATE VIEW Syntax Statement Descriptions

Statement Description

view-name Assigns a name to the view. The name cannot identify a table, view, 
alias, or synonym that exists at the current server. The name can be a 
two-part name. The authorization name that qualifies the name is the 
view’s owner.

For information about security for views, see “Using Views for 
Security,” on page 134, or “Table and View Privileges ,” on page 78.

column-name Names the columns in the view. If you specify a list of column names, 
it must consist of as many names as there are columns in the result 
table of the subselect. Each name must be unique and unqualified. If 
you do not specify a list of column names, the columns of the view 
inherit the names of the columns of the result table of the subselect.

You must specify a list of column names if the result table of the 
subselect has duplicate column names or an unnamed column (a 
column derived from a constant, function, or expression that was not 
given a name by the AS clause).

AS subselect Defines the view. At any time, the view consists of the rows that would 
result if the subselect were executed. Subselect cannot refer to host 
variables or include parameter markers (question marks).

A query containing either a UNION or an ORDER BY clause is not a 
valid subselect.

CREATE VIEW view-name AS subselect

( column-name )

,

012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    131



Chapter 11. Views
Using Views for Record and Column 
Filtering

Filtering allows you to define one or more views on a single table mapping to 
select specific records based on the type of column. This is useful in cases where 
multiple record types are kept in a single database. Filtering at the column level 
allows you to create views that contain only a subset of the complete table 
mapping.

This section describes how views can be used to filter records and columns so that 
views contain only the information you want presented to a particular user or 
group of users. 

The following types of views are discussed:

• horizontal views, which give access to selected rows of a table;

• vertical views, which give access to particular columns within a particular 
table;

• row/column subset views, which give access to particular rows and columns 
in a particular table; and

• grouped views, which (using the GROUP BY clause) group related rows of 
data and produce one row of query results for each group.

Horizontal Views

One common use of views is to restrict a user’s access to only selected rows in a 
particular table. For example, in the sample database, you may want to let a sales 
manager see only the SALESREPS rows for salespeople in that manager’s region. 
To do this, using our SALESREPS Table from Figure 16: “View With Two Source 
Tables,” on page 129, you would create two views, one for the Eastern sales reps 
(EASTREPS) and one for the Western sales reps (WESTREPS), using the 
following CREATE VIEW statements:

CREATE VIEW EASTREPS AS
            SELECT *
                 FROM SALESREPS
              WHERE REP_OFFICE IN (11, 12, 13);
 CREATE VIEW WESTREPS AS
            SELECT *
                FROM SALESREPS
              WHERE REP_OFFICE IN (21, 22)

This type of view is called a horizontal view because it slices the source table 
horizontally when it creates the view. All of the columns from the source table are 
present in the view, but only a subset of the rows are included in the view. These 
types of views are appropriate only when the source table contains data that 
relates to various organizations or users, for example the managers of the Eastern 
and Western sales regions. 

Horizontal views can also be used to filter relational records when a database or 
file contains multiple record types.
132 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 11. Views
Vertical Views

Another use of views is to restrict user access to particular columns in a table. For 
example, the order processing department may require access to the employee 
number, name, and office assignment for each salesperson in order to process 
orders correctly. The order processing staff does not need to see the salesperson’s 
year-to-date sales or the quota. This selective view of our SALESREPS Table 
from Figure 16: “View With Two Source Tables,” on page 129, is created using 
the following CREATE VIEW statement:

CREATE VIEW REPINFO AS
       SELECT EMPL_NUM, NAME, REP_OFFICE
         FROM SALESREPS

This type of view is called a vertical view because it includes all of the rows in a 
particular table, but limits the columns to only a subset, pertinent to a particular 
user or group of users. The view is derived from a single source table. The select 
list in the view definition determines the columns of the source table that will be 
visible in the view. In a vertical view, every row of the source table is represented 
in the view and the view definition does not include a WHERE clause.

Row/Column Subset Views

When you define a view, SQL does not restrict you to purely horizontal or vertical 
views of a table. It is very common to define a view that slices the table both 
horizontally and vertically. for example, to define a view that contains the 
customer number, company name, and credit limit of all customers assigned to 
Bill Adams (employee number 105), issue the following CREATE VIEW 
statement:

CREATE VIEW BILLCUST AS
     SELECT CUST_NUM, COMPANY, CREDIT_LIMIT
        FROM CUSTOMERS
      WHERE CUST_REP = 105

The data visible through this view is called a row/column subset of the 
CUSTOMERS table. Only the columns explicitly named in the select list of the 
view and the rows that meet the search condition are visible through the view.

Grouped Views

A query specified in a view definition may include a GROUP BY clause. This 
type of view is called a grouped view because the data visible in this view is the 
result of a grouped query. Grouped views perform the same function as grouped 
queries: they group related rows of data and produce one row of query results for 
each group, summarizing the data of that group. A grouped view turns grouped 
query results into a virtual table, allowing you to perform additional queries. 

An example of a grouped view that contains summary order data for each 
salesperson is:

CREATE VIEW ORD_BY_REP (WHO, HOW_MANY, TOTAL, LOW, HIGH, 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    133



Chapter 11. Views
AVERAGE) AS
  SELECT REP, COUNT(*), SUM(AMOUNT), MIN(AMOUNT), 
MAX(AMOUNT),   
  AVG(AMOUNT)
    FROM ORDERS 
    GROUP BY REP

The definition of a grouped view, as this example shows, always includes a 
column name list. The list assigns names to columns in the grouped view that are 
derived from column functions, such as SUM() and MIN(). It can also specify a 
modified name for a grouping column. In this example, the REP column of the 
ORDERS table becomes the WHO column in the ORD_BY_REP view. Once the 
grouped view is defined, it can be used to simplify queries. 

Unlike horizontal or vertical view, the rows in a grouped view do not have a one-
to-one correspondence with the rows in the source table. A grouped view is not a 
filter on the source table that screens out certain rows and columns. it is a 
summary of the source tables and requires a substantial amount of processing to 
maintain the illusion of a virtual table for grouped views.

Grouped views can be used in queries but cannot be updated and therefore 
function as read-only views. They are subject to the SQL restrictions on nested 
column functions. 

Using Views for Security

Views can also be used to restrict user access to particular tables by allowing 
viewers to see only particular portions of a table. This is done during view 
creation when owners are set up for that view. Security can also be set up by 
granting or revoking user privileges to particular views of data. For more 
information about using the GRANT and REVOKE statements to restrict user 
access to views, see Chapter 7, “SQL Security.”

Joined Views
One of the most frequent reasons for using views is to simplify multi-table 
queries. By specifying a two-table or a three-table query in the view definition, 
you can create a joined view. Joined views draw their data from two or three 
different tables and present the query results as a single virtual table. Once you’ve 
defined the view, you can use a simple, single-table query against the view for 
requests that would otherwise require a two-or-more-table join.

For example, if a user often runs queries against a particular table, such as the 
ORDERS table in the sample database, but does not want to work with employee 
134 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 11. Views
numbers, he would want a view of the ORDERS table that has names instead of 
numbers. 

An example of that view is:

CREATE VIEW ORDER_INFO (ORDER_NUM, COMPANY, REP_NAME, 
AMOUNT) AS
    SELECT ORDER_NUM, COMPANY, NAME, AMOUNT
     FROM ORDERS, CUSTOMERS, SALESREPS
    WHERE CUST = CUST_NUM
     AND REP = EMPL_NUM

This view is defined by a three-table join. As with a grouped view, processing 
required to create this virtual table is substantial. Each row of the view is created 
from a combination of one row from the ORDERS table, one row from the 
CUSTOMERS table, and one row from the SALESREPS table.

Although this view has a complex definition, it can be very valuable. For example, 
the following query against this view can be created: 

SELECT REP_NAME, COMPANY SUM(AMOUNT)
  FROM ORDER_INFO
 GROUP BY REP_NAME, COMPANY

that generates a report of orders, grouped by salesperson:

REP_NAME   COMPANY     SUM(AMOUNT)
------------------------------------------------
Bill Adams ACME Mfg.   $35,582.00
Bob Burns  JCP Inc.    $24,343.00
Dan Jones  First Corp. $75,000.00

This query is now a single-table SELECT statement, which is far simpler than the 
original three-table query. Also, the view makes it easier to see what’s going on in 
the query. The QP, however, still must work harder to generate the query results 
for this single-table query against the view as it would to generate query results for 
the same three-table query. However, for the actual user, it is much easier to write 
and understand a single-table query that references the view.

Dropping Views
To drop a view, you must use the DROP VIEW statement. It allows detailed 
control over what happens when a user attempts to drop a view when the 
definition of another view depends on it. For example, if two views on the 
SALESREPS table were created by these two CREATE VIEW statements:

CREATE VIEW EASTREPS AS 
   SELECT *
    FROM SALESREPS
   WHERE REP_OFFICE IN  (11, 12, 13)
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    135



Chapter 11. Views
CREATE VIEW NYREPS AS
   SELECT *
    FROM EASTREPS
   WHERE REP_OFFICE = 11

the following DROP VIEW statement removes both views as well as any views 
that depend on their definition from the database:

DROP VIEW EASTREPS 

NOTE: eXadas does not directly support the CASCADE and RESTRICT options in the 
DROP VIEW syntax; however, the CASCADE option is implied in the DROP 
VIEW syntax. So whenever the DROP VIEW is used, it will delete dependent 
views along with those specified in the DROP VIEW.
136 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



12

Server Logging

Introduction to Server Logging
The server includes a logging facility to assist in problem determination. The 
types and amount of information written to the log is controlled by a set of user-
configurable parameters. In addition, a log print utility is supplied with the 
product to format and print records written to the log data set.

The log data set is a binary sequential file allocated to the DDNAME CACLOG 
with attributes of RECFM=FBS, LRECL=1, BLKSIZE=4080. Generally, this data 
set can be a temporary file allocated to the server, which is then automatically 
deleted at server termination. However, for problem determination purposes, you 
may be asked to allocate this file to a permanent data set by CrossAccess 
Technical Support.

This chapter discusses the following topics:

• “Controlling Logged Information,” on page 138,

• “The Log Print Utility,” on page 139, and

• “Log Print Filtering,” on page 140.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 137



Chapter 12. Server Logging
Controlling Logged Information
The amount of information written to the eXadas log file is controlled by the 
Tracing Level field (field 7) in the SERVICE INFO ENTRY parameter. The 
tracing level on services other than the logger controls the type of information that 
is sent to the log. 

The valid trace levels for use with the logger include:

• 4: send only warning and error messages to the logger.

• 20: prevent logging of any information by the service.

Trace levels set less than 4 will send informational trace information to the logger 
for problem determination purposes. 

WARNING: Do not change Trace Level settings for any service unless requested to do so by 
CrossAccess Technical Support.

The logger task receives trace and error messages from all running services and 
either writes them directly to the log file or caches them to a fixed-length memory 
buffer. When the memory buffer is full, the logger automatically re-uses the buffer 
by overwriting the oldest messages in the buffer with any new messages logged.

By default, the memory buffer used for cached messages is 16 kilobytes. This 
value can be configured on the SERVICE INFO ENTRY parameter of the logger 
task itself by passing a numeric kilobyte value in the Service Information field 
(field 10). 

The following example shows a logger with a memory buffer size of 256 
kilobytes. The acceptable range for a memory buffer specification is 4 KB -    
1000 KB. Any other value is ignored and the default buffer size is used.

SERVICE INFO ENTRY = CACLOG LOG 1 1 1 100 4 5M 0M 256K 
* 256K  memory cache buffer                       ^

The trace level value (field 7) on the SERVICE INFO ENTRY parameter for the 
logger task determines whether messages are written or cached. When the logger 
receives messages, it first checks to see if the logger is currently writing messages 
to file. If so, the logger continues writing all messages to the log file. Otherwise, it 
compares the severity of the received message to its configured trace level and 
only writes the message if the severity on the message is greater than or equal to 
its own trace level. 

When the logger switches from caching messages to writing messages, it first 
writes out all cached messages in its memory buffer prior to writing the message 
that triggered the write. From that point on, all messages logged are immediately 
written to the log file regardless of their severity. 
138 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 12. Server Logging
For example, given the following configuration entries:

* eXadas logger service
SERVICE INFO ENTRY = CACLOG LOG 1 1 1 100 4 5M 0M NO_DATA
* ^ Logger Trace
* Level
* eXadas Query Processor service
SERVICE INFO ENTRY = CACQP CACSAMP 2 1 4 50 2 5M 5M CACQPCF
* ^ QP Trace Level

the Query Processor will send tracing and diagnostic messages to the logger based 
on a trace level of 2. The logger itself will take these messages and cache them 
into its memory buffer until it receives a message with a severity of 4 or higher. In 
this case, if no warning level 4 or higher severity messages are sent to the logger 
while the server is active, the logger will never send messages to the log file.

Generally, when a CrossAccess Technical Support representative requests 
modification of a trace level for a non-logger service, you will also be asked to set 
the logger task trace level to the same value. This ensures that all messages issued 
by the service are immediately written to log.

The Log Print Utility
The log print utility is a separate program supplied with eXadas that allows you to 
format and print out messages written to the log. In addition, this utility can print a 
summary report of the messages in the log as well as filter which messages in the 
log are printed. See the CACLGFLT member in the SCACSAMP library shipped 
with your eXadas software for a sample log and its output.

The log summary output lists the information found in the logged messages. 
Included in the list is the start and stop time of messages in the log, the minimum 
and maximum return codes for the logged messages, which filters were used, and 
the tasks and nodes logged.

The format of the log summary can be used as filtering input to the future printing 
of the log. For example, to print just the messages associated with task 9283960, 
you can pass a SYSIN control card containing: Tasks=(9283960) to the log 
print utility and only messages issued by that specific task are printed. For more 
information on filtering log print output, see “Log Print Filtering,” on page 140.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    139



Chapter 12. Server Logging
Log Print Filtering
The logger records all messages it receives during server execution. In many 
cases, these messages include many tasks, nodes, and filtered components that 
may make problem determination difficult. Therefore, the log print utility accepts 
SYSIN control cards that contain filtering information to select specific messages 
to print. These specific control cards can be used to print messages for a specific 
timeframe, a specific task, a range of return codes, or any combination of the 
elements listed in the log summary report.

To simplify filtering, the format of the SYSIN filtering is exactly the same as the 
format of the summary report. Therefore, you can print a summary report or the 
log file and edit it to remove or modify the elements in the report that you want to 
print. 

NOTE: Blank lines and lines whose first character contains an asterisk (*) are ignored by 
the log filtering logic.

Using the example summary report from the previous section, you can pass the 
SYSIN filtering information (shown in the example that follows) to print a report 
of all messages issued by the Query Processor between 09:08 and 09:16 that had a 
return code of 8:

StartTime='2000/08/05 09:08:04:0000' 
StopTime= '2000/08/05 09:16:18:0000' 
MinRC=1 
MaxRC=12 
Filters=(SAVANT) 
ExFilters=(MESSAGE) 
Tasks=(9194800,9219720) 
Nodes=(81) 
SPCRC=(ffffffff) 

Under normal circumstances, you will not see any logged messages in server 
output, nor will it be necessary to print logs or modify the SERVICE INFO 
ENTRY parameter trace levels. This information is provided solely to assist you 
in problem determination while working with CrossAccess Technical Support.

NOTE: The Log Print Utility requires a configuration member. In normal circumstances, 
you would use the same configuration member that the server uses. This is also 
true when performing an off-line print from a permanent log file. The following 
configuration parameters are used:

• MESSAGE POOL SIZE

• NL

• NL CAT

For more information on these parameters, see Appendix A, “Configuration 
Parameters.”
140 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



13

Utilities

Introduction to Utilities
This chapter describes the utilities delivered with eXadas. These utilities include:

• “Meta Data Utility,” on page 142,

• “DB2 Grammar,” on page 184,

• “CICS VSAM Grammar,” on page 190,

• “ADABAS USE Statement Generator,” on page 192.

The remainder of this section describes each of these utilities. For each utility, an 
overview of the function the utility performs and a description of how to run the 
utility are described. A description of the control card input syntax and the control 
card parameters used to control the utilities execution are also included.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 141



Chapter 13. Utilities
Meta Data Utility
The Meta Data Utility is used to complete the process of mapping data into a 
logical table that eXadas can access. The Meta Data Utility accepts Meta Data 
Grammar input, which contains the mapping information. The Meta Data Utility 
reads the Meta Data Grammar and populates Meta Data Catalogs for use by the 
Query Processor. The Meta Data Catalogs are stored in two files referenced by the 
CACCAT and CACINDX DD statements in both the Meta Data Utility and the 
Server JCL streams. The Meta Data Utility supports incremental updates to the 
Meta Data Catalogs and can be run while Servers are active. 

WARNING: The Meta Data Utility will fail if a Server is currently using the catalog with 
STATIC CATALOG parameter set.

NOTE: Meta Data Catalogs are stored in standard OS/390 (spanned) Sequential files. 
Meta Data Catalogs cannot be stored in a partitioned data set.

Additional Meta Data Catalogs can also be accessed in a single server by defining 
them per data source. See Appendix D, “Sample SERVICE INFO ENTRY 
Definitions,” for more information.

The Meta Data Catalogs contain eXadas versions of the following standard DB2 
system tables:

• SYSIBM.SYSTABLES

• SYSIBM.SYSCOLUMNS

• SYSIBM.SYSINDEXES

• SYSIBM.SYSKEYS

• SYSIBM.SYSTABAUTH

• SYSIBM.SYSVIEWS

• SYSIBM.SYSVIEWDEP

• SYSIBM.SYSROUTINES

• SYSIBM.SYSROUTINEAUTH

• SYSIBM.SYSPARMS

• SYSIBM.SYSUSERAUTH

• SYSIBM.SYSDBAUTH

The eXadas Meta Data Catalogs are based on IBM DB2 version 2.2. The Meta 
Data Catalogs contain the standard column definitions found in the DB2 version 
2.2 system catalogs. The Meta Data Catalogs also contain additional information 
that eXadas uses to optimize access to the physical database files. Your 
applications can use standard queries to access the information stored in the DB2 
columns.
142 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
Meta Data Grammar for input into the Meta Data Utility is created using the 
DataMapper. The DataMapper is a Windows-based application that takes in 
information about your existing databases and generates Meta Data Grammar.

NOTE: Meta Data Grammar can also be manually keyed into a text editor, but this method 
is not recommended as it is both difficult and error-prone.

Figure 18: “Data Administration Workflow,” on page 143, shows the general 
procedural steps required for creating logical tables from data information. File 
Definition Source in this diagram includes COBOL copybooks, IMS DBD source 
definitions, and IDMS DD dictionary definitions. File transfers between the server 
and a PC running the DataMapper can be performed using FTP support built into 
the DataMapper.

Figure 18:  Data Administration Workflow

The remainder of this section provides step-by-step instructions about running the 
Meta Data Utility and the resulting Meta Data Grammar.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    143



Chapter 13. Utilities
Meta Data Grammar

Meta Data Grammar is supplied in a standard 80-byte fixed-format text file. The 
text file contains free form statements that define the contents of a logical table or 
an index. Additional statements can be supplied to delete an existing logical table 
or an index definition. These definitions use a “keyword value” syntax and can 
span multiple lines. Meta Data Grammar can contain comments. When including 
comments in Meta Data Grammar, use the following format:

/* comment */

Anything between the delimiters (/*  */) is treated as a comment. The comment 
may span more than one line, but must not begin in column one.

NOTE: If you are editing a Meta Data Grammar file manually using an editor like ISPF, 
make sure that NUM OFF is set in the edit profile when editing the Meta Data 
Grammar.

The following statements can be specified in the Meta Data Grammar. They 
include:

• USE TABLE: Adds a logical table to the Meta Data Catalogs. This causes the 
SYSIBM.SYSTABLES and SYSIBM.SYSCOLUMNS tables in the Meta 
Data Catalogs to be populated with information about the logical table.

• USE [UNIQUE] INDEX: Adds an index to the Meta Data Catalogs. This 
causes the SYSIBM.SYSINDEXES and SYSIBM.SYSKEYS tables in the 
Meta Data Catalogs to be populated with index information for a logical table. 
The logical table must be defined in the Meta Data Catalogs using a USE 
TABLE statement.

• DROP TABLE: Removes an existing logical table from the Meta Data 
Catalogs. This causes all of the information in the SYSIBM.SYSTABLES, 
SYSIBM.SYSCOLUMNS, SYSIBM.SYSINDEXES, and 
SYSIBM.SYSKEYS tables to be removed for the logical table specified in the 
DROP TABLE statement.

• DROP INDEX: Removes an existing index from the Meta Data Catalogs. 
This causes all information in the SYSIBM.SYSINDEXES and 
SYSIBM.SYSKEYS tables to be removed from the Meta Data Catalogs for 
the specified index.

• GRANT: Assigns one or more privileges to specific users. This causes one or 
more of the following tables to be populated: SYSIBM.SYSDBAUTH, 
SYSIBM.SYSROUTINEAUTH, SYSIBM.SYSTABAUTH, 
SYSIBM.SYSUSERAUTH. See Chapter 7, “SQL Security,” for more 
information.

• REVOKE: Removes one or more privileges from specific users. This causes 
information to be removed from one or more of the following tables: 
SYSIBM.SYSDBAUTH, SYSIBM.SYSROUTINEAUTH, 
SYSIBM.SYSTABAUTH, SYSIBM.SYSUSERAUTH. See Chapter 7, “SQL 
Security,” for more information.
144 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
• CREATE VIEW: Adds a virtual table whose contents are defined by a query 
to the Meta Data Catalog. This causes the SYSIBM.SYSVIEWDEP and 
SYSIBM.SYSVIEWS tables to be populated with information about the view. 
See Chapter 11, “Views,” for more information.

• DROP VIEW: Removes a table view from the Meta Data catalog. This causes 
information to be removed from the SYSIBM.SYSVIEWDEP and 
SYSIBM.SYSVIEWS tables. See Chapter 11, “Views,” for more information.

• CREATE PROCEDURE: Defines a stored procedure in the Meta Data 
Catalog. This causes information in the SYSIBM.SYSROUTINES table to be 
populated with information about the stored procedure. See “Defining Stored 
Procedures,” on page 274, for more information.

• DROP PROCEDURE: Removes a stored procedure from the Meta Data 
catalog. This causes information to be removed from the 
SYSIBM.SYSROUTINES table. See “Defining Stored Procedures,” on page 
274, for more information.

The syntax for each of these statements is described in the sections that follow or 
the referenced chapter.

NOTE: All Meta Data statements must be terminated by a semi-colon (;).

Running the Meta Data Utility

To run the Meta Data Utility to complete the mapping process:

1. Edit the Meta Data Utility JCL.

Sample Meta Data Utility JCL is found in SCACSAMP member 
CACMETAU, shipped with your eXadas software. 

2. Basic customization.

Supply a valid job card and modify the CAC high-level qualifier to reference 
the high-level qualifier for the eXadas data sets. At this point, you may want 
to save the member since the eXadas high-level qualifier is not likely to 
change after each execution of the Meta Data Utility.

3. IMS mapping customization.

If you are planning to map IMS data then you must modify the IMS high-level 
qualifier to reference the IMS high-level qualifier where the DBDs referenced 
in the Meta Data Grammar are located. You must also uncomment the 
DBDLIB DD statement. Save the member since the IMS high-level qualifier 
is not likely to change from run-to-run of the Meta Data Utility.

4. Sequential/VSAM mapping customization.

When mapping Sequential and/or VSAM data the Meta Data Grammar can 
reference the Sequential/VSAM file to be accessed by the logical table either 
by its data set name or by using a DD name. When referenced by a data set 
name, the Meta Data Utility dynamically allocates the data set name 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    145



Chapter 13. Utilities
referenced to check for its existence and to gather physical attributes about the 
file.

For Sequential and non-CICS VSAM data, if you are referencing a file by DD 
name, then you need to add DD statement(s) with the same DD name(s) in the 
Meta Data Utility JCL. You should specify a DISP=SHR for these data sets. 
The Meta Data Utility will open these files during processing in order to 
obtain physical information about the file(s). 

NOTE: To validate VSAM mapping parameters at METAU execution time, 
the METAU must connect to CICS and query information about the 
VSAM file(s) CICS controls. This is accomplished using parameters 
defined in the CONNECT TO CICS statement. See “CICS VSAM 
Grammar,” on page 190, for additional information about the 
CONNECT TO CICS statement.

5. CA-DATACOM/DB mapping customization. 

If you are planning to map CA-DATACOM/DB data, you must gather 
information about the structure of the CA-DATACOM/DB table that you plan 
to map. You must also modify the Meta Data Utility JCL to include CA-
DATACOM/DB specific DD statements and control information. These 
requirements are as follows: 

The CA-DATACOM/DB Source Language Generation (SLG) Facility allows 
you to generate field definitions for CA-DATACOM/DB tables as high-level 
language statements suitable for COBOL copybooks. To use this Source 
Language Generation Facility, you place the appropriate transactions in the 
CA-DATACOM/DB DDUTILTY job stream. See the topic “Generating 
Source Language Statements” in the CA-DATACOM/DB Datadictionary 
Batch Guide for detail information about executing this utility program. After 
the source language generation is completed, use the embedded DataMapper 
FTP facility to download the COBOL copybook for import into the 
DataMapper. 

The Meta Data Utility JCL must be modified to include three 
CA-DATACOM/DB libraries into the STEPLIB concatenation. These 
libraries contain load modules, used to access the CA-DATACOM/DB 
Datadictionary Service Facility, and control information like load module 
DDSRTLM (the CA-DATACOM/DB System Resource Table). The libraries 
you must include are CAI.CAILIB, CAI.DATACOM.CHLQ.CUSLIB and 
CAI.DATACOM.THLQ.CAILIB. 

The Meta Data Utility JCL must be modified to include a DD statement 
named DDIDENT that specifies a sequential file or member of a PDS that 
contains CA-DATACOM/DB Datadictionary Service Facility access 
information. The access information required is an ENTITY-
OCCURRENCE-NAME (user name) and a QUALIFIER (password). The 
ENTITY-OCCURRENCE-NAME parameter is specified by entering 'USER 
=' followed by a user name. The name must be the same as a 
CA-DATACOM/DB PRODuction status PERSON occurrence. If you leave 
this field blank, CA-DATACOM/DB Datadictionary Service Facility assumes 
there is no authorization. The QUALIFIER parameter is specified by entering 
146 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
'PASSWORD =' followed by a user password if one has been assigned. As 
with any file containing sensitive information, this access information file 
should be secured according to site specifications.

These access information parameters are entered free-form in a standard text 
file. The parameters may be entered on the same line separated by a comma or 
each parameter may be entered on a separate line. If a single parameter is 
entered more than once, the last occurrence of that parameter will be used 
when accessing the CA-DATACOM/DB Datadictionary Service Facility. The 
number of leading and trailing blanks or the number of spaces before and after 
the equal sign is inconsequential.

A User Requirements Table (URT) must be provided on every request for 
service sent to CA-DATACOM/DB. Every service request is validated against 
an open User Requirements Table. This technique provides security (by 
restricting access) and efficient allocation of CA-DATACOM/DB resources. 
When you define your User Requirements Tables, consider the security 
implications. You must decide whether you want to have one User 
Requirements Table per CA-DATACOM/DB table that you map into the 
eXadas catalog or have only a few User Requirements Tables for all CA-
DATACOM/DB tables that you map into the eXadas catalog. There are 
obvious security implications when you do the latter.

The URT specifies what CA-DATACOM/DB resources are required and is 
generated by a macro assembly.The macros used to generate a URT are as 
follows:

• DBURSTR: This User Requirements Table macro defines global program 
parameters. It must be the first macro in the assembly source and can be 
defined only once per User Requirements Table assembly. The macro 
does not generate any actual assembly output. Its parameter data is passed 
to the following macros.

• DBURTBL: This User Requirements Table macro identifies specific 
program parameters for a single CA-DATACOM/DB table. A separate 
DBURTBL macro must be defined for each CA-DATACOM/DB table 
that is accessed by the Server. The name must be specified with a 
TBLNAM=name parameter, where name is the 3-character CA-
DATACOM/DB table name defined in CA-DATACOM/DB. The database 
ID number is specified in the DBID= parameter. All other DBURTBL 
macro parameters are allowed to generate their default value. Like 
DBURSTR, this macro does not generate any actual assembly output 
either. Its parameter data is passed to the DBUREND macro.

• DBUREND: This User Requirements Table macro validates all previous 
input parameters and generates the assembly output. It must be the last 
macro in the assembly source and can be defined only once per User 
Requirements Table assembly.

For more detail information regarding these macros and their associated 
parameters, see the CA-DATACOM/DB Database and System Administrator 
Guide. To see a sample User Requirements Table, see the CACDCURT 
member in the SCACSAMP library.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    147



Chapter 13. Utilities
Once the User Requirements Table macro entries are coded, the URT must be 
assembled and link-edited into an accessible load library. To see sample JCL 
for assembling and link-editing the URT, see the CACDCURA member in the 
SCACSAMP library. The load module name specified in the link-edit step 
must be specified in the Meta Data Utility grammar when the CA-
DATACOM/DB table is mapped into the eXadas catalog. Using this name, the 
URT will be dynamically loaded by the eXadas server at execution-time. 
During processing, the Server then opens the URT prior to requesting CA-
DATACOM/DB service and closes the URT when processing is completed. 

NOTE: Whenever a new table is to be mapped into the eXadas catalog, an 
appropriate URT must be created or updated, assembled, link-edited, 
and the load module name must be specified in the Meta Data Utility 
grammar for the new table. Failure to include the CA-
DATACOM/DB tablename and database ID in the specified URT 
will result in an access failure while trying to process the new table.

6. ADABAS mapping customization.

Customize the SCACSAMP member CACADADD. Specify the mode, SVC 
number, database ID, and device type for your Adabas database.

7. IDMS mapping customization.

Use the sample JCL CACIDPCH (in the SCACSAMP data set) to generate 
IDMS schema and subschema reports. In the JCL CACMETAU, modify the 
DD card DDLPUNCH to point to the members generated.

8. Determine whether you need to create the Meta Data Catalogs.

Additional catalogs can be created, if required, by using the JCL in the 
member CACCATLG in the SCACSAMP data set.

9. Identify the Meta Data Grammar to be used as input to the Meta Data Utility.

Specify the name of the Meta Data Grammar file to use as input. 

When mapping your own data modify the MEMBER parameter to specify the 
name of the PDS member that contains the Meta Data Grammar to map. You 
may also need to change the SYSIN data set name to reference the name of 
the data set where the Meta Data Grammar is located.

10. Add a user ID and password to the job card if necessary.

WARNING: Once the catalogs are initialized, security has been set up with 
System Administration authority (SYSADM) granted to the 
user ID who installed eXadas and ran the Meta Data Utility. 
That user ID is the only user who can access the system or the 
catalogs. To turn off security, the new System Administrator 
must either grant SYSADM authorization to PUBLIC, allowing 
all users access and thus negating security, or grant table access 
authority to individual user IDs. For additional information 
about eXadas security, see the Chapter 7, “SQL Security.”

11. Grant catalog access rights.
148 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
Once the catalogs are loaded with the new tables, you will need to grant the 
appropriate access rights. In the SCACSAMP data set, there is a member 
called CACGRANT. This member contains JCL to load the catalogs with the 
appropriate access rights to the tables.

This job will read in its input from the CACGRIVP member. This member 
contains the GRANTs required to access the samples tables. If you are 
bringing your own tables on line with eXadas, you must add the appropriate 
GRANTs for the new tables. See Chapter 7, “SQL Security,” for more 
information.

To customize the CACGRANT JCL to run in your environment, perform the 
following steps:

a. Ensure the symbolic GRAMMAR = is pointing to the appropriate 
member containing the desired security commands.

b. Ensure that the CACCAT and CACINDX  DDs refer to the catalogs 
created using the CACCATLG JCL.

c. Review CACGRIVP and uncomment the appropriate GRANT for your 
database.

d. Submit. 

Once this job completes, the catalogs have been loaded with the desired 
security.

12. If you plan to use tools that require access to the catalog information, you 
must run CACGRANT using CACGRSYS as the input.

13. Review the output.

Once the Meta Data Utility has completed executing review the output listing. The 
Meta Data Utility should complete with a COND CODE of zero or 4. A COND 
CODE of 4 indicates that an attempt to DROP a logical table was made, but the 
table does not exist. This is merely a warning message that you may receive the 
first time you map a logical table.

A condition code higher than 4 indicates that the Meta Data Utility encountered an 
error. Review the listing to determine what the error is. 

NOTE: Before a server can access the physical databases/files you mapped, it must have  
authority to read these database/files. Contact your security administrator to 
inform them of the user ID(s) that the Server(s) will be using, so the security 
administrator can grant the proper authority.

This completes the basic mechanics for running the Meta Data Utility. For 
verification purposes CrossAccess recommends you map the Meta Data Grammar 
for the sample IMS, Sequential, and VSAM logical tables supplied with the 
system. Instructions for each of these samples follows.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    149



Chapter 13. Utilities
USE TABLE Statement Syntax

The USE TABLE statement consists of three basic components:

• Information that identifies the logical table name and a table source definition 
that associates the logical table to a physical database or file. This information 
is required.

• Column definitions. The column definition identifies the DB2 attributes 
associated with a column as well as database/file specific information. One or 
more column definitions must be supplied for a logical table.

• Recurring column information. If the columns defined for a logical table 
occur multiple times in the mapped physical database/file, tell eXadas to treat 
this recurring information as separate rows in the result sets returned from a 
query that references a recurring column(s). Specification of recurring column 
information is optional.

There is a different format for the table source definition for each source database 
type, and differing formats for the column definitions. The column definitions for 
a single USE TABLE statement must be separated by commas with a single pair 
of parentheses enclosing the entire set of definitions. All strings that contain 
embedded blanks or USE TABLE keywords must be enclosed in quotes. Quotes 
must be double (“ ”). All statements must include a terminating semi-colon (;).

The USE TABLE statement syntax is shown in Figure 19: “USE TABLE 
Statement Syntax,” and described in Table 11, “USE Table Parameters and 
Descriptions.”

Figure 19:  USE TABLE Statement Syntax

Table 11: USE Table Parameters and Descriptions

Parameters Descriptions

USE TABLE Keywords that identify the statement. All 
subsequent parameters describe the logical table 
identified by table-name until the next USE 
TABLE, USE INDEX, DROP TABLE, or DROP 
INDEX keywords are encountered, or EOF on 
SYSIN is encountered.

owner SQL authorization ID of the owner. If owner is not 
specified, the user ID used to run the Meta Data 
Utility is assigned as the owner. Maximum length 
is 8 characters.

USE TABLE[owner.]table-name DBTYPE database-type table-source-definitions

 column definitions 
 ,

RECORD EXIT name MAXLENGTH length

;( )
150 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
Table Source Definitions

The following diagram describes the IMS, Sequential, VSAM, CICS VSAM,  
IDMS, ADABAS, and Datacom table source definitions syntax.

table-name Represents the name for the table you are creating. 
The maximum length is 18 characters. The 
combination of owner and table-name must be 
unique within a Meta Data Catalog. If owner is 
specified, the syntax is: owner.table-name.

DBTYPE Keyword for the clause that identifies the database 
type.

database-type Identifies the source database/file type. Valid 
values are IMS, VSAM, SEQUENTIAL, IDMS, 
ADABAS, and DATACOM.

table-source-definitions Represents the set of parameters that defines the 
table source for the specified database/file type. 
See “Table Source Definitions,” on page 151, for 
additional information.

RECORD EXIT An optional keyword to indicate a record exit for 
this table definition.

name The name of the record exit module.

MAXLENGTH A required keyword if RECORD EXIT is 
specified.

length The maximum length of the updated record.

column-definitions Represents the set of parameters that define the 
column source for the specified table. See “eXadas 
Column Definition Syntax,” on page 162, for 
additional information.

Table 11: USE Table Parameters and Descriptions

Parameters Descriptions
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    151



Chapter 13. Utilities
Figure 20:  Table Source Definitions

IMS
DBD name leaf segment name

VSAM

DS ‘data set name’

DD ddname

Sequential

DS ‘data set name’

DD ddname

PCBPREFIX pcbnameprefix

INDEXROOT index root segment name

SCHEDULEPSB (standard PSBname)

SCHEDULEPSB (standard PSB, join PSBname

IDMS

schema-name SUBSCHEMA IS subschema-name

VERSION IS
version-number

PATH IS (recname

ALIAS aliasname

)

,SET IS setname, recname, _NONE_

,

ALIAS aliasname

DBNAME IS databasename

ACCESS LOADMOD IS loadmodulename 
152 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
IMS Table Source Definitions

The IMS table source definitions are part of the USE TABLE syntax. The 
following table describes the parameters and their descriptions.

Table 12: IMS Table Source Definitions

Parameter Description

DBD name Identifies the DBD name associated with the target 
IMS database. The DBD name must exist in the 
DBDLIB(s) referenced in the DBDLIB DD 
statement when the Meta Data Utility is executed.

INDEXROOT An optional keyword that allows the specification 
of the root segment for mapping that utilizes an 
INDEX causing the IMS database hierarchy to be 
inverted.

ADABAS
 FILE filenumber

VIEW ‘viewname’ DBID nn

TABLENAME tablename STATUSVERSION IS status/version

ACCESS USING urtname

DATACOM

CICS VSAM

DD filename

CICS APPLID local_applid_name cics_applid_name

LOGMODE logmode_name

TRANID cics_transaction_id 
netname network_name
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    153



Chapter 13. Utilities
index root segment name The root of the IMS database hierarchy when 
accessing the table on a secondary index segment 
that is not the root of the database as defined in the 
DBD.

NOTE: All access to the database for the table 
must go through a secondary index on the 
specified segment name.

leaf segment name Represents the name of the segment farthest from 
the root segment on a single path for this table 
definition.

SCHEDULEPSB An optional keyword that allows the specification 
of one or more PSB names to be used when the 
DRA interface is used to access IMS data. See 
“PSB Scheduling,” on page 109, for more 
information.

standard PSBname Specifies the name of the PSB that the DRA 
interface schedules to service a query that 
references the logical table name. If 
SCHEDULEPSB is specified, standard PSBname 
is required.

join PSBname An optional parameter that specifies the name of a 
PSB that the DRA interface schedules to service a 
query when the table is referenced as part of a 
JOIN. In JOIN queries, this PSB will be scheduled 
in place of the standard PSB.

PCBPREFIX An optional keyword that allows the specification 
of a PCB prefix to be used for PCB selection by 
name. See “PCB Selection Options,” on page 108, 
for additional information.

pcbnameprefix A one to seven character name that specifies the 
prefix of a PCB name. Unique PCB names are 
generated by appending a sequence number to the 
prefix.

If PCBPREFIX is specified, pcbnameprefix is 
required. The pcbnameprefix must be enclosed in 
double quotes if it is a numeric value or if the 
value begins with a number, for example 1 or 1A. 
It is optional to include double quotes for other 
string values, such as AB or A1.

Table 12: IMS Table Source Definitions

Parameter Description
154 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
Sequential Table Source Definitions

This section describes the Sequential table source definition syntax.

Table 13: Sequential Table Source Definitions

 Parameter Description

DS ‘data set name’ | DD ddname Identifies a Sequential file. You can specify either 
a data set name or a ddname. If you use a data 
set name, it must be enclosed in quotes, fully-
qualified, and 1-44 alphanumeric characters. You 
can only specify Sequential data sets that already 
exist on the system as the Meta Data Utility can 
only access the file catalog information about 
existing Sequential data sets. 

A ddname must be 1-8 alphanumeric characters. If 
ddname was specified, a corresponding DD 
statement must be included in both the Meta Data 
Utility JCL and the Server in order for the file to 
be accessed successfully.

NOTE: You can also specify the name of a PDS 
member or reference a generation data 
set. For a PDS member the syntax is DS 
‘data set name(member)’. To 
reference a generation data set, the DS 
format must be used. A specification of 
DS ‘data set name(0)’ causes the 
current version to be accessed. A 
specification of DS ‘data set name(-
n)’, where n is a number specifying the 
relative number from the current version 
to be accessed. If no version number is 
specified, all versions of the generation 
data set are accessed.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    155



Chapter 13. Utilities
VSAM Table Source Definition

This section describes the VSAM table source definition syntax.

IDMS Table Source Definitions

This section describes the IDMS table source definition syntax.

Table 14: VSAM Table Source Definitions

Parameter Description

DS ‘data set name’ | DD ddname Identifies a VSAM cluster. You can specify either 
a data set name or a ddname. If you use a 
data-set-name, it must be enclosed in quotes, 
fully-qualified, and 1-44 alphanumeric characters. 
You can only specify VSAM data sets that already 
exist on the system as the Meta Data Utility can 
only access the file catalog information about 
existing VSAM data sets. 

A ddname must be 1-8 alphanumeric characters. If 
ddname was specified, a corresponding DD 
statement must be included in both the Meta Data 
Utility JCL and the Server in order for the file to 
be accessed successfully.

Table 15: IDMS Table Source Definitions

Parameter Description

DBNAME IS databasename Defines a 1 to 8 character IDMS database name 
containing the subschema defined for the table. 
This parameter is optional. If DBNAME is 
omitted, the DBNAME will be determined by the 
default database name for the Server runtime 
environment. For more information on specifying 
default DBNAMEs to IDMS, see the IDMS 
documentation for the SYSCTL and SYSIDMS 
JCL declarations and the generation of 
IDMSOPTI modules.

schema-name The IDMS schema.

SUBSCHEMA IS A required keyword separating the schema-name 
and subschema name fields.

subschema-name The IDMS subschema name from which data 
elements are extracted for mapping to 
subsequently defined columns.
156 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
VERSION IS A required keyword separating the subschema 
name and version number fields.

version number The IDMS schema version number that qualifies 
the schema name.

ACCESS LOADMOD IS loadmodulename Defines a 1 to 8 character IDMS batch access load 
module to be used to communicate with IDMS. If 
not specified, the default load module name IDMS 
is used. This parameter can be used to specify a 
specially built IDMS access module that contains 
an IDMS OPTI module. The ACCESS LOAD-
MOD specification may be used to specify an 
access module that points to a different central 
version of IDMS than the default for the Server 
environment. For more information on building 
IDMSOPTI modules, see the IDMS documenta-
tion.

PATH IS A required keyword clause that identifies the start 
of the PATH clause.

ALIAS aliasname An optional keyword by which the preceding 
record name may also be referenced. If the record 
name appears two or more times in a path, then all 
occurrences of the record name except one must 
have an alias-name. Each alias-name must be 
unique.

SET IS An optional keyword clause identifying the 
existence of the setname and recname that follow 
it.

setname An IDMS set name identifying a link or 
navigational path SET between the record name 
clause that proceeds the SET IS keyword phrase 
and the record name that follows it.

Table 15: IDMS Table Source Definitions

Parameter Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    157



Chapter 13. Utilities
ADABAS Table Source Definitions

This section describes the ADABAS table source definition syntax.

recname An IDMS record name. The elements of this 
record name can be found by navigating through 
the preceding record name and set name.

_NONE_ No set relationships exists between the two 
records mapped in the IDMS path. The use of 
_NONE_ is not recommended for tables that will 
be queried, as it produces a Cartesian product of 
all the records for each record type in the result 
set.

For more information regarding the _NONE_ 
setting, see “SQL INSERT Considerations,” on 
page 363.

Table 16: ADABAS Table Source Definitions

Parameter Description

filenumber A required parameter that specifies the ADABAS 
file number for the table being defined.

viewname An optional parameter that specifies the predict 
view name enclosed in single quotes (‘ ’). This 
name is passed to the security exit for 
authorization if the SAF Exit is active.

DBID nn An optional parameter specifying the ADABAS 
database ID number. The default is 1.

If the DBID information is in the Predict 
Dictionary, the ADABAS USE Statement 
Generator program automatically generates the 
DBID option in the Meta Data Grammar. The 
DBID specified on the ADARUN card for the 
ADABAS USE Statement Generator must be the 
Database ID of the Predict Dictionary file.

Table 15: IDMS Table Source Definitions

Parameter Description
158 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
Datacom Table Source Definitions

This section describes the Datacom table source definition syntax.

Table 17: Datacom Table Source Definitions

Parameter Description

TABLENAME A required keyword that allows specification of a 
CA-DATACOM/DB table ENTITY-
OCCURRENCE-NAME (table name).

tablename Specifies the CA-DATACOM/DB ENTITY-
OCCURRENCE-NAME of the table to which this 
Meta Data mapping applies.

STATUSVERSION IS Required keywords that allow specification of the 
CA-DATACOM/DB status and version of the 
named table.

status/version Specifies the status and version of the named table 
that is to be accessed from the CA-
DATACOM/DB Datadictionary Service Facility. 
Only PROD, TEST, and HIST are allowed as valid 
status values. Non-current versions for these 
statuses are specified using version numbers nnn, 
Tnn, or Hnn. See the CA-DATACOM/DB DSF 
Programmer Guide for an explanation of 
“Specifying Status/Version.”
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    159



Chapter 13. Utilities
CICS VSAM Table Source Definitions

This section describes the CICS VSAM table source definition syntax. 

ACCESS USING Required keywords that allow specification of a 
CA-DATACOM/DB User Requirements Table.

urtname Specifies the name of a User Requirements Table 
that has been assembled and link-edited into an 
accessible load library. The User Requirements 
Table identifies which CA-DATACOM/DB tables 
can be accessed by CA-DATACOM/DB 
commands and must contain the three-character 
CA-DATACOM/DB table name and the 
CA-DATACOM/DB database ID for the table 
identified in the ‘tablename’ parameter, described 
above.

NOTE: Whenever a new table is to be mapped 
into the eXadas catalog, an appropriate 
URT must be created or updated, 
assembled, link-edited, and the load 
module name must be specified in the 
Meta Data Utility grammar for the new 
table. Failure to include the CA-
DATACOM/DB tablename and database 
ID in the specified URT will result in an 
access failure while trying to process the 
new table.

Table 18: CICS VSAM Table Source Definitions

Parameter Description

DD  filename The filename option identifies the CICS File 
Control Table (FCT) name for the VSAM file. 

CICS APPLID local_applid_name  
cicsapplid_name

Identifies the CICS APPC application ID 
(LUNAME) for the eXadas Server and the APPC 
application ID (LUNAME) of the CICS address 
space that owns the VSAM file. 

LOGMODE logmode_name A 1 to 8 character name that identifies the logmode 
for the APPC connection to CICS. 

Table 17: Datacom Table Source Definitions

Parameter Description
160 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
Column Definitions

This section describes the column definition syntax for mapping IMS, Sequential, 
VSAM, IDMS, ADABAS, and Datacom data.

TRANID cics_transaction_id A 1 to 4 character name that identifies the CICS 
transaction ID of the eXadas CICS VSAM Data 
Savant. 

netname network_name A 1 to 8 character name that identifies the name of 
the network where the CICS address space resides. 
This parameter is optional and only necessary 
when the CICS address space resides on a network 
other than the network where the eXadas Server 
resides.

Table 18: CICS VSAM Table Source Definitions

Parameter Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    161



Chapter 13. Utilities
Figure 21:  eXadas Column Definition Syntax
162 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    163



Chapter 13. Utilities
 This section describes the column definitions and their meanings.

Table 19: Column Definitions

Parameter Definition

column-name Represents the name of the column described by the statement. The 
column-name must conform to DB2 column naming conventions. 
The maximum length for a column-name is 30 characters. The 
column-name must be unique within the logical table.

SOURCE DEFINITION Specifies the beginning of the column definition. All subsequent 
parameters in the statement describe the column identified by 
column-name.

ENTRY segment-name Specifies the IMS segment name from which the column resides.

FIELDNAME “entry name” ISN A required parameter that specifies the ADABAS field definition 
name for the column. The entry name should be enclosed in double 
quotes (“  ”).

If ISN is specified, it must be specified as USE AS INTEGER and 
when used in a query, it will return the ADABAS ISN of the record.

DATAMAP Specifies the size and offset of the column specified. The 
DATAMAP clause must be coded with both of the following 
parameters:

• OFFSET integer: integer represents the number of bytes from 
the start of the segment relative to zero.

• LENGTH integer: integer represents the number of bytes in 
the field for all data types except graphic, where integer 
represents the number of double-byte characters. 

DATATYPE Defines the data type of the entry name. For more information on 
data types, see “eXadas-Supported Data Types,” on page 170. 
Specify one of the following values:

• C (character or signed zoned decimal),

• P (packed decimal),

• UP (unsigned packed decimal),

• D (double word),

• H (halfword),

• F (fullword or FLOAT), 

• V (variable, including a two-byte length field).

• UC (unsigned character),

• UH (unsigned halfword), or

• UF (unsigned fullword).
164 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
rec-ref-name An IDMS record type name containing the definition of the 
element-name that follows it. The record type name must have 
been mentioned in the PATH IS clause. IDMS allows the use of a 
circular path in which a particular record may appear multiple 
times. The rec-ref-name may refer to either a record or a reference, 
such as an alias-name. It is used to specify a unique occurrence of a 
record.

element-name The IDMS record element name that was defined in the rec-ref-
name record definition. The element-name may define any of the 
following:

• an elemental data field,

• a repeating (OCCURS) field, or

• a group name.

If the element-name is a group name, the SQL usage must be type 
CHAR.

element-name(subscript) If the associated element-name is defined as a repeating 
(OCCURS) field, the subscript field is used to identify the 
occurrence from which data is extracted for the SQL column map. 
If the subscript field is part of a higher level repeating group, 
multiple subscript positions must be provided, each position must 
be separated from the next with a comma, the left-most position 
must refer to the highest level OCCURS clause, and the right-most 
subscript must refer to the associated element name. Up to three 
levels of subscription may be specified, for example, n1, n2, n3. All 
subscript values must be integers within the correct range for the 
corresponding OCCURS clause. 

Table 19: Column Definitions

Parameter Definition
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    165



Chapter 13. Utilities
USE AS cac-data-type Indicates the supported data type used for the column. Specify one 
of the following values:

• CHAR (integer),

• VARCHAR (integer),

• LONG VARCHAR,

• INTEGER,

• SMALLINT,

• DECIMAL (precision-integer[,scale-integer]),

• FLOAT (integer),

• GRAPHIC (integer),

• VARGRAPHIC (integer), 

• LONG VARGRAPHIC,

• DATE “date-format” (Adabas), or

• TIME “time-format” (Adabas).

NULL IS string Optional parameter. Indicates that string is used to define the value 
that is interpreted as representing NULL in the source database. 
Specify character data enclosed in quotes or hexadecimal data 
enclosed in quotes and preceded by an x (for example, x ‘...’). 

If NULL IS is not specified on a column, the NULL indicator for 
the column is never set. When specified, the NULL IS value can be 
a maximum of 32 characters, including string delimiters. string is 
compared to the actual data field for the length of string, and if 
identical, the NULL indicator is set.

For example, if a 10-byte character field has a NULL IS 
specification of NULL IS x’0000’, only the first two bytes of the 
field are used to determine if the field is NULL. The remainder of 
the field is ignored.

NOTE: For VARCHAR, LONG VARCHAR, VARGRAPHIC, and 
LONG VARGRAPHIC columns, the first byte after the 
length field is the byte compared to the NULL value. 
NULL IS on a VARCHAR treats VARCHAR as NULL is 
either the length field is 0 or the data in the VARCHAR 
matches the NULL IS specification.

For UPDATE and INSERT, the NULL IS specification 
should define the string with the same length as the 
column definition.

Table 19: Column Definitions

Parameter Definition
166 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
Record/Field Data Type Conversions

You can write a field procedure to map IMS or IDMS data record fields to the data 
types supported by the Meta Data Utility.

The following table identifies the eXadas-supported mapping from native data 
types to SQL data types.

WITH CONVERSION procedure 
name

Optional parameter. The field procedure, procedure name, is called 
to decode the column value in the result set when the applicable 
defined column is referenced in a WHERE clause.

USE RECORD LENGTH An optional clause that, when specified, indicates that column 
length is obtained from the physical record length. This clause is 
used only for VARCHAR, LONG VARCHAR, VARGRAPHIC, 
and LONG VARGRAPHIC columns that begin at offset zero in a 
variable length record.

Table 20: Data Type Mappings

Data Type
eXadas Supported Data 
Types

Description

Character (VSAM,Sequential)

C (IMS, CA-DATACOM/DB)

A (Alphanumeric - ADABAS)

DISPLAY (IDMS)

CHAR(n) CHAR data types are fixed-
length character strings of length 
n, where 1 ≤ n ≤ 254.

DECIMAL(p[,s]) DECIMAL data types are zoned 
decimal strings containing 
numeric data on which 
arithmetic comparisons or 
operations are likely to be 
performed. 

• p is the precision decimal, 
specifying the total number 
of digits,

• s is the total number of 
digits to the right of the 
decimal.

GRAPHIC(n) Fixed-length DBCS strings of 
length n where 1 ≤ n ≤ 127. For 
GRAPHIC data types, n 
specifies the number of DBCS 
characters, not the amount of 
physical storage occupied by the 
field.

Table 19: Column Definitions

Parameter Definition
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    167



Chapter 13. Utilities
Double Float (VSAM, 
Sequential)

F (ADABAS)

COMP-2 (IDMS)

L (CA-DATACOM/DB)

FLOAT(n) Double-precision floating point; 
64-bit; n - integer 22 ≤ n ≤ 53.

Fullword (VSAM,Sequential)

I (ADABAS)

COMP-4 (IDMS)

PIC 9(8)

B (4 bytes; CA-
DATACOM/DB) 

INTEGER Fullword signed integer; 32-bit; 
no decimal point allowed.

Single Float (VSAM, 
Sequential)

F (ADABAS) 

COMP-1 (IDMS) 

S (CA-DATACOM/DB) 

FLOAT(n) Single-precision floating point; 
32-bit; n - integer 1 ≤ n ≤ 21.

H (VSAM,Sequential)

I (ADABAS) 

COMP-4 (IDMS) 

PIC 9(4)

B (2 bytes; CA-
DATACOM/DB) 

SMALLINT Halfword signed integer; 16-bit ; 
no decimal point allowed.

ADABAS field can be 8-bits or 
16-bits. 

Packed (VSAM,Sequential)

P (IMS, ADABAS)

COMP-3 (IDMS)

D (CA-DATACOM/DB)

DECIMAL(p[,s]) Packed decimal value where:

• p is the precision decimal, 
specifying the total number 
of digits and

• s is the total number of 
digits to the right of the 
decimal.

Table 20: Data Type Mappings

Data Type
eXadas Supported Data 
Types

Description
168 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
Unsigned Packed (VSAM, 
Sequential)

P (IMS, ADABAS)

DECIMAL(up[,s]) Unsigned Packed decimal value 
where:

• up is the precision decimal, 
specifying the total number 
of digits and

• s is the total number of 
digits to the right of the 
decimal.

N (Numeric - ADABAS, CA-
DATACOM/DB)

CHAR(n) CHAR data types are fixed-
length character strings of length 
n, where 1 ≤ n ≤ 29.

DECIMAL(p[,s]) DECIMAL data types are zoned 
decimal strings containing 
numeric data on which 
arithmetic comparisons or 
operations are likely to be 
performed. 

• p is the precision decimal, 
specifying the total number 
of digits,

• s is the total number of 
digits to the right of the 
decimal.

Table 20: Data Type Mappings

Data Type
eXadas Supported Data 
Types

Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    169



Chapter 13. Utilities
eXadas-Supported Data Types

The following table contains the eXadas-supported data types and their 
descriptions. The values in the eXadas-Supported Data Type column are used in 
the Column Definitions clause of the USE TABLE statements. They are used for 
the cac-data-type parameter in the USE AS keyword. The default mappings of 
source data into eXadas-supported data types are described under each individual 
database type.

V (Variable length character or 
graphic field. Character strings 
longer than 254 are changed to 
LONG VARCHAR Data Type. 
Graphic strings longer than 127 
are changed to LONG 
VARGRAPHIC Data Type).

VARCHAR(n) Variable length character string, 
in which n is an integer 1 ≤ n ≤ 
32704. 

LONG VARCHAR Variable length character string, 
for which the size is calculated. 
See “eXadas-Supported Data 
Types,” following this table for 
information on calculating 
LONG VARCHAR.

VARGRAPHIC(n) Variable-length DBCS string 
where 1 ≤ n ≤ 127. The value of 
n specifies the number of DBCS 
characters. For example, 
VARGRAPHIC(10) specifies a 
column that occupies 20-bytes 
of storage.

LONG VARGRAPHIC Variable-length DBCS string 
where 1 ≤ n ≤ 16352. The value 
of n specifies the number of 
DBCS characters.

Table 21: eXadas-Supported Data Types

eXadas-Supported Data Types Description (n is always a decimal integer)

INTEGER Fullword signed hexadecimal, 32-bits, no decimal point. For 
Adabas, this can also specify a three-byte binary field.

SMALLINT Halfword signed hexadecimal, 16-bits, no decimal point.  
For Adabas, this can also specify a one-byte binary field.

Table 20: Data Type Mappings

Data Type
eXadas Supported Data 
Types

Description
170 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
DECIMAL(p[,s]) Packed decimal 1≤ p ≤ 31 and 0 ≤ s < p. Where 

• p is the precision (total number of digits) and 

• s is the total number of digits to the right of the decimal 
point.

FLOAT (n) Floating point 1 ≤ n ≤ 53. If 1≤ n ≤ 21, then single-precision. 
If 22 < n ≤ 53, then double-precision.

CHAR (n) Fixed-length character string of length n where 1≤ n ≤ 254.

VARCHAR (n)* Variable-length character string where 1 ≤ n ≤ 254. 

LONG VARCHAR* Variable-length character string where the size is calculated 
internally. See the IBM DB2 SQL Reference Guide for 
information on calculating Long VARCHAR lengths.

GRAPHIC (n)* This is a fixed-length, double-byte character set (DBCS) 
string where 1 ≤ n ≤ 127. The value of n specifies the 
number of DBCS characters. For example, GRAPHIC(10) 
specifies a column that occupies 20 bytes of storage.

VARGRAPHIC (n)* Variable-length, DBCS string where the size is calculated 
internally. The value of n specifies the number of DBCS 
characters. For example, VARGRAPHIC(10) specifies a 
column that occupies 20 bytes of storage where 1 ≤ n ≤ 
32704.

LONG VARGRAPHIC* Variable-length, DBCS string where 1 ≤ n ≤ 16352. See the 
IBM DB2 SQL Reference for information on calculating 
LONG VARGRAPHIC lengths.

REAL Floating point 1 ≤ n ≤ 21. Single-precision value.

DOUBLE PRECISION Floating point 1 ≤ n ≤ 53. Double-precision value.

Table 21: eXadas-Supported Data Types

eXadas-Supported Data Types Description (n is always a decimal integer)
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    171



Chapter 13. Utilities
* Optionally, these CAC_DATA_TYPES may include the USE RECORD 
LENGTH clause, which causes the length of the data to be used to create a single 
column from the variable data.

WARNING: Incorrect specification of signed vs. unsigned packed decimal fields or signed vs. 
unsigned halfwords and fullwords can result in incorrect result sets or degraded 
performance in IMS databases when packed decimal COLUMNS are referenced 
in SQL WHERE clauses.

Packed Decimal Support

eXadas supports both unsigned and signed packed decimal fields in database 
records. While all DECIMAL columns returned to eXadas clients are signed, 
COBOL applications commonly define packed fields (COMP-3 data items) that 
are always ≥ 0 as unsigned. 

When mapping internal data types on SQL columns, it is extremely important to 
denote unsigned packed fields as unsigned by specifying DATATYPE UP. This is 
particularly important in IMS as incorrect definitions of packed fields can result in 
incorrect SQL result sets or degraded performance when qualifying queries on 
packed data items.

Zoned Decimal Support

Zoned Decimal data types are character data types consisting of only digits and an 
optional sign. This data type exists because COBOL supports a data element with 
a numeric picture clause having a USAGE type of DISPLAY. This allows the 
creation of numeric data, which can be used to perform arithmetic and can also be 
stored in a readable format.

DATE “date-format” This data type is supported only for Adabas and represents 
the Natural date system variable. The date-format indicates 
the format of the returned date field. Any combination of 
MM (month), MMM (name of month), DD (day of month), 
DDD (day of year), YY (year), YYYY (full year) along with 
other characters and spaces can be used to represent the 
format of the date.

TIME “time-format” This data type is supported only for Adabas and represents 
the Natural time system variable. The time-format indicates 
the format of the returned time field. Any combination of 
MM (month), MMM (name of month), DD (day of month), 
DDD (day of year), YY (year), YYYY (full year), HH 
(hour), MI (minute), or SS (seconds) along with other 
characters and spaces can be used to represent the format of 
the time.

Table 21: eXadas-Supported Data Types

eXadas-Supported Data Types Description (n is always a decimal integer)
172 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
The following COBOL formats of Zoned Decimal are supported by eXadas.

• UNSIGNED Numeric, specified as: PIC 999 USAGE IS DISPLAY.

• SIGNED Numeric, specified as: PIC S999 USAGE IS DISPLAY. The sign 
in this case is kept in the first four bits of the last byte in the field. For 
example, the value 123 (x’F1F2F3’) would be stored as x’F1F2C3’ for 
+123 and x’F1F2D3’ for -123. COBOL also allows the sign to be kept in 
the first or last byte of the field, or separate from the field as either a leading or 
trailing ( + or -) character.

The only external change required to support Zoned Decimal is in the Meta Data 
Grammar, which is mapped in the DataMapper. To define a Zoned Decimal field, 
change the SQL data type of the field to DECIMAL(p,s) instead of the default 
CHAR(n) and add a DATAYPE C for signed numbers and DATAYPE UC for 
unsigned numbers. See the eXadas DataMapper Guide for more information on 
Meta Data Grammar.

For example, a 6-byte Zoned Decimal field is defined to the DataMapper by 
specifying its internal length as 6 and the data type as character. However, 
instead of specifying its SQL data type as CHAR(6), it is specified as 
DECIMAL(6). This results in the client application seeing the data as SQL decimal 
and allows arithmetic operations and comparisons to be performed on the field.

DataMapper will also transform COBOL Zoned Decimal fields on an import to be 
SQL DECIMAL data types if either of the following conditions is true:

• The field is declared as having a sign, for example PIC S999.

• The field has implied decimal positions (PIC 999V9).

VARCHAR

eXadas expects the first two bytes of a field mapped to a column defined as 
VARCHAR to contain a binary length indicator (LL). There are two types of 
length definitions:

• LL represents the length of the field, excluding the two bytes required for LL.

• LL represents the total length of the field, including the two bytes required for 
LL.

For eXadas to extract VARCHAR data from the target database correctly, the USE 
TABLE statements must account for the different field length definitions.

If the VARCHAR data in the target database has an LL field that excludes the two 
bytes required for LL (definition 1, above), the USE statement must specify the 
LENGTH parameter two bytes greater than the specification for the USE AS 
VARCHAR parameter. 

For example:

USE TABLE CACEMP
DBTYPE DBB CACEMP EMPLOYEE
(
    DEPT SOURCE DEFINITION
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    173



Chapter 13. Utilities
        DATAMAP OFFSET 45 LENGTH 5
        USE AS VARCHAR(3)
)

If the data in column DEPT is “CAC” and the USE statement in Figure 9 is used, 
eXadas assumes the following is in the target database:

If the VARCHAR data in the target database has an LL field that includes the two 
bytes required for LL, the USE statement must specify the LENGTH parameter 
equal to the “USE AS VARCHAR” specification. For example:

USE TABLE CACEMP
DBTYPE DBB CACEMP EMPLOYEE
(
    DEPT SOURCE DEFINITION
        DATAMAP OFFSET 45 LENGTH 5
        USE AS VARCHAR(5)
)

If the data in column DEPT is “CAC,” and the USE statement is used, eXadas 
assumes the following is in the target database:

The record in the target database is translated by eXadas as follows when it is 
returned to the eXadas application:

In the following example, LENGTH and USE AS VARCHAR have the same 
value.

OFFSET 0 LENGTH 30000

USE AS VARCHAR(30000)

In the previous example, the LL field contains the length of the data plus the LL 
field, so two bytes are subtracted when returning data to the application.

In the next example, LENGTH and USE AS VARCHAR differ by two bytes.

OFFSET 0 LENGTH 30000
USE AS VARCHAR(29998)

LL Data

0003 CAC

LL Data

0005 CAC

LL Data

0003 CAC
174 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
In the previous example, the LL field contains the size of the data only, so its value 
is returned to the application as-is.

LONG VARCHAR

If a VARCHAR definition exceeds 254 bytes, eXadas converts the data type to 
LONG VARCHAR. With respect to the LL field, LONG VARCHAR is handled 
like VARCHAR.

The following is an example of a DB2 compatible LONG VARCHAR where the 
LL field contains the size of the data only, so the value is returned to the 
application as-is.

OFFSET 0 LENGTH 30000
USE AS LONG VARCHAR

VARGRAPHIC

eXadas expects the first two bytes of a field mapped to a column defined as 
VARGRAPHIC to contain a binary length indicator (LL). There are two types of 
length definitions:

• LL represents the length of the field in bytes, excluding the two bytes required 
for LL. 

• LL represents the total length of the field in bytes, including the two bytes 
required for LL. 

NOTE: The LL field is converted from a length in bytes to a length in DBCS.

For eXadas to extract VARGRAPHIC data from the target database correctly, the 
USE TABLE statements must account for the different field length definitions. 

If the VARGRAPHIC data in the target database has an LL field that excludes the 
two bytes required for LL (definition 1, above), the USE statement must specify 
the LENGTH parameter one DBCS character greater than the specification for the 
USE AS VARGRAPHIC parameter. 

In the following example, LENGTH and USE AS VARGRAPHIC have the same 
value. 

OFFSET 0 LENGTH 15000 
USE AS VARGRAPHIC(15000) 

In the previous example, the LL field contains the length of the data in bytes plus 
the LL field, so two bytes are subtracted and the result is divided by two when 
returning data to the application.

In the next example, LENGTH and USE AS VARGRAPHIC differ by one graphic 
character (two bytes).

OFFSET 0 LENGTH 15000
USE AS VARGRAPHIC(14999) 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    175



Chapter 13. Utilities
In the previous example, the LL Field contains the size of the data only in bytes, 
so its value is divided by two and returned to the application as-is.

LONG VARGRAPHIC

If a VARGRAPHIC definition exceeds 127 bytes, eXadas converts the data type 
to LONG VARGRAPHIC. With respect to the LL field, LONG VARGRAPHIC is 
handled like VARGRAPHIC.

The following is an example of LONG VARGRAPHIC where the LL field 
contains the size of the data only in bytes. It’s value is divided by 2 and returned to 
the application as-is.

OFFSET 0 LENGTH 15000 
USE AS LONG VARGRAPHIC 

Record Arrays

When defining columns that map data that repeats in the physical database/file to 
be accessed, the columns can be enclosed within ENDLEVEL statements. The 
BEGINLEVEL/ENDLEVEL statement syntax is shown in the following figure.

Figure 22:  BEGINLEVEL and ENDLEVEL Statement Syntax

BEGINLEVEL level OFFSET offset LENGTH length

OCCURS occurs

MAXOCCURS maxoccurs

DEPENDING ON COLUMN column_name

NULL IS value

column_name EQUAL ALL

ENDLEVEL level

 column-definitions 
 ,
176 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
The following table describes the parameters for the BEGINLEVEL statement.

Table 22: BEGINLEVEL Definitions

Parameter Description

BEGINLEVEL A parameter that identifies that a group of repeating columns is 
being defined. If the record array repeats a fixed number of 
times, then multiple BEGINLEVEL statements can be specified. 

More than one record array of fields can be defined providing 
that the arrays are not OCCURS DEPENDING ON types. 

level A required parameter that specifies the nesting level. For 
example, if there is one group of repeating columns in the 
record, those fields would be defined as level 1 (the non-
repeating columns are assumed to be at level 0). For columns 
that recur a fixed number of times, you can nest BEGINLEVEL 
statements. For example, if you have a set of columns that repeat 
10 times and one of those 10 columns can also repeat 10 times, 
then you would define a BEGINLEVEL block for the first set of 
columns and assign them a level of 1. For the column within the 
level 1 group that repeats 10 times, bracket it with a 

BEGINLEVEL/ENDLEVEL statement and identify its level 
number as 2.

OFFSET integer A required clause where integer is the number of bytes from the 
start of the recurring data relative to the current offset in the 
mapping. For example, for a level 1 specification, the offset is 
relative to the beginning of the record. For a level 2 specification 
(or higher) it is relative to the beginning of the offset within the 
“parent” BEGINLEVEL block. 

All offsets are specified relative to zero.

All of the columns that are mapped within a 
BEGINLEVEL/ENDLEVEL block are mapped at relative offset 
zero within the block.

LENGTH length A required clause where length is the total length (number of 
bytes) of the columns that are defined in the 
BEGINLEVEL/ENDLEVEL group.

OCCURS integer An optional clause that specifies the number of times that the 
group of columns occurs. When specified, all occurrences of the 
group are considered as valid and no NULL checking is 
performed. Either an OCCURS or MAXOCCURS parameter 
must be specified on a BEGINLEVEL statement.

MAXOCCURS maxoccurs An optional clause that specifies the maximum number of times 
that the group of columns occurs if none of the occurrences are 
NULL. Either an OCCURS or MAXOCCURS parameter must 
be specified on a BEGINLEVEL statement.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    177



Chapter 13. Utilities
DEPENDING ON COLUMN 
column-name

An optional clause that specifies the name of a column that 
identifies the number of occurrences that exist in an individual 
record. This specification is used to define a varying number of 
occurrences situation. The column-name specified must have a 
numeric data type associated with it and must be defined before 
the BEGINLEVEL statement in the Meta Data Grammar.

NULL IS An optional clause that specifies the name of a column within 
the BEGINLEVEL/ENDLEVEL block that is to be tested 
against the value to determine if a specific occurrence is NULL.

For DataMapper, NULL IS has a 32-byte limit. However, if only 
one byte is specified and the data retrieved matches the value 
indicated for NULL IS, NULL IS is turned on. If the data 
retrieved does not match the value indicated for NULL IS, 
NULL IS is never turned on.

column-name An optional column name used to specify the NULL IS value.

Table 22: BEGINLEVEL Definitions

Parameter Description
178 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
The following table describes the parameters for the ENDLEVEL statement.

EQUAL value An optional clause that specifies a comparison value that is used 
to determine if an occurrence of the repeating group is NULL. 
This value can either be specified as a character string 
surrounded by quotes (‘0000000’) or as a hexadecimal string 
prefixed with X and surrounded by quotes (X’00000000’).

The value can be up to 32 characters in length. The comparison 
is made for the length of the value in determining whether an 
occurrence of the group is NULL. If a column-name 
specification is supplied, the contents of column-name is 
compared to determine whether an occurrence is NULL. If a 
NULL IS specification is not supplied, the comparison is 
performed against the beginning of the recurring data for each 
occurrence for the length specified on the LENGTH parameter.

The EQUAL value and EQUAL ALL value specifications are 
mutually-exclusive.

EQUAL ALL value An optional clause that specifies a comparison value that is used 
to determine if an occurrence of the repeating group is NULL. 
Only a single character is specified in value. Value can either be 
specified as a character string surrounded by quotes (‘ ’) or as a 
hexadecimal string prefixed with X and surrounded by quotes 
(X’00’).

If a column-name specification is supplied, the entire content of 
the column is compared against value to determine whether an 
occurrence is NULL. If a column-name specification is not 
supplied, the comparison is performed against the beginning of 
the recurring data for each occurrence for the length specified on 
the LENGTH parameter.

The EQUAL ALL value and EQUAL value specifications are 
mutually-exclusive.

Table 23: ENDLEVEL Parameter Definitions

Parameter Description

ENDLEVEL A required parameter that identifies the end of a 
group of repeating columns. 

level A required parameter that specifies the nesting 
level that is being ended. The ENDLEVEL and 
BEGINLEVEL level numbers must be paired 
together and the level numbers must match.

Table 22: BEGINLEVEL Definitions

Parameter Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    179



Chapter 13. Utilities
USE [UNIQUE] INDEX Statement Syntax

The USE INDEX statement is used to define an index on a logical table. Index 
information can only be defined for an existing logical table definition. The 
information populated in the SYSIBM.SYSINDEXES and SYSIBM.SYSKEYS 
tables is used to optimize physical access to the database/file associated with the 
logical table for which the index is defined.

NOTE: eXadas does not actually index data, it only utilizes existing indexes on the data. 
Logical indexes defined in the DataMapper must match existing physical indexes 
placed on the underlying database system itself.

The USE INDEX statement syntax is shown in the following diagram.

Figure 23:  USE INDEX Statement Syntax

The USE INDEX statement may be used to define the primary sequence field on a 
HIDAM database or XDFLDs for either HIDAM or HDAM databases. When 
defining an IMS index, the columns specified in the USE INDEX statement must 
match either the sequence field for a HIDAM root segment or the SRCH fields 
defined on an XDFLD statement in the DBD. The Meta Data Utility validates all 
USE INDEX statements against the DBD by matching up column offset and 
length information against the offset and length information defined for sequence 
and SRCH fields in the DBD. This matching is only performed against the root 
segment for the defined table. The root is either specified by the INDEXROOT in 
the USE TABLE statement or defaulted to the DBD ROOT if no INDEXROOT is 
specified.

The column(s) specified in a USE INDEX statement may sub-define sequence or 
SRCH fields in the DBD if desired. For example, a primary HIDAM sequence 
field defined as 8 bytes may be mapped as two 4-character columns.

NOTE: The order of the columns in a USE INDEX definition is significant to the 
matching process. Columns that match sequence or SRCH fields but are in the 
incorrect order will be flagged as an error in the Meta Data Utility.

USE 

PCBPREFIX pcbnameprefix

DS ‘vsam-path-name’

DD ddnameDD filename

UNIQUE

INDEX

OWNER

INDEXNAME

ON

OWNER

TABLENAME ( COLUMN NAME )

;

DD filename
180 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
The following table describes the parameters for the USE INDEX statement.

Table 24: USE INDEX Parameter Descriptions

Parameter Description

USE [UNIQUE] INDEX A required parameter that identifies the start of an index definition. 
If UNIQUE is specified it indicates that the key(s) the index is 
defined for are all unique values in the database/file.

Owner SQL authorization ID of the index owner. If an owner is not 
specified the user ID that was used to run the Meta Data Utility is 
assigned as the owner. The maximum length is 8 characters.

index-name A required parameter that specifies the name of the index. The 
combination of owner.index-name must be unique within a Meta 
Data Catalog. If you specify an owner the syntax is owner.index-
name.

The maximum length is 18 characters.

ON owner.table-name Required clause that specifies the name of the logical table definition 
that the index is being defined for. The table-name must take the 
form of owner.table-name. The table-name must already exist in the 
Meta Data Catalog.

column-name Required parameter that identifies the logical table column(s) that 
make up the index. If the index is composed of more than one 
column in the logical table, the column-names must be separated by 
commas. The column names specified must exist in the logical table 
specified in the table-name clause.

DS ‘vsam-path-name’ VSAM-specific optional clause used to specify the path name of a 
VSAM alternate index. Use of the VSAM path is determined at SQL 
Query time and is based upon the indexed columns in the SQL 
WHERE clause. 

DD ddname Optional clause used to specify the DD name of a VSAM alternate 
index path data set that should be used to access the logical table. 
Use of the VSAM path is determined at SQL Query time and is 
based upon the indexed columns in the SQL WHERE clause. The 
DD clause is mutually-exclusive with the DS clause.

When the DD clause is specified a DD name referencing the VSAM 
alternate index path must be supplied in the Meta Data Utility and 
the Server JCL.

DD filename The CICS file control name. Use of the VSAM path is determined at 
SQL Query time and is based upon the indexed columns in the SQL 
WHERE clause. 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    181



Chapter 13. Utilities
Defining VSAM Indexes

The USE INDEX statement may be used to define the primary index on a VSAM 
KSDS or an alternate index on a VSAM KSDS or ESDS. The COLUMNS 
referenced in the USE INDEX definition must match the index you are mapping, 
based on offset and length values. The order of the columns must also be 
contiguous from the first to last character position of the indexed data.

When mapping indexes to VSAM alternate indexes, you must also specify the 
PATH data set name for the alternate index. Do not specify the alternate index data 
set name as the PATH data set name is required to correctly utilize the index at 
runtime. If you use the DD option on a VSAM alternate index definition, you 
must allocate the PATH data set in the Meta Data Utility and Server JCL for 
correct index access.

NOTE: When defining indexes on the VSAM file mapped to CICS, the DD option must 
be used and the name provided in the DD option must be the CICS file control 
table (FCT) definition for the VSAM alternate index.

Defining IMS Indexes

If you define multiple overlapping COLUMN mappings to a single IMS index, 
you must also define a separate USE INDEX definition for each mapping to 
ensure the best index optimization at runtime.

DROP TABLE Statement Syntax

The DROP TABLE statement removes an existing table from the system catalogs. 
All information, including indexes and views, for the table, columns, and indexes 
is removed from the Meta Data Catalog. This statement is required before 
attempting to replace an existing table with a table having the same name. The 
syntax follows.

PCBPREFIX An optional keyword that allows the specification of a PCB prefix to 
be used for PCB selection-by-name.

pcbnameprefix A one-to-seven character name that specifies the prefix of a PCB 
name. Unique PCB names are generated by appending a sequence 
number to the prefix. 

If PCBPREFIX is specified, pcbnameprefix is required. The 
pcbnameprefix must be enclosed in double quotes (“ ”) if it is a 
numeric value or if the value begins with a number, for example 1 or 
1A. It is optional to include double quotes for other string values, 
such as AB or A1.

Table 24: USE INDEX Parameter Descriptions

Parameter Description
182 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
Figure 24:  DROP TABLE Statement Syntax

DROP INDEX Statement Syntax

The DROP INDEX statement removes an existing index from the Meta Data 
Catalogs. All information for the index is removed from the 
SYSIBM.SYSINDEXES and SYSIBM.SYSKEYS tables. This statement is 
required before attempting to replace an existing index with an index having the 
same name. The syntax follows.

Figure 25:  DROP INDEX Statement Syntax

Table 25: DROP TABLE Parameters and Descriptions

Parameter Description

DROP TABLE Statement that removes an existing table from the 
Meta Data Catalogs. This statement is required 
when replacing an existing table with a table of the 
same name.

owner SQL authorization ID of the table owner. If an 
owner is not specified, then the user ID that was 
used to run the Meta Data Utility is assigned as the 
owner. The maximum length is 8 characters.

table-name Name of the table to be dropped. The syntax is 
owner.table-name.

Table 26: DROP INDEX Parameters and Descriptions

Parameters Description

DROP INDEX Statement that removes an existing index from the 
Meta Data Catalogs. This statement is required 
when replacing an existing index with an index of 
the same name.

owner User ID of the table owner. The syntax is 
owner.index-name.

index-name Name of the index to be dropped.

DROP TABLE [owner.]table-name;

D R O P IND E X [ow ner.]index-nam e;
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    183



Chapter 13. Utilities
DB2 Grammar
The DB2 grammar is supplied in a standard 80-byte fixed format text file. The 
text file contains free form statements that identify the logical DB2 table, DB2 
view, or DB2 index to be imported into the eXadas Meta Data Catalog. Also 
possible is the removal of DB2 table, DB2 view, or DB2 index definitions that 
were imported previously into the eXadas Meta Data Catalog. The grammar uses 
“keyword value” syntax and can span multiple lines. Comments may also be 
included within the grammar. 

Comments are specified using the following format: 

/*your comment here*/

Anything between the delimiters (/* */) is treated as a comment. The comment 
may span multiple lines.

NOTE: If you are editing the grammar file using an editor like ISPF, ensure that NUM 
OFF is set in the edit profile when editing the grammar.

The following statements can be specified in the DB2 grammar:

• CONNECT TO DB2: Identifies the DB2 subsystem that will be queried to 
obtain DB2 table, DB2 view, and DB2 index definitions for import into the 
eXadas Meta Data Catalog. The connection to DB2, done as the result of this 
statement, prevails until explicitly changed by another CONNECT TO DB2 
statement or until the end of the DB2 grammar processing.

• IMPORT DB2 TABLE/VIEW: Adds a logical DB2 table or view to the 
eXadas Meta Data Catalog. The eXadas Meta Data Catalog system tables, 
SYSIBM.SYSTABLES, and SYSIBM.SYSCOLUMNS are populated with 
information, retrieved from the DB2 Meta Data Catalog, describing the 
logical table or view identified in the statement. The imported object is 
identified as a table within the eXadas Meta Data Catalog. Connection to DB2 
is required for an IMPORT DB2 TABLE/VIEW statement to process 
successfully.

• IMPORT DB2 INDEX: Adds a DB2 index to the eXadas Meta Data Catalog. 
The eXadas Meta Data Catalog system tables, SYSIBM.SYSINDEXES, and 
SYSIBM.SYSKEYS will be populated with information, retrieved from the 
DB2 Catalog, describing the index identified in the statement. The logical 
table or view definition to which the index applies must be present in the 
eXadas Meta Data Catalog before an IMPORT DB2 INDEX statement can be 
specified. Connection to DB2 is required for an IMPORT DB2 INDEX 
statement to process successfully.

The syntax for each of these statements is described in the sections that follow.
184 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
CONNECT TO DB2 Statement Syntax

The following diagram illustrates the CONNECT TO DB2 statement syntax.

Figure 26:  CONNECT TO DB2 Statement Syntax

The following table describes the CONNECT TO DB2 statement parameters and 
descriptions.

Table 27: CONNECT TO DB2 Statement Parameters and Descriptions

Parameter Description

CONNECT TO DB2 Keywords that identify the statement. All subsequent parameters 
describe the DB2 system and catalog that is queried for information 
during an IMPORT operation. The identified DB2 system and catalog 
is used until it is explicitly changed by another CONNECT TO DB2 
statement or until the Meta Data Utility terminates.

SUBSYSTEM Required keyword for the clause that identifies the DB2 subsystem.

subsystem_name Identifies the DB2 subsystem to which the connection will be made. 
Subsystem name cannot exceed 4 characters in length. The characters 
permitted in subsystem name vary with the version of DB2. See the 
DB2 documentation for further details This parameter is required. No 
default value is supplied.

USING PLAN Required keywords for the clause that identifies the DB2 application 
plan.

plan_name Plan name cannot exceed 8 characters in length and the first character 
must be alphabetic. This parameter is required. No default value is 
supplied.

NOTE: Accessing DB2 data requires binding an application plan for 
use by the DB2 Call Attach Facility (CAF) service. eXadas 
includes the DB2 database request module (DBRM) required 
for creating the necessary plan. You may give the plan 
whatever name you want based on site-installation standards.

For more information on binding plans, see the appropriate 
IBM DB2 documentation.

CONNECT TO DB2 

USING PLAN plan_name

ACCESS CATALOG PREFIX prefix

SUBSYSTEM subsystem_name
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    185



Chapter 13. Utilities
IMPORT DB2 TABLE Statement Syntax

The following diagram illustrates the IMPORT DB2 TABLE Statement Syntax.

Figure 27:  IMPORT DB2 TABLE Statement Syntax

The following table describes the IMPORT TO DB2 TABLE statement 
parameters and descriptions.

ACCESS CATALOG 
PREFIX

Optional keywords for the clause that identifies the prefix of the DB2 
catalog. Do not enter this keyword phrase if you wish to accept the 
default value SYSIBM as the prefix to be used.

prefix Required parameter that is part of the optional ‘ACCESS CATALOG 
PREFIX’ clause. It supplies the prefix to use when accessing the DB2 
catalog. If importing a table or view, prefix is used to access the DB2 
catalog tables ‘prefix.SYSTABLES’ and ‘prefix.SYSCOLUMNS’. If 
importing an index, prefix is used to access the tables mentioned above 
as well as the DB2 catalog tables ‘prefix.SYSINDEXES’ and 
‘prefix.SYSKEYS’.

Table 28: IMPORT DB2 TABLE Statement Parameters and Descriptions

Parameter Description

IMPORT DB2 TABLE

IMPORT DB2 VIEW

Keywords that identify the statement. All subsequent parameters 
describe the logical DB2 resource to be imported and the processing 
options to be performed when storing that resource in the eXadas Meta 
Data Catalog. Options allow renaming the resource and the automatic 
importing of all related DB2 indexes.

Table 27: CONNECT TO DB2 Statement Parameters and Descriptions

Parameter Description

IMPORT DB2

VIEW

(db2_owner.)db2_resource_name

RENAME AS (cac_owner.)cac_table_name

TABLE

WITH INDEXES
186 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
db2_owner Optional parameter specifying the SQL authorization ID (CREATOR) 
of the DB2 resource to be imported. If the db2_owner is not specified, 
the user ID used to execute the Meta Data Utility is assigned as the 
db2_owner. This parameter value cannot exceed 8 characters in length.

db2_resource_name Required parameter that identifies the DB2 resource (NAME) to be 
imported into the eXadas Meta Data Catalog. This parameter value 
cannot exceed 18 characters in length. The combination of db2_owner 
and db2_resource_name must identify a resource that currently exists 
within the DB2 catalog.

RENAME AS Optional keywords identifying the clause that allows renaming a 
resource during the import operation. If this clause and its related 
parameters (cac_owner and cac_table_name) are omitted, the resource 
will be stored in the eXadas Meta Data Catalog using db2_owner as the 
CREATOR and db2_resource_name as the NAME. If this clause is 
specified, its related parameters describe the CREATOR and NAME 
that will be used when the resource is stored in the eXadas Meta Data 
Catalog. In either case, the full name (CREATOR.NAME) must be 
unique within the eXadas Meta Data Catalog.

cac_owner Optional parameter that is part of the optional 'RENAME AS' clause. It 
identifies the SQL authorization ID (CREATOR) of the table to be 
recorded in the eXadas Meta Data Catalog. If the cac_owner is not 
specified, the user ID used to execute the Meta Data utility is assigned 
as the cac_owner. This parameter value cannot exceed 8 characters in 
length.

cac_table_name Required parameter that is part of the optional 'RENAME AS' clause. 
It identifies the table (NAME) to be recorded in the eXadas Meta Data 
Catalog. This parameter value cannot exceed 18 characters in length. 
The combination of cac_owner and cac_table_name must be unique 
within the eXadas Meta Data Catalog.

WITH INDEXES Optional parameter indicating that all DB2 indexes, if any, related to 
the DB2 resource being imported shall be imported automatically 
when the DB2 source import has been successfully completed. 
Automatic import of related indexes does not allow renaming of 
indexes during the import operation. If the full index name 
(CREATOR.NAME) in the DB2 catalog does not represent a unique 
name in the eXadas Meta Data, the automatic import of the like-named 
index will fail. Every related index in the DB2 catalog will be 
processed for import. Import failures due to like-name indexes will not 
affect the processing of other related indexes. To rename an index 
during import, use the IMPORT DB2 INDEX statement.

Table 28: IMPORT DB2 TABLE Statement Parameters and Descriptions
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    187



Chapter 13. Utilities
The following processing conditions and considerations should be taken into 
account when using the IMPORT DB2 TABLE Statement.

• The table name recorded in the eXadas Meta Data Catalog for any imported 
DB2 object cannot be SYSTABLES, SYSCOLUMNS, SYSINDEXES, 
SYSKEYS, or SYSTABAUTH.

• If a DB2 VIEW object is identified in an IMPORT DB2 TABLE statement, 
the import will continue to process. Upon successful completion of that 
import, a warning message is issued to note that a view was actually imported.

• If a DB2 TABLE object is identified in an IMPORT DB2 VIEW statement, 
the import will continue to process. Upon successful completion of that 
import, a warning message is issued to note that a table was actually imported.

• If a like-named table currently exists in the eXadas Meta Data Catalog, that 
table must be dropped (DROP TABLE) or a new name (RENAME AS) must 
be specified for the import to be successful.

• If WITH INDEXES and RENAME are both specified, the DB2 object 
imported is renamed. Any associated indexes that are imported are adjusted to 
reflect the new (rename) table creator and table name, but the index creator 
and index name are not modified. If renaming the actual index is required, 
import the indexes individually using and IMPORT DB2 INDEX statement.

• If WITH INDEXES is specified, each index that is successfully imported into 
the eXadas Meta Data Catalog is identified with an informational message.

IMPORT DB2 INDEX Statement Syntax

The following diagram illustrates the IMPORT DB2 INDEX Statement Syntax.

Figure 28:  IMPORT DB2 INDEX Statement Syntax

IMPORT DB2 (db2_owner.)db2_index_name

RENAME AS (cac_owner.)cac_index_name

DEFINED TABLE

INDEX

ON (cac_owner.)cac_table_name
188 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
The following table describes the IMPORT DB2 INDEX Statement parameters 
and descriptions.

Table 29: IMPORT DB2 INDEX Statement Parameters and Descriptions

Parameter Description

IMPORT DB2 INDEX Keywords that identify the statement. All subsequent parameters 
describe the logical DB2 index to be imported and the processing 
options to be performed when storing that index in the eXadas Meta 
Data Catalog. Options allow renaming the index and correlation of 
index entries to renamed tables.

db2_owner Optional parameter specifying the SQL authorization ID (CREATOR) 
of the DB2 index to be imported. If the db2_owner is not specified, the 
user ID used to execute the Meta Data Utility is assigned as the 
db2_owner. This parameter value cannot exceed 8 characters in length.

db2_index_name Required parameter that identifies the DB2 index (NAME) to be 
imported into the eXadas Meta Data Catalog. This parameter value 
cannot exceed 18 characters in length. The combination of db2_owner 
and db2_index_name must identify an index that currently exists 
within the DB2 catalog.

