Progress® SonicMQ

Programming
SonicMQ.

o —
e,
.--"_-"'-l
e
- '—,__ il
=
:_:.!p.n_
=i
[——
!'-:u =
L
A
o

Copyright© 2000 Progress Software Corporation. All rights reserved.

Progress® software products are copyrighted and all rights are reserved by Progress Software Corporation. This man-
ual is also copyrighted and all rights are reserved. This manual may not, in whole or in part, be copied, photocopied,
translated, or reduced to any electronic medium or machine-readable form without prior consent, in writing, from
Progress Software Corporation.

The information in this manual is subject to change without notice, and Progress Software Corporation assumes no
responsibility for any errors that may appear in this document.

The references in this manual to specific platforms supported are subject to change.
Progress® is a registered trademark of Progress Software Corporation.

SonicMQ™, AppServer™, ProVision™, ProVision Plus™, Progress SmartObjects™, Apptivity™, and all other
Progress product names are trademarks of Progress Software Corporation.

Progress SonicMQ™ contains the IBM® XML Parser for Java Edition and the IBM® Runtime Environment for Win-
dows®, Java™ Technology Edition Version 1.1.8 Runtime Modules.© Copyright IBM Corporation 1998-1999. All
rights reserved. U.S. Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP
Schedule Contract with IBM Corp.

IBM®is aregistered trademark of IBM Corporation. Java™ is a trademark of Sun Microsystems Inc. Windows® isa
registered trademark of Microsoft Corp. All other company and product names are the trademarks or registered trade-
marks of their respective companies.

Printedin U.S.A.
November 2000

Contents

Preface. ... 15
About ThISMaNUal e e 15
How ThisBooK isOrganized.t e e e 16
Conventionsin ThiSManual o e 17
Typographical Conventionsand Syntax Notation. 17

Note, Important, and Warning Flags. i e e e 19
Available Documentation 20
Worldwide Technical SUPPOIt.o e e e e 21
Chapter 1: OVerVIEW ... 23
ADOUL SONICM Q. .. oot e 23
JAVA M ESSAgE SE VI . . v it ittt i e 24

JMS: Key Component of the Java Platform for the Enterprise................... 24

IJMS 1.0.2 Specificationt e 24
JavaDevelopment Environment 25
Programming ConCEPtSottt e 25
Clients Connect to the SonicMQ Message Server Architecture. 25
SONICMQ ISaIM S ProvIidero e e 26
SonNicMQ Messaging ModelSo e 27
SonicMQ Objectsand Their Relationships. o i e 28
SonicMQ Object Model 29
ConNNECLiONS 8N SESSIONS. . . o . v vttt et ettt e e e 30

Producers and CONSUMENS.ottt et 31

Quality of Serviceand Protectiont e 32
SONICM Q Cli BNt . . . oot e e e e 38
ACtVEXICOM Client ..ot e e e e e 38

Java Applet Client. e 38

SonicMQ Programming Guide 3

Contents

Chapter 2: Examining the SonicMQ Samples.......................... 39
AboUt SONICMQ SamMPIESo e 39
SONICMQ SaMPIES. . . . ot 40
Other SamplesAvailable 41
Extendingthe Samples. i e 42

How Security Impacts Client Activities. i e 42

Runningthe SoNicMQ Samples oot e e e e e e 43
Starting the Message Server Under Windows, Linux,or UNIX 43

Client Console WINOWSot e e e e e e 44

Using the Sample SCriptsot e 44
Usingthe SonicMQ EXPIOrer oo e e e et et et et e e e e 45

Chat and Talk Samples oo e 46
Chat Application (PUD/SUD) e e e e 46

Talk Application (PTP). . ..o e e e e e 47
ReviewingtheChatand Talk Samples. i e 47
Samples of Additional MeSSage TYPES. . . oo v vttt et e et 48
XML M BS80S, . . o ottt ittt e e 48

XML MESSAgES (PTP) .ottt e e e e e e e e e 49

XML Messages (PUb/Sub) e 49

Map MeSSagES (PTP) e 49
Reviewing the Additional Message TypeSamplest 51
Message Traffic Monitor Samples o 52
QueueMonitor Application (PTP) ...t e e e et et ettt 53
MessageMonitor Application (Pub/Sub) 54
TranSaCtioN SaMIPIES i e 56
TransactedTalk Application (PTP).ot e e 56
TransactedChat Application (Pub/Sub) o 57
Reviewingthe Transaction Samples. i e 58
Reliable, Persistent, and Durable Messaging Samples.o e 60
Reliable CoNNeCtioNSot e 60
ReliableTalk Application (PTP).o e e 61
ReliableChat Application (Pub/Sub) 62

Persistent Storage Application (PTP)t e e 63
DurableChat Application (PUb/SUD). e 69
Reviewing Reliable, Persistent, and DurableMessaging. 71
Request and Reply Sampleso e 72
Request and Reply (PTP) e e e e e e 73
Request and Reply (PUb/SUD).o e 74
Reviewingthe Requestand Reply Samples. i s 74

4 SonicMQ Programming Guide

Contents

Selectionand Wildcard Samples.o 75
SelectorTalk Application (PTP)t e e 75
SelectorChat Application (PUb/Sub) e 76
Hierarchical Chat Application (Pub/Sub) i 77
Reviewing the Selectionand Wildcard Samples.o i 78

TEst LOOP SaMPIE . .ot 78
QueueRoundTrip Application (PTP).o e 78

Extendingthe Samples.o 79
Use Common TopicSACIOSS Clients. oo e e et e 79
Trying Different RoundTrip SEttingso oo i e e e e 80
Modifying the MapMessageto Use Other Data Types.o o i i i 81
.. 82
Modifying the XMLMessageto Show MoreData. iiiiiienn... 82
Using Samples with Security Initialized. i 85

Removing Security fromtheDatabase. 88

Chapter 3: SonicMQ Client SeSSIONScooiiiiiiiiii ., 89

ADOUL ClIENt SESSIONS ottt et e e e e e 89
LNt f NS, . o .o 89

CoNNECHID e 89
UsSer NaIME . ..o 90
CliENtID o 90
SUBSCHiPtON NaMIEo e e e e 91

COMMUNICAION LAy e . ..o et et et et et et et e e 92

CONNECHI ONFACIONY . . oottt e e 93
Lookup aStored COoNnteXtottt e e 93
Direct Creation of the ConnectionFactory Object 95
Load Balancing and Failover ListS.t i 97

CONNECLION. . . . ottt 98
COoNNECHION REITY ... e e e 99

GBS 0N, . v vttt e e e e 100
Explicit Acknowledgement. 100
Acknowledgement Maode 101
Transacted SESSIONSot 102

SESS 0N OB ECES . . ottt it 103

Create [DestiNalion]ottt 104
Point-to-Point: createQUEUE oot e 104
Publish and Subscribe: create€TopiCo 105
UsingalLookup for Destinationst i e e 105
Temporary Destinations oot e e 105

SonicMQ Programming Guide 5

Contents

create [MessagePrOdUCEN]. . . . oo 105
Point-to-Point: createSender 105

Publish and Subscribe: createPublisher 105

create [MessageCoNSUME] . . . oottt ettt e e e e 106
Point-to-Point: createReceiver. 106

Publish and Subscribe: create] Durable]Subscriber 106

CrEaE [MESSAGE] . . . o v ottt e e e 106
Starting, Stopping, and Closing ConNECioNSot e e e e 107
CONMNECE. SEAIT . . .o ottt e et et e e e e e 107
CONMNECE. SO . . v vt ittt et e e e 107
Behavior of Producers and Consumersin a Stopped Connection. 107
COMNECE.CIOSE. . . o ittt ettt e e e e e e e e e e e e e 108
Behavior of Producers and Consumersin aClosed Connection. 108

ClOSING 8 S8 0N . . ottt ettt e 108
FLOW CONtrolo 109
Using Multiple Connections, Sessions, and CoONSUMENS.ot i it e e e e 111
MUItIplE CONNECHIONSot e et et et et et et et e e 111
Multiple Sessions 0N aCONNECHION. ittt e e et 112
Coding ConNeCtioNS and SESSIONSttt e e e 112
Get aConneCtion and SESSION . .. oo vttt e e 113

Using Active Pings to Monitor the Health of the Connection. 114

Create Session Objectsand the Listeners.ot e e 114

Start the Connection 115
Handle Exceptionsonthe Connectiont e 115
Handling Dropped Connection Errors Caught with ActivePings. 116

Exception Listenersare Not Intended for IMSErrors. 116

JM S MESSAgING DOMaAINSttt et e e e 117
Chapter 4: MeSSagesovviii e 119
ADOUL M BSSaES . . o vttt e e e 119
S S2 o o Y o 120
Creating AMESSa0E. . . . oot 121

XML Ty P e et e e 121

M ESSAgE SITUCTUNE. . . . ottt ettt e et e e e e 122
Messages and SElECtOrS oo e 122
Message Header Fields. i 123
Setting Header Values When Sending/Publishing. L. 126
Default Header Values.o 126

6 SonicMQ Programming Guide

Contents

M ESSAgE PrOPErtiESot 127
User-defined Properties.ot e 127
Provider-defined Properties (IMS SONICMQ)t 127
IMS-defined Properties (IMSX) . .. oo i e e e e 128
Setting Message Properties.o e 129
Property Methods 129

PrOPEtY EX St S. . .ot 130
ClearPropErtiES ... e 130
SE Y PE] PrOPEIY oo 130
OEtPropErtYNaIMES.o e 130
O tYPE]PrOPEY . ..ot e e e 131

MESSAgE BOAY . . . ottt 132
SettingtheMessage Bodyt 132
Gettingthe Message Bodyt e 133

GettingtheBody froman XML Typettt it e 133

Chapter 5: Message Producers and Consumers..................... 135

About Message Producers and Message CoNSUMESS.o vt e e i e e 135
GenericMessaging Model. 135

Message Ordering and Reliability o 136

DN ONSo 137

Stepsin Message Production. i e 138
Create the Topic Publisher on the PublisherSession Thread. 138
Create the Producer onthe Producer Session Thread 139
Createthe Message Typeand Set ItsBodyo i 139
Set Message Header Fields. 139
Set the MESSage PropeErtieSo e 140
ProduCe the M ESSag. . . . o oo e 140

Message Management by the Message Servert e e e e 142

Message Listeners, Recaivers, and Selectors. i 143
MESSAgE LISl ENErS . . . ottt 143
M ESSa0E RECEIVEY . . .ottt 144

RECEIVE 144
Receive With Timeout. i e e e e 144
Recaive NOWaIt. e e 144
M ESSa0E SElECIOr oottt 145
Message SElECtOr SYNtaX oot e 146
Comparing Exactand Inexact Values. 149

SonicMQ Programming Guide 7

Contents

Stepsin Listening, Receiving and Consuming Messages. v vt cie e i e 150
Implementthe Message Listener i e e 150
Create the Destination and Consumer, then Listen ... 151

HandleaRecalved MESSage.ottt e e e e 151
GetMessageHeader Fidds e 152
Gt MESSAgE PropErtiES . . . oot e 152
CONSUMEthE MESSA0E ottt e et 153

RePly-10 MEChaniSMS e e 153

Temporary Destinations Managed by aRequestor Helper Class. 154
Requestor Applicationot e e 154
Replier Application i e e e e 154
Designfor HandlingRequests. e e 155
Writing aTopIC REQUESION oo e e e e e 155

Producers and Consumersin IMS Messaging Domains.ot 157

Chapter 6: Point-to-Point Messaging....................cooiiiiii.. 159

About Point-to-Point MESSaging.ottt e 159
Coding Queues, Senders, and RECEIVES ittt e e e 160

Coding Sample.o e e 160

Message Ordering and Reliability inPTP. e 161
MESSAgE OFdEriNg. . . o oottt e 161
ReEADIItY . .o 161

Advantages and Constraints in PTPDOMaINSttt et et et et 162
MU PIE RECEIVENS . . . o e e e e e e e e e e e 163

Message Quele Listener o i 163
Message QUEUE RECEIVEN i 163
Prefetch Countand Threshold e 165

QUELE BIOWSING . .. oot e e e e 166
e OB O S ottt 166
createBrowserMessage (MessageSalector)t e 166
QueueBrowser Sample.o e 167

Handling Undelivered MesSsageso oottt e 168
Setting Important Messagesto Get Saved If They Expire. 168
Setting Quick Messagesto Generate Administrative Notice. 169

LifeCycleof aGuaranteed MESSageottt e e et ettt 170
Settingthe MessagetoBePreserved. i 170
Setting the Message to Generate an AdministrativeEvent 170
SendingtheMessaget 170

8 SonicMQ Programming Guide

Contents

Letting the Message Get Delivered or EXpire. 170
Post-Processing of EXpired Messageo oo e 170

Programmer Callback for Undelivered Message Notification................... 172

Getting Messages Out of the Dead MessageQueue., 173

Chapter 7: Dynamic Routing Architecture............................ 175
AbOUt DYNamiC ROULINGottt e e e e et et e e 175
Message Behavior on Global andLocal QUEUES. it i 176
Undelivered Message Reason Codesot e 177
Sending to aMessage Server Where QueuesEXist.o 178
Sending to aMessage Server Where QueuesDoNOtEXistt 180
Sending to a Cluster Routing Node With Queues Everywhere. 182

Send to a Cluster Routing Node With QueuesinOnePlace. 184
Reply-to Mechanismsfor aDRA Application i i, 186
Setting Applicationsto Use Simple Request Messageso oo i ee i ii e 186

Using Specific Shared REPlY QUEUESottt et ettt et et 187
Chapter 8: Publish and Subscribe Messaging 189
About Publish and Subscribe Messaging.ot e e e 189
Coding Topics, Subscribers, Publishers, and Listeners., 190
LI 1 191
PUDI SN . . 192
Creatingthe Publisher e e e 192
Creating the M ESSa0gE . . o .t ittt 193

¥ 1S 7T e (o 1= T 1o 1 o 193
SUDSCII DEr . o 195
Durable SUDSCriber 196
Durable Subscriptions Not Allowed for Temporary Topics.oovu.... 196
Unsubscribing from a Durable Subscription 196
Unsubscribing to Durable Subscription Requires Inactive Subscriber. 197

Message Ordering and Reliability e 198
GENEral SEIVICES . . o vttt 198
MESSAgE OFdEriNg . . . oottt 198
ReEADIItY . .. 199

SonicMQ Programming Guide 9

Contents

Chapter 9: Hierarchical Name Spacesoocoviiii.. 201
About Hierarchical Name Spates.ot e e e 201
Advantages of Hierarchical Name Spaces. i 201
Publishing aMessageto aTOPIC.o vttt et e e et et et et et e 203
Topic Notation that Enables Topic Hierarchies. i, 203
Reserved Characterswhen Publishing. o i L. 203

Topic Structure, Syntax, and Semanticst it i 203

Topic Syntax and SEMaNtiCSottt 204

Message Server Management of Topic Hierarchies. 204
Subscribing to Nodesinthe TopicHierarchy s 205
Template Characters. e 205

Using Template Charactersin Symmetric Hierarchies 207

Using Template Charactersin Asymmetric Topic Hierarchies................... 208

Template Character for Subscribingto All Topics, 209

Template Character for All TopicsUnder aTopicHierarchy 209

Multiple Template Charactersinan EXpressionciiiiiinnnn... 209

Examplesof aTopiCNamMe Spaceo v i e e e e e e e 210
Publishing Messagesto aHierarchical TOPIC.o v 210
Subscribing to Sets of Hierarchical TOPICS oot e 211
Chapter 10: Management APl i 213
About the Management APl 213
Usingthe Management AP e e e e 214
Samplesthat Usethe Management APl i e 215
EVONES . . o e e e 215
AcCCesSING All EVENES. ..o 216

Accessing Selected EVENtS. oot 216

Piping Events INtoalogo oot 217

MBI CS o .ottt 218
Piping Metrics INtO alogot e e e e e e e 219

SEUP QUEBUIES . . .ottt it e e e 220

SO SEIUD . . oot 221
Accessing All Message Server Queue Information. 221

Accessing Selected Message Server Queue Information. 222

ShULdOWN .« . . 223

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients ..225

10 SonicMQ Programming Guide

Contents

About SonicMQ Through ActiveX/COM e e et 225
Implementation NOtES.t e e e e e e e e e 226
Requirementsfor an ActiveX/COM Client. i i 226

SonicMQ ACtiveX/COM Sampleo e 227
Visual Basic Codefor the ActiveX/COM Sample, 229

Tipsand Techniques for SoNiCMQ ACEIVEX/COM oot e e 233
ldentifiers. . . o 233
Handling MesSa0eSo oottt i ettt et e e 235

XML MEBSSagES. . . o ittt e e e e 235
ReSOUIrCE Managemento e 235
B NS . . e 236
CONNECHIONS. . . . ottt et e et e e e e e e e e 237
True ActiveX/COM Properties. . .. oo e e e e e e e 237
ENUMErations.o e 238
CONSANES. . . . ot e 239

Syntax for SonicMQ ActiveX/COM MethodNames oo 239
Duplicate Names Are Differentiated. e 239
JavaMethod Overloading IsHandled. i e 240
Interface ClassNames Are Often Omiitted i 240

INterface MapPiNgS . . ottt e e e e 241
CoNNECLIONS 8N SESSIONS . .« . v v vttt et e e e e e e e 242
Producers and CONSUMENS.ottt et et et e e e e et 244
Publish and Subscribe (TOPICS) oo oo e e 246
PoiNt-t0-poiNt (QUELES)ot i it et et e e e 249
572 o - 252
SpeCial PUIDOSE . . . o o 262

Chapter 12: Lookup of Administered Objects........................ 265

About Administered ObjeCtS. i e 265
Issues When Using Administered Objectst e 266
Creating New Administered ObjectS.ot e e e e e 266

Seridlized JavaObjectsinaFile System. i e 267
Setting Up Serialized ObjeCtS oot e e e 267
Using Serialized ObjeCtS.t 268

Using JNDI to Interface With aDirectory Server e e 268

N X . 271

SonicMQ Programming Guide 11

Contents

List of Figures

Figure 1. Message Server IsaHub for SonicMQ Client Applications 26
Figure 2. Client Application Using the SonicMQ JMSProvider 27
Figure 3. SonicMQ Object Relationships i e 28
Figure 4. IMS Object Model for the Point-to-Point Domain, 29
Figure 5. Principa Interfacesfor Point-to-Point 30
Figure 6. Principal Interfacesfor Publishand Subscribe i il 30
Figure 7. Message Producers and Message CoONSUMENS . . . v v vt e e i e e e i e i aeaeae s 31
Figure 8. Using the Explorer to Maintainthe Default Queuescoou.n. 45
Figure 9. QueueMonitor Window i e e e 53
Figure 10. Message Monitor Window i e et 55
Figure 11. ReliableTalk Sample Tryingto Reconnectt 62
Figure 12. Sequence Diagram for the DurableChat Application 70
Figure 13. XMLMessage Parsed into aDocument Object Model 84
Figure 14. XMLMessageas Tagged TeXtttt e e et et e 85
Figure 15. Client - Message Server - Client Communicationscccvurinian.n. 92
Figure 16. Sessions in Connections from Connection Factories 92
Figure 17. ConnectionFactory Object Instantiated By Lookup of a Serialized JavaObject 94
Figure 18. Alternate Connection Techniques Using Factory Objects or INDI Lookup 94
Figure 19. Using a Constructor to Create a ConnectionFactory Object 95
Figure 20. Primary Session ObjeCtSottt e e 103
Figure 21. Typesof SonicMQ Message Objects ... i i e 104
Figure 22. Multiple ConnectionsinaClient Application 111
Figure 23. Multiple SessionsonaConnectionottt e e e e 112
Figure 24. SoNiCM O MESSA0E TYPES .« . v ottt et e e et e e ettt 120
Figure 25. User-defined Properties e e e 129
Figure 26. Generic Messaging Model i 135
Figure 27. Session Objectsinthe IMSDOMaINSt i 157
Figure 28. Paint-to-Point Messaging Model i 159
Figure 29. Message Server Where Specified QueuesEXist oo, 178
Figure 30. Message Server Where Specified QueuesDo Not Exist 180
Figure 31. Cluster Routing Node Where Queues Exist On Every Server 182
Figure 32. Cluster Routing Node where Queues Exist onOnly OneServer 184
Figure 33. Publish and Subscribe MessagingModel i i, 189
Figure 34. Explorer View of CreatingaPublisher i 192
Figure 35. Explorer View of a Message Header Fields After Publishing 194
Figure 36. Explorer View of SubscribingtoaTopiC ... 195

12 SonicMQ Programming Guide

Contents

Figure 37. Topic Structure Without Hierarchies 202
Figure 38. Topic Structure With Hierarchies i . 202
Figure 39. Subscribingtothe Topic Credit.U SA i 205
Figure 40. Symmetric TOPIC SITUCIUIE oottt e e e e e e 207
Figure 41. Asymmetric TOPIC SITUCIUNE oo ottt e e ettt 208
Figure 42. A Sample Hierarchy of TOPICSot e e 210
Figure 43. Explorer View of aNewly Created QuUeUe, 220
Figure 44. SonicMQ ActiveX/COM Sample, chat.frm, inVisua Basic 227

List of Tables

Table 1. The SonicMQ Documentation Set i e e e e e 20
Table 2. Progress Software International Offices i 22
Table 3. Services and Protection Availablein SonicMQMessaging, 33
Table 4. Differences Between QueueMonitor and MessageMonitor 52
Table 5. Transacted Session Eventsby MessageRole i, 102
Table 6. Connected Session Functionality Commonto PTPandPub/Sub 117
Table7. Message Header Fieldso i e e e 123
Table 8. SonicMQ Provider-defined Properties 128
Table9. IMSX PropertiesUsed in SONICMQ e e 128
Table 10. Permitted Type Conversionsfor Message Propertiesoiiint. 131
Table 11. How Message Producer Parameters Influencethe Message Server 142
Table 12. Literal and Identifier Syntax in Message Selectors, 146
Table 13. Operator and Expression Syntax inMessage Selectors, 148
Table 14. Comparison Test Syntax inMessage Selectors ..., 149
Table 15. Reply-To MechanismsinBothDomains ..., 153
Table 16. Messaging Subclasses in IMSMESSagiNg ... oottt it e e 157
Table 17. Producer and Consumer Common to Both MessagingModels 158
Table 18. Advantages of the Point-to-Point MessagingModel 162
Table 19. Reason Codes for Undelivered Messages oo v i i e e e 177
Table 20. Routing Behavior on a Server Where Specified QueuesExist 179
Table 21. Routing Behavior on Server Where Specified QueuesDo Not Exist 181
Table 22. Routing Behavior on a Cluster Node Where Queues Exist on Each Server 183
Table 23. Routing Behavior on Cluster Node Where Queues Exist on Only One Server 185
Table 24. True ActiveX/COM Properties in the SonicMQ ActiveX/COM Control 237
Table 25. Interface Mapping from SonicMQ to the ActiveX/COM Control 241

SonicMQ Programming Guide 13

Contents

Table 26. Connection Interfaceot 242
Table 27. Session INterface o 243
Table 28. MessageConsumer Interface i i i e e e e 244
Table 29. Messagelistener Interface e e 245
Table 30. MessageProducer Interface i e 245
Table31. DeliveryMode Interface e 246
Table 32. TopicConnectionFactory Interface i 246
Table 33. TopicConnection Interface e e e 247
Table 34. TopicSession INterface oo i e e e e e e e 247
Table 35. Topic Interface (Extends Destination) ...ttt 248
Table 36. TopicPublisher Interface i e 248
Table 37. TopicRequestor and TemporaryTopic (Extends Topic) Interfaces 248
Table 38. TopicSubscriber Interface i 249
Table 39. QueueConnectionFactory Interface i 249
Table 40. QueueConnection Interface i i e e e e 249
Table4l. QueueSession Interface e 250
Table 42. Queue Interface (Extends Destination)iiiiiiiiannnnn 250
Table 43. QueueSender Interface (Extends MessageProducer)co it 251
Table 44. QueueRequestor and TemporaryQueue (Extends Queue) Interfaces 251
Table 45. QueueReceiver Interface (Extends MessageConsSUMEr)vvveivn i ennnnnn. 251
Table46. QueueBrowser Interface ... i e e e 252
Tabled7. Message Interfacet e e e e 252
Table 48. BytesMessage Interface (ExtendsMessage) oot i i i i e e 256
Table 49. MapMessage Interface (EXteNdSMESSAgE)ottt 258
Table 50. StreamMessage Interface (ExtendsMessage) ... i 260
Table51. TextMessage Interface (EXtENdSMESSA0E)o v it 261
Table 52. XMLMessage Interface (Extends TeXtMessage)o vv i i i i ie e 262
Table53. Other INterfaceso e 262

14 SonicMQ Programming Guide

Preface

This Preface covers the following topics:

“About This Manual” describes this manual and its intended audience.

“Conventionsin This Manual” describes the text formatting, syntax
notation, and flags used in this manual.

“Available Documentation” describes the printed and online
documentation that accompanies SonicM Q.

“Worldwide Technical Support” provides information on contacting
technical support.

About This Manual

Progress SonicMQ is afast, flexible, scalable e-Business M essage Server
designed to simplify the development and integration of today's highly
distributed applications and I nternet-based business solutions. SonicMQ isa
complete implementation of the Sun Java Message Service (JMS) v1.0.2, an
API for enabling enterprise messaging systems from Java programs.

Thisbook provides the information a Java software devel oper needsto use the
application program interfaces to create SonicMQ client applications.

The sampl e software provided in source form on the SonicMQ mediaisthe
basis for the discussions of features and concepts.

SonicMQ Programming Guide 15

Preface

How This Book is Organized

The SonicMQ features are discussed in this programming guide as follows:

m Chapter 1, “Overview,” discussesthe environment and Java constructsthat
can be used in messaging applications. The basic concepts in this chapter
set the groundwork for understanding how to build efficient applications.
The service and protection featuresin SonicMQ are presented in atabular
form with referencesto other chapters and other booksfor implementation
details.

m Chapter 2, “Examining the SonicMQ Samples,” takes an in-depth tour
through the console-based code samplesintroduced in the Getting Started
with SonicMQ manual, focusing on the programming functions and
features used.

m Chapter 3, “SonicMQ Client Sessions,” explores the connection factories,
connections, and sessions. The concepts and implementation of the
transacted session and transactions are al so presented. The parameters and
scripts used by various Java clients are detailed.

m Chapter 4, “Messages,” examinesthe detailed composition of amessageto
learn what is required to construct a message, how the data populates the
message, and how to manipul ate messages.

m Chapter 5, “Message Producersand Consumers,” presentsthe scope of the
the session objects that produce messages and the session objects that
listen, receive, and consume messages.

m Chapter 6, “Point-to-Point Messaging,” presents the use of server-
managed queues and discusses how Point-to-Point contrasts—and how it
is similar—to the Publish and Subscribe domain.

m Chapter 7, “Dynamic Routing Architecture,” describes how global queues
provide aricher messaging infrastructure aswell as new reasons messages
can become undelivered.

m Chapter 8, “Publish and Subscribe Messaging,” presents the
characteristics unique to the broadcast type of messaging, Publish and
Subscribe. Durable subscriptions, request-reply mechanisms, message
selector semantics, and message listeners are presented in depth.

