
SonicMQ
Programming

Guide

Copyright© 2000 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This man-

ual is also copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied, photocopied,

translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from

Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no

responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.

Progress® is a registered trademark of Progress Software Corporation.

SonicMQ™, AppServer™, ProVision™, ProVision Plus™, Progress SmartObjects™, Apptivity™, and all other

Progress product names are trademarks of Progress Software Corporation.

Progress SonicMQ™ contains the IBM® XML Parser for Java Edition and the IBM® Runtime Environment for Win-

dows®, Java™ Technology Edition Version 1.1.8 Runtime Modules.© Copyright IBM Corporation 1998-1999. All

rights reserved. U.S. Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP

Schedule Contract with IBM Corp.

IBM® is a registered trademark of IBM Corporation. Java™ is a trademark of Sun Microsystems Inc. Windows® is a

registered trademark of Microsoft Corp. All other company and product names are the trademarks or registered trade-

marks of their respective companies.

Printed in U.S.A.

November 2000

Contents
Preface . 15
About This Manual . 15
How This Book is Organized. 16
Conventions in This Manual . 17

Typographical Conventions and Syntax Notation. 17
Note, Important, and Warning Flags . 19

Available Documentation . 20
Worldwide Technical Support . 21

Chapter 1: Overview . 23
About SonicMQ. 23

Java Message Service . 24
JMS: Key Component of the Java Platform for the Enterprise 24
JMS 1.0.2 Specification . 24

Java Development Environment . 25
Programming Concepts . 25

Clients Connect to the SonicMQ Message Server Architecture . 25
SonicMQ Is a JMS Provider . 26
SonicMQ Messaging Models . 27
SonicMQ Objects and Their Relationships . 28
SonicMQ Object Model . 29

Connections and Sessions . 30
Producers and Consumers. 31

Quality of Service and Protection . 32
SonicMQ Clients . 38

ActiveX/COM Client . 38
Java Applet Client . 38
SonicMQ Programming Guide 3

Contents
Chapter 2: Examining the SonicMQ Samples .39
About SonicMQ Samples .39
SonicMQ Samples. .40

Other Samples Available .41
Extending the Samples .42

How Security Impacts Client Activities. .42
Running the SonicMQ Samples .43

Starting the Message Server Under Windows, Linux, or UNIX .43
Client Console Windows .44
Using the Sample Scripts .44
Using the SonicMQ Explorer .45

Chat and Talk Samples .46
Chat Application (Pub/Sub) .46
Talk Application (PTP). .47
Reviewing the Chat and Talk Samples. .47

Samples of Additional Message Types .48
XML Messages. .48

XML Messages (PTP) .49
XML Messages (Pub/Sub) .49

Map Messages (PTP) .49
Reviewing the Additional Message Type Samples .51

Message Traffic Monitor Samples .52
QueueMonitor Application (PTP) .53
MessageMonitor Application (Pub/Sub) .54

Transaction Samples .56
TransactedTalk Application (PTP) .56
TransactedChat Application (Pub/Sub) .57
Reviewing the Transaction Samples. .58

Reliable, Persistent, and Durable Messaging Samples .60
Reliable Connections .60

ReliableTalk Application (PTP). .61
ReliableChat Application (Pub/Sub) .62

Persistent Storage Application (PTP) .63
DurableChat Application (Pub/Sub). .69
Reviewing Reliable, Persistent, and Durable Messaging .71

Request and Reply Samples .72
Request and Reply (PTP) .73
Request and Reply (Pub/Sub). .74
Reviewing the Request and Reply Samples .74
4 SonicMQ Programming Guide

Contents
Selection and Wildcard Samples . 75
SelectorTalk Application (PTP) . 75
SelectorChat Application (Pub/Sub) . 76
Hierarchical Chat Application (Pub/Sub) . 77
Reviewing the Selection and Wildcard Samples. 78

Test Loop Sample . 78
QueueRoundTrip Application (PTP). 78

Extending the Samples. 79
Use Common Topics Across Clients. 79
Trying Different RoundTrip Settings . 80
Modifying the MapMessage to Use Other Data Types. 81
. 82
Modifying the XMLMessage to Show More Data . 82
Using Samples with Security Initialized . 85

Removing Security from the Database . 88

Chapter 3: SonicMQ Client Sessions . 89
About Client Sessions . 89

Identifiers. 89
ConnectID . 89
User Name . 90
ClientID . 90
Subscription Name . 91

Communication Layer . 92
ConnectionFactory . 93

Lookup a Stored Context . 93
Direct Creation of the ConnectionFactory Object . 95
Load Balancing and Failover Lists . 97

Connection. 98
Connection Retry . 99

Session. 100
Explicit Acknowledgement. 100
Acknowledgement Mode . 101
Transacted Sessions . 102

Session Objects . 103
create [Destination] . 104

Point-to-Point: createQueue . 104
Publish and Subscribe: createTopic . 105
Using a Lookup for Destinations . 105
Temporary Destinations . 105
SonicMQ Programming Guide 5

Contents
create [MessageProducer]. .105
Point-to-Point: createSender .105
Publish and Subscribe: createPublisher .105

create [MessageConsumer]. .106
Point-to-Point: createReceiver .106
Publish and Subscribe: create[Durable]Subscriber .106

create [Message] .106
Starting, Stopping, and Closing Connections .107

connect.start .107
connect.stop .107

Behavior of Producers and Consumers in a Stopped Connection107
connect.close. .108

Behavior of Producers and Consumers in a Closed Connection108
Closing a Session .108
Flow Control .109
Using Multiple Connections, Sessions, and Consumers. .111

Multiple Connections .111
Multiple Sessions on a Connection. .112

Coding Connections and Sessions .112
Get a Connection and Session .113

Using Active Pings to Monitor the Health of the Connection .114
Create Session Objects and the Listeners .114
Start the Connection .115
Handle Exceptions on the Connection .115

Handling Dropped Connection Errors Caught with Active Pings116
Exception Listeners are Not Intended for JMS Errors .116

JMS Messaging Domains .117

Chapter 4: Messages .119
About Messages .119
Message Type .120

Creating a Message. .121
XML Type .121

Message Structure .122
Messages and Selectors .122

Message Header Fields .123
Setting Header Values When Sending/Publishing .126

Default Header Values .126
6 SonicMQ Programming Guide

Contents
Message Properties . 127
User-defined Properties . 127
Provider-defined Properties (JMS_SonicMQ) . 127
JMS-defined Properties (JMSX) . 128
Setting Message Properties . 129
Property Methods . 129

propertyExists . 130
clearProperties . 130
set[type]Property. 130
getPropertyNames. 130
get[type]Property . 131

Message Body . 132
Setting the Message Body . 132
Getting the Message Body . 133

Getting the Body from an XML Type . 133

Chapter 5: Message Producers and Consumers . 135
About Message Producers and Message Consumers. 135

Generic Messaging Model. 135
Message Ordering and Reliability . 136
Destinations . 137
Steps in Message Production . 138

Create the Topic Publisher on the PublisherSession Thread. 138
Create the Producer on the Producer Session Thread . 139
Create the Message Type and Set Its Body. 139
Set Message Header Fields . 139
Set the Message Properties . 140
Produce the Message . 140

Message Management by the Message Server . 142
Message Listeners, Receivers, and Selectors. 143

Message Listeners . 143
Message Receiver . 144

Receive . 144
Receive with Timeout . 144
Receive No Wait . 144

Message Selector . 145
Message Selector Syntax . 146
Comparing Exact and Inexact Values. 149
SonicMQ Programming Guide 7

Contents
Steps in Listening, Receiving and Consuming Messages. .150
Implement the Message Listener .150
Create the Destination and Consumer, then Listen .151

Handle a Received Message. .151
Get Message Header Fields .152
Get Message Properties .152
Consume the message .153

Reply-to Mechanisms .153
Temporary Destinations Managed by a Requestor Helper Class .154

Requestor Application .154
Replier Application .154
Design for Handling Requests .155
Writing a Topic Requestor .155

Producers and Consumers in JMS Messaging Domains. .157

Chapter 6: Point-to-Point Messaging. .159
About Point-to-Point Messaging. .159

Coding Queues, Senders, and Receivers .160
Coding Sample .160

Message Ordering and Reliability in PTP. .161
Message Ordering. .161
Reliability .161

Advantages and Constraints in PTP Domains .162
Multiple Receivers .163

Message Queue Listener .163
Message Queue Receiver .163
Prefetch Count and Threshold .165

Queue Browsing .166
createBrowser. .166
createBrowserMessage (MessageSelector) .166
QueueBrowser Sample. .167

Handling Undelivered Messages .168
Setting Important Messages to Get Saved If They Expire .168
Setting Quick Messages to Generate Administrative Notice .169

Life Cycle of a Guaranteed Message .170
Setting the Message to Be Preserved .170
Setting the Message to Generate an Administrative Event .170
Sending the Message .170
8 SonicMQ Programming Guide

Contents
Letting the Message Get Delivered or Expire. 170
Post-Processing of Expired Message . 170
Programmer Callback for Undelivered Message Notification 172
Getting Messages Out of the Dead Message Queue. 173

Chapter 7: Dynamic Routing Architecture . 175
About Dynamic Routing . 175
Message Behavior on Global and Local Queues . 176

Undelivered Message Reason Codes . 177
Sending to a Message Server Where Queues Exist. 178
Sending to a Message Server Where Queues Do Not Exist . 180
Sending to a Cluster Routing Node With Queues Everywhere. 182
Send to a Cluster Routing Node With Queues in One Place. 184

Reply-to Mechanisms for a DRA Application . 186
Setting Applications to Use Simple Request Messages . 186
Using Specific Shared Reply Queues . 187

Chapter 8: Publish and Subscribe Messaging . 189
About Publish and Subscribe Messaging. 189
Coding Topics, Subscribers, Publishers, and Listeners . 190
Topic . 191
Publisher . 192

Creating the Publisher . 192
Creating the Message . 193
Publishing to a Topic. 193

Subscriber . 195
Durable Subscriber . 196

Durable Subscriptions Not Allowed for Temporary Topics. 196
Unsubscribing from a Durable Subscription . 196
Unsubscribing to Durable Subscription Requires Inactive Subscriber. 197

Message Ordering and Reliability . 198
General Services . 198
Message Ordering . 198
Reliability . 199
SonicMQ Programming Guide 9

Contents
Chapter 9: Hierarchical Name Spaces .201
About Hierarchical Name Spaces .201

Advantages of Hierarchical Name Spaces .201
Publishing a Message to a Topic. .203

Topic Notation that Enables Topic Hierarchies .203
Reserved Characters when Publishing .203
Topic Structure, Syntax, and Semantics .203
Topic Syntax and Semantics .204

Message Server Management of Topic Hierarchies .204
Subscribing to Nodes in the Topic Hierarchy .205

Template Characters .205
Using Template Characters in Symmetric Hierarchies .207
Using Template Characters in Asymmetric Topic Hierarchies208
Template Character for Subscribing to All Topics .209
Template Character for All Topics Under a Topic Hierarchy .209
Multiple Template Characters in an Expression .209

Examples of a Topic Name Space .210
Publishing Messages to a Hierarchical Topic. .210
Subscribing to Sets of Hierarchical Topics .211

Chapter 10: Management API .213
About the Management API .213

Using the Management API .214
Samples that Use the Management API .215

Events .215
Accessing All Events .216
Accessing Selected Events .216
Piping Events Into a Log .217

Metrics .218
Piping Metrics Into a Log .219

Setup Queues .220
Show Setup .221

Accessing All Message Server Queue Information .221
Accessing Selected Message Server Queue Information. .222

Shutdown .223

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients . .225
10 SonicMQ Programming Guide

Contents
About SonicMQ Through ActiveX/COM . 225
Implementation Notes . 226
Requirements for an ActiveX/COM Client. 226

SonicMQ ActiveX/COM Sample . 227
Visual Basic Code for the ActiveX/COM Sample . 229

Tips and Techniques for SonicMQ ActiveX/COM . 233
Identifiers. 233
Handling Messages . 235

XML Messages . 235
Resource Management . 235
Events . 236
Connections . 237
True ActiveX/COM Properties . 237
Enumerations. 238
Constants . 239

Syntax for SonicMQ ActiveX/COM Method Names . 239
Duplicate Names Are Differentiated. 239
Java Method Overloading Is Handled . 240
Interface Class Names Are Often Omitted . 240

Interface Mappings . 241
Connections and Sessions . 242
Producers and Consumers . 244
Publish and Subscribe (Topics) . 246
Point-to-point (Queues) . 249
Messages . 252
Special Purpose . 262

Chapter 12: Lookup of Administered Objects . 265
About Administered Objects . 265

Issues When Using Administered Objects . 266
Creating New Administered Objects. 266

Serialized Java Objects in a File System . 267
Setting Up Serialized Objects . 267
Using Serialized Objects . 268

Using JNDI to Interface With a Directory Server . 268

Index . 271
SonicMQ Programming Guide 11

Contents
List of Figures

Figure 1. Message Server Is a Hub for SonicMQ Client Applications .26
Figure 2. Client Application Using the SonicMQ JMS Provider .27
Figure 3. SonicMQ Object Relationships .28
Figure 4. JMS Object Model for the Point-to-Point Domain .29
Figure 5. Principal Interfaces for Point-to-Point .30
Figure 6. Principal Interfaces for Publish and Subscribe .30
Figure 7. Message Producers and Message Consumers .31
Figure 8. Using the Explorer to Maintain the Default Queues .45
Figure 9. QueueMonitor Window .53
Figure 10. Message Monitor Window .55
Figure 11. ReliableTalk Sample Trying to Reconnect .62
Figure 12. Sequence Diagram for the DurableChat Application .70
Figure 13. XMLMessage Parsed into a Document Object Model .84
Figure 14. XMLMessage as Tagged Text .85
Figure 15. Client - Message Server - Client Communications .92
Figure 16. Sessions in Connections from Connection Factories .92
Figure 17. ConnectionFactory Object Instantiated By Lookup of a Serialized Java Object94
Figure 18. Alternate Connection Techniques Using Factory Objects or JNDI Lookup 94
Figure 19. Using a Constructor to Create a ConnectionFactory Object .95
Figure 20. Primary Session Objects .103
Figure 21. Types of SonicMQ Message Objects .104
Figure 22. Multiple Connections in a Client Application .111
Figure 23. Multiple Sessions on a Connection .112
Figure 24. SonicMQ Message Types .120
Figure 25. User-defined Properties .129
Figure 26. Generic Messaging Model .135
Figure 27. Session Objects in the JMS Domains .157
Figure 28. Point-to-Point Messaging Model .159
Figure 29. Message Server Where Specified Queues Exist .178
Figure 30. Message Server Where Specified Queues Do Not Exist .180
Figure 31. Cluster Routing Node Where Queues Exist On Every Server .182
Figure 32. Cluster Routing Node where Queues Exist on Only One Server184
Figure 33. Publish and Subscribe Messaging Model .189
Figure 34. Explorer View of Creating a Publisher .192
Figure 35. Explorer View of a Message Header Fields After Publishing .194
Figure 36. Explorer View of Subscribing to a Topic .195
12 SonicMQ Programming Guide

Contents
Figure 37. Topic Structure Without Hierarchies . 202
Figure 38. Topic Structure With Hierarchies . 202
Figure 39. Subscribing to the Topic Credit.U S A . 205
Figure 40. Symmetric Topic Structure . 207
Figure 41. Asymmetric Topic Structure . 208
Figure 42. A Sample Hierarchy of Topics . 210
Figure 43. Explorer View of a Newly Created Queue . 220
Figure 44. SonicMQ ActiveX/COM Sample, Chat.frm, in Visual Basic . 227

List of Tables

Table 1. The SonicMQ Documentation Set . 20
Table 2. Progress Software International Offices . 22
Table 3. Services and Protection Available in SonicMQ Messaging . 33
Table 4. Differences Between QueueMonitor and MessageMonitor . 52
Table 5. Transacted Session Events by Message Role . 102
Table 6. Connected Session Functionality Common to PTP and Pub/Sub 117
Table 7. Message Header Fields . 123
Table 8. SonicMQ Provider-defined Properties . 128
Table 9. JMSX Properties Used in SonicMQ . 128
Table 10. Permitted Type Conversions for Message Properties . 131
Table 11. How Message Producer Parameters Influence the Message Server 142
Table 12. Literal and Identifier Syntax in Message Selectors . 146
Table 13. Operator and Expression Syntax in Message Selectors . 148
Table 14. Comparison Test Syntax in Message Selectors . 149
Table 15. Reply-To Mechanisms in Both Domains . 153
Table 16. Messaging Subclasses in JMS Messaging . 157
Table 17. Producer and Consumer Common to Both Messaging Models . 158
Table 18. Advantages of the Point-to-Point Messaging Model . 162
Table 19. Reason Codes for Undelivered Messages . 177
Table 20. Routing Behavior on a Server Where Specified Queues Exist . 179
Table 21. Routing Behavior on Server Where Specified Queues Do Not Exist 181
Table 22. Routing Behavior on a Cluster Node Where Queues Exist on Each Server 183
Table 23. Routing Behavior on Cluster Node Where Queues Exist on Only One Server 185
Table 24. True ActiveX/COM Properties in the SonicMQ ActiveX/COM Control 237
Table 25. Interface Mapping from SonicMQ to the ActiveX/COM Control 241
SonicMQ Programming Guide 13

Contents
Table 26. Connection Interface .242
Table 27. Session Interface .243
Table 28. MessageConsumer Interface .244
Table 29. MessageListener Interface .245
Table 30. MessageProducer Interface .245
Table 31. DeliveryMode Interface .246
Table 32. TopicConnectionFactory Interface .246
Table 33. TopicConnection Interface .247
Table 34. TopicSession Interface .247
Table 35. Topic Interface (Extends Destination) .248
Table 36. TopicPublisher Interface .248
Table 37. TopicRequestor and TemporaryTopic (Extends Topic) Interfaces 248
Table 38. TopicSubscriber Interface .249
Table 39. QueueConnectionFactory Interface .249
Table 40. QueueConnection Interface .249
Table 41. QueueSession Interface .250
Table 42. Queue Interface (Extends Destination) .250
Table 43. QueueSender Interface (Extends MessageProducer) .251
Table 44. QueueRequestor and TemporaryQueue (Extends Queue) Interfaces 251
Table 45. QueueReceiver Interface (Extends MessageConsumer) .251
Table 46. QueueBrowser Interface .252
Table 47. Message Interface .252
Table 48. BytesMessage Interface (Extends Message) .256
Table 49. MapMessage Interface (Extends Message) .258
Table 50. StreamMessage Interface (Extends Message) .260
Table 51. TextMessage Interface (Extends Message) .261
Table 52. XMLMessage Interface (Extends TextMessage) .262
Table 53. Other Interfaces .262
14 SonicMQ Programming Guide

Preface
This Preface covers the following topics:

n “About This Manual” describes this manual and its intended audience.

n “Conventions in This Manual” describes the text formatting, syntax
notation, and flags used in this manual.

n “Available Documentation” describes the printed and online
documentation that accompanies SonicMQ.

n “Worldwide Technical Support” provides information on contacting
technical support.

About This Manual
Progress SonicMQ is a fast, flexible, scalable e-Business Message Server
designed to simplify the development and integration of today's highly
distributed applications and Internet-based business solutions. SonicMQ is a
complete implementation of the Sun Java Message Service (JMS) v1.0.2, an
API for enabling enterprise messaging systems from Java programs.

This book provides the information a Java software developer needs to use the
application program interfaces to create SonicMQ client applications.

The sample software provided in source form on the SonicMQ media is the
basis for the discussions of features and concepts.
SonicMQ Programming Guide 15

Preface
How This Book is Organized
The SonicMQ features are discussed in this programming guide as follows:

n Chapter 1, “Overview,” discusses the environment and Java constructs that
can be used in messaging applications. The basic concepts in this chapter
set the groundwork for understanding how to build efficient applications.
The service and protection features in SonicMQ are presented in a tabular
form with references to other chapters and other books for implementation
details.

n Chapter 2, “Examining the SonicMQ Samples,” takes an in-depth tour
through the console-based code samples introduced in the Getting Started
with SonicMQ manual, focusing on the programming functions and
features used.

n Chapter 3, “SonicMQ Client Sessions,” explores the connection factories,
connections, and sessions. The concepts and implementation of the
transacted session and transactions are also presented. The parameters and
scripts used by various Java clients are detailed.

n Chapter 4, “Messages,” examines the detailed composition of a message to
learn what is required to construct a message, how the data populates the
message, and how to manipulate messages.

n Chapter 5, “Message Producers and Consumers,” presents the scope of the
the session objects that produce messages and the session objects that
listen, receive, and consume messages.

n Chapter 6, “Point-to-Point Messaging,” presents the use of server-
managed queues and discusses how Point-to-Point contrasts—and how it
is similar—to the Publish and Subscribe domain.

n Chapter 7, “Dynamic Routing Architecture,” describes how global queues
provide a richer messaging infrastructure as well as new reasons messages
can become undelivered.

n Chapter 8, “Publish and Subscribe Messaging,” presents the
characteristics unique to the broadcast type of messaging, Publish and
Subscribe. Durable subscriptions, request-reply mechanisms, message
selector semantics, and message listeners are presented in depth.
16 SonicMQ Programming Guide

Conventions in This Manual
n In Chapter 9, “Hierarchical Name Spaces,” presents SonicMQ’s topic
hierarchies and how they can be used to streamline access to data.

n Chapter 10, “Management API,” describes how to run the Broker Manager
samples that demonstrate many features of the exposed SonicMQ
management API.

n Chapter 11, “Accessing SonicMQ Through ActiveX/COM Clients,”
presents the SonicMQ Java bridge to ActiveX interface with tips,
techniques, the sample application, and detailed ActiveX syntax mapping
of the javax.jms API, exposed progress.message API, and some
specialized ActiveX commands.

n Chapter 12, “Lookup of Administered Objects,” shows how programmers
can manage and use administered objects with either JNDI or serialized
Java objects in a simple file store.

Conventions in This Manual
In this section, you will find a description of the text formatting conventions
used in this manual, and a description of notes, warnings, and important
messages.

Typographical Conventions and Syntax Notation
This manual uses the following typographical conventions:

n Bold typeface in this font indicates keyboard key names (such as Tab or
Enter) and the names of windows, menu commands, buttons, and other
SonicMQ user interface elements. For example, “From the File menu,
choose Open.”

Bold typeface is also used to highlight new terms when they are
introduced in conceptual and overview sections.

n Monospace typeface is used to indicate text that might appear on a
computer screen other than the names of SonicMQ user interface elements,
including all of the following:

– Code examples

– System output (such as responses, error messages, and so on)
SonicMQ Programming Guide 17

Preface
– Filenames and pathnames

– Software component names, such as class and method names

Essentially, monospace typeface indicates anything that the computer is
“saying,” or that must be entered into the computer in a language that the
computer “understands.”

Bold monospace typeface is used to supply emphasis to text that would
otherwise appear in monospace typeface.

Monospace typeface in italics or Bold monospace typeface in italics
(depending on context) indicates variables or placeholders for values you
supply or that might vary from one case to another.

➤ This symbol and font introduces a multi-step procedure:

1. This is a first step.

1.1 This is a step within a step.

➤ This symbol and font introduces a single-step procedure:

This manual uses the following syntax notation conventions:

n Where command-line examples are provided, a backslash character (\)
indicates line continuation. It should not be entered on the actual command
line.

n Brackets ([]) in syntax statements indicate parameters that are optional.

n Braces ({ }) indicate that one (and only one) of the enclosed items is
required. A vertical bar (|) separates required items.

n Ellipses (...) indicate that you can choose one or more of the preceding
items.
18 SonicMQ Programming Guide

Conventions in This Manual
Note, Important, and Warning Flags
This manual highlights special kinds of information by using shading, placing
horizontal rules above and below the text, and using a flag in the left margin to
indicate the kind of information.

Note A Note flag indicates information that complements the main text flow. Such
information is especially needed to understand the concept or procedure being
discussed.

Important An Important flag indicates information that must be acted upon within the
given context in order for the procedure or task to be successfully completed.

Warning A Warning flag indicates information that can cause loss of data or other
damage if ignored.
SonicMQ Programming Guide 19

Preface
Available Documentation
Table 1 lists the documentation supplied with SonicMQ. In addition to the
documentation listed in this table, SonicMQ comes with sample files. All
documentation is included with the SonicMQ media.

Table 1. The SonicMQ Documentation Set

Document Description

SonicMQ Documentation Portal
(SonicMQ_Help.htm)

Describes and links all SonicMQ online documentation
components.

Getting Started with SonicMQ Presents an introduction to the scope and concepts of the SonicMQ
software and its packaging. Lists the features and benefits of
SonicMQ in terms of its adherence to the Sun JMS specification and
the extensions that make SonicMQ a richer, more useful messaging
system.

SonicMQ Installation and
Administration Guide

Describes configuration of various SonicMQ client types, clusters,
and the message server and data stores. The administration chapters
fully document server management using both the command-line
interface and the graphical user interface administration tools.
Administration of the security interface is fully described.

SonicMQ Programming Guide Presents the SonicMQ sample applications and then shows how the
programmer can enhance the samples, focusing on clients,
connections, sessions, messages (including XML), transactions, and
hierarchical topics.

SonicMQ Deployment Guide The first part describes general deployment issues, including
security. The second part concerns deployment issues for setting up
dynamic routing for a B2B infrastructure.

SonicMQ API Reference Contains information on the SonicMQ API that supplements the
other manuals.

SonicMQ Release Notes Provides late-breaking information and known issues.
20 SonicMQ Programming Guide

Worldwide Technical Support
Worldwide Technical Support
Progress Software’s support staff maintains a wealth of information at
http://www.sonicmq.com to assist you with resolving any technical problems
that you encounter when installing or using SonicMQ Developer Edition.

From the SonicMQ home page, click on Developers Exchange to take
advantage of the developer resources such as forums, downloads, tips,
whitepapers, and code snippets.

For technical support for the SonicMQ Professional Developer Edition or the
SonicMQ E-Business Edition, visit our TechSupport Direct Web page at
http://techweb.progress.com. When contacting Technical Support, please
provide the following information:

n The release version number and serial number of SonicMQ that you are
using. This information is listed at the top of the Start Broker console
window and might appear as follows:

SonicMQ E-Business Edition [Serial Number serial_number]
Release version_number Build Number n Protocol P22

n Your first and last name.

n Your company name, if applicable.

n Phone and fax numbers for contacting you.

n Your e-mail address.

n The platform on which you are running SonicMQ, as well as any other
environment information you think might be relevant.

n The Java Virtual Machine you are using.

To determine the JVM you are using, open a console window, go to the
directory SONICMQ_JRE (default install-dir\Java\bin), and issue the
command .\jre -d.
SonicMQ Programming Guide 21

http://sonicmq.com
http://techweb.progress.com

Preface
Table 2 provides information about Progress Software Corporation and its
international offices.

Table 2. Progress Software International Offices

Locale, Office Name, and Address Contact Information

North and Latin America:

Progress Software Corporation

14 Oak Park

Bedford, MA 01730

USA

Pre-sales:

Telephone: 800 477 6473 ext. 4900

e-mail: sonicmqpresales@progress.com

Technical Support for Professional Developer Edition
and E-Business Edition:

Telephone: 781 280 4999

Fax: 781 275 4543

e-mail: support@progress.com

Europe, the Middle East, Africa (EMEA):

Progress Software Europe B.V.

P.O. Box 8644

Schorpioenstraat 67

3067 GG Rotterdam

THE NETHERLANDS

Technical Support for Professional Developer Edition
and E-Business Edition:

Telephone: 31 10 286 5222

Fax: 31 10 286 5225

e-mail: emeasupport@progress.com

Asia/Pacific:

Progress Software Pty. Ltd.

1911 Malvern Road

Malvern East, VIC

Box 3145, AUSTRALIA

Technical Support for Professional Developer Edition
and E-Business Edition:

Telephone: 613 9885 0199

e-mail: aussupport@melbourne.progress.com
22 SonicMQ Programming Guide

Chapter 1 Overview
About SonicMQ
SonicMQ is Progress Software Corporation’s implementation of Sun’s
Java Message Service (JMS) specification that expedites development and
deployment of an efficient, secure, and scalable messaging system for
business-to-business, networked, and internal integrated applications.
SonicMQ makes it possible for organizations to efficiently (and reliably)
communicate between disparate business systems over the Internet and meet
their time-to-market requirements by delivering the following features:

n Internet-resilient business messaging for the Java platform

n High performance messaging infrastructure

n Reliable transmission of messages regardless of network, hardware, or
application failure

n Flexibility in configuring the messaging infrastructure:

– Clients can be moved around the network without requiring any
changes to the messaging application

– Support for XML message types in addition to the JMS types

n Ease-of-use features make SonicMQ an environment that can be easily
learned and deployed
SonicMQ Programming Guide 23

Chapter 1: Overview
Java Message Service
The Java Message Service (JMS) Version 1.0.2 specification describes
portable, efficient standards for a powerful, extensible messaging service. The
JMS specification pointedly leaves some functionality—such as load
balancing, fault tolerance, error notification, administration, security, wire
protocol, and message repository—to the provider of the messaging server.

SonicMQ implements this functionality and provides a level of abstraction to
developers, who can concentrate on creating business logic.

JMS: Key Component of the Java Platform for the Enterprise

Sun Microsystems announced a plan in early 1997 to deliver nine Java APIs
that would enable a vendor-neutral computing infrastructure capable of
integrating Java with virtually every significant enterprise computing service.

JMS would provide asynchronous communications to avoid the problems
synchronous communications—such as RMI and CORBA—were
experiencing in the uncontrollable Internet environment. Javasoft provided a
reference implementation in late 1998, noting that implementers of the JMS
specification would need to match the security, reliability, fault-tolerance, and
manageability of existing mainframe messaging services before enterprise
acceptance would be considered.

The JMS specification notes that it does not address load balancing, fault
tolerance, error notification, administration, security, and repositories.

JMS 1.0.2 Specification

On November 5, 1999, Sun introduced version 1.0.2 of the JMS specification.
Many of the changes to the content of the specification document describe
more precisely some aspects of the JMS functionality. These ambiguities were
interpreted correctly in the previous releases of SonicMQ because of the
communication between the Progress Software and Sun development teams.
Other changes in the JMS 1.0.2 are changes in programming syntax and
behavior of applications that use specified techniques.
24 SonicMQ Programming Guide

Programming Concepts
Java Development Environment
SonicMQ is delivered with a Java run-time environment (JRE) consisting of a
Java Virtual Machine (JVM) that is sufficient to support the Java-based
installer and the demonstration of SonicMQ samples running against a default
database.

You might choose to use a different JVM for use with SonicMQ. In order to
deploy SonicMQ applications, you need a JVM appropriate for your target
client.

Programming Concepts
The design of SonicMQ provides full implementation of the Java Message
Service (JMS) specification with additional features that comprise a solution
that is resilient enough for Internet e-commerce in major enterprises.

Messaging involves the loose coupling of applications. This is accomplished
by maintaining an intelligent message server structure. A client can establish
one or more connections to a message server.

Clients Connect to the SonicMQ Message Server Architecture
In Figure 1, SonicMQ’s hub-and-spoke architecture considers every entity in
the messaging service topology to be a client except the message server—the
entity to which every client connects and thereby provides connection services
to every other client.

Important See the SonicMQ Release Notes in the docs folder of your SonicMQ
installation to get detailed information about how to get the JVM that is
appropriate for your platform, operating system, database, and toolset.
SonicMQ Programming Guide 25

Chapter 1: Overview
The SonicMQ communication layer abstracts developers from the plumbing of
the underlying network, freeing them to concentrate on constructing business
logic in Java applications.

The SonicMQ Message Server in Figure 1 goes by different names under
some circumstances. As the richness of the complete messaging architecture
unfolds, you will see that the message server can join with other messaging
servers to form clusters. The clusters and standalone message servers are
nearly equivalent when looked at as routing nodes. Within SonicMQ, the
message server is often called a broker.

SonicMQ Is a JMS Provider
The components that are needed to implement and manage a JMS application
are supplied by the JMS provider. This includes, as shown in Figure 2, the
JMS Client API and the SonicMQ Client Run Time accessed from within the
client application, the communications layer between the client and the
message server architecture—repositories (message, security, and

Figure 1. Message Server Is a Hub for SonicMQ Client Applications

Message
Server

Client
Application

F

Client
Application

C

Client
Application

A

Client
Application

B

Client
Application

E

Client
Application

D

26 SonicMQ Programming Guide

Programming Concepts
configuration), and administrative tools for managing clusters, security,
administered objects, and the message servers.

SonicMQ Messaging Models
There are two messaging models (sometimes referred to as domains) in
SonicMQ. When a connection is created between a client and a message server,
the requested messaging model is declared. The connection is dedicated to the
selected messaging model:

n Point-to-Point (PTP) — A JMS domain where the producer of a message
sends a message to a specified static queue at a message server. While
many prospective recipients could be listening to or even browsing the
queue, when a receiver elects to accept a queued message, the message is
considered delivered. No other recipient will thereafter be able to access
that message. PTP is a one-to-one form of communication.

n Publish and Subscribe (Pub/Sub) — A JMS domain where the producer
of a message sends the message to a specified topic at the message server.
Pub/Sub is referred to as one-to-many or broadcast because there could be
zero to many subscribers for a given topic who will each receive the one
message that was sent.

Figure 2. Client Application Using the SonicMQ JMS Provider

Client Application

JMS Client API

SonicMQ Client
Run Time

C
O
N
N
E
C
T
I
O
N

Message
Server

S
E
S
S
I
O
N

JMS Provider
SonicMQ Programming Guide 27

Chapter 1: Overview
SonicMQ Objects and Their Relationships
The view presented in Figure 3 is derived from the SonicMQ Explorer, a
graphical client that handles administrative tasks, one of which is examining
objects, attributes, and events in SonicMQ. The SonicMQ Explorer will be
called on to help you visualize the programming mechanisms described in this
guide. See the SonicMQ Installation and Administration Guide for more about
the SonicMQ Explorer.

Figure 3 presents the primary messaging objects in SonicMQ and their context:

n Clients create Connections to Message Servers under one of the two JMS
domains, Point-to-Point (PTP) or Publish and Subscribe (Pub/Sub).

n Clients create Sessions within an established Connection.

n Clients create Destinations.
For a Point-to-Point domain, the Destinations are Queues.

n Clients create Message Producers. For a Point-to-Point domain:

– Message Producers are Senders to Queues.

– Senders produce Messages to Queues.

n Clients create Message Consumers. For a Point-to-Point domain:

– Message Consumers are Receivers from Queues.

– Receivers consume Messages from Queues.

Figure 3. SonicMQ Object Relationships
28 SonicMQ Programming Guide

Programming Concepts
SonicMQ Object Model
Figure 4 describes the SonicMQ object model in terms of the objects in the
Point-to-Point paradigm.

Some examples of object relationships are:

n The QueueSession is created by the QueueConnection.

n The QueueSession inherits from the Session.

n The QueueSession creates the QueueSender, the Queue, the QueueReceiver,
and the TemporaryQueue.

n The MessageConsumer contains the MessageListener.

Figure 4. JMS Object Model for the Point-to-Point Domain
SonicMQ Programming Guide 29

Chapter 1: Overview
Connections and Sessions

An active connection to SonicMQ is a conduit for communication. Each
connection is a single point for all communications between the client
application and the message server.

While each connection between a client and a message server is a single,
synchronous communication, the application can use multiple sessions and
asynchronous listeners to minimize the risk of blocking situations where an
application is dedicated to waiting.

A connection is dedicated to only one of the messaging paradigms:

n Point-to-Point (PTP) — Messaging is one-to-one because only one
receiver will get the message. The principal PTP interfaces are shown in
Figure 5.

n Publish and Subscribe (Pub/Sub) — Messaging is one-to-many or
broadcast because there could be zero-to-many subscribers for a given
topic who will each receive the one message that was sent.
The principal Pub/Sub interfaces are shown in Figure 6.

Figure 5. Principal Interfaces for Point-to-Point

Figure 6. Principal Interfaces for Publish and Subscribe
30 SonicMQ Programming Guide

Programming Concepts
Producers and Consumers

Entities that create messages and then output the message are producers.
Entities that actively look for messages that are available are consumers.

The client application is the producer when:

n sending a message to a queue (PTP), or

n publishing a message to a topic (Pub/Sub)

The client application is the consumer when:

n receiving messages from a queue (PTP), or

n subscribing to a topic (Pub/Sub) where messages are published

A session can be both a producer and a consumer

To learn about the message server architecture and functionality, see the
SonicMQ Installation and Administration Guide.

Figure 7. Message Producers and Message Consumers
SonicMQ Programming Guide 31

Chapter 1: Overview
Quality of Service and Protection
Some messages are simple and transitory, and they are broadcast to prospective
recipients who might or might not be paying attention. These message might
contain information that is timely and important but not particularly
confidential. An example is stock quotes. The data is public information that is
considered valuable when it is disseminated promptly and verifiable when
significant risk might be associated with the information it carries. Here,
performance takes precedence.

Messages that represent the other extreme where the anticipated services and
protection are paramount include bank wire transfers, where encryption,
security, and logging processes are an integral part of mutually assured
confidence in the message. Communication that is certifiable, auditable,
consistent, and fully credentialed provides the quality of service and the quality
of protection that is expected. Performance is important, but not as an
alternative to quality.

All the SonicMQ message services and protection are available to both the PTP
and Pub/Sub messaging models.

The services and protection that are described in this guide—together with
some of the services controlled by the message server’s administrator—are
described in Table 3.
32 SonicMQ Programming Guide

Quality of Service and Protection
Table 3. Services and Protection Available in SonicMQ Messaging

Service Technique Process Reference

ENCRYPTED

Content is encrypted.

Independent
encryption
mechanisms.

Body is appended after it
has been encrypted,
providing assurance that a
message is protected even
if the connection is
insecure.

Private encryption methods
can be applied before the
message is presented to the
messaging-enabled
application.

SECURE TRANSPORT

Protocol is secure.

Connection
protocol parameter.

Parameter is set when
creating connection.

See the
“ConnectionFactory” on
page 93 for information
about choosing protocols.

See the SonicMQ
Installation and
Administration Guide for
information about
ConnectionFactories and
protocols.

AUTHENTIC
PRODUCER

Producer is accepted by the
security database.

Security enforced
through
authentication of
user name and
password at time of
connection.

If the Administrator
implemented the security
database, the administrator
sets up users, passwords,
and permissions.

See the SonicMQ
Installation and
Administration Guide for
information about
authentication and
authorization of producers
(PTP senders and Pub/Sub
publishers) and Access
Control Lists (ACLs).

AUTHORIZED
PRODUCER

Producer has permission to
produce is authorized to
produce to specified
destination.

Security enforced
through Access
Control Lists
(ACLs).

Administrator sets user
authorization to produce to
specific hierarchies of
destinations.
SonicMQ Programming Guide 33

Chapter 1: Overview
ACKNOWLEDGED
PRODUCER

Server acknowledges
receipt of messages from
producer.

Synchronous block
released after
receipt at server.

Automatic when sending a
message.

INTEGRITY

Server assures that the
message content delivered
to the consumer is the
identical to what the
producer sent.

Administrator
function. Message
body is digested and
the digest
accompanies the
message to enable
integrity checking.

Administrator setting on
destination is integrity.

See the SonicMQ
Installation and
Administration Guide for
information about
administrator settings for
privacy and integrity.

PRIVACY

Server assures that the
message is read only by the
intended consumers and
that the message has
integrity.

Administrator
function. Encrypts
the message
(privacy) before
creating a digest for
proof of integrity.

Administrator setting on
destination is privacy
(includes the services of
integrity).

PERSISTENT

Message persists in server
storage.

Delivery mode uses
the PERSISTENT
option.

Set option in publish or
send command. The
message server never
allows messages to be lost
in the event of a network or
system failure. Non-
persistent messages are
volatile in the event of a
server failure.

Table 3. Services and Protection Available in SonicMQ Messaging (continued)

Service Technique Process Reference
34 SonicMQ Programming Guide

Quality of Service and Protection
REDELIVERY

Consumer might receive
unacknowledged message
again.

Message server sets
JMSRedelivered
field to true when
service is
interrupted while
waiting for a
consumer
acknowledgement.

Must be checked and acted
on by the consumer.

See “Recover” on page 102.

See also “connect.start” on
page 107.

DURABLE INTEREST

Pub/Sub consumers,
Subscribers, can
establish a durable interest
in a topic with a message
server.

An application uses
the session method
create-

Durable-

Subscriber with
the parameters
topic,
subscriptionName,
messageSelector,
and a noLocal
option.

Server retains messages for
durable subscriber, using
the userName, and
clientID of the connection
plus the
subscriptionName to
index the subscription.

Note that NON_PERSISTENT
messages are still at risk in
the event of server failure.
Note also that messages
expire normally even if
durable subscriptions are
unfulfilled.

See “Reliable, Persistent,
and Durable Messaging
Samples” on page 60. See
also “Durable Subscriber”
on page 196.

PRIORITY

Messages sent with higher
priority can be expedited.

Producer sets the
message header
value JMSPriority
to an int value 0
through 9 where 4 is
the default

Server checks message
priority and handles
appropriately. Priority
values of 5 through 9 are
expedited.

See also “Message
Management by the
Message Server” on
page 142.

Table 3. Services and Protection Available in SonicMQ Messaging (continued)

Service Technique Process Reference
SonicMQ Programming Guide 35

Chapter 1: Overview
EXPIRATION

Messages are available
until the expiration time.

Based on GMT.

Producer sets time-
to-live value, then
includes the value at
moment of
publish/send.

Server receives message
with JMSExpiration date-
time set to the
JMSTimestamp date-time
plus the time-to-live
value.

See “Create the Message
Type and Set Its Body” on
page 139.

See also “Message
Management by the
Message Server” on
page 142.

REQUEST MECHANISM

Producer can request a
reply from the consumer.

Message header
field JMSReplyTo
has a string value
that indicates the
topic where a reply
is expected. The
JMSCorrelationID
can indicate a
reference string
whose uniqueness
is managed by the
producer.