RENAME AS Optional keywords identifying the clause that allows renaming a index 
during the import operation. If this clause and its related parameters 
(cac_owner and cac_index_name) are omitted, the index will be stored 
in the eXadas Meta Data Catalog using db2_owner as the CREATOR 
and db2_index_name as the NAME. If this clause is specified, its 
related parameters describe the CREATOR and NAME that will be 
used when the index is stored in the eXadas Meta Data Catalog. In 
either case, the full name (CREATOR.NAME) must be unique within 
the eXadas Meta Data Catalog.

cac_owner Optional parameter that is part of the optional 'RENAME AS' clause. It 
identifies the SQL authorization ID (CREATOR) of the index to be 
recorded in the eXadas Meta Data Catalog. If the cac_owner is not 
specified, the user ID used to execute the Meta Data Utility is assigned 
as the cac_owner. This parameter value cannot exceed 8 characters in 
length.

cac_index_name Required parameter that is part of the optional 'RENAME AS' clause. 
It identifies the index (NAME) to be recorded in the eXadas Meta Data 
Catalog. This parameter value cannot exceed 18 characters in length. 
The combination of cac_owner and cac_index_name must be unique 
within the eXadas Meta Data Catalog.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    189



Chapter 13. Utilities
The following processing conditions and considerations should be taken into 
account when using the IMPORT DB2 INDEX Statement.

• The table associated with the DB2 index being imported is identified by the 
DEFINED ON TABLE clause, if present, or by information from the DB2 
catalog. The table must currently exist in the eXadas Meta Data Catalog and 
that table must be a DB2 object or the import process will fail.

• If a liked-name index currently exists in the eXadas Meta Data Catalog, that 
index must be dropped (DROP INDEX) or a new name (RENAME AS) must 
be specified for the import to be successful.

CICS VSAM Grammar
To validate VSAM mapping parameters at Meta Data Utility execution, the Meta 
Data Utility must connect to CICS and query information about the VSAM file(s) 
CICS is controlling. This is accomplished with the parameters in the CONNECT 
TO CICS statement. Communicating with CICS for this purpose is the same as 
communicating with a Data Savant except that the transaction to execute when 

DEFINED ON TABLE Optional keywords identifying the clause that allows a DB2 index to be 
correlated with a previously renamed table during the import operation. 
If this clause and its related parameters (cac_owner and 
cac_table_name) are omitted, the index will be stored in the eXadas 
Meta Data Catalog using the TBCREATOR and TBNAME found in 
the DB2 index entry. If this clause is specified, its related parameters 
describe the TBCREATOR and TBNAME referenced in the index 
when the index is stored in the eXadas Meta Data Catalog. The full 
name (TBCREATOR.TBNAME) in the index entry must match an 
existing table within the eXadas Meta Data Catalog.

cac_owner Optional parameter that is part of the optional 'DEFINED ON TABLE' 
clause. It identifies the SQL authorization ID (TBCREATOR) 
referenced in the index entry to be recorded in the eXadas Meta Data 
Catalog. If the cac_owner is not specified, the user ID used to execute 
the Meta Data Utility is assigned as the cac_owner. This parameter 
value cannot exceed 8 characters in length.

cac_table_name Required parameter that is part of the optional 'DEFINED ON TABLE' 
clause. It identifies the TBNAME referenced in the index entry to be 
recorded in the eXadas Meta Data Catalog. This parameter value 
cannot exceed 18 characters in length. The combination of cac_owner 
and cac_table_name in the index entry must match an existing table 
within the eXadas Meta Data Catalog.

Table 29: IMPORT DB2 INDEX Statement Parameters and Descriptions
190 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
querying file information in CICS is different from the transaction used to access 
VSAM data.

The separate transaction for querying file information is necessary for security 
purposes. In general, CICS transactions are secured and the APPC conversation to 
CICS is authorized with the user ID and password of a user connected to the 
eXadas Server. The Meta Data Utility transaction, however, is intended to be 
unsecured as the user password is not available for the user of the Meta Data 
Utility and is not available for connecting to CICS. The transaction is restricted to 
retrieving non-sensitive data about such files as LRECL, key offset and lengths, 
and the like. 

CrossAccess has provided the CONNECT TO CICS statement in the Meta Data 
Grammar to define the APPC connection parameters to allow the Meta Data 
Utility to validate CICS file information. The following syntax diagram describes 
this statement.

Figure 29:  CONNECT to CICS Statement Syntax Diagram

The parameter descriptions are as follows:

The CONNECT statement defines the APPC information to be used by the Meta 
Data Utility for retrieving file information about CICS mapped tables. This file 

Table 30: CONNECT TO CICS Statement Parameters and Descriptions

Parameter Description

local_luname A 1 to 8 character application ID (LU name) for the Meta Data Utility. 
This LU name should be different from the LU name used in table 
mapping to avoid conflict between an active eXadas Server and the 
Meta Data Utility.

remote_luname A 1 to 8 character application ID (LU name) for the CICS system 
containing the VSAM file.

logmode_name A 1 to 8 character LOGMODE name required for the APPC session.

cics_transaction_name A 1-4 character transaction name defined in CICS for use by the 
eXadas Meta Data Utility. This transaction is created during the 
eXadas installation and verification process.

remote_network_name An optional 1 to 8 character remote network name that can be used 
when two LU names exist on different networks.

CONNECT TO CICS USING APPLID local_luname remote_luname

LOGMODE logmode_name TRANID cics_transaction_name

NETNAME remote_network_name
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    191



Chapter 13. Utilities
information is then stored in the eXadas system catalogs and used to validate 
consistency between file and key information and mapped table and column 
information.

If you plan to run the Meta Data Utility and map file information while an eXadas 
server is running, the local_luname value in the generated CONNECT statement 
must be changed to ensure that a conflict does not occur between the Meta Data 
Utility and the Server attempting to concurrently access CICS with the same LU. 
To change the local_luname in the CONNECT statement, the generated grammar 
must be modified after it is created by the DataMapper. 

For example, the CONNECT statement:

CONNECT TO CICS USING
 APPLID “CACAPCDS” “CICS1”
 LOGMODE “MTLU62”
 TRANID “EXV2”

could be changed to:

CONNECT TO CICS USING
 APPLID “CACAPPCMU” “CICS1”
 LOGMODE “MTLU62”
 TRANID “EXV2”

Although the DataMapper generates a separate CONNECT for each VSAM table 
mapped to CICS, a single CONNECT can be included in the grammar file and 
used for multiple VSAM table mappings. Once a CONNECT is processed by the 
Meta Data Utility, its values are retained for the duration of the Meta Data Utility 
run unless another CONNECT TO CICS statement is encountered. Therefore, 
when multiple CONNECTs within a grammar file require the same modification, 
the first CONNECT can be changed and all remaining CONNECTs can be 
removed from the grammar file.

ADABAS USE Statement Generator
The ADABAS USE Statement Generator (USG) allows you to generate USE 
TABLE statements for the ADABAS Meta Data Utility based on information in 
the PREDICT system dictionary for the target ADABAS view. The USE 
statement generator program for ADABAS is CACADAUG.

The USG creates one or more USE TABLE statements that can be used as input to 
the Meta Data Utility. You can use output from USG as-is, or you can edit the 
statements before running the Meta Data Utility. Input for the USG consists of one 
OPTIONS statement and one or more EXTRACT TABLE statements.

Periodic group (PE) and multiple value (MU) fields are handled as Record Arrays. 
See the “Record Arrays,” on page 176. The USG generates the statements for the 
192 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
Record Array(s), but leaves them commented out. Only one Record Array is 
allowed per table.

By creating additional logical tables using the record arrays (the columns that are 
commented out) you can create third normal form of the PEs and MUs. For 
example, by creating another USE TABLE definition with the DESCRIPTIVE 
column (index) along with a single record array, you can have third normal form 
representation.

The OPTIONS statement specifies the file number of the system dictionary and 
the EXTRACT TABLE statements identify the target ADABAS views.

The following table displays the OPTIONS statements syntax with the defaults 
underlined.

OPTIONS SYSDIC file number DATE 'MM/DD/YY' TIME 'HH:MI:SS'
'date format' 'time format'

GROUP NO SUPERDESC ALL VARCHAR LENGTH nn
ALL CHAR
CHAR NO

LONG VARCHAR LENGTH nn MAXOCCURS nn SYNONYM NO
YES

The parameter descriptions are as follows:

Table 31: OPTIONS Statements and Descriptions

OPTIONS Statement Description

OPTIONS Specifies the keyword that identify the statement. Only one OPTIONS 
card can be specified. 

SYSDIC file-number Identifies the system dictionary file number as defined to ADABAS. 

DATE date-format Specifies the default date format to be used when generating Meta Data 
Grammar for ADABAS date fields. Any combination of MM 
(months), DD (days), YY or YYYY (year) can be used along with /, - , 
spaces and other characters. MMM will return the name of the month. 

TIME time-format Specifies the default time format to be used when generating Meta 
Data Grammar for ADABAS time fields. Any combination of MM 
(months), DD (days), YY or YYYY (years), HH (hours), MI (minutes), 
and SS (seconds) can be used along with /, - , spaces and other 
characters. MMM will return the name of the month. 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    193



Chapter 13. Utilities
NOTE: Options can be omitted, but the options entered must be in the order specified 
previously.

The following table displays the EXTRACT TABLE statements syntax.

EXTRACT TABLE table-name FROM VIEW view-name FILE nn DBID nn

GROUP Specifies whether Meta Data Grammar will be generated for group 
fields. 

• NO specifies do not generate Meta Data Grammar for any group 
fields. 

• CHAR specifies to only generate Meta Data Grammar if all the 
elements of the group are character or zoned decimal. 

• ALL specifies to generate Meta Data Grammar for all group fields.

SUPERDESC Specifies whether Meta Data Grammar will be generated for 
superdescriptors. 

• CHAR specifies to only generate Meta Data Grammar for 
superdescriptors where all the elements of the superdescriptor are 
character or zoned decimal. 

• NO specifies to never generate Meta Data Grammar for 
superdescriptor fields. 

• ALL specifies to always generate Meta Data Grammar for all 
superdescriptor fields. 

VARCHAR LENGTH Specifies the default maximum length to use for VARCHAR fields. 
The default is 20.

LONG VARCHAR LENGTH Specifies the default maximum length for LONG VARCHAR fields. 
The default is 20.

MAXOCCURS Specifies the default maximum number of occurrences to use for 
Record Arrays. Record Arrays are used to define periodic group and 
multiple value fields. The default is 5.

SYNONYM Specifies whether the Predict User Synonym field will be used for the 
column name.

• NO specifies to use the Predict Dictionary field name.

• YES specifies to use the User Synonym field from the Predict 
Dictionary when it has been defined. 

Table 31: OPTIONS Statements and Descriptions

OPTIONS Statement Description
194 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 13. Utilities
The parameter descriptions are as follows:

Table 32: EXTRACT Table Statements Syntax

EXTRACT Statement Description

EXTRACT TABLE specifies the keywords that identify the statement.

table-name specifies the name of the table for which USE TABLE statements are 
generated. If you do not specify a table name, the first 18 characters of 
the view name are used with all dashes (- - - ) replaced with 
underscores ( _ _ _ ).

FROM VIEW view-name identifies the ADABAS view from which USE TABLE statements are 
generated. 

FILE nn Logical file number where view exists.

DBID nn Database ID where view exists. It overrides what is in the predict 
database.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    195



Chapter 13. Utilities
196 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



14

Open Catalog

Introduction to Open Catalog
This chapter covers open catalog support, which allows you to obtain access to the 
internal information stored in the eXadas System Catalog. The topics covered 
include:

• “Objects Used to Define and Access a Table,” on page 202,

• “What are Fragments?,” on page 204,

• “Record Arrays,” on page 208,

• “Differences With Meta Data Tables,” on page 210, and

• “Installing Meta Table in the eXadas System Catalog,” on page 214.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 197



Chapter 14. Open Catalog
Open Catalog Overview
Open catalogs provide access to the DB2, eXadas, and DBMS-specific 
information stored in the eXadas System Catalog. This is done by projecting 
DBMS-specific meta data tables over the standard DB2 SYSIBM.SYSTABLES, 
SYSIBM.SYSCOLUMNS, SYSIBM.SYSINDEXES and SYSIBM.SYSKEYS 
tables.

The SYSIBM.SYSTABLES and SYSIBM.SYSCOLUMNS tables, and optionally 
the SYSIBM.SYSINDEXES and SYSIBM.SYSKEYS tables, are used to define 
non-relational databases and files within the eXadas System Catalog. These 
system tables are also populated when DB2 tables are imported into the eXadas 
System Catalog. 

The DBMS-specific table projections use the creator (owner) name SYSCAC. 
The meta data table names identify the data source they are mapped over. They 
have names like SYSIMSTABLES, SYSIDMSTABLES, and so on. For all data 
sources except sequential files, there is one meta data table defined for each IBM 
system table. Sequential does not support projecting meta data tables over the 
SYSIBM.SYSINDEXES and SYSIBM.SYSKEYS tables because these tables are 
never populated for sequential data sources. Table 33, “Meta Data Tables,” on 
page 199, identifies all of the meta data tables that are supported.

When you access a meta data table, the Catalog Savant automatically performs 
filtering based on the DBMS name of the table being accessed. For example, 
when you issue a query against the SYSCAC.SYSIDMSTABLES table, only 
information about tables that access IDMS data are returned.

In addition to the “standard” meta data tables, there are three “special” meta data 
tables that are not DBMS-specific. These tables use the name META as the 
intermediary qualifier (for example, SYSMETACOLUMNS). The META tables 
allow common information to be retrieved about any table or column defined in 
the eXadas System Catalog. You can think of the META tables as providing a 
“template” that provides basic information about any table defined in the System 
Catalog.

Two of the META tables are projected over the standard IBM SYSTABLES and 
SYSCOLUMNS tables. These versions contain both the common DB2 column 
definitions as well as eXadas-specific columns. The third META data table, 
SYSCAC.SYSMETAFRAGMENTS, is eXadas-specific, and is described in 
“What are Fragments?,” on page 204.
198 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 14. Open Catalog
The following table identifies the meta data tables that have been created. The 
tables are listed in alphabetical order. For each table a brief description of the 
tables contents is provided.

Table 33: Meta Data Tables

Table Name Description

SYSCAC.
SYSADABASCOLUMNS

(see the table on page 440)

Contains the standard SYSIBM.SYSCOLUMNS columns and 
Adabas-specific column definitions. There is one row for each 
column for every Adabas table defined in the eXadas System 
Catalog.

SYSCAC.SYSADABASINDEXES

(see the table on page 445)

Contains the standard SYSIBM.SYSINDEXES columns and 
Adabas-specific column definitions. There is one row for each 
Adabas index defined in the eXadas System Catalog.

SYSCAC.SYSADABASKEYS

(see the table on page 446)

Contains the standard SYSIBM.SYSKEYS columns and 
Adabas-specific column definitions. There is one row for each 
ADABAS index key defined in the eXadas System Catalog.. 

SYSCAC.SYSADABASTABLES

(see the table on page 447)

Contains the standard SYSIBM.SYSTABLES columns and 
Adabas-specific column definitions. There is one row for each 
Adabas table defined in the eXadas System Catalog. 

SYSCAC.
SYSDATACOMCOLUMNS

(see the table on page 450)

Contains the standard SYSIBM.SYSCOLUMNS columns and 
CA-DATACOM/DB-specific column definitions. There is one 
row for each column for every DATACOM table defined in the 
eXadas System Catalog. 

SYSCAC.SYSDATACOMINDEXES

(see the table on page 454)

Contains the standard SYSIBM.SYSINDEXES column 
definitions. There are no CA-DATACOM/DB-specific column 
definitions. There is one row for each CA-DATACOM/DB 
index defined in the eXadas System Catalog.

SYSCAC.SYSDATACOMKEYS

(see the table on page 456)

Contains the standard SYSIBM.SYSKEYS column 
definitions. There are no CA-DATACOM/DB-specific column 
definitions. There is one row for each column of a CA-
DATACOM/DB key. 

SYSCAC.SYSDATACOMTABLES

(see the table on page 456)

Contains the standard SYSIBM.SYSTABLES columns and 
CA-DATACOM/DB-specific column definitions. There is one 
row for each CA-DATACOM/DB table defined in the eXadas 
System Catalog.

SYSCAC.SYSDB2COLUMNS

(see the table on page 460)

Contains the standard SYSIBM.SYSCOLUMNS columns and 
eXadas-specific column definitions. There is one row for each 
column for every DB2 table defined in the eXadas System 
Catalog.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    199



Chapter 14. Open Catalog
SYSCAC.SYSDB2INDEXES

(see the table on page 461)

Contains the standard SYSIBM.SYSINDEXES column 
definitions. There are no eXadas-specific column definitions. 
There is one row for each DB2 index defined in the eXadas 
System Catalog.

SYSCAC.SYSDB2KEYS

(see the table on page 463)

Contains the standard SYSIBM.SYSKEYS column 
definitions. There are no eXadas-specific column definitions. 
There is one row for each DB2 key defined in the eXadas 
System Catalog.

SYSCAC.SYSDB2TABLES

(see the table on page 463)

Contains the standard SYSIBM.SYSTABLES columns and 
eXadas-specific column definitions. There is one row for each 
DB2 table defined in the eXadas System Catalog.

SYSCAC.SYSIDMS_INDEXES

(see the table on page 466)

Contains the standard SYSIBM.SYSTABLES columns and 
IDMS-specific column definitions. There is one row for each 
IDMS index associated with an IDMS table defined in the 
eXadas System Catalog.

SYSCAC.SYSIDMSAREAS

(see the table on page 470)

Contains the standard SYSIBM.SYSTABLES columns and 
IDMS-specific column definitions. There is one row for each 
IDMS area associated with an IDMS table defined in the 
eXadas System Catalog. 

SYSCAC.
SYSIDMSCOLINDEXES

(see the table on page 474)

Contains the standard SYSIBM.SYSCOLUMNS columns and 
IDMS-specific column definitions. There is one row for each 
column that references an IDMS index for every IDMS table 
defined in the eXadas System Catalog.

SYSCAC.SYSIDMSCOLUMNS

(see the table on page 478)

Contains the standard SYSIBM.SYSCOLUMNS columns and 
IDMS-specific column definitions. There is one row for each 
column for every IDMS table defined in the eXadas System 
Catalog.

SYSCAC.SYSIDMSINDEXES

(see the table on page 485)

Contains the standard SYSIBM.SYSINDEXES column 
definitions. There are no IDMS-specific column definitions for 
this table. There is one row for each IDMS index defined in the 
eXadas System Catalog.

SYSCAC.SYSIDMSKEYS

(see the table on page 487)

Contains the standard SYSIBM.SYSKEYS column 
definitions. There are no IDMS-specific column definitions. 
There is one row for each IDMS key defined in the eXadas 
System Catalog.

SYSCAC.SYSIDMSRECORDS

(see the table on page 488)

Contains the standard SYSIBM.SYSTABLES columns and 
IDMS-specific column definitions. There is one row for each 
IDMS record associated with an IDMS table defined in the 
eXadas System Catalog.

Table 33: Meta Data Tables

Table Name Description
200 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 14. Open Catalog
SYSCAC.SYSIDMSSETS

(see the table on page 492)

Contains the standard SYSIBM.SYSTABLES columns and 
IDMS-specific column definitions. There is one row for each 
IDMS set associated with an IDMS table defined in the eXadas 
System Catalog.

SYSCAC.SYSIDMSTABLES

(see the table on page 495)

Contains the standard SYSIBM.SYSTABLES columns and 
IDMS-specific column definitions. There is one row for each 
IDMS table defined in the eXadas System Catalog.

SYSCAC.SYSIMSCOLUMNS

(see the table on page 512)

Contains the standard SYSIBM.SYSCOLUMNS columns and 
IMS-specific column definitions. There is one row for each 
column for every IMS table defined in the eXadas System 
Catalog.

SYSCAC.SYSIMSINDEXES

(see the table on page 516)

Contains the standard SYSIBM.SYSINDEXES columns and 
IMS-specific column definitions. There is one row for each 
IMS index defined in the eXadas System Catalog.

SYSCAC.SYSIMSKEYS

(see the table on page 518)

Contains the standard SYSIBM.SYSKEYS column 
definitions. There are no IMS-specific column definitions. 
There is one row for each IMS primary or secondary index key 
defined in the eXadas System Catalog.

SYSCAC.SYSIMSSEGMENTS

(see the table on page 519)

Contains the standard SYSIBM.SYSTABLES columns and 
IMS-specific column definitions. There is one row for each 
IMS segment referenced by an IMS table defined in the eXadas 
System Catalog.

SYSCAC.SYSIMSTABLES

(see the table on page 522)

Contains the standard SYSIBM.SYSTABLES columns and 
IMS-specific column definitions. There is one row for each 
IMS table defined in the eXadas System Catalog.

SYSCAC.SYSMETACOLUMNS

(see the table on page 534)

Contains the standard SYSIBM.SYSCOLUMNS columns, 
eXadas-specific columns and descriptive columns about the 
fragment associated with the column. There is one row for 
each column defined in the eXadas System Catalog. 

SYSCAC.SYSMETAFRAGMENTS

(see the table on page 538)

The SYSCAC.SYSMETAFRAGMENTS table is eXadas-
specific. There is one row for every fragment definition in the 
eXadas System Catalog.

SYSCAC.SYSMETATABLES

(see the table on page 539)

Contains the standard SYSIBM.SYSTABLES columns and 
eXadas-specific column definitions that are common to all 
table definitions. There is one row for each table or view 
defined in the eXadas System Catalog.

Table 33: Meta Data Tables

Table Name Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    201



Chapter 14. Open Catalog
Objects Used to Define and Access a 
Table

Not counting security-related tables, normally four IBM system tables are used to 
define a user table. From an eXadas standpoint, these four tables are used to 
describe the contents of, and how to access and update an instance of, an object in 
a non-relational or DB2 data source. For example, a table defines a VSAM file to 
be accessed/updated, the path of IMS segments in an IMS DBD to be 
accessed/updated, the IDMS records in an IDMS database to be accessed/updated, 
and so on. DB2 table definitions can also be imported into the eXadas System 
Catalog for referential integrity purposes.

In the following sections, an object-oriented metaphor will be used to describe the 
contents of the system tables and their related DBMS-specific information. 
eXadas has a DB2 history and uses IBM DB2 Version 2.2 (with extensions) as its 

SYSCAC.SYSSEQCOLUMNS

(see the table on page 542)

Contains the standard SYSIBM.SYSCOLUMNS columns and 
sequential file-specific column definitions. There is one row 
for each column for every sequential file table defined in the 
eXadas System Catalog.

SYSCAC.SYSSEQTABLES

(see the table on page 545)

Contains the standard SYSIBM.SYSTABLES columns and 
sequential file-specific column definitions. There is one row 
for each sequential file table defined in the eXadas System 
Catalog.

SYSCAC.SYSVSAMCOLUMNS

(see the table on page 548)

Contains the standard SYSIBM.SYSCOLUMNS columns and 
VSAM-specific column definitions. There is one row for each 
column for every VSAM table defined in the eXadas System 
Catalog.

SYSCAC.SYSVSAMINDEXES

(see the table on page 552)

Contains the standard SYSIBM.SYSINDEXES columns and 
VSAM-specific column definitions. There is one row for each 
VSAM index defined in the eXadas System Catalog.

SYSCAC.SYSVSAMKEYS

(see the table on page 554)

Contains the standard SYSIBM.SYSKEYS column 
definitions. There are no VSAM-specific column definitions. 
There is one row for each column of a VSAM key.

SYSCAC.SYSVSAMTABLES

(see the table on page 555)

Contains the standard SYSIBM.SYSTABLES columns and 
VSAM-specific column definitions. There is one row for each 
VSAM table defined in the eXadas System Catalog.

Table 33: Meta Data Tables

Table Name Description
202 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 14. Open Catalog
reference model to define how to access and update the target data source. Figure 
30: “DB2 Objects Used to Define a Table” shows the four DB2 objects that are 
used to define a table.

The Table object identifies a table instance and contains basic information about 
the table. Associated with the table are one or more Columns that describe data 
elements that make up the table. A table can have zero, one, or more than one 
indexes that describe Keys that can be used to directly access the contents of the 
table. Each Key must reference a Column within the Table.

Each table is uniquely identified by a combination of the NAME and CREATOR 
columns. The NAME, TBCREATOR, and TBNAME columns uniquely identify 
each Column within a Table. A Column can also be uniquely identified using the 
TBCREATOR, TBNAME, and COLNO columns. For meta data tables, a Column 
can also be uniquely identified using the TBCREATOR, TBNAME, and 
COLUMN_SEQUENCE_NUMBER columns.

The NAME and CREATOR columns uniquely identify an Index. The TBNAME 
and TBCREATOR columns identify the Table for which the Index is defined. The 
IXNAME, IXCREATOR, and COLNAME columns uniquely identify keys. The 
IXNAME and IXCREATOR columns identify the Index that the key(s) are 
associated with. The COLNAME column identifies the NAME of the Column that 
the Key is referencing. The COLNO column also identifies the associated Column 
that the Key is referencing.

Figure 30:  DB2 Objects Used to Define a Table

Table

  NAME
  CREATOR

Column

  NAME
  TBNAME
  TBCREATOR
  COLNO

Index

  NAME
  CREATOR
  TBNAME
  TBCREATOR

Key

  IXNAME
  IXCREATOR
  COLNAME
  COLNO
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    203



Chapter 14. Open Catalog
What are Fragments?
In eXadas, in addition to the standard DB2 objects, an additional Fragment object 
is used to define a table. The following figure shows the additional Fragment 
object and its relationship to the other objects.

Figure 31:  Objects Used to Define an eXadas Table

Each table has at least one fragment associated with it. The only exceptions are 
the system tables (SYSIBM.SYSTABLES, SYSIBM.SYSCOLUMNS, and so 
on), which have an implied fragment definition associated with them. This 
implied fragment is materialized when one of these tables is referenced in a query. 
DB2 tables do not have fragments associated with them because they use a 
different technique to transfer data between the DB2 Savant and the Query 
Processor than the other non-relational Savants use. Non-relational data sources 
can have more than one fragment definition associated with a table definition. 

An IMS table has a fragment definition for each segment referenced by the table. 
Likewise, an IDMS table has a fragment for each record referenced by the table. 
Tables that contain record arrays also have a fragment for each record array 

Table

  NAME
  CREATOR

Column

  NAME
  TBNAME
  TBCREATOR
  COLNO
  FRAGMENT_ID

Index

  NAME
  CREATOR
  TBNAME
  TBCREATOR

Key

  IXNAME
  IXCREATOR
  COLNAME
  COLNO

Fragment

  TBNAME
  TBCREATOR
  ID
204 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 14. Open Catalog
defined. There are also two special “system” fragments that may be associated 
with an IMS or IDMS table:

• For IMS, a system fragment can be used to identify an XDFLD value that is 
extracted from the key feedback area. 

• For IDMS, a system fragment is used to refer to a VSAM relative record 
number. 

The TBCREATOR, TBNAME, and ID columns uniquely identify a fragment. In 
addition to the standard DB2 columns, the eXadas version of the Column object 
contains a FRAGMENT_ID column that identifies the fragment that is associated 
with the column. Likewise, the eXadas version of the Table contains one or more 
columns that identify the fragment that is associated with the table or one of its 
components. The number and names of these columns are DBMS-specific and can 
be found in the DBMS-specific table definitions, which start on page 440.

For non-DB2 table definitions, data is transferred between the Savant and the 
Query Processor using a linear buffer. The fragments are used to identify the 
starting position and length of an IMS segment, IDMS record, and/or record array 
within the linear buffer. 

IMS Example

The following figure shows how an IMS database is mapped as fragments and 
projected into the linear buffer. In this example, a simple two-level fixed length 
segment database has been defined. The linear buffer that is allocated is based on 
the RECLENGTH column in the underlying SYSIBM.SYSTABLES definition. In 
this example, the linear buffer length has been computed based on the maximum 
sizes of the two segments that are being accessed. In the 
SYSCAC.SYSIMSTABLES definition for this table, the segments composing the 
table are named in hierarchic order. The convention is SEGMn where n is between 
1 and 15.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    205



Chapter 14. Open Catalog
Figure 32:  IMS Linear Buffer Example

Although you can use the SYSCAC.SYSIMSTABLES meta data table definition 
to retrieve information about all of the segments referenced by an IMS table 
definition, you either have to:

• know how many segments a particular IMS table references, which requires 
that each query be customized to reference the correct number of segments, or

• use a generic query that retrieves information about all possible segments 
(maximum number of 15), which means most of the columns retrieved will 
contain null values.

To make retrieving information about the segments that are referenced by IMS 
table definitions easier, another SYSCAC.SYSIMSSEGMENTS meta data table 
is available for your use. This meta data table uses a record array to denormalize 
the segment information and return one row for each segment referenced by an 
IMS table definition.

IDMS Example

The following figure shows how an IDMS database is mapped as fragments and 
projected into the linear buffer. In this example, two records have been mapped as 
a table. The linear buffer that is allocated is based on the RECLENGTH column in 
the underlying SYSIBM.SYSTABLES definition. In this example, the linear 
buffer length has been computed based on the maximum sizes of the two records 
that are being accessed. In the SYSCAC.SYSIDMSTABLES definition for this 
table, the records composing the table are named in their physical access order. 
The convention is RECORDn where n is between 1 and 10.

Root Segment

SEGM
NAME=ROOT
BYTES=200

Child Segment

SEGM
NAME=CHILD
BYTES=400

0

200

RECLENGTH=(SEGM1_LENGTH +
SEGM2_LENGTH)=600

Root Segment Fragment #1

SEGM1_NAME = ROOT
SEGM1_LENGTH = 200
SEGM1_OFFSET_IN_BUFFER=0

Child Segment Fragment #2

SEGM2_NAME=CHILD
SEGM2_LENGTH=400
SEGM2_OFFSET_IN_BUFFER
=SEGM1_OFFSET_IN_BUFFER

Relative 0 offsetIMS Hierarchy

Linear Buffer
206 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 14. Open Catalog
Figure 33:  IDMS Linear Buffer Example

As with IMS, alternate record array IDMS-specific meta data tables are available:

• SYSCAC.SYSIDMSRECORDS (see page 488)

• SYSCAC.SYSIDMSSETS (see page 492)

• SYSCAC.SYSIDMSAREAS (see page 470)

• SYSCAC.SYSIDMS_INDEXES (see page 466)

IDMS columns also have information about the indexes that are used to access the 
column. So, in addition to a “standard” SYSCAC.SYSIDMSCOLUMNS meta 
data table, there is also a SYSCAC.SYSIDMSCOLINDEX meta data table that 
provides record array access to the index information associated with an IDMS 
column.

In the case of IMS and IDMS, meta data tables take advantage of mapping non-
normalized data into a relational object. From an eXadas perspective, non-
normalized data comes in two forms:

• Redefinitions—these are handled by the use of the definition of views, or by 
using WHERE clause qualification, and 

• Arrays—these are handled by the definition of record arrays.

Meta data tables do not contain redefinitions, but there are record arrays in the 
eXadas meta data table definitions. How record arrays are projected and processed 
in the linear buffer is discussed next.

Employee

RECORD
NAME=EMPLOYEE
LENGTH=400

Dependent

RECORD
NAME=DEPENDENT
LENGTH=100

0
 
 
 
 
 
400

RECLENGTH=(RECORD1_LENGTH +
RECORD2_LENGTH)=500

Employee Fragment #1

RECORD1_NAME = EMPLOYEE
RECORD1_LENGTH = 400
RECORD1_OFFSET_IN_BUFFER=0

Child Segment Fragment #2

RECORD2_NAME=CHILD
RECORD2_LENGTH=100
RECORD2_OFFSET_IN_BUFFER
=RECORD1_OFFSET_IN_BUFFER

Relative 0 offsetIDMS Network

Linear Buffer

Set
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    207



Chapter 14. Open Catalog
Record Arrays
A record array defines a column or set of columns that may occur one or more 
times within a database object. A database object is an IMS segment, an IDMS 
record, a CA-DATACOM/DB table, and so on. In Meta Data Grammar, you 
identify the start and ending range of the columns in a record array using the 
BEGINLEVEL n and ENDLEVEL statements. eXadas allows you to map 
multiple fixed number of repetition record arrays in a single database object. The 
use of this feature is not recommended, and is not used in the meta table 
definitions, because the result of retrieving database objects with multiple record 
arrays is the Cartesian product of each instance of a record array occurrence.

However, since it is common for legacy systems to be defined as occurring a 
variable number of times using a COBOL OCCURS DEPENDING ON clause, 
XDi supports the definition of one variably-occurring record array in a database 
object. The column(s) that make up this record array must be defined as the last 
set of column(s) in the table definition. 

The following figure shows how a VSAM table containing a record array is 
projected into the linear buffer, and the fragments that are used to manage access 
to the table’s contents. This projection works the same way for all non-relational 
database objects.

Figure 34:  Record Array Example

A record array definition references the starting position of the set of columns that 
make up the record array within the database object, as well as the length of a 
record array occurrence. All columns within the record array use a relative zero 
offset to the start of the record array. In fact, all columns use relative zero offsets 
to the location of the physical data from the fragment they are associated with. In 
Figure 34: “Record Array Example,” the column REPEATING_FIELD has an 
offset of zero, and a maximum of 20 occurrences can be materialized out of a 
single instance of Fragment 2.
208 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 14. Open Catalog
When the column REPEATING_FIELD is referenced in a query, record array 
processing is activated. A row is materialized, or possibly materialized, for each 
occurrence of the record array “object”—the set of column(s) that make up the 
record array. You can think of the record array as a window that moves down in 
the database object each time a “record” is retrieved from the database object by 
the Query Processor.

In the case of an OCCURS depending on record array definition, the maximum 
number of instances that can be materialized is identified by the 
MAXIMUM_OCCURENCES column. The actual number of occurrences that are 
materialized is determined by the value in the column identified by the name of 
the column identified by the CONTROL_COLUMN and 
CONTROL_COLUMN_SEQUENCE_NUMBER columns. The column 
identified is referred to as the controlling column, and must be defined before any 
of the column definitions within the record array. 

A record array can physically occur a fixed number of times, but some of the 
occurrences are considered not to exist based on values of some or all of the of the 
data in a record array occurrence. The NULL_LENGTH and NULL_VALUE 
columns identify the value that constitutes a null value. The NULLIS_RULE 
column identifies how a non-existent record array occurrence is determined.

The following table identifies the NULLIS_RULE values that are supported. The 
table also identifies the text that is contained in the NULL_FRAGMENT_RULE 
column that is contained in each of the meta data tables that are mapped against 
the SYSIBM.SYSCOLUMNS table (such as SYSIDMSCOLUMNS). Also 
included is a description of how a null instance is determined.

Table 34: NULLIS_RULE Values

NULLIS_RULE 
Value

NULL_FRAGMENT_RULE 
Value

Description

0 NULL Either the fragment is not associated with a 
record array, or the record array occurs the 
number of times identified by the 
MAXIMUM_OCCURENCES column.

1 DEPENDING_ON_INDEX_
COL

The record array is an OCCURS depending on 
record array. The number of occurrences depends 
on the contents of the control column.

2 NULLIS_COLUMN_
MATCH

An occurrence is null if the column identified in 
CONTROL_COLUMN contains the value 
specified in the NULL_VALUE column.

3 NULLIS_ALL_COLUMN_
MATCH

An occurrence is null if the start of the column 
identified in CONTROL_COLUMN contains the 
value specified in the NULL_VALUE column.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    209



Chapter 14. Open Catalog
For non-relational databases, fragments are the key to defining the data to be 
accessed and updated. These fragments are created automatically based on the 
database to be accessed and the columns defined within a table.

The eXadas IBM definitions of the base system tables themselves 
(SYSIBM.SYSTABLES, SYSIBM.SYSCOLUMNS, and so on) do not have 
fragment definitions, though one is synthesized when the table is accessed. 
Imported DB2 tables also do not have fragments associated with them and do not 
use linear buffers to transfer data to the query processor.

Differences With Meta Data Tables
Each meta data table contains column definitions for the columns that are defined 
in the “base” system table definition. For example, the 
SYSCAC.SYSIMSTABLES table contains all of the columns defined in the 
SYSIBM.SYSTABLES table. The SYSCAC.SYSIMSTABLES table has eXadas-
specific column definitions that are IMS-specific, as well as some “standard” 
column definitions that are common to all eXadas tables. The same is true for the 
other “base” tables—SYSCOLUMNS, SYSINDEXES, and SYSKEYS.

NOTE: Although there are DBMS-specific tables projected over all four base tables, for 
all data sources (except sequential files), many of the SYSINDEXES and 
SYSKEYS tables only contain DB2 column definitions because there are no 
eXadas-specific columns required to perform keyed access the table via an index. 

Although the meta data tables contain definitions for all of the standard DB2 
columns, their meta data definitions are often subtlely different than the 
definitions found in DB2. The meta data tables, themselves, are also subtlety 
different than either a system table or a user table—they have some characteristics 
of both. These differences are discussed in the following topics:

•  “VARCHAR Columns,”

•  “Use of NULL IS Definitions,” on page 211,

•  “Use of the REMARKS Column,” on page 212, 

4 NULLIS_MATCH An occurrence is null if the data contains the 
value specified in the NULL_VALUE column.

5 NULLIS_MATCH_ALL An occurrence is null if the beginning of the data 
contains the value specified in the 
NULL_VALUE column.

Table 34: NULLIS_RULE Values

NULLIS_RULE 
Value

NULL_FRAGMENT_RULE 
Value

Description
210 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 14. Open Catalog
• “Predefined Table Names,” on page 213,

• “Use of Indexes,” on page 213, and

•  “Ability to Delete Meta Data Tables,” on page 214.

VARCHAR Columns

There are no VARCHAR column definitions in the meta data tables. For example, 
the NAME column in the SYSIBM.SYSTABLES table is defined as 
VARCHAR(18), but in the meta data tables the NAME column is defined as 
CHAR(18). Internally in the eXadas System Catalog, VARCHAR columns are 
actually stored as CHAR values with an extra two bytes reserved at the end of the 
column for the column’s length. When a query is issued against a SYSIBM system 
table, the catalog savant converts any VARCHAR column from its CHAR format 
into a true VARCHAR column in memory.

Although the meta data definition of a DB2 VARCHAR column is defined as a 
CHAR column, you can still issue a query that perform joins between a DB2 table 
and their meta data equivalents that references both the DB2 VARCHAR and meta 
data CHAR version of the column in the WHERE or ON clause. These types of 
queries return the correct result sets because of the type compatibility between 
CHAR and VARCHAR columns. However, if you issue a query that performs a 
LENGTH function against a VARCHAR DB2 column and its meta data 
equivalent, the results will be different because the trailing spaces for the 
VARCHAR version of the column have been removed by the catalog savant while 
in the meta data version of the column the trailing spaces are treated as data.

Use of NULL IS Definitions

For queries, eXadas uses IBM DB2 Version 4 as its reference model. This means 
that you can issue queries that use the SQL syntax described in the IBM DB2 
Version 4 SQL Reference Manual and the result set output is returned as 
described in the IBM manual. The only exceptions have to do with queries that 
attempt to perform date, time, or time stamp functions, since these functions are 
not supported by eXadas. The SYSIBM system table definitions, with the 
exception of stored procedure tables, use IBM DB2 version 2.2 as their reference 
model.

Many of the columns defined in the SYSIBM system tables are not used by 
eXadas, but are nonetheless defined for compatibility purposes. Likewise, these 
columns are also defined in the meta data tables. However, when the meta data 
versions of these columns are retrieved, oftentimes the column will be returned as 
a null value. This is because in the meta data versions these columns have been 
defined using the equivalent of the NULL IS clause that can be specified for 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    211



Chapter 14. Open Catalog
columns in a user-defined table. Whether a meta data column can be null and what 
constitutes a null value is documented for each column.

WARNING: As discussed in the previous topic, you can issue queries that perform joins 
against a DB2 table and its meta data equivalent against VARCHAR and CHAR 
column definitions and these queries work as you would expect. This is not true 
for meta data columns that support NULL values. If you issue a query that 
contains a join predicate between a DB2 column and its meta data equivalent that 
supports NULL values, then generally an empty or “truncated” result set will be 
returned. 

Because these columns are not of interest to eXadas and are populated with 
default values, it is highly unlikely that you would issue a query that attempted to 
join based on these columns.

For eXadas-specific columns, the use of NULL IS specifications are used 
extensively. Many of the eXadas-specific columns are optional. Those that are not 
can be identified because there is a NOT NULL clause in the Data Type column in 
the table descriptions.

Use of the REMARKS Column

The SYSIBM.SYSTABLES and SYSIBM.SYSCOLUMNS tables both contain a 
REMARKS column. The DB2 definition of these columns is as a 
VARCHAR(254) column that is populated using the COMMENT ON statement. 
As covered in “VARCHAR Columns,” on page 211, their meta data equivalents 
are defined as CHAR(254), and eXadas does not support the COMMENT ON 
statement.

For the SYSIBM system tables and user-defined tables, the REMARKS column is 
not populated with any value. This is not true for meta table definitions. For each 
meta table and each meta data column, the REMARKS column contains a short 
description of the table or column.

For the REMARKS column in the table definition, the description uses the same 
style found in the DB2 definitions of the system tables. These descriptions 
identify how many instances of the table exist within the eXadas System Catalog. 
The eXadas and DB2 descriptions of a table assume that the reader knows what 
the purpose of the table is. Usually, these descriptions are not very useful.

The REMARKS columns associated with meta data column definitions, however, 
do contain meaningful descriptions. For each column, the REMARKS column 
identifies whether the column is a DB2 column or an eXadas-specific column. 
Generally, for a DB2 column, the remainder of the description will either contain 
the DB2 definition of the use of the column (or a terser version since the 
REMARKS column can only contain 254-characters) or the phrase “Not used by 
eXadas” which means that the column exists for compatibility purposes with the 
DB2 Version 2.2 reference model.
212 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 14. Open Catalog
A column that is identified as an eXadas-specific column includes a short 
description of the purpose of the column and whether or not it is a synthesized 
column. To make accessing the information stored in the eXadas System Catalog 
easier, the meta data table definitions for non-relational databases contain several 
synthesized columns that identify information that has been extracted from the 
fragment definition that is associated with the table or a column. These 
synthesized columns can be identified by the REMARKS column beginning with 
the sentence “eXadas column—obtained from fragment definition.”

For IDMS meta data columns, several columns are also synthesized from the 
IDMS record and index columns associated with the IDMS table definition. These 
synthesized columns can be identified by the REMARKS column beginning with 
the sentence “eXadas column—obtained from table definition.”

Predefined Table Names

Like the SYSIBM system table names, the meta data table names are predefined. 
The SYSCAC creator name was chosen because it is unlikely that you will be 
defining user tables that would use SYSCAC as an owner name. The actual table 
names (such as SYSIDMSTABLES) were selected to identify these as system 
tables, and to identify the DBMS they are mapped over and the base IBM table 
that they are referencing. The meta data tables that contain record arrays follow 
along the same lines, and identify the DBMS-specific object that the record array 
is mapped against.

Internally, the system tables and the META tables are defined as static structures 
in the Meta Data Utility. Using these static structures, the Meta Data Utility 
automatically builds the system table definitions when it detects that the catalogs 
are empty. As part of open catalog support, the Meta Data Utility has been 
modified to automatically create the META table definitions when the system 
tables are created, and to check for the existence of the 
SYSCAC.SYSMETATABLES table each time it is run. If this table is not found, 
the META tables are automatically created in the System Catalog.

Use of Indexes

You cannot define an index for a meta data table. Attempting to will generate a 
-104 SQL code from the Meta Data Utility, because meta data tables are mapped 
over the system tables, and you cannot define an index on a system table.

That does not mean that if you issue a query against a meta data table that an index 
is not used to access the meta data table’s content. When the system tables are 
initially loaded into the System Catalog, indexes are automatically created for the 
SYSIBM.SYSTABLES, SYSIBM.SYSCOLUMNS and SYSIBM.SYSINDEXES 
tables. Other indexes are also automatically created for the security related tables.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    213



Chapter 14. Open Catalog
For the SYSIBM.SYSTABLES table, the index is defined on the CREATOR and 
NAME columns. For the SYSIBM.SYSCOLUMNS table, the index is defined on 
the TBCREATOR and TBNAME columns. Likewise, the 
SYSIBM.SYSINDEXES table has an index defined on the CREATOR and 
NAME columns.

When you issue a query against a meta data table, the Catalog Savant 
automatically picks up the associated SYSIBM index information associated with 
the underlying system table. Therefore, queries against meta data tables that 
contain WHERE clause qualification on the creator and table name will run faster 
because they are using the underlying indexes to access the requested tables 
information.

Ability to Delete Meta Data Tables

You can use the standard GRANT and REVOKE statements to secure access to 
the meta data tables. However, unlike the system tables, you can delete meta data 
table definitions from the eXadas System Catalog using the DROP TABLE 
statement.

Installing Meta Table in the eXadas 
System Catalog

Loading the meta data table definitions into a new or existing System Catalog is a 
multi-step process. Initially, the SYSCAC.SYSMETATABLES, 
SYSCAC.SYSMETACOLUMNS, and SYSCAC.SYSMETAFRAGMENTS 
tables must be loaded into the eXadas System Catalog. This is done automatically 
by running the Meta Data Utility. 

If you are creating a new set of catalogs, then when you create your first user 
table, the SYSMETA* tables are automatically created. If you have an existing set 
of catalogs, then you must run the Meta Data Utility to get these tables loaded into 
the eXadas System Catalog. You can define a new user table, create an index, 
perform a grant or revoke operation, or drop an existing table/index definition or a 
non-existent table or index definition. These table are automatically created if you 
supply a syntactically correct statement to the Meta Data Utility. The outcome of 
the execution of the Meta Data Utility has no bearing on the creation of the 
SYSMETA* table definitions, which is why you can load them, for example, by 
attempting to drop a non-existent table or index, or by issuing a grant or revoke 
for a non-existent object.
214 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 14. Open Catalog
TIP: If you want to secure access to the SYSMETA* or grant public access to 
these tables, then you can run the Meta Data Utility and supply one or more 
GRANT statements that reference the SYSMETA* tables. Although initially these 
tables do not exist in the eXadas System Catalog, they will exist by the time the 
GRANT statement is processed.

Once the SYSMETA* tables have been defined, you can load the DBMS-specific 
meta table definitions into the eXadas System Catalog. The DBMS-specific meta 
data tables are loaded into the System Catalog using the local client IVP job 
CACCLNT. To load the DBMS-specific meta data tables into the System Catalog, 
make sure that the STATIC CATALOGS configuration parameter in the master 
configuration member (SCACCONF member name CACDSCF) is set to 0.

NOTE: If STATIC CATALOGS is set to 1 and CACCLNT is run, the job will end with a 
condition code 4095.

The System Catalog referenced by the server must be the standard System Catalog 
datasets and not linear datasets. For more information about linear catalogs, see 
“Static Catalogs,” on page 102.

To have the server use linear catalogs:

1. Shut the server down.

2. Run CACLCAT to allocate the linear catalogs.

3. Run CACCLNT one or more times.

4. Run CACGRANT to issue the necessary authorizations.  Ensure the JCL 
points to the linear catalogs.

5. Update the server’s JCL to reference the linear catalogs. 

6. Restart the server. 

In the SCACSAMP library, there are sets of members that are used to load the 
DBMS-specific meta data table definitions into the eXadas System Catalog. If you 
do not want to use some of the tables that are automatically loaded, after they have 
been loaded you can delete them by issuing a DROP TABLE statement. The table 
below identifies the load member names:

Table 35: Meta Data Table Load Member Names

Database Type Member Name

Adabas CACOADAB

CA-DATACOM/DB CACODCOM

DB/2 CACODB2

IDMS CACOIDMS

IMS CACOIMS
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    215



Chapter 14. Open Catalog
The following steps assume that you have an environment with a working data 
server and that you have already configured the system and performed the local 
verification procedure discussed in the eXadas OS/390 Getting Started Guide. If 
you have not, then for the data source that you are interested in, perform step 1 of 
these procedures to ensure that you have a query processor service configured, 
and step 2 to ensure that you have a local client configured to communicate with 
the query processor.

To load one or more DBMS-specific meta data tables:

1. Make sure that the CACCAT and CACINDX DD statements are referencing 
the sequential file versions of the system catalog data sets. 

2. Make sure that the STATIC CATALOGS configuration parameter is set to 0. 

3. Start the eXadas server.

4. Edit the load member name that you want to load in library SCACSAMP and 
change CACUSER to the name of a user that has SYSADM authority. If you 
have the SAF exit active in the server, the user name must be an authorized 
MVS user ID, and you need to change CACPWD to supply a valid password 
for the user ID that you supplied.

5. Edit member name CACCLNT in the SCACSAMP data set by:

a. Supplying a valid JOB card

b. Changing the CAC parameter to specify the high-level qualifier of the 
eXadas data sets. 

c. Changing the CONFIG parameter to specify the name of the client 
configuration member (default is CACUSCF) to be used to communicate 
with the server.

d. Changing the SQLIN parameter to specify the name of the meta data table 
load member name that you want to load into the eXadas System Catalog.

6. Once you have completed customizing CACCLNT, submit the job.

7. Review the results.

If the CACCLNT job ends with a condition code of zeros, the requested set of 
DBMS-specific meta data table definitions have been loaded into eXadas System 

Sequential files CACOSEQ

VSAM files CACOVSAM

Table 35: Meta Data Table Load Member Names

Database Type Member Name
216 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 14. Open Catalog
Catalog. If you receive a non-zero return code, then an error was encountered. The 
following table lists typical condition codes and their corrective action.

Continue changing the SQLIN member and performing step 4 and 5 until you 
have loaded all of the DBMS-specific meta data tables into the eXadas System 
Catalog that you are interested in.

For full descriptions of the meta data tables, see Appendix E, “Meta Table 
Definitions.”

Table 36: Typical CACCLNT Condition Codes

Condition 
Code

Corrective Action

204 The SYSCAC.SYSMETA* tables have not been installed in 
the eXadas System Catalog. Run the Meta Data Utility to 
install these tables and then re-run CACCLNT.

551 The user ID specified does not have SYSADM authority. 
Either grant the user ID specified with SYSADM authority, or 
change the user ID to an ID that does have SYSADM authority. 
Then re-run CACCLNT.

601 The meta data table that you are attempting to load already 
exists in the eXadas System Catalog. No action required.

4095 The STATIC CATALOGS configuration parameter is set to 1 , 
or the server is referencing linear catalogs. In the first case, 
stop the server, change the STATIC CATALOGS setting to 0, 
re-start the server, and re-run CACCLNT. In the second case, 
stop the server, modify the CACCAT and CACINDX DD 
statements to reference the sequential catalogs, re-start the 
server, and re-run CACCLNT.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    217



Chapter 14. Open Catalog
218 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



15

System Exits

Introduction to System Exits
The server is a multi-threaded implementation designed to service large numbers 
of concurrent users. eXadas includes a set of system exits for security and 
accounting purposes. All of the system exits are written in Assembler language, 
with the exception of the Record Processing Exit, and are written to execute in a 
multi-tasking environment. They are assembled as re-entrant. Additionally the 
exits are link-edited as AMODE 31 RMODE ANY and REF, RENT, RU. If you 
customize an exit, make sure that your version also meets these criteria.

eXadas provides support for the following system exits:

• “Security: SAF Exit Specifics,” on page 220,

• “Accounting: SMF Exit Specifics,” on page 228,

• “CPU Resource Governor,” on page 235,

• “Workload Manager Exit,” on page 242,

• “DB2 Thread Management Exit,” on page 251, and

• “Record Processing Exit,” on page 256.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 219



Chapter 15. System Exits
The remainder of this chapter describes each of the eXadas system exits. For each 
exit the following information is provided:

• an overview of the functionality that the system exit implements,

• step-by-step instructions on how to activate the eXadas sample exit,

• a description of the API interface used to communicate with the system exit, 
and

• a description of the functions that the system exit is called to perform.

Security: SAF Exit Specifics
The SAF Exit is used to verify that a user has authority to access a physical file or 
PSB referenced in an SQL query. The SAF Exit is also called to verify that a user 
has authority to execute a Stored Procedure program.

NOTE: This notice is for the benefit of users that are upgrading to a new version of 
eXadas who plan to run an existing version of their SAF Exit. The control block 
for the SAF Exit (CACSX04) has been modified. The SAFID field has been 
changed from a CL4 field to a CL3 field followed immediately by a single byte 
field. This one byte field contains a version number. This position in the control 
block will not be a blank as it has been in all previous versions of this control 
block. These modifications do not alter position or alignment of any existing 
fields. The control block has also been lengthened by 6 bytes.

If you run the exit, it will run without modification. No re-assembly or re-linking 
is required. If you have modified the eXadas module and you reference the 
SAFID field as a CL4 field or if you reference SAFID with an explicitly declared 
length of 4, you must correct the coding to reference SAFID as a 3 byte field, re-
assemble, and re-link your exit. Correcting all length references to SAFID will 
ensure your existing SAF Exit will execute correctly with the new eXadas product 
even though the new control block features will not be implemented. 

To implement the new features provided by the control block modifications, 
review the supplied SAF Exit and include the changes into your SAF Exit as may 
be required.

NOTE: The eXadas SAF Exit issues RACROUTE calls and must be run from an APF-
authorized library. Additionally, when issuing the RACROUTE calls, the exit 
enters key zero supervisory state. The exit reverts back to problem program state 
immediately after each RACROUTE call returns.

The section that follows provides a description of the steps to activate and verify 
the eXadas SAF Exit. This is followed by a description of the initialization, 
validation, and termination functions that the exit is called to perform in case you 
need to customize the eXadas version.
220 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
Activating the SAF Exit

The following steps show how to configure the eXadas SAF Exit and verify that it 
is working.

NOTE: The following instructions assume that you have successfully installed eXadas, 
performed initial configuration, and verified the installation and configuration 
using the eXadas sample application and data.

1. Ensure that the SAF Exit load module (CACSX04) is in an APF-authorized 
library (SCACLOAD).

2. Ensure that the Server JCL references the APF-authorized library in the 
STEPLIB DD statement where the SAF Exit is located (SCACLOAD). Also, 
ensure that any other data sets referenced in the STEPLIB DD statement are 
also APF-authorized.

3. Edit the Server master configuration member (SCACCONF member 
CACDSCF).

NOTE: You can also activate the SAF Exit from a service configuration 
member. However, CrossAccess recommends that you activate the 
SAF Exit from the master configuration member. Activating the SAF 
Exit at the master configuration member level ensures that all users 
accessing the server have authorization checks performed before they 
can access your legacy data.

4. Uncomment the SAF Exit parameter. Parameters are specified using a 
keyword=value format and are comma delimited. The following sub-
parameters are supported by the eXadas SAF Exit:

• IMS CLASS=Class Name specifies the name of the RACF resource 
class that is checked to determine whether the user has authority to 
schedule or access the PSB(s) associated with the table(s) referenced in a 
query. The Class Name can be up to eight characters long. This sub-
parameter is required when accessing IMS data.

• PSB PREFIX=Prefix specifies a value that is to be prefixed to the PSB 
name(s) before a RACF authorization call is issued. If specified, the PSB 
name is appended to the Prefix value, for example, IMSPPSB1 where the 
Prefix is IMSP and the PSB name is PSB1.

NOTE: If you are planning to access IMS data, then you may need to 
modify the IMS CLASS subparameter to define the RACF class 
where IMS PSBs are defined at your site.

To use a PSB, a user ID must have at least CONTROL access to 
that PSB’s corresponding RACF profile within the class.

The combination of the length of the PSB name and the length of 
the Prefix must be eight characters or less. This is a RACF 
restriction. If a larger PSB name or Prefix combination is 
encountered, an error message is issued.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    221



Chapter 15. System Exits
• SPCLASS=FACILITY specifies the name of a class to be used to check 
for RACF authorized use of stored procedure names defined in the Meta 
Data catalogs. These names are stored in the SYSIBM.SYSROUTINES 
system table. An SPCLASS name can be up to eight characters in length.

In this example the IBM-supplied class of FACILITY is used. You can 
define an installation class specifically for stored procedures to RACF. 
Use the FACILITY class as an example and specify the length of the 
resource name as 39. Replace FACILITY with the name of the new class.

The RACF administrator should define each stored procedure as a 
resource in this class and grant ALTER access to each user ID that will 
invoke the stored procedure. If the stored procedure is not defined to 
RACF or the user ID is not granted access, -5046295 is returned on the 
attempt to use a stored procedure, and the following message is added to 
the server log:

Stored Procedure Access Denied

• ADACLASS=FACILITY specifies the name of a class to be used to 
check for RACF-authorized use of ADABAS view names. An 
ADACLASS name can be up to eight characters long. In this example the 
IBM-supplied class of FACILITY is used. You can define an intallation 
class specifically for ADABAS views to RACF. Use the FACILITY class 
as an example and specify the length of the resource name as 32. Replace 
FACILITY with the name of the new class. The RACF administrator 
should define each ADABAS view name as a resource in the class and 
grant CONTROL access to each user ID that uses that view name. If the 
ADABAS view name is not defined to RACF, or the user ID is not 
granted access, the following message is returned on the attempt to pull 
data from the ADABAS table defined with a view name:

Access Denied

If the ADABAS table is only defined with a file number (no Predict view 
name), you will receive the same error message as shown above, and the 
following message will appear in the server log:

CACSX04 NO ADABAS VIEW NAME IN USE GRAMMAR

• EXCLUDE=n indicates the query processor should NOT provide an 
ACEE address in commands sent to CA-DATACOM/DB. When the SAF 
Exit is active, the address of an ACEE is obtained during SAF Exit 
initialization. This ACEE address is normally passed to CA-
DATACOM/DB in each database request and CA-DATACOM/DB 
authenticates the request using information within the ACEE.

Whenever the SAF Exit is active and database level security checking in 
CA-DATACOM/DB is to be avoided you must indicate the query 
processor should exclude the ACEE from the database requests that are 
sent to CA-DATACOM/DB. Set the value of n to 2 (Heterogeneous Query 
Processor Datacom Data Savant). This setting will not provide the ACEE 
address in the call parameters.
222 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
• VALIDATE=Y|N indicates when called to perform validation processing 
whether the exit should actually validate that the user has authority to 
access the database, file, stored procedure or PSB name passed to the exit. 
Specifying a value of Y informs the exit that is should issue RACROUTE 
validation call(s) for the resource name passed to the exit. Specifying a 
value of N informs the exit that is should not perform any validation 
processing for the resource name passed. The default value for 
VALIDATE is Y.

The purpose of this parameter is to allow you to eliminate the overhead of 
verifying that the user has authority to access the resource if you have 
elected to activate SQL security to control access to tables and stored 
procedures.

NOTE: Use both SQL security and the SAF Exit in conjunction with your 
site security package to restrict access to your legacy data.

5. Save the master configuration member.

6. Start the server. If your server is already running, shut it down and restart it.

NOTE: This operation can also be performed using the MTO Operator 
Interface. For more information on dynamic configuration see 
Chapter 10, “Server Operations.”

7. Uncomment the SELECT statement(s) in SCACSAMP member CACSQL 
that reflects the datasource you are using.

a. Ensure that the user ID is authorized to access the table that is referenced 
in the query. 

b. Save the changes after you have completed editing the member.

8. Edit SCACSAMP member CACCLNT to set the SQLIN parameter to 
reference the name of the member that you edited in Step 7. (SQLIN).

9. Save the member once you have completed making the changes.

10. Submit CACCLNT and review the output. The query should function 
normally and return the expected result set.

11. Re-edit the SCACSAMP member updated in Step 7 (SQLIN). Update the user 
ID (CACUSER) to specify an invalid user ID or one that is not authorized to 
access the file or PSB that is referenced in the query.

12. Save the member once you have completed making changes.

13. Submit CACCLNT. The query should not return a result set and you should 
see an error message that reads: Access denied.

14. Re-edit the SCACSAMP member that was previously updated in Step 7 
(SQLIN) and change the user ID to a valid user ID.

15. Save the member once you have completed making changes.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    223



Chapter 15. System Exits
SAF Exit API Overview

The parameter list passed to the SAF Exit is mapped by macro CACSXPL4 found 
in the SCACMAC library. The SAFFUNC field indicates the function you are 
calling: initialization, validation, or termination. The fields and their descriptions 
are shown in the table that follows.

Table 37: SAFFUNC Fields and Descriptions

Field Description

&DSECT=YES Used to control whether a DSECT definition is generated or whether 
the fields are generated in the exit’s local storage area.

SAF DSECT DSECT definition that is generated if &DSECT=YES is specified.

SAF DS 0H Label that is generated when &DSECT=YES is not specified.

SAFID DC CL3’SAF’ Identifier that should be checked to determine whether the internal 
storage area for the CACSXPL4 parameter list has been corrupted.

SAFVER DS X Format version identifier. This position in the parameter list was a 
blank (not used) prior to eXadas Version 2.2.1.

SAFORG EQU X'40'  Parameter list formatted by eXadas software prior to Version 2.2.1.

SAF42FC EQU X'F1'  Parameter list formatted by eXadas software beginning at Version 
2.2.1. Modifications in the parameter list format include:

• SAFID changed from CL4 to CL3.

• SAFVER field added.

• SAFEXCLD field added.

• SAFACEE field added.

• SAFCGRP field added.

SAFUSER DS A Word available for SAF Exit use. If the SAF Exit needs to allocate 
storage for processing, the address of the storage area should be placed 
in this field during initialization processing.

SAFTYPE DS F Validation type. The valid values are described in “SAF Exit 
Validation,” on page 226.

SAFUSERI DS A Address of the user ID to be validated. The user ID referenced is eight 
bytes long, left-justified, upper-case, and padded with blanks.

SAFUSERP DS A Address of the User Password to be validated. The User Password 
referenced is eight bytes long, left justified, upper case and padded 
with blanks.
224 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
SAF Exit Initialization

This function is called immediately after the exit is loaded during initialization of 
the Query Processor Task when a user connects to the service. The SAFNAME 
parameter points to an (optional) input parameter string that can be passed to the 
exit. The input parameters are specified on the SAF Exit configuration parameter 
used to invoke the SAF Exit. On the SAF Exit parameter additional subparameters 
can be placed after the name of the exit.

The SAFUSERI and SAFUSERP fields contain the User ID and password of the 
user that is connecting to the service.

SAFNAME DS A Address of the file name/PSB/Stored Procedure table name to be 
checked for access authority. The name is left-justified and terminated 
with a NULL. See “SAF Exit Validation,” on page 226, for the contents 
of the SAFNAME field for each type of validation call that can be 
issued.

SAFFUNC DS H Function identifier flag.

SAFINIT EQU 0 Initialization.

SAFVAL EQU 4 Validation.

SAFTERM EQU 8 Termination.

SAFEXCLD DS   H Exclusion flags. Identifies which query processor should NOT provide 
the ACEE address to CA-DATACOM/DB in each command request.

SAFDCHQP EQU  2 The Query Processor (running a Datacom query) should not supply the 
ACEE address to CA-DATACOM/DB.

SAFACEE  DS   A      The address of the ACEE created during SAF Exit initialization. This 
ACEE was created by a RACROUTE ENVIR=CREATE call and is 
used by CA-DATACOM/DB to authenticate database requests based 
upon the user ID in the ACEE.                

SAFCGRP DS CL8 Allows the exit, when called for initialization processing, to return a 
user group name this will subsequently be used in SQL security 
processing. Using group names for SQL security processing allows 
you to simplify the administration of SQL security since you only need 
to grant authority to the group name for the tables, views and stored 
procedures members of that group are allowed to access.

On the initialization call, this field is set to spaces. On subsequent calls 
do not attempt to update this field since, after initialization processing, 
the contents of this field are copied into an internal control block for 
use is SQL security processing.

Table 37: SAFFUNC Fields and Descriptions
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    225



Chapter 15. System Exits
When called at this point, the exit should perform initialization processing and 
allocate any storage or other resources that are required for validation processing. 
A pointer to the anchor for these resources can be placed in the SAFUSER field of 
the parameter list. This pointer is preserved and passed to the exit on subsequent 
invocations.

For example, the eXadas SAF Exit validates that the User ID and password are 
valid and creates an ACEE for the user. The address of the ACEE is returned to 
the caller in the SAFACEE field of the parameter list. If the optional input sub-
parameter EXCLUDE= is included in the SAF Exit configuration parameter, the 
specified value is returned to the caller in the SAFEXCLD field of the parameter 
list. These two fields are provided to implement database level security checking 
within CA-DATACOM/DB. This ACEE is used during validation processing and 
is destroyed at exit termination.

Additionally, the eXadas SAF Exit inspects the ACEEGRPL field in the ACEE. If 
the length field is greater than zero, the contents of the ACEEGRPN field is 
copied to the SAFCGRP for subsequent use in SQL security processing.

If the exit returns a non-zero return code, Query Processor initialization is halted, 
the user is disconnected, and the return code issued by the exit is returned to the 
client application.

SAF Exit Validation

This exit function is called at different predetermined processing points. The 
SAFTYPE field identifies the type of validation to be performed. Descriptions of 
the situations that cause a call to the exit for validation processing for each 
SAFTYPE follow.

• SAFIMS: For IMS access using a DBB/BMP Data Savant interface the exit is 
called immediately before PCB selection logic is invoked. The name of the 
PSB that is referenced by the SAFNAME field is the PSB specified in the 
Server’s JCL. The exit should verify that the user has authority to use the 
specified PSB name identified in the SAFNAME field.

If the exit returns a non-zero return code, processing for the query is 
terminated and the return code issued by the exit is returned to the client 
application. The application can still issue another SQL request.

When the DRA interface is used to access IMS data the exit can be called at 
two different points. The exit is always called immediately before a PSB is to 
be scheduled. The exit should validate that the user has authority to use the 
PSB referenced by the SAFNAME field.

If the exit returns a non-zero return code, the PSB is not scheduled, processing 
for the query is terminated, any other PSBs that have been scheduled for the 
query are unscheduled, and the return code issued by the exit is returned to the 
client application. The application can still issue another SQL request.

The exit may also be called when the query contains a JOIN. In this situation, 
the DRA interface schedules the JOIN PSB specified in the Meta Data 
Grammar for a table referenced in the query. The exit is invoked as previously 
226 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
described. For subsequent tables in the JOIN, the Data Savant checks to 
determine whether the PSB(s) that have already been scheduled contain(s) a 
PCB that can be used to access the table. If a usable PCB is located, the SAF 
Exit is called with the name of the primary PSB (as specified in the Meta Data 
Grammar for the table that is referenced in the query). This PSB is not 
scheduled, however, an authorization check should be performed to verify that 
the user has authority to access the primary PSB (referenced by the 
SAFNAME field) associated with the table.

If the exit returns a non-zero return code, the other PSB(s) that have been 
scheduled for the query are unscheduled and the return code issued by the exit 
is returned to the client application. The application can still issue another 
SQL request.

NOTE: There is no indication as to which of the three processing sequences 
caused the exit to be invoked.

• SAFVSAM and SAFSEQ: When a query references a Sequential or VSAM 
file, the exit is called immediately before the file is to be opened. The exit 
should validate that the user has authority to access the file name referenced 
by SAFNAME. When a PDS member is being referenced, the name of the 
member is not passed to the exit.

If the exit returns a non-zero return code, the file is not opened, processing for 
the query is terminated, and the return code issued by the exit is returned to 
the client application. The application can still issue another SQL request.

• SAFSP: For stored procedures, the SAF Exit is invoked immediately before 
the application program associated with a stored procedure definition is 
loaded for execution. The SAF Exit should validate that the user has authority 
to execute the program. This is performed indirectly based on the stored 
procedure table name referenced by the SAFNAME.

If the exit returns a non-zero return code, the program is not loaded or 
executed, processing for the stored procedure request is terminated, and the 
return code issued by the exit is returned to the client application. The 
application can still issue another SQL request.

NOTE: The eXadas SAF Exit will bypass performing the above processing if 
the VALIDATE sub-parameter is set to N. This option should only be 
activated when you are using SQL security to control access to the 
tables and stored procedures.

• SAFADAB: When a query references an ADABAS database, the exit is called 
immediately before the database is accessed. The exit should validate that the 
database has a viewname defined in the tables USE grammar and that the user 
has authority to access the viewname. The viewname is referenced by  
SAFNAME. 

If the exit returns a non-zero return code, the database is not accessed, 
processing for the query is terminated, and the return code issued by the exit is 
returned to the client application. The application can still issue another query. 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    227



Chapter 15. System Exits
SAF Exit Termination

This exit function is called during Query Processor termination processing when 
the user disconnects from the service task. At this time, the exit can perform any 
termination processing necessary and must free any resources it has allocated.

Accounting: SMF Exit Specifics
The SMF Exit is used to report wall-clock time and the CPU time for an 
individual user session with a Query Processor Task. Additionally, if SQL security 
is active and an authorization violation is detected by the Query Processor, the exit 
is called to allow it to log the authorization violation.

NOTE: The eXadas SMF Exit writes this information out as user SMF records. SMF 
requires that an application that writes SMF records be run out of an APF-
authorized library.

The following sections describe the steps to activate and verify the eXadas SMF 
Exit. This is followed by a description of the initialization, recording, and 
termination-exit functions that the exit performs to allow you to customize the 
eXadas version.

Activating the SMF Exit

The following instructions assume that you have successfully installed eXadas, 
performed initial configuration, and verified the installation configuration using 
the eXadas sample application and data.

To configure the eXadas SMF Exit and verify that it is working:

1. Ensure that the SMF Exit load module (CACSX02) is in an APF- authorized 
library (SCACLOAD).

2. Ensure the Server JCL references the APF-authorized library in the STEPLIB 
DD statement where the SMF Exit is located (SCACLOAD).

3. Ensure that any other data sets referenced in the STEPLIB DD statement are 
also APF-authorized.

4. Edit the Server master configuration member (SCACCONF member 
CACDSCF). 

NOTE: You can also activate the SMF Exit from a service configuration 
member. However, CrossAccess recommends that you activate the 
SMF Exit from the master configuration member. Activating the 
SMF Exit at the master configuration member level ensures that all 
228 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
users accessing the Server have accounting information recorded for 
them.

5. Uncomment the SMF EXIT parameter. The following sub-parameters are 
supported by the eXadas SMF Exit:

a. RECTYPE=nnn: This is a required parameter that defines the SMF user 
record type. This parameter contains a numeric value between 128 and 
255.

b. SYSID=xxxx: This is a required parameter that contains the primary JES 
subsystem ID. SYSID can be a maximum of four characters long.

6. Save the master configuration member.

7. Start the server.

If your server is already running, shut it down and restart it.

NOTE: This operation can also be performed using the MTO Operator 
Interface. For more information on dynamic configuration see 
Chapter 10, “Server Operations.”

8. Uncomment the SELECT statement(s) in SCACSAMP member CACSQL 
that reflects the datasource you are using.

a. Ensure that the user ID is authorized to access the table that is referenced 
in the query. 

b. Save the changes after you have completed editing the member.

9. Edit SCACSAMP member CACCLNT to set the SQLIN parameter to 
reference the name of the member that you edited in step 8 (SQLIN). Save the 
member once you have completed making the changes.

10. Submit CACCLNT and review the output. The query should function 
normally and return the expected result set.

11. Ensure that the SMF record file exists, for example, SYS1.MAN1.

12. DUMP the eXadas-related SMF records into a data set. Sample JCL is shown 
in the following example.

//*INSERT VALID JOB CARD HERE
//STEP1 EXEC PGM=IFASMFDP
//INDD1 DD DISP=SHR,DSN=SYS1.MAN1
//OUTDD1 DD DISP=(NEW,CATLG),DSN=CAC.SMFDUMP,
// UNIT=SYSDA,VOL=SER=XXXXXX,SPACE=(TRK,(5,5),RLSE),
// DCB=(LRECL=32760,BLKSIZE=27998,RECFM=VBS,DSORG=PS)
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
INDD(INDD1,OPTIONS(DUMP))
OUTDD(OUTDD1,TYPE(xxx))

Where Type (xxx) is the eXadas record type as specified in the RECTYPE= 
parameter.

13. Run SAS, IDCAMS, or any other tool that processes SMF records. If you run 
IDCAMS, specify the following SYSIN:
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    229



Chapter 15. System Exits
//STEP2 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
PRINT INDATASET (CAC.SMFDUMP)

Where CAC.SMFDUMP is the name of the DUMP file.

14. Verify the output.

The following table describes the DSECT that maps the SMF accounting 
routine output data from the eXadas SMF Exit.

Table 38: SMF Accounting File DSECT Field Definitions

Field Definition
Length 
(in 
bytes)

CACSXSMF DSECT Data structure for the SMF record. N/A

RDWLEN DS H Length of the record. 2

RDWSPAN DS H Reserved for system use. 2

FLG DS X Reserved for SMF use. 1

RECTYPE DS AL1 Value specified in the REC TYPE= parameter. This is the SMF 
record type.

1

ENTIME DS BL4 Time in BIN format from TIME macro. This is the time the 
event ended.

4

ENDATE DS PL4 Date in BIN format from the TIME macro. This is the date the 
event ended.

4

SYSID DS CL4 JES subsystem ID from the SYSID= * Parameter. 4

USRTYPE DS BL2 Zero for CPU time and elapsed time or for authorization 
violation the type of violation being reported. See Table 39, 
“Authorization Violation Type Codes,” on page 231, for the 
different types of authorization violations that can be reported.

2

USERID DS CL8 SQL ID from AXPLSQID. Padded with blanks. 8

STTIME DS BL4 Time in BIN format from the TIME macro. This is the time the 
event started.

4

STDATE DS PL4 Date in BIN format from the TIME macro. This is the date the 
event started.

4

AGCPU DS BL4 Total CPU time used since the event started. The value is 
represented in milliseconds.

4

RECLEN EQU *-
CACSXSMF

Length of the standard SMF reporting record.

ORG STTIME Alternate record definition for authorization violation reporting.
230 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
For more information on SMF, see the IBM OS/390/ESA System Management 
Facilities (SMF) documentation.

SMF Exit API Overview

The parameter list passed to the SMF Exit uses an AVA (Access Validation and 
Accounting) interface and is mapped by macro CACSXPL, which is found in the 
SCACMAC library. 

OBJNAME DS CL27 Name of the object for which the user is not authorized to 
access, define, or grant/revoke authority for.

27

TOTLEN EQU *-
CACSXSMF

Length of the authorization violation SMF record.

Table 39: Authorization Violation Type Codes

Type Code Authorization Violation Type

101 User is not authorized to issue a DROP TABLE for the requested table.

102 User is not authorized to issue a DROP INDEX for the requested table.

103 User is not authorized to issue a DROP VIEW for the requested view.

104 User is not authorized to issue a DROP PROCEDURE for the requested stored 
procedure.

200 User is not authorized to create the requested table.

201 User is not authorized to create the requested index

202 User is not authorized to issue the CREATE VIEW statement.

203 User is not authorized to issue the CREATE PROCEDURE statement

300 User is not authorized to issue a SELECT statement for the requested table or view.

301 User is not authorized to issue an UPDATE statement for the requested table.

302 User is not authorized to issue an INSERT statement for the requested table.

303 User is not authorized to CALL the requested stored procedure.

403 User is not authorized to issue a DELETE statement against the requested table.

500 User is not authorized to issue the requested GRANT statement.

501 User is not authorized to issue the requested REVOKE statement.

Table 38: SMF Accounting File DSECT Field Definitions
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    231



Chapter 15. System Exits
The AXPLFUNC field indicates the function you are calling:

• Initialization,

• Accounting,

• Authorization Violations and,

• Termination.

The fields and their descriptions are shown in the table that follows.

Table 40: SMF Field Definitions

Field Definition

&DSECT=YES Used to control whether a DSECT definition is generated or whether 
the fields are generated in the exit’s local storage area.

AXPL DSECT DSECT definition that is generated if &DSECT=YES is specified.

AXPL DS 0H Label that is generated when &DSECT=YES is not specified.

AXPLID DC 
CL4’AXPL’

Identifier that should be checked to determine whether the internal 
storage area of the AXPL parameter list has been corrupted.

AXPLUSER DS 3A Word(s) available for SMF Exit use.

AXPLETYP DS F Event type.

AXPLESUB DS F Event sub-type.

AXPLESEQ DS F Event sequence.

AXPLEBEF EQU 1 Before event execution.

AXPLEAFT EQU 2 After event execution.

AXPLSQID DS CL8 User ID left-justified, blank-filled.

AXPLPENV DS A Pointer to event specific information.

AXPLTEXT DS A Pointer to a text buffer (this is usually an SQL statement or the name of 
the object for which authorization failed).

AXPLTXTL DS F The decimal length of the text buffer.

AXPLSQLC DS F The SQLCODE from the SQLCA after processing for the SQL event is 
completed.

AXPLFUNC DS H Function identifier flag.

AXFNINIT EQU 0 Initialization.

AXFNVALI EQU 4 Validation/Accounting.

AXFNTERM EQU 8 Termination.
232 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
Initialization

This function is called immediately after the exit is loaded during initialization of 
the Query Processor Task when a user connects to the service. The AXPLPENV 
parameter points to an (optional) input parameter string that can be passed to the 
exit. The input parameters are specified on the SMF EXIT configuration 
parameter used to invoke the SMF Exit. On the SMF EXIT parameter additional 
sub-parameters can be placed after the name of the exit.

When called at this point, the exit should perform initialization processing and 
allocate any storage or other resources that are required for validation/accounting 
processing. A pointer to the anchor for these resources can be placed in the 
AXPLUSER field of the parameter list. This pointer is preserved and passed to the 
exit on subsequent invocations. Upon initialization, the AXPLSQID parameter 
contains the user ID of the user connecting to the Query Processor. The contents of 
the other fields in the parameter list are indeterminate.

If the exit returns a non-zero return code, Query Processor Task initialization is 
halted, the user is disconnected, and the return code issued by the exit is returned 
to the client application.

Validation/Accounting

This exit function is called at predetermined processing points. The AXPLETYP, 
AXPLESUB, and AXPLESEQ fields uniquely identify each processing point. The 
SMF Exit is called to process SQL events that are identified by an AXPLETYP 
value of 3. The AXPLESUB field identifies the type of SQL statement that the 
client application has issued. The client application can issue the following types 
of SQL statements:

Table 41: SQL Statement Types

AXPLESUB
Value

Equate
Value

Type of SQL Statement

1 DYNEXEC Dynamic execute. When called at this point, the AXPLTEXT 
and AXPLTXTL fields will be zero.

2 CLOSE Close cursor. When called at this point, the AXPLTEXT and 
AXPLTXTL fields will be zero.

3 DESCRIBE Describe. When called at this point, the AXPLTEXT and 
AXPLTXTL fields will be zero.

4 EXECIMED Execute immediate. When called at this point, the AXPLTEXT 
field will reference the statement being executed and the 
AXPLTXTL field will identify the statements length.

5 EXECUTE Execute. When called at this point, the AXPLTEXT field will 
reference the statement being executed and the AXPLTXTL 
field will identify the statements length.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    233



Chapter 15. System Exits
The AXPLESEQ field identifies whether the exit is being called before (1) 
(AXPLEBEF) or after (2) (AXPLEAFT) the SQL statement has been processed. 
The exit is called for each SQL statement issued by the client application. The 
user has control of the Query Processor service for the duration of the SQL 
statements execution. 

Therefore, when called before the SQL statement is processed, the exit should 
obtain the TCB time for the current TCB. When called after the SQL statement 
has been processed, the exit should obtain the current TCB and compute the 
difference between the after and before SQL statement processing times. This 
value must be added to an aggregate value that the exits need to maintain for all 
SQL statements issued by the client application. 

For example, the following sequence of SQL statements are issued for a dynamic 
SQL SELECT query:

• PREPARE,

• OPEN,

• DESCRIBE,

• FETCH (until a SQLCODE of 100 is returned), and

• CLOSE.

To obtain the correct CPU time for the query the exit needs to compute the CPU 
time used for each of these statements and add them together. Depending on the 
type of client application different types of SQL statements may be issued. In the 
case of a client application that has more than one cursor open at a time, the 
individual SQL statements that are issued by the client application will be 
interleaved.

For this exit, the type of SQL statement being issued is not important unless the 
exit wants to capture the text of the SQL statement being issued by the client 

6 FETCH Fetch cursor. When called at this point, the AXPLTEXT and 
AXPLTXTL fields will be zero.

7 OPEN Open cursor. When called at this point, the AXPLTEXT field 
will reference the statement being executed and the 
AXPLTXTL field will identify the statements length if the 
client application is using static SQL. If the application is 
using dynamic SQL the AXPLTEXT and AXPLTXTL fields 
will be zero.

8 PREPARE Prepare statement. When called at this point, the AXPLTEXT 
field will reference the statement being executed and the 
AXPLTXTL field will identify the statements length.

9 SLCTINTO Select into. When called at this point, the AXPLTEX field will 
reference the statement being executed and the AXPLTXTL 
field will identify the statements length.

Table 41: SQL Statement Types
234 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
application. In those situations, the “Type of SQL Statement” column in Table 41, 
“SQL Statement Types,” on page 233, identifies when the AXPLTEXT and 
AXPLTXTL fields are being populated.

NOTE: If the exit returns a non-zero return code, Query Processor Task processing of the 
query is halted and the return code issued by the exit is returned to the client 
application.

Authorization Violations

The exit is called if SQL security is active and the Query Processor detected an 
authorization violation. The AXPLETYP contains a value of 5. The AXPLESUB 
field identifies the type of authorization exception. The AXPLTEXT field 
identifies the name of the object for which authorization failed and the 
AXPLTXTL field contains the length of the name in AXPLTEXT. The 
AXPLESUB field contains one of the values identified in Table 39, 
“Authorization Violation Type Codes,” on page 231.

When called at this point the exit can report the violation exception. The eXadas 
SMF generates the alternate form of the SMF record for authorization violations 
identified in Table 38, “SMF Accounting File DSECT Field Definitions,” on page 
230.

Termination

This exit function is called during Query Processor Task termination processing 
when the user disconnects from the service task. At this time, the exit can perform 
any termination processing necessary and must free any resources it has allocated.

For example, the eXadas SMF Exit generates the SMF user record to report the 
CPU time used in milliseconds. The SMF record also contains the clock time and 
date when the user connected to and disconnected from the Query Processor Task.

CPU Resource Governor
eXadas execution governor limits are based on the number of data rows examined 
(which is the number of calls issued to the Data Savant interface) and the number 
of rows returned in a result set after all query post-processing has been completed. 
These are fairly coarse governors and depending on the query, a large amount of 
CPU time can be expended before one of these limits is reached. eXadas includes 
a CPU Resource Governor Exit that can be used to restrict the amount of CPU 
time that a user can use for a unit-of-work.

When the CPU Resource Governor Exit is activated it is passed the CPU time that 
the user is allowed to use. Periodically, the CPU Resource Governor Exit is called 
to check to see how much CPU time has been used. Once the allotted time is 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    235



Chapter 15. System Exits
exceeded the exit returns a return code that stops the query. The frequency at 
which the exit is called is controlled by eXadas.

The CPU Resource Governor Exit needs to be designed for use with applications 
using dynamic or static SQL. The exit is responsible for determining the unit-of-
work based upon the series of SQL statements issued by the client application. 

For example, the eXadas CPU Governor Exit uses the following rules:

• For dynamic SQL applications, the unit-of-work is from the first received 
PREPARE until all cursors have been closed. For a typical client application 
that only issues one query at a time, the unit-of-work is the duration of a 
single query. If multiple cursors are opened the unit-of-work is until all 
cursors have been closed. Any “additional” SQL statements issued by the 
client while a query is active, for example, a SELECT INTO, are treated as 
part of the unit-of-work.

• For static SQL client applications, the unit-of-work is from the first OPEN 
CURSOR request until all cursors have been closed. The exit assumes that the 
client application is using static SQL if an OPEN CURSOR request is 
received without a PREPARE being issued immediately before the OPEN 
CURSOR request is received.

• If no queries are active, for example, no cursors are open, the exit treats any 
other SQL request, for example, SELECT INTO, EXECUTE IMMEDIATE, 
as a single unit-of-work.

The following sections describe the steps that you need to perform to activate and 
verify the eXadas CPU Resource Governor Exit. This is followed by a description 
of the initialization, validation, and termination exit functions that the exit is 
called to perform in case you need to customize the eXadas version.

Activating the CPU Resource Governor 
Exit

The following steps describe how to configure the eXadas CPU Resource 
Governor Exit and validate that it is operational.

NOTE: The following instructions assume that you have successfully installed eXadas, 
performed initial configuration, and verified the installation configuration using 
the eXadas sample application and data.

1. Ensure that the CPU Resource Governor Exit load module (CACSX03) is in 
the load library that the Server is using. Based on the following examples, the 
CPU Resource Governor Exit needs to be in an APF-authorized library 
(SCACLOAD).

NOTE: The eXadas CPU Resource Governor Exit does not require APF 
authorization. However, the eXadas SAF, SMF, and Work Load 
Manager Exits require APF authorization. If you are running any of 
236 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
these other exits, then the CPU Resource Governor Exit must also be 
placed in an APF-authorized load library.

2. Ensure the Server JCL references the APF-authorized library in the STEPLIB 
DD statement where the CPU Resource Governor Exit is located 
(SCACLOAD). Ensure that any other data sets referenced in the STEPLIB 
DD statement are also APF-authorized.

3. Edit the service configuration member for the CACSAMP data source 
(SCACCONF member CACQPCF).

NOTE: You can also activate the CPU Resource Governor Exit from the 
master configuration member, however, CrossAccess recommends 
that you activate the CPU Resource Governor Exit from the service 
configuration member(s). Activating at the service level allows 
different services (data sources) to run queries with different 
performance profiles. For example, if you are running production 
queries from one data source you can set the CPU time limits to one 
value, while another data source running ad hoc queries, which may 
take longer than production queries, would have a higher time limit 
set.

4. Uncomment the CPU GOVERNOR parameter.

a. CPU Resource Governor Exit Name.

b. Maximum CPU Time: Required field that specifies the maximum amount 
of CPU time that a single query can take, or a group of queries can take, in 
a multiple cursor situation. The following are valid values:

• nS: the number of seconds where n = number is a value between 1 
and 6000.

• nM is the number of minutes where n = number is a value between 1 
and 6000.

5. Save the service configuration member.

6. Start the server. If the server is already running then stop and restart the Query 
Processor service for data source CACSAMP. This can be done using the 
MTO Interface. For more information on dynamic configuration see Chapter 
10, “Server Operations.”

7. Uncomment the SELECT statement(s) in SCACSAMP member CACSQL 
that reflects the datasource you are using.

a. Ensure that the user ID is authorized to access the table that is referenced 
in the query. 

b. Save the changes after you have completed editing the member.

8. Edit SCACSAMP member CACSQL to set the SQLIN parameter to reference 
the name of the member you edited in step 7 (CACSQL).

9. Save the member.

10. Submit CACCLNT and review the output. The query should function 
normally and return the expected result set.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    237



Chapter 15. System Exits
11. Re-edit the service configuration member for the CACSAMP data source 
(SCACCONF member CACQPCF). Update the CPU time limit specified on 
the CPU GOVERNOR parameter. Try setting the limit to 1 second (1S). 
Depending on the size of your OS/390 machine, the query may take less than 
a CPU second to execute. The eXadas exit has a minimum limit of one CPU 
second. Once you have completed making changes save the member.

12. Stop and restart the server.

13. Alternately you can stop and restart the Query Processor service for data 
source CACSAMP using MTO Interface. For more information on dynamic 
configuration, see Chapter 10, “Server Operations.”

14. Submit CACCLNT.

The query should not return a result set and you should see the following error 
messages:

CPU time exceeded. If the time limit is not exceeded you 
will see the normal result set.

15. Re-edit the service configuration member for the CACSAMP data source 
(SCACCONF member CACQPCF).

16. Increase the CPU limit specified on the CPU GOVERNOR parameter so that 
you can run normal queries, or comment out the CPU GOVERNOR 
parameter.

17. Save the member.

18. Stop the Server and restart it.

19. Alternately you can stop and restart the Query Processor service for data 
source CACSAMP using MTO Interface. For more information on dynamic 
configuration, see Chapter 10, “Server Operations.”

CPU Resource Governor Exit API 
Overview

The parameter list passed to the CPU Resource Governor Exit uses an AVA 
(Access Validation and Accounting) interface and is mapped by the macro 
CACSXPL, which is found in the SCACMAC library. The AXPLFUNC field 
indicates the function you are calling: initialization, accounting, or termination. 
238 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
The fields and their descriptions are shown in Table 42, “AXPLFUNC Fields and 
Descriptions.”

Table 42: AXPLFUNC Fields and Descriptions

Field Description

&DSECT=YES Used to control whether a DSECT definition is generated or whether 
the fields are generated in the exit’s local storage area.

AXPL DSECT DSECT definition that is generated when &DSECT=YES is specified.

AXPL DS 0H Label that is generated when &DESCT=YES is not specified.

 AXPLID DC 
CL4’AXPL’

Identifier that should be checked to determine whether the internal 
storage area of the AXPL parameter list has been corrupted.

AXPLUSER DS 3A Word(s) available for CPU Resource Governor Exit use.

AXPLETYP DS F Event type.

AXPLESUB DS F Event sub-type.

AXPLESEQ DS F Event sequence.

AXPLEBEF EQU 1 Before event execution.

AXPLEAFT EQU 2 After event execution.

AXPLSQID DS CL8 User ID left-justified, blank-filled.

AXPLPENV DS A Pointer to event specific information.

AXPLTEXT DS A Pointer to a text buffer (this is usually an SQL statement).

AXPLTXTL DS F The decimal length of the text buffer.

AXPLSQLC DS F The SQLCODE from the SQLCA after processing for the SQL event is 
completed.

AXPLFUNC DS H Function identifier flag.

AXFNINIT EQU 0 Initialization.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    239



Chapter 15. System Exits
Initialization

This function is called immediately after the exit is loaded during initialization of 
the Query Processor Task when a user connects to the service. The AXPLPENV 
parameter points to an (optional) input parameter string that can be passed to the 
exit. The input parameters are specified on the CPU GOVERNOR configuration 
parameter that is used to invoke the CPU Resource Governor Exit. On the CPU 
GOVERNOR parameter additional sub-parameters can be placed after the name 
of the exit.