16 SonicMQ Programming Guide

Conventions in This Manual

In Chapter 9, “Hierarchical Name Spaces,” presents SonicMQ’stopic
hierarchies and how they can be used to streamline access to data.

Chapter 10, “Management API,” describeshow to runthe Broker Manager
sampl es that demonstrate many features of the exposed SonicMQ
management API.

Chapter 11, “Accessing SonicMQ Through ActiveX/COM Clients,”
presents the SonicMQ Java bridge to ActiveX interface with tips,
techniques, the sample application, and detailed ActiveX syntax mapping
of thej avax. j ms API, exposed pr ogr ess. message API, and some
specialized ActiveX commands.

Chapter 12, “Lookup of Administered Objects,” shows how programmers
can manage and use administered objects with either INDI or serialized
Java objectsin asimple file store.

Conventions in This Manual

In this section, you will find a description of the text formatting conventions
used in this manual, and a description of notes, warnings, and important

messages.

Typographical Conventions and Syntax Notation

This manual uses the following typographical conventions:

Bold typeface in this font indicates keyboard key names (such as Tab or
Enter) and the names of windows, menu commands, buttons, and other
SonicMQ user interface elements. For example, “From the File menu,
choose Open.”

Bold typeface is also used to highlight new terms when they are
introduced in conceptual and overview sections.

Monospace typeface iS used to indicate text that might appear on a
computer screen other than the names of SonicMQ user interface elements,
including al of the following:

— Code examples

— System output (such as responses, error messages, and so on)

SonicMQ Programming Guide 17

Preface

— Filenames and pathnames
— Software component names, such as class and method names

Essentially, monospace typeface indicates anything that the computer is
“saying,” or that must be entered into the computer in alanguage that the
computer “understands.”

Bold monospace typeface iSused to supply emphasisto text that would
otherwise appear in monospace typeface.

Monospace typeface in italics O Bold monospace typeface in italics
(depending on context) indicates variables or placeholders for values you
supply or that might vary from one case to another.

0 This symbol and font introduces a multi-step procedure:

1. Thisisafirst step.

1.1 Thisisastep within a step.

0 This symbol and font introduces a single-step procedure:

This manual uses the following syntax notation conventions:

Where command-line examples are provided, a backslash character (\)
indicates|line continuation. It should not be entered on the actual command
line.

Brackets ([1) in syntax statements indicate parameters that are optional.

Braces ({ }) indicate that one (and only one) of the enclosed itemsis
required. A vertical bar (]) separates required items.

Ellipses (.. .) indicate that you can choose one or more of the preceding
items.

18

SonicMQ Programming Guide

Conventions in This Manual

Note, Important, and Warning Flags

Thismanual highlights specia kinds of information by using shading, placing
horizontal rules above and below thetext, and using aflag in the left margin to
indicate the kind of information.

Note A Note flag indicatesinformation that complements the main text flow. Such
information is especially needed to understand the concept or procedure being
discussed.

Important An Important flag indicates information that must be acted upon within the
given context in order for the procedure or task to be successfully completed.

Warning A Warning flag indicates information that can cause loss of data or other
damageif ignored.

SonicMQ Programming Guide 19

Preface

Available Documentation

Table 1 lists the documentation supplied with SonicM Q. In addition to the
documentation listed in this table, SonicMQ comes with sample files. All
documentation is included with the SonicMQ media.

Table 1. The SonicMQ Documentation Set

Document Description

SonicMQ Documentation Portal Describes and links all SonicMQ online documentation
(SonicMQ_Help.htm) components.

Getting Sarted with SonicMQ Presents an introduction to the scope and concepts of the SonicMQ

software and its packaging. Lists the features and benefits of
SonicMQ interms of its adherence to the Sun JM S specification and
the extensions that make SonicM Q aricher, more useful messaging

system.
SonicMQ Installation and Describes configuration of various SonicMQ client types, clusters,
Administration Guide and the message server and data stores. The administration chapters

fully document server management using both the command-line
interface and the graphical user interface administration tools.
Administration of the security interface is fully described.

SonicMQ Programming Guide Presents the SonicM Q sample applications and then shows how the
programmer can enhance the samples, focusing on clients,
connections, sessions, messages (including XML), transactions, and
hierarchical topics.

SonicMQ Deployment Guide Thefirst part describes general deployment issues, including
security. The second part concerns deployment issues for setting up
dynamic routing for a B2B infrastructure.

SonicMQ API Reference Contains information on the SonicMQ API that supplements the
other manuals.

SonicMQ Release Notes Provides late-breaking information and known issues.

20 SonicMQ Programming Guide

Worldwide Technical Support

Worldwide Technical Support

Progress Software’s support staff maintains a wealth of information at
http://www.sonicmg.com t0 assist you with resolving any technical problems
that you encounter when installing or using SonicM Q Developer Edition.

From the SonicM Q home page, click on Developers Exchange to take
advantage of the developer resources such as forums, downloads, tips,
whitepapers, and code snippets.

For technical support for the SonicMQ Professional Developer Edition or the
SonicMQ E-Business Edition, visit our TechSupport Direct Web page at
http://techweb.progress.com. When contacting Technical Support, please
provide the following information:

The release version number and serial number of SonicMQ that you are
using. Thisinformation islisted at the top of the Start Broker console
window and might appear as follows:

SonicMQ E-Business Edition [Serial Number serial_number]
Release version_number Build Number n Protocol P22

Your first and last name.

Your company name, if applicable.

Phone and fax numbers for contacting you.
Your e-mail address.

The platform on which you are running SonicMQ, as well as any other
environment information you think might be relevant.

The Java Virtual Machine you are using.

To determine the VM you are using, open a console window, go to the
directory soNICMQ_JRE (default install-dir\Java\bin), and issue the
command _\jre -d.

SonicMQ Programming Guide 21

http://sonicmq.com
http://techweb.progress.com

Preface

Table 2 provides information about Progress Software Corporation and its

international offices.

Table 2. Progress Software International Offices

Locale, Office Name, and Address

Contact Information

North and Latin America:
Progress Software Corporation
14 Oak Park
Bedford, MA 01730
USA

Pre-sales:
Telephone: 800 477 6473 ext. 4900

e-mail: sonicmgpresales@progress.com

Technical Support for Professional Developer Edition
and E-Business Edition:

Telephone: 781 280 4999
Fax: 781 275 4543

e-mail: support@progress.com

Progress Software Europe B.V.
P.O. Box 8644
Schorpioenstraat 67
3067 GG Rotterdam
THE NETHERLANDS

Europe, the Middle East, Africa (EMEA):

Technical Support for Professional Developer Edition
and E-Business Edition:

Telephone: 31 10 286 5222
Fax: 31 10 286 5225

e-mail: emeasupport@progress.com

Asia/Pacific:
Progress Software Pty. Ltd.
1911 Malvern Road
Malvern East, VIC
Box 3145, AUSTRALIA

Technical Support for Professional Developer Edition
and E-Business Edition:

Telephone: 613 9885 0199

e-mail: aussupport@melbourne.progress.com

22

SonicMQ Programming Guide

Chapter 1

Overview

About SonicMQ

SonicMQ is Progress Software Corporation’s implementation of Sun's

Java M essage Service (IMS) specification that expedites development and
deployment of an efficient, secure, and scalable messaging system for

busi ness-to-business, networked, and internal integrated applications.
SonicMQ makes it possible for organizations to efficiently (and reliably)
communicate between disparate business systems over the Internet and meet
their time-to-market requirements by delivering the following features:

Internet-resilient business messaging for the Java platform
High performance messaging infrastructure

Reliable transmission of messages regardless of network, hardware, or
application failure

Flexibility in configuring the messaging infrastructure:

— Clients can be moved around the network without requiring any
changes to the messaging application

— Support for XML message types in addition to the IM S types

Ease-of -use features make SonicM Q an environment that can be easily
learned and deployed

SonicMQ Programming Guide 23

Chapter 1: Overview

Java Message Service

JMS:

The Java Message Service (IMS) Version 1.0.2 specification describes
portable, efficient standards for a powerful, extensible messaging service. The
JMS specification pointedly leaves some functionality—such as load
balancing, fault tolerance, error notification, administration, security, wire
protocol, and message repository—to the provider of the messaging server.

SonicM Q implements this functionality and provides alevel of abstraction to
developers, who can concentrate on creating business logic.

Key Component of the Java Platform for the Enterprise

Sun Microsystems announced a plan in early 1997 to deliver nine Java APIs
that would enable a vendor-neutral computing infrastructure capable of
integrating Java with virtually every significant enterprise computing service.

JM S would provide asynchronous communications to avoid the problems
synchronous communications—such as RM| and CORBA—were
experiencing in the uncontrollable Internet environment. Javasoft provided a
reference implementation in late 1998, noting that implementers of the IMS
specification would need to match the security, reliability, fault-tolerance, and
manageability of existing mainframe messaging services before enterprise
acceptance would be considered.

The M S specification notes that it does not address |oad balancing, fault
tolerance, error notification, administration, security, and repositories.

JMS 1.0.2 Specification

On November 5, 1999, Sun introduced version 1.0.2 of the JIM S specification.
Many of the changes to the content of the specification document describe
more precisely some aspects of the IM S functionality. These ambiguitieswere
interpreted correctly in the previous releases of SonicMQ because of the
communication between the Progress Software and Sun devel opment teams.
Other changes in the IMS 1.0.2 are changes in programming syntax and
behavior of applications that use specified techniques.

24

SonicMQ Programming Guide

Programming Concepts

Java Development Environment

SonicMQ is delivered with a Java run-time environment (JRE) consisting of a
JavaVirtual Machine (JVvM) that is sufficient to support the Java-based
installer and the demonstration of SonicMQ samples running against adefault
database.

You might choose to use a different VM for use with SonicM Q. In order to
deploy SonicMQ applications, you need a VM appropriate for your target
client.

Important See the SonicMQ Release Notes in the docs folder of your SonicMQ
installation to get detailed information about how to get the VM that is
appropriate for your platform, operating system, database, and tool set.

Programming Concepts

The design of SonicMQ provides full implementation of the Java Message
Service (IMS) specification with additional featuresthat comprise a solution
that is resilient enough for Internet e-commerce in major enterprises.

Messaging involves the loose coupling of applications. Thisisaccomplished
by maintaining an intelligent message server structure. A client can establish
one or more connections to a message server.

Clients Connect to the SonicMQ Message Server Architecture

In Figure 1, SonicM Q’s hub-and-spoke architecture considers every entity in
the messaging service topology to be a client except the message server—the
entity to which every client connects and thereby provides connection services
to every other client.

SonicMQ Programming Guide 25

Chapter 1: Overview

The SonicM Q communication layer abstracts devel opersfrom the plumbing of
the underlying network, freeing them to concentrate on constructing business
logic in Java applications.

Client Client
Application Application
A B

Message
Server

Client
Application
F

Client
Application
Cc

Client Client
Application Application
E D

Figure 1. Message Server Is a Hub for SonicMQ Client Applications

The SonicMQ M essage Server in Figure 1 goes by different names under
some circumstances. As the richness of the complete messaging architecture
unfolds, you will see that the message server can join with other messaging
servers to form clusters. The clusters and standal one message servers are
nearly equivalent when looked at as routing nodes. Within SonicMQ, the
message server is often called abroker.

SonicMQ Is a JMS Provider

The components that are needed to implement and manage a JM S application
are supplied by the IM S provider. Thisincludes, as shown in Figure 2, the
JMS Client API and the SonicMQ Client Run Time accessed from within the
client application, the communications layer between the client and the
message server architecture—repositories (message, security, and

26

SonicMQ Programming Guide

Programming Concepts

configuration), and administrative tools for managing clusters, security,
administered objects, and the message servers.

Client Application
[oms cient APt [R5 JMS Provider
NS
. . NiS
SonicMQ Client §3 1 Message
Run Time clo Server
TIN
I
o]
L N

Figure 2. Client Application Using the SonicMQ JMS Provider

SonicMQ Messaging Models

There are two messaging models (sometimes referred to as domains) in
SonicM Q. When aconnectioniscreated between aclient and amessage server,
the requested messaging model is declared. The connection is dedicated to the
sel ected messaging model:

s Point-to-Point (PTP) — A JM S domain where the producer of amessage
sends a message to a specified static queue at a message server. While
many prospective recipients could be listening to or even browsing the
queue, when areceiver eects to accept a gueued message, the message is
considered delivered. No other recipient will thereafter be able to access
that message. PTP is a one-to-one form of communication.

s Publish and Subscribe (Pub/Sub) — A JM'S domain where the producer
of a message sends the message to a specified topic at the message server.
Pub/Sub isreferred to as one-to-many or broadcast because there could be
zero to many subscribers for a given topic who will each receive the one
message that was sent.

SonicMQ Programming Guide 27

Chapter 1: Overview

SonicMQ Objects and Their Relationships

The view presented in Figure 3 is derived from the SonicMQ Explorer, a
graphical client that handles administrative tasks, one of which is examining
objects, attributes, and eventsin SonicMQ. The SonicM Q Explorer will be
called on to help you visualize the programming mechanisms described in this
guide. Seethe SonicMQ Installation and Administration Guide for more about
the SonicMQ Explorer.

Figure 3 presentsthe primary messaging objectsin SonicM Q and their context:

Clientscreate Connections to Message Servers under one of thetwo JMS
domains, Point-to-Point (PTP) or Publish and Subscribe (Pub/Sub).

Clients create Sessions within an established Connection.

Clients create Destinations.
For a Point-to-Point domain, the Destinations are Queues.

Clients create Message Producers. For a Point-to-Point domain:
— Message Producers are Senders 10 Queues.

— Senders produce Messages to Queues.

Clients create Message Consumers. For a Point-to-Point domain:
— Message Consumers are Receivers from Queues.

— Receivers consume Messages from Queues.

El-_4 Message Servers
=- A Connection: &roksar S0sE SEiosion fams
Iél---__qSessinn: ST
=4 Senders
. - Sender: queue
E 4 Receivers
- Hecelver: gueue

Figure 3. SonicMQ Object Relationships

28

SonicMQ Programming Guide

Programming Concepts

SonicMQ Object Model

Figure 4 describes the SonicM Q object model in terms of the objects in the
Point-to-Point paradigm.

Connec tionFactory] Connection

| Connec tionMetaData Zi

b J

Message

. javax.jms.ExceptionListener |
L

QueueConnectionFactory I p| QueueConnection

Queuesession

LEGEND

Symbol Meaning

Class Object

javax.jms.Exc! | Interface

- QueueReceiver

S {
A Inherits from
superclass
e Instantiates E javax.jms.MessagelListener
? Contains

| TemporaryQueue |d -----

Figure 4. JMS Object Model for the Point-to-Point Domain

Some examples of object relationships are:
m TheQueueSession iscreated by the QueueConnection.
m TheQueueSession inherits from the session.

m The QueueSession creates the QueueSender, the Queue, the QueueReceiver,
and the TemporaryQueue.

m TheMessageConsumer contains the MessageL istener.

SonicMQ Programming Guide 29

Chapter 1: Overview

Connections and Sessions

An active connection to SonicMQ is a conduit for communication. Each
connection isasingle point for all communications between the client
application and the message server.

While each connection between aclient and a message server isasingle,
synchronous communication, the application can use multiple sessions and
asynchronous listeners to minimize the risk of blocking situations where an
application is dedicated to waiting.

A connection is dedicated to only one of the messaging paradigms:

s Point-to-Point (PTP) — Messaging is one-to-one because only one
receiver will get the message. The principal PTP interfaces are shown in
Figure 5.

‘ QueueConnectionFactory ‘
createQueueConnection()
QueueConnection \

createQueueSession()
QueueSession m

Figure 5. Principal Interfaces for Point-to-Point

m Publish and Subscribe (Pub/Sub) — Messaging is one-to-many or
broadcast because there could be zero-to-many subscribers for a given
topic who will each receive the one message that was sent.

The principal Pub/Sub interfaces are shown in Figure 6.

‘ TopicConnectionFactory ‘

createTopicConnection ()

TopicConnection \

createTopicSession ()

TopicSession m

Figure 6. Principal Interfaces for Publish and Subscribe

30

SonicMQ Programming Guide

Programming Concepts

Producers and Consumers

Entities that create messages and then output the message are producers.
Entities that actively look for messages that are available are consumers.

PRODUCER publishes, sends

Messages
CONSUMER subscribes, receives |

Message
Server

c
0
N
N
E
c
T
|
0
N

Figure 7. Message Producers and Message Consumers

The client application isthe producer when:

m sending amessage to aqueue (PTP), or

= publishing a message to atopic (Pub/Sub)

The client application is the consumer when:

m receiving messages from a queue (PTP), or

m subscribing to atopic (Pub/Sub) where messages are published
A session can be both a producer and a consumer

To learn about the message server architecture and functionality, see the
SonicMQ Installation and Administration Guide.

SonicMQ Programming Guide 31

Chapter 1: Overview

Quality of Service and Protection

Some messages are simpleand transitory, and they are broadcast to prospective
recipients who might or might not be paying attention. These message might
contain information that is timely and important but not particularly
confidential. An exampleisstock quotes. Thedataispublicinformationthat is
considered valuable when it is disseminated promptly and verifiable when
significant risk might be associated with the information it carries. Here,
performance takes precedence.

Messages that represent the other extreme where the anticipated services and
protection are paramount include bank wire transfers, where encryption,
security, and logging processes are an integral part of mutually assured
confidence in the message. Communication that is certifiable, auditable,
consistent, and fully credential ed providesthe quality of serviceand the quality
of protection that is expected. Performance isimportant, but not as an
aternative to quality.

All the SonicM Q message services and protection are availableto both the PTP
and Pub/Sub messaging models.

The services and protection that are described in this guide—together with
some of the services controlled by the message server's administrator—are
described in Table 3.

32

SonicMQ Programming Guide

Quality of Service and Protection

Table 3. Services and Protection Available in SonicMQ Messaging

Protocol is secure.

protocol parameter.

creating connection.

Service Technique Process Reference
ENCRYPTED I ndependent Body is appended after it Private encryption methods
Content is encrypted. encryptl_on has been encrypted, can be ap_phed before the
mechanisms. providing assurance that a | messageis presented to the
message is protected even | messaging-enabled
if the connectionis application.
insecure.
SECURE TRANSPORT | Connection Parameter is set when Seethe

“ConnectionFactory” on
page 93 for information
about choosing protocols.

See the SonicMQ
Installation and
Administration Guide for
information about
ConnectionFactories and
protocols.

produce is authorized to
produce to specified
destination.

AUTHENTIC Security enforced If the Administrator
PRODUCER through implemented the security
Producer isaccepted by the authentication of database, the administrator
: user name and sets up users, passwords,
security database. . .
password at time of | and permissions.
connection.
AUTHORIZED Security enforced Administrator sets user
PRODUCER through Access authorization to produce to
Producer has permissionto Control Lists speglfl C.hl erarchies of
(ACL5s). destinations.

See the SonicMQ
Installation and
Administration Guide for
information about
authentication and
authorization of producers
(PTP senders and Pub/Sub
publishers) and Access
Control Lists (ACLS).

SonicMQ Programming Guide

33

Chapter 1: Overview

Table 3. Services and Protection Available in SonicMQ Messaging (continued)

Server assures that the
message content delivered

function. Message
body isdigested and

destination is integrity.

messageisread only by the
intended consumers and

(privacy) before
creating adigest for

to the consumer isthe g;igrlr?&:ni esthe
identical to what the P
message to enable
producer sent. . . .
integrity checking.
PRIVACY Administrator Administrator setting on
Sarver res that the function. Encrypts d@ﬂ nation is privacy
the message (includes the services of

integrity).

Service Technique Process Reference
ACKNOWLEDGED Synchronous block | Automatic when sending a

PRODUCER released after message.

Server acknowledges receipt at server.

receipt of messages from

producer.

INTEGRITY Administrator Administrator setting on See the SonicMQ

Installation and
Administration Guide for
information about
administrator settings for

privacy and integrity.

Message persistsin server
storage.

the PERSISTENT
option.

that the message has . .
integrity. proof of integrity.
PERSISTENT Delivery modeuses | Set optionin publish or

send command. The
message server never
allows messages to be lost
in the event of anetwork or
system failure. Non-
persistent messages are
volatilein the event of a
server failure.

34

SonicMQ Programming Guide

Quality of Service and Protection

Table 3. Services and Protection Available in SonicMQ Messaging (continued)

acknowledgement.

Service Technique Process Reference
REDELIVERY Message server sets | Must be checked and acted | See “Recover” on page 102.
Consumer might receive ‘]_MSRedel tvered on by the consumer. See also “connect.start” on
unacknowledged message field to true when e 107
ain ¢ serviceis P '

aan. interrupted while

waiting for a

consumer

DURABLE INTEREST

Pub/Sub consumers,
Subscribers, can

An application uses
the session method
create-

Server retains messagesfor
durable subscriber, using
the userName, and

See “Reliable, Persistent,
and Durable Messaging

Samples’ on page 60. See

toan intvalueo
throughowhere4is
the default

values of 5 through 9 are
expedited.

establish adurable interest Durablt_e— _ clientlDof theconnection | aso “Durable Subscriber
in atopic with am o Subscriber with plusthe on page 196.
Serverp the parameters subscriptionName to
' topic, index the subscription.
subscriptionName, |\ i ot NoN_PERSISTENT
messageselector, messages are still at risk in
an? anolocal the event of server failure.
option. Note also that messages
expire normally even if
durable subscriptions are
unfulfilled.
PRIORITY Producer setsthe Server checks message See also “Message
M es sent with higher message header priority and handles Management by the
priori tyg can be expegiited, value JMSPriority | appropriately. Priority Message Server” on

page 142.

SonicMQ Programming Guide

35

Chapter 1: Overview

Table 3. Services and Protection Available in SonicMQ Messaging (continued)

Service

Technique

Process

Reference

EXPIRATION

Messages are available
until the expiration time.

Producer sets time-
to-livevaue, then
includesthevaueat

Server receives message
with JMSExpiration date-
time set to the

See “Create the Message
Type and Set Its Body” on
page 139.

Producer can request a
reply from the consumer.

field JMSReplyTo
has a string value
that indicates the
topic where areply
is expected. The
JMSCorrelationlD
canindicate a
reference string
whose uniqueness

consumer, but the
consumer application must
be coded to look at the
JIMSReplyTo field and then
act.

Producer could be
synchronoudly blocked
waiting for reply message
at temporary topic.

moment of JIMSTimestamp date-time See als0 * Message
Based on GMT. publish/send. plusthe time-to-live
value. Management by the
Message Server” on
page 142.
REQUEST MECHANISM | Message header Carried through to See “Request and Reply

Samples’ on page 72.

See also “ Session Objects’
on page 103 and “Reply-to
Mechanisms’ on page 153.

Consumer is authorized to
consume from a specified
destination.

hierarchies of destinations.

is managed by the
producer. TopicRequestor object
creates atemporary topic
for the reply.
AUTHENTIC Security enforced Administrator initialized See the SonicMQ
CONSUMER through and started security Installation and
. authentication of database at server; Administration Guide for
Consumer is accepted by o -
. username and administrator setsup user | more about authentication
the security database. _ .
password at time of | and password. and authorization of
connection. consumers (PTP receivers
. - and Pub/Sub subscribers
AUTHORIZED Security enforced Administrator sets user))
o i and Access Control Lists
CONSUMER through ACLs. authorization to specific

(ACLS).

36

SonicMQ Programming Guide

Quality of Service and Protection

Table 3. Services and Protection Available in SonicMQ Messaging (continued)

Service

Technique

Process

Reference

ACKNOWLEDGED

Acknowledgement

Functions automatically to

messages when session
parameter is
CLIENT_ACKNOWLEDGE then
when client calls
acknowledge()

CONSUMPTION typefor the session | perform the specified type
was set when the of acknowledgement for all
Consumer acknowledges . :
. session was created. | messages consumed in that
receipt to server. .
session.
Client acknowledges Explicit call by Manual.
receipt of received consumer.

See “Acknowledgement
Mode” on page 101.

REPLY MECHANISM

Consumer repliesto the
producer’s request for

reply.

Consumer reacts to
aJIMSReplyTo
reguest by
producing a
messagetothetopic
namein the
JIMSReplyTo field.

Programmeatic procedure
where the consumer
publishes areply. The
content of the reply is not
specified. Typicaly the
JMSCorrelationiD would
be replicated.

See “Request and Reply
Samples’ on page 72. See
also “ Session Objects’ on
page 103 and “Reply-to

Mechanisms’ on page 153.

DEAD MESSAGE
QUEUE

Sender/publisher can set
propertiesto either or both
re-enqueue undelivered
messages and send an
administrative notice.

Set the properties
that tell the message
server to provide
special handling
whenthemessageis
declared dead.

Programmatic procedure
where the sender chooses
to set the property
JMS_SonicMQ
_preserveUndelivered
to true to store the dead
message until handled and
to set the property
JMS_SonicMQ_
notifyUndelivered to
true to send a notification
to the message server's
administrator.

See “Message Properties’
on page 127. See also
Chapter 7, “Dynamic
Routing Architecture.”

SonicMQ Programming Guide

37

Chapter 1: Overview

SonicMQ Clients

There a several types of SonicMQ clients. The client Java archives are copied
in libraries to enable bridges, proxy servers, servlet engines, and JavaBeans.
This book presents technigues and interfaces to enable class filestorunin a
console session as well as ActiveX/COM clients and Java Applet clients.

ActiveX/COM Client

SonicM Q canwork asan ActiveX/COM control, providing developerswith an
interface that makes the SonicMQ JMS API available in popular Windows
development environments.

Using IM Sfunctionality deliversthe advantages of messaging to both new and
established applications through familiar developer environments such as
Visua Studio and run-time environments such as Microsoft Office, Internet
Explorer, and Lotus® Notes—to name afew.