Carried through to
consumer, but the
consumer application must
be coded to look at the
JMSReplyTo field and then
act.

Producer could be
synchronously blocked
waiting for reply message
at temporary topic.

TopicRequestor object
creates a temporary topic
for the reply.

See “Request and Reply
Samples” on page 72.

See also “Session Objects”
on page 103 and “Reply-to
Mechanisms” on page 153.

AUTHENTIC
CONSUMER

Consumer is accepted by
the security database.

Security enforced
through
authentication of
username and
password at time of
connection.

Administrator initialized
and started security
database at server;
administrator sets up user
and password.

See the SonicMQ
Installation and
Administration Guide for
more about authentication
and authorization of
consumers (PTP receivers
and Pub/Sub subscribers)
and Access Control Lists
(ACLs).

AUTHORIZED
CONSUMER

Consumer is authorized to
consume from a specified
destination.

Security enforced
through ACLs.

Administrator sets user
authorization to specific
hierarchies of destinations.

Table 3. Services and Protection Available in SonicMQ Messaging (continued)

Service Technique Process Reference
36 SonicMQ Programming Guide

Quality of Service and Protection
ACKNOWLEDGED
CONSUMPTION

Consumer acknowledges
receipt to server.

Acknowledgement
type for the session
was set when the
session was created.

Functions automatically to
perform the specified type
of acknowledgement for all
messages consumed in that
session.

See “Acknowledgement
Mode” on page 101.

Client acknowledges
receipt of received
messages when session
parameter is
CLIENT_ACKNOWLEDGE then
when client calls
acknowledge()

Explicit call by
consumer.

Manual.

REPLY MECHANISM

Consumer replies to the
producer’s request for
reply.

Consumer reacts to
a JMSReplyTo
request by
producing a
message to the topic
name in the
JMSReplyTo field.

Programmatic procedure
where the consumer
publishes a reply. The
content of the reply is not
specified. Typically the
JMSCorrelationID would
be replicated.

See “Request and Reply
Samples” on page 72. See
also “Session Objects” on
page 103 and “Reply-to
Mechanisms” on page 153.

DEAD MESSAGE
QUEUE

Sender/publisher can set
properties to either or both
re-enqueue undelivered
messages and send an
administrative notice.

Set the properties
that tell the message
server to provide
special handling
when the message is
declared dead.

Programmatic procedure
where the sender chooses
to set the property
JMS_SonicMQ

_preserveUndelivered
to true to store the dead
message until handled and
to set the property
JMS_SonicMQ_

notifyUndelivered to
true to send a notification
to the message server’s
administrator.

See “Message Properties”
on page 127. See also
Chapter 7, “Dynamic
Routing Architecture.”

Table 3. Services and Protection Available in SonicMQ Messaging (continued)

Service Technique Process Reference
SonicMQ Programming Guide 37

Chapter 1: Overview
SonicMQ Clients
There a several types of SonicMQ clients. The client Java archives are copied
in libraries to enable bridges, proxy servers, servlet engines, and JavaBeans.
This book presents techniques and interfaces to enable class files to run in a
console session as well as ActiveX/COM clients and Java Applet clients.

ActiveX/COM Client
SonicMQ can work as an ActiveX/COM control, providing developers with an
interface that makes the SonicMQ JMS API available in popular Windows
development environments.

Using JMS functionality delivers the advantages of messaging to both new and
established applications through familiar developer environments such as
Visual Studio and run-time environments such as Microsoft Office, Internet
Explorer, and Lotus® Notes—to name a few.

See Chapter 11, “Accessing SonicMQ Through ActiveX/COM Clients,” for
more information.

Java Applet Client
SonicMQ can work in a Java applet running in a browser context to invoke
classes that implement JMS functionality.
38 SonicMQ Programming Guide

Chapter 2 Examining the SonicMQ Samples
About SonicMQ Samples
The samples provided with the SonicMQ product, first explored in the Getting
Started with SonicMQ manual, are now viewed in terms of their functionality.
These samples demonstrate programmatic interaction between applications.

When you run the samples, consider that the standard input and standard output
displayed in the console could be data flows to and from a whole range of
applications and Internet-enabled devices such as:

n Application software for accounting, auditing, reservations, online
ordering, credit verification, medical records, and supply chains

n Information appliances such as beepers, cell phones, fax machines, and
Personal Digital Assistants (PDAs)

n Real-time devices with embedded controls such as monitor cameras,
medical delivery systems, climate control systems, and machinery

n Distributed knowledge bases such as collaborative designs, service
histories, medical histories, and workflow monitors

Note The samples in this chapter assume that you are not using a security database,
which is the default SonicMQ setup. Exercises are provided at the end of the
chapter that detail how to reconfigure the database for security and how to enter
the user names and password that security will demand. Without security, user
names in the samples are arbitrary strings. Still, the names cannot contain the
reserved characters, period (.), pound (#), dollar ($), or asterisk (*).
SonicMQ Programming Guide 39

Chapter 2: Examining the SonicMQ Samples
SonicMQ Samples
The SonicMQ samples present basic features of SonicMQ, categorized as
follows:

n Chat and Talk Samples — The basic messaging functions are presented
by producing and consuming messages in both domains:

– Talk (PTP), Chat (Pub/Sub)

n Transaction Samples — Transactions are shown in both domains in
application windows that reveal how the producers and consumers of the
transacted messages see the messages flow:

– TransactedTalk (PTP), TransactedChat (Pub/Sub)

n Additional Message Types — To simplify input, the preceding examples
are Text messages. The following samples display two other common
message types in the messaging domains:

– XMLMessages — XMLTalk (PTP), XMLChat (Pub/Sub)

– MapMessages — MapTalk (PTP)

n Message Traffic Monitors — These samples provide views of message
traffic in ways that are characteristic of their messaging domain:

– Messages on the Queue — QueueMonitor (PTP)

– Messages to Subscribers — MessageMonitor (Pub/Sub)

n Reliable, Persistent, and Durable Messaging — These samples
demonstrate techniques that can enhance the Quality of Service. Reliable
connections show how to keep connections active in both domains.
Persistent storage shows how the message server’s PTP safety net, the
Dead Message Queue, can trap undelivered messages. Durable
subscription shows how a Pub/Sub subscriber can have messages held for
them. The samples in this category are:

– Reliable Connection — ReliableTalk (PTP), ReliableChat (Pub/Sub)

– Persistent Storage — DeadMessages (PTP)

– Durable Subscription — DurableChat (Pub/Sub)
40 SonicMQ Programming Guide

SonicMQ Samples
n Request and Reply — These transacted examples show the mechanisms
for the producer requesting a reply and the consumer fulfilling that request:

– Originator’s Request — Requestor (PTP, Pub/Sub)

– Receiver’s Response — Replier (PTP, Pub/Sub)

n Selection and Wildcards — The message selector samples use SQL
syntax to qualify the messages that are visible to an application while the
HierarchicalChat sample uses template characters to subscribe to a set of
topics that is qualified when messages are published:

– Message Selection — SelectorTalk (PTP), SelectorChat (Pub/Sub)

– Wildcards — HierarchicalChat (Pub/Sub)

n Test Loop — This sample makes it easy to get a look at how quickly
messages can be sent and received in a test loop:

– Queue Test Loop — QueueRoundTrip (PTP)

Other Samples Available
There are several other SonicMQ samples that require special setup to explore
them. These samples are described in other SonicMQ documents:

n ActiveX/COM — The ActiveX/COM sample, Chat.frm, requires the
Windows Visual Basic development and run-time environments plus a few
setup steps. See Chapter 11, “Accessing SonicMQ Through
ActiveX/COM Clients,” for more information.

n Dynamic Routing Queues — When routing queues are established across
message servers, messages are dynamic. The GlobalTalk (PTP) sample
demonstrates dynamic routing queues once you have an appropriate setup.
See the SonicMQ Deployment Guide for information about this sample.

n Management API — The exposed administrative methods make it
possible to create applications that perform management functions. There
are several samples of management applications packaged with SonicMQ.
To see how to run these samples, see Chapter 10, “Management API.”
SonicMQ Programming Guide 41

Chapter 2: Examining the SonicMQ Samples
Extending the Samples
After reviewing the sample applications, you are encouraged to explore some

variations:

n Change the source files — You can edit the source files, compile the
changed file, and then run the applications again to observe the effect.
Some ideas are presented as exercises:

– Using a common topic for two samples.

– Observing how different messaging behaviors affect round-trip times.

– Modifying the MapMessage to use other data types.

– Modifying the XMLMessage to show more data.

n Initializing the message server database for security — The impact of
security is apparent throughout the samples when user access and
destination access are controlled by administrated security.

How Security Impacts Client Activities

Security provides the high quality of protection and access by applications that
is expected in enterprise applications. The section “Quality of Service and
Protection” on page 32 presents an overview of the features and functions of
security. But unless the message server database initializes to manage security,
security is not enabled.

The samples in this chapter do not initialize the security database so that you
can begin exploring the messaging features without having to first set up
security objects for:

n User authentication — When security is activated, only defined
usernames are allowed to connect to the message server.

n User authorizations — The administrator can control a user’s ability to
perform actions such as subscribing to a topic and reading from queues.

“Extending the Samples” on page 79 explores what you need to do to
implement a SonicMQ sample under a secure environment.
42 SonicMQ Programming Guide

Running the SonicMQ Samples
Running the SonicMQ Samples

Starting the Message Server Under Windows, Linux, or UNIX
Be sure the SonicMQ message server is running before executing any of the
SonicMQ client samples.

➤ To start the message server process from the Windows Start menu:

� Choose Start > Programs > Progress SonicMQ > Start Broker.

➤ To start the message server process from a Linux or UNIX console
window:

� In a new console window set to the SonicMQ install directory, type
startbr.sh and press Enter.

The message server starts. The console window is dedicated to the process and,
when running, displays:
SonicMQ Broker started, now accepting tcp connections on port 2506...

The samples default to localhost:2506—a message server using port 2506 on
the same system, localhost. If you use a different host or port, you need to
specify the host:port parameter when you start each sample; for example:

..\..\SonicMQ Chat -u Market_Maker -b Eagle:2345

Note If this is the first time you are running SonicMQ, you should not have to set up
and initialize the database or adjust the message server’s broker.ini file. See
the SonicMQ Installation and Administration Guide for broker.ini settings.

Important You can minimize the console window. Closing the window, however, stops the
message server.
SonicMQ Programming Guide 43

Chapter 2: Examining the SonicMQ Samples
Client Console Windows
Each application instance is intended to run in its own console window with the
current path in the selected sample directory. There are conventions that you
must follow depending on the platform:

n Windows — The scripts defer to Windows conventions.

n Linux and UNIX platforms — Instead of using .bat files, use the .sh file
at the same location. Substitute forward slash (/) wherever back slash (\)
is used as a path delimiter. Any sourcing is handled in the shell scripts.

Using the Sample Scripts
A universal script handler is installed at the Samples directory level. This script,
SonicMQ.bat (.sh under Linux and UNIX), does the following:

n Points to the Java executable used by SonicMQ

n Sets the CLASSPATH for the Java runtime and SonicMQ .jar files.

n Invokes the executable, its parameters, and a list of variables

The script is suitable for the basic samples provided, but you might have to
adjust it if you use long parameter lists. Standard invocation of the script from
a sample folder is two levels down.

Note Consider all text to be case-sensitive. While there may be some platforms and
names where case is not distinguished, it is good practice to always use case
consistently.

Important When you modify the original sample files, you can use the techniques
described above to set up a universal compiler script. Replicate and modify
SonicMQ.bat (.sh under Linux and UNIX) to something like SonicMQ_javac.bat
(.sh under Linux and UNIX) and then confirm that javac.exe (or the path to
your preferred compiler) is in the script.
44 SonicMQ Programming Guide

Running the SonicMQ Samples
Using the SonicMQ Explorer
You can use the SonicMQ Explorer to see the parameters and action events
available in SonicMQ.

➤ To start the SonicMQ Explorer under Windows:

� Choose Start > Programs > Progress SonicMQ > Explorer.

The SonicMQ Explorer window opens.

➤ To start the SonicMQ Explorer under UNIX:

� In a console window positioned in the SonicMQ working directory, type
explorer.sh and press Enter.

The SonicMQ Explorer window opens.

➤ To review or set up the default queues in the SonicMQ Explorer:

2. Click on Message Brokers in the Explorer tree.

3. Enter the Broker Host you are using, typically localhost:2506.

4. Enter any Connect ID text such as Conn1 then choose Connect.

5. Click on the message server you just connected to: localhost:2506:Conn1.

6. Click on Queues, then verify that the queues are those in Figure 8.

See the SonicMQ Installation and Administration Guide for details about the
SonicMQ Explorer and maintaining queues.

Figure 8. Using the Explorer to Maintain the Default Queues
SonicMQ Programming Guide 45

Chapter 2: Examining the SonicMQ Samples
Chat and Talk Samples
The fundamental differences between Pub/Sub and PTP are presented in the
Chat and Talk samples.

Chat Application (Pub/Sub)
In the Chat application, whenever anyone sends a text message to a given topic,
all active applications running Chat receive that message as subscribers to that
topic. This is the most basic form of publish and subscribe activity.

➤ To start Chat sessions:

1. Open a console window to the TopicPubSub\Chat folder, then enter:
..\..\SonicMQ Chat -u OTC_Ticker

2. Open another console window to the TopicPubSub\Chat folder, then enter:
..\..\SonicMQ Chat -u Market_Maker

➤ To Chat:

1. In one of the Chat windows, type any text and then press Enter. The text is
displayed in both Chat windows, preceded by the Chat name that initiated
that text.

2. In the other Chat window, type text and then press Enter. The text is
displayed in both Chat windows preceded by that Chat name.

The Chat sample shows inter-application asynchronous communications. If
subscribers miss some of the messages, they just pick up the latest whenever
they re-connect to the message server. Nothing is retained and nothing is
guaranteed to be delivered, so throughput is fast.
46 SonicMQ Programming Guide

Chat and Talk Samples
Talk Application (PTP)
In the Talk application, whenever a text message is sent to a given queue, all
active Talk applications are waiting to receive messages on that queue, taking
turns as the sole receiver of the message at the front of the queue.

➤ To start Talk sessions:

The first Talk session receives on the first queue and sends to the second queue
while the other Talk session does the opposite.

1. Open a console window to the QueuePTP\Talk folder, then enter:
..\..\SonicMQ Talk -u Accounting -qr SampleQ1 -qs SampleQ2

2. Open another console window to the QueuePTP\Talk folder, then enter:
..\..\SonicMQ Talk -u Orders -qr SampleQ2 -qs SampleQ1

➤ To Talk:

1. In the Orders window, type any text and then press Enter.
The text is displayed in only the Accounting window.

2. In the Accounting window, type text and then press Enter.
The text is displayed in only the Orders window.

Reviewing the Chat and Talk Samples
You can extend your exploration of the samples by opening several windows:

n Chat — If you run several Chat windows, every window will display the
message, including the publisher. You can modify the source code to
suppress delivery of a Chat message to its publisher. That Pub/Sub
broadcast characteristic could be stopped with a noLocal parameter on the
createSubscriber method. Every subscriber would get everyone else’s
messages except their own.

n Talk — If you run several Talk windows, you will still see only one
receiver for any message. Under Talk (PTP), there is only one receiver.
Start two more Accounting windows (Accounting1 and Accounting2) then
use the Orders window to send 1 through 9, each as a message
(1 Enter, 2 Enter...). Notice how the receivers take turns receiving the
messages.
SonicMQ Programming Guide 47

Chapter 2: Examining the SonicMQ Samples
Samples of Additional Message Types
Most of the SonicMQ samples use the TextMessage type because they accept
user input in the console windows. Additional message type samples offer
some variation from the TextMessage to kindle your interest in other message
types while still using text input.

XML Messages
XML data definitions with tagged text are rapidly gaining favor as a technique
for communicating structured sets of defined data records or transacted
message sets over the Internet. The XML parser included with SonicMQ, the
IBM® XML Parser for Java Edition, interprets the data using Document Object
Model Element nodes. The message receiver window echoes its translation of
the XML-tagged code derived from your text entry. For example, if you (as the
sender Catalog_Update) enter Item One, the XML-tagged code is packaged as
follows in the sample source file XMLChat.java:
{
progress.message.jclient.XMLMessage xMsg =
((progress.message.jclient.Session) pubSession).createXMLMessage();
StringBuffer msg = new StringBuffer();
msg.append ("<?xml version=\"1.0\"?>\n");
msg.append ("<message>\n");
msg.append (" <sender>" + username + "</sender>\n");
msg.append (" <content>" + content +s + "</content>\n");
msg.append ("</message>\n");
xMsg.setText(msg.toString());
publisher.publish(xMsg);

}

The tagged message text is well-formed XML:
<?xml version="1.0"?>

<message>
<sender>"Catalog_Update"</sender>
<content>"Item One"</content>

</message>

When the message is received, the embedded XML parser is invoked. The
message is interpreted to display the DOM nodes:

ELEMENT: message
 |--NEWLINE
 +--ELEMENT: sender
 |--TEXT_NODE: Catalog_Update
 |--NEWLINE

+--ELEMENT: content
 |--TEXT_NODE: Item One

 |--NEWLINE
48 SonicMQ Programming Guide

Samples of Additional Message Types
XML Messages (PTP)

➤ To start PTP XMLTalk sessions:

The first XMLTalk session receives on the first queue and sends to the second
queue while the other session does the opposite.

1. Open a console window to the QueuePTP\XMLTalk folder, then enter:
..\..\SonicMQ XMLTalk -u QCatalog_Update -qr SampleQ1 -qs SampleQ2

2. Open another console window to the QueuePTP\XMLTalk folder, then enter:
..\..\SonicMQ XMLTalk -u QLocal_Supplier -qr SampleQ2 -qs SampleQ1

➤ To send and receive PTP XMLMessages:

� In the QCatalog_Update window, type text and then press Enter.

XML Messages (Pub/Sub)

➤ To start Pub/Sub XMLChat sessions:

1. Open a console window to the TopicPubSub\XMLChat folder, then enter:
..\..\SonicMQ XMLChat -u Catalog_Update

2. Open another console window to the TopicPubSub\XMLChat folder, then
enter:
..\..\SonicMQ XMLChat -u Local_Supplier

➤ To produce and consume Pub/Sub XMLMessages:

� In the Catalog_Update window, type text and then press Enter.

Map Messages (PTP)
A Map message is a message type that transfers a collection of assigned names
and their respective values. The names and values are assigned by set methods
for the Java primitive data type of the value. The MapMessage name-value pairs
are sent in the message body.

For example:

mapMessage.setInt("FiscalYearEnd", 10)

mapMessage.setString("Distribution", "global")
SonicMQ Programming Guide 49

Chapter 2: Examining the SonicMQ Samples
mapMessage.setBoolean("LineOfCredit", true)

You can extract the data from the received message in any order.
Use a get method to coerce a data value into an acceptable data type.

For example:

mapMessage.getShort("FiscalYearEnd")

mapMessage.getString("Distribution")

mapMessage.getString("LineOfCredit")

➤ To start MapTalk sessions:

The first MapTalk session receives on the first queue and sends to the second
queue, while the other session does the opposite:

1. Open a console window to the QueuePTP\MapTalk folder, then enter:
..\..\SonicMQ MapTalk -u QAccounting -qr SampleQ1 -qs SampleQ2

2. Open another console window to the QueuePTP\MapTalk folder then enter:
..\..\SonicMQ MapTalk -u QAuditing -qr SampleQ2 -qs SampleQ1

➤ To send and receive MapMessages:

� In the QAccounting window, type text and then press Enter.

The message sender packages two items: the username as the String sender and
the text input into a String named content as shown in the source code of the
sample MapTalk.java:

javax.jms.MapMessage msg = sendSession.createMapMessage();

msg.setString("sender", username);

msg.setString("content", s);

The message receiver casts the message as a MapMessage. If that is unsuccessful,
MapTalk reports that an invalid message arrived. The MapMessage is decomposed
and displayed as shown in the source code of the sample MapTalk.java:

String sender = mapMessage.getString("sender");

String content = mapMessage.getString("content");

System.out.println(sender + ": " + content);
50 SonicMQ Programming Guide

Samples of Additional Message Types
Reviewing the Additional Message Type Samples
In review, these samples show:

n The message type characteristics are identical in PTP and Pub/Sub.

n These messages are limited to capturing a single chunk of text in the
console window.

n These messages use the instanceof operator to identify and cast the
message into an XMLMessage or a MapMessage.

You could modify the source code of these samples to:

n Create a table of XML data that forms an XMLMessage.

n Set some map values to Java primitives in the MapMessage and then get
the map values, coercing them into acceptable data types.

See the exercises in “Extending the Samples” on page 79 that describe these
changes. See also “Message Type” on page 120.
SonicMQ Programming Guide 51

Chapter 2: Examining the SonicMQ Samples
Message Traffic Monitor Samples
These samples each open GUI windows that provides a scrolling array of its
contents. The nature of the two monitors underscores fundamental differences
between the Publish and Subscribe messaging model and the Point-to-Point
messaging model. Table 4 shows these differences.

Table 4. Differences Between QueueMonitor and MessageMonitor

QueueMonitor MessageMonitor

What messages
are displayed?

Undelivered. Delivered.

When does the
display update?

When you click the Browse
Queues button, the list is
refreshed.

When a message is published
to a subscribed topic, it is
added to the displayed list.

When does the
message go
away?

When the message is
delivered (or when it
expires.)

When the display is cleared
for any reason.

What happens
when the
message server
and monitor are
restarted?

Listed messages marked
PERSISTENT are stored in the
message server database.
They are redisplayed when
the message server and the
QueueMonitor restart and
then choose to browse
queues.

As messages are listed at the
moment they are delivered,
there are no messages in the
MessageMonitor until new
deliveries occur.
52 SonicMQ Programming Guide

Message Traffic Monitor Samples
QueueMonitor Application (PTP)
The QueueMonitor moves through a queue, listing the active messages it
reveals as it traverses the queue.

➤ To start QueueMonitor:

1. Open a console window to the QueuePTP\QueueMonitor folder.

2. Type ..\..\SonicMQ QueueMonitor and press Enter.

➤ To start a Talk session without a receiver:

1. Open a console window to the QueuePTP\Talk folder.

2. Type ..\..\SonicMQ Talk -u RFP -qs SampleQ1 and press Enter.

➤ To enqueue messages and then browse the queue:

1. In the Talk window, type some text and then press Enter. Repeat a few
times.

2. In the QueueMonitor Java window, click Browse Queues to scan the queues
and display their contents. The QueueMonitor appears similar to the
window shown in Figure 9.

Figure 9. QueueMonitor Window
SonicMQ Programming Guide 53

Chapter 2: Examining the SonicMQ Samples
➤ To receive the queued messages:

The messages that are waiting on the queue will get delivered to the next
receiver who chooses to receive from that queue.

1. In a console window, press Ctrl+C. The application stops.

2. Type ..\..\SonicMQ Talk -u FlushQ1 -qr SampleQ1 and press Enter.

The enqueued messages are delivered to the queue receiver.

➤ To stop the sample:

1. In the console window, press Ctrl+C. The application stops.

2. In the QueueMonitor window, click the close button.

MessageMonitor Application (Pub/Sub)
An example of a supervisory application with a graphical interface is
MessageMonitor where the application listens for any message activity—by
subscribing to all topics in the topic hierarchy—and then displays each
message in its window.

➤ To start MessageMonitor:

1. Open a console window to the TopicPubSub\MessageMonitor folder. and
then enter: ..\..\SonicMQ MessageMonitor
The MessageMonitor Java window opens.

➤ To run a Chat session to send messages to the MessageMonitor

1. Open a console window to the TopicPubSub\Chat folder, then enter:
..\..\SonicMQ Chat -u Chatter

Warning If you do not perform this procedure the stored messages will be received in
the next application that receives on that queue.
54 SonicMQ Programming Guide

Message Traffic Monitor Samples
2. Type any text and then press Enter. The text is displayed in the Chat
windows, and the MessageMonitor window. If you send more messages,
each one appends to the list displayed, as shown in Figure 10.

3. Click the Clear button. The list is emptied.

Figure 10. Message Monitor Window
SonicMQ Programming Guide 55

Chapter 2: Examining the SonicMQ Samples
Transaction Samples
Transacted messages are a group of messages that form a single unit of work.
Much like an accounting transaction made up of a set of balancing entries, a
messaging example might be a set of financial statistics where each entry is a
completely formed message and the full set of data comprises the update.

A session is declared as transacted when the session is created. While
producers—PTP Senders and Pub/Sub Publishers—produce messages as
usual, the messages are stored at the message server until the message server is
notified to act on the transaction by delivering or deleting the messages. The
programmer must determine when the transaction is complete:

n Call the method to commit the set of messages. The session commit method
tells the message server to sequentially release each of the messages that
have been cached since the last transaction. In this sample, the commit
case is set for the string OVER.

n Call the method to roll back the set of messages. The session rollback
method tells the message server to flush all the messages that have been
cached since the last transaction ended. In this sample, the rollback case is
set for the string OOPS!.

TransactedTalk Application (PTP)

➤ To start TransactedTalk sessions:

The first TransactedTalk session receives on the first queue and sends to the
second queue, while the other session does the opposite.

1. Open a console window to the QueuePTP\TransactedTalk folder, then enter:
..\..\SonicMQ TransactedTalk -u Accounting -qr SampleQ1 -qs SampleQ2

2. Open another console window to the QueuePTP\TransactedTalk folder,
then enter:
..\..\SonicMQ TransactedTalk -u Operations -qr SampleQ2 -qs SampleQ1

➤ To build a PTP transaction and commit it:

1. In a TransactedTalk window, type any text and then press Enter.
Notice that the text is not displayed in the other TransactedTalk window.

2. Type more text in that window and then press Enter.
The text is still not displayed in the other TransactedTalk window.
56 SonicMQ Programming Guide

Transaction Samples
3. Type OVER and then press Enter. All the messages you sent to a queue are
delivered to the receiver. Subsequent entries will form a new transaction.

➤ To build a PTP transaction and rolling it back:

1. In one of the TransactedTalk windows, type text and then press Enter.

2. Type more text in that window and then press Enter.

3. Type OOPS! and then press Enter. Nothing is published.

All messages are removed from the message server. Subsequent messages will
form a new transaction. Any messages you re-send will be re-delivered.

TransactedChat Application (Pub/Sub)

➤ To start Pub/Sub TransactedChat sessions:

1. Open a console window to the TopicPubSub\TransactedChat folder, then
enter: ..\..\SonicMQ TransactedChat -u Sales

2. Open another console window to the TopicPubSub\TransactedChat folder,
then enter: ..\..\SonicMQ TransactedChat -u Audit

➤ To build a Pub/Sub transaction and commit it:

1. In the Sales window, type any text and then press Enter.
Notice that the text is not displayed in the Audit window.

2. Type more text in the Sales window and then press Enter.
The text is still not displayed in the Audit window.

3. Type OVER and then press Enter. All of the messages now display in
sequence in the Audit window.

All of the lines you had published to a topic are delivered to subscribers.
Subsequent entries will form a new transaction.

➤ To build a Pub/Sub transaction and roll it back:

1. In the Sales window, type text and then press Enter.

2. Type more text in that window and then press Enter.

3. Type OOPS! and then press Enter. Nothing is published.

All messages are removed from the message server. Subsequent entries will
form a new transaction. Any messages you resend will be redelivered.
SonicMQ Programming Guide 57

Chapter 2: Examining the SonicMQ Samples
Reviewing the Transaction Samples
In review, the transaction samples show:

n The transaction scope is between the client in the JMS session and the
message server. When the message server receives commitment, the
messages are placed onto queues or topics in the order in which they were
buffered but with no transaction controls. Message delivery is normal:

– PTP Messages — The order of messages in the queue is maintained
with adjustments for priority differences but there is no guarantee
that—when multiple receivers are active on the queue—a
QueueReceiver will receive one or more of the sender’s transacted
messages.

– Pub/Sub Messages — Messages are delivered in the order entered in
the transaction yet influenced by the priority setting of these and other
messages, the use of additional receiving sessions, and the use of
additional or alternate topics. The messages are not delivered as a
group.

n Transactions are a set of messages that is complete only when a command
is given. As an alternative, message volume could be reduced by packaging
sets of messages. For example, an XML message enables the publisher to
send a package of messages and the subscriber to interpret the set of
packaged entries as a single message. See the XMLChat example for details.

n While most of the samples use two sessions—a producer session to listen
for keyboard input and send messages, and a consumer session to listen for
messages and receive them—the transacted samples set only the producer
session as transacted so that committing or rolling back impacts only the
sent messages.

Changing the receiver behavior has no real effect on non-durable Pub/Sub
messages but causes an interesting behavior in PTP: When you rollback
receipt of messages, the message listener sees the messages again and then
simply receives them again. Rolling back a transacted consumer session
causes the messages to be re-delivered.
58 SonicMQ Programming Guide

Transaction Samples
You can explore this behavior by modifying TransactedTalk.java to set the
receive session to be transacted, like this:

receiveSession = connect.createQueueSession
(false,javax.jms.Session.AUTO_ACKNOWLEDGE);

Then follow the send session commit line and send session rollback line
with similar statements for the receive session like this:

sendSession.rollback();

receiveSession.rollback();

...

sendSession.commit();

receiveSession.commit();

Start the two sessions described in the TransactedTalk sample then run
QueueMonitor sample. Notice that whether you commit or rollback, no
messages stay in the queue. Stop the TransactedTalk sessions and the
refresh the queue monitor. Note that the messages sent since the last
commit were all reinstated in the queue.

For more information, see “Transacted Sessions” on page 102.
SonicMQ Programming Guide 59

Chapter 2: Examining the SonicMQ Samples
Reliable, Persistent, and Durable Messaging Samples
The preceding applications made the same, basic delivery promise:
If you are connected and receiving during the message’s lifespan, you could be
a consumer of this message.

One of the features of SonicMQ is the breadth of services that can be applied
to messaging to give just the right quality of service (QoS) for each type and
category of message.

There are programmatic mechanisms for:

n Increasing the chances that the client and message server are actively
connected

n Registering a Point-to-Point sender’s interest in routing messages that are
undeliverable to a dead message queue and sending notification events to
the administrator

n Registering a Pub/Sub subscriber’s interest in messages published to a
topic even when the subscriber is disconnected

The reliable, persistent, and durable messaging samples explore these features
of SonicMQ.

Reliable Connections
The ReliableConnection sample ensures the robustness of the JMS connection
by monitoring the connection for exceptions and re-establishing the connection
if it has been dropped.

Note The Reliable samples use an aggressive technique (CTRL+C) that emulates an
unexpected message server interruption.

An intentional shutdown invokes an administrative Shutdown function on the
message server. This function is a command in the Explorer tool and the Admin
tool. It is also part of the management API that you can review and explore in
the Shutdown sample presented in Chapter 10, “Management API.”
60 SonicMQ Programming Guide

Reliable, Persistent, and Durable Messaging Samples
In a Talk session, if the message server stopped and you sent a message you
would see:

Exception in thread "main" java.lang.NullPointerException

 at ... QueueSender.internalSend(QueueSender.java:343)

 at ... QueueSender.send(QueueSender.java:194)

 at Talk.talker(Talk.java:124)

 at Talk.main(Talk.java:287)

To ensure higher reliability, both reliable samples use a rich connection setup
routine for connection retries and Thread.sleep(CONNECTION_RETRY_PERIOD).

In addition, using the PERSISTENT deliveryMode option ensures that messages
are logged before they are acknowledged and are non-volatile in the event of a
message server failure. Consequently, as shown in Figure 11, the application
tries repeatedly to reconnect.

A unique SonicMQ feature monitors the heartbeat of the message server by
pinging the message server at a preset interval, letting the thread sleep for a
while but initiating reconnection if the message server does not respond. For
more information, see “Using Active Pings to Monitor the Health of the
Connection” on page 114.

ReliableTalk Application (PTP)

➤ To run the ReliableTalk sample:

1. Open a console window to the QueuePTP\ReliableTalk folder, then enter:
..\..\SonicMQ ReliableTalk -u AlwaysUp -qr SampleQ1 -qs SampleQ1

2. Type text and then press Enter. The text is displayed, preceded by the user
name that initiated that text. The message was sent from the client
application to the SampleQ1 queue on the message server and then returned
to the client as a receiver on that queue. The connection is active.
SonicMQ Programming Guide 61

Chapter 2: Examining the SonicMQ Samples
3. Stop the message server by pressing Ctrl+C in the message server window.
The connection is broken. The ReliableTalk application tries repeatedly to
reconnect, as shown in Figure 11.

4. Restart the message server by using its Windows Start menu command or
the startbr script. The ReliableTalk application reconnects.

ReliableChat Application (Pub/Sub)

➤ To run the ReliableChat sample:

1. Open a console window to the TopicPubSub\ReliableChat folder, then
enter:

..\..\SonicMQ ReliableChat -u AlwaysUp

2. Type text and then press Enter. The text is displayed, preceded by the user
name that initiated that text. The message was sent from the client
application to the message server and then returned to the client as a
subscriber to that topic. The connection is active.

3. Stop the message server by pressing Ctrl+C in the message server window.
The connection is broken. The ReliableChat application tries repeatedly to
reconnect.

4. Restart the message server by using its Windows Start menu command or
the startbr script. The ReliableChat application reconnects.

Figure 11. ReliableTalk Sample Trying to Reconnect
62 SonicMQ Programming Guide

Reliable, Persistent, and Durable Messaging Samples
Persistent Storage Application (PTP)
When a message is sent to a queue, the sender can take steps to assure that
messages sent are placed on the specified queue with some additional
requirements:

n By setting the message delivery mode to PERSISTENT, the message is logged
before the producer is acknowledged and is guaranteed to be retained in the
final message server’s message store until it is either acknowledged as
delivered or it expires.

n By setting the JMS_SonicMQ_preserveUndelivered message property to
true, if the message is for any reason undelivered, retain it.

n By setting the JMS_SonicMQ_notifyUndelivered message property to true,
send notice to the administrator of the server that manages the queue.

Every message server provides a dead message queue where messages
appropriately flagged are moved when they become expired or undeliverable
because a destination on that message server or another remote message server
puts message delivery into jeopardy.

The DeadMessages application demonstrates a viewer that looks at the dead
message queue. To set up this sample, the Explorer tool is used to create a
PERSISTENT message that has the properties that will let it become a dead
message promptly: a short time to live (expires in a few seconds), and a
property setting that indicates that this message should be persisted.

Note Dynamic routing exposes several other reasons a message could get enqueued
in the Dead Message Queue. In a variation of this sample, a message could be
unexpired yet become undeliverable because it is sent to a bad node (such as
BadNode::SampleQ1) or a bad destination (such as ::BadQ). See the
“Guaranteeing Messages” chapter in the SonicMQ Deployment Guide for
detailed examples of each reason code.
SonicMQ Programming Guide 63

Chapter 2: Examining the SonicMQ Samples
➤ To create a queued message that expires yet persists:

1. Choose Start > Programs > Progress SonicMQ > Explorer. The SonicMQ
Explorer window opens at its root level.

2. Click on Message Brokers in the Explorer tree. On the right panel:

2.1 Enter Broker Host localhost:2506.

2.2 Type Conn1 as the ConnectID.

2.3 Enter User Name Administrator and password Administrator.

2.4 Choose Connect.

3. In the Explorer tree, click on the message server you just connected to:
localhost:2506:Conn1.
On the right panel:

3.1 Choose the Queue session Type.

3.2 Type Sess1 for the Name of the new session.

3.3 Click Create.

4. In the Explorer tree, click on Senders. On the right panel:

4.1 Type SampleQ1 as the Queue name.

4.2 Click Create.

5. In the Explorer tree, click on the node you just created: Sender: SampleQ1.
On the right panel:

5.1 On the Body tab:

– Enter some text for the body of the message.

– In the tab’s Summary area, choose the Delivery Mode option
PERSISTENT and then enter a Time To Live value greater than zero,
yet brief, say 1000 — 1 second.

5.2 On the Properties tab:

– Choose the Property Name JMS_SonicMQ_preserveUndelivered.

– Enter the Property Value true then choose Set.
64 SonicMQ Programming Guide

Reliable, Persistent, and Durable Messaging Samples
– Choose the Property Name JMS_SonicMQ_notifyUndelivered. The
Property Value true is carried forward then choose Set.

5.3 Click Send.

The message will be enqueued on SampleQ1 for one second. If you had put
an active receiver on that queue before the message expired, you would see
that the message was listed in SampleQ1, awaiting receivers on that queue.
Then you would have taken it off the queue. That would have defeated
what we wanted to look at in the sample: A message that expires waiting
for a receiver.

Messages that have expired are not removed from the original queue until
they are examined by the message server and noted to be expired. The next
process uses the queue browser to notice that the message is expired so that
it is dequeued from SampleQ1 and re-enqueued in the dead message queue,
SonicMQ.deadMessage.

Note If you do not force expired messages to be reviewed, you can wait for a system
refresh to pass over the queues. Two settings in the broker.ini file control
periodic checks of queues for expired messages:
- ENABLE_DYNAMIC_QUEUE_CLEANUP=TRUE

- QUEUE_CLEANUP_INTERVAL=600 (in seconds, 10 minutes in this example).
SonicMQ Programming Guide 65

Chapter 2: Examining the SonicMQ Samples
➤ To browse the message queue to force action on expired messages:

1. Open a console window to the QueuePTP\QueueMonitor folder.

2. Type ..\..\SonicMQ QueueMonitor and press Enter. The QueueMonitor
window opens.

3. Click the Browse Queues button. No messages display.

Expired messages were examined and, with the appropriate properties set, are
transferred to the dead message queue. The property you set instructs the
message server to transfer the expired message to the Dead Message Queue,
placing it under administrative control with no expiration. The message must
now be explicitly flushed or dequeued.

➤ To see the Explorer view of the Dead Message Queue:

1. Continuing in the Explorer session where you logged in as Administrator,
choose Queues in the Explorer tree.

2. Select the Messages tab

3. Click the Refresh button.

4. Select the option to Include System Queues. The dead message queue,
SonicMQ.deadMessage, indicates that there is one message enqueued while
there are no messages in SampleQ1.
66 SonicMQ Programming Guide

Reliable, Persistent, and Durable Messaging Samples
➤ To start the DeadMessages browser sample:

1. Open a console window to the QueuePTP\DeadMessages folder.

2. Type ..\..\SonicMQ DeadMessages and press Enter.

3. The dead messages are listed in the DeadMessage browser window as this
example shows:

➤ To see the contents of the dead message:

The Explorer lets you look at messages in the Dead Message Queue (DMQ).

1. Open an Explorer session then set up a QueueSession and choose to be a
receiver on the system queue, SonicMQ.deadMessage.

2. Click on the item listed under Received Messages. The header fields
display as shown in the following Explorer widow:
SonicMQ Programming Guide 67

Chapter 2: Examining the SonicMQ Samples
3. Choose the Properties tab. The properties of the undelivered, expireed
message in the sample are those shown in this window excerpt:

The properties carry the original settings to preserve and notify when
undelivered. The undelivered timestamp indicates the time of dequeuing
into the DMQ. The reason code, 1, indicates that the message expired.

4. Choose the Body tab. The body is unchanged. It might appear like this:

A management application might clone the body into a new message to get the
message enroute around the reason for unsuccessful delivery.

While expiration is common to all messaging deployments, there are several
other reasons a messages could be in doubt or undeliverable in a dynamic
routing architecture.

See the SonicMQ Deployment Guide for information about the dead message
queue and the dynamic routing architecture.
68 SonicMQ Programming Guide

Reliable, Persistent, and Durable Messaging Samples
DurableChat Application (Pub/Sub)
When messages are published, they are delivered to all active subscribers.
Some subscribers register an enduring interest in receiving messages that were
sent while they were inactive. These durable subscriptions are permanent
records in the message server’s database.

Whenever a subscriber connects to the topic again (under the registered
username, subscriber name and client identifier) all undelivered messages to
that topic that have not expired will be delivered immediately. The
administrator can terminate durable subscriptions or a client can use the
unsubscribe method to close the durable subscription.

In an application, there are only a few changes to set up a subscriber as a
durable subscriber. Where Chat was coded as:

subscriber = subSession.createSubscriber(topic);

DurableChat is:

//Durable Subscriptions index on username, clientID, subscription name

//It is a good practice to set the clientID:

connection.setClientID(CLIENT_ID);

subscriber = subSession.createDurableSubscriber
(topic, "SampleSubscription");

As with ReliableChat, using the PERSISTENT delivery mode ensures that
messages are logged before they are acknowledged and are non-volatile in the
event of a message server failure.

Figure 12 shows what occurs when the subscriber requests an extra effort to
ensure delivery.
SonicMQ Programming Guide 69

Chapter 2: Examining the SonicMQ Samples
Figure 12. Sequence Diagram for the DurableChat Application

Message

YES

SubscriberPublisherConnection TopicSession

request connection

topic

acknowledge

subscriber name

NO

YES
Is the subscriber
session active?

Are there
messages waiting?

Server’s
Persistent
Data Store

consume
message

close connection

topic

name,
topic

Connection:
- Start

Message Server
process

Message:
- Publish to topic

Message:
- Listen (asynch)
- Consume

consume
message

Restart
Connection

Message:
- Durable Subscription
- Consume

Topic:
- Create Topic
- Create Publisher
- Create Subscription

Connection:
- New connection
- Set ClientId
- New session

Time
to

live

produce
message

topic
for

 durable
 subscribers

Connection
Factory

subscriber name,
topic if DURABLE

topic
70 SonicMQ Programming Guide

Reliable, Persistent, and Durable Messaging Samples
➤ To start DurableChat sessions:

1. Open a console window to the TopicPubSub\DurableChat folder, then enter:
..\..\SonicMQ DurableChat -u AlwaysUp

2. Open another console window to the TopicPubSub\DurableChat folder,
then enter:
..\..\SonicMQ DurableChat -u SometimesDown

3. In the AlwaysUp window, type text and then press Enter.
The text is displayed on both subscriber’s consoles.

4. In the SometimesDown window, type text and then press Enter.
The text is displayed on both subscriber’s consoles.

5. Stop the SometimesDown session by pressing Ctrl+C.

6. In the AlwaysUp window, send one or more messages.
The text is displayed on that subscriber’s console.

7. In the window where you stopped the DurableChat session, restart the
session under the same name.

When the DurableChat session re-connects, the retained messages are delivered
and then displayed.