When called at this point, the exit should perform initialization processing and 
allocate any storage or other resources that are required for validation processing. 
A pointer to the anchor for these resources can be placed in the AXPLUSER field 
of the parameter list. This pointer is preserved and passed to the exit on 
subsequent invocations. Upon initialization, the AXPLSQID field contains the 
user ID connecting to the Query Processor. The contents of the other fields in the 
parameter list are indeterminate.

If the exit returns a non-zero return code, Query Processor Task initialization is 
halted, the user is disconnected and the return code issued by the exit is returned 
to the client application.

Validation/Accounting

This exit function is called at predetermined processing points. The AXPLETYP, 
AXPLESUB, and AXPLESEQ fields uniquely identify each processing point. 
The exit is called for each SQL statement issued by the client application. These 
events are identified by an AXPLETYP of 3. The different types of SQL 
statements are identified in field AXPLESUB and are documented in Table 41, 
“SQL Statement Types,” on page 233. The AXPLESEQ field identifies whether 
the exit is called before (1) or after (2) the SQL statement has been processed.

When called for SQL events, the exit must determine (based on the SQL 
statement type) whether the client application is beginning a unit-of-work, ending 
a unit-of-work or is in the “middle” of a unit-of-work. 

AXFNVALI EQU 4 Validation/Accounting.

AXFNTERM EQU 8 Termination.

Table 42: AXPLFUNC Fields and Descriptions
240 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
The following actions should be performed:

• Start unit-of-work: Reset aggregate CPU time and capture current CPU time 
and enter the “middle” or the unit-of-work.

• End unit-of-work: Reset aggregate CPU time and prepare to start the next 
unit-of-work.

• Middle of unit-of-work: When the exit determines that it is in the middle of a 
unit-of-work then before the SQL statement is issued the current CPU time 
should be obtained. When the exit is called after the SQL statement has been 
executed, the exit should capture the current CPU time and compute the 
amount of time taken by that SQL statement. The exit needs to maintain an 
aggregate CPU time for the unit-of-work, which represents the sum of the 
individual SQL statement execution times. The exit should check this 
aggregate time after an SQL statement has been processed to determine 
whether the CPU time limit has been exceeded.

When called to process SQL statements, the exit needs to take into consideration 
the following situations:

• If the exit has already generated a “CPU time exceeded” error when it was 
called during machine execution (described below), it should not generate 
another error. The exit will still be called to perform “after SQL statement” 
processing and needs to set some kind of flag that indicates an error has 
already been reported.

• If after an SQL OPEN statement has been processed the AXPLSQLC field 
contains a non-zero value an error was detected. Typically this will be a –204 
or –206 error, or may be an error generated by another system exit or an 
eXadas-generated error. The exit will not be subsequently called to close the 
cursor associated with the statement that failed. In these situations the exit 
must check to see what “state” the unit-of-work is in to determine whether it 
should reset its unit-of-work state. If there are no other cursors open, then the 
exit needs to perform end unit-of-work processing.

The exit will also be called while the SQL program (that was generated for the 
query) is executing. The AXPLETYP field will contain a 4 in these situations. 
Currently, the exit is called at the two points where the MAX ROWS EXAMINED 
and MAX ROWS RETURNED governor checks are performed. The AXPLESUB 
field will contain the machine instruction number that identifies the instruction 
being executed and the AXPLESEQ contains a 1.

The exit should not be concerned about the instruction type being executed. When 
called with an AXPLETYP value of 4, the exit should capture the current CPU 
time and compute how much time has elapsed since processing of the SQL 
statement started. This value should be (temporarily) added to the aggregate CPU 
time for the current unit-of-work. If the time limit is exceeded the exit should issue 
a return code to halt query processing.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    241



Chapter 15. System Exits
NOTE: The CPU Resource Governor Exit uses an AVA interface, which is more complex 
than a custom interface like the SAF interface. In the future eXadas may extend 
additional call points in order to make the CPU Resource Governor more granular 
for tracking the amount of time used for the current unit-of-work. The AVA 
interface allows additional calls points to easily be accommodated.

If the exit returns a non-zero return code, Query Processor Task terminates 
execution of the current query and the return code issued by the exit is returned to 
the client application.

Termination

This exit function is called during Query Processor Task termination processing 
when the user disconnects from the service task. At this time, the exit can perform 
any termination processing necessary and must free any resources it has allocated.

Workload Manager Exit
The Workload Manager Exit (WLM) is used to interface with the OS/390 Work 
Load Manager. The WLM Exit can be used to track units-of-work and manage 
that work in goal or compatibility mode.

A unit-of-work from an eXadas perspective is the execution of an SQL statement 
that a client application issues. Table 41, “SQL Statement Types,” on page 233, 
identifies the different types of SQL statements that a client application can issue. 
When the client issues one of these SQL statements, that user has control of the 
Query Processor service thread for the period that the Query Processor takes to 
service that SQL statement.

The eXadas WLM Exit supports most of the parameters accepted by the 
IWMCLSFY macro in order to identify the service class that will be used to 
manage and/or report on for the individual units-of-work. The eXadas WLM Exit 
classifies these units-of-work at the Query Processor SIE level during Query 
Processor TCB initialization processing. Therefore, all users being serviced for a 
data source are managed in the same service class. Exit points are available at the 
user connection level that will allow a customized exit to manage individual users 
of a Query Processor service, however, for the eXadas WLM Exit, no processing 
is performed at these exit points.

NOTE: The eXadas WLM Exit issues WLM macros that use “enclave task support.” 
Enclave tasks were added to OS/390 version 2 release 4. This is the minimum 
OS/390 operating system level required to execute the eXadas WLM Exit. 
Additionally, the WLM macros require the WLM Exit be executed out of an APF-
authorized load library. Therefore, the Server and all associated load modules 
must reside in an APF-authorized load library.
242 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
The next section provides a description of the steps required to activate and verify 
the eXadas WLM Exit. This is followed by a description of the initialization, 
validation, and termination exit functions that the exit is called to perform, should 
you need to customize the version.

Activating the WLM Exit

The following steps describe how to use the eXadas WLM Exit to report unit-of-
work activities and manage queries in WLM goal mode.

NOTE: The following instructions assume that you have successfully installed eXadas, 
performed initial configuration and verified the installation/configuration using 
the eXadas sample application and data.

1. Ensure that the WLM Exit load module (CACSX06) is in the load library that 
the Server is using. Based on the previous examples, the WLM Exit must be 
in an APF-authorized library (SCACLOAD).

2. Make sure the Server JCL references the APF-authorized library in the 
STEPLIB DD statement where the WLM Exit is located (SCACLOAD). 
Ensure that any other data sets referenced in the STEPLIB DD statement are 
also APF-authorized.

3. Edit the Server master configuration member (SCACCONF member 
CACDSCF). 

NOTE: The WLM Exit is activated using a SERVICE INFO ENTRY 
parameter to initialize the exit once when the address space is 
initialized. The WLM Exit must be able to handle all of the users 
accessing the Server concurrently.

4. Uncomment the WLM SERVICE INFO ENTRY parameter. Parameters are 
specified using a keyword=value format and are comma-delimited. The 
following sub-parameters are required by the eXadas WLM Exit and must be 
supplied in the task data field on the WLM SERVICE INFO ENTRY 
parameter:

a. Exit Name: Specifies the name of the WLM Exit to be invoked. The 
eXadas WLM Exit name is CACSX06. Any parameters that the exit needs 
can be specified in the task data field (after the exit name) on the WLM 
SERVICE INFO ENTRY parameter. The exit name and its input 
parameters must be separated by a space or comma.

b. SUBSYS=xxxx : Specifies the generic subsystem type under which the 
unit-of-work is reported in WLM. The SUBSYS type can be up to four 
bytes in length and must conform to WLM subsystem types. Modify the 
subsystem type to a type that is valid on your system. Examples are: IMS, 
CICS, JES, and STC. If the address space of the Query Processor is a 
started task STC may be a good choice. You may find it best to define a 
subsystem type to WLM just for eXadas.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    243



Chapter 15. System Exits
c. SUBSYSNM=xxxxxxxx : Specifies the name of the subsystem that the 
unit-of-work is reported under in WLM. The SUBSYSNM name can be 
up to eight bytes in length. This name and SUBSYS (subsystem type) are 
used to connect to WLM and classify work received. Using IMS as 
example:

SUBSYS=IMS  SUBSYSNM=IMSA.

WARNING: The WLM SERVICE INFO ENTRY definition must come 
before any Query Processor SIEs. Failure to do so will 
result in a S0C4 abend when the Server is stopped. 
Additionally, the WLM SIE cannot be stopped if any Query 
Processor services are active. If the WLM SIE is stopped 
and a Query Processor service (task) is active, a S0C4 abend 
will occur when the Query Processor task is stopped.

These abends occur when the WLM Exit is called during 
WLM service initialization processing, which allocates and 
references an address space-level control block when the 
WLM Exit is called from a Query Processor task. When the 
WLM service is terminated, the address space-level control 
block is freed. During normal shutdown, the Server 
terminates tasks in LIFO (last-in, first-out) sequence. The 
WLM SIE must be defined before any Query Processor 
SIEs to allow the WLM service to terminate after all Query 
Processor tasks have completed termination processing.

5. Save the master configuration member.

6. Edit the service configuration member for the CACSAMP data source 
(SCACCONF member CACQPCF).

NOTE: You can also supply WLM unit-of-work information from the master 
configuration member, however, CrossAccess recommends that you 
supply unit-of-work information from the service configuration 
member(s). Supplying this information at the service level allows 
different services (data sources) to run queries with different 
performance profiles. For example, if you are running short queries 
you can give them more resources. For longer running queries you 
can use period switching to reduce the rate that these types of queries 
use resources.

7. Uncomment the WLM UOW parameter. Subparameters are specified using a 
keyword=value format and are comma delimited. All subparameters are 
optional. The following subparameters are supported by the eXadas WLM 
Exit:

a. ACCTINFO=xxx… : Specifies accounting information. A maximum of 
143 characters of accounting information can be supplied. The default is 
NO_ACCTINFO.

b. COLLECTION=xxx… : Specifies a customer defined name for a group 
of associated packages. The maximum collection name that is supported 
is 64 characters long. The default is NO_COLLECTION.
244 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
c. CORRELATION=xxx… : Specifies the name associated with the 
user/program creating the work request, which may reside anywhere 
within the network. The maximum correlation name that is supported is 
64 characters long. The default is NO_CORRELATION.

d. LUNAME=xxxxxxxx : Specifies the name of the local LU name 
associated with the requestor. The maximum LU name is 8 characters 
long. The default is NO_LUNAME.

e. NETID=xxxxxxxx : Specifies the network identifier associated with the 
requestor. The maximum identifier is 8 characters long. The default is 
NO_NETID.

f. PACKAGE=xxxxxxx : Specifies the package name for a set of associated 
SQL statements. The maximum package name is 8 characters long. The 
default is NO_PACKAGE.

g. PERFORM=xxxxxxxx : Specifies the performance group number (PGN) 
associated with the work request. If specified, the performance group 
number value must be within the range of 1-999, represented as character 
data, left-justified and padded with blanks. The default is 
NO_PERFORM.

h. PLAN=xxxxxxxx : Specifies the name of an access plan for a set of 
associated SQL statements. The maximum plan name is 8 characters long. 
The default is NO_PLAN.

i. PRCNAME=xxxxxxxxxxxxxxxxxx : Specifies the name of a DB2 Stored 
Procedure associated with the work request. The maximum name that can 
be supplied is 18 characters long. The default is NO_PRCNAME.

j. PRIORITY=nnnnnnnnnn : Specifies the priority associated with the work 
request. The priority is specified as a decimal number. The maximum 
permitted value is 2147483647. The default is NO_PRIORITY 
(x80000000).

k. SUBSYSPM=xxx… : Specifies character data related to the work request. 
This information is passed to the work manager for use in classification. A 
maximum of 64 characters of information can be supplied. The default is 
NO_SUBSYSPM.

8. TRXCLASS=xxxxxxxx : Specifies a class name within the subsystem that the 
work manager recognizes. The maximum transaction class name that can be 
supplied is 8 characters long. The default is NO_TRXCLASS.

9. TRXNAME=xxxxxxxx : Specifies a transaction name for the work request 
that the work manager recognizes. The maximum transaction name that can 
be supplied is 8 characters long. The default is NO_TRXNAME.

NOTE: A maximum of 254 characters of input parameters can be specified 
on the WLM UOW configuration parameter. See OS/390 Planning: 
Workload Management for information on how to define service 
classes and classification rules. This assumes you are going to operate 
the system in WLM goal mode. The priority for units of work should 
be less than VTAM and IMS. The discretionary goal may result in 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    245



Chapter 15. System Exits
very slow response times. Performance periods allow you to define a 
high number of service units for short transactions and a smaller 
number for long running ones.

10. Save the service configuration member.

11. Start the Server.

NOTE: If the Server is already running start the WLM service, then stop, and 
restart the Query Processor service for data source CACSAMP. This 
can be accomplished using the MTO Interface. For more information 
on dynamic configuration see Appendix C, “MTO Command 
Reference.”

12. Uncomment the SELECT statement(s) in SCACSAMP member CACSQL 
that reflects the datasource you are using.

a. Ensure that the user ID is authorized to access the table that is referenced 
in the query. 

b. Save the changes after you have completed editing the member.

13. Edit SCACSAMP member CACCLNT to set the SQLIN parameter to 
reference the CACSQL member you edited in step 12.

14. Save the member.

15. Start RMF data gathering if it is not already active.

16. Enter START RMF from the system console. See RMF USER’S GUIDE for 
information on using RMF. Start data gathering with Monitor III ISPF panel 
from TSO.

17. Submit CACCLNT and review the output.

18. The query should function normally and return the expected result set.

19. A SNAPSHOT of how WLM is managing this workload can be obtained by 
running the RMF Monitor II workload activity report during execution while 
the sample is running.

20. To run the RMF Monitor II interactive report:

a. Enter RMF from a TSO session.

b. From the menu select option 2 for RMF Monitor II. This report only 
displays the activity as it occurs so the query must be a long one to see its 
activity.

21. The RMF Monitor III processes data written to VSAM data sets by the data 
gathered by RMF. It can be accessed interactively from an ISPF panel. This 
should be started in Step 11 before the sample query is started. The SYSRTD 
report option reports response time distribution by service class and period. 
You should see the Query response time in this report by the service class you 
selected for eXadas. The SYSSUM Sysplex summary report shows goals 
versus actual for service class periods when the system is in goal mode.
246 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
WLM Exit API Overview

The parameter list passed to the WLM Exit uses an AVA (Access Validation and 
Accounting) interface and is mapped by the macro CACSXPL, which is found in 
the SCACMAC library. The AXPLFUNC field indicates the function you are 
calling: initialization, management/reporting, or termination. The fields and their 
descriptions are shown in the table that follows.

Table 43: AXPLFUNC Fields and Descriptions

Field Description

&DSECT=YES Used to control whether a DSECT definition is generated or whether 
the fields are generated in the exit’s local storage area.

AXPL DSECT DSECT definition that is generated when &DSECT=YES is specified.

AXPL DS 0H Label that is generated when &DESCT=YES is not specified.

 AXPLID DC CL4’AXPL’ Identifier that should be checked to determine whether the internal 
storage area of the AXPL parameter list has been corrupted.

AXPLUSER DS 3A Word(s) available for CPU Resource Governor Exit use.

AXPLETYP DS F Event type.

AXPLESUB DS F Event sub-type.

AXPLESEQ DS F Event sequence.

AXPLEBEF EQU 1 Before event execution.

AXPLEAFT EQU 2 After event execution.

AXPLSQID DS CL8 User ID left-justified, blank-filled.

AXPLPENV DS A Pointer to event specific information.

AXPLTEXT DS A Pointer to a text buffer (this is usually an SQL statement).

AXPLTXTL DS F The decimal length of the text buffer.

AXPLSQLC DS F The SQLCODE from the SQLCA after processing for the SQL event is 
completed.

AXPLFUNC DS H Function identifier flag.

AXFNINIT EQU 0 Initialization.

AXFNVALI EQU 4 Management/Reporting.

AXFNTERM EQU 8 Termination.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    247



Chapter 15. System Exits
Initialization

This function is called by the WLM initialization service during server address 
space initialization. The AXPLTEXT parameter points to any additional 
parameters that were specified in the task parameter field on the WLM 
initialization services SERVICE INFO ENTRY after the exit name. The 
AXPLTXTL parameter identifies the length of the input parameters. If no 
parameters are supplied the AXPLTEXT and AXPLTXTL fields are zeros. For 
more details on the WLM initialization service SERVICE INFO ENTRY 
parameter see Appendix A, “Configuration Parameters.”

NOTE: The WLM Exit may be called multiple times to perform initialization and 
termination processing, if the WLM initialization service is stopped and then 
restarted using the MTO Interface.

When called at this point, the exit should perform initialization processing and 
allocate any storage or other resources that are required for subsequent 
processing. At this point, the exit should also register itself with WLM and receive 
a WLM token that needs to be passed on subsequent calls. A pointer to the anchor 
for these resources can be placed in the AXPLUSER field of the parameter list. 
This pointer is preserved and passed to the exit on subsequent invocations. Upon 
initialization, the contents of the other fields in the parameter list are 
indeterminate.

NOTE: The AXPLUSER field consists of three fullwords that the exit can store anchor 
blocks in. The intent is to allow the exit to store an anchor for address space level 
storage acquired during initialization processing. The second fullword should be 
used to store an anchor block for storage that was acquired during Query 
Processor service initialization. This storage is “TCB-level” storage and should be 
allocated for each instance of a Query Processor service. The third fullword is 
available if the exit needs to allocate additional storage to manage an individual 
user.

When the exit is called to perform TCB initialization the AXPL storage area 
passed for initialization processing is cloned and the new copy is passed to the 
exit. If the exit stores an anchor block in one of the AXPLUSER fullwords, that 
address is “local” to the TCB being serviced. Likewise, when the exit is called to 
service a connection request, a copy of the “TCB-level” AXPL storage area is 
cloned and the new copy is passed to the exit. This copy is passed on subsequent 
calls to the exit to service individual SQL statements issued by the client 
application.

If the exit returns a non-zero return code, the WLM initialization service is 
terminated and a message written to the log. No additional call will be made to the 
WLM Exit.
248 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
Management/Reporting

This exit function is called at predetermined AXPLETYP, AXPLESUB and 
AXPLESEQ processing points. The overview that follows lists the different 
processing points where this exit can be called and what type of processing it can 
perform.

TCB Initialization/Termination

The WLM Exit is called with an AXPLETYP value of 1 (AVAETCB) during 
Query Processor initialization and termination for each Query Processor TCB. 

The AXPLESUB field identifies whether the exit is being called for:

• (1) initialization processing (TCBINIT) or

• (2) termination (TCBTERM). 

When called at these points, the AXPLTEXT field contains a pointer to the WLM 
UOW configuration parameter value. The AXPLTXTL field contains the length of 
the configuration parameter input. The AXPLPENV field contains a point to the 
data source name of the Query Processor being activated. The AXPLSQID is 
blank.

The exit should perform any TCB-level initialization/termination processing that 
is required. For example, on TCB initialization the eXadas WLM Exit performs an 
IWMCLSFY using the WLM UOW parameters supplied (if any) followed by an 
IWMECREA to create an enclave TCB environment. On the IWMECREA macro 
the FUNCTION_NAME parameter is set to the first eight characters of the data 
source name. At TCB termination the eXadas exit issues an IWMEDELE to delete 
the enclave.

If the exit allocates a TCB-level control block and stores it in the AXPLUSER 
area on initialization processing, then this storage must be freed when the exit is 
called to perform TCB termination processing.

On initialization processing, if the exit issues a non-zero return code then service 
initialization is halted and the service is not started. On termination processing, the 
return code is ignored and normal termination process is continued. In either case 
the return code value is logged.

NOTE: The TCB initialization call is actually deferred until the first user connects to a 
Query Processor task. This allows the eXadas exit to perform the IWMCLSFY 
and IWMECREA calls and not violate the WLM recommendation that these two 
calls should be issued in rapid succession followed by an IWMEJOIN call to 
associate a unit-of-work with the enclave. Since theses calls are not issued when a 
Query Processor task is physically started (only when the first user connects) the 
user will (generally) immediately issue an SQL request which causes an 
IWMEJOIN call to be issued. SQL statement processing is discussed in more 
detail “SQL Statement Processing,” on page 250.

The exit may defer creating an enclave environment until a user connect call is 
issued (discussed next.) However, if the Query Processor is executing in multi-
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    249



Chapter 15. System Exits
user mode (Max. Users greater than 1) the exit has to manage context switches 
between users when the client application issues SQL statements. SQL statement 
processing is discussed in more detail later.

User Connect/Disconnect

The WLM Exit is called with an AXPLETYP value of 2 (AVAEUSR) when a user 
connects/disconnects from a Query Processor service. The AXPLESUB field 
identifies whether the exit is being called for connect processing (CONNECT) or 
disconnect (DISC). When called at these points, the AXPLTEXT field contains a 
pointer to the WLM UOW configuration parameter value. The AXPLTXTL field 
contains the length of the configuration parameter input. The AXPLPENV field is 
zero. The AXPLSQID contains the user ID of the user connecting/disconnecting 
from the service.

The exit can perform any user-level processing desired. The eXadas exit does not 
perform any processing for these call points.

If the exit issues a non-zero return code on initialization processing, the user is 
disconnected from the service and the return code is returned to the client 
application. On disconnect, the return code is ignored and the all user related 
resources are freed, however, the return code is returned to the client application. 
In either situation the WLM generated return code is logged.

SQL Statement Processing

The WLM Exit is called with an AXPLETYP value of 3 (AVAESQL) when a 
client application issues an SQL statement. The different kinds of SQL statements 
that an application can issue are identified in Table 41, “SQL Statement Types,” 
on page 233. The table identifies the contents of AXPLESUB values and the 
contents of the AXPLTEXT and AXPLTXTL fields. The AXPLSQID field 
contains the user ID of the client issuing the SQL statement.

The AXPLESEQ field identifies whether the exit was called before (AXPLEBEF) 
or after (AXPLEAFT) the SQL statement has been processed by the Query 
Processor. The user has control of the Query Processor TCB (thread) for the 
duration of the SQL request. If running in multi-user mode another user can be 
serviced on the next SQL statement received by the Query Processor.

The exit should perform any actions required to manage the unit-of-work that the 
SQL statement represents. For example, the eXadas WLM Exit treats each SQL 
statement as a single unit-of-work and joins the enclave before the SQL statement 
is processed and then leaves the enclave once the statement has completed 
processing.

The duration of an SQL statement varies based on the type of SQL statement 
being issued and other configuration parameter values. The configuration 
parameter that has the most impact is PDQ. When PDQ is not active or when a 
query cannot be processed in PDQ mode, then the OPEN SQL statement will 
execute the longest since the entire result set is staged for fetch processing. In 
these instances any describe, fetch, and the close cursor requests will execute very 
quickly. When running in PDQ mode the work is more evenly distributed between 
250 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
the open and the fetches since the result set is incrementally built based on the 
number of rows that can fit into the result set buffer.

If the exit issues a non-zero return code, processing for the query is halted and the 
return code is returned to the client application. The application can still issue 
another SQL request. There are situations where the exit generated return code 
will not be reported to the client. This occurs when the exit is called to performed 
“after” processing but an error code has been reported by another exit or generated 
by eXadas. In these cases the “original” error code takes precedence. In either case 
the WLM generated return code is logged.

Termination

This exit function is called during WLM initialization service termination 
processing before the Server address space is shut down. At this time, the exit can 
perform any termination processing necessary and must free any resources it has 
allocated.   If the exit allocated an address space level control block and stored it 
in the AXPLUSER area, then that storage must be freed.

NOTE: The WLM Exit may be called multiple times to perform initialization and 
termination processing, if the WLM initialization service is stopped and then 
restarted using the MTO Interface.

DB2 Thread Management Exit
The DB2 Thread Management Exit runs under the DB2 Call Attachment Facility 
(CAF) service in the Server. The CAF service runs as an OS/390 subtask under the 
server, whose sole responsibility is to create and manage CAF connections to 
DB2. One instance of the subtask is required for each concurrent DB2 user. With 
the Thread Management Exit you can:

• validate eXadas clients prior to establishing connections to DB2 using CAF 
and

• control the duration of CAF connections to DB2.

By default, connections to DB2 itself using CAF are created when an eXadas 
client connects to DB2 and remains active until the Server is shut down. While 
this maximizes re-usability of the DB2 connections, the DB2 primary 
authorization ID for all connections is based on the Server’s started task or job 
name. In many cases, this level of security checking will not be adequate for your 
particular installation.

The eXadas DB2 Thread Management/Security Exit modifies the default behavior 
of connecting to and disconnecting from DB2. In addition, this exit performs SAF 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    251



Chapter 15. System Exits
calls to validate the user ID of the eXadas client and establishes the correct 
primary authorization ID for the client in DB2.

NOTE: A minor modification to the DB2-supplied authorization exit DSN3SATH is 
required in order to establish the correct primary authorization ID in DB2.

WARNING: The eXadas exit issues RACROUTE calls and must be run from an APF-
authorized library. Additionally, when issuing the RACROUTE calls, the exit 
enters key zero supervisory state. The exit reverts back to problem program state 
immediately after each RACROUTE call returns.

Once activated, the DB2 Thread Management/Security Exit is invoked to perform 
the following functions:

• Initialization is called once at initial subtask start up.

• Client Connection is called each time a new eXadas client has acquired the 
CAF subtask.

• Another Connection to DB2 is called after each attempt is made to connect to 
DB2.

• Client Disconnection is called each time a client has released its connection to 
the CAF subtask.

• Termination is called once at subtask termination.

The eXadas exit CACSX07 performs the following functions at each of these 
invocation points:

• Initialization requires no processing. The exit returns a successful return code.

• Client Connection validates that the user ID and password for the incoming 
client are valid using a SAF call and establishes an ACEE control block for 
the TCB so the DB2 identified authorization exit can establish the correct 
primary authorization ID prior to requesting a connection to DB2.

• After Connection to DB2, the exit deletes the ACEE established when the 
client connection request was issued.

• Termination requires no processing. The exit returns a successful return code.

Activating the DB2 Thread Management 
Exit

The following instructions assume that you have successfully installed eXadas, 
performed initial configuration, and verified the installation and configuration 
using the verification procedures as described in Chapter 6, “Bringing DB2 On 
Line,” in the eXadas OS/390 Getting Started Guide.
252 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
To configure the eXadas DB2 Thread Management Exit and verify that it is 
working:

1. Ensure that the DB2 Thread Management Exit load module CACSX07 is in 
an APF-authorized library (SCACLOAD).

2. Ensure the Server JCL references the APF-authorized library in the STEPLIB 
DD statement where the DB2 Thread Management Exit is located 
(SCACLOAD). Also ensure that any other data sets referenced in the 
STEPLIB DD statement are also APF-authorized.

3. Edit the Server master configuration member (SCACCONF member 
CACDSCF). Find the SERVICE INFO ENTRY for the DB2 CAF service and 
add the value CACSX07 to the PLAN name located in the task data field of the 
entry. The following examples show before and after definitions of the DB2 
CAF SERVICE INFO ENTRY.

SERVICE INFO ENTRY = CACCAF DSN 2 1 5 1 4 5M 5M CACPLAN
SERVICE INFO ENTRY = CACCAF DSN 2 1 5 1 4 5M 5M 
CACPLAN,CACSXO7

4. Save the Master Configuration member.

NOTE: Steps 5 through 7 must be performed by a DB2 Systems Programmer, 
as these steps update a DB2 system and could disable users of DB2. 
See the IBM DB2 Administration Guide for information about 
updating DSN3SATH.

5. Update the DB2-supplied sample identify authorization exit DSN3SATH and 
insert the assembler logic, found in the eXadas SCACSAMP member 
CACSXDSN, immediately before the label SATH019. 

6. Reassemble the identity authorization exit DSN3SATH.

//*DSN3ADD PROVIDE VALID JOB CARD 
//*
//DSN3ADD   PROC CAC='CAC',  CAC HIGH-LEVEL QUAL
//               DB2='DB2'   DB2 HIGH-LEVEL QUAL
//ASSEMBLE EXEC PGM=ASMA90,PARM='LIST,NODECK,RENT'
//SYSLIB   DD  DISP=SHR,DSN=&DB2..MACLIB
//         DD  DISP=SHR,DSN=&DB2..ADSNMACS
//         DD  DISP=SHR,DSN=&DB2..AMODGEN
//         DD  DISP=SHR,DSN=&CAC..SCACMAC
//SYSLIN   DD  DISP=SHR,DSN=&&TEMP
//SYSUT1   DD  
DSN=&&SYSUT1,UNIT=VIO,SPACE=(1700,(2000),,,ROUND)
//SYSPRINT DD  SYSOUT=*
//SYSIN    DD  DISP=SHR,DSN=&DB2..ASM(DSN3SATH)
//*
//LINK     EXEC PGM=IEWL,COND=(4,LT),
//                  
PARM='LIST,OL,RENT,REUS,AMODE=31,RMODE=ANY'
//SYSLIN   DD  DISP=SHR,DSN=&&TEMP
//         DD  *
   NAME    DSN@SATH(R)
//SYSLMOD  DD DISP=SHR,DSN=&DB2..SDSNEXIT(DSN@SATH)
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    253



Chapter 15. System Exits
//SYSUT1   DD 
UNIT=SYSDA,SPACE=(1024,(120,120),,,ROUNT),DCB=BUFNO=1
//SYSPRINT DD SYSOUT=*
//

7. If your DB2 SDSNEXIT library is in the OS/390 linklist, refresh the linklist 
with the OS/390 ‘F LLA,REFRESH’ command.

8. Start the server. If the server is already running, restart it.

9. Verify the exit is working correctly by running an eXadas client that issues 
DB2 queries. While the client is active, you can view the client’s connection 
to DB2 by issuing the DB2 command ‘-DIS THD (*)’ from an OS/390 
console or SDSF. The OS/390 LOG output from the command should display 
the Server as the ID of the thread owner and the client-supplied user ID as the 
primary authorization ID.

Developing Your Own DB2 Thread 
Management Exit

If your installation has special processing requirements that can be addressed by a 
DB2 Thread Management Exit, you can update the eXadas exit or create a custom 
exit of your own. This section describes the DB2 Thread management parameter 
list and processing options for developing your own customer DB2 Thread 
Management Exit.

The DB2 Thread Management Exit is called to perform the following functions:

• Initialization: Each time a new DB2 CAF service is started from the eXadas 
Region Controller, an initialization call is made to do any one-time 
initialization processing for the started task. If your exit must allocate any 
storage for use throughout the life of the task, it can allocate it in this call and 
place it in the user field DB2TUSRW supplied in the exit parameter structure.

• Client Connection: Called each time a new eXadas client has acquired the 
CAF subtask. Generally, this call is made immediately before connecting to 
DB2 on behalf of the client. The one exception is when the exit is set to leave 
connections to DB2 active even when eXadas clients disconnect.

• After Connection to DB2: Called after each attempt is made to connect to 
DB2. This call is made regardless of whether or not the connect was 
successful. The parameters field DB2STAT indicates whether or not the 
connection attempt was successful.

• Client Disconnection: Called each time a client has released its connection to 
the CAF subtask.

• Termination: Called once at subtask termination. If you allocated any exit 
memory at initialization, this is when it needs to be freed.

The parameter passed to the Thread Management Exit is shown in the example 
that follows.
254 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
The parameter descriptions follow:

• DB2TUSRW: Initialized to binary zeros prior to the initialization call and left 
unchanged after that point in processing. Use of this field is determined by the 
user exit.

• DB2TUSRP: Points to a NULL terminated user parameter as defined on the 
SERVICE INFO ENTRY for the DB2 CAF task. This parameter includes any 
text included after the exit name itself in the task data field. For example, to 
pass the string USERPARM to the exit from the SERVICE INFO ENTRY, the 
task data for the exit in the Master Configuration would be:

CACPLAN,CACSX07 USERPARM

• DB2TSSN: Points to the four character subsystem name as defined in the 
Service Name field of the SERVICE INFO ENTRY for the task. In most 
cases, this field is for informational purposes only. However, the exit can 
change this field on client connection calls to designate a new subsystem to 
connect to, if necessary. If this field is updated, it will remain updated until the 
thread disconnects from DB2. At that point, it will be changed back to its 
original SERVICE INFO ENTRY value.

• DB2TPLAN: Points to the 8-character DB2 PLAN name as defined in the 
Task Data field of the SERVICE INFO ENTRY for the task. In most cases, 
this field is for informational purposes only. However, the exit can change this 
field on client connection calls to designate a new DB2 PLAN to open a DB2 
connection. If this field is updated, it remains updated until the thread 
disconnects from DB2. At that point, it is changed back to its original 
SERVICE INFO ENTRY value.

• DB2TUID: Points to the user ID provided by the eXadas client when it 
connected to the Server. This field is binary zeros on initialization and 
termination calls as no user is available when these calls are issued. This field 
is for reference purposes only and must not be changed by the exit.

• DB2UPWD: The DB2UPWD field points to the user password provided by 
the eXadas client when it connected to the Server. This field is binary zeros on 
initialization and termination calls as no user is available when these calls are 
issued. This field is used for reference purposes only and must not be changed 
by the exit.

• DB2TSTAT: The DB2TSTAT field identifies whether or not a current CAF 
connection exists to DB2. This field is used for reference purposes only.

• DB2TFUNC: The DB2TFUNC field identifies the function of the call as 
described previously. Defined values for this field are:

• DB2TINIT: Initialization function

• DB2TCCON: Client Connection function

• DB2TDB2C: DB2 Post Connection/Plan Open function

• DB2TCDIS: Client Disconnect function

• DB2TTERM: Termination function
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    255



Chapter 15. System Exits
• DB2TRFNC: The DB2TRFNC field can be used by the exit to:

• explicitly request connection or reconnection to the DB2 subsystem,

• explicitly request disconnection from the DB2 subsystem, and

• notify eXadas that a user ID or password validation error has occurred.

The field is used to alter the default DB2 subsystem connection/
disconnection behavior in the DB2 CAF service. The default behavior is 
to connect to DB2 when the first user requests DB2 access and disconnect 
from DB2 at Server shutdown. The exit should set this field on each call 
to one of the following values:

• DB2TRDFL: Do default connection processing.

• DB2TRCON: Connect to DB2. If a connection already exists, terminate 
that connection and create a new connection using the subsystem and plan 
name in the fields DB2TSSN and DB2TPLAN. This value is valid for 
Initialization and Client Connection functions.

• DB2TRDIS: Disconnect from DB2 if a connection exists. This value is 
valid for the Client Disconnect function.

• DB2TRUER: User or password information is invalid. This value can be 
returned on the Client Connection function to return an Access Denied 
error to the requesting client.

The return code (register 15 value) for successful completion of the user exit 
should always be set to 0. Any other value causes an error message to be returned 
to the requesting client.

To activate your exit in the Server, follow the directions in “Activating the DB2 
Thread Management Exit,” on page 252, replacing the system default exit name 
CACSX07 in Step 3 with the name of your exit. You can skip steps 5 and 6 if your 
exit is not creating a TCB level ACEE for the DB2 primary authorization ID 
setting.

Record Processing Exit
The Record Processing Exit, available in the VSAM and Sequential Query 
Processors, is used to modify the characteristics of the record to make it easier for 
eXadas to process. A sample exit, CACSX08, is supplied in the sample library.

The exit must be re-entrant, save registers on entry and restore them on exit, and 
be AMODE(31), RMODE(ANY). The exit will be called for initialization, 
processing, and termination and executes as part of the eXadas product. Any 
errors in the exit routine may affect the operation of the product as a whole.
256 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
The exit may be written in any language, but since the exit will be called on every 
record, consideration should be given as to the performance of the chosen 
language.

Register contents at entry to the exit routine:

• R1 contains a pointer to a parameter list.

• R13 points to a register save area in standard format.

• R14 contains the return address.

• R15 contains the entry point of the routine.

All other registers must be restored upon return from exit.

There are 7 address pointers to parameters passed to the exit. They are defined in 
Table 44, “Record Exit Input Parameters.”

Initialization

Initialization is called during the open of the table. During this function, the exit 
may acquire resources needed for later processing.

Table 44: Record Exit Input Parameters

Field Description Length

Function INIT, PROCESS, UPDATE, or 
TERM. These values are padded on 
the right with spaces.

7 bytes

Table Description Name of the table being processed. 18 bytes

Input Record Record that was read.

Input Record Length Length of the input record. Binary fullword

Output Record Record that eXadas is to process.

Output Record Length Length of the output area. Binary fullword

User Word A word passed to the exit that can be 
used to anchor additional information.

Binary fullword

Return Code Completion code of the exit call. 
Return code set to zero indicates 
processing completed normally. A 
return code less than zero will 
terminate the query. A return code 
greater than zero will skip processing 
of the current record and read the next 
record.

Binary fullword
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    257



Chapter 15. System Exits
Process

Process is called after the eXadas Query Processor has read a record. It passes the 
record to the exit. The exit can modify the record and rebuild it in the output 
record area. The output record area is the record that eXadas will process. Meta 
Data Grammar should be based on the output record.

Termination

Termination is called when the table is closed. The exit may release any acquired 
resources and perform any other clean-up tasks.

Update

Update is called when the input record is the updated record from an SQL 
INSERT or UPDATE request. The output record is the location that the record 
needs to be placed when writing back to the file. 

If an SQL UPDATE was performed, the input record will be the output record 
from a previous PROCESS call, with changes made based on the SQL UPDATE 
request.

Verification

In order to certify that the Record Exit installation is operational, CrossAccess 
provides a procedure that uses the sample databases from the Server. The 
following section provides the steps required for the installation verification 
process. 

The SCACSAMP library contains a sample Record Exit source (CACSX08). It is 
an example of how a VSAM file record can be changed before returning to the 
user. The program accesses the sample VSAM employee data that was delivered 
with the original eXadas implementation. This sample was developed specifically 
for a VSAM data file. If the eXadas environment supports other non-relational 
databases, such as IMS, then the source code should be reviewed and modified to 
comply.

A sample load module CACSX08 is provided in SCACLOAD, therefore there is 
no need to assemble and link-edit in order to make the sample work.

NOTE: The following instructions assume that you have successfully installed the Server, 
performed initial configuration, and verified the installation and configuration 
using the eXadas sample application and data.
258 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 15. System Exits
1. Add a DD statement (the DD name must be CACIVP) to the Server job and 
Meta Data Utility’s CACMETAU job in the SCACSAMP library to point to 
the eXadas employee data VSAM file.

2. Regenerate the USE Grammar, in DataMapper, for the sample VSAM 
employee data to indicate the record exit name (CACSX08) and the maximum 
length (100) at the Create VSAM Table dialog box. 

3. Generate and FTP the grammar to the host and include it as input to the Meta 
Data Utility CACMETAU in SCACSAMP. 

4. Submit the job. 

See the Bringing VSAM on line chapter of the eXadas OS/390 Getting 
Started Guide for additional information.

The following sample Record Exit statement is added into the USE Grammar:

RECORD EXIT CACSX08 MAXLENGTH 100

5. Uncomment the Language Environment Initialization Service in the Master 
configuration member (CACDSCF) if necessary. See “Performance 
Considerations,” on page 259, for more information. In this example, the 
sample exit CACSX08 is written in Assembler, so there is no need to 
uncomment the SERVICE INFO ENTRY parameter.

6. Start the Server.

7. Review CACSQL and comment out other queries if you use this member as 
the input for the client job in step 8. Use the VSAM SQL statement to verify 
the Record Exit processing.

8. Submit the client job CACCLNT and verify the return results. The record is 
filtered out if the column ENAME starts with M. Otherwise, the 16th byte is 
changed to a tilde ( ˜ ) if the record does not start with M.

NOTE: To recover the original data in the catalog table after completing this 
sample exit verification, remove the Record Exit statement in the 
USE Grammar and rerun the CACMETAU job.

Performance Considerations

If you will be writing the Record Processing Exit in a language other than 
Assembler, use the Language Environment Initialization Service to reduce the 
overhead of initializing and terminating the environment on each call. This service 
also allows program storage to remain constant between calls and files not to be 
closed on exit. For exits written using IBM’s Language Environment, uncomment 
the following SERVICE INFO ENTRY in the master configuration:

SERVICE INFO ENTRY = CACLE LANGENV 2 1 1 100 4 5M 5M CEEPIPI
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    259



Chapter 15. System Exits
For exits written using COBOL II, add the following SERVICE INFO ENTRY in 
the master configuration:

SERVICE INFO ENTRY = CACLE LANGENV 2 1 1 100 4 5M 5M IGZERRE

The following conditions apply if you will be using the Language Environment 
Initialization Service with COBOL II:

• If program variables are changed, they will not be refreshed to their original 
values until all use of the exit in the address space has completed.

• Only one user can be active in the same exit at one time.
260 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



16

Stored Procedures

Introduction to Stored Procedures
This chapter describes how to define, write, and invoke stored procedures. The 
following topics are discussed:

• “Stored Procedure Overview,” on page 262,

• “Defining Stored Procedures,” on page 274,

• “Writing Stored Procedures,” on page 284,

• “Invoking Stored Procedures,” on page 292,

• “CICS Interface Description,” on page 297,

• “CA-DATACOM/DB Interface Description,” on page 310,

• “IMS DRA Interface Description,” on page 320,

• “Invoking Existing IMS Transactions,” on page 325, and

• “Support Routine Descriptions,” on page 331.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 261



Chapter 16. Stored Procedures
Stored Procedure Overview
A stored procedure is an application program that is designed to perform work 
that cannot be performed using normal SQL DELETE, INSERT, SELECT, and 
UPDATE operations, or for updates to databases that currently do not support 
update operations. These programs are written in C, COBOL, or Assembler 
language, with COBOL the usual language of choice.

This section provides an overview of the environment(s) in which a stored 
procedure application program executes, and the eXadas-supplied interfaces and 
support routines that the stored procedure application program can call to assist 
during execution.

The following topics are covered:

• “General Concepts,” on page 262,

• “Residency and Language Environment,” on page 264,

• “Interfacing with CICS,” on page 267,

• “Interfacing With IMS,” on page 269,

• “Interfacing with CA-DATACOM/DB,” on page 271,

• “Support Routines,” on page 272,

• “Samples,” on page 273.

General Concepts

Stored procedures are a form of remote procedure call that operate in a client-
server environment. That is, a client application executing on Windows or UNIX 
invokes the stored procedure application by issuing an SQL CALL statement. 
This results in the application program associated with the stored procedure 
referenced on the CALL statement to be executed in the server’s address space. 
Figure 35: “Stored Procedure Execution Flow,” on page 263, depicts how stored 
procedures work.

When the Query Processor receives the CALL statement, it verifies that:

• the stored procedure identified in the CALL statement exists in the Meta Data 
Catalog,

• the correct number of parameters have been supplied,

• all required parameters have been supplied,

• for each parameter (for which data was supplied), the data type supplied by 
the client application is compatible with its defined data type.
262 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
Figure 35:  Stored Procedure Execution Flow

Assuming that no problems were found, the Query Processor forwards the CALL 
request to the Stored Procedure Data Savant for processing. When the stored 
procedure is defined, you specify the name of an OS/390 load module that the 
Stored Procedure Data Savant is to execute when a CALL statement for that 
stored procedure is received.

The Stored Procedure Data Savant determines whether there is an executable copy 
of the stored procedure application program already loaded in memory. If there 
isn’t, it loads the requested program in the server address space. The Stored 
Procedure Data Savant then branch-enters the stored procedure application 
program, passing a standard parameter list that contains the data values that were 
sent from the client application. The stored procedure application program can 
perform any processing desired, and once completed, returns control to the Stored 
Procedure Data Savant. 

If the stored procedure application program updates any databases, the application 
should explicitly issue a commit to apply any changes made by the application 
before control is returned to the Stored Procedure Data Savant. Alternately, if the 
stored procedure application program detects an error during processing, it should 
issue a rollback to ensure that any changes that have been made are backed out. If 
the stored procedure application program accesses or updates a file (for example, a 
VSAM file) it must open the file upon entry and ensure that it is closed when 
control is returned to the Stored Procedure Data Savant.

When defining the parameters that are passed to the stored procedure application 
program, you identify the SQL data type for each parameter. You also define how 
the parameter is to be used. 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    263



Chapter 16. Stored Procedures
A parameter can be used in one of the following ways:

• as an input parameter,

• as an output parameter,

• as both an input and an output parameter.

These parameters are passed to the stored procedure application program in a 
standard SQLDA format. The stored procedure application program extracts these 
parameters from the SQLDA. Based on the parameter values, it performs the 
processing that the stored procedure application is designed to perform.

While executing, the stored procedure application program can update the 
contents of output and input-output parameters that were passed to the 
application. After control has returned from the stored procedure application 
program, the Query Processor accesses the parameter list passed to the stored 
procedure application program, extracts the contents of any non-null output and 
input-output parameters. All of the original input parameters and the 
original/updated output and input-output parameters are then returned to the client 
application that issued the CALL statement.

In addition to passing the parameters supplied by the client application, the stored 
procedure application program is also passed an SQLCA structure that the stored 
procedure application program can update with an error SQLCODE that the 
Query Processor will return to the client application. Alternately, if the stored 
procedure application program returns a non-zero return code to the Stored 
Procedure Data Savant, the return code will be returned as the SQLCODE of the 
CALL statement to the client application. The SQLCODE from the SQLCA takes 
precedence over the stored procedure application program return code.

Residency and Language Environment

As shown in Figure 35: “Stored Procedure Execution Flow,” on page 263, the 
stored procedure application program executes in the server’s address space. 
Therefore, the stored procedure application program competes with the server and 
other stored procedure applications for resources in the address space.

By the time the stored procedure application program executes, the server has 
already allocated the memory it needs for the message pool. Any memory that the 
stored procedure application program allocates is therefore memory not being 
managed by the server. It is imperative that any memory allocated be freed before 
the stored procedure application program returns control to the Stored Procedure 
Data Savant.

The stored procedure application program’s load module also takes up memory 
that is not being managed by the server. Since it is likely that you may be 
executing multiple copies of the stored procedure application program 
simultaneously, these applications must be written as reentrant and should be link-
edited as re-entrant, reusable, and refreshable (RENT,REUS,REFR).
264 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
Before executing the stored procedure application program, the Stored Procedure 
Data Savant checks to see whether a copy of the stored procedure application 
program needs to be loaded. This processing behavior is an option that you control 
when you define the Stored Procedure and is referred to as residency. It is 
specified using the STAY RESIDENT parameter. For details on how to define a 
Stored Procedure and the parameters that can be specified on a stored procedure 
definition see “Defining Stored Procedures,” on page 274

If STAY RESIDENT is set to NO, the stored procedure application program is 
considered non-resident, and each time a CALL statement is issued, the Stored 
Procedure Data Savant loads a copy of the stored procedure application program 
and when control is returned an un-load is issued. When STAY RESIDENT is set 
to YES, the stored procedure application program is referred to as resident.

For resident-stored procedure application programs, the Stored Procedure Data 
Savant maintains a list of currently-loaded stored procedure application programs. 
When a CALL is issued the Stored Procedure Data Savant checks the list of 
currently loaded applications and if the stored procedure application program is 
not on the list, it is loaded and added to the list before it is called.

Resident stored procedure application programs remain loaded until the Query 
Processor is terminated. Each active Query Processor instance maintains its own 
list of resident stored procedure application programs. If the stored procedure 
application program is re-entrant, there may be one copy of the stored procedure 
application program loaded, however, its use count can be greater than one (if 
multiple Query Processor instances are executing). In these situations the stored 
procedure application program will not be physically unloaded from memory until 
all Query Processor instances that have issued a load for the stored procedure 
application program have terminated processing.

Additionally, the Stored Procedure Data Savant will load multiple copies of the 
stored procedure application program if the stored procedure application program 
(for example, the load module name) is associated with multiple stored procedure 
definitions. Currently, there is no method to determine how many stored 
procedure applications programs are loaded within the server nor how many have 
been loaded by a particular Query Processor/Stored Procedure Data Savant.

While you are developing your stored procedure application program you want to 
define the stored procedure as non-resident. Once testing is completed change the 
stored procedure to be resident for performance reasons.

NOTE: While testing your stored procedure application program, if the stored procedure 
is defined as resident and you have run the stored procedure once and then made 
some modifications to the stored procedure application program and want to re-
test it, you will have to shut down the Query Processor instance (that executed the 
stored procedure application program the first time) in order to get the updated 
copy of the stored procedure application program loaded. This type of situation 
happens frequently, so during initial development it is a good idea to display some 
kind of version identifier so that you can quickly ascertain which version of your 
stored procedure application program is actually being executed by the Stored 
Procedure Data Savant.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    265



Chapter 16. Stored Procedures
Generally, your stored procedure application program is developed using a high-
level language, such as COBOL. All of the IBM-supplied high-level languages 
use the OS/390 Language Environment (LE). Language Environment provides 
common memory allocation, error reporting, and other services that can be used 
by any of the IBM-supplied high-level languages or Assembler Language 
programs.

The stored procedure application program is branch entered when it is called. If 
your stored procedure application program is written in a high-level language, 
then when the program is entered, the run-time environment for the language that 
the program is written in is initialized before your actual application code is 
executed. By default, this run-time initialization processing is performed each 
time a CALL statement is issued for that stored procedure.

However, if you have activated the LE Initialization Service within the server, this 
behavior changes. For details on activating the LE Initialization Service, see 
Appendix A, “Configuration Parameters,” or Chapter 15, “System Exits.”

When the LE Initialization Service is active, the LE Pre-initialization service 
routine (CEEPIPI) has been loaded into the servers address space. CEEPIPI is an 
IBM-supplied routine that provides services for environment initialization, 
application invocation and environment termination.

Additionally, when the LE Initialization Service is active, the Stored Procedure 
Data Savant no longer branch enters your stored procedure application program 
and instead uses CEEPIPI services to invoke your application program. 
Specifically, the stored procedure application program is executed as a dependent 
subroutine. 

Some of the characteristics of a dependent subroutine are that it:

• creates and initializes a new Language Environment process and enclave to 
allow the execution of the stored procedure application program multiple 
times,

• sets the environment dormant so that exceptions are percolated out of it, and

• ensures that when the environment is dormant, it is immune to other 
Language Environment enclaves that are created or terminated.

When executing in an LE environment, after the Stored Procedure Data Savant 
loads the stored procedure application program, it calls CEEPIPI to initialize the 
environment, then calls CEEPIPI to execute the stored procedure application 
program as a subroutine. When the stored procedure application program is 
unloaded by the Stored Procedure Data Savant, prior to the unload, CEEPIPI is 
called to terminate the environment. Figure 36: “LE Execution Environment,” on 
page 267 depicts the execution environment when the LE Initialization Service is 
active.

WARNING: If you activate the LE Initialization Service it must be defined in the Master 
Configuration Member before the Query Processor Service Info. entries. Failure 
to do so is likely to cause a S0C4 abend when the Server is shutdown. Services are 
unloaded in first-in-last-out order so that if any resident stored procedures have 
266 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
been executed using LE, the CEEPIPI interface must still be loaded when the 
Stored Procedure Data Savant attempts to terminate the LE environment.

Figure 36:  LE Execution Environment

Additionally, when you define the stored procedure you can specify custom run-
time information using the RUN OPTIONS parameter. This allows you to tailor 
the execution environment for your stored procedure application program if it has 
special requirements. If you do not specify RUN OPTIONS information the 
default of ALL31(OFF) is used. For more information on LE initialization 
parameters see OS/390 Language Environment for OS/390 & VM Programming 
Reference.

If your stored procedure application program is written in a high-level language, 
activate the LE Initialization Service and run the stored procedure application 
program in resident mode. In this configuration the overhead of loading the stored 
procedure application program and establishing the run-time environment is 
incurred the first time the stored procedure application program is invoked. On 
subsequent invocations you will notice a dramatic performance improvement.

eXadas has extended the use of the RUN OPTIONS parameter for instances where 
you have activated the LE Initialization Service yet need to execute a stored 
procedure application program that is not LE-enabled. Specifying NO_LE informs 
the Stored Procedure Data Savant that the stored procedure application program is 
not LE-enabled and the application is called in branch-entry mode.

Interfacing with CICS

If you need to create a stored procedure application program that updates a VSAM 
file, you may find that CICS has exclusive control of the file and that it cannot be 
updated from the server address space. For these situations, and potentially others, 
eXadas provides facilities that allows you to invoke a CICS application program.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    267



Chapter 16. Stored Procedures
The CICS application program is passed a copy of the data from the client 
application that issued the CALL statement. Like a stored procedure application 
running within the server’s address space, the CICS application program can 
update the values for output and input-output parameters for return to the client 
application.

Unlike stored procedure application programs running in the server’s address 
space, the CICS application program does not have accessibility to an SQLCA 
structure for error reporting. Instead, it has addressability to an application return 
code that is returned to the stored procedure application program running in the 
server address space and will automatically be percolated to the client application. 
If a CICS abend is detected it will be percolated back to the stored procedure 
application program, and by default, to the client application.

Communications with CICS is performed using VTAM LU 6.2 with the eXadas 
VTAM Connection Handler. eXadas provides an API interface (CACSPBR) load 
module that can be called by a stored procedure application running in the Server 
address space that communicates with the VTAM Connection Handler to:

• establish a session with CICS,

• send data,

• receive data,

• perform address translation for the updated parameter list returned from the 
CICS application program, and

• end the session.

eXadas also supplies a CICS LU 6.2 application (CACSP62), which is the partner 
for CACSPBR. This application is responsible for:

• performing address translation for the parameter list being passed to the CICS 
transaction,

• invoking the specified CICS application program via a EXEC CICS LINK,

• percolating return code or CICS abend codes back to the server, and

• deallocate the session in the case of a CICS abend.

Figure 37: “CICS Processing Flow,” on page 269, shows the processing flow 
when the stored procedure application program interfaces with CICS.

The CACSPBR interface allows a stored procedure application program to send 
and receive multiple transmissions between itself and CICS. In normal situations 
only a single send and receive is required. For these situations, eXadas supplies an 
Assembler Language stored procedure application program (CACSPVTM) that 
sends the client parameter list to CICS and receives (a possibly) updated 
parameter list from CICS. For most situations, using CACSPVTM eliminates the 
need for you to develop your own stored procedure application program in order 
to invoke a CICS application program.
268 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
Figure 37:  CICS Processing Flow

Additionally, eXadas has made extensions to the RUN OPTIONS parameter that 
allows you to specify the required CICS transaction scheduling information in 
order to invoke your user written CICS application program. See “Specifying 
CICS Transaction Scheduling Information,” on page 282, for more information on 
how to specify CICS transaction scheduling information.

NOTE: If you want to write your own stored procedure application program that 
dynamically invokes CICS applications based upon client-supplied information 
and interfaces with CACSPBR do not specify CICS transaction scheduling 
information on the RUN OPTIONS parameter. If specified, RUN OPTIONS CICS 
transaction scheduling information overrides any transaction scheduling 
information passed to CACSPBR.

For examples of the VTAM and CICS resource definitions required to execute a 
CICS application program using a Stored Procedure, see Appendix B, “Sample 
Stored Procedure VTAM and CICS Definitions.”

Interfacing With IMS

If your stored procedure application program needs to access/update IMS data you 
cannot do that using standard DL/I calls. The primary reason is that your stored 
procedure application program does not have addressability to a PSB and the list 
of PCBs contained in the PSB.

To get around this problem, eXadas supplies the CACTDRA interface load 
module. The CACTDRA interface allows you to schedule a PSB and returns a 
pointer to the list of PCBs in the PSB. You can then establish addressability to one 
or more of these PCBs and issue ISRT, GU, GHU, and REPL DL/I calls against 
the PCB. Before exiting your stored procedure application you call CACTDRA 
one last time to unschedule the PSB.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    269



Chapter 16. Stored Procedures
By default, when you un-schedule the PSB any changes your stored procedure 
application program made are committed to IMS. If your stored procedure 
application program does not want changes committed it should issue a 
ROLLBACK call on the I/O PCB before unscheduling the PSB.

WARNING: Do not issue a ROLLBACK call. If your stored procedure application program 
does, an IMS abend occurs and the Query Processor instance that received the 
CALL statement becomes unusable.

The CACTDRA interface uses the IMS DRA Initialization Service to request PSB 
scheduling, issuing your applications DL/I calls and finally unscheduling the PSB. 
For more information on how to set up an environment where DRA can be used 
and how to activate the IMS DRA Initialization Service, see Chapter 3, “Server 
Setup for IMS Access.”

Figure 38: “IMS DRA Processing Flow,” on page 270, shows the processing flow 
when your stored procedure application program needs to access IMS data.

To make using the CACTDRA easier to use, the DL/I call formats are identical to 
a normal CBLTDLI (or ASMTDLI) call syntax with the exception that the first 
parameter in the parameter list must be the address of the SQLDA parameter 
passed to your stored procedure application program. Additionally, CACTDRA 
uses two other DL/I function codes, they are:

• SCHD - Used to identify the name of a PSB to be scheduled.

• TERM - Used to un-schedule the PSB.

Figure 38:  IMS DRA Processing Flow
270 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
Interfacing with CA-DATACOM/DB

If your stored procedure application program needs to access or update 
CA-DATACOM/DB data, you can use the eXadas-supplied CACTDCOM 
interface load module. The CACTDCOM interface module allows you to open 
your URT from within the eXadas address space and issue CA-DATACOM/DB 
calls to the database. Before exiting your stored procedure application, you must 
call the CACTDCOM interface module one last time to close the URT.

By default, when you close the URT, any changes made by your stored procedure 
application program are committed to the database. If your stored procedure 
application program does not want changes committed, it should issue a 
ROLLBACK call prior to closing the URT.

The CACTDCOM interface load module communicates with the Datacom 
Initialization Service to connect with CA-DATACOM/DB for opening/closing 
your URT and issuing your application calls. For more information on how to 
activate the Datacom Initialization Service, see Chapter 5, “Server Setup for CA-
DATACOM/DB.”

Figure 39: “CA-DATACOM/DB Processing Flow” shows the processing flow 
when your stored procedure application program needs to access 
CA-DATACOM/DB data.

Figure 39:  CA-DATACOM/DB Processing Flow
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    271



Chapter 16. Stored Procedures
To make using the CACTDCOM interface module easier, the 
CA-DATACOM/DB call formats are identical to the call syntax used by native 
CA-DATACOM/DB, with one exception: the first parameter in the parameter list 
passed to the CACTDCOM interface module must be the address of the SQLDA 
parameter passed to your stored procedure application program by the Stored 
Procedure Data Savant. Calls to CA-DATACOM/DB are performed as if the 
program were written for direct access to CA-DATACOM/DB. 

For example: 

• To open a URT you must provide:

• a properly formatted User Information Block (UIB), and 

• a Request Area containing the command OPEN. 

• To begin reading records using Set At A Time commands, you must provide:

• a properly formatted User Information Block (UIB),

• a Request Area containing the command SELFR along with the table 
name and DBID if required,

• a work area to receive the retrieved data,

• an element list describing the data to be retrieved, and

• a Request Qualification Area containing selection criteria and other 
parameters.

• To close a URT you must provide:

• a properly formatted User Information Block (UIB), and

• a Request Area containing the command CLOSE.

Success or failure of every command is returned in the Request Area Return Code and 
Internal Return Code as documented in the CA-DATACOM/DB Programmer’s Guide. 

Support Routines

In addition providing interfaces to CICS, CA-DATACOM/DB, and IMS, eXadas 
also supplies three support routines that can be called by your stored procedure 
application program. Table 45, “Support Routines,” identifies the subroutine 
names and purpose of each of the support routines.

Table 45: Support Routines

Routine Name Purpose

CACSPGRO Copies the value of the RUN OPTIONS parameter into an application storage area.

CACSPGPW Copies the value of the user password into an application storage area. The user 
password was captured when the client application connected to the server.
272 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
Unlike the CICS, CA-DATACOM/DB, and IMS interfaces, which are distributed 
as load modules, these support routines are supplied in object-module form for 
direct inclusion in your stored procedure application program. These routines are 
written in Assembler Language and use standard OS linkage conventions. All 
routines are passed two parameters, the first of which must be the address of the 
SQLDA parameter passed to the stored procedure application program. The 
second parameter is an address where the value is copied.

Samples

eXadas does not supply a sample process for stored procedures. However, it does 
supply various samples that are intended to assist you in development of your own 
stored procedure application programs. Most of these samples are supplied in 
COBOL. The following table identifies the different samples that are supplied. 
For each sample, the table identifies the library where the sample is contained, its 
member name, and a short description of what the sample is.

CACSPGUI Copies the value of the user ID into an application storage area. The user ID was 
captured when the client application connected to the server.

Table 46: Stored Procedure Samples

Library
Name

Member
Name

Description

SCACSAMP CACSPCCC Sample compile and link deck for stored procedure 
applications calling CACSPBR.

SCACSAMP CACSPCCL Sample compile and link deck for sample local stored 
procedure.

SCACSAMP CACSPCCR Sample compile and link deck for the sample CICS stored 
procedure.

SCACSAMP CACSPCOM Generic stored procedure application priogram to invoke a 
CICS application program.

SCACSAMP CACSPCP Sample stored procedure definitions containing a parameter 
definition for each supported data type.

SCACSAMP CACSPCPY COBOL definitions for the argument data passed to the stored 
procedure. This should be included in your stored procedure 
application. Sample local stored procedure application using 
the IMS DRA interface.

Table 45: Support Routines

Routine Name Purpose
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    273



Chapter 16. Stored Procedures
Defining Stored Procedures
Stored procedures definitions are stored in the eXadas Meta Data Catalogs and 
defined using the Meta Data Utility. General Stored Procedure information is 
stored in the SYSIBM.SYSROUTINES system table. The parameters that are 
supplied by the client application and passed to the stored procedure application 
program are stored in the SYSIBM.SYSPARMS system table.

To define a stored procedure you use a CREATE PROCEDURE statement. To 
delete a stored procedure definition from the Meta Data Catalogs you use a DROP 
PROCEDURE statement. 

You can use the RUN OPTIONS parameter on the CREATE PROCEDURE 
statement to supply custom LE run-time options during environment 

SCACSAMP CACSPDC1 Sample local stored procedure application program using the 
interface module CACTDCOM to access 
CA-DATACOM/DB. Statically link module CACTDCOM 
with CACSPDC1 as described in “Compiling and Linking 
Applications That Use CACTDCOM,” on page 315.

SCACSAMP CACSPLCL Sample local stored procedure application.

SCACSAMP CACSPREM Sample remote stored procedure application executing in 
CICS.

SCACSAMP CACSPDFH COBOL version of the CICS communications area passed to a 
CICS application invoked by CACSP62.

SCACSAMP CACSPGRO Get RUN OPTIONS support routine object module.

SCACSAMP CACSPGPW Get Password support routine object module.

SCACSAMP CACSPGUI Get User ID support routine object module.

SCACSAMP CACSPSCA COBOL SQLCA structure for inclusion in your stored 
procedure application program.

SCACSAMP CACSPSDA COBOL SQLDA structure for inclusion in your stored 
procedure application program and/or CICS application 
program.

SCACSAMP CACSPVTM COBOL APPC function and data structures for interfacing 
with CACSPBR.

Table 46: Stored Procedure Samples

Library
Name

Member
Name

Description
274 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
initialization, when the stored procedure application program is executed in an LE 
environment. In addition, eXadas has extended the use of the RUN OPTIONS 
parameter to allow deactivation of the LE environment for a particular Stored 
Procedure. The RUN OPTIONS parameter also allows you to specify CICS 
transaction scheduling information for CICS interfacing or CA-DATACOM/DB 
resource information for CA-DATACOM/DB interfacing.

The following topics are discussed:

• “CREATE PROCEDURE Syntax and Description,” on page 275,

• “DROP PROCEDURE Syntax and Description,” on page 281,

• “Deactivating the LE Environment,” on page 282,

• “Specifying CICS Transaction Scheduling Information,” on page 282, and

• “Specifying CA-DATACOM/DB Resource Information,” on page 283.

CREATE PROCEDURE Syntax and 
Description

To create a stored procedure definition use the CREATE PROCEDURE statement. 
Sample code on page 289 shows an example of deleting and defining a stored 
procedure.

Figure 40: “CREATE PROCEDURE Syntax,” on page 276, shows the syntax used 
to define a stored procedure. Table 47, “CREATE PROCEDURE Parameters and 
Descriptions,” describes each of the parameters that can be specified on the 
CREATE PROCEDURE statement.

Once you have created a CREATE PROCEDURE statement, run it through the 
Meta Data Utility to define it in the eXadas Meta Data Catalogs. For instructions 
on how to run the Meta Data Utility, see Chapter 13, “Utilities.”
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    275



Chapter 16. Stored Procedures
Figure 40:  CREATE PROCEDURE Syntax

Table 47: CREATE PROCEDURE Parameters and Descriptions

Parameter Description

CREATE PROCEDURE procedure-name A required keyword phrase that defines a stored 
procedure. procedure-name names the stored 
procedure. The name is implicitly or explicitly 
qualified by an owner. The name, including the 
implicit or explicit qualifier, must not identify an 
existing stored procedure at the current server.

To explicitly specify an owner use the syntax owner-
name.procedure-name. The owner-name can be 1-
to-8 characters long and the procedure-name can be 
1-to-18 characters long. If an owner-name is not 
specified, the implicit owner-name is the TSO user 
ID of the person that runs the Meta Data Utility to 
define the stored procedure.

CREATE PROCEDURE procedure-name

( )
parameter-declaration

(

option-list

option-list:

EXTERNAL
NAME ‘string’

identifier

LANGUAGE

parameter-declarations:

OUT
INOUT

IN

parameter-name

parameter-type

ASSEMBLE
C
COBOL

STAY RESIDENT YES

NO

RUN OPTIONS ‘run-time-options’
276 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
parameter-declaration Specifies the parameters that are passed to the stored 
procedure application program and that must be 
supplied by the client application when the stored 
procedure is invoked. At least one parameter must 
be defined for a stored procedure. There is no fixed 
upper limit on the number of parameters that can be 
defined for a stored procedure. The maximum 
number of parameters that can be defined is 
dependent on the size of the resultant SQLDA. The 
maximum data size for all data and indicator 
variables is 32767-bytes.

A stored procedure parameter may be used for input, 
output or both input and output. The options are:

• IN: The default. It identifies the parameter as an 
input parameter to the stored procedure 
application program. The parameter contains its 
original value when the stored procedure returns 
control to the client application.

• OUT: Identifies the parameter as an output 
parameter. The stored procedure application 
program returns a value to the client application 
or a null-indicator that indicates no value is 
being returned.

• INOUT: Identifies the parameter as both an 
input and an output parameter. The client 
application must supply a value for an INOUT 
parameter, upon return the stored procedure 
application program may have changed this 
value.

Table 47: CREATE PROCEDURE Parameters and Descriptions

Parameter Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    277



Chapter 16. Stored Procedures
parameter-name The parameter-name specifies the name of the 
parameter in the parameter-declaration. The name 
can be up to 30 characters long, must be unique 
within the stored procedure definition and cannot be 
IN, OUT, or INOUT.

Parameter names are optional, but specifying a 
parameter-name is highly recommended. When 
initially testing your stored procedure your client 
application may receive various SQL codes 
indicating that an incompatible data type was 
passed, a NULL parameter is not allowed, or other 
similar codes. To resolve these problems you can 
activate tracing in the server. When activated, a log 
message is generated for the parameter in error and 
the information identifies the parameter-name, its 
data type, and length. Naming your parameters, 
therefore, makes problem resolution easier in these 
situations.

parameter-type Required keyword that identifies the SQL data type 
of the parameter. The list of stored procedure 
supported SQL data types is found in Table 48, 
“Stored Procedure Supported Data Types.”

option-list List of options to be used for the stored procedure.

EXTERNAL NAME ‘string’ or identifier Specifies the OS/390 load module of the application 
program that the Server should load to satisfy a call 
for the stored procedure. If you do not specify the 
NAME clause, NAME procedure-name is implicit. 
The procedure-name is limited to 8 characters.

When an explicit name is specified it can be from 1-
to-8 characters long and can be supplied either as a 
quoted string or as an identifier. A quoted string is 
required if the application program name matches 
any of the keywords supplied on the CREATE 
PROCEDURE statement.

Table 47: CREATE PROCEDURE Parameters and Descriptions

Parameter Description
278 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
LANGUAGE Required parameter that identifies the programming 
language in which the stored procedure application 
program was written. All programs should be 
designed to run in IBM’s Language Environment 
(LE). Valid values are:

• ASSEMBLE: Assembler Language

• COBOL: IBM COBOL.

• C: IBM or SAS/C C Language

STAY RESIDENT Identifies whether the Stored Procedure Data Savant 
should unload the stored procedure application 
program after it has been executed. Options are:

• NO: Unload the program after each execution. 
When initially testing your stored procedure you 
should use this option. This allows you to 
modify your stored procedure application 
program and re-test it without having to 
shutdown the Query Processor that received the 
client application request to execute your stored 
procedure application program.

• YES: Do not unload the stored procedure 
application program after it has completed 
execution. For performance purposes, YES 
should be specified once your stored procedure 
application program has been tested.

Table 47: CREATE PROCEDURE Parameters and Descriptions

Parameter Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    279



Chapter 16. Stored Procedures
A stored procedure parameter can be defined as one of the types listed in Table 48, 
“Stored Procedure Supported Data Types.” Also see the code sample on page 290 
for examples on how to define each of these data types in a COBOL program.

RUN OPTIONS run-time-options Specifies the Language Environment run-time 
options to be used for the stored procedure 
application program. You must specify run-time-
options as a character string no longer than 254 
bytes. If you do not specify RUN OPTIONS or pass 
an empty string, the Stored Procedure Data Savant 
passes a value of ALL31(OFF).

For a description of the LE run-time options, see 
IBM’s OS/390 Language Environment for OS/390 
& VM Programming Reference.

Additionally, eXadas has extended the use of the 
RUN OPTIONS parameter to disable executing a 
stored procedure application program in an LE 
environment and to supply CICS transaction 
scheduling information or CA-DATACOM/DB 
resource information. For details on each of these 
extensions see “Deactivating the LE Environment,” 
on page 282, “Specifying CICS Transaction 
Scheduling Information,” on page 282, and 
“Specifying CA-DATACOM/DB Resource 
Information,” on page 283.

NOTE: RUN OPTIONS information must be 
supplied on a single input line. If you need 
to specify a RUN OPTIONS string that 
exceeds 80 characters, you can use a 
variable length file. 

Table 48: Stored Procedure Supported Data Types

eXadas-Supported Data Types Description (n is always a decimal integer)

INTEGER Fullword signed hexadecimal, 32-bits, no decimal point.

SMALLINT Halfword signed hexadecimal, 16-bits, no decimal point.

DECIMAL(p[,s]) Packed decimal 1<p<31 and 0<s<p where:

• p is the precision (total number of digits) and

• s is the total number of digits to the right of the decimal 
point.

FLOAT 4-byte single precision floating point number.

Table 47: CREATE PROCEDURE Parameters and Descriptions

Parameter Description
280 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
DROP PROCEDURE Syntax and 
Description

To delete a stored procedure definition from the eXadas Meta Data Catalogs, use 
the DROP PROCEDURE statement. Sample code on page 289 shows an example 
of how to delete and then define a stored procedure definition. The following table 
describes the parameters supplied on the DROP PROCEDURE statement.

DOUBLE 8-byte double precision floating point number.

CHAR (n) Fixed-length character string of length n where 1<n<254.

VARCHAR (n) Variable-length character string where 1<n<32704.

GRAPHIC (n) Fixed-length, double-byte character set (DBCS) string where 
1<n<127. The value of n specifies the number of DBCS 
characters. For example, GRAPHIC(10) specifies a 
parameter that occupies 20 bytes of storage.

VARGRAPHIC (n) Variable-length, DBCS string where 1<n<16351. The value 
of n specifies the number of DBCS characters. For example, 
VARGRAPHIC(10) specifies a parameter that occupies 20 
bytes of storage.

Table 49: DROP PROCEDURE Parameters and Descriptions

Parameter Description

DROP PROCEDURE Statement that removes an existing stored procedure 
from the Meta Data Catalogs. This statement is required 
when replacing an existing stored procedure with a 
stored procedure of the same name.

procedure-name Identifies the stored procedure to be dropped. The name 
must identify a stored procedure that has been defined 
with the CREATE PROCEDURE statement at the 
current server. When a procedure is dropped, all 
privileges on the procedure are also dropped.

Table 48: Stored Procedure Supported Data Types

eXadas-Supported Data Types Description (n is always a decimal integer)
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    281



Chapter 16. Stored Procedures
Deactivating the LE Environment

If your stored procedure application program cannot be executed in an LE 
environment (for example, it is written in Assembler, and not using LE services), 
specify NO_LE on the RUN OPTIONS parameter. When NO_LE is specified and 
the Stored Procedure Data Savant executes the stored procedure application 
program is branch-entered regardless of whether the LE Initialization Service is 
active or not.

If you are using the RUN OPTIONS parameter to also specify CICS transaction 
scheduling information or CA-DATACOM/DB resource information, NO_LE 
must be specified at the beginning of the RUN OPTIONS parameter, followed by 
the CICS transaction scheduling information or CA-DATACOM/DB resource 
information.

NOTE: If your stored procedure application program cannot run in an LE environment, 
specify NO_LE even if the LE Initialization Service is not going to be used in the 
server. This will prevent your stored procedure application program from 
abending at a later time when some other group develops a LE-enabled 
application and decides to active the LE Initialization Service for performance 
reasons.

Specifying CICS Transaction Scheduling 
Information

If you are using the eXadas-supplied CACSPVTM stored procedure application 
program to communicate with CICS, then you must specify the information 
necessary for CACSPVTM to communicate with CICS and invoke the CICS 
transaction using the RUN OPTIONS parameter. If you are writing your own 
stored procedure application program to communicate with CICS, then you 
should specify this information using the RUN OPTIONS parameter instead of 
hard coding it in your stored procedure application program. Doing so allows you 
to simply drop the stored procedure definition, update the CREATE 
PROCEDURE statement and then re-define the stored procedure when your 
environment changes without requiring program changes.

WARNING: If you are specifying CICS transaction scheduling information for use by 
CACSPVTM, then you must also specify NO_LE on the RUN OPTIONS 
parameter.

CICS transaction scheduling information is identified by the _CICS keyword in 
the RUN OPTIONS parameter. The format of the _CICS keyword is:

_CICS(Local-LU-Name,CICS-Applid,Logmode-Table-
Name,Transaction-ID,Program-Name)
282 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
All sub-parameters must be supplied, comma delimited as shown, and must not 
contain any spaces. Descriptions of the size and purpose of each sub-parameter are 
identified in the following table.

Specifying CA-DATACOM/DB Resource 
Information

When writing your own stored procedure application program to communicate 
with CA-DATACOM/DB, you should specify the User Requirements Table name 
using the RUN OPTIONS parameter instead of hard coding it in your stored 
procedure application program. Doing so allows you to simply drop the stored 
procedure definition (DROP PROCEDURE), update the stored procedure 
definition and then re-catalog the stored procedure definition (CREATE 
PROCEDURE) when your environment changes, without requiring any changes 
to your stored procedure application program. If you wish to supply the User 

Table 50: CICS Transaction Scheduling Sub-Parameters

Sub-Parameter
Name

Maximum
Length

Description

Local-LU-Name 8 Identifies the name of a pool of VTAM logical units that can be 
used by CACSPBR to communicate with CICS, such as 
CACPPC0*.

In the above example, CACSPBR initially attempts to open an 
ACB for LU name CACPPC00. If an ACB open error is 
returned, or a CNOS negotiation error is reported by CICS, then 
CACSPBR attempts to open an ACB named CACPPC01. If that 
fails LU names CACPPC02-CACPPC09 are tried until no errors 
are reported or all names have been attempted.

Only one set of wild-card characters can be specified (for 
example, CAC*PC0* is invalid). Up to seven wild card 
characters can be supplied (not recommended).

CICS-Applid 8 Identifies the APPLID of the CICS target subsystem.

Logmode-Table-
Name

8 Identifies the VTAM logmode table entry to be used. This name 
must identify an entry in the Logon Mode Table definition, in the 
Local LU Name APPL definitions and in the CICS SESSIONS 
definitions.

Transaction-ID 4 Identifies the name of the CICS transaction that has been defined 
for CACSP62 to allow communications between the Server and 
CICS. This name must be 4 characters long.

Program-Name 8 Identifies the name of the CICS program that CACSP62 is to 
LINK to. This name must be defined as a PROGRAM to CICS.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    283



Chapter 16. Stored Procedures
Requirements Table name programmatically, that is also possible. The sample 
stored procedure application program for CA-DATACOM/DB demonstrates how 
this can be done. 

CA-DATACOM/DB resource information is identified by the _DATACOM 
keyword in the RUN OPTIONS parameter. The complete format of CA-
DATACOM/DB resource information entry is:

_DATACOM(urt-name)

The CA-DATACOM/DB resource information entry is separated from preceding 
keyword entries by a comma. Order of the keyword entries is not mandated except 
that if you are using the NO_LE keyword in the RUN OPTIONS statement, it 
must be the first keyword specified. The following examples show RUN 
OPTIONS statements with keyword entries specified in differing order. 
Regardless of the order, the resultant stored procedure processing is identical. 

Example 1:

RUN OPTIONS 'NO_LE,_DATACOM(urt-name),
_CICS(transaction-scheduling-info)'

RUN OPTIONS 'NO_LE,
_CICS(transaction-scheduling-info),_DATACOM(urt-name)'

Example2:

RUN OPTIONS '_DATACOM(urt-name),
_CICS(transaction-scheduling-info)'

RUN OPTIONS '_CICS(transaction-scheduling-info),
_DATACOM(urt-name)'

Writing Stored Procedures
A stored procedure application program is invoked using standard Assembler 
Language linkage conventions. These programs can be written in C, COBOL or 
Assembler Language. The stored procedure application program is always passed 
two parameters: an SQLDA structure and an SQLCA structure. The following 
figure shows how these parameters are passed. All parameters and the data and 
indicator values contained in the SQLDA are 31-bit addresses.
284 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
Figure 41:  Parameters Passed to the Stored Procedure Application Program

Upon return from the Stored Procedure application program, Register 15 is 
assumed to contain a return code value. If a non-zero value is found in Register 
15, it will be returned to the client application unless there is a non-zero value in 
the SQLCODE field in the SQLCA.

WARNING: Your stored procedure application program must be coded as a subroutine and 
must not issue a function call that causes the run-time environment to be 
terminated. For example, a COBOL stored procedure application program must 
not issue STOP RUN and must instead return control using the GOBACK 
statement. If you terminate the run-time environment (for example, using STOP 
RUN in COBOL), this causes the Query Processor task to also be terminated.

The SQLDA structure consists of a 16-byte header followed by a variably-
occurring array of SQLVAR structures. Each SQLVAR represents a parameter-
declaration from the CREATE PROCEDURE statement. The SQLVARs are 
passed in the sequence defined on the CREATE PROCEDURE statement. Each 
SQLVAR structure is 44-bytes long.

The sample member CACSPSDA is a COBOL copybook that shows the structure 
and contents of the SQLDA structure. The following figure shows the contents of 
the SQLDA header. Table 51, “SQLDA Header Contents,” describes the format 
and contents of the SQLDA header. 

The SQLDA structure is as follows:

01  ARG-DATA.
  05  ARG-SQLDAID                   PIC X(8).
  05  ARG-SQLDABC                   PIC 9(8) COMP.
  05  ARG-SQLN                      PIC 9(4) COMP.
  05  ARG-SQLD                      PIC 9(4) COMP.
  05  ARG-SQLVAR OCCURS 1 TO 2000 TIMES
                 DEPENDING ON ARG-SQLN.
    10  ARG-SQLTYPE                 PIC 9(4) COMP.
        88  ARG-SQL-VARCHAR         VALUE 449.
        88  ARG-SQL-CHAR            VALUE 453.
        88  ARG-SQL-VARGRAPHIC      VALUE 465.
        88  ARG-SQL-GRAPHIC         VALUE 469.
        88  ARG-SQL-FLOAT           VALUE 481.
        88  ARG-SQL-DECIMAL         VALUE 485.
        88  ARG-SQL-INTEGER         VALUE 497.
        88  ARG-SQL-SMALLINT        VALUE 501.

    10  ARG-SQLLEN                  PIC 9(4) COMP.
    10  ARG-SQLDATA                 POINTER.
    10  ARG-SQLIND                  POINTER.
    10  ARG-SQLNAME.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    285



Chapter 16. Stored Procedures
      20  ARG-NAME-LEN              PIC 9(4) COMP.
      20  ARG-NAME-LABEL            PIC X(30).

The following table describes the format and contents of the SQLDA header. 

Table 51: SQLDA Header Contents

COBOL Name SQL Data Type Description

ARG-SQLDAID CHAR(8) Signature that identifies the structure as an SQLDA. 
Always contains the value “SQLDA” followed by three 
spaces.

ARG-SQLDABC INTEGER Identifies the length of the SQLDA structure and is 
computed as 16 + (SQLN * 44).

ARG-SQLN SMALLINT Identifies the number of SQLVAR entries contained in the 
SQLDA.

ARG-SQLD SMALLINT Identifies the number of SQLVAR entries contained in the 
SQLDA. Same as ARG-SQLN.
286 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
The following table describes the format and contents of the SQLVAR structure. 

The following table describes the SQL data types that can be passed to the stored 
procedure application program and the length of the data referenced by ARG-

Table 52: SQLVAR Contents

COBOL Name SQL Data Type Description

ARG-SQLTYPE SMALLINT Identifies the type of data that is referenced by field 
ARG-SQLDATA. See Table 53, “SQL Data Type 
Descriptions,” for a description of the different data 
types that are supported for stored procedures.

ARG-SQLLEN SMALLINT Identifies the length of the data that is referenced by 
field ARG-SQLDATA.

ARG-SQLDATA INTEGER Pointer to the argument data. Before using this pointer 
value you must check the 2-byte data value referenced 
by ARG-SQLIND to determine whether the argument 
data is null (for example, a value was not supplied by the 
client application). If the argument data is null, the data 
referenced is low-values and should not be referenced. If 
the data is not null, the size of the data referenced is 
identified by ARG-SQLLEN.

ARG-SQLIND INTEGER Pointer to a 2-byte (half-word - SMALLINT) indicator 
field that identifies whether ARG-SQLDATA is null or 
not. If the indicator field contains zeros, the data 
referenced by ARG-SQLDATA is not null and contains 
valid data matching the SQL data type identified in 
ARG-SQLTYPE. If the indicator field contains -1 
(x’ffff’) then the data referenced by ARG-SQLDATA is 
binary zeros and should not be referenced.

ARG-SQLNAME VARCHAR(30) The parameter-name specified in the CREATE 
PROCEDURE statement for this parameter. If no 
parameter-name was specified, ARG-NAME-LEN is 
zeros and ARG-NAME-LABEL is low-values. If a 
parameter-name was specified, ARG-NAME-LEN 
identifies how long parameter-name is and ARG-
NAME-LABEL contains the parameter-name left 
justified and padded with blanks.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    287



Chapter 16. Stored Procedures
SQLDATA for each data type.

The SQLCA structure is much simpler than the SQLDA. Sample member 

Table 53: SQL Data Type Descriptions

COBOL Name Value
Value in ARG-SQLLEN and Corresponding 
Length of Data Referenced by ARG-SQLDATA

ARG-SQL-VARCHAR 449 Identifies that ARG-SQLDATA references a variable 
length character field. ARG-SQLLEN identifies the 
maximum length that the variable length character field 
may be, excluding the 2-byte length field. The actual 
size of the data is identified in the 2-byte length field.

ARG-SQL-CHAR 453 Identifies that ARG-SQLDATA references a fixed length 
character field. ARG-SQLLEN identifies the length of 
the character field.

ARG-SQL-VARGRAPHIC 465 Identifies that ARG-SQLDATA references a variable 
length graphic field. ARG-SQLLEN identifies the 
maximum length (in DBCS characters) that the variable 
length graphic field may be, excluding the 2-byte length 
field. The actual size of the data (in DBCS characters) is 
identified in the 2-byte length field.

ARG-SQL-GRAPHIC 469 Identifies that ARG-SQLDATA references a fixed length 
graphic field. ARG-SQLLEN identifies the length of the 
graphic field in DBCS characters.

ARG-SQL-FLOAT 481 Identifies that ARG-SQLDATA references a floating 
point number. The field is a single precision floating 
point number that is 4-bytes long if FLOAT was 
specified on the parameter-declaration on the CREATE 
PROCEDURE statement. If DOUBLE was specified, 
then the field is a double-precision floating point number 
that is 8-bytes long.

ARG-SQL-DECIMAL 485 Identifies that ARG-SQL-DATA references a signed 
packed decimal field. The first byte of ARG-SQL-LEN 
identifies the scale (number of digits) in the decimal 
field. The second byte of ARG-SQL-LEN identifies the 
precision (implied decimal point) of the decimal data. If 
the scale is an even number, the physical length of the 
decimal data is scale / 2. If the scale is an odd number, 
the physical length of the data is (scale +1)/2.

ARG-SQL-INTEGER 497 Identifies that ARG-SQL-DATA references a signed 
full-word field that is 4-bytes long.

ARG-SQL-SMALLINT 501 Identifies that ARG-SQL-DATA references a signed 
half-word field that is 2-bytes long.
288 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
CACSPSCA is a COBOL copybook that shows the structure and contents of the 
SQLCA structure. The following sample code shows the contents of this copy 
book, and Table 54, “SQLCA Contents,” describes the contents of the SQLCA.

The SQLCA structure is as follows:

01  ARG-SQLCA
  05  ARG-SQLCAID                   PIC X(8).
  05  ARG-SQLCABC                   PIC 9(8) COMP.
  05  ARG-SQLCODE                   PIC 9(8) COMP.

If you inspect the ARG-SQLCABC field you will find that its contents report a 
length that is longer than the structures contents identified above. A full DB2-style 
SQLCA is passed to your stored procedure application program. These additional 
fields are not being documented, as they are not inspected by the Stored Procedure 
Data Savant or the Query Processor and are not returned to the client application.

Sample member CACSPCP shows a sample stored procedure definition that 
contains parameter definitions for all of the different SQL data types that can be 
passed to a stored procedure application program. Its contents are shown in the 
following figure.

The following is a sample DROP and CREATE procedure definition:

DROP PROCEDURE CAC.DATA_TYPES;
CREATE PROCEDURE CAC.DATA_TYPES
(IN DT_SMALLINT SMALLINT,
IN DT_INTEGER INTEGER,
IN DT_CHAR CHAR(10),
IN DT_VARCHAR VARCHAR(20),
IN DT_FLOAT FLOAT,
IN DT_DOUBLE DOUBLE,
IN DT_DECIMAL DECIMAL(9,2),
IN DT_GRAPHIC GRAPHIC(10),
IN DT_VARGRAPHIC VARGRAPHIC(20))
EXTERNAL NAME CACSPDAT
LANGUAGE COBOL
STAY RESIDENT NO;

This figure shows that the stored procedure application program name is 
CACSPDAT and it is written in COBOL. For a COBOL program, the field 
definitions for the actual data values and their associated indicator variables must 

Table 54: SQLCA Contents

COBOL Name SQL Data Type

ARG-SQLCAID CHAR(8) Signature that identifies the structure as an SQLCA. 
Always contains the value “SQLCA” followed by 
three spaces.

ARG-SQLCABC INTEGER Identifies the length of the SQLCA structure.

ARG-SQLCODE INTEGER Full-word 32-bit signed integer that is returned to the 
client application when SQLCODE contains a non-
zero value.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    289



Chapter 16. Stored Procedures
be defined in the LINKAGE SECTION. Sample code on page 290 shows the 
corresponding LINKAGE SECTION data and indicator definitions for the 
parameters for the CAC.DATA_TYPES stored procedure definition.

While the COBOL field names do not have to match the parameter names 
specified on the stored procedure CREATE PROCEDURE definition statement, it 
is a good practice. Establish a standard for naming null indicator variables. 
Sample code on page 290 shows how to append IND to the name of the field that 
references the null indicator value for each parameter.

In COBOL, addressability to the data associated with a parameter and its null 
indicator field is established by using the SET ADDRESS OF statement. Sample 
code page 291 shows how to establish addressability to the parameter data and 
associated null indicators for the CAC.DATA_TYPES stored procedure.

You should also establish addressability to a parameter’s null indicator and test to 
see whether the value is not null before establishing addressability to its data 
value. Likewise, once addressability is established before referencing a data value 
check its associated null indicator before attempting to manipulate a data value. 
This practice should be done even if you know that a value does not contain a null 
value. This practice prevents abends when, at a later date, maintenance is 
performed on the client application and the developer does not follow the “rules.”

The following are sample COBOL data and indicator definitions:

LINKAGE SECTION.
COPY CACSPSDA.
COPY CACSPSCA.

01  DT-SMALLINT                 PIC S9(4) COMP.
01  DT-=SMALLINT-IND            PIC S9(4) COMP.

01 DT-INTEGER                   PIC S9(9) COMP.
01  DT-INTEGER-IND              PIC S9(4) COMP.

01  DT-CHAR                     PIC X(10).
01  DT-CHAR-IND                 PIC S9(4) COMP.

01 DT-VARCHAR.
  05  DT-VARCHAR-LEN            PIC 9(4) COMP.
    05  DT-VARCHAR-DATA         PIC X(1)
                                OCCURS 20 TIMES
                                DEPENDING ON DT-VARCHAR-LEN.
01  DT-VARCHAR-IND              PIC S9(4) COMP.