See Chapter 11, “Accessing SonicMQ Through ActiveX/COM Clients,” for
more information.

Java Applet Client

SonicMQ can work in a Java applet running in a browser context to invoke
classes that implement IM S functionality.

38

SonicMQ Programming Guide

Chapter 2 Examining the SonicMQ Samples

About SonicMQ Samples

The samples provided with the SonicMQ product, first explored in the Getting
Sarted with SonicMQ manual, are now viewed in terms of their functionality.
These samples demonstrate programmatic interaction between applications.

When you run the samples, consider that the standard input and standard output
displayed in the console could be data flows to and from a whole range of
applications and | nternet-enabled devices such as:

m Application software for accounting, auditing, reservations, online
ordering, credit verification, medical records, and supply chains

m Information appliances such as beepers, cell phones, fax machines, and
Personal Digital Assistants (PDAS)

s Real-time devices with embedded controls such as monitor cameras,
medical delivery systems, climate control systems, and machinery

s Distributed knowledge bases such as collaborative designs, service
histories, medical histories, and workflow monitors

Note The samplesin this chapter assume that you are not using a security database,
which is the default SonicMQ setup. Exercises are provided at the end of the
chapter that detail how to reconfigure the database for security and how to enter
the user names and password that security will demand. Without security, user
names in the samples are arbitrary strings. Still, the names cannot contain the
reserved characters, period (.), pound (#), dollar ($), or asterisk (*).

SonicMQ Programming Guide 39

Chapter 2: Examining the SonicMQ Samples

SonicMQ Samples

The SonicMQ samples present basi ¢ features of SonicMQ, categorized as
follows:

s Chat and Talk Samples— The basic messaging functions are presented
by producing and consuming messages in both domains:;

— Talk (PTP), chat (Pub/Sub)

m Transaction Samples — Transactions are shown in both domainsin
application windows that reveal how the producers and consumers of the
transacted messages see the messages flow:

— TransactedTalk (PTP), TransactedChat (Pub/Sub)

m Additional Message Types— To simplify input, the preceding examples
are Text messages. The following samples display two other common
message typesin the messaging domains:

— XMLMessages — xMLTalk (PTP), xMLchat (Pub/Sub)
— MapMessages — MapTalk (PTP)
m Message Traffic M onitors— These samples provide views of message
traffic in ways that are characteristic of their messaging domain:
— Messages on the Queue — QueueMonitor (PTP)
— Messagesto Subscriber s — MessageMoniitor (Pub/Sub)

m Reliable, Persistent, and Durable M essaging — These samples
demonstrate techniques that can enhance the Quality of Service. Reliable
connections show how to keep connections active in both domains.
Persistent storage shows how the message server’'s PTP safety net, the
Dead Message Queue, can trap undelivered messages. Durable
subscription shows how a Pub/Sub subscriber can have messages held for
them. The samples in this category are:

— ReliableConnection — ReliableTalk (PTP), ReliableChat (Pub/Sub)
— Persistent Storage — DeadMessages (PTP)

— Durable Subscription — purablechat (Pub/Sub)

40

SonicMQ Programming Guide

SonicMQ Samples

m Request and Reply — These transacted examples show the mechanisms
for the producer requesting areply and the consumer fulfilling that request:

— Originator’s Request — Requestor (PTP, Pub/Sub)
— Receiver’'s Response — Replier (PTP, Pub/Sub)

m Sdection and Wildcar ds— The message selector samples use SQL
syntax to qualify the messages that are visible to an application while the
HierarchicalChat sample uses template charactersto subscribe to a set of
topicsthat is qualified when messages are published:

— Message Selection — selectorTalk (PTP), Selectorchat (Pub/Sub)
— Wildcards— Hierarchicalchat (Pub/Sub)

m Test Loop — This sample makesit easy to get alook at how quickly
messages can be sent and received in atest loop:

— Queue Test Loop — QueueRoundTrip (PTP)

Other Samples Available

There are several other SonicMQ samples that require specia setup to explore
them. These samples are described in other SonicM Q documents:

m ActiveX/COM — The ActiveX/COM sample, chat.frm, requires the
Windows Visual Basic development and run-time environments plus afew
setup steps. See Chapter 11, “Accessing SonicMQ Through
ActiveX/COM Clients,” for more information.

» Dynamic Routing Queues— When routing queues are established across
message servers, messages are dynamic. The GlobalTalk (PTP) sample
demonstrates dynamic routing queues once you have an appropriate setup.
See the SonicMQ Deployment Guide for information about this sample.

= Management APl — The exposed administrative methods make it
possible to create applications that perform management functions. There
are several samples of management applications packaged with SonicM Q.
To see how to run these samples, see Chapter 10, “Management API.”

SonicMQ Programming Guide 41

Chapter 2: Examining the SonicMQ Samples

Extending the Samples

After reviewing the sample applications, you are encouraged to explore some
variations:

m Change the source files— You can edit the source files, compile the
changed file, and then run the applications again to observe the effect.
Some ideas are presented as exercises:

— Using acommon topic for two samples.

— Observing how different messaging behaviors affect round-trip times.
— Moaodifying the MapMessage to use other data types.

— Maoadifying the XMLMessage to show more data.

= Initializing the message server database for security — The impact of
security is apparent throughout the samples when user access and
destination access are controlled by administrated security.

How Security Impacts Client Activities

Security providesthe high quality of protection and access by applicationsthat
is expected in enterprise applications. The section “Quality of Service and
Protection” on page 32 presents an overview of the features and functions of
security. But unless the message server database initializes to manage security,
security is not enabled.

The samplesin this chapter do not initialize the security database so that you
can begin exploring the messaging features without having to first set up
security objects for:

m User authentication — When security is activated, only defined
usernames are allowed to connect to the message server.

m User authorizations — The administrator can control a user’s ability to
perform actions such as subscribing to atopic and reading from queues.

“Extending the Samples’ on page 79 explores what you need to do to
implement a SonicM Q sample under a secure environment.

42 SonicMQ Programming Guide

Running the SonicMQ Samples

Running the SonicMQ Samples

Starting the Message Server Under Windows, Linux, or UNIX

Note

Important

Be sure the SonicM Q message server is running before executing any of the
SonicMQ client samples.

If thisisthefirst timeyou are running SonicM Q, you should not have to set up
and initialize the database or adjust the message server’'sbroker. ini file. See
the SonicMQ Ingtallation and Administration Guide for broker . ini Settings.

To start the message server process from the Windows Start menu:
O Choose Start > Programs > Progress SonicMQ > Start Broker.

To start the message server process from a Linux or UNIX console
window:

O Inanew console window set to the SonicMQ install directory, type
startbr.sh and press Enter.

Themessage server starts. The consolewindow is dedicated to the process and,
when running, displays.

SonicMQ Broker started, now accepting tcp connections on port 2506.. .

You can minimize the consolewindow. Closing the window, however, stopsthe
message Server.

The sampl es default to localhost:2506—a message server using port 2506 on
the same system, localhost. If you use a different host or port, you need to
specify the host:port parameter when you start each sample; for example:

--\..\SonicMQ Chat -u Market Maker -b Eagle:2345

SonicMQ Programming Guide 43

Chapter 2: Examining the SonicMQ Samples

Client Console Windows

Note

Each application instanceisintended to run inits own console window with the
current path in the selected sampl e directory. There are conventions that you
must follow depending on the platform:

m Windows — The scripts defer to Windows conventions.

s Linuxand UNIX platforms— Instead of using .bat files, usethe .shfile
at the same location. Substitute forward slash (/) wherever back slash (\)
is used as a path delimiter. Any sourcing is handled in the shell scripts.

Consider all text to be case-sensitive. While there may be some platforms and
names where case is not distinguished, it is good practice to always use case
consistently.

Using the Sample Scripts

Important

A universal script handler isinstalled at the samples directory level. Thisscript,
SonicMQ.bat (.sh under Linux and UNIX), does the following:

= Pointsto the Java executable used by SonicMQ
m Setsthe cLAssPATH for the Java runtime and SonicMQ jar files.
= Invokesthe executable, its parameters, and alist of variables

The script is suitable for the basic samples provided, but you might have to
adjust it if you use long parameter lists. Standard invocation of the script from
asample folder istwo levels down.

When you modify the original sample files, you can use the techniques
described above to set up a universal compiler script. Replicate and modify
SonicMQ.bat (.sh under Linux and UNIX) to something like SonicMQ_javac.bat
(.sh under Linux and UNIX) and then confirm that javac.exe (or the path to
your preferred compiler) isin the script.

44

SonicMQ Programming Guide

Running the SonicMQ Samples

Using the SonicMQ Explorer

You can use the SonicMQ Explorer to see the parameters and action events
available in SonicMQ.

0 To start the SonicMQ Explorer under Windows:
O Choose Start > Programs > Progress SonicMQ > Explorer.

The SonicMQ Explorer window opens.

O To start the SonicMQ Explorer under UNIX:

O Inaconsolewindow positioned in the SonicMQ working directory, type
explorer.sh and press Enter.

The SonicMQ Explorer window opens.

0 To review or set up the default queues in the SonicMQ Explorer:
2. Click on Message Brokers in the Explorer tree.
3. Enter the Broker Host you are using, typically 1ocalhost:2506.
4. Enter any Connect ID text such as conni then choose Connect.
5. Click onthemessage server you just connected to: localhost:2506:Conni.

6. Click on Queues, then verify that the queues are those in Figure 8.

[SonicMQ Explorer [_[O] <]
Explorer View Help
_4 Root Queues | Me{;gaggsl
----- # Cerlificate Stores
JMS Administered Object Stares Queue Global | Exclusive | Retrieve Save Max
=4 Message Brokers SampleQ1
B4 Iocalhost2508:Connt. (SonieM@) || [5ampleqz 1200 1400 1000

----- * Topics
& (SN
Routing
& Metrics

----- # Ewents

[[
SarnpleQ3 | O [O T 1z00] 1400 1000
[[

SampleQd | | 1200] 1400/ 1ooo)

[~ Include System Queues New Delete

Manage Queues and Queue Messages

Figure 8. Using the Explorer to Maintain the Default Queues

See the SonicMQ Installation and Administration Guide for details about the
SonicM Q Explorer and maintai ning queues.

SonicMQ Programming Guide 45

Chapter 2: Examining the SonicMQ Samples

Chat and Talk Samples

The fundamental differences between Pub/Sub and PTP are presented in the
Chat and Talk samples.

Chat Application (Pub/Sub)

Inthechat application, whenever anyone sendsatext messageto agiventopic,
al active applications running chat receive that message as subscribers to that
topic. Thisisthe most basic form of publish and subscribe activity.

0 To start Chat sessions:

1. Open aconsole window to the TopicPubsub\chat folder, then enter:
--\..\SonicMQ Chat -u OTC_Ticker

2. Open another console window to the TopicPubsub\chat folder, then enter:
--\..\SonicMQ Chat -u Market_Maker

O To Chat:

1. Inone of the chat windows, type any text and then pressEnter. Thetextis
displayed in both chat windows, preceded by the chat name that initiated
that text.

2. Inthe other chat window, type text and then press Enter. Thetext is
displayed in both chat windows preceded by that chat name.

The chat sampl e shows inter-application asynchronous communications. |f
subscribers miss some of the messages, they just pick up the latest whenever
they re-connect to the message server. Nothing is retained and nothing is
guaranteed to be delivered, so throughput is fast.

46 SonicMQ Programming Guide

Chat and Talk Samples

Talk Application (PTP)

In the Talk application, whenever a text message is sent to a given queue, all
active Talk applications are waiting to receive messages on that queue, taking
turns as the sole receiver of the message at the front of the queue.

O To start Talk sessions:

Thefirst Talk session receives on the first queue and sendsto the second queue
while the other Talk session does the opposite.

1. Open a console window to the QueuePTP\Talk folder, then enter:
--\..\SonicMQ Talk -u Accounting -qr SampleQl -gqs SampleQ2

2. Open another console window to the QueuePTP\Talk folder, then enter:
--\..\SonicMQ Talk -u Orders -gr SampleQ2 -gs SampleQl

O To Talk:

1. Inthe orders window, type any text and then press Enter.
Thetext isdisplayed in only the Accounting window.

2. Inthe Accounting window, type text and then press Enter.
Thetext isdisplayed in only the orders window.

Reviewing the Chat and Talk Samples
You can extend your exploration of the samples by opening several windows:

s Chat — If you run several chat windows, every window will display the
message, including the publisher. You can modify the source code to
suppress delivery of a chat message to its publisher. That Pub/Sub
broadcast characteristic could be stopped with anoLocal parameter on the
createSubscriber method. Every subscriber would get everyone else’'s
messages except their own.

m Talk — If you run several Talk windows, you will still see only one
receiver for any message. Under Talk (PTP), thereisonly one receiver.
Start two more Accounting Windows (Accountingl and Accounting2) then
use the orders window to send 1 through 9, each as amessage
(1 Enter, 2 Enter...). Notice how the receivers take turns receiving the

messages.

SonicMQ Programming Guide 47

Chapter 2: Examining the SonicMQ Samples

Samples of Additional Message Types

Most of the SonicM Q sampl es use the TextMessage type because they accept
user input in the console windows. Additional message type samples offer
some variation from the TextMessage to kindle your interest in other message
types while still using text input.

XML Messages

XML datadefinitions with tagged text are rapidly gaining favor as atechnique
for communicating structured sets of defined data records or transacted
message sets over the Internet. The XML parser included with SonicMQ, the
IBM® XML Parser for JavaEdition, interprets the data using Document Object
Moded Element nodes. The message receiver window echoes its trandation of
the XM L-tagged code derived from your text entry. For example, if you (asthe
sender Catalog_Update) enter 1tem oOne, the XML-tagged codeis packaged as
follows in the sample source file xMLchat . java:

{

progress.message.- jclient_XMLMessage xMsg =
((progress.message. jclient._Session) pubSession).createXMLMessage();
StringBuffer msg = new StringBuffer();
msg.append (*'<?xml version=\""1_0\""?>\n"");
msg.append (‘'<message>\n'");
msg.append (" <sender>" + username + ''</sender>\n'");
msg.-append (" <content>" + content +s + ''</content>\n"");
msg.append (‘'</message>\n"");
XMsg.setText(msg.-toString());
publisher.publish(xMsg);
¥

The tagged message text is well-formed XML:
<?xml version="1.0"7?>
<message>
<sender>"Catalog_Update''</sender>
<content>"Iltem One'</content>
</message>

When the message is received, the embedded XML parser isinvoked. The
message is interpreted to display the DOM nodes:

ELEMENT : message
|--NEWLINE

+--ELEMENT: sender

| --TEXT_NODE: Catalog_Update
| --NEWLINE

+--ELEMENT: content

| --TEXT_NODE: Item One
| --NEWLINE

48 SonicMQ Programming Guide

Samples of Additional Message Types

XML Messages (PTP)

O To start PTP XMLTalk sessions:

Thefirst xMLTalk session receives on the first queue and sends to the second
queue while the other session does the opposite.

1. Open a console window to the QueuePTP\XMLTalk folder, then enter:
--\..\SonicMQ XMLTalk -u QCatalog_Update -qr SampleQl -gs SampleQ2

2. Open another console window to the QueuePTP\XMLTalk folder, then enter:
--\..\SonicMQ XMLTalk -u QLocal_Supplier -gr SampleQ2 -gs SampleQl

0 To send and receive PTP XMLMessages:

O Intheqcatalog_Update wWindow, type text and then press Enter.

XML Messages (Pub/Sub)

O To start Pub/Sub XMLChat sessions:

1. Open a console window to the TopicPubSub\XxmLChat folder, then enter:
--\..\SonicMQ XMLChat -u Catalog_Update

2. Open another console window to the Topi cPubSub\XxMLChat folder, then
enter:
--\..\SonicMQ XMLChat -u Local_Supplier
0 To produce and consume Pub/Sub XMLMessages:

O Inthecatalog_Update window, type text and then press Enter.

Map Messages (PTP)

A Map message isamessage typethat transfers a collection of assigned names
and their respective values. The names and values are assigned by set methods
for the Java primitive data type of the value. The MapMessage name-value pairs
are sent in the message body.

For example:

mapMessage.setInt('FiscalYearEnd", 10)

mapMessage.setString("'Distribution', "global')

SonicMQ Programming Guide 49

Chapter 2: Examining the SonicMQ Samples

mapMessage .setBoolean(''LineOfCredit", true)
You can extract the data from the received message in any order.
Use aget method to coerce a data value into an acceptable data type.
For example:

mapMessage .getShort(*'FiscalYearEnd')
mapMessage.getString("'Distribution')
mapMessage .getString("'LineOfCredit')

0 To start MapTalk sessions:

Thefirst MapTalk session receives on the first queue and sends to the second
queue, while the other session does the opposite:

1. Open a console window to the QueuePTP\MapTalk folder, then enter:
--\..\SonicMQ MapTalk -u QAccounting -gr SampleQl -gs SampleQ2

2. Open another console window to the QueuePTP\MapTalk folder then enter:
--\..\SonicMQ MapTalk -u QAuditing -qr SampleQ2 -gs SampleQl

0 To send and receive MapMessages:
O Inthe QAccounting window, type text and then press Enter.

The message sender packagestwo items: the username asthe String sender and
the text input into a String named content as shown in the source code of the
sample MapTalk. java:

Javax. jms_MapMessage msg = sendSession.createMapMessage();
msg.setString("'sender', username);
msg.setString('‘content”, s);

Themessagereceiver caststhe message asaMapMessage. If that isunsuccessful,
MapTalk reportsthat an invalid message arrived. TheMapMessage iSdecomposed
and displayed as shown in the source code of the sample MapTalk. java:

String sender = mapMessage.getString('sender’);
String content = mapMessage.getString(‘‘content');

System.out.printin(sender + ": " + content);

50 SonicMQ Programming Guide

Samples of Additional Message Types

Reviewing the Additional Message Type Samples
In review, these samples show:
m The message type characteristics are identical in PTP and Pub/Sub.

m These messages are limited to capturing a single chunk of text in the
console window.

m These messages use the instanceof operator to identify and cast the
message into an XMLMessage Or & MapMessage.

You could modify the source code of these samples to:
s Create atable of XML datathat forms an XxMLMessage.

= Set some map values to Java primitives in the MapM essage and then get
the map values, coercing them into acceptabl e data types.

See the exercises in “Extending the Samples’ on page 79 that describe these
changes. See al'so “Message Type” on page 120.

SonicMQ Programming Guide 51

Chapter 2: Examining the SonicMQ Samples

Message Traffic Monitor Samples

These samples each open GUI windows that provides a scrolling array of its
contents. The nature of the two monitors underscores fundamental differences
between the Publish and Subscribe messaging model and the Point-to-Point
messaging model. Table 4 shows these differences.

Table 4. Differences Between QueueMonitor and MessageMonitor

QueueMonitor

MessageMonitor

What messages
are displayed?

Undelivered.

Delivered.

When does the
display update?

When you click the Browse
Queues button, thelist is
refreshed.

When amessageispublished
to asubscribed topic, it is
added to the displayed list.

When does the
message go
away?

When the messageis
delivered (or when it
expires.)

When the display is cleared
for any reason.

What happens
when the
message server
and monitor are
restarted?

Listed messages marked
PERSISTENT are stored inthe
message server database.
They are redisplayed when
the message server and the
QueueMonitor restart and
then choose to browse
queues.

Asmessages are listed at the
moment they are delivered,
there are no messagesin the
M essageM onitor until new
deliveries occur.

52

SonicMQ Programming Guide

Message Traffic Monitor Samples

QueueMonitor Application (PTP)
The QueueM onitor moves through a queue, listing the active messages it
reveals asit traverses the queue.
0 To start QueueMonitor:
1. Open aconsole window to the QueuePTP\QueueMoni tor folder.

2. Type ..\..\SonicMQ QueueMonitor and pressEnter.

0 To start a Talk session without a receiver:
1. Open a console window to the QueuePTP\Talk folder.

2. Type ..\..\SonicMQ Talk -u RFP -gs SampleQ1l and press Enter.

0 To enqueue messages and then browse the queue:

1. IntheTalk window, type some text and then press Enter. Repeat afew
times.

2. IntheQueueMonitor Javawindow, click Browse Queues to scan the queues
and display their contents. The QueueM onitor appears similar to the
window shown in Figure 9.

Eg’,; Queue Monitor _ O] x|

Browsing queues "Sample1”

liavax.jms. TexiMessane]
UMICEF: 19991021 RFP 177849 medical supplies hitp i unicef orgi/p1 77849

liavax jms TextMessage]
FOODBAMK: 19991018 RFP 113232 rice, 100 Ib hagaed, container with 100units FOB Mali

[iavaxjms. Textessane]
FOODBAMK: 19931023 RFP 132245 frail mix with dates and almands, 3 pounds

liavaxjms. Textessage]
FOQDBARE: 19981024 RFP 144665 Vegemite sandwiches 10000 units

| Browse Queues

Figure 9. QueueMonitor Window

SonicMQ Programming Guide 53

Chapter 2: Examining the SonicMQ Samples

0 To receive the queued messages:

The messages that are waiting on the queue will get delivered to the next
receiver who chooses to receive from that queue.

Warning |If you do not perform this procedure the stored messages will be received in
the next application that receives on that queue.

1. Inaconsole window, press Ctrl+C. The application stops.
2. Type..\..\SonicMQ Talk -u FlushQl -gr SampleQl and pressEnter.

The enqueued messages are delivered to the queue receiver.

0 To stop the sample:
1. Inthe console window, press Ctrl+C. The application stops.

2. In the Queuemonitor window, click the close button.

MessageMonitor Application (Pub/Sub)

An example of a supervisory application with a graphical interfaceis
MessageMonitor Where the application listens for any message activity—by
subscribing to al topicsin the topic hierarchy—and then displays each
message in its window.

0 To start MessageMonitor:

1. Open a console window to the TopicPubSub\MessageMonitor folder. and
then enter: . .\..\SonicMQ MessageMonitor
The MessageMonitor Java window opens.

0 To run a Chat session to send messages to the MessageMonitor

1. Open aconsole window to the TopicPubsub\chat folder, then enter:
--\..\SonicMQ Chat -u Chatter

54 SonicMQ Programming Guide

Message Traffic Monitor Samples

2. Type any text and then press Enter. The text is displayed in the chat
windows, and the MessageMonitor window. If you send more messages,
each one appends to the list displayed, as shown in Figure 10.

Eifi’,i' MeszageMonitor O]

Class: javaxjmes Texessage
Topic: jms.samples.chat

QOTC_Ticker: check

Class: javaxims. Texhessage
Topic: jms.samples.chat

harket_Maker: Gotitl

Class: javaxjms. Texhessage
Topic: jms.samples.chat

OTC_Ticker: PRGS 20000 36.125

Class: javaxjms Texhiessage
Topic: jims.samples.chat

OTC_Ticker: MSFT 125000 72.25

Class: javaxjms TexMessage
Topic: jms.samples.chat

OTC_Ticker: SLIN 80000 117.00

Class: javaxims. Texhessage
Topic: jms.samples.chat

OTC_Ticker ASFT 10000 12.50

Class: javaxjms. Texhessage
Topic: jms.samples.chat

tarket_Maker: BUY PRGS 15000 36.75 LIMIT

<[k

[¥]

| Clear |

Figure 10. Message Monitor Window

3. Click the Clear button. Thelist is emptied.

SonicMQ Programming Guide 55

Chapter 2: Examining the SonicMQ Samples

Transaction Samples

Transacted messages are a group of messages that form a single unit of work.
Much like an accounting transaction made up of a set of balancing entries, a
messaging example might be a set of financia statistics where each entry isa
completely formed message and the full set of data comprises the update.

A sessionis declared astransacted when the session is created. While
producers—PTP Senders and Pub/Sub Publishers—produce messages as
usual, the messages are stored at the message server until the message server is
notified to act on the transaction by delivering or deleting the messages. The
programmer must determine when the transaction is complete:

m Call themethod to commit the set of messages. The session commit method
tells the message server to sequentially release each of the messages that
have been cached since the last transaction. In this sample, the commit
caseis set for the string OVER.

= Call the method to roll back the set of messages. The session rol Iback
method tells the message server to flush all the messages that have been
cached since the last transaction ended. In this sample, the rollback caseis
set for the string oopst.

TransactedTalk Application (PTP)

O

To start TransactedTalk sessions:

Thefirst TransactedTalk Session receives on the first queue and sends to the
second queue, while the other session does the opposite.

1. Openaconsolewindow totheqQueuePTP\TransactedTalk folder, then enter:
--\..\SonicMQ TransactedTalk -u Accounting -gqr SampleQl -gs SampleQ2

2. Open another console window to the QueuePTP\TransactedTalk folder,
then enter:
--\..\SonicMQ TransactedTalk -u Operations -qr SampleQ2 -gs SampleQl

To build a PTP transaction and commit it:

1. InaTransactedTalk window, type any text and then press Enter.
Notice that the text is not displayed in the other TransactedTalk window.

2. Type moretext in that window and then press Enter.
Thetext is ill not displayed in the other TransactedTalk window.

56

SonicMQ Programming Guide

Transaction Samples

3. Typeover and then press Enter. All the messages you sent to a queue are
delivered to the receiver. Subsequent entries will form a new transaction.
0 To build a PTP transaction and rolling it back:
1. In one of the TransactedTalk windows, type text and then press Enter.
2. Type more text in that window and then press Enter.
3. Typeoops! and then press Enter. Nothing is published.

All messages are removed from the message server. Subsequent messages will
form a new transaction. Any messages you re-send will be re-delivered.

TransactedChat Application (Pub/Sub)

O To start Pub/Sub TransactedChat sessions:

1. Open a console window to the TopicPubSub\Transactedchat folder, then
enter: ..\..\SonicMQ TransactedChat -u Sales

2. Open another console window to the TopicPubSub\TransactedChat folder,
then enter: ..\..\SonicMQ TransactedChat -u Audit
O To build a Pub/Sub transaction and commit it:

1. Inthe sales window, type any text and then press Enter.
Notice that the text is not displayed in the Audit window.

2. Type more text in the sales window and then press Enter.
Thetext is till not displayed in the Audit window.

3. Typeover and then press Enter. All of the messages now display in
sequence in the Audit window.

All of the lines you had published to atopic are delivered to subscribers.
Subsequent entries will form a new transaction.
O To build a Pub/Sub transaction and roll it back:
1. Inthe sales window, type text and then press Enter.
2. Type moretext in that window and then press Enter.
3. Typeoops! and then press Enter. Nothing is published.