While durable, the messages were not implicitly everlasting. The publisher of
the message sets a time-to-live parameter—a value that, when added to the
publication timestamp, determines the expiration time of the message. The
time-to-live value in milliseconds can be any positive integer. In this sample,
the time-to-live is 1,800,000 milliseconds (thirty minutes). Setting the value to
zero retains the message indefinitely.

Reviewing Reliable, Persistent, and Durable Messaging
The characteristics that made for a better Quality of Service provide their
benefits with modest overhead. The examples in this section can be combined
so that you create a reliable, persistent talk and a reliable, durable chat. The
source code of these samples can provide snippets that are readily transferable
into your applications.

There are many other facets to optimal QoS, including the various security,
encryption, access control, and transport protocols. For more information, see
the SonicMQ Installation and Administration Guide.
SonicMQ Programming Guide 71

Chapter 2: Examining the SonicMQ Samples
Request and Reply Samples
The advantages of loosely coupled applications call for special techniques
when it is important for the publisher to certify that a message was delivered in
either messaging domain:

n Point-to-Point — While a sender can see if a message was removed from
a queue, implying that it was delivered, there is no indication where it
went.

n Publish and Subscribe — While the publisher can send long-lived
messages to durable receivers and get acknowledgement from the message
server, neither of these techniques confirms that a message was actually
delivered or how many, if any, subscribers received the message.

A message producer can request a reply when a message is sent. A common
way to do this is to set up a temporary destination and header information that
the consumer can use to create a reply to the sender of the original message.

In both Request and Reply samples, the replier’s task is a simple data
processing exercise: standardize the case of the text sent—receive text and send
back the same text as either all uppercase characters or all lowercase
characters—then publish the modified message to the temporary destination
that was set up for the reply.

While request-and-reply provides proof of delivery, it is a blocking
transaction—the requestor waits until the reply arrives. While this situation
might be appropriate for a system that, for example, issues lottery tickets, it
might be preferable in other situations to have a formally established return
destination that echoes the original message and a correlation identifier—a
designated identifier that certifies that each reply is referred to its original
requestor.

The sample applications use JMS sample classes, TopicRequestor and
QueueRequestor. You should create the Request/Reply helper classes that are
appropriate for your application.

Note JMSReplyTo and JMSCorrelationID are used as a suggested design pattern
established as a part of the JMS specification. The application programmer
ultimately decides how these fields are used, if they are used at all.
72 SonicMQ Programming Guide

Request and Reply Samples
Request and Reply (PTP)
In the PTP domain, the requestor application can be started and even send a
message before the replier application is started. The queue holds the message
until the replier is available. The requestor is still blocked, but when the
replier’s message listener receives the message, it releases the blocked
requestor.The sample code includes an option (-m) to switch the mode between
upper and lowercase.

➤ To set up the PTP Request Reply sessions:

� Open two console windows to the QueuePTP\RequestReply folder.

➤ To start the PTP Requestor session:

� In one console window, enter:
..\..\SonicMQ Requestor -u QREQUESTOR

➤ To start the PTP Replier session:

� In the other console window, enter:
..\..\SonicMQ Replier -u QReplier

The default value of the mode is uppercase.

➤ To test a PTP request and reply:

� In the Requestor window, type AaBbCc and then press Enter.

The Replier window reflects the activity, displaying:
[Request] QRequestor: AaBbCc

The Replier does its operation (converts text to uppercase) and sends the
result in a message to the Requestor. The Requestor window gets the reply
from the Replier:
[Reply] Uppercasing-QRequestor: AABBCC
SonicMQ Programming Guide 73

Chapter 2: Examining the SonicMQ Samples
Request and Reply (Pub/Sub)

➤ To set up the Pub/Sub RequestReply sessions:

� Open two console windows to the TopicPubSub\RequestReply folder.

➤ To start the Pub/Sub Replier session:

� In one of the windows, type ..\..\SonicMQ Replier and press Enter.
The default value for mode will be used, uppercase.

➤ To start the Pub/Sub Requestor session:

� In the other window, type ..\..\SonicMQ Requestor and press Enter.

➤ To test a Pub/Sub request and reply:

� In the Requestor window, type AaBbCc and then press Enter.

The Replier window reflects the activity, displaying:
[Request] SampleReplier: AaBbCc

The replier does its operation (convert text to uppercase) and sends the
result in a message to the requestor. The requestor gets the reply from the
replier:
[Reply] Uppercasing-SAMPLEREQUESTOR: AABBCC

Reviewing the Request and Reply Samples
In review, these samples show:

n Request and reply mechanisms are very similar across domains.

n While there might be zero or many subscriber replies, there will be, at
most, one PTP reply.

n Using message header fields (JMSReplyTo and JMSCorrelationID) and the
requestor sample classes (javax.jms.TopicRequestor and
javax.jms.QueueRequestor) are suggested implementations for request-
and-reply behavior in JMS.

Important Start the replier before the requestor so that the Pub/Sub replier’s message
listener can receive the message and release the blocked requestor.
74 SonicMQ Programming Guide

Selection and Wildcard Samples
Selection and Wildcard Samples
While specific queues and topics provide focused content nodes for messages
that are of interest to an application, there are circumstances when the
programmer may want to qualify the scope of interest a consumer has in
messages much like a SQL WHERE clause.

Conversely there are circumstances where the specificity of having to declare
each topic of interest becomes slow and unwieldy. Because topic names can be
created as needed (assuming there are no security constraints), a subscriber
application may need to scan many topics.

These situations are contrasted in these samples:

n If you force too much traffic into a small number of destinations and then
use selector strings, performance takes a substantial hit in most
deployments.

n If you use a lot of topic names, SonicMQ’s hierarchical topic structure
bypasses a lot of message selector overhead. The ability to apply wildcards
to subscriptions can provide oversight by just subscribing to parent topic
nodes.

SelectorTalk Application (PTP)
In the SelectorTalk application, the application starts by declaring a selector
String-value that will be attached to the message as
PROPERTY_NAME=‘String_value’. The send and receive to alternate queues so
that they pass each other messages. The receive method has a selector string
parameter (-s). In PTP domains, all messages for a queue topic are filtered on
the message server and then the qualified messages are delivered to the
consumer.

➤ To start SelectorTalk sessions:

1. Open a console window to the QueuePTP\SelectorTalk folder, then enter
..\..\SonicMQ SelectorTalk -u AAA -s North -qr SampleQ1 -qs SampleQ2

2. Open another console window to the QueuePTP\SelectorTalk folder, then
enter:
..\..\SonicMQ SelectorTalk -u BBB -s South -qr SampleQ2 -qs SamplQ1
SonicMQ Programming Guide 75

Chapter 2: Examining the SonicMQ Samples
➤ To SelectorTalk:

1. In the AAA window, type any text and then press Enter. The message is
enqueued but there is no receiver. The BBB selector string does not see any
enqueued messages except those that evaluate to South.

2. Stop the BBB session by pressing Ctrl+C.

3. In that console window start a new session, changing the selector string:
..\..\SonicMQ SelectorTalk -u BBB -s North -qr SampleQ2 -qs Sample q1

The session starts and the message that was enqueued is immediately
received.

4. In the AAA window, again type any text and then press Enter. The message
is enqueued and the BBB selector string qualifies the message for delivery.

SelectorChat Application (Pub/Sub)
In the SelectorChat application, the application starts by declaring the String-
value that will be attached to the message as PROPERTY_NAME=‘String_value’.
The method for the subscription declares the sample’s topic, jms.samples.chat,
and the selector string (-s). In Pub/Sub domains, all messages for a subscribed
topic are delivered to the subscriber and then the filter is applied to decide what
will be consumed.

➤ To start SelectorChat sessions:

1. Open a console window to the TopicPubSub\SelectorChat folder, then
enter:
..\..\SonicMQ SelectorChat -u Closer -s Sales

2. Open another console window to the TopicPubSub\SelectorChat folder,
then enter:
..\..\SonicMQ SelectorChat -u Presenter -s Marketing

➤ To SelectorChat:

1. In the Closer window, type any text and then press Enter. The text is only
displayed in that window. The Presenter selector string excludes the Sales
message.
76 SonicMQ Programming Guide

Selection and Wildcard Samples
2. In the Presenter window, type any text and then press Enter. The text is
only displayed in that window. The Closer selector string excludes the
Marketing message.

3. Stop the Closer session by pressing Ctrl+C.

4. In that console window start a new session, changing the selector string:
..\..\SonicMQ SelectorChat -u Closer -s Marketing

5. Type text in either window and then press Enter. The text is displayed in
both windows. The selector string matches and the message displays.

Hierarchical Chat Application (Pub/Sub)
SonicMQ lets an application have the power of a message selector plus a more
streamlined way to often get the same result: A hierarchical topic structure that
allows wildcard subscriptions. In this sample, each application instance creates
two sessions, one for the publish topic (-t) and one for the subscribe topic (-s).

➤ To start HierarchicalChat sessions:

1. Open a console window to the TopicPubSub\HierarchicalChat folder then
type
..\..\SonicMQ HierarchicalChat -u HQ -t sales.corp -s sales.*

and press Enter.

2. Open another console window to the TopicPubSub\HierarchicalChat
folder.

3. Type
..\..\SonicMQ HierarchicalChat -u America -t sales.usa

-s sales.usa and press Enter.

➤ To HierarchicalChat:

1. In the HQ window, type text and then press Enter. The text is displayed in
only the HQ window because it subscribes to all topics in the sales hierarchy
and America is subscribing to only the sales.usa topic.

2. In the America window, type text and then press Enter. The text is
displayed in both windows:

– America subscribes to the sales.usa topic.

– HQ subscribes to all topics that start with “sales.”.
SonicMQ Programming Guide 77

Chapter 2: Examining the SonicMQ Samples
Reviewing the Selection and Wildcard Samples
While selector strings can provide a variety of ways to qualify what messages
will be carried to a consumer, the overhead in the evaluation of the selectors
can slow down overall system performance. HierarchicalChat illustrates a
feature of SonicMQ that can provide the advantages of selectors with minimal
overhead. Note also that security access control uses similar wildcard
techniques to enable read/write security for all subtopics within a topic node.

Another way to increase specificity is to use complex SQL statements. For
information on hierarchical security, including hierarchical name spaces and
security, see the SonicMQ Installation and Administration Guide.

Test Loop Sample
A simple loop test lets you experiment with messaging performance.

QueueRoundTrip Application (PTP)
The RoundTrip application sends a brief message to a sample queue and then
uses a temporary queue to receive the message back. A counter is incremented
and the message is sent for another trip. After completing the number of cycles
you entered when you started the test, the run completes by displaying
summary and average statistics.

➤ To run QueueRoundTrip:

1. Open a console window to the QueuePTP\QueueRoundTrip folder.

2. Enter:
..\..\SonicMQ QueueRoundTrip -n 100

3. Look at the results.

4. Enter:
..\..\SonicMQ QueueRoundTrip -n 1000

Note This sample lets you evaluate features and is not intended as a performance
tool. For information on performance, see the SonicMQ Deployment Guide.
78 SonicMQ Programming Guide

Extending the Samples
Extending the Samples
After exploring the samples you can modify the sample source files to learn
more about SonicMQ. You need a Java compiler to compile your changes.

Use Common Topics Across Clients
When you run the Pub/Sub samples you might notice that while all the Chat
applications get Chat messages and all the DurableChat applications get
DurableChat messages, they do not receive each other’s messages. This is
because the applications are publishing to different topics. You can set the two
applications to monitor messages on the same topic.

➤ To put Chat and DurableChat on the same topic:

1. Edit the SonicMQ sample file DurableChat.java.

2. Change the variable APP_TOPIC from jms.samples.durablechat
to jms.samples.chat.

3. Save and compile the edited .java file.

4. Run the edited .class file.

Now messages sent from DurableChat and Chat are received by both regular
and durable subscribers. The durable subscribers will receive messages when
they recover from offline situations, but the regular subscribers will not recover
missed messages.

Important If you make this change, the message server will maintain the durable
subscriptions for all the Chat messages. While DurableChat messages expire
after 30 minutes, Chat messages are published with the default time-to-live
(never expire). The Chat messages will endure for durable subscribers until one
of the following occurs:
- The durable subscriber connects to receive the messages.
- The durable subscriber explicitly unsubscribes.
- The database is initialized.
SonicMQ Programming Guide 79

Chapter 2: Examining the SonicMQ Samples
Trying Different RoundTrip Settings
The RoundTrip application lets you choose a number of produce-then-consume
iterations to perform when the application runs. You can enhance the
application to explore the time impact of other settings and parameters as well.

A counter is incremented and the message is sent for another trip. After
completing the number of cycles you entered when you started the test, the run
completes by displaying summary and average statistics.

➤ To extend the QueueRoundTrip sample:

1. Edit the SonicMQ sample file QueuePTP\QueueRoundTrip.java to establish
any of the following behavior changes:

n Change the javax.jms.message.DeliveryMode from NON_PERSISTENT to
PERSISTENT. Run it then change it to NON_PERSISTENT_ASYNC.

n You could change the priority or timeToLive values but in this sample
the effect would be negligible.

n Change the message type from the bodyless createMessage() to a
bodied message type, such as createTextMessage().

n Create a set of sample strings (or other appropriate data type) to
populate a bodied-message payload with different size payloads.

n Use createXMLMessage() and load the message payload with well-
formed XML data. Then try the same payload as a TextMessage.

n Change the receiver session acknowledgement mode from
AUTO_ACKNOWLEDGE to DUPS_OK_ACKNOWLEDGEMENT. Change it again to
CLIENT_ACKNOWLEDGE or SINGLE_MESSAGE_ACKNOWLEDGE then add an
explicit acknowledge() after the receive is completed.

2. Save and compile the edited .java file.

3. Open a console window to the QueuePTP\QueueRoundTrip folder.

4. Type ..\..\SonicMQ QueueRoundTrip -n 100

5. Look at the results and compare them to other round trips.

Note This sample lets you evaluate features and is not intended as a performance
tool. For information on performance, see the SonicMQ Deployment Guide.
80 SonicMQ Programming Guide

Extending the Samples
Modifying the MapMessage to Use Other Data Types
The concept of the MapMessage sample is limited when its content is just a
snippet of text. The key concepts of the MapMessage are that:

n The body is a collection of name-value pairs.

n The values can be Java primitives.

n The receiver can access the names in any sequence.

n The receiver can attempt to coerce a value to another data type.

The following exercise adds some mixed data types to the MapTalk source file
before the message is sent. Then the receiver takes the data in a different
sequence and formats it for display.

The example uses typed set methods to populate the message with name-
typedValue pairs. The get methods retrieve the named properties and attempt
coercion if the data type is dissimilar.

➤ To extend the MapTalk sample to use and display other data types:

1. Edit the SonicMQ sample file MapTalk.java at the lines:

javax.jms.MapMessage msg = sendSession.createMapMessage();

msg.setString("sender", username);

msg.setString("content", s);

2. Add the lines for the set methods (or your similar lines):

msg.setInt("FiscalYearEnd", 10);

msg.setString("Distribution", "global");

msg.setBoolean("LineOfCredit", true);

3. You must extract the additional data by get methods to expose the values
in the receiving application. Because the sample is a text-based display,
you can include the getString methods in the construction of the string
that will display in the console.

Change:

String content = mapMessage.getString("content");

System.out.println(sender + “: “ + content);
SonicMQ Programming Guide 81

Chapter 2: Examining the SonicMQ Samples
to:

String content =

("Content: " + mapMessage.getString("content") + "\n" +

"Distribution: " + mapMessage.getString("Distribution") + "\n" +

"FiscalYearEnd: " + mapMessage.getString("FiscalYearEnd") + "\n" +

"LineOfCredit: " + mapMessage.getString("LineOfCredit") + "\n");

System.out.println("MapMessage from " + sender +

"\n---------- \n" + content);

4. Save and compile the edited .java file.

5. Run the edited .class file.

Now when the MapTalk sample runs, the content is the text you typed plus the
mapped, resequenced, and converted map properties.

Modifying the XMLMessage to Show More Data
The sample for the XMLmessage type is limited to the data that is input as text as
a single content node. While the data collection/validation loops and the data
transfers from application data stores are reserved as more advanced exercises,
this example demonstrates how well-formed XML data is transformed into
DocNodes from the org.w3c.dom.Node standards.
82 SonicMQ Programming Guide

Extending the Samples
➤ To extend the XMLChat sample to show more data:

1. Edit the SonicMQ sample file XMLChat.java starting after:

// Note that the XMLMessage is a Progress Software extension

progress.message.jclient.XMLMessage xMsg =

...

StringBuffer msg = new StringBuffer();

msg.append ("<?xml version=\"1.0\"?>\n");

msg.append ("<message>\n");

msg.append (" <sender> + username + “</sender>\n");

msg.append (" <content> + s + “</content>\n");

2. Insert the formatted, tagged XML lines you want to append to the
message, for example:

msg.append ("<RFP>\n");

msg.append ("<REQUEST>\n");

msg.append ("<REQ_ID>1125-2000-225</REQ_ID> \n");

msg.append ("<FOB>Portland Maine</FOB> \n");

msg.append ("<RFP_DUE>31-JAN-2000</RFP_DUE> \n");

msg.append ("<DELIVERY_DUE>15-AUG-2000</DELIVERY_DUE> \n");

msg.append ("<CATEGORY>Grains</CATEGORY> \n");

msg.append ("<LINE_ITEMS>\n");

msg.append ("<LINE>\n");

msg.append ("<ITEM>1125-2000-225.1 Wheat</ITEM> \n");

msg.append ("<QTY>10000 tons</QTY>\n");

msg.append ("</LINE> \n");

msg.append ("<LINE>\n");

msg.append ("<ITEM>1125-2000-225.2 Rice</ITEM> \n");

msg.append ("<QTY>20000 tons</QTY>\n");

msg.append ("</LINE>\n");

msg.append ("<LINE>\n");

msg.append ("<ITEM>1125-2000-225.3 Corn</ITEM> \n");

msg.append ("<QTY>40000 tons</QTY> \n");

msg.append ("</LINE> \n");

msg.append ("</LINE_ITEMS> \n");

msg.append ("</REQUEST> \n");

msg.append ("</RFP> \n");

msg.append ("</message> \n");

3. Save and compile the edited .java file.

4. Run the edited .class file.
SonicMQ Programming Guide 83

Chapter 2: Examining the SonicMQ Samples
When you run the application and enter a basic text message, the complete
document object model (DOM) is also displayed, similar to the subscriber
session listing in Figure 13.

Figure 13. XMLMessage Parsed into a Document Object Model
84 SonicMQ Programming Guide

Extending the Samples
As the data is interpreted in the DOM format only when the message is an
instance of an XMLMessage, a Chat session would display the same message as a
TextMessage—the XML-tagged text without DOM interpretation, as shown in
Figure 14.

Using Samples with Security Initialized
The sample database can be set up with security so that users can be authorized
and authenticated for both general access to the message server yet also for
permissions to read from and write to destinations.

Figure 14. XMLMessage as Tagged Text

Note You could have appended the XML tagged lines lines without the \n. That
would suppress the blank TEXT_MODE lines in the DOM. It would however make
one unbroken text line for general text or raw XML review.

Warning All data that you have previously put into the database will be lost.
See the SonicMQ Installation and Administration Guide for information about
enabling security, starting administrator tools, and adding users.
SonicMQ Programming Guide 85

Chapter 2: Examining the SonicMQ Samples
➤ To set up the security database under Windows:

1. Close all active clients and then stop the message server.

2. Edit the file broker.ini at the root level of your SonicMQ installation to
modify the variable ENABLE_SECURITY from FALSE to TRUE.

3. Open a console window to the SonicMQ install directory.

4. Type bin\dbtool /d b s and press Enter.

5. Type bin\dbtool /cs basic and press Enter.

6. Type bin\dbtool /c security and press Enter.

7. Start the message server again. Notice that security is implemented.

8. Try the Chat sample with the sample name OTC_Ticker. It is refused
because the only default user in a new security database is Administrator.

➤ To set up the security database under UNIX:

1. Close all active clients and then stop the message server.

2. Edit the file broker.ini at the root level of your SonicMQ installation to
modify the variable ENABLE_SECURITY from FALSE to TRUE.

3. Open a console window to the SonicMQ install directory.

4. Type ./bin/dbtool -d b s and press Enter.

5. Type ./bin/dbtool -cs basic and press Enter.

6. Type ./bin/dbtool -c security and press Enter.

7. Start the message server again. Notice that security is implemented.

8. Try the Chat sample with the sample name OTC_Ticker.It is refused because
the only default user in a new security database is Administrator.

With security implemented, only user names in the security database can
access the message server. Only the Administrator can maintain user records.
86 SonicMQ Programming Guide

Extending the Samples
➤ To set up Users with the Explorer

1. In the SonicMQ Explorer, choose Message Brokers.

2. Enter the Broker Host, typically localhost:2506.

3. Type any text as the ConnectID.

4. Type Administrator as the User and again as the Password.

5. Click Connect.

6. Choose Users.

7. For each user you want to set up:

7.1 In the User Maintenance area, click New.

7.2 Type the user name, for example OTC_Ticker.

7.3 Type a password—for example, OTC—then confirm it.

7.4 Click Update.

➤ To access a secured message server as an authentic user:

1. Try the Chat sample with a username you set up.

2. Append the password parameter and the selected user’s password.

For example, the command to start Chat before using security is:

..\..\SonicMQ Chat -u OTC_Ticker

The command to start Chat under security is:

..\..\SonicMQ Chat -u OTC_Ticker -p OTC

The authenticated user is accepted and the application starts.

When you have finished evaluating security you can resume working with the
sample applications, but you will have to:

n Enter every user name into the security database.

n Assign a password to each user.

n Use the password parameter and the password on every application.
SonicMQ Programming Guide 87

Chapter 2: Examining the SonicMQ Samples
Removing Security from the Database

After exploring the security database with the sample applications, you can re-
initialize the database to eliminate the security database.

➤ To set up the database without security under Windows:

1. Close all active clients and stop the message server.

2. Edit the file broker.ini at the root level of your SonicMQ installation to
modify the variable ENABLE_SECURITY from TRUE to FALSE.

3. Open a console window to the SonicMQ install directory.

4. Type bin\dbtool /d b s and press Enter. The basic tables and security
tables are deleted.

5. Type bin\dbtool /cs basic and press Enter. The basic tables are created
with the sample queues.

➤ To set up the database without security under UNIX:

1. Close all active clients and stop the message server.

2. Edit the file broker.ini at the root level of your SonicMQ installation to
modify the variable ENABLE_SECURITY from TRUE to FALSE.

3. Open a console window to the SonicMQ install directory.

4. Type ./bin/dbtool -d b s and press Enter. The basic tables and security
tables are deleted.

5. Type ./bin/dbtool -cs basic and press Enter. The basic tables are
created with the sample queues.

When you restart the message server, notice that security is disabled.

See the SonicMQ Installation and Administration Guide for more information
about security and the dbtool.
88 SonicMQ Programming Guide

Chapter 3 SonicMQ Client Sessions
About Client Sessions
The SonicMQ Java client provides a lightweight, 100% Java platform that can
access the messaging features provided by the SonicMQ message servers. In
the JMS programming model, a programmer creates JMS connections that
establish the application’s identity and specify how the connection with the
message server will be maintained.Within each connection, one or more
sessions are established. Each session is used for a unique delivery thread for
messages that are delivered to the client application.This chapter presents the
programming required to establish and maintain client connections to message
servers through sessions.

Identifiers
SonicMQ uses several identifiers to differentiate and distinguish application
registrations. The following information describes the primary identifiers—
connectID, username, clientID, and subscriptionName—and how they are used
in messaging.

ConnectID

The ConnectID is a SonicMQ identifier that can control whether the message
server allows multiple connections for a user in a client application:

n To assure that a connection for a user name is exclusive such that no other
connection can use that username/ConnectID combination until the
SonicMQ Programming Guide 89

Chapter 3: SonicMQ Client Sessions
connection is closed, use the appropriate set method and pass a non-null
string:
– TopicConnectionFactory.setConnectID(String connectid)

– QueueConnectionFactory.setConnectID(String connectid)

n To allow other connections for a username/ConnectID, use the appropriate
set method and pass the null string as the parameter:
– TopicConnectionFactory.setConnectID(“”)

– QueueConnectionFactory.setConnectID(“”)

ConnectID can also be configured as part of a ConnectionFactory, or passed as
an argument to a SonicMQ Connection object constructor.

User Name

A user name (and password) defines a principal’s identity maintained by the
SonicMQ message server’s security database to authenticate a user with the
SonicMQ message server and establish privileges and access rights.

When security is not enabled, the user name is simply a text label.

A user name can be:

n Configured in a Connection Factory or passed as a parameter to the
constructors:
– progress.message.jclient.TopicConnectionFactory

– progress.message.jclient.QueueConnectionFactory

n Passed as a parameter to the methods:

– createTopicConnection(username, password) of the
TopicConnectionFactory object

– createQueueConnecton(username,password) of the
QueueConnectionFactory object

ClientID

The ClientID is a unique identifier that can avoid conflicts for durable
subscriptions when many clients might be using the same user name and the
same subscription name.
90 SonicMQ Programming Guide

About Client Sessions
To set the value of the ClientID, do one of the following:

n In the client application, programmatically set the client identifier
immediately after creating a connection, using:

Connection.setClientID(string clientid)

n In a connection factory, pre-configure the client identifier by either:

– Using the SonicMQ Explorer or Admin tool to configure the ClientID.

– In the client application, use the appropriate set method:
– TopicConnectionFactory.setClientID(String clientid)

– QueueConnectionFactory.setClientID(String clientid)

Subscription Name

A subscription name always includes the name of the topic. To distinguish
different message selectors used in subscriptions, you can include a string
which helps identify the message selector. For example, you can use a
subscription named Atlas_priority4 for a subscription to the Atlas topic with
selector JMSPriority=4. This construct lets you create many durable
subscriptions that are easily understood and non-conflicting.

The durable subscription identity is then constructed from and indexed on:

n username — The user name used for log on authorization or identity

n clientID — The instance identifier in an application

n subscription name — The identity of the selection criteria in the
subscription

Note If the connection factory has configured the client identifier, an attempt to
setClientID() programmatically on the connection throws an
IllegalStateException.
SonicMQ Programming Guide 91

Chapter 3: SonicMQ Client Sessions
Communication Layer
The SonicMQ message server works in concert with the network layer to
provide asynchronous message communications between client applications.
As shown in Figure 15, a client can send and receive messages through the
SonicMQ API and interfaces to communicate on network connection to a
message server. Messages might be stored in a message store as an optional
service specified by the message producer.

The connection layer, as shown in Figure 16, involves getting a connection
factory, then creating connections, and finally creating sessions.

Figure 15. Client - Message Server - Client Communications

Client

API / IDL

Client

API / IDL

Communications Communications

Network

Message Server

Persistent Message Store

Figure 16. Sessions in Connections from Connection Factories
92 SonicMQ Programming Guide

Communication Layer
Each instance of a ConnectionFactory is dedicated to only one of the
messaging models:

n Point-to-Point (PTP) — Messaging is one-to-one because only one
receiver will get the message. Messages are placed on queues where they
endure until a receiver takes delivery and acknowledges receipt.

n Publish and Subscribe (Pub/Sub) — Messaging is one-to-many or
broadcast because there could be zero-to-many subscribers for a given
topic who will each receive the one message that was sent. If no
subscribers expressed an enduring interest in a message topic, a message
is discarded.

ConnectionFactory
The normal mechanism for establishing a Java connection expects a Java client
to create a ConnectionFactory with a message server and request
authorization to establish a connection for messaging with the behaviors of one
of the messaging models. The TopicConnectionFactory and
QueueConnectionFactory are administered objects that encapsulate a set of
configuration parameters. The parameters can be assembled at the moment
when the application wants to instantiate the object or stored by an
administrator in an object store for later recall.

See the SonicMQ Installation and Administration Guide for information about
administering a ConnectionFactory.

The optional mechanisms for creating a ConnectionFactory are discussed in
detail in the following sections.

Lookup a Stored Context

When an administrator stores the connection parameters as a context,
applications can simply access the currently stored values for the named
context to connect in a predictable way. The SonicMQ Explorer and Admin
tool can explicitly set up a ConnectionFactory configuration. The resulting
ConnectionFactory is then stored as an administered object in a simple file store
and then referenced indirectly (by name) to provide the context.
SonicMQ Programming Guide 93

Chapter 3: SonicMQ Client Sessions
Lookup a Serialized Object in a File Store

Figure 17 diagrams the lookup in a file store at a specified path location. An
administrator stores serialized Java objects as flat files with sjo extensions. The
files can then be retrieved with a ConnectionFactory context object reference.

Lookup on a JNDI LDAP Server

A dispersed system might prefer to use a directory server such as LDAP with
lookup through JNDI interfaces. The advantage to this technology is that server
records can be maintained remotely and accessed by widely dispersed
applications.

This type of lookup submits a value to the LDAP provider with an indexed
context name. In Figure 18 the context name aName is submitted as cn=aName to
the server.

Figure 17. ConnectionFactory Object Instantiated By Lookup of a Serialized Java Object

Lookup file for "aName.sjo"

SonicMQ
Client

Message
Server
host:port

Get QueueConnection Object containing:
host:port, user, password, options

Simple File Store

connect host:port, user, password, options

Connection

Figure 18. Alternate Connection Techniques Using Factory Objects or JNDI Lookup

PROVIDER_STRING InitialDirContext cn="aName"

SonicMQ
Client

LDAPJNDI

Message
Server
host:port

Gets QueueConnection Object context for ’aName’
containing: host:port, user, password, options

connect host:port, user, password, options

Connection
94 SonicMQ Programming Guide

Communication Layer
The lookup requests the initial context factory from a specified
PROVIDER_STRING such as:

"ldap://mypc.a.sonicmq.com:389/ou=jmsao,ou=sonicMQ,o=a.sonicmq.com"

The JNDI interfaces in javax.naming provide
directory.InitialDirContext GetContext() for the initial context factory
under com.sun.jndi.ldap.LdapCtxFactory which then returns the current
context values. These are then submitted to the indicated message server where
the appropriate ConnectionFactory is created.

See Chapter 12, “Lookup of Administered Objects,” for more information.

Direct Creation of the ConnectionFactory Object

An application can use the SonicMQ API new constructor to create a
ConnectionFactory object. This method usually hard wires many default
values into the compiled application, expecting that any overrides to the
settings will be read in through a properties file or command-line options when
the application is started.

The syntax for instantiating the object class in each of the two messaging
models is:

PTP: javax.jms.QueueConnectionFactory factory =
(new progress.message.jclient.QueueConnectionFactory

(parameters);

Pub/Sub: javax.jms.TopicConnectionFactory factory =
(new progress.message.jclient.TopicConnectionFactory

(parameters);

Figure 19. Using a Constructor to Create a ConnectionFactory Object

Message
Server
host:port

factory = (new QueueConnectionFactory ("host:port")

SonicMQ
Client connect = factory.createQueueConnection (username, password)

Connection
SonicMQ Programming Guide 95

Chapter 3: SonicMQ Client Sessions
There are several supported constructors for creating a ConnectionFactory
object in each messaging domain. The constructors use combinations of the
URL, connectID, username and password parameters.

The parameters of a constructor for an instance of a ConnectionFactory object
in both PTP and Pub/Sub domains are identical:

n URL — The Uniform Resource Locator of the message server where the
connection is intended (in the form [protocol://]hostname[:port]).
where:

– protocol is the message server’s communication protocol
([HTTP | SSL | TCP]).

– hostname is a networked SonicMQ server machine (or localhost if the
client and server are on the same machine).

– port is the port on the host where the message server is listening. The
message server’s default port value is 2506.

n connectID — The ConnectID is a SonicMQ identifier that can control
whether the message server allows multiple connections under a user-name
and ConnectID combination:

– If the ConnectID is not null, only one connection with that particular
user-name and ConnectID can be established.

– If the ConnectID is null, any number of connections can be established
with the same username.

You might create a ConnectID by combining the username with some
additional identifier.

n username and password — The user authentication that is enforced when
the security database is active. These parameters are optional. When both
parameters are omitted, they both default to “”, an empty string.

Under the SSL protocol, client authentication can be achieved by retrieving
the username from the client certificate. In that case you simply pass the
special-purpose username AUTHENTICATED. The password is ignored.
96 SonicMQ Programming Guide

Communication Layer
Load Balancing and Failover Lists

Your client applications can create failover and load-balanced connections to
message servers using options set in ConnectionFactory objects. See JavaDoc
for the factories for more information.

➤ To implement failover:

1. Create a comma-separated list of server URLs. The client will attempt to
connect to servers in this list.

2. Add a statement where factory.setConnectionURLs(serverList) points to
the text list you created. The client will connect to the first available
message server on the list, overriding the URL parameter in the
QueueConnectionFactory or TopicConnectionFactory constructor which
specifies a single message server.

3. Add a statement where factory.setSequential(boolean) sets whether to
start with the first name in the list (true) or a random element (false).

➤ To implement load balancing:

� Add a statement where factory.setLoadBalancing is set to true in your
application.

With client-side load balancing enabled, a connect request can re-directed
to another message server within a SonicMQ cluster, provided load-
balancing has not been disabled on the server side.

Note When user identification is omitted when creating a connection, the connection
uses the default values from the ConnectionFactory. If true authentication with
the security database is implemented and the user name is invalid, a
javax.jms.JMSSecurityException is thrown.

You can use the common name from a certificate when you use SSL mutual
authentication. See the SonicMQ Deployment Guide for more about SSL and
security.
SonicMQ Programming Guide 97

Chapter 3: SonicMQ Client Sessions
➤ To check failover settings:

1. In an application, add a statement with factory.getConnectionURLs() to
return the server list.

2. Add a statement with factory.getSequential() to return the boolean
indicator of whether the list is used sequentially or randomly.

➤ To check load balancing settings:

1. In an application, add a statement with factory.getLoadBalancing() to
return the boolean indicator of whether load-balancing is enabled by the
client.

2. Get the URL of the server that the client connects to as a result of load
balancing by calling getBrokerURL() on the connection object, not the
factory object.

Connection
After instantiating a ConnectionFactory object, the factories’ create methods
are used to create a connection. The first action a client must take is to identify
and establish connection with a message server. The following constructors use
a connection factory object to get the connection.

createQueueConnection

A QueueConnection is an active PTP connection to a SonicMQ message server.
A client application will use the QueueConnection to create one or more
QueueSessions, the threads for sending messages to a specified queue and
receiving messages from specified queues.

Important An application should not use a Java constructor to create connections directly.
98 SonicMQ Programming Guide

Communication Layer
There are two variants of the create method:

n Use the default user name and password:

connect = factory.createQueueConnection ()

n Supply the preferred user name and its authenticating password:

connect = factory.createQueueConnection
(String user-name, String password)

createTopicConnection

A TopicConnection is an active Pub/Sub connection to a SonicMQ message
server. A client application will use the TopicConnection to create one or more
TopicSessions, the threads for publishing messages and receiving messages
from subscribed topics. There are two variants of the create method:

n Use the default user name and password:

connect = factory.createTopicConnection ()

n Supply the preferred user name and its authenticating password:

connect = factory.createTopicConnection
(String user-name, String password)

Connection Retry

You can write a connection retry process that lets the thread sleep for a
specified time before retrying the connection. The following example is a retry
of a queue connection:
try
{
System.out.println("Attempting to create connection...");
connect = factory.createQueueConnection (username, password);

} catch (javax.jms.JMSException jmse)
{
System.out.print("Cannot connect to server: " + server + ". ");
System.out.println

("Pausing " + CONNECTION_RETRY_PERIOD / 1000 + "
seconds before retry.");

 try
 {

Thread.sleep(CONNECTION_RETRY_PERIOD);
 }

catch (java.lang.InterruptedException ie) { }
continue;

}

SonicMQ Programming Guide 99

Chapter 3: SonicMQ Client Sessions
Session
A JMS Session represents a single thread of activity. All actual messaging is
done through the session object. Each message handler is associated with a
single session (there could be multiple message handlers in a session, or none
at all). A session is associated with the Connection object.

The session interface available is determined by the messaging paradigm
chosen for the connection. The syntax for creating a session on an established
connection is:

n Point-to-Point

javax.jms.QueueSession createQueueSession
(boolean transacted, int acknowledgeMode)

n Publish and Subscribe

javax.jms.TopicSession createTopicSession
(boolean transacted, int acknowledgeMode)

where:

n transacted — [true | false] if true, the session will be transacted.

n acknowledgeMode —[AUTO_ACKNOWLEDGE | CLIENT_ACKNOWLEDGE |

SINGLE_MESSAGE_ACKNOWLEDGE | DUPS_OK_ACKNOWLEDGE]

Indicates whether the consumer or the client will acknowledge any
messages it receives.

The parameters of the session are qualified so that when a session is transacted,
the acknowledgementMode is ignored (even though required). Similarly,
acknowledgementMode has no effect when a session is only producing messages.

Explicit Acknowledgement

While all JMS messages support using the acknowledge() method, only some
session modes allow a message to be explicitly acknowledged.

The effect of explicit acknowledgement is:

n When the session acknowledgement mode is CLIENT_ACKNOWLEDGE, all
messages previously received by the session are acknowledged.
100 SonicMQ Programming Guide

Communication Layer
n When the session acknowledgement mode is SINGLE_MESSAGE_ACKNOWLEDGE,
only the current message is acknowledged.

n When the session acknowledgement mode is AUTO_ACKNOWLEDGE, calls to
acknowledge() are ignored.

n When the session acknowledgement mode is DUPS_OK_ACKNOWLEDGE, calls to
acknowledge() are ignored.

n When the session is transacted, calls to acknowledge() are ignored.

Acknowledgement Mode

Communication between the message server and the message consumer
involves an indication of receipt of the message. One of the following
acknowledgement modes is enforced for all messages in a session:

n AUTO_ACKNOWLEDGE — The session automatically acknowledges the client’s
receipt of a message by successfully returning from a call to receive
(synchronous mode) or when the session MessageListener successfully
returns (asynchronous mode). The last message might be redelivered.

n CLIENT_ACKNOWLEDGE — An explicit acknowledge() on a message
acknowledges the receipt of all messages that have been produced and
consumed by the session that gives the acknowledgement. When a session
is forced to recover, it restarts with its first unacknowledged message.

n SINGLE_MESSAGE_ACKNOWLEDGE — An explicit acknowledge() on a message
acknowledges only the current message and no preceding messages. This
mode is a SonicMQ extension to the JMS standard.

n DUPS_OK_ACKNOWLEDGE — The session “lazily” acknowledges the delivery of
messages to consumers, possibly allowing some duplicate messages after
a system outage.

Warning While acknowledgement sets standards for delivery from the client to the
message server, there is no reply to the sending application. If an application
requires a reply to the sender, use the JMSReplyTo header field to indicate the
request and program your application to respond to this header field. The
requestor can also append a correlation identifier that will ensure that the reply
matches its request.
SonicMQ Programming Guide 101

Chapter 3: SonicMQ Client Sessions
Recover

A client might build up a large number of unacknowledged messages while
attempting to process them. A session’s recover() method is used to stop a
session and restart it with its first unacknowledged message.

A recover() action event tells SonicMQ to stop message delivery in the
session, set the redelivered flag on unacknowledged messages it will redeliver
under the recovery, and then resume (“playback”) delivery of messages,
possibly in a different order than originally delivered.

The need for the recover() method is most apparent when the
acknowldegement mode is CLIENT_ACKNOWLEDGE or
SINGLE_MESSAGE_ACKNOWLEDGE.

Transacted Sessions

When a session is transacted, that session will combine a group of one or more
messages with client-to-message server ACID properties:
Atomic, Consistent, Isolated, and Durable.

When a session is transacted, message input and message output are staged on
the message server system but not completed until you call the method to
complete the transaction. Completion of a transaction, determined by your
code, does one of the following:

n Commit — The series of messages is sent to consumers.

n Roll Back — The series of messages (if any) is destroyed.

The completion of a session’s current transaction automatically begins the next
transaction. Transacted sessions impact producers and consumers in the ways
described in Table 5.

Table 5. Transacted Session Events by Message Role

Role commit() rollback()

Producer Send the series of messages
staged since the last call.

Dispose of the series of produced
messages staged since the last call.

Consumer Dispose of the series of
messages received since the
last call.

Redeliver the series of received
messages retained since the last call.
102 SonicMQ Programming Guide

Session Objects
When a rollback is done in a session that is both sending and receiving, its
produced messages are destroyed and its consumed messages are
automatically recovered.

To check whether a session is transacted use the getTransacted() method. The
return value is true if the session is in transacted mode.

Session Objects
The primary session objects allow access to the destinations, producers,
consumers, and messages that are used in the session, as shown in Figure 20.

Figure 21 shows the types of message objects that are created from session
methods. The message types are common and extended into both JMS

Figure 20. Primary Session Objects
SonicMQ Programming Guide 103

Chapter 3: SonicMQ Client Sessions
domains. Note that the XMLMessage type is unique to SonicMQ and is an
extension of the TextMessage type.

create [Destination]
Destinations are administered objects that can be controlled by an
administrator and can be retrieved through JNDI or other object storage
mechanisms.

See “JMS Administered Object Stores” in the SonicMQ Installation and
Administration Guide to learn how the SonicMQ Explorer allows you to create
destinations in both JNDI and file stores.

The destination object created can be a queue or a topic.

Point-to-Point: createQueue
javax.jms.QueueSession queue = session.createQueue(queueName)

where:

n queueName — A String name that has been established in the message
server message store. If security is defined for queues, the user might
be constrained from reading or writing to a queue.