01  DT-FLOAT                    COMP-1.
01 DT-FLOAT-IND                 PIC S9(4) COMP.

01  DT-DOUBLE                   COMP-2.
01  DT-DOUBLE-IND               PIC S9(4) COMP.

01  DT-DECIMAL                  PIC S9(7)V99 COMP-3
01  DT-DECIMAL-IND              PIC S9(4) COMP.

01  DT-GRAPHIC                  PIC G(10)
                 USAGE DISPLAY-1.
01  DT-GRAPHIC-IND              PIC S9(4) COMP.
01  DT-VARGRAPHIC.
290 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
  05  DT-VARGRAPHIC-LEN       PIC 9(4) COMP.
  05  DT-VARGRAPHIC-DATA      PIC G(1)
                              USAGE DISPLAY-1
                              OCCURS 20 TIMES
                              DEPENDING ON DT-VARGRAPHIC-LEN.
01  DT-VARGRAPHIC-IND         PIC S9(4) COMP.

The following shows how to establish addressability:

PROCEDURE DIVISION USING ARG-DATA, ARG-SQLCA.

    SET ADDRESS OF DT-SMALLINT-IND TO ARG-SQLIND(1). 
    IF DT-SMALLINT-IND = ZEROS                       
        SET ADDRESS OF DT-SMALLINT TO ARG-SQLDATA(1).

    SET ADDRESS OF DT-INTEGER-IND TO ARG-SQLIND(2).  
    IF DT-INTEGER-IND = ZEROS                        
        SET ADDRESS OF DT-INTEGER TO ARG-SQLDATA(2). 

    SET ADDRESS OF DT-CHAR-IND TO ARG-SQLIND(3).     
    IF DT-CHAR-IND = ZEROS                           
        SET ADDRESS OF DT-CHAR TO ARG-SQLDATA(3).    

    SET ADDRESS OF DT-VARCHAR-IND TO ARG-SQLIND(4). 
    IF DT-VARCHAR-IND = ZEROS                       
        SET ADDRESS OF DT-VARCHAR TO ARG-SQLDATA(4).

    SET ADDRESS OF DT-FLOAT-IND TO ARG-SQLIND(5).   
    IF DT-FLOAT-IND = ZEROS                         
        SET ADDRESS OF DT-FLOAT TO ARG-SQLDATA(5).  

    SET ADDRESS OF DT-DOUBLE-IND TO ARG-SQLIND(6).  
    IF DT-DOUBLE-IND = ZEROS                        
        SET ADDRESS OF DT-DOUBLE TO ARG-SQLDATA(6). 

    SET ADDRESS OF DT-DECIMAL-IND TO ARG-SQLIND(7). 
    IF DT-DECIMAL-IND = ZEROS                       
        SET ADDRESS OF DT-DECIMAL TO ARG-SQLDATA(7).

    SET ADDRESS OF DT-GRAPHIC-IND TO ARG-SQLIND(8).    
    IF DT-GRAPHIC-IND = ZEROS                          
        SET ADDRESS OF DT-GRAPHIC TO ARG-SQLDATA(8).   

    SET ADDRESS OF DT-VARGRAPHIC-IND TO ARG-SQLIND(9). 
    IF DT-VARGRAPHIC-IND = ZEROS                       
        SET ADDRESS OF DT-VARGRAPHIC TO ARG-SQLDATA(9).

Your stored procedure application program must not modify the contents of the 
SQLDA structure. Your program can modify the contents of the data referenced 
by ARG-SQLDATA and ARG-SQLIND fields. Data that is modified for output or 
input-output fields is returned to the client application. 

When your application modifies an SQLIND indicator field to indicate that the 
corresponding data is null, then any modifications to the corresponding data field 
are not returned to the client application. Additionally, your application should not 
modify an SQLIND indicator field that identifies the corresponding data field as 
being null to indicate that the data field (upon return from your stored procedure 
application program) now contains valid data. If you do so this is likely to cause 
problems in the client application since it is not expecting to receive data for a 
parameter that it knows is null.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    291



Chapter 16. Stored Procedures
Your stored procedure application program can call other stored procedure 
application programs or one or more of your existing application programs. 
However, if you call existing applications ensure that these are written as 
subroutines.

If you are not using the eXadas-supplied CICS, CA-DATACOM/DB, or IMS 
interfaces, you compile and link your stored procedure application program using 
the standard procedures for the language that the application program is written 
in. If you are using the CICS, CA-DATACOM/DB, and/or IMS interfaces, the 
procedures are slightly modified so that the interface load modules are included in 
the link step. These modifications are described in detail in  “CICS Interface 
Description,” on page 297, “CA-DATACOM/DB Interface Description,” on page 
310, and  “IMS DRA Interface Description,” on page 320.

Once you have linked an executable copy of your stored procedure application 
then either copy it into one of the load libraries referenced in the Server JCL or 
update the server JCL to include the library that your application resides in on the 
STEPLIB DD statement. Also add any additional DD statements in the Servers 
JCL that your stored procedure application program references. 

Once these modifications have been performed start the Server. You are now 
ready to start testing your stored procedure application program. You will need to 
do this from a client application. Descriptions of the possible techniques that you 
can use to invoke a stored procedure are discussed next.

Invoking Stored Procedures
As shown in Figure 35: “Stored Procedure Execution Flow,” on page 263, your 
stored procedure application program is invoked by a client application that issues 
a SQL CALL statement. All of the supplied client connectors contain support for 
the CALL statement. 

The remainder of this chapter describes the basic CALL statement syntax that is 
used to invoke a stored procedure using SQL. Then, for each connector, we 
describe how to obtain meta data about stored procedures and the connector-
specific API(s) that you can use to issue the CALL statement. 

The following topics are discussed:

• “CALL Statement Syntax,” on page 293, and

• “ODBC Stored Procedure Support,” on page 295.
292 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
CALL Statement Syntax

The following figure shows the format of the CALL statement supported by 
eXadas. 

NOTE: Client applications using ODBC or JDBC Connectors cannot use the ‘USING 
DESCRIPTOR’ form of this statement and cannot use indicator host-variables 
(they use parameter markers instead).

Figure 42:  CALL Statement Syntax

CALL procedure-name

host-variable

USING DESCRIPTOR descriptor-name

( )

,

host-variable

constant

NULL
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    293



Chapter 16. Stored Procedures
The CALL parameters are described the following table.

Table 55: CALL Statement Parameters

Parameter Description

procedure-name or host-
variable

Identifies the name of the stored procedure to be executed. The name 
should generally be specified in the form owner.name. If an owner is 
not specified, the connected user’s user ID is used for the owner. If a 
user ID is not supplied on connect the owner is PUBLIC.

You can either specify the name of the stored procedure explicitly as 
an identifier procedure-name, or you can use a host-variable 
reference, where host-variable contains the name of the stored 
procedure to be executed.

host-variable The name of a host-variable that, for input or input-output 
parameters contains the data that is passed to the stored procedure 
application program. For output parameters, the host-variable 
identifies a storage location that will be updated with the value 
supplied by the stored procedure application program upon return 
from the CALL statement.

The host variables data type must be compatible with the data type 
defined for the parameter.

If a null indicator variable is specified it can only contain a -1 for an 
output parameter.

constant A numeric or string constant that will be passed to the stored 
procedure application program. Constants can only be specified for 
input parameters. Additionally, the constant must match the data-
type for the parameter. That is, a numeric constant of the appropriate 
scale and precision must be supplied for INTEGER, SMALLINT, 
DECIMAL, FLOAT and DOUBLE parameter types. For CHAR or 
VARCHAR parameters, the constant must be in single quotes. 
Constants cannot be specified for GRAPHIC or VARGRAPHIC data 
types.

NULL Identifies that no value is being supplied for the parameter. NULL 
can only be specified for input parameters.

This causes the parameters associated null indicator to be set to -1 
when the stored procedure application program is called.

USING DESCRIPTOR 
descriptor-name

Identifies that the parameters to be passed to the stored procedure 
application program are contained in the SQLDA structure 
referenced by descriptor-name. The correct number and types of 
parameters must be contained in the SQLDA. Additionally, SQLN 
must identify the number of parameters being passed and SQLDABC 
must contain the correct value - (SQLN * 44) + 16.
294 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
ODBC Stored Procedure Support

The eXadas ODBC Connector implements the standard ODBC API interfaces 
used to obtain meta data information about the stored procedures defined for the 
data source that the ODBC Connector is connected to and to invoke a stored 
procedure. However, there are slight nuances between the eXadas implementation 
and the descriptions in the Microsoft ODBC Programmers Reference and SDK 
Guide.

Obtaining the list of stored procedures that are defined in the Meta Data Catalogs 
for a data source is achieved by using the SQLProcedures call. To retrieve 
parameter information about one or more stored procedure definitions use the 
SQLColumnProcedures call. eXadas supports the syntax and options described in 
the Microsoft ODBC documentation for these calls with the following exceptions:

• eXadas does not support qualifier names so szProcQualifier should always be 
null and cbProcQualifier should always be zero. 

• When retrieving the result sets from these calls, TABLE_QUALIFIER is 
always null.

• The REMARKS field is always spaces.

• For SQLProcedure calls, PROCEDURE_TYPE is always 
SQL_PT_UNKNOWN.

• When retrieving the result set from the SQLProcedureColumns call, the 
COLUMN_TYPE will only be one of the following values:

• SQL_PARAM_INPUT

• SQL_PARAM_INPUT_OUTPUT

• SQL_PARAM_OUTPUT

• RADIX is always 10.

• NULLABLE is always set to SQL_NULLABLE_UNKOWN.

For more information on how to issue the SQLProcedures and 
SQLProcedureColumns calls and retrieve their result sets see the Microsoft 
ODBC Programmer’s Reference and SDK Guide.

To invoke a stored procedure use the SQLExecDirect call. eXadas supports the 
following two formats of the CALL statement that can be supplied on the 
SQLExecDirect call:

• The shorthand syntax which is “{[?=]call procedure-
name(parameter,[parameter],...)}”

• “CALL procedure-name(parameter,[parameter],...)

Before issuing the SQLExecDirect call you may have to issue one or more 
SQLBindParameter calls for any parameter markers that are contained in the 
CALL statement. 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    295



Chapter 16. Stored Procedures
Following are the rules for when parameter markers can and/or must be used:

• For output or input-output parameters, parameter must be a parameter marker

• For input parameters, parameter can be a literal, a parameter marker or 
NULL.

• For the short format, the return value must be a parameter marker.

• procedure-name may either be supplied as an identifier or using a parameter 
marker.

Unlike the ODBC documentation, all parameters defined for the stored procedure 
must be supplied on the CALL statement. Additionally, the eXadas 
implementation does not support returning multiple result set rows from a stored 
procedure.

If you use the second format of the CALL statement or the shorthand format 
without a return value and your stored procedure application returns a non-zero 
return code (or the stored procedure application program sets a non-zero value for 
SQLCODE in the SQLCA) then:

• the RETCODE will either be set to SQL_ERROR or 
SQL_SUCCESS_WITH_INFO, depending on the return code (or 
SQLCODE) value, or you will need to 

• issue the SQLError call and inspect the pfNativeError parameter to obtain the 
return code (or SQLCODE) value.

If you wish to use the shorthand version of the CALL and specify a return code 
value, then the following rules must be followed when defining the stored 
procedure:

• The first parameter-declaration must be OUT.

• The first parameter-declaration parameter-name must be RC.

• The first parameter-declaration parameter-type must be INTEGER.

NOTE: If your stored procedure application program uses non-zero return code values to 
report warning conditions that are not errors, you must use the short-hand format 
specifying an RC value if you want to inspect any data returned from the stored 
procedure application program. When a non-zero return code is encountered, the 
Query Processor will not update the SQLDA returned to the client with any 
updated output or input-output parameters that the stored procedure application 
program may have modified. If you specify an RC parameter and a non-zero 
return code is encountered, the Stored Procedure Data Savant updates the RC 
parameter with the return code value and returns zeros to the Query Processor. 
This allows any updated values to be returned to the client and the 
SQLExecDirect call to report SQL_SUCCESS.

For more information on how to issue the SQLExecDirect and 
SQLBindParameter calls to invoke a stored procedure see the Microsoft ODBC 
Programmer’s Reference and SDK Guide.
296 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
CICS Interface Description
“Interfacing with CICS,” on page 267, explained how eXadas supplies the 
CACSPBR interface that allows a stored procedure application program running 
in the server’s address space to communicate with CICS to execute a CICS 
application program. eXadas supplies the CACSPVTM stored procedure 
application program that uses CACSPBR to initiate an APPC conversation with 
CICS and then LINK to an application program identified in the RUN OPTIONS 
parameter definition for the stored procedure. CACSPVTM sends the SQLDA 
supplied by the client application to the CICS application program. Once the 
application program completes execution, CACSPVTM receives (a possibly) 
updated version of the SQLDA (from the CICS application), deallocates the 
APPC conversation and returns the SQLDA to the client application.

In the majority of situations where you need to execute a CICS application 
program from a stored procedure application program, you can use CACSPVTM 
simply by writing a CICS application program. For those rare situations when 
CACSPVTM does not fit your needs, this section documents the API interface to 
CACSPBR. Writing your own stored procedure application program to interface 
with CICS is required when you need to invoke two or more CICS applications or 
when you need to perform processing in the server’s address space and then 
execute a CICS application program.

CACSPVTM is written in Assembler and source code is not available. To assist 
you in understanding how to interface with CACSPBR eXadas supplies a COBOL 
version of CACSPVTM in sample library SCACSAMP (CACSPCOM).

The remainder of this section describes how to interface with CACSPBR, how to 
compile and link applications that call CACSPBR, describes the possible error 
return codes that your stored procedure application may receive from CACSPBR, 
and possible CICS abend codes that you may receive from CACSP62. 

The following topics are discussed:

• “CACSPBR Interface Description,” on page 297,

• “Parameters Passed to the CICS Application Program,” on page 303,

• “Compiling and Linking Applications that Use CACSPBR,” on page 304,

• “CACSPBR Return Codes,” on page 305, and

• “CACSP62 Abend Codes,” on page 306.

CACSPBR Interface Description

The CICS interface bridge (CACSPBR) is distributed as a separate load module 
that may be dynamically called or statically linked into your stored procedure 
application program. See “Compiling and Linking Applications that Use 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    297



Chapter 16. Stored Procedures
CACSPBR,” on page 304, for an example of how to statically link CACSPBR 
into your stored procedure application program.

CACSPBR uses standard Assembler linkage conventions. CACSPBR is always 
passed three parameters, they are:

• an APPC function structure,

• an APPC data structure, and

• the SQLDA passed to the stored procedure application program.

The following figure shows how parameters need to be passed to CACSPBR. 
Additionally, CACSPBR must be called using variable-argument list calling 
conventions, the high-order bit of the SQLDA must be set to one. This is the 
standard calling convention for most high-level languages, for example COBOL. 
Additionally, CACSPBR is linked as an AMODE(31) RMODE(ANY) 
application. All addresses passed to CACSPBR must be passed in 31-bit 
addressing mode.

Figure 43:  Parameters Passed to CACSPBR

Upon return from CACSPBR Register 15 contains a return code value that 
indicates whether the requested function completed successfully or not. See 
“CACSPBR Return Codes,” on page 305, for a list and descriptions of the 
possible return codes.

Sample member CACSPVTM is a COBOL copybook that shows the structure and 
contents of both the APPC function and APPC data structures. The following  
shows the contents of that copybook:

       01  APPC-FUNCTION.
         05  APPC-REQUEST                   PIC X(8).

       01  APPC-DATA.
         05  APPC-DATA-IDENTIFIER           PIC X(8).
         05  LOCAL-LU-NAME                  PIC X(8).
         05  CICS-SYSTEM-APPLID             PIC X(8).
         05  APPC-MODE-ENTRY-NAME           PIC X(8).
         05  CICS-TRANSACTION-ID            PIC X(4).
         05  CICS-SP-PROGRAM-NAME           PIC X(8).
         05  CICS-SP-RETCODE                PIC 9(8) COMP.
         05  CICS-SP-ABENDCODE
                REDEFINES CICS-SP-RETCODE   PIC X(4).
         05  COMM-RETCODE                   PIC S9(8) COMP.
298 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
The following table describes the contents of the APPC function structure.

The following table describes the contents of the APPC Data structure.

Table 56: APPC Function Structure Contents

COBOL Name SQL Data Type Description

APPC-REQUEST CHAR(8) Identifies the function that CACSPBR needs to 
perform. Valid functions are:

• OPEN - Start a conversation with CICS.

• SEND - Send the SQLDA to CICS.

• RECEIVE - Receive an updated copy of the 
SQLDA from CICS.

• CLOSE - Deallocate the CICS conversation.

Table 57: APPC Data Structure Contents

COBOL Name SQL Data Type Description

APPC-DATA-IDENTIFIER CHAR(8) Signature field that identifies the structure as 
the APPC Data structure. Must contain the 
value “APPCDATA”.

LOCAL-LU-NAME CHAR(8) Identifies the name of a pool of VTAM logical 
units that can be used by CACSPBR to 
communicate with CICS, for example, 
CACPPC0*.

In the above example, CACSPBR initially 
attempts to open an ACB for LU name 
CACPPC00. If an ACB open error is returned, 
or a CNOS negotiation error is reported by 
CICS, then CACSPBR attempts to open an 
ACB named CACPPC01. If that fails LU 
names CACPPC02-CACPPC09 are tried until 
no errors are reported or all names have been 
attempted.

Only one set of wild-card characters can be 
specified (for example, CAC*PC0*) is 
invalid. Up to seven wild card-characters can 
be supplied (not recommended).

CICS-SYSTEM-APPLID CHAR(8) Identifies the APPLID of the CICS target sub-
system.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    299



Chapter 16. Stored Procedures
NOTE: Generally you should supply a value of spaces for the LOCAL-LU-NAME, CICS-
SYSTEM-APPLID, APPC-MODE-ENTRY-NAME, CICS-TRANSACTION-ID, 
and CICS-SP-PROGRAM-NAME fields and instead define this information on 
the RUN OPTIONS parameter on the CREATE PROCEDURE statement. 
CACSPBR always uses the information supplied in RUN OPTIONS in preference 
to anything supplied in the APPC data fields. For more information on how to 
specify the above information on the RUN OPTIONS parameter, see “Specifying 
CICS Transaction Scheduling Information,” on page 282.

APPC-MODE-ENTRY-NAME CHAR(8) Identifies the VTAM logmode table entry to 
be used. This name must identify an entry in 
the Logon Mode Table definition, in the Local 
LU Name APPL definitions and in the CICS 
SESSIONS definitions.

CICS-TRANSACTION-ID CHAR(4) Identifies the name of the CICS transaction 
that has been defined for CACVT62 to allow 
communications between the server and 
CICS. This name must be 4-characters long.

CICS-SP-PROGRAM-NAME CHAR(8) Identifies the name of the CICS program that 
CACVT62 is to LINK to. This name must be 
defined as a PROGRAM to CICS.

CICS-SP-RETCODE INTEGER CICS error return code. Value is zero if no 
CICS errors are being reported. If CICS-SP-
RETCODE is less than zero, then a CICS 
abend has occurred, the stored procedure 
application program should then inspect 
CICS-SP-ABENDCODE for the abend code.

CICS-SP-ABENDCODE CHAR(4) Abend code returned by CICS.

COMM-RETCODE INTEGER A communications error has been detected by 
CACSPBR. COMM-RETCODE contains an 
eXadas return code. See the eXadas System 
Messages Guide to determine what error is 
being reported and how to resolve the 
situation.

Table 57: APPC Data Structure Contents

COBOL Name SQL Data Type Description
300 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
Each time CACSPBR is called the CICS-SP-RETCODE and COMM-RETCODE 
must contain zeros. Upon return from CACSPBR, the following checks must be 
made:

• Is the RETURN-CODE (Register 15) non-zero. If so, COMM-RETURN code 
may contain an eXadas communications return code. See Table 60, 
“CACSPBR Return Codes,” on page 305, for the return code values that 
CACSPBR can return and whether there is a value in COMM-RETURN.

• Inspect CICS-SP-RETCODE for a non-zero value. If the value is less than 
zero then CICS-SP-ABENDCODE can be inspected to determine the abend 
code that CICS is reporting.

NOTE: If a non-zero COMM-RETURN or CICS-SP-RETCODE is received, 
it will be reported to the client application. You can suppress sending 
these return codes to the client application by setting the SQLCODE 
field in the SQLCA structure to a non-zero value.

CACSPBR must be called with the APPC-REQUEST field set to the values 
identified in Table 56, “APPC Function Structure Contents,” on page 299, in the 
following sequence:

1. OPEN

2. SEND

3. RECEIVE

4. CLOSE

Multiple sends and receives may be issued, however this should only be 
performed when multiple CICS applications need to be executed. The stored 
procedure application program must pass the SQLDA structure it was passed to 
CACSPBR. Additionally, the SQLDA structures contents cannot be altered only 
the data referenced by ARG-SQLDATA and the associated null indicators 
referenced by ARG-SQLIND. The following table provides and overview of the 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    301



Chapter 16. Stored Procedures
processing performed by CACSPBR and its counterpart CACSP62 for each 
APPC-REQUEST function.

Table 58: Processing Overview by Function

FUNCTION CACSPBR Actions CACVT62 Actions

OPEN Attempts to open a VTAM ACB 
based on the information supplied in 
fields:

• LOCAL-LU-NAME

• CICS-SYSTEM-APPLID

• APPC-MODE-ENTRY-NAME

• CICS-TRANSACTION-ID

If the ACB open fails and LU pooling 
information was supplied in field 
LOCAL-LU-NAME, a new name is 
generated and another attempt is made 
until all LU names have been 
exhausted.

In addition to passing the above 
information on the open, if a user ID 
and password were supplied for the 
connected user executing the stored 
procedure the user ID is also passed to 
CICS for security checking. If no user 
ID was supplied, the value NO_USER 
and a blank password is sent to CICS.

Saves the conversation ID supplied by CICS 
and allocates work buffers.

SEND Sends the CICS-SP-PROGRAM-
NAME and the SQLDA to CICS.

Receives a copy of the SQLDA and performs 
address translation so that the CICS 
application program can access the contents of 
the SQLDA ARG-SQLDATA and ARG-
SQLIND fields referenced in the SQLDA.

Issues a LINK for the program name 
contained in CICS-SP-PROGRAM-NAME 
and waits for control to return and sends the 
copy of the SQLDA back to CACSPBR.

If CICS reports an abend, the abend code is 
sent back to CACSPBR.

RECEIVE Receives a copy of the SQLDA from 
CICS and performs address 
translation so that the new copy can 
be referenced by the stored procedure 
application program.
302 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
Parameters Passed to the CICS 
Application Program

CICS application programs invoked by CACSP62 are passed three parameters in 
the communications area. Sample member CACSPDFH is a COBOL copybook 
that defines the communications area. The following shows the contents of that 
copybook:

01  DFHCOMMAREA.                                   
  05  APP-RETURN-CODE                PIC 9(8) COMP.
  05  ARG-DATA-POINTER               POINTER.      
  05  ARG-DATA-LENGTH                PIC 9(8) COMP.

The following table describes the contents of each of the fields in the 
communications area. Your application program must establish addressability to 
the SQLDA before inspecting/updating its contents. 

For example, in COBOL you would issue:

SET ARG-DATA TO ARG-DATA-POINTER.

CLOSE Closes the VTAM ACB, which causes 
the conversation with CICS to be 
terminated.

Receives deallocation request and frees 
resources allocated when the conversations 
was started.

Table 58: Processing Overview by Function

FUNCTION CACSPBR Actions CACVT62 Actions
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    303



Chapter 16. Stored Procedures
The above example assumes that you included a copy of SCACSAMP member 
CACSPSDA in the linkage section of your CICS application program.

Once your CICS application program has established addressability to the 
SQLDA it establishes addressability to the data and null indicator values in the 
SQLDA using the same techniques shown on page 291.

Compiling and Linking Applications that 
Use CACSPBR

The member CACSPCCC in the SCACSAMP library is a sample job stream that 
demonstrates how to compile and link CACSPCOM including CACSPBR. The 
following example provides a copy of CACSPCCC.

To compile and link CACSPCOM using the supplied JCL:

1. Supply an appropriate job card.

2. Modify the PROC parameters (LE, COBOL, SOUT, and so on) to specify 
correct values for your site.

3. Modify the COMPILE step SYSIN DD statement to specify the correct 
source library.

4. Modify the LKED step OBJ DD statement to specify the correct object 
library.

Table 59: Communication Area Contents

COBOL Name SQL Data Type

APP-RETURN-CODE INTEGER Fullword return code value that the CICS 
application uses to report whether processing was 
successful or not. The contents of this field are 
placed in the CICS-SP-RETCODE field in the 
APPC data area for inspection by your stored 
procedure application program running in the 
Server’s address space. This return code will be 
percolated to the client application program, unless 
your stored procedure application program overrides 
this code using the SQLCODE in the SQLCA.

ARG-DATA-POINTER INTEGER Address of the copy of the SQLDA that was sent to 
CICS. Your CICS application program must not 
modify this field.

ARG-DATA-LENGTH INTEGER The length of the SQLDA passed to your CICS 
application program. Your CICS application 
program must not modify this field.
304 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
5. Modify the LKED step SYSLMOD DD statement to specify the correct load 
library.

6. Modify the PROC statement to specify the correct high level name of the 
application libraries.

There are COBOL procedures, supplied by IBM, available to run compile and link 
programs that you may choose to use in place of the supplied JCL. If you elect to 
use the supplied procedures you will need to identify:

• the library containing the CACSPCOM source member;

• the library containing the CACSPBR object module;

• the load library into which the executable CACSPCOM member will be 
linked; and

• other variable parameters required by your chosen procedure.

For examples of the VTAM and CICS resource definitions required to execute a 
CICS application program using a Stored Procedure, see Appendix B, “Sample 
Stored Procedure VTAM and CICS Definitions.”

CACSPBR Return Codes

If CACSPBR detects an error, or an error is reported by the VTAM LU 6.2 
communication handler, CACSPBR returns a negative return code. Table 61, 
“CACSP62 Abend Codes,” on page 307, identifies the different codes that 
CACSPBR can return. For each return code a brief description of the problem is 
described, possible methods to resolve the problem and whether a more detailed 
explanation of the error condition can be found in the server’s output log.

Table 60: CACSPBR Return Codes

Return 
Code

Description Logged

-102 Invalid buffer version identifier. Either your stored procedure 
application program did not pass the SQLDA that was passed to your 
application as the third parameter to CACSPBR, or the SQLDA has 
been corrupted. Verify that the SQLDA is being passed as the third 
parameter to CACSPBR. If you are passing the SQLDA as the third 
parameter, then contact CrossAccess Technical Support.

No

-116 Invalid stored procedure internal identifier. See the description of 
return code -102 for problem resolution information.

No

-117 Invalid sqln value in the SQLDA. See the description of return code 
-102 for problem resolution information.

No
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    305



Chapter 16. Stored Procedures
CACSP62 Abend Codes

As part of the eXadas Stored Procedure implementation, a CICS- based LU6.2 
communication program is supplied (CACSP62). This program is needed when a 
user-written stored procedure program requests communication, using the server, 
with a CICS system. The communication functions performed by this program are 

-121 Incorrect number of parameters were passed to CACSPBR. Verify that 
the correct number of parameters are being passed to CACSPBR. If the 
correct number of parameters are being passed, contact CrossAccess 
Technical Support.

No

-122 Invalid APPC function was passed. Valid functions are OPEN, SEND, 
RECEIVE, and CLOSE.

No

-123 Invalid local LU name was passed to CACSPBR. Probable cause is that 
the LU name contains multiple sets of LU pooling wildcard characters 
or that too many wildcard characters were supplied. Verify that a 
correct local LU name is being passed.

No

-131 Attempt by CACSPBR to register itself with the VTAM LU 6.2 
connection handler failed. Review the Server output log for the error 
being reported.

Yes

-132 Error reported by the VTAM LU 6.2 connection handler while 
processing the OPEN function. Review the Server output log for the 
error being reported.

Yes

-141 Error reported by the VTAM LU 6.2 connection handler while 
processing the SEND function. Review the Server output log for the 
error being reported.

Yes

-151 Error reported by the VTAM LU 6.2 connection handler while 
processing a RECEIVE function. Review the Server output log for the 
error being reported.

Yes

-152 Disconnect being reported when processing the RECEIVE function. If 
the disconnect is being reported due to an error condition, then the error 
condition is logged in the Server output. If the disconnect occurred 
because CACSP62 decided to de-allocate the conversation, then no 
error is logged.

Maybe

-162 Error reported by the VTAM LU 6.2 connection handler while 
processing the CLOSE function. Review the Server output log for the 
error being reported.

Yes

Table 60: CACSPBR Return Codes

Return 
Code

Description Logged
306 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
specialized, designed explicitly to support the eXadas Stored Procedure 
implementation.

This CICS program executes as a transaction. The transaction is initiated when the 
user-written stored procedure program tells the Server to OPEN a communication 
session with a specific CICS system, identifying this program by transaction 
name. Transaction name is determined by the user site personnel and assigned 
when the software is installed in the CICS system.

Certain failures may occur within this communication process. The user is notified 
of failures in this communication processor with standard CICS abends. Each 
error has been assigned a specific abend code for easier problem determination. 
Normal CICS abend handling is allowed to produce diagnostic materials as 
defined by the user site. The abend code format is SPnn where nn is replaced by 
alphanumeric characters. The abend code prefix SP is fixed and not user-
configurable. The possible abends that may occur and the causes of these abends 
are as described in the following table.

Table 61: CACSP62 Abend Codes

Code Description

SP01 The transaction was initiated by a means other than an ALLOCATE from the Server. 
The transaction is specifically designed to execute as a communications server with a 
specific protocol used by the eXadas Stored Procedure implementation. Do not attempt 
to initiate the transaction by any other means.

SP02 An error condition has occurred during an LU6.2 RECEIVE operation. The Server that 
sent the message has terminated. CICS resources have been freed and this abend was 
issued to generate a transaction dump. EIB error information from the failing 
RECEIVE has been captured for diagnostic purposes. If the cause of the failure cannot 
be independently determined by reviewing the reason the Server terminated, contact 
CrossAccess Technical Support. You will be asked for the transaction dump and 
associated output. You will also be asked for Server output.

SP03 An error condition has occurred during an LU6.2 RECEIVE operation. The Server was 
notified of the error and it issued a DEALLOCATE effectively terminating the 
communication session. CICS resources have been freed and this abend was issued to 
generate a transaction dump. EIB error information from the failing receive has been 
captured for diagnostic purposes. Contact CrossAccess Technical Support. You will be 
asked for the transaction dump and associated output. You will also be asked for Server 
output.

SP04 An error condition has occurred during an LU6.2 RECEIVE operation. The Server was 
notified of the error and it has issued an ISSUE ERROR effectively indicating the 
communication session should be terminated. The Server was sent an ISSUE ABEND. 
CICS resources have been freed and this abend was issued to generate a transaction 
dump. EIB error information from the failing receive has been captured for diagnostic 
purposes. Contact CrossAccess Technical Support. You will be asked for the 
transaction dump and associated output. You will also be asked for Server output.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    307



Chapter 16. Stored Procedures
SP05 An error condition has occurred during an LU6.2 RECEIVE operation. The Server was 
notified of the error and it asked for additional information. The attempt to SEND EIB 
error information to the Server has also failed. The Server was sent an ISSUE ABEND. 
CICS resources have been freed and this abend was issued to generate a transaction 
dump. EIB error information from both the failing RECEIVE and the failing SEND has 
been captured for diagnostic purposes. Contact CrossAccess Technical Support. You 
will be asked for the transaction dump and associated output. You will also be asked for 
Server output.

SP06 An LU6.2 SYNCPOINT request has been detected. The eXadas Stored Procedure 
LU6.2 communications implementation does not support SYNCPOINT processing. 
The communication partner was sent an ISSUE ABEND. The eXadas Stored Procedure 
LU6.2 Connection Handler program is designed explicitly to support the eXadas Stored 
Procedure communications with a Server. Verify the communication partner is a 
Server. If the cause of the failure cannot be resolved, contact CrossAccess Technical 
Support. You will be asked for the transaction dump and associated output. You will 
also be asked for Server output.

SP07 An LU6.2 SYNCPOINT ROLLBACK request has been detected. The eXadas Stored 
Procedure LU6.2 communications implementation does not support SYNCPOINT 
ROLLBACK processing. The communication partner was sent an ISSUE ABEND. The 
eXadas Stored Procedure LU6.2 Connection Handler program is designed explicitly to 
support the eXadas Stored Procedure communications with a Server. Verify the 
communication partner is a Server. If the cause of the failure cannot be resolved, 
contact CrossAccess Technical Support. You will be asked for the transaction dump and 
associated output. You will also be asked for Server output.

SP08 An LU6.2 ISSUE SIGNAL request has been detected. The eXadas Stored Procedure 
LU6.2 communications implementation does not support ISSUE SIGNAL processing. 
The communication partner was sent an ISSUE ABEND. The eXadas Stored Procedure 
LU6.2 Connection Handler program is designed explicitly to support the eXadas Stored 
Procedure communications with a Server. Verify the communication partner is a 
Server. If the cause of the failure cannot be resolved, contact CrossAccess Technical 
Support. You will be asked for the transaction dump and associated output. You will 
also be asked for Server output.

SP09 An error condition has occurred during an LU6.2 RECEIVE operation. An illogical 
condition between incomplete data received and no data received was detected. The 
Server was sent an ISSUE ABEND. CICS resources have been freed and this abend 
was issued to generate a transaction dump. EIB error information from the failing 
receive has been captured for diagnostic purposes. Contact CrossAccess Technical 
Support. You will be asked for the transaction dump and associated output.

Table 61: CACSP62 Abend Codes

Code Description
308 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
SP10 An LU6.2 RECEIVE operation completed normally but was accompanied by a 
DEALLOCATE indicator. This means the Server is not in RECEIVE mode, thereby 
preventing the CICS component from returning (SENDing) any processed information 
to the Server. The CICS resources have been freed and this abend was issued to 
generate a transaction dump. EIB error information has been captured for diagnostic 
purposes. If the reason the Server issued a DEALLOCATE cannot be independently 
determined, contact CrossAccess Technical Support. You will be asked for the 
transaction dump and associated output. You will also be asked for Server output.

SP11 An LU6.2 RECEIVE operation completed normally but no data was received and the 
Server has issued a DEALLOCATE. This means the Server is not in RECEIVE mode, 
thereby preventing the CICS component from returning (SENDing) any processed 
information to the Server. The CICS resources have been freed and this abend was 
issued to generate a transaction dump. EIB error information has been captured for 
diagnostic purposes. If the reason the Server issued a DEALLOCATE cannot be 
independently determined, contact CrossAccess Technical Support. You will be asked 
for the transaction dump and associated output. You will also be asked for Server 
output.

SP12 The user written stored procedure program that executes in CICS receives a 
COMMAREA that contains the address of (a pointer to) the argument data buffer and 
the length of that buffer. The buffer cannot be moved or lengthened. The user-written 
stored procedure program may indicate a shorter argument data buffer is to be returned 
to the Server by changing the buffer length field in the COMMAREA. This abend was 
issued to generate a transaction dump. You must request CLOSE to terminate the 
communication session and release the CICS resources. Modify the user-written stored 
procedure program to prevent moving the argument data buffer.

SP13 An error condition has occurred during an LU6.2 SEND operation. The Server was sent 
an ISSUE ABEND. CICS resources have been freed and this abend was issued to 
generate a transaction dump. EIB error information from the failing send has been 
captured for diagnostic purposes. If the cause of the failure cannot be independently 
determined, contact CrossAccess Technical Support. You will be asked for the 
transaction dump and associated output. You will also be asked for Server output.

SP14 An LU6.2 RECEIVE operation completed normally. The data received is not the 
eXadas argument data buffer. The format and content of the data is unknown. No 
further processing can be performed. This abend was issued to generate a transaction 
dump. You must request CLOSE to terminate the communication session and release 
the CICS resources. If the reason incorrect data was received cannot be independently 
determined, contact CrossAccess Technical Support. You will be asked for the 
transaction dump and associated output. You will also be asked for Server output.

Table 61: CACSP62 Abend Codes

Code Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    309



Chapter 16. Stored Procedures
CA-DATACOM/DB Interface Description
The CACTDCOM interface module allows a stored procedure application 
program to access CA-DATACOM/DB data locally (from within the eXadas 
server address space). Access is performed using native CA-DATACOM/DB 
commands and control blocks. The CACTDCOM interface requires a stored 
procedure application program to first open a User Requirements Table. Once the 
URT is open, any series of CA-DATACOM/DB commands may be issued. When 
the stored procedure application program completes processing, the URT must be 
closed. Using the CACTDCOM interface allows the stored procedure application 
program to safely access and update CA-DATACOM/DB data, and supports 
transaction isolation from other stored procedure application programs that may 
also be accessing CA-DATACOM/DB data.

Using the CACTDCOM interface from a stored procedure application program is 
closely equivalent to accessing or updating CA-DATACOM/DB databases using a 
batch program. Although the interface macro DBURINF is never included when 
generating a User Requirements Table for use by the eXadas suite of products, 
there remain some similarities to a batch application. The URT name is available 
from the RUN OPTIONS statement in your Stored Procedure definition rather 
than from the LOADNAM= parameter in the DBURINF macro. The requirement 
that your stored procedure application program open and close the URT is the 

SP15 An LU6.2 RECEIVE operation completed normally. The argument data buffer received 
was not identified correctly. Either the buffer storage was corrupted or a Server did not 
create this buffer. The format and content of the data are suspect. No further processing 
can be performed. This abend was issued to generate a transaction dump. You must 
request CLOSE to terminate the communication session and release the CICS 
resources. If the reason the buffer is incorrectly identified cannot be independently 
determined, contact CrossAccess Technical Support. You will be asked for the 
transaction dump and associated output. You will also be asked for Server output.

SP16 An LU6.2 RECEIVE operation completed normally. The argument data buffer is not 
compatible with the eXadas Connection Handler transaction program that issued this 
abend. No further processing can be performed. This abend was issued to generate a 
transaction dump. You must request CLOSE to terminate the communication session 
and release the CICS resources. If you have recently upgraded your eXadas product 
suite, verify all components have been correctly installed. If the reason the buffer is 
incompatible cannot be independently determined, contact CrossAccess Technical 
Support. You will be asked for the transaction dump and associated output. You will 
also be asked for Server output.

Table 61: CACSP62 Abend Codes

Code Description
310 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
same as if you had coded the OPEN=USER parameter in the DBURINF macro for 
your batch application.

The CACTDCOM interface requires the Datacom Initialization Service be active 
within the eXadas server. CACTDCOM interfaces with the Datacom Initialization 
Service to connect to and communicate with the CA-DATACOM/DB Multi-User 
Facility. This allows CACTDCOM to log errors. Additional diagnostic 
information is also available when an error occurs, if the Datacom Initialization 
Service trace level is set to a value less than three. See Chapter 5, “Server Setup 
for CA-DATACOM/DB” for instructions on how to define a Datacom 
Initialization Service.

CACTDCOM Interface Description

The CACTDCOM interface is distributed as a separate load module that may be 
dynamically called or statically linked into your stored procedure application 
program. See “Compiling and Linking Applications That Use CACTDCOM,” on 
page 315, for an example of how to statically link CACTDCOM into your stored 
procedure application program.

The CACTDCOM interface is called using a parameter list where the first 
parameter passed in the list is the SQLDA argument passed to the stored 
procedure application program. The remaining entries in the parameter list are the 
normal parameters used to access CA-DATACOM/DB data. Each database 
operation requires from two to five parameters. For a description of the parameters 
required, an explanation of how they are used and what information they should 
contain for the call (or will contain upon return), reference the Commands chapter 
in the CA-DATACOM/DB Programmer Guide.

Figure 44: “Parameters Passed to CACTDCOM” shows how parameters need to 
be passed to CACTDCOM. CACTDCOM must be called using variable-argument 
list calling conventions. That is, the high-order bit of the last parameter must be 
set to one. This is the standard calling convention for most high-level languages, 
including COBOL. CACTDCOM is linked as an AMODE(31) RMODE(ANY) 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    311



Chapter 16. Stored Procedures
application. All addresses passed to CACTDCOM must be passed in 31-bit 
addressing mode.

Figure 44:  Parameters Passed to CACTDCOM

As indicated by the diagram above, parameters 4, 5, and 6 are conditional, based 
upon the type of CA-DATACOM/DB command specified in the Request Area. 

The first call issued by any stored procedure application program must be to 
OPEN the User Requirements Table. Opening the URT allows any table specified 
in the URT to be accessed and those tables defined with UPDATE=YES may also 
be updated. The following code example shows how to issue the OPEN command 
in a COBOL stored procedure application program. Included below is the portion 
of the stored procedures DATA DIVISION and the LINKAGE SECTION that is 
referenced in the executable code and the executable code to prepare for and issue 
the OPEN command. 

All examples of code in this section of the documentation are hard-coded to 
process the table named “DEMO-DEM-POH”. This table is delivered as part of 
the installation process for CA-DATACOM/DB. Also note, in this example, the 
User Requirements Table that is specified in the RUN OPTIONS of the cataloged 
Stored Procedure will be opened because no override _DATACOM keyword was 
supplied. 

WORKING-STORAGE SECTION.
01 USER-INFO-BLOCK PIC X(32).

01 POH-REQUEST-AREA.
02 POH-REQ-COMMAND PIC X(5).
02 POH-REQ-TABLE-NAME PIC X(3) VALUE "POH".
02 FILLER PIC X(5).
02 POH-REQ-RETURN-CODE PIC X(2).
02 POH-REQ-INTRNL-RTNCD PIC X(1).
. . . . . . .
. . . . . . .

LINKAGE SECTION.
01 SQLDA-DATA.

05 ARG-SQLDAID PIC X(8).
05 ARG-SQLDABC PIC 9(8) COMP.
05 ARG-SQLN PIC 9(4) COMP.
. . . . . .
. . . . . .
312 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
* BUILD REQUEST AREA AND OPEN URT
9300-OPEN-URT.

MOVE "MYPROGID" TO USER-INFO-BLOCK.
MOVE "OPEN" TO POH-REQ-COMMAND.
MOVE SPACES TO POH-REQ-RETURN-CODE.
MOVE 0 TO POH-REQ-INTRNL-RTNCD.

* IF YOUR URT CONTAINS MULTIPLE "POH" TABLES, SUPPLY THE
* DATABASE ID WHERE TABLE "DEMO-DEM-POH" IS INSTALLED.
* THIS IS NORMALLY DATABASE 1 (DBID=00001).
* MOVE 1 TO POH-REQ-DATABASE-ID.

* TO OVERRIDE THE URT IN THE META DATA "RUN OPTIONS", 
* SUPPLY A URT NAME IN THE WORK AREA AND PASS THE WORK AREA 
* ADDRESS AS THE FOURTH PARAMETER ON THE CALL THAT FOLLOWS.
* MOVE "_DATACOM(URTNAME)" TO POH-WORK-AREA.

DISPLAY "CACSPDC1 CALLING CACTDCOM TO OPEN URT."
UPON CONSOLE.

CALL "CACTDCOM" USING SQLDA-DATA,
USER-INFO-BLOCK,
POH-REQUEST-AREA.

IF POH-REQ-RETURN-CODE NOT EQUAL SPACES
PERFORM 9900-DISPLAY-RC

END-IF.

IF RETURN-CODE NOT EQUAL ZEROS
DISPLAY "CACSPDC1 OPEN URT ERROR. RC=" RETURN-CODE

UPON CONSOLE
GOBACK

END-IF.

Once the URT is successfully opened, the stored procedure application program 
can issue any CA-DATACOM/DB command against the database. The following 
snippet of code shows how to issue the ADDIT command for table “DEMO-
DEM-POH” in a COBOL stored procedure application program. Included below 
is a portion of the stored procedures DATA DIVISION and the LINKAGE 
SECTION that is referenced in the executable code and the executable code to 
prepare for and issue the ADDIT command: 

WORKING-STORAGE SECTION.
01 USER-INFO-BLOCK PIC X(32).

01 POH-REQUEST-AREA.
02 POH-REQ-COMMAND PIC X(5).
02 POH-REQ-TABLE-NAME PIC X(3) VALUE "POH".
02 FILLER PIC X(5).
02 POH-REQ-RETURN-CODE PIC X(2).
02 POH-REQ-INTRNL-RTNCD PIC X(1).
. . . . . . .
. . . . . . .

01 POH-WORK-AREA PIC X(20).
01 POH-RECORD REDEFINES POH-WORK-AREA.

02 POH-PO PIC X(5).
02 POH-LI PIC X(3).
02 POH-RECORD-UPDATE.

03 POH-VENDR PIC X(3).
03 POH-TPVAL PIC X(8).
03 POH-LATE PIC X.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    313



Chapter 16. Stored Procedures
01 POH-ELEMENT-LIST.
02 POH-ELM1 PIC X(5) VALUE "PO".
02 POH-SEC-CD1 PIC X VALUE " ".
02 POH-ELM2 PIC X(5) VALUE "LI".
02 POH-SEC-CD2 PIC X VALUE " ".
02 POH-ELEMENT-LIST-UPDATE.

03 POH-ELM3 PIC X(5) VALUE "VENDR".
03 POH-SEC-CD3 PIC X VALUE " ".
03 POH-ELM4 PIC X(5) VALUE "TPVAL".
03 POH-SEC-CD4 PIC X VALUE " ".
03 POH-ELM5 PIC X(5) VALUE "LATE".
03 POH-SEC-CD5 PIC X VALUE " ".
03 END-OF-ELEMENTS PIC X(5) VALUE SPACES.

LINKAGE SECTION.
01 SQLDA-DATA.

05 ARG-SQLDAID PIC X(8).
05 ARG-SQLDABC PIC 9(8) COMP.
05 ARG-SQLN PIC 9(4) COMP.
. . . . . .
. . . . . .

* BUILD CONTROL BLOCKS AND ISSUE ADDIT COMMAND TO INSERT RECORD
2200-ISSUE-ADDIT.

MOVE "ADDIT" TO POH-REQ-COMMAND.
MOVE SPACES TO POH-REQ-RETURN-CODE.
MOVE 0 TO POH-REQ-INTRNL-RTNCD.
DISPLAY "CACSPDC1 CALLING CACTDCOM TO ADDIT." UPON CONSOLE.
CALL "CACTDCOM" USING SQLDA-DATA,

USER-INFO-BLOCK,
POH-REQUEST-AREA,
POH-RECORD,
POH-ELEMENT-LIST.

IF POH-REQ-RETURN-CODE NOT EQUAL SPACES
PERFORM 9900-DISPLAY-RC

END-IF.

IF RETURN-CODE NOT EQUAL ZEROS
PERFORM 10000-ERROR-CLOSE-URT
DISPLAY "CACSPDC1 ADDIT ERROR. RC=" RETURN-CODE

UPON CONSOLE
GOBACK

END-IF.

Once database modification has been completed successfully, issue a COMIT 
command. If the database modification is determined to be unsuccessful or 
incorrect, issue a ROLBK command to reverse all database modifications done 
since the last COMIT or ROLBK command. If the stored procedure application 
program has issued neither COMIT nor ROLBK, all database modifications done 
since the OPEN command are reversed. Issuing a CLOSE command executes an 
implied COMIT, so the actual COMIT command may be bypassed. Follow your 
site standards and procedures regarding the use of explicit or implicit COMIT 
processing.

When the desired processing is completed, the last call issued by any stored 
procedure application program must be to CLOSE the User Requirements Table. 
The following code sample shows how to issue the CLOSE command in a 
COBOL stored procedure application program. Included below is a portion of the 
314 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
stored procedures DATA DIVISION and the LINKAGE SECTION that is 
referenced in the executable code and the executable code to prepare for and issue 
the CLOSE command:

WORKING-STORAGE SECTION.
01 USER-INFO-BLOCK PIC X(32).

01 POH-REQUEST-AREA.
02 POH-REQ-COMMAND PIC X(5).
02 POH-REQ-TABLE-NAME PIC X(3) VALUE "POH".
02 FILLER PIC X(5).
02 POH-REQ-RETURN-CODE PIC X(2).
02 POH-REQ-INTRNL-RTNCD PIC X(1).
. . . . . . .
. . . . . . .

LINKAGE SECTION.
02 SQLDA-DATA.

05 ARG-SQLDAID PIC X(8).
05 ARG-SQLDABC PIC 9(8) COMP.
05 ARG-SQLN PIC 9(4) COMP.
. . . . . .
. . . . . .

* BUILD REQUEST AREA AND CLOSE URT
9500-CLOSE-URT.

MOVE "CLOSE" TO POH-REQ-COMMAND.
MOVE SPACES TO POH-REQ-RETURN-CODE.
MOVE 0 TO POH-REQ-INTRNL-RTNCD.

* NO NEED FOR URT NAME HERE. IT IS REMEMBERED FROM THE OPEN.

DISPLAY "CACSPDC1 CALLING CACTDCOM TO CLOSE URT."
UPON CONSOLE.

CALL "CACTDCOM" USING SQLDA-DATA,
USER-INFO-BLOCK,
POH-REQUEST-AREA.

IF POH-REQ-RETURN-CODE NOT EQUAL SPACES
PERFORM 9900-DISPLAY-RC

END-IF.

IF RETURN-CODE NOT EQUAL ZEROS
DISPLAY "CACSPDC1 CLOSE URT ERROR. RC=" RETURN-CODE

UPON CONSOLE
GOBACK

END-IF.

Compiling and Linking Applications That 
Use CACTDCOM

eXadas does not supply sample JCL to compile and link a stored procedure 
application program that uses the CACTDCOM interface. Your stored procedure 
application program is compiled (or assembled) using your site standard 
procedures. Linking the CACTDCOM interface, again using your site standard 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    315



Chapter 16. Stored Procedures
procedures, requires only that you include the following control statement in your 
link edit input stream:

INCLUDE LOAD(CACTDCOM)

where LOAD is the name of a DD statement supplied in your link edit JCL to 
identify the location of the CACTDCOM load module. This DD statement will 
probably identify your eXadas installation load library. 

CACTDCOM Return Codes

CACTDCOM returns a zero return code in normal situations. If CACTDCOM 
detects an error, a non-zero return code is returned. Database errors reported by 
CA-DATACOM/DB are returned directly to the stored procedure application in 
the Request Area and are not intercepted or interpreted by the CACTDCOM 
interface. There are a number of different error return codes. The following table 
identifies the possible return code values and what, if any, information can be 
found in the eXadas server’s output log when one of these errors is detected.

NOTE: Return code values used by the CACTDCOM interface are between 101 and 199. 
To eliminate any confusion regarding the source of an error code, the stored 
procedure application program may choose to use return codes starting at the 
number 200 or above.

Table 62: CACTDCOM Return Code Information

Value Description Log Information

101 An invalid number of parameters were passed to CACTDCOM. 
Additional calls can be issued to CACTDCOM. This error should 
occur only during development of the stored procedure application 
program.

Message 5701813 
(0x005700B5) is 
generated.

102 The first parameter passed to CACTDCOM cannot be identified as 
an SQLDA or no parameter was passed to CACTDCOM. Additional 
calls to CACTDCOM should not be issued. This error should occur 
only during development of the stored procedure application 
program. 

None. The information 
necessary to issue log 
calls is not available.

103 The identifier in the internal control block used to manage stored 
procedure processing by the CACTDCOM interface has been 
corrupted. Additional calls to CACTDCOM should not be issued. 

This is an internal error. If encountered, contact CrossAccess 
Technical Support.

None. The information 
necessary to issue log 
calls is not available.
316 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
104 The length in the internal control block used to manage stored 
procedure processing by the CACTDCOM interface has been 
corrupted. Additional calls to CACTDCOM should not be issued. 

This is an internal error. If encountered, contact CrossAccess 
Technical Support.

None. The information 
necessary to issue log 
calls is not available.

105 The buffer version in the internal control block used to manage 
stored procedure processing by the CACTDCOM interface is not 
correct. Additional calls to CACTDCOM should not be issued. This 
indicates stored procedures of a prior release have been installed 
with the current release of eXadas. Any prior stored procedure 
applications must be re-linked using the new CACTDCOM 
interface.

None. The information 
necessary to issue log 
calls is not available.

106 CACTDCOM environment not properly initialized. Either the 
Stored Procedure Data Savant control block pointer is zero or the 
Datacom Service anchor pointer is corrupted. Additional calls to 
CACTDCOM should not be issued. 

This is an internal error. If encountered, contact CrossAccess 
Technical Support.

1. None. The 
information necessary 
to issue log calls is not 
available if the control 
block pointer is zero, 
or

2. Message 5701890 
(0x00570102) is 
generated if the anchor 
pointer is corrupted.

107 CACTDCOM environment not initialized. Either the global system 
anchor pointer is zero or the Datacom Service anchor pointer is zero. 
Additional calls to CACTDCOM should not be issued. 

This is an internal error. If encountered, contact CrossAccess 
Technical Support.

1. None. The 
information necessary 
to issue log calls is not 
available if the global 
system anchor  pointer 
is zero, or

2. Message 5701889 
(0x00570101) is 
generated if the 
Datacom Service 
anchor pointer is zero.

108 The stored procedure application program is attempting to issue a 
second OPEN command. Only one User Requirements Table can be 
open at a time. Additional calls can be issued to CACTDCOM. This 
error should occur only during development of the stored procedure 
application program.

Message 5701816 
(0x005700B8) is 
generated.

Table 62: CACTDCOM Return Code Information

Value Description Log Information
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    317



Chapter 16. Stored Procedures
109 CACTDCOM was unable to allocate memory for internal control 
blocks. Additional calls to CACTDCOM should not be issued. This 
error should only be received when the eXadas server is not properly 
configured.

Message 5701793 
(0x005700A1) is 
generated.

110 No User Requirements Table name was provided to CACTDCOM. 
Either the RUN OPTIONS statement from the catalog or the 
programmatic override did not contain the keyword _DATACOM, or 
the _DATACOM keyword was not followed immediately by a 
(urtname) clause. Additional calls to CACTDCOM should not be 
issued. This error should occur only during development of the 
stored procedure application program.

Message 5701814 
(0x005700B6) is 
generated.

111 The User Requirements Table name provided to CACTDCOM was 
less than one character or greater than eight characters in length. 
Additional calls to CACTDCOM should not be issued. This error 
should occur only during development of the stored procedure 
application program.

Message 5701815 
(0x005700B7) is 
generated.

112 The User Requirements Table program could not be loaded. 
Additional calls to CACTDCOM should not be issued. The URT 
program must be in a load library that is included in the STEPLIB 
concatenation of the eXadas server.

Message 5701817 
(0x005700B9) is 
generated.

113 The User Requirements Table program that was loaded does not 
appear to be a known format. Additional calls to CACTDCOM 
should not be issued. A portion of the URT is dumped in binary to 
the eXadas server log when the trace level is set to 4 or less. Review 
the URT content and determine if it is valid. Changes in the format 
of User Requirement Tables require code changes in CACTDCOM. 
Contact CrossAccess Corporation Technical Support if you believe 
the CACTDCOM interface requires code changes. 

Message 5701818 
(0x005700BA) is 
generated.

114 An attempt to connect with the eXadas Datacom Initialization 
Service has failed. One of the error messages shown in the column to 
the right has been logged. Additional calls to CACTDCOM should 
not be issued. This probably indicates the Datacom Initialization 
Service module is not active.

1.Message 5701897 
(0x00570109) is 
generated 

2. Message 5701903 
(0x0057010F) is 
generated 

3. Message 5701905 
(0x00570111) is 
generated 

Table 62: CACTDCOM Return Code Information

Value Description Log Information
318 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
115 An error has occurred while attempting to send an OPEN command 
to CA-DATACOM/DB. Additional calls to CACTDCOM should not 
be issued. The User Information Block (UIB) and the Request Area 
(RA) passed to CACTDCOM are dumped in binary to the eXadas 
server log when the trace level is set to 2 or less. Review the control 
blocks and determine if they contain valid data. Depending upon the 
eXadas return code information that is logged, this may be an 
internal error that should not occur or it may be an error that could 
occur only during development of the stored procedure application 
program.

Raw eXadas system 
return code 
information is logged.

116 Resources required to communicate with CA-DATACOM/DB are 
not available. All retries have been exhausted. Additional calls to 
CACTDCOM should not be issued. The CA-DATACOM/DB 
control blocks passed to CACTDCOM are dumped in binary to the 
eXadas server log when the trace level is set to 2 or less. 

This is an internal error. If encountered, contact CrossAccess 
Technical Support.

Message 5701819 
(0x005700BB) is 
generated 

117 The stored procedure application program has called CACTDCOM 
with a database command without first OPENing the URT. 
Additional calls can be issued to CACTDCOM. This error should 
occur only during development of the stored procedure application 
program. 

Message 5701820 
(0x005700BC) is 
generated 

118 A CACTDCOM interface environment pointer is zero. Additional 
calls to CACTDCOM should not be issued. 

This is an internal error. If encountered, contact CrossAccess 
Technical Support.

Message 5701821 
(0x005700BD) is 
generated

119 An error has occurred while attempting to send a CLOSE command 
to CA-DATACOM/DB. Additional calls to CACTDCOM should not 
be issued. 

The User Information Block (UIB) and the Request Area (RA) 
passed to CACTDCOM are dumped in binary to the eXadas server 
log when the trace level is set to 2 or less. Review the control blocks 
and determine if they contain valid data. Depending upon the eXadas 
return code information that is logged, this may be an internal error 
that should not occur or it may be an error that could occur only 
during development of the stored procedure application program.

Raw eXadas system 
return code 
information is logged.

120 The CACTDCOM interface was processing a command other than 
OPEN or CLOSE when it received a signal from the eXadas Query 
Processor to immediately terminate processing. The Query 
Processor is probably being stopped.

Message 5701894 
(0x00570106) is 
generated

Table 62: CACTDCOM Return Code Information

Value Description Log Information
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    319



Chapter 16. Stored Procedures
IMS DRA Interface Description
The CACTDRA interface module allows a stored procedure application program 
to access IMS data locally (within the Server address space) using the DRA 
interface. The CACTDRA interface allows a stored procedure application 
program to schedule a PSB, issue a series of standard DL/I calls, and then un-
schedule the PSB. The CACTDRA interface allows full function IMS databases, 
for example, HDAM or HIDAM, and Fast Path DEDB databases to be 
accessed/updated.

Using the CACTDRA interface allows the stored procedure application program 
to safely access/update IMS data and supports transaction isolation from other 
stored procedure application programs that may also be accessing IMS data. 
Using the CACTDRA interface the stored procedure application program can act 
very similarly to an IMS/DC on-line transaction program.

The CACTDRA interface requires that the IMS DRA Initialization service be 
active within the Server. CACTDRA interfaces with the IMS DRA Initialization 
service. This allows CACTDRA to log errors and, if the IMS DRA Initialization 
services trace level is set to a value less than three, the actual DL/I calls issued by 
the stored procedure application program calling CACTDRA. See Chapter 3, 

121 An error has occurred while attempting to send a command other 
than OPEN or CLOSE to CA-DATACOM/DB. Additional calls to 
CACTDCOM may be attempted to COMIT or ROLBK as may be 
required by the stored procedure application program. Success of 
any subsequent call is dependent upon the type of error that occurred 
previously. The CA-DATACOM/DB control blocks passed to 
CACTDCOM are dumped in binary to the eXadas server log when 
the trace level is set to 2 or less. 

This is an internal error. If encountered, contact CrossAccess 
Technical Support.

Raw eXadas system 
return code 
information is logged.

122 The User Requirements Table contains at least one table enabled for 
update processing. When the OPEN command was sent by the stored 
procedure application program, the Internal Return Code field in the 
Request Area was coded with the letter N, indicating no update 
processing was to be allowed. The stored procedure application 
program has sent an ADDIT, DELET or UPDAT command which 
has been rejected. Additional calls can be issued to CACTDCOM. 
This error should occur only during development of the stored 
procedure application program.

Message 5701822 
(0x005700BE) is 
generated

Table 62: CACTDCOM Return Code Information

Value Description Log Information
320 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
“Server Setup for IMS Access,” for instructions on how to define an IMS DRA 
Initialization service.

CACTDRA Interface Description

The CACTDRA is distributed as a separate load module that may be dynamically 
called or statically linked into your stored procedure application program. See 
“Compiling and Linking Applications That Use CACTDRA,” on page 323, for an 
example of how to statically link CACTDRA into your stored procedure 
application program.

The CACTDRA interface uses calling conventions that are very similar to the way 
a normal program accesses IMS data. The primary difference is that the first 
parameter passed to CACTDRA must be the SQLDA argument list passed to the 
stored procedure application program.

Figure 45: “Parameters Passed to CACTDRA,” on page 321, shows how 
parameters need to be passed to CACTDRA. Additionally, CACTDRA must be 
called using variable-argument list calling conventions, the high-order bit of the 
last parameter must be set to one. This is the standard calling convention for most 
high-level languages, for example COBOL. Additionally, CACTDRA is linked as 
an AMODE(31) RMODE(ANY) application. All addresses passed to CACTDRA 
must be passed in 31-bit addressing mode.

Figure 45:  Parameters Passed to CACTDRA

The actual number of parameters that need to be passed to CACTDRA depend on 
the type of DL/I function being issued and the structure of the database being 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    321



Chapter 16. Stored Procedures
accessed. The first call that must be issued to CACTDRA is a CICS-like SCHD 
call that schedules a PSB. This call differs slightly from a normal DL/I call in that:

• the name of the PSB is passed in the I/O area,

• CACTDRA returns the address of the list of PCBs that are defined within the 
PSB. 

One of these PCBs is passed on subsequent calls to CACTDRA in order to 
access/update IMS data. The I/O PCB can also be passed to issue checkpoint or 
rollback calls.

The following shows how to issue the SCHD call in a COBOL stored procedure 
application program. It shows the stored procedures DATA DIVISION, part of the 
LINKAGE section, and shows how to prepare for and issue the SCHD call:

WORKING-STORAGE SECTION.
01  PSB-NAME             PIC X(8)                       PROCEDURE DIVISION
            VALUE "DFSSAM09".                                     USING ARG-DATA, ARG-SQLCA.
01  DLI-FUNC-CODE        PIC X(4).                      MOVE "SCHD" TO DLI-FUNC-CODE.
01  DRA-PCB-LIST         POINTER.                       CALL "CACTDRA" USING ARG-DATA,
01  DRA-PCB-LIST         POINTER.                                               DLI FUNC CODE,
 10  SSA-SEG-NAME        PIC X(9)                                               DRA-PCB-LIST
                 VALUE "PARTROOT".                                              PSB-NAME.
01  IO-AREA.                                               IF RETURN-CODE NOT EQUAL ZEROS
 10  PART-KEY            PIC X(17).                           ERROR OCCURED
 10  DESCRIPT            PIC X(20).                           GOBACK
 10  FILLER              PIC X(13).                        ELSE
LINKAGE SECTION.                                               SET ADDRESS OF PCB-LIST
COPY CACSPSDA.                                                  TO DRA-PCB-LIST.
COPY CACSPSCA.
01  PCB-LIST.
    05  IO-PCB            POINTER.
    05  DB-PCB1           POINTER.
    05  DB-PCB2           POINTER.
01  RET-PCB.
    10  PCB-DBD           PIC X(8).
    10  PCB-SEG-LVL       PIC 99.
    10  PCB-STATUS-CODE   PIC XX.
    10  PCB-PROCOPT       PIC X(4).
    10  FILLER            PIC X(4).
    10  PCB-SEG-NAME      PIC X(8).
    10  PCB-KFBA-LEN      PIC 9(8) COMP.
    10  PCB-SENSEGS       PIC 9(8) COMP.
    10  PCB-KFBA          PIC X(33).

In this example, the DFSSAM09 IMS sample PSB is being scheduled. This PSB 
allows updates to be performed to all segments of the DI21PART IMS sample 
database. Once the PSB is successfully scheduled, the stored procedure 
application program can obtain addressability to one or more of the PCBs in the 
PSB and issue normal DL/I calls against any of the PCBs that are available.

The following figure is a singlet of code from a COBOL program that shows how 
to insert a new root segment in the DI21PART database in a COBOL program.

Like normal DL/I calls, up to 15 SSAs can be passed to CACTDRA. In the same 
manner, DL/I calls must be issued in the proper sequence. For example, to update 
a segment a GHU call must be issued first, followed by a REPL call.

Once all of the access/update DL/I calls have been issued, a CHKP does not have 
to be issued. When the PSB is unscheduled, a CHKP call is automatically issued. 
If the stored procedure application program decides that any updates should not be 
applied a ROLLBACK call can be issued. The stored procedure application 
program should not issue a ROLLBACK call that causes an abend. If a 
322 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
ROLLBACK call is issued, the Query Processor task servicing the stored 
procedure application program becomes unusable.

The following is sample code for an ISRT call:

 SET ADDRESS OF RET-PCB TO DB-PCB1.

    MOVE SPACES TO IO-AREA.
*   GET ADDRESSABILITY TO SQLDA PARAMETERS AND INITIALIZE
*   IO-AREA FOR INSERT
    MOVE "ISRT" TO DLI-FUNC-CODE.

    CALL "CACTDRA" USING ARG-DATA,
                         DLI-FUNC-CODE,
                         RET-PCB,
                         IO-AREA,
                         SSA.
 IF RETURN-CODE NOT EQUAL ZEROS
       MOVE RETURN-CODE TO ORIG-RC
       ERROR HAS OCCURED
    ELSE
       IF PCB-STATUS-CODE NOT = SPACES
          ERROR REPORTED BY IMS.

Once the final DL/I call has been issued CACTDRA must be called a final time to 
un-schedule the PSB. This is done using a CICS-like TERM call. The following 
shows sample code in a COBOL program to un-schedule the DFSSAM09 PSB:

MOVE "TERM" TO DLI-FUNC-CODE.
   CALL "CACTDRA" USING ARG-DATA,
                        DLI-FUNC-CODE.
   IF RETURN-CODE NOT EQUAL ZEROS
      DISPLAY "TERM CALL RC " RETURN-CODE.
   GOBACK.

Compiling and Linking Applications That 
Use CACTDRA

eXadas does not supply sample JCL to compile and link a stored procedure 
application program that uses the CACTDRA interface. The following 
instructions describe how to modify the CICS CACSPCCC sample compile and 
link JCL to include the CACTDRA interface instead of CACSPBR.

Begin by following the instructions in “Compiling and Linking Applications that 
Use CACSPBR,” on page 304, Before submitting the job, modify the statement:

INCLUDE LOAD(CACSPBR)

to:

INCLUDE LOAD(CACTDRA)
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    323



Chapter 16. Stored Procedures
If your stored procedure application program needs to both access/update IMS 
data and invoke a CICS application program, then include both of the above 
statements in the link step.

CACTDRA Return Codes

CACTDRA returns a zero return code in normal situations. If CACTDRA detects 
an error, or an error is reported by DRA, a non-zero return code is returned. There 
are 11 different error return codes. The following table identifies the possible 
return code values and what, if any, information can be found in the Server’s 
output log when one of these errors is detected.

NOTE: Return code values between 1 and 100 are reserved for use by the CACTDRA 
interface. The application return codes must be higher than the reserved error 
return codes.

Table 63: CACTDRA Return Code Information

Value Description Log Information

1 An invalid number of parameters were passed to 
CACTDRA. Additional calls can be issued to 
CACTDRA. This error should only be received during 
development of the stored procedure application 
program.

Message 5701825 (0x005700C1) is 
generated.

2 CACTDRA was unable to allocate memory for 
internal control blocks. Additional calls to CACTDRA 
should not be issued. This error should only be 
received when the Server is not properly configured.

Message 5701793 (0x005700A1) is 
generated.

3 IMS DRA Initialization service not active. Additional 
calls to CACTDRA should not be issued. This error 
should only be received when the Server is not 
properly configured.

Message 5701717 (0x00570055) is 
generated.

4 CACTDRA environment not properly initialized. 
Additional calls to CACTDRA should not be issued. 
This is an internal error that should never occur.

None. The information necessary to 
issue log calls is not available.

5 The requested PSB could not be scheduled. The stored 
procedure application program can try to schedule 
another PSB. This error can occur during development 
of the stored procedure application program. It can 
also be encountered in production situations when the 
Server has not been properly configured (for example, 
not enough DRA threads). This error can also be 
reported when the IMS Stage 1 gen. was not set up 
properly for the PSB scheduled.

Message 5701708 (0x0057004C) is 
generated.
324 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
Invoking Existing IMS Transactions
To execute existing IMS transactions from a stored procedure, the stored 
procedure application uses an APPC/MVS interface instead of the CACTDRA 
interface. APPC/MVS is used to communicate with APPC/IMS, which in turn is 
responsible for scheduling the requested IMS transaction and returning the output 
message(s) generated by the IMS transaction to the calling APPC/MVS 
application program (the stored procedure application program).

The remainder of this section discusses the following topics:

• “APPC/IMS Overview,” on page 326,

• “APPC/MVS Overview,” on page 327,

6 DL/I call failed. Additional calls can be issued to 
CACTDRA. This error should only be received during 
development of the stored procedure application 
program.

Message 5701715 (0x00570053) is 
generated.

7 An error occurred during TERM processing. 
Additional calls to CACTDRA should not be issued. 
This error should generally only be received if 
something has happened to IMS.

Message 5701711 (0x0057004F) is 
generated.

8 The first parameter passed to CACTDRA is not the 
SQLDA or the SQLDA has been corrupted. Additional 
calls to CACTDRA should not be issued. This error 
should only be received during development of the 
stored procedure application program.

None. The information necessary to 
issue log calls is not available.

9 The SQLDA has been corrupted. Additional calls to 
CACTDRA should not be issued. This is an internal 
error that should never be encountered.

None. The information necessary to 
issue log calls is not available.

10 The application issued a SCHD call, but a PSB had 
already been scheduled. This error should only be 
received during development of the stored procedure 
application program.

Message 5701826 (0x005700C2) is 
generated.

11 The application issued a standard DL/I or a TERM 
call, but no PSB was scheduled. This error should only 
be received during development of the stored 
procedure application program.

Message 5701827 (0x005700C3) is 
generated.

Table 63: CACTDRA Return Code Information

Value Description Log Information
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    325



Chapter 16. Stored Procedures
• “Configuring APPC/IMS and APPC/MVS,” on page 327,

• “Application Design Requirements,” on page 327,

• “Stored Procedure Limitations,” on page 328,

• “Testing APPC/MVS Stored Procedures,” on page 329, and

• “Sample Stored Procedures,” on page 330.

APPC/IMS Overview

In IMS Version 4, IBM added the APPC/IMS interface into the IMS Transaction 
Manger product. The IMS Transaction Manager is normally implemented as an 
IMS DB/DC sub-system, though it can also be implemented as an IMS DC 
sub-system.

APPC/IMS supports interfacing with three types of IMS application programs:

• Standard DL/I Applications—these are existing IMS applications that are 
unaware that they are not communicating with a LU 2 terminal. APPC/IMS 
converts the APPC data streams into the appropriate input messages, sends 
them to the IMS transaction, waits for an output message from the IMS 
application, and then sends the output message to the invoking application as 
an LU 6.2 data stream. In most instances, the existing IMS transaction 
requires no modifications.

• Modified Standard DL/I Applications—these are existing IMS application 
that have been modified to issue CPI Communications calls, as well as normal 
DL/I calls that the application initially issued.

• CPI Communication Driven Applications—these are new IMS applications 
that use CPI Communications calls to communicate with the partner program. 
They participate in the two-phase commit process by issuing SSRCMIT or 
SSRBACK CPI calls. These types of applications can issue database-related 
DL/I calls to access and update full-function, DEBD, MSDB, and DB2 
databases.

The IMS Vx Application Programming: Design Guide, Chapter 7: Application 
Design for APPC contains a good overview of how these types of application are 
designed. The section titled “LU 6.2 Partner Program Design” contains diagrams 
of the LU 6.2 message flows for the different types of IMS transactions that can be 
interfaced with, and additional message flows when these applications are under 
sync-point control. Also included is an integrity table that shows the differences 
between using and not using sync-point conversations.
326 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
APPC/MVS Overview

APPC/MVS is an extension to APPC/VTAM that allows MVS/ESA applications 
to use the full capabilities of LU 6.2. APPC/MVS provides a set of high-level 
language callable services that allows applications using these APIs to 
communicate with other applications through the communications protocols 
provided by the SNA network.

The APPC/MVS API has combined several CPI calls into single APPC/MVS API 
calls, and allows for state transitions that normally require individual CPI calls. 
APPC/MVS allows applications to be abstracted from the network definitions by 
using such things as symbolic destination names and selection of default out-
bound LU’s.

The OS/390 Vx MVS Writing TPs for APPC/MVS manual describes how to write 
APPC/MVS applications and provides reference information on the APPC/MVS 
APIs that are available. Depending on the version of APPC/MVS installed, some 
of these APIs have different names and parameter lists.

Configuring APPC/IMS and APPC/MVS

Setting up an environment for a stored procedure (or any application program for 
that matter) requires configuration changes to IMS, additional VTAM definitions, 
and the installation and configuration of APPC/MVS. 

Application Design Requirements

To design a stored procedure that invokes an existing IMS transaction, you do not 
need to know the business logic that is implemented by the IMS transaction, but 
you do need to know the message flow and input/output message formats that the 
IMS transaction is expecting to receive.

Typically, the IMS transaction will use MFS, so you should use the MID and 
MOD definitions to determine the input and output message formats. If the IMS 
transaction is implemented in COBOL, the COBOL program contains copy books 
or data structures that the IMS transaction uses.

If you use MFS MID/MOD definitions to identify the input and output messages 
formats that the transaction is using, you need to define a parameter for each 
unique input/output field defined in the MID and the MOD. The parameter length 
is for the length of the MID/MOD field, and the data type is usually CHAR. Use 
the following guidelines to determine what type of parameter should be used in 
the CREATE PROCEDUE definitions:

• Identify as INPUT parameters fields that only appear in the MID,

• Identify as OUTPUT parameters fields that only appear in the MOD, and
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    327



Chapter 16. Stored Procedures
• Identify as INOUT parameters fields that occur in both the MID and the 
MOD.

While developing stored procedures, you need to take into account that the input 
and output message formats that are sent to APPC/IMS do not exactly match the 
formats that the IMS transaction is expecting. The standard format for an IMS 
input message is:

• LL—length of the message, including LL and ZZ

• ZZ—zeros

• Data—the input fields the transactions is expecting.

APPC communications use unmapped conversations, so the send message format 
is:

• APPC LL

• IMS LL

• Data

APPC/IMS automatically inserts the IMS transaction code at the beginning of the 
data portion of the message. This may make the invocation of IMS transactions 
that do not expect the transaction code at the beginning of the input message 
impossible without modifications to the existing IMS transaction. This should not 
occur if the transaction was designed using the IBM recommendation that all 
input messages begin with the 8-byte transaction code.

The output messages generated by an IMS transaction have the same format as the 
input messages. However, APPC/IMS strips off the LL and ZZ fields, so these do 
not need to be defined in the received (output message) definition—just the APPC 
LL field.

Stored Procedure Limitations

Since stored procedures can only return a limited amount of information, it is 
recommended that stored procedures invoking IMS transactions be created to 
perform updates or to return a single screen of data. A stored procedure can be 
developed that invokes an IMS conversational transaction that returns multiple 
screens of data.

When a conversation is allocated, an 8-byte conversation ID is returned. This 
must be used in subsequent APPC/MVS calls. According to the APPC/MVS 
documentation, the conversation ID is associated with the address space and can 
be used by any TCB in the address space until the conversation is de-allocated.

Therefore, if an additional input/output parameter is added to the stored procedure 
definition for the conversation ID, it is possible to write a stored procedure that 
could be called multiple times, each time returning one or more screens of data. If 
this approach is taken, the input/output conversation ID parameter should be 
328 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
defined as CHAR(16), and the conversation ID should be converted to 
hexadecimal format for transmission back and forth between the client 
application.

Testing APPC/MVS Stored Procedures

Testing an APPC/MVS stored procedure is not difficult, due to the useful 
information returned from the APPC/MVS Error_Extract API. It includes the 
message text that is usually displayed on the console, including error message 
numbers. This helps with the diagnosing and debugging of APPC/MVS-related 
errors.

Figuring out whether the input messages are being formatted correctly is another 
matter. APPC/MVS supports very good tracing facilities. According to IBM’s 
documentation, you can get message flows and contents using the APPC/MVS 
tracing and debugging facilities.

Tracing the actual APPC/MVS message flows and content is generally not 
necessary, unless the stored procedure application program is attempting to 
interface with a very complicated IMS transaction. An alternate approach is to use 
the IMS trace facilities. With this approach, IMS logs the DL/I calls generated by 
the transaction. By inspecting the SSAs that were generated and the data returned, 
you can determine whether the input messages are formatted correctly. The only 
drawback to this approach is that you need some knowledge about the IMS 
transaction to figure out if the call patterns and returned information is correct.

To activate IMS tracing and get trace output:

1. Activate IMS tracing by issuing the command:

/TRACE SET ON PSB PSB-Name

where PSB-Name is the name of the PSB associated with the IMS transaction 
being tested.

Then, for each test run, perform the following actions:

a. Run a client application that invokes the stored procedure.

b. Once the stored procedure completes, issue the IMS /CHECKPOINT 
command to have the IMS log buffers flushed to disk.

c. Run the IMS trace log print utility DFSERA10, referencing the online 
log(s) for your IMS system.

d. Review the output from DFSERA10 to see if the DL/I calls look 
appropriate.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    329



Chapter 16. Stored Procedures
Sample Stored Procedures

Two sample stored procedures are supplied that interface with two of the IMS IVP 
sample transactions. They are:

• CACSPTNO—Interfaces with the IMS IVTNO non-conversational 
transaction.

• CACSPTCV—Interfaces with the IMS IVTCV conversational transaction.

These samples are located in the SCACSAMP library. Also included is a member, 
CACSPMPP, which contains the CREATE PROCEDURE grammar for these two 
sample stored procedures.

The sample IMS transactions are very simple and provide QUERY, INSERT, 
UPDATE and DELETE functions to a sample employee database. IVTNO 
expects a single message with a command code, and the database is immediately 
updated and a single message is returned. IVTCV performs the same operation, 
but the changes are not committed until an END message is sent to it.

The sample stored procedures are simplified because they do not use security or 
sync-point control. The processing flow for CACSPTNO is:

1. Establish address ability to the input/output parameters it was passed.

2. Allocate the conversation using hard-coded values.

3. Format the input message buffer.

4. Send the message to IMS.

5. Wait for the output message from IMS.

6. Updates any output or input/output parameters.

7. De-allocates the conversation.

The CACSPTCV is similar to CACSPTNO, and includes additional send and 
receive steps to send the “END” message and wait for the response.

Both samples contain limited error detection and reporting. If an error is reported, 
the APPC/MVS Error_Extract service (API) is called to obtain detailed 
information about the error condition. The error information is displayed on the 
console and a general error return code is returned to the calling application. This 
approach was taken because once the stored procedure has been successfully 
tested, errors should not occur in production operations. Another reason is that 
end-users probably will not know what to do with the detailed information that is 
provided when an APPC/MVS error is reported.

Adding Transaction Security

As mentioned above, the sample stored procedures are unsecured transactions—
they do not pass a user ID or password on the allocate request. To use secured 
transactions, the stored procedure application can use the CACSPGUI (Get User 
ID) and CACSPGPW (Get Password) subroutines to obtain the current user’s user 
ID and password for inclusion in the allocate call.
330 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
Sync-Point Conversations

The sample stored procedures do not use the LU 6.2 sync-point protocols to 
communicate with APPC/IMS.

The IMS Design Guide contains diagrams that show the sync-point control flows 
for the different types of IMS transactions. The APPC/MVS documentation 
describes the formats of the calls that need to be issued. These calls are less 
complex than the ones that the sample stored procedures contain to allocate the 
conversation, send/receive messages, de-allocate the conversation, and obtain 
error information.

Support Routine Descriptions
eXadas passes more information to your stored procedure application program 
than the SQLDA structure that is documented. There is a hidden area that precedes 
the SQLDA that eXadas uses to establish and maintain communications with 
other eXadas components.

At this time, eXadas provides three support routines that lets you get a copy of the 
connected user ID, their password and a copy of the RUN OPTIONS parameter 
that was supplied on the CREATE PROCEDURE statement. Unlike the CICS and 
IMS DRA interface these support routines are supplied in object form for direct 
inclusion in your stored procedure application program. These support routines 
are written in Assembler Language and are passed two parameters. They are:

• the SQLDA structure and

• the address of an output field where the requested information is moved.

Like the CICS and IMS DRA interface these support routines are written to accept 
31-bit addresses. However, unlike the CICS and IMS DRA interfaces these 
support routines do not perform validation checks to confirm that the first 
parameter is in fact a pointer to the SQLDA. Failure to pass the SQLDA as the 
first parameter generally results in some form of addressing exception abend.

Table 45, “Support Routines,” on page 272, identifies the support functions that 
are available. The calling conventions for each support routine are described and 
minimal linkage instructions in discussed in the following sections:

• “Get RUN OPTIONS (CACSPGRO) Calling Conventions,” on page 332,

• “Get User ID (CACSPGUI) Calling Conventions,” on page 332, and

• “Get User Password (CACSPGPW) Calling Conventions,” on page 333.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    331



Chapter 16. Stored Procedures
Get RUN OPTIONS (CACSPGRO) Calling 
Conventions

Support routine CACSPGRO copies the RUN OPTIONS parameter specified on 
the CREATE PROCEDURE statement into a 254-byte work area supplied by your 
stored procedure application program. The following figure shows the calling 
conventions used to invoke CACSPGRO.

Figure 46:  CACSPGRO Calling Conventions

CACSPGRO always issues a return code of zeros. Upon return the area 
referenced by Parameter 2 contains a copy of the RUN OPTIONS parameter 
padded with blanks.

To link-edit CACSPGRO into your stored procedure application, concatenate 
library SCACSAMP into the SYSLIB DD statement on the link step and include 
the following in the SYSIN DD statement on the link step:

INCLUDE SYSLIB(CACSPGRO)

Get User ID (CACSPGUI) Calling 
Conventions

Support routine CACSPGUI copies the connected user, user ID into an 8-byte 
work area supplied by your stored procedure application program. The following 
figure shows the calling conventions used to invoke CACSPGUI.

Figure 47:  CACSPGUI Calling Conventions
332 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 16. Stored Procedures
CACSPGUI always issues a return code of zeros. Upon return the area referenced 
by parameter 2 contains a copy of the connected user’s user ID padded with 
blanks. If no user ID was supplied, the output area contains spaces.

To link-edit CACSPGUI into your stored procedure application, concatenate 
library SCACSAMP into the SYSLIB DD statement on the link step and include 
the following in the SYSIN DD statement on the link step:

INCLUDE SYSLIB(CACSPGUI)

Get User Password (CACSPGPW) Calling 
Conventions

Support routine CACSPGPW copies the connected user password into an 8-byte 
work area supplied by your stored procedure application program. Figure 48: 
“CACSPGPW Calling Conventions,” on page 333, shows the calling conventions 
used to invoke CACSPGPW.

Figure 48:  CACSPGPW Calling Conventions

CACSPGPW always issues a return code of zeros. Upon return the area 
referenced by Parameter 2 contains a copy of the connected users password 
padded with blanks. If no password was supplied, the output area contains spaces.

To link-edit CACSPGPW into your stored procedure application, concatenate 
library SCACSAMP into the SYSLIB DD statement on the link step and include 
the following in the SYSIN DD statement on the link step:

INCLUDE SYSLIB(CACSPGPW)
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    333



Chapter 16. Stored Procedures
334 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



17

Enterprise Server

Introduction to Enterprise Server 
Installation and Configuration

The Enterprise Server can be used to manage a large number of concurrent users 
across multiple data sources. An Enterprise Server sits between your application 
and the eXadas Server. It appears as the server to the client and as the client to the 
server. The Enterprise Server is responsible for starting additional servers as the 
number of concurrent users increases.

An Enterprise Server contains the same tasks that a server uses, with the exception 
of the Query Processor and the Initialization Services. Like a server, the 
Enterprise Server’s Connection Handler is responsible for listening for client 
connection requests. However, when a connection request is received, the 
Enterprise Server does not forward the request to a Query Processor task for 
processing. Instead, the connection request is forwarded to a Data Source Handler 
(DSH) and then to a server for processing. The Enterprise Server maintains the 
end-to-end connection between the client application and the target server. It is 
responsible for sending and receiving messages between the client application and 
the server.

The Enterprise Server is also used to perform load balancing. Using configuration 
parameters, the Enterprise Server determines the locations of the servers that it 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 335



Chapter 17. Enterprise Server
communicates with and whether those servers are running on the same platform as 
the Enterprise Server.

The Enterprise Server can automatically start a local server if there are no 
instances active. It can also start additional instances of a local server when the 
currently-active instances have reached the maximum number of concurrent users 
they can service, or the currently active instances are all busy.

This chapter contains the following sections:

• “Deployment of the Enterprise Server,” on page 336, which describes how to 
install and deploy the sample for the Enterprise Server.

• “Operations,” on page 339, which describes starting and stopping the 
Enterprise Server.

Deployment of the Enterprise Server
This section details the steps necessary to bring up an eXadas Enterprise Server 
and access data using standard SQL. 

The Enterprise Server invokes the eXadas base product server so that you can 
readily verify the deployment and configuration of the Enterprise Server (having 
already verified the base product). At the end of this process, you will have 
dynamically started a server (CACDS) using an Enterprise Server (CACES); have 
a Client Application (CACCLNT) issue a connection request to the Enterprise 
Server; and have it retrieve data back from the server. The connection from the 
Enterprise Server to the eXadas server will use the Cross Memory 
Communication Protocol.

For information on specific Enterprise Server configuration parameters, see 
Appendix A, “Configuration Parameters.”

To deploy the Enterprise Server:

1. Ensure that CACDS can be started successfully.

2. Edit the base product server configuration to prepare for CACDS 
initialization by the Enterprise Server (CACES).

3. Apply the necessary customizations to the Enterprise Server JCL and examine 
the configuration.

4. Submit the Enterprise Server JCL.

5. Submit the batch Client Application JCL and verify the output.
336 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 17. Enterprise Server
Deployment Steps

1. Ensure that CACDS has access to the necessary data sets. 

See the Installation chapter in the eXadas OS/390 Getting Started Guide for 
instructions on how to start the eXadas server as a started task.

a. Apply the necessary JCL changes to prepare the eXadas server to be 
started by an Enterprise Server.

b. Along with all the changes made to the eXadas server JCL during the 
product installation process, uncomment the PARM1 symbolic in the 
PROC statement and the PARM card in the EXEC statement.

2. Edit the server master configuration file to prepare the server to be started by 
an Enterprise Server (SCACCONF member CACDSCF). 

a. Comment out the Service Info Entry for the Connection Handler used 
when configuring the eXadas server for communications. A Connection 
Handler Service is dynamically started within the server when it is started 
by the Enterprise Server, CACES. The communication parameters for this 
Connection Handler Service are specified on the Service Info Entry of the 
CACSAMP DSH in the SCACCONF member CACESCF. If a server is 
already listening where these parameters specify, and if peer support has 
been specified on the Enterprise Server Service Info Entry, the Enterprise 
Server will connect to that existing server.

b. Copy the CACES member from the SCACSAMP data set to your 
PROCLIB.

3. Apply the necessary customizations to the Enterprise Server JCL. 

Edit the eXadas data set high-level qualifier (SCACSAMP member CACES), 
and valid SYSOUT class.  

4. Save this member. 

5. Edit the Enterprise Server configuration file (SCACCONF member 
CACESCF). 

Uncomment the SERVICE INFO ENTRY for the Cross Memory Data Source 
Session Handler Service. Also uncomment the SERVICE INFO ENTRY for 
the Connection Handler used when configuring the eXadas Server for 
communications, using the same references in the last field.

NOTE: The Cross Memory CACINIT Service Info Entry specifies the same 
data space name/queue name as in the Server’s configuration. The 
CACSAMP Cross Memory DSH Service Info Entry has a different 
data space name/queue name specified (CACD/CACQ). These two 
Service Info Entry parameters must specify different values if using 
the same Transport Layer protocol between the client and the 
Enterprise Server and between the Enterprise Server and the  eXadas 
Server. Table 64, “Communication Parameter Correlation,” on page 
338, shows the Communication Parameter Correlation between a 
Client, an Enterprise Server, and a Server.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    337



Chapter 17. Enterprise Server
6. Issue an operator command to start the Enterprise Server.

a. From the OS/390 console, issue a standard start command: 

S CACES 

b. Examine the job output while it is executing, you will see the following 
message near the top of the listing:

CAC00103I EXADAS SERVER: V2.2.4 READY 

NOTE: You should also see that the server has been started and 
initialized.

7. Submit the base product batch Client Application: the SCACSAMP member 
CACCLNT. 

a. Use the same queries used for bringing your data source on line or follow 
the steps in the eXadas OS/390 Getting Started Guide for bringing 
Sequential data on line and use the Sequential queries.

b. View the output. The output should contain the SQL statements being 
used and the corresponding result set.

* Connection Handler Service uses parameters passed from the DSH that 
requested the server to be started.

Table 64: Communication Parameter Correlation

Client Enterprise Server Server

Data Source

(Field 1 & 2)

Connection 
Handler       
Service 

Information Entry

(Field 10)

Data Source 

Session Handler 
Service 

Information Entry

(Field 2 & 10)

Connection 

Handler Service 

Information Entry 

(Field 10)

Query 

Processor 

Service 

Information 
Entry

(Field 2)

CACSAMP
(field 1)

CACSAMP
(field 2)

CACSAMP

XM1/CAC/CAC
(field 2)

XM1/CAC/CAC

XM1/CACD/CACQ
(field 10)

*

338 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 17. Enterprise Server
Operations
This chapter provides a brief overview of running an Enterprise Server in a test 
and production environment. The following topics are discussed in this section:

• “Starting OS/390 Enterprise Servers,” on page 339,

• “Monitoring and Controlling Enterprise Servers,” on page 340,

• “Starting and Stopping Individual Services,” on page 343, and

• “Stopping the Enterprise Server,” on page 344.