All messages are removed from the message server. Subsequent entries will
form anew transaction. Any messages you resend will be redelivered.

SonicMQ Programming Guide 57

Chapter 2: Examining the SonicMQ Samples

Reviewing the Transaction Samples

In review, the transaction samples show:

The transaction scope is between the client in the IM S session and the
message server. When the message server receives commitment, the
messages are placed onto queues or topicsin the order in which they were
buffered but with no transaction controls. Message delivery is normal:

— PTP Messages — The order of messagesin the queue is maintained
with adjustments for priority differences but there is no guarantee
that—when multiple receivers are active on the queue—a
QueueReceiver will receive one or more of the sender’s transacted

messages.

— Pub/Sub M essages — Messages are delivered in the order entered in
the transaction yet influenced by the priority setting of these and other
messages, the use of additional receiving sessions, and the use of
additional or alternate topics. The messages are not delivered asa

group.

Transactions are a set of messages that is complete only when a command
isgiven. Asan alternative, message volume coul d be reduced by packaging
sets of messages. For example, an XML message enables the publisher to
send a package of messages and the subscriber to interpret the set of

packaged entries as a single message. See the xvLchat example for details.

While most of the samples use two sessions—a producer session to listen
for keyboard input and send messages, and aconsumer session to listen for
messages and receive them—the transacted samples set only the producer
session as transacted so that committing or rolling back impacts only the
sent messages.

Changing the receiver behavior has no real effect on non-durable Pub/Sub
messages but causes an interesting behavior in PTP: When you rollback
receipt of messages, the message listener seesthe messages again and then
simply receives them again. Rolling back a transacted consumer session
causes the messages to be re-delivered.

58

SonicMQ Programming Guide

Transaction Samples

You can explorethisbehavior by modifying TransactedTalk. java to set the
receive session to be transacted, like this:

receiveSession = connect.createQueueSession
(false, javax.jms.Session.AUTO_ACKNOWLEDGE) ;

Then follow the send session commit line and send session rollback line
with similar statements for the receive session like this;
sendSession.rollback();

receiveSession.rollback();

sendSession.commit();

receiveSession.commit();

Start the two sessions described in the TransactedTalk sample then run
QueueMonitor sample. Notice that whether you commit or rollback, no
messages stay in the queue. Stop the TransactedTalk sessions and the
refresh the queue monitor. Note that the messages sent since the last
commit were al reinstated in the queue.

For more information, see “ Transacted Sessions’ on page 102.

SonicMQ Programming Guide 59

Chapter 2: Examining the SonicMQ Samples

Reliable, Persistent, and Durable Messaging Samples

The preceding applications made the same, basic delivery promise:
If you are connected and receiving during the message’slifespan, you could be
aconsumer of this message.

One of the features of SonicMQ is the breadth of services that can be applied
to messaging to give just the right quality of service (QoS) for each type and
category of message.

There are programmatic mechanisms for:

m Increasing the chances that the client and message server are actively
connected

m Registering a Point-to-Point sender’s interest in routing messages that are
undeliverable to a dead message queue and sending notification events to
the administrator

m Registering a Pub/Sub subscriber’s interest in messages published to a
topic even when the subscriber is disconnected

Thereliable, persistent, and durable messaging samples explore these features
of SonicMQ.

Reliable Connections

Note

The ReliableConnection sample ensuresthe robustness of the IMS connection
by monitoring the connection for exceptionsand re-establi shing the connection
if it has been dropped.

The Reliable samples use an aggressive technique (cTRL+C) that emulates an
unexpected message server interruption.

Anintentional shutdown invokes an administrative Shutdown function on the
message server. Thisfunctionisacommand inthe Explorer tool and the Admin
tool. Itisalso part of the management API that you can review and explorein
the shutdown sample presented in Chapter 10, “Management API.”

60

SonicMQ Programming Guide

Reliable, Persistent, and Durable Messaging Samples

In aTalk session, if the message server stopped and you sent a message you
would see:

Exception in thread "main" java.lang.-NullPointerException
at ... QueueSender.internalSend(QueueSender.java:343)
at ... QueueSender.send(QueueSender.java:194)
at Talk.talker(Talk.java:124)
at Talk.main(Talk.java:287)

To ensure higher reliability, both reliable samples use a rich connection setup
routine for connection retries and Thread.sleep(CONNECTION_RETRY_PERIOD).

In addition, using the PERSISTENT deliveryM ode option ensures that messages
are logged before they are acknowledged and are non-volatilein the event of a
message server failure. Consequently, as shown in Figure 11, the application
tries repeatedly to reconnect.

A unigue SonicM Q feature monitors the heartbeat of the message server by
pinging the message server at a preset interval, letting the thread sleep for a
while but initiating reconnection if the message server does not respond. For
more information, see “Using Active Pings to Monitor the Health of the
Connection” on page 114.

ReliableTalk Application (PTP)

0 To run the ReliableTalk sample:

1. Open a console window to the QueuePTP\ReliableTalk folder, then enter:
--\..\SonicMQ ReliableTalk -u AlwaysUp -gr SampleQl -gs SampleQl

2. Typetext and then press Enter. Thetext isdisplayed, preceded by the user
name that initiated that text. The message was sent from the client
application to the sampleQ1 queue on the message server and then returned
to the client as areceiver on that queue. The connection is active.

SonicMQ Programming Guide 61

Chapter 2: Examining the SonicMQ Samples

3.

4.

Stop the message server by pressing Ctrl+C in the message server window.
Theconnectionisbroken. ThereliableTalk application triesrepeatedly to
reconnect, as shown in Figure 11.

[MESSAGE RECEIVED 1 Alwayslp:

zending to gueue -

There iz a problem with the connection.
JMSException: Connection dropped
Please wait while the application tries to re—establish the connection... o

Attempting to create connection.

Cannot connect to broker: localhost:2586.
Attempting to create connection.

Cannot connect to broker: localhost:2586.
Attempting to create connection.

Cannot connect to broker: localhost:2506.
fAttempting to create connection.

Cannot connect to broker: localhost:2586.

Pausing 18 seconds before retry.
Pausing 18 seconds before retry.
Pausing 18 seconds before retry.

Pausing 18 seconds before retry.

| | 2w

Figure 11. ReliableTalk Sample Trying to Reconnect

Restart the message server by using its Windows Start menu command or
the startbr script. The ReliableTalk application reconnects.

ReliableChat Application (Pub/Sub)

0 To run the ReliableChat sample:

1.

Open a console window to the TopicPubSub\ReliableChat folder, then
enter:

--\..\SonicMQ ReliableChat -u AlwaysUp

Typetext and then press Enter. Thetext isdisplayed, preceded by the user
name that initiated that text. The message was sent from the client
application to the message server and then returned to the client asa
subscriber to that topic. The connection is active.

Stop the message server by pressing Ctrl+C in the message server window.
Theconnectionisbroken. TheRreliableChat applicationtriesrepeatedly to
reconnect.

Restart the message server by using its Windows Start menu command or
the startbr script. The ReliableChat application reconnects.

62

SonicMQ Programming Guide

Reliable, Persistent, and Durable Messaging Samples

Persistent Storage Application (PTP)

When a message is sent to a queue, the sender can take steps to assure that
messages sent are placed on the specified queue with some additional
reguirements:

m By setting the message delivery mode to PERSISTENT, the messageislogged
beforethe producer isacknowledged and isguaranteed to beretained in the
final message server’'s message store until it is either acknowledged as
delivered or it expires.

m By setting the avs_SonicMQ_preserveUndel ivered message property to
true, if the message isfor any reason undelivered, retain it.

m By setting the ams_SonicMQ_notifyUndelivered message property to true,
send notice to the administrator of the server that manages the queue.

Every message server provides a dead message queue where messages
appropriately flagged are moved when they become expired or undeliverable
because a destination on that message server or another remote message server
puts message delivery into jeopardy.

The beadMessages application demonstrates a viewer that looks at the dead
message queue. To set up this sample, the Explorer tool isused to create a
PERSISTENT message that has the properties that will let it become a dead
message promptly: a short timeto live (expiresin afew seconds), and a
property setting that indicates that this message should be persisted.

Note Dynamic routing exposes several other reasons amessage could get enqueued
in the Dead Message Queue. In avariation of this sample, amessage could be
unexpired yet become undeliverable because it is sent to a bad node (such as
BadNode: : SampleQ1) or a bad destination (such as : :BadQ). See the
“Guaranteeing Messages’ chapter in the SonicMQ Deployment Guide for
detailed examples of each reason code.

SonicMQ Programming Guide 63

Chapter 2: Examining the SonicMQ Samples

0 To create a queued message that expires yet persists:

1. ChooseStart > Programs > Progress SonicMQ > Explorer. The SonicMQ
Explorer window opens at its root level.

2. Click on Message Brokers in the Explorer tree. On the right panel:
2.1 Enter Broker Host 1ocalhost:2506.
2.2 Type Conni as the ConnectID.
2.3 Enter User Name Administrator and password Administrator.
2.4 Choose Connect.

3. Inthe Explorer tree, click on the message server you just connected to:
localhost:2506:Connl.
On theright panel:

3.1 Choose the Queue session Type.
3.2 Type sessi for the Name of the new session.
3.3 Click Create.
4. Inthe Explorer tree, click on Senders. On the right panel:
4.1 Type sampleQ1 as the Queue name.
4.2 Click Create.

5. IntheExplorer tree, click onthenodeyou just created: Sender: SampleQi.
On theright panel:

5.1 On the Body tab:
— Enter sometext for the body of the message.

— Inthetab’'s Summary area, choose the Delivery Mode option
PERSISTENT and then enter a Time To Live value greater than zero,
yet brief, say 1000 — 1 second.

5.2 On the Properties tab:
— Choose the Property Name JmMs_SonicMQ_preserveUndel ivered.

— Enter the Property Value true then choose Set.

64 SonicMQ Programming Guide

Reliable, Persistent, and Durable Messaging Samples

— Choosethe Property Name JMs_SonicMQ_notifyUndelivered. The
Property Value true is carried forward then choose Set.

| SonicMQ Explorer mE |
Explorer iew Help
_A Root Header Properties | Elodyl
~-@ Cetfificate Stares
M5 Administered Ohject Stores Property Marme: UMS_SonicMQ_notifflUndelivered LI | Sat |

= _4 Message Brokers
B 24 Iocalhost 2506:Conn? . (Sonichqy || TTOREry Value: e

@ Topics Praperty Type |hnn|ean LI Delete |
- # Queues
- & Routing MName Value Type
- # Metrics JMS_SaonicM@_preserveUndeliverad true Boolean
® Evants JMS_Sonicha_notifgUndel ive red true Boolean
=4 QueueSession: Sess1 non-tral
Bl 4 Senders
R = armple]
Recelvers
- @ Browsers Summary
Message Type Text Message hd
Delivery Mode: MNOM_PERSISTENT hd
Priarity: 1 -
Tirme To Live {ms): [0
d | . _gn | |

Send test messages

5.3 Click Send.

The message will be enqueued on sampleq1 for one second. If you had put
an activereceiver on that queue before the message expired, you would see
that the message was listed in sampleQ1, awaiting receivers on that queue.
Then you would have taken it off the queue. That would have defeated
what we wanted to look at in the sample: A message that expires waiting
for areceiver.

M essages that have expired are not removed from the original queue until
they are examined by the message server and noted to be expired. The next
process usesthe queue browser to notice that the messageisexpired so that
it is dequeued from sampleQ1 and re-engqueued in the dead message queue,
SonicMQ.deadMessage.

Note If you do not force expired messagesto be reviewed, you can wait for a system
refresh to pass over the queues. Two settings in the broker . ini file control
periodic checks of queues for expired messages:

- ENABLE_DYNAMIC_QUEUE_CLEANUP=TRUE
- QUEUE_CLEANUP_INTERVAL=600 (in seconds, 10 minutes in this example).

SonicMQ Programming Guide 65

Chapter 2: Examining the SonicMQ Samples

1.
2.

3.

0 To browse the message queue to force action on expired messages:

Open a console window to the QueuePTP\QueueMoni tor folder.

Type ..\..\SonicMQ QueueMonitor and press Enter. The QueueMonitor

window opens.

Click the Browse Queues button. No messages display.

Expired messages were examined and, with the appropriate properties set, are
transferred to the dead message queue. The property you set instructs the
message server to transfer the expired message to the Dead Message Queue,
placing it under administrative control with no expiration. The message must
now be explicitly flushed or dequeued.

0 To see the Explorer view of the Dead Message Queue:

1. Continuing in the Explorer session where you logged in as Administrator,
choose Queues in the Explorer tree.

2. Select the M essages tab

3. Click the Refresh button.

4. Select the option to Include System Queues. The dead message queue,
SonicMQ.deadMessage, indicates that there is one message enqueued while
there are no messages in sampleQi.

[SonicMQ Explorer =] E3
Exmlorer Views Help
“4Root Queues Messages |
-~ @ Cetificate Stores
~-® JMS Administered Object Stores Queue Wessages
Bl 4 Message Brokers Sample1 0
B4 lacalhost 2508:Connt . (SonicM@) || [sampleaz 0
oo Topi SampleQ3 0
o EEED Sampled]
: zotumg Sonicha deadessage 1
% Metrics - -
® Cverts Sonichi@ routing@ueus 0
B4 QueueSession: Sess1 non-tra
-4 Senders
o % Gample(t
i@ Receivers
ol Browsers
| | [inclu Refresh Clear Messages
] »
Manage Queues and Queue Messages

66

SonicMQ Programming Guide

Reliable, Persistent, and Durable Messaging Samples

0 To start the DeadMessages browser sample:
1. Open a console window to the QueuePTP\DeadMessages folder.
2. Type ..\..\SonicMQ DeadMessages and press Enter.

3. Thedead messages arelisted in the DeadM essage browser window asthis
example shows:

| [EiDead Messages Received [_[O] |

Class: javaxjms TexiMessage

Criginal Destination: Sampled

Undelivered Reason Code: TTL_EXPIRED
Undelivered Timestamp: 2000/08/07 10:58:19

Order to buy at 56!

[E

| Clear |

0 To see the contents of the dead message:
The Explorer lets you look at messages in the Dead Message Queue (DMQ).

1. Open an Explorer session then set up a QueueSession and choose to be a
receiver on the system queue, SonicMQ.deadMessage.

2. Click on theitem listed under Received Messages. The header fields
display as shown in the following Explorer widow:

17 SonicMQ Explorer RS
Emlorer View Help
3 Root d Messages
3 Geficale Slores GE. GampleQ. ID.6:867196:1 0001 E2FDACEEGA.

JMS Administered Ohject Stores
B4 Message Brokers
=4 localhost:2508:Conn1. (Sonich Q)
Topics

+ Queues

: ;Z‘“':'E”SD Delete Acknowledge

* Events

EJ-_4 QueusSession: Sess! non-rang HEEW' Propettes| Body]
E-4 Senders
% Samplet Hame Value
-3 Receivers JMSDestination Sample
o B MSD NON_PERSISTENT

MShiessagelD 1D:6086 7196:1 0001 -E2F DACSEGA
JM3Timestamp Wed Nov 22 13:42:20 EST 2000
JMSCanelationiD
IMSRepiTa
M3Redelivered false
JMSType
JMSExpiration Thu Now 23 13:42:21 EST 2000
MSPriority [

4 | 3
Wiew recemed messages

SonicMQ Programming Guide 67

Chapter 2: Examining the SonicMQ Samples

3. Choose the Properties tab. The properties of the undelivered, expireed
message in the sample are those shown in this window excerpt:

Header Proneﬂi85| Body |

Marme Yalue Type
JMS_SanicMa_preserelndelivered frue Baoolean
JMS_SanicMo_notifyldndeliverad frue Baoolean
JMES_SaonichQ_undeliveredTimestamp |9682813712. Long
JMES_SonicMC_undeliveredReasonCode|1 Integer

The properties carry the original settings to preserve and notify when
undelivered. The undelivered timestamp indicates the time of dequeuing
into the DMQ. The reason code, 1, indicates that the message expired.

4. Choose the Body tab. The body is unchanged. It might appear like this:

Headerl Properties EDdVl

Thiz message was in Samplefl £or one second.
Eecause no receiver took it and it was requested
to persist, it iz now in the queue SonicHl. deadMeszsage.

A management application might clone the body into anew messageto get the
message enroute around the reason for unsuccessful delivery.

While expiration is common to all messaging deployments, there are several
other reasons a messages could be in doubt or undeliverable in adynamic
routing architecture.

See the SonicMQ Deployment Guide for information about the dead message
gueue and the dynamic routing architecture.

68 SonicMQ Programming Guide

Reliable, Persistent, and Durable Messaging Samples

DurableChat Application (Pub/Sub)

When messages are published, they are delivered to all active subscribers.
Some subscribers register an enduring interest in receiving messages that were
sent while they were inactive. These durable subscriptions are permanent
records in the message server’s database.

Whenever a subscriber connects to the topic again (under the registered
username, subscriber name and client identifier) all undelivered messagesto
that topic that have not expired will be delivered immediately. The
administrator can terminate durable subscriptions or a client can use the
unsubscribe method to close the durable subscription.

In an application, there are only a few changes to set up asubscriber asa
durable subscriber. Where chat was coded as.
subscriber = subSession.createSubscriber(topic);

DurableChat iS;

//Durable Subscriptions index on username, clientlD, subscription name
//1t is a good practice to set the clientiD:
connection.setClientID(CLIENT_ID);

subscriber = subSession.createDurableSubscriber
(topic, ''SampleSubscription™);
Aswith ReliiableChat, using the PERSISTENT delivery mode ensures that
messages are logged before they are acknowledged and are non-volatilein the
event of amessage server falure.

Figure 12 shows what occurs when the subscriber requests an extra effort to
ensure delivery.

SonicMQ Programming Guide 69

Chapter 2: Examining the SonicMQ Samples

) Server's
Connection Message Server Persistent
Factory Connection Session Topic Publisher ~ Subscriber Message process Data Store

L]

request connection

>
>
Connection:
- New connection < " »
- Set Clientld ~
- New session M
>
[= i
¢ P —
Topic: = topic >
- Create Topic
- Create Publisher ;
subscriber name,
- Create Subscription D Topic ¥ DURABLE »
= topic
»
< &
. A I_ T acknowledge Y
Connection: r
> »
- Start >
topic
for
durable
topic subscribers
Message: I pic
- Publish to topic
message
Message:
- I(_:lsten (asynch) — Time
- Consume o
consume YES Is the subscriber < live!
j message session active?
Restart
Connection
subscriber name
>
Message: name,

- Durable Subscription YES ~ _, topic

- Consume consume essages waiting? <
message 4

close connection

Figure 12. Sequence Diagram for the DurableChat Application

70 SonicMQ Programming Guide

Reliable, Persistent, and Durable Messaging Samples

O To start DurableChat sessions:

1. Open aconsolewindow to the TopicPubSub\Durablechat folder, then enter:
--\..\SonicMQ DurableChat -u AlwaysUp

2. Open another console window to the TopicPubSub\DurableChat folder,
then enter:
--\..\SonicMQ DurableChat -u SometimesDown

3. Inthe AlwaysUp window, type text and then press Enter.
Thetext is displayed on both subscriber’s consoles.

4. In the sometimesbown Window, type text and then press Enter.
Thetext is displayed on both subscriber’s consoles.

5. Stop the sometimesDown Session by pressing Ctrl+C.

6. Inthe Alwaysup window, send one or more messages.
Thetext is displayed on that subscriber’s console.

7. Inthe window where you stopped the burablechat session, restart the
session under the same name.

When the burableChat Session re-connects, the retained messagesare delivered
and then displayed.

While durable, the messages were not implicitly everlasting. The publisher of
the message sets atime-to-live parameter—a val ue that, when added to the
publication timestamp, determines the expiration time of the message. The
time-to-live value in milliseconds can be any positive integer. In this sample,
the time-to-live is 1,800,000 milliseconds (thirty minutes). Setting the valueto
zero retains the message indefinitely.

Reviewing Reliable, Persistent, and Durable Messaging

The characteristics that made for a better Quality of Service provide their
benefits with modest overhead. The examplesin this section can be combined
so that you create areliable, persistent talk and areliable, durable chat. The
source code of these samples can provide snippetsthat are readily transferable
into your applications.

There are many other facetsto optimal QoS, including the various security,
encryption, access control, and transport protocols. For more information, see
the SonicMQ Installation and Administration Guide.

SonicMQ Programming Guide 71

Chapter 2: Examining the SonicMQ Samples

Request and Reply Samples

Note

The advantages of loosely coupled applications call for special techniques
when it isimportant for the publisher to certify that amessagewasdeliveredin
either messaging domain:

m Point-to-Point — While a sender can see if a message was removed from
aqueue, implying that it was delivered, there is no indication where it
went.

s Publish and Subscribe — While the publisher can send long-lived
messages to durabl e receivers and get acknowledgement from the message
server, neither of these techniques confirms that a message was actually
delivered or how many, if any, subscribers received the message.

A message producer can request areply when amessage is sent. A common
way to dothisisto set up atempor ary destination and header information that
the consumer can use to create areply to the sender of the original message.

In both Request and Reply samples, the replier’stask isa simple data
processing exercise: standardize the case of thetext sent—receivetext and send
back the same text as either all uppercase characters or all lowercase
characters—then publish the modified message to the temporary destination
that was set up for the reply.

While request-and-reply provides proof of delivery, it isablocking
transaction—the requestor waits until the reply arrives. While this situation
might be appropriate for a system that, for example, issues lottery tickets, it
might be preferable in other situations to have aformally established return
destination that echoes the original message and a correlation identifier—a
designated identifier that certifiesthat each reply isreferred to its original
requestor.

IMSReplyTo and JMSCorrelationlD are used as a suggested design pattern
established as a part of the IM S specification. The application programmer
ultimately decides how these fields are used, if they are used at all.

The sample applications use JM S sample classes, TopicRequestor and
QueueRequestor. You should create the Request/Reply helper classesthat are
appropriate for your application.

72

SonicMQ Programming Guide

Request and Reply Samples

Request and Reply (PTP)

In the PTP domain, the requestor application can be started and even send a
message before the replier application is started. The queue holds the message
until the replier isavailable. The requestor is still blocked, but when the
replier’'s message listener receives the message, it releases the blocked
reguestor. The sampl e codeincludes an option (-m) to switch the mode between
upper and lowercase.

0 To setup the PTP Request Reply sessions:

O Open two console windows to the QueuePTP\RequestReply folder.

0 To start the PTP Requestor session:
O In one console window, enter:
--\..\SonicMQ Requestor -u QREQUESTOR
0 To start the PTP Replier session:

O In the other console window, enter:
--\..\SonicMQ Replier -u QReplier
The default value of the mode is uppercase.

0 To testa PTP request and reply:

O IntheRequestor window, type AaBbcc and then press Enter.

TheRreplier window reflects the activity, displaying:
[Request] QRequestor: AaBbCc

The Replier doesits operation (converts text to uppercase) and sends the
result in amessage to the Requestor. The Requestor window gets the reply
from the Replier:

[Reply] Uppercasing-QRequestor: AABBCC

SonicMQ Programming Guide 73

Chapter 2: Examining the SonicMQ Samples

Request and Reply (Pub/Sub)

0 To setup the Pub/Sub RequestReply sessions:

O Open two console windows to the TopicPubSub\RequestReply folder.

O To start the Pub/Sub Replier session:

Important Start the replier before the requestor so that the Pub/Sub replier’s message
listener can receive the message and release the bl ocked requestor.

O

In one of the windows, type . .\..\SonicMQ Replier and press Enter.
The default value for mode will be used, uppercase.

O To start the Pub/Sub Requestor session:

O

In the other window, type . .\..\SonicMQ Requestor and press Enter.

0 To test a Pub/Sub request and reply:

O

In the Requestor window, type AaBbcc and then press Enter.

The replier window reflects the activity, displaying:
[Request] SampleReplier: AaBbCc

The replier does its operation (convert text to uppercase) and sends the
result in a message to the requestor. The regquestor gets the reply from the
replier:

[Reply] Uppercasing-SAMPLEREQUESTOR: AABBCC

Reviewing the Request and Reply Samples

In review, these samples show:

Request and reply mechanisms are very similar across domains.

While there might be zero or many subscriber replies, there will be, at
most, one PTP reply.

Using message header fields (aMsReplyTo and JmsCorrelationiD) and the
requestor sample classes (javax. jms.TopicRequestor and

Jjavax. jms.QueueRequestor) are suggested implementations for request-
and-reply behavior in IMS.

74

SonicMQ Programming Guide

Selection and Wildcard Samples

Selection and Wildcard Samples

While specific queues and topics provide focused content nodes for messages
that are of interest to an application, there are circumstances when the
programmer may want to qualify the scope of interest a consumer hasin
messages much like a SQL WHERE clause.

Conversely there are circumstances where the specificity of having to declare
each topic of interest becomes slow and unwieldy. Because topic names can be
created as needed (assuming there are no security constraints), a subscriber
application may need to scan many topics.

These situations are contrasted in these samples:

m If you force too much traffic into a small number of destinations and then
use selector strings, performance takes a substantial hit in most
deployments.

m If you use alot of topic names, SonicMQ’s hierarchical topic structure
bypasses alot of message selector overhead. The ability to apply wildcards
to subscriptions can provide oversight by just subscribing to parent topic
nodes.

SelectorTalk Application (PTP)

In the selectorTalk application, the application starts by declaring a selector
string-value that will be attached to the message as
PROPERTY_NAME=“String_value”. The send and receive to aternate queues so
that they pass each other messages. The receive method has a selector string
parameter (-s). In PTP domains, all messages for aqueue topic arefiltered on
the message server and then the qualified messages are delivered to the
consumer.

O To start SelectorTalk sessions:

1. Open aconsole window to the QueuePTP\SelectorTalk folder, then enter
--\..\SonicMQ SelectorTalk -u AAA -s North -gr SampleQl -gs SampleQ2

2. Open another console window to the QueuePTP\SelectorTalk folder, then
enter:
--\..\SonicMQ SelectorTalk -u BBB -s South -qr SampleQ2 -gs SamplQl

SonicMQ Programming Guide 75

Chapter 2: Examining the SonicMQ Samples

0 To SelectorTalk:
1. Inthe aaa window, type any text and then press Enter. The messageis

engueued but thereis no receiver. The BB selector string does not see any
enqueued messages except those that evaluate to south.

2. StoptheBBB session by pressing Ctrl+C.

3. Inthat console window start a new session, changing the selector string:
--\..\SonicMQ SelectorTalk -u BBB -s North -gr SampleQ2 -gs Sample gl

The session starts and the message that was enqueued is immediately
received.