Figure 21. Types of SonicMQ Message Objects
104 SonicMQ Programming Guide

Session Objects
Publish and Subscribe: createTopic
javax.jms.TopicSession topic = session.createTopic(topicName)

where:

n topicName — An arbitrary String name for the topic consisting of at
most 256 Unicode characters that does not contain the reserved
characters period (.), pound (#), dollar sign ($), asterisk (*), or double
colon (::), and does not begin with the string “SonicMQ.”. If security is
defined for topics, the user might be constrained from reading or
writing at a topic content node.

Using a Lookup for Destinations

While topics and queues are administered objects, there are advantages to
programmatic lookup of defined destinations.

SonicMQ lets you store administered objects in some object store— JNDI or a
simple file store—and then reference the object indirectly (by name) in some
context.

See Chapter 12, “Lookup of Administered Objects,” for more information.

Temporary Destinations

Temporary destinations (TemporaryTopic or TemporaryQueue) can be created for
request-and-reply mechanisms.

See “Reply-to Mechanisms” on page 153 for more information.

create [MessageProducer]
The Producer interface is created from a Session method.

Point-to-Point: createSender

sender = sendSession.createSender(queue);

Publish and Subscribe: createPublisher

publisher = pubSession.createPublisher(topic);
SonicMQ Programming Guide 105

Chapter 3: SonicMQ Client Sessions
create [MessageConsumer]
The Consumer interface is created from a Session method in the form:

Point-to-Point: createReceiver

javax.jms.QueueReceiver qreceiver
recvSession.createReceiver(queue);

Publish and Subscribe: create[Durable]Subscriber

n Regular subscription:

javax.jms.TopicSubscriber subscriber =
 subSession.createSubscriber(topic);

n Durable subscription (See “Durable Subscriber” on page 196.):

javax.jms.TopicSubscriber subscriber =
 subSsession.createDurableSubscriber (topic, subscriber);

create [Message]
The message type is created from a Session method in the general form:

javx.jms.[type]Message msg = sendSession.create[type]Message()

where type is the JMS message type. Specifically:
n javx.jms.TextMessage msg = sendSession.createTextMessage()

n javx.jms.BytesMessage msg = sendSession.createBytesMessage()

n javx.jms.MapMessage msg = sendSession.createMapMessage()

n javx.jms.Message msg = sendSession.createMessage()

n javx.jms.ObjectMessage msg = sendSession.createObjectMessage()

n javx.jms.StreamMessage msg = sendSession.createStreamMessage()

The XMLMessage type, as a SonicMQ extension to the JMS standard, is not
created from a javax.jms.session— the session must be cast to a
progress.message.jclient session first, as in:

n progress.message.jclient.XMLMessage xMsg =
sendSession.createXMLMessage()

Message interfaces, structure, and fields are detailed in Chapter 4, “Messages.”
106 SonicMQ Programming Guide

Starting, Stopping, and Closing Connections
Starting, Stopping, and Closing Connections
Connections require an explicit start command to begin the delivery of
messages. All sessions within a connection respond concurrently to the
Connection start, stop, and close events.

While many session and connection objects have individual close methods,
these are usually viewed as ways to recapture resources and were not
previously discussed in terms of how they interact when the Connection’s state
changes.

connect.start
Start delivery of incoming messages through a connection. Under a restart,
delivery begins with the oldest unacknowledged message. Starting an already
started session is ignored:

connect.start()

connect.stop
Stop delivery of incoming messages through a connection. After stopping, no
messages are delivered to any message consumers under that connection. If
synchronous receivers are used, they will block. A stopped connection can still
send or publish messages. Stopping an already stopped session is ignored:

connect.stop()

Behavior of Producers and Consumers in a Stopped Connection

When a connection is stopped, it is in effect paused. The message producers
continue to perform their function. The consumers, however, are not active
until the connection restarts. When the stop method is called, the stop will wait
until all the message listeners have returned before it returns. Receivers that are
active still have their timers running and can receive null messages.
SonicMQ Programming Guide 107

Chapter 3: SonicMQ Client Sessions
connect.close
When a connection is closed, all message processing within the connection’s
one or more sessions is terminated. If there was a message available at the time
of the close, the message (or a null) can be returned, but the message consumer
might get exceptions by trying to use facilities within the closed connection.
Closing a closed connection has no effect and does not throw an exception:

connect.close()

Behavior of Producers and Consumers in a Closed Connection

When a connection is closed, all message processing within the connection’s
one or more sessions is terminated. If there was a message available at the time
of the close, the message (or a null) can be returned, but the message consumer
might get exceptions by trying to use facilities within the closed connection.

When a transacted session is closed, the transaction in progress is marked as a
rollback.

The message objects can be used in a closed connection with the exception of
the message’s acknowledge methods.

Closing a Session
While each connection can have many sessions, each session is a single thread
of execution. When the connection starts, stops, or closes all its sessions are
impacted.

The close method is the only Session method that can call for a different thread
in the connection to close while some other session method is being executed
in another thread.

Closing a CLIENT_ACKNOWLEDGE session does not force an acknowledge() to
occur. Attempts to use a closed connection’s sessions or session objects throws
an IllegalStateException. Starting a started connection or closing a closed
connection has no effect and does not throw an exception.

Note The message objects can be used in a closed connection with the exception of
the message’s acknowledge methods.
108 SonicMQ Programming Guide

Flow Control
Flow Control
The asynchronous benefits of SonicMQ are not limited to simply receiving
without blocking. They also include:

n Send and receive buffers that stage messages in transit between a client
application and a message server

n An optimized persistence mechanism to maximize server performance for
guaranteed message delivery

n Concurrent Transacted Cache technology that uses in-memory cache and
high-speed log files to increase throughput for short-duration persistent
messages

n Queues defined with specified amounts of memory and disk space reserved
for the queue content

Any of these resources might be offered more data than can be managed. If
flow control is active, SonicMQ will throttle back the message flow from the
producer, allowing the next message to flow into the buffers only when space
is available.

n In Pub/Sub you can disable flow control so that when resources are nearly
exhausted, SonicMQ can, under programmatic control, throw exceptions
until flow control conditions are cleared.

n In PTP flow control is always active.

When flow control is active in Pub/Sub, the messages might be sent to
subscribers at a rate that is faster than that at which the messages are actually
consumed. When the buffers that store unprocessed messages approach
capacity, flow control can stop new additions until the buffers fall below a
stated level.

The back pressure from slower consumption starts to impact the buffers for
queues or durable subscriptions. When system or queue capacities are filled
with messages in process, flow control is activated against producers. The
message acceptance rate drops which eventually results in back pressure at the
producers, causing them to either tolerate the slowdowns or, in Pub/Sub with
flow control disabled, to throw an exception so that you can handle the
SonicMQ Programming Guide 109

Chapter 3: SonicMQ Client Sessions
situation, for example by catching the exception and having the application
wait some period of time before re-publishing.

To avoid the invocation of flow control you can:

n Optimize application processing on incoming messages.

n Adjust the consumer buffer.

n Increase the size of queues.

n Decrease the message expiration time of messages.

In the Pub/Sub domain you can disable flow control so that your application
can catch exceptions to determine when messages are being published at too
fast a rate by setting the following property in TopicSession:

setFlowControlDisabled(boolean disabled)

where TRUE indicates that flow control is not active.

Note Messages sent to a queue will only expire after they have been placed on
the queue, so expiration detection can only result from:

n Dequeue operations by receivers

n Processing by the queue cleanup thread

n Browsing the queue
110 SonicMQ Programming Guide

Using Multiple Connections, Sessions, and Consumers
Using Multiple Connections, Sessions, and Consumers
There are many advantages to using multiple connections and multiple
sessions in an application even though the ordering of messages is only assured
within a session—a single thread of execution.

Multiple Connections
Multiple connections work concurrently. If your application requires
concurrency, you should first consider using one connection and multiple
sessions because connections require more resources compared to sessions.
The most common reason for having two connections in one client application
is to support both queues (PTP) and topics (Pub/Sub).

Sometimes the sheer volume of information flowing through the connection
warrants multiple connections rather than multiple sessions. Figure 22 shows
two connections, each with one session.

Figure 22. Multiple Connections in a Client Application

Client
Application

C
O
N
N
E
C
T
I
O
N

Message
Server

S
E
S
S
I
O
N

C
O
N
N
E
C
T
I
O
N

S
E
S
S
I
O
N

SonicMQ Programming Guide 111

Chapter 3: SonicMQ Client Sessions
Multiple Sessions on a Connection
Using multiple sessions gives up the benefits of serialized operations on a
single thread of execution. Multiple sessions are best suited for alternate or
supporting functions within an application. Figure 23 shows multiple sessions
using two sessions and only one connection. As the connection is associated
with a messaging domain—PTP or Pub/Sub—multiple sessions are
constrained to the connection’s domain.

Coding Connections and Sessions
Each of the SonicMQ sample applications uses client connections and
sessions. The following code sections are excerpts from the Pub/Sub
DurableChat sample:

public class DurableChat implements

javax.jms.MessageListener, // to handle message subscriptions

They demonstrate how to:

n Get a connection and session.

n Create session objects.

n Set up listeners and start the connection.

n Handle exceptions on the connection.

Figure 23. Multiple Sessions on a Connection

Client
Application

Message
Server

C
O
N
N
E
C
T
I
O
N

S
E
S
S
I
O
N

S
E
S
S
I
O
N

112 SonicMQ Programming Guide

Coding Connections and Sessions
Get a Connection and Session
This ReliableChat setupConnection snippet uses the ConnectionFactory and
uses active pings to check the pulse of the connection:

// Get a connection factory

javax.jms.TopicConnectionFactory factory = null;

try

{

factory = (new progress.message.jclient.TopicConnectionFactory (m_broker));

} catch (javax.jms.JMSException jmse) ...

// Wait for a connection.

while (connect == null)

{

try

{

System.out.println("Attempting to create connection...");

connect = (progress.message.jclient.TopicConnection)

factory.createTopicConnection (m_username, m_password);

...

// Ping the broker to see if the connection is still active.

connect.setPingInterval(30);

} catch (javax.jms.JMSException jmse)

{

System.out.print("Cannot connect to broker: " + m_broker);

System.out.println
("Pausing " + CONNECTION_RETRY_PERIOD / 1000 + "

seconds before retry.");

try

{

Thread.sleep(CONNECTION_RETRY_PERIOD);

} catch (java.lang.InterruptedException ie) { }

continue;

}

...
SonicMQ Programming Guide 113

Chapter 3: SonicMQ Client Sessions
Using Active Pings to Monitor the Health of the Connection

In the preceding code segment the statement connect.setPingInterval(6)
indicates the use of a method that lets the application detect when a
connection gets dropped by setting a PingInterval of six seconds. The
active pings are a SonicMQ feature that allows an application to check the
presence and alertness of the message server on a connection. This
technique is particularly useful for connections that listen for messages,
but do not send messages.

This feature is limited to interruption in the physical connection. If the
message server stops on a good connection—with or without pings—an
exception is generated.

Invoking setPingInterval (interval_in_seconds) on a connection sends
a ping message to the message server on that connection at the specified
interval to examine the health of the connection.

Create Session Objects and the Listeners
Two sessions are created n this continuation of the ReliableChat sample, one
session to work with the standard input and send functions and the other to
work with the message listener and the messages it delivers for consumption.
Each session declares its acknowledgement mode then sets up the destination
and the publisher or subscriber. The message listener is activated against the
consumer destination. The detailed code is as follows:

// Create the Sessions, Publisher, Subscriber, and Topics

try

{

...

pubSession = connect.createTopicSession
(false,javax.jms.Session.CLIENT_ACKNOWLEDGE);

subSession = connect.createTopicSession
(false,javax.jms.Session.CLIENT_ACKNOWLEDGE);

javax.jms.Topic topic = pubSession.createTopic (APP_TOPIC);

Note Avoid setting a small ping interval. This wastes cycles and your application
will be burdened with temporary network unavailability.
114 SonicMQ Programming Guide

Coding Connections and Sessions
javax.jms.TopicSubscriber subscriber =
subSession.createDurableSubscriber

(topic, "SampleSubscription");

subscriber.setMessageListener(this);

publisher = pubSession.createPublisher(topic);

// Register this class as the exception listener for any problems.

connect.setExceptionListener((javax.jms.ExceptionListener) this);

System.out.println("...Setup complete.");

...

Start the Connection
When all the session objects and settings are established, the ReliableChat
connection is started.

connect.start();

Messages are composed and sent by the publisher session. Messages are
delivered and consumed by the subscriber session.

Handle Exceptions on the Connection
The exception handler can handle errors actively as in this ReliableChat
snippet where a connection problem initiates a reconnection routine:

// Handle asynchronous problem with the connection.

public void onException (javax.jms.JMSException jsme)

{

// See if connection was dropped.

// Tell the user that there is a problem.

System.err.println ("\n\nThere is a problem with the connection.");

System.err.println (" JMSException: " + jsme.getMessage());

// If the error is a dropped connection, try to reconnect.

// NOTE: the test is against Progress SonicMQ error codes.

int dropCode =
progress.message.jclient.ErrorCodes.ERR_CONNECTION_DROPPED;

if (progress.message.jclient.ErrorCodes.testException
(jsme, dropCode))

{

SonicMQ Programming Guide 115

Chapter 3: SonicMQ Client Sessions
System.err.println ("Please wait while the application tries
to "+ "re-establish the connection...");

// Reestablish the connection

connect = null;

setupConnection();

Handling Dropped Connection Errors Caught with Active Pings

When message server failure causes a dropped connection, the ensuing
TCP_RESET fires the onException() method of the ExceptionListener with the
connection-dropped error code.

When a message server is disconnected from the network, an exception is
thrown to keep a publisher from locking up. However, a subscriber will not
detect such an error since no TCP_RESET is sent unless the
active ping feature has been enabled on the connection.

Exception Listeners are Not Intended for JMS Errors

The ExceptionListener is a way to pass information about a problem with a
connection by calling the listener’s onException() method, passing it a
JMSException describing the problem.

This allows a client to be asynchronously notified of a problem. Some
connections only consume messages so they would have no other way to learn
that their connection has failed.

The exceptions delivered to ExceptionListener are those that do not have any
other place to be reported. If an exception is thrown on a JMS call it, by
definition, must not be delivered to an ExceptionListener — in other words,
the ExceptionListener is not for the purpose of monitoring all exceptions
thrown by a connection.

Important Ping also can also detect the drop of connection due to network failure, such as
a disconnected cable.
116 SonicMQ Programming Guide

JMS Messaging Domains
JMS Messaging Domains
The JMS messaging domains are primarily differentiated by messaging
behaviors. The functionally viewed by the programmer is quite similar, as
shown in their interfaces and methods in Table 6.

Table 6. Connected Session Functionality Common to PTP and Pub/Sub

javax.jms Interface Functionality in Either Domain

ConnectionFactory

extended by:

QueueConnectionFactory
TopicConnectionFactory

n Allows administrative control of communication resources

n Creates one or more Connections

Connection

extended by:

QueueConnection
TopicConnection

n Creates one or more Sessions

n Supports concurrent use

n Lets applications specify name-password for client authentication

n Allows unique client identifiers

n Provides ConnectionMetaData

n Supports an ExceptionListener

n Provides Start and Stop methods

n Provides a close method for connections

Session

extended by:

QueueSession
TopicSession

n Serves as a factory for MessageProducers and MessageConsumers

n Sessions and Destinations are used to create multiple MessageProducers
and MessageConsumers

n Serves as a factory for TemporaryDestinations

n Creates Destination objects with dynamic names

n Serves as a factory for Messages

n Supports serial order of messages consumed and produced

n Retains consumed messages until acknowledged

n Serializes execution of registered MessageListeners

n Provides a close method for sessions
SonicMQ Programming Guide 117

Chapter 3: SonicMQ Client Sessions
118 SonicMQ Programming Guide

Chapter 4 Messages
About Messages
The message is the essence of the SonicMQ Messaging Server.
A message is a package of bytes that encapsulates the message body as a
payload and then exposes metadata that identify—at a minimum—the
message, its timestamp, its priority, its destination, and the type of message
enclosed.

When a text message is published, it might be coded as:

private void jmsPublish (String aMessage)

javax.jms.TextMessage msg = session.createTextMessage();

msg.setText(user + ": " + aMessage);

publisher.publish(msg);

When a message is received it might be through an asynchronous listener:

// Handle an asynchronously received message

public void onMessage(javax.jms.Message aMessage)

{ ...

// Cast the message as a text message.

javax.jms.TextMessage textMessage = (javax.jms.TextMessage) aMessage;

// Read a single String from the text message, print to stdout.

String string = textMessage.getText();

...

}

SonicMQ Programming Guide 119

Chapter 4: Messages
Message Type
The JMS specification defines five types of messages, all derived from the
Message interface, which also defines message headers and the acknowledge
method used by all JMS messages. SonicMQ provides an XML message type
as an extension of the JMS Text type. Figure 24 diagrams the SonicMQ
message types.

The message types can be described as follows:

n Message — The type Message is the root interface of all JMS messages.
It contains no body, but does hold all the standard message header
information. It can be sent when a message containing only header
information is sufficient.

n BytesMessage — A stream of uninterpreted bytes. This message type
exists to support cases where the contents of the message will be shared
with applications that cannot read Java types or 16-bit Unicode encodings.
It is also useful when the information to send already exists in binary form.

n MapMessage— A set of name-value pairs where names are strings and
values are Java primitive types. The entries can be accessed sequentially or
randomly by name. An example of MapMessage usage is a message
describing a new product, which includes the price, weight, and
description; the names in the MapMessage correlate to columns in a
database table in which the consumer stores the information.

Figure 24. SonicMQ Message Types
120 SonicMQ Programming Guide

Message Type
n ObjectMessage — A message that contains a serializable Java object. An
ObjectMessage is useful when both JMS clients are Java applications or
applets with access to the same class definition.

n StreamMessage — A stream of Java unkeyed primitive values that is
filled and accessed sequentially. Since a StreamMessage contains only raw
data and no keys, it takes up less space than an equivalent MapMessage.

n TextMessage — A message containing a java.lang.String or String. Use
a TextMessage when the message content does not require any particular
structure, for example when the message body is simply printed or copied
by the consumer.

n XMLMessage — A message containing a string representing the XML
tree that can be parsed as an XML document.

Creating a Message
The message type is created from a Session method in the form:

javx.jms.[type]Message msg = session.create[type]Message()

such that the set of methods is:
n javx.jms.Message msg = session.createMessage()

n javx.jms.BytesMessage msg = session.createBytesMessage()

n javx.jms.MapMessage msg = session.createMapMessage()

n javx.jms.ObjectMessage msg = session.createObjectMessage()

n javx.jms.StreamMessage msg = session.createStreamMessage()

n javx.jms.StreamMessage msg =
 session.createStreamMessage(Serializable object)

n javx.jms.TextMessage msg = session.createTextMessage()

The XMLMessage type, described below, extends the TextMessage type.

XML Type

There is a slight difference for the XMLMessage type extension that is unique to
SonicMQ:

progress.message.jclient.XMLMessage xMsg =
((progress.message.jclient.Session) session).

createXMLMessage()
SonicMQ Programming Guide 121

Chapter 4: Messages
An XMLMessage is an extension of the TextMessage and is used to send a message
containing XML text in a java.lang.String.

TextMessage inherits from Message, adding a text message body. XMLMessage
then allows access to the XML text’s Document Object Model (DOM).

An implementation of the DOM interface is instantiated when the developer
wants to access the XML message body using the Document Object Model
(DOM), a standard (WC3) application programming interface for accessing,
updating, and creating XML documents.

Message Structure
JMS Messages are composed of the following parts:

n Header Fields (JMS) — All messages support the same set of header
fields. Header fields contain values used by clients and message servers to
identify and route messages.

n User-defined Properties — User-defined name-value pairs that can be
used for filtering and application requirements.

n Provider-defined Properties — Properties defined and typed by
SonicMQ for carrying information used by SonicMQ features.

n Supported JMS-defined Properties (JMSX) — Predefined name-value
pairs that are an efficient mechanism for supporting message filtering.

n Body — JMS defines several types of message body, which cover the
majority of messaging styles currently in use.

Messages and Selectors
The JMS message system provides programmatic access to all components of
a message. However, any content that should be exposed to the subscriber for
message selection or routing must be enclosed in the appropriate header fields
and properties, as the message body cannot be accessed for selection and
routing data.
122 SonicMQ Programming Guide

Message Header Fields
Message Header Fields
The message header fields are defined and used by the sender and the message
server to convey basic routing and delivery information.

The message header fields are described in detail in Table 7.

.

Table 7. Message Header Fields

JMS Header field Type Description Usage Comments

JMSDestination

Required.

Set by the producer
send/publish
method.

String The destination
where the message
is being sent.

While a message is
being sent this value is
ignored.

After completion of the
publish|send method,
it holds the destination
specified by the send.

When a message is
received, its destination
value must be
equivalent to the value
assigned when it was
sent.

JMSDeliveryMode

Required.

Set in a producer
send/publish
parameter.

String Specifies whether
the message is to be
retained in the
message server’s
database.

Required.
Must be PERSISTENT,
NON_PERSISTENT, or
NON_PERSISTENT_ASYNC

Default value is
(NON_PERSISTENT).

JMSMessageID

Required.

Set by the producer
send/publish
method.

String SonicMQ field for a
unique identifier.

A message ID value
must start with “ID:”.

While required, the
algorithm that
calculates the ID on the
client can be bypassed
which sets the
JMSMessageID to null.

JMSTimestamp

Required.

Set by the producer
send/publish
method.

long GMT time on the
producer system
clock when the
message was sent.

 Set method exists but is
always overridden by
the send method
valuation.
SonicMQ Programming Guide 123

Chapter 4: Messages
JMSCorrelationID

Optional.

Set by producer
mutator method.

String Message server-
specified message
ID or an application-
specific String

Required when other
JMS providers support
the native concept of a
correlation ID.

An application made up
of several clients might
want an application-
specific value for
linking messages.

JMSCorrelationID

AsBytes

Optional.

Set by producer
mutator method.

bytes A native byte[]
value.

JMSReplyto

Optional.

Set by producer
mutator method.

String The destination
where a reply to the
current message
should be sent.

If null, no reply is
expected.

If not null, expects a
response, but the actual
response is optional and
the mechanism must be
coded by the developer.

Message replies often
use the CorrelationID
to assure that replies
synchronize with the
requests.

JMSRedelivered

Set by message server.

boolean If true it is likely
that this message
was delivered to the
client earlier but the
client did not
acknowledge its
receipt at that time.

Set at the time the
message is delivered.

When
acknowledgement is
expected and not
received in a specified
time, the message
server can decide to set
this and resend.

JMSType

Optional.

Set by producer
mutator method.

String Contains the name
of a message’s
definition as found
in an external
message type
repository.

Recommended for
systems where the
repository needs the
message type sent to the
application.

This is not, by default,
the message type.

Table 7. Message Header Fields (continued)

JMS Header field Type Description Usage Comments
124 SonicMQ Programming Guide

Message Header Fields
JMSExpiration

Required.

Set by the producer
send/publish method
by incrementing the
current GMT time
on the producer
system by the
producer
send/publish
parameter,
timeToLive.

long When a message’s
expiration time is
reached, the
message server can
discard it. Clients
should not receive
messages that have
expired; however,
the JMS
specification does
not guarantee that
this will not happen.

The sum of the time-to-
live value specified by
the client and the GMT
at the time of the send. If
the time-to-live is
specified as zero, the
message does not expire.

Default value is 0.

When a message is
sent, expiration is left
unassigned. After
completion of the send
method, it holds the
expiration time of the
message.

Default value is 0.

The expiration of a
message can be
managed by setting the
message property
JSM_SonicMQ_

preserveUndelivered

which will transfer an
expired (or
undeliverable) message
to the message server’s
Dead Message Queue.

JMSPriority

Required.

Set in a producer
send/publish
parameter.

int Sets a value that will
allow a message to
move ahead of other
undelivered
messages in a topic
or queue. Also
allows message
selectors to pick
messages at a given
priority.

A ten-level priority
value with 0 as the
lowest priority and 9 as
the highest.

0 to 4 are normal.

5 to 9 are expedited.

Default value is 4.

The JMS specification
does not require that
SonicMQ strictly
implement priority
ordering of messages;
however, the message
server will do its best to
deliver expedited
messages ahead of
normal messages.

Table 7. Message Header Fields (continued)

JMS Header field Type Description Usage Comments
SonicMQ Programming Guide 125

Chapter 4: Messages
Setting Header Values When Sending/Publishing
The basic method for producing a message allows essential delivery
information to accept the JMS default values, for example:

publisher.publish(Message message)

Default Header Values

Three of the message header fields have default values as static final variables:
n DEFAULT_DELIVERY_MODE = NON_PERSISTENT

n DEFAULT_PRIORITY = 4

n DEFAULT_TIME_TO_LIVE = 0

The default header field values can be changed in the signature of the send or
publish method to override the defaults:

n Point-to-Point:

sender.send(Message message,
int deliveryMode,
int priority,
long timeToLive)

n Publish and Subscribe:

publisher.publish(Message message,
int deliveryMode,
int priority,
long timeToLive)

If you use this format of the method but do not intend to override some of the
default values, you can substitute them back into the parameter list. For
example:

private static final int MESSAGE_LIFESPAN = 1800000;

// milliseconds (30 minutes)

sender.send(msg,
javax.jms.DeliveryMode.PERSISTENT,
javax.jms.Message.DEFAULT_PRIORITY,
MESSAGE_LIFESPAN);
126 SonicMQ Programming Guide

Message Properties
Message Properties
Properties are optional fields that are associated with a message. No message
properties are required for any message producer. The property values are used
for message selection criteria and data required by applications and other
messaging infrastructures. The order of property values is not defined.

Although the JMS specification does not define a policy for what should or
should not be made a property, application developers should note that data is
handled in a message’s body more efficiently than data in a message’s
properties. For best performance, applications should only use message
properties when they need to customize a message’s header. The primary
reason for doing this is to support customized message selection.

User-defined Properties
A message contains a built-in facility for supporting application-defined
property values. In effect, this provides a mechanism for adding application-
specific header fields to a message.

Property names must obey the rules for a message-selector identifier. Property
values can be boolean, byte, short, int, long, float, double, and String.

Property values are set prior to sending a message. When a client receives a
message, its properties are in read-only mode. If clearProperties is called, the
properties are erased and then can be set.

Provider-defined Properties (JMS_SonicMQ)
SonicMQ reserves some property names and declares each property’s type.
The following properties are prescribed in SonicMQ for use in expressing
intended handling of undelivered messages and added data about those
messages.
SonicMQ Programming Guide 127

Chapter 4: Messages
Table 8 lists the SonicMQ defined properties, two set by the message producer
to indicate interest in tracking undelivered messages and two set by the
message server when a message is transferred into the server’s dead message
queue.

Review the sample “Persistent Storage Application (PTP)” on page 63 to see
how these properties are used. See SonicMQ Deployment Guide for detailed
information about how these properties contribute to handling undeliverable
messages in local message servers and dynamic routing nodes.

JMS-defined Properties (JMSX)
The JMS specification reserves the JMSX property name prefix for optional
JMS-defined properties. Properties set on send are available to the producer
and the consumers of the message. Properties set on receive are only available
to the consumers.

Properties can be referenced in message selectors whether or not they are
supported by a connection. They are treated like any other absent property.
Table 9 lists and describes the JMSX Message Properties used in SonicMQ.
These JMSX properties are set by the producer.

.

Table 8. SonicMQ Provider-defined Properties

JMS Provider-defined Property Type Set by

JMS_SonicMQ_preserveUndelivered boolean Producer

JMS_SonicMQ_notifyUndelivered boolean Producer

JMS_SonicMQ_undeliveredReasonCode int Message server

JMS_SonicMQ_undeliveredTimestamp long Message server

Table 9. JMSX Properties Used in SonicMQ

JMSX Property Type Set by

JMSXGroupID String Producer on send

JMSXGroupSeq int Producer on send
128 SonicMQ Programming Guide

Message Properties
Setting Message Properties
Properties are in no specified order. They might or might not contain values or
data extracted from the message body. There are no default properties.

Figure 25 shows the Explorer view of the default JMS header fields and two
properties defined by the message sender.

Property Methods
JMSX properties can be referenced in message selectors whether or not they
are supported by a connection. If values for these properties are not included,
they are treated like any other absent property.

Where JMS-defined properties are typed, user-defined properties are typed
when they are created by a set method. User-defined properties can be coerced
into other data types when they are retrieved.

The setting and getting of message properties allows a full range of data types
when the property is established. The properties can be retrieved as a list. A
property value can be retrieved by using a get method for the property name.

Figure 25. User-defined Properties
SonicMQ Programming Guide 129

Chapter 4: Messages
propertyExists

To check if a property value exists, use the method:

public boolean propertyExists(String name)

where name is the name of the property to test.

Returns TRUE if the property exists.

clearProperties

A message’s properties are deleted by the clearProperties method. This leaves
the message with an empty set of properties. Clearing properties effects only
those properties that have been defined and has no impact on the header fields
or the message body:

public void clearProperties()

set[type]Property

Message properties are set as name-value pairs where the value is of the
declared data type. Setting a property type that does not exist causes it to exist
as a property in that message:

set[type]Property(String name, [type] value)

where type is one of the following:
[boolean | byte | short | int | long | float | double | String]

For example, setBooleanProperty(“reconciled”,true).

getPropertyNames

To iterate through a message’s property values, use getPropertyNames() to
retrieve a property name enumeration. Then use the various property get
methods to retrieve their respective values.
130 SonicMQ Programming Guide

Message Properties
get[type]Property

Getting a property value for a property name gets the value of that property. If
the property does not exist, a null is returned:

public [type] get[type]Property(String name);

where type is one of the following:
[boolean | byte | short | int | long | float | double | String]

For example, boolean getBooleanProperty(“reconciled”) returns true.

Property values can be coerced. The accepted conversions are listed in Table 10
where a value written as the row type can be read as the column type.

For example, a short property can be read as a short or coerced into an int,
long or String. An attempt to coerce a short into another data type is an error.

Valid coercions are indicated with Yes; those intersections marked with No
throw a JMSException.

A string-to-primitive conversion might throw a run time exception if the
primitives valueOf() method does not accept it as a valid string representation
of the primitive.

Table 10. Permitted Type Conversions for Message Properties

boolean byte short int long float double String

boolean Yes No No No No No No Yes

byte No Yes Yes Yes Yes No No Yes

short No No Yes Yes Yes No No Yes

int No No No Yes Yes No No Yes

long No No No No Yes No No Yes

float No No No No No Yes Yes Yes

double No No No No No No Yes Yes

String Yes Yes Yes Yes Yes Yes Yes Yes
SonicMQ Programming Guide 131

Chapter 4: Messages
Message Body
The message body has no default value and need not have any content. The
message body is populated by the message set method for the message type.

Setting the Message Body
Use the set methods specified by JMS for all types except XML unless the
message is read-only (in which case you will need to copy or reset the received
message). For example, for a TextMessage:

msg.setText(aMessage);

Setting the Body for an XML Type

The XMLMessage type is a message body with XML tags. The XMLMessage is a
SonicMQ extension to JMS that uses the setDocument method to set the body
by setting the org.w3c.dom.Document object associated with the XMLdomMessage
contents. This allows the client application to set the contents by passing in a
Document Object Model (DOM). The setDocument method is written in the
form:

setDocument(org.w3c.dom.Document aDoc)

where aDoc is a standard org.w3c.dom.Document object.

The org.w3c.dom.Document is stored as the internal document for this message.
The message content is emptied but will be generated when the message is
sent. For best results, the XML Document object should be an instance of the
com.ibm.xml.parser.TXDocument. However, if it is not a TXDocument, it tries to
make a node-by-node copy of it.

Important If you use setText(String string) where string is the string containing the
message’s data, you set the string containing this message’s data, overriding
setText in class TextMessage.
132 SonicMQ Programming Guide

Message Body
Getting the Message Body
Use the get methods required by the JMS specification for all types except
XML. For example:

msg.getText(aMessage);

Getting the Body from an XML Type

For instances of XMLMessage, use the getDocument method to return an
org.w3c.dom.Document object created from the XMLMessage contents. This
will allow the client application to access the contents using the DOM-tree
functionality. It is written in the form:

org.w3c.dom.Document getDocument()

If you use getText(), you get the string containing this message’s data. If the
message has been created with a setDocument(), this call will convert it to a text
message, overriding getText in class TextMessage.
SonicMQ Programming Guide 133

Chapter 4: Messages
134 SonicMQ Programming Guide

Chapter 5 Message Producers and Consumers
About Message Producers and Message Consumers
This chapter describes the generic programming model for messaging that is
common to both messaging models, Publish and Subscribe (Pub/Sub) and
Point-to-Point (PTP).

Generic Messaging Model
Message producers and message consumers are established in one of the
messaging models by creating an appropriate ConnectionFactory then creating
Connections, then Sessions on each Connection and, finally, the session
objects as shown in Figure 26.

Figure 26. Generic Messaging Model
SonicMQ Programming Guide 135

Chapter 5: Message Producers and Consumers
Message producers are established in one of the messaging domains by
creating an appropriate ConnectionFactory then creating a Connections, then
Sessions on the Connections.

The Message Producers send messages to a Destination on a message server.
Message Consumers get messages from a Destination by implementing
asynchronous MessageListeners or doing synchronous receives.

Message Ordering and Reliability
The scope of services available in a loosely coupled messaging structure
presents a rich set of factors that impact sequence of messages actually
delivered to consumers. Message ordering and redelivery both contribute to
reliable message delivery.

General messaging services are impacted by many uncontrollable
environmental factors from latency and machine outages to internal factors
such as related applications not accepting data types, values, poorly formed
XML data, and data payloads. Message delivery is distinctly non-linear.

Message ordering and reliability common to all messaging domains are
described in this chapter. See also the Pub/Sub and PTP chapters for details
about message ordering and reliability within those domains.

Messages can be delivered with a range of options to modify message ordering
and invoke features that improve reliability:

n The producer can set the time-to-live of the message so that obsolete
messages can expire. If message A is set at one minute, message B at five
seconds, and message C at one hour, after three minutes with no deliveries
only message C will still exist. Ordering is maintained while expiration is
a user-defined value.

n The producer can set the delivery mode of messages so that the message
server confirms persistent storage of the message before acknowledgement
is and the message priority. In the event of a message server failure, a
message that the message server acknowledged before it was persisted
might be lost.

n The producer can set the priority of a message so that the message server
can take efforts to position a more recent message before an older one.
136 SonicMQ Programming Guide

Destinations
n The producer uses a synchronous process to put the message on the
message server’s message store; when it is released, the message is
acknowledged as delivered to its interim destination.

n The consumer can use listeners to get messages as they are made available.

n Messages sent in the NON_PERSISTENT delivery mode can arrive prior to
messages that are PERSISTENT.

n The consumer starts a session by expressing its preferred
acknowledgement technique—transactional or not, explicit or implicit.

n Connections can be monitored and, when broken, techniques can
automatically attempt to reconnect.

n Message senders in the Internet environment are not guaranteed consistent
communication times. Transmission latencies can cause messages to be
actually produced before other messages. As a result two messages from
two sessions are not required—and cannot be reliably expected—to be in
any specific sequence.

Destinations
Destinations are objects that provide the producer, message server, and
consumer with a context for delivery of messages. Destinations can be JMS
Administered Objects (static objects under administrative control), dynamic
objects created as needed (topics only), or temporary objects created for very
limited use. The destination name is a string of any java.lang.String length.

For topics, SonicMQ provides extended management and security with
hierarchical name spaces; for example, jms.samples.chat.

Destination names can be any set a characters with a few reservations:

n . (period) delimits hierarchical nodes, particularly for topics. See
Chapter 9, “Hierarchical Name Spaces,” for more information.

n * (asterisk) and # (pound) are used as template characters. These are
stored for durable subscriptions and, by managers, for access control lists.
The stored characters as applied as wildcards when implemented. See
Chapter 9, “Hierarchical Name Spaces,” for more information.
SonicMQ Programming Guide 137

Chapter 5: Message Producers and Consumers
n $ (dollarsign) and the strings $SYS and $ISYS are administrative topics. See
the SonicMQ Installation and Administration Guide for more information.

n : (colon) delimits the routing node name and a remote message server in
Dynamic Routing Architecture deployments.

n :: (double_colon) delimits a routing node name and a queue name in
Dynamic Routing Architecture deployments. See the SonicMQ
Deployment Guide for more information.

You can programmatically store and retrieve defined topics. SonicMQ lets you
store topic names in JNDI or a simple file store and then reference the object
indirectly (by name) in some context. See Chapter 12, “Lookup of
Administered Objects,” for more information.

Steps in Message Production
Every time a Pub/Sub session wants to send a message to a topic, it must create
a producer in the session for the selected destination. The only exception is
when you intend to establish an unbound destination—a null destination name
that, for example, enables the QueueRequestor to bind to that queue space.

Producing a Pub/Sub message within a connected session is presented in six
steps:

1. Create the publisher session.

2. Create the publisher to the topic.

3. Create the message and setting its content.

4. Set message header fields.

5. Set message properties.

6. Publish the message.

Create the Topic Publisher on the PublisherSession Thread
After the connection is established, a session that will be reserved for publisher
activities is created:

pubSession = connect.createTopicSession
(false,javax.jms.Session.AUTO_ACKNOWLEDGE);
138 SonicMQ Programming Guide

Steps in Message Production
Create the Producer on the Producer Session Thread
In the pubSession, the static variable APP_TOPIC that was assigned
“jms.samples.chat" is set up as the working topic and a publisher is associated
with it:

javax.jms.Topic topic = pubSession.createTopic (APP_TOPIC);

publisher = pubSession.createPublisher(topic);

Create the Message Type and Set Its Body
A text message, constructed from the standard input (the keyboard), is read in
when the readLine is activated. A new SonicMQ TextMessage is created and
the text is set into it, prepended in the sample by the username, a colon and a
space.

String s = stdin.readLine();

javax.jms.TextMessage msg = pubSession.createTextMessage();

msg.setText(username + ": " + s);

If user Sales enters “Hello.”, the message content is “Sales: Hello.”

Set Message Header Fields
To change header fields, use the set methods for message header fields that are
available for change:

setJMSType("CentralFiles")

Note that some header field set methods exist (such as setJMSMessageID and
setJMSTimestamp yet whatever you assign is overwritten at the time the message
is produced.

The header fields that are named and typed yet available for assignment are:

n JMSCorrelationID, reserved for message matching functions

n JMSReplyto, reserved for request reply information

n JMSType, available for general use
SonicMQ Programming Guide 139

Chapter 5: Message Producers and Consumers
Set the Message Properties
Use the set methods for the data type of a property and then supply the
property name and its value of the declared type. Generically:

set[type]Property(String name, String value)

For example:

setLongProperty(“OurInfo_AuditTrail”,“6789”)

Produce the Message
When the message is assigned its attributes (header fields and properties) and
its payload, the message is ready to be produced. In its simplest form the
producer method for a publisher is:

publisher.publish(msg);

The form of publish used in the DurableChat sets three important message
parameters at the moment the publish is executed:

private static final long MESSAGE_LIFESPAN = 1800000;
publisher.publish(msg,

javax.jms.DeliveryMode.PERSISTENT,
javax.jms.Message.DEFAULT_PRIORITY,
MESSAGE_LIFESPAN);

The message production method passes along either the default values or the
entered values for:

n JMSDeliveryMode is [NON_PERSISTENT|PERSISTENT|NON_PERSISTENT_ASYNC]
n JMSPriority is [0...9] where 0 is lowest, 9 is highest, 4 is the default.

n timeToLive, the message lifespan that will calculate the JMSExpiration, is
[0...n] where 0 is “forever” and any other positive value n is in
milliseconds.

The message producer method assigns—and overwriting, if previously
assigned—data to the following header fields:

n JMSDestination, the producer’s current destination

n JMSTimestamp, based on the producer’s system clock

n JMSMessageID, based on the algorithm run on the producer’s system

n JMSExpiration, based on the producer’s system clock plus the timeToLive
140 SonicMQ Programming Guide

Steps in Message Production
The release of the synchronous block by the message server returns only a
boolean indicating whether the message production completed successfully.

Important While the JMSExpiration is calculated from the client system clock at the time
of the send, it is enforced on the message server’s clock. To accomodate
variances between client and server clocks, the message server adjusts the
message expiration to its clock. When the message is forwarded to another
message server, the remaining timeToLive value (expiration minus current
message server GMT time) is forwarded. The time that elapses until the first
packet of the message in transit is received is effectively ignored.
SonicMQ Programming Guide 141

Chapter 5: Message Producers and Consumers
Message Management by the Message Server
A message at a destination behaves according to the parameters of the message
send (PTP) or publish (Pub/Sub) event. Table 11 lists those parameters and
how those parameters tell the message server how to handle the message.

Table 11. How Message Producer Parameters Influence the Message Server

Producer
Parameter How the parameter is treated by the message server

deliveryMode deliveryMode = PERSISTENT

Store the message in the message server’s message log in case of impending failure.
Acknowledge the producer only after logging the message.

deliveryMode = NON_PERSISTENT

If the message is enqueued or stored for a durable subscriber on a message server that shuts
down, the message is volatile.

deliveryMode = NON_PERSISTENT_ASYNC

Message publisher methods do not expect any acknowledgement whatsoever. This delivery
mode is often appropriate for “blasting” published data such as current stock market prices.

NOTE: A message’s deliveryMode is effective throughout its lifespan. If a NON_PERSISTENT
message is enqueued (PTP) or stored for a durable subscriber (Pub/Sub) on a message server
that shuts down, the message is volatile. This behavior stays with a message throughout its
travels in a dynamic queue routing deployment, and even applies in the dead message queue.

priority priority = 0...9

When there are several messages for a receiver that is awaiting delivery, higher priority
messages (5 through 9) can move toward the front of the FIFO list. While there are
circumstances where this is desirable, more often keeping a smooth FIFO flow is preferable.

timeToLive timeToLive = <non-negative long integer value>

Number of milliseconds added to the GMT time of the client when the message is produced
to determine the JMSExpiration date-time of the message. If the timeToLive is 0, the
expiration date-time is also 0, the indication that the message is intended never to expire.