For a list of MTO commands, see Appendix C, “MTO Command Reference.”

Starting OS/390 Enterprise Servers

An eXadas Enterprise Server is a special type of server that loads one or more 
Data Server Handler (DSH) services. Typically, an Enterprise Server does not run 
any Query Processor (QP) services.

The main purpose of an Enterprise Server is to act as a proxy for sessions between 
eXadas client/ODBC applications and servers. The Enterprise Server is also 
responsible for dynamically starting and stopping servers based upon user load. In 
cases where multiple server instances are using the same service name, an 
Enterprise Server will balance new connections across all instances. A properly 
configured Enterprise Server offers scalability, dynamic scheduling, load leveling, 
and/or protocol translation (Gateway) to an eXadas client/server environment.

A DSH service instance is responsible for starting, stopping, and routing sessions 
to a corresponding server instance. There is a one-to-one relationship between a 
DSH instance and a server instance. If a DSH instance is started, then its 
corresponding server is started. If a DSH instance is stopped, then its 
corresponding server instance is stopped. If a server instance that has been started 
by a DSH is stopped independently of the Enterprise Server, then the Enterprise 
Server is notified and the corresponding DSH instance is stopped. An OS/390 
DSH can control two types of servers: started tasks and/or batch jobs.

OS/390 Enterprise Servers can be run as either an OS/390 batch job or a started 
task. Like any batch job or started task, the user ID of the Enterprise Server itself 
is based on the submitter of the batch job or the user ID associated with a started 
task. Enterprise Servers are typically not configured to access data locally (using a 
Query Processor service), but if so configured they are subject to the same security 
restrictions as a server. Sessions routing through an Enterprise Server are subject 
to the security restrictions of the target server. 

OS/390 servers started by an Enterprise Server can either be started tasks or batch 
jobs. When a DSH is configured to start multiple instances of a started task, the 
procedure name in field 11 of the DSH Service Info Entry is suffixed by a unique 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    339



Chapter 17. Enterprise Server
identifier field generated by the DSH. The procedure name should not exceed 8 
characters and the identifier is in the following format:

Tyyyyyyy 

where yyyyyyy is the EBCDIC representation of the TASKID of the DSH, such as 
DSPROC.T3589342. When a DSH is configured to start multiple instances of a 
batch job, the batch job name, which must not exceed 6 characters, is suffixed by 
a unique 2 character hexadecimal field, such as CACDS00. 

A batch server is determined by setting the Task Type field of the corresponding 
DSH Service Info Entry to 3. A started task is determined by setting the same field 
to 2. In either case, field 11 of the DSH Service Info Entry is used to specify the 
JOB/PROC name, which follows the communications compound address field of 
the server that will be started by this DSH.

The OS/390 server configuration should not specify a Connection Handler 
Service, CACINIT, as the passed compound address field will trigger the server’s 
region controller to start one up for the specified address. 

For example:

 SERVICE INFO ENTRY = CACDSH CACSAMP 3 2 4 1 4 5M 5M 
XM1/CACD/CACQ CACDS

This SIE specifies a server to be started as a batch job (field 3 = 3) using the JCL 
from the member name CACDS and that it will listen for connections on the 
address XM1/CACD/CACQ.

NOTE: The member CACDS must reside in the PDS data set specified by the JOBDEF 
DD name.

Once an Enterprise Server is started, it is ready to accept client connections and 
requests for data.

Monitoring and Controlling Enterprise 
Servers

The server and the Enterprise Server are designed to run continuously. eXadas 
supplies an OS/390 MTO (Master Terminal Operator) interface that can be used to 
monitor and control server/Enterprise Server operations. Using the MTO 
interface, you can issue the following commands:

• Display active services in an Enterprise Server,

• Display configurations,

• Modify configuration parameters,

• Display memory utilization,
340 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 17. Enterprise Server
• Display users,

• START and STOP individual services, and

• STOP the Enterprise Server.

The basic format of an OS/390 MTO command is:

F servername,command,[subcommand1,subcommand2,...]

When executing these commands under IBM’s SDSF, you must precede the 
command with the slash (/) character, as shown in the following example:

/F CACDS001,DISPLAY,SERVICES

Displaying Active Services in an Enterprise Server

At start-up, the Enterprise Server processes the master configuration file and starts 
services defined with SERVICE INFO ENTRY parameter values. The number of 
services started depends on the minimum tasks entry (field 4) in each SERVICE 
INFO ENTRY. 

NOTE: This field can be set to 0 when you do not want the service started automatically at 
Enterprise Server initialization. For more information on the SERVICE INFO 
ENTRY parameter settings, see Appendix A, “Configuration Parameters.”

To display the active services, issue the DISPLAY,SERVICES command from 
the OS/390 Master Console or SDSF. Sample output from the 
DISPLAY,SERVICES command follows.

F servername,DISPLAY,SERVICES
Service Type TASKID TASKNAME Status User
LOGGER CACLOG 9392624 CACLOG READY
CACSAMP CACDSH 9270608 CACDSH READY
CACSAMP CACDSH 9269664 CACDSH RECEIVING
XMQ CACINIT 9215624 CACINIT READY
TCPIP CACINIT 9214680 CACINIT READY

NOTE: The active service display only shows services that are currently running in the 
Enterprise Server. To view all services defined to a Enterprise Server, you must 
display the Master Configuration with the command 
DISPLAY,CONFIG=MASTER. For more information on displaying 
configurations, see “Displaying Configurations,” on page 342.

Displaying Servers Connected to an Enterprise Server

Once a server is started by an Enterprise Server, it is represented locally as a DSH 
service instance. For each DSH Service instance displayed by the 
DISPLAY,SERVICES command there is a corresponding server instance 
running. Individual users assigned to a particular server can be displayed only on 
that server.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    341



Chapter 17. Enterprise Server
Displaying Configurations

Configuration information is loaded from members of the VHSCONF data set at 
Enterprise Server initialization time. The initial member identified in the 
VHSCONF DD is known as the MASTER configuration member. Minimally, 
there is a MASTER configuration active in all running Enterprise Servers.

To display the MASTER configuration, issue the following MTO command:

F servername,DISPLAY,CONFIG=MASTER

The output from this command follows:

Configuration: MASTER
*(1)MESSAGE POOL SIZE = 16777216
 (2)TASK PARAMETERS = NULL
 (3)USER CONFIG = 0
 (4)STATIC CATALOGS = 0
*(5)NL = US ENGLISH
*(6)NL CAT = DD:ENGCAT
 (7)BTREE BUFFERS = 4
 (8)LD TEMP SPACE = ALCUNIT=TRK,SPACE=15,EXTEND=5
 (9)SAF EXIT = NULL
 (10)SMF EXIT = NULL
 (11)MAX ROWS EXAMINED = 0
 (12)MAX ROWS RETURNED = 0
 (13)MAX ROWS EXCEEDED ACTION = ABORT
 (14)JOIN MAX TABLES ANALYZED = 4
 (15)CPU GOVERNOR = NULL
 (16)LOCALE = NULL
 (17)WLM UOW = NULL
 (18)PDQ = 0
 (19)INTERLEAVE INTERVAL = 100
 (20)VSAM AMPARMS = NULL
*(101)SERVICE INFO ENTRY = CACCNTL CNTL 0 1 1 100 4 5M 5M 
NO_DATA
*(102)SERVICE INFO ENTRY = CACLOG LOGGER 1 1 1 100 1 5M 5M 
NO_DATA
*(103)SERVICE INFO ENTRY = CACDSH CACSAMP 3 1 10 50 4 5M 5M 
 XM1/CACD/CACQ CACEDS
*(104)SERVICE INFO ENTRY = CACINIT TCPIP 2 1 10 100 4 5M 5M
 TCP/199.222.141.33/7070

Lines in the output display prefixed by an asterisk (*) denote configuration values 
that were either read in at initialization time or updated by an MTO operator SET 
command. All other configuration items are set to their default values as defined 
in Appendix A, “Configuration Parameters.”

Displaying the MASTER configuration is the only way to view all the SERVICE 
INFO ENTRYs defined to a running Enterprise Server. While many services can 
be viewed with a DISPLAY,SERVICES command, services that are not running 
cannot be viewed.

To display active configurations while an Enterprise Server is running, issue the 
DISPLAY,CONFIGS command. 

The master configuration is always active while a server is running.
342 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 17. Enterprise Server
Modifying Configuration Parameters

Any active configuration can be dynamically modified with the MTO SET 
command. The format of the SET command is as follows:

F servername,SET,NAME=configname,ORD=ordinalnumber,

VALUE='value'

WARNING: Dynamic modification of production servers is not recommended unless the full 
impact of configuration changes is known.

In general, configurations are generally static and modification at runtime is not 
necessary. 

Displaying Memory Utilization

Enterprise Servers run with a fixed pool of memory that must be shared by all 
services and users. The size of an Enterprise Server Memory Pool is defined by 
the MESSAGE POOL SIZE parameter in the master configuration file. To display 
the current memory utilization from the message pool, issue the command:

F servername,DISPLAY,MEMORY

The output of the command is as follows:

Total Memory 6835K, Available 5918K (86%)

The memory display includes:

• the total size of the pool, 

• the amount of memory available for use by services and users, and

• the percentage of the pool that is still available. 

While memory requirements vary based on the number of user connections, this 
command can be useful in estimating the maximum number of connections 
allowable for a given Enterprise Server.

NOTE: The MESSAGE POOL SIZE for an Enterprise Server must be at least 2 
megabytes less than the actual region size for the server as memory must also be 
available for load modules, C runtime stacks, and OS/390 control blocks.

Starting and Stopping Individual Services

Using the MTO interface, you can issue commands to start and stop individual 
services defined in the master configuration.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    343



Chapter 17. Enterprise Server
To start a new instance of a service, issue the command:

F servername,START,SERVICE=servicename

For example, to start a new instance of the service CACSAMP as shown in 
“Displaying Configurations,” on page 342, issue the following command:

F servername,START,SERVICE=CACSAMP

When starting a service, the region controller first checks the number of active 
instances of the service and the maximum task count for the service before 
attempting to start a new instance. If the service has not reached its defined 
maximum task count, the region controller starts a new instance of the service.

Stopping a service can be performed either by its service name or its task ID. If a 
service is stopped by its service name, all active instances of the service are 
stopped. The formats of the STOP command for individual services are as 
follows:

F servername,STOP,SERVICE=servicename

F servername,STOP,TASKID=taskid 

WARNING: The STOP command cancels any user activity in an active  service and 
disconnects all active users from the stopped service.

Uses for the START and STOP commands include:

• starting additional instances of a DSH,

• stopping idle instances of a DSH,

• stopping a DSH that has been orphaned by a Server, and

• starting new Connection Handlers, for example, Cross Memory and TCP/IP.

Stopping the Enterprise Server

To stop the Enterprise Server, enter the following command:

F servername,STOP,ALL

WARNING: The STOP command stops all DSH instances and, therefore, all connected servers 
corresponding to those DSH instances. All user connections to those servers will 
be terminated. 
344 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 17. Enterprise Server
Integration and Configuration
The increased degree of scalability and the communication gateway functionality 
that are inherent to an Enterprise Server are the primary reasons for implementing 
it into an eXadas eData Engine. These functions, as well as the ability to 
implement the Enterprise Server as needed, are accomplished by using an 
uncomplicated communication configuration scheme. This scheme allows the 
introduction of the Enterprise Server into an existing system to be transparent to 
all client applications and to have a minimal impact on existing server 
configurations.

This chapter discusses the Enterprise Server configuration parameters, and the 
available functionality and features implemented by them. A reference of detailed 
parameter syntax is located in Appendix A, “Configuration Parameters.”

Base System Configuration Review

The configuration of an Enterprise Server does not involve a large number of 
parameters. There are no query optimization nor data-specific parameters 
available. This query-related tuning is accomplished mainly through data mapping 
and index definition in the Meta Data Grammar. There are also capacity-related 
parameters available within the client application and server configurations.

To properly implement an Enterprise Server into an existing system, you must 
understand the base configuration (with no Enterprise Server). The base 
configuration of an eXadas system is mainly concerned with communication 
configuration. That is, specifying the proper values on the correct parameters so 
that client applications connect to the proper server in order to retrieve the desired 
data. This has become a greatly simplified process with this version of eXadas.

Parameter Correlation

There are only three parameters involved in establishing a client-to-server 
connection: the DATASOURCE parameter in the client configuration, and two 
SERVICE INFO ENTRY parameters in the server configuration. The DATA 
SOURCE parameter consists of two values: the data source name and the listener 
address of the target server. A request from the client application results in a 
connection request being sent to the address specified in the DATA SOURCE 
parameter. Once this client-to-server Connection Handler Service connection is 
established, a session is established between the client and the Query Processor 
that services the specified Data Source. A server Connection Handler Service 
listens on the address specified in the Service Information field (field 10) of its 
SERVICE INFO ENTRY parameter. The SERVICE NAME field (field 2) of a 
Query Processor’s SERVICE INFO ENTRY specifies the Data Source that it will 
service. The coordination of these three values is all that is involved in 
establishing a connection that a Client Application can use to retrieve data.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    345



Chapter 17. Enterprise Server
Supported Protocols

The communication protocols that this version of eXadas supports include:

• TCP/IP, 

• IBM MQ Series, and

• Cross Memory for the OS/390 platform. 

The Cross Memory method uses queues maintained within OS/390 data spaces to 
transport data between eXadas components that exist on the same OS/390 image. 
The use of this method greatly reduces the overhead involved in translating the 
data to and from a communication protocol while eliminating the overhead of any 
communications subsystem and avoiding network bandwidth constraints. Use this 
method whenever possible. 

NOTE: Even though it is not technically a protocol, for documentation simplification 
purposes, the Cross Memory communication method will be addressed as a 
protocol with the other supported protocols in this guide. Assume that when 
communication protocols are being discussed, the Cross Memory method is 
included in that discussion, unless otherwise noted.

Communication Value Formats

The format for specifying the Connection Handler of a listen address is protocol- 
dependent. The first value is always a keyword denoting which protocol is to be 
used, followed by the values necessary for that protocol. 

For TCP/IP, the keyword is TCP, and the necessary values are an IP address and a 
port number (TCP/111.111.111.111/2222). If your TCP/IP subsystem supports it, 
the IP address and port number can be specified as host and service names. 

For Cross Memory, the keyword is XM1, followed by a data space name and a 
queue name (XM1/CACD/CACQ). These data space and queue names do not need 
to be predefined to any communication subsystems.

The following restrictions apply when using the Cross Memory protocol:

• Data Space name consists of 1 to 4 alphanumeric characters.

• Queue name consists of 1 to 4 alphanumeric characters.

• All Data Space names must be unique across an OS/390 image.

• Multiple servers can utilize the same Data Space/Queue name combination, 
although a unique combination for each server is recommended. Unique 
combinations can speed display output interpretation during problem 
diagnosis.

• A Data Space is initialized by the first server that references it.

• Data Space size is 8 MB, which is not configurable, and contains message 
buffers and related control blocks.

• Maximum 400 users per Data Space.

• Maximum 100 Services per Data Space.
346 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 17. Enterprise Server
The TCP/IP protocol implementation within eXadas allows remote addresses to 
be specified where applicable (a Server Connection Handler Service cannot listen 
on a remote address). For TCP/IP, a remote IP address/HOST name is specified in 
the same format as a local address/HOST name. By its nature, there are no remote 
capabilities with Cross Memory.

Enterprise Server Integration
This section explains the steps necessary to integrate an Enterprise Server into an 
existing eXadas network, and details the configuration parameter values required 
to implement the functionality it provides.

The Mechanics of a Transparent 
Integration

You can transparently integrate an Enterprise Server into an existing eXadas 
network because neither the client nor the server needs to know about the 
Enterprise Server’s presence. This is possible because the Enterprise Server 
interacts with client applications using the same interface as a server, and appears 
to be a client application to servers. To make the integration of the Enterprise 
Server transparent to the client, the Connection Handler Service within the 
Enterprise Server must be configured to listen on the same communication service 
name as the eXadas Server Connection Handler Service. This necessitates 
changing the server configuration so that it is not listening on the same 
communication address. 

Data Source Handler Service 
Configuration

The Enterprise Server contains a new service that it uses to communicate with 
servers. This service is called the Data Source Handler (DSH). As the name 
implies, there is a one-to-one correlation between an instance of this service and 
an eXadas server. The parameter that is used to configure a DSH is the SERVICE 
INFO ENTRY (SIE). In addition to the information supplied in the common SIE 
subparameters, the SERVICE INFORMATION (field 10) that is passed to the 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    347



Chapter 17. Enterprise Server
DSH when it is initialized is the listen address and optionally the procedure 
name/JCL of the eXadas server that it will connect to.

The following diagram may assist you in configuration.The arrows represent 
fields that must match in order for your configuration to be successful. 

Figure 49:  Client-to-eXadas Server Connection Handler Service

Dynamic eXadas Server Scheduling
The DSH attempts to connect to the specified eXadas server at the communication 
address it was passed. If the connection is established the DSH waits for a client 
connection request from one of the Enterprise Server Connection Handler 
Services. A connection request is routed to a particular DSH by matching the 
DSH Service Name (field 2 of its SIE) with the Data Source name passed in the 
request.

If a procedure name or job name is specified in field 11 of the DSH SIE, the DSH 
starts a server. A server is started by either procedure (using internal start 
command) or batch (the DSH submits the job into an internal reader). These 
functions are referred to as Dynamic Server Scheduling and the DSH then waits 
for a client’s connection request. This only happens if you specify a procedure 
name or job name.

Client Configuration

              

 

 

           
                                 
                                                                   

                           
                                            
                                                                                

                                                                                        

eXadas Server Configuration

       DATA SOURCE = data source name   Connection Handler Information

                                                                 
                                                                                 
                                                                                    

Enterprise Server

                                                     SERVICE INFO ENTRY = CACINIT ... Connection Handler information

      

      SERVICE INFO ENTRY = CACDSH data source name ...Connection Handler information

       SERVICE INFO ENTRY = CACQP            data source name...

   SERVICE INFO ENTRY = CACINIT...Connection Handler Information

 

Configuration    
348 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 17. Enterprise Server
The DSH passes the communication address value from its SERVICE 
INFORMATION (field 10 of its SIE) to the started eXadas server. The eXadas 
Server Region Controller will then start a Connection Handler Service using the 
communication address value that was passed. This eliminates the need to specify 
SERVICE INFO ENTRYs within the eXadas server configuration for Connection 
Handler Services. The administrative task of maintaining their coordination with 
those in the Enterprise Server configuration is eliminated. 

The information to start a Connection Handler Service is passed as an execution 
parameter within the internal console (MTO) START command or when the job is 
submitted to the internal reader. This is the reason all server sample JCL members 
include a PARM1 field on the PROC and EXEC statements. If the eXadas server 
was started from the console, or the eXadas server is running as a JOB submitted 
from a TSO/E session, the eXadas server initialization routines ignore the NULL 
parameter.

Expanded Scheduling and Connection 
Balancing With Cross Memory

There are restrictions within the TCP/IP protocol that prohibit more than one 
Connection Handler Service from listening on the same communication address. 
The dynamically started Connection Handler Service within server occurrences 
that are dynamically scheduled by the same DSH will attempt to listen on the 
same address (or set of addresses). This will result in a communication error if the 
protocol being used by the services is TCP/IP. This situation occurs whether the 
listen address was read from the configuration file, or was passed from the 
Enterprise Server. To prevent this, the maximum value allowed for the MAX 
TASKS field of a DSH Service Info Entry (field 5) is 1 when TCP/IP is specified 
as the communication protocol.This effectively limits the number of Servers by 
data source name to 1 for TCP/IP.

The restrictions noted do not apply when the Cross Memory protocol is used to 
manage server sessions. The Enterprise Server can manage multiple occurrences 
of servers that were dynamically scheduled from the same DSH service within 
that Enterprise Server. These occurrences can be initialized either at Enterprise 
Server start-up, or on an as-needed basis. There is a one-to-one relationship 
between a DSH thread and server address space. The number of servers started 
either initially or dynamically is a function of the DSH SIE Field 5 (Max Tasks). A 
subsequent occurrence of a server is scheduled when a new connection request is 
refused by a previously scheduled server because it was already at its MAX 
USERS (field 6) limit or is currently busy. After the connection is established with 
the new server, the new session is routed to it.

An Enterprise Server will also perform connection balancing of client sessions 
across these servers. When a request for a new connection is received from a 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    349



Chapter 17. Enterprise Server
Connection Handler Service, it is routed to a currently active DSH service for the 
specified data source name, if possible.

A LIFO queue of active services is kept for each DSH Service Info Entry. When a 
new connection request is routed to a DSH service, its entry in the queue is moved 
to the bottom of the queue. The entries in this queue are checked from the top 
down. The connection request is routed to an active instance of a service if the 
number of connections that instance is already serving is less than the value 
specified in field 6 (Max Connections/Task), and the instance is not busy actively 
connecting or disconnecting a connection. If the connection request cannot be 
routed to a given instance, then the next entry in the queue is checked.

If none of the services are available, field 5 (Max Tasks) of the DSH Service Info 
Entry is checked to see if another service can be activated. If so, that service (and 
its associated server) is started and the connection request routed to it. If max 
tasks for this service has been reached, then an error is reflected back to the client 
indicating that there are no services available to service the connection request.

Using IMS DBB Access in a DBRC 
FORCE=YES Environment

Some sites require that all batch IMS application systems access the IMS data 
using a DBB interface. At these sites, data integrity between these systems and 
any on-line systems is usually enforced by establishing a DBRC FORCE=YES 
environment. This requires that all DBB JOBs or started tasks have a unique 
name.

eXadas provides an extension to the Enterprise Server’s dynamic scheduling of 
servers in order to support this type of environment. This is accomplished by 
allowing the Enterprise Server to submit server JCL streams as batch JOBs with 
unique names. This is invoked by specifying the Task Start Class of the desired 
DSH Service Info Entry as a value of three (3). The eXadas Server Name portion 
of that Service Info Entry’s field 11 then signifies the name of a member in the 
PDS pointed at by the JOBDEF DD in the Enterprise Server’s JCL instead of a 
procedure name. A symbolic parameter (&CACJSFX) must be appended to the 
JOB name within the JOBDEF member’s JOBCARD. The value of this parameter 
is incremented each time a new server is scheduled for a given DSH, thus 
ensuring unique JOB names for every server started for this DSH. There is 
another symbolic parameter (&CACPRM1) that is used to place the communication 
address information for the dynamically started Connection Handler Service into 
the member’s JCL. Both of these symbolic parameters are replaced by the 
Enterprise Server prior to the JCL being submitted through an internal reader.

This feature is intended for use with the Cross Memory communication protocol 
only. This is due to the restrictions of the TCP/IP protocol being limited to a single 
instance of a server listening on the same communications address.
350 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 17. Enterprise Server
The following requirements and restrictions apply to this feature:

• The Task Start Class field of the DSH SIE must be set to 3.

• The Enterprise Server JCL must contain a JOBDEF DD statement pointing at 
a valid PDS or PDSE.

• The member name specified in field 11 of the DSH SIE must exist in the 
JOBDEF PDS.

• The JCL within the member must contain a JOBCARD.

• The JOB name on the JOBCARD must not be longer than 6 characters and 
must be suffixed by the &CACJSFX symbolic parameter. (See Example 1.)

• If the JCL within the member invokes the server by executing a procedure, 
then PARM1 on the EXEC statement must be equated to the symbolic 
parameter &CACPRM1. (See Example 2.)

• If the JCL within the member invokes the server by executing a program, then 
the parameter string on the EXEC card must start with the symbolic parameter 
&CACPRM1 enclosed in quotes. (See Example 3.)

The following examples show the use of the symbolic parameters.

Example 1: A Job Statement

//JOBNAM&CACJSFX JOB(0),ABCDEF,CLASS=A...........

Example 2: An Execute Procedure Statement

//E1 EXEC PROC01,PARM1=(‘&CACPRM1’,..........)
.
.
.
.
.
//STEP1 EXEC CACCNTL,PARM=(‘&PARM1 ’,...........)

Example 3: An Execute Program Statement

//STEP1 EXEC CACCNTL,PARM=(‘&CACPRM1’,...........)
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    351



Chapter 17. Enterprise Server
352 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



18

SQL Update

Introduction to SQL Update
eXadas, like other database systems, supports updating application data in a 
secure transaction environment. Changes to data can be aggregated and 
committed as a single logical unit of work and can also be backed out in the event 
of unexpected application errors. eXadas supports IDMS, Adabas, IMS, DB2, and 
CICS VSAM data sources.

This chapter describes the SQL statements that allow updating application data as 
well as the statements necessary to manage SQL transactions. It includes the 
following topics:

• “Transactions,” on page 354,

• “SQL Update Statements,” on page 355,

• “SQL Update and Mapped Tables,” on page 357,

• “Adabas Update Considerations,” on page 360,

• “DB2 Update Considerations,” on page 362,

• “IDMS Update Considerations,” on page 362,

• “IMS Update Considerations,” on page 364, and

• “CICS VSAM Update Considerations,” on page 366.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 353



Chapter 18. SQL Update
Transactions
A transaction is a sequence of one or more SQL statements that together form a 
logical unit of work. A transaction automatically begins with the first SQL 
statement executed within a client connection to the eXadas Server.

Transactions continue through subsequent SQL statements until one of the 
following conditions occur:

• A client COMMIT statement ends the transaction making any database 
changes permament.

• A client ROLLBACK statement aborts the transaction, backing out any 
database changes.

• A normal client disconnect occurs, resulting in a transaction COMMIT.

• An unexpected client disconnect occurs, resulting in a transaction 
ROLLBACK. In addition to commiting or rolling back changes, all open 
cursors associated with the transaction are closed and any prepared statements 
are freed.

Once a transaction is completed by either a commit or rollback, a new transaction 
will start with the next SQL statement issued by the SQL client.

NOTE: Some clients support an auto-commit mode of processing that makes each SQL 
statement its own transaction by automatically issuing an explicit COMMIT after 
each SQL statement. In applications that require bundling multiple updates in the 
same transaction, this feature must be turned off.

eXadas is not a DBMS and therefore relies on the transaction capabilities of the 
underlying Data Savants. In some cases, SQL update is not allowed by the Data 
Savant because a method of commiting or rolling back database changes is not 
currently supported. See the DBMS-specific sections of this chapter for details on 
each Data Savant’s capabilities.

Currently, two-phase COMMIT is not supported, so update statements within a 
single transaction are limited to a single Data Savant. Queries to all Data Savants 
may still be issued while updating through a single Data Savant.

Attempts to update multiple database or update a single database across multiple 
database threads will result in a -817 SQLCODE. This SQLCODE is also returned 
if a Stored Procedure call or any DDL statement (for example, DROP, GRANT, or 
REVOKE) is issued while updates are pending against a Data Savant.

In most cases, an error SQLCODE leaves the transaction intact and pending 
database updates can still be committed or rolled back. However, in cases where 
an error is detected in the middle of updating multiple rows in a Data Savant, you 
must perform an explicit ROLLBACK to back out of the partial update. In this 
case, an SQLCODE -4910 is returned to the client. Note that this only applies 
when you are updating multiple rows between COMMITs. If you are updating a 
single record when an error occurs, eXadas performs the ROLLBACK 
automatically.
354 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 18. SQL Update
In general, it is good practice to issue an SQL ROLLBACK whenever a negative 
SQLCODE is returned from the Server.

WARNING: Database transactions automatically lock database resources and prevent 
concurrent access to other database users. Applications issuing updates should 
keep update transactions as short as possible to avoid contention for database 
resources with other users. 

SQL Update Statements
This topic describes the SQL statements used to update application data and 
manage transactions in the Server. Each of these statements can be dynamically 
prepared and executed or executed immediately by client applications. With the 
exception of COMMIT and ROLLBACK, prepared update statements may be 
executed multiple times within the same transaction without re-preparing the 
statement.

The Statements described in this section are:

• INSERT,

• UPDATE,

• DELETE,

• COMMIT, and

• ROLLBACK.

INSERT

The INSERT statement inserts one or more rows in an application database. The 
format of the insert statement is:

Figure 50:  Insert Statement Format

INSERT INTO table-name

( column-name )
,

VALUES ( constant )
host-variable
NULL
special registrar

subselect
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    355



Chapter 18. SQL Update
If the column names are omitted from the statement, the values or subselect list 
must include data for all columns of the inserted table.

UPDATE

The UPDATE statement updates one or more rows in an application database. The 
format of the update statement is:

Figure 51:  Update Statement Format

DELETE

The DELETE statement deletes one or more rows in an application database. The 
format of the DELETE statement is:

Figure 52:  Delete Statement Format

COMMIT

The COMMIT statement commits a transaction and makes any pending database 
changes permanent. In addition, all open cursors associated with the transaction 
are closed and all prepared statements are freed. The format of the COMMIT 
statement is:

UPDATE table-name

correlation-name

SET column-name = expression
,

NULL

WHERE search-condition

DELETE FROM table-name

WHERE search-condition
356 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 18. SQL Update
Figure 53:  COMMIT Statement  Format

ROLLBACK

The ROLLBACK statement rolls back a transaction and backs out any pending 
database changes. In addition, all open cursors associated with the transaction are 
closed and all prepared statements are freed. The format of the ROLLBACK 
statement is:

Figure 54:  ROLLBACK Statement Format

SQL Update and Mapped Tables
The eXadas product maps both non-relational and relational databases into a DB2-
like system catalog. In mapping these tables, some mapping constructs are created 
that have special meaning when updating mapped tables.

Mappings Containing Multiple Records

Some Data Savants, such as IMS and IDMS, allow mapping multiple 
records/segments in a database path to a single logical table in the eXadas system 
catalog. When updating these mappings with SQL update commands, updates are 
only applied to the last record  mapped in the path. The following example is a 
mapping that involves two different record types: EMPLOYEE and PAYCHECK.

EMPLOYEE RECORD:   SSN        CHAR(9)
                   LAST_NAME  CHAR(20)
                   FIRST_NAME CHAR(20)
PAYCHECK RECORD:   PAY_DATE   DECIMAL(8,0)
                   GROSS_PAY  DECIMAL(15,2)

COMMIT
WORK

ROLLBACK
WORK
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    357



Chapter 18. SQL Update
                   NET_PAY    DECIMAL(15,2)
                   FED_TAX    DECIMAL(7,2)
                   STATE_TAX  DECIMAL(7,2)
                   FICA       DECIMAL(7,2)

The table named EMPLOYEE_PAY, which maps the database path EMPLOYEE  
to PAYCHECK, returns each employee record combined with each of the 
employee’s paycheck records in a standard SQL query. In the case of an update 
call, updates apply only to the PAYCHECK record.

To update any information in the EMPLOYEE record, a separate  table mapping 
must be created that contains only the employee record.

Considering the example above, the following is sample SQL that inserts a new 
paycheck record:

INSERT INTO EMPLOYEE_PAY (SSN, PAY_DATE, GROSS_PAY, NET_PAY,
             FED_TAX, STATE_TAX, FICA)
    VALUES( '012339920', 10311999, 4200.00, 3300.00,
       800.00, 75.00, 25.00 );

NOTE: In this case, a value is provided for the EMPLOYEE SSN  even though the 
EMPLOYEE record itself is not updated. For INSERT statements, values given 
for any records other than the last record in the mapping are used for qualification 
of which parent or owner record to insert under.

In relational terms, these values are treated like foreign keys in an SQL database. 
If for example, the employee with SSN “012339920” does not exist in a record in 
the database, and SQLCODE -530 is returned indicating that an invalid foreign 
(positioning) key was supplied.

The same concepts hold true for UPDATE and DELETE statements. However, 
since both UPDATE and DELETE support WHERE clauses, foreign key 
qualification is placed in the WHERE clause itself.

In the case of update, SET statements must not include columns from any record 
other than the last record in the mapping. Otherwise, a -4903 SQLCODE is 
returned indicating that the statement is not supported.

Insert Positioning

Positioning of inserted records is determined by any values supplied for records 
other than the last record in a mapped database path. In single record mappings 
and multiple record mappings where no path information is supplied, the 
positioning of new records is determined by the underlying database system. 
Before allowing INSERT access on a mapped table, consider the underlying insert 
behavior to ensure that unqualified insert positioning by the database will produce 
the desired results.

NOTE: Insert with subselects are not supported for multiple-record mapping.
358 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 18. SQL Update
Data Defaulting in Database Records on 
INSERT

Database record mappings can include columns for all or only part of the 
underlying database record. When inserting records containing partial mappings, 
all areas of the database record not mapped are initialized to binary zeros.

In cases where mapped columns from a target database record are omitted from an 
insert statement, the underlying data in the record is initialized as follows:

• NULL IS specification (if supplied), or one of the following:

• SPACES for underlying data type C,

• ZERO for numeric datatypes, 

• Binary zeroes for VARCHAR data types.

Update and Delete Behavior

The SQL UPDATE and DELETE statement applies changes to all database 
records that meet the WHERE clause criteria specified in the statement. Care must 
be taken to correctly specify WHERE criteria because unqualified UPDATES and 
DELETES change ALL instances of the target record in the database.

Update and NULL Records

SQL UPDATE statements only update existing records in the database. When 
retrieving rows for tables mapped to multiple database records, SQL rows are 
returned even when the last record mapped in the table does not exist in the 
database within the mapped path. UPDATE statements will not be applied to SQL 
rows where the last record is returned as all NULLs due to the lack of a database 
record in the database.

Mappings Containing Record Arrays

SQL Update is not supported on tables containing record array mappings of 
OCCURS clauses. If you need to update records containing multiple occurrences 
of data items, each occurrence must be mapped as a separate column in order for 
updates to be allowed.

SQL INSERT on tables that map items or overlapping fields can produce 
unpredictable results due to initialization of unspecified INSERT columns in the 
underlying database record. This is particularly true when overlapped columns are 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    359



Chapter 18. SQL Update
of different SQL data types. It is recommended that you do not use SQL INSERT 
on table mappings containing group items or overlapping fields.

Group Items and Overlapping Fields

SQL INSERT on tables that map group items or overlapping fields can produce 
upredictable results due to initialization of unspecified INSERT columns in the 
underlying database record. This is particularly true when overlapped columns are 
of different SQL data types. CrossAccess strongly recommends against using 
SQL INSERT on table mappings containing group items or overlapping fields.

General Recommendations

Usually, separate table mappings geared to update processing and securing access 
rights are better than non-update mapped tables using catalog security. Make sure 
update mappings are complete and that all access behavior produces the desired 
result.

Unless you have specific reason to do otherwise, for any tables being configured 
for UPDATE processing, use the NULL IS parameter on a column to define the 
string with the same length as the column definition.

For more information on securing access to mapped tables, see Chapter 7, “SQL 
Security.”

Adabas Update Considerations
If a single query will be updating a large number of records, you must ensure that 
the Adabase parameter NISNHQ is large enough to handle the number of records.

CA-DATACOM/DB Update 
Considerations

CA-DATACOM/DB tables may be modified (updated) using SQL statements 
specifying INSERT, DELETE, or UPDATE. To modify a table, the User 
360 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 18. SQL Update
Requirements Table in use at the time of the modification must allow 
modifications to the specified table. This is done by including the parameter 
UPDATE=YES on the DBURTBL macro for the table being modified. For more 
information about the DBURTBL macro, see the CA-DATACOM/DB 9.0 
Database and System Administrator Guide, topic “34.6.3 Entry Macro 
(DBURTBL).”

SQL modification subsequently requires either a COMMIT or ROLLBACK to 
delineate a unit of recovery. COMMIT and ROLLBACK may be either explicit or 
implicit. An explicit COMMIT or ROLLBACK can be issued by the program or 
script being executed. An implicit COMMIT is generated by the database at the 
normal end of the process. An implicit ROLLBACK is generated by the database 
at the abnormal end of the process. 

To enable the ROLLBACK (Transaction Backout) action, several additional steps 
are required. These steps are CA-DATACOM/DB-specific and are outlined below. 

NOTE: The following discussion pertains only to Transaction Backout (ROLLBACK). It 
does not encompass issues of Recovery within CA-DATACOM/DB. To 
implement full CA-DATACOM/DB recovery, reference the appropriate 
documentation. To better understand Transaction Backout, see the CA-
DATACOM/DB 9.0 Database and System Administrator Guide, topic “41 Using 
Transaction Backout.”

To enable a Transaction Backout in CA-DATACOM/DB, follow these steps:

1. Enable the CA-DATACOM/DB logging system. For information about using 
logging, see the CA-DATACOM/DB 9.0 Database and System Administrator 
Guide, topics “39 Using Logging” and “39.1 Implementing Logging.”

2. Identify which tables may be Transaction Backout candidates. Transaction 
Backout requires logging of all update (INSERT, DELETE, UPDATE) 
transactions affecting a specific table.

3. Specify LOGGING=YES in the CA-DATACOM/DB Datadictionary for all 
tables identified by step 2, and catalog the definitions to the CA-
DATACOM/DB Directory (CXX). For additional information, see the CA-
DATACOM/DB 9.0 Database and System Administrator Guide, topic “23.2 
Logging and Recovery” and the CA-DATACOM/DB 9.0 Datadictionary User 
Guide.

4. Specify TXNUNDO=YES in the DBURSTR macro for all User Requirements 
Tables used by programs that require transaction backout. For information 
about the DBURSTR macro, see the CA-DATACOM/DB 9.0 Database and 
System Administrator Guide, topic “34.6.2 Start Macro (DBURSTR),” and 
the CA-DATACOM/DB 9.0 Programmer Guide, topic “7.1.2 DBURSTR - 
Start User Requirements Table.”

5. Assemble and link edit all affected User Requirements Tables.

To verify the correct function of ROLLBACK, you must execute an SQL 
statement to modify (INSERT, DELETE or UPDATE) a CA-DATACOM/DB 
table, and follow it with an explicit ROLLBACK statement. The ROLLBACK 
process issues message DB00103I, containing a return code (RC=) value on the 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    361



Chapter 18. SQL Update
system log. Return code RC=Y indicates the ROLLBACK completed 
successfully after backing out modification data. You can find complete 
information about message DB00103I in the CA-DATACOM/DB 9.0 Message 
Guide, topic “2.1 CA-DATACOM/DB Processing Messages (DB0xxxxc).”

Another way to verify is to query (SELECT) the row before modifications and 
after the ROLLBACK and compare the results. They should be identical.

DB2 Update Considerations
Since eXadas SQL is essentially the same as DB2 SQL, there are no special 
considerations in updating DB2 data other than ensuring the eXadas Server has 
the appropriate access authority to the DB2 tables to be updated.

If you are running the DB2 thread management exit CACSX07, then DB2 table 
update authority must be granted to each user ID connecting to the eXadas Server. 
Otherwise, update authority must be granted to the eXadas Server task itself.

DB2 access errors due to authorization problems will return a -9999 SQLCODE 
and a message that the DB2 specific error is in the SQLEXT field. The SQLEXT 
field itself will contain the value E551 indicating a -551 error.

IDMS Update Considerations
The IDMS Data Savant supports updating IDMS data using standard SQL update 
statements to the eXadas data server. All updates issued to IDMS mapped tables 
apply only to the last record mapped in the database path. See “SQL Update and 
Mapped Tables,” on page 357, for more information. 

IDMS insert and delete statements are restricted to records that are members of no 
more than one set. An attempt to insert or delete a record belonging to more than 
one set will result in a -9999 SQLCODE and the message that the IDMS specific 
error is in the SQLEXT field. The SQLEXT field itself will contain the value 
1225, indicating a set occurrence has not been established for each set in which 
the record belongs.
362 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 18. SQL Update
General IDMS Update Considerations

Navigating IDMS records requires issuing an @READY of database areas for 
access purposes. The areas readied in processing a mapped table are determined 
by the IDMS records mapped in the table as well as the system indexes defined for 
the first and last IDMS records in the mapping.

In general, all areas associated with the mapped path and indexes on the first and 
last record are readied in preparation for retrieving data. In update requests, these 
areas are readied with update intent. Depending on the complexity of the schema 
and the  number of mandatory and automatic sets associated with the last record in 
a mapping, SQL INSERT and DELETE operations may not be possible in some 
cases.

SQL INSERT Considerations

An SQL INSERT on an IDMS table results in an @STORE of the last record type 
mapped in the table. When IDMS processes a store operation, it implicitly 
connects the stored record to all sets in which the record is defined as an 
AUTOMATIC member. In order to automatically connect stored records, a record 
position for each OWNER record type must be established for each AUTOMATIC 
set to which the stored record belongs.

If more than one record is mapped in the path, and if the last record is a member of 
multiple AUTOMATIC set relationships (as is common in junction records), then 
every OWNER record of the last record must be mapped in the defined path. In 
addition, the set names between all records in the path should be defined as 
_NONE_ so positioning can be done on each OWNER record independent of 
whether the record belongs to any particular set.

When mapping OWNER records, elements making up the CALC key of each 
OWNER record should be mapped for positioning purposes. Specifying CALC 
KEY mapped elements in the INSERT clause prevents area scans from occurring 
when positioning on OWNER records. Other elements may also be mapped for 
positioning qualification purposes if necessary.

The order of OWNER records in a table mapped for INSERT purposes does not 
matter. However, if any OWNER record lacks a CALC KEY and has a usable 
system index for positioning purposes, that OWNER should be the first record in 
the mapping as the use of system indexes is supported in the first record of a 
mapping only.

See “Mappings Containing Multiple Records,” on page 357, for more information 
on INSERT positioning. Attempts to INSERT records without establishing 
required automatic OWNER positions results in a -9999 SQLCODE with an 
SQLEXT value of 0x005700F7.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    363



Chapter 18. SQL Update
Before attempting to use SQL to insert IDMS records, review the IDMS Schema 
definition of the candidate record to determine the sets for which the record is an 
AUTOMATIC member.

SQL DELETE Considerations

An SQL DELETE on an IDMS table results in an @ERASE PERMANENT of 
the last record type mapped in the table. IDMS automatically cascades the 
ERASE statement to members of mandatory sets and disconnects members of 
optional sets when issuing this type of ERASE. Some records in the schema may 
not be deletable due to the number of set relationships they participate in and the 
amount of cascading necessary to accomplish the delete.

IMS Update Considerations
The IMS Data Savant supports updating IMS data using standard SQL update 
statements to the eXadas server. All updates issued to IMS-mapped tables apply 
ONLY to the leaf segment mapped in the database path. See “SQL Update and 
Mapped Tables,” on page 357, for more information.

WARNING: CrossAccess does not recommend updating an IMS database that is accessing the 
DBD through a secondary index, especially inverted hierarchies.

IMS updates are supported in both the DRA (DBCTL) and DBB/BMP access 
modes. However, in DBB/BMP mode, you must manage updates as client 
connections attempting an update enqueue the whole PSB for update purposes. 
This will lock out IMS access for all other users. Users locked out of the PSB will 
receive a -9999 SQLCODE and the error message: “ALL PCBS are in use.” For 
this reason, CrossAccess recommends using DRA mode for updating IMS data.

If you plan to update IMS databases in DBB mode, the eXadas server requires an 
IMS database log (IEFRDER) allocated to disk storage and the IMS BKO 
parameter set to Y in the server JCL. This configuration allows database changes 
to backed out in the event of a client rollback request. If a DBB is started without 
database backout support, attempts to update the database are failed with a 
-5701659 SQLCODE and the message: “Update not supported by Data Savant.”

NOTE: IMS may change the JOBSTEP name for an eXadas Server when running IMS 
access with an IMS log file. In these cases, operator console commands to the 
Server must be issued to the JOBSTEP name created by IMS. Because the 
databases are being allocated by the DBB Server, the user ID associated with the 
Server requires CONTROL authority in RACF.
364 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 18. SQL Update
IMS PSB Considerations

Creating PSBs for use with eXadas servers requires planning much like defining 
PSB's for any IMS batch or online applications. Unlike batch or online programs 
in which database and segment sensitivity and access options are based on a 
specific application program, PSB requirements for an eXadas data server are 
determined by:

• DBB versus DRA access.

• Table mappings (segment sensitivity).

• JOIN requirements against one or more databases.

• Query and Update requirements within an eXadas data server transaction 
(PCB PROCOPT).

If you plan on accessing IMS data using DBB or BMP access, then the access PSB 
must have enough PCBs to support all users of the server accessing the database at 
a single point in time. In general, the number of PCBs required for each database 
should minimally equal the maximum number of Query Processor services 
running in the Server at any point in time.

For more information on PSB definition guidelines, see Chapter 2, “Deploying 
Applications.”

Update and Non-Update SQL Requests in 
a Single Transaction

If your application needs to issue both SQL query and update requests to IMS 
databases in a single transaction, all mapped tables must be accessable through a 
single PSB. SQL queries that take place after an update request automatically use 
the scheduled update PSB for accessing the IMS data. If a PCB necessary to 
satisfy the query request is not found, a -9999 SQLCODE is returned with the 
message: “Cannot access a PCB  for the database requested.” For more 
information about transactions, see “Transactions,” on page 354.

PCB Processing Options

When mapping tables for IMS update, verify all PSBs defined in the mapping 
grammar have the correct PCB processing options to insert, update, and delete 
IMS segments. Failure to do so will result in -9999 errors and the message: 
“Unexpected IMS status code received.”
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    365



Chapter 18. SQL Update
CICS VSAM Update Considerations
When eXadas accesses and modifies CICS VSAM data, it can perform all of the 
same database functions as it can when accessing and modifying native VSAM 
data. As when directly accessing VSAM data sources, you can SELECT, INSERT, 
UPDATE, and DELETE from a CICS VSAM data source. Supported VSAM file 
types are ESDS, KSDS, RRDS.

The main difference between performing database functions on native VSAM and 
CICS VSAM data is that CICS provides logging, which in turn provides support 
for transactional capabilities. The CICS VSAM files have to be set as recoverable 
to participate. With this support for transactions, you can perform COMMIT and 
ROLLBACK operations.

VSAM limitations are applicable to CICS VSAM. For example, due to the flat file 
format of ESDS, there is no DELETE functionality through VSAM access. This 
would also include no support with the ROLLBACK function on an ESDS file 
because it performs a delete on INSERT. Also, there is no support for INSERT on 
an RRDS file, as we do not yet provide an exit to fabricate a Relative Record 
Number.

CICS also supports the use of alternate indexes defined against a VSAM ESDS or 
KSDS data set. SELECT statements can be issued against the alternate index for 
both ESDS and KSDS data sets. UPDATE and DELETE statements can be issued 
against the alternate index when it is defined for a KSDS data set. UPDATE and 
DELETE statements referencing an alternate index on an ESDS data set are not 
supported.

The access and update considerations discussed in this topic also apply to IAM 
files. IAM (Innovation Access Method) is supplied by Innovation Data Processing 
and is a reliable, high-performance disk file manager that can be used in place of 
VSAM KSDS and ESDS data sets. Innovation Data Processing also provides an 
optional Alternate Index feature that is supported by eXadas. An exception is any 
reference to VSAM RRDS support, which currently are not supported by IAM.

Transport Protocol

eXadas uses LU6.2 to transmit and return data between the Data Savant and the 
provided CICS transaction, “EXV1.” 

Likewise, the Meta Data Utility uses LU6.2 to extract VSAM file information like 
record length, operation authorizations, and so on from the CICS VSAM data 
sources, using the provided CICS transaction, “EXV2.”
366 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 18. SQL Update
Flow of Interactions

The Meta Data Utility starts a CICS EXV2 transaction and sends it a filename. 
The EXV2 CICS transaction issues an EXEC CICS INQUIRE FILE. If the file is 
not opened, it issues an EXEC CICS SET FILE OPEN and reissues the EXEC 
CICS INQUIRE FILE. Information such as MaxRecLen, KeyLen, KeyOff, and 
file type is sent back.

The eXadas Data Server starts a EXV1 CICS transaction for each table open. It 
sends an “Open” command to the EXV1 transaction, which gets information about 
the file. Depending on the query, commands like Seek, Search, Read Next, Insert, 
Update, Delete, Commit, and Rollback are sent to the EXV1 transaction, which 
issues the EXEC CICS native calls.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    367



Chapter 18. SQL Update
368 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



19

Using Field Procedures

Introduction to Using Field Procedures
This chapter describes how to use field procedures to transform data values from 
one format to another of your specification. The following topics are covered:

• “Specifying a Field Procedure,” on page 370,

• “When Exits are Taken,” on page 370,

• “Execution Environment,” on page 371,

• “Field-Encoding (Function Code 0),” on page 374,

• “Field-Decoding (Function Code 4),” on page 376, and

• “Sample Field Procedures,” on page 378.

A sample field procedure is included at the end of this chapter. A table containing 
the names of a sample macro that maps field procedure values is included in the 
DB2 macro library SDSNMACS and is named DSNDFPPB.

Field procedures are assigned to columns as Conversion Exits in the DataMapper 
and Meta Data Utility. The specified field procedure is invoked every time that 
column is referenced.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 369



Chapter 19. Using Field Procedures
The transformation the field procedure performs on a value specified in a 
WHERE clause is called field-encoding. The same routine is used to undo the 
transformation when values are retrieved; that operation is called field-decoding. 
Values in columns with a field procedure are described by the SQL data types as 
defined by the DataMapper.

WARNING: The field-decoding function must be the exact inverse of the field-encoding 
function. For example, if a routine encodes ALABAMA to 01, it must decode 01 to 
ALABAMA.

Specifying a Field Procedure
To create a field procedure for a column, use either of the following methods:

• Use the DataMapper to define a conversion exit for a column. The conversion 
exit will be included in the Meta Data Grammar used to create the Meta Data 
Catalog.

• Manually specify a field procedure in a column definition by using the WITH 
CONVERSION parameter. For more information on the WITH 
CONVERSION parameter, see “Column Definitions,” on page 161.

Once a field procedure has been defined, the load module must also be placed in a 
library referenced by the Server STEPLIB DD statement. The field procedure 
routine must be written and linked as AMODE 31, RMODE ANY. Any storage or 
other resources that the field procedure allocates must be freed each time the field 
procedure is called.

When Exits are Taken
Field Procedures are conversion routines that translate between data items in a 
database record and their corresponding SQL data types. These procedures are 
used when the underlying data type in a record does not match the SQL datatype 
370 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 19. Using Field Procedures
to be returned in SQL requests. Some examples of situations in which field 
procedures can be used include:

• Database fields transformed to reverse or change sorting order. For example, 
decimal date fields are often stored in 9s compliment format in order to 
reverse the sorting order of dates such that the most recent date comes first.

• Abbreviations or coded tables. Abbreviations or codes for application data 
items may be used to save space in database records. For example, the value 
“01” may be stored in place of the state name “Alabama.”

• Encryption. For security purposes, password fields may be stored in a 
database record in encrypted format.

Field procedures specified for a column are either encoded or decoded. Field 
encoding takes place when: 

• the field is going to be compared to a value specified in the WHERE clause 
using the equal or not equal comparison operators.  

• It can also take place where a column is assigned a value with an SQL  
INSERT or UPDATE statement.

Field-decoding takes place when:

• a stored value is to be compared to any operator other than equal or not equal.

•  A value is also decoded during retrieval of the field in a select list. field-
decoded back into its original string value. 

A field procedure is never invoked to determine if the field is NULL or NOT 
NULL.

WARNING: Use of a key column with a field procedure in a WHERE clause may cause the 
Data Savant to scan the database. This can happen if the column is the beginning 
of the key and the comparison operator is not the equal comparison operator. 

Execution Environment
This section describes the control blocks used to communicate with a field 
procedure. 

The Field Procedure Parameter List 
(FPPL)

The field procedure parameter list is pointed to by register 1 on entry to a field 
procedure. It, in turn, contains the addresses of four other areas, as shown in the 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    371



Chapter 19. Using Field Procedures
following figure. Those areas are described on the following pages. The FPPL and 
the areas it points to are all described by the mapping macro DSNDFPPB.

Figure 55:  Field Procedure Parameter List

The Work Area

The work area is 512 bytes of contiguous uninitialized storage that can be used by 
the field procedure as working storage.

If 512 bytes is sufficient for your operations, your field-definition operation does 
not need to change the value supplied by the Query Processor. If less than 512 
bytes is required, the field-definition can return a smaller value. If your program 
requires more than 512 bytes then the field procedure will have to acquire the 
necessary storage.

The Field Procedure Information Block 
(FPIB)

The field procedure information block communicates general information to a 
field procedure. For example, it tells what operation is to be done, allows the field  
procedure to signal errors, and gives the size of the work area. The format is  

Register 1
FPPL Work area

Field

 
procedure
information
block (FPIB) 

Column value
descriptor
(CVD)

Field value
descriptor (FVD)
372 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 19. Using Field Procedures
shown in the following table.

NOTE: Error messages placed in the FPBTOKP are not returned to the client application 
when a field procedure reports an error. It is, however, logged in the Server log for 
debugging purposes.

Value Descriptors

A value descriptor describes the data type and other attributes of a value. During 
field-encoding and field-decoding, the decoded (column) value and the encoded 
(field) value are described by the column value descriptor (CVD) and the field 
value descriptor (FVD).

The column value descriptor (CVD) contains a description of a column value 
and, if appropriate, the value itself. During field-encoding, the CVD describes the 
value to be encoded. During field-decoding, it describes the decoded value to be 
supplied by the field procedure.

The field value descriptor (FVD) contains a description of a field value and, if 
appropriate, the value itself. During field-encoding, the FVD describes the 
encoded value to be supplied by the field procedure. During field-decoding, it 
describes the value to be decoded.

Table 65: Format of FPIB

Value Description Hex Offset Integer Type Data Type

FPBFCODE 0 Signed 2-byte integer Function code: 

• 0 (field-encoding). 

• 4 (field-decoding).

FPBWKLN 2 Signed 2-byte integer Length of work area is 
512 bytes.

FPBSORC 4 Signed 2-byte integer Reserved.

FPBRTNC 6 Character, 2 bytes Return code set by field 
procedure.

FPBRSNC 8 Character, 4 bytes Reason code set by field 
procedure.

FPBTOKP C Address Address of a 40-byte 
area in which to return 
an error message.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    373



Chapter 19. Using Field Procedures
Both value descriptors have the format shown in the following table.

Field-Encoding (Function Code 0)
This section describes input provided to the field-encoding operation and the 
output required.

Table 66: Format of Value Descriptors

Value Descriptor
Hex 
Offset

Integer Type Data Type

FPVDTYP 0 Signed 2-byte 
integer

Data type of the value:

• 0 (INTEGER)

• 4 (SMALLINT)

• 8 (FLOAT)

• 12 (DECIMAL)

• 16 (CHAR)

• 20 (VARCHAR)

• 24 (GRAPHIC)

• 28 (VARGRAPHIC)

FPVDVLEN 2 Signed 2-byte 
integer

• For a varying-length string value, its maximum 
length

• For a decimal number value, its precision (byte 
1) and scale (byte 2)

• For any other value, its length

NOTE: For GRAPHIC, VARGRAPHIC, and 
LONG VARGRAPHIC data types, the 
length is specified in bytes.

FPVDVALE 4 None The value of the column or field. If the value is a 
varying-length string, the first Halfword is the 
value’s actual length in bytes. This field is not 
present in a CVD, or on an FVD used as input to the 
field-definition operation. An empty varying-length 
string has a length of zero with no data following.
374 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 19. Using Field Procedures
On ENTRY, the registers have the following information:

The work area is uninitialized and is 512 bytes.

The FPIB has the following information.

The CVD has the following information.

The FVD has the following information.

Table 67: Field Encoding on Entry

Register Contents

1 Address of the field procedure parameter list (FPPL); see Figure 55: “Field Procedure 
Parameter List,” on page 372, for a schematic diagram.

0, 2 through 12 Values must be restored on exit.

13 Address of the calling program’s save area. Must be restored on exit.

14 Return address.

15 Address of entry point of exit routine.

Table 68: PFIB Fields and Contents

Field Contents

FPBFCODE 0, the function code

FPBWKLN the length of the work area is 512.

Table 69: CVD Fields and Contents

Field Contents

FPVDTYPE The numeric code for the data type of the column value, as shown in Table 66, “Format 
of Value Descriptors,” on page 374.

FPVDVLE
N

The length of the column value.

FPVDVAL
E

The column value; if the value is a varying-length string, the first Halfword contains its 
length.

Table 70: FVD Fields and Contents

Field Contents

FPVDTYPE The numeric code for the data type of the field value.

FPVDVLEN The length of the field value.

FPVDVALE Uninitialized area with a value of FPVDVLEN.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    375



Chapter 19. Using Field Procedures
On EXIT the registers have the following information. 

The FVD must contain the encoded (field) value in field FPVDVALE. If the value 
is a varying-length string, the first halfword must contain its length.

The FPIB can have the following information.

Errors signaled by a field procedure result in SQLCODE -681, and are written to 
the error log, which is set in the SQL Communications Area (SQLCA). 
FPBRTNC is the return code, FPBRSNCD is the reason code, and a 40 byte error 
field for the specific error message is FPBTOKP.

Field-Decoding (Function Code 4)
The input provided to the field-encoded operation, and the output required, are 
described in the tables that follow.

Table 71: EXIT Registers and Contents

Register Contents

1 Address of the field procedure parameter list (FPPL); see Figure 55: “Field Procedure 
Parameter List,” on page 372, for a schematic diagram.

0, 2 through 14 The values they contained on entry.

15 The integer zero. An error in processing should be indicated by the value in 
FPBRTNC (see Table 78, “FPIB Fields and Contents,” on page 378).

Table 72: FPIB Fields and Contents

Field Contents

FPBRTNC Return code. The character “0” followed by a space indicates success. Anything other 
than “0 ” indicates an error.

FPBRSNC An optional 4-byte character reason code, defined by the field procedure; blanks if no 
reason code is provided.

FPBTOKP Address of a 40-byte area containing an error message when an error message is detected.
376 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 19. Using Field Procedures
On ENTRY, the registers have the following information:

The work area is an uninitialized 512 byte area.

The FPIB has the following information.

The CVD has the following information.

The FVD has the following information.

Table 73: ENTRY Registers and Fields

Register Contents

1 Address of the field procedure parameter list (FPPL); see Figure 55: “Field Procedure 
Parameter List,” on page 372, for a schematic diagram.

0, 2 through 12 Values must be restored on exit.

13 Address of the calling program’s save area. Must be restored on exit.

14 Return address.

15 Address of entry point of the exit routine.

Table 74: FPIB Fields and Contents

Field Contents

FPBFCODE 4, the function code.

FPBWKLN The length of the work area is 512 bytes.

Table 75: CVD Fields and Contents

Field Contents

FPVDTYPE The numeric code for the data type of the column value, as shown in Table 66, “Format 
of Value Descriptors,” on page 374.

FPVDVLEN The length of the column value.

FPVDVALE Uninitialized area with a value of FPVDVLEN.

Table 76: FVD Fields and Contents

Field Contents

FPVDTYPE The numeric code for the data type of the field value.

FPVDVLEN The length of the field value.

FPVDVALE The field value; if the value is a varying-length string the first Halfword contains its 
length.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    377



Chapter 19. Using Field Procedures
On EXIT the registers have the following information. 

The CVD must contain the decoded (column) value in field FPVDVALE. If the 
value is a varying-length string, the first Halfword must contain its length.

The FPIB can have the following information.

Errors signaled by a field procedure result in SQLCODE -681, and are written to 
the error log, which is set in the SQL Communications Area (SQLCA). 
FPBRTNC is the return code, FPBRSNCD is the reason code, and a 40 byte error 
field for the specific error message  is FPBTOKP.

Sample Field Procedures
This section describes the sample field procedures shipped with eXadas.

Table 77: EXIT Registers and Contents

Register Contents

1 Address of the field procedure parameter list (FPPL); see Figure 55: “Field Procedure 
Parameter List,” on page 372, for a schematic diagram.

0, 2 through 14 The values they contained on entry.

15 The integer zero. An error in processing should be indicated by the value in 
FPBRTNC (see Table 78, “FPIB Fields and Contents,” on page 378).

Table 78: FPIB Fields and Contents

Field Contents

FPBRTNC Return code. The character “0” followed by a space indicates success. Anything other 
than “0 ” indicates an error.

FPBRSNC An optional 4-byte character reason code, defined by the field procedure; blanks if no 
reason code is provided.

FPBTOKP FPBTOKPTAddress of a 40-byte area in which to return an error message.
378 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Chapter 19. Using Field Procedures
Sample field procedures are provided in SCACSAMP for various data types. The 
following table lists the member and the associated data type.

Both types are described in the sections that follow. See  SCACSAMP for sample 
coding for these field procedures.

Sample Field Procedure CACFP001

This sample field procedure is a 9s complement field procedure. It is designed for 
use on decimal or zoned decimal data. The following three mapping combinations 
are supported:

• DATATYPE P|UP USE AS DECIMAL(p,s) in which decimal fields are 
mapped as SQL DECIMAL.

• DATATYPE C|UC USE AS CHAR(n) in which zoned decimal fields are 
mapped as SQL CHAR.

• DATATYPE C|UC USE AS DECIMAL(p,s) in which zoned decimal fields 
are mapped as SQL DECIMAL. 

This example is a common way to force decimal date fields to have descending 
sort order in databases.

Sample Field Procedure CACFP999

This field procedure is generic and can be used as a model for creating your own 
site-specific field procedures. It copies field data directly to column data as-is and 
supports the following data types:

• SMALLINIT,

• INTEGER

• DECIMAL,

• FLOAT, and

• CHARACTER.

NOTE: This field procedure does not do any data conversion. 

Table 79: SCACSAMP Members and Associated Data Types

SCACSAMP Member Name Description

CACFP001 A 9s complement field procedure used to convert decimal or zoned 
decimal data.

CACFP999 Used to create site-specific field procedures.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    379



Chapter 19. Using Field Procedures
380 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A

 Configuration Parameters

Introduction to Configuration 
Parameters

This appendix contains the format, relationships, and descriptions of the eXadas 
configuration parameters. For specific information regarding the use of these 
parameters to configure the Server, see the Concepts chapter in the eXadas 
OS/390 Getting Started Guide.

The following sections are discussed:

• “Configuration Parameter Format,” on page 382,

• “Configuration Parameter Relationships,” on page 383, and

• “Configuration Parameter Descriptions,” on page 385.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 381



Appendix A. Configuration Parameters
Configuration Parameter Format
Configuration parameters consist of fixed-length 80-byte records containing 
either a parameter starting in column 1 or a comment, represented as an asterisk 
(*), in column 1. The parameter syntax follows. 

Example:

parameter name = value

In this example, 

• Parameter name is one or more keywords beginning in the first column of the 
record.

• A blank must exist on both sides of the equal sign.

• Value is any number of characters up to the end of the record.

• String values are not surrounded by delimiters.

• Comments after the value are not allowed. 

The maximum parameter length is 255 characters, but parameters may be 
continued across 80-byte records by using the backslash (\) as a continuation 
character. The continuation character may not be used until after the equal sign, 
and must be the last non-blank character of the record. The backslash character 
will be discarded, as will leading blanks on the continued record. Comment lines 
may be inserted between the continued records.

When editing configuration data sets, do not insert sequence numbers at the end of 
the records because they become part of the value assigned to the corresponding 
keyword. 

NOTE: At any level, if a configuration file contains invalid parameters then that entire 
configuration image is not loaded into memory. If the Master Configuration File 
cannot be loaded, the Server (or eXadas Enterprise Server) will terminate. The 
Server will not terminate on failing to load either the Query Processor level 
configuration or the User level configuration. In these cases the configuration in 
effect is the next higher configuration that was previously loaded successfully. 
Worst case is that the Master Configuration would be used. For example, if user 
“TOM” connects but his client configuration file is missing or invalid, then his 
connection will revert to using the Query Processor configuration (if one has been 
loaded successfully) or the Master Configuration. 

If ISPF is used, make sure that NUM OFF is set in the edit profile when editing 
configuration members.
382 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
Configuration Parameter Relationships
Configuration parameters are classified into the following general categories:

• Client configuration parameters,

• Server configuration parameters, 

• Client Configuration Member Override parameters, and

• Query Processor Configuration parameters.

The parameters for each of the categories may be related to, and dependent upon, 
one another. The parameters are shown in the table that follows and described in 
detail in “Configuration Parameter Descriptions,” on page 385.

The following table lists the configuration parameters, the configuration member 
type in which the parameter is specified, and whether the parameter is required 
(R), optional (O), or not applicable (left blank).

Table 80: Configuration Parameter Classifications

Parameter
Server
Master

Query 
Processor

User 
Config. 
Member 
Override

Client

BTREE BUFFERS O O O

CPU GOVERNOR O O O

DATASOURCE R

DECODE BUFFER SIZE O

DEFLOC O

FETCH BUFFER SIZE O

INTERLEAVE INTERVAL O O O

JOIN MAX TABLES 
ANALYZED

O O O

LD TEMP SPACE O O O O

LOCALE O O O O

MAX ROWS EXAMINED O O O

MAX ROWS EXCEEDED 
ACTION

O O O

MAX ROWS RETURNED O O O

MESSAGE POOL SIZE O O
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    383



Appendix A. Configuration Parameters
NL R R

NL CAT R R

OME O O O

PDQ O O O

RESPONSE TIME OUT O

SAF EXIT O

SERVICE INFO ENTRY R

SMF EXIT O O

STATIC 
CATALOGS

O

STATEMENT RETENTION O O

TASK PARAMETERS O O

TRACE LEVEL O

USER CONFIG O O

USERID O

USERPASSWORD O

VSAM AMPARMS O O O

WLM UOW O O O

Table 80: Configuration Parameter Classifications

Parameter
Server
Master

Query 
Processor

User 
Config. 
Member 
Override

Client
384 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
Configuration Parameter Descriptions
The following is an alphabetical listing of configuration parameters and their 
descriptions. 

Parameter defaults are used when the parameter is not specified in the relevant 
configuration file.

Invalid parameters will cause the file to be ignored. eXadas does not issue a 
message indicating that the default value was applied or that a value in the 
configuration file is invalid.

BTREE BUFFERS

Description: Optional parameter used to determine the number of in-memory B-
tree buffer caches that will be used before staged result set output is spooled to  
data spaces, or physical files. By default, four in-memory buffers are used before 
the data is written out to a dataspace or physical file.

The BTREE BUFFERS parameter is used to override the default value of four. If 
sufficient memory is available in the MESSAGE POOL SIZE memory pool, this 
parameter can be increased and performance may improve depending on the size 
of the result set and if the result set is ordered or grouped.

Example:

BTREE BUFFERS = 4

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 214730

Minimum permitted value: 4

Default: 4

Use: Server, Query Processor, Client Config. Member Override, Client

CPU Governor

Description: Optional parameter used to specify the name and time limit of the 
exit used to implement a CPU resource governor. If this parameter is omitted, 
there is no limit to the amount of CPU time that can be used to process a query. 
For more information, see Chapter 15, “System Exits.”
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    385



Appendix A. Configuration Parameters
Example:

CPU GOVERNOR = CACSX03 5M

Maximum permitted value: 255M

Minimum permitted value: 1S

Default: none

Use: Server, Query Processor, Client Config Member Override

DATASOURCE

Description: Required parameter that is used to specify the name of the data 
source a client is attempting to connect to. Field 1 is the name of the remote data 
source that matches the service name (field 2) of the SERVICE INFO ENTRY 
parameter for the corresponding Server’s Query Processor task. Field 2 is the 
address field by which the client connects to the named data source. This field 
consists of three parts separated by the backslash (/) character and must match the 
task data field (field 10) of the Server’s Connection Handler.

Sample Address Field for TCP/IP Protocol with data source 
name, CACSAMP

• The first part of the field must be set to TCP.

• The second part of the field is the hostname (string) of the Server or the IP 
address of the Server. If an IP address is specified, it must be defined in dot 
notation (123.456.789.10).

• The third part of the field is the port number (decimal value), or service name 
on which the Server is listening for connection requests.

Example:

DATASOURCE = CACSAMP tcp/111.111.111.11/2222

Sample Address field for Cross Memory Protocol with data 
source name, CACSAMP

• The first part of the field must be set to XM1

• The second part of the field is the data space name and has a maximum length 
of four characters. This must be the same as the data space name specified on 
the SERVICE INFO ENTRY of the Server.

• The third part of the field is the queue name and has a maximum length of 
four characters. This must be the same as the data space name specified on the 
SERVICE INFO ENTRY of the Server.
386 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
DATASOURCE = CACSAMP XM1/CAC/CAC

Sample Address Field for MQ Series Protocol with data source 
name, CACSAMP

• The first part of the field specifies that the Controller invoke the IBM MQ 
Series Transport Module.

• The second part of the field identifies the name of the MQ Series Queue 
Manager to connect to.

• The third part of the field identifies the name of the Model Queue that the 
client receives SQL responses on from the Server.

• The fourth part of the field identifies the name of the MQ Series Queue 
Manager. This must the be the same as the first Queue Manager Name.

• The fifth part of the field identifies the name of the Local Queue that the 
Server is listening on for connection requests, or the name of a Remote Queue 
definition that is associated with the Local Queue that the Server is listening 
on for connection requests.

Example:

DATASOURCE = CACSAMP MQI/SCQ1/CAC.CLIENT/SCQ1/CAC.SERVER

Allowable value type: string

Representation: string

Maximum Permitted Value: 18 characters for data source name; 64 characters for 
address field

Minimum Permitted Value: 1 character for data source name; address field 
depends on the protocol

Default: None

Use: Client

DECODE BUFFER SIZE

Description: Optional parameter that defines the size of the eXadas DECODE 
buffer, a staging area used to decode data from the network format into the host 
local data format. Data is taken from the FETCH buffer in pieces of the size 
specified for the DECODE buffer and converted until a single row of data is 
completely processed and returned to the application. For optimum usage, set the 
DECODE buffer to a size at least equivalent to a single row of data. The 
DECODE BUFFER SIZE and FETCH BUFFER SIZE parameters work together. 
If the DECODE BUFFER SIZE is omitted, its value is set to the value of FETCH 
BUFFER SIZE. If a value higher than the FETCH BUFFER SIZE is used, the 
value of DECODE BUFFER SIZE is set to the FETCH BUFFER SIZE.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    387



Appendix A. Configuration Parameters
NOTE: This parameter works closely with the FETCH BUFFER SIZE parameter. It is 
recommended that you coordinate the settings between the two parameters. See 
the discussion of the FETCH BUFFER SIZE parameter on page 388.

Example: 

DECODE BUFFER SIZE = 8096

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 64000

Minimum permitted value: 4096

Default: 8192

Use: client configuration 

DEFLOC

Description: Optional parameter that is the default DATASOURCE used if a 
SELECT or CONNECT statement does not specify where the data resides.

Example: 

DEFLOC = CACSAMP

Allowable value type: string

Representation: string

Maximum permitted value: 18 characters

Minimum permitted value: 1 character

Default: none

Use: Client

FETCH BUFFER SIZE

Description: Optional parameter that specifies the size of the result set buffer 
that is returned to a client application. This is specified in the client application’s 
configuration file. 

Regardless of the size of the fetch buffer specified, eXadas always returns a 
complete row of data in this buffer. Setting the fetch buffer size to 1 causes 
eXadas to return single rows of data to the client application. 
388 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
Setting an appropriate FETCH BUFFER SIZE depends upon the average size of 
the result set rows that are sent to the client application and the optimum 
communication packet size. From a performance standpoint, you will want to 
pack as many rows as possible into a fetch buffer. The default fetch buffer size is 
generally adequate for most queries.

If the FETCH BUFFER SIZE is set smaller than a single result set row, then the 
size of the actual fetch buffer that is transmitted is based on the result set row size. 
the size of a single result set row in the fetch buffer depends on the number of 
columns in the result set and the size of the data returned for each column.

The following calculations can be used to determine the size of a result set row in 
the buffer:

fetch buffer row size = (number of data bytes returned) x 

(number of columns * 6)

There is also a fixed overhead for each fetch buffer. This can be computed as:

fetch buffer overhead = 100 + (number of columns *8)

If your applications are routinely retrieving large result sets you will want to 
contact your network administrator in order to determine the optimum 
communication packet size and set the FETCH BUFFER SIZE to a size that takes 
this into account. For more information on the FETCH BUFFER SIZE parameter, 
see Chapter 9, “Optimization.”

Example:

FETCH BUFFER SIZE = 64000

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 64000

Minimum permitted value: 1

Default: 64000

Use: Client

INTERLEAVE INTERVAL

Description: Optional parameter. This value sets the interleaving interval from 
the Query Processor. The unit of measurement for this interval is a result set row. 
When multiple results sets are being processed on the same Query Processor 
instance, the interleaving interval controls context switching between users and 
result sets. For example, if INTERLEAVE INTERVAL is set to 100 then the 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    389



Appendix A. Configuration Parameters
Query Processor will context switch between active users on that instance for 
every 100 rows produced.

Maximum permitted value: 4294967295

Minimum permitted value: 0 (Disables context switching and has the same effect 
as setting PDQ to zero.)

Default: 100

Use: Server, Query Processor, Client Override

JOIN MAX TABLES ANALYZED

Description: Optional parameter that determines the JOIN optimization method 
used in queries containing joins. 

• Specifying a value of zero bypasses JOIN optimization logic completely and 
the query is processed as-is. 

• Specifying a value of one indicates that the simple JOIN optimization 
algorithm will be applied to all SQL JOINs. 

• Specifying a value greater than one identifies the maximum number of tables 
in the JOIN that are analyzed using the estimated number of reads algorithm. 

The estimated read analysis evaluates all possible combinations of table 
processing order and therefore a value greater than four is not recommended (24 
combinations). JOINs including more than the specified number of tables will 
automatically use the simple optimization method. See Chapter 9, 
“Optimization,” for additional information.

Example:

JOIN MAX TABLES ANALYZED = 4

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 15

Minimum permitted value: 0

Default: 4

Use: Server, Query Processor, Client Config. Member Override
390 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
LD TEMP SPACE

Description: Optional parameter that defines a temporary data set dynamically 
allocated by a Server to store the intermediate result set. Temporary data set 
information is a set of parameters separated by commas. Parameters not specified 
are set to the defaults. 

Set this parameter so the resulting file is large enough to hold any intermediate 
result sets that are generated from a typical query running under a particular 
Server. If your site has a storage unit name set up for VIO storage, specify VIO.

Example:

LD TEMP SPACE = ALCUNIT=TRK,SPACE=15,VOL=CACVOL 
LD TEMP SPACE = ALCUNIT=CYL,SPACE=2
LD TEMP SPACE = ALCUNIT=CYL,SPACE=2,EXTEND=1,UNIT=VIO

• ALCUNIT = BLOCK|TRK|CYL unit of space allocation specifying block, 
track, or cylinder. The default value is TRK.

• SPACE = nnn primary amount of space to allocate. The default value is 15.

• EXTEND = nnn secondary amount of space to allocate. The default value is 5.

• VOL = VOLSER (volume serial number). The default is the OS/390 default 
for this site.

• UNIT = unit name. The value may specify a DASD allocation group name, or 
the VIO group name, if it exists. The default unit name is the OS/390 default 
for this site.

• RECFM = F|V|U record format to allocate corresponds to OS/390 RECFM of 
FB|VB|U. Default is V.

• RECLEN = nnn record length. If variable format record, OS/390 LRECL will 
be set to RECLEN +4. Default is 255.

• BLKSIZE = nnn block size. Default is 6144.

Hiperspace is a feature that allows the placement of temporary data files, such as 
temporary files, spill files, and so on, in expanded storage. This results in 
improved performance. This performance improvement mostly affects complex 
queries, for example, ORDER BY. To specify Hiperspace, set the LD TEMP 
SPACE as follows:

LD TEMP SPACE = HIPERSPACE,INIT=16M,MAX=24M,EXTEND=8M

Where:

• INIT= initial region size for the hiperspace.

• MAX= maximum region size for the hiperspace.

• EXTEND= unit of growth when INIT is exceeded.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    391



Appendix A. Configuration Parameters
The estimate for determining these values is related to system installation limits 
and expected query types. Roughly, the maximum size should be equivalent to 
that of the regular temp space file as described for the non-hiperspace LD TEMP 
SPACE setting.

NOTE: Using hiperspace requires APF authorization.

Use: Server, Query Processor, Client Config. Member Override, Client 

LOCALE

Description: Optional parameter that is used to activate DBCS processing 
within the Server. The LOCALE parameter is used to activate a specific SAS/C 
processing locale and to activate special DBCS and mixed-mode processing code 
within the Server. When a LOCALE parameter is not supplied, the Server uses the 
standard SAS/C “C” locale and the Server uses standard memcmp comparison 
routines on operators and sorting operations, for example, an ORDER BY clause. 
If a LOCALE of DBCS is specified, it activates the SAS/C DBCS locale and 
special locale specific comparison functions are used for comparison purposes. 
When a LOCALE of C is specified it activates the standard SAS/C “C” locale 
functions and memcmp functions are used for comparison purposes.

NOTE: Activation of the DBCS locale affects Server performance and should only be 
turned on when the data being retrieved contains GRAPHIC, VARGRAPHIC, or 
LONG VARGRAPHIC data types, or when there is a mixture of DBCS and SBCS 
characters sets contained within CHAR, VARCHAR, or LONG VARCHAR data 
types. Even if the above conditions are true, then the DBCS locale only needs to 
be activated when the query result set is sorted, as in an ORDER BY clause, or 
when less/than greater/than operators are contained in the query’s WHERE 
clause.

Example:

LOCALE = DBCS

Allowable value type: string

Representation: string

Maximum permitted value: 4 characters

Minimum permitted value: 1 character

Allowed values and results:

• DBCS: Activate the SAS/C Double-Byte Character Set locale and perform 
comparisons using SAS/C locale specific comparison routines.

• C: Activate standard SAS/C Single-Byte Character Set locale and perform 
comparisons using SAS/C locale specific comparison routines based on 
“memcmp.”
392 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
Default: C - Single-Byte Character Set

Use: Server, Query Processor, Client Config. Member Override, Client 

MAX ROWS EXAMINED

Description: Optional parameter is one of the governor parameters used to 
implement the eXadas governor features. It is designed to protect against 
excessive resource use caused by inefficient or erroneous queries. The governor is 
implemented by placing a restriction that limits the number of rows examined. In 
the EXAMINATION phase, the restriction on the number of rows examined is put 
into effect after native retrieval is performed and before additional filtering takes 
place to satisfy any SQL WHERE clause specifications. 

Example: 

MAX ROWS EXAMINED = 0

Allowable value type: numeric

Representation: decimal

Max permitted value: 2147483647

Minimum permitted value: 0

Recommended value: 10000

Default: 0 (unlimited rows)

Use: Server, Query Processor, Client Config. Member Override

MAX ROWS EXCEEDED ACTION

Description: Optional parameter used to determine the behavior of the eXadas 
governor feature when either the MAX ROWS EXAMINED or MAX ROWS 
RETURNED governor limits are reached. The MAX ROWS EXCEEDED 
ACTION parameter is used to test a query to ensure that the query is returning the 
correct result set and is not expending large amounts of resources, without running 
the full query.

Specification of the value of ABORT causes query execution to be terminated 
when either the MAX ROWS EXAMINED or MAX ROWS RETURNED 
governor limits are reached. In this situation, the end user will receive a -9999 
return code, and no result set is returned. Specification of a value of RETURN 
causes the result sets retrieved to be returned to the client with a truncated result 
set.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    393



Appendix A. Configuration Parameters
WARNING: If you use RETURN, any result you get may not be complete and there is no 
indication that the governor limit was reached.

Example:

MAX ROWS EXCEEDED ACTION = ABORT

Allowable value type: string

Representation: string

Maximum permitted value: 6 characters

Minimum permitted value: 5 characters

Allowed values and results:

• ABORT: Stop the query when a governor limit is reached

• RETURN: Return a normal result set when a governor limit is reached

Default: ABORT

Use: Server, Query Processor, Client Config. Member Override

MAX ROWS RETURNED

Description: Optional parameter is one of the governor parameters used to 
implement the eXadas governor. It is designed to protect against excessive 
resource use caused by inefficient or erroneous queries. The governor is 
implemented by placing a restriction that limits the number of rows returned. In 
the RETURN phase, a restriction limiting the number of rows returned is put into 
effect after any WHERE clause is fully processed, but before the result table is 
returned to the application.

Example:

MAX ROWS RETURNED = 0

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 2147483647

Minimum permitted value: 0

Recommended value: 10000

Default: 0 (unlimited rows)

Use: Server, Query Processor, Client Config. Member Override
394 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
MESSAGE POOL SIZE

Description: Required parameter that specifies the size of the memory region 
used for all memory allocation. The number is specified in bytes. The actual 
workable maximum value should be set to 2MB less than the region size. If the 
value specified is less than 1MB, 1MB is used. If the amount of storage that can be 
obtained is less than the value specified, the maximum amount available is 
obtained.

Example:

MESSAGE POOL SIZE = 16777216

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 2147483648 (2GB)

Minimum permitted value: 1048576 (1MB)

Default: 1048575 (1MB)

Use: Server, Client

NL

Description: Required parameter that specifies the language used for text 
messages produced by eXadas. The only valid value in this release for this 
parameter is US English, which corresponds to standard English as used in the 
United States.

Example:

NL = US ENGLISH

Allowable value type: string

Default: US ENGLISH

Use: Server, Client

NL CAT

Description: Required parameter that points to the language catalog that 
contains eXadas messages in a specified language. It is defined by a DD statement 
in the start-up procedure. 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    395



Appendix A. Configuration Parameters
Example: 

NL CAT = DD:ENGCAT

NOTE: Different catalog file names may be specified, but the US English language 
catalog is the only one available in this release; therefore, the catalog MUST be 
defined as DD:ENGCAT.

Allowable value type: string DD:, followed by a character string or string 
DSN, followed by a data set name.

Representation: string

Default value: DD:ENGCAT

Use: Server, Client

PDQ

Description: Optional parameter used to activate immediate return of data 
processing. When PDQ processing is activated, the Server inspects each query 
and determines whether the result set output requires additional post-processing. 
If post-processing is required, the result set is handled as if PDQ processing was 
not activated. If no post-processing is required, the result set is immediately 
returned to the client.

Example:

PDQ = 0

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 1

Minimum permitted value: 0

Allowed values and results:

• 0: do not analyze queries; the result set is staged in the B-trees for all queries 
processed by the Server.

• 1: analyze each query to determine whether data can be returned immediately. 

NOTE: Setting this parameter to 1 will have no affect unless the OME parameter is set to 
something other than 0.

Default: 0

Use: Query Processor, Client Config. Member Override
396 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
RESPONSE TIME OUT

Description: Optional parameter that specifies the response time-out. This value 
specifies the maximum amount of time that this service waits for an expected 
response before terminating a connection. 

Valid formats include:

• nMS = number of milliseconds 

• nS = number of seconds

• nM = number of minutes

Example:

RESPONSE TIME OUT = 10M

Allowable value type: numeric with alpha modifier

Representation: decimal

Maximum permitted value: 0 (never time out), 1000MS, 60S, and 60M 
respectively

Minimum permitted value: 0MS

Default: 6M

Use: Client

SAF EXIT

Description: Optional parameter used to specify the SAF system exit that will 
perform authorization checks for the Data Savant associated with a Server or 
execute a stored procedure application program. The default is NONE. For more 
information, see Chapter 15, “System Exits.”

Example:

SAF EXIT = CACSX04 IMS CLASS=IMSP,PSB PREFIX=IMSP

Default: none

Use: Server
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    397



Appendix A. Configuration Parameters
SERVICE INFO ENTRY

Description: Required parameter used in Server configuration files to inform the 
Region Controller task that a service should be activated and how that service 
should be controlled. It is valid only in Server and Enterprise Server configuration 
files.

Multiple Service Info Entry parameters are required to activate multiple instances 
of a given service if different subparameter values are needed. A single Service 
Info Entry parameter is used if only a single instance is needed (or multiple 
instances using the same subparameter values). A given service’s restrictions and 
allowable combinations of multiple instances are discussed in that service’s 
specific descriptions. Mutually-exclusive services are also noted in these 
descriptions.

The Service Info Entry parameter consists of ten subparameters, each delimited 
by at least one space. The format of the first nine of these subfields is consistent 
across all services and is not service dependent. The format for the tenth subfield 
is service dependent, as well as all valid values of all ten fields.

A description of the meaning and format of the first nine subfields is presented 
first, followed by a separate description of each available service. These separate 
descriptions will give the valid values for all ten subfields and the valid format(s) 
for the tenth subfield. Related parameters, references to detailed discussions 
elsewhere in this guide, and any special circumstances will also be noted in these 
service specific descriptions. A table at the end of the description of the SERVICE 
INFO ENTRY parameter contains an entry for each valid service, and is provided 
for you to use as a quick reference chart.

The following table lists all of the subparameters, in order, along with a 
descriptive label of their contents.

Table 80: SERVICE INFO ENTRY Fields

Field Label

1 Task Name

2 Service Name

3 Service Start Class

4 Minimum Tasks

5 Maximum Tasks

6 Max Connections/Task

7 Tracing Output Level

8 Response Time Out
398 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
Example:

SERVICE INFO ENTRY = CACQP CACSAMP 2 3 5 100 4 / 
5M 5M NO_DATA

Where:

• Field 1, Task Name, is the name of the executable module to be invoked for 
this service. Valid values include:

• CACCNTL - Region Controller,

• CACLOG - Logger Service,

• CACQP - Query Processor Service,

• CACINIT - Connection Handler Service,

• CACIMSIF - IMS BMP/DBB Interface,

• CACDRA - IMS DRA Interface,

• CACCAF - DB2 CAF Service,

• CACWLM - Work Load Manager System Exit Initialization Service,

• CACDSH - Data Source Handler Service (eXadas Enterprise Server 
only),

• CACLE - Language Environment Initialization Service, 

• CACDCI - Datacom Initialization Service, and

• CACVSMS - VSAM Service.

Allowable value type: string

Representation: maximum 8 characters, no spaces

• Field 2, Service Name, represents the name that identifies a given service. The 
value specified must be unique within a given Server’s configuration file. 
Some services require a specific value, those that do not require that this value 
be referenced in another parameter. Required values and/or required 
correlations of this field are noted in the service specific descriptions. This 
value is also used in MTO commands to identify a specific service, such as in 
a START command. See Appendix C, “MTO Command Reference,”  for 
more information.

Valid values: Noted under given service specific descriptions.

Allowable value type: string

9 Idle Time Out

10 Service Specific Information

Table 80: SERVICE INFO ENTRY Fields

Field Label
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    399



Appendix A. Configuration Parameters
Representation: maximum 18 characters, no spaces (although the field name 
may be longer than 18 characters, only the first 8 will display when the MTO 
DISPLAY command is issued).

• Field 3, Service Start Class, indicates to the Region Controller which server 
initialization phase a given service should be started in. The value must be 0 
for the CACCNTL service and 1 for the CACLOG service. All other services 
must have a value of 2 for this field except the CACDSH service, which can 
have a value of 2 or 3. See Chapter 17, “Enterprise Server,” for information 
regarding the Enterprise Server and the CACDSH service.

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 3

Minimum permitted value: 0

• Field 4, Minimum Tasks, is a required field that specifies the minimum tasks. 
This value specifies the number of instances of this server that the Region 
Controller should start during Server initialization. If a service must be 
limited to a single occurrence, this field and field 5 must be set to 1. Setting 
this field to 0 indicates to the Region Controller that occurrences of this 
service should not be started at Server initialization. The MTO START 
command can be used to start an occurrence when needed. 

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 65535

Minimum permitted value: 0

• Field 5, Maximum Tasks, specifies the maximum number of instances of this 
service that the Region Controller is allowed to start. All of these instances 
will use the same subparameter values. If a service must be limited to a single 
instance, this field must be set to 1.

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 65535

Minimum permitted value: 1

• Field 6, Max Connections/Task, specifies the maximum number of user 
connections that are allowed per instance of this service activated as a result 
of this SERVICE INFO ENTRY parameter. Setting this field to 1 disables 
multi-tasking for all instances of this service. Some services require this field 
be set to 1.

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 65535
400 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
Minimum permitted value: 0

• Field 7, Tracing Output Level, specifies the level of tracing messages a 
service will pass to the Logger service. This value is a minimum filtering 
level, meaning that setting this value to 4 causes messages of category 4 or 
higher to be passed. 

For the logger service, this field specifies the trigger value. This means that 
when a tracing message of this level or higher is passed to the logger service, 
the trace buffer and all subsequent trace messages are written to the log file. 
For more logger service information, see Chapter 12, “Server Logging.”

Valid values include:

• 1 = Full Tracing

• 2 = Message Buffers

• 3 = Procedural/Query Processor Instructions

• 4 = Informational/Warning Messages

• 8 = Fatal Error Messages

• 20 = No Tracing

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 20

Minimum permitted value: 1

• Field 8, Response Time Out, represents the maximum amount of time that a 
service will wait for an expected response before terminating a connection.

Reserved Field.

• Field 9, Idle Time Out, specifies the amount of time that a service will remain 
idle before polling their respective local message queue for messages waiting 
to be processed. For an Enterprise Server’s DSH, this specifies the amount of 
time the service remains idle before terminating. See Chapter 17, “Enterprise 
Server,” for more information.

Valid formats include:

• nMS = n milliseconds 

• nS = n seconds

• nM = n minutes

• nH = n hours

Allowable value type: string consisting of numeric suffixed by alpha unit 
modifier

Representation: alphanumeric

Maximum permitted value: 1000MS, 60S, 60M, 24H

Minimum permitted value: 0MS, 0S, 0M, 0H indicating no time out
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    401



Appendix A. Configuration Parameters
• Field 10, Service Specific Information, encompasses all remaining 
information contained in a Service Info Entry parameter after Field 9. The 
values specified in this field are passed to an instance of this service when it is 
activated. If a service does not require or accept values from this 
subparameter when it is activated then the string “NO_DATA” must be 
specified. The format and valid values of this field are service-dependent and 
are discussed in the remainder of the SIE subparameter description.