4. Inthe aaa window, again type any text and then press Enter. The message
is enqueued and the BBB selector string qualifies the message for delivery.

SelectorChat Application (Pub/Sub)

Inthe selectorchat application, the application starts by declaring the string-
value that will be attached to the message as PROPERTY_NAME=+String_value”.

Themethod for the subscription declaresthe sampl € stopic, jms.samples.chat,
and the selector string (-s). In Pub/Sub domains, al messages for a subscribed
topic are delivered to the subscriber and then thefilter is applied to decide what
will be consumed.

O To start SelectorChat sessions:

1. Open aconsole window to the TopicPubSub\Selectorchat folder, then

enter:
--\..\SonicMQ SelectorChat -u Closer -s Sales

2. Open another console window to the TopicPubSub\Selectorchat folder,

then enter:
--\..\SonicMQ SelectorChat -u Presenter -s Marketing

O To SelectorChat:

1. Inthecloser window, type any text and then press Enter. Thetext isonly
displayedin that window. The Presenter selector string excludesthesales

message.

76 SonicMQ Programming Guide

Selection and Wildcard Samples

2. Inthe Presenter window, type any text and then press Enter. Thetext is
only displayed in that window. The closer selector string excludes the
Marketing message.

3. Stop thecloser session by pressing Ctrl+C.

4. Inthat console window start a new session, changing the selector string:
--\..\SonicMQ SelectorChat -u Closer -s Marketing

5. Typetext in either window and then press Enter. The text isdisplayed in
both windows. The selector string matches and the message displays.

Hierarchical Chat Application (Pub/Sub)

SonicM Q lets an application have the power of a message selector plusamore
streamlined way to often get the sameresult: A hierarchical topic structurethat
alowswildcard subscriptions. Inthis sample, each applicationinstance creates
two sessions, one for the publish topic (-t) and one for the subscribe topic (-s).

O To start HierarchicalChat sessions:

1. Open aconsole window to the TopicPubSub\HierarchicalChat folder then
type

--\..\SonicMQ HierarchicalChat -u HQ -t sales.corp -s sales.*
and press Enter.

2. Open another console window to the TopicPubSub\HierarchicalChat
folder.

3. Type
.-\..\SonicMQ HierarchicalChat -u America -t sales.usa
-s sales.usa and press Enter.
O To HierarchicalChat:

1. Inthe HQ window, type text and then press Enter. The text isdisplayed in
only the HQ window becauseit subscribesto all topicsinthe saleshierarchy
and Americais subscribing to only the sales.usatopic.

2. Inthe America window, type text and then press Enter. The text is
displayed in both windows:

— America subscribes to the sales.usa topic.

— HQ subscribesto all topics that start with “sales.”.

SonicMQ Programming Guide 77

Chapter 2: Examining the SonicMQ Samples

Reviewing the Selection and Wildcard Samples

While sdlector strings can provide avariety of waysto qualify what messages
will be carried to a consumer, the overhead in the evaluation of the selectors
can dow down overall system performance. Hierarchicalchat illustrates a
feature of SonicMQ that can provide the advantages of selectors with minimal
overhead. Note also that security access control uses similar wildcard
techniques to enable read/write security for al subtopics within atopic node.

Another way to increase specificity isto use complex SQL statements. For
information on hierarchical security, including hierarchical name spaces and
security, see the SonicMQ Installation and Administration Guide.

Test Loop Sample

A simple loop test lets you experiment with messaging performance.

QueueRoundTrip Application (PTP)

The RoundTrip application sends a brief message to a sample queue and then
uses atemporary queue to receive the message back. A counter isincremented
and the message is sent for another trip. After completing the number of cycles
you entered when you started the test, the run completes by displaying
summary and average statistics.

O To run QueueRoundTrip:

1. Open a console window to the QueuePTP\QueueRoundTrip folder.

2. Enter:
--\..\SonicMQ QueueRoundTrip -n 100

3. Look at the results.

4. Enter:
--\..\SonicMQ QueueRoundTrip -n 1000

Note Thissample lets you evaluate features and is not intended as a performance
tool. For information on performance, see the SonicMQ Deployment Guide.

78 SonicMQ Programming Guide

Extending the Samples

Extending the Samples

After exploring the samples you can modify the sample source filesto learn
more about SonicM Q. You heed a Java compiler to compile your changes.

Use Common Topics Across Clients

Important

When you run the Pub/Sub samples you might notice that while all the chat
applications get chat messages and all the burablechat applications get
DurableChat messages, they do not receive each other’s messages. Thisis
because the applications are publishing to different topics. You can set the two
applications to monitor messages on the same topic.

To put Chat and DurableChat on the same topic:

1. Edit the SonicMQ samplefile burableChat. java.

2. Changethevariable App_ToPIC from jms.samples.durablechat
to jms.samples.chat.

3. Save and compilethe edited . java file.
4. Runthe edited .class file.

Now messages sent from burableChat and chat are received by both regular
and durable subscribers. The durable subscribers will receive messages when
they recover from offline situations, but the regular subscriberswill not recover
missed messages.

If you make this change, the message server will maintain the durable
subscriptions for al the chat messages. While burableChat messages expire
after 30 minutes, chat messages are published with the default time-to-live
(never expire). The chat messageswill endure for durable subscribersuntil one
of the following occurs:

- The durable subscriber connects to receive the messages.

- The durable subscriber explicitly unsubscribes.

- The database isinitialized.

SonicMQ Programming Guide 79

Chapter 2: Examining the SonicMQ Samples

Trying Different RoundTrip Settings

TheRoundTrip application lets you choose anumber of produce-then-consume
iterations to perform when the application runs. You can enhance the
application to explore the timeimpact of other settings and parametersaswell.

Note This sample lets you evaluate features and is not intended as a performance
tool. For information on performance, see the SonicMQ Deployment Guide.

A counter isincremented and the message is sent for another trip. After
compl eting the number of cyclesyou entered when you started thetest, therun
completes by displaying summary and average statistics.

0 To extend the QueueRoundTrip sample:

1.

a > w

Edit the SonicMQ sampl e file QueuePTP\QueueRoundTrip. java to establish
any of the following behavior changes:

m Changethe javax. jms.message.DeliveryMode from NON_PERSISTENT tO
PERSISTENT. Run it then change it to NON_PERSISTENT_ASYNC.

m Youcould changethepriority Or timeToLive Valuesbut in this sample
the effect would be negligible.

m Change the message type from the bodyless createMessage() t0 a
bodied message type, such as createTextMessage().

m Create aset of sample strings (or other appropriate data type) to
populate a bodied-message payload with different size payloads.

m UsecreatexmLMessage() and load the message payload with well-
formed XML data. Then try the same payload as a TextMessage.

m Change the receiver session acknowledgement mode from
AUTO_ACKNOWLEDGE tO DUPS_OK_ACKNOWLEDGEMENT. Change it again to
CLIENT_ACKNOWLEDGE OF SINGLE_MESSAGE_ACKNOWLEDGE then add an
explicit acknowledge() after the receive is completed.

Save and compile the edited . java file.
Open a console window to the QueuePTP\QueueRoundTrip folder.
Type ..\..\SonicMQ QueueRoundTrip -n 100

Look at the results and compare them to other round trips.

80

SonicMQ Programming Guide

Extending the Samples

Modifying the MapMessage to Use Other Data Types

The concept of the MapM essage sample is limited when its content isjust a
snippet of text. The key concepts of the MapM essage are that:

m Thebody isacollection of name-value pairs.

m Thevalues can be Java primitives.

m Thereceiver can access the namesin any sequence.

m Thereceiver can attempt to coerce avalue to another data type.

The following exercise adds some mixed data types to the mapTalk source file
before the message is sent. Then the receiver takes the datain a different
sequence and formats it for display.

The exampl e uses typed set methods to popul ate the message with name-
typedValue pairs. The get methods retrieve the named properties and attempt
coercion if the datatypeis dissimilar.

0 To extend the MapTalk sample to use and display other data types:
1. Edit the SonicMQ sample file MapTalk. java at the lines:

Javax.jms._MapMessage msg = sendSession.createMapMessage();
msg.setString(''sender'™, username);
msg.setString("content", s);

2. Add thelines for the set methods (or your similar lines):

msg.setint("FiscalYearEnd", 10);
msg.setString("'Distribution', "global™);
msg.setBoolean(*'LineOfCredit", true);

3. You must extract the additional data by get methods to expose the values
in the receiving application. Because the sample is atext-based display,
you can include the getstring methods in the construction of the string
that will display in the console.

Change:
String content = mapMessage.getString(‘‘content');

System.out.printIn(sender + “: “ + content);

SonicMQ Programming Guide 81

Chapter 2: Examining the SonicMQ Samples

to:

String content =
("Content: " + mapMessage.getString(‘‘content’™) + '"\n" +
"Distribution: " + mapMessage.getString(''Distribution'™) + "\n" +
"FiscalYearEnd: " + mapMessage.getString('FiscalYearEnd'") + '"\n"" +
"LineOfCredit: " + mapMessage.getString(*'LineOfCredit'™) + "\n"");
System.out._printIn(‘'MapMessage from ' + sender +

"\N--——— - \n" + content);
4. Save and compile the edited . java file.

5. Runtheedited .class file.

Now when the MapTalk sample runs, the content is the text you typed plus the
mapped, resequenced, and converted map properties.

7% PubSub Samples - .\ .\SonicMB MapTalk -u BLocal_Supplier -qr SampleQ?2 -gs Sample@1

MapMessage from Accounting

Content: Here is the String, int, and boolean as text.
Distribution: global

FiscalYearEnd: 10

LinedfCredit: true

[«] | il

Modifying the XMLMessage to Show More Data

The samplefor the xMLmessage typeislimited to the datathat isinput astext as
asingle content node. While the data collection/validation loops and the data
transfersfrom application data stores are reserved as more advanced exercises,
this example demonstrates how well-formed XML datais transformed into
DocNodes from the org.w3c._dom.Node Standards.

82 SonicMQ Programming Guide

Extending the Samples

O To extend the XMLChat sample to show more data:

1. Edit the SonicMQ sample file xvLchat. java starting after:

// Note that the XMLMessage is a Progress Software extension
progress.message. jclient.XMLMessage xMsg =

StringBuffer msg = new StringBuffer();

msg - append
msg -append
msg -append
msg - append

('<?xml version=\"1.0\"?>\n"");
("'<message>\n"");

(" <sender> + username + “</sender>\n");
(" <content> + s + “</content>\n");

Insert the formatted, tagged XML lines you want to append to the
message, for example:

msg.append ("'<RFP>\n"");

msg.-append ("'<REQUEST>\n"");

msg.append ("'<REQ_1D>1125-2000-225</REQ_ID> \n"");
msg.append (''<FOB>Portland Maine</FOB> \n");
msg.-append ("'<RFP_DUE>31-JAN-2000</RFP_DUE> \n');
msg.append ('<DELIVERY_DUE>15-AUG-2000</DELIVERY_DUE> \n"");
msg.-append (''<CATEGORY>Grains</CATEGORY> \n'");
msg.-append ("'<LINE_ITEMS>\n"");

msg.-append ("'<LINE>\n"");

msg.-append ("'<ITEM>1125-2000-225.1 Wheat</ITEM> \n'");
msg.append ("'<QTY>10000 tons</QTY>\n"");

msg.append ("'</LINE> \n"");

msg.-append ("'<LINE>\n"");

msg.append ("'<ITEM>1125-2000-225.2 Rice</ITEM> \n"");
msg.-append ('<QTY>20000 tons</QTY>\n"");

msg.append ("'</LINE>\n"");

msg.-append ("'<LINE>\n"");

msg.append ("'<ITEM>1125-2000-225.3 Corn</I1TEM> \n"");
msg.-append ('<QTY>40000 tons</QTY> \n');

msg.-append ('</LINE> \n'");

msg.-append (''</LINE_ITEMS> \n"");

msg.-append (''</REQUEST> \n"");

msg.append ("'</RFP> \n"");

msg.append (‘'</message> \n'");

3. Save and compilethe edited . java file.
4. Runthe edited .class file.

SonicMQ Programming Guide 83

Chapter 2: Examining the SonicMQ Samples

When you run the application and enter a basic text message, the complete
document object model (DOM) is aso displayed, similar to the subscriber

session listing in Figure 13.

ELEMENT: message

| -—NEWLINE
+——ELEMENT: RFP
| -—HEWLINE
+--ELEMENT: REQUEST
| -—NEWLINE

+-—ELEMENT: REQ_ID

| -—-TEXT_NODE =
+——ELEMENT : FOB

| --TEXT_NODE =
+-—-ELEMENT: RFP_DUE

| --TEXT_NODE :
+——ELEMENT: DELIVERY_DUE
| ——TEXT_NODE:

+-—-ELEMENT: CATEGORY
| --TEXT_MNODE: Grains

| -—-TEXT_NODE =
+——ELEMENT: LINE_ITEMS
| -—-NEWLINE
+-—-ELEMENT: LINE
| --NEWLINE
+-—-ELEMENT: ITEM
| -——TEXT_NODE :
| --TEXT_NODE:

+--ELEMENT: QTY

| --TEXT_NODE :
| -—NEWLINE
| --TEXT_NODE :
+-—-ELEMENT: LINE
| -—NEWLTINE
+-—-ELEMENT: ITEM
| -——TEXT_NODE :
| --TEXT_NODE:
+-—-ELEMENT: QTY
| --TEXT_NODE :
| -—NEWLINE
| -—-NEWLINE
+-—-ELEMENT: LINE
| --NEWLINE
+——-ELEMENT: ITEM
| ——TEXT_NODE :
| --TEXT_NODE:

+-—ELEMENT: QTY
| -—-TEXT_NODE :
| --TEXT_NODE =
| --TEXT_NODE :
| -—-TEXT_NODE =
| -—-TEXT_NODE =
| --TEXT_NODE :
+——ELEMENT: sender
| --TEXT_NODE: UNICEF
| -—NEWLINE
+-—ELEMENT: content
|-—HEWLINKE

4] |

MQ XMLChat -u Central

<ML from 'UNICEF"] Mew RFP, issued 11-NOW-1999 11:15 AM

| --TEXT_NODE: 1125-2000-225

| --TEXT_NODE: Portland Maine

| -—TEXT_NODE: 31-JAN-2000

| --TEXT_NODE: 15-AUG-2000

1125-2000-225.1 Wheat

10000 tons

1125-2000-225.2 Rice

20000 tons

1125-2000-225.3 Corn

40000 tons

| --TEXT_NODE: New RFP, issued 11-NOV-1999 11:15 AM

o

Figure 13. XMLMessage Parsed into a Document Object Model

84

SonicMQ Programming Guide

Extending the Samples

Asthedataisinterpreted in the DOM format only when the message is an
instance of an xMLMessage, achat session would display the same message asa
TextMessage—the XML -tagged text without DOM interpretation, as shownin

Figure 14.
% samples TopicPubSub - _._ASonicMQ Chat -u Just_Text _ O] x| I
<?xml wversion="1.0" 7> =
cmessages
<RFP>

<REQUEST> J
<REQ_ID>1125-2000-225</REQ_ID>

<FOB»Portland Mainec</FOB>
<RFP_DUE>31-JAN-2000</RFP_DUE>
<DELIVERY_DUE>15-AUG-2000</DELIVERY_DUE>
<CATEGODRY>Grains < /CATEGDRY>
<LINE_ITEMS>»

<LINE>

<ITEM>1125-2000-225.1 Wheat</ITEM>
<QTY>10000 tons</QTY>

«/LINE>

<LINE>»

<ITEM>1125-2000-225.2 Ricec</ITEM>»
«<QTY> 20000 tons</QTY>

</LINE>

<LINE>

<ITEM>1125-2000-225.3 Corn</ITEM>»
<QTY>40000 tons</QTY>

< /LINE>

</LINE_ITEMS>»

</REQUEST>

</RFP>

¢sender>UNICEF </sender>

ccontent>New RFP, issued 11-NOV-1999 11:15 AMc</content:
</messagex

- -
4| | L4 ¥

Figure 14. XMLMessage as Tagged Text

Note You could have appended the XML tagged lines lines without the \n. That
would suppressthe blank TexT_mopEe linesinthe DOM. It would however make
one unbroken text line for general text or raw XML review.

Using Samples with Security Initialized

The sampl e database can be set up with security so that users can be authorized
and authenticated for both general accessto the message server yet also for
permissions to read from and write to destinations.

Warning All datathat you have previously put into the database will be lost.
See the SonicMQ Installation and Administration Guide for information about
enabling security, starting administrator tools, and adding users.

SonicMQ Programming Guide 85

Chapter 2: Examining the SonicMQ Samples

0 To set up the security database under Windows:

1.

o o > W

Close all active clients and then stop the message server.

Edit the file broker . ini at the root level of your SonicMQ installation to
modify the variable ENABLE_SECURITY from FALSE tO TRUE.

Open a console window to the SonicMQ install directory.

Type bin\dbtool /d b s and press Enter.

Type bin\dbtool /cs basic and pressEnter.

Type bin\dbtool /c security and pressEnter.

Start the message server again. Notice that security isimplemented.

Try the chat sample with the sample name oTc_Ticker. It isrefused
because the only default user in anew security database is Administrator.

0 To set up the security database under UNIX:

1.

o o > w

Close all active clients and then stop the message server.

Edit the file broker. ini at the root level of your SonicMQ installation to
modify the variable ENABLE_SECURITY from FALSE tO TRUE.

Open a console window to the SonicMQ install directory.

Type ./bin/dbtool -d b s and press Enter.

Type ./bin/dbtool -cs basic and press Enter.

Type ./bin/dbtool -c security and pressEnter.

Start the message server again. Notice that security isimplemented.

Try the chat samplewith the sample nameoTc_Ticker.lt isrefused because
the only default user in a new security database is Administrator.

With security implemented, only user names in the security database can
access the message server. Only the Administrator can maintain user records.

86

SonicMQ Programming Guide

Extending the Samples

O To set up Users with the Explorer

1

7.

2
3
4.
5
6

In the SonicM Q Explorer, choose M essage Brokers.

Enter the Broker Host, typically 1ocalhost:2506.

. Type any text as the ConnectiD.

Type Administrator as the User and again as the Password.

. Click Connect.

. Choose Users.

For each user you want to set up:
7.1 Inthe User Maintenance area, click New.
7.2 Type the user name, for example 0TC_Ticker.
7.3 Type a password—for example, otc—then confirmit.

7.4 Click Update.

0 To access a secured message server as an authentic user:

1.

2.

Try the chat sample with a username you set up.
Append the password parameter and the selected user’s password.

For example, the command to start chat before using security is:
--\..\SonicMQ Chat -u OTC_Ticker

The command to start chat under security is:

--\..\SonicMQ Chat -u OTC_Ticker -p OTC

The authenticated user is accepted and the application starts.

When you have finished evaluating security you can resume working with the
sampl e applications, but you will have to:

Enter every user name into the security database.

Assign a password to each user.

Use the password parameter and the password on every application.

SonicMQ Programming Guide 87

Chapter 2: Examining the SonicMQ Samples

Removing Security from the Database

After exploring the security database with the sample applications, you can re-
initialize the database to eliminate the security database.
0 To set up the database without security under Windows:
1. Close all active clients and stop the message server.

2. Edit thefile broker.ini at the root level of your SonicMQ installation to
modify the variable ENABLE_SECURITY from TRUE tO FALSE.

3. Open aconsole window to the SonicMQ install directory.

4. Type bin\dbtool /d b s and press Enter. The basic tables and security
tables are del eted.

5. Type bin\dbtool /cs basic and press Enter. The basic tables are created
with the sample queues.

0 To set up the database without security under UNIX:
1. Close all active clients and stop the message server.

2. Edit thefile broker.ini at the root level of your SonicMQ installation to
modify the variable ENABLE_SECURITY from TRUE tO FALSE.

3. Open aconsole window to the SonicMQ install directory.

4. Type ./bin/dbtool -d b s and press Enter. The basic tables and security
tables are deleted.

5. Type ./bin/dbtool -cs basic and press Enter. The basic tables are
created with the sample queues.

When you restart the message server, notice that security is disabled.

See the SonicMQ Installation and Administration Guide for moreinformation
about security and the dbtool.

88 SonicMQ Programming Guide

Chapter 3 SonicMQ Client Sessions

About Client Sessions

The SonicMQ Javaclient provides alightweight, 100% Java platform that can
access the messaging features provided by the SonicM Q message servers. In
the IM S programming model, a programmer creates JM S connections that
establish the application’s identity and specify how the connection with the
message server will be maintained.Within each connection, one or more
sessions are established. Each session is used for a unique delivery thread for
messages that are delivered to the client application.This chapter presents the
programming required to establish and maintain client connectionsto message
servers through sessions.

Identifiers

SonicM Q uses several identifiers to differentiate and distinguish application
registrations. The following information describes the primary identifiers—
connectlID, username, clientlD, and subscriptionName—and how they are used

in messaging.

ConnectID

The connectID is a SonicMQ identifier that can control whether the message
server allows multiple connections for auser in aclient application:

m To assure that aconnection for auser name is exclusive such that no other
connection can use that username/Connectid combination until the

SonicMQ Programming Guide 89

Chapter 3: SonicMQ Client Sessions

connection is closed, use the appropriate set method and pass a non-null
string:

— TopicConnectionFactory.setConnectID(String connectid)

— QueueConnectionFactory.setConnectID(String connectid)

= To alow other connections for a username/ConnectID, use the appropriate
set method and pass the null string as the parameter:
— TopicConnectionFactory.setConnectID(*”)
— QueueConnectionFactory.setConnectID(*"")

ConnectID can aso be configured as part of aconnectionFactory, Or passed as
an argument to a SonicM Q Connection object constructor.

User Name

A user name (and password) defines a principal’s identity maintained by the
SonicM Q message server’s security database to authenticate a user with the
SonicM Q message server and establish privileges and access rights.

When security is not enabled, the user name is simply atext label.

A user name can be:

m Configured in a Connection Factory or passed as a parameter to the
constructors:

— progress.message.- jclient._TopicConnectionFactory
— progress.message. jclient.QueueConnectionFactory

m Passed as a parameter to the methods:

— createTopicConnection(username, password) Of the
TopicConnectionFactory Object

— createQueueConnecton(username,password) Of the
QueueConnectionFactory object

ClientID

ThecrientlID isaunique identifier that can avoid conflicts for durable
subscriptions when many clients might be using the same user name and the
same subscription name.

90 SonicMQ Programming Guide

About Client Sessions

To set the value of the clientlDb, do one of the following:

= Intheclient application, programmatically set the client identifier
immediately after creating a connection, using:

Connection.setClientID(string clientid)
= Inaconnection factory, pre-configure the client identifier by either:
— Using the SonicM Q Explorer or Admin tool to configurethe ClientID.

— Intheclient application, use the appropriate set method:
— TopicConnectionFactory.setClientID(String clientid)
— QueueConnectionFactory.setClientID(String clientid)

Note If the connection factory has configured the client identifier, an attempt to
setClientID() programmatically on the connection throws an
11 legalStateException.

Subscription Name

A subscription name aways includes the name of the topic. To distinguish
different message selectors used in subscriptions, you can include a string
which helps identify the message selector. For example, you can use a
subscription named Atlas_priority4 for asubscription to the Atlas topic with
selector JMsPriority=4. This construct lets you create many durable
subscriptions that are easily understood and non-conflicting.

The durabl e subscription identity is then constructed from and indexed on:
m username — The user name used for log on authorization or identity
m clientIlD — Theinstance identifier in an application

m subscription name — Theidentity of the selection criteriain the
subscription

SonicMQ Programming Guide 91

Chapter 3: SonicMQ Client Sessions

Communication Layer

The SonicMQ message server works in concert with the network layer to
provide asynchronous message communications between client applications.
Asshown in Figure 15, a client can send and receive messages through the
SonicMQ API and interfaces to communicate on network connection to a
message server. Messages might be stored in a message store as an optional
service specified by the message producer.

A Client Client 1
!]
[} API/IDL API/IDL]
!]
i T
|Communications Communications=
1 A
1 Network s
[}
1 J Message Server *

A A

L

 J A J

Persistent Message Store

Figure 15. Client - Message Server - Client Communications

The connection layer, as shown in Figure 16, involves getting a connection
factory, then creating connections, and finally creating sessions.

ConnectionFactory

Figure 16. Sessions in Connections from Connection Factories

92 SonicMQ Programming Guide

Communication Layer

Each instance of a ConnectionFactory is dedicated to only one of the
messaging models:

m Point-to-Point (PTP) — Messaging is one-to-one because only one
receiver will get the message. Messages are placed on queues where they
endure until areceiver takes delivery and acknowledges receipt.

m Publish and Subscribe (Pub/Sub) — Messaging is one-to-many or
broadcast because there could be zero-to-many subscribers for a given
topic who will each receive the one message that was sent. If no
subscribers expressed an enduring interest in a message topic, a message
is discarded.

ConnectionFactory

The normal mechanism for establishing a Java connection expectsa Javaclient
to create a ConnectionFactory with a message server and request
authorization to establish a connection for messaging with the behaviors of one
of the messaging models. The TopiicConnectionFactory and
QueueConnectionFactory are administered objects that encapsulate a set of
configuration parameters. The parameters can be assembled at the moment
when the application wants to instantiate the object or stored by an
administrator in an object store for later recall.

See the SonicMQ Installation and Administration Guide for information about
administering a ConnectionFactory.

The optional mechanisms for creating a ConnectionFactory are discussed in
detail in the following sections.

Lookup a Stored Context

When an administrator stores the connection parameters as a context,
applications can simply access the currently stored values for the named
context to connect in a predictable way. The SonicMQ Explorer and Admin
tool can explicitly set up a ConnectionFactory configuration. The resulting
ConnectionFactory isthen stored as an administered object in asmplefilestore
and then referenced indirectly (by hame) to provide the context.

SonicMQ Programming Guide 93

Chapter 3: SonicMQ Client Sessions

Lookup a Serialized Object in a File Store

Figure 17 diagrams the lookup in afile store at a specified path location. An
administrator stores serialized Javaobjectsasflat fileswith sjo extensions. The
files can then be retrieved with a ConnectionFactory context object reference.

Lookup file for "aName.sjo" -
- Get QueueConnection Object containing: Simple File Store
SonicMQ host:port, user, password, options Message
Client connect host:port, user, password, options Server
host:port
—F Connection

Figure 17. ConnectionFactory Object Instantiated By Lookup of a Serialized Java Object

Lookup on a JNDI LDAP Server

A dispersed system might prefer to use a directory server such as LDAP with
lookup through JNDI interfaces. The advantageto thistechnology isthat server
records can be maintained remotely and accessed by widely dispersed
applications.