The timeToLive feature ensures eventual delivery but can result in out-of-date deliverables
when queues are not purged and when durable subscriptions are not formally unsubscribed.
142 SonicMQ Programming Guide

Message Listeners, Receivers, and Selectors
Message Listeners, Receivers, and Selectors
Topic subscribers do not automatically get messages. Having an active session
where an application subscribes to a topic does not result in the message
getting delivered to the application. You must use an asynchronous listener or
a synchronous message receiver.

Message Listeners
A message listener is invoked to initiate asynchronous monitoring of the
session thread for consumer messages:

setMessageListener(MessageListener listener)

where listener is the message listener to associate with this session.

The listener is often assigned just after creating the destination consumer from
the session, so that the listener is bound to the destination to which a consumer
was just created, for example:

javax.jms.QueueReceiver receiver =

session.createReceiver(queue, username);

receiver.setMessageListener(this);

and:

javax.jms.TopicSubscriber subscriber =

session.createSubscriber(topic, username);

subscriber.setMessageListener(this);

As a result, asynchronous message receipt becomes exclusive for the session.

Note Message sending is not limited when message listeners are in use. Sending is
always synchronous.
SonicMQ Programming Guide 143

Chapter 5: Message Producers and Consumers
Message Receiver
The receiver methods are synchronous calls to fetch messages. The different
methods manage the potential block by either not waiting if there are no
messages or timing out after a specified period.

Receive

To receive the next message produced for the consumer, use the method:

Message receive()

This call blocks indefinitely until a message is produced. When a receive
method is called in a transacted session, the message remains with the
consumer until the transaction commits. The return value is the next message
produced for this consumer. If a session is closed while blocking, the return is
null.

Receive with Timeout

To receive the next message within a specified time interval and cause a
timeout when the interval has elapsed:

Message receive(long timeOut)

where timeout is the timeout value (in milliseconds)

This call blocks until either a message arrives or the timeout expires. The return
value is the next message produced for this consumer, or null if one is not
available.

Receive No Wait

To receive the next available message immediately or instantly timeout:

Message receiveNoWait()

The receiveNoWait method receives the next message if one is available. The
return value is the next message produced for this consumer, or null if one is
not available.
144 SonicMQ Programming Guide

Message Listeners, Receivers, and Selectors
Message Selector
While some messaging applications expect to get every message produced to a
destination, there are techniques that can reduce the flow of irrelevant
messages to a message consumer:

n Subscription to hierarchical name spaces (Pub/Sub) — SonicMQ’s
hierarchical name spaces let subscribers point to content nodes (and,
optionally, to sets of relevant subordinate nodes) to focus publishers into
meaningful spaces. For more information, see Chapter 9, “Hierarchical
Name Spaces.”

n Message filtering within a topic — JMS defines a syntax that is a subset
of SQL-92 conditional expressions that allows a subscriber to filter and
categorize messages in the message header and properties based on
specified criteria. Because the SonicMQ implementation handles the work,
the application and its communication links are more efficient and
consume less bandwidth. Message selectors do not access the message
body. Table 12, Table 13, and Table 14 summarize the selector syntax
presented in the JMS specification and implemented in SonicMQ.
Although SQL supports arithmetic operations, JMS message selectors do
not. SQL comments are not supported.

Note The ReceiveNoWait method is unlikely to provide effective message
consumption in the Pub/Sub paradigm.The no-wait concept is useful for
durable subscriptions, but is unlikely to produce results for normal
subscriptions.

The method is very useful in the PTP paradigm where messages wait on a static
queue.
SonicMQ Programming Guide 145

Chapter 5: Message Producers and Consumers
Message Selector Syntax

A message selector is a java.lang.String that is evaluated left to right within
precedence level. You can use parentheses to change this order. A message
selector string can contain combinations of the following elements to comprise
an expression:

n Literals and Indefinites (See Table 12.)

n Operators and Expressions (See Table 13.)

n Comparison tests See (Table 14.)

n Parentheses control the evaluation of an expression.

n Whitespace (spaces, horizontal tabs, form feeds, and line terminators) are
evaluated in the same way as in Java.

For example, the following message selector might be set up on a Bidders topic
to retrieve only high-priority quotes that are requesting a reply:

“Priority > 7 AND Form = ’Bid’ AND Amount is NOT NULL”

Table 12. Literal and Identifier Syntax in Message Selectors

Selector Element Format and Requirements Constraints Example

Literals String literals Zero or more characters enclosed in single
quotes.

‘sales’

Exact
numeric
literals

Numeric long integer values, signed or
unsigned.

57
-957
+62

Approximate
numeric
literals

Numeric double values in
scientific notation.

7E3
-57.9E2

Numeric double values with a decimal,
signed or unsigned.

7.
-95.7
+6.2

Boolean
literals

true or false true
146 SonicMQ Programming Guide

Message Listeners, Receivers, and Selectors
Identifiers All A case-sensitive character sequence that
must begin with a Java-identifier start
character. All following characters must be
Java-identifier part characters.

Cannot be null,
true, false, NOT,
AND, OR,
BETWEEN, LIKE,
IN, or IS.

JMSType,

JMSXState

JMS_Links

PSC_Link

Message
header field
references

JMSDeliveryMode, JMSPriority,
JMSMessageID, JMSTimestamp,
JMSCorrelationID, or JMSType.

JMSDelivery

Mode, and
JMSPriority

cannot be null.

JMSType

JMSX-
defined
property
references

null when a referenced property does not
exist.

None JMSXState

SonicMQ
defined
properties

JMS_SonicMQ

_preserve

Undelivered

Application-
specific
property
names
(do not start
with ‘JMS’)

Audit_Team

Table 12. Literal and Identifier Syntax in Message Selectors

Selector Element Format and Requirements Constraints Example
SonicMQ Programming Guide 147

Chapter 5: Message Producers and Consumers
Table 13. Operator and Expression Syntax in Message Selectors

Selector Element Format and Requirements Example

Operators Logical In precedence order:
NOT, AND, OR

a NOT IN (‘a1’,’a2)

a > 7 OR b = true

a > 7 AND b = true

Comparison =, >, >=, <, <=, <>

(for booleans and Strings: =, <>)

a > 7

b = ’Quote’

Arithmetic In precedence order:

- Unary + or -

- Multiply * or divide /

- Add + or subtract -

a > +7

a * 3

a - 3

Arithmetic range
between two
expressions

id BETWEEN e2 AND e3

id NOT BETWEEN e2 AND e3

a BETWEEN 3 AND 5

a NOT BETWEEN 3 AND 5

Expressions Selector Conditional expression that matches
when it evaluates to true

((4*3)=(2*6))= true

Arithmetic Include:

- Pure arithmetic expressions

- Arithmetic operations

- Identifiers with numeric values

- Numeric literals

7*5

a/b

7

Conditional Include:

- Pure conditional expressions

- Comparison operations

- Logical operations

- Identifiers with Boolean values

- Boolean literals (true, false)

7>6

a > 7 OR b = true

a = true

true
148 SonicMQ Programming Guide

Message Listeners, Receivers, and Selectors
Comparing Exact and Inexact Values

Comparing an int value (an exact numeric literal that uses the Java integer
literal syntax) and a float value (an approximate literal that uses the Java
floating point literal syntax is allowed.

Table 14. Comparison Test Syntax in Message Selectors

Selector Element Format and Requirements Example

Comparison
tests

IN Identifier IN (str1, str2, ...)

Identifier NOT IN (str1, str2, ...)

a IN (‘AR’,’AP’, ‘GL’)

a NOT IN (‘PR’,’IN’,

‘FA’)

LIKE Identifier LIKE (str1, str2,...)

Identifier NOT LIKE (str1, str2,...)

can be enhanced with pattern values:

- Underscore (_) stands for any character

- Percent (%) stands for any sequence of
characters

To explicitly defer the special characters _ and
%, precede their entry with the Escape
character.

a LIKE ‘Fr%d’

is true for ‘Fred’ ‘Frond’
and false for ‘Fern’

a LIKE ‘_%’ ESCAPE ‘\’

true for ‘JMS_A’ and false
for ‘JMSPriority’

null Identifier IS NULL

Identifier IS NOT NULL

for:

- Header field value

- Property value

- Existence of a property

Refer to SQL-92 semantics or the JMS
specification for more about comparisons that
involve null values.

a is NULL

a is NOT NULL
SonicMQ Programming Guide 149

Chapter 5: Message Producers and Consumers
Type conversion is defined by the rules of Java numeric promotion as described
in the Java Language Specification which, in part, declares that:

n Unary conversions are from byte, short, or char, to a value of type int by
a widening conversion and, otherwise, a unary numeric operand remains
as is and is not converted.

n Binary conversions called for by operands on data of numeric types. If
either operand is of type double, the other is converted to double.
Otherwise, if either operand is of type float, the other is converted to
float. Otherwise, if either operand is of type long, the other is converted
to long. Otherwise, both operands are converted to type int.

Steps in Listening, Receiving and Consuming
Messages

Receiving and consuming a Pub/Sub message within a connected session is
presented in six steps:

1. Implement the listener or receiver to the destination.

2. Create the consumer and listener for the destination.

3. Handle a received message by:

n Using instanceOf to determine if the message is as expected

n Handling alternate message types

n Manipulating or parsing body data

4. Get header fields.

5. Get message properties.

6. Consume the message.

Implement the Message Listener
The standard JMS message listener is implemented:

public class Chat

 implements javax.jms.MessageListener

...
150 SonicMQ Programming Guide

Steps in Listening, Receiving and Consuming Messages
Create the Destination and Consumer, then Listen
After getting the ConnectionFactory object for the appropriate messaging
model, then establishing a connection and session, the session objects are
created:

javax.jms.Topic topic = subSession.createTopic
("jms.samples.chat");

javax.jms.TopicSubscriber subscriber =
 subSession.createSubscriber(topic);

subscriber.setMessageListener(this);

Handle a Received Message

In the Chat sample the message is assumed to be text and is intended for output
to the standard output stream:

public void onMessage(javax.jms.Message aMessage)

{
javax.jms.TextMessage textMessage =

 (javax.jms.TextMessage) aMessage;

String string = textMessage.getText();

System.out.println(string);
}

Special Handling When the Message Type is Uncertain

In the XMLChat sample, the message is tested to determine whether or not it is
an instance of XMLMessage and then handled appropriately:

public void onMessage(javax.jms.Message aMessage) {

if (aMessage instanceof progress.message.jclient.XMLMessage){

... see Parsing an XML Message

}else{ // Cast the message as a text message and display it.

javax.jms.TextMessage textMessage =
(javax.jms.TextMessage) aMessage;

System.out.println("[TextMessage] "
+ textMessage.getText());

}

Parse an XML Message and Extracting Data from Fields
// Cast the message as an XML message.
SonicMQ Programming Guide 151

Chapter 5: Message Producers and Consumers
progress.message.jclient.XMLMessage xmlMessage =
(progress.message.jclient.XMLMessage) aMessage;

// Get the XML document associated with this message.

org.w3c.dom.Document doc = xmlMessage.getDocument();

// Get the sender and content from the message.

org.w3c.dom.NodeList nodes = null;

nodes = doc.getElementsByTagName("sender");

String sender = (nodes.getLength() > 0) ?
nodes.item(0).getFirstChild().getNodeValue() : "unknown";

nodes = doc.getElementsByTagName("content");

String content = (nodes.getLength() > 0) ?

nodes.item(0).getFirstChild().getNodeValue() : null;

// Show the message.

System.out.println("[XML from ’" + sender + "’] " + content);

// Show the message as a tree.

printDocNodes(doc.getDocumentElement(),0);

System.out.println();

Get Message Header Fields

Use the get methods for Header fields, such as:

getJMSMessageID()

Get Message Properties

Use the get methods for the data type of a property and then supply the
property name and its value of the declared type. When a property requested
does not exist in a message, the return value is null. Generically:

get[type]Property(String)

For example, getIntProperty(“OurInfo_AuditTrail”)

Warning This example gets an int property that was set with (and stored as) a long.
Attempting to get a property type that is not the type with which the property
was set will force coercion of the value to the declared type. If the conversion
is not valid, an exception is thrown. See Table 10, “Permitted Type
Conversions for Message Properties.”
152 SonicMQ Programming Guide

Reply-to Mechanisms
Consume the message

The application can pass the data in an accepted message to the business
application for which it performs its services. Explicit acknowledgement of the
JMS message to the message server could be postponed until the business
application acknowledges processing with a transaction or audit trail identifier.
This value could be passed back to the producer is a reply was requested.

Reply-to Mechanisms
The typical design pattern for request/reply is—as in this PTP example:

n Make a temporary queue.

n Set the JMSReplyTo header to this queue.

n Do a synchronous QueueSender.receive() on the message.

The temporary destination can be a queue or a topic. The temporary destination
could be structured into a requestor helper class, as shown in Table 15.

The JMSReplyTo message header field contains the destination where a reply to
the current message should be sent. Messages with a JMSReplyTo value are
typically expecting a response. If the JMSReplyTo value is null, no reply is expected.
A response can be optional, and client code must handle the action. These
messages are called requests.

A message sent in response to a request is called a reply. Message replies often
use the JMSCorrelationID to ensure that replies synchronize with their request.
A JMSCorrelationID would typically contain the JMSMessageID of the request.

Table 15. Reply-To Mechanisms in Both Domains

Reply-To
Mechanism

Publish and Subscribe
Domain Point-to-Point Domain

Destination TemporaryTopic TemporaryQueue

Helper class TopicRequestor QueueRequestor
SonicMQ Programming Guide 153

Chapter 5: Message Producers and Consumers
Temporary Destinations Managed by a Requestor Helper
Class

Under Pub/Sub, the TopicRequestor uses the session and topic that were
instantiated from the Session methods. The code excerpts below are from the
TopicPubSub Requestor and Replier samples. Notice that the code never
actually manipulates the TemporaryTopic object; instead it uses the helper class
TopicRequestor.

Requestor Application
javax.jms.TopicRequestor requestor =

new javax.jms.TopicRequestor(session, topic);
javax.jms.Message response = requestor.request(msg);
javax.jms.TextMessage textMessage =

(javax.jms.TextMessage) response;

Replier Application

Synchronous requests leave the originator of a request waiting for a reply. To
prevent a requestor from waiting, a well-designed application uses the
following flow:

1. Get the message:

public void onMessage(javax.jms.Message aMessage)

{
javax.jms.TextMessage textMessage =

(javax.jms.TextMessage) aMessage;

String string = textMessage.getText();
}

2. Look for the header specifying JMSReplyTo:

javax.jms.Topic replyTopic =
(javax.jms.Topic) aMessage.getJMSReplyTo();

if (replyTopic != null)...

3. Send a reply to the topic specified in JMSReplyTo:

javax.jms.TextMessage reply = session.createTextMessage();
154 SonicMQ Programming Guide

Reply-to Mechanisms
Design for Handling Requests

The final steps taken by the message handler represent good programming
style, but they are not required by the design paradigm for JMS requests:

n Set the JMSCorrelationID, tying the response back to the original request.

n Use transacted session commit so that the request will not be received
without the reply being sent, for example:

reply.setJMSCorrelationID(aMessage.getJMSMessageID());

replier.publish(replyTopic, reply);

session.commit();

Writing a Topic Requestor

The default TopicRequestor behavior is to block when waiting for a reply. You
can write your own TopicRequestor class that will timeout (receive(long
timeOut)) or listen to the temp topic as a Subscriber, thereby avoiding the
SonicMQ Programming Guide 155

Chapter 5: Message Producers and Consumers
blocking situation. The javax.jms.TopicRequestor.java file, listed below, is a
start toward creating your own TopicRequestor.class.

// @(#)TopicRequestor.java 1.9 98/07/08
// Copyright (c) 1997-1998 Sun Microsystems, Inc. All Rights Reserved.
package javax.jms;
public class TopicRequestor {
TopicSession session;

// The topic session the topic belongs to.
 Topic topic;

// The topic to perform the request/reply on.
 TemporaryTopic tempTopic;
 TopicPublisher publisher;
 TopicSubscriber subscriber;

// Constructor for the TopicRequestor class.
 public TopicRequestor(TopicSession session, Topic topic)

throws JMSException {
this.session = session;
this.topic = topic;
tempTopic = session.createTemporaryTopic();
publisher = session.createPublisher(topic);
subscriber = session.createSubscriber(tempTopic);

 }
// Send a request and wait for a reply.
 public Message

request(Message message)
throws JMSException

{
message.setJMSReplyTo(tempTopic);
publisher.publish(message);
return(subscriber.receive());

 }
// Close resources when done.

public void
close() throws JMSException {
tempTopic.delete();
publisher.close();
subscriber.close();
session.close();

 }
}

156 SonicMQ Programming Guide

Producers and Consumers in JMS Messaging Domains
Producers and Consumers in JMS Messaging Domains
The two JMS messaging domains provide naming conventions for their use of
these general messaging terms as listed in Table 16.

Figure 27 shows the relationship of the session objects in the JMS domains.

Table 16. Messaging Subclasses in JMS Messaging

JMS Messaging
Class

Point-to-Point
Subclass

Publish and Subscribe
Subclass

ConnectionFactory QueueConnectionFactory TopicConnectionFactory

Connection QueueConnection TopicConnection

Session QueueSession TopicSession

MessageProducer QueueSender TopicPublisher

MessageConsumer QueueReceiver TopicSubscriber

Destination Queue Topic

Figure 27. Session Objects in the JMS Domains
SonicMQ Programming Guide 157

Chapter 5: Message Producers and Consumers
Table 17 lists a general messaging functionality that is consistent in both
Publish and Subscribe and Point-to-Point messaging.

See Chapter 6, “Point-to-Point Messaging,” and Chapter 8, “Publish and
Subscribe Messaging,” for programming concepts and distinguished
functionality in each messaging domain.

Table 17. Producer and Consumer Common to Both Messaging Models

javax.jms Interface Functionality in Either Domain

Destination

extended by: Queue, Topic

Destination supports concurrent use

MessageProducer

extended by:

QueueSender

TopicPublisher

Able to send message while connection is stopped

Close MessageProducer method

Supports message delivery modes PERSISTENT and NON_PERSISTENT

Supports message Time-to-Live

Support message priority

MessageConsumer

extended by:

QueueReceiver

TopicSubscriber

Close MessageConsumer method

Supports MessageSelectors

Supports synchronous delivery (receive method)

Supports asynchronous delivery (onMessage method)

Supports AUTO_ACKNOWLEDGE of messages

Supports CLIENT_ACKNOWLEDGE of messages

Supports DUPS_OK_ACKNOWLEDGE of messages

Supports SINGLE_MESSAGE_ACKNOWLEDGE of messages

Message

extended by:

TextMessage

extended by XMLMessage
MapMessage

StreamMessage

ObjectMessage

BytesMessage

Message header fields

Message properties

Message acknowledgment

Message selectors

Access to message after being sent for reuse
158 SonicMQ Programming Guide

Chapter 6 Point-to-Point Messaging
About Point-to-Point Messaging
In the Point-to-Point (PTP) messaging model, shown in Figure 28, a queue
stores messages for as long as they are specified to live, waiting for a receiver.
The QueueBrowser mechanism provides a sender with an opportunity to
peruse the queue to see how message traffic is moving.

Figure 28. Point-to-Point Messaging Model
SonicMQ Programming Guide 159

Chapter 6: Point-to-Point Messaging
Coding Queues, Senders, and Receivers
Queue names must be set up in the message server database by the
administrator before they can be used. See the SonicMQ Installation and
Administration Guide for information about maintaining queues.

Coding Sample

The QueuePTP sample Talk provides a look at how PTP applications are started
and coded. The command that starts the Talk application specifies the sending
queue and the receiving queue that will be used:

java Talk -b <broker:port> -u <user> -p <pwd> -qs <queue> -qr <queue>

where:

– broker:port points to the message server.

– user and pwd is the unique user name and its password.

– -qs queue is the name of the queue for sending messages.

– -qr queue is the name of the queue for receiving messages.

The following segments excerpted from the Talk sample show how to create
the objects used in PTP communication:

// Create a connection. (try/catch)
 javax.jms.QueueConnectionFactory factory;
 factory = (new progress.message.jclient.QueueConnectionFactory

(broker));
 connect = factory.createQueueConnection (username, password);

sendSession = connect.createQueueSession
(false,javax.jms.Session.AUTO_ACKNOWLEDGE);

receiveSession =
connect.createQueueSession

(false,javax.jms.Session.AUTO_ACKNOWLEDGE);
// Create Sender and Receiver ’Talk’ queues. (try/catch)
 if (sQueue != null)

{
 javax.jms.Queue sendQueue = session.createQueue (sQueue);
 sender = sendSession.createSender(sendQueue);

if (rQueue != null)
{

 javax.jms.Queue receiveQueue = receiveSession.createQueue
(rQueue);

javax.jms.QueueReceiver qReceiver =
receiveSession.createReceiver(receiveQueue);

 qReceiver.setMessageListener(this);
 // The ’receive’ setup is complete. Start the Connection
 connect.start();
 ...
} {
160 SonicMQ Programming Guide

Message Ordering and Reliability in PTP
Message Ordering and Reliability in PTP
The services available in a Point-to-Point messaging structure add other factors
to general message ordering and reliability.

Message Ordering
Queued delivery allows several receivers to apply their resources to taking
exclusive control of a message and processing that message. As a result, a
series of messages might be consumed by several sessions each taking a few
messages.

Messages on a queue also have factors that impact the ordering and reliability
of messages:

n When a message is put onto a queue, a higher priority indicated on the
sender method, an active queue receiver might take a newer message off
the queue before an older message.

n Queued messages that are not acknowledged are placed back on the queue
(reenqueued) for delivery to the next qualified receiver. In the interim an
older message may have been received by a consumer.

n Queue receivers have a fetch parameter that retrieves a number of
messages and caches them for processing. If these messages are not
processed, they are returned to the queue.

Reliability
Messages on a queue have factors that impact the reliability of messages:

n Message selectors limit the number of messages that a client will receive.
Messages could stay on the queue until a receiver either provides a liberal
message selector or no message selector at all. A queue might appear
empty to a receiver that deselects all the existing messages even though
other messages might still be in the queue.

n Message destruction due to administrator action permanently disposes of
queued messages.

n Message destruction due to expiration might permanently dispose of a
message but the message could—if flagged by the sender—be routed to the
SonicMQ Programming Guide 161

Chapter 6: Point-to-Point Messaging
message server’s dead message queue where it does not expire. An
Administrative application can set up an authorized receiver on the dead
message queue to determine whether to recast the message, resend it as is,
or discard it.

Advantages and Constraints in PTP Domains
Consider typical real-world analogies for the basic domains:

n Point-to-Point — An available agent for airline check-in takes the person
at the front of the line. If there are no agents, you just wait.

n Publish and Subscribe — Airport controllers broadcast gate changes to
all subscribing airline agents, travel agents, support services, and Web
information pages. If you are not connected, you do not get the data.

The concepts of Pub/Sub can be used to simulate PTP functionality by setting
up a single administered topic, then giving only one subscriber access to it as
a durable subscriber. However, Pub/Sub has restrictions that PTP does not. See
Table 18.

Note The effects of dynamic routing on message ordering and reliability are
discussed at greater length in the scenarios in Chapter 7, “Dynamic Routing
Architecture,” and in the SonicMQ Deployment Guide.

Table 18. Advantages of the Point-to-Point Messaging Model

Point-to-Point Publish and Subscribe

Multiple Receivers — Can set up multiple receivers to
take turns at receiving the frontmost message. The
message is delivered only once.

Cannot establish another consumer to share the
message load. The one message is delivered to
every active subscriber.

Queue Browser — Can browse the queue to see what is
outstanding and what is frontmost.

Cannot know if the messages are awaiting delivery.

Dead Message Queue — Can express interest in a
delivery guarantee and set properties that will channel
messages to a special queue when they expire. Also can
choose to send an administrative event to a management
console.

Cannot know if messages are delivered to any
subscriber at all.
162 SonicMQ Programming Guide

Advantages and Constraints in PTP Domains
Multiple Receivers
Every queue receiver is a message consumer for its associated queue, prepared
to receive the next available message. While all the receivers in an active multi-
receiver system will expect to get all messages, they do so collectively. A
hundred messages to four receivers should result in receivers processing about
twenty-five messages each.

Queue receivers do not automatically get messages. Having an active session
where an application creates a queue does not result in messages getting
delivered to the application. Either an asynchronous listener or a synchronous
receiver can be used.

Message Queue Listener

A message listener is invoked to initiate asynchronous monitoring of the
session thread for messages on the queue:

setMessageListener(MessageListener listener)

where listener is the message listener to associate with this session.

The listener is often assigned just after creating the queue receiver from the
session, so that the listener is bound to the queue to which the receiver was just
made:

javax.jms.Queue receiveQueue = session.createQueue (rQueue);

javax.jms.QueueReceiver qReceiver =
session.createReceiver(receiveQueue);

qReceiver.setMessageListener(this);

As a result, asynchronous message receipt becomes exclusive for the session.
Message sending is not limited when message listeners are in use. Sending is
always synchronous.

Message Queue Receiver

The QueueReceiver interface provides methods for synchronous calls to fetch
messages. The variants manage the potential block by either not waiting if
there are no messages or timing out after a specified wait period.
SonicMQ Programming Guide 163

Chapter 6: Point-to-Point Messaging
Receive

To receive the next message produced for the queue receiver, use the method:

Message receive()

This call blocks indefinitely until a message is produced. When a receive
method is called in a transacted session, the message remains with the receiver
until the transaction commits. The return value is the next message produced
for this receiver. If a session is closed while blocking, the return is null.

Receive with Timeout

To receive the next message on the queue within a specified time interval and
cause a timeout when the interval has elapsed, use the method:

Message receive(long timeOut)

where timeout is the timeout value (in milliseconds)

This call blocks until a message arrives or the timeout expires. The return value
is the next message produced for this queue receiver, or null if one is not
available.

Receive No Wait

To immediately receive the next available message on the queue or, otherwise,
instantly timeout, use the method:

Message receiveNoWait()

It receives the next message if one is available. The return value is the next
message produced for this queue receiver, or null if one is not available.
164 SonicMQ Programming Guide

Advantages and Constraints in PTP Domains
Prefetch Count and Threshold

SonicMQ extends the standard QueueReceiver interface to enable the
programmer to set and get parameters of the message receiver that allow
performance tuning:

n Count — The number of messages that the receiver will take off the queue
to buffer locally for consumption and acknowledgement. The default
PrefetchCount value is 3.

n Threshold — The minimum number of messages in the local buffer that
will allow a new receiver to append more messages to the buffer. The
default PrefetchThreshold value is 1.

For example, a threshold value of 2 and a prefetch count of 5 causes the
QueueReceiver to fetch batches of five messages from the message server
whenever the number of messages locally waiting for processing drops below
two.

The threshold value cannot be greater than the count value.

setPrefetchCount

progress.message.jclient.QueueReceiver.setPrefetchCount(int count)

where count is the number of messages to prefetch.

When the PrefetchCount value is greater than one, the message server can send
multiple messages as part of a single QueueReceiver request. This can improve
performance.

getPrefetchCount

progress.message.jclient.QueueReceiver.getPrefetchCount()

Returns the PrefetchCount positive integer value.

setPrefetchThreshold

progress.message.jclient.QueueReceiver.setPrefetchThreshold(int
threshold)

where threshold is the threshold value for prefetching messages.
SonicMQ Programming Guide 165

Chapter 6: Point-to-Point Messaging
Setting this to a value greater than zero allows the QueueReceiver to always
have messages available for processing locally without waiting for a message
server interaction. This improves performance.

When the number of messages waiting to be processed by the QueueReceiver
falls to, or below, the PrefetchThreshold number, a new batch of messages will
be fetched.

getPrefetchThreshold

progress.message.jclient.QueueReceiver.getPrefetchThreshold()

Returns the PrefetchThreshold positive integer value.

Queue Browsing
A QueueBrowser lets a client look at messages in a queue without removing
them. Queue browsing is a task that retrieves a cursor in the queue at its current
location, forward or backward to the currently-adjacent message. As the queue
can be loading and unloading very quickly, browsing is most useful when
assessing queue size and rates of growth. Instead of actual message data, the
enumeration method can return just the integer count of messages on the
queue.

createBrowser

The browser can be created with a session method:

session.createBrowser (Queue queue)

where queue is the queue you want to browse.

createBrowserMessage (MessageSelector)

A message selector string can be added to qualify the messages that are browsed. See
“Message Selector” on page 145 for information about selector syntax.

session.createBrowser(QueueSession session,
Queue queue,
String messageSelector)
166 SonicMQ Programming Guide

Advantages and Constraints in PTP Domains
where:

– session is the queue session in which you want to browse.

– queue is the queue you want to browse.

– messageSelector is the selector string that qualifies the messages
you want to browse.

getMessageSelector

You can get the message selector expression being used with:

String getMessageSelector()

getEnumeration

You can get an enumeration for browsing the current queue messages in the
sequence that messages would be received with:

java.util.Enumeration getEnumeration()

getQueue

You can get the queue name associated with an active browser with:

getQueue()

close

Always close resources when they are no longer needed with:
close()

QueueBrowser Sample

The sample application QueuePTP\QueueMonitor uses the Queue Browser to
display current queue contents in a Java Window. Some of its code is listed
below:
// Create a browser on the queue and show the messages waiting in it.

javax.jms.Queue q = (javax.jms.Queue) theQueues.elementAt(i);
textArea.append("Browsing queue \"" + q.getQueueName() + "\"\n");

// Create a queue browser
System.out.print ("Creating QueueBrowser for \"" +

q.getQueueName() + "\"...");
javax.jms.QueueBrowser browser = session.createBrowser(q);
System.out.println ("[done]");=
int cnt = 0;
SonicMQ Programming Guide 167

Chapter 6: Point-to-Point Messaging
Enumeration e = browser.getEnumeration();

if(!e.has MoreElements())
{

textArea.append ("<no messages in queue>");
}
else
{

while(e.hasMoreElements())
{

System.out.print (" --> getting message " +
String.valueOf(++cnt) + "...");

javax.jms.Message message = (javax.jms.Message)
e.nextElement();

System.out.println("[" + message + "]");
if (message != null)
{

String msgText = getContents (message);
textArea.append(msgText + "\n");

...
}

...
}

...
}

Handling Undelivered Messages
SonicMQ provides a service whereby an undeliverable message can—if the
sender requested the additional service—be taken off its queue and then re-
enqueued on a standard system queue where it will reside until acted on. The
dead message queue (DMQ) is a finite data store that is usually managed by
message server administrator applications.

You, the programmer, can express interest in trapping items when they are
undelivered items. You can set that you want a message to:

n Be placed in the dead message queue when it is discovered to be expired.

n Send a notification, an administrative event.

Setting Important Messages to Get Saved If They Expire

Important messages should be sent with a PERSISTENT delivery mode and
flagged to be preserved on expiration or when they cannot be routed

Note There are several other reasons a message could be undelivered in a dynamic
routing deployment. See Chapter 7, “Dynamic Routing Architecture,” for
more about undelivered messages in such an architecture.
168 SonicMQ Programming Guide

Advantages and Constraints in PTP Domains
successfully across routing nodes. You could choose to also generate an
administrative event. The following code sample shows those settings:

// Create a BytesMessage for the payload. Make sure the message

// is delivered within 2 hours (7,200,000 milliseconds).

// If expires, send a notification and save the message.

javax.jms.BytesMessage msg = session.createBytesMessage();

msg.setBytes(payload);

// Set ’undelivered’ behavior.

msg.setBooleanProperty(PRESERVE_UNDELIVERED, true);

msg.setBooleanProperty(NOTIFY_UNDELIVERED, true);

// Send the message with PERSISTENT, TimeToLive values.

qsender.send(msg,

 javax.jms.DeliveryMode.PERSISTENT,

 javax.jms.Message.DEFAULT_PRIORITY,

 7200000);

Setting Quick Messages to Generate Administrative Notice

Send a small message using high priority, with the expectation that this
message will be delivered in ten minutes. Only notification events are needed.

// Create a BytesMessage for the payload. Make sure the message

// is delivered within 10 minutes (600,000 milliseconds).

// If expires, send a notification.

javax.jms.BytesMessage msg = session.createBytesMessage();

msg.setBytes(payload);

// Set ’undelivered’ behavior. Using the property names that

// are defined as static final Strings in

// progress.messages.jclient.Constants ensures catching errors.

msg.setBooleanProperty(NOTIFY_UNDELIVERED, true);

// Send the message for fast delivery, or not at all.

qsender.send(msg,

 javax.jms.DeliveryMode.NON_PERSISTENT,

 8, // Expedite at a high priority

 600000); // 10 minutes
SonicMQ Programming Guide 169

Chapter 6: Point-to-Point Messaging
Life Cycle of a Guaranteed Message
A message gets sent to the dead message queue only when the application
developer declares it important to do so.

Setting the Message to Be Preserved

The application developer can choose to set the property of a message that is
about to be sent to declare that the entire message should be preserved if it is
undeliverable as follows:

msg.setBooleanProperty(PRESERVE_UNDELIVERED, true);

You can choose to also generate an administrative event.

Setting the Message to Generate an Administrative Event

You could express an interest in being advised whether or not a message was
delivered without needing to preserve the original message. This is distinctly
more efficient both in terms of the message traffic density and the requirements
of dequeueing undelivered messages. To declare that an administrative event
should be generated, set the appropriate message property:

msg.setBooleanProperty(NOTIFY_UNDELIVERED, true);

Sending the Message

The sending application sends the message metadata and the message payload.
It can expect that the message gets delivered to an interested receiver.

Letting the Message Get Delivered or Expire

A message can be acknowledged as delivered to a receiver. If the message is
NON_PERSISTENT, it is volatile if there is a system outage. If the message is
PERSISTENT, it will recover from a system outage.

Post-Processing of Expired Message

When a message’s expiration time—as marked in the message’s JMSExpiration
header field—has passed, the message server dequeues the message and
examines the sender’s settings.
170 SonicMQ Programming Guide

Advantages and Constraints in PTP Domains
Dequeueing only takes place when the messages are reviewed. Inert or low
volume queues may have messages that expire but do not become undelivered
until a receive or browse mechanism compels the message server to look at the
message. Two properties are inspected to see if either or both further
processing steps is requested:

n JMS_SonicMQ_preserveUndelivered — If true, the expired message is
transferred to the dead message queue

n JMS_SonicMQ_notifyUndelivered — If true, the expired message generates
an administrative notice.

Processing of Enqueuing Expired Messages

When an expired message is transferred to the dead message queue, it has the
reason code UNDELIVERED_TTL_EXPIRED. When the message is transferred to the
queue SonicMQ.deadMessage, the message server adds two properties:

 JMS_SonicMQ_undeliveredReasonCode = <reason code>

 JMS_SonicMQ_undeliveredTimestamp = <GMT time> [as long]

The message retains its original JMSDestination header field value. This is
unlike all other types of queues where all JMS destinations match the queue
definition.

Also the message retains its original JMSExpiration header field value. When
the message is retrieved from the dead message queue, you can examine its
properties including the time at which it was declared undeliverable, an
indicator of the time on the system clock where the message expired..

Important Messages in the dead message queue with a PERSISTENT delivery mode will not
expire. If you have access to administrative functions on a message server, stay
alert and dequeue dead messages as soon as possible. Messages with NON-
PERSISTENT delivery mode are volatile and will perish if the message server
restarts.
SonicMQ Programming Guide 171

Chapter 6: Point-to-Point Messaging
Sending of Administrative Notification

When an expired message requests administrative notification, a notice is sent
with the following information:

n Undelivered Reason Code. This is stored in the
JMS_SonicMQ_undelivered_ReasonCode on the original message. In this
case, the message is reason code 1, UNDELIVERED_TTL_EXPIRED—
undelivered because the message’s timeToLive expired.

n MessageID from JMSMessageID on the original message.

n Destination from JMSDestination of the original message.

n Timestamp when the message was handled as a dead message. This is
stored in the JMS_SonicMQ_undeliveredTimestamp if the message is saved.

n Name of the message server where the notification originated. This is
important in clustered message server deployments.

n Preserved as set in the JMS_SonicMQ_preserveUndelivered property on the
original message. If true, the message has been saved in the dead message
queue on the server where the message was declared undeliverable.

Programmer Callback for Undelivered Message Notification

Programmatic handling of the undelivered message event uses the
management API calls in progress.message.tools.BrokerManager.
You must create a class that implements the callback for the
brokerUndeliveredMsgNotification method.

See the Javadoc for the BrokerManager class and IBrokerManagerListener
interface in the progress.message.tools package for more information on
these calls.
172 SonicMQ Programming Guide

Advantages and Constraints in PTP Domains
Getting Messages Out of the Dead Message Queue

The following code shows the use of synchronous receives against messages in
the DMQ:

import progress.message.jclient.Constants;

. . .

// Create a QueueReceiver against the dead message queue.

Session session =
connect.createQueueSession(false,CLIENT_ACKNOWLEDGE);

Queue dmq = session.createQueue ("SonicMQ.deadMessage");

QueueReceiver receiver = session.createQueueReceiver(dmq);

connect.start();

// Empty the dead message queue.

while(true)

{

Message m = receiver.receive();

int code =
m.getIntegerProperty(Constants.UNDELIVERED_REASON_CODE);

if (code == Constants.UNDELIVERED_TTL_EXPIRED)

{

 // Handle due to normal timeout.

 . . .

}
}

SonicMQ Programming Guide 173

Chapter 6: Point-to-Point Messaging
174 SonicMQ Programming Guide

Chapter 7 Dynamic Routing Architecture
About Dynamic Routing
This chapter describes some additional Point-to-Point programming
techniques that are important when SonicMQ is used with a Dynamic Routing
Architecture (DRA) in Business-to-Business (B2B) deployments. A DRA
deployment is characterized by the use of remote queues, queues identified by
a double colon (::) in their name which must be accessed in special ways.
When using remote queues, keep the following points in mind:

n Messages sent to a remote queue that do not reach it must be directed to
the Dead Message Queue (DMQ) of the current server or they will be lost.

n A client cannot browse a remote queue, even if the client is connected to
the server containing the remote queue.

n A client cannot read a remote queue directly, even if the client is connected
to the server containing the remote queue.

To learn about the architecture, functions, and configuration of a SonicMQ
Dynamic Routing Architecture, see the SonicMQ Deployment Guide.

The behavior of a message under DRA is dependent on several factors:

n Is the queue local or global?

n Does the queue exist on the local message server?

n Is the message server part of a cluster? If it is part of a cluster, is the queue
a global queue elsewhere in the routing node?
SonicMQ Programming Guide 175

Chapter 7: Dynamic Routing Architecture
n How was the queue name referenced when the application created the
queue? For example:

– <queue> (non-remote queue)

– <routing node name>::<queue> (remote queue)

– ::<queue> (remote queue on local cluster)

Message Behavior on Global and Local Queues
The following scenarios describe the view of a Java client trying to send a
message to a global queue, g, or a local queue, l. Each of these queues exists
in some scenarios and does not exist in others. The Q_NAME changes in each
scenario. Messages are set up to be saved in the Dead Message Queue.

The following code describes what is executed on the client in each scenario:

// Static setup

private static String Q_NAME = <Various>

// Set the msg to be preserved in the Dead Message Queue.

msg.setBooleanProperty(“JMS_SonicMQ_preserveUndelivered”, true);

// Create a Queue and send the message to this queue.

javax.jms.Queue theQueue = session.createQueue(Q_NAME);

javax.jms.QueueSender sender = session.createQueueSender(null);

sender.send (theQueue, msg);
176 SonicMQ Programming Guide

Message Behavior on Global and Local Queues
Undelivered Message Reason Codes
The reason names of the SonicMQ associates with undelivered messages are
Strings in progress.message.jclient.Constants. Table 19 lists those
constants that relate to all queues and those relating only to DRA.

Table 19. Reason Codes for Undelivered Messages

Value Reason Scope Reason Marked as Undeliverable

1 UNDELIVERED_TTL_EXPIRED All The current system time on the message server
(as GMT) exceeds the message’s expiration
time (as GMT).

3 UNDELIVERED_ROUTING_INVALID_NODE DRA The target routing node in the destination
cannot be found in the message server's list of
routing connections.

4 UNDELIVERED_ROUTING_INVALID_DESTINATION DRA Message received by a message server from a
remote routing node has a message destination
that does not exist as a global queue in the
current routing node.

5 UNDELIVERED_ROUTING_TIMEOUT DRA Message received by a message server cannot
establish a remote connection to the
destination routing node after trying for the
specified period of time.

6 UNDELIVERED_ROUTING_INDOUBT DRA Message is unacknowledged between message
servers, leaving the message in doubt. The
message servers try to re-establish the
connection and resolve the situation.

7 UNDELIVERED_ROUTING_CONNECTION
_AUTHENTICATION_FAILURE

DRA Routing connection username and password
were not authorized at a routing node while
connecting to the remote message server.

8 UNDELIVERED_ROUTING_CONNECTION
_AUTHORIZATION_FAILURE

DRA Routing connection username did not have
appropriate permissions to connect to the
specified routing node.

9 UNDELIVERED_MESSAGE_TOO_LARGE_FOR_QUEUE All Message is larger than the maximum size of
the queue.
SonicMQ Programming Guide 177

Chapter 7: Dynamic Routing Architecture
Sending to a Message Server Where Queues Exist
This scenario has the following environment:

n The message server’s name is SonicMQ .

n Routing node name is NODE (ROUTING_NODE_NAME=NODE).

n Queue g exists as a global queue.

n Queue l exists as a local queue.

n The routing table is aware of another routing node named Portal.

Figure 29 illustrates the scenario.

Figure 29. Message Server Where Specified Queues Exist

Server

BROKER_NAME=SonicMQ
ROUTING_NODE_NAME=NODE

g

routing queue

Client

sender.send(msg)

l To Routing Node
“Portal”
178 SonicMQ Programming Guide

Message Behavior on Global and Local Queues
Table 20 shows the expected behavior for different values of Q_NAME (the queue
name used by the client).