For more information, see see Appendix D, “Sample SERVICE INFO 
ENTRY Definitions.”

Allowable value type: numeric or string

Default: NONE

Use: Server

SMF EXIT

Description: Optional parameter used to report wall clock time and the CPU time 
for an individual user session with a Query Processor Task. For more information, 
see Chapter 15, “System Exits.”

Example:

SMF EXIT = CACSX02 RECTYPE=255,SYSID=JES2

Default: none

Use: Server, Client Config. Member Override

STATEMENT RETENTION

Description: Optional Parameter defines the prepared statement behavior when 
a commit or rollback operation occurs. The acceptable values for this parameter 
are:

• SYNCPOINT - Release the statement whenever a COMMIT or ROLLBACK 
is issued. This is consistent with DB2 Version 4 and earlier.

• ROLLBACK   - Release the statement only when a ROLLBACK syncpoint is 
issued. This is equivalent with the DYNAMICKEEP option introduced in 
DB2 version 5.

• DISCONNECT - Release the statement only when the user disconnects from 
the data server. All prepared statements are retained across both COMMIT 
and ROLLBACK calls.
402 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
Example: 

STATEMENT RETENTION = SYNCPOINT

Default: SYNCPOINT

Recommended value: SYNCPOINT is recommended unless there are specific 
application requirements for re-executing a prepared statement after a syncpoint is 
issued.

Use: Server, Query Processor

STATIC CATALOGS

Description: Optional parameter used to activate static catalog processing for 
the system catalog data sets referenced by the Server. Static catalog close should 
be used when the system catalogs referenced by the Data Savant will not be 
updated while the Data Savant is executing (essentially, when the Server is 
operating in production mode and the system catalogs are static).

When static catalog processing is activated, the System Catalog files are opened 
once for a Query Processor task. The System Catalog files remain open until that 
Server is shut down. In normal operating mode, the System Catalogs are closed 
after the required table and column information has been retrieved in order to 
process a query, for each query processed by the Query Processor.

Activation of static catalog processing can substantially improve query 
performance in outer/inner cursor situations when a large number of queries are 
being issued serially.

Example:

STATIC CATALOGS = 1

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 1

Minimum permitted value: 0

Allowed value and results:

• 0 (close system catalog files and establish read locks for each query)

• 1 (close system catalog files when the Server is shut down)

Default: 0

Use: Server
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    403



Appendix A. Configuration Parameters
TASK PARAMETERS

Description: Optional parameter that specifies SAS/C runtime options passed to 
system daughter tasks through the OS/390 ATTACH macro.

One common use of this parameter is to pass TCP/IP information to the 
Communications Interface task.

The TCPIP_PREFIX variable sets the high-level qualifier (hlq) for finding the 
TCP/IP system data sets. It can be set to use the installation defined data sets, or a 
user-defined data set.

The TCPIP_MACH variable sets the address space name/subsystem name of the 
TCPIP stack for Interlink. For IBM’s TCP/IP system utilizing the Berkeley Socket 
interface, this parameter can also be specified in the hlq.TCPIP.DATA file under 
the parameter TCPIPUSERID.

The default for both variables is TCPIP.

TASK PARAMETERS= =TCPIP_PREFIX=TCPIP =TCPIP_MACH=TCPIP

The Time Zone environment variable (TZ) must be set for each job on OS/390. 
The variable sets the time zone in which the task will start, for example Pacific 
Standard Time (PST).

Example:

TASK PARAMETERS = =MI =TZ=PST8PDT

This sets the time zone to PST plus 8 hours from Greenwich mean time (8) and 
Pacific Daylight Time (PDT).

Using the same example for Eastern Standard Time (EST), enter the following 
information:

TASK PARAMETERS = =MI =TZ=EST5EDT

For additional information about other valid TZ settings see the SAS/C Compiler 
and Library User’s Guide.

Representation: string

Maximum permitted value: any valid parameter preceded by the equal (=) sign, as 
documented in the SAS/C Compiler and Library User’s Guide.

Default: none

Use: Server, Client
404 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
TRACE LEVEL

Description: Optional parameter that regulates the amount of information placed 
into trace log by Server tasks. 

Example:

TRACE LEVEL = 4

Allowable value type: numeric 

Representation: decimal

Maximum permitted value: 20

Minimum permitted value: 0

Allowed values and results:

• 20 (no trace information generated)

• 16 (identify fatal error conditions)

• 8 (identify all recoverable error conditions)

• 4 (generate warning messages)

• 3 (enable message logging)

• 1 (generate tracing information)

• 0 (trace all)

Default: 0

Use: Client

WARNING: This parameter should only be changed at the request of CrossAccess Technical 
Support. Settings lower than 4 will cause response time degradation.

USER CONFIG

Description: Optional parameter used to allow individual users to override the 
standard Server configuration parameter settings or a Query Processor task. Client 
configuration overrides are done by user ID. A member should exist in the 
VHSCONF data set for each user ID that will be accessing the Server. The 
USERID must be passed to eXadas from the client application.

If an individual user ID’s member is not found in the VHSCONF data set or the 
USERID is not passed through the client application, no error is issued, and the 
Server level configuration parameters are used. If a member name is found under 
the user ID, the parameters become active once the user connects to the Server.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    405



Appendix A. Configuration Parameters
The following parameters can be overridden in a user level configuration file:

• BTREE BUFFERS,

• CPU GOVERNOR,

• LD TEMP SPACE,

• JOIN MAX TABLES ANALYZED,

• LOCALE,

• MAX ROWS EXAMINED,

• MAX ROWS EXCEEDED ACTION,

• MAX ROWS RETURNED,

• OME,

• PDQ, 

• SMF EXIT

• VSAM AMPARMS, and

• WLM UOW.

Example:

USER CONFIG = 1

Allowable value type: numeric

Representation: decimal

Maximum permitted value: 1

Minimum permitted value: 0

Allowed values and results:

• 0 (do not activate user level configuration overrides)

• 1 (activate user level configuration overrides)

Default: 0

Use: Server, Query Processor

USERID

Description: Optional parameter that is a default dynamic SQL ID if no ID is 
present on a CONNECT statement, or dynamic CONNECT is issued due to the 
client application not issuing a CONNECT statement. USERID is used when the 
first line in the SQL input file is blank.
406 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
Example:

USERID = CACUSER

Allowable value type: string

Representation: maximum of 7 characters with no spaces. If more than 7 
characters are specified, only the first 7 are used.

Default: NONE

Use: Client

USERPASSWORD

Description: Optional parameter that is the default dynamic SQL ID password if 
no ID is present on a CONNECT statement, or if a dynamic CONNECT is issued 
due to the client application not issuing a CONNECT statement. 
USERPASSWORD is used when the first line in the SQL input file is blank.

Example:

USERPASSWORD = CACPWD

Allowable value type: string

Representation: maximum of 8 characters with no spaces 

Default: NONE

Use: Client

VSAM AMPARMS

Description: Optional parameter string used to supply VSAM buffer and 
memory-tuning parameters when a VSAM file is opened. The VSAM 
AMPARMS parameter specifies tuning parameters that are applied to all VSAM 
files opened when a single cursor is open. 

The VSAM AMPARMS parameter takes the form of a string of comma delimited 
parameters that are passed to the SAS/C afopen call that is used to access VSAM 
files. The following parameters can be supplied:

• BUFND=n: Specifies the number of data I/O buffers VSAM is to use. 
Specification of this parameter is equivalent to coding the BUFND value on a 
DD statement. A data buffer is the size of a control interval in the data 
component of a VSAM cluster. The default number of data buffers is the 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    407



Appendix A. Configuration Parameters
number of strings plus one. If you are using the VSAM service, the default 
number of buffers would be 11. If you are not using the VSAM service, the 
default number of buffers is two.

Generally, with sequential access the optimum value for the data buffers is six 
buffers or the size of the control area, whichever is less. When skip-sequential 
processing (random keyed read access) is being performed, specifying two 
buffers is optimum. Specifying a larger BUFND value when the VSAM file is 
being scanned during query processing generally yields performance 
improvements. In keyed access situations specifying a larger BUFND may 
show no performance improvements, or may actually degrade query 
performance by tying up large amounts of virtual storage and causing 
excessive paging.

• BUFNI=n: Specifies the number of index I/O buffers VSAM is to use. 
Specification of this parameter is equivalent to coding the BUFNI value on a 
DD statement. An index buffer is the size of a control interval in the index 
component of a keyed VSAM cluster. If you are using the VSAM service, the 
default number of index buffers is 10. If you are not using the VSAM service, 
the default number of index buffers is 1.

For keyed access, the optimum BUFNI specification is the number of high-
level (non-sequence set) index buffers + 1. This number can be determined by 
subtracting the number of data control areas from the total number of index 
control intervals within the data set. An upper bound BUFNI specification of 
32 can be used, which accommodates most VSAM files with reasonable index 
control interval and data control area sizes (cylinder allocated data 
component) up to the 4GB maximum allowed data component size. 
Specification of a large BUFNI value incurs little or no performance penalty, 
unless they are excessive.

• BUFSP=n: Specifies the maximum number of bytes of storage to be used by 
VSAM for file data and index I/O buffers. Specification of this parameter is 
equivalent to coding the BUFSP value on a DD statement. A data or index 
buffer is the size of a control interval in the data or index component. 

A valid BUFSP specification generally overrides any BUFND or BUFNI 
specification. However, the VSAM rules for specifying an optimum BUFSP 
value are fairly complex. The appropriate IBM-supplied information on the 
ACB macro should be consulted to determine the rules for specifying a 
BUFSP value.

Example:

VSAM AMPARMS = BUFND=20,BUFNI=15

Allowable value type: string

Representation: string

Maximum permitted value: 255 characters

Minimum permitted value: 7 characters
408 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix A. Configuration Parameters
Default: None

Use: Server, Query Processor, Client Config. Member Override

WLM UOW

Description: Optional parameter that specifies the Workload Manager unit-of-
work activities and manages queries in WLM goal mode. The WLM Exit is 
activated using a SERVICE INFO ENTRY parameter to initialize the exit once 
when the address space is initialized. The WLM Exit must be able to handle all of 
the users accessing the Server concurrently.

Example:

SERVICE INFO ENTRY = CACWLM WLM 1 1 1 20 0M 0M 500000/
                     CACSX06 SUBSYS=xxx SUBSYSID=xxxx

For more information on the WLM parameter settings, see Chapter 15, “System 
Exits.”

You can also supply WLM unit-of-work information from the master 
configuration member, however, CrossAccess recommends that you supply unit-
of-work information from the service configuration member(s). Supplying this 
information at the service level allows different services (data sources) to run 
queries with different performance profiles. For example, if you are running short 
queries you can give them more resources. For longer running queries you can use 
period switching to reduce the rate that these types of queries uses resources.

An example of the WLM UOW in the Master Configuration file follows.

Example:

WLM UOW = TRXNAME=XXXXXX

• Field 1: TRXNAME=xxxxxxxx

• Field 2: TRXCLASS=xxxxxxxx

These parameters can be one to eight characters long. Both of these parameters are 
optional. If supplied they are passed to the WLM to classify the work into a 
service or report class otherwise it takes the default class for this subsystem type.    
It is recommended that you define a subsystem type and classification rules for the 
workload processed by the eXadas Query Processor. If an existing subsystem type 
is used then select which of these parameters fits that subtype. For example the 
STC type supplied with OS/390 supports user ID, and TRANNAME. JES 
supports user ID, TRANNAME, and TRANCLASS.

See IBM’s OS/390 Planning: Workload Management for information on how to 
define service classes and classification rules. This assumes you are going to 
operate the system in WLM goal mode. The priority for units of work should be 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    409



Appendix A. Configuration Parameters
less than VTAM and IMS. The discretionary goal may result in very slow 
response times. Performance periods allow you to define a high number of service 
units for short transactions and a smaller number for long running ones.

Allowable value type: string

Representation: string

Default: none

Use: Server, Query Processor, Client Config. Member Override
410 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix B

Sample  Stored Procedure
VTAM and CICS

Definitions

Introduction to Sample Stored Procedure 
VTAM and CICS Definitions

There are two sets of definitions required to activate a CICS-enabled stored 
procedure implementation. There are VTAM definitions required to support the 
communications between the Server and the CICS system. There are CICS 
definitions required to identify files, programs, and transactions. Additional CICS 
definitions are required to support the communications between the Server and the 
CICS system.

NOTE: The program fixes HVT4301 UW25918 and UW29177 are required for VTAM 
4.4 when implementing the CICS stored procedures. Contact IBM to receive these 
fixes.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 411



Appendix B. Sample Stored Procedure VTAM and CICS Definitions
VTAM Resource Definitions
An APPL definition is required on the server side to provide a local LU name for 
the communication session. Multiple local LU names (APPL definitions) may be 
required depending upon the number of server-stored procedure users that you 
allow to be active concurrently. Allowing one local LU name per active server 
stored procedure user eliminates any possibility of communication failures 
because the local LU name is busy. However, a one-to-one relationship between 
local LU names and active Server’s stored procedure users is not usually required. 
As a general rule, a relatively small number of local LU names should be adequate 
for most sites. The number of local LU names required is the number of expected 
concurrent requests the server will handle. The maximum tasks specification 
(field 5) of the SERVICE INFO ENTRY for the Query Processor should be set to 
the number of local LU names that are defined.

The user site assigns the ACB name in the APPL definition. The ACB name is 
specified on the OPEN request issued by the user-written stored procedure 
program that executes in the Server address space. In the eXadas sample 
communication programs CACSPCOM or CACSPVTM, a pool of APPL 
definitions must be created by assigning sequentially ascending ACB names like 
CACAPPC0, CACAPPC1, CACAPPC2, and so on. To use this pool of ACB 
names, the OPEN request would then specify the local LU name as CACAPPC*. 
The communications processor attempts to open the specified ACB name after 
replacing the asterisk position with a sequentially ascending value beginning at 
zero. 

If a pool of 10 ACB names is found to be insufficient, the APPL definitions can 
use names that end in two digits, for example, CACPPC00, CACPPC01, 
CACPPC02, and so on. To use this pool of ACB names, the OPEN request would 
then specify the local LU name as CACPPC**. Up to seven suffix characters (*) 
can be specified. 

The size of your APPL definition pool should be carefully controlled. This is 
important because if an OPEN request fails, the next ACB name is generated and 
the OPEN is re-attempted. If each subsequent OPEN request fails, the entire pool 
of ACB names will be attempted before the communications processor reports an 
OPEN failure. To use only a specific ACB name the OPEN request specifies the 
exact name without an asterisk suffix.

An example of VTAM APPL definitions and a VTAM Mode Table Entry 
definition follows: 

VTAM APPL Definition

CACCAPPL VBUILD TYPE=APPL
CACCICS1 APPL ACBNAME=CACCICS1, X

APPC=YES, X
AUTOSES=1, X
MODETAB=CACCMODE, X
DLOGMOD=MTLU62, X
AUTH=(ACQ), X
EAS=100,PARSESS=YES, X
412 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix B. Sample Stored Procedure VTAM and CICS Definitions
SONSCIP=YES, X
DMINWNL=0, X
DMINWNR=1, X
DSESLIM=100

CACCICS2 APPL ACBNAME=CACCICS2, X
APPC=YES, X
AUTOSES=1, X
MODETAB=CACCMODE, X
DLOGMOD=MTLU62, X
AUTH=(ACQ), X
EAS=1,PARSESS=YES, X
SONSCIP=YES, X
DMINWNL=0, X
DMINWNR=1, X
DSESLIM=1

The example shows APPL definitions to be used by the example program 
CACSPCOM or CACSPVTM. Your actual APPL definitions may vary based 
upon site standards. The OPEN request issued by CACSPCOM specifies local LU 
name CACPPC0*, thereby using the APPL definitions as a pool of up to 10 
entries. Assuming the definitions in the example are complete, the pool actually 
consists of only two entries. CACMODE is defined as the Logon Mode Table 
name and MTLU62 is defined as the Logon Mode Table entry name. The Logon 
Mode Table entry must be in either the specified Logon Mode Table or in 
ISTINCLM, an IBM-supplied Logon Mode Table. The OPEN request issued by 
CACSPCOM also specifies the Logon Mode Table entry (DLOGMOD) name. If 
you plan to execute the eXadas example program CACSPCOM and changes were 
made to ACB name or DLOGMOD, you must correct program CACSPCOM to 
specify the modified values, recompile, and link-edit the program before 
attempting to execute the example. You can make changes to MODETAB to 
identify your correct Mode Table Name without affecting the example program 
CACSPCOM.

VTAM Mode Table Entry Definition

CACCMODE MODEENT LOGMODE=CACCMODE, *
TYPE=0, *
FMPROF=X'13', *
TSPROF=X'07', *
PRIPROT=X'B0', *
SECPROT=X'B0', *
COMPROT=X'D0B1', *
RUSIZES=X'8585', *
PSERVIC=X'060200000000000000000300'

The example shows a Mode Table entry definition used by the example program 
CACSPCOM or CACSPVTM. Your actual Mode Table entry definition may vary 
based upon site standards. As stated earlier, the OPEN request issued by 
CACSPCOM specifies Logon Mode Table entry MTLU62. If you plan to execute 
the eXadas example program CACSPCOM and changes were made to 
LOGMODE, you must correct program CACSPCOM to specify the new name, 
recompile, and link-edit the program before attempting to execute the example. 
The CICS system must have access to an identically named Logon Mode Table 
entry.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    413



Appendix B. Sample Stored Procedure VTAM and CICS Definitions
CICS Resource Definitions
The CICS APPLID becomes the Remote LU Name for the communication 
session. The CICS APPLID can handle multiple sessions from Server stored 
procedure processors. Before completing specific resource definitions in CICS, 
several definitions within your CICS or VTAM system need to be reviewed. 
Incorrect specification of the following parameters will result in your system 
failing to operate correctly.

• The CICS system initialization table (DFHSIT) definition or initialization 
overrides must include ISC=YES to enable intercommunication programs.

• The ACF/VTAM application definition for your CICS system must include 
the following options on the VTAM APPL statement:

• AUTH=(ACQ,VPACE,……) to allow CICS to acquire LUTYPE6 
sessions and to allow pacing of intersystem flows.

• VPACING=n specifies the pacing rate.

• EAS=n specifies the maximum number of network addressable units with 
which CICS can establish sessions.

• PARSESS=YES to enable LUTYPE6 parallel session support.

• SONSCIP=YES to enable session outage notification support.

• APPC=YES must not be coded on the APPL statement. 

For a complete discussion of these topics and others related to intersystem 
connectivity, see the IBM CICS/ESA Intercommunications Guide (IBM 
Document Number SC33-1181-01). Related information is listed in the index 
under the general topics as follows:

• Installation:

• ACF/VTAM definition for CICS,

• LOGMODE entries, and

• Intersystem communication.

• Intersystem communication (ISC):

• connections between systems,

• defining APPC links,

• defining APPC mode sets, and

• installation considerations.
414 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix B. Sample Stored Procedure VTAM and CICS Definitions
The resource definitions to install the required LU6.2 Connection Handler for the 
eXadas Stored Procedure implementation include:

• The program definition. This program has been identified earlier in this 
document as load member CACSP62. The name of this program is used only 
in the transaction definition. This load module must be in a library included in 
the DFHRPL concatenation for your CICS system.

• The transaction definition. The user site assigns the transaction name. This 
transaction is referenced as XASP. The OPEN request issued by the sample 
program CACSPCOM specifies transaction name XASP. If you plan to 
execute the supplied sample program CACSPCOM and you have defined a 
different transaction name, you must correct program CACSPCOM to specify 
the new transaction, recompile, and link-edit the program before attempting to 
execute the example. 

The following entries show the online CEDA panels used to define the required 
CICS resources. The fields that must be described by the user for the define to be 
successful are shown in underlined bold type, for example, xxxx. Fields that 
contain only lower-case characters must be defined by the user site. Fields that are 
mixed case must be entered exactly as shown. Any other modifiable fields on 
these panels may be specified to conform to site standards. The CEDA panels 
were generated from an OS/390 CICS V4.1 system.

PROGRAM DEFINITION

OVERTYPE TO MODIFY                                 CICS RELEASE 
= 0410
 CEDA  DEFine PROGram( pppppppp )
  PROGram        : CACSP62
  Group          : gggg
  DEscription  ==>
  Language     ==> Assembler CObol | Assembler | Le370 | C 
|Pli
                                  | Rpg
  RELoad       ==> No             No | Yes
  RESident     ==> No             No | Yes
  USAge        ==> Normal         Normal | Transient
  USElpacopy   ==> No             No | Yes
  Status       ==> Enabled        Enabled | Disabled
  RSl            : 00             0-24 | Public
  Cedf         ==> Yes            Yes | No
  DAtalocation ==> Below          Below | Any
  EXECKey      ==> User           User | Cics
REMOTE ATTRIBUTES
  REMOTESystem ==>
  REMOTEName   ==>
  Transid      ==>
  EXECUtionset ==> Fullapi        Fullapi | Dplsubset
 
 TRANSACTION DEFINITION
 
OVERTYPE TO MODIFY                                CICS RELEASE 
= 0410
 CEDA  DEFine TRANSaction( tttt )
  TRANSaction    : XASP
  Group          : gggg
  DEscription  ==>
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    415



Appendix B. Sample Stored Procedure VTAM and CICS Definitions
  PROGram      ==> CACSP62
  TWasize      ==> 00000              0-32767
  PROFile      ==> DFHCICST
  PArtitionset ==>
  STAtus       ==> Enabled            Enabled | Disabled
  PRIMedsize     : 00000              0-65520
  TASKDATALoc  ==> Below              Below | Any
  TASKDATAKey  ==> User               User | Cics
  STOrageclear ==> No                 No | Yes
  RUnaway      ==> System             System | 0-2700000
  SHutdown     ==> Disabled           Disabled | Enabled
  ISolate      ==> Yes                Yes | No
REMOTE ATTRIBUTES
  DYnamic      ==> No                 No | Yes 
  REMOTESystem ==>
  REMOTEName   ==>
  TRProf       ==>
  Localq       ==>                    No | Yes
SCHEDULING
  PRIOrity     ==> 001                0-255
  TClass         : No                 No | 1-10
 TRANClass    ==> 
ALIASES
 Alias        ==>
 TASKReq      ==>
 XTRanid      ==>
 TPName       ==>
              ==>
 XTPname      ==>
              ==>
              ==>
RECOVERY
 DTimout      ==> No                 No | 1-6800
 INdoubt      ==> Backout            Backout | Commit | Wait
 RESTart      ==> No                 No | Yes
 SPurge       ==> No                 No | Yes
 TPUrge       ==> No                 No | Yes
 DUmp         ==> Yes                Yes | No
 TRACe        ==> Yes                Yes | No
 COnfdata     ==> No                 No | Yes
SECURITY
 RESSec       ==> No                 No | Yes
 CMdsec       ==> No                 No | Yes
 Extsec         : No
 TRANSec        : 01                 1-64
 RSl            : 00                 0-24 | Public

The resource definitions to install the optional eXadas Stored Procedure example 
program environments include:

• the program definition for the example program CACSPREM,

• the file definition for the sample VSAM Employee file CACIVP, 

• one CONNECTION/SESSION definition is required for each LU Name that 
may be used to communicate with CICS from a Server. For purposes of this 
example, two LU NAMEs are defined to VTAM (CACPPC00 and 
CACPPC01). The sample program CACSPCOM, executing in the Server 
address space, uses one of these Local LU Names when it requests an OPEN 
for the LU6.2 conversation.
416 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix B. Sample Stored Procedure VTAM and CICS Definitions
The following entries show the on-line CEDA panels that are used to define the 
optional CICS resources. The fields that must be described by the user for the 
define to be successful are shown in underlined bold type, for example, xxxx. 
Fields that contain only lower case characters must be defined by the user site. 
Fields that are mixed case (upper- and lower-case) must be entered exactly as 
shown. Fields that are completely upper case characters and/or numeric values 
may be changed by the user site. If changes are made, you must compensate for 
those changes in the related program(s), or VTAM APPL definition(s), or Mode 
Table entry definition(s). Any other modifiable fields on these panels may be 
specified to conform to site standards. The CEDA panels shown in the following 
example were generated from an OS/390 CICS V4.1 system.

PROGRAM Definition

OVERTYPE TO MODIFY                                 CICS RELEASE 
= 0410
 CEDA  DEFine PROGram( CACSPREM )
  PROGram        : CACSPREM
  Group          : gggg
  DEscription  ==>
  Language   ==> Le370  CObol | Assembler | Le370 | C | Pli
                                  | Rpg
  RELoad       ==> No             No | Yes
  RESident     ==> No             No | Yes
  USAge        ==> Normal         Normal | Transient
  USElpacopy   ==> No             No | Yes
  Status       ==> Enabled        Enabled | Disabled
  RSl            : 00             0-24 | Public
  Cedf         ==> Yes            Yes | No
  DAtalocation ==> Below          Below | Any
  EXECKey      ==> User           User | Cics
 REMOTE ATTRIBUTES
  REMOTESystem ==>
  REMOTEName   ==>
  Transid      ==>
  EXECUtionset ==> Fullapi        Fullapi | Dplsubset

The CACSPREM example program is a COBOL II program. The program, as 
supplied, does not exploit Language Environment/370 facilities. However, if the 
program is compiled using an SAA AD/Cycle COBOL/370 Version 1 Release 1, 
or later, the attribute LANGUAGE ==>Le370 must remain as shown in the 
previous example. If the program is not compiled by a Language 
Environment/370 enabled compiler, change the attribute to be 
LANGUAGE==>CObol.

If the LANGUAGE attribute specifies Le370, you must have Language 
Environment/370 support installed in your CICS system. If the LANGUAGE 
attribute specifies CObol, you must have the VS COBOL II interface installed in 
your CICS system. If CICS is not presently enabled to support the LANGUAGE 
attribute specified for this program, see the topic “Adding CICS support for 
programming languages” in the CICS System Definition Guide (IBM Document 
Number SC33-1164-00). There are sub-topics explaining in detail how to install 
and utilize either the Language Environment/370 or the VS COBOL II support. 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    417



Appendix B. Sample Stored Procedure VTAM and CICS Definitions
Specifically, review the following topics:

• Language Environment/370 support,

• Installing Language Environment/370 support,

• Language Environment/370 support for COBOL, or 

• Installing CICS support for VS COBOL II.

FILE DEFINITION

OVERTYPE TO MODIFY                                 CICS RELEASE 
= 0410
 CEDA  DEFine File( CACIVP  )
  File           : CACIVP
  Group          : gggg
  DEScription  ==>
 VSAM PARAMETERS
  DSNAme       ==> your.vsam.cluster.name.here
  Password     ==>                 PASSWORD NOT SPECIFIED
  Lsrpoolid    ==> 1               1-8 | None
  DSNSharing   ==> Allreqs         Allreqs | Modifyreqs
  STRings      ==> 001             1-255
  Nsrgroup     ==>
 REMOTE ATTRIBUTES
  REMOTESystem ==>
  REMOTEName   ==>
  RECORDSize   ==>                 1-32767
  Keylength    ==>                 1-255
 INITIAL STATUS
  STAtus       ==> Enabled         Enabled | Disabled | 
Unenabled
  Opentime     ==> Firstref        Firstref | Startup
  DIsposition  ==> Share           Share | Old
 BUFFERS
  DAtabuffers  ==> 00002           2-32767
  Indexbuffers ==> 00001           1-32767
 DATATABLE PARAMETERS
  Table        ==> No              No | Cics | User
  Maxnumrecs   ==>                 16-16777215
 DATA FORMAT
  RECORDFormat ==> F               V | F
 OPERATIONS
  Add          ==> Yes             No | Yes
  BRowse       ==> No              No | Yes
  DELete       ==> Yes             No | Yes
  REAd         ==> Yes             Yes | No
  Update       ==> Yes             No | Yes
 AUTO JOURNALLING
  JOurnal      ==> No              No | 1-99
  JNLRead      ==> None            None | Updateonly | 
Readonly | All
  JNLSYNCRead  ==> No            No | Yes
  JNLUpdate    ==> No            No | Yes
  JNLAdd       ==> None          None | Before | AFter | ALl
  JNLSYNCWrite ==> Yes           Yes | No
 RECOVERY PARAMETERS
  RECOVery     ==> None          None | Backoutonly | All
  Fwdrecovlog  ==> No            No | 1-99
  BAckuptype   ==> Static        Static | Dynamic
 SECURITY
  RESsecnum      : 00            0-24 | Public
418 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix B. Sample Stored Procedure VTAM and CICS Definitions
CONNECTION DEFINITION (1 OF 2)

OVERTYPE TO MODIFY                                 CICS RELEASE 
= 0410
 CEDA  DEFine Connection( ccc1 )
  Connection     : ccc1
  Group          : gggg
  DEscription  ==>
 CONNECTION IDENTIFIERS
  Netname      ==> CACPPC00
  INDsys       ==>
 REMOTE ATTRIBUTES
  REMOTESYSTem ==>
  REMOTEName   ==>
  REMOTESYSNet ==>
 CONNECTION PROPERTIES
  ACcessmethod ==> Vtam            Vtam | IRc | INdirect | Xm
  PRotocol     ==> Appc            Appc | Lu61 | Exci
  Conntype     ==>                 Generic | Specific
  SInglesess   ==> No              No | Yes
  DAtastream   ==> User            User | 3270 | SCs | 
STrfield | Lms
  RECordformat ==> U               U | Vb
  Queuelimit   ==> No              No | 0-9999
  Maxqtime     ==> No              No | 0-9999
 OPERATIONAL PROPERTIES
  AUtoconnect  ==> No              No | Yes | All
  INService    ==> Yes             Yes | No
 SECURITY
  SEcurityname ==>
  ATtachsec    ==> Local      Local | Identify | Verify | 
Persistent
                                   | Mixidpe
  BINDPassword   :                 PASSWORD NOT SPECIFIED
  BINDSecurity ==> No              No | Yes
  Usedfltuser  ==> No              No | Yes
 RECOVERY
  PSrecovery   ==> Sysdefault      Sysdefault | None

CONNECTION DEFINITION (2 OF 2)

OVERTYPE TO MODIFY                                 CICS RELEASE 
= 0410
 CEDA  DEFine Connection( ccc2 )
  Connection     : ccc2
  Group          : gggg
  DEscription  ==>
 CONNECTION IDENTIFIERS
  Netname      ==> CACPPC01
  INDsys       ==>
 REMOTE ATTRIBUTES
  REMOTESYSTem ==>
  REMOTEName   ==>
  REMOTESYSNet ==>
 CONNECTION PROPERTIES
  ACcessmethod ==> Vtam                Vtam | IRc | INdirect 
| Xm
  PRotocol     ==> Appc                Appc | Lu61 | Exci
  Conntype     ==>                     Generic | Specific
  SInglesess   ==> No                  No | Yes
  DAtastream   ==> User                User | 3270 | SCs | 
STrfield 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    419



Appendix B. Sample Stored Procedure VTAM and CICS Definitions
                                       | Lms
  RECordformat ==> U                   U | Vb
  Queuelimit   ==> No                  No | 0-9999
  Maxqtime     ==> No                  No | 0-9999
 OPERATIONAL PROPERTIES
  AUtoconnect  ==> No                  No | Yes | All
  INService    ==> Yes                 Yes | No
 SECURITY
  SEcurityname ==>
  ATtachsec    ==> Local               Local | Identify | 
Verify 
                                       | Persistent| Mixidpe
  BINDPassword   :                     PASSWORD NOT SPECIFIED
  BINDSecurity ==> No                  No | Yes
  Usedfltuser  ==> No                  No | Yes
 RECOVERY
  PSrecovery   ==> Sysdefault          Sysdefault | None

NOTE: If you want CICS to verify user IDs and passwords as valid CICS users, set the 
ATTACHSEC parameter to Verify.

SESSIONS DEFINITION (1 OF 2)

OVERTYPE TO MODIFY                                 CICS RELEASE 
= 0410
 CEDA  DEFine Sessions( sssssss1 )
  Sessions       : sssssss1
  Group          : gggg
  DEscription  ==>
 SESSION IDENTIFIERS
  Connection   ==> ccc1
  SESSName     ==>
  NETnameq     ==>
  MOdename     ==> MTLU62
 SESSION PROPERTIES
  Protocol     ==> Appc               Appc | Lu61 | Exci
  MAximum      ==> 001 , 000          0-999
  RECEIVEPfx   ==>
  RECEIVECount ==>                    1-999
  SENDPfx      ==>
  SENDCount    ==>                    1-999
  SENDSize     ==> 00256              1-30720
  RECEIVESize  ==> 00256              1-30720
  SESSPriority ==> 000                0-255
  Transaction    :
 OPERATOR DEFAULTS
  OPERId         :
  OPERPriority   : 000                0-255
  OPERRsl        : 0                                           0-
24,...
  OPERSecurity   : 1                                           
1-64,...
 PRESET SECURITY
  USERId       ==>
 OPERATIONAL PROPERTIES
  Autoconnect  ==> No                 No | Yes | All
  INservice      :
  Buildchain   ==> Yes                Yes | No
  USERArealen  ==> 000                0-255
  IOarealen    ==> 00000 , 00000      0-32767
  RELreq       ==> No                 No | Yes
  DIscreq      ==> No                 No | Yes
420 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix B. Sample Stored Procedure VTAM and CICS Definitions
  NEPclass     ==> 000                0-255
 RECOVERY
  RECOVOption  ==> Sysdefault         Sysdefault | Clearconv 
                                      | Releasesess| Uncondrel 
| None
  RECOVNotify    : None               None | Message | 
Transaction

SESSIONS DEFINITION (2 OF 2)

OVERTYPE TO MODIFY                                 CICS RELEASE 
= 0410
 CEDA  DEFine Sessions( sssssss2 )
  Sessions       : sssssss2
  Group          : gggg
  DEscription  ==>
 SESSION IDENTIFIERS
  Connection   ==> ccc2
  ESSName     ==>
  NETnameq     ==>
  MOdename     ==> MTLU62
 SESSION PROPERTIES
  Protocol     ==> Appc               Appc | Lu61 | Exci
  MAximum      ==> 001 , 000          0-999
  RECEIVEPfx   ==>
  RECEIVECount ==>                    1-999
  SENDPfx      ==>
  SENDCount    ==>                    1-999
  SENDSize     ==> 00256              1-30720
  RECEIVESize  ==> 00256              1-30720
  SESSPriority ==> 000                0-255
  Transaction    :
 OPERATOR DEFAULTS
  OPERId         :
  OPERPriority   : 000                0-255
  OPERRsl        : 0                                           0-
24,...
  OPERSecurity   : 1                                           1-
64,...
 PRESET SECURITY
  USERId       ==>
 OPERATIONAL PROPERTIES
  Autoconnect  ==> No                 No | Yes | All
  INservice      :
  Buildchain   ==> Yes                Yes | No
  USERArealen  ==> 000                0-255
  IOarealen    ==> 00000 , 00000      0-32767
  RELreq       ==> No                 No | Yes
  DIscreq      ==> No                 No | Yes
  NEPclass     ==> 000                0-255
 RECOVERY
  RECOVOption  ==> Sysdefault         Sysdefault | Clearconv 
                                      | Releasesess| Uncondrel 
| None
  RECOVNotify    : None               None | Message | 
Transaction

Once the CEDA definitions are completed and verified correct, the group should 
be installed using the on-line command CEDA INSTALL GROUP(gggg)ALL. 
Installing the group makes the definitions immediately available for use. The 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    421



Appendix B. Sample Stored Procedure VTAM and CICS Definitions
group should also be added to the start-up group list so the stored procedure group 
will be automatically installed during each subsequent start up of the CICS 
system. This is accomplished by locating the GRPLIST parameter on the system 
initialization table (DFHSIT) or in the SIT overrides used to start the CICS 
system. When the GRPLIST=xxxxxxx parameter has been determined, that name 
is used in the on-line command CEDA ADD GROUP(gggg) LIST(xxxxxxx) to 
permanently add the eXadas Stored Procedure processing group to the CICS 
system start-up.
422 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix C

MTO Command Reference

Introduction to MTO Commands
The server is started and stopped with standard OS/390 console commands. This 
chapter describes the available operator commands. The operator commands 
allow you to dynamically configure OS/390-based servers. This chapter describes 
the MTO facility and how to monitor and control a server using the operator 
commands. The following topics are covered:

• “MTO Facility,” on page 424, and

• “Commands,” on page 424.

For additional information on server operations, see Chapter 10, “Server 
Operations.”
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 423



Appendix C. MTO Command Reference
MTO Facility
Dynamic configuration can be accomplished through a traditional MTO interface, 
or through a programmable operator API. This interface requires an operator task 
to be running. The operator interface will be the standard modify interface. 
Commands are executed in the following format: 

F program name,command

Where:

• F is the abbreviation for the OS/390 MODIFY command.

• program name is the name of the eXadas started-task to communicate with.

• command is the command passed to the server for execution.

The commands are described in detail in the section that follows.

NOTE: If the started task (program name) is a server that was started by an eXadas 
Enterprise Server, specify the fully-qualified task name in the form 
server.stepname. To send the modify to all servers, you may us an asterisk (*). 

For example:

/f cacds.t9396840,display,users
/f cacds.*,display,config=master

Commands
This section details all the available operator commands for the MTO facility.

SET,NAME=name, ORD=number, 
VALUE=value

This command modifies a configuration parameter in an active configuration. In 
addition, this command can be used to create new SERVICE INFO ENTRY 
configuration parameters for the active server. Any changes made to an active 
configuration remain only for the duration of the active configuration unless the 
FLUSH command is issued to commit the change permanently.

Configuration values containing imbedded spaces and special characters must be 
enclosed in either quotation marks (“ ”) or apostrophes (‘ ’).
424 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix C. MTO Command Reference
Timing values must be suffixed with either M (minutes), S (seconds), or MS 
(milliseconds), for example, 5M, 5S, or 500MS.

To reset a configuration parameter back to its system default value, issue the set 
command with VALUE=NULL. The associated parameter will be reset. If the 
FLUSH command is issued after resetting a configuration value, the reset 
parameter will not be written out to the associated initialization file. Resetting a 
SERVICE INFO ENTRY removes that entry from the active configuration.

WARNING: Do not reset SERVICE INFO ENTRY values that have active instances. Issue the 
STOP,SERVICE command to stop all active instances first.

To create a new SERVICE INFO ENTRY, issue the SET command with an ordinal 
value greater than the highest existing SERVICE INFO ENTRY in the 
configuration.

Examples:

F CACDS,SET,NAME=MASTER,ORD=105,VALUE=10m
RESPONSE TIME OUT=10M 

F CACDS,SET,NAME=MASTER,ORD=106,VALUE=’CACINIT P390 2 1 1 
256 4 1M 30S P390’ 
SERVICE INFO ENTRY = CACINIT P390 2 1 1 256 4 1M 30S P390

CANCEL,USER=userid

This command puts all users referenced by userid into a cancelled state. The users 
will be notified upon completion of any subsequent action. For maximum 
effectiveness, INTERLEAVE INTERVAL should be enabled. See page 389 for 
more information on INTERLEAVE INTERVAL.

Example:

CANCEL,USER=PUBLIC

CANCEL,SESSIONID=sessionid

This command puts a single user, referenced by sessionid, into a cancelled state. 
The user will be notified upon completion of any subsequent action. For 
maxiumum effetiveness, INTERLEAVE INTERVAL should be enabled. See page 
389 for more information on INTERLEAVE INTERVAL.

Example:

CANCEL,SESSIONID=212683400
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    425



Appendix C. MTO Command Reference
NOTE: When displaying users (DISPLAY, USERS) after a cancel command has been 
issued, you can identify dormant users by their sessionid, which is set to -1 on 
cancel. These users will be removed, and will no longer display, once any new 
activity takes place for them. Active users will be removed immediately.

DISPLAY,QUERIES

This command lists all of the query statements on the server by statement name 
and session id. With this information, you can issue the cancel for a particular 
query.

Example:

DISPLAY,QUERIES

Sample output:

CAC00200I DISPLAY,QUERIES

QUERY USER SESSIONID SERVICE TASKID TYPE STATE MEMORY
SELECT_ST wca027 351185720 CACSAMP 7139560 XQRY CLOSED 29K/29K
S1 wca009 351514104 CACSAMP 7139560 XQRY FETCHED 20K/22K
S1 WCA027 351184696 CACSAMP 7139560 unk INITIAL 3K/3K

CANCEL,QUERY=name,SESSIONID=
sessionid

This command puts the query referenced by name and sessionid into a cancelled 
state. The user will be notified upon completion of any subsequent action. For 
maximum effectiveness, INTERLEAVE INTERVAL should be enabled. See page 
389 for more information on INTERLEAVE INTERVAL.

Example:

CANCEL,QUERY=S1,SESSIONID=212683400

MODIFY,servicename,TRACELEVEL=
number

This command changes the trace level for a specific service. This command is 
applicable to all services.
426 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix C. MTO Command Reference
Example:

MODIFY,SFCOMMON,TRACELEVEL=1

MODIFY,servicename,TRIGGER 
START=number

This command sets the message number trigger on which the logger will start 
dumping all received LOG messages to level 1, temporarily replacing the current 
trigger level. This command is applicable to type 1 services only (loggers).

Example:

MODIFY,LOG,TRIGGER START=0X00570012

MODIFY,servicename,TRIGGER 
STOP=number

This command sets the message number trigger on which the logger will stop 
dumping (reverting to previous trigger level) all received LOG messages. This 
command is applicable to type 1 services only (loggers).

Example:

MODIFY,LOG,TRIGGER STOP=0x00570043

MODIFY,servicename,OUTPUT=DISPLAY

This command causes the logger to mirror all output to SYSOUT (mirroring 
meaning output still goes to the logfile as well). This output is formatted to text, 
but does not include engcat explanations. This command is applicable to type 1 
services only (loggers).

Example:

MODIFY,LOG,OUTPUT=DISPLAY
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    427



Appendix C. MTO Command Reference
MODIFY,servicename,OUTPUT=DEFAULT

This command turns off mirroring. This command is applicable to type 1 services 
only (loggers).

Example:

MODIFY,LOG,OUTPUT=DEFAULT

MODIFY,servicename,FLUSH

This command causes the logger to flush all pending output to the log. This 
command is applicable to type 1 services only (loggers).

Example:

MODIFY,LOG,FLUSH

FLUSH,NAME=name 

This command writes an in-core configuration image, specified by name to its 
corresponding member in the VHSCONF referenced data set. 

F CACDS,FLUSH,NAME=MASTER

WARNING: All comments in the initial configuration will be lost when the configuration is 
written back out. CrossAccess recommends backing up your initial configuration 
before issuing the FLUSH command.

DISPLAY, {SERVICES | USERS | 
CONFIG=name | CONFIGS | MEMORY | 
ALL }

The display command outputs a formatted list of the selected server information. 
The format is described as follows:

• SERVICES: Displays all running services in the server.

• USERS: Displays all users connected to the server.

• CONFIG=name: Displays the contents of a specified configuration.

• CONFIGS: Lists all configurations currently active in the server.
428 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix C. MTO Command Reference
• MEMORY: Displays the current memory pool utilization in the server.

• ALL: Lists SERVICES, USERS, CONFIGS, and MEMORY.

Sample command:

F CACDS,DISPLAY,ALL 

Sample output:

16.14.17 JOB00441  CAC00200I DISPLAY,ALL
16.14.17 JOB00441
16.14.17 JOB00441  SERVICE   TYPE      TASKID     TASKNAME   STATUS        USER
16.14.18 JOB00441  LOGGER    CACLOG    9288536    CACLOG     READY
16.14.18 JOB00441  CACSAMP   CACQP     9287976    CACQP      READY
16.14.18 JOB00441  TCPIP     CACINIT   9287032    CACINIT    READY
16.14.18 JOB00441  CACSAMP   CACQP     9190800    CACQP      READY
16.14.18 JOB00441  CACSAMP   CACQP     9189888    CACQP      READY
16.14.18 JOB00441
16.14.18 JOB00441  Total Number of TASKS = 5
16.14.18 JOB00441
16.14.18 JOB00441  USER      SESSIONID  HOSTNAME  PROCESSID THREADID   SERVICE  
TASKID
16.14.18 JOB00441  CACUSER   103185312  unknown    185        224        CACSAMP  
9287976
16.14.18 JOB00441  CACUSER   102817600  unknown    185        224        CACSAMP  
9190800
16.14.18 JOB00441             102663264  unknown    97         136        CACSAMP  
9189888
16.14.18 JOB00441
16.14.18 JOB00441  Total Number of USERS = 3
16.14.18 JOB00441
16.14.18 JOB00441  ACTIVE CONFIGURATIONS
16.14.18 JOB00441  MASTER
16.14.18 JOB00441  CACQPCF
16.14.18 JOB00441
16.14.18 JOB00441  Total Number of CONFIGURATIONS = 2
16.14.18 JOB00441  CAC00225I TOTAL MEMORY 16384K, USED 403K (2%), MAX USED 603K 
(3%)

The following service states are displayed for either a DISPLAY,ALL or 
DISPLAY,SERVICES operator command:

• 01) READY waiting for requests 

• 02) RECEIVING receiving a request 

• 03) RESPONDING sending a response

• 04) DYN EXEC processing an SQL DYN EXEC request

• 05) CLOSE CURSOR processing an SQL CLOSE CURSOR request 

• 06) DESCRIBE processing an SQL DESCRIBE request

• 07) EXECUTE processing an SQL EXECUTE request

• 08) EXEC IMMED processing an SQL DYN EXEC IMMEDIATE request 

• 09) FETCH processing an SQL FETCH request

• 10) OPEN CURSOR processing an SQL OPEN request 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    429



Appendix C. MTO Command Reference
• 11) PREPARE processing an SQL PREPARE request

• 12) SLCT INTO processing an SQL SELECT INTO request 

• 13) QUIESCE unused

• 14) STOP processing a server STOP,ALL request

NOTE: The Query Processor can display all of the states. All services can display 
numbers 1,2,3 and 14.

The Connection Handler and the DSH can also display states 4 through 12 when 
ferrying the indicated request over to a Query Processor.

NOTE: The MTO DISPLAY SERVICES and MTO DISPLAY USERS commands will 
only display the first 8 characters of Field 10 of the SERVICE INFO ENTRY 
parameter (service name), even though the service name may be longer than 8 
characters.

START,SERVICE=name

This command starts an instance of a service based on the service definition in the 
master configuration file. To view existing service definitions, issue the 
DISPLAY,CONFIG=MASTER operator command.

Sample command:

F CACDS,START,SERVICE=CACSAMP

NOTE: Service definitions in the master configuration can be dynamically created and 
changed using the SET command.

STOP, {TASKID=tasknumber | 
SERVICE=name | ALL}

This command tells the server controller to stop the specified task or service. 
STOP,ALL stops all running services and terminates the server itself. If the 
service or task does not exist, the command fails.

Sample command:

F CACDS,STOP,TASKID=9270608
F CACDS,STOP,SERVICE=SFCOMMON

WARNING: The STOP command cancels any user activity in an active service and disconnects 
all active users from the stopped service.
430 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix D

Sample SERVICE INFO ENTRY
Definitions

Introduction
This appendix shows you some sample SERVICE INFO ENTRY definitions, on 
which you can base your own definitions:

• “Region Controller and Logger,” on page 432,

• “Query Processor,” on page 432,

• “Connection Handler,” on page 432,

• “IMS Interface Initialization Services,” on page 433,

• “DB/2 Access,” on page 434,

• “Datacom Initialization Service,” on page 434,

• “VSAM Service,” on page 435,

• “Work Load Manager Initialization Service,” on page 435,

• “Language Environment Initialization Service,” on page 436, and

• “Multiple Catalog Support,” on page 436.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 431



Appendix D. Sample SERVICE INFO ENTRY Definitions
Region Controller and Logger
The following SERVICE INFO ENTRY examples are for the Region Controller 
and the Logger service. These two are required services, limited to one occurrence 
per instance. None of the TASK LOAD modules accept initialization parameters, 
so both specify NO_DATA in field 10 (Service Information).

SERVICE INFO ENTRY = CACCNTL CNTL 0 1 1 100 4 5M 5M NO_DATA
SERVICE INFO ENTRY = CACLOG LOGGER 1 1 1 100 1 5M 5M NO_DATA             

Query Processor
The following example is for a Query Processor service. There are no restrictions 
as to the number of instances nor the number of occurrences per instance.The only 
limiting factors are performance and storage availability. Field 2 (Service Name) 
in a Query Processor Service Info Entry references the data source name for 
which this Query Processor instance will process SQL commands. Field 10 
(Service Information) for a Query Processor Service Info Entry is optional. It 
must either be NO_DATA, signifying that no initialization data be passed to the 
Query Processor service, or it must be the name of a member of the SCACCONF 
library. If specified, any parameters contained within this member will override 
the default value, or the value specified in CACDSCF.

SERVICE INFO ENTRY = CACQP CACSAMP 2 1 10 100 0 5M 0M CACQPCF

Connection Handler
The next Service Info Entry examples are for the Connection Handler, one for 
each of the transport layer modules. They are restricted to a single occurrence for 
each Service Info Entry instance, but multiple Service Info Entries may be 
specified, so long as this does not introduce any conflicts within or between their 
respective Service Information fields (field 10). It is also permissible to specify 
Connection Handler Service Info Entries for one, two, or all three of the different 
Transport Layer protocols within a single server configuration. 
432 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix D. Sample SERVICE INFO ENTRY Definitions
Cross Memory Transport Layer

The Communication Initiator module (CACINIT) determines which transport 
layer the SIE is for by the first value in Field 10 (in this case, XM1). The 
remaining values are for the data space name followed by the queue name. This 
data space name/queue name pair must be unique for each client-server, client-
Enterprise Server, and Enterprise Server-Server connection. The data space and 
the queue name fields each have a maximum length of 4 characters. See Chapter 
6, “Communication Configuration,” for more information on data spaces and 
queues used by the Cross Memory Transport Layer.

SERVICE INFO ENTRY = CACINIT XMNT 2 1 1 100 4 5M 5M 
XM1/CAC/CAC

TCP/IP Transport Layer

In the following example, TCP is the first value of Field 10 of the SIE. The 
remaining two values represent the IP address of the machine the server is running 
on, and the port number that has been assigned to this server as a Listen port. If the 
TCP/IP subsystem provides support for it, the IP address is allowed to be specified 
as a HOST name, and the port number specified as a SERVICE name.

SERVICE INFO ENTRY = CACINIT TCPIP 2 1 1 100 4 5M 5M \
TCP/111.111.111.111/socket#

MQ Series

For SIEs that define MQ Series, the value MQI is specified in Field 10. The 
remaining two values represent the name of the Queue Manager that the MQ 
Series Connection Handler connects to, and the name of the MQ Series Queue that 
the Connection Handler is listening on for connection requests.

SERVICE INFO ENTRY = CACINIT MQI  2 1 1 100 4 5M 10M \ 
MQI/SCQ1/CAC.SERVER

IMS Interface Initialization Services
The next sections describe the two IMS Interface Initialization services. These 
services are both limited to a single SERVICE INFO ENTRY instance, and only 
one occurrence of that single instance is allowed. 
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    433



Appendix D. Sample SERVICE INFO ENTRY Definitions
NOTE: The IMS services are mutually-exclusive. Therefore, while both services can be 
defined, only one can be started by having its minimum task field set to 1. The 
non-started service must have the minimum service task field set to 0.

CACIMSIF

The following example has the Task Name CACIMSIF. This indicates that it 
applies to the DBB/BMP interface. It accepts no initialization parameters from 
Field 10, as all of its parameters are passed in the server JCL.

SERVICE INFO ENTRY = CACIMSIF IMS 2 1 1 10 4 5M 5M NO_DATA

CACDRA

This example has the Task Name CACDRA, indicating that it is for the DRA 
interface. The three values that are passed from Field 10 are the start-up table 
suffix, followed by the DRA user ID, and finally by the default PSB name. For 
more information see Chapter 3, “Server Setup for IMS Access.”

SERVICE INFO ENTRY = CACDRA IMS 2 1 1 10 4 5M 5M 
00,DRAUSER,DEFPSB 

DB/2 Access
The DB2 CAF Initialization Service is used to connect to the DB2 subsystem in 
order to access or update DB2 data using the DB2 Call Attach Facility.

SERVICE INFO ENTRY = CACCAF DSN 2 1 5 1 4 5M 5M CACPLAN

Datacom Initialization Service
An SIE like the following is included only if you want to access a 
CA-DATACOM/DB database. It is restricted to a single instance. Field 10 
(Service Information) for the Datacom Initialization Service must be either 
NO_DATA, signifying that no initialization data is passed to the Datacom 
Initialization Service, or must indicate the number of CA-DATACOM/DB task 
434 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix D. Sample SERVICE INFO ENTRY Definitions
areas to be acquired during initialization. If Field 10 is specified as 0, is specified 
as greater than 200, or if Field 10 is not specified, then it is set to 5. No warning 
messages are issued when an adjustment to this parameter is made.

SERVICE INFO ENTRY = CACDCI DCOM 2 1 1 50 4 5M 5M 4

VSAM Service
The VSAM Service manages VSAM RPLs to allow multiple users to share access 
to an open file. The following default SERVICE INFO ENTRY for the VSAM 
Service opens VSAM datasets on first use and closes them on last use.

SERVICE INFO ENTRY = CACVSMS VSAMSRV 2 1 1 50 4 5M 5M NO_DATA

An optional setting for field10 is CLOSE_ON_IDLE. This enables the VSAM 
Service to not close the VSAM datasets when the count use goes to zero. The 
VSAM Service will poll all open VSAM datasets looking for a candidate which 
has been inactive for more than the specified idle time (Field 9). The close will 
occur if the VSAM dataset has exceeded the idle time.

Work Load Manager Initialization Service
The following example is for the Work Load Manager Initialization Service. It is 
only included if you want to invoke the Work Load Manager System Exit, and is 
restricted to a single occurrence of a single instance. The service information that 
is passed consists of the WLM System Exit load module name, followed by a 
subsystem type and name parameters. These are then passed to the Work Load 
Manager subsystem, which uses them for classification of the work that will take 
place in this server. See Chapter 13, “Utilities,” and Chapter 15, “System Exits,” 
for additional information.

SERVICE INFO ENTRY = CACWLM WLM 2 1 1 10 4 5M 0M \ CACSX06 
SUBSYS=STC SUBSYSNM=JES2
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    435



Appendix D. Sample SERVICE INFO ENTRY Definitions
Language Environment Initialization 
Service

The following example SERVICE INFO ENTRYs are for the Language 
Environment Initialization Service. The service is used to initialize IBM’s 
Language Environment (CEEPIPI) or COBOL II (IGZERRE), which allows exits 
to be written in a high-level language. See “Performance Considerations,” on page 
259.

SERVICE INFO ENTRY = CACLE LANGENV 2 1 1 50 5 5M 5M CEEPIPI
SERVICE INFO ENTRY = CACLE LANGENV 2 1 1 50 4 5M 5M IGZERRE

Multiple Catalog Support
Multiple Catalog Support allows you to specify unique catalogs at the data source 
level. Using the data source name, you can specify additional catalogs, one for 
each data source. When a Query Processor initializes, it looks for a matching data 
source name (field2) and a corresponding prefix character outlined in the 
following naming convention.

To override the default catalog on a specific data source, add a DD statement with 
a label equal to the data source name, appended with a pound sign (#) for the 
catalog and an at sign (@) for the index file. If your data source is defined as:

SERVICE INFO ENTRY = CACQP SAMPL1 2 1 1 200 4 5M 5M NO_DATA 
SERVICE INFO ENTRY = CACQP SAMPL2 2 1 1 200 4 5M 5M NO_DATA

then the following should be added to your JCL to specify unique catalogs.

CACCAT   DD   DSN=DEFAULT.CATALOG,DISP=SHR
CACINDX  DD   DSN=DEFAULT.INDEX,DISP=SHR
SAMPL1#  DD   DSN=SAMPL1.CATALOG,DISP=SHR
SAMPL1@  DD   DSN=SAMPL1.INDEX,DISP=SHR
SAMPL2#  DD   DSN=SAMPL2.CATALOG,DISP=SHR
SAMPL2@  DD   DSN=SAMPL2.INDEX,DISP=SHR

Each Query Processor service attempts to locate a DD name using this naming 
convention. If it cannot locate one, then it uses the default. 

NOTE: OS/390 restricts DD names to eight characters. Data source names should be 
unique up to seven characters. For example, if your data source is defined as:

SERVICE INFO ENTRY =  CACQP SAMPLEQUERYPROCS 2 1 1 200 4 5M 
5M / NO_DATA

Then add the following JCL to specify unique catalogs:
436 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix D. Sample SERVICE INFO ENTRY Definitions
CACCAT   DD   DSN=DEFAULT.CATALOG,DISP=SHR
CACINDX  DD   DSN=DEFAULT.INDEX,DISP=SHR
SAMPLEQ# DD   DSN=SAMPL1.CATALOG,DISP=SHR
SAMPLEQ@ DD   DSN=SAMPL1.INDEX,DISP=SHR
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    437



Appendix D. Sample SERVICE INFO ENTRY Definitions
438 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E

Meta Table Definitions

Introduction
This appendix contains IBM DB2 Version 4 style descriptions for all of the meta 
data tables. For each table there is a short description of what the table contains 
and how many rows exist in the System Catalog. These descriptions are obtained 
from the REMARKS column for that table.

Following the table description are descriptions of each of the columns defined in 
the table. For each column, the following information is supplied:

• The column’s name. 

• The column’s SQL data type and whether or not the column supports null 
values. Columns that do not support null values are identified by the clause 
“NOT NULL.”

• A description of the column’s content, and for columns that support null 
values, what the null value is. These descriptions were programmatically 
generated based on the columns REMARKS column and the NULL_VALUE 
column.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide 439



Appendix E. Meta Table Definitions
The tables that follow describe each meta data table. They are presented in 
alphabetical order. For more information on each table’s purpose, see Table 33, 
“Meta Data Tables,” on page 199.

Table 81: SYSCAC.SYSADABASCOLUMNS

Column Name Data Type Description

NAME CHAR(30) 
NOT NULL

DB2 column. Name of the column.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that contains the column.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table 
that the column is in.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of column within the table. 
Numbers start at 1.

COLTYPE CHAR(8) 
NOT NULL

DB2 column. Type of column, values are INTEGER, 
SMALLINT, FLOAT, CHAR, VARCHAR, LONGVAR, 
DECIMAL, GRAPHIC, VARG, and LONGVARG.

LENGTH SMALLINT 
NOT NULL

DB2 column. For a DECIMAL data type the columns 
precision. for all other data types the columns length.

SCALE SMALLINT 
NOT NULL

DB2 column. Scale for a DECIMAL data type, otherwise 
zero.

NULLS CHAR(1) 
NOT NULL

DB2 column. Y/N flag identifying whether the column 
can contain null values.

COLCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

HIGH2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

LOW2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

UPDATES CHAR(1) DB2 column. For DB2 tables, the corresponding 
UPDATES value from the DB2 catalog. For system tables 
always 'N'. For all other types of tables always 'Y'. Null 
and default value is 'Y'.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the column. Null and default value is spaces.
440 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
DEFAULT CHAR(1) DB2 column. For DB2 tables, the corresponding 
DEFAULT value from the DB2 catalog or for a meta data 
table whether the column has a NULL IS specification. 
For all other types of tables 'N'. Null and default value is 
spaces.

KEYSEQ SMALLINT DB2 column. The columns numeric position within the 
primary key, Zero if the column is not part of the primary 
key. Null and default value is zeros.

FOREIGNKEY CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FLDPROC CHAR(1) DB2 column. Flag indicating whether the column has a 
field procedure associated with it. 'Y' - field procedure 
exists, otherwise 'N'. Null and default value is 'N'.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIELD_OFFSET SMALLINT 
NOT NULL

eXadas column. Relative zero offset of the start of the 
column in the rexord or segment.

FIELD_LENGTH SMALLINT 
NOT NULL

eXadas column. Physical length of the field.

NATIVE_DATA_TYPE CHAR(1) 
NOT NULL

eXadas column. Native type of the the underlying 
column. For a description of the different data types refer 
to the documentation on the Meta Data Utility in the 
System Reference Manual.

SQL_COLUMN_LENGT
H

SMALLINT 
NOT NULL

eXadas column. The SQL length of the column.

DB2_DATA_TYPE SMALLINT 
NOT NULL

eXadas column. The DB2 SQLDA data type value for the 
column.

PRECISION SMALLINT 
NOT NULL

eXadas column. For a DECIMAL data type the columns 
scale. for all other data types zero.

COLUMN_SEQUENCE_
NUMBER

SMALLINT 
NOT NULL

eXadas column. Relative zero ordinal position of this 
column in the table.

USE_RECORD_LENGT
H

SMALLINT eXadas column. For variable length records, whether the 
entire contents of the record should be mapped to the 
column. A value of 1 indicates that the record length 
should be used. Null and default value is spaces.

FRAGMENT_ID SMALLINT 
NOT NULL

eXadas column. The ID of the fragment that the column is 
located in.

Table 81: SYSCAC.SYSADABASCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    441



Appendix E. Meta Table Definitions
FRAGMENT_LEVEL SMALLINT 
NOT NULL

eXadas column. The level number of the fragment that 
the column is located in.

OFFSET_IN_FRAGMEN
T

SMALLINT 
NOT NULL

eXadas column. Relative zero starting offset of the 
column within the fragment.

NULLABLE CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating whether the column 
supports null values.

SIGNED CHAR(1) 
NOT NULL

eXadas column. Is the underlying column’s data type 
signed or unsigned? 'Y' the data is signed, 'N' the data is 
unsigned.

NULL_DATA_LENGTH SMALLINT eXadas column. Length of the NULL IS specification for 
this column Null and default value is zeros.

NULL_VALUE CHAR(16) eXadas column. The value for this column that means the 
column contains a null value. Null and default value is 
spaces.

FIELD_PROCEDURE_N
AME

CHAR(8) eXadas column. Name of the field procedure associated 
with this column. Null and default value is spaces.

OCCURS_DEPENDING
_ON

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag that identifies whether the column exists within an 
OCCURS DEPENDING ON record arrary. Null and 
default value is 'N'.

FRAGMENT_OFFSET_I
N_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the starting position of the 
fragment within the linear buffer. Null and default value is 
-1.

FRAGMENT_LENGTH SMALLINT eXadas column - obtained from fragment definition. 
Length of the fragment. If fragment level is 0 the length is 
the length of the record or segment. For non-zero 
fragment levels the length of the RECORD ARRAY. Null 
and default value is -1.

FRAGMENT_MAXIUM
UM_OCCURRENCES

SMALLINT eXadas column - obtained from fragment definition. 
Maximum times the fragment can occur. Null and default 
value is zeros.

NULL_FRAGMENT_RU
LE

CHAR(30) eXadas column - obtained from fragment definition. 
Method used to determine a NULL occurrence in a 
RECORD ARRAY. Null and default value is spaces.

Table 81: SYSCAC.SYSADABASCOLUMNS

Column Name Data Type Description
442 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
OCCURS_DEPENDING
_ON_COLUMN

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the name of the column 
that identifies the number of occurrences that exist. Null 
and default value is spaces.

OCCURS_DEPENDING
_ON_COLNO

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the 
COLUMN_SEQUENCE_NUMBER of the column that 
identifies the number of occurrences that exist. Null and 
default value is zeros.

FRAGMENT_NULL_LE
NGTH

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the length of the NULL IS 
specification for the fragment. Null and default value is 
zeros.

FRAGMENT_NULL_VA
LUE

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the value that indentifies 
an instance as being null. Null and default value is spaces.

FORMAT_BUFFER_FIE
LD_ID

CHAR(20) 
NOT NULL

eXadas column. ADABAS format buffer field id.

FDT_DEFINITION_TYP
E

CHAR(1) 
NOT NULL

eXadas column. ADABAS FDT definition type code for 
this column.

FDT_FIELD_NAME CHAR(2) 
NOT NULL

eXadas column. ADABAS FDT field name for this 
column.

FDT_OPTION CHAR(24) 
NOT NULL

eXadas column. ADABAS FDT option list. One or more 
of the following values: DE, FI, MU, NU, PE, PP, PS and 
UQ. Refer to the ADABAS documentation for 
descriptions of these codes.

FDT_LEVEL_NUMBER SMALLINT eXadas column. ADABAS FDT level number for this 
column. Null and default value is zeros.

FDT_LENGTH SMALLINT 
NOT NULL

eXadas column. ADABAS FDT length value for this 
column.

FDT_FORMAT_TYPE CHAR(3) eXadas column, ADABAS FDT format type code for this 
column. One of the following: A, B, F, G, P or U, or 
superdescriptor number for a subfield. Null and default 
value is spaces.

FDT_OPTION2 CHAR(8) eXadas column. ADABAS FDT option2 list. One or more 
of the following values: LA, NN and NC. Refer to the 
ADABAS documentation for descriptions of these codes. 
Null and default value is spaces.

Table 81: SYSCAC.SYSADABASCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    443



Appendix E. Meta Table Definitions
DATE_FIELD CHAR(1) eXadas column. Y/N flag that identifies whether this 
column is defined as a date field to ADABAS. Null and 
default value is spaces.

TIME_FIELD CHAR(1) eXadas column. Y/N flag that identifies whether this 
column is defined as a time field to ADABAS. Null and 
default value is spaces.

DATE_FORMAT CHAR(30) eXadas column. Date format string if this column is 
mapped against an ADABAS date field. Null and default 
value is spaces.

TIME_FORMAT CHAR(30) eXadas column. Date format string if this column is 
mapped against an ADABAS time field. Null and default 
value is spaces.

MAIN_REDEFINTION CHAR(1) eXadas column. Y/N flag that identifies whether the 
ADABAS field referenced by this column is a main 
redefinition within Predict. Null and default value is 
spaces.

REDEFINTION CHAR(1) eXadas column. Y/N flag that identifies whether the 
ADABAS field referenced by this column is redefined 
within Predict. Null and default value is spaces.

REDEFINITION_OFFSE
T

SMALLINT eXadas column. For a column that is identified as a 
redefinition, the relative zero starting offset of the 
column. Null and default value is zeros.

MAIN_REDEFINITION_
OFFSET

SMALLINT eXadas column. For a column that is identified as a main 
redefinition, the relative zero starting offset of the 
column. Null and default value is zeros.

TRANSFER_FIELD_LE
NGTH

SMALLINT eXadas column. Length of the data transfered to the linear 
buffer (for use by the QP) for this column. Null and 
default value is zeros.

ISN CHAR(1) eXadas column. Y/N flag that identifies whether the 
columns represents the ISN. Null and default value is 
spaces.

Table 81: SYSCAC.SYSADABASCOLUMNS

Column Name Data Type Description
444 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
Table 82: SYSCAC.SYSADABASINDEXES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of index.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the index.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that the index is 
referencing.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

UNIQUERULE CHAR(1) 
NOT NULL

DB2 column. Whether the index is unique. 'U' yes or 'D' 
no.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns that make up the key.

CLUSTERING CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

CLUSTERED CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

DBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

OBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

ISOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Not used by eXadas.

INDEXSPACE CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIRSTKEYCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

FULLKEYCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

NLEAF INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

NLEVELS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    445



Appendix E. Meta Table Definitions
BPOOL CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

PGSIZE SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

ERASERULE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

DSETPASS CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLOSERULE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'Y'.

SPACE INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

CLUSTERRATIO SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the index.

SUPER_DESCRIPTOR_
COLNO

SMALLINT eXadas column. The COLNO of the super descriptor 
column definition for this table. Null and default value is 
zeros.

Table 83: SYSCAC.SYSADABASKEYS

Column Name Data Type Description

IXNAME CHAR(18) 
NOT NULL

DB2 column. Name of the index.

IXCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the index.

COLNAME CHAR(30) 
NOT NULL

DB2 column. Name of the column for this key.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of the column in the table.

COLSEQ SMALLINT 
NOT NULL

DB2 column. Position of this column within the key.

Table 82: SYSCAC.SYSADABASINDEXES

Column Name Data Type Description
446 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
ORDERING CHAR(1) 
NOT NULL

DB2 column. Sort order of this column within the key. 'A' 
ascending or 'D' decending.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

FIELD_NAME CHAR(2) 
NOT NULL

eXadas column. ADABAS field name associated with the 
key column.

START_POSITION SMALLINT 
NOT NULL

eXadas column. Relative zero starting position of the key 
column within the ADABAS field.

END_POSITION SMALLINT 
NOT NULL

eXadas column. Relative zero ending position of the key 
column within the ADABAS field.

Table 84: SYSCAC.SYSADABASTABLES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of the table.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

TYPE CHAR(1) 
NOT NULL

DB2 column. Type of object. 'T' for a table or 'V' for a 
view.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Identifies the type of DBMS that the table is 
referencing. Values are $ADABAS, $CFI (System Table), 
$DATACOM, $DB2, $IAM, $IMS, $IDMS, $MDS (Meta 
Data Table) $SEQUENT and $VSAM.

TSNAME CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

DBID SMALLINT DB2 column. Internal identifier of the database. Zero if 
the the row describes a view or the database does not have 
an identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

OBID SMALLINT DB2 column. Internal identifier of the table. Zero if the 
row describes a view or the database does not have an 
identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns defined for this table.

Table 83: SYSCAC.SYSADABASKEYS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    447



Appendix E. Meta Table Definitions
EDPROC CHAR(8) DB2 column. Name of the edit procedure. Blank if the 
row describes a view or the table does not use a edit 
procedure. Only populated for IDMS tables that use 
compression routines. Null and default value is spaces.

VALPROC CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERTYPE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERRID INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

CARD INTEGER DB2 column. Number of rows in the table. Null and 
default value is -1.

NPAGES INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

PCTPAGES SMALLINT DB2 column. Not used by eXadas. Null and default value 
is -1.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the table. Null and default value is spaces.

PARENTS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CHILDREN SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

KEYCOLUMNS SMALLINT DB2 column. Number of columns that make up the tables 
primary key. Only maintained for system tables. For all 
other tables 0. Null and default value is zeros.

RECLENGTH SMALLINT 
NOT NULL

DB2 column. Number of bytes in a row. This ia also the 
size of the linear buffer allocated for this table.

STATUS CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

KEYOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

Table 84: SYSCAC.SYSADABASTABLES

Column Name Data Type Description
448 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
CHECKFLAG CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKRID CHAR(4) DB2 column. Not used by eXadas. Null and default value 
is spaces.

AUDIT CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the table.

LOCATION CHAR(16) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBCREATOR CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBNAME CHAR(18) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FRAGMENTS SMALLINT 
NOT NULL

eXadas column. Number of fragments used to mangage 
this table.

DBMS CHAR(8) 
NOT NULL

eXadas column. Identifies the type of database. Always 
'ADABAS'.

DATA_CAPTURE CHAR(1) DB2 column. Identifies whether the table has been 
marked for xSync data capture. A value of 'Y' indicates 
that changes will be captured. Null and default value is 
spaces.

SORT_KEYS SMALLINT eXadas column. Total number of sort keys for all indexes 
defined for this table. The value for this column is 
automatically maintained by eXadas. Null and default 
value is zeros.

INDEXES SMALLINT eXadas column. Total number of indexes defined for this 
table. The value for this column is automatically 
maintained by eXadas. Null and default value is zeros.

FILE_NUMBER SMALLINT 
NOT NULL

eXadas column. ADABAS file number that this table is 
referencing.

VIEW_NAME CHAR(40) eXadas column. PREDICT view name. Null and default 
value is spaces.

VARIABLE_LENGTH_C
OLUMNS

CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating whether this table 
contains ADABAS columns that are variable length.

Table 84: SYSCAC.SYSADABASTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    449



Appendix E. Meta Table Definitions
DB_ID SMALLINT 
NOT NULL

eXadas column. ADABAS DBID number that this table 
is referencing.

FRAGMENT_ID SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with this ADABAS table. Null 
and default value is zeros.

VARIABLE_LENGTH CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the table is variable length. Null 
and default value is spaces.

Table 85: SYSCAC.SYSDATACOMCOLUMNS

Column Name Data Type Description

NAME CHAR(30) 
NOT NULL

DB2 column. Name of the column.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that contains the column.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table 
that the column is in.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of column within the table. 
Numbers start at 1.

COLTYPE CHAR(8) 
NOT NULL

DB2 column. Type of column, values are INTEGER, 
SMALLINT, FLOAT, CHAR, VARCHAR, LONGVAR, 
DECIMAL, GRAPHIC, VARG, and LONGVARG.

LENGTH SMALLINT 
NOT NULL

DB2 column. For a DECIMAL data type the columns 
precision. for all other data types the columns length.

SCALE SMALLINT 
NOT NULL

DB2 column. Scale for a DECIMAL data type, otherwise 
zero.

NULLS CHAR(1) 
NOT NULL

DB2 column. Y/N flag identifying whether the column 
can contain null values.

COLCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

HIGH2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

LOW2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

Table 84: SYSCAC.SYSADABASTABLES

Column Name Data Type Description
450 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
UPDATES CHAR(1) DB2 column. For DB2 tables, the corresponding 
UPDATES value from the DB2 catalog. For system tables 
always 'N'. For all other types of tables always 'Y'. Null 
and default value is 'Y'.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the column. Null and default value is spaces.

DEFAULT CHAR(1) DB2 column. For DB2 tables, the corresponding 
DEFAULT value from the DB2 catalog or for a meta data 
table whether the column has a NULL IS specification. 
For all other types of tables 'N'. Null and default value is 
spaces.

KEYSEQ SMALLINT DB2 column. The columns numeric position within the 
primary key, Zero if the column is not part of the primary 
key. Null and default value is zeros.

FOREIGNKEY CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FLDPROC CHAR(1) DB2 column. Flag indicating whether the column has a 
field procedure associated with it. 'Y' - field procedure 
exists, otherwise 'N'. Null and default value is 'N'.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIELD_OFFSET SMALLINT 
NOT NULL

eXadas column. Relative zero offset of the start of the 
column in the rexord or segment.

FIELD_LENGTH SMALLINT 
NOT NULL

eXadas column. Physical length of the field.

NATIVE_DATA_TYPE CHAR(1) 
NOT NULL

eXadas column. Native type of the the underlying 
column. For a description of the different data types refer 
to the documentation on the Meta Data Utility in the 
System Reference Manual.

SQL_COLUMN_LENGT
H

SMALLINT 
NOT NULL

eXadas column. The SQL length of the column.

DB2_DATA_TYPE SMALLINT 
NOT NULL

eXadas column. The DB2 SQLDA data type value for the 
column.

PRECISION SMALLINT 
NOT NULL

eXadas column. For a DECIMAL data type the columns 
scale. for all other data types zero.

Table 85: SYSCAC.SYSDATACOMCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    451



Appendix E. Meta Table Definitions
COLUMN_SEQUENCE_
NUMBER

SMALLINT 
NOT NULL

eXadas column. Relative zero ordinal position of this 
column in the table.

USE_RECORD_LENGT
H

SMALLINT eXadas column. For variable length records, whether the 
entire contents of the record should be mapped to the 
column. A value of 1 indicates that the record length 
should be used. Null and default value is spaces.

FRAGMENT_ID SMALLINT 
NOT NULL

eXadas column. The ID of the fragment that the column is 
located in.

FRAGMENT_LEVEL SMALLINT 
NOT NULL

eXadas column. The level number of the fragment that 
the column is located in.

OFFSET_IN_FRAGMEN
T

SMALLINT 
NOT NULL

eXadas column. Relative zero starting offset of the 
column within the fragment.

NULLABLE CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating whether the column 
supports null values.

SIGNED CHAR(1) 
NOT NULL

eXadas column. Is the underlying column’s data type 
signed or unsigned? 'Y' the data is signed, 'N' the data is 
unsigned.

NULL_DATA_LENGTH SMALLINT eXadas column. Length of the NULL IS specification for 
this column Null and default value is zeros.

NULL_VALUE CHAR(16) eXadas column. The value for this column that means the 
column contains a null value. Null and default value is 
spaces.

FIELD_PROCEDURE_N
AME

CHAR(8) eXadas column. Name of the field procedure associated 
with this column. Null and default value is spaces.

OCCURS_DEPENDING
_ON

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag that identifies whether the column exists within an 
OCCURS DEPENDING ON record arrary. Null and 
default value is 'N'.

FRAGMENT_OFFSET_I
N_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the starting position of the 
fragment within the linear buffer. Null and default value is 
-1.

FRAGMENT_LENGTH SMALLINT eXadas column - obtained from fragment definition. 
Length of the fragment. If fragment level is 0 the length is 
the length of the record or segment. For non-zero 
fragment levels the length of the RECORD ARRAY. Null 
and default value is -1.

Table 85: SYSCAC.SYSDATACOMCOLUMNS

Column Name Data Type Description
452 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
FRAGMENT_MAXIMU
M_OCCURRENCES

SMALLINT eXadas column - obtained from fragment definition. 
Maximum times the fragment can occur. Null and default 
value is zeros.

NULL_FRAGMENT_RU
LE

CHAR(30) eXadas column - obtained from fragment definition. 
Method used to determine a NULL occurrence in a 
RECORD ARRAY. Null and default value is spaces.

OCCURS_DEPENDING
_ON_COLUMN

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the name of the column 
that identifies the number of occurrences that exist. Null 
and default value is spaces.

OCCURS_DEPENDING
_ON_COLNO

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the 
COLUMN_SEQUENCE_NUMBER of the column that 
identifies the number of occurrences that exist. Null and 
default value is zeros.

FRAGMENT_NULL_LE
NGTH

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the length of the NULL IS 
specification for the fragment. Null and default value is 
zeros.

FRAGMENT_NULL_VA
LUE

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the value that indentifies 
an instance as being null. Null and default value is spaces.

DATACOM_NAME CHAR(5) 
NOT NULL

eXadas column. Name of the DATACOM element that 
contains this column.

SECURITY_CODE CHAR(1) eXadas column. DATACOM security code that is 
required to access this element or any portion of it. Null 
and default value is spaces.

DISPLACEMENT_IN_T
ABLE

SMALLINT 
NOT NULL

eXadas column. Offset from the beginning of the 
DATACOM table to the 1st byte of the element 
containing this column.

ELEMENT_LENGTH SMALLINT 
NOT NULL

eXadas column. Length of the DATACOM element 
containing this column.

DISPLACEMENT_IN_E
LEMENT

SMALLINT 
NOT NULL

eXadas column. Offset from the beginning of the 
DATACOM element to the 1st byte of the column.

DATACOM_TYPE CHAR(1) 
NOT NULL

eXadas column. DATACOM TYPE attribute of the 
FIELD entity-occurrence.

Table 85: SYSCAC.SYSDATACOMCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    453



Appendix E. Meta Table Definitions
NUMERIC_TYPE CHAR(1) eXadas column. DATACOM TYPE-NUMERIC attribute 
of the FIELD entity-occurrence. Null and default value is 
spaces.

SIGN CHAR(1) eXadas column. DATACOM SIGN attribute of the 
FIELD entity-occurrence. Null and default value is 
spaces.

JUSTIFICATION CHAR(1) eXadas column. DATACOM JUSTIFICATION attribute 
of the FIELD entity-occurrence. Null and default value is 
spaces.

DECIMALS SMALLINT 
NOT NULL

eXadas column. DATACOM DECIMALS attribute of the 
FIELD entity-occurrence.

DATACOM_PRECISION SMALLINT 
NOT NULL

eXadas column. DATACOM PRECISION attribute of the 
FIELD entity-occurrence.

Table 86: SYSCAC.SYSDATACOMINDEXES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of index.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the index.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that the index is 
referencing.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

UNIQUERULE CHAR(1) 
NOT NULL

DB2 column. Whether the index is unique. 'U' yes or 'D' 
no.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns that make up the key.

CLUSTERING CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

CLUSTERED CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

DBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

Table 85: SYSCAC.SYSDATACOMCOLUMNS

Column Name Data Type Description
454 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
OBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

ISOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Not used by eXadas.

INDEXSPACE CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIRSTKEYCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

FULLKEYCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

NLEAF INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

NLEVELS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

BPOOL CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

PGSIZE SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

ERASERULE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

DSETPASS CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLOSERULE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'Y'.

SPACE INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

CLUSTERRATIO SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the index.

Table 86: SYSCAC.SYSDATACOMINDEXES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    455



Appendix E. Meta Table Definitions
Table 87: SYSCAC.SYSDATACOMKEYS

Column Name Data Type Description

IXNAME CHAR(18) 
NOT NULL

DB2 column. Name of the index.

IXCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the index.

COLNAME CHAR(30) 
NOT NULL

DB2 column. Name of the column for this key.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of the column in the table.

COLSEQ SMALLINT 
NOT NULL

DB2 column. Position of this column within the key.

ORDERING CHAR(1) 
NOT NULL

DB2 column. Sort order of this column within the key. 'A' 
ascending or 'D' decending.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

Table 88: SYSCAC.SYSDATACOMTABLES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of the table.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

TYPE CHAR(1) 
NOT NULL

DB2 column. Type of object. 'T' for a table or 'V' for a 
view.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Identifies the type of DBMS that the table is 
referencing. Values are $ADABAS, $CFI (System Table), 
$DATACOM, $DB2, $IAM, $IMS, $IDMS, $MDS (Meta 
Data Table) $SEQUENT and $VSAM.

TSNAME CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

DBID SMALLINT DB2 column. Internal identifier of the database. Zero if 
the the row describes a view or the database does not have 
an identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.
456 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
OBID SMALLINT DB2 column. Internal identifier of the table. Zero if the 
row describes a view or the database does not have an 
identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns defined for this table.

EDPROC CHAR(8) DB2 column. Name of the edit procedure. Blank if the 
row describes a view or the table does not use a edit 
procedure. Only populated for IDMS tables that use 
compression routines. Null and default value is spaces.

VALPROC CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERTYPE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERRID INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

CARD INTEGER DB2 column. Number of rows in the table. Null and 
default value is -1.

NPAGES INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

PCTPAGES SMALLINT DB2 column. Not used by eXadas. Null and default value 
is -1.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the table. Null and default value is spaces.

PARENTS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CHILDREN SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

KEYCOLUMNS SMALLINT DB2 column. Number of columns that make up the tables 
primary key. Only maintained for system tables. For all 
other tables 0. Null and default value is zeros.

RECLENGTH SMALLINT 
NOT NULL

DB2 column. Number of bytes in a row. This ia also the 
size of the linear buffer allocated for this table.

Table 88: SYSCAC.SYSDATACOMTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    457



Appendix E. Meta Table Definitions
STATUS CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

KEYOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKFLAG CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKRID CHAR(4) DB2 column. Not used by eXadas. Null and default value 
is spaces.

AUDIT CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the table.

LOCATION CHAR(16) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBCREATOR CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBNAME CHAR(18) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FRAGMENTS SMALLINT 
NOT NULL

eXadas column. Number of fragments used to mangage 
this table.

DBMS CHAR(8) 
NOT NULL

eXadas column. Identifies the type of database. Always 
'DATACOM'.

DATA_CAPTURE CHAR(1) DB2 column. Identifies whether the table has been 
marked for xSync data capture. A value of 'Y' indicates 
that changes will be captured. Null and default value is 
spaces.

SORT_KEYS SMALLINT eXadas column. Total number of sort keys for all indexes 
defined for this table. The value for this column is 
automatically maintained by eXadas. Null and default 
value is zeros.

INDEXES SMALLINT eXadas column. Total number of indexes defined for this 
table. The value for this column is automatically 
maintained by eXadas. Null and default value is zeros.

Table 88: SYSCAC.SYSDATACOMTABLES

Column Name Data Type Description
458 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
DATACOM_ID SMALLINT 
NOT NULL

eXadas column. DATACOM database ID. that is 
referenced by this table.

ENTITY_OCCURRENC
E_NAME

CHAR(32) 
NOT NULL

eXadas column. DATACOM database occurrence name 
that is referenced by this table.

AREA_OCCURRENCE_
NAME

CHAR(32) 
NOT NULL

eXadas column. DATACOM area occurrence name that is 
referenced by this table.

AREA_NAME CHAR(3) 
NOT NULL

eXadas column. DATACOM area name that is referenced 
by this table.

TABLE_OCCURRENCE
_NAME

CHAR(32) 
NOT NULL

eXadas column. DATACOM table occurrence name that 
is referenced by this table.

TABLE_NAME CHAR(3) 
NOT NULL

eXadas column. DATACOM table name that is referenced 
by this table.

VERSION_STATUS CHAR(4) 
NOT NULL

eXadas column. DATACOM status and version identifier 
for this table.

TABLE_LENGTH SMALLINT 
NOT NULL

eXadas column. The length of the table as defined to 
DATACOM.

TABLE_ID SMALLINT 
NOT NULL

eXadas column. DATACOM_ID table identifier that is 
referenced by this table.

DATABASE_ID SMALLINT 
NOT NULL

eXadas column. DATACOM_ID database identifier 
referenced by this DATACOM table.

NUMBER_OF_ELEMEN
TS

SMALLINT 
NOT NULL

eXadas column. Number of DATACOM elements 
referenced by this table.

URT_NAME CHAR(8) 
NOT NULL

eXadas column. URT load module name used to access 
this table.

FRAGMENT_ID SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID assocaited with this DATACOM table. Null 
and default value is zeros.

VARIABLE_LENGTH CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the DATACOM table is variable 
length. Null and default value is spaces.

Table 88: SYSCAC.SYSDATACOMTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    459



Appendix E. Meta Table Definitions
Table 89: SYSCAC.SYSDB2COLUMNS

Column Name Data Type Description

NAME CHAR(30) 
NOT NULL

DB2 column. Name of the column.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that contains the column.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table 
that the column is in.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of column within the table. 
Numbers start at 1.

COLTYPE CHAR(8) 
NOT NULL

DB2 column. Type of column, values are INTEGER, 
SMALLINT, FLOAT, CHAR, VARCHAR, LONGVAR, 
DECIMAL, GRAPHIC, VARG, and LONGVARG.

LENGTH SMALLINT 
NOT NULL

DB2 column. For a DECIMAL data type the columns 
precision. for all other data types the columns length.

SCALE SMALLINT 
NOT NULL

DB2 column. Scale for a DECIMAL data type, otherwise 
zero.

NULLS CHAR(1) 
NOT NULL

DB2 column. Y/N flag identifying whether the column 
can contain null values.

COLCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

HIGH2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

LOW2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

UPDATES CHAR(1) DB2 column. For DB2 tables, the corresponding 
UPDATES value from the DB2 catalog. For system tables 
always 'N'. For all other types of tables always 'Y'. Null 
and default value is 'Y'.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the column. Null and default value is spaces.

DEFAULT CHAR(1) DB2 column. For DB2 tables, the corresponding 
DEFAULT value from the DB2 catalog or for a meta data 
table whether the column has a NULL IS specification. 
For all other types of tables 'N'. Null and default value is 
spaces.
460 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
KEYSEQ SMALLINT DB2 column. The columns numeric position within the 
primary key, Zero if the column is not part of the primary 
key. Null and default value is zeros.

FOREIGNKEY CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FLDPROC CHAR(1) DB2 column. Flag indicating whether the column has a 
field procedure associated with it. 'Y' - field procedure 
exists, otherwise 'N'. Null and default value is 'N'.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIELD_LENGTH SMALLINT 
NOT NULL

eXadas column. Physical length of the field.

NATIVE_DATA_TYPE CHAR(1) 
NOT NULL

eXadas column. Native type of the the underlying 
column. For a description of the different data types refer 
to the documentation on the Meta Data Utility in the 
System Reference Manual.

SQL_COLUMN_LENGT
H

SMALLINT 
NOT NULL

eXadas column. The SQL length of the column.

DB2_DATA_TYPE SMALLINT 
NOT NULL

eXadas column. The DB2 SQLDA data type value for the 
column.

COLUMN_SEQUENCE_
NUMBER

SMALLINT 
NOT NULL

eXadas column. Relative zero ordinal position of this 
column in the table.

Table 90: SYSCAC.SYSDB2INDEXES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of index.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the index.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that the index is 
referencing.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

UNIQUERULE CHAR(1) 
NOT NULL

DB2 column. Whether the index is unique. 'U' yes or 'D' 
no.

Table 89: SYSCAC.SYSDB2COLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    461



Appendix E. Meta Table Definitions
COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns that make up the key.

CLUSTERING CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

CLUSTERED CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

DBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

OBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

ISOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Not used by eXadas.

INDEXSPACE CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIRSTKEYCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

FULLKEYCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

NLEAF INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

NLEVELS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

BPOOL CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

PGSIZE SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

ERASERULE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

DSETPASS CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLOSERULE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'Y'.

Table 90: SYSCAC.SYSDB2INDEXES

Column Name Data Type Description
462 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
SPACE INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

CLUSTERRATIO SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the index.

Table 91: SYSCAC.SYSDB2KEYS

Column Name Data Type Description

IXNAME CHAR(18) 
NOT NULL

DB2 column. Name of the index.

IXCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the index.

COLNAME CHAR(30) 
NOT NULL

DB2 column. Name of the column for this key.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of the column in the table.

COLSEQ SMALLINT 
NOT NULL

DB2 column. Position of this column within the key.

ORDERING CHAR(1) 
NOT NULL

DB2 column. Sort order of this column within the key. 'A' 
ascending or 'D' decending.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

Table 92: SYSCAC.SYSDB2TABLES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of the table.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

Table 90: SYSCAC.SYSDB2INDEXES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    463



Appendix E. Meta Table Definitions
TYPE CHAR(1) 
NOT NULL

DB2 column. Type of object. 'T' for a table or 'V' for a 
view.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Identifies the type of DBMS that the table is 
referencing. Values are $ADABAS, $CFI (System Table), 
$DATACOM, $DB2, $IAM, $IMS, $IDMS, $MDS (Meta 
Data Table) $SEQUENT and $VSAM.