PROVIDER_STRING InitialDirContext cn="aName"
> JNDI
-t - - : ;
Gets QueueConnection Object context for ’aName
SonicMQ containing: host:port, user, password, options Message
Client . Server
connect host:port, user, password, options host:port

—! Connection

Figure 18. Alternate Connection Techniques Using Factory Objects or JNDI Lookup

Thistype of lookup submits a value to the LDAP provider with an indexed
context name. In Figure 18 the context name aName is submitted as cn=aName to

the server.

94 SonicMQ Programming Guide

Communication Layer

The lookup requeststhe initial context factory from a specified
PROVIDER_STRING Such as:

"ldap://mypc.a.sonicmg.com:389/ou=jmsao,ou=sonicMQ,o=a.sonicmg.com"

The JNDI interfacesin javax.naming provide

directory. InitialDirContext GetContext() for theinitial context factory
under com.sun.jndi . Idap.LdapCtxFactory wWhich then returnsthe current
context values. These are then submitted to theindicated message server where
the appropriate ConnectionFactory is created.

See Chapter 12, “Lookup of Administered Objects,” for more information.

Direct Creation of the ConnectionFactory Object

An application can use the SonicMQ API new constructor to create a
ConnectionFactory object. This method usually hard wires many default
values into the compiled application, expecting that any overrides to the
settingswill beread inthrough a propertiesfile or command-line optionswhen
the application is started.

factory = (new QueueConnectionFactory ("host:port")

SonicMQ |*¢ age
Client connect = factory.createQueueConnection (username, password) Server
host:port
; Connection

Figure 19. Using a Constructor to Create a ConnectionFactory Object

The syntax for instantiating the object class in each of the two messaging

modelsis:
PTP: Javax. jms.QueueConnectionFactory factory =
(new progress.message-jclient.QueueConnectionFactory
(parameters);

Pub/Sub: javax.jms.TopicConnectionFactory factory =
(new progress.message.jclient_TopicConnectionFactory
(parameters);

SonicMQ Programming Guide 95

Chapter 3: SonicMQ Client Sessions

There are several supported constructors for creating a ConnectionFactory
object in each messaging domain. The constructors use combinations of the
URL, connectID, username and password parameters.

The parameters of a constructor for an instance of a ConnectionFactory object
in both PTP and Pub/Sub domains areidentical:

URL —The Uniform Resource Locator of the message server where the
connection isintended (in the form [protocol : //]hostname[: port]).
where:

— protocol isthe message server’s communication protocol
([HTTP | SSL | TCP 1).

— hostname isanetworked SonicM Q server machine (or localhost if the
client and server are on the same machine).

— port isthe port on the host where the message server islistening. The
message server’s default port value is 2506.

connectlD — The ConnectiD isa SonicMQ identifier that can control
whether the message server allows multiple connections under auser-name
and ConnectID combination:

— If the ConnectlD is not null, only one connection with that particular
user-name and ConnectlD can be established.

— If theconnectlID isnull, any number of connections can be established
with the same username.

You might create a Connectl1D by combining the username with some
additional identifier.

username and password — The user authentication that is enforced when
the security database is active. These parameters are optional. When both
parameters are omitted, they both default to <, an empty string.

Under the SSL protocal, client authentication can be achieved by retrieving
the username from the client certificate. In that case you simply pass the
special-purpose username AUTHENTICATED. The password isignored.

96

SonicMQ Programming Guide

Communication Layer

Note When user identification isomitted when creating aconnection, the connection
uses the default values from the ConnectionFactory. If true authentication with
the security database isimplemented and the user nameisinvalid, a
jJavax. jms.JIMSSecurityException iSthrown.

You can use the common name from a certificate when you use SSL mutual
authentication. See the SonicMQ Deployment Guide for more about SSL and
security.

Load Balancing and Failover Lists

Your client applications can create failover and load-balanced connections to
message servers using options set in ConnectionFactory objects. See JavaDoc
for the factories for more information.

O To implement failover:

1. Create acomma-separated list of server URLs. The client will attempt to
connect to serversin thislist.

2. Add a statement where factory.setConnectionURLs(serverList) pointsto
the text list you created. The client will connect to the first available
message server on the list, overriding the urL parameter in the
QueueConnectionFactory Of TopicConnectionFactory constructor which

specifies a single message server.

3. Add a statement where factory.setSequential(boolean) sets whether to
start with the first name in the list (true) or arandom element (false).

O To implement load balancing:

O Add astatement where factory.setlLoadBalancing iS Set to true in your
application.

With client-side load balancing enabled, a connect request can re-directed
to another message server within a SonicMQ cluster, provided |oad-
balancing has not been disabled on the server side.

SonicMQ Programming Guide 97

Chapter 3: SonicMQ Client Sessions

0 To check failover settings:

1. Inan application, add a statement with factory.getConnectionURLs() tO
return the server list.

2. Add a statement with factory.getSequential () to return the boolean
indicator of whether thelist is used sequentially or randomly.

0 To check load balancing settings:

1. Inan application, add a statement with factory.getLoadBalancing() to
return the boolean indicator of whether load-balancing is enabled by the
client.

2. Get the URL of the server that the client connects to as aresult of load
balancing by calling getBrokerURL() on the connection object, not the
factory object.

Connection

After instantiating a ConnectionFactory object, the factories’ create methods
are used to create a connection. The first action aclient must take isto identify
and establish connection with amessage server. Thefollowing constructorsuse
a connection factory object to get the connection.

Important An application should not use a Java constructor to create connections directly.

createQueueConnection

A QueueConnection IS an active PTP connection to a SonicM Q message server.
A client application will use the QueueConnection to create one or more
QueueSessions, the threads for sending messages to a specified queue and
receiving messages from specified queues.

98 SonicMQ Programming Guide

Communication Layer

There are two variants of the create method:

m Usethe default user name and password:
connect = factory.createQueueConnection ()

m Supply the preferred user name and its authenticating password:

connect = factory.createQueueConnection
(String user-name, String password)

createTopicConnection

A TopicConnection is an active Pub/Sub connection to a SonicMQ message
server. A client application will use the TopicConnection to create one or more
TopicSessions, the threads for publishing messages and receiving messages
from subscribed topics. There are two variants of the create method:

m Usethe default user name and password:
connect = factory.createTopicConnection ()

m Supply the preferred user name and its authenticating password:

connect = factory.createTopicConnection
(String user-name, String password)

Connection Retry

You can write a connection retry process that lets the thread sleep for a
specified time before retrying the connection. The following exampleisaretry
of a queue connection:
try

System.out.printin("'Attempting to create connection...');

connect = factory.createQueueConnection (username, password);
} catch (Javax.jms.JMSException jmse)
{

System.out.print(*'Cannot connect to server: " + server + "_. ');
System.out.printin
("Pausing " + CONNECTION_RETRY_PERIOD / 1000 + *
seconds before retry.');

try
Thread.sleep(CONNECTION_RETRY_PERIOD);

¥
catch (Java.lang. InterruptedeException ie) { }
continue;

SonicMQ Programming Guide 99

Chapter 3: SonicMQ Client Sessions

Session

A JMS Session represents a single thread of activity. All actual messaging is
done through the session object. Each message handler is associated with a
single session (there could be multiple message handlersin a session, or none
a al). A session is associated with the Connection object.

The session interface available is determined by the messaging paradigm
chosen for the connection. The syntax for creating a session on an established
connection is:

= Point-to-Point

Javax. jms.QueueSession createQueueSession
(boolean transacted, int acknowledgeMode)

s Publish and Subscribe

Javax. jms.TopicSession createTopicSession
(boolean transacted, int acknowledgeMode)

where:
m transacted — [true | false] if true, the session will be transacted.

m acknowledgeMode —[AUTO_ACKNOWLEDGE | CLIENT_ACKNOWLEDGE |
SINGLE_MESSAGE_ACKNOWLEDGE | DUPS_OK_ACKNOWLEDGE]

Indicates whether the consumer or the client will acknowledge any
messages it receives.

The parameters of the session are qualified so that when asession istransacted,
the acknowledgementMode isignored (even though required). Similarly,
acknowledgementMode has no effect when a session isonly producing messages.

Explicit Acknowledgement

While all IMS messages support using the acknowledge() method, only some
session modes allow a message to be explicitly acknowledged.

The effect of explicit acknowledgement is:

m When the session acknowledgement mode is CLIENT_ACKNOWLEDGE, all
messages previously received by the session are acknowledged.

100

SonicMQ Programming Guide

Communication Layer

m When the session acknowledgement mode iS SINGLE_MESSAGE_ACKNOWLEDGE,
only the current message is acknowledged.

» When the session acknowledgement mode is AUTO_ACKNOWLEDGE, callsto
acknowledge() areignored.

» When the session acknowledgement modeisbuPS_OK_ACKNOWLEDGE, callsto
acknowledge() are ignored.

m When the session is transacted, callsto acknowledge() areignored.

Acknowledgement Mode

Communication between the message server and the message consumer
involves an indication of receipt of the message. One of the following
acknowledgement modes is enforced for all messagesin a session:

m AUTO_ACKNOWLEDGE — The session automatically acknowledgesthe client’s
receipt of a message by successfully returning from acall to receive
(synchronous mode) or when the session MessageL istener successfully
returns (asynchronous mode). The last message might be redelivered.

m CLIENT_ACKNOWLEDGE — An explicit acknowledge() On a message
acknowledges the receipt of all messages that have been produced and
consumed by the session that gives the acknowledgement. When a session
is forced to recover, it restarts with its first unacknowledged message.

m SINGLE_MESSAGE_ACKNOWLEDGE — An explicit acknowledge() 0N a message
acknowledges only the current message and no preceding messages. This
modeis a SonicMQ extension to the IM S standard.

m DUPS_OK_ACKNOWLEDGE — Thesession “lazily” acknowledgesthe delivery of
messages to consumers, possibly alowing some duplicate messages after
asystem outage.

Warning While acknowledgement sets standards for delivery from the client to the
message server, thereis no reply to the sending application. If an application
requires areply to the sender, use the JmMsreplyTo header field to indicate the
request and program your application to respond to this header field. The
requestor can also append a correlation identifier that will ensure that the reply
matches its request.

SonicMQ Programming Guide 101

Chapter 3: SonicMQ Client Sessions

Recover

A client might build up alarge number of unacknowledged messages while
attempting to process them. A session’s recover() method is used to stop a
session and restart it with its first unacknowledged message.

A recover() action event tells SonicMQ to stop message delivery in the
session, set the redelivered flag on unacknowledged messagesit will redeliver
under the recovery, and then resume (“playback”) delivery of messages,
possibly in adifferent order than originally delivered.

The need for the recover() method is most apparent when the
acknowldegement mode IS CLIENT_ACKNOWLEDGE Of
SINGLE_MESSAGE_ACKNOWLEDGE.

Transacted Sessions

When asessionistransacted, that session will combine agroup of oneor more
messages with client-to-message server ACID properties.
Atomic, Consistent, Isolated, and Durable.

When a session istransacted, message input and message output are staged on
the message server system but not completed until you call the method to
complete the transaction. Completion of atransaction, determined by your
code, does one of the following:

. Commit — The series of messages is sent to consumers.
m Roll Back — The series of messages (if any) is destroyed.

The completion of asession’s current transaction automatically beginsthe next
transaction. Transacted sessions impact producers and consumersin the ways
described in Table 5.

Table 5. Transacted Session Events by Message Role

Role commit() rol Iback()

Producer Send the series of messages | Dispose of the series of produced
staged since the last call. messages staged since the last call.

Consumer Dispose of the series of Redeliver the series of received
messages received since the | messagesretained sincethelast call.
last call.

102

SonicMQ Programming Guide

Session Objects

When arollback is done in asession that is both sending and receiving, its

produced messages are destroyed and its consumed messages are
automatically recovered.

To check whether asession istransacted usethe getTransacted() method. The
return valueis true if the session isin transacted mode.

Session Objects

The primary session objects allow access to the destinations, producers,
consumers, and messages that are used in the session, as shown in Figure 20.

EF

-B--

Figure 20. Primary Session Objects

Figure 21 shows the types of message objects that are created from session
methods. The message types are common and extended into both IMS

SonicMQ Programming Guide 103

Chapter 3: SonicMQ Client Sessions

domains. Note that the xMLMessage typeisuniqueto SonicMQ and is an
extension of the TextMessage type.

\ Message \

% BytesMessage ‘
% MapMessage \
% ObjectMessage \

—+ StreamMessage |

% TextMessage }—+ XMLMessage

Figure 21. Types of SonicMQ Message Objects

create [Destination]

Destinations are administered objects that can be controlled by an
administrator and can be retrieved through JNDI or other object storage
mechanisms.

See “ IMS Administered Object Sores’ in the SonicMQ Installation and
Administration Guideto learn how the SonicM Q Explorer allowsyou to create
destinations in both INDI and file stores.

The destination object created can be a queue or atopic.

Point-to-Point: createQueue
Javax. jms.QueueSession queue = session.createQueue(queueName)

where:
m queueName — A String hame that has been established in the message

server message store. |f security is defined for queues, the user might
be constrained from reading or writing to a queue.

104 SonicMQ Programming Guide

Session Objects

Publish and Subscribe: createTopic
Javax.jms._TopicSession topic = session.createTopic(topicName)

where:

m topicName — An arbitrary String name for the topic consisting of at
most 256 Unicode characters that does not contain the reserved
characters period (.), pound (#), dollar sign ($), asterisk (*), or double
colon (::), and does not begin with the string “ sonicMq.”. If security is
defined for topics, the user might be constrained from reading or
writing at a topic content node.

Using a Lookup for Destinations

While topics and queues are administered objects, there are advantages to
programmatic lookup of defined destinations.

SonicMQ lets you store administered objectsin some abject store— JNDI or a
smplefile tore—and then reference the object indirectly (by name) in some
context.

See Chapter 12, “Lookup of Administered Objects,” for more information.

Temporary Destinations

Temporary destinations (TemporaryTopic OF TemporaryQueue) can be created for
request-and-reply mechanisms.

See “Reply-to Mechanisms’ on page 153 for more information.

create [MessageProducer]
The Producer interface is created from a Session method.

Point-to-Point: createSender

sender = sendSession.createSender(queue);

Publish and Subscribe: createPublisher

publisher = pubSession.createPublisher(topic);

SonicMQ Programming Guide 105

Chapter 3: SonicMQ Client Sessions

create [MessageConsumer]

The Consumer interface is created from a Session method in the form:

Point-to-Point: createReceiver

Javax. jms.QueueReceiver qreceiver
recvSession.createReceiver(queue);

Publish and Subscribe: create[Durable]Subscriber

m Regular subscription:

Javax. jms.TopicSubscriber subscriber =
subSession.createSubscriber(topic);

m Durable subscription (See “Durable Subscriber” on page 196.):

Javax. jms.TopicSubscriber subscriber =
subSsession.createDurableSubscriber (topic, subscriber);

create [Message]
The message type is created from a Session method in the genera form:

Javx.jms.[type]Message msg = sendSession.create[type]Message()

where type isthe IMS message type. Specifically:
Javx.jms.TextMessage msg = sendSession.createTextMessage()
Javx.jms.BytesMessage msg = sendSession.createBytesMessage()
Javx.jms_MapMessage msg = sendSession.createMapMessage()
Javx.jms_Message msg = sendSession.createMessage()
Javx.jms.ObjectMessage msg = sendSession.createObjectMessage()
Javx.jms.StreamMessage msg = sendSession.createStreamMessage()

The XMLMessage type, as a SonicMQ extension to the IM S standard, is not
created from a javax. jms.session— the session must be cast to a
progress._message. jclient Session first, asin:

m progress.message.-jclient_XMLMessage xMsg =
sendSession.createxXxMLMessage()

Messageinterfaces, structure, and fields are detailed in Chapter 4, “Messages.”

106 SonicMQ Programming Guide

Starting, Stopping, and Closing Connections

Starting, Stopping, and Closing Connections

Connections require an explicit start command to begin the delivery of
messages. All sessions within a connection respond concurrently to the
Connection start, stop, and close events.

While many session and connection objects have individual close methods,
these are usually viewed as ways to recapture resources and were not
previously discussed interms of how they interact when the Connection’s state
changes.

connect.start

Start delivery of incoming messages through a connection. Under a restart,
delivery begins with the oldest unacknowledged message. Starting an already
started session isignored:

connect.start()

connect.stop

Stop delivery of incoming messages through a connection. After stopping, no
messages are delivered to any message consumers under that connection. If
synchronousreceiversare used, they will block. A stopped connection can still
send or publish messages. Stopping an aready stopped session isignored:

connect.stop()

Behavior of Producers and Consumers in a Stopped Connection

When a connection is stopped, it isin effect paused. The message producers
continue to perform their function. The consumers, however, are not active
until the connection restarts. When the stop method is called, the stop will wait
until all the messagelistenershavereturned beforeit returns. Receiversthat are
active still have their timers running and can receive null messages.

SonicMQ Programming Guide 107

Chapter 3: SonicMQ Client Sessions

connect.close

When a connection is closed, all message processing within the connection’s
one or more sessionsisterminated. If there was amessage available at thetime
of the close, the message (or anull) can be returned, but the message consumer
might get exceptions by trying to use facilities within the closed connection.
Closing a closed connection has no effect and does not throw an exception:

connect.close()

Behavior of Producers and Consumers in a Closed Connection

When a connection is closed, all message processing within the connection’s
one or more sessionsisterminated. If there was amessage available at thetime
of the close, the message (or anull) can be returned, but the message consumer
might get exceptions by trying to use facilities within the closed connection.

When atransacted session is closed, the transaction in progressis marked as a
rollback.

The message objects can be used in a closed connection with the exception of
the message’s acknowledge methods.

Closing a Session

Note

While each connection can have many sessions, each session isasingle thread
of execution. When the connection starts, stops, or closes dl its sessions are
impacted.

Theclose method isthe only session method that can call for adifferent thread
in the connection to close while some other session method is being executed
in another thread.

Closing a CLIENT_ACKNOWLEDGE session does not force an acknowledge() to
occur. Attemptsto use aclosed connection’s sessions or session objectsthrows
an 111egalStateException. Starting a started connection or closing a closed
connection has no effect and does not throw an exception.

The message objects can be used in a closed connection with the exception of
the message’s acknowledge methods.

108

SonicMQ Programming Guide

Flow Control

Flow Control

The asynchronous benefits of SonicMQ are not limited to simply receiving
without blocking. They also include:

m Send and receive buffers that stage messages in transit between a client
application and a message server

m Anoptimized persistence mechanism to maximize server performance for
guaranteed message delivery

m Concurrent Transacted Cache technology that usesin-memory cache and
high-speed log files to increase throughput for short-duration persistent

messages

» Queuesdefined with specified amounts of memory and disk spacereserved
for the gueue content

Any of these resources might be offered more data than can be managed. If
flow control is active, SonicMQ will throttle back the message flow from the
producer, allowing the next message to flow into the buffers only when space
isavailable.

= InPub/Sub you can disable flow control so that when resources are nearly
exhausted, SonicMQ can, under programmatic control, throw exceptions
until flow control conditions are cleared.

= InPTPflow control isaways active.

When flow control is active in Pub/Sub, the messages might be sent to
subscribers at arate that is faster than that at which the messages are actually
consumed. When the buffers that store unprocessed messages approach
capacity, flow control can stop new additions until the buffersfall below a
stated level.

The back pressure from slower consumption starts to impact the buffers for
queues or durable subscriptions. When system or queue capacities are filled
with messages in process, flow control is activated against producers. The
message acceptance rate drops which eventually resultsin back pressure at the
producers, causing them to either tolerate the slowdowns or, in Pub/Sub with
flow control disabled, to throw an exception so that you can handle the

SonicMQ Programming Guide 109

Chapter 3: SonicMQ Client Sessions

Note

situation, for example by catching the exception and having the application
wait some period of time before re-publishing.

To avoid the invocation of flow control you can:

m Optimize application processing on incoming messages.
m Adjust the consumer buffer.

m Increase the size of queues.

m Decrease the message expiration time of messages.

Messages sent to a queue will only expire after they have been placed on
the queue, so expiration detection can only result from:

m Dequeue operations by receivers
m Processing by the queue cleanup thread
m Browsing the queue

In the Pub/Sub domain you can disable flow control so that your application
can catch exceptions to determine when messages are being published at too
fast arate by setting the following property in TopicSession:

setFlowControlDisabled(boolean disabled)

where TRUE indicates that flow control is not active.

110

SonicMQ Programming Guide

Using Multiple Connections, Sessions, and Consumers

Using Multiple Connections, Sessions, and Consumers

There are many advantages to using multiple connections and multiple
sessionsin an application even though the ordering of messagesisonly assured
within a session—a single thread of execution.

Multiple Connections

Multiple connections work concurrently. If your application requires
concurrency, you should first consider using one connection and multiple
Sessions because connections require more resources compared to sessions.
The most common reason for having two connectionsin one client application
isto support both queues (PTP) and topics (Pub/Sub).

Sometimes the sheer volume of information flowing through the connection
warrants multiple connections rather than multiple sessions. Figure 22 shows
two connections, each with one session.

Client

Application Message

Server

Z0—-——-0O0mMZZ00 Z0—-—-0mMZZ00 L

Figure 22. Multiple Connections in a Client Application

SonicMQ Programming Guide 111

Chapter 3: SonicMQ Client Sessions

Multiple Sessions on a Connection

Using multiple sessions gives up the benefits of serialized operations on a
single thread of execution. Multiple sessions are best suited for aternate or
supporting functions within an application. Figure 23 shows multiple sessions
using two sessions and only one connection. As the connection is associated
with a messaging domain—PTP or Pub/Sub—multiple sessions are
constrained to the connection’s domain.

Client
Application

Message
Server

ZOoO—--HOmzZzZO0O

Figure 23. Multiple Sessions on a Connection

Coding Connections and Sessions

Each of the SonicMQ sample applications uses client connections and
sessions. The following code sections are excerpts from the Pub/Sub
DurableChat sample:

public class DurableChat implements

Javax. jms_MessagelListener, // to handle message subscriptions

They demonstrate how to:

s Get aconnection and session.

m Create session objects.

m Set up listeners and start the connection.

= Handle exceptions on the connection.

112

SonicMQ Programming Guide

Coding Connections and Sessions

Get a Connection and Session

ThisReliableChat setupConnection shippet uses the ConnectionFactory and
uses active pings to check the pulse of the connection:

// Get a connection factory

Javax. jms_TopicConnectionFactory factory = null;

try

{

factory = (rew pragress._messace. jelient_ Topi cConnectionFactory (m brder));

} catch (Javax.jms.JMSException jmse) ...

// Wait for a connection.

while (connect == null)
{
try
{
System.out.printin("'Attempting to create connection...'™);

connect = (progress.message.-jclient.TopicConnection)

factory.createTopicConnection (m_username, m_password);
// Ping the broker to see if the connection is still active.
connect.setPinglInterval (30);

} catch (Javax.jms.JMSException jmse)

{
System.out.print(*'Cannot connect to broker: " + m_broker);
System.out.println
(""Pausing " + CONNECTION_RETRY_PERIOD / 1000 + **
seconds before retry.');
try
{
Thread.sleep(CONNECTION_RETRY_PERIOD);
} catch (Java.lang. Interruptedixception ie) { }
continue;
¥

SonicMQ Programming Guide

113

Chapter 3: SonicMQ Client Sessions

Using Active Pings to Monitor the Health of the Connection

In the preceding code segment the statement connect.setPinglnterval (6)
indicates the use of a method that |ets the application detect when a
connection gets dropped by setting aPinglinterval of six seconds. The
active pingsare a SonicM Q feature that allows an application to check the
presence and alertness of the message server on a connection. This
technique is particularly useful for connections that listen for messages,
but do not send messages.

Thisfeatureislimited to interruption in the physical connection. If the
message server stops on agood connection—uwith or without pings—an
exception is generated.

Invoking setPinglnterval (interval_in_seconds) On aconnection sends
a ping message to the message server on that connection at the specified
interval to examine the health of the connection.

Note Avoid setting a small ping interval. Thiswastes cycles and your application
will be burdened with temporary network unavailability.

Create Session Objects and the Listeners

Two sessions are created n this continuation of the Reliablechat sample, one
session to work with the standard input and send functions and the other to
work with the message listener and the messages it delivers for consumption.
Each session declares its acknowledgement mode then sets up the destination
and the publisher or subscriber. The message listener is activated against the
consumer destination. The detailed codeis as follows:

// Create the Sessions, Publisher, Subscriber, and Topics

try
{

pubSession = connect.createTopicSession
(false, javax. jms._Session.CLIENT_ACKNOWLEDGE);

subSession = connect.createTopicSession
(false, javax. jms._Session.CLIENT_ACKNOWLEDGE);

Javax.jms.Topic topic = pubSession.createTopic (APP_TOPIC);

114

SonicMQ Programming Guide

Coding Connections and Sessions

Javax. jms.TopicSubscriber subscriber =
subSession.createDurableSubscriber
(topic, "'SampleSubscription);

subscriber.setMessagelListener(this);

publisher = pubSession.createPublisher(topic);

// Register this class as the exception listener for any problems.
connect.setExceptionListener((Javax.jms.ExceptionListener) this);

System.out.printIn(*'...Setup complete.™);

Start the Connection

When all the session objects and settings are established, the ReliableChat
connection is started.
connect.start();

Messages are composed and sent by the publisher session. Messages are
delivered and consumed by the subscriber session.

Handle Exceptions on the Connection

The exception handler can handle errors actively asin this ReliableChat
snippet where a connection problem initiates a reconnection routine:
// Handle asynchronous problem with the connection.
public void onException (javax.jms.JMSException jsme)
{
// See if connection was dropped.
// Tell the user that there is a problem.
System.err._println ("\n\nThere is a problem with the connection.'");
System.err.println (** JMSException: " + jsme.getMessage());
// 1T the error is a dropped connection, try to reconnect.
// NOTE: the test is against Progress SonicMQ error codes.

int dropCode =
progress.message.- jclient.ErrorCodes.ERR_CONNECTION_DROPPED;

iT (progress.message.jclient_ErrorCodes.testException
(Jsme, dropCode))

{

SonicMQ Programming Guide 115

Chapter 3: SonicMQ Client Sessions

System.err.println ("'Please wait while the application tries
to "+ "re-establish the connection...");

// Reestablish the connection
connect = null;

setupConnection();

Handling Dropped Connection Errors Caught with Active Pings

Important

When message server failure causes a dropped connection, the ensuing
TcP_RESET firesthe onexception() method of the ExceptionListener with the
connection-dropped error code.