Table 20. Routing Behavior on a Server Where Specified Queues Exist

Q_NAME Behavior Message Goes To…

l Send succeeds. l queue on SonicMQ

NODE::l Send succeeds. Message goes to routing
queue, but cannot be delivered because
queue is not global.

Dead Message Queue on SonicMQ

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

::l Same as NODE::l. Dead Message Queue on SonicMQ

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

g Send succeeds. g queue on SonicMQ

NODE::g Send succeeds. g queue on SonicMQ

::g Same as NODE::g. g queue on SonicMQ

Portal::appQ Send succeeds. Message is routed to the
Portal Routing Node.

Portal’s appQ if it is available;
otherwise, Dead Message Queue on Portal

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

Acme::appQ Send succeeds. However, no routing
information exists for the routing node
named Acme.

Dead Message Queue on SonicMQ

Reason code:
UNDELIVERED_ROUTING_INVALID_NODE
SonicMQ Programming Guide 179

Chapter 7: Dynamic Routing Architecture
Sending to a Message Server Where Queues Do Not Exist
In this scenario, the setup is as follows:

n The message server’s name is SonicMQ.

n Routing node name is NODE (ROUTING_NODE_NAME=NODE).

n Queue g does not exist (as a global queue).

n Queue l does not exist (as a local queue).

n The routing table is aware of another routing node named Portal.

Figure 30 illustrates the scenario.

Figure 30. Message Server Where Specified Queues Do Not Exist

Server

BROKER_NAME=SonicMQ
ROUTING_NODE_NAME=NODE

not_g_or_l

routing queue

Client

sender.send(msg)

To Routing Node
“Portal”
180 SonicMQ Programming Guide

Message Behavior on Global and Local Queues
Table 21 shows the expected behavior for different values of Q_NAME (the queue
name used by the client).

Table 21. Routing Behavior on Server Where Specified Queues Do Not Exist

Q_NAME Behavior Message Goes To…

l Client gets javax.jms.JMSException on
send.

N/A

NODE::l Send succeeds. Message goes to routing
queue, but cannot be delivered because
queue does not exist.

Dead Message Queue on SonicMQ

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

::l Same as NODE::l. Dead Message Queue on SonicMQ

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

g Client gets javax.jms.JMSException on
send.

N/A

NODE::g Send succeeds. Message goes to routing
queue, but cannot be delivered because
queue does not exist.

Dead Message Queue on SonicMQ

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

::g Same as NODE::g. Dead Message Queue on SonicMQ

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

Portal::appQ Send succeeds. Message is routed to the
Portal routing node.

Portal’s appQ if it is available;
otherwise, Dead Message Queue on Portal

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

Acme::appQ Send succeeds. However, no routing
information exists for the routing node
named Acme.

Dead Message Queue on SonicMQ

Reason code:
UNDELIVERED_ROUTING_INVALID_NODE
SonicMQ Programming Guide 181

Chapter 7: Dynamic Routing Architecture
Sending to a Cluster Routing Node With Queues Everywhere
In this scenario, the setup is as follows:

n There are two message servers in the cluster: SonicA and SonicB.

n Routing node name is NODE (ROUTING_NODE_NAME=NODE) for both message
servers.

n Queue g exists as a global queue on both message servers.

n Queue l exists as a local queue on both message servers.

n The client is connected to SonicA.

n The routing table is aware of another routing node named Portal.

Figure 31 illustrates the scenario.

Figure 31. Cluster Routing Node Where Queues Exist On Every Server

Server

BROKER_NAME=SonicA
ROUTING_NODE_NAME=NODE

g

routing queue

Client

sender.send(msg)

l

To Routing Node
“Portal”

Server

g

routing queue

l

BROKER_NAME=SonicB
ROUTING_NODE_NAME=NODE

Cluster
182 SonicMQ Programming Guide

Message Behavior on Global and Local Queues
Table 22 shows the expected behavior for different values of Q_NAME (the queue
name used by the Client).

Notice that the behavior is identical to that of the non-clustered case because
both message servers are identically configured.

Table 22. Routing Behavior on a Cluster Node Where Queues Exist on Each Server

Q_NAME Behavior Message Goes To…

l Send succeeds. l queue on SonicA

NODE::l Send succeeds. Message goes to routing
queue, but cannot be delivered because
queue is not global.

Dead Message Queue on SonicA

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

::l Same as NODE::l Dead Message Queue on SonicA

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

g Send succeeds g queue on SonicA

NODE::g Send succeeds g queue on SonicA

::g Same as NODE::g g queue on SonicA

Portal::appQ Send succeeds. Message is routed to the
Portal Routing Node

Portal’s appQ if it is available;
otherwise, Dead Message Queue on Portal

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

Acme::appQ Send succeeds. However, no routing
information exists for the routing node
named Acme

Dead Message Queue on SonicA

Reason code:
UNDELIVERED_ROUTING_INVALID_NODE
SonicMQ Programming Guide 183

Chapter 7: Dynamic Routing Architecture
Send to a Cluster Routing Node With Queues in One Place
In this example, the setup is as follows:

n There are two message servers in the cluster: SonicA and SonicB

n Routing node name is NODE (ROUTING_NODE_NAME=NODE) for both message
servers.

n Queue, g, exists as a global queue, but only on SonicB

n Queue, l, exists as a local queue, but only on SonicB

n The Client is connected to SonicA

n The Routing Table is aware of another routing node named Portal

Figure 32 illustrates the scenario.

Figure 32. Cluster Routing Node where Queues Exist on Only One Server

Server

BROKER_NAME=SonicA
ROUTING_NODE_NAME=NODE

routing queue

Client

sender.send(msg)

To Routing Node
“Portal”

Cluster

Server

g

routing queue

l

BROKER_NAME=SonicB
ROUTING_NODE_NAME=NODE
184 SonicMQ Programming Guide

Message Behavior on Global and Local Queues
Table 23 shows the expected behavior for different values of Q_NAME (the queue
name used by the Client).

Table 23. Routing Behavior on Cluster Node Where Queues Exist on Only One Server

Q_NAME Behavior Message Goes To…

l Client gets javax.jms.JMSException on
send.

N/A

NODE::l Send succeeds. Message goes to routing
queue, which routes it to SonicB. But
SonicB’s routing queue cannot deliver it
because the queue is not global.

Dead Message Queue on SonicA

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

::l Same as NODE::l Dead Message Queue on SonicA

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

g Client gets javax.jms.JMSException on
send.

N/A

NODE::g Send succeeds. Message goes to routing
queue, which routes it to SonicB, which
delivers it.

g queue on SonicB

::g Same as NODE::g g queue on SonicB

Portal::appQ Send succeeds. Message is routed to the
Portal Routing Node

Portal’s appQ if it is available;
otherwise, Dead Message Queue on Portal

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

Acme::appQ Send succeeds. However, no routing
information exists for the routing node
named, Acme

Dead Message Queue on SonicA

Reason code:
UNDELIVERED_ROUTING_INVALID_NODE
SonicMQ Programming Guide 185

Chapter 7: Dynamic Routing Architecture
Reply-to Mechanisms for a DRA Application
The typical Reply-to mechanism, described in “Reply-to Mechanisms” on
page 153, is appropriate for local message servers. But this solution depends
on temporary queues, which are not global and therefore cannot be used in a
request/response mechanism in a DRA application. Instead, a client
application should implement a synchronous request/reply layer on top of the
Dynamic Routing Architecture.

The standard synchronous request/reply design patterns are complicated under
DRA because of several issues:

n Creation of unique queues

n Access to queues across B2B security domains

The techniques described here provide an alternate technique for
Request/Reply scenario is an example. There is nothing inherent in the
Dynamic Routing Architecture that makes this the only way of implementing
synchronous request/reply.

Setting Applications to Use Simple Request Messages
Where the standard request/reply mechanism uses the JMSReplyTo header field,
a DRA application might use the header field instead when the application
needs a dialog with other applications to do tasks like price check, inventory
status, or credit rating. Typically the dialog is nearly real-time; the application
is blocking for a few seconds.

You would use simple request messages to:

n Create request messages with settings for brisk, synchronous requests.

– Low Quality of Service: Small NON-PERSISTENT, unencrypted
messages.

– A timeToLive that is explicit and brief.

– Message expiration is handled by notification. The message is not
persisted in a dead message queue.

– A high Priority setting to expedite delivery.

n Implement a retry mechanism in case a request is lost.
186 SonicMQ Programming Guide

Reply-to Mechanisms for a DRA Application
Using Specific Shared Reply Queues
Imagine a configuration consisting of a number of nodes called trading
partners, each belonging to a different company, and communicating through
a special node called a portal. This type of configuration is discussed in detail
in the SonicMQ Deployment Guide. To protect its position as a necessary
intermediary as well as to maintain security, the company that controls the
portal must ensure that the trading partners do not communicate directly with
one another.

The normal design pattern using a JMS TemporaryQueue might not prevent
trading partners from knowing about each other’s requests. Instead, each
trading partner should maintain a specific routing queue, perhaps called tmpQ,
at its site configured at the portal to ensure security.

Establishing this special purpose queue allows for easier administration. Items
on the tmpQ queue can be assumed to be transient, and the trading partner can
clean up the queue without losing important business documents.

Because many applications at the trading partner might want to simultaneously
make requests and get replies, they can share the trading partner’s single tmpQ
queue. By using message selectors, each application can match up requests
with targeted replies.

Consider the following code sample for sharing a reply queue:

// Create a request

TextMessage m = session.createTextMessage();

m.setJMSReplyTo("acme::tmpQ"); // pseudo-code

m.setText("Inventory Check: #1234");

// Create a unique queue receiver for the reply

// Notice the use of selector

String uniqueID = createUniqueId();

m.setProperty("AppUniqueId", uniqueID);

QueueReceiver qr = session.createQueueReceiver

 ("tmpQ", "AppUniqueID = ’" + uniqueID + "’");

// Wait 7 seconds for a reply.

TextMessage rep = qr.receive(m, 7000);
SonicMQ Programming Guide 187

Chapter 7: Dynamic Routing Architecture
188 SonicMQ Programming Guide

Chapter 8 Publish and Subscribe Messaging
About Publish and Subscribe Messaging
Publish and Subscribe (Pub/Sub) is a messaging model, shown in Figure 33,
where a message is sent to a topic—a content node known by a publisher and
active subscribers—so that each subscriber to the content node gets the message.
The one-to-many model keeps topic publishers independent of the topic
subscribers. In fact, publishers could be sending messages to topics where no
subscribers exist.

Figure 33. Publish and Subscribe Messaging Model
SonicMQ Programming Guide 189

Chapter 8: Publish and Subscribe Messaging
Mechanisms exist to allow messages to persist for subscribers who have
expressed a durable interest in a topic. The characteristics of durable
subscriptions are discussed later in this chapter.

See Chapter 9, “Hierarchical Name Spaces,” for information about how
SonicMQ lets applications subscribe to sets of topic content nodes.

Coding Topics, Subscribers, Publishers, and Listeners
The following code excerpted from the Chat sample application shows how to
create the objects used in a TopicSession for Pub/Sub communication—the
topic, the subscriber, the publisher, and the message:

//The topic is defined as a hierarchical topic
String APP_TOPIC = "jms.samples.chat";

//The session method is used to create the topic
javax.jms.Topic topic = session.createTopic (APP_TOPIC);

//The subscriber uses the session method to create a subscriber to it
javax.jms.TopicSubscriber subscriber =

session.createDurableSubscriber(topic, user);

//The subscriber sets a listener for the topic
subscriber.setMessageListener(this);

//The publisher uses the session method to create a publisher
publisher = session.createPublisher(topic);

// Publish a message to the topic
 private void jmsPublish (String aMessage)
 {
 try
 {
 javax.jms.TextMessage msg = session.createTextMessage();
 msg.setText(user + ": " + aMessage);
 publisher.publish(msg);
 }
 catch (javax.jms.JMSException jmse)
 {
 jmse.printStackTrace();
 }
 }
190 SonicMQ Programming Guide

Topic
Topic
Topics are objects that provide the publisher, message server, and subscriber
with a destination for JMS methods. Topics can be static objects under
administrative control, dynamic objects created as needed, or temporary
objects created for very limited use. The topic name is a string of any
java.lang.String length.

SonicMQ provides extended topic management and security with hierarchical
name spaces; for example, jms.samples.chat. Some characters and strings are
reserved for the features of hierarchical topic structures:

n . (period) delimits hierarchical nodes.

n * (asterisk) and # (pound) are used as template characters.

n $ (dollarsign) and the strings $SYS and $ISYS are administrative topics.

See Chapter 9, “Hierarchical Name Spaces,” for more information.

You can programmatically store and retrieve defined topics. SonicMQ lets you
store topic names in JNDI or a simple file store and then reference the object
indirectly (by name) in some context. See Chapter 12, “Lookup of
Administered Objects,” for more information.
SonicMQ Programming Guide 191

Chapter 8: Publish and Subscribe Messaging
Publisher
Every time a Pub/Sub session wants to send a message to a topic, it must create
a publisher in the session for the selected topic. The only exception is when you
intend to establish an unbound topic—a null topic name that, for example,
enables the TopicRequestor to bind to that topic space.

Creating the Publisher
The sample code shows the creation of the topic and the creation of the
publisher to that topic:

javax.jms.Topic topic = session.createTopic("jms.samples.chat");

publisher = session.createPublisher(topic);

Figure 34 shows the Explorer view of the parameters and context when you
create a publisher to a topic.

When security is active for topics, the publisher’s permission to publish is
checked. If the topic is unspecified in the security database, the publisher’s
right to create new topics is checked.

Figure 34. Explorer View of Creating a Publisher
192 SonicMQ Programming Guide

Publisher
Creating the Message
The message is created as a session method for the preferred message type.
The Chat sample uses the following code to accept input and then create,
populate, and publish the input as a text message, prepended with the username
of the publisher:

while (true)
{

String s = stdin.readLine();
if (s == null)

exit();
else if (s.length() > 0)
{

javax.jms.TextMessage msg = session.createTextMessage();
msg.setText(username + ": " + s);
publisher.publish(msg);

}
}

Publishing to a Topic
The Chat sample simply puts text into the body of the message and accepts
every default that is provided for a message. Some message header information
is defined by the message server while other header information can be
specified by using a publish method with a more complex signature, such as
the following:

publisher.publish(Message message,
int deliveryMode,
int priority,
long timeToLive)

where:

n message is a javax.jms message.

n deliveryMode is [NON_PERSISTENT|PERSISTENT|NON_PERSISTENT_ASYNC].

n priority is [0...9] where 0 is lowest and 9 is highest.

n timeToLive is [0...n] where 0 is “forever” and any other positive
value n is in milliseconds.
SonicMQ Programming Guide 193

Chapter 8: Publish and Subscribe Messaging
Figure 35 shows the Explorer view of the header fields in a text message.

Figure 35. Explorer View of a Message Header Fields After Publishing
194 SonicMQ Programming Guide

Subscriber
Subscriber
A topic subscriber is a message consumer that receives messages when it is
active and has specified that it has an interest in a topic. Figure 36 shows the
Explorer view of the parameters and context when subscribing to a topic.

The entries describe the parameters of the non-durable subscribe method:

TopicSubscriber createSubscriber (Topic topic,
 String messageSelector,
 boolean noLocal)

where:

n topic is a string that specifies the name of a topic.

n messageSelector is a string that defines selection criteria.

n noLocal is a Boolean where true sets the option not to receive
messages from subscribed topics that were published locally.

Multiple subscribers in a session could have overlapping subscriptions defined
in their message selectors and hierarchical topics. In this case, all subscribers
in the session would get the message delivered.

Figure 36. Explorer View of Subscribing to a Topic
SonicMQ Programming Guide 195

Chapter 8: Publish and Subscribe Messaging
Durable Subscriber
Creating a topic subscription as durable expresses that the client wants to
receive all the messages published on a topic even if the client connection is
not active. The message server notes the durable subscription and ensures that
all messages from the topic’s publishers are retained until they are either
acknowledged by the durable subscriber or the messages have expired. The
entries describe the parameters of the createDurableSubscriber method:

TopicSubscriber createDurableSubscriber
(Topic topic,
 String subscriptionName,
 String messageSelector,
 boolean noLocal)

where:

n topic is a string that specifies the name of a topic.

n subscriptionName is a string of arbitrary alphanumeric text and any
symbols except “.”, “*”, “#”, and “$”. The subscription name
identifies this unique subscription. It is combined with the user name
and the client identifier to define the durable interest. A typical value
for the subscription name is a descriptor for the message selector. For
example, a durable subscription for messages where the priority value
is greater than 7 might have the subscription name HighPriority.

n messageSelector is a string that defines selection criteria.

n noLocal is a Boolean where true sets the option to not receive
messages from subscribed topics that were published locally.

Durable Subscriptions Not Allowed for Temporary Topics

A durable subscription is not allowed for a temporary topic. An attempt to
create a DurableSubscriber on a TempTopic will throw an exception.

Unsubscribing from a Durable Subscription

While you can stop listening to a topic, there is message server overhead
expended when trying to deliver messages to subscribers, especially when the
messages might be persistent and the subscribers durable. The unsubscribe
method unsubscribes a durable subscription that has been created by a client.
196 SonicMQ Programming Guide

Subscriber
This method deletes the state maintained on behalf of the subscriber by its
message message server:

unsubscribe(String name)

where name is the name used to identify this subscription.

If you unsubscribe to a durable subscription with undelivered messages and
then re-establish a durable subscription to the same topic with the same name,
undelivered messages that have not expired for the previous subscription will
be delivered to the new durable subscription.

Unsubscribing to Durable Subscription Requires Inactive
Subscriber

An inactive durable subscription is a durable subscription that exists but does
not currently have a message consumer subscribed to it. A DurableSubscriber
must be inactive before using the unsubscribe () method on that durable
subscription.

An error will occur when a client tries to delete a durable subscription:

n While it has an active TopicSubscriber for it

n While a message received by it is part of a current transaction

n While a message received by it has not been acknowledged
SonicMQ Programming Guide 197

Chapter 8: Publish and Subscribe Messaging
Message Ordering and Reliability
The services available in a Pub/Sub messaging model add other services to
message ordering and reliability.

General Services
Asynchronous message delivery lets messages be delivered with a range of
options to assure an appropriate quality of service:

n The producer can set the life span of the message, the delivery mode, and
the message priority.

n The message server will store the message for later delivery and manage
both acknowledgement to the producer and acknowledgement from the
consumer.

n The consumer can express a durable interest in a topic.

While general services are impacted by many uncontrollable environmental
factors from latency to machine outages, there are internal factors that add
complexity. Message delivery is distinctly non-linear.

Message ordering and redelivery can both contribute to message delivery that
is reliable.

Message Ordering
A predictable sequence of messages is a series of messages that have the same
priority from a single publisher in a single session. Even if transacted, the
messages are delivered sequentially from the message server to the consumers.
The sequence of messages received by a consumer has several other influences
in Pub/Sub domains:

n Changing a priority on a message from a publisher can result in a delivery
of a high priority message to a newly-activated subscription before an older
message.

n Messages from other sessions and other connections are not required to be
in specified sequence relative to messages from another session or
connection.
198 SonicMQ Programming Guide

Message Ordering and Reliability
n Published messages that are not acknowledged are redelivered to durable
subscribers with an indication of the redelivery attempt. As a result a
redelivered message could be received after a message that was
timestamped later.

Reliability
The assurance that a message will be received by a consumer has several other
influences in Pub/Sub domains:

n A publisher never is guaranteed that any subscriber exists for a topic where
messages are published.

n Subscriber message selectors limit the number of messages that a client
will receive. Regular subscriptions and durable subscriptions with a
message selector definition that excludes a message will never get that
message.

n Message destruction due to expiration or administrator action (removing a
durable subscription) permanently disposes of stored messages.
SonicMQ Programming Guide 199

Chapter 8: Publish and Subscribe Messaging
200 SonicMQ Programming Guide

Chapter 9 Hierarchical Name Spaces
About Hierarchical Name Spaces
Hierarchical name spaces are a topic-grouping mechanism available with
SonicMQ. When you use topics in the Pub/Sub domain, the publisher, message
server, and subscriber all adhere to the JMS standards. But SonicMQ extends
topic management in a way that adds virtually no overhead when publishing,
yet provides faster access, easier filtering, and flexible subscriptions.
By delimiting nodes when naming a topic, a hierarchy of contents is created at
the message server. This chapter describes how and when to use hierarchical
name spaces.

Advantages of Hierarchical Name Spaces
Naming conventions become cumbersome to work with when long strings are
passed around as identifiers. SonicMQ offers the ability to use a naming and
directory service with the naming and management of topics. As a result,
topics are easier to specify and control for clients and are correspondingly
faster to manage and control by the message server.

While a topic hierarchy can be flat (linear), a topic hierarchy typically builds
from one or more root topics, adding other topics in levels of
parent-child relationships to create a hierarchical naming structure.

The SonicMQ administrator can set and monitor security with the same
template character devices to assure that the scope of message permissions is
appropriate for each user individually and as a member of one or more groups.
See the SonicMQ Installation and Administration Guide to learn how security
can control access to topic name spaces.
SonicMQ Programming Guide 201

Chapter 9: Hierarchical Name Spaces
In most messaging systems, there is a one-level structure, as shown in
Figure 37.

Without hierarchies, many topics are stacked onto one level. When many topics
are used, it gets increasingly difficult to maintain access to the naming structure
and to denote topic relationships.

Hierarchical name spaces in SonicMQ use a parent-child subordinated folder
structure, as shown in Figure 38.

With hierarchies, a topic named SalesData.France.Paris denotes a content
node in a hierarchical structure that can participate in selection mechanisms
that refer to its depth in the structure (third-level), the name of the node itself
(Paris), and its memberships (Paris is member of France and a member of
SalesData, among others).

Meaningful names in a topic hierarchy offer many other advantages for
message retrieval and security authorization, as discussed later in this chapter.

Figure 37. Topic Structure Without Hierarchies

Figure 38. Topic Structure With Hierarchies
202 SonicMQ Programming Guide

Publishing a Message to a Topic
Publishing a Message to a Topic
Structuring useful topic hierarchies optimizes the management of the hierarchy
for the message server and its accessibility by subscribers.

Publishing a message to a topic encourages use of hierarchy delimiters and
deprecates the use of a few special characters and topic names.

Topic Notation that Enables Topic Hierarchies
Hierarchical name spaces use the same notation as fully qualified packages and
classes: period delimited strings. Security controls whether or not an
authenticated user has permission to publish to a topic content node.

See the SonicMQ Installation and Administration Guide to learn how security
can control publication to topic content nodes.

Reserved Characters when Publishing

Three characters are reserved for special use:

n Delimit the hierarchical nodes with . (period). For example, the Chat
sample uses the topic name jms.samples.chat.

n Do not use * (asterisk), $ (dollarsign), or # (pound) in topic names.

n Reserve $SYS and $ISYS for administrative topics.

For example, the Chat sample uses the topic name jms.samples.chat.

Topic Structure, Syntax, and Semantics

There are few constraints on a topic hierarchy. SonicMQ supports:

n Unlimited number of topics at any content node

n Unlimited depth to the hierarchy (period-separated strings)

n Unlimited length for the name of any topic node, and any topic

n Unlimited length for the complete string that defines a specific node

n Unlimited number of topic hierarchies
SonicMQ Programming Guide 203

Chapter 9: Hierarchical Name Spaces
Compact, balanced structures always outperform bulky unwieldy hierarchical
structures. There are, however, some naming constraints:

n The name must be one or more characters in length with neither leading
nor trailing blank space. Embedded spaces are acceptable.

n The topic hierarchies rooted at $SYS and $ISYS are reserved for the message
server’s system messages.

Note For more information on $SYS and $ISYS, see the SonicMQ Installation and
Administration Guide.

Topic Syntax and Semantics

The following naming conventions apply to topic naming:

n Case sensitive — Topic names are case sensitive (like the Java language).
For example, SonicMQ recognizes ACCOUNTS and Accounts as two different
topic names.

n Spaces in names — Topic names can include the space character. For
example, accounts payable. Spaces are treated just like any other
character in the topic name.

n Empty string — A topic level can be an empty string. For example, a..c
is a three-level topic name whose middle level is empty. The root node is
not a content node, so just an empty string (“ “) is not a valid topic level
for publication.

Note The value null indicates an absence of content, or a zero-length string. The
Unicode null character (\x0000) is not a null in this convention.

Message Server Management of Topic Hierarchies
Topic hierarchies empower the message server in two significant ways:

n Selection and filtering of topics is, for most purposes, already
accomplished. Access to multiple topics is indexed for much faster
retrieval than flat naming systems.

n Security that would otherwise be set for each topic individually can be
established for a content node and, optionally, its subordinate nodes.
204 SonicMQ Programming Guide

Subscribing to Nodes in the Topic Hierarchy
Subscribing to Nodes in the Topic Hierarchy
Subscriptions are created in the JMS standard way with the Topic and the
TopicSubscriber methods. As shown in Figure 39, to get messages published
for U S A Credit, use the topic name Credit.U S A.

While hierarchical topics enable powerful security and accelerate the retrieval
of topics by the message server, SonicMQ topic hierarchies enable unique
multiple topic subscriptions, allowing you to:

n Subscribe to many topics quickly.

n Subscribe to topics whose complete name is unknown.

n Traverse topic structures in powerful ways.

When you use topic hierarchies, message selectors—an inherently slow and
recurring process—can often be eliminated.

Template Characters
Wildcards are special characters in a sample string that are interpreted when
evaluating a set of strings to form a list of qualified names. In this case,
however, the special characters are referred to as template characters because
the entire string and its special characters can be stored for later evaluation by

Figure 39. Subscribing to the Topic Credit.U S A
SonicMQ Programming Guide 205

Chapter 9: Hierarchical Name Spaces
durable subscriptions and security permissions. The selection of topic names is
dynamic, evaluated every time that the topic the time that it is requested.

The . (period) delimiter is used together with the * (asterisk) and the # (pound)
template characters when subscriptions are fulfilled. Using these characters
avoids having to subscribe to multiple topics and offers benefits to managers
who might need to see information or events across several areas. Client
applications can only use template characters when subscribing to a set of
topics or binding a set of topics to a message handler. Messages must be
published on fully specified topic names.

Using template characters is somewhat different from using the usual
wild cards as discussed below.

There are two SonicMQ template characters:

n * (asterisk) — Selects all topics at this content node.

n # (pound) — Selects all topics at this content node and its subordinate
hierarchy.

The intent of the template characters is to allow a set of managed topics to exist
in a message system in a way that lets subscribers choose broad subscription
parameters that will include preferred topics and avoid irrelevant topics.

There are some constraints:

n Unlike shell searches, you cannot qualify a selection, such as
Alpha.B*.Charlie. You can use Alpha.*.Charlie. At a content level, a
template character precludes using other template characters.

n The # symbol can only be used once and only in the last node position.
You can use Alpha.#, or *.*.Charlie.# or just #, but not #.Beta.Charlie or
#.Beta.#.

n Character replacement, as used in shell searches with the question mark
character (?), is not allowed.

SonicMQ will deliver a message to more than one message handler if the
message’s topic matches bindings from multiple handlers.

The content levels in the topic name space consider the root level ““ as level 0.
206 SonicMQ Programming Guide

Subscribing to Nodes in the Topic Hierarchy
Using Template Characters in Symmetric Hierarchies

When hierarchical structures are strictly defined, simple templates can be used.
For example, the topic hierarchy shown in Figure 40 appears to strictly assign
business functions—Credit, Delivery, Orders, and Warehousing—to first-level
(parent) nodes and a standard set of country names—Australia, France, USA—
to second-level (child) nodes.

Template Character for All Topics at a Content Level

Using the strict topic hierarchy shown in Figure 40, a client application could
subscribe to each of the three topic nodes for Credit.

By using a template character, the application can subscribe to all second-level
Credit topics by subscribing to Credit.*, a subscription that will deliver
messages sent to these destinations:
n Credit.Australia

n Credit.France

n Credit.U S A

Template Character for a Topic at a Content Level

A subscription to the topic expression *.U S A in the hierarchy in Figure 40
selects all U S A topics at the second level of the hierarchy.
This subscription will deliver messages sent to these destinations:
n Credit.U S A

n Orders.U S A

Figure 40. Symmetric Topic Structure
SonicMQ Programming Guide 207

Chapter 9: Hierarchical Name Spaces
Using Template Characters in Asymmetric Topic Hierarchies

When there are several topic levels, as shown in Figure 41, subscribing to all
the U S A topics is complicated by an inconsistent topic-naming structure.

In this case, the # template character can be used to subscribe to the
U S A topic levels in the hierarchy regardless of intervening nodes, such that
#.U S A subscribes to topics at these destinations:

n SalesData.U S A

n SalesForce.U S A

n Support.CallCenter.U S A

Without this ability, you would have to subscribe to both *.U S A and
..U S A to create the same subscriptions.

Figure 41. Asymmetric Topic Structure

Note When you use the "#" template character as the leading character in an
expression, you can inadvertently reveal messages in unseen lower levels.
208 SonicMQ Programming Guide

Subscribing to Nodes in the Topic Hierarchy
Template Character for Subscribing to All Topics

Subscribing to the topic name # will receive all messages, including the
reserved system topics $SYS and $ISYS.

The MessageMonitor sample displays all the messages that are published on the
message server host by subscribing to #.

Template Character for All Topics Under a Topic Hierarchy

When it is not known how deep the topic structure extends and all subordinate
topics are of interest, appending .# extends the subscriptions to all topics at or
below that level—for example, Support.# subscribes to:

– Support.CallCenter

– Support.CallCenter.Australia

– Support.CallCenter.France

– Support.CallCenter.U S A

– Support.SupportEngineer

– Support.WebKnowledgeBase

plus any subordinate levels below those topic nodes.

Multiple Template Characters in an Expression

Some template characters can be combined in a single expression.
You can:

n Use only one template character at a topic level.
(Support.**.U S A is invalid.)

n Use the pound sign only once in an expression. (#.U S A.# is invalid.)

Examples of multiple template characters in an expression are:

n Use #.U S A.* to subscribe to just the topics at U S A nodes however deep
in the topic structure, but not messages at #.U S A.

n Use *.*.U S A.* to subscribe to just the topics at level 4 U S A nodes, but
not those at *.*.U S A.
SonicMQ Programming Guide 209

Chapter 9: Hierarchical Name Spaces
Examples of a Topic Name Space
The hypothetical topic hierarchy shown in Figure 42 has nodes that might
represent levels of responsibility in the enterprise.

Publishing Messages to a Hierarchical Topic
The publisher produces messages to a single fully qualified topic, such as:

static final String MESSAGE_TOPIC = "Credit.U S A.Customers";

Business cases where a publisher might use a hierarchical topic are:

n Requests for regular credit updates about suppliers are routed to Credit.U
S A.Suppliers and use JMSReplyTo mechanisms.

n Messages that are sent to credit agencies at secure Internet topics
Credit.U S A.Customers and Credit.U S A.Suppliers should be accessible
only by authorized applications.

Figure 42. A Sample Hierarchy of Topics
210 SonicMQ Programming Guide

Examples of a Topic Name Space
n Credit agencies can respond to credit requests through the special topic
Credit.U S A.Reviews. Use a Reviews topic to get secure responses to credit
requests without synchronous blocks.

n As orders are processed through application software, any problems or
delays send a message to the appropriate sales force beeper number listed
in the application. The message producer uses
Orders.U S A.BeeperSend, attaching the beeper number as the
JMSCorrelationID or SonicMQ-supplied message property.

n Messages are sent that outline expected shipping needs to topics like
Delivery.AirFreight.Ohare.CallForBids.

Subscribing to Sets of Hierarchical Topics
Subscribers to topics can also specify a fully qualified topic:

private static final String MESSAGE_TOPIC = "Credit.U S A";

or use template characters to subscribe to sets of topics:

private static final String MESSAGE_TOPIC = "Credit.*";

Business cases where a subscriber gains advantage by using template
characters to subscribe to hierarchical topics are:

n Accounting subscribes to Credit.U S A.Customers.Reviews but the auditor
subscribes to Credit.U S A.# to watch all credit activity.

n By listening to Credit.U S A.*.Reviews the application gets only the
U S A responses to all types of credit requests without risking synchronous
blocks.

n A communications service monitors the message servers at its limited-
access read-only topics: *.U S A.BeeperSend and then executes the beeper
activation and download.

n A French affiliate receives all messages that relate to French business by
subscribing to #.France. This captures:
– Orders.France

– Credit.France

– Delivery.InternationalClearing.France

n A new bonded carrier in the Chicago area is authorized to monitor
#.Ohare.CallForBids. Their bids turn around promptly based on the
algorithms in their subscriber application.
SonicMQ Programming Guide 211

Chapter 9: Hierarchical Name Spaces
212 SonicMQ Programming Guide

Chapter 10 Management API
About the Management API
This chapter presents methods that provide comprehensive programmatic
control of administrative tasks. The SonicMQ Management API lets
applications perform the tasks that would otherwise require the SonicMQ
Explorer GUI interface or the SonicMQ command-line interface, Admin tool,
tools that were both constructed using the methods in the exposed Management
API.

The Management API facilitates:

n Message Server Management — Including methods for checking the
status of a message server, subscription to message server events, and
information about message servers and server clusters.

n Destination Management — Including management of queues and the
Quality of Protection (QoP) provided on topics and queues.

n Access Management — Including maintenance of users, user groups, and
access control by users to destinations.

n Routing Management — Including maintenance of routing users,
connections, and global destinations.

The exposed Management API is documented in the SonicMQ JavaDoc that
you can access through the SonicMQ portal page, SonicMQ_Help.htm. From that
page you can access the top level of the JavaDoc that opens the
docs/api/progress/message/tools HTML files.
SonicMQ Programming Guide 213

Chapter 10: Management API
Using the Management API
An administration client differs from an ordinary (JMS) client in several ways:

n An administration client cannot create or access JMS objects.

n A JMS client cannot access BrokerManager features.

n An administration client and a JMS client cannot share a connection. A
Java program that performs JMS actions and uses BrokerManager features
requires two connections.

To create an administration client, you must have broker.jar in your classpath.
Your administration client may require other jar files in your classpath as well.
Look at bin\Admin.bat (Windows) or bin/Admin.sh (UNIX or Linux) to see the
classpath for the Admin Tool.

When programming an administration client, keep the following points in
mind:

n The client must be a member of the Administrators group to access
security features. If the client is not a member of the Administrators group
it can still connect, but it cannot access information.

n You must include an implementation of IBrokerManagerListener.
However, this implementation can ignore most messages.

n You should call disconnect() explicitly at the end of a program.
214 SonicMQ Programming Guide

Samples that Use the Management API
Samples that Use the Management API
Several samples are included in the SonicMQ installation that let you experience
console and application uses of the Administration API. The samples explore
portions of the API.

Events
The Events sample provides an application technique that replicates features
and functionality in the SonicMQ Explorer and the SonicMQ Admin tool.

The Events sample establishes the BrokerManager and its listener as follows:

public class Events

 implements progress.message.tools.IBrokerManagerListener

...

// Create an instance of the BrokerManager.

 m_manager = new progress.message.tools.BrokerManager
(this, m_broker, m_adminUser, m_adminPassword);

 try

 {

 m_manager.connect();

 m_manager.subscribeToBrokerEvents(m_events);

...

The notifications that are received are then formatted and displayed:

public synchronized void brokerEventNotification
(String description)

{

System.out.println (description);

}

The Events sample offers different ways to explore its capabilities of echoing
management events:

n Accessing, by default, all events

n Accessing selected events

n Piping the selected events into a text file

Note Events are propagated among all servers of a SonicMQ cluster.
SonicMQ Programming Guide 215

Chapter 10: Management API
Accessing All Events

This sample procedure opens the management events monitor and then uses a
Talk session to fire some events.

➤ To start the Events sample:

1. Open a console window to the BrokerManager\Events folder, then enter:
..\..\SonicMQ Events

The application defaults to the username Administrator and its password
Administrator as you must have administrator privileges to do the task.

The Events sample starts on the localhost port 2506 and displays:

Type EXIT to stop listening for BrokerManager Events.

➤ Starting and Stopping Talk

1. Open a console window to the QueuePTP\Talk folder, then enter:
..\..\SonicMQ Talk -u CreditReview

The Talk sample starts and the Events window displays:

>[00/11/23 18:39:50] Connection opened
[Broker=SonicMQ,User=CreditReview,ConnectID=$CONNECT$3$]

2. In the Talk window, press Ctrl+C then enter Y.

The Talk sample exits and the Events window displays:

[00/10/16 17:48:43] Connection dropped
[Broker=SonicMQ,User=CreditReview,ConnectID=$CONNECT$3$]

Accessing Selected Events

The set of events that are accessed can be strictly defined. The events you can
choose are the following:

n connect — Information about the user and the connectID of a successful
connection to a message server.

n reject — Information about a connection request that is rejected by a
server.

n drop — Information about a connection that is lost without the client being
disconnected, for example, if the client dies.
216 SonicMQ Programming Guide

Samples that Use the Management API
n disconnect — Information about the user and the connectID of a
successful message server disconnection.

n undelivered — Information about a message that could not be delivered.
Undelivered messages may be enqueued in the dead message queue
(DMQ).

n dmqstatus — Indicates that the DMQ has exceeded a defined percentage of
its maximum size.

n redirect — Indicates that a connect attempt has been redirected to another
server due to load balancing.

n all — All of these events. This is the default value.

➤ To start the Events sample to display only selected events:

1. Open a console window to the BrokerManager\Events folder, then enter:
..\..\SonicMQ Events -e connect

2. Start then stop the Talk sample.

The connect event displays but the disconnect event does not display.

Piping Events Into a Log

You can use standard redirection methods to pipe event records to a disk file.

➤ To send event information to a log file:

1. Open a console window to the BrokerManager\Events folder, then enter:
..\..\SonicMQ Events > LogThis.txt

2. Start then stop the Talk sample.
The events do not display in the console window.

3. Open the text file LogThis.txt.
The events are recorded as in the following example.

Type EXIT to stop listening for BrokerManager Events.
>[00/11/23 18:39:50] Connection opened
[Broker=SonicMQ,User=CreditReview,ConnectID=$TMPAPPID$0$]
[00/11/23 18:40:25] Connection dropped
[Broker=SonicMQ,User=CreditReview,ConnectID=$TMPAPPID$0$]
...
SonicMQ Programming Guide 217

Chapter 10: Management API
Metrics
The Metrics sample provides an application technique that replicates features
and functionality in the SonicMQ Explorer and the SonicMQ Admin tool. The
following metrics are provided:

n Memory Usage — The number of memory bytes in use by the JVM
instance for the message server.

n Physical Connections — The current number of socket connections.

n Msgs Rcvd — The number of messages received by the server from
publishers or senders in the last interval.

n Msgs Rcvd/sec — The Msgs Rcvd metric as a per second rate.

n Bytes Rcvd/sec — The byte-count of the Msgs Rcvd as a per second rate.

n Msgs Dlvd — The number of messages delivered in the last interval. It
counts messages delivered to subscribers in the Pub/Sub domain and
messages delivered to queue receivers in the PTP domain.

n Msgs Dlvd/sec — The Msgs Dlvd metric as a per second rate.

The message server’s default interval length for metrics collection is
10 minutes, with a refresh rate of 20 seconds. Every time the message server
refreshes, it assesses the metrics. You can append the -r parameter and an
integer value for your preferred console refresh rate to the command line but
the message server’s actual refreshes are adjusted in its broker.ini file.

➤ To start the Metrics sample:

1. Open a console window to the BrokerManager\Metrics folder, then enter:
..\..\SonicMQ Metrics

The application defaults to message server -b localhost:2506.
The username -u Administrator and its password -p Administrator are
defaulted as you must have administrator privileges to do the task.

The Metrics sample starts and displays an initialized set of information
similar to:

Metrics for Broker: SonicMQ
 Memory Usage : 3250640
 Physical Connections : 1
 Msgs Rcvd : 9
 Msgs Rcvd/sec : 0
218 SonicMQ Programming Guide

Samples that Use the Management API
 Bytes Rcvd/sec : 5
 Msgs Dlvd : 9
 Msgs Dlvd/sec : 0

Type EXIT to stop polling for BrokerManager Metrics.
>

➤ To run QueueRoundTrip:

1. Open a console window to the QueuePTP\QueueRoundTrip folder, then enter:
..\..\SonicMQ QueueRoundTrip -n 100

The QueueRoundTrip sample runs 100 looped sends and receives.

The Metrics window displays information similar to the following:
Metrics for Broker: SonicMQ
 Memory Usage : 3220616
 Physical Connections : 2
 Msgs Rcvd : 392
 Msgs Rcvd/sec : 81
 Bytes Rcvd/sec : 221
 Msgs Dlvd : 250
 Msgs Dlvd/sec : 90

Type EXIT to stop polling for BrokerManager Metrics.
>

2. In the Metrics window, enter EXIT.

Piping Metrics Into a Log

You can use standard redirection methods to pipe metric data to a disk file.

➤ To send metrics data to a log file:

1. Open a console window to the BrokerManager\Metrics folder, then enter:
..\..\SonicMQ Metrics > LogThat.txt

The Metrics sample runs but no data displays in the console window.

2. Start and run any application on the same server to generate meaningful
changes into the log file. The events do not display in the console window.

3. In the Metrics window, enter EXIT.

4. Open the text file LogThat.txt. The metrics are recorded in the text file.
SonicMQ Programming Guide 219

Chapter 10: Management API
Setup Queues
You can create client application routines that let authorized users set up new
queues and the parameters of those queues. This sample application replicates
features and functionality in the SonicMQ Explorer and the SonicMQ Admin
tool by simply acting on the command line entry to complete its task.