TSNAME CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

DBID SMALLINT DB2 column. Internal identifier of the database. Zero if 
the the row describes a view or the database does not have 
an identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

OBID SMALLINT DB2 column. Internal identifier of the table. Zero if the 
row describes a view or the database does not have an 
identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns defined for this table.

EDPROC CHAR(8) DB2 column. Name of the edit procedure. Blank if the 
row describes a view or the table does not use a edit 
procedure. Only populated for IDMS tables that use 
compression routines. Null and default value is spaces.

VALPROC CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERTYPE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERRID INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

CARD INTEGER DB2 column. Number of rows in the table. Null and 
default value is -1.

NPAGES INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

PCTPAGES SMALLINT DB2 column. Not used by eXadas. Null and default value 
is -1.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

Table 92: SYSCAC.SYSDB2TABLES

Column Name Data Type Description
464 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the table. Null and default value is spaces.

PARENTS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CHILDREN SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

KEYCOLUMNS SMALLINT DB2 column. Number of columns that make up the tables 
primary key. Only maintained for system tables. For all 
other tables 0. Null and default value is zeros.

RECLENGTH SMALLINT 
NOT NULL

DB2 column. Number of bytes in a row. This ia also the 
size of the linear buffer allocated for this table.

STATUS CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

KEYOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKFLAG CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKRID CHAR(4) DB2 column. Not used by eXadas. Null and default value 
is spaces.

AUDIT CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the table.

LOCATION CHAR(16) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBCREATOR CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBNAME CHAR(18) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FRAGMENTS SMALLINT 
NOT NULL

eXadas column. Number of fragments used to mangage 
this table.

DBMS CHAR(8) 
NOT NULL

eXadas column. Identifies the type of database. Always 
'DB2'.

Table 92: SYSCAC.SYSDB2TABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    465



Appendix E. Meta Table Definitions
DATA_CAPTURE CHAR(1) DB2 column. Identifies whether the table has been 
marked for xSync data capture. A value of 'Y' indicates 
that changes will be captured. Null and default value is 
spaces.

SORT_KEYS SMALLINT eXadas column. Total number of sort keys for all indexes 
defined for this table. The value for this column is 
automatically maintained by eXadas. Null and default 
value is zeros.

INDEXES SMALLINT eXadas column. Total number of indexes defined for this 
table. The value for this column is automatically 
maintained by eXadas. Null and default value is zeros.

SUBSYSTEM_ID CHAR(4) 
NOT NULL

eXadas column. DB2 sub-system ID that the DB2 table 
was imported from.

DB2_CREATOR CHAR(8) 
NOT NULL

eXadas column. DB2 creator ID that this table was 
imported from.

DB2_TABLE_NAME CHAR(20) 
NOT NULL

eXadas column. DB2 table name that this table was 
imported from.

DB2_TABLE_TYPE CHAR(1) 
NOT NULL

eXadas column. The type of DB2 table that this table was 
imported from. T, V or A.

Table 93: SYSCAC.SYSIDMS_INDEXES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of the table.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

TYPE CHAR(1) 
NOT NULL

DB2 column. Type of object. 'T' for a table or 'V' for a 
view.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Identifies the type of DBMS that the table is 
referencing. Values are $ADABAS, $CFI (System Table), 
$DATACOM, $DB2, $IAM, $IMS, $IDMS, $MDS (Meta 
Data Table) $SEQUENT and $VSAM.

TSNAME CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

Table 92: SYSCAC.SYSDB2TABLES

Column Name Data Type Description
466 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
DBID SMALLINT DB2 column. Internal identifier of the database. Zero if 
the the row describes a view or the database does not have 
an identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

OBID SMALLINT DB2 column. Internal identifier of the table. Zero if the 
row describes a view or the database does not have an 
identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns defined for this table.

EDPROC CHAR(8) DB2 column. Specifies the name of an IDMS 
compression/decompression routine Null and default 
value is spaces.

VALPROC CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERTYPE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERRID INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

CARD INTEGER DB2 column. Number of rows in the table. Null and 
default value is -1.

NPAGES INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

PCTPAGES SMALLINT DB2 column. Not used by eXadas. Null and default value 
is -1.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the table. Null and default value is spaces.

PARENTS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CHILDREN SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

KEYCOLUMNS SMALLINT DB2 column. Number of columns that make up the tables 
primary key. Only maintained for system tables. For all 
other tables 0. Null and default value is zeros.

Table 93: SYSCAC.SYSIDMS_INDEXES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    467



Appendix E. Meta Table Definitions
RECLENGTH SMALLINT 
NOT NULL

DB2 column. Total length of all records assocaited with 
this table.

STATUS CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

KEYOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKFLAG CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKRID CHAR(4) DB2 column. Not used by eXadas. Null and default value 
is spaces.

AUDIT CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the table.

LOCATION CHAR(16) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBCREATOR CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBNAME CHAR(18) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FRAGMENTS SMALLINT 
NOT NULL

eXadas column. Number of fragments used to mangage 
this table.

DBMS CHAR(8) 
NOT NULL

eXadas column. Identifies the type of database. Always 
'IDMS'.

DATA_CAPTURE CHAR(1) DB2 column. Identifies whether the table has been 
marked for xSync data capture. A value of 'Y' indicates 
that changes will be captured. Null and default value is 
spaces.

SORT_KEYS SMALLINT eXadas column. Total number of sort keys for all indexes 
defined for this table. The value for this column is 
automatically maintained by eXadas. Null and default 
value is zeros.

Table 93: SYSCAC.SYSIDMS_INDEXES

Column Name Data Type Description
468 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
INDEXES SMALLINT eXadas column. Total number of indexes defined for this 
table. The value for this column is automatically 
maintained by eXadas. Null and default value is zeros.

DATABASE_NAME CHAR(8) eXadas column. Name of IDMS database used to map 
this table. Null and default value is spaces.

SCHEMA_NAME CHAR(8) 
NOT NULL

eXadas column. IDMS Schema Name used to map this 
table.

SUB_SCHEMA_NAME CHAR(8) 
NOT NULL

eXadas column. IDMS sub-schema name used to map 
this table.

SUB_SCHEMA_VERSI
ON

SMALLINT 
NOT NULL

eXadas column. The IDMS sub-schema version number 
used to map this table.

RECORD_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS records referenced by 
this table. Maximum of 10 records supported.

SET_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS sets referenced by this 
table. Maximum of 9 sets supported.

INDEX_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS indexes referenced by 
this table. Maximum of 10 indexes supported.

AREA_COUNT SMALLINT 
NOT NULL

eXadas column. Total number of areas associated with 
this table. Maximum of 10 areas supported.

ACCESS_MODULE CHAR(8) 
NOT NULL

eXadas column. Name of IDMS load module used to 
access this table.

ACCESS_METHOD CHAR(4) eXadas column. Method used to access the table. Values 
are IDMS, KSDS, RRDS or ESDS. Null and default value 
is spaces.

VARIABLE_LENGTH_T
ABLE

CHAR(1) 
NOT NULL

eXadas column. Flag indicating whether table is variable 
length. 'Y' if variable length or'N' for fixed length tables.

MINIMUM_LENGTH SMALLINT eXadas column. Minimum length for variable length 
tables. Null and default value is zeros.

PARENT_DB_KEY_OFF
SET

SMALLINT eXadas column. For tables marked for data capture, the 
offset of the parent database key in the IMDS journal. 
Null and default value is -1.

PAGE_AREA_MIN INTEGER eXadas column. For tables marked for data capture, the 
low page area dbkey value. Null and default value is 
zeros.

Table 93: SYSCAC.SYSIDMS_INDEXES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    469



Appendix E. Meta Table Definitions
PAGE_AREA_MAX INTEGER eXadas column. For tables marked for data capture, the 
high page area dbkey value. Null and default value is 
zeros.

INDEX_NAME CHAR(16) 
NOT NULL

eXadas column. Name of the index associated with this 
table.

INDEX_KEY_LENGTH SMALLINT 
NOT NULL

eXadas column. Length of the index key associated with 
this table.

INDEX_SORT_ORDER CHAR(1) 
NOT NULL

eXadas column. Sorting order of the index associated 
with this table. 'A' ascending or 'D' for descending.

INDEX_SET_TYPE CHAR(30) eXadas column. Method used to access the index 
associated with this table. Values are a combination of 
MANUAL, OPTIONAL, VSAM or NONE. Null and 
default value is spaces.

Table 94: SYSCAC.SYSIDMSAREAS

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of the table.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

TYPE CHAR(1) 
NOT NULL

DB2 column. Type of object. 'T' for a table or 'V' for a 
view.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Identifies the type of DBMS that the table is 
referencing. Values are $ADABAS, $CFI (System Table), 
$DATACOM, $DB2, $IAM, $IMS, $IDMS, $MDS (Meta 
Data Table) $SEQUENT and $VSAM.

TSNAME CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

DBID SMALLINT DB2 column. Internal identifier of the database. Zero if 
the the row describes a view or the database does not have 
an identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

OBID SMALLINT DB2 column. Internal identifier of the table. Zero if the 
row describes a view or the database does not have an 
identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

Table 93: SYSCAC.SYSIDMS_INDEXES

Column Name Data Type Description
470 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns defined for this table.

EDPROC CHAR(8) DB2 column. Specifies the name of an IDMS 
compression/decompression routine Null and default 
value is spaces.

VALPROC CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERTYPE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERRID INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

CARD INTEGER DB2 column. Number of rows in the table. Null and 
default value is -1.

NPAGES INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

PCTPAGES SMALLINT DB2 column. Not used by eXadas. Null and default value 
is -1.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the table. Null and default value is spaces.

PARENTS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CHILDREN SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

KEYCOLUMNS SMALLINT DB2 column. Number of columns that make up the tables 
primary key. Only maintained for system tables. For all 
other tables 0. Null and default value is zeros.

RECLENGTH SMALLINT 
NOT NULL

DB2 column. Total length of all records assocaited with 
this table.

STATUS CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

KEYOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

Table 94: SYSCAC.SYSIDMSAREAS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    471



Appendix E. Meta Table Definitions
CHECKFLAG CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKRID CHAR(4) DB2 column. Not used by eXadas. Null and default value 
is spaces.

AUDIT CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the table.

LOCATION CHAR(16) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBCREATOR CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBNAME CHAR(18) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FRAGMENTS SMALLINT 
NOT NULL

eXadas column. Number of fragments used to mangage 
this table.

DBMS CHAR(8) 
NOT NULL

eXadas column. Identifies the type of database. Always 
'IDMS'.

DATA_CAPTURE CHAR(1) DB2 column. Identifies whether the table has been 
marked for xSync data capture. A value of 'Y' indicates 
that changes will be captured. Null and default value is 
spaces.

SORT_KEYS SMALLINT eXadas column. Total number of sort keys for all indexes 
defined for this table. The value for this column is 
automatically maintained by eXadas. Null and default 
value is zeros.

INDEXES SMALLINT eXadas column. Total number of indexes defined for this 
table. The value for this column is automatically 
maintained by eXadas. Null and default value is zeros.

DATABASE_NAME CHAR(8) eXadas column. Name of IDMS database used to map 
this table. Null and default value is spaces.

SCHEMA_NAME CHAR(8) 
NOT NULL

eXadas column. IDMS Schema Name used to map this 
table.

SUB_SCHEMA_NAME CHAR(8) 
NOT NULL

eXadas column. IDMS sub-schema name used to map 
this table.

Table 94: SYSCAC.SYSIDMSAREAS

Column Name Data Type Description
472 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
SUB_SCHEMA_VERSI
ON

SMALLINT 
NOT NULL

eXadas column. The IDMS sub-schema version number 
used to map this table.

RECORD_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS records referenced by 
this table. Maximum of 10 records supported.

SET_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS sets referenced by this 
table. Maximum of 9 sets supported.

INDEX_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS indexes referenced by 
this table. Maximum of 10 indexes supported.

AREA_COUNT SMALLINT 
NOT NULL

eXadas column. Total number of areas associated with 
this table. Maximum of 10 areas supported.

ACCESS_MODULE CHAR(8) 
NOT NULL

eXadas column. Name of IDMS load module used to 
access this table.

ACCESS_METHOD CHAR(4) eXadas column. Method used to access the table. Values 
are IDMS, KSDS, RRDS or ESDS. Null and default value 
is spaces.

VARIABLE_LENGTH_T
ABLE

CHAR(1) 
NOT NULL

eXadas column. Flag indicating whether table is variable 
length. 'Y' if variable length or'N' for fixed length tables.

MINIMUM_LENGTH SMALLINT eXadas column. Minimum length for variable length 
tables. Null and default value is zeros.

PARENT_DB_KEY_OFF
SET

SMALLINT eXadas column. For tables marked for data capture, the 
offset of the parent database key in the IMDS journal. 
Null and default value is -1.

PAGE_AREA_MIN INTEGER eXadas column. For tables marked for data capture, the 
low page area dbkey value. Null and default value is 
zeros.

PAGE_AREA_MAX INTEGER eXadas column. For tables marked for data capture, the 
high page area dbkey value. Null and default value is 
zeros.

AREA_NAME CHAR(16) 
NOT NULL

eXadas column. Name of the area associated with table.

Table 94: SYSCAC.SYSIDMSAREAS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    473



Appendix E. Meta Table Definitions
Table 95: SYSCAC.SYSIDMSCOLINDEXES

Column Name Data Type Description

NAME CHAR(30) 
NOT NULL

DB2 column. Name of the column.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that contains the column.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table 
that the column is in.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of column within the table. 
Numbers start at 1.

COLTYPE CHAR(8) 
NOT NULL

DB2 column. Type of column, values are INTEGER, 
SMALLINT, FLOAT, CHAR, VARCHAR, LONGVAR, 
DECIMAL, GRAPHIC, VARG, and LONGVARG.

LENGTH SMALLINT 
NOT NULL

DB2 column. For a DECIMAL data type the columns 
precision. for all other data types the columns length.

SCALE SMALLINT 
NOT NULL

DB2 column. Scale for a DECIMAL data type, otherwise 
zero.

NULLS CHAR(1) 
NOT NULL

DB2 column. Y/N flag identifying whether the column 
can contain null values.

COLCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

HIGH2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

LOW2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

UPDATES CHAR(1) DB2 column. For DB2 tables, the corresponding 
UPDATES value from the DB2 catalog. For system tables 
always 'N'. For all other types of tables always 'Y'. Null 
and default value is 'Y'.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the column. Null and default value is spaces.

DEFAULT CHAR(1) DB2 column. For DB2 tables, the corresponding 
DEFAULT value from the DB2 catalog or for a meta data 
table whether the column has a NULL IS specification. 
For all other types of tables 'N'. Null and default value is 
spaces.
474 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
KEYSEQy SMALLINT DB2 column. The columns numeric position within the 
primary key, Zero if the column is not part of the primary 
key. Null and default value is zeros.

FOREIGNKEY CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FLDPROC CHAR(1) DB2 column. Flag indicating whether the column has a 
field procedure associated with it. 'Y' - field procedure 
exists, otherwise 'N'. Null and default value is 'N'.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIELD_OFFSET SMALLINT 
NOT NULL

eXadas column. Relative zero offset of the start of the 
column in the rexord or segment.

FIELD_LENGTH SMALLINT 
NOT NULL

eXadas column. Physical length of the field.

NATIVE_DATA_TYPE CHAR(1) 
NOT NULL

eXadas column. Native type of the the underlying 
column. For a description of the different data types refer 
to the documentation on the Meta Data Utility in the 
System Reference Manual.

SQL_COLUMN_LENGT
H

SMALLINT 
NOT NULL

eXadas column. The SQL length of the column.

DB2_DATA_TYPE SMALLINT 
NOT NULL

eXadas column. The DB2 SQLDA data type value for the 
column.

PRECISION SMALLINT 
NOT NULL

eXadas column. For a DECIMAL data type the columns 
scale. for all other data types zero.

COLUMN_SEQUENCE_
NUMBER

SMALLINT 
NOT NULL

eXadas column. Relative zero ordinal position of this 
column in the table.

USE_RECORD_LENGT
H

SMALLINT eXadas column. For variable length records, whether the 
entire contents of the record should be mapped to the 
column. A value of 1 indicates that the record length 
should be used. Null and default value is spaces.

FRAGMENT_ID SMALLINT 
NOT NULL

eXadas column. The ID of the fragment that the column is 
located in.

FRAGMENT_LEVEL SMALLINT 
NOT NULL

eXadas column. The level number of the fragment that 
the column is located in.

OFFSET_IN_FRAGMEN
T

SMALLINT 
NOT NULL

eXadas column. Relative zero starting offset of the 
column within the fragment.

Table 95: SYSCAC.SYSIDMSCOLINDEXES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    475



Appendix E. Meta Table Definitions
NULLABLE CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating whether the column 
supports null values.

SIGNED CHAR(1) 
NOT NULL

eXadas column. Is the underlying column’s data type 
signed or unsigned? 'Y' the data is signed, 'N' the data is 
unsigned.

NULL_DATA_LENGTH SMALLINT eXadas column. Length of the NULL IS specification for 
this column Null and default value is zeros.

NULL_VALUE CHAR(16) eXadas column. The value for this column that means the 
column contains a null value. Null and default value is 
spaces.

FIELD_PROCEDURE_N
AME

CHAR(8) eXadas column. Name of the field procedure associated 
with this column. Null and default value is spaces.

OCCURS_DEPENDING
_ON

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag that identifies whether the column exists within an 
OCCURS DEPENDING ON record arrary. Null and 
default value is 'N'.

FRAGMENT_OFFSET_I
N_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the starting position of the 
fragment within the linear buffer. Null and default value is 
-1.

FRAGMENT_LENGTH SMALLINT eXadas column - obtained from fragment definition. 
Length of the fragment. If fragment level is 0 the length is 
the length of the record or segment. For non-zero 
fragment levels the length of the RECORD ARRAY. Null 
and default value is -1.

FRAGMENT_MAXIMU
M_OCCURRENCES

SMALLINT eXadas column - obtained from fragment definition. 
Maximum times the fragment can occur. Null and default 
value is zeros.

NULL_FRAGMENT_RU
LE

CHAR(30) eXadas column - obtained from fragment definition. 
Method used to determine a NULL occurrence in a 
RECORD ARRAY. Null and default value is spaces.

OCCURS_DEPENDING
_ON_COLUMN

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the name of the column 
that identifies the number of occurrences that exist. Null 
and default value is spaces.

Table 95: SYSCAC.SYSIDMSCOLINDEXES

Column Name Data Type Description
476 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
OCCURS_DEPENDING
_ON_COLNO

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the 
COLUMN_SEQUENCE_NUMBER of the column that 
identifies the number of occurrences that exist. Null and 
default value is zeros.

FRAGMENT_NULL_LE
NGTH

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the length of the NULL IS 
specification for the fragment. Null and default value is 
zeros.

FRAGMENT_NULL_VA
LUE

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the value that indentifies 
an instance as being null. Null and default value is spaces.

ELEMENT_NAME CHAR(32) 
NOT NULL

eXadas column. IDMS element name that this column 
represents.

CALC_KEY CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating that the element is a 
CALCKEY.

DEPENDING_ON_COL
UMN

CHAR(1) 
NOT NULL

eXadas column. Y/N flag that indicates whether the 
column occurs multiple times

RECORD_NAME CHAR(16) 
NOT NULL

eXadas column. Name of the IDMS record that contains 
the column.

NUMBER_OF_INDEXE
S

SMALLINT 
NOT NULL

eXadas column. Number of indexes associated with this 
column.

INDEX_NAME CHAR(16) 
NOT NULL

eXadas column. Name of the index associated with this 
column.

INDEX_KEY_LENGTH SMALLINT 
NOT NULL

eXadas column - obtained from table definition. Length 
of the index key associated with this column.

INDEX_OFFSET_IN_KE
Y

SMALLINT 
NOT NULL

eXadas column. Relative zero offset of this columns 
position in the index key.

INDEX_SORT_ORDER CHAR(1) 
NOT NULL

eXadas column - obtained from table definition. Sorting 
order of the index associated with this column. 'A' 
ascending or 'D' for descending.

INDEX_SET_TYPE CHAR(30) 
NOT NULL

eXadas column - obtained from table definition. Method 
used to access index associated with this column. Values 
are a combination of MANUAL, OPTIONAL, VSAM or 
NONE.

Table 95: SYSCAC.SYSIDMSCOLINDEXES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    477



Appendix E. Meta Table Definitions
Table 96: SYSCAC.SYSIDMSCOLUMNS

Column Name Data Type Description

NAME CHAR(30) 
NOT NULL

DB2 column. Name of the column.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that contains the column.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table 
that the column is in.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of column within the table. 
Numbers start at 1.

COLTYPE CHAR(8) 
NOT NULL

DB2 column. Type of column, values are INTEGER, 
SMALLINT, FLOAT, CHAR, VARCHAR, LONGVAR, 
DECIMAL, GRAPHIC, VARG, and LONGVARG.

LENGTH SMALLINT 
NOT NULL

DB2 column. For a DECIMAL data type the columns 
precision. for all other data types the columns length.

SCALE SMALLINT 
NOT NULL

DB2 column. Scale for a DECIMAL data type, otherwise 
zero.

NULLS CHAR(1) 
NOT NULL

DB2 column. Y/N flag identifying whether the column 
can contain null values.

COLCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

HIGH2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

LOW2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

UPDATES CHAR(1) DB2 column. For DB2 tables, the corresponding 
UPDATES value from the DB2 catalog. For system tables 
always 'N'. For all other types of tables always 'Y'. Null 
and default value is 'Y'.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the column. Null and default value is spaces.

DEFAULT CHAR(1) DB2 column. For DB2 tables, the corresponding 
DEFAULT value from the DB2 catalog or for a meta data 
table whether the column has a NULL IS specification. 
For all other types of tables 'N'. Null and default value is 
spaces.
478 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
KEYSEQ SMALLINT DB2 column. The columns numeric position within the 
primary key, Zero if the column is not part of the primary 
key. Null and default value is zeros.

FOREIGNKEY CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FLDPROC CHAR(1) DB2 column. Flag indicating whether the column has a 
field procedure associated with it. 'Y' - field procedure 
exists, otherwise 'N'. Null and default value is 'N'.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIELD_OFFSET SMALLINT 
NOT NULL

eXadas column. Relative zero offset of the start of the 
column in the rexord or segment.

FIELD_LENGTH SMALLINT 
NOT NULL

eXadas column. Physical length of the field.

NATIVE_DATA_TYPE CHAR(1) 
NOT NULL

eXadas column. Native type of the the underlying 
column. For a description of the different data types refer 
to the documentation on the Meta Data Utility in the 
System Reference Manual.

SQL_COLUMN_LENGT
H

SMALLINT 
NOT NULL

eXadas column. The SQL length of the column.

DB2_DATA_TYPE SMALLINT 
NOT NULL

eXadas column. The DB2 SQLDA data type value for the 
column.

PRECISION SMALLINT 
NOT NULL

eXadas column. For a DECIMAL data type the columns 
scale. for all other data types zero.

COLUMN_SEQUENCE_
NUMBER

SMALLINT 
NOT NULL

eXadas column. Relative zero ordinal position of this 
column in the table.

USE_RECORD_LENGT
H

SMALLINT eXadas column. For variable length records, whether the 
entire contents of the record should be mapped to the 
column. A value of 1 indicates that the record length 
should be used. Null and default value is spaces.

FRAGMENT_ID SMALLINT 
NOT NULL

eXadas column. The ID of the fragment that the column is 
located in.

FRAGMENT_LEVEL SMALLINT 
NOT NULL

eXadas column. The level number of the fragment that 
the column is located in.

OFFSET_IN_FRAGMEN
T

SMALLINT 
NOT NULL

eXadas column. Relative zero starting offset of the 
column within the fragment.

Table 96: SYSCAC.SYSIDMSCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    479



Appendix E. Meta Table Definitions
NULLABLE CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating whether the column 
supports null values.

SIGNED CHAR(1) 
NOT NULL

eXadas column. Is the underlying column’s data type 
signed or unsigned? 'Y' the data is signed, 'N' the data is 
unsigned.

NULL_DATA_LENGTH SMALLINT eXadas column. Length of the NULL IS specification for 
this column Null and default value is zeros.

NULL_VALUE CHAR(16) eXadas column. The value for this column that means the 
column contains a null value. Null and default value is 
spaces.

FIELD_PROCEDURE_N
AME

CHAR(8) eXadas column. Name of the field procedure associated 
with this column. Null and default value is spaces.

OCCURS_DEPENDING
_ON

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag that identifies whether the column exists within an 
OCCURS DEPENDING ON record arrary. Null and 
default value is 'N'.

FRAGMENT_OFFSET_I
N_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the starting position of the 
fragment within the linear buffer. Null and default value is 
-1.

FRAGMENT_LENGTH SMALLINT eXadas column - obtained from fragment definition. 
Length of the fragment. If fragment level is 0 the length is 
the length of the record or segment. For non-zero 
fragment levels the length of the RECORD ARRAY. Null 
and default value is -1.

FRAGMENT_MAXIMU
M_OCCURRENCES

SMALLINT eXadas column - obtained from fragment definition. 
Maximum times the fragment can occur. Null and default 
value is zeros.

NULL_FRAGMENT_RU
LE

CHAR(30) eXadas column - obtained from fragment definition. 
Method used to determine a NULL occurrence in a 
RECORD ARRAY. Null and default value is spaces.

OCCURS_DEPENDING
_ON_COLUMN

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the name of the column 
that identifies the number of occurrences that exist. Null 
and default value is spaces.

Table 96: SYSCAC.SYSIDMSCOLUMNS

Column Name Data Type Description
480 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
OCCURS_DEPENDING
_ON_COLNO

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the 
COLUMN_SEQUENCE_NUMBER of the column that 
identifies the number of occurrences that exist. Null and 
default value is zeros.

FRAGMENT_NULL_LE
NGTH

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the length of the NULL IS 
specification for the fragment. Null and default value is 
zeros.

FRAGMENT_NULL_VA
LUE

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the value that indentifies 
an instance as being null. Null and default value is spaces.

ELEMENT_NAME CHAR(32) 
NOT NULL

eXadas column. IDMS element name that this column 
represents.

CALC_KEY CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating that the element is a 
CALCKEY.

DEPENDING_ON_COL
UMN

CHAR(1) 
NOT NULL

eXadas column. Y/N flag that indicates whether the 
column occurs multiple times

RECORD_NAME CHAR(16) 
NOT NULL

eXadas column. Name of the IDMS record that contains 
the column.

NUMBER_OF_INDEXE
S

SMALLINT 
NOT NULL

eXadas column. Number of indexes associated with this 
column.

INDEX1_NAME CHAR(16) eXadas column. Name of the 1st index associated with 
this column. Null and default value is spaces.

INDEX1_KEY_LENGTH SMALLINT eXadas column - obtained from table definition. Length 
of the 1st index key associated with this column. Null and 
default value is zeros.

INDEX1_OFFSET_IN_K
EY

SMALLINT eXadas column. Relative zero offset of this columns 
position in the index key. Null and default value is -1.

INDEX1_SORT_ORDER CHAR(1) eXadas column - obtained from table definition. Sorting 
order of the 1st index associated with this column. 'A' 
ascending or 'D' for descending. Null and default value is 
spaces.

INDEX1_SET_TYPE CHAR(30) eXadas column - obtained from table definition. Method 
used to access the 1st index associated with this column. 
Values are a combination of MANUAL, OPTIONAL, 
VSAM or NONE. Null and default value is spaces.

Table 96: SYSCAC.SYSIDMSCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    481



Appendix E. Meta Table Definitions
INDEX2_NAME CHAR(16) eXadas column. Name of the 2nd index associated with 
this column. Null and default value is spaces.

INDEX2_KEY_LENGTH SMALLINT eXadas column - obtained from table definition. Length 
of the 2nd index key associated with this column. Null 
and default value is zeros.

INDEX2_OFFSET_IN_K
EY

SMALLINT eXadas column. Relative zero offset of this columns 
position in the index key. Null and default value is -1.

INDEX2_SORT_ORDER CHAR(1) eXadas column - obtained from table definition. Sorting 
order of the 2nd index associated with this column. 'A' 
ascending or 'D' for descending. Null and default value is 
spaces.

INDEX2_SET_TYPE CHAR(30) eXadas column - obtained from table definition. Method 
used to access the 2nd index associated with this column. 
Values are a combination of MANUAL, OPTIONAL, 
VSAM or NONE. Null and default value is spaces.

INDEX3_NAME CHAR(16) eXadas column. Name of the 3rd index associated with 
this column. Null and default value is spaces.

INDEX3_KEY_LENGTH SMALLINT eXadas column - obtained from table definition. Length 
of the 3rd index key associated with this column. Null and 
default value is zeros.

INDEX3_OFFSET_IN_K
EY

SMALLINT eXadas column. Relative zero offset of this columns 
position in the index key. Null and default value is -1.

INDEX3_SORT_ORDER CHAR(1) eXadas column - obtained from table definition. Sorting 
order of the 3rd index associated with this column. 'A' 
ascending or 'D' for descending. Null and default value is 
spaces.

INDEX3_SET_TYPE CHAR(30) eXadas column - obtained from table definition. Method 
used to access the 3rd index associated with this column. 
Values are a combination of MANUAL, OPTIONAL, 
VSAM or NONE. Null and default value is spaces.

INDEX4_NAME CHAR(16) eXadas column. Name of the 4th index associated with 
this column. Null and default value is spaces.

INDEX4_KEY_LENGTH SMALLINT eXadas column - obtained from table definition. Length 
of the 4th index key associated with this column. Null and 
default value is zeros.

INDEX4_OFFSET_IN_K
EY

SMALLINT eXadas column. Relative zero offset of this columns 
position in the index key. Null and default value is -1.

Table 96: SYSCAC.SYSIDMSCOLUMNS

Column Name Data Type Description
482 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
INDEX4_SORT_ORDER CHAR(1) eXadas column - obained from table definition. Sorting 
order of the 4th index associated with this column. 'A' 
ascending or 'D' for descending. Null and default value is 
spaces.

INDEX4_SET_TYPE CHAR(30) eXadas column - obtained from table definition. Method 
used to access the 4th index associated with this column. 
Values are a combination of MANUAL, OPTIONAL, 
VSAM or NONE. Null and default value is spaces.

INDEX5_NAME CHAR(16) eXadas column. Name of the 5th index associated with 
this column. Null and default value is spaces.

INDEX5_KEY_LENGTH SMALLINT eXadas column - obtained from table definition. Length 
of the 5th index key associated with this column. Null and 
default value is zeros.

INDEX5_OFFSET_IN_K
EY

SMALLINT eXadas column. Relative zero offset of this columns 
position in the index key. Null and default value is -1.

INDEX5_SORT_ORDER CHAR(1) eXadas column - obtained from table definition. Sorting 
order of the 5th index associated with this column. 'A' 
ascending or 'D' for descending. Null and default value is 
spaces.

INDEX5_SET_TYPE CHAR(30) eXadas column - obtained from table definition. Method 
used to access the 5th index associated with this column. 
Values are a combination of MANUAL, OPTIONAL, 
VSAM or NONE. Null and default value is spaces.

INDEX6_NAME CHAR(16) eXadas column. Name of the 6th index associated with 
this column. Null and default value is spaces.

INDEX6_KEY_LENGTH SMALLINT eXadas column - obtained from table definition. Length 
of the 6th index key associated with this column. Null and 
default value is zeros.

INDEX6_OFFSET_IN_K
EY

SMALLINT eXadas column. Relative zero offset of this columns 
position in the index key. Null and default value is -1.

INDEX6_SORT_ORDER CHAR(1) eXadas column - obtained from table definition. Sorting 
order of the 6th index associated with this column. 'A' 
ascending or 'D' for descending. Null and default value is 
spaces.

INDEX6_SET_TYPE CHAR(30) eXadas column - obtained from table definition. Method 
used to access the 6th index associated with this column. 
Values are a combination of MANUAL, OPTIONAL, 
VSAM or NONE. Null and default value is spaces.

Table 96: SYSCAC.SYSIDMSCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    483



Appendix E. Meta Table Definitions
INDEX7_NAME CHAR(16) eXadas column. Name of the 7th index associated with 
this column. Null and default value is spaces.

INDEX7_KEY_LENGTH SMALLINT eXadas column - obtained from table definition. Length 
of the 7th index key associated with this column. Null and 
default value is zeros.

INDEX7_OFFSET_IN_K
EY

SMALLINT eXadas column. Relative zero offset of this columns 
position in the index key. Null and default value is -1.

INDEX7_SORT_ORDER CHAR(1) eXadas column - obtained from table definition. Sorting 
order of the 7th index associated with this column. 'A' 
ascending or 'D' for descending. Null and default value is 
spaces.

INDEX7_SET_TYPE CHAR(30) eXadas column - obtained from table definition. Method 
used to access the 7th index associated with this column. 
Values are a combination of MANUAL, OPTIONAL, 
VSAM or NONE. Null and default value is spaces.

INDEX8_NAME CHAR(16) eXadas column. Name of the 8th index associated with 
this column. Null and default value is spaces.

INDEX8_KEY_LENGTH SMALLINT eXadas column - obtained from table definition. Length 
of the 8th index key associated with this columns. Null 
and default value is zeros.

INDEX8_OFFSET_IN_K
EY

SMALLINT eXadas column. Relative zero offset of this columns 
position in the index key. Null and default value is -1.

INDEX8_SORT_ORDER CHAR(1) eXadas column - obtained from table definition. Sorting 
order of the 8th index associated with this column. 'A' 
ascending or 'D' for descending. Null and default value is 
spaces.

INDEX8_SET_TYPE CHAR(30) eXadas column - obtained from table definition. Method 
used to access the 8th index associated with this column. 
Values are a combination of MANUAL, OPTIONAL, 
VSAM or NONE. Null and default value is spaces.

INDEX9_NAME CHAR(16) eXadas column. Name of the 9th index associated with 
this column. Null and default value is spaces.

INDEX9_KEY_LENGTH SMALLINT eXadas column - obtained from table defintion. Length of 
the 9th index key associated with this column. Null and 
default value is zeros.

INDEX9_OFFSET_IN_K
EY

SMALLINT eXadas column. Relative zero offset of this columns 
position in the index key. Null and default value is -1.

Table 96: SYSCAC.SYSIDMSCOLUMNS

Column Name Data Type Description
484 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
INDEX9_SORT_ORDER CHAR(1) eXadas column - obtained from table definition. Sorting 
order of the 9th index associated with this column. 'A' 
ascending or 'D' for descending. Null and default value is 
spaces.

INDEX9_SET_TYPE CHAR(30) eXadas column - obtained from table definition. Method 
used to access the 9th index associated with this column. 
Values are a combination of MANUAL, OPTIONAL, 
VSAM or NONE. Null and default value is spaces.

INDEX10_NAME CHAR(16) eXadas column. Name of the 10th index associated with 
this column. Null and default value is spaces.

INDEX10_KEY_LENGT
H

SMALLINT eXadas column - obtained from table definition. Length 
of the 10th index key associated with this column. Null 
and default value is zeros.

INDEX10_OFFSET_IN_
KEY

SMALLINT eXadas column. Relative zero offset of this columns 
position in the index key. Null and default value is -1.

INDEX10_SORT_ORDE
R

CHAR(1) eXadas column - obtained from table definition. Sorting 
order of the 10th index associated with this column. 'A' 
ascending or 'D' for descending. Null and default value is 
spaces.

INDEX10_SET_TYPE CHAR(30) eXadas column - obtained from table definition. Method 
used to access the 10th index associated with this column. 
Values are a combination of MANUAL, OPTIONAL, 
VSAM or NONE. Null and default value is spaces.

Table 97: SYSCAC.SYSIDMSINDEXES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of index.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the index.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that the index is 
referencing.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

UNIQUERULE CHAR(1) 
NOT NULL

DB2 column. Whether the index is unique. 'U' yes or 'D' 
no.

Table 96: SYSCAC.SYSIDMSCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    485



Appendix E. Meta Table Definitions
COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns that make up the key.

CLUSTERING CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

CLUSTERED CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

DBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

OBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

ISOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Not used by eXadas.

INDEXSPACE CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIRSTKEYCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

FULLKEYCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

NLEAF INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

NLEVELS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

BPOOL CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

PGSIZE SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

ERASERULE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

DSETPASS CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLOSERULE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'Y'.

Table 97: SYSCAC.SYSIDMSINDEXES

Column Name Data Type Description
486 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
SPACE INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

CLUSTERRATIO SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the index.

SORT_ORDER CHAR(1) 
NOT NULL

eXadas column. Flag indicating the sorting order of the 
IDMS index that will be used. 'A' ascending or 'D' for 
decending.

Table 98: SYSCAC.SYSIDMSKEYS

Column Name Data Type Description

IXNAME CHAR(18) 
NOT NULL

DB2 column. Name of the index.

IXCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the index.

COLNAME CHAR(30) 
NOT NULL

DB2 column. Name of the column for this key.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of the column in the table.

COLSEQ SMALLINT 
NOT NULL

DB2 column. Position of this column within the key.

ORDERING CHAR(1) 
NOT NULL

DB2 column. Sort order of this column within the key. 'A' 
ascending or 'D' decending.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

Table 97: SYSCAC.SYSIDMSINDEXES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    487



Appendix E. Meta Table Definitions
Table 99: SYSCAC.SYSIDMSRECORDS

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of the table.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

TYPE CHAR(1) 
NOT NULL

DB2 column. Type of object. 'T' for a table or 'V' for a 
view.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Identifies the type of DBMS that the table is 
referencing. Values are $ADABAS, $CFI (System Table), 
$DATACOM, $DB2, $IAM, $IMS, $IDMS, $MDS (Meta 
Data Table) $SEQUENT and $VSAM.

TSNAME CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

DBID SMALLINT DB2 column. Internal identifier of the database. Zero if 
the the row describes a view or the database does not have 
an identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

OBID SMALLINT DB2 column. Internal identifier of the table. Zero if the 
row describes a view or the database does not have an 
identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns defined for this table.

EDPROC CHAR(8) DB2 column. Specifies the name of an IDMS 
compression/decompression routine Null and default 
value is spaces.

VALPROC CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERTYPE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERRID INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

CARD INTEGER DB2 column. Number of rows in the table. Null and 
default value is -1.

NPAGES INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.
488 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
PCTPAGES SMALLINT DB2 column. Not used by eXadas. Null and default value 
is -1.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the table. Null and default value is spaces.

PARENTS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CHILDREN SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

KEYCOLUMNS SMALLINT DB2 column. Number of columns that make up the tables 
primary key. Only maintained for system tables. For all 
other tables 0. Null and default value is zeros.

RECLENGTH SMALLINT 
NOT NULL

DB2 column. Total length of all records assocaited with 
this table.

STATUS CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

KEYOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKFLAG CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKRID CHAR(4) DB2 column. Not used by eXadas. Null and default value 
is spaces.

AUDIT CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the table.

LOCATION CHAR(16) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBCREATOR CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBNAME CHAR(18) DB2 column. Not used by eXadas. Null and default value 
is spaces.

Table 99: SYSCAC.SYSIDMSRECORDS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    489



Appendix E. Meta Table Definitions
FRAGMENTS SMALLINT 
NOT NULL

eXadas column. Number of fragments used to mangage 
this table.

DBMS CHAR(8) 
NOT NULL

eXadas column. Identifies the type of database. Always 
'IDMS'.

DATA_CAPTURE CHAR(1) DB2 column. Identifies whether the table has been 
marked for xSync data capture. A value of 'Y' indicates 
that changes will be captured. Null and default value is 
spaces.

SORT_KEYS SMALLINT eXadas column. Total number of sort keys for all indexes 
defined for this table. The value for this column is 
automatically maintained by eXadas. Null and default 
value is zeros.

INDEXES SMALLINT eXadas column. Total number of indexes defined for this 
table. The value for this column is automatically 
maintained by eXadas. Null and default value is zeros.

DATABASE_NAME CHAR(8) eXadas column. Name of IDMS database used to map 
this table. Null and default value is spaces.

SCHEMA_NAME CHAR(8) 
NOT NULL

eXadas column. IDMS Schema Name used to map this 
table.

SUB_SCHEMA_NAME CHAR(8) 
NOT NULL

eXadas column. IDMS sub-schema name used to map 
this table.

SUB_SCHEMA_VERSI
ON

SMALLINT 
NOT NULL

eXadas column. The IDMS sub-schema version number 
used to map this table.

RECORD_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS records referenced by 
this table. Maximum of 10 records supported.

SET_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS sets referenced by this 
table. Maximum of 9 sets supported.

INDEX_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS indexes referenced by 
this table. Maximum of 10 indexes supported.

AREA_COUNT SMALLINT 
NOT NULL

eXadas column. Total number of areas associated with 
this table. Maximum of 10 areas supported.

ACCESS_MODULE CHAR(8) 
NOT NULL

eXadas column. Name of IDMS load module used to 
access this table.

ACCESS_METHOD CHAR(4) eXadas column. Method used to access the table. Values 
are IDMS, KSDS, RRDS or ESDS. Null and default value 
is spaces.

Table 99: SYSCAC.SYSIDMSRECORDS

Column Name Data Type Description
490 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
VARIABLE_LENGTH_T
ABLE

CHAR(1) 
NOT NULL

eXadas column. Flag indicating whether table is variable 
length. 'Y' if variable length or'N' for fixed length tables.

MINIMUM_LENGTH SMALLINT eXadas column. Minimum length for variable length 
tables. Null and default value is zeros.

PARENT_DB_KEY_OFF
SET

SMALLINT eXadas column. For tables marked for data capture, the 
offset of the parent database key in the IMDS journal. 
Null and default value is -1.

PAGE_AREA_MIN INTEGER eXadas column. For tables marked for data capture, the 
low page area dbkey value. Null and default value is 
zeros.

PAGE_AREA_MAX INTEGER eXadas column. For tables marked for data capture, the 
high page area dbkey value. Null and default value is 
zeros.

RECORD_NAME CHAR(16) 
NOT NULL

eXadas column. Name of the record referenced by this 
table.

RECORD_LENGTH SMALLINT 
NOT NULL

eXadas column. Length of the record referenced by this 
table.

RECORD_FRAGMENT_
ID

SMALLINT 
NOT NULL

eXadas column - obtained from fragment definition. 
Fragment ID associated with this record.

RECORD_OFFSET_IN_
BUFFER

SMALLINT 
NOT NULL

eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the record in the linear 
buffer

RECORD_SYSTEM_KE
Y

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the record does not represent an 
actual record definition and is instead a VSAM relative 
record number. Null and default value is spaces.

RECORD_VARIABLE_L
ENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag whether the record is variable length. Null and 
default value is spaces.

RECORD_DEPENDING
_ON_COLNO

SMALLINT eXadas column. Number of the controlling column if the 
record contains a DEPENDING ON column definition, 
otherwise -1. Null and default value is -1.

RECORD_DEPENDING
_ON_MAX

SMALLINT eXadas column. Maximum number of occurrences if the 
record contains a DEPENDING ON column definition. 
Valid when RECORD_DEPENDING_ON_COLNO is 
not null. Null and default value is -1.

Table 99: SYSCAC.SYSIDMSRECORDS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    491



Appendix E. Meta Table Definitions
RECORD_DEPENDING
_ON_INC

SMALLINT eXadas column. Buffer increment if the record contains a 
DEPENDING ON column definition. Valid when 
RECORD_DEPENDING_ON_COLNO is not null. Null 
and default value is -1.

RECORD_TARGET_IS_
OWNER

CHAR(16) eXadas column. Y/N flag indicating whether the target for 
the record is the owner. Null and default value is spaces.

RECORD_AREA_NAM
E

CHAR(1) eXadas column. Area name associated with this record. 
Null and default value is spaces.

Table 100: SYSCAC.SYSIDMSSETS

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of the table.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

TYPE CHAR(1) 
NOT NULL

DB2 column. Type of object. 'T' for a table or 'V' for a 
view.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Identifies the type of DBMS that the table is 
referencing. Values are $ADABAS, $CFI (System Table), 
$DATACOM, $DB2, $IAM, $IMS, $IDMS, $MDS (Meta 
Data Table) $SEQUENT and $VSAM.

TSNAME CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

DBID SMALLINT DB2 column. Internal identifier of the database. Zero if 
the the row describes a view or the database does not have 
an identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

OBID SMALLINT DB2 column. Internal identifier of the table. Zero if the 
row describes a view or the database does not have an 
identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

COLCOUNT COLCOUNT DB2 column. Number of columns defined for this table.

EDPROC CHAR(8) DB2 column. Specifies the name of an IDMS 
compression/decompression routine Null and default 
value is spaces.

Table 99: SYSCAC.SYSIDMSRECORDS

Column Name Data Type Description
492 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
VALPROC CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERTYPE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERRID INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

CARD INTEGER DB2 column. Number of rows in the table. Null and 
default value is -1.

NPAGES INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

PCTPAGES SMALLINT DB2 column. Not used by eXadas. Null and default value 
is -1.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the table. Null and default value is spaces.

PARENTS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CHILDREN SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

KEYCOLUMNS SMALLINT DB2 column. Number of columns that make up the tables 
primary key. Only maintained for system tables. For all 
other tables 0. Null and default value is zeros.

RECLENGTH SMALLINT 
NOT NULL

DB2 column. Total length of all records assocaited with 
this table.

STATUS CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

KEYOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKFLAG CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKRID CHAR(4) DB2 column. Not used by eXadas. Null and default value 
is spaces.

Table 100: SYSCAC.SYSIDMSSETS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    493



Appendix E. Meta Table Definitions
AUDIT CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the table.

LOCATION CHAR(16) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBCREATOR CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBNAME CHAR(18) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FRAGMENTS SMALLINT 
NOT NULL

eXadas column. Number of fragments used to mangage 
this table.

DBMS CHAR(8) 
NOT NULL

eXadas column. Identifies the type of database. Always 
'IDMS'.

DATA_CAPTURE CHAR(1) DB2 column. Identifies whether the table has been 
marked for xSync data capture. A value of 'Y' indicates 
that changes will be captured. Null and default value is 
spaces.

SORT_KEYS SMALLINT eXadas column. Total number of sort keys for all indexes 
defined for this table. The value for this column is 
automatically maintained by eXadas. Null and default 
value is zeros.

INDEXES SMALLINT eXadas column. Total number of indexes defined for this 
table. The value for this column is automatically 
maintained by eXadas. Null and default value is zeros.

DATABASE_NAME CHAR(8) eXadas column. Name of IDMS database used to map 
this table. Null and default value is spaces.

SCHEMA_NAME CHAR(8) 
NOT NULL

eXadas column. IDMS Schema Name used to map this 
table.

SUB_SCHEMA_NAME CHAR(8) 
NOT NULL

eXadas column. IDMS sub-schema name used to map 
this table.

SUB_SCHEMA_VERSI
ON

SMALLINT 
NOT NULL

eXadas column. The IDMS sub-schema version number 
used to map this table.

RECORD_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS records referenced by 
this table. Maximum of 10 records supported.

Table 100: SYSCAC.SYSIDMSSETS

Column Name Data Type Description
494 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
SET_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS sets referenced by this 
table. Maximum of 9 sets supported.

INDEX_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS indexes referenced by 
this table. Maximum of 10 indexes supported.

AREA_COUNT SMALLINT 
NOT NULL

eXadas column. Total number of areas associated with 
this table. Maximum of 10 areas supported.

ACCESS_MODULE CHAR(8) 
NOT NULL

eXadas column. Name of IDMS load module used to 
access this table.

ACCESS_METHOD CHAR(4) eXadas column. Method used to access the table. Values 
are IDMS, KSDS, RRDS or ESDS. Null and default value 
is spaces.

VARIABLE_LENGTH_T
ABLE

CHAR(1) 
NOT NULL

eXadas column. Flag indicating whether table is variable 
length. 'Y' if variable length or'N' for fixed length tables.

MINIMUM_LENGTH SMALLINT eXadas column. Minimum length for variable length 
tables. Null and default value is zeros.

PARENT_DB_KEY_OFF
SET

SMALLINT eXadas column. For tables marked for data capture, the 
offset of the parent database key in the IMDS journal. 
Null and default value is -1.

PAGE_AREA_MIN INTEGER eXadas column. For tables marked for data capture, the 
low page area dbkey value. Null and default value is 
zeros.

PAGE_AREA_MAX INTEGER eXadas column. For tables marked for data capture, the 
high page area dbkey value. Null and default value is 
zeros.

SET_NAME CHAR(16) 
NOT NULL

eXadas column. Name of the set associated with this 
table.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of the table.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

TYPE CHAR(1) 
NOT NULL

DB2 column. Type of object. 'T' for a table or 'V' for a 
view.

Table 100: SYSCAC.SYSIDMSSETS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    495



Appendix E. Meta Table Definitions
DBNAME CHAR(8) 
NOT NULL

DB2 column. Identifies the type of DBMS that the table is 
referencing. Values are $ADABAS, $CFI (System Table), 
$DATACOM, $DB2, $IAM, $IMS, $IDMS, $MDS (Meta 
Data Table) $SEQUENT and $VSAM.

TSNAME CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

DBID SMALLINT DB2 column. Internal identifier of the database. Zero if 
the the row describes a view or the database does not have 
an identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

OBID SMALLINT DB2 column. Internal identifier of the table. Zero if the 
row describes a view or the database does not have an 
identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns defined for this table.

EDPROC CHAR(8) DB2 column. Specifies the name of an IDMS 
compression/decompression routine Null and default 
value is spaces.

VALPROC CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERTYPE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERRID INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

CARD INTEGER DB2 column. Number of rows in the table. Null and 
default value is -1.

NPAGES INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

PCTPAGES SMALLINT DB2 column. Not used by eXadas. Null and default value 
is -1.

IBMREQDY CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the table. Null and default value is spaces.

PARENTS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
496 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
CHILDREN SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

KEYCOLUMNS SMALLINT DB2 column. Number of columns that make up the tables 
primary key. Only maintained for system tables. For all 
other tables 0. Null and default value is zeros.

RECLENGTH SMALLINT 
NOT NULL

DB2 column. Total length of all records assocaited with 
this table.

STATUS CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

KEYOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKFLAG CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKRID CHAR(4) DB2 column. Not used by eXadas. Null and default value 
is spaces.

AUDIT CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the table.

LOCATION CHAR(16) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBCREATOR CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBNAME CHAR(18) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FRAGMENTS SMALLINT 
NOT NULL

eXadas column. Number of fragments used to mangage 
this table.

DBMS CHAR(8) 
NOT NULL

eXadas column. Identifies the type of database. Always 
'IDMS'.

DATA_CAPTURE CHAR(1) DB2 column. Identifies whether the table has been 
marked for xSync data capture. A value of 'Y' indicates 
that changes will be captured. Null and default value is 
spaces.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    497



Appendix E. Meta Table Definitions
SORT_KEYS SMALLINT eXadas column. Total number of sort keys for all indexes 
defined for this table. The value for this column is 
automatically maintained by eXadas. Null and default 
value is zeros.

INDEXES SMALLINT eXadas column. Total number of indexes defined for this 
table. The value for this column is automatically 
maintained by eXadas. Null and default value is zeros.

DATABASE_NAME CHAR(8) eXadas column. Name of IDMS database used to map 
this table. Null and default value is spaces.

SCHEMA_NAME CHAR(8) 
NOT NULL

eXadas column. IDMS Schema Name used to map this 
table.

SUB_SCHEMA_NAME CHAR(8) 
NOT NULL

eXadas column. IDMS sub-schema name used to map 
this table.

SUB_SCHEMA_VERSI
ON

SMALLINT 
NOT NULL

eXadas column. The IDMS sub-schema version number 
used to map this table.

RECORD_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS records referenced by 
this table. Maximum of 10 records supported.

SET_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS sets referenced by this 
table. Maximum of 9 sets supported.

INDEX_COUNT SMALLINT 
NOT NULL

eXadas column. Number of IDMS indexes referenced by 
this table. Maximum of 10 indexes supported.

AREA_COUNT SMALLINT 
NOT NULL

eXadas column. Total number of areas associated with 
this table. Maximum of 10 areas supported.

ACCESS_MODULE CHAR(8) 
NOT NULL

eXadas column. Name of IDMS load module used to 
access this table.

ACCESS_METHOD CHAR(4) eXadas column. Method used to access the table. Values 
are IDMS, KSDS, RRDS or ESDS. Null and default value 
is spaces.

VARIABLE_LENGTH_T
ABLE

CHAR(1) 
NOT NULL

eXadas column. Flag indicating whether table is variable 
length. 'Y' if variable length or'N' for fixed length tables.

MINIMUM_LENGTH SMALLINT eXadas column. Minimum length for variable length 
tables. Null and default value is zeros.

PARENT_DB_KEY_OFF
SET

SMALLINT eXadas column. For tables marked for data capture, the 
offset of the parent database key in the IMDS journal. 
Null and default value is -1.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
498 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
PAGE_AREA_MIN INTEGER eXadas column. For tables marked for data capture, the 
low page area dbkey value. Null and default value is 
zeros.

PAGE_AREA_MAX INTEGER eXadas column. For tables marked for data capture, the 
high page area dbkey value. Null and default value is 
zeros.

RECORD1_NAME CHAR(16) 
NOT NULL

eXadas column. Name of the 1st record referenced by this 
table.

RECORD1_LENGTH SMALLINT 
NOT NULL

eXadas column. Length of the 1st record referenced by 
this table.

RECORD1_FRAGMENT
_ID

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 1st record. Null and 
default value is zeros.

RECORD1_OFFSET_IN
_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 1st record in the 
linear buffer Null and default value is -1.

RECORD1_SYSTEM_K
EY

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 1st record does not represent 
an actual record definition and is instead a VSAM relative 
record number. Null and default value is spaces.

RECORD1_VARIABLE_
LENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 1st record is variable length. 
Null and default value is spaces.

RECORD1_DEPENDIN
G_ON_COLNO

SMALLINT eXadas column. Number of the controlling column if the 
1st record contains a DEPENDING ON column 
definition, otherwise -1. Null and default value is -1.

RECORD1_DEPENDIN
G_ON_MAX

SMALLINT eXadas column. Maximum number of occurrences if the 
1st record contains a DEPENDING ON column 
definition. Valid when 
RECORD1_DEPENDING_ON_COLNO is not null. Null 
and default value is -1.

RECORD1_DEPENDIN
G_ON_INC

SMALLINT eXadas column. Buffer increment if the 1st record 
contains a DEPENDING ON column definition. Valid 
when RECORD1_DEPENDING_ON_COLNO is not 
null. Null and default value is -1.

RECORD1_TARGET_IS
_OWNER

CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating whether the target for 
the 1st record is the owner.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    499



Appendix E. Meta Table Definitions
RECORD1_AREA_NAM
E

CHAR(16) 
NOT NULL

eXadas column. Area name assocated with the 1st record.

RECORD2_NAME CHAR(16) eXadas column. Name of the 2nd record referenced by 
this table. Null and default value is spaces.

RECORD2_LENGTH SMALLINT eXadas column. Length of the 2nd record referenced by 
this table. Null and default value is zeros.

RECORD2_FRAGMENT
_ID

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 2nd record. Null and 
default value is zeros.

RECORD2_OFFSET_IN
_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 2nd record in the 
linear buffer Null and default value is -1.

RECORD2_SYSTEM_K
EY

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 2nd record does not represent 
an actual record definition and is instead a VSAM relative 
record number. Null and default value is spaces.

RECORD2_VARIABLE_
LENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 2nd record is variable length. 
Null and default value is spaces.

RECORD2_DEPENDIN
G_ON_COLNO

SMALLINT eXadas column. Number of the controlling column if the 
2nd record contains a DEPENDING ON column 
definition, otherwise -1. Null and default value is -1.

RECORD2_DEPENDIN
G_ON_MAX

SMALLINT eXadas column. Maximum number of occurrences if the 
2nd record contains a DEPENDING ON column 
definition. Valid when 
RECORD2_DEPENDING_ON_COLNO is not null. Null 
and default value is -1.

RECORD2_DEPENDIN
G_ON_INC

SMALLINT eXadas column. Buffer increment if the 2nd record 
contains a DEPENDING ON column definition. Valid 
when RECORD2_DEPENDING_ON_COLNO is not 
null. Null and default value is -1.

RECORD2_TARGET_IS
_OWNER

CHAR(1) eXadas column. Y/N flag indicating whether the target for 
the 2nd record is the owner. Null and default value is 
spaces.

RECORD2_AREA_NAM
E

CHAR(16) eXadas column. Area name associated with the 2nd 
record. Null and default value is spaces.

RECORD3_NAME CHAR(16) eXadas column. Name of the 3rd record referenced by 
this table. Null and default value is spaces.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
500 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
RECORD3_LENGTH SMALLINT eXadas column. Length of the 3rd record referenced by 
this table. Null and default value is zeros.

RECORD3_FRAGMENT
_ID

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 3rd record. Null and 
default value is zeros.

RECORD3_OFFSET_IN
_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 3rd record in the 
linear buffer Null and default value is -1.

RECORD3_SYSTEM_K
EY

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 3rd record does not represent 
an actual record definition and is instead a VSAM relative 
record number. Null and default value is spaces.

RECORD3_VARIABLE_
LENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 3rd record is variable length. 
Null and default value is spaces.

RECORD3_DEPENDIN
G_ON_COLNO

SMALLINT eXadas column. Number of the controlling column if the 
3rd record contains a DEPENDING ON column 
definition, otherwise -1. Null and default value is -1.

RECORD3_DEPENDIN
G_ON_MAX

SMALLINT eXadas column. Maximum number of occurrences if the 
3rd record contains a DEPENDING ON column 
definition. Valid when 
RECORD3_DEPENDING_ON_COLNO is not null. Null 
and default value is -1.

RECORD3_DEPENDIN
G_ON_INC

SMALLINT eXadas column. Buffer increment if the 3rd record 
contains a DEPENDING ON column definition. Valid 
when RECORD3_DEPENDING_ON_COLNO is not 
null. Null and default value is -1.

RECORD3_TARGET_IS
_OWNER

CHAR(1) eXadas column. Y/N flag indicating whether the target for 
the 3rd record is the owner. Null and default value is 
spaces.

RECORD3_AREA_NAM
E

CHAR(16) eXadas column. Area name associated with the 3rd 
record. Null and default value is spaces.

RECORD4_NAME CHAR(16) eXadas column. Name of the 4th record referenced by 
this table. Null and default value is spaces.

RECORD4_LENGTH SMALLINT eXadas column. Length of the 4th record referenced by 
this table. Null and default value is zeros.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    501



Appendix E. Meta Table Definitions
RECORD4_FRAGMENT
_ID

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 4th record. Null and 
default value is zeros.

RECORD4_OFFSET_IN
_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 4th record in the 
linear buffer Null and default value is -1.

RECORD4_SYSTEM_K
EY

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 4th record does not represent 
an actual record definition and is instead a VSAM relative 
record number. Null and default value is spaces.

RECORD4_VARIABLE_
LENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 4th record is variable length. 
Null and default value is spaces.

RECORD4_DEPENDIN
G_ON_COLNO

SMALLINT eXadas column. Number of the controlling column if the 
4th record contains a DEPENDING ON column 
definition, otherwise -1. Null and default value is -1.

RECORD4_DEPENDIN
G_ON_MAX

SMALLINT eXadas column. Maximum number of occurrences if the 
4th record contains a DEPENDING ON column 
definition. Valid when 
RECORD4_DEPENDING_ON_COLNO is not null. Null 
and default value is -1.

RECORD4_DEPENDIN
G_ON_INC

SMALLINT eXadas column. Buffer increment if the 4th record 
contains a DEPENDING ON column definition. Valid 
when RECORD4_DEPENDING_ON_COLNO is not 
null. Null and default value is -1.

RECORD4_TARGET_IS
_OWNER

CHAR(1) eXadas column. Y/N flag indicating whether the target for 
the 4th record is the owner. Null and default value is 
spaces.

RECORD4_AREA_NAM
E

CHAR(16) eXadas column. Area name associated with the 4th 
record. Null and default value is spaces.

RECORD5_NAME CHAR(16) eXadas column. Name of the 5th record referenced by 
this table. Null and default value is spaces.

RECORD5_LENGTH SMALLINT eXadas column. Length of the 5th record referenced by 
this table. Null and default value is zeros.

RECORD5_FRAGMENT
_ID

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 5th record. Null and 
default value is zeros.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
502 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
RECORD5_OFFSET_IN
_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 5th record in the 
linear buffer Null and default value is -1.

RECORD5_SYSTEM_K
EY

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 5th record does not represent 
an actual record definition and is instead a VSAM relative 
record number. Null and default value is spaces.

RECORD5_VARIABLE_
LENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 5th record is variable length. 
Null and default value is spaces.

RECORD5_DEPENDIN
G_ON_COLNO

SMALLINT eXadas column. Number of the controlling column if the 
5th record contains a DEPENDING ON column 
definition, otherwise -1. Null and default value is -1.

RECORD5_DEPENDIN
G_ON_MAX

SMALLINT eXadas column. Maximum number of occurrences if the 
5th record contains a DEPENDING ON column 
definition. Valid when 
RECORD5_DEPENDING_ON_COLNO is not null. Null 
and default value is -1.

RECORD5_DEPENDIN
G_ON_INC

SMALLINT eXadas column. Buffer increment if the 5th record 
contains a DEPENDING ON column definition. Valid 
when RECORD5_DEPENDING_ON_COLNO is not 
null. Null and default value is -1.

RECORD5_TARGET_IS
_OWNER

CHAR(1) eXadas column. Y/N flag indicating whether the target for 
the 5th record is the owner. Null and default value is 
spaces.

RECORD5_AREA_NAM
E

CHAR(16) eXadas column. Area name associated with the 5th 
record. Null and default value is spaces.Y

RECORD6_NAME CHAR(16) eXadas column. Name of the 6th record referenced by 
this table. Null and default value is spaces.

RECORD6_LENGTH SMALLINT eXadas column. Length of the 6th record referenced by 
this table. Null and default value is zeros.

RECORD6_FRAGMENT
_ID

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 6th record. Null and 
default value is zeros.

RECORD6_OFFSET_IN
_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 6th record in the 
linear buffer Null and default value is -1.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    503



Appendix E. Meta Table Definitions
RECORD6_SYSTEM_K
EY

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 6th record does not represent 
an actual record definition and is instead a VSAM relative 
record number. Null and default value is spaces.

RECORD6_VARIABLE_
LENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 6th record is variable length. 
Null and default value is spaces.

RECORD6_DEPENDIN
G_ON_COLNO

SMALLINT SMALLINT

RECORD6_DEPENDIN
G_ON_MAX

SMALLINT eXadas column. Maximum number of occurrences if the 
6th record contains a DEPENDING ON column 
definition. Valid when 
RECORD6_DEPENDING_ON_COLNO is not null. Null 
and default value is -1.

RECORD6_DEPENDIN
G_ON_INC

SMALLINT eXadas column. Buffer increment if the 6th record 
contains a DEPENDING ON column definition. Valid 
when RECORD6_DEPENDING_ON_COLNO is not 
null. Null and default value is -1.

RECORD6_TARGET_IS
_OWNER

CHAR(1) eXadas column. Y/N flag indicating whether the target for 
the 6th record is the owner. Null and default value is 
spaces.

RECORD6_AREA_NAM
E

CHAR(16) eXadas column. Area name associated with the 6th 
record. Null and default value is spaces.

RECORD7_NAME CHAR(16) eXadas column. Name of the 7th record referenced by 
this table. Null and default value is spaces.

RECORD7_LENGTH SMALLINT eXadas column. Length of the 7th record referenced by 
this table. Null and default value is zeros.

RECORD7_FRAGMENT
_ID

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 7th record. Null and 
default value is zeros.

RECORD7_OFFSET_IN
_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 7th record in the 
linear buffer Null and default value is -1.

RECORD7_SYSTEM_K
EY

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 7th record does not represent 
an actual record definition and is instead a VSAM relative 
record number. Null and default value is spaces.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
504 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
RECORD7_VARIABLE_
LENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 7th record is variable length. 
Null and default value is spaces.

RECORD7_DEPENDIN
G_ON_COLNO

SMALLINT eXadas column. Number of the controlling column if the 
7th record contains a DEPENDING ON column 
definition, otherwise -1. Null and default value is -1.

RECORD7_DEPENDIN
G_ON_MAX

SMALLINT eXadas column. Maximum number of occurrences if the 
7th record contains a DEPENDING ON column 
definition. Valid when 
RECORD7_DEPENDING_ON_COLNO is not null. Null 
and default value is -1.

RECORD7_DEPENDIN
G_ON_INC

SMALLINT eXadas column. Buffer increment if the 7th record 
contains a DEPENDING ON column definition. Valid 
when RECORD7_DEPENDING_ON_COLNO is not 
null. Null and default value is -1.

RECORD7_TARGET_IS
_OWNER

CHAR(1) eXadas column. Y/N flag indicating whether the target for 
the 7th record is the owner. Null and default value is 
spaces.

RECORD7_AREA_NAM
E

CHAR(16) eXadas column. Area name associated with the 7th 
record. Null and default value is spaces.

RECORD8_NAME CHAR(16) eXadas column. Name of the 8th record referenced by 
this table. Null and default value is spaces.

RECORD8_LENGTH SMALLINT eXadas column. Length of the 8th record referenced by 
this table. Null and default value is zeros.

RECORD8_FRAGMENT
_ID

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 8th record. Null and 
default value is zeros.

RECORD8_OFFSET_IN
_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 8th record in the 
linear buffer Null and default value is -1.

RECORD8_SYSTEM_K
EY

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 8th record does not represent 
an actual record definition and is instead a VSAM relative 
record number. Null and default value is spaces.

RECORD8_VARIABLE_
LENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 8th record is variable length. 
Null and default value is spaces.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    505



Appendix E. Meta Table Definitions
RECORD8_DEPENDIN
G_ON_COLNO

SMALLINT eXadas column. Number of the controlling column if the 
8th record contains a DEPENDING ON column 
definition, otherwise -1. Null and default value is -1.

RECORD8_DEPENDIN
G_ON_MAX

SMALLINT eXadas column. Maximum number of occurrences if the 
8th record contains a DEPENDING ON column 
definition. Valid when 
RECORD8_DEPENDING_ON_COLNO is not null. Null 
and default value is -1.

RECORD8_DEPENDIN
G_ON_INC

SMALLINT eXadas column. Buffer increment if the 8th record 
contains a DEPENDING ON column definition. Valid 
when RECORD8_DEPENDING_ON_COLNO is not 
null. Null and default value is -1.

RECORD8_TARGET_IS
_OWNER

CHAR(1) eXadas column. Y/N flag indicating whether the target for 
the 8th record is the owner. Null and default value is 
spaces.

RECORD8_AREA_NAM
E

CHAR(16) eXadas column. Area name associated with the 8th 
record. Null and default value is spaces.

RECORD9_NAME CHAR(16) eXadas column. Name of the 9th record referenced by 
this table. Null and default value is spaces.

RECORD9_LENGTH SMALLINT eXadas column. Length of the 9th record referenced by 
this table. Null and default value is zeros.

RECORD9_FRAGMENT
_ID

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 9th record. Null and 
default value is zeros.

RECORD9_OFFSET_IN
_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 9th record in the 
linear buffer Null and default value is -1.

RECORD9_SYSTEM_K
EY

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 9th record does not represent 
an actual record definition and is instead a VSAM relative 
record number. Null and default value is spaces.

RECORD9_VARIABLE_
LENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 9th record is variable length. 
Null and default value is spaces.

RECORD9_DEPENDIN
G_ON_COLNO

SMALLINT eXadas column. Number of the controlling column if the 
9th record contains a DEPENDING ON column 
definition, otherwise -1. Null and default value is -1.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
506 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
RECORD9_DEPENDIN
G_ON_MAX

SMALLINT eXadas column. Maximum number of occurrences if the 
9th record contains a DEPENDING ON column 
definition. Valid when 
RECORD9_DEPENDING_ON_COLNO is not null. Null 
and default value is -1.

RECORD9_DEPENDIN
G_ON_INC

SMALLINT eXadas column. Buffer increment if the 9th record 
contains a DEPENDING ON column definition. Valid 
when RECORD9_DEPENDING_ON_COLNO is not 
null. Null and default value is -1.

RECORD9_TARGET_IS
_OWNER

CHAR(1) eXadas column. Y/N flag indicating whether the target for 
the 9th record is the owner. Null and default value is 
spaces.

RECORD9_AREA_NAM
E

CHAR(16) eXadas column. Area name associated with the 9th 
record. Null and default value is spaces.

RECORD10_NAME CHAR(16) eXadas column. Name of the 10th record referenced by 
this table. Null and default value is spaces.

RECORD10_LENGTH SMALLINT eXadas column. Length of the 10th record referenced by 
this table. Null and default value is zeros.

RECORD10_FRAGMEN
T_ID

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 10th record. Null and 
default value is zeros.Y

RECORD10_OFFSET_I
N_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 10th record in the 
linear buffer Null and default value is -1.

RECORD10_SYSTEM_
KEY

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 10th record does not represent 
an actual record definition and is instead a VSAM relative 
record number. Null and default value is spaces.

RECORD10_VARIABLE
_LENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 10th record is variable length. 
Null and default value is spaces.

RECORD10_DEPENDIN
G_ON_COLNO

SMALLINT eXadas column. Number of the controlling column if the 
10th record contains a DEPENDING ON column 
definition, otherwise -1. Null and default value is -1.

RECORD10_DEPENDIN
G_ON_MAX

SMALLINT eXadas column. Maximum number of occurrences if the 
10th record contains a DEPENDING ON column 
definition. Valid when 
RECORD10_DEPENDING_ON_COLNO is not null. 
Null and default value is -1.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    507



Appendix E. Meta Table Definitions
RECORD10_DEPENDIN
G_ON_INC

SMALLINT eXadas column. Buffer increment if the 10th record 
contains a DEPENDING ON column definition. Valid 
when RECORD10_DEPENDING_ON_COLNO is not 
null. Null and default value is -1.

RECORD10_TARGET_I
S_OWNER

CHAR(1) eXadas column. Y/N flag indicating whether the target for 
the 10th record is the owner. Null and default value is 
spaces.

RECORD10_AREA_NA
ME

CHAR(16) eXadas column. Area name associated with the 10th 
record. Null and default value is spaces.

SET1_NAME CHAR(16) eXadas column. Name of the 1st set associated with this 
table. Null and default value is spaces.

SET2_NAME CHAR(16) eXadas column. Name of the 2nd set associated with this 
table. Null and default value is spaces.

SET3_NAME CHAR(16) eXadas column. Name of the 3rd set associated with this 
table. Null and default value is spaces.

SET4_NAME CHAR(16) eXadas column. Name of the 4th set associated with this 
table. Null and default value is spaces.

SET5_NAME CHAR(16) eXadas column. Name of the 5th set associated with this 
table. Null and default value is spaces.

SET6_NAME CHAR(16) eXadas column. Name of the 6th set associated with this 
table. Null and default value is spaces.

SET7_NAME CHAR(16) eXadas column. Name of the 7th set associated with this 
table. Null and default value is spaces.

SET8_NAME CHAR(16) eXadas column. Name of the 8th set associated with this 
table. Null and default value is spaces.

SET9_NAME CHAR(16) eXadas column. Name of the 9th set associated with this 
table. Null and default value is spaces.

INDEX1_NAME CHAR(16) eXadas column. Name of the 1st index associated with 
this table. Null and default value is spaces.

INDEX1_KEY_LENGTH SMALLINT eXadas column. Length of the 1st index key associated 
with this table. Null and default value is zeros.

INDEX1_SORT_ORDER CHAR(1) eXadas column. Sorting order of the 1st index associated 
with this table. 'A' ascending or 'D' for descending. Null 
and default value is spaces.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
508 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
INDEX1_SET_TYPE CHAR(30) eXadas column. Method used to access the 1st index 
associated with this table. Values are a combination of 
MANUAL, OPTIONAL, VSAM or NONE. Null and 
default value is spaces.

INDEX2_NAME CHAR(16) eXadas column. Name of the 2nd index associated with 
this table. Null and default value is spaces.

INDEX2_KEY_LENGTH SMALLINT eXadas column. Length of the 2nd index key associated 
with this table. Null and default value is zeros.

INDEX2_SORT_ORDER CHAR(1) eXadas column. Sorting order of the 2nd index associated 
with this table. 'A' ascending or 'D' for descending. Null 
and default value is spaces.

INDEX2_SET_TYPE CHAR(30) eXadas column. Method used to access the 2nd index 
associated with this table. Values are a combination of 
MANUAL, OPTIONAL, VSAM or NONE. Null and 
default value is spaces.

INDEX3_NAME CHAR(16) eXadas column. Name of the 3rd index associated with 
this table. Null and default value is spaces.

INDEX3_KEY_LENGTH SMALLINT eXadas column. Length of the 3rd index key associated 
with this table. Null and default value is zeros.

INDEX3_SORT_ORDER CHAR(1) eXadas column. Sorting order of the 3rd index associated 
with this table. 'A' ascending or 'D' for descending. Null 
and default value is spaces.

INDEX3_SET_TYPE CHAR(30) eXadas column. Method used to access the 3rd index 
associated with this table. Values are a combination of 
MANUAL, OPTIONAL, VSAM or NONE. Null and 
default value is spaces.

INDEX4_NAME CHAR(16) eXadas column. Name of the 4th index associated with 
this table. Null and default value is spaces.

INDEX4_KEY_LENGTH SMALLINT eXadas column. Length of the 4th index key associated 
with this table. Null and default value is zeros.

INDEX4_SORT_ORDER CHAR(1) eXadas column. Sorting order of the 4th index associated 
with this table. 'A' ascending or 'D' for descending. Null 
and default value is spaces.

INDEX4_SET_TYPE CHAR(30) eXadas column. Method used to access the 4th index 
associated with this table. Values are a combination of 
MANUAL, OPTIONAL, VSAM or NONE. Null and 
default value is spaces.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    509



Appendix E. Meta Table Definitions
INDEX5_NAME CHAR(16) eXadas column. Name of the 5th index associated with 
this table. Null and default value is spaces.

INDEX5_KEY_LENGTH SMALLINT eXadas column. Length of the 5th index key associated 
with this table. Null and default value is zeros.

INDEX5_SORT_ORDER CHAR(1) eXadas column. Sorting order of the 5th index associated 
with this table. 'A' ascending or 'D' for descending. Null 
and default value is spaces.

INDEX5_SET_TYPE CHAR(30) eXadas column. Method used to access the 5th index 
associated with this table. Values are a combination of 
MANUAL, OPTIONAL, VSAM or NONE. Null and 
default value is spaces.

INDEX6_NAME CHAR(16) eXadas column. Name of the 6th index associated with 
this table. Null and default value is spaces.

INDEX6_KEY_LENGTH SMALLINT eXadas column. Length of the 6th index key associated 
with this table. Null and default value is zeros.

INDEX6_SORT_ORDER CHAR(1) eXadas column. Sorting order of the 6th index associated 
with this table. 'A' ascending or 'D' for descending. Null 
and default value is spaces.

INDEX6_SET_TYPE CHAR(30) eXadas column. Method used to access the 6th index 
associated with this table. Values are a combination of 
MANUAL, OPTIONAL, VSAM or NONE. Null and 
default value is spaces.

INDEX7_NAME CHAR(16) eXadas column. Name of the 7th index associated with 
this table. Null and default value is spaces.

INDEX7_KEY_LENGTH SMALLINT eXadas column. Length of the 7th index key associated 
with this table. Null and default value is zeros.

INDEX7_SORT_ORDER CHAR(1) eXadas column. Sorting order of the 7th index associated 
with this table. 'A' ascending or 'D' for descending. Null 
and default value is spaces.

INDEX7_SET_TYPE CHAR(30) eXadas column. Method used to access the 7th index 
associated with this table. Values are a combination of 
MANUAL, OPTIONAL, VSAM or NONE. Null and 
default value is spaces.

INDEX8_NAME CHAR(16) eXadas column. Name of the 8th index associated with 
this table. Null and default value is spaces.

INDEX8_KEY_LENGTH SMALLINT eXadas column. Length of the 8th index key associated 
with this table. Null and default value is zeros.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
510 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
INDEX8_SORT_ORDER CHAR(1) eXadas column. Sorting order of the 8th index associated 
with this table. 'A' ascending or 'D' for descending. Null 
and default value is spaces.

INDEX8_SET_TYPE CHAR(30) eXadas column. Method used to access the 8th index 
associated with this table. Values are a combination of 
MANUAL, OPTIONAL, VSAM or NONE. Null and 
default value is spaces.

INDEX9_NAME CHAR(16) eXadas column. Name of the 9th index associated with 
this table. Null and default value is spaces.

INDEX9_KEY_LENGTH SMALLINT eXadas column. Length of the 9th index key associated 
with this table. Null and default value is zeros.

INDEX9_SORT_ORDER CHAR(1) eXadas column. Sorting order of the 9th index associated 
with this table. 'A' ascending or 'D' for descending. Null 
and default value is spaces.

INDEX9_SET_TYPE CHAR(30) eXadas column. Method used to access the 9th index 
associated with this table. Values are a combination of 
MANUAL, OPTIONAL, VSAM or NONE. Null and 
default value is spaces.

INDEX10_NAME CHAR(16) eXadas column. Name of the 10th index associated with 
this table. Null and default value is spaces.

INDEX10_KEY_LENGT
H

SMALLINT eXadas column. Length of the 10th index key associated 
with this table. Null and default value is zeros.

INDEX10_SORT_ORDE
R

CHAR(1) eXadas column. Sorting order of the 10th index 
associated with this table. 'A' ascending or 'D' for 
descending. Null and default value is spaces.

INDEX10_SET_TYPE CHAR(30) eXadas column. Method used to access the 10th index 
associated with this table. Values are a combination of 
MANUAL, OPTIONAL, VSAM or NONE. Null and 
default value is spaces.

AREA1_NAME CHAR(16) eXadas column. Name of the 1st area associated with this 
table. Null and default value is spaces.

AREA2_NAME CHAR(16) eXadas column. Name of the 2nd area associated with 
this table. Null and default value is spaces.

AREA3_NAME CHAR(16) eXadas column. Name of the 3rd area associated with this 
table. Null and default value is spaces.

AREA4_NAME CHAR(16) eXadas column. Name of the 4th area associated with this 
table. Null and default value is spaces.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    511



Appendix E. Meta Table Definitions
AREA5_NAME CHAR(16) eXadas column. Name of the 5th area associated with this 
table. Null and default value is spaces.

AREA6_NAME CHAR(16) eXadas column. Name of the 6th area associated with this 
table. Null and default value is spaces.

AREA7_NAME CHAR(16) eXadas column. Name of the 7th area associated with this 
table. Null and default value is spaces.

AREA8_NAME CHAR(16) eXadas column. Name of the 8th area associated with this 
table. Null and default value is spaces.

AREA9_NAME CHAR(16) eXadas column. Name of the 9th area associated with this 
table. Null and default value is spaces.

AREA10_NAME CHAR(16) eXadas column. Name of the 10th area associated with 
this table. Null and default value is spaces.

Table 102: SYSCAC.SYSIMSCOLUMNS

Column Name Data Type Description

NAME CHAR(30) 
NOT NULL

DB2 column. Name of the column.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that contains the column.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table 
that the column is in.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of column within the table. 
Numbers start at 1.

COLTYPE CHAR(8) 
NOT NULL

DB2 column. Type of column, values are INTEGER, 
SMALLINT, FLOAT, CHAR, VARCHAR, LONGVAR, 
DECIMAL, GRAPHIC, VARG, and LONGVARG.

LENGTH SMALLINT 
NOT NULL

DB2 column. For a DECIMAL data type the columns 
precision. for all other data types the columns length.

SCALE SMALLINT 
NOT NULL

DB2 column. Scale for a DECIMAL data type, otherwise 
zero.

NULLS CHAR(1) 
NOT NULL

DB2 column. Y/N flag identifying whether the column 
can contain null values.

COLCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

Table 101: SYSCAC.SYSIDMSTABLES

Column Name Data Type Description
512 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
HIGH2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

LOW2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

UPDATES CHAR(1) DB2 column. For DB2 tables, the corresponding 
UPDATES value from the DB2 catalog. For system tables 
always 'N'. For all other types of tables always 'Y'. Null 
and default value is 'Y'.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the column. Null and default value is spaces.

DEFAULT CHAR(1) DB2 column. For DB2 tables, the corresponding 
DEFAULT value from the DB2 catalog or for a meta data 
table whether the column has a NULL IS specification. 
For all other types of tables 'N'. Null and default value is 
spaces.

KEYSEQ SMALLINT DB2 column. The columns numeric position within the 
primary key, Zero if the column is not part of the primary 
key. Null and default value is zeros.

FOREIGNKEY CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FLDPROC CHAR(1) DB2 column. Flag indicating whether the column has a 
field procedure associated with it. 'Y' - field procedure 
exists, otherwise 'N'. Null and default value is 'N'.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIELD_OFFSET SMALLINT 
NOT NULL

eXadas column. Relative zero offset of the start of the 
column in the rexord or segment.

FIELD_LENGTH SMALLINT 
NOT NULL

eXadas column. Physical length of the field.

NATIVE_DATA_TYPE CHAR(1) 
NOT NULL

eXadas column. Native type of the the underlying 
column. For a description of the different data types refer 
to the documentation on the Meta Data Utility in the 
System Reference Manual.

SQL_COLUMN_LENGT
H

SMALLINT 
NOT NULL

eXadas column. The SQL length of the column.

Table 102: SYSCAC.SYSIMSCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    513



Appendix E. Meta Table Definitions
DB2_DATA_TYPE SMALLINT 
NOT NULL

eXadas column. The DB2 SQLDA data type value for the 
column.

PRECISION SMALLINT 
NOT NULL

eXadas column. For a DECIMAL data type the columns 
scale. for all other data types zero.

COLUMN_SEQUENCE_
NUMBER

SMALLINT 
NOT NULL

eXadas column. Relative zero ordinal position of this 
column in the table.

USE_RECORD_LENGT
H

SMALLINT eXadas column. For variable length records, whether the 
entire contents of the record should be mapped to the 
column. A value of 1 indicates that the record length 
should be used. Null and default value is spaces.

FRAGMENT_ID SMALLINT 
NOT NULL

eXadas column. The ID of the fragment that the column is 
located in.

FRAGMENT_LEVEL SMALLINT 
NOT NULL

eXadas column. The level number of the fragment that 
the column is located in.

OFFSET_IN_FRAGMEN
T

SMALLINT 
NOT NULL

eXadas column. Relative zero starting offset of the 
column within the fragment.

NULLABLE CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating whether the column 
supports null values.

SIGNED CHAR(1) 
NOT NULL

eXadas column. Is the underlying column’s data type 
signed or unsigned? 'Y' the data is signed, 'N' the data is 
unsigned.

NULL_DATA_LENGTH SMALLINT eXadas column. Length of the NULL IS specification for 
this column Null and default value is zeros.

NULL_VALUE CHAR(16) eXadas column. The value for this column that means the 
column contains a null value. Null and default value is 
spaces.

FIELD_PROCEDURE_N
AME

CHAR(8) eXadas column. Name of the field procedure associated 
with this column. Null and default value is spaces.

OCCURS_DEPENDING
_ON

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag that identifies whether the column exists within an 
OCCURS DEPENDING ON record arrary. Null and 
default value is 'N'.

FRAGMENT_OFFSET_I
N_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the starting position of the 
fragment within the linear buffer. Null and default value is 
-1.

Table 102: SYSCAC.SYSIMSCOLUMNS

Column Name Data Type Description
514 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
FRAGMENT_LENGTH SMALLINT eXadas column - obtained from fragment definition. 
Length of the fragment. If fragment level is 0 the length is 
the length of the record or segment. For non-zero 
fragment levels the length of the RECORD ARRAY. Null 
and default value is -1.

FRAGMENT_MAXIMU
M_OCCURRENCES

SMALLINT eXadas column - obtained from fragment definition. 
Maximum times the fragment can occur. Null and default 
value is zeros.

NULL_FRAGMENT_RU
LE

CHAR(30) eXadas column - obtained from fragment definition. 
Method used to determine a NULL occurrence in a 
RECORD ARRAY. Null and default value is spaces.

OCCURS_DEPENDING
_ON_COLUMN

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the name of the column 
that identifies the number of occurrences that exist. Null 
and default value is spaces.

OCCURS_DEPENDING
_ON_COLNO

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the 
COLUMN_SEQUENCE_NUMBER of the column that 
identifies the number of occurrences that exist. Null and 
default value is zeros.

FRAGMENT_NULL_LE
NGTH

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the length of the NULL IS 
specification for the fragment. Null and default value is 
zeros.

FRAGMENT_NULL_VA
LUE

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the value that indentifies 
an instance as being null. Null and default value is spaces.

IMS_FIELD_NAME CHAR(8) eXadas column. Name of the IMS FIELD associated with 
this column. Null and default value is spaces.

SEGMENT_INDEX SMALLINT 
NOT NULL

eXadas column. The relative zero index into the segment 
table that identifies the segment associated with this 
column.

SEGMENT_NAME CHAR(8) 
NOT NULL

eXadas column. Name of the IMS segment that the 
column is located in.

FIELD_TYPE CHAR(8) eXadas column. Identifies whether the column is part of a 
HDAM key field or an XDFLD. A value of 'HDAMKEY' 
indicates that the column maps to a HDAM primary key. 
A value of 'XDFLD' indicates the column is mapped 
against an XDFLD. Null and default value is spaces.

Table 102: SYSCAC.SYSIMSCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    515



Appendix E. Meta Table Definitions
PCBPREFIX CHAR(8) eXadas column. For a reference to an XDFLD, the 
PCBNAME prefix that is used to select a PCB to access 
the IMS DBD using a secondary index. Null and default 
value is spaces.

XDFLD_NAME CHAR(8) eXadas column. The name of the the XDFLD to use in 
generated SSA's when this table is accessed via a 
secondary index. Null and default value is spaces.

XDFLD_IN_SEGMENT CHAR(1) eXadas column. Y/N flag that indicates, if the column is 
mapped to an XDFLD and the XDFLD physically exists 
in the segment. Null and default value is spaces.

KEY_OFFSET SMALLINT eXadas column. If the column is mapped against part or 
all of the primary key, then the relative zero offset of the 
columns position within the segment. Null and default 
value is zeros.

KEY_LENGTH SMALLINT eXadas column. If the column is mapped against part or 
all of the primary key, then the length of this column. Null 
and default value is zeros.

Table 103: SYSCAC.SYSIMSINDEXES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of index.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the index.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that the index is 
referencing.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

UNIQUERULE CHAR(1) 
NOT NULL

DB2 column. Whether the index is unique. 'U' yes or 'D' 
no.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns that make up the key.

CLUSTERING CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

CLUSTERED CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

Table 102: SYSCAC.SYSIMSCOLUMNS

Column Name Data Type Description
516 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
DBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

OBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

ISOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Not used by eXadas.

INDEXSPACE CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIRSTKEYCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

FULLKEYCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

NLEAF INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

NLEVELS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

BPOOL CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

PGSIZE SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

ERASERULE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

DSETPASS CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLOSERULE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'Y'.

SPACE SPACE DB2 column. Not used by eXadas. Null and default value 
is zeros.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

CLUSTERRATIO SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

Table 103: SYSCAC.SYSIMSINDEXES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    517



Appendix E. Meta Table Definitions
CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the index.

FIELD_TYPE CHAR(1) 
NOT NULL

eXadas column. Identifies the type of IMS field that the 
index is referencing. 'P' - primary key, 'X' secondary index 
XDFLD.

FIELD_NAME CHAR(8) 
NOT NULL

eXadas column. The name of the primary key FIELD or 
the name of the XDFLD that the index is defined for.

PCBPREFIX CHAR(8) eXadas column. The PCBNAME prefix that is used to 
select a PCB to access the IMS DBD via this index. Null 
and default value is spaces.

Table 104: SYSCAC.SYSIMSKEYS

Column Name Data Type Description

IXNAME CHAR(18) 
NOT NULL

DB2 column. Name of the index.

IXCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the index.

COLNAME CHAR(30) 
NOT NULL

DB2 column. Name of the column for this key.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of the column in the table.

COLSEQ SMALLINT 
NOT NULL

DB2 column. Position of this column within the key.

ORDERING CHAR(1) 
NOT NULL

DB2 column. Sort order of this column within the key. 'A' 
ascending or 'D' decending.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

Table 103: SYSCAC.SYSIMSINDEXES

Column Name Data Type Description
518 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
Table 105: SYSCAC.SYSIMSSEGMENTS

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of the table.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

TYPE CHAR(1) 
NOT NULL

DB2 column. Type of object. 'T' for a table or 'V' for a 
view.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Identifies the type of DBMS that the table is 
referencing. Values are $ADABAS, $CFI (System Table), 
$DATACOM, $DB2, $IAM, $IMS, $IDMS, $MDS (Meta 
Data Table) $SEQUENT and $VSAM.

TSNAME CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

DBID SMALLINT DB2 column. Internal identifier of the database. Zero if 
the the row describes a view or the database does not have 
an identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

OBID SMALLINT DB2 column. Internal identifier of the table. Zero if the 
row describes a view or the database does not have an 
identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns defined for this table.

EDPROC CHAR(8) DB2 column. Name of the edit procedure. Blank if the 
row describes a view or the table does not use a edit 
procedure. Only populated for IDMS tables that use 
compression routines. Null and default value is spaces.

VALPROC CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERTYPE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERRID INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

CARD INTEGER DB2 column. Number of rows in the table. Null and 
default value is -1.

NPAGES INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    519



Appendix E. Meta Table Definitions
PCTPAGES SMALLINT DB2 column. Not used by eXadas. Null and default value 
is -1.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the table. Null and default value is spaces.

PARENTS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CHILDREN SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

KEYCOLUMNS SMALLINT DB2 column. Number of columns that make up the tables 
primary key. Only maintained for system tables. For all 
other tables 0. Null and default value is zeros.