Ping al so can al so detect the drop of connection dueto network failure, such as
adisconnected cable.

When a message server is disconnected from the network, an exception is
thrown to keep a publisher from locking up. However, a subscriber will not
detect such an error since no TCP_RESET is sent unless the

active ping feature has been enabled on the connection.

Exception Listeners are Not Intended for JMS Errors

The ExceptionListener iSaway to pass information about a problem with a
connection by calling the listener’s onException() method, passing it a
IMSException describing the problem.

Thisalowsa client to be asynchronously notified of a problem. Some
connections only consume messages so they would have no other way to learn
that their connection has failed.

The exceptions delivered to ExceptionListener are those that do not have any
other place to be reported. If an exception isthrown onaJMS call it, by
definition, must not be delivered to an ExceptionListener — in other words,
the ExceptionListener iSnot for the purpose of monitoring all exceptions
thrown by a connection.

116

SonicMQ Programming Guide

JMS Messaging Domains

JMS Messaging Domains

The JM S messaging domains are primarily differentiated by messaging
behaviors. The functionally viewed by the programmer is quite similar, as
shown in their interfaces and methods in Table 6.

Table 6. Connected Session Functionality Common to PTP and Pub/Sub

javax.jms Interface

Functionality in Either Domain

ConnectionFactory
extended by:

QueueConnectionFactory
TopicConnectionFactory

Allows administrative control of communication resources

Creates one or more Connections

Connection m Creates one or more Sessions
extended by: = Supports concurrent use
%E?igg:xg::gz m Letsapplications specify hame-password for client authentication
= Allowsunique client identifiers
m Provides ConnectionMetaData
m Supports an ExceptionListener
m Provides start and Stop methods
m Providesaclose method for connections
Session m Servesasafactory for MessageProducers and MessageConsumers
extended by: m SessionsandDestinations are used to create multiple MessageProducers
QueueSession and MessageConsumers
TopicSession

Serves as afactory for TemporaryDestinations

Creates Destination objects with dynamic names

Serves as a factory for Messages

Supports serial order of messages consumed and produced
Retains consumed messages until acknowledged
Serializes execution of registered MessageL isteners
Provides a close method for sessions

SonicMQ Programming Guide

117

Chapter 3: SonicMQ Client Sessions

118 SonicMQ Programming Guide

Chapter 4

Messages

About Messages

The message is the essence of the SonicMQ Messaging Server.

A message is a package of bytes that encapsulates the message body as a
payload and then exposes metadata that identify—at a minimum—the
message, itstimestamp, its priority, its destination, and the type of message
enclosed.

When atext message is published, it might be coded as:

private void jmsPublish (String aMessage)
Javax. jms._TextMessage msg = session.createTextMessage();
msg.setText(user + ": " + aMessage);
publisher_publish(msg);
When amessage is received it might be through an asynchronous listener:

// Handle an asynchronously received message
public void onMessage(javax.jms.Message aMessage)

{ --.
// Cast the message as a text message.
Javax.jms.TextMessage textMessage = (Javax-jms.TextMessage) aMessage;
// Read a single String from the text message, print to stdout.
String string = textMessage.getText();

SonicMQ Programming Guide 119

Chapter 4: Messages

Message Type

The IM S specification defines five types of messages, al derived from the
Message interface, which also defines message headers and the acknowledge
method used by all IMS messages. SonicMQ provides an XML message type
as an extension of the IM S Text type. Figure 24 diagrams the SonicMQ

message types.

Message

—+ BytesMessage
—+ MapMessage
% ObjectMessage

-+ StreamMessage |

% TextMessage }—+ XMLMessage

Figure 24. SonicMQ Message Types

The message types can be described as follows:

M essage — The type Message is the root interface of all IMS messages.
It contains no body, but does hold all the standard message header
information. It can be sent when a message containing only header
information is sufficient.

BytesM essage — A stream of uninterpreted bytes. This message type
exists to support cases where the contents of the message will be shared
with applicationsthat cannot read Javatypes or 16-bit Unicode encodings.
It isalso useful when the information to send already existsin binary form.

MapM essage— A set of nhame-value pairs where names are strings and
values are Java primitivetypes. The entries can be accessed sequentially or
randomly by name. An example of MapM essage usage is a message
describing a new product, which includes the price, weight, and
description; the names in the MapM essage correlate to columnsin a
database table in which the consumer stores the information.

120

SonicMQ Programming Guide

Message Type

ObjectM essage — A message that contains a serializable Javaobject. An
ObjectMessage is useful when both JM S clients are Java applications or
applets with access to the same class definition.

StreamM essage — A stream of Java unkeyed primitive valuesthat is
filled and accessed sequentially. Since a StreamM essage contains only raw
dataand no keys, it takes up less space than an equiva ent MapM essage.

TextM essage— A message containing ajava. lang.String Of String. Use
a TextM essage when the message content does not require any particular

structure, for example when the message body is simply printed or copied
by the consumer.

XML M essage — A message containing a string representing the XML
tree that can be parsed asan XML document.

Creating a Message
The message type is created from a Session method in the form:

Javx_jms.[type]Message msg = session.create[type]Message()

such that the set of methodsis:

jJavx.jms_Message msg = session.createMessage()
Javx.jms_BytesMessage msg = session.createBytesMessage()
Javx.jms._MapMessage msg = session.createMapMessage()
jJavx.jms.ObjectMessage msg = session.createObjectMessage()
Javx._jms._StreamMessage msg = session.createStreamMessage()

Javx._jms.StreamMessage msg =
session.createStreamMessage(Serializable object)

Javx._jms._TextMessage msg = session.createTextMessage()

The xMLMessage type, described below, extends the TextMessage type.

XML Type

Thereisadlight difference for the xvLMessage type extension that is uniqueto
SonicMQ:

progress.message.- jclient_XMLMessage xMsg =
((progress.message.jclient.Session) session).
createXMLMessage()

SonicMQ Programming Guide 121

Chapter 4: Messages

An XMLMessage iSan extension of the TextMessage and isused to send amessage
containing XML text in a java. lang.String.

TextMessage inherits from Message, adding a text message body. XMLMessage
then allows access to the XML text’s Document Object Model (DOM).

An implementation of the DOM interface is instantiated when the devel oper
wants to access the XML message body using the Document Object Model
(DOM), a standard (WC3) application programming interface for accessing,
updating, and creating XML documents.

Message Structure

JM S Messages are composed of the following parts.

m Header Fields (JIMS) — All messages support the same set of header
fields. Header fields contain values used by clients and message serversto
identify and route messages.

m User-defined Properties — User-defined name-value pairs that can be
used for filtering and application requirements.

m Provider-defined Properties — Properties defined and typed by
SonicMQ for carrying information used by SonicMQ features.

m Supported IM S-defined Properties (JM SX) — Predefined name-value
pairs that are an efficient mechanism for supporting message filtering.

m Body — IMS defines several types of message body, which cover the
majority of messaging styles currently in use.

Messages and Selectors

The IM S message system provides programmatic accessto all components of
amessage. However, any content that should be exposed to the subscriber for
message selection or routing must be enclosed in the appropriate header fields
and properties, as the message body cannot be accessed for selection and
routing data.

122 SonicMQ Programming Guide

Message Header Fields

Message Header Fields

The message header fields are defined and used by the sender and the message
server to convey basic routing and delivery information.

The message header fields are described in detail in Table 7.

Table 7. Message Header Fields

JMS Header field Type Description Usage Comments
JMSDestination String The destination While amessage is When amessage is
: wherethe message | being sent thisvalueis | received, itsdestination
Required. N .
is being sent. ignored. value must be
Set by the_ producer After completion of the eqqlval ent to thg value
send/publish . assigned when it was
method publish]send method, wont
' it holds the destination '
specified by the send.
JMSDeliveryMode String Specifies whether Required. Default valueis
. the messageistobe | Must be PERSISTENT, (NON_PERSISTENT).
Required. .
retained in the NON_PERSISTENT, or
Set in a producer message server’s NON_PERSISTENT_ASYNC
send/publish database.
parameter.
JMSMessagelD String SonicMQ field for a | A message ID value While required, the
Reguired. unique identifier. must start with “1D:". algorithm that
calculatestheID onthe
Set by the producer client can be bypassed
send/publish which setsthe
method. JIMSMessagelD tonull.
JMSTimestamp long GMT timeon the Set method existsbut is
. producer system always overridden by
Required. clock when the the send method
Set by the producer message was sent. valuation.
send/publish
method.
SonicMQ Programming Guide 123

Chapter 4: Messages

Table 7. Message Header Fields (continued)

JMS Header field Type Description Usage Comments
JMSCorrelationID String Message server- Required when other Anapplicationmadeup
Optional. specified message JMS providers support | of several clients might
ID or an application- | the native concept of a | want an application-
Set by producer specific String correlation ID. specific value for
mutator method. linking messages.
JMSCorrelationID bytes A native byte[]
AsBytes value.
Optional.
Set by producer
mutator method.
JMSReplyto String The destination If nulll, noreply is Message replies often
Optional where areply to the | expected. usetheCorrelationlD
' current message to assure that replies
If not null, ect . .
Set by producer should be sent. notnulll, expecisa synchronize with the
response, but the actual
mutator method. . . requests.
responseis optional and
the mechanism must be
coded by the devel oper.
JMSRedelivered boolean | If trueitislikely Set at the time the When
that this message message is delivered. acknowledgement is
Setb .

Y message server was delivered to the expected and not
client earlier but the received in a specified
client did not time, the message
acknowledge its server can decide to set
receipt at that time. this and resend.

JMSType String Containsthename | Recommended for Thisis not, by default,
Ontional of amessage's systems where the the message type.
P ' definition asfound | repository needs the
Set by producer in an external message type sent to the
mutator method. message type application.
repository.

124

SonicMQ Programming Guide

Message Header Fields

Table 7. Message Header Fields (continued)

allows message
selectors to pick
messages at a given
priority.

5 to 9 are expedited.
Default valueis 4.

JMS Header field Type Description Usage Comments
JMSExpiration long When a message's The sum of thetime-to- | When amessageis
Required expirationtimeis live value specified by sent, expiration is left
' reached, the the client and the GMT | unassigned. After
Set by the producer message server can | at thetimeof thesend. If | completion of the send
send/publishmethod discard it. Clients the time-to-liveis method, it holds the
by incrementing the should not receive | specified as zero, the expiration time of the
current GMT time messages that have | messagedoesnot expire. | message.
glstzrenpk:;?;lger fr)l(sl‘]r&d S however, Default valueis 0. Default valueis0.
producer specification does The expiration of a
send/publish not guarantee that message can be
parameter, thiswill not happen. managed by setting the
timeTolLive. message property
JSM_SonicMQ _
preserveUndelivered
which will transfer an
expired (or
undeliverable) message
to the message server's
Dead Message Queue.
JMSPriority int Setsavaluethat will | A ten-level priority The JM S specification
Reguired. allow amessageto | valuewith 0 asthe does not require that
move ahead of other | lowest priority and9 as | SonicMQ strictly
Set in a producer undelivered the highest. implement priority
send/publish messages in a topic 0104 are normal. ordering of messages;
parameter. or queue. Also however, the message

server will doitsbestto
deliver expedited
messages ahead of
normal messages.

SonicMQ Programming Guide

125

Chapter 4: Messages

Setting Header Values When Sending/Publishing

The basic method for producing a message allows essential delivery
information to accept the IM S default values, for example:

publisher.publish(Message message)

Default Header Values

Three of the message header fields have default values as static final variables:
m DEFAULT_DELIVERY_MODE = NON_PERSISTENT

m DEFAULT_PRIORITY = 4

m DEFAULT_TIME_TO_LIVE = O

The default header field values can be changed in the signature of the send or
publish method to override the defaults:

= Point-to-Point:

sender .send(Message message,
int deliveryMode,
int priority,
long timeToLive)

s Publish and Subscribe:

publisher_publish(Message message,
int deliveryMode,
int priority,
long timeToLive)
If you use this format of the method but do not intend to override some of the
default values, you can substitute them back into the parameter list. For

example:
private static final iInt MESSAGE_LIFESPAN = 1800000;
// milliseconds (30 minutes)

sender .send(msg,
Javax. jms._DeliveryMode .PERSISTENT,
Javax. jms_Message .DEFAULT_PRIORITY,
MESSAGE_LIFESPAN) ;

126 SonicMQ Programming Guide

Message Properties

Message Properties

Properties are optional fields that are associated with a message. No message
properties are required for any message producer. The property valuesare used
for message selection criteria and data required by applications and other
messaging infrastructures. The order of property valuesis not defined.

Although the IM S specification does not define a policy for what should or
should not be made a property, application developers should note that datais
handled in a message’s body more efficiently than datain a message's
properties. For best performance, applications should only use message
properties when they need to customize a message’s header. The primary
reason for doing thisis to support customized message selection.

User-defined Properties

A message contains a built-in facility for supporting application-defined
property values. In effect, this provides a mechanism for adding application-
specific header fields to a message.

Property names must obey the rules for amessage-sel ector identifier. Property
values can be boolean, byte, short, int, long, float, double, and String.

Property values are set prior to sending a message. When aclient receives a
message, its propertiesarein read-only mode. If clearPropertiesiscalled, the
properties are erased and then can be set.

Provider-defined Properties (JMS_SonicMQ)

SonicM Q reserves some property names and declares each property’s type.
The following properties are prescribed in SonicMQ for use in expressing
intended handling of undelivered messages and added data about those

messages.

SonicMQ Programming Guide 127

Chapter 4: Messages

Table 8 liststhe SonicM Q defined properties, two set by the message producer
toindicate interest in tracking undelivered messages and two set by the
message server when amessage is transferred into the server’s dead message

queue.

Table 8. SonicMQ Provider-defined Properties

JMS Provider-defined Property Type Set by
JMS_SonicMQ_preserveUndelivered boolean Producer
JMS_SonicMQ_notifyUndelivered boolean Producer
JMS_SonicMQ_undel iveredReasonCode int M essage server
JMS_SonicMQ_undel iveredTimestamp long Message server

Review the sample “ Persistent Storage Application (PTP)” on page 63 to see
how these properties are used. See SonicMQ Deployment Guide for detailed
information about how these properties contribute to handling undeliverable
messages in local message servers and dynamic routing nodes.

JMS-defined Properties (JMSX)

The JM S specification reserves the ausx property name prefix for optional
JM S-defined properties. Properties set on send are available to the producer
and the consumers of the message. Properties set on receive are only available

to the consumers.

Properties can be referenced in message selectors whether or not they are
supported by a connection. They are treated like any other absent property.
Table 9 lists and describes the IMSX Message Properties used in SonicM Q.
These IMSX properties are set by the producer.

Table 9. IMSX Properties Used in SonicMQ

JMSX Property Type Set by
JMSXGroupID String Producer on send
JMSXGroupSeq int Producer on send

128

SonicMQ Programming Guide

Message Properties

Setting Message Properties

Properties arein no specified order. They might or might not contain values or
data extracted from the message body. There are no default properties.

Figure 25 shows the Explorer view of the default IMS header fields and two
properties defined by the message sender.

[f@ SonicMQ Explorer M= &2
Explorer Wigw Help
4 Root Header Propeni96| Body|
~-# Cerificate Stores
- JMB Administered Object Stores Property Mame: myProperty_Domestic LI | Sef I
=+ _4 Message Brokers
=- _A localhost2506:Administrator Administratar {SonicMQ) Property Value: [rue
- ® Topics Property Type |hnn|ean LI Delete |
- Queues
- Routing Mame Walue Twpe
- Metfrics myProperty_AuditBatch | 4355466 Lanhg
@ Events myProperty_AuditTeam | Foxtrot String
=4 TopicSession: SampleSession non-transacted AUTO_ACK]
=24 Publishers
[- - e Topic
[=1-/_4 Subscribers
~-@ BampleTopic non-durable local delivery

Surnraty
Wessage Type Text Message -
Delivery Mode: MNOM_PERSISTENT 2
Priority: 0 -
Time To Live {ms): [0

q | b Send Clear

Publish test messages

Figure 25. User-defined Properties

Property Methods

JMSX properties can be referenced in message selectors whether or not they
are supported by a connection. If values for these properties are not included,
they are treated like any other absent property.

Where M S-defined properties are typed, user-defined properties are typed
when they are created by a set method. User-defined properties can be coerced
into other data types when they are retrieved.

The setting and getting of message properties alows afull range of datatypes
when the property is established. The properties can be retrieved as alist. A
property value can be retrieved by using a get method for the property name.

SonicMQ Programming Guide 129

Chapter 4: Messages

propertyExists

To check if aproperty value exists, use the method:

public boolean propertyExists(String name)

where name is the name of the property to test.

Returns TRUE if the property exists.

clearProperties

A message’s propertiesare del eted by the clearProperties method. Thisleaves
the message with an empty set of properties. Clearing properties effects only
those properties that have been defined and has no impact on the header fields
or the message body:

public void clearProperties()

set[type]Property

Message properties are set as name-value pairs where the value is of the
declared datatype. Setting a property type that does not exist causesit to exist
as a property in that message:

set[type]Property(String name, [type] value)

where type is one of the following:

[boolean | byte | short | int | long | float | double | String]

FOfGMEWnple,setBooIeanProperty(“reconciIed”,true).

getPropertyNames

To iterate through a message's property values, use getPropertyNames() tO
retrieve a property name enumeration. Then use the various property get
methods to retrieve their respective values.

130 SonicMQ Programming Guide

Message Properties

get[type]Property

Getting a property value for a property name gets the value of that property. If
the property does not exist, anull is returned:

public [type] get[type]Property(String name);

where type is one of the following:
[boolean | byte | short | int | long | float | double | String]

For exampl €, boolean getBooleanProperty(“reconciled”) returns true.

Property values can be coerced. The accepted conversionsarelistedin Table 10
where a value written as the row type can be read as the column type.

For example, a short property can be read as a short or coerced into an int,
long OF String. An attempt to coerce a short into ancther datatypeis an error.

Table 10. Permitted Type Conversions for Message Properties

boolean |byte short int long float double String
boolean |Yes No No No No No No Yes
byte No Yes Yes Yes Yes No No Yes
short No No Yes Yes Yes No No Yes
int No No No Yes Yes No No Yes
long No No No No Yes No No Yes
float No No No No No Yes Yes Yes
double No No No No No No Yes Yes
String Yes Yes Yes Yes Yes Yes Yes Yes

Valid coercions are indicated with Yes; those intersections marked with No
throw a JMSException.

A string-to-primitive conversion might throw arun time exception if the
primitives valueof() method does not accept it asavalid string representation
of the primitive.

SonicMQ Programming Guide 131

Chapter 4: Messages

Message Body

The message body has no default value and need not have any content. The
message body is populated by the message set method for the message type.

Setting the Message Body

Important

Use the set methods specified by IMS for all types except XML unless the
messageisread-only (in which case you will need to copy or reset the received
message). For example, for a TextMessage:

msg.setText(aMessage);

Setting the Body for an XML Type

The xMLMessage type is a message body with XML tags. The XMLMessage is a
SonicMQ extension to JM S that uses the setbocument method to set the body
by setting the org.w3c.dom.Document object associated with the XMLdomMessage
contents. This allows the client application to set the contents by passing in a
Document Object Model (DOM). The setbocument method is written in the
form:

setDocument(org.w3c.dom.Document aDoc)
where aboc is a standard org.w3c. dom. Document 0Object.

The org.w3c.dom.Document is stored as the internal document for this message.
The message content is emptied but will be generated when the message is
sent. For best results, the XML Document object should be an instance of the
com. ibm.xml .parser.TXDocument. However, if it isnot a TXDocument, it triesto
make a node-by-node copy of it.

If you use setText(String string) Where string isthe string containing the
message’'s data, you set the string containing this message's data, overriding
setText iN class TextMessage.

132

SonicMQ Programming Guide

Message Body

Getting the Message Body

Use the get methods required by the IM S specification for all types except
XML. For example:

msg.-getText(aMessage) ;

Getting the Body from an XML Type

For instances of XMLMessage, use the getbocument method to return an
org.w3c.dom.Document Object created from the XMLMessage contents. This
will alow the client application to access the contents using the DOM-tree
functionality. It iswritten in the form;

org.w3c.dom.Document getDocument()

If you use getText(), you get the string containing this message's data. If the
message has been created with asetbocument(), thiscall will convert it to atext
message, overriding getText in class TextMessage.

SonicMQ Programming Guide 133

Chapter 4: Messages

134 SonicMQ Programming Guide

Chapter 5 Message Producers and Consumers

About Message Producers and Message Consumers

This chapter describes the generic programming model for messaging that is
common to both messaging models, Publish and Subscribe (Pub/Sub) and

Point-to-Point (PTP).

Generic Messaging Model

M essage producers and message consumers are established in one of the
messaging model s by creating an appropriate ConnectionFactory then creating
Connections, then Sessions on each Connection and, finally, the session
objects as shown in Figure 26.

Figure 26. Generic Messaging Model

SonicMQ Programming Guide 135

Chapter 5: Message Producers and Consumers

M essage producers are established in one of the messaging domains by
creating an appropriate ConnectionFactory then creating a Connections, then
Sessions on the Connections.

The Message Producers send messages to a Destination on a message server.
Message Consumers get messages from a Destination by implementing
asynchronous MessageL isteners or doing synchronous receives.

Message Ordering and Reliability

The scope of services available in aloosely coupled messaging structure
presents arich set of factors that impact sequence of messages actually
delivered to consumers. Message ordering and redelivery both contribute to
reliable message delivery.

General messaging services are impacted by many uncontrollable
environmental factors from latency and machine outages to internal factors
such as related applications not accepting data types, vaues, poorly formed
XML data, and data payloads. Message delivery is distinctly non-linear.

Message ordering and reliability common to al messaging domains are
described in this chapter. See also the Pub/Sub and PTP chapters for details
about message ordering and reliability within those domains.

M essages can be delivered with arange of optionsto modify message ordering
and invoke features that improve reliability:

m Theproducer can set the time-to-live of the message so that obsolete
messages can expire. If message A is set at one minute, message B at five
seconds, and message C at one hour, after three minutes with no ddliveries
only message C will still exist. Ordering is maintained while expiration is
a user-defined value.

m The producer can set the delivery mode of messages so that the message
server confirms persistent storage of the message before acknowledgement
is and the message priority. In the event of a message server failure, a
message that the message server acknowledged before it was persisted
might be lost.

s Theproducer can set the priority of amessage so that the message server
can take efforts to position a more recent message before an older one.

136

SonicMQ Programming Guide

Destinations

s The producer uses a synchronous process to put the message on the
message server's message store; when it is released, the message is
acknowledged as delivered to its interim destination.

m Theconsumer can uselistener sto get messages asthey are made avail able.

m Messages sent in the NON_PERSISTENT delivery mode can arrive prior to
messages that are PERSISTENT.

m Theconsumer starts a session by expressing its preferred
acknowledgement technique—transactional or not, explicit or implicit.

m Connections can be monitored and, when broken, techniques can
automatically attempt to reconnect.

m Message sendersin the Internet environment are not guaranteed consistent
communication times. Transmission latencies can cause messages to be
actually produced before other messages. As aresult two messages from
two sessions are not required—and cannot be reliably expected—to bein
any specific sequence.

Destinations

Destinations are objects that provide the producer, message server, and
consumer with a context for delivery of messages. Destinations can be IMS
Administered Objects (static objects under administrative control), dynamic
objects created as needed (topics only), or temporary objects created for very
limited use. The destination name is a string of any java. lang.String length.

For topics, SonicMQ provides extended management and security with
hierarchical name spaces; for example, jms.samples.chat.

Destination names can be any set a characters with afew reservations:

m . (period) delimits hierarchical nodes, particularly for topics. See
Chapter 9, “Hierarchical Name Spaces,” for more information.

= ¥ (asterisk) and # (pound) are used as template characters. These are
stored for durable subscriptions and, by managers, for access control lists.
The stored characters as applied as wildcards when implemented. See
Chapter 9, “Hierarchical Name Spaces,” for more information.

SonicMQ Programming Guide 137

Chapter 5: Message Producers and Consumers

= $(dollarsign) and the strings $svs and $1sys are administrative topics. See
the SonicMQ Installation and Administration Guide for more information.

m . (colon) delimits the routing node name and a remote message server in
Dynamic Routing Architecture deployments.

m .. (double_colon) delimits arouting node name and a queue name in
Dynamic Routing Architecture deployments. See the SonicMQ
Deployment Guide for more information.

You can programmeatically store and retrieve defined topics. SonicMQ letsyou
store topic names in JNDI or asmplefile gore and then reference the object
indirectly (by name) in some context. See Chapter 12, “ L ookup of
Administered Objects,” for more information.

Steps in Message Production

Every time aPub/Sub session wantsto send amessage to atopic, it must create
aproducer in the session for the selected destination. The only exception is
when you intend to establish an unbound destination—anull destination name
that, for example, enables the QueueRequestor to bind to that queue space.

Producing a Pub/Sub message within a connected session is presented in six
steps:
1. Create the publisher session.
. Create the publisher to the topic.
. Create the message and setting its content.

2
3
4. Set message header fields.
5. Set message properties.

6

. Publish the message.

Create the Topic Publisher on the PublisherSession Thread

After the connection is established, asession that will bereserved for publisher
activitiesis created:

pubSession = connect.createTopicSession
(false,javax.jms.Session.AUTO_ACKNOWLEDGE) ;

138 SonicMQ Programming Guide

Steps in Message Production

Create the Producer on the Producer Session Thread

In the pubSession, the static variable App_TopPIC that was assigned
“jms.samples.chat" iSSet up astheworking topic and a publisher is associated
withit:

Javax.jms.Topic topic = pubSession.createTopic (APP_TOPIC);

publisher = pubSession.createPublisher(topic);

Create the Message Type and Set Its Body

A text message, constructed from the standard input (the keyboard), isread in
when the readLine is activated. A new SonicMQ TextMessage is created and
the text is set into it, prepended in the sample by the username, a colon and a
space.

String s = stdin.readLine();

Javax. jms._TextMessage msg = pubSession.createTextMessage();

msg.setText(username + ": " + s);

If user sales enters“Hello.”, the message content is“sales: Hello.”