➤ To set up a queue programmatically:

1. Open a console window to BrokerManager\SetupQueue folder, then enter:
..\..\SonicMQ SetupQueues

plus the parameters you want to specify:
-b <broker:port> [Default: localhost:2506]

-u <username> [Default: Administrator]

-p <password> [Default: Administrator]

-r <retrieve_extent>[Default: 1200]

-s <save_extent> [Default: 1400]

-m <maxqueuesize> [Default: 1000]

plus switches that set the queue’s status:
-global

-exclusive

plus the one or more queues that you want to create with the settings:
-q <name1> -q <name2> ...

for example:
..\..\SonicMQ SetupQueues -q NewQueue -m 2000 -global

You can use the SonicMQ Explorer as shown in Figure 43 to display the list of
queues and—if you select the option—system queues.

Figure 43. Explorer View of a Newly Created Queue
220 SonicMQ Programming Guide

Samples that Use the Management API
Show Setup
The ShowSetup sample outputs information about the basic message records in
well-formed Admin tool command lines. By flowing output from ShowSetup
into a file, the configuration of the message server can be recreated by running
the file as an Admin tool script on another message server.

Accessing All Message Server Queue Information

This sample accepts the default server and administrative user to launch an
Admin tool script and echo its results into either the console or a file where you
have redirected the output.

➤ To start the ShowSetup sample:

� Open a console window to the BrokerManager\ShowSetup folder, then enter:
..\..\SonicMQ ShowSetup

The console displays information similar to the following:

// Admin Script to duplicate the setup for broker "SonicMQ".
// This broker is NOT security enabled.

// Connect to the broker.
connect broker localhost Administrator Administrator

// Create queues.
set queue NewQueue global shared 1200,1400,2000
set queue SampleQ3 local shared 1200,1400,1000
set queue SampleQ2 local shared 1200,1400,1000
set queue SampleQ1 local shared 1200,1400,1000
set queue SampleQ4 local shared 1200,1400,1000

// Override properties of system queues.
set queue SonicMQ.routingQueue local shared 1200,1400,1000
set queue SonicMQ.deadMessage local shared 1200,1400,10000

// Create routing connections for "SonicMQ"
// No routing connections defined.

// Close the Admin Shell.
bye
SonicMQ Programming Guide 221

Chapter 10: Management API
Accessing Selected Message Server Queue Information

You can choose the objects that you want reported:

n queues — All PTP destinations including system queues.

n routings — Routing table information.

n qops — Quality of Protection.

n acls — Access Control Lists when the security database is active.

n users — Users when the security database is active. Passwords are not
reported

n groups — User groups when the security database is active.

n groupusers — Users in each user group when the security database is
active.

n all — All of the above. This is the default value.

Each option is declared with a -s parameter

➤ To start the ShowSetup sample for specified objects

� Open a console window to the BrokerManager\ShowSetup folder, then enter:
..\..\SonicMQ ShowSetup -s queues

The console displays information similar to the following:

//
// Admin Script to duplicate the setup for broker "SonicMQ".
// This broker is NOT security enabled.
//

// Connect to the broker.
connect broker localhost Administrator Administrator

// Create queues.
set queue NewQueue global shared 1200,1400,2000
set queue SampleQ3 local shared 1200,1400,1000
set queue SampleQ2 local shared 1200,1400,1000
set queue SampleQ1 local shared 1200,1400,1000
set queue SampleQ4 local shared 1200,1400,1000

// Override properties of system queues.
set queue SonicMQ.routingQueue local shared 1200,1400,1000
set queue SonicMQ.deadMessage local shared 1200,1400,10000

// Close the Admin Shell.
bye
222 SonicMQ Programming Guide

Samples that Use the Management API
Shutdown
The Shutdown sample provides programmatic access to message server
shutdown for authorized users. This replicates the suggested administration
function in the Admin tool tool or the Explorer.

The shutdown process is described in the following code segment from
Shutdown.java:
...
private void shutdownBroker() throws Exception
 {
 // Create an instance of the BrokerManager, and then shut it down.
 m_manager = new progress.message.tools.BrokerManager

(this, m_broker, m_adminUser, m_adminPassword);
 try
 {
 m_manager.connect();
 m_manager.shutdownBroker();
 // Notify user that we have sent the request (successfully).
 System.out.println

("Shutdown request sent to broker \"" + m_broker + "\".");
 m_manager = null;
 }...

}

Note that the brokerShutdown request effectively disconnects this client, so you
cannot get notification of the shutdown request that was sent.

➤ To shut down a server programmatically:

You could declare the server host, administrator and password but all of them
will default to the introductory values when not stated.

� Open a console window to the BrokerManager\Shutdown folder, then enter:
..\..\SonicMQ Shutdown

Important In Chapter 2, “Examining the SonicMQ Samples,” the reliable samples
suggested the crude Ctrl+C technique to emulate unexpected message server
shutdown. This action should always be avoided in production.

Instead, call an applications like this one or use the Admin tool or Explorer
functions to perform an orderly message server shutdown.
SonicMQ Programming Guide 223

Chapter 10: Management API
➤ To shut down a server programmatically with password prompting:

This variation of the Shutdown sample performs a useful task when the -p
parameter contains prompt instead of the actual password for the username.
Under an evaluation setup, the host port is localhost:2506 with the user
Administrator and the password Administrator.

1. Open a console window to the BrokerManager\Shutdown folder, then enter:
..\..\SonicMQ Shutdown -p prompt

The window displays: Enter password for user "Administrator">

2. Enter Administrator and press Enter.

The window displays:

Shutdown request sent to broker "localhost:2506".

then the application exits.

3. Look at the console window where the message server was running.
The following text is displayed:

SonicMQ Broker started, now accepting tcp connections on port 2506
...

Received shutdown request, starting shutdown

Closing all client connections

Waiting 30 seconds for threads to shut down

SonicMQ Broker now exiting...

Press any key to continue . . .

4. When that console window has the focus and you press any key, the
console window closes.
224 SonicMQ Programming Guide

Chapter 11 Accessing SonicMQ Through
ActiveX/COM Clients
About SonicMQ Through ActiveX/COM
SonicMQ provides a component framework that allows JMS objects embedded
in applications to communicate with the component framework on a Windows
platform.

The SonicMQ interface is packaged for ActiveX/COM so that the objects and
methods in the native Java classes are wrappered and the Java events are
presented like native ActiveX/COM control events.

SonicMQ clients under ActiveX/COM can have one connection to a message
server for each instance of the ActiveX/COM control that is active.

By bridging SonicMQ to ActiveX/COM, Windows developers can:

n Use familiar tools to make components that interface to SonicMQ —
Microsoft Visual C++, Microsoft Visual Basic,
Borland C++, Borland Delphi, Java and others.

n Run JMS-enabled components in popular applications —
Microsoft Office, Internet Explorer, Lotus® Notes, Lotus SmartSuite®,
and more.
SonicMQ Programming Guide 225

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
Implementation Notes
The SonicMQ connection to ActiveX/COM enables many of the essential
functions of loosely coupled messaging:

n createListener is available for asynchronous communications with event
handlers that provide onJMSmessage functionality similar to the JMS native
onMessage.

n Synchronous receivers can be used.

n Standard JMS message types are supported except for ObjectMessage. The
SonicMQ XMLMessage type is supported.

n ExceptionListeners are available for returning information about JMS
Exception events.

The limitations of the ActiveX/COM client interface impose minor constraints:

n ConnectionFactories are not supported through the interface.

n Use of JNDI to find destinations is not supported. However, other file-
based store and non-JNDI interfaces to directory services are available.

Requirements for an ActiveX/COM Client
The main elements of the ActiveX/COM client are:

n activex.jar in the SonicMQ install directory’s \lib\.

n Javasoft JRE v1.2 with JavaBeans Bridge for ActiveX/COM Plug-in

n The SonicMQ TypeLibrary, ActiveX.tlb

See the SonicMQ Installation and Administration Guide for more information
about installing SonicMQ and its ActiveX/COM Client.
226 SonicMQ Programming Guide

SonicMQ ActiveX/COM Sample
SonicMQ ActiveX/COM Sample
The Visual Basic form, shown in Figure 44 with sample messages, provides
access to many of the fundamental procedures of an ActiveX/COM control
acting as a client. The sample form is located in the SonicMQ install directory
at samples/ActiveX/Chat/Chat.frm.

The SonicMQ ActiveX/COM sample form has the following fields and
buttons:

n Message text box — The entry area for text you want to send as a message.

n Publish Message button — The action that publishes the message.

n Message Topic Transcript text box — The log of received messages.

n Clear Transcript button — Clears the Message Topic Transcript text box.

The form and its code demonstrate how to write a Microsoft Visual Basic
Pub/Sub application that uses the SonicMQ ActiveX/COM control. This
sample publishes and subscribes to a specified topic. Text you enter is
published and then received by all subscribers.

Figure 44. SonicMQ ActiveX/COM Sample, Chat.frm, in Visual Basic

Warning Before you can run the SonicMQ ActiveX/COM sample you must install the
SonicMQ ActiveX/COM control. See the SonicMQ Installation and
Administration Guide for prerequisites, installation, and setup instructions for
the SonicMQ ActiveX/COM control.
SonicMQ Programming Guide 227

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
➤ To prepare the SonicMQ ActiveX/COM sample:

When the installation and setup are completed, do the following:

1. Load the project in Visual Basic.

2. Add a reference to the control by choosing Project > References.

3. In the Available References list, select the reference SonicMQ Bean
Control.

➤ To modify Chat.frm when security is active:

If the message server is running with security, the sample source code must be
modified to include a valid username and password:

1. In the sample program Chat.frm locate the line:

username = "ActiveXUser"

2. Change ActiveXUser to a username that has been set up in the Access
Control List.

3. Change the next line, password = "password" to contain the password for
the username you specified.

4. Save Chat.frm.

For more information, see the comments in Chat.frm.

➤ To set up the message server and console client for the SonicMQ
ActiveX/COM sample:

1. Start the message server (if it is not already running) from the Start menu
command: Start > Programs > Progress SonicMQ > Start Broker.

2. Open a console window to the install directory folder
\samples\TopicPubSub\Chat.

3. Enter:
..\..\SonicMQ Chat -u Console_Client

Note If you are installing a new version of SonicMQ you may need to reset the path
to the control . Be sure the ActiveX/COM jar file that is referenced is the one
that is associated with the current version of SonicMQ.
228 SonicMQ Programming Guide

SonicMQ ActiveX/COM Sample
➤ To run the SonicMQ ActiveX/COM sample

The ActiveX/COM sample will use the message server and a console Chat
window. The Visual Basic Chat and the console Chat will send each other
messages.

1. In the Visual Basic project, choose File > Make chat.exe. The path should
be into the samples directory ActiveX/chat.

2. Choose Run > Start. The form runs and its GUI window displays.

3. Type text in the Message text box.

4. Click Publish Message. The text you entered displays in the Message
Topic Transcript text box. The message also displays in the console client
window prefaced by its client name ActiveXUser.

5. In the console client window, enter text and then press Enter. The text you
entered displays in the console window. The message also displays in the
Message Topic Transcript text box, prefaced by its client name
Console_Client.

6. The text you entered is retained in the Message text box. Modify or clear
the text to send the next message.

Visual Basic Code for the ActiveX/COM Sample
The Visual Basic code that defines the functionality within the form in
Figure 44 is detailed in the following listing of Chat.frm.

Note The only omission in the code is the GUI form properties definitions.

VERSION 5.00
Begin VB.Form Chat
 Caption = "Chat"
... ‘ GUI form properties definitions were omitted here

Attribute VB_Name = "Chat"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False
SonicMQ Programming Guide 229

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
’Copyright (c) 1999, Progress Software Corporation - All Rights
Reserved
’Sample Application
’Using the SonicMQ ActiveX control to Publish and Subscribe
’This sample publishes and subscribes to a specified topic.
’Text you enter is published and then received by all subscribers.

Dim newProgressJMS As New SonicMQ.SonicMQ

’The WithEvents keyword is required to receive asynchronous events
Dim WithEvents ProgressJMS As SonicMQ.SonicMQ
Attribute ProgressJMS.VB_VarHelpID = -1

Dim sessionid As Long
Dim topicid As Long
Dim subscriberid As Long
Dim publisherid As Long
Dim messageid As Long
Dim mapmsgid As Long
Dim pubresult As Long
Dim setresult As Long
Dim result As Long
Dim username As String
Dim password As String
Dim connectresult As String

Private Sub Form_Load()
 Set ProgressJMS = newProgressJMS
 Dim listener As Long

 ’Set up parameters to connect to a broker running on the
 ’same machine. Modify username and password if the broker
 ’is security enabled.

username = "ActiveXUser"
 password = "password"

 ProgressJMS.setBrokerURL ("localhost:2506")
 ProgressJMS.setClientID ("ActiveXClient")
 ProgressJMS.setUsername (username)
 ProgressJMS.setPassword (password)

’Connect to broker.
 connectresult =

ProgressJMS.jms_CreateTopicConnection_withDefaultUser()
 If (connectresult < 0) Then
 failmsg = "jms_CreateTopicConnection_withDefaultUser

failed"
 GoTo ErrorHandler
 End If
230 SonicMQ Programming Guide

SonicMQ ActiveX/COM Sample
’Create a Pub/Sub session
 sessionid = ProgressJMS.jms_CreateTopicSession

(False, ProgressJMS.jms_Session_AUTO_ACKNOWLEDGE)
 If (sessionid < 0) Then
 failmsg = "jms_CreateTopicSession failed"
 GoTo ErrorHandler
 End If

’Identify the topic that we will publish and subscribe to
 topicid = ProgressJMS.jms_CreateTopic

(sessionid, "jms.samples.chat")
 If (topicid < 0) Then
 failmsg = "jms_CreateTopic failed"
 GoTo ErrorHandler
 End If

’Subscribe to the topic
 subscriberid = ProgressJMS.jms_CreateSubscriber

(sessionid, topicid)
 If (subscriberid < 0) Then
 failmsg = "jms_CreateSubscriber failed"
 GoTo ErrorHandler
 End If

’Create a publisher to the topic
 publisherid = ProgressJMS.jms_CreatePublisher

(sessionid, topicid)
 If (publisherid < 0) Then
 failmsg = "jms_CreatePublisher failed"
 GoTo ErrorHandler
 End If

’We will listen for messages asynchronously, create a listener
 listener = ProgressJMS.jms_CreateMessageListener()
 If (listener < 0) Then
 failmsg = "jms_CreateMessageListener failed"
 GoTo ErrorHandler
 End If

’Attach the listener to the subscription created above
 result = ProgressJMS.jms_MessageConsumer_setMessageListener

(subscriberid, listener)
 If (result < 0) Then
 failmsg = "jms_MessageConsumer_setMessageListener failed"
 GoTo ErrorHandler
 End If

’Now that setup is complete, start the Connection
 result = ProgressJMS.jms_Connection_start()
 If (result < 0) Then
 failmsg = "jms_Connection_start failed"
 GoTo ErrorHandler
 End If

 Exit Sub
SonicMQ Programming Guide 231

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
ErrorHandler:
 ProgressJMS.jms_Connection_close
 MsgBox failmsg, , "SonicMQ Error"
 Exit Sub

End Sub

’Publishes the text entered in the MessageText field
Private Sub Publish_Click()
 messageid = ProgressJMS.jms_Session_createTextMessage

(sessionid)
 If (messageid >= 0 And MessageText.Text <> "") Then
 setresult = ProgressJMS.jms_TextMessage_setText

(messageid, username + ": " +
MessageText.Text)
 pubresult = ProgressJMS.jms_PublishMessage

(publisherid, messageid)
’IMPORTANT - free up the message when we’re done

ProgressJMS.jms_Message_free (messageid)
 End If
End Sub

’Disconnect from the broker on form unload
Private Sub Form_Unload(Cancel As Integer)
 ProgressJMS.jms_Connection_close
End Sub

’Receives messages published to the topic, displays them in
MessageList
Private Sub ProgressJMS_onJMSMessage

(ByVal OnJMSMessageEvent1 As Object)
 Dim msgtype As String
 Dim messageid As Integer
 messageid = OnJMSMessageEvent1.getMessageID()
 If (messageid >= 0) Then
 msgtype = ProgressJMS.jms_CheckMessageType(messageid)

’Check message type: this sample only works with text messages
 If (msgtype = "TextMessage") Then
 MessageList.Text = MessageList.Text +

ProgressJMS.jms_TextMessage_getText(messageid) +
Chr(13) +
Chr(10)

 Else
 MessageList.Text = "Unknown message type received"
 End If

’IMPORTANT - free up the message when we’re done
 ProgressJMS.jms_Message_free (messageid)
 End If
End Sub
232 SonicMQ Programming Guide

Tips and Techniques for SonicMQ ActiveX/COM
Tips and Techniques for SonicMQ ActiveX/COM
The SonicMQ ActiveX/COM control optimizes the interface between the JMS
objects and methods and the ActiveX/COM interface.

Identifiers
An identifier is a non-negative value returned when a function call returns
successfully. Identifiers with negative values, like status codes, indicate a
failure.

Identifiers are defined for the SonicMQ ActiveX/COM control so that its API
flattens the object-oriented structure of the JMS API, thus creating a single
API.

For example, to create a TopicSubscriber object in the JMS API:

1. Create a TopicConnection object.

2. From the TopicConnection methods, create a TopicSession object.

3. From the TopicSession methods, create a TopicSubscriber object.

Contrast that with the single object ActiveX/COM control’s API:

1. Create a TopicConnection by calling the create connection method
jms_CreateTopicConnection().

2. Create the TopicSession object by calling the method
jms_CreateTopicSession(). The ActiveX/COM control puts the
TopicSession object into a table in memory and a sessionID value is
returned to the caller.

Private Sub ProgressJMS_onJMSException
(ByVal OnJMSExceptionEvent As Object)

MessageList.Text = CStr(OnJMSExceptionEvent.getJMSExceptionId()) +
":::" +
OnJMSExceptionEvent.getJMSExceptionText()

End Sub

Private Sub Clear_Click()
 MessageList.Text = ""
End Sub
SonicMQ Programming Guide 233

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
3. Create the TopicSubscriber object by calling the method
jms_CreateSubscriber() and passing the SessionID and TopicID as
parameters so that the TopicSubscriber object can be associated with the
TopicSession object.

Session Identifier

The session identifier methods for both domains are:

Looking Up the Chain of Objects

It can be useful to look up the chain of objects, for example, to identify the
parent TopicSession object for a TopicSubscriber. But in the flattened API of
the SonicMQ ActiveX/COM Control this is not possible. Methods are included
to resolve these problems, for example:

jms_TopicSubscriber_getSessionID()

This returns the sessionID of the subscriber’s TopicSession object.

Asynchronous Delivery

To support asynchronous message delivery, JMS MessageListener objects are included
to attach to the MessageConsumers. To associate the listenerID with a
MessageListener, the listenerID can be passed to the
jms_MessageConsumer_setMessageListener() method. As a single
MessageListener can attach to multiple MessageConsumers, the SonicMQ
ActiveX/COM control lets a jms_CreateMessageListener() method create a
MessageListener and return a listenerID to the caller.

Object Publish and Subscribe Domain Point-to-point Domain

Producer int
jms_TopicPublisher_getSessionID
(int publisherID);

int // sessionID
jms_QueueSender_getSessionID
(int senderID) ;

Consumer int
jms_TopicSubscriber_getSessionID
(int subscriberID);

int // sessionID
jms_QueueReceiver_getSessionID
(int receiverID);

Destination int
jms_Topic_getSessionID
(int topicID);

int // sessionID
jms_Queue_getSessionID
(int queueID);

Browser (PTP) n/a int // sessionID
jms_QueueBrowser_getSessionID
(int qBrowserID);
234 SonicMQ Programming Guide

Tips and Techniques for SonicMQ ActiveX/COM
Handling Messages
The JMS API can use a single message handler to receive all Message types.
After the Java application receives a Message object, it uses the Java instanceof
operator to determine the type of the Message; for example, TextMessage.
Because applications using the SonicMQ ActiveX/COM control are aware
only of a messageID, the instanceof operation is not viable. A new method is
added to the ActiveX/COM API to allow a message’s type to be determined:

jms_CheckMessageType()

where the returned value will be one of the following String values:

XML Messages

SonicMQ has added an XMLMessage type to its supported Message object types.
However, only the method’s jms_XMLMessage_getText() and
jms_XMLMessage_setText() are applicable under ActiveX/COM, allowing the
message’s XML character data to be accessed. Methods to manipulate the
DOM object are not supported under ActiveX/COM in this release.

Resource Management
In ActiveX/COM applications that interface with SonicMQ, you should free
memory resources allocated to the message as soon as you are sure that the
message is no longer of interest:

jms_Message_free(int messageID);

See “Visual Basic Code for the ActiveX/COM Sample” for an example of how
freeing resources is used by both the publisher and the subscriber of the
message.

"XMLMessage" "BytesMessage"

"TextMessage" "ObjectMessage"

"MapMessage" "StreamMessage"

"Message" "Unknown message type"
SonicMQ Programming Guide 235

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
Events
Two event methods are available in the SonicMQ ActiveX/COM control, the
onJMSMessage event and the onException event.

Asynchronous OnJMSMessage Event

The SonicMQ ActiveX/COM control produces an OnJMSMessageEvent
whenever the control has asynchronously received a message for the
application.

The callback method or Event Sink defined in an application for
OnJMSMessageEvents is the onJMSMessage() method that accepts the event as a
parameter.

The OnJMSMessageEvent requires that you use the getMessageID() method to
return the messageID of the asynchronous message that is being delivered.

On Exception Events

The SonicMQ ActiveX/COM control produces a OnJMSExceptionEvent that is
triggered whenever a Java Exception prevents a method from completing
successfully.

As most methods typically return a negative error code in the event of failure,
implementing support for OnJMSException events in an application is not
strictly required.

The callback method or Event Sink defined in an application for
OnJMSExceptionEvents needs an onJMSException() method, which accepts that
event as a parameter.

The OnJMSExceptionEvent uses the getJMSExceptionText() method among
others to retrieve the text of the Java Exception.

Additional Exception methods are:
n String

getJMSGeneralException();

n int
getJMSGeneralExceptionCode();
236 SonicMQ Programming Guide

Tips and Techniques for SonicMQ ActiveX/COM
Connections
An instance of the SonicMQ ActiveX/COM control supports a single
connection to the message server. Once a connection is established, any
subsequent calls to create a connection are ignored. As there are cases when
multiple connections are needed, you can use multiple instances of the
SonicMQ ActiveX/COM control to establish the required number of
connections.

True ActiveX/COM Properties
True ActiveX/COM properties are properties where:

n The properties can be found through introspection of the control
by the container.

n A get method and set method are provided for the property.

The SonicMQ ActiveX/COM control makes the connection parameters
available as true ActiveX/COM properties as shown in with their respective get
and set methods. The connection parameters of the true ActiveX/COM
properties in the SonicMQ ActiveX/COM control are shown in Table 24.

Return Values

When the SonicMQ ActiveX/COM control’s public methods do not return data
from the fields of a message, they return an integer status code or an identifier.

Table 24. True ActiveX/COM Properties in the SonicMQ ActiveX/COM Control

Connection Parameter set Method get Method

UserName setUsername(String user); String getUsername();

Password setPassword(String password); String getPassword();

ClientID setClientID(String clientID); String getClientID();

URL setBrokerURL(String brokerURL); String getBrokerURL();
SonicMQ Programming Guide 237

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
Status Codes

A status code of 0 is returned when an operation succeeds and a negative value
is returned when an operation fails. The specific negative value has meaning,
indicative of the general area that caused the failure.

For example, to create a TopicSubscriber object in the JMS API, you do the
following:

1. Create a TopicConnection object.

2. From the TopicConnection methods, create a TopicSession object.

3. From the TopicSession methods, create a TopicSubscriber object.

Contrast that with the single object ActiveX/COM control’s API:

1. Create a TopicConnection by calling the create connection method
jms_CreateTopicConnection().

2. Create the TopicSession object by calling the method
jms_CreateTopicSession(). The ActiveX/COM control puts the
TopicSession object into a table in memory and a sessionID value is
returned to the caller.

3. Create the TopicSubscriber object by calling the method
jms_CreateSubscriber(), passing the SessionID and TopicID as
parameters so that the TopicSubscriber object can be associated with the
TopicSession object.

Enumerations
Because Java enumerations cannot be passed to a non-Java application,
javax.jms methods that return an enumeration are handled in the
ActiveX/COM control by four methods that comprise a simple loop that
replicates enumeration:

1. Point to the next element.

2. Get that element.

3. Determine whether there are more elements.

4. If there are more elements, go to Step 1.
238 SonicMQ Programming Guide

Syntax for SonicMQ ActiveX/COM Method Names
Constants
While the JMS API includes several static variables, the ActiveX/COM
Control does not allow calling applications to use these static variables. This
limitation is overcome by wrapping the constants into methods.

For example, the current JMS Specification defines three static variables that
represent the Acknowledgement Modes for a Session:
n static final int AUTO_ACKNOWLEDGE = 1;

n static final int CLIENT_ACKNOWLEDGE = 2;

n static final int DUPS_OK_ACKNOWLEDGE = 3;

In the SonicMQ ActiveX/COM control’s API, the Acknowledgement Modes
for a Session are obtained by calling corresponding methods:
n int jms_Session_AUTO_ACKNOWLEDGE();

n int jms_Session_CLIENT_ACKNOWLEDGE():

n int jms_Session_DUPS_OK_ACKNOWLEDGE();

Syntax for SonicMQ ActiveX/COM Method Names
The standard naming method for SonicMQ API names in the SonicMQ
ActiveX/COM control API is:

“jms_” + JMS API Interface class name + “_” + method name

For example, the start () method in the Connection interface class is:

jms_Connection_start()

Duplicate Names Are Differentiated
When duplicates occur, a distinguishing name is added:

“jms_” + JMS API Interface class name + “_” + method name + “_” +
some distinguishing name

Duplicates occur primarily because overloading a method name. The two most
common cases are the constants as discussed above and the handling of Java’s
ability to manage overloaded constructors that needs to be discretely stated in
ActiveX/COM implementations.
SonicMQ Programming Guide 239

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
Java Method Overloading Is Handled
As ActiveX/COM does not allow two methods to have the same name where
Java does support method overloading, enabling different sets of arguments to
perform variations of the basic function. To accommodate the JMS
functionality, the ActiveX/COM control names extend names to differentiate
the variants. For example, the MessageConsumer methods:
n Message receive()

n Message receive(long timeOut)

are presented in the SonicMQ ActiveX/COM control’s API as:
n int // messageID

jms_MessageConsumer_receive(int consumerID);

n int // messageID
jms_MessageConsumer_receive_withTimeOut(int consumerID, long
timeOut);

Interface Class Names Are Often Omitted
In most cases, the complete interface name is part of a method name, for
example, jms_MessageConsumer_receive()

Some common names are simplified to keep names brief. For example:

n jms_CreateTopicSession() does not need to be qualified by including
TopicConnection as part of its name.

n jms_Publish() can only belong to the TopicPublisher, so that Interface’s
class name was dropped from method’s name.
240 SonicMQ Programming Guide

Interface Mappings
Interface Mappings
Table 25 presents the set of tables in this chapter that detail the mapping of
javax.jms contructors and methods to the commands used with the
ActiveX/COM control.

Table 25. Interface Mapping from SonicMQ to the ActiveX/COM Control

Interface

Table 26, “Connection Interface” on page 242.

Table 27, “Session Interface” on page 243.

Table 28, “MessageConsumer Interface” on page 244.

Table 29, “MessageListener Interface” on page 245.

Table 30, “MessageProducer Interface” on page 245.

Table 31, “DeliveryMode Interface” on page 246.

Table 32, “TopicConnectionFactory Interface” on page 246.

Table 33, “TopicConnection Interface” on page 247.

Table 34, “TopicSession Interface” on page 247.

Table 35, “Topic Interface (Extends Destination)” on page 248.

Table 36, “TopicPublisher Interface” on page 248.

Table 37, “TopicRequestor and TemporaryTopic (Extends Topic) Interfaces” on
page 248.

Table 38, “TopicSubscriber Interface” on page 249.

Table 39, “QueueConnectionFactory Interface” on page 249.

Table 40, “QueueConnection Interface” on page 249.

Table 41, “QueueSession Interface” on page 250.

Table 42, “Queue Interface (Extends Destination)” on page 250.

Table 43, “QueueSender Interface (Extends MessageProducer)” on page 251.
SonicMQ Programming Guide 241

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
Connections and Sessions

Table 44, “QueueRequestor and TemporaryQueue (Extends Queue) Interfaces” on
page 251.

Table 45, “QueueReceiver Interface (Extends MessageConsumer)” on page 251.

Table 46, “QueueBrowser Interface” on page 252.

Table 47, “Message Interface” on page 252.

Table 48, “BytesMessage Interface (Extends Message)” on page 256.

Table 49, “MapMessage Interface (Extends Message)” on page 258.

Table 50, “StreamMessage Interface (Extends Message)” on page 260.

Table 51, “TextMessage Interface (Extends Message)” on page 261.

Table 52, “XMLMessage Interface (Extends TextMessage)” on page 262.

Table 53, “Other Interfaces” on page 262.

Table 25. Interface Mapping from SonicMQ to the ActiveX/COM Control

Interface

Table 26. Connection Interface

javax.jms API SonicMQ ActiveX/COM API

String
getClientID()

String
getClientID();

void
setClientID(String clientID)

void
setClientID(String clientID);

void
setExceptionListener(ExceptionListener
listener)

-

void
start()

int // status code
jms_Connection_start()

void
stop()

int // status code
jms_Connection_stop()
242 SonicMQ Programming Guide

Interface Mappings
void
close()

int // status code
jms_Connection_close()

Table 26. Connection Interface (continued)

javax.jms API SonicMQ ActiveX/COM API

Table 27. Session Interface

javax.jms API SonicMQ ActiveX/COM API

static final int AUTO_ACKNOWLEDGE = 1; int
jms_Session_AUTO_ACKNOWLEDGE ();

static final int CLIENT_ACKNOWLEDGE = 2; int
jms_Session_CLIENT_ACKNOWLEDGE ():

static final int DUPS_OK_ACKNOWLEDGE = 3; int
jms_Session_DUPS_OK_ACKNOWLEDGE();

createMessage() int // messageID
jms_Session_createMessage(int sessionID);

createBytesMessage() int // messageID
jms_Session_createBytesMessage
(int sessionID);

createMapMessage() int // messageID
jms_Session_createMapMessage
(int sessionID);

createStreamMessage() int // messageID
jms_Session_createStreamMessage
(int sessionID);

createTextMessage() int // messageID
jmsSession_createTextMessage
(int sessionID);

createTextMessage(String string) int // messageID
jms_Session_createTextMessage_withBody
(int sessionID, String body);

boolean
getTransacted()

Boolean
jms_Session_getTransacted(int sessionID);

void
commit()

int // status code
jms_Session_commit(int sessionID);

void
rollback()

int // status code
jms_Session_rollback(int sessionID);
SonicMQ Programming Guide 243

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
Producers and Consumers

void
close()

int // status code
jms_Session_close(int sessionID);

void
recover()

int // status code
jms_Session_recover(int sessionID);

getMessageListener() -

void
setMessageListener(MessageListener
listener)

-

onException(JMSException exception); -

Table 27. Session Interface (continued)

javax.jms API SonicMQ ActiveX/COM API

Table 28. MessageConsumer Interface

javax.jms API SonicMQ ActiveX/COM API

String
getMessageSelector()

String
jms_MessageConsumer_getMessageSelector
(int consumerID);

receive() int // messageID
jms_MessageConsumer_receive
(int consumerID);

receive(long timeOut) int // messageID
jms_MessageConsumer_receive_withTimeOut
(int consumerID, long timeOut);

Message
receiveNoWait()

int // messageID
jms_MessageConsumer_receiveNoWait
(int consumerID);

void
close()

int // status code
jms_MessageConsumer_close
(int consumerID);
244 SonicMQ Programming Guide

Interface Mappings
Table 29. MessageListener Interface

javax.jms API SonicMQ ActiveX/COM API

void
onMessage(Message message);

jms_CreateMessageListener

int // listenerID
jms_MessageConsumer_getMessageListener
(int consumerID)

int // status code
jms_MessageConsumer_setMessageListener
(int consumerID, int listenerID)

where listenerID is generated by the
jms_CreateMessageListener method

Table 30. MessageProducer Interface

javax.jms API SonicMQ ActiveX/COM API

setDisableMessageID(boolean value) int // status code
jms_MessagProducer_setDisableMessageID
(int producerID, boolean value);

boolean
getDisableMessageID()

Boolean
jms_MessageProducer_getDisableMessageID
(int producerID);

setDisableMessageTimestamp(boolean
value)

int // status code
jms_MessageProducer_setDisableMessageTimestamp
(int producerID, boolean value);

boolean
getDisableMessageTimestamp()

Boolean
jms_MessageProducer_getDisableMessageTimestamp
(int producerID);

setDeliveryMode(int deliveryMode) int // status code
jms_MessageProducer_setDeliveryMode
(int producerID, int deliveryMode);

int
getDeliveryMode()

int // integer value (otherwise null)
jms_MessageProducer_getDeliveryMode
(int producerID);

setPriority(int priority) int // status code
jms_MessageProducer_setPriority
(int producerID, int priority);
SonicMQ Programming Guide 245

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
Publish and Subscribe (Topics)

int
getPriority()

int // integer value (otherwise null)
jms_MessageProducer_getPriority
(int producerID);

setTimeToLive(long timeToLive) int // status code
jms_MessageProducer_setTimeToLive
(int producerID, long timeToLive);

int
getTimeToLive()

int // integer value (otherwise null)
jms_MessageProducer_getTimeToLive
(int producerID);

close() int // status code
jms_MessageProducer_close(int producerID);

Table 30. MessageProducer Interface

javax.jms API SonicMQ ActiveX/COM API

Table 31. DeliveryMode Interface

javax.jms API SonicMQ ActiveX/COM API

static final int NON_PERSISTENT = 1; int
jms_DeliveryMode_NON_PERSISTENT();

static final int PERSISTENT = 2; int
jms_DeliveryMode_PERSISTENT();

Table 32. TopicConnectionFactory Interface

javax.jms API SonicMQ ActiveX/COM API

createTopicConnection() int // status code
jms_CreateTopicConnection_withDefaultUser()

createTopicConnection
(String userName, String password)

int // status code
jms_CreateTopicConnection
(String userName, String password)
246 SonicMQ Programming Guide

Interface Mappings
Table 33. TopicConnection Interface

javax.jms API SonicMQ ActiveX/COM API

createTopicSession
(boolean transacted,
 int acknowledgeMode)

int // sessionID
jms_CreateTopicSession
(boolean transacted, int acknowledgeMode)

Table 34. TopicSession Interface

javax.jms API SonicMQ ActiveX/COM API

createTopic(String topicName) int // topicID
jms_CreateTopic(int sessionID, String topicName);

createSubscriber(Topic topic) int // subscriberID
jms_CreateSubscriber(int sessionID, int topicID);

createSubscriber(Topic topic,
String messageSelector, boolean
noLocal)

int // subscriberID
jms_CreateSubscriber_withSelector
(int sessionID, int topicID,
String messageSelector, Boolean noLocal);

createDurableSubscriber
(Topic topic, String name)

int // subscriberID
jms_CreateDurableSubscriber
(int sessionID, int topicID, String name);

createDurableSubscriber
(Topic topic, String name, String
messageSelector,
boolean noLocal)

int // subscriberID
jms_CreateDurableSubscriber_withSelector
(int sessionID, int topicID, String name,
String messageSelector, Boolean noLocal);

createPublisher(Topic topic) int // publisherID
jms_CreatePublisher(int sessionID, int topicID);

createTemporaryTopic() int // topicID
jms_CreateTemporaryTopic(int SessionID);

unsubscribe(String name) int // status code
jms_Unsubscribe(int sessionID, String topicName);
SonicMQ Programming Guide 247

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
Table 35. Topic Interface (Extends Destination)

javax.jms API SonicMQ ActiveX/COM API

String
getTopicName()

String
jms_Topic_getTopicName(int topicID);

String
toString();

String
jms_Topic_toString(int topicID);

Table 36. TopicPublisher Interface

javax.jms API SonicMQ ActiveX/COM API

getTopic() int // topicID
jms_TopicPublisher_getTopic(int publisherID);

publish(Message message) int // status code
jms_PublishMessage
(int publisherID, int messageID);

publish(Message message, int
deliveryMode, int priority, long
timeToLive)

int // status code
jms_PublishMessage_withConditions
(int publisherID, int messageID,
int deliveryMode, int priority,
long timeToLive);

publish(Topic topic, Message message) int // status code
jmsPublishMessageToTopic(publisherID,
int topicID, int messageID);

publish(Topic topic, Message message,
int deliveryMode, int priority,
long timeToLive)

int // status code
jmsPublishMessageToTopic_withConditions(
publisherID, int topicID, int messageID,
int deliveryMode, int priority,
long timeToLive);

Table 37. TopicRequestor and TemporaryTopic (Extends Topic) Interfaces

javax.jms API SonicMQ ActiveX/COM API

TopicRequestor
(TopicSession session, Topic topic)

-

request(Message message) -
248 SonicMQ Programming Guide

Interface Mappings
Point-to-point (Queues)

close() -

Temporary Topic:
delete()

int // status code

jms_TemporaryTopic_delete(int topicID);

Table 37. TopicRequestor and TemporaryTopic (Extends Topic) Interfaces

javax.jms API SonicMQ ActiveX/COM API

Table 38. TopicSubscriber Interface

javax.jms API SonicMQ ActiveX/COM API

getTopic() int // topicID
jms_TopicSubscriber_getTopic(int subscriberID);

getNoLocal() Boolean
jms_TopicSubscriber_getNoLocal(int subscriberID);

Table 39. QueueConnectionFactory Interface

javax.jms API SonicMQ ActiveX/COM API

createQueueConnection() int // status code
jms_CreateQueueConnection_withDefaultUser();

createQueueConnection
(String userName,
 String password)

int // status code
jms_CreateQueueConnection
(String userName, String password);

Table 40. QueueConnection Interface

javax.jms API SonicMQ ActiveX/COM API

createQueueSession
(boolean transacted,
 int acknowledgeMode)

int // sessionid
jms_createQueueSession
(boolean transacted, int acknowledgeMode);
SonicMQ Programming Guide 249

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
Table 41. QueueSession Interface

javax.jms API SonicMQ ActiveX/COM API

createQueue(String queueName) int // queueID
jms_CreateQueue(int sessionID, String name);

createReceiver(Queue queue) int // qReceiverID
jms_CreateQueueReceiver(int sessionID, int queueID);

createReceiver(Queue queue,
String messageSelector)

int // qReceiverID
jms_CreateQueueReceiver_withSelector
(int sessionID, int queueID, String messageSelector);

createSender(Queue queue) int // qSenderID
jms_CreateQueueSender(int sessionID, int queueID);

createBrowser(Queue queue) int // qBrowserID
jms_CreateQueueBrowser (int sessionID, int queueID);

createBrowser(Queue queue,
String messageSelector)

int // qBrowserID
jms_CreateQueueBrowser_withSelector
(int sessionID, int queueID, String messageSelector):

createTemporaryQueue() int // queue
jms_CreateTemporaryQueue(int sessionID);

Table 42. Queue Interface (Extends Destination)

javax.jms API SonicMQ ActiveX/COM API

getQueueName() String
jms_Queue_getQueueName(int queueID);

String
toString();

String
jms_Queue_toString(int queueID);
250 SonicMQ Programming Guide

Interface Mappings
Table 43. QueueSender Interface (Extends MessageProducer)

javax.jms API SonicMQ ActiveX/COM API

getQueue() int // queueID
jms_QueueSender_getQueue(int qSenderID);

send(Message message) int // status code
jms_SendMessage
(int qSenderID, int messageID);

send(Message message, int deliveryMode,
int priority, long timeToLive)

int // status code
jms_SendMessage_withConditions
(int qSenderID, int messageID,
int deliveryMode, int priority,
long timeToLive);

send(Queue queue, Message message) int // status code
jms_SendMessageToQueue
(int qSenderID, int queueID, int messageID);

send(Queue queue, Message message, int
deliveryMode, int priority, long
timeToLive)

int // status code
jms_SendMessageToQueue_withConditions
(int qSenderID, int queueID, int messageID, int
deliveryMode, int priority,
long timeToLive);

Table 44. QueueRequestor and TemporaryQueue (Extends Queue) Interfaces

javax.jms API SonicMQ ActiveX/COM API

QueueRequestor(QueueSession session, Queue queue) -

request(Message message) -

close() -

TemporaryQueue:
delete()

int // status code
jms_TemporaryQueue_delete
(int queueID);

Table 45. QueueReceiver Interface (Extends MessageConsumer)

javax.jms API SonicMQ ActiveX/COM API

getQueue() int // queueID
jms_QueueReceiver_getQueue(int qReceiverID);
SonicMQ Programming Guide 251

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
Messages

Table 46. QueueBrowser Interface

javax.jms API SonicMQ ActiveX/COM API

getQueue() int // queueID
jms_QueueBrowser_getQueue(int qBroswerID)

String
getMessageSelector(
)

String
jms_QueueBrowser_getMessageSelector(int qBrowserID);

Enumeration
getEnumeration()

int // Message Queue Enumeration ID
jms_QueueBrowser_getEnumeration(int qBrowserID);

int // Message ID
jms_QueueBrowserEnumeration_nextElement(int enumerationID) ;

Boolean // Message ID
jms_QueueBrowserEnumeration_hasMoreElements(int enumerationID)

close() int // status code
jms_QueueBrowser_close(int qBrowserID);

Table 47. Message Interface

javax.jms API SonicMQ ActiveX/COM API

static final int
DEFAULT_DELIVERY_MODE = -1;

int
jms_Message_DEFAULT_DELIVERY_MODE();

static final int
DEFAULT_PRIORITY = -1;

int
jms_Message_DEFAULT_PRIORITY();

static final int
DEFAULT_TIME_TO_LIVE = -1;

int
jms_Message_DEFAULT_TIME_TO_LIVE();

String
getJMSMessageID()

String
jms_Message_getJMSMessageID(int messageID);

void
setJMSMessageID(String id)

int // status code
jms_Message_setJMSMessageID
(int messageID, String id);

long
getJMSTimestamp()

Long
jms_Message_getJMSTimestamp(int messageID);
252 SonicMQ Programming Guide

Interface Mappings
setJMSTimestamp(long timestamp) int // status code
jms_Message_setJMSTimestamp
(int messageID, long timestamp);

byte []
getJMSCorrelationIDAsBytes()

byte[] //
jms_Message_getJMSCorrelationIDAsBytes
(int messageID);

byte[]
setJMSCorrelationIDAsBytes
(byte[] correlationID)

int // status code
jms_Message_setJMSCorrelationIDAsBytes
(int messageID, byte[] correlationID);

String
setJMSCorrelationID
(String correlationID)

int // status code
jms_Message_setJMSCorrelationID
(int messageID, String correlationID);

getJMSCorrelationID() String
jms_Message_getJMSCorrelationID(int messageID);

getJMSReplyTo() int // destinationID
jms_Message_getJMSReplyTo(int messageID);

setJMSReplyTo
(Destination replyTo)

int // status code
jms_Message_setJMSReplyTo(int messageID, int
destinationID);

int
getJMSDestination()

int // destinationID
jms_Message_getJMSDestination(int messageID);

setJMSDestination
(Destination destination)

int // status code
jms_Message_setJMSDestination
(int messageID, int destinationID);

int
getJMSDeliveryMode()

int
jms_Message_getJMSDeliveryMode(int messageID);

setJMSDeliveryMode
(int deliveryMode)

int // status code
jms_Message_setJMSDeliveryMode
(int messageID, int deliveryMode);

boolean
getJMSRedelivered()

Boolean
jms_Message_getJMSRedelivered(int messageID);

setJMSRedelivered
(boolean redelivered)

int // status code
jms_Message_setJMSRedelivered(int messageID);

String
getJMSType()

String
jms_Message_getJMSType(int messageID);

Table 47. Message Interface (continued)

javax.jms API SonicMQ ActiveX/COM API
SonicMQ Programming Guide 253

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
setJMSType(String type) int // status code
jms_Message_setJMSType
(int messageID , String type);

long
getJMSExpiration()

long
jms_Message_getJMSExpiration(int messageID);

setJMSExpiration(long expiration) int // status code
jms_Message_setJMSExpiration(int messageID,
long expiration);

int
getJMSPriority()

int
jms_Message_getPriority(int messageID);

setJMSPriority(int priority) int // status code
jms_Message_setJMSPriority(int messageID, int
priority);

clearProperties() int // status code
jms_Message_clearProperties(int messageID);

boolean
propertyExists(String name)

Boolean
jms_Message_propertyExists
(int messageID String name);

boolean
getBooleanProperty(String name)

Boolean
jms_Message_getBooleanProperty
(int messageID, String name);

byte
getByteProperty(String name)

Byte
jms_Message_getByteProperty
(int messageID, String name);

short
getShortProperty(String name)

Short
jms_Message_getShortProperty
(int messageID, String name);

int
getIntProperty(String name)

Integer
jms_Message_getIntProperty
(int messageID, String name);

long
getLongProperty(String name)

Long
jms_Message_getLongProperty
(int messageID, String name);

float
getFloatProperty(String name)

Float
jms_Message_getFloatProperty
(int messageID, String name);

Table 47. Message Interface (continued)

javax.jms API SonicMQ ActiveX/COM API
254 SonicMQ Programming Guide

Interface Mappings
double
getDoubleProperty(String name)

Double
jms_Message_getDoubleProperty
(int messageID, String name);

String
getStringProperty(String name)

String
jms_Message_getStringProperty
(int messageID, String name);

Object
getObjectProperty(String name)

Not implemented.