RECLENGTH SMALLINT 
NOT NULL

DB2 column. Number of bytes in a row. This ia also the 
size of the linear buffer allocated for this table.

STATUS CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

KEYOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKFLAG CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKRID CHAR(4) DB2 column. Not used by eXadas. Null and default value 
is spaces.

AUDIT CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the table.

LOCATION CHAR(16) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBCREATOR CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBNAME CHAR(18) DB2 column. Not used by eXadas. Null and default value 
is spaces.

Table 105: SYSCAC.SYSIMSSEGMENTS

Column Name Data Type Description
520 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
FRAGMENTS SMALLINT 
NOT NULL

eXadas column. Number of fragments used to mangage 
this table.

DBMS CHAR(8) 
NOT NULL

eXadas column. Identifies the type of database. Always 
'IMS'.

DATA_CAPTURE CHAR(1) DB2 column. Identifies whether the table has been 
marked for xSync data capture. A value of 'Y' indicates 
that changes will be captured. Null and default value is 
spaces.

SORT_KEYS SMALLINT eXadas column. Total number of sort keys for all indexes 
defined for this table. The value for this column is 
automatically maintained by eXadas. Null and default 
value is zeros.

INDEXES SMALLINT eXadas column. Total number of indexes defined for this 
table. The value for this column is automatically 
maintained by eXadas. Null and default value is zeros.

PRIMARY_KEY_OFFSE
T

SMALLINT 
NOT NULL

eXadas column. Offset in the root segment of the primary 
key sequence field.

PRIMARY_KEY_LENG
TH

SMALLINT 
NOT NULL

eXadas column. Length of the primary key sequence 
field.

DBD_NAME CHAR(8) 
NOT NULL

eXadas column. Name of the DBD that the table is 
accessing.

DBD_TYPE CHAR(8) 
NOT NULL

eXadas column. Type of DBD. Values are HDAM, 
HIDAM, DEDB SHISAM, HSAM, LOGICAL, INDEX 
or OTHER.

PCBPREFIX CHAR(8) eXadas column. PCBNAME prefix that is used to select a 
PCB to access the IMS DBD. Null and default value is 
spaces.

STANDARD_PSB CHAR(8) eXadas column. Name of the PSB that is scheduled to 
access the IMS DBD in non-join queries. Null and default 
value is spaces.

JOIN_PSB CHAR(8) eXadas column. Name of the PSB that is scheduled to 
access the IMS DBD in join queries. Null and default 
value is spaces.

KEY_COLUMN SMALLINT 
NOT NULL

eXadas column. Ordinal number number of the column 
that maps to the left most portion of the primary key 
sequence field.

KEY_OFFSET SMALLINT 
NOT NULL

eXadas column. Relative zero offset of the primary key 
sequence field in the root segment.

Table 105: SYSCAC.SYSIMSSEGMENTS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    521



Appendix E. Meta Table Definitions
KEY_LENGTH SMALLINT 
NOT NULL

eXadas column. Length of the primary key sequence 
field.

KEY_FIELD_NAME CHAR(8) 
NOT NULL

eXadas column. IMS FIELD name of the primary key 
sequence field.

NUMBER_OF_SEGMEN
TS

SMALLINT 
NOT NULL

eXadas column. Number of segments that this table 
references.

SEGM_NAME CHAR(8) 
NOT NULL

eXadas column. Name of segment.

SEGM_LEVEL CHAR(2) 
NOT NULL

eXadas column, Hierachic level of segment.

SEGM_LENGTH SMALLINT 
NOT NULL

eXadas column. Length of segment. For variable length 
segments this is the maximum length.

SEGM_FRAGMENT_ID SMALLINT 
NOT NULL

eXadas column - obtained from fragment definition. 
Fragment ID associated with the segment.

SEGM_OFFSET_IN_BU
FFER

SMALLINT 
NOT NULL

eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the segment in the 
linear buffer.

SEGM_SYSTEM_KEY CHAR(1) 
NOT NULL

eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the segment does not represent an 
actual segment definition and is instead an XDFLD key 
value extracted from the key feedback area.

SEGM_VARIABLE_LEN
GTH

CHAR(1) 
NOT NULL

eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the segment is variable length.

Table 106: SYSCAC.SYSIMSTABLES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of the table.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

TYPE CHAR(1) 
NOT NULL

DB2 column. Type of object. 'T' for a table or 'V' for a 
view.

Table 105: SYSCAC.SYSIMSSEGMENTS

Column Name Data Type Description
522 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
DBNAME CHAR(8) 
NOT NULL

DB2 column. Identifies the type of DBMS that the table is 
referencing. Values are $ADABAS, $CFI (System Table), 
$DATACOM, $DB2, $IAM, $IMS, $IDMS, $MDS (Meta 
Data Table) $SEQUENT and $VSAM.

TSNAME CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

DBID SMALLINT DB2 column. Internal identifier of the database. Zero if 
the the row describes a view or the database does not have 
an identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

OBID SMALLINT DB2 column. Internal identifier of the table. Zero if the 
row describes a view or the database does not have an 
identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns defined for this table.

EDPROC CHAR(8) DB2 column. Name of the edit procedure. Blank if the 
row describes a view or the table does not use a edit 
procedure. Only populated for IDMS tables that use 
compression routines. Null and default value is spaces.

VALPROC CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERTYPE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERRID INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

CARD INTEGER DB2 column. Number of rows in the table. Null and 
default value is -1.

NPAGES INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

PCTPAGES SMALLINT DB2 column. Not used by eXadas. Null and default value 
is -1.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the table. Null and default value is spaces.

Table 106: SYSCAC.SYSIMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    523



Appendix E. Meta Table Definitions
PARENTS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CHILDREN SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

KEYCOLUMNS SMALLINT DB2 column. Number of columns that make up the tables 
primary key. Only maintained for system tables. For all 
other tables 0. Null and default value is zeros.

RECLENGTH SMALLINT 
NOT NULL

DB2 column. Number of bytes in a row. This ia also the 
size of the linear buffer allocated for this table.

STATUS CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

KEYOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKFLAG CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKRID CHAR(4) DB2 column. Not used by eXadas. Null and default value 
is spaces.

AUDIT CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the table.

LOCATION CHAR(16) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBCREATOR CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBNAME CHAR(18) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FRAGMENTS SMALLINT 
NOT NULL

eXadas column. Number of fragments used to mangage 
this table.

DBMS CHAR(8) 
NOT NULL

eXadas column. Identifies the type of database. Always 
'IMS'.

Table 106: SYSCAC.SYSIMSTABLES

Column Name Data Type Description
524 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
DATA_CAPTURE CHAR(1) DB2 column. Identifies whether the table has been 
marked for xSync data capture. A value of 'Y' indicates 
that changes will be captured. Null and default value is 
spaces.

SORT_KEYS SMALLINT eXadas column. Total number of sort keys for all indexes 
defined for this table. The value for this column is 
automatically maintained by eXadas. Null and default 
value is zeros.

INDEXES SMALLINT eXadas column. Total number of indexes defined for this 
table. The value for this column is automatically 
maintained by eXadas. Null and default value is zeros.

PRIMARY_KEY_OFFSE
T

SMALLINT 
NOT NULL

eXadas column. Offset in the root segment of the primary 
key sequence field.

PRIMARY_KEY_LENG
TH

SMALLINT 
NOT NULL

eXadas column. Length of the primary key sequence 
field.

DBD_NAME CHAR(8) 
NOT NULL

eXadas column. Name of the DBD that the table is 
accessing.

DBD_TYPE CHAR(8) 
NOT NULL

eXadas column. Type of DBD. Values are HDAM, 
HIDAM, DEDB SHISAM, HSAM, LOGICAL, INDEX 
or OTHER.

PCBPREFIX CHAR(8) eXadas column. PCBNAME prefix that is used to select a 
PCB to access the IMS DBD. Null and default value is 
spaces.

STANDARD_PSB CHAR(8) eXadas column. Name of the PSB that is scheduled to 
access the IMS DBD in non-join queries. Null and default 
value is spaces.

JOIN_PSB CHAR(8) eXadas column. Name of the PSB that is scheduled to 
access the IMS DBD in join queries. Null and default 
value is spaces.

KEY_COLUMN SMALLINT 
NOT NULL

eXadas column. Ordinal number number of the column 
that maps to the left most portion of the primary key 
sequence field.

KEY_OFFSET SMALLINT 
NOT NULL

eXadas column. Relative zero offset of the primary key 
sequence field in the root segment.

KEY_LENGTH SMALLINT 
NOT NULL

eXadas column. Length of the primary key sequence 
field.

KEY_FIELD_NAME CHAR(8) 
NOT NULL

eXadas column. IMS FIELD name of the primary key 
sequence field.

Table 106: SYSCAC.SYSIMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    525



Appendix E. Meta Table Definitions
NUMBER_OF_SEGMEN
TS

SMALLINT 
NOT NULL

eXadas column. Number of segments that this table 
references.

SEGM1_NAME CHAR(8) 
NOT NULL

eXadas column. Name of the 1st segment referenced by 
this table.

SEGM1_LEVEL SEGM1_LE
VEL

eXadas column. Hierarchic level of the 1st segment 
referenced by this table.

SEGM1_LENGTH SMALLINT 
NOT NULL

eXadas column. Length of the 1st segment referenced by 
this table. For variable length segments, this is the 
maximum length.

SEGM1_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 1st segment. Null and 
default value is zeros.

SEGM1_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 1st segment in the 
linear buffer. Null and default value is -1.

SEGM1_SYSTEM_KEY CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 1st segment does not represent 
an actual segment definition and is instead an XDFLD 
key value extracted from the key feedback area. Null and 
default value is spaces.

SEGM1_VARIABLE_LE
NGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 1st segment is variable length. 
Null and default value is spaces.

SEGM2_NAME CHAR(8) eXadas column. Name of the 2nd segment referenced by 
this table. Null and default value is spaces.

SEGM2_LEVEL CHAR(2) eXadas column. Hierarchic level of the 2nd segment 
referenced by this table. Null and default value is '00'.

SEGM2_LENGTH SMALLINT eXadas column. Length of the 2nd segment referenced by 
this table. For variable length segments, this is the 
maximum length. Null and default value is zeros.

SEGM2_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 2nd segment. Null and 
default value is zeros.

SEGM2_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 2nd segment in the 
linear buffer. Null and default value is -1.

Table 106: SYSCAC.SYSIMSTABLES

Column Name Data Type Description
526 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
SEGM2_SYSTEM_KEY CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 2nd segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

SEGM2_VARIABLE_LE
NGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 2nd segment is variable 
length. Null and default value is spaces.

SEGM3_NAME CHAR(8) eXadas column. Name of the 3rd segment referenced by 
this table. Null and default value is spaces.

SEGM3_LEVEL CHAR(2) eXadas column. Hierarchic level of the 3rd segment 
referenced by this table. Null and default value is '00'.

SEGM3_LENGTH SMALLINT eXadas column. Length of the 3rd segment referenced by 
this table. For variable length segments, this is the 
maximum length. Null and default value is zeros.

SEGM3_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 3rd segment. Null and 
default value is zeros.

SEGM3_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 3rd segment in the 
linear buffer. Null and default value is -1.

SEGM3_SYSTEM_KEY CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 3rd segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

SEGM3_VARIABLE_LE
NGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 3rd segment is variable length. 
Null and default value is spaces.

SEGM4_NAME CHAR(8) eXadas column. Name of the 4th segment referenced by 
this table. Null and default value is spaces.

SEGM4_LEVEL CHAR(2) eXadas column. Hierarchic level of the 4th segment 
referenced by this table. Null and default value is '00'.

SEGM4_LENGTH SMALLINT eXadas column. Length of the 4th segment referenced by 
this table. For variable length segments, this is the 
maximum length. Null and default value is zeros.

Table 106: SYSCAC.SYSIMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    527



Appendix E. Meta Table Definitions
SEGM4_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 4th segment. Null and 
default value is zeros.

SEGM4_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 4th segment in the 
linear buffer. Null and default value is -1.

SEGM4_SYSTEM_KEY CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 4th segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

SEGM4_VARIABLE_LE
NGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 4th segment is variable length. 
Null and default value is spaces.

SEGM5_NAME CHAR(8) eXadas column. Name of the 5th segment referenced by 
this table. Null and default value is spaces.

SEGM5_LEVEL CHAR(2) eXadas column. Hierarchic level of the 5th segment 
referenced by this table. Null and default value is '00'.

SEGM5_LENGTH SMALLINT eXadas column. Length of the 5th segment referenced by 
this table. For variable length segments, this is the 
maximum length. Null and default value is zeros.

SEGM5_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 5th segment. Null and 
default value is zeros.

SEGM5_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 5th segment in the 
linear buffer. Null and default value is -1.

SEGM5_SYSTEM_KEY CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 5th segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

SEGM5_VARIABLE_LE
NGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 5th segment is variable length. 
Null and default value is spaces.

SEGM6_NAME CHAR(8) eXadas column. Name of the 6th segment referenced by 
this table. Null and default value is spaces.

Table 106: SYSCAC.SYSIMSTABLES

Column Name Data Type Description
528 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
SEGM6_LEVEL CHAR(2) eXadas column. Hierarchic level of the 6th segment 
referenced by this table. Null and default value is '00'.

SEGM6_LENGTH SMALLINT eXadas column. Length of the 6th segment referenced by 
this table. For variable length segments, this is the 
maximum length. Null and default value is zeros.

SEGM6_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 6th segment. Null and 
default value is zeros.

SEGM6_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 6th segment in the 
linear buffer. Null and default value is -1.

SEGM6_SYSTEM_KEY CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 6th segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

SEGM6_VARIABLE_LE
NGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 6th segment is variable length. 
Null and default value is spaces.

SEGM7_NAME CHAR(8) eXadas column. Name of the 7th segment referenced by 
this table. Null and default value is spaces.

SEGM7_LEVEL CHAR(2) eXadas column. Hierarchic level of the 7th segment 
referenced by this table. Null and default value is '00'.

SEGM7_LENGTH SMALLINT eXadas column. Length of the 7th segment referenced by 
this table. For variable length segments, this is the 
maximum length. Null and default value is zeros.

SEGM7_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 7th segment. Null and 
default value is zeros.

SEGM7_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 7th segment in the 
linear buffer. Null and default value is -1.

SEGM7_SYSTEM_KEY CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 7th segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

Table 106: SYSCAC.SYSIMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    529



Appendix E. Meta Table Definitions
SEGM7_VARIABLE_LE
NGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 7th segment is variable length. 
Null and default value is spaces.

SEGM8_NAME CHAR(8) eXadas column. Name of the 8th segment referenced by 
this table. Null and default value is spaces.

SEGM8_LEVEL CHAR(2) eXadas column. Hierarchic level of the 8th segment 
referenced by this table. Null and default value is '00'.

SEGM8_LENGTH SMALLINT eXadas column. Length of the 8th segment referenced by 
this table. For variable length segments, this is the 
maximum length. Null and default value is zeros.

SEGM8_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 8th segment. Null and 
default value is zeros.

SEGM8_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 8th segment in the 
linear buffer. Null and default value is -1.

SEGM8_SYSTEM_KEY CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 8th segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

SEGM8_VARIABLE_LE
NGTH

CHAR(1) eXadas column obtained from fragment definition. Y/N 
flag indicating whether the 8th segment is variable length. 
Null and default value is spaces.

SEGM9_NAME CHAR(8) eXadas column. Name of the 9th segment referenced by 
this table. Null and default value is spaces.

SEGM9_LEVEL CHAR(2) eXadas column. Hierarchic level of the 9th segment 
referenced by this table. Null and default value is '00'.

SEGM9_LENGTH SMALLINT eXadas column. Length of the 9th segment referenced by 
this table. For variable length segments, this is the 
maximum length. Null and default value is zeros.

SEGM9_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 9th segment. Null and 
default value is zeros.

SEGM9_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 9th segment in the 
linear buffer Null and default value is -1.

Table 106: SYSCAC.SYSIMSTABLES

Column Name Data Type Description
530 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
SEGM9_SYSTEM_KEY CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 9th segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

SEGM9_VARIABLE_LE
NGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 9th segment is variable length. 
Null and default value is spaces.

SEGM10_NAME CHAR(8) eXadas column. Name of the 10th segment referenced by 
this table. Null and default value is spaces.

SEGM10_LEVEL CHAR(2) eXadas column. Hierarchic level of the 10th segment 
referenced by this table. Null and default value is '00'.

SEGM10_LENGTH SMALLINT eXadas column. Length of the 10th segment referenced 
by this table. For variable length segments, this is the 
maximum length. Null and default value is zeros.

SEGM10_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 10th segment. Null and 
default value is zeros.

SEGM10_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 10th segment in the 
linear buffer. Null and default value is -1.

SEGM10_SYSTEM_KE
Y

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 10th segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

SEGM10_VARIABLE_L
ENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 10th segment is variable 
length. Null and default value is spaces.

SEGM11_NAME CHAR(8) eXadas column. Name of the 11th segment referenced by 
this table. Null and default value is spaces.

SEGM11_LEVEL CHAR(2) eXadas column. Hierarchic level of the 11th segment 
referenced by this table. Null and default value is '00'.

SEGM11_LENGTH SMALLINT eXadas column. Length of the 11th segment referenced 
by this table. For variable length segments, this is the 
maximum length. Null and default value is zeros.

Table 106: SYSCAC.SYSIMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    531



Appendix E. Meta Table Definitions
SEGM11_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 11th segment. Null and 
default value is zeros.

SEGM11_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 11th segment in the 
linear buffer. Null and default value is -1.

SEGM11_SYSTEM_KE
Y

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 11th segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

SEGM11_VARIABLE_L
ENGTH

CHAR(1) eXadas column - obtaianed from fragment definition. Y/N 
flag indicating whether the 11th segment is variable 
length. Null and default value is spaces.

SEGM12_NAME CHAR(8) eXadas column. Name of the 12th segment referenced by 
this table. Null and default value is spaces.

SEGM12_LEVEL CHAR(2) eXadas column. Hierarchic level of the 12th segment 
referenced by this table. Null and default value is '00'.

SEGM12_LENGTH SMALLINT SMALLINT

SEGM12_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 12th segment. Null and 
default value is zeros.

SEGM12_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragments definition. 
Relative zero offset of the start of the 12th segment in the 
linear buffer Null and default value is -1.

SEGM12_SYSTEM_KE
Y

CHAR(1) eXadas column - obtaained from fragment definition. Y/N 
flag indicating whether the 12th segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

SEGM12_VARIABLE_L
ENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 12th segment is variable 
length. Null and default value is spaces.

SEGM13_NAME CHAR(8) eXadas column. Name of the 13th segment referenced by 
this table. Null and default value is spaces.

SEGM13_LEVEL CHAR(2) eXadas column. Hierarchic level of the 13th segment 
referenced by this table. Null and default value is '00'.

Table 106: SYSCAC.SYSIMSTABLES

Column Name Data Type Description
532 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
SEGM13_LENGTH SMALLINT eXadas column. Length of the 13th segment referenced 
by this table. For variable length segments, this is the 
maximum length. Null and default value is zeros.

SEGM13_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 13th segment. Null and 
default value is zeros.

SEGM13_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 13th segment in the 
linear buffer. Null and default value is -1.

SEGM13_SYSTEM_KE
Y

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 13th segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

SEGM13_VARIABLE_L
ENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 13th segment is variable 
length. Null and default value is spaces.

SEGM14_NAME CHAR(8) eXadas column. Name of the 14th segment referenced by 
this table. Null and default value is spaces.

SEGM14_LEVEL CHAR(2) eXadas column. Hierarchic level of the 14th segment 
referenced by this table. Null and default value is '00'.

SEGM14_LENGTH SMALLINT eXadas column. Length of the 14th segment referenced 
by this table. For variable length segments, this is the 
maximum length. Null and default value is zeros.

SEGM14_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 14th segment. Null and 
default value is zeros.

SEGM14_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 14th segment in the 
linear buffer. Null and default value is -1.

SEGM14_SYSTEM_KE
Y

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 14th segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

SEGM14_VARIABLE_L
ENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 14th segment is variable 
length. Null and default value is spaces.

Table 106: SYSCAC.SYSIMSTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    533



Appendix E. Meta Table Definitions
SEGM15_NAME CHAR(8) eXadas column. Name of the 15th segment referenced by 
this table. Null and default value is spaces.

SEGM15_LEVEL CHAR(2) eXadas column. Hierarchic level of the 15th segment 
referenced by this table. Null and default value is '00'.

SEGM15_LENGTH SMALLINT eXadas column. Length of the 15th segment referenced 
by this table. For variable length segments, this is the 
maximum length. Null and default value is zeros.

SEGM15_FRAGMENT_I
D

SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the 15th segment. Null and 
default value is zeros.

SEGM15_OFFSET_IN_B
UFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the start of the 15th segment in the 
linear buffer Null and default value is -1.

SEGM15_SYSTEM_KE
Y

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 15th segment does not 
represent an actual segment definition and is instead an 
XDFLD key value extracted from the key feedback area. 
Null and default value is spaces.

SEGM15_VARIABLE_L
ENGTH

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the 15th segment is variable 
length. Null and default value is spaces.

Table 107: SYSCAC.SYSMETACOLUMNS

Column Name Data Type Description

NAME CHAR(30) 
NOT NULL

DB2 column. Name of the column.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that contains the column.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table 
that the column is in.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of column within the table. 
Numbers start at 1.

COLTYPE CHAR(8) 
NOT NULL

DB2 column. Type of column, values are INTEGER, 
SMALLINT, FLOAT, CHAR, VARCHAR, LONGVAR, 
DECIMAL, GRAPHIC, VARG, and LONGVARG.

Table 106: SYSCAC.SYSIMSTABLES

Column Name Data Type Description
534 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
LENGTH SMALLINT 
NOT NULL

DB2 column. For a DECIMAL data type the columns 
precision. for all other data types the columns length.

SCALE SMALLINT 
NOT NULL

DB2 column. Scale for a DECIMAL data type, otherwise 
zero.

NULLS CHAR(1) 
NOT NULL

DB2 column. Y/N flag identifying whether the column 
can contain null values.

COLCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

HIGH2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

LOW2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

UPDATES CHAR(1) DB2 column. For DB2 tables, the corresponding 
UPDATES value from the DB2 catalog. For system tables 
always 'N'. For all other types of tables always 'Y'. Null 
and default value is 'Y'.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the column. Null and default value is spaces.

DEFAULT CHAR(1) DB2 column. For DB2 tables, the corresponding 
DEFAULT value from the DB2 catalog or for a meta data 
table whether the column has a NULL IS specification. 
For all other types of tables 'N'. Null and default value is 
spaces.

KEYSEQ KEYSEQ DB2 column. The columns numeric position within the 
primary key, Zero if the column is not part of the primary 
key. Null and default value is zeros.

FOREIGNKEY CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FLDPROC CHAR(1) DB2 column. Flag indicating whether the column has a 
field procedure associated with it. 'Y' - field procedure 
exists, otherwise 'N'. Null and default value is 'N'.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIELD_OFFSET SMALLINT 
NOT NULL

eXadas column. Relative zero offset of the start of the 
column in the rexord or segment.

Table 107: SYSCAC.SYSMETACOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    535



Appendix E. Meta Table Definitions
FIELD_LENGTH SMALLINT 
NOT NULL

eXadas column. Physical length of the field.

NATIVE_DATA_TYPE CHAR(1) 
NOT NULL

eXadas column. Native type of the the underlying 
column. For a description of the different data types refer 
to the documentation on the Meta Data Utility in the 
System Reference Manual.

SQL_COLUMN_LENGT
H

SMALLINT 
NOT NULL

eXadas column. The SQL length of the column.

DB2_DATA_TYPE SMALLINT 
NOT NULL

eXadas column. The DB2 SQLDA data type value for the 
column.

PRECISION SMALLINT 
NOT NULL

eXadas column. For a DECIMAL data type the columns 
scale. for all other data types zero.

COLUMN_SEQUENCE_
NUMBER

SMALLINT 
NOT NULL

eXadas column. Relative zero ordinal position of this 
column in the table.

USE_RECORD_LENGT
H

SMALLINT eXadas column. For variable length records, whether the 
entire contents of the record should be mapped to the 
column. A value of 1 indicates that the record length 
should be used. Null and default value is spaces.

FRAGMENT_ID SMALLINT 
NOT NULL

eXadas column. The ID of the fragment that the column is 
located in.

FRAGMENT_LEVEL SMALLINT 
NOT NULL

eXadas column. The level number of the fragment that 
the column is located in.

OFFSET_IN_FRAGMEN
T

SMALLINT 
NOT NULL

eXadas column. Relative zero starting offset of the 
column within the fragment.

NULLABLE CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating whether the column 
supports null values.

SIGNED CHAR(1) 
NOT NULL

eXadas column. Is the underlying column’s data type 
signed or unsigned?'Y' the data is signed, 'N' the data is 
unsigned.

NULL_DATA_LENGTH SMALLINT eXadas column. Length of the NULL IS specification for 
this column Null and default value is zeros.

NULL_VALUE CHAR(16) eXadas column. The value for this column that means the 
column contains a null value. Null and default value is 
spaces.

FIELD_PROCEDURE_N
AME

CHAR(8) eXadas column. Name of the field procedure associated 
with this column. Null and default value is spaces.

Table 107: SYSCAC.SYSMETACOLUMNS

Column Name Data Type Description
536 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
OCCURS_DEPENDING
_ON

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag that identifies whether the column exists within an 
OCCURS DEPENDING ON record arrary. Null and 
default value is 'N'.

FRAGMENT_OFFSET_I
N_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the starting position of the 
fragment within the linear buffer. Null and default value is 
-1.

FRAGMENT_LENGTH SMALLINT eXadas column - obtained from fragment definition. 
Length of the fragment. If fragment level is 0 the length is 
the length of the record or segment. For non-zero 
fragment levels the length of the RECORD ARRAY. Null 
and default value is -1.

FRAGMENT_MAXIMU
M_OCCURRENCES

SMALLINT eXadas column - obtained from fragment definition. 
Maximum times the fragment can occur. Null and default 
value is zeros.

NULL_FRAGMENT_RU
LE

CHAR(30) eXadas column - obtained from fragment definition. 
Method used to determine a NULL occurrence in a 
RECORD ARRAY. Null and default value is spaces.

OCCURS_DEPENDING
_ON_COLUMN

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the name of the column 
that identifies the number of occurrences that exist. Null 
and default value is spaces.

OCCURS_DEPENDING
_ON_COLNO

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the 
COLUMN_SEQUENCE_NUMBER of the column that 
identifies the number of occurrences that exist. Null and 
default value is zeros.

FRAGMENT_NULL_LE
NGTH

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the length of the NULL IS 
specification for the fragment. Null and default value is 
zeros.

FRAGMENT_NULL_VA
LUE

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the value that indentifies 
an instance as being null. Null and default value is spaces.

Table 107: SYSCAC.SYSMETACOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    537



Appendix E. Meta Table Definitions
Table 108: SYSCAC.SYSMETAFRAGMENTS

Column Name Data Type Description

CREATOR CHAR(8) Owner of the fragment. Null and default value is spaces.

NAME CHAR(32) CHAR(32)

DBNAME CHAR(32) Database containing the fragment. Null and default value 
is spaces.

TYPE CHAR(1) 
NOT NULL

Fragment type. T=top-level fragment, E=embedded 
fragment.

VARIABLE_OCCURRE
NCES

CHAR(1) 
NOT NULL

Is number of occurrences variable? Y or N.

SOURCE_DBMS CHAR(4) Database Type of source. VSAM, etc. Null and default 
value is spaces.

SOURCE_CREATOR CHAR(8) Owner of source table definition. Null and default value is 
spaces.

SOURCE_TABLE CHAR(32) Table name of source table definition. Null and default 
value is spaces.

SOURCE_NAME CHAR(32) Name of the source object. For IMS tables, this is the 
segment name. For IDMS this is the record name. Null 
and default value is spaces.

PARENT_NAME CHAR(32) If embedded, name of containing fragment. Null and 
default value is spaces.

SYSTEM_FIELD CHAR(1) 
NOT NULL

Fragment is a database system field. For IMS 'Y' = 
XDFLD KEY from PCB key feedback area. For IDMS 
'Y' = DBKEY and RRDS information.

VARIABLE_LENGTH CHAR(1) 
NOT NULL

Variable length (Y). Indicates that the record of segment 
starts with a halfword that identifies the actual length of 
the fragment.

ID SMALLINT 
NOT NULL

ID of fragment - order of definition.

LEVEL SMALLINT 
NOT NULL

Level 0 = TOP, 1, 2, 3 etc if the fragment is associated 
with a RECORD ARRAY.

OFFSET SMALLINT 
NOT NULL

Relative zero offset of fragment within parent fragment. 
(within record if no parent,ie, top-level).

LENGTH SMALLINT 
NOT NULL

Length of fragment (in bytes).
538 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
MAXIMUM_OCCURRE
NCES

SMALLINT 
NOT NULL

Maximum number of times the fragment occurs within its 
parent.

NULLIS_RULE SMALLINT If variable number of occurrences present, how a null 
instance is determined. Null and default value is spaces.

TBCREATOR CHAR(8) 
NOT NULL

Owner of table to which fragment is mapped.

TBNAME CHAR(18) 
NOT NULL

Name of table to which fragment is mapped.

CONTROL_COLUMN CHAR(32) Name of column with occurs count, if any. Null and 
default value is spaces.

CONTROL_COLUMN_S
EQUENCE_NUMBER

SMALLINT Control columns, COLUMN_SEQUENCE_NUMBER. 
Null and default value is spaces.

NULL_LENGTH SMALLINT Length of null value string. Null and default value is 
zeros.

NULL_VALUE CHAR(32) String value that identifies an instance as null. Null and 
default value is spaces.

DEPCOL_SQL_TYPE SMALLINT SQL data type for depending on column. Null and default 
value is spaces.

DEPCOL_FRAGMENT_
LEVEL

SMALLINT Fragment level of the depending on column. Null and 
default value is spaces.

DEPCOL_OFFSET SMALLINT Depending on colums offset in its fragment. Null and 
default value is spaces.

DEPCOL_LENGTH SMALLINT Depending on colums length in its fragment. Null and 
default value is spaces.

Table 109: SYSCAC.SYSMETATABLES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of the table.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

TYPE CHAR(1) 
NOT NULL

DB2 column. Type of object. 'T' for a table or 'V' for a 
view.

Table 108: SYSCAC.SYSMETAFRAGMENTS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    539



Appendix E. Meta Table Definitions
DBNAME CHAR(8) 
NOT NULL

DB2 column. Identifies the type of DBMS that the table is 
referencing. Values are $ADABAS, $CFI (System Table), 
$DATACOM, $DB2, $IAM, $IMS, $IDMS, $MDS (Meta 
Data Table) $SEQUENT and $VSAM.

TSNAME CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

DBID SMALLINT DB2 column. Internal identifier of the database. Zero if 
the the row describes a view or the database does not have 
an identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

OBID SMALLINT DB2 column. Internal identifier of the table. Zero if the 
row describes a view or the database does not have an 
identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns defined for this table.

EDPROC CHAR(8) DB2 column. Name of the edit procedure. Blank if the 
row describes a view or the table does not use a edit 
procedure. Only populated for IDMS tables that use 
compression routines. Null and default value is spaces.

VALPROC CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERTYPE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERRID INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

CARD INTEGER DB2 column. Number of rows in the table. Null and 
default value is -1.

NPAGES INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

PCTPAGES SMALLINT DB2 column. Not used by eXadas. Null and default value 
is -1.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the table. Null and default value is spaces.

Table 109: SYSCAC.SYSMETATABLES

Column Name Data Type Description
540 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
PARENTS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CHILDREN SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

KEYCOLUMNS SMALLINT DB2 column. Number of columns that make up the tables 
primary key. Only maintained for system tables. For all 
other tables 0. Null and default value is zeros.

RECLENGTH SMALLINT 
NOT NULL

DB2 column. Number of bytes in a row. This ia also the 
size of the linear buffer allocated for this table.

STATUS CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

KEYOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKFLAG CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKRID CHAR(4) DB2 column. Not used by eXadas. Null and default value 
is spaces.

AUDIT CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the table.

LOCATION CHAR(16) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBCREATOR CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBNAME CHAR(18) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FRAGMENTS SMALLINT 
NOT NULL

eXadas column. Number of fragments used to mangage 
this table.

DBMS CHAR(8) 
NOT NULL

Type identifier for the database being mapped. Values are 
ABABAS, CFI, DB2, DATACOM, IDMS, IMS, MDS, 
VSAM and SEQUENTI.

Table 109: SYSCAC.SYSMETATABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    541



Appendix E. Meta Table Definitions
Table 110: SYSCAC.SYSSEQCOLUMNS

Column Name Data Type Description

NAME CHAR(3) 
NOT NULL

DB2 column. Name of the column.

TBNAME CHAR(18) 
NOT NULL

CHAR(18) NOT NULL

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table 
that the column is in.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of column within the table. 
Numbers start at 1.

COLTYPE CHAR(8) 
NOT NULL

DB2 column. Type of column, values are INTEGER, 
SMALLINT, FLOAT, CHAR, VARCHAR, LONGVAR, 
DECIMAL, GRAPHIC, VARG, and LONGVARG.

LENGTH SMALLINT 
NOT NULL

DB2 column. For a DECIMAL data type the columns 
precision. for all other data types the columns length.

SCALE SMALLINT 
NOT NULL

DB2 column. Scale for a DECIMAL data type, otherwise 
zero.

NULLS CHAR(1) 
NOT NULL

DB2 column. Y/N flag identifying whether the column 
can contain null values.

COLCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

HIGH2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

LOW2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

UPDATES CHAR(1) DB2 column. For DB2 tables, the corresponding 
UPDATES value from the DB2 catalog. For system tables 
always 'N'. For all other types of tables always 'Y'. Null 
and default value is 'Y'.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the column. Null and default value is spaces.

DEFAULT CHAR(1) DB2 column. For DB2 tables, the corresponding 
DEFAULT value from the DB2 catalog or for a meta data 
table whether the column has a NULL IS specification. 
For all other types of tables 'N'. Null and default value is 
spaces.
542 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
KEYSEQ SMALLINT DB2 column. The columns numeric position within the 
primary key, Zero if the column is not part of the primary 
key. Null and default value is zeros.

FOREIGNKEY CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FLDPROC CHAR(1) DB2 column. Flag indicating whether the column has a 
field procedure associated with it. 'Y' - field procedure 
exists, otherwise 'N'. Null and default value is 'N'.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIELD_OFFSET SMALLINT 
NOT NULL

eXadas column. Relative zero offset of the start of the 
column in the rexord or segment.

FIELD_LENGTH SMALLINT 
NOT NULL

eXadas column. Physical length of the field.

NATIVE_DATA_TYPE CHAR(1) 
NOT NULL

eXadas column. Native type of the the underlying 
column. For a description of the different data types refer 
to the documentation on the Meta Data Utility in the 
System Reference Manual.

SQL_COLUMN_LENGT
H

SMALLINT 
NOT NULL

eXadas column. The SQL length of the column.

DB2_DATA_TYPE SMALLINT 
NOT NULL

eXadas column. The DB2 SQLDA data type value for the 
column.

PRECISION SMALLINT 
NOT NULL

eXadas column. For a DECIMAL data type the columns 
scale. for all other data types zero.

COLUMN_SEQUENCE_
NUMBER

SMALLINT 
NOT NULL

eXadas column. Relative zero ordinal position of this 
column in the table.

USE_RECORD_LENGT
H

SMALLINT eXadas column. For variable length records, whether the 
entire contents of the record should be mapped to the 
column. A value of 1 indicates that the record length 
should be used. Null and default value is spaces.

FRAGMENT_ID SMALLINT 
NOT NULL

eXadas column. The ID of the fragment that the column is 
located in.

FRAGMENT_LEVEL SMALLINT 
NOT NULL

eXadas column. The level number of the fragment that 
the column is located in.

OFFSET_IN_FRAGMEN
T

SMALLINT 
NOT NULL

eXadas column. Relative zero starting offset of the 
column within the fragment.

Table 110: SYSCAC.SYSSEQCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    543



Appendix E. Meta Table Definitions
NULLABLE CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating whether the column 
supports null values.

SIGNED CHAR(1) 
NOT NULL

eXadas column. Is the underlying column’s data type 
signed or unsigned? 'Y' the data is signed, 'N' the data is 
unsigned.

NULL_DATA_LENGTH SMALLINT eXadas column. Length of the NULL IS specification for 
this column Null and default value is zeros.

NULL_VALUE CHAR(16) eXadas column. The value for this column that means the 
column contains a null value. Null and default value is 
spaces.

FIELD_PROCEDURE_N
AME

CHAR(8) eXadas column. Name of the field procedure associated 
with this column. Null and default value is spaces.

OCCURS_DEPENDING
_ON

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag that identifies whether the column exists within an 
OCCURS DEPENDING ON record arrary. Null and 
default value is 'N'.

FRAGMENT_OFFSET_I
N_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the starting position of the 
fragment within the linear buffer. Null and default value is 
-1.

FRAGMENT_LENGTH SMALLINT eXadas column - obtained from fragment definition. 
Length of the fragment. If fragment level is 0 the length is 
the length of the record or segment. For non-zero 
fragment levels the length of the RECORD ARRAY. Null 
and default value is -1.

FRAGMENT_MAXIMU
M_OCCURRENCES

SMALLINT eXadas column - obtained from fragment definition. 
Maximum times the fragment can occur. Null and default 
value is zeros.

NULL_FRAGMENT_RU
LE

CHAR(30) eXadas column - obtained from fragment definition. 
Method used to determine a NULL occurrence in a 
RECORD ARRAY. Null and default value is spaces.

OCCURS_DEPENDING
_ON_COLUMN

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the name of the column 
that identifies the number of occurrences that exist. Null 
and default value is spaces.

Table 110: SYSCAC.SYSSEQCOLUMNS

Column Name Data Type Description
544 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
OCCURS_DEPENDING
_ON_COLNO

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the 
COLUMN_SEQUENCE_NUMBER of the column that 
identifies the number of occurrences that exist. Null and 
default value is zeros.

FRAGMENT_NULL_LE
NGTH

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the length of the NULL IS 
specification for the fragment. Null and default value is 
zeros.

FRAGMENT_NULL_VA
LUE

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the value that indentifies 
an instance as being null. Null and default value is spaces.

Table 111: SYSCAC.SYSSEQTABLES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of the table.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

TYPE CHAR(1) 
NOT NULL

DB2 column. Type of object. 'T' for a table or 'V' for a 
view.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Identifies the type of DBMS that the table is 
referencing. Values are $ADABAS, $CFI (System Table), 
$DATACOM, $DB2, $IAM, $IMS, $IDMS, $MDS (Meta 
Data Table) $SEQUENT and $VSAM.

TSNAME CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

DBID SMALLINT DB2 column. Internal identifier of the database. Zero if 
the the row describes a view or the database does not have 
an identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

OBID SMALLINT DB2 column. Internal identifier of the table. Zero if the 
row describes a view or the database does not have an 
identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns defined for this table.

Table 110: SYSCAC.SYSSEQCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    545



Appendix E. Meta Table Definitions
EDPROC CHAR(8) DB2 column. Name of the edit procedure. Blank if the 
row describes a view or the table does not use a edit 
procedure. Only populated for IDMS tables that use 
compression routines. Null and default value is spaces.

VALPROC CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERTYPE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERRID INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

CARD INTEGER DB2 column. Number of rows in the table. Null and 
default value is -1.

NPAGES INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

PCTPAGES SMALLINT DB2 column. Not used by eXadas. Null and default value 
is -1.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the table. Null and default value is spaces.

PARENTS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CHILDREN SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

KEYCOLUMNS SMALLINT DB2 column. Number of columns that make up the tables 
primary key. Only maintained for system tables. For all 
other tables 0. Null and default value is zeros.

RECLENGTH SMALLINT 
NOT NULL

DB2 column. Number of bytes in a row. This ia also the 
size of the linear buffer allocated for this table.

STATUS CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

KEYOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

Table 111: SYSCAC.SYSSEQTABLES

Column Name Data Type Description
546 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
CHECKFLAG CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKRID CHAR(4) DB2 column. Not used by eXadas. Null and default value 
is spaces.

AUDIT CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the table.

LOCATION CHAR(16) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBCREATOR CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBNAME CHAR(18) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FRAGMENTS SMALLINT 
NOT NULL

eXadas column. Number of fragments used to mangage 
this table.

DBMS CHAR(8) 
NOT NULL

eXadas column. Identifies the type of database. Always 
'SEQUENTI'.

RECORD_EXIT_NAME CHAR(8) eXadas column. Load module name of the exit routine 
invoked to process this table. Null and default value is 
spaces.

RECORD_EXIT_MAXI
MUM_LENGTH

INTEGER eXadas column. Maximum buffer length used by the 
record exit. Null and default value is spaces.

DYNAMIC_ALLOCATI
ON

CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating whether the file is 
dynamically allocated.

FILE_NAME CHAR(44) 
NOT NULL

eXadas column. Name of the file. If the file is 
dynamically allocated this is the full dataset name. If the 
file is not dynamically allocated this is the DD name to be 
opened.

RECORD_LENGTH INTEGER 
NOT NULL

eXadas column. Physical length of record. For variable 
length records this is the maximum length of the record.

RECORD_FORMAT CHAR(4) eXadas column. File record format. Null and default 
value is spaces.

ACCESS_MODE CHAR(40) eXadas column. Method used to access the file. This 
column is only populated in VSE versions of Exadas. 
Null and default value is spaces.

Table 111: SYSCAC.SYSSEQTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    547



Appendix E. Meta Table Definitions
FRAGMENT_ID SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with this file. Null and default 
value is zeros.

VARIABLE_LENGTH CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the record is variable length. Null 
and default value is spaces.

Table 112: SYSCAC.SYSVSAMCOLUMNS

Column Name Data Type Description

NAME CHAR(30) 
NOT NULL

DB2 column. Name of the column.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that contains the column.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table 
that the column is in.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of column within the table. 
Numbers start at 1.

COLTYPE CHAR(8) 
NOT NULL

DB2 column. Type of column, values are INTEGER, 
SMALLINT, FLOAT, CHAR, VARCHAR, LONGVAR, 
DECIMAL, GRAPHIC, VARG, and LONGVARG.

LENGTH SMALLINT 
NOT NULL

DB2 column. For a DECIMAL data type the columns 
precision. for all other data types the columns length.

SCALE SMALLINT 
NOT NULL

DB2 column. Scale for a DECIMAL data type, otherwise 
zero.

NULLS CHAR(1) 
NOT NULL

DB2 column. Y/N flag identifying whether the column 
can contain null values.

COLCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.

HIGH2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

LOW2KEY CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

Table 111: SYSCAC.SYSSEQTABLES

Column Name Data Type Description
548 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
UPDATES CHAR(1) DB2 column. For DB2 tables, the corresponding 
UPDATES value from the DB2 catalog. For system tables 
always 'N'. For all other types of tables always 'Y'. Null 
and default value is 'Y'.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the column. Null and default value is spaces.

DEFAULT CHAR(1) DB2 column. For DB2 tables, the corresponding 
DEFAULT value from the DB2 catalog or for a meta data 
table whether the column has a NULL IS specification. 
For all other types of tables 'N'. Null and default value is 
spaces.

KEYSEQ SMALLINT DB2 column. The columns numeric position within the 
primary key, Zero if the column is not part of the primary 
key. Null and default value is zeros.

FOREIGNKEY CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FLDPROC CHAR(1) DB2 column. Flag indicating whether the column has a 
field procedure associated with it. 'Y' - field procedure 
exists, otherwise 'N'. Null and default value is 'N'.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIELD_OFFSET SMALLINT 
NOT NULL

eXadas column. Relative zero offset of the start of the 
column in the rexord or segment.

FIELD_LENGTH SMALLINT 
NOT NULL

eXadas column. Physical length of the field.

NATIVE_DATA_TYPE CHAR(1) 
NOT NULL

eXadas column. Native type of the the underlying 
column. For a description of the different data types refer 
to the documentation on the Meta Data Utility in the 
System Reference Manual.

SQL_COLUMN_LENGT
H

SMALLINT 
NOT NULL

eXadas column. The SQL length of the column.

DB2_DATA_TYPE SMALLINT 
NOT NULL

eXadas column. The DB2 SQLDA data type value for the 
column.

PRECISION SMALLINT 
NOT NULL

eXadas column. For a DECIMAL data type the columns 
scale. for all other data types zero.

Table 112: SYSCAC.SYSVSAMCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    549



Appendix E. Meta Table Definitions
COLUMN_SEQUENCE_
NUMBER

SMALLINT 
NOT NULL

eXadas column. Relative zero ordinal position of this 
column in the table.

USE_RECORD_LENGT
H

SMALLINT eXadas column. For variable length records, whether the 
entire contents of the record should be mapped to the 
column. A value of 1 indicates that the record length 
should be used. Null and default value is spaces.

FRAGMENT_ID SMALLINT 
NOT NULL

eXadas column. The ID of the fragment that the column is 
located in.

FRAGMENT_LEVEL SMALLINT 
NOT NULL

eXadas column. The level number of the fragment that 
the column is located in.

OFFSET_IN_FRAGMEN
T

SMALLINT 
NOT NULL

eXadas column. Relative zero starting offset of the 
column within the fragment.

NULLABLE CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating whether the column 
supports null values.

SIGNED CHAR(1) 
NOT NULL

eXadas column. Is the underlying column’s data type 
signed or unsigned? 'Y' the data is signed, 'N' the data is 
unsigned.

NULL_DATA_LENGTH SMALLINT eXadas column. Length of the NULL IS specification for 
this column Null and default value is zeros.

NULL_VALUE CHAR(16) eXadas column. The value for this column that means the 
column contains a null value. Null and default value is 
spaces.

FIELD_PROCEDURE_N
AME

CHAR(8) eXadas column. Name of the field procedure associated 
with this column. Null and default value is spaces.

OCCURS_DEPENDING
_ON

CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag that identifies whether the column exists within an 
OCCURS DEPENDING ON record arrary. Null and 
default value is 'N'.

FRAGMENT_OFFSET_I
N_BUFFER

SMALLINT eXadas column - obtained from fragment definition. 
Relative zero offset of the starting position of the 
fragment within the linear buffer. Null and default value is 
-1.

FRAGMENT_LENGTH SMALLINT eXadas column - obtained from fragment definition. 
Length of the fragment. If fragment level is 0 the length is 
the length of the record or segment. For non-zero 
fragment levels the length of the RECORD ARRAY. Null 
and default value is -1.

Table 112: SYSCAC.SYSVSAMCOLUMNS

Column Name Data Type Description
550 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
FRAGMENT_MAXIMU
M_OCCURRENCES

SMALLINT eXadas column - obtained from fragment definition. 
Maximum times the fragment can occur. Null and default 
value is zeros.

NULL_FRAGMENT_RU
LE

CHAR(30) eXadas column - obtained from fragment definition. 
Method used to determine a NULL occurrence in a 
RECORD ARRAY. Null and default value is spaces.

OCCURS_DEPENDING
_ON_COLUMN

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the name of the column 
that identifies the number of occurrences that exist. Null 
and default value is spaces.

OCCURS_DEPENDING
_ON_COLNO

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the 
COLUMN_SEQUENCE_NUMBER of the column that 
identifies the number of occurrences that exist. Null and 
default value is zeros.

FRAGMENT_NULL_LE
NGTH

SMALLINT eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the length of the NULL IS 
specification for the fragment. Null and default value is 
zeros.

FRAGMENT_NULL_VA
LUE

CHAR(32) eXadas column - obtained from fragment definition. For 
RECORD ARRAY fragments, the value that indentifies 
an instance as being null. Null and default value is spaces.

CLUSTER_TYPE CHAR(1) eXadas column. For a column that references the primary 
key, the type of VSAM cluster being referenced. Values 
are 'R' or 'C'. Null and default value is spaces.

FILE_ORGANIZATION CHAR(4) eXadas column. For a column that references the primary 
key, the dataset organization of the VSAM file. Values are 
KSDS, ESDS or RRDS. This column is only populated 
for VSE versions of eXadas. Null and default value is 
spaces.

CATALOG_NAME CHAR(44) eXadas column. For a column that references the primary 
key, the name of the catalog where the VSAM file is 
defined. This column is only populated for VSE versions 
of eXadas. Null and default value is spaces.

DYNAMIC_ALLOCATI
ON

CHAR(1) eXadas column. For a column that references the primary 
key or an alternate index whether the VSAM file is 
dynamically allocated. Y - yes, N - the file is allocated to 
the server. Null and default value is spaces.

Table 112: SYSCAC.SYSVSAMCOLUMNS

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    551



Appendix E. Meta Table Definitions
FILE_NAME CHAR(44) eXadas column. For a column that references the primary 
key or an alternate index the dataset name (when using 
dynamic allocation) or the DD name that is used to access 
the file. Null and default value is spaces.

KEY_OFFSET SMALLINT eXadas column. For a column that references the primary 
key or an alternate index the offset of the key within the 
record. Null and default value is zeros.

KEY_LENGTH SMALLINT eXadas column. For a column that references the primary 
key or an alternate index the length of the key. Null and 
default value is zeros.

RECORD_LENGTH SMALLINT eXadas column. Maximum record length of the VSAM 
file. Null and default value is zeros.

Table 113: SYSCAC.SYSVSAMINDEXES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of index.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the index.

TBNAME CHAR(18) 
NOT NULL

DB2 column. Name of the table that the index is 
referencing.

TBCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

UNIQUERULE CHAR(1) 
NOT NULL

DB2 column. Whether the index is unique. 'U' yes or 'D' 
no.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns that make up the key.

CLUSTERING CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

CLUSTERED CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

DBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

OBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

Table 112: SYSCAC.SYSVSAMCOLUMNS

Column Name Data Type Description
552 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
ISOBID SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Not used by eXadas.

INDEXSPACE CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

FIRSTKEYCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

FULLKEYCARD INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

NLEAF INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

NLEVELS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

BPOOL CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

PGSIZE SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

ERASERULE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

DSETPASS CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLOSERULE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'Y'.

SPACE INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

CLUSTERRATIO SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the index.

DYNAMIC_ALLOCATI
ON

CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating whether the VSAM 
file is dynamically allocated.

Table 113: SYSCAC.SYSVSAMINDEXES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    553



Appendix E. Meta Table Definitions
FILE_NAME CHAR(44) 
NOT NULL

eXadas column. Dataset name of the VSAM file to be 
dynamically allocated or the DD name to be opened when 
not using dynamic allocation.

CATALOG_NAME CHAR(44) eXadas column. Name of the VSAM catalog that the file 
is defined in. This column is only populated in VSE 
versions of eXadas. Null and default value is spaces.

Table 114: SYSCAC.SYSVSAMKEYS

Column Name Data Type Description

IXNAME CHAR(18) 
NOT NULL

DB2 column. Name of the index.

IXCREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the index.

COLNAME CHAR(30) 
NOT NULL

DB2 column. Name of the column for this key.

COLNO SMALLINT 
NOT NULL

DB2 column. Ordinal position of the column in the table.

COLSEQ SMALLINT 
NOT NULL

DB2 column. Position of this column within the key.

ORDERING CHAR(1) 
NOT NULL

DB2 column. Sort order of this column within the key. 'A' 
ascending or 'D' decending.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

Table 113: SYSCAC.SYSVSAMINDEXES

Column Name Data Type Description
554 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
Table 115: SYSCAC.SYSVSAMTABLES

Column Name Data Type Description

NAME CHAR(18) 
NOT NULL

DB2 column. Name of the table.

CREATOR CHAR(8) 
NOT NULL

DB2 column. Authorization ID of the owner of the table.

TYPE CHAR(1) 
NOT NULL

DB2 column. Type of object. 'T' for a table or 'V' for a 
view.

DBNAME CHAR(8) 
NOT NULL

DB2 column. Identifies the type of DBMS that the table is 
referencing. Values are $ADABAS, $CFI (System Table), 
$DATACOM, $DB2, $IAM, $IMS, $IDMS, $MDS (Meta 
Data Table) $SEQUENT and $VSAM.

TSNAME CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

DBID SMALLINT DB2 column. Internal identifier of the database. Zero if 
the the row describes a view or the database does not have 
an identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

OBID SMALLINT DB2 column. Internal identifier of the table. Zero if the 
row describes a view or the database does not have an 
identifier. Only populated for imported DB2 tables and 
IDMS tables. Null and default value is zeros.

COLCOUNT SMALLINT 
NOT NULL

DB2 column. Number of columns defined for this table.

EDPROC CHAR(8) DB2 column. Name of the edit procedure. Blank if the 
row describes a view or the table does not use a edit 
procedure. Only populated for IDMS tables that use 
compression routines. Null and default value is spaces.

VALPROC CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERTYPE CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CLUSTERRID INTEGER DB2 column. Not used by eXadas. Null and default value 
is zeros.

CARD INTEGER DB2 column. Number of rows in the table. Null and 
default value is -1.

NPAGES INTEGER DB2 column. Not used by eXadas. Null and default value 
is -1.
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    555



Appendix E. Meta Table Definitions
PCTPAGES SMALLINT DB2 column. Not used by eXadas. Null and default value 
is -1.

IBMREQD CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is 'N'.

REMARKS CHAR(254) DB2 column. A user supplied character string describing 
the table. Null and default value is spaces.

PARENTS SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

CHILDREN SMALLINT DB2 column. Not used by eXadas. Null and default value 
is zeros.

KEYCOLUMNS SMALLINT DB2 column. Number of columns that make up the tables 
primary key. Only maintained for system tables. For all 
other tables 0. Null and default value is zeros.

RECLENGTH SMALLINT 
NOT NULL

DB2 column. Number of bytes in a row. This ia also the 
size of the linear buffer allocated for this table.

STATUS CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

KEYOBID KEYOBID DB2 column. Not used by eXadas. Null and default value 
is zeros.

LABEL CHAR(30) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKFLAG CHAR(1) DB2 column. Not used by eXadas. Null and default value 
is spaces.

CHECKRID CHAR(4) DB2 column. Not used by eXadas. Null and default value 
is spaces.

AUDIT CHAR(1) CHAR(1)

CREATEDBY CHAR(8) 
NOT NULL

DB2 column. Primary authorization ID of the user that 
created the table.

LOCATION CHAR(16) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBCREATOR CHAR(8) DB2 column. Not used by eXadas. Null and default value 
is spaces.

TBNAME CHAR(18) DB2 column. Not used by eXadas. Null and default value 
is spaces.

Table 115: SYSCAC.SYSVSAMTABLES

Column Name Data Type Description
556 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Appendix E. Meta Table Definitions
FRAGMENTS SMALLINT 
NOT NULL

eXadas column. Number of fragments used to mangage 
this table.

DBMS CHAR(8) 
NOT NULL

eXadas column. Identifies the type of database. Always 
'VSAM'.

DATA_CAPTURE CHAR(1) DB2 column. Identifies whether the table has been 
marked for xSync data capture. A value of 'Y' indicates 
that changes will be captured. Null and default value is 
spaces.

SORT_KEYS SMALLINT eXadas column. Total number of sort keys for all indexes 
defined for this table. The value for this column is 
automatically maintained by eXadas. Null and default 
value is zeros.

INDEXES SMALLINT eXadas column. Total number of indexes defined for this 
table. The value for this column is automatically 
maintained by eXadas. Null and default value is zeros.

RECORD_EXIT_NAME CHAR(8) eXadas column. Load module name of the exit routine 
invoked to process this table. Null and default value is 
spaces.

RECORD_EXIT_MAXI
MUM_LENGTH

INTEGER eXadas column. Maximum buffer length used by the 
record exit. Null and default value is spaces.

CLUSTER_TYPE CHAR(1) 
NOT NULL

eXadas column. Identifies type of cluster of the VSAM 
file that the table is referencing. 'C' base cluster, 'P' 
alternate index path.

FILE_ORGANIZATION CHAR(4) 
NOT NULL

eXadas column. Identifies the VSAM files organization. 
Values are KSDS, ESDS and RRDS. This column is only 
populated for VSE versions of eXadas.

CATALOG_NAME CHAR(44) eXadas column. Name of the catlog where the VSAM file 
is defined. This column is only populated for VSE 
versions of eXadas. Null and default value is spaces.

DYNAMIC_ALLOCATI
ON

CHAR(1) 
NOT NULL

eXadas column. Y/N flag indicating whether the VSAM 
file is dynamically allocated.

FILE_NAME CHAR(44) 
NOT NULL

eXadas column. Name of the VSAM file. If the file is 
dynamically allocated this is the full dataset name. If the 
file is not dynamically allocated this is the DD name to be 
opened.

RECORD_LENGTH INTEGER 
NOT NULL

eXadas column. Physical length of record. For variable 
length records this is the maximum length of the record.

Table 115: SYSCAC.SYSVSAMTABLES

Column Name Data Type Description
012071.224.1002 eXadas Data Integrator OS/390 Reference Guide    557



Appendix E. Meta Table Definitions
KEY_COLUMN_SEQUE
NCE_NUMBER

SMALLINT eXadas column. The 
COLUMN_SEQUENCE_NUMBER of the first column 
in this table that references the starting offset of the 
primary sequence field. Null and default value is -1.

KEY_OFFSET SMALLINT eXadas column. Relative zero offset of the begining of the 
primary key field in the record. Null and default value is -
1.

KEY_LENGTH SMALLINT eXadas column. Length of the VSAM primary key. Null 
and default value is zeros.

CICS_LOCAL_LU CHAR(8) eXadas column. Name of the local LU used to 
communicate with CICS. Null and default value is spaces.

CICS_REMOTE_LU CHAR(8) eXadas column. Name of the remote LU that CICS is 
using for VTAM communications. Null and default value 
is spaces.

CICS_LOGMODE CHAR(8) eXadas column, MODETAB entry name used to 
communication with CICS. Null and default value is 
spaces.

CICS_TRANSACTION_
NAME

CHAR(4) eXadas column. Name of the CICS transaction used to 
access or update the VSAM file. Null and default value is 
spaces.

CICS_NETWORK_NAM
E

CHAR(8) eXadas column. Network name for a remote CICS sub-
system. Null and default value is spaces.

FRAGMENT_ID SMALLINT eXadas column - obtained from fragment definition. 
Fragment ID associated with the VSAM file. Null and 
default value is zeros.

VARIABLE_LENGTH CHAR(1) eXadas column - obtained from fragment definition. Y/N 
flag indicating whether the VSAM file contains variable 
length records. Null and default value is spaces.

Table 115: SYSCAC.SYSVSAMTABLES

Column Name Data Type Description
558 eXadas Data Integrator OS/390 Reference Guide 012071.224.1002



Index

A
ABORT 21
Active services, displaying 119
ADABAS

Meta Data Utility customization 148
SAF exit validation 227
SQL update 353, 360
table source definition 158
USE Statement Generator 192–195

ADK-based programming interface 22
Administrative components 9
Alternate index, VSAM 113
API 2, 16–17
APPC, connection parameters for Meta Data Utility 191
Application components 9
Application Group Name 41
Application migration 16
Application models 16–17
Application programming interface

See API
Applications

deploying 26–33
tuning 97–116

ASMTDLI interface 6, 35, 110
ATM 64
Authorization violations 235

B
Bandwidth 64
Batch jobs 27, 117

Enterprise Servers 339
BMP interface 35, 40–42

compared with DBB interface 25
supported concurrent users 19

Brio Query 20
BTREE BUFFERS parameter 385

C
C precompiler 2, 3
CACSAMP 20, 22

inner/outer loops 23
parameter markers 22–23

CACSX04 security exit 44, 45
CA-DATACOM/DB

accessing a different MUF 53
communicating with Query Processors 53
data, preparing servers to access 6
initialization service 52
load library 52
Meta Data Utility customization 146
Multi-User Facility 6
security 54, 222
Source Language Generation 146
012071.224.1002 eXadas Data Integrator O
SQL update 360
table source definition 159

CALL statement 293
CICS VSAM

grammar 190–192
SQL update 353, 366
stored procedures 267–269, 297

CACSP62 abend codes 306
CACSPBR interface 297–302
CACSPBR return codes 305
compiling 304
parameters 303
transaction scheduling for 282

table source definition 160
transport protocol 366

CICS, stored procedure s414
CLIENT CONFIG parameter 405
Client connection requests, listening for 4, 7
Client connectors 8, 16

loading 8
Client Interface Module 2, 7
Client/server application 16
COBOL copybooks

as input for Meta Data Utility 143
importing into DataMapper 87

COBOL II 7
Columns

creating in DataMapper 87
defining 161
subset views 133
using views to filte r132

COMMIT statement 354, 356
two-phase commi t354

Communications
APPC parameters for Meta Data Utility 191
ATM 64
bandwidth 64
configuring 55–56
Cross Memory 57

communications compound protocol field 57
configuration 65
Enterprise Server scheduling/connection balancing 349
in Enterprise Servers 336, 346
Services Communications Handler 18

ESCON channels 64
frame relay 64
hostnames versus IP addresses 64
IBM MQ Series 57, 58

client connectors 8
configuration 58–62, 66
Connection Handler 18
local queue 18
prerequisites 62
two-queue definition 58

selecting 64
S/390 Reference Guide    559



Index
TCP/IP 63
client connectors 8
configuration 67
Connection Handler Service 18
dot-decimal notation 63
in Enterprise Servers 346
port number limitations 68
TSO NETSTAT SOCKET command 19

Compound Address field 56
Concurrent users

increasing number supported with Enterprise Servers 335
number supported 19

Configuration parameter s381
CONNECT TO CICS statemen t190
CONNECT TO DB2 stateme nt184, 185
Connection Handler Service, activating 67
Connection handlers 4
Connections with servers, establishing and maintaining 7
Connectors

See Client connectors
Coordination controller 36
Copybooks

See COBOL copybooks
CPU Governor paramete r385
CPU Resource Governor Exit 235

activating 236
initialization 240
validation 240

CPU time, limiting 26, 235–242
CREATE PROCEDURE statement 145, 275
CREATE VIEW statement 130, 145
Cross Memory

See Communications, Cross Memory

D
Data catalogs, creating in DataMapper 87
Data Savants

optimizing Query Processor performance 101
stored procedure s263

Data Source Handler 7
Data sources

accessing 3
JOINing 3

Data Space Name 32
Data types, supported 170
Data warehouse 16
Database administrators, deploying application s14
Database privileges 74
Database types 71
Datacom

See CA-DATACOM/DB
DataMapper 2, 5, 9–11, 21, 87–88

and the Meta Data Utility 143
field procedure s370
FTP support 11, 88
generating Meta Data Grammar 87
importing COBOL copybooks 87
mapping IDMS data sources 49
updating Meta Data Catalogs 88
See also Mapping data

DataMart 16
DATASOURCE parameter 386
DB2 353

Call Attach Facility 6
data, preparing servers to access 6
560 eXadas Data Integrator O
grammar 184–190
SQL update 362
subsystem, connecting to 6

DB2 Thread Management Exit 251
activating 252
developing a custo m254

DBB interface 24, 35, 40–42
supported concurrent users 19

DBCTL subsystem 36
DBDs, loading into DataMapper 87
DC/UCF system 44
DDNAME CACLOG 137
Decision Support System 16
DECODE BUFFER SIZE parameter 387
DEDB databases 107

fast path buffer s108
DEFLOC parameter 388
DELETE command 5, 356

CICS VSAM 366
Developers, deploying applications 14
DISPLAY,CONFIGS command 120
DISPLAY,SERVICES command 119, 341
DLI calls, reducing 106
DML calls, native 44
Dot-decimal notation 63
DRA interface 35, 36–40

compared with DBB interface 25
configuration 38
DBCTL subsystem 36
IMS stored procedure s320–324
initializing 6
interfacing with IMS stored procedures 270
optimizing data access 111
setting u p37
using in production environmen t25

DROP INDEX statement 144, 183
DROP PROCEDURE statemen t145, 281
DROP TABLE statement 144, 182
DROP VIEW statement 135, 145

E
Enterprise Servers 2, 7, 27, 335

adding to existing eXadas networks 347
communication protocols 346
communications configuration formats 346
communications protocols 31
configuration 345–347
controlling 340
deploying 336
displaying active services 341
displaying configuration information 342
displaying connected servers 341
displaying memory usage 343
dynamic scheduling 350
monitoring 340
starting 339
starting/stopping services 343
stopping 344
using Cross Memory for scheduling/connection 

balancing 349
ESCON channels 64
eXadas eData Engine, 3GL hooks 2
Executive Information System 16
S/390 Reference Guide 012071.224.1002



Index
F
Fast path buffer s108
FETCH BUFFER SIZE parameter 388
Field data type conversio n s167
Field encoding 370
Field procedures 369

samples 378
specifying 370
value descriptors 373

Filtering data with views 132
FLUSH command 123
Frame relay 64

G
Governor limits 23
GRANT ALL PRIVILEGES statement 78
GRANT EXECUTE statement 76
GRANT ON DATABASE statemen t74
GRANT statement 72, 144
Grouped views 133

H
HDAM databases

optimizing 104
HIDAM database

defining primary sequence field s104
indexes 90

High-level language environments, initializing 6
High-speed sequential processing 107
Hiperspace, improving performanc e24
Horizontal views 132
Hostnames 64
HSSP 107

I
IBM MQ Series

See Communications, IBM MQ Series
IDMS

ACCESS LOADMODs 49
central version 46
data security 45
IDD dictionary definitions as input for Meta Data 

Utility 143
indexes 91
mapping dat a46
MAXERUS value 44
Meta Data Utility customization 148
METAU 47
S047 abend 46
schema/subschema 11
security 45
SQL DELETE command 364
SQL INSERT command 363
SQL update 353, 362–364
table source definition 156

Immediate return of data 102
IMPORT DB2 INDEX statement 184, 188
IMPORT DB2 TABLE statement 184, 186
IMPORT DB2 VIEW statement 184
IMS

ASMTDLI interface 35
BMP interface 27
data access optimization 103
data, preparing servers to access 6
012071.224.1002 eXadas Data Integrator O
database definitions 11
DBB interface 27
DBCTL region, connecting to 6
DBD source definitions as input for Meta Data Utility 143
defining indexes 104, 182
DRA interface. See DRA interface
fast path buffers 108
Fastpath DEDB databases 107
indexes 90
loading DBDs into DataMapper 87
native acces s103
partial keys 105
path calls 106
primary indexes 104
PSB 24
Region Controller 6
SAF exit validation 226
search fields 105
secondary indexes 104, 364
security 221
segment mapping 96
SQL update 353, 364
STAGE 1 generations 24
stored procedures, accessing/updating wit h269
table source definitions 153

Indexes
creating in DataMapper 88, 89
defining IMS 104, 182
defining VSAM 182
multi-part keys 89
optimizing IMS data access 104
primary 113
secondary 113

Initialization services 6
CA-DATACOM/DB 52
DRA 270

Inner loops 23
INSERT 5
Insert positioning 358
INSERT statement 355
Interfaces, ASMTDLI 110
INTERLEAVE INTERVAL 389
Interlink TCP/IP 68
IP addresses

defining 63
versus hostnames 64

J
JCL, customizing 19
JDBC connector 2
JOIN MAX TABLES ANALYZED parameter 390
Joining CA-DATACOM/DB and other data types 53
JOINs

optimizing 3, 99
with view s134

K
Keys

multi-part 89
using to optimize querie s98

L
Language Environment

deactivating 282
S/390 Reference Guide    561



Index
stored procedure s266
LD TEMP SPACE paramete r391
Listen port number, defining 63
Load balancin g7, 335
Local queue 18
LOCALE parameter 392
Log print utili t y139
Logging 6, 137

trace levels 138
Logical tables

defining 9
mapping 20

LONG VARCH A R175
LONG VARGRAPHI C176

M
Mapping dat a19–21, 85–96

IDMS 46
IMS segment mapping 96
Meta Data Utility 142
verification 20

Master Configuration Member 28
Enterprise Server 32

Master Terminal Operator 4, 33
saving configuration member updates to dis k34

MAX ROWS EXAMINED parameter 21, 393
MAX ROWS EXCEEDED ACTION paramete r21, 393
MAX ROWS RETURNED parameter 394
MAXERUS value 44
Memory

displaying utilization 123
used in Enterprise Servers 343
used in stored procedures 264

MESSAGE POOL SIZE parameter 395
Meta Data Catalogs 9

creating 19–20
interfacing with DataMapper 87
reducing number of reads 102
updating with DataMapper 88

Meta Data Grammar 9, 144
generating 87
overview 86

Meta Data Utility 9, 47, 88, 142–183
ADABAS customization 148
APPC connection parameter s191
CA-DATACOM/DB customization 146
IDMS customization 148
running 145

METAU 47
Microsoft Access 20
Microsoft Query 20
Model Queue 18
MTO commands 423–430

See also individual command names
Multi-part keys 89
Multi-User Facility, accessing different 53

N
Network administrators, deploying applications 14
NL CAT parameter 395
NL parameter 395
NT ODBC

IBM MQ Series 57
NULL IS definitions in record arrays 94
562 eXadas Data Integrator O
O
OCCURS clauses

SQL update 359
Occurs processing 92–96
ODBC connector 2
ODBC Driver Manager, loading connectors 8
ODBC stored procedure suppor t295
Off-load gateway s68
Operations staff, deploying application s14
Optimization 97–116

of JOINs 99
server dispatching priorit y115
using DRA interface 111
using keys 98
VSAM data acces s112
See also Performance

ORDER BY sortin g3
OS/390 Master Terminal Operator

See Master Terminal Operator
OS/390 Work Load Manager subsystem

See Work Load Manager
Outer loops 23

P
Packed decimal s172
Parameter markers 22–23
Partial keys

IMS 105
index definitions 90
VSAM 114

Partitioned dat a20
Path calls

IMS 106
PCB 108–109

selection by nam e109
selection by verificatio n108

PDQ parameter 396
Performance

and views 130
Hiperspace 24
IMS 24
monitoring 23–24
optimization 97–116
Record Processing Exit 259
See also Optimization

Post-query processin g3
Precompiler 17
Primary indexes

IMS 104
VSAM 113

PSB 109–110
creating composite 25
scheduling 109

Q
Queries

creating 22–24
optimizing 3, 98–99
using views 130

Query Processors 5
communicating with CA-DATACOM/DB 53
configuring data sourc e s18
handling views 129
optimizing 101–103
S/390 Reference Guide 012071.224.1002



Index
optimizing VSAM 115
parsing CA-DATACOM/DB data 53
TCB 24

R
Record arrays 92, 176

multiple in one record 94
NULL IS definitions 94

Record data type conversio n s167
Record Processing Exit 256

initialization 257
performance 259

Record typing 95
Records, filtering with view s132
Region Controller 4

starting servers 124
Relational views, creating in DataMapper 88
RESPONSE TIME OUT paramete r397
Result sets

staging 103
translating 3

RETURN 21
REVOKE statement 72, 144
RMF Monitor II/III reporting faciliti es24
ROLLBACK command 354, 357

CICS VSAM 366
Row subset views 133

S
SAF EXIT

parameter description 397
SAF exit 220–228

activating 221
initialization 225
security 82
termination 228
validation 226

SDSF 23
Search fields

using in IMS 105
Secondary indexes

IMS 104
Security 70

ACF-2 54
and view s130, 134
CA-DATACOM/DB 54, 222
database privileges 74
defining user privilege s72
IDMS 45
IMS 221
RACF 54
SAF exit 82, 220–228

initialization 225
validation 226

stored procedures
privileges 76

system privileges 72
user authorizations 81
user types 70
validation processin g223

Security administrators, deploying applications 14
Sequential

SAF exit validation 227
table source definitions 155

Server Memory Pool 123
012071.224.1002 eXadas Data Integrator O
Servers 2, 3–7
configuration parameters, modifying 122
configurations, displaying 120
creating 18
dispatching priority 115
displaying active services 119
displaying connected user s119
displaying memory utilizatio n123
establishing communications 7
logging 137
monitoring 33
running as started tasks/batch jobs 27, 117
starting 33, 118
See also Enterprise Servers

SERVICE INFO ENTRY parameter 398
Services

displaying active 119
displaying in Enterprise Servers 341
starting/stopping 124
starting/stopping in an Enterprise Server 343

SET command 122, 343
SMF exit 24, 228

activating 228
authorization violatio n s235
initialization 233
parameter 402
reporting 26
validation 233

SQL
foreign key s358
host variables, dereferencing 7
inner/outer loops 23
limiting result sets 23–24
parameter markers 22–23
performance monitoring 23–24
rewriting into native file/database access languag e3
transactions 354
update 353

insert positioning 358
mappings with multiple records 357
OCCURS clauses 359

validating 3
See also Queries

SQL GRANT command 71
SQL queries

See Queries
SQL update 353
Staging, and immediate return of data 102
Started tasks 27, 117

Enterprise Servers 339
starting servers as 337

Static catalogs 102
STATIC CATALOGS paramete r403
Stay resident parameter 265
STOP command 124, 344
Stored procedure s261, 412

CICS
CACSP62 abend codes 306
CACSPBR interface 302
CACSPBR return codes 305
compiling 304
parameters 303

CICS VSAM 267–269
defining 274
DRA initialization service 270
S/390 Reference Guide    563



Index
examples 273
IMS, accessing/updating 269
invoking 292–296
loading multiple copie s265
memory us e264
ODBC support 295
parameters 277
privileges 76
SAF exit validation 227
scheduling CICS transactions 282
stay resident parameter 265
support routines 272, 331–333
writing 284–292

Supported data type s170
System exits 219
System privileges 72
System programmers, deploying applications 14

T
Tables

creating in DataMapper 87
definitions 151
security 78

TASK PARAMETERS 404
Tasks, monitoring 4
TCB

communication between Query Processors and CA-
DATACOM/DB MUF 53

initialization/termination 249
TCP/IP

See Communications, TCP/IP
TRACE LEVEL paramete r405
Trace levels 138
Tracing Level field 138
Transport layer

IBM MQ Series 58
loading 7

Transport protocol
CICS VSAM 366

Troubleshooting
-817 SQLCODE 354
-9999 SQLCODE 362
All PCBs are in use 25, 364
changes made to stored procedure not appearin g265
Connection failures 63
Connection Handler Service failure at initializatio n63
FY status call 107
garbled data returne d21
IMS abend during ROLLBACK cal l270
incorrect result sets with signed or unsigned packed decimal 

fields 172
Query Processor terminating unexpectedl y285
S047 abend 46
stored procedures abending in LE environmen t282
truncated data returne d21

TSO NETSTAT SOCKET command 19
Tuning applications 97–116
Two-phase commit 354

U
UPDATE statement 5, 356
USE [UNIQUE] INDEX statement 144, 180
Use Grammar

See Meta Data Grammar
564 eXadas Data Integrator O
USE INDEX statement
defining IMS indexes 104

Use statements
See Meta Data Grammar

USE TABLE statement 144, 150
User privileges, defining 72
User Requirements Table 147
USERID parameter 406
USERPASSWORD parameter 407
Users, supported concurrent 19

V
Validation processin g223
VARCHAR 173
VARGRAPHIC 175
Vertical views 133
Views 128

advantages/disadvantages 130
creating 130
dropping 135
filtering dat a132
grouped 133
horizontal 132
joined 134
row/column subset 133
security 78
vertical 133

VSAM
alternate indexes 113
data access optimizatio n112
defining indexes 182
indexes 90
primary indexes 113
SAF exit validation 227
table source definition 156

VSAM AMPARMS parameter 407
VTAM resource definitions 412

W
Web-based application 16
WHERE clauses 359
WLM goal mode 7

optimization 116
support 26

WLM system exit 24
WLM UOW parameter 409
Work Load Manager subsystem 7
Workload Manager Exit 242

activating 243
initialization 248
management 249

X
XDFLDs

defining for HIDAM/HDAM databases 104

Z
Zoned decimal support 172
S/390 Reference Guide 012071.224.1002


	Table of Contents
	1 Overview
	Introduction to eXadas
	Product Overview
	Operational Components
	eXadas Server
	Region Controller
	Connection Handlers
	Query Processor
	Logger
	Initialization Services

	Enterprise Server
	Client Interface Module
	Client Connectors

	Application Components
	Administrative Components
	DataMapper


	2 Deploying Applications
	Introduction to Deploying Applications
	Departments and Responsibilities
	Application Models
	Types of Applications
	Selecting an Interface
	Connectors
	Precompiler


	Initial Development
	Creating Your Own Server
	Mapping Your Data
	Mapping Verification
	Creating Your Own Queries
	General Considerations
	Limiting Query Output and Performance Monitoring

	IMS Recommendations
	Developing Your Application

	Deployment
	Determining How Many Servers Your Site Requires
	Server Deployment Options
	Creating Production Servers
	Server Set-up Worksheet Instructions
	eXadas Enterprise Server Set-up Worksheet Instructions

	Operations
	Starting the Servers
	Monitoring and Control
	Dynamic Configuration


	3 Server Setup for IMS Access
	Introduction to Server Setup for IMS Access
	DRA Support
	DBCTL
	DRA

	Setting Up the DRA for Use by eXadas
	Configuration
	BMP/DBB Support
	Configuration


	4 Server Setup for IDMS Access
	Introduction to Server Setup for IDMS Data Access
	APF Authorization of the IDMS.LOADLIB
	Setting up Security for IDMS Access
	User ID/Password Validation
	Passing the Correct User Context To IDMS In Run-Units

	Setting up a Server to Access an IDMS Central Version
	Mapping IDMS Data for SQL Access
	Running the Meta Data Utility (METAU) with IDMS Meta Data Grammar

	How IDMS Paths Are Converted Into SQL Rows
	Accessing Multiple Databases in an IDMS Central Version
	Accessing Multiple IDMS Central Versions from a Single Server

	5 Server Setup for CA-DATACOM/DB
	Introduction to Server Setup for CA- DATACOM/DB
	Define the Datacom Initialization Service to the Server
	Ensure the Multi-User Facility Is Running Authorized
	CA-DATACOM/DB Data Access
	Setting Up CA-DATACOM/DB Security

	6 Communication Configuration
	Introduction to Communication Configuration
	Communications Options
	Cross Memory
	IBM MQ Series
	Conceptual Overview
	Prerequisites to Using MQ Series
	OS/390 Queue Manager Definitions

	TCP/IP

	Selecting a Communications Option
	Bandwidth
	TCP/IP Use Of Hostnames vs. IP Addresses

	Server Configuration
	Cross Memory
	IBM MQ Series
	TCP/IP


	7 SQL Security
	Introduction to SQL Security
	eXadas Security Concepts
	User Types
	Database Objects
	Defining User Privileges
	System Privileges
	Database Privileges
	Stored Procedures Privileges
	Table and View Privileges

	Authorization Requirements
	SQL Security and the eXadas SAF Exit
	Summary

	8 Mapping Data
	Introduction to Mapping Data
	The Data Mapping Process
	DataMapper
	General Data Mapping

	Meta Data Utility
	Advanced Mapping Considerations
	Defining Indexes
	Multi-Part Keys
	VSAM Indexes
	IMS Indexes
	IDMS Indexes

	Occurs Processing
	Record Arrays
	Multiple Record Arrays in a Single Database Record
	Record Typing

	IMS Segment Mapping Considerations


	9 Optimization
	Introduction to Optimization
	Query Optimization
	Using Keys

	JOIN Optimization
	Query Processor Optimization
	Immediate Return of Data
	Static Catalogs
	Result Set Staging

	IMS Data Access Optimization
	General Guidelines
	IMS Native Access
	Using Primary Indexes
	Using Secondary Indexes
	Defining IMS Indexes With the USE INDEX Statement
	Using Search Fields
	Partial Key Support
	Path Calls
	HDAM/HIDAM Access Considerations
	DEDB Considerations

	PCB Selection Options
	PCB Selection by Verification
	PCB Selection by Name

	PSB Scheduling
	Using the ASMTDL/I Interface
	Using the DRA Interface

	VSAM Data Access Optimization
	General Guidelines
	Primary and Alternate Indexes
	Partial Key Support

	VSAM Query Processor Optimizations
	VSAM Service

	Server Execution
	Dispatching Priority
	WLM Support


	10 Server Operations
	Introduction to Server Operations
	Starting Servers
	Monitoring and Controlling Servers
	Displaying Active Services in a Server
	Displaying Users Connected to a Server
	Displaying Configurations
	Modifying Configuration Parameters
	Displaying Memory Utilization

	Starting and Stopping Individual Services
	Stopping the Server

	11 Views
	Introduction to Views
	What is a View?
	How the Query Processor Handles Views
	Advantages and Disadvantages of Views

	How to Create a View
	Using Views for Record and Column Filtering
	Horizontal Views
	Vertical Views
	Row/Column Subset Views
	Grouped Views

	Using Views for Security

	Joined Views
	Dropping Views

	12 Server Logging
	Introduction to Server Logging
	Controlling Logged Information
	The Log Print Utility
	Log Print Filtering

	13 Utilities
	Introduction to Utilities
	Meta Data Utility
	Meta Data Grammar
	Running the Meta Data Utility
	USE TABLE Statement Syntax
	Table Source Definitions
	Column Definitions

	Record Arrays
	USE [UNIQUE] INDEX Statement Syntax
	Defining VSAM Indexes
	Defining IMS Indexes

	DROP TABLE Statement Syntax
	DROP INDEX Statement Syntax

	DB2 Grammar
	CONNECT TO DB2 Statement Syntax
	IMPORT DB2 TABLE Statement Syntax
	IMPORT DB2 INDEX Statement Syntax

	CICS VSAM Grammar
	ADABAS USE Statement Generator

	14 Open Catalog
	Introduction to Open Catalog
	Open Catalog Overview
	Objects Used to Define and Access a Table
	What are Fragments?
	IMS Example
	IDMS Example

	Record Arrays
	Differences With Meta Data Tables
	VARCHAR Columns
	Use of NULL IS Definitions
	Use of the REMARKS Column
	Predefined Table Names
	Use of Indexes
	Ability to Delete Meta Data Tables

	Installing Meta Table in the eXadas System Catalog

	15 System Exits
	Introduction to System Exits
	Security: SAF Exit Specifics
	Activating the SAF Exit
	SAF Exit API Overview
	SAF Exit Initialization
	SAF Exit Validation
	SAF Exit Termination


	Accounting: SMF Exit Specifics
	Activating the SMF Exit
	SMF Exit API Overview
	Initialization
	Validation/Accounting
	Authorization Violations
	Termination


	CPU Resource Governor
	Activating the CPU Resource Governor Exit
	CPU Resource Governor Exit API Overview
	Initialization
	Validation/Accounting
	Termination


	Workload Manager Exit
	Activating the WLM Exit
	WLM Exit API Overview
	Initialization
	Management/Reporting
	TCB Initialization/Termination
	User Connect/Disconnect
	SQL Statement Processing

	Termination

	DB2 Thread Management Exit
	Activating the DB2 Thread Management Exit
	Developing Your Own DB2 Thread Management Exit

	Record Processing Exit
	Initialization
	Process
	Termination
	Update
	Verification
	Performance Considerations


	16 Stored Procedures
	Introduction to Stored Procedures
	Stored Procedure Overview
	General Concepts
	Residency and Language Environment
	Interfacing with CICS
	Interfacing With IMS
	Interfacing with CA�DATACOM/DB
	Support Routines
	Samples

	Defining Stored Procedures
	CREATE PROCEDURE Syntax and Description
	DROP PROCEDURE Syntax and Description
	Deactivating the LE Environment
	Specifying CICS Transaction Scheduling Information
	Specifying CA�DATACOM/DB Resource Information

	Writing Stored Procedures
	Invoking Stored Procedures
	CALL Statement Syntax
	ODBC Stored Procedure Support

	CICS Interface Description
	CACSPBR Interface Description
	Parameters Passed to the CICS Application Program
	Compiling and Linking Applications that Use CACSPBR
	CACSPBR Return Codes
	CACSP62 Abend Codes

	CA�DATACOM/DB Interface Description
	CACTDCOM Interface Description
	Compiling and Linking Applications That Use CACTDCOM
	CACTDCOM Return Codes

	IMS DRA Interface Description
	CACTDRA Interface Description
	Compiling and Linking Applications That Use CACTDRA
	CACTDRA Return Codes

	Invoking Existing IMS Transactions
	APPC/IMS Overview
	APPC/MVS Overview
	Configuring APPC/IMS and APPC/MVS
	Application Design Requirements
	Stored Procedure Limitations
	Testing APPC/MVS Stored Procedures
	Sample Stored Procedures
	Adding Transaction Security
	Sync-Point Conversations


	Support Routine Descriptions
	Get RUN OPTIONS (CACSPGRO) Calling Conventions
	Get User ID (CACSPGUI) Calling Conventions
	Get User Password (CACSPGPW) Calling Conventions


	17 Enterprise Server
	Introduction to Enterprise Server Installation and Configuration
	Deployment of the Enterprise Server
	Deployment Steps

	Operations
	Starting OS/390 Enterprise Servers
	Monitoring and Controlling Enterprise Servers
	Displaying Active Services in an Enterprise Server
	Displaying Servers Connected to an Enterprise Server
	Displaying Configurations
	Modifying Configuration Parameters
	Displaying Memory Utilization

	Starting and Stopping Individual Services
	Stopping the Enterprise Server

	Integration and Configuration
	Base System Configuration Review
	Parameter Correlation
	Supported Protocols
	Communication Value Formats


	Enterprise Server Integration
	The Mechanics of a Transparent Integration

	Data Source Handler Service Configuration
	Dynamic eXadas Server Scheduling
	Expanded Scheduling and Connection Balancing With Cross Memory
	Using IMS DBB Access in a DBRC FORCE=YES Environment


	18 SQL Update
	Introduction to SQL Update
	Transactions
	SQL Update Statements
	INSERT
	UPDATE
	DELETE
	COMMIT
	ROLLBACK

	SQL Update and Mapped Tables
	Mappings Containing Multiple Records
	Insert Positioning
	Data Defaulting in Database Records on INSERT
	Update and Delete Behavior
	Update and NULL Records
	Mappings Containing Record Arrays
	Group Items and Overlapping Fields
	General Recommendations

	Adabas Update Considerations
	CA-DATACOM/DB Update Considerations
	DB2 Update Considerations
	IDMS Update Considerations
	General IDMS Update Considerations
	SQL INSERT Considerations
	SQL DELETE Considerations

	IMS Update Considerations
	IMS PSB Considerations
	Update and Non-Update SQL Requests in a Single Transaction
	PCB Processing Options

	CICS VSAM Update Considerations
	Transport Protocol
	Flow of Interactions


	19 Using Field Procedures
	Introduction to Using Field Procedures
	Specifying a Field Procedure
	When Exits are Taken
	Execution Environment
	The Field Procedure Parameter List (FPPL)
	The Work Area
	The Field Procedure Information Block (FPIB)
	Value Descriptors

	Field-Encoding (Function Code 0)
	Field-Decoding (Function Code 4)
	Sample Field Procedures
	Sample Field Procedure CACFP001
	Sample Field Procedure CACFP999


	Appendix A Configuration Parameters
	Introduction to Configuration Parameters
	Configuration Parameter Format
	Configuration Parameter Relationships
	Configuration Parameter Descriptions
	BTREE BUFFERS
	CPU Governor
	DATASOURCE
	Sample Address Field for TCP/IP Protocol with data source name, CACSAMP
	Sample Address field for Cross Memory Protocol with data source name, CACSAMP
	Sample Address Field for MQ Series Protocol with data source name, CACSAMP

	DECODE BUFFER SIZE
	DEFLOC
	FETCH BUFFER SIZE
	INTERLEAVE INTERVAL
	JOIN MAX TABLES ANALYZED
	LD TEMP SPACE
	LOCALE
	MAX ROWS EXAMINED
	MAX ROWS EXCEEDED ACTION
	MAX ROWS RETURNED
	MESSAGE POOL SIZE
	NL
	NL CAT
	PDQ
	RESPONSE TIME OUT
	SAF EXIT
	SERVICE INFO ENTRY
	SMF EXIT
	STATEMENT RETENTION
	STATIC CATALOGS
	TASK PARAMETERS
	TRACE LEVEL
	USER CONFIG
	USERID
	USERPASSWORD
	VSAM AMPARMS
	WLM UOW


	Appendix B Sample Stored Procedure VTAM and CICS Definitions
	Introduction to Sample Stored Procedure VTAM and CICS Definitions
	VTAM Resource Definitions
	CICS Resource Definitions

	Appendix C MTO Command Reference
	Introduction to MTO Commands
	MTO Facility
	Commands
	SET,NAME=name, ORD=number, VALUE=value
	CANCEL,USER=userid
	CANCEL,SESSIONID=sessionid
	DISPLAY,QUERIES
	CANCEL,QUERY=name,SESSIONID= sessionid
	MODIFY,servicename,TRACELEVEL= number
	MODIFY,servicename,TRIGGER START=number
	MODIFY,servicename,TRIGGER STOP=number
	MODIFY,servicename,OUTPUT=DISPLAY
	MODIFY,servicename,OUTPUT=DEFAULT
	MODIFY,servicename,FLUSH
	FLUSH,NAME=name
	DISPLAY, {SERVICES | USERS | CONFIG=name | CONFIGS | MEMORY | ALL }
	START,SERVICE=name
	STOP, {TASKID=tasknumber | SERVICE=name | ALL}


	Appendix D Sample SERVICE INFO ENTRY Definitions
	Introduction
	Region Controller and Logger
	Query Processor
	Connection Handler
	Cross Memory Transport Layer
	TCP/IP Transport Layer
	MQ Series

	IMS Interface Initialization Services
	CACIMSIF
	CACDRA

	DB/2 Access
	Datacom Initialization Service
	VSAM Service
	Work Load Manager Initialization Service
	Language Environment Initialization Service
	Multiple Catalog Support

	Appendix E Meta Table Definitions
	Introduction

	Index