Enumeration
getPropertyNames()

String[]
jms_Message_getPropertyNames(int messageID);

setBooleanProperty
(String name, boolean value)

int // status code
jms_Message_setBooleanProperty
(int messageID, String name, Boolean value);

setByteProperty
(String name, byte value)

int // status code
jms_Message_setByteProperty
(int messageID, String name, Byte value);

setShortProperty
(String name, short value)

int // status code
jms_Message_setShortProperty
(int messageID, String name, Short value);

setIntProperty
(String name, int value)

int // status code
jms_Message_setIntProperty
(int messageID, String name, Integer value);

setLongProperty
(String name, long value)

int // status code
jms_Message_setLongProperty
(int messageID, String name, Long value);

setFloatProperty
(String name, float value)

int // status code
jms_Message_setFloatProperty
(int messageID, String name, Float value);

setDoubleProperty
(String name, double value)

int // status code
jms_Message_setDoubleProperty
(int messageID, String name, Double value);

setStringProperty
(String name, String value)

int // status code
jms_Message_setStringProperty
(int messageID, String name, String value);

setObjectProperty
(String name, Object value)

int // status code
jms_Message_setObjectProperty
(int messageID, String name, Object value);

Table 47. Message Interface (continued)

javax.jms API SonicMQ ActiveX/COM API
SonicMQ Programming Guide 255

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
acknowledge() int // status code
jms_Message_acknowledge(int messageID):

clearBody() int // status code
jms_Message_clearBody(int messageID);

Table 47. Message Interface (continued)

javax.jms API SonicMQ ActiveX/COM API

Table 48. BytesMessage Interface (Extends Message)

javax.jms API SonicMQ ActiveX/COM API

boolean
readBoolean()

Boolean
jms_BytesMessage_readBoolean(int messageID);

byte
readByte()

Byte
jms_BytesMessage_readByte(int messageID);

int
readUnsignedByte()

Integer
jms_BytesMessage_readUnsignedByte(int messageID);

short
readShort()

Short
jms_BytesMessage_readShort(int messageID);

int
readUnsignedShort()

Integer
jms_BytesMessage_readUnsignedShort(int messageID);

char
readChar()

char
jms_BytesMessage_readChar(int messageID);

int
readInt()

Integer
jms_BytesMessage_readInt(int messageID);

long
readLong()

Long
jms_BytesMessage_readLong(int messageID);

float
readFloat()

Float
jms_BytesMessage_readFloat(int messageID);

double
readDouble()

Double
jms_BytesMessage_readDouble(int messageID);

String
readUTF()

String
jms_BytesMessage_readUTF(int messageID);
256 SonicMQ Programming Guide

Interface Mappings
int
readBytes
(byte[] value)

Byte[]
jms_BytesMessage_readBytes
(int messageID, int length);

int
readBytes
(byte[] value, int length)

Not implemented.

writeBoolean(boolean value) int // status code
jms_BytesMessage_writeBoolean
(int messageID, boolean value);

writeByte(byte value) int // status code
jms_BytesMessage_writeByte
(int messageID, byte value):

writeShort(short value) int // status code
jms_BytesMessage_writeShort
(int messageID, short value);

writeChar(char value) int // status code
jms_BytesMessage_writeChar
(int messageID, char value);

writeInt(int value) int // status code
jms_BytesMessage_writeInt
(int messageID, int value):

writeLong(long value) int // status code
jms_BytesMessage_writeLong
(int messageID, long value);

writeFloat(float value) int // status code
jms_BytesMessage_writeFloat
(int messageID, float value);

writeDouble(double value) int // status code
jms_BytesMessage_writeDouble
(int messageID, double value);

writeUTF(String value) int // status code
jms_BytesMessage_writeUTF
(int messageID, String value);

writeBytes(byte[] value) int // status code
jms_BytesMessage_writeBytes
(int messageID, byte[] value);

writeBytes
(byte[] value, int offset,int
length)

int // status code
jms_BytesMessage_writeBytes_atOffset
(int messageID, byte[] value, int offset, int length);

Table 48. BytesMessage Interface (Extends Message) (continued)

javax.jms API SonicMQ ActiveX/COM API
SonicMQ Programming Guide 257

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
writeObject(Object value) int // status code
jms_BytesMessage_writeObject
(int messageID, Object value);

reset() int // status code
jms_BytesMessage_reset(int messageID);

Table 48. BytesMessage Interface (Extends Message) (continued)

javax.jms API SonicMQ ActiveX/COM API

Table 49. MapMessage Interface (Extends Message)

javax.jms API SonicMQ ActiveX/COM API

boolean
getBoolean(String name)

Boolean
jms_MapMessage_getBoolean(int messageID, String name);

byte
getByte(String name)

Byte
jms_MapMessage_getByte(int messageID, String name);

char
getChar(String name)

char
jms_MapMessage_getChar(int messageID, String name);

int
getInt(String name)

int // integer value
jms_MapMessage_getInt(int messageID, String name);

long
getLong(String name)

long
jms_MapMessage_getLong(int messageID, String name);

float
getFloat(String name)

float
jms_MapMessage_getFloat(int messageID, String name);

double
getDouble(String name)

double
jms_MapMessage_getDouble(int messageID, String name);

String
getString(String name)

String
jms_MapMessage_getString(int messageID, String name);

byte[]
getBytes(String name)

byte[]
jms_MapMessage_getBytes(int messageID, String name);

Object
getObject(String name)

Not implemented.

Enumeration
getMapNames()

String[]
jms_MapMessage_getMapNames(int messageID);

setBoolean
(String name, boolean value)

int // status code
jms_MapMessage_setBoolean
(int messageID, String name, boolean value);
258 SonicMQ Programming Guide

Interface Mappings
setByte
(String name, byte value)

int // status code
jms_MapMessage_setByte
(int messageID, String name, byte value);

setShort
(String name, short value)

int // status code
jms_MapMessage_setShort
(int messageID, String name, short value);

setChar
(String name, char value)

int // status code
jms_MapMessage_setChar
(int messageID, String name, char value);

setInt(String name, int value) int // status code
jms_MapMessage_setInt
(int messageID, String name, int value);

setLong
(String name, long value)

int // status code
jms_MapMessage_setLong
(int messageID, String name, long value);

setFloat
(String name, float value)

int // status code
jms_MapMessage_setFloat
(int messageID, String name, float value);

setDouble
(String name, double value)

int // status code
jms_MapMessage_setDouble
(int messageID, String name, double value);

setString
(String name, String value)

int // status code
jms_MapMessage_setString
(int messageID, String name, String value);

setBytes
(String name, byte[] value)

int // status code
jms_MapMessage_setBytes
(int messageID, String name, byte[] value);

setBytes
(String name, byte[] value,
int offset, int length)

int // status code
jms_MapMessage_setBytes_atOffset
(int messageID, String name, byte[] value ,
int offset, int length)

setObject
(String name, Object value)

int // status code
jms_MapMessage_setObject
(int messageID, String name, Object value);

boolean
itemExists(String name)

Boolean
jms_MapMessage_itemExists(String name);

Table 49. MapMessage Interface (Extends Message) (continued)

javax.jms API SonicMQ ActiveX/COM API
SonicMQ Programming Guide 259

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
Table 50. StreamMessage Interface (Extends Message)

javax.jms API SonicMQ ActiveX/COM API

boolean
readBoolean()

Boolean
jms_StreamMessage_readBoolean(int messageID);

byte
readByte()

Byte
jms_StreamMessage_readByte(int messageID);

short
readShort()

Short
jms_StreamMessage_readShort(int messageID);

char
readChar()

char
jms_StreamMessage_readChar(int messageID);

int
readInt()

Integer // integer value
jms_StreamMessage_readInt(int messageID);

long
readLong()

Long
jms_StreamMessage_readLong(int messageID);

float
readFloat()

Float
jms_StreamMessage_readFloat(int messageID);

double
readDouble()

Double
jms_StreamMessage_readDouble(int messageID);

String
readString()

String
jms_StreamMessage_readString(int messageID);

int
readBytes(byte[] value)

byte[]
jms_StreamMessage_readBytes(int messageID, int length);

Object
readObject()

Not implemented.

writeBoolean
(boolean value)

int // status code
jms_StreamMessage_writeBoolean
(int messageID, boolean value);

writeByte(byte value) int // status code
jms_StreamMessage_writeByte (int messageID, byte value);

writeShort(short value) int // status code
jms_StreamMessage_writeShort (int messageID,short value);

writeChar(char value)

int // status code
jms_StreamMessage_writeChar(int messageID, char value);

writeInt(int value) int // status code
jms_StreamMessage_writeInt
(int messageID, int value);
260 SonicMQ Programming Guide

Interface Mappings
writeLong(long value) int // status code
jms_StreamMessage_writeLong
(int messageID, long value);

writeFloat(float value) int // status code
jms_StreamMessage_writeFloat
(int messageID, float value);

writeDouble(double value) int // status code
jms_StreamMessage_writeDouble
(int messageID, double value);

writeString(String value) int // status code
jms_StreamMessage_writeString
(int messageID, String value);

writeBytes(byte[] value) int // status code
jms_StreamMessage_writeBytes
(int messageID, byte[] value);

writeBytes
(byte[] value, int
offset,int length)

int // status code
jms_StreamMessage_writeBytes_atOffset
(int messageID, byte[] value, int offset,
int length);

writeObject(Object value) int // status code
jms_StreamMessage_writeObject(
 int messageID, Object value);

reset() int // status code
jms_StreamMessage_reset(int messageID);

Table 50. StreamMessage Interface (Extends Message) (continued)

javax.jms API SonicMQ ActiveX/COM API

Table 51. TextMessage Interface (Extends Message)

javax.jms API SonicMQ ActiveX/COM API

setText(String string) int // status code
jms_TextMessage_setText(int messageID, String textBody);

String
getText()

String
jms_TextMessage_getText(int messageID);
SonicMQ Programming Guide 261

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
Special Purpose
The ActiveX/COM commands listed in Table 53 have no similar command in
either javax.jms or progress.message.jclient.

Note The XMLMessage interface extends javax.jms, referencing it as a
progress.message.jclient API.

Table 52. XMLMessage Interface (Extends TextMessage)

progress.message.jclient. API SonicMQ ActiveX/COM API

(progress.message.jclient.Session)
session).createXMLMessage()

int // status code
jms_Session_CreateXMLMessage(int sessionID);

int // status code
jms_Session_CreateXMLMessage_withBody
(int sessionID, String textBody);

Table 53. Other Interfaces

NO ANALOGOUS JMS METHOD SonicMQ ActiveX/COM API

SESSION ID (Topic Pub/Sub) int
jms_TopicPublisher_getSessionID(int publisherID);

int
jms_TopicSubscriber_getSessionID(int subscriberID);

int
jms_Topic_getSessionID(int topicID);

SESSION ID (Queue PTP) int // sessionID
jms_Queue_getSessionID(int queueID);

int // sessionID
jms_QueueBrowser_getSessionID(int qBrowserID);

int // sessionID
jms_QueueReceiver_getSessionID(int receiverID);

int // sessionID
jms_QueueSender_getSessionID(int senderID) ;
262 SonicMQ Programming Guide

Interface Mappings
MESSAGE TYPE

Java clients check the Message using
instanceOf to determine the message
type.

String
jms_CheckMessageType(int messageID);

EXCEPTIONS String
getJMSGeneralException();

int
getJMSGeneralExceptionCode();

RESOURCE MANAGEMENT

Cues the ActiveX/COM control to free
any memory that it has reserved for the
indicated message.

int
jms_Message_free(int messageID);

Table 53. Other Interfaces

NO ANALOGOUS JMS METHOD SonicMQ ActiveX/COM API
SonicMQ Programming Guide 263

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients
264 SonicMQ Programming Guide

Chapter 12 Lookup of Administered Objects
About Administered Objects
The administered objects are objects that are defined independently of a
SonicMQ message server. These objects, set in the context of an application,
provide the application with deployment details by just choosing a
configuration name. As a result, developers are removed from the burden of
defining and maintaining configuration details.

Within the JMS specification, the objects that can be administered are:

n ConnectionFactories

– QueueConnectionFactory

– TopicConnectionFactory

n Destinations

– Queue

– Topic

These objects depend on the configuration of the message server—such as its
location, its default port, as well as what other applications are running on the
message server.

SonicMQ supports administered objects that are created using the SonicMQ
Explorer. See theSonicMQ Installation and Administration Guide for
information about administered objects and the SonicMQ Explorer.
SonicMQ Programming Guide 265

Chapter 12: Lookup of Administered Objects
Issues When Using Administered Objects
From the point of view of the programmer, there are issues that make
administered objects problematic to use:

n ConnectionFactories —What is the right message server and its
connection?

n Destinations — How can I avoid name conflicts?
When several applications are using similar destination naming strategies,
the programmer wants assurance that inadvertent conflicts are avoided
altogether.

These issues are easily managed: store administered objects in some object
store and then reference the object indirectly (by name) in some context.

SonicMQ supports JNDI and a simple file store to perform these functions.

Creating New Administered Objects
You can create ConnectionFactories and Destinations as new Java objects.
Typically, this is done as follows:

javax.jms.QueueConnectionFactory factory;

// Create the factory as a new object. Hard code the broker name.

factory = (new progress.message.jclient.QueueConnectionFactory
(“localhost:2506”));

…

// Continue, creating connection from the factory

// Continue, creating the session from the connection.

…
// Finally, create the Queue for our application.

javax.jms.Queue queue = session.createQueue “SampleQ1”);

Note The sample code segments in this chapter use TopicConnections and Topics.
The coding for QueueConnections and Queues is similar.
266 SonicMQ Programming Guide

Serialized Java Objects in a File System
Serialized Java Objects in a File System
SonicMQ allows you to administratively store objects as Serialized Java
Objects (.sjo) in a file system. By updating the .sjo objects through the
SonicMQ Explorer you can isolate the programmer from specific message
server configuration parameters and destination names. The task of
maintaining and deploying the .sjo files remains.

Setting Up Serialized Objects
The following sample demonstrates how serialized objects can be set up. The
sample assumes:

n The TopicConnectionFactory for the sample application is stored in the file
ChatConnectionFactory.sjo.

n The Topic for the application is stored in the file ChatTopic.sjo.

n A new method, readFile, is used for both administered objects:

/**
*Read an object from the given file.
*@param filename The name of the file.
*@return The deserialized object. If the file does not contain
* a valid JMS managed object or there is some
* read/deserialization problem, then return null.
*/

private Object readFile(String filename)
{
try
{
java.io.FileInputStream fis =

new java.io.FileInputStream(filename);

java.io.ObjectInputStream ois =
new java.io.ObjectInputStream(fis);

Object readObj = ois.readObject();

fis.close();
return readObj;

}
catch(Exception e) { } // return null
return null;

}

SonicMQ Programming Guide 267

Chapter 12: Lookup of Administered Objects
Using Serialized Objects
After setting up serialized objects, those objects can be used. Within the
application code where the connection is established, use the readFile method
to read the active javax.jms objects:

javax.jms.TopicConnectionFactory factory;

// Read in the factory from a file

factory = (javax.jms.TopicConnectionFactory)
readFile("ChatConnectionFactory.sjo");

…

// Continue, creating connection from the factory

// Continue, creating the session from the connection.

…
// Finally, retrieve the TOPIC for our application

javax.jms.Topic topic = (javax.jms.Topic)
readFile ("ChatTopic.sjo");

Using JNDI to Interface With a Directory Server
Even with serialized objects in the file system, you still have to manage the
deployment and naming of the .sjo files. The JNDI package provides better
administration and standard mechanisms for deployment and naming. JNDI
provides interfaces to standard directory servers such as those that are
compliant with the Lightweight Directory Access Protocol (LDAP).

The way JNDI works is common to all JNDI providers; the difference is in the
way you establish the naming context. This JNDI sample assumes that:

n The QueueConnectionFactory and Queue are stored in a default context.

n The name of the QueueConnectionFactory object is TalkConnFactory.

n The name for the Queue object is TalkQueue.

n The names are bound in the directory service under acme.com.

Important JNDI services and LDAP directory servers are distinct products that you must
install and configure separate from SonicMQ. The Javasoft JNDI Web site can
point you to evaluation editions of LDAP directory servers so that you can
explore these services.
268 SonicMQ Programming Guide

Using JNDI to Interface With a Directory Server
try
{
// Set up the JNDI naming context (this example uses
// Javasoft’s LDAP SPI implementation, and requires an
// underlying LDAP service)

 java.util.Hashtable env = new java.util.Hashtable();

 env.put(java.naming.Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.ldap.LdapCtxFactory");

 env.put(javax.naming.Context.PROVIDER_URL,
"ldap://localhost:389/o=acme.com");

 javax.naming.directory.DirContext ctx =
new javax.naming.directory.InitialDirContext(env);

javax.jms.QueueConnectionFactory factory;

 // Read in the factory from our naming context

 factory = (javax.jms.QueueConnectionFactory)
ctx.lookup("cn=TalkConnFactory");

 …

// Continue, creating connection from the factory

// Continue, creating the session from the connection.

…
 // Finally, retrieve the Queue for our application

 javax.jms.Queue queue = (javax.jms.Queue)
ctx.lookup("cn=TalkQueue");

// Close the context when done

 ctx.close();

}

catch (javax.naming.NamingException ne)

{

 …

}

Warning The sample allows a possibility of raising a javax.naming.NamingException in
the setup for the JMS application.
SonicMQ Programming Guide 269

Chapter 12: Lookup of Administered Objects
270 SonicMQ Programming Guide

Index
 @ A B C D E F G H I J K L M
 # N O P Q R S T U V W X Y Z
A
Access Control Lists 33, 36

report in an application 222
acknowledgement

acknowledge method 100
acknowledgeMode

session parameter 100
active ping 114, 116
ActiveX/COM

API mapping 241
check message type 263
creating an XML message 262
Exceptions 263
freeing resources 263
managing method overloading 240
naming conventions 239
overview 38
SessionID 262
syntax 239

administered objects
ConnectionFactories 93
definition 265
Destinations 105
readFile 267

applet 38
application 76
application identifier 89
asynchronous 143, 163

ActiveX/COM application 234
authentication

consumer 36

in ConnectionFactory 96
producer 33
using security for the samples 42

authorization
consumer 36
producer 33
using security for the samples 42

auto acknowledgment 101

B
body of a message

setting and getting 132
Text 85
XML (DOM format) 84

browsing queues 166
sample 53

Business-to-Business 175

C
characters

reserved
in a Subscription name 196
in Destination names 137
in hierarchical name spaces 203
in Topic names 105, 191
in User names 39

template 203, 206
SonicMQ Programming Guide 271

Index
CheckMessageType (ActiveX/COM) 263
clearProperties 129
client acknowledgement 101
client identifier 90
client session 89
cluster 26, 175
coerce

property value to permitted type 131
commit 57

definition 102
compiling modified SonicMQ samples 44, 79
connect

close 107
events 216
start 107
stop 107

connectID 96
connection

definition 30
multiple 111
retry when broken 62
through ActiveX/COM control 237

connection identifier 89
ConnectionFactories

administered objects 265
definition 93

constants 239
consumer 31
CorrelationID 124, 139

sample application 72
count, prefetch 165
createBrowser 166
createDurableSubscriber 106, 196
createMessage 106, 121, 193
createPublisher 105
createQueue 104
createQueueConnection 99
createQueueReceiver 106
createQueueSession 100
createSender 105
createSubscriber 106, 195
createTopic 104
createTopicConnection 99
createTopicSession 100

D
dbtool 86, 88
Dead Message Queue 175, 176

events 217
persistence 142
programming 168
QoS level 37
sample 63, 65

default values 126
delivery mode

default value 126
message header field 123
on the message server 142
producer parameter 193

Destination
administered objects 265

destination 123, 138
unbound 138

disconnect
events 217

Document Object Model 48, 84, 122
documentation, available 20
DOM 48, 84, 122, 132
drop

events 216
dropped connection 116

sample application 60
duplicates_OK acknowledgement 101
durable subscription

definition 196
handling on the message server 142
QoS 35
sample application 69
unsubscribing 196

Dynamic Routing Architecture 41, 175
undelivered reason codes 177
working with a DMQ 63

E
encryption 33
enumeration

handling in ActiveX/COM 238
enumeration, queue browsing 167
272 SonicMQ Programming Guide

Index
Events
sample 215

events
notify undelivered 168

events, session 107
Exceptions

GeneralException (ActiveX/COM) 263
GeneralExceptionCode (ActiveX/COM) 263
handling in the ActiveX/COM control 236
handling on the connection 116

expiration 125, 140, 142, 170
QoS level 36

Explorer
checking default queues 45
Dead Message Queue 66
setting properties to preserve if undelivered 64
startup 45

F
failover

checking settings 98
implementing 97

filters 145
flow control 109

disabling 110

G
getPropertyNames 129
global

queue setting 220
global queues 186

H
header fields 123

default values 126
hierarchical name spaces 201

as message filters 196
sample application 77

host 43
hostname 96

I
IBrokerManagerListener 214
identifier 89
identifiers (ActiveX/COM) 233
indoubt messages 177
instanceof 51
integrity 34

J
JMS provider 26
JMSX properties 128
JNDI

lookup of Destinations 105
lookup of Topics 138, 191
managing administered objects 268

JRE
for ActiveX/COM 226
installed 25

JVM 25
identifying 21

L
latency 137
lazy acknowledgement 101
LDAP

managing administered objects 269
Linux

security database 86
starting the SonicMQ Explorer 45

listeners 143, 163
ActiveX/COM application 234

load balancing
checking settings 98
implementing 97

local
queue setting 220

localhost 43
loop test 78
SonicMQ Programming Guide 273

Index
M
Management API

Events sample 215
ShowSetup sample 221
Shutdown sample 223

Map message
enhancing the sample 81
sample 49

message
undelivered 177

message ordering 136
PTP 161
Pub/Sub 198

message reliability 136
PTP 161
Pub/Sub 199

message selector 145
on QueueBrowser 167
sample 75, 76

message server
definition 26
failure, handling 116
management of destination parameters 142
management of topic hierarchies 202
refresh settings 65
shutdown from an application 223
starting 43

message traffic
Pub/Sub 54

message types 103, 120
Message_free (ActiveX/COM) 263
MessageID 123
method overloading

handling in ActiveX/COM 240

N
name spaces 77, 201
network failure 116
noLocal 195, 196
notification

when undelivered 172
notify undelivered 128
NoWait 144, 164

null
in comparison tests 149
in topic naming 204

O
object model 29
one-to-many 27
one-to-one 27

P
password

prompt before server shutdown 223
persistence

message delivery mode 123
on the message server 142
QoS options 34

ping interval 114
Point-to-Point 27
port 43, 96
prefetch

count 165
threshold 165

preserve undelivered 128
priority

default value 126
header field 125
on the message server 142
publish parameter 193
QoS level 35

privacy 34
producer 31, 138
properties 127

dead message 68
propertyExists 129
protocol 96
PTP 27
Pub/Sub 27
publish 126

method 193
Publish and Subscribe 27
publisher 138, 192
274 SonicMQ Programming Guide

Index
Q
QoP

report in an application 222
Quality of Protection

listing 32
Quality of Service

listing 32
sample

durable subscription 60
persistent storage 60
reliable connection 60

sample application 60
queue

browser 166
browser sample 53
dead messages 176
default queues in database 45
extents 220
global 175
listener 163
remote 175
set up 160
show setup from an application 221
size 220
unbound 138

R
readFile 267
reason codes 177
receivers 144, 163

multiple 163
redelivered 35, 124
redirect

events 217
reject

events 216
reliable connection 60
remote queue 175
replier 73, 74
ReplyTo 124, 139
request and reply 153

QoS level 36, 37

shared reply queues 187
requestor 73, 74
retry connection 99
rollback 57

definition 102
routing

problems causing non-delivery 177
routing node

message behaviors 175
routing nodes 26
routing table 178

report in an application 222

S
samples

Chat (ActiveX/COM) 227
Chat (Pub/Sub) 46

extended for common topics 79
Dead Messages (PTP) 63
DurableChat (Pub/Sub) 69

extended for common topics 79
Events (Management API) 215
GlobalTalk 41
HierarchicalChat (Pub/Sub) 77
Map messages (PTP) 49

extended for other data types 81
MessageMonitor (Pub/Sub) 54
QueueMonitor (PTP) 53
ReliableChat (Pub/Sub) 60
ReliableTalk (PTP) 61
Request and Reply (PTP) 73
Request and Reply (Pub/Sub) 74
RoundTrip (PTP) 78, 80

extended for various behaviors 80
SelectorChat (Pub/Sub) 76
SelectorTalk (PTP) 75
SetupQueue (Management API) 221
Shutdown (Management API) 223
Talk (PTP) 47
Transacted Messages (PTP) 56
Transacted Messages (Pub/Sub) 57
XMLChat (Pub/Sub) 48
XMLMessage (PTP) 49
SonicMQ Programming Guide 275

Index
XMLMessage (Pub/Sub) 49
extended with additional data 82

XMLTalk (PTP) 48
scripts

batch files 44
for compiling modified samples 44
for running samples 44
shell scripts 44

security
database 42

set up 86
enhanced samples 85
in topic name spaces 201
permission for publisher 192

selector string 75, 76
send 126
serialized Java objects 267
session 89

definition 30, 100
multiple 100
objects 103

SessionID (ActiveX/COM) 234
Queue_get 262
QueueBrowser_get 262
QueueReceiver_get 262
QueueSender_get 262
Topic_get 262
TopicSubscriber_get 262

setDocument 132
ShowSetup

sample 221
Shutdown

sample 223
single-message acknowledgement 101
SonicMQ Explorer

checking default queues 45
creating a publisher 192
creating a subscriber 194
message properties 129
publishing a message 194
starting 45

SQL 75, 76
SQL92 145
starting a connection 107
starting the message server 43
stopping a connection 107

subscriber
definition 195
durable 196

subscription name 91
support, technical 21
synchronous 143, 163
syntax

message selector string 146
notations used in this manual 17
SonicMQ ActiveX/COM methods 239
topic names 202

system queues 66
system topics 203

T
TCP_RESET 116
technical support 21
template characters 203, 206

topics 137, 191
temporary destination 72, 154, 186
Thread.sleep 99
threshold, prefetch 165
timeout 144, 164
timestamp 123

undelivered 128
time-to-live

default value 126
DurableChat sample 71
message property 128
on the message server 142
publish parameter 193

topic
common in samples 79
definition 191
hierarchical name spaces 137, 191
unbound 138, 192

topic hierarchy 201
TopicRequestor

listing of code 155
transacted

session parameter 100
transacted session

definition 102
type 124, 139
typographical conventions 17
276 SonicMQ Programming Guide

Index
U
unbound 138, 192
undelivered 177

events 217
notify 37, 64, 128
preserve 37, 64, 128
reason codes 128, 171, 177
timestamp 128

UNIX
security database 86
shell scripts 44
starting the message server 43
starting the SonicMQ Explorer 45

unsubscribe 25, 197
URL 96
user name 90
users

report in an application 222

V
valueOf 131
Visual Basic 227

W
wildcards 78
Windows

security database 86
starting the message server 43
starting the SonicMQ Explorer 45

X
XML message

ActiveX/COM application 235
create method 106
create through ActiveX/COM 262
creator syntax 121
enhanced sample 82
getDocument 133
sample application 48

XML parser 48, 132
SonicMQ Programming Guide 277

Index
278 SonicMQ Programming Guide

	Preface
	About This Manual
	How This Book is Organized
	Conventions in This Manual
	Typographical Conventions and Syntax Notation
	Note, Important, and Warning Flags

	Available Documentation
	Worldwide Technical Support

	Chapter�1 Overview
	About SonicMQ
	Java Message Service
	JMS: �Key Component of the Java Platform for the Enterprise
	JMS 1.0.2 Specification

	Java Development Environment

	Programming Concepts
	Clients Connect to the SonicMQ Message Server Architecture
	SonicMQ Is a JMS Provider
	SonicMQ Messaging Models
	SonicMQ Objects and Their Relationships
	SonicMQ Object Model
	Connections and Sessions
	Producers and Consumers

	Quality of Service and Protection
	SonicMQ Clients
	ActiveX/COM Client
	Java Applet Client

	Chapter�2 Examining the SonicMQ Samples
	About SonicMQ Samples
	SonicMQ Samples
	Other Samples Available
	Extending the Samples
	How Security Impacts Client Activities

	Running the SonicMQ Samples
	Starting the Message Server Under Windows, Linux, or UNIX
	Client Console Windows
	Using the Sample Scripts
	Using the SonicMQ Explorer

	Chat and Talk Samples
	Chat Application (Pub/Sub)
	Talk Application (PTP)
	Reviewing the Chat and Talk Samples

	Samples of Additional Message Types
	XML Messages
	XML Messages (PTP)
	XML Messages (Pub/Sub)

	Map Messages (PTP)
	Reviewing the Additional Message Type Samples

	Message Traffic Monitor Samples
	QueueMonitor Application (PTP)
	MessageMonitor Application (Pub/Sub)

	Transaction Samples
	TransactedTalk Application (PTP)
	TransactedChat Application (Pub/Sub)
	Reviewing the Transaction Samples

	Reliable, Persistent, and Durable Messaging Samples
	Reliable Connections
	ReliableTalk Application (PTP)
	ReliableChat Application (Pub/Sub)

	Persistent Storage Application (PTP)
	DurableChat Application (Pub/Sub)
	Reviewing Reliable, Persistent, and Durable Messaging

	Request and Reply Samples
	Request and Reply (PTP)
	Request and Reply (Pub/Sub)
	Reviewing the Request and Reply Samples

	Selection and Wildcard Samples
	SelectorTalk Application (PTP)
	SelectorChat Application (Pub/Sub)
	Hierarchical Chat Application (Pub/Sub)
	Reviewing the Selection and Wildcard Samples

	Test Loop Sample
	QueueRoundTrip Application (PTP)

	Extending the Samples
	Use Common Topics Across Clients
	Trying Different RoundTrip Settings
	Modifying the MapMessage to Use Other Data Types
	Modifying the XMLMessage to Show More Data
	Using Samples with Security Initialized
	Removing Security from the Database

	Chapter�3 SonicMQ Client Sessions
	About Client Sessions
	Identifiers
	ConnectID
	User Name
	ClientID
	Subscription Name

	Communication Layer
	ConnectionFactory
	Lookup a Stored Context
	Lookup a Serialized Object in a File Store
	Lookup on a JNDI LDAP Server

	Direct Creation of the ConnectionFactory Object
	Load Balancing and Failover Lists

	Connection
	createQueueConnection
	createTopicConnection
	Connection Retry

	Session
	Explicit Acknowledgement
	Acknowledgement Mode
	Recover

	Transacted Sessions

	Session Objects
	create [Destination]
	Point-to-Point: createQueue
	Publish and Subscribe: createTopic
	Using a Lookup for Destinations
	Temporary Destinations

	create [MessageProducer]
	Point-to-Point: createSender
	Publish and Subscribe: createPublisher

	create [MessageConsumer]
	Point-to-Point: createReceiver
	Publish and Subscribe: create[Durable]Subscriber

	create [Message]

	Starting, Stopping, and Closing Connections
	connect.start
	connect.stop
	Behavior of Producers and Consumers in a Stopped Connection

	connect.close
	Behavior of Producers and Consumers in a Closed Connection

	Closing a Session
	Flow Control
	Using Multiple Connections, Sessions, and Consumers
	Multiple Connections
	Multiple Sessions on a Connection

	Coding Connections and Sessions
	Get a Connection and Session
	Using Active Pings to Monitor the Health of the Connection

	Create Session Objects and the Listeners
	Start the Connection
	Handle Exceptions on the Connection
	Handling Dropped Connection Errors Caught with Active Pings
	Exception Listeners are Not Intended for JMS Errors

	JMS Messaging Domains

	Chapter�4 Messages
	About Messages
	Message Type
	Creating a Message
	XML Type

	Message Structure
	Messages and Selectors

	Message Header Fields
	Setting Header Values When Sending/Publishing
	Default Header Values

	Message Properties
	User-defined Properties
	Provider-defined Properties (JMS_SonicMQ)
	JMS-defined Properties (JMSX)
	Setting Message Properties
	Property Methods
	propertyExists
	clearProperties
	set[type]Property
	getPropertyNames
	get[type]Property

	Message Body
	Setting the Message Body
	Setting the Body for an XML Type

	Getting the Message Body
	Getting the Body from an XML Type

	Chapter�5 Message Producers and Consumers
	About Message Producers and Message Consumers
	Generic Messaging Model

	Message Ordering and Reliability
	Destinations
	Steps in Message Production
	Create the Topic Publisher on the PublisherSession Thread
	Create the Producer on the Producer Session Thread
	Create the Message Type and Set Its Body
	Set Message Header Fields
	Set the Message Properties
	Produce the Message

	Message Management by the Message Server
	Message Listeners, Receivers, and Selectors
	Message Listeners
	Message Receiver
	Receive
	Receive with Timeout
	Receive No Wait

	Message Selector
	Message Selector Syntax
	Comparing Exact and Inexact Values

	Steps in Listening, Receiving and Consuming Messages
	Implement the Message Listener
	Create the Destination and Consumer, then Listen
	Handle a Received Message
	Special Handling When the Message Type is Uncertain
	Parse an XML Message and Extracting Data from Fields

	Get Message Header Fields
	Get Message Properties
	Consume the message

	Reply-to Mechanisms
	Temporary Destinations Managed by a Requestor Helper Class
	Requestor Application
	Replier Application
	Design for Handling Requests
	Writing a Topic Requestor

	Producers and Consumers in JMS Messaging Domains

	Chapter�6 Point-to-Point Messaging
	About Point-to-Point Messaging
	Coding Queues, Senders, and Receivers
	Coding Sample

	Message Ordering and Reliability in PTP
	Message Ordering
	Reliability

	Advantages and Constraints in PTP Domains
	Multiple Receivers
	Message Queue Listener
	Message Queue Receiver
	Receive
	Receive with Timeout
	Receive No Wait

	Prefetch Count and Threshold
	setPrefetchCount
	getPrefetchCount
	setPrefetchThreshold
	getPrefetchThreshold

	Queue Browsing
	createBrowser
	createBrowserMessage (MessageSelector)
	getMessageSelector
	getEnumeration
	getQueue
	close

	QueueBrowser Sample

	Handling Undelivered Messages
	Setting Important Messages to Get Saved If They Expire
	Setting Quick Messages to Generate Administrative Notice

	Life Cycle of a Guaranteed Message
	Setting the Message to Be Preserved
	Setting the Message to Generate an Administrative Event
	Sending the Message
	Letting the Message Get Delivered or Expire
	Post-Processing of Expired Message
	Processing of Enqueuing Expired Messages
	Sending of Administrative Notification

	Programmer Callback for Undelivered Message Notification
	Getting Messages Out of the Dead Message Queue

	Chapter�7 Dynamic Routing Architecture
	About Dynamic Routing
	Message Behavior on Global and Local Queues
	Undelivered Message Reason Codes
	Sending to a Message Server Where Queues Exist
	Sending to a Message Server Where Queues Do Not Exist
	Sending to a Cluster Routing Node With Queues Everywhere
	Send to a Cluster Routing Node With Queues in One Place

	Reply-to Mechanisms for a DRA Application
	Setting Applications to Use Simple Request Messages
	Using Specific Shared Reply Queues

	Chapter�8 Publish and Subscribe Messaging
	About Publish and Subscribe Messaging
	Coding Topics, Subscribers, Publishers, and Listeners
	Topic
	Publisher
	Creating the Publisher
	Creating the Message
	Publishing to a Topic

	Subscriber
	Durable Subscriber
	Durable Subscriptions Not Allowed for Temporary Topics
	Unsubscribing from a Durable Subscription
	Unsubscribing to Durable Subscription Requires Inactive Subscriber

	Message Ordering and Reliability
	General Services
	Message Ordering
	Reliability

	Chapter�9 Hierarchical Name Spaces
	About Hierarchical Name Spaces
	Advantages of Hierarchical Name Spaces

	Publishing a Message to a Topic
	Topic Notation that Enables Topic Hierarchies
	Reserved Characters when Publishing
	Topic Structure, Syntax, and Semantics
	Topic Syntax and Semantics

	Message Server Management of Topic Hierarchies
	Subscribing to Nodes in the Topic Hierarchy
	Template Characters
	Using Template Characters in Symmetric Hierarchies
	Template Character for All Topics at a Content Level
	Template Character for a Topic at a Content Level

	Using Template Characters in Asymmetric Topic Hierarchies
	Template Character for Subscribing to All Topics
	Template Character for All Topics Under a Topic Hierarchy
	Multiple Template Characters in an Expression

	Examples of a Topic Name Space
	Publishing Messages to a Hierarchical Topic
	Subscribing to Sets of Hierarchical Topics

	Chapter�10 Management API
	About the Management API
	Using the Management API

	Samples that Use the Management API
	Events
	Accessing All Events
	Accessing Selected Events
	Piping Events Into a Log

	Metrics
	Piping Metrics Into a Log

	Setup Queues
	Show Setup
	Accessing All Message Server Queue Information
	Accessing Selected Message Server Queue Information

	Shutdown

	Chapter�11 Accessing SonicMQ Through ActiveX/COM Clients
	About SonicMQ Through ActiveX/COM
	Implementation Notes
	Requirements for an ActiveX/COM Client

	SonicMQ ActiveX/COM Sample
	Visual Basic Code for the ActiveX/COM Sample

	Tips and Techniques for SonicMQ ActiveX/COM
	Identifiers
	Session Identifier
	Looking Up the Chain of Objects
	Asynchronous Delivery

	Handling Messages
	XML Messages

	Resource Management
	Events
	Asynchronous OnJMSMessage Event
	On Exception Events

	Connections
	True ActiveX/COM Properties
	Return Values
	Status Codes

	Enumerations
	Constants

	Syntax for SonicMQ ActiveX/COM Method Names
	Duplicate Names Are Differentiated
	Java Method Overloading Is Handled
	Interface Class Names Are Often Omitted

	Interface Mappings
	Connections and Sessions
	Producers and Consumers
	Publish and Subscribe (Topics)
	Point-to-point (Queues)
	Messages
	Special Purpose

	Chapter�12 Lookup of Administered Objects
	About Administered Objects
	Issues When Using Administered Objects
	Creating New Administered Objects

	Serialized Java Objects in a File System
	Setting Up Serialized Objects
	Using Serialized Objects

	Using JNDI to Interface With a Directory Server

	Index