Set Message Header Fields

To change header fields, usethe set methods for message header fieldsthat are
available for change:

setIMSType(*'CentralFiles')

Note that some header field set methods exist (such as setaMsMessagelD and
setIMSTimestamp yet whatever you assign isoverwritten at thetimethe message
is produced.

The header fields that are named and typed yet available for assignment are:
m JMSCorrelationlID, reserved for message matching functions
m JIMSReplyto, reserved for request reply information

m JIMSType, available for general use

SonicMQ Programming Guide 139

Chapter 5: Message Producers and Consumers

Set the Message Properties

Use the set methods for the data type of a property and then supply the
property name and its value of the declared type. Genericaly:

set[type]Property(String name, String value)
For example:

setLongProperty(“Ourlnfo_AuditTrail”,“6789")

Produce the Message

When the message is assigned its attributes (header fields and properties) and
its payload, the message is ready to be produced. In its smplest form the
producer method for a publisher is:

publisher.publish(msg);
The form of publish used in the burablechat Sets three important message
parameters at the moment the publish is executed:

private static final long MESSAGE LIFESPAN = 1800000;
publisher._publish(msg,
Javax. jms._DeliveryMode.PERSISTENT,
Javax. jms._Message.DEFAULT_PRIORITY,
MESSAGE_L IFESPAN) ;

The message production method passes along either the default values or the
entered values for:

m JuSDeliveryMode is [NON_PERSISTENT|PERSISTENT|NON_PERSISTENT_ASYNC]
m JMSPriority is [0...9] whereoislowest, 9 ishighest, 4 isthe default.

m timeToLive, the message lifespan that will calculate the JuSExpiration, is
[0...n] whereo is“forever” and any other positive valuenisin
milliseconds.

The message producer method assigns—and overwriting, if previoudy
assigned—data to the following header fields:

m JMSDestination, the producer’s current destination
m JIMSTimestamp, based on the producer’s system clock
m JIMSMessagelD, based on the algorithm run on the producer’s system

m JMSExpiration, based on the producer’s system clock plusthe timeToLive

140

SonicMQ Programming Guide

Steps in Message Production

The release of the synchronous block by the message server returns only a
boolean indicating whether the message production completed successfully.

Important Whilethe avsexpiration is calculated from the client system clock at the time
of the send, it is enforced on the message server’s clock. To accomodate
variances between client and server clocks, the message server adjusts the
message expiration to its clock. When the message is forwarded to another
message server, the remaining timeToLive value (expiration minus current
message server GMT time) is forwarded. The time that elapses until the first
packet of the message in transit is received is effectively ignored.

SonicMQ Programming Guide 141

Chapter 5: Message Producers and Consumers

Message Management by the Message Server

A message at adestination behaves according to the parameters of the message
send (PTP) or publish (Pub/Sub) event. Table 11 lists those parameters and
how those parameters tell the message server how to handle the message.

Table 11. How Message Producer Parameters Influence the Message Server

Producer
Parameter How the parameter is treated by the message server

deliveryMode deliveryMode = PERSISTENT

Store the message in the message server's message log in case of impending failure.
Acknowledge the producer only after logging the message.

deliveryMode = NON_PERSISTENT

If the message is enqueued or stored for a durable subscriber on a message server that shuts
down, the message is volatile.

deliveryMode = NON_PERSISTENT_ASYNC

M essage publisher methods do not expect any acknowledgement whatsoever. This delivery
mode is often appropriate for “blasting” published data such as current stock market prices.

NOTE: A message's deliveryMode s effective throughout its lifespan. If a NON_PERSISTENT
message is enqueued (PTP) or stored for a durable subscriber (Pub/Sub) on a message server
that shuts down, the message is volatile. This behavior stays with a message throughout its
travelsin a dynamic queue routing deployment, and even applies in the dead message queue.

priority priority = 0...9

When there are several messages for areceiver that is awaiting delivery, higher priority
messages (5 through 9) can move toward the front of the FIFO list. While there are
circumstances where thisis desirable, more often keeping a smooth FIFO flow is preferable.

timeTolLive timeToLive = <non-negative long integer value>

Number of milliseconds added to the GMT time of the client when the message is produced
to determine the JMSExpi ration date-time of the message. If the timeToLive is0, the
expiration date-timeis also 0, the indication that the message is intended never to expire.

The timeToLive feature ensures eventual delivery but can result in out-of-date deliverables
when queues are not purged and when durabl e subscriptions are not formally unsubscribed.

142 SonicMQ Programming Guide

Message Listeners, Receivers, and Selectors

Message Listeners, Receivers, and Selectors

Topic subscribers do not automatically get messages. Having an active session
where an application subscribes to atopic does not result in the message
getting delivered to the application. You must use an asynchronous listener or
a synchronous message receiver.

Message Listeners

A message listener isinvoked to initiate asynchronous monitoring of the
session thread for consumer messages:

setMessagelL istener(MessageListener listener)
where listener isthe message listener to associate with this session.
Thelistener is often assigned just after creating the destination consumer from

the session, so that thelistener is bound to the destination to which a consumer
was just created, for example:

Javax. jms.QueueReceiver receiver =

session.createReceiver(queue, username);
receiver ._setMessagelListener(this);

and:
Javax. jms._TopicSubscriber subscriber =

session.createSubscriber(topic, username);
subscriber.setMessagelListener(this);

As aresult, asynchronous message receipt becomes exclusive for the session.

Note Message sending is not limited when message listeners are in use. Sending is
always synchronous.

SonicMQ Programming Guide 143

Chapter 5: Message Producers and Consumers

Message Receiver

The receiver methods are synchronous calls to fetch messages. The different
methods manage the potential block by either not waiting if there are no
messages or timing out after a specified period.

Receive

To receive the next message produced for the consumer, use the method:
Message receive()

This call blocks indefinitely until amessage is produced. When a receive
method is called in a transacted Session, the message remains with the
consumer until the transaction commits. The return value is the next message

produced for this consumer. If asession is closed while blocking, thereturnis
null.

Receive with Timeout
To receive the next message within a specified time interval and cause a
timeout when the interval has elapsed:
Message receive(long timeOut)

where timeout is the timeout value (in milliseconds)

Thiscall blocksuntil either amessage arrives or the timeout expires. Thereturn
value is the next message produced for this consumer, or null if oneis not
available.

Receive No Wait

To receive the next available message immediately or instantly timeout:
Message receiveNoWait()

The receiveNowait method receives the next message if oneisavailable. The
return value is the next message produced for this consumer, or null if oneis
not available.

144 SonicMQ Programming Guide

Message Listeners, Receivers, and Selectors

Note TheReceiveNowait method is unlikely to provide effective message
consumption in the Pub/Sub paradigm.The no-wait concept is useful for
durable subscriptions, but is unlikely to produce results for normal
subscriptions.

Themethodisvery useful inthe PTP paradigm where messageswait on astatic
queue.

Message Selector

While some messaging applications expect to get every message produced to a
destination, there are techniques that can reduce the flow of irrelevant
messages to a message consumer:

m Subscription to hierarchical name spaces (Pub/Sub) — SonicMQ’s
hierarchical name spaces let subscribers point to content nodes (and,
optionally, to sets of relevant subordinate nodes) to focus publishersinto
meaningful spaces. For more information, see Chapter 9, “Hierarchical
Name Spaces.”

m Messagefiltering within atopic — IMS defines a syntax that is a subset
of SQL-92 conditional expressions that allows a subscriber to filter and
categorize messages in the message header and properties based on
specified criteria. Because the SonicM Q implementation handlesthework,
the application and its communication links are more efficient and
consume less bandwidth. Message sel ectors do not access the message
body. Table 12, Table 13, and Table 14 summarize the selector syntax
presented in the IM S specification and implemented in SonicM Q.
Although SQL supports arithmetic operations, JM S message selectors do
not. SQL comments are not supported.

SonicMQ Programming Guide 145

Chapter 5: Message Producers and Consumers

Message Selector Syntax

A message selector isa java. lang.String that is evaluated l€eft to right within
precedence level. You can use parentheses to change this order. A message
selector string can contain combinations of the following elementsto comprise
an expression:

Literalsand Indefinites (See Table 12.)
Operatorsand Expressions (See Table 13))
Comparison tests See (Table 14.)

Par entheses control the evaluation of an expression.

Whitespace (spaces, horizontal tabs, form feeds, and lineterminators) are
evaluated in the same way asin Java

For exampl e, the foll owing message selector might be set up on aBidders topic
to retrieve only high-priority quotes that are requesting a reply:
“Priority > 7 AND Form = ”Bid” AND Amount is NOT NULL”

Table 12. Literal and Identifier Syntax in Message Selectors

Selector | Element Format and Requirements Constraints Example
Literals String literals | Zero or more characters enclosed in single “sales”
guotes.
Exact Numeric Iong integer values, signed or 57
numeric unsigned. -957
literals +62
Approximate | Numeric double valuesin 7E3
numeric scientific notation. -57.9€2
literals
Numeric double values with adecimal, 7.
signed or unsigned. -95.7
+6.2
Boolean true oOr false true
literals
146 SonicMQ Programming Guide

Message Listeners, Receivers, and Selectors

Table 12. Literal and Identifier Syntax in Message Selectors

Selector | Element Format and Requirements Constraints Example
Identifiers | All A case-sensitive character sequence that Cannot be null, | JMSType,
must begin with a Java-identifier start true,false,NOT, | JMSXState
character. All following charactersmust be | AND, OR, JIMS_Links
Javaridentifier part characters. BETWEEN, LIKE, |PSC_Link
IN, Or IS.
Message JMSDeliveryMode, JMSPriority, JMSDelivery JMSType
header field JVMSMessage D, JMSTimestamp, Mode, and
references JMSCorrelationlD, or JMSType. JMSPriority
cannot be null.
JMSX- null when areferenced property doesnot | None JMSXState
defined exist.
property
references
SonicMQ JMS_SonicMQ
defined. _preserve
properties Undelivered
Application- Audit_Team
specific
property
names
(do not start
with ‘*IJMS)
SonicMQ Programming Guide 147

Chapter 5: Message Producers and Consumers

Table 13. Operator and Expression Syntax in Message Selectors

- Add + or subtract -

Selector Element Format and Requirements Example
Operators Logical In precedence order: a NOT IN (“al”,”a2)
NOT, AND, OR a>7O0R b= true
a>7 AND b = true
Comparison =, >, >3, <, <=, <> a>7
(for booleans and Strings: =, <>) b = "Quote
Arithmetic In precedence order:
a > +7
- Unary +or - 3
- Multiply * or divide 7 -3

Arithmeticrange
between two
expressions

id BETWEEN e2 AND e3

id NOT BETWEEN e2 AND e3

a BETWEEN 3 AND 5
a NOT BETWEEN 3 AND 5

- Comparison operations
- Logical operations
- Identifiers with Boolean values

- Boolean literals (true, false)

Expressions | Selector Conditional expression that matches ((4%3)=(2*6))= true

when it evaluatesto true

Arithmetic Include:
- Pure arithmetic expressions
- Arithmetic operations 75
- Identifiers with numeric values a/b
- Numeric literas !

Conditional Include:
- Pure conditional expressions

7>6

a>70R b = true

a = true

true

148

SonicMQ Programming Guide

Message Listeners, Receivers, and Selectors

Table 14. Comparison Test Syntax in Message Selectors

Identifier IS NOT NULL
for:

- Header field value

- Property value

- Existence of a property

Refer to SQL-92 semantics or the IMS
specification for more about comparisons that
involve null values.

Selector Element |Format and Requirements Example
Comparison IN Identifier IN (strl, str2, ...) a IN (“AR”,”AP”, “GL*)
tests
Identifier NOT IN (strl, str2, ...) a NOT IN (“PR”,”IN”,
“FA%)
LIKE Identifier LIKE (strl, str2,...) a LIKE “Fr%d”
is t for “Fred” “Frond”
Identifier NOT LIKE (strl, str2,...) 18 true for: Fre ron
and false for “Fern”
can be enhanced with pattern values:
- Underscore () stands for any character
a LIKE “_%” ESCAPE “\”
- Percent (%) stands for any sequence of true for <JMS_A” and false
characters for <JMsPriority”
To explicitly defer the special characters_ and
%, precede their entry with the Escape
character.
null Identifier IS NULL a is NULL

a is NOT NULL

Comparing Exact and Inexact Values

Comparing an int value (an exact numeric literal that uses the Javainteger
literal syntax) and a float value (an approximate literal that uses the Java
floating point literal syntax isallowed.

SonicMQ Programming Guide

149

Chapter 5: Message Producers and Consumers

Type conversion isdefined by the rules of Javanumeric promotion as described
in the Java Language Specification which, in part, declares that:

m Unary conversions are from byte, short, Or char, to avalue of type int by
awidening conversion and, otherwise, a unary humeric operand remains
asisand is not converted.

m Binary conversions called for by operands on data of numeric types. If
either operand is of type double, the other is converted to double.
Otherwise, if either operand is of type float, the other is converted to
float. Otherwise, if either operand is of type long, the other is converted
to 1ong. Otherwise, both operands are converted to type int.

Steps in Listening, Receiving and Consuming
Messages

Receiving and consuming a Pub/Sub message within a connected session is
presented in six steps:

1. Implement the listener or receiver to the destination.

2. Create the consumer and listener for the destination.

3. Handle areceived message hy:
m Using instanceOf to determine if the message is as expected
» Handling alternate message types
= Manipulating or parsing body data

4. Get header fields.

5. Get message properties.

6. Consume the message.

Implement the Message Listener
The standard JIM S message listener is implemented:

public class Chat

implements javax.jms.MessagelL istener

150 SonicMQ Programming Guide

Steps in Listening, Receiving and Consuming Messages

Create the Destination and Consumer, then Listen

After getting the ConnectionFactory object for the appropriate messaging
model, then establishing a connection and session, the session objects are
created:

Javax.jms.Topic topic = subSession.createTopic
(""jms.samples.chat');

Javax. jms._TopicSubscriber subscriber =
subSession.createSubscriber(topic);

subscriber.setMessagelListener(this);

Handle a Received Message

In the chat sampl e the message is assumed to be text and isintended for output
to the standard output stream:

public void onMessage(javax.jms.Message aMessage)

Javax. jms.TextMessage textMessage =
(Javax.jms.TextMessage) aMessage;

String string = textMessage.getText();
System.out.printin(string);

Special Handling When the Message Type is Uncertain

In the xMLChat sample, the message is tested to determine whether or not it is
an instance of xmLMessage and then handled appropriately:
public void onMessage(javax.jms.Message aMessage) {
iT (aMessage instanceof progress.message.jclient.XMLMessage){
... see Parsing an XML Message
Yelse{ // Cast the message as a text message and display it.

Javax. jms.TextMessage textMessage =
(Javax.jms.TextMessage) aMessage;

System.out.printIn("[TextMessage] "
+ textMessage.getText());

}

Parse an XML Message and Extracting Data from Fields

// Cast the message as an XML message.

SonicMQ Programming Guide 151

Chapter 5: Message Producers and Consumers

progress.message.- jclient_XMLMessage xmlMessage =
(progress.message.- jclient_XMLMessage) aMessage;

// Get the XML document associated with this message.
org.w3c.dom.Document doc = xmlMessage.getDocument();
// Get the sender and content from the message.
org.w3c.dom.NodeList nodes = null;

nodes = doc.getElementsByTagName(''sender'");

String sender = (nodes.getLength() > 0) ?
nodes. item(0) .getFirstChild() .getNodeValue() : "unknown";

nodes = doc.getElementsByTagName(''content');

String content = (nodes.getLength() > 0) ?

nodes. item(0) .getFirstChild() .getNodeValue() : null;

// Show the message.

System.out.printIn(*’[XML from *'" + sender + "”] " + content);
// Show the message as a tree.

printbocNodes(doc .getDocumentElement(),0);
System.out._printin();

Get Message Header Fields

Use the get methods for Header fields, such as:

getIMSMessagelD()

Get Message Properties

Warning

Use the get methods for the data type of a property and then supply the
property name and its value of the declared type. When a property requested
does not exist in amessage, the return value is null. Generically:

get[type]Property(String)
FOfGMEWnple,getlntProperty(“OurInfo_AuditTraiI”)

This example gets an int property that was set with (and stored as) a long.
Attempting to get a property type that is not the type with which the property
was set will force coercion of the value to the declared type. If the conversion
isnot valid, an exception isthrown. See Table 10, “ Permitted Type
Conversions for Message Properties.”

152

SonicMQ Programming Guide

Reply-to Mechanisms

Consume the message

The application can pass the data in an accepted message to the business
applicationfor which it performsits services. Explicit acknowledgement of the
JM S message to the message server could be postponed until the business
application acknowledges processing with atransaction or audit trail identifier.
This value could be passed back to the producer is areply was requested.

Reply-to Mechanisms
The typical design pattern for request/reply is—asin this PTP example:

m Make atemporary queue.
= Set the JMsrReplyTo header to this queue.
m Do asynchronous QueueSender . receive() on the message.

Thetemporary destination can be agueue or atopic. Thetemporary destination
could be structured into a requestor helper class, as shown in Table 15.

Table 15. Reply-To Mechanisms in Both Domains

Reply-To Publish and Subscribe

Mechanism Domain Point-to-Point Domain
Destination TemporaryTopic TemporaryQueue

Helper class TopicRequestor QueueRequestor

The JmsreplyTo message header field contains the destination where areply to
the current message should be sent. M essages with a JmMsrReplyTo value are
typically expecting aresponse. If the amsreplyTo vaueisnull, noreply isexpected.
A response can be optional, and client code must handle the action. These
messages are called requests.

A message sent in responseto arequest is called areply. Message replies often
usethe amscorrelationlD to ensure that replies synchronize with their request.
A JmscCorrelationID would typically contain the ausmessagelD of the request.

SonicMQ Programming Guide 153

Chapter 5: Message Producers and Consumers

Temporary Destinations Managed by a Requestor Helper
Class

Under Pub/Sub, the TopicRequestor uses the session and topic that were
instantiated from the Session methods. The code excerpts below are from the
TopicPubSub Requestor and Replier samples. Notice that the code never
actually manipulatesthe TemporaryTopic object; instead it usesthe helper class

TopicRequestor.

Requestor Application

Javax. jms.TopicRequestor requestor =

new javax.jms.TopicRequestor(session, topic);
Javax.jms_Message response = requestor.request(msg);
Javax. jms.TextMessage textMessage =

(Javax.jms.TextMessage) response;
Replier Application

Synchronous requests leave the originator of arequest waiting for areply. To
prevent areguestor from waiting, a well-designed application uses the
following flow:

1. Get the message:

public void onMessage(javax.jms.Message aMessage)

Javax. jms.TextMessage textMessage =
(Javax.jms.TextMessage) aMessage;

String string = textMessage.getText();

2. Look for the header specifying avMsReplyTo:

Javax.jms._Topic replyTopic =
(Javax.jms.Topic) aMessage.getIMSReplyTo();

ifT (replyTopic !'= null).._.

3. Send areply to the topic specified in aMSReplyTo:

Javax. jms.TextMessage reply = session.createTextMessage();

154 SonicMQ Programming Guide

Reply-to Mechanisms

Design for Handling Requests

Thefinal steps taken by the message handler represent good programming
style, but they are not required by the design paradigm for IM S requests:
m Set the auscorrelationiD, tying the response back to the original request.

m Usetransacted session commit SO that the request will not be received
without the reply being sent, for example:
reply.setJMSCorrelationlD(aMessage.getIMSMessagelD());
replier_publish(replyTopic, reply);

session.commit();

Writing a Topic Requestor

The default TopicrRequestor behavior isto block when waiting for areply. You
can write your own TopicRequestor class that will timeout (receive(long
timeOut)) or listen to the temp topic as a subscriber, thereby avoiding the

SonicMQ Programming Guide 155

Chapter 5: Message Producers and Consumers

blocking situation. The javax. jms.TopicRequestor . java file, listed below, isa
start toward creating your own TopicRequestor.class.

// @(#)TopicRequestor.java 1.9 98/07/08

// Copyright (c) 1997-1998 Sun Microsystems, Inc. All Rights Reserved.
package javax.jms;

public class TopicRequestor {

TopicSession session;

// The topic session the topic belongs to.
Topic topic;

// The topic to perform the request/reply on.
TemporaryTopic tempTopic;
TopicPublisher publisher;
TopicSubscriber subscriber;

// Constructor for the TopicRequestor class.
public TopicRequestor(TopicSession session, Topic topic)
throws JMSException {

this.session = session;

this.topic = topic;

tempTopic = session.createTemporaryTopic();
publisher = session.createPublisher(topic);
subscriber = session.createSubscriber(tempTopic);

// Send a request and wait for a reply.
public Message
request(Message message)
throws JMSException
{

message - setIJMSReplyTo(tempTopic);
publisher.publish(message);
return(subscriber.receive());

// Close resources when done.
public void
close() throws JMSException {
tempTopic.delete();
publisher.close();
subscriber.close();
session.close();

156 SonicMQ Programming Guide

Producers and Consumers in JMS Messaging Domains

Producers and Consumers in JMS Messaging Domains

Thetwo JM S messaging domains provide naming conventions for their use of

these general messaging terms as listed in Table 16.

Table 16. Messaging Subclasses in JMS Messaging

JMS Messaging Point-to-Point Publish and Subscribe
Class Subclass Subclass
ConnectionFactory QueueConnectionFactory | TopicConnectionFactory
Connection QueueConnection TopicConnection
Session QueueSession TopicSession
MessageProducer QueueSender TopicPublisher
MessageConsumer QueueReceiver TopicSubscriber
Destination Queue Topic

Figure 27 shows the relationship of the session objectsin the IMS domains.

Point-to-Point Domain

\ QueueSession

createSender (queue)

ﬂ QueueSender

createReceiver (queue)

teQueue (String)

ﬂ‘QueueReceiver HIT—{‘MessageListener m

setMessagelistener

Publish and Subscribe Domain

\ TopicSession

createPublisher (topic) -

ﬂTopicPuinsher

createSubscriber (topic) -

createTopic (String)

oo]

ﬂTopicSubsoriber m'—{‘MessageListener m

setMessagelistener

Figure 27. Session Objects in the JMS Domains

SonicMQ Programming Guide

157

Chapter 5: Message Producers and Consumers

Table 17 lists ageneral messaging functionality that is consistent in both
Publish and Subscribe and Point-to-Point messaging.

Table 17. Producer and Consumer Common to Both Messaging Models

javax.jms Interface Functionality in Either Domain

Destination Destination SUpPpPOrts concurrent use
extended by: Queue, Topic

MessageProducer Able to send message while connection is stopped
extended by: Close MessageProducer method
QueueSender Supports message delivery modes PERSISTENT and NON_PERSISTENT
TopicPublisher Supports message Time-to-Live
Support message priority
MessageConsumer Close MessageConsumer method
extended by: Supports MessageSelectors
QueueReceiver Supports synchronous delivery (receive method)
TopicSubscriber Supports asynchronous delivery (onMessage method)

Supports AUTO_ACKNOWLEDGE of messages

Supports CLIENT_ACKNOWLEDGE of messages
Supports bUPS_OK_ACKNOWLEDGE of messages
Supports SINGLE_MESSAGE_ACKNOWLEDGE of messages

Message Message header fields
extended by: M essage properties
TextMessage M essage acknowledgment
Vapllessage Access to message after being sent for reuse
StreamMessage
ObjectMessage
BytesMessage

See Chapter 6, “ Point-to-Point Messaging,” and Chapter 8, “ Publish and
Subscribe Messaging,” for programming concepts and distinguished
functionality in each messaging domain.

158 SonicMQ Programming Guide

Chapter 6 Point-to-Point Messaging

About Point-to-Point Messaging

In the Point-to-Point (PTP) messaging model, shown in Figure 28, a queue
stores messages for as long as they are specified to live, waiting for areceiver.
The QueueBrowser mechanism provides a sender with an opportunity to

peruse the queue to see how message traffic is moving.

createQueueConnection{)

createQueueSession()
createQueue(String)

createSender(queue)

createReceiver(queue)
T

setMessagelistener

Figure 28. Point-to-Point Messaging Model

SonicMQ Programming Guide 159

Chapter 6: Point-to-Point Messaging

Coding Queues, Senders, and Receivers

Queue names must be set up in the message server database by the
administrator before they can be used. See the SonicMQ Installation and
Administration Guide for information about maintaining queues.

Coding Sample

The QueuePTP sample Talk provides alook at how PTP applications are started
and coded. The command that starts the Talk application specifies the sending
gueue and the receiving queue that will be used:

jJava Talk -b <broker:port> -u <user> -p <pwd> -gQs <queue> -gr <queue>
where:

— broker:port pointsto the message server.

— user and pwd isthe unique user name and its password.

— -gs queue isthe name of the queue for sending messages.
— —gr queue iSthe name of the queue for receiving messages.

The following segments excerpted from the Talk sample show how to create
the objects used in PTP communication:

// Create a connection. (try/catch)

Javax. jms.QueueConnectionFactory factory;
factory = (new progress.message.jclient.QueueConnectionFactory
(broker));
connect = factory.createQueueConnection (username, password);
sendSession = connect.createQueueSession
(false,javax.jms.Session.AUTO_ACKNOWLEDGE);
receiveSession =
connect.createQueueSession
(false,javax.jms.Session.AUTO_ACKNOWLEDGE);
// Create Sender and Receiver ’Talk” queues. (try/catch)
ifT (sQueue !'= null)
{

Javax.jms.Queue sendQueue = session.createQueue (SQueue);
sender = sendSession.createSender(sendQueue);

if (rQueue !'= null)

{

Javax.jms.Queue receiveQueue = receiveSession.createQueue
(rQueue);
Javax. jms.QueueReceiver gReceiver =
receiveSession.createReceiver(receiveQueue);
gReceiver.setMessagelL istener(this);
// The “receive’ setup is complete. Start the Connection
connect.start();

o

160 SonicMQ Programming Guide

Message Ordering and Reliability in PTP

Message Ordering and Reliability in PTP

Theservicesavail ablein aPoint-to-Poi nt messaging structure add other factors
to general message ordering and reliability.

Message Ordering

Queued delivery allows several receivers to apply their resources to taking
exclusive control of a message and processing that message. As aresult, a
series of messages might be consumed by severa sessions each taking afew

messages.
M essages on a queue also have factors that impact the ordering and reliability
of messages:

» When amessageis put onto a queue, a higher priority indicated on the
sender method, an active queue receiver might take a newer message off
the queue before an older message.

m Queued messagesthat are not acknowledged are placed back on the queue
(reenqueued) for delivery to the next qualified receiver. In the interim an
older message may have been received by a consumer.

m Queue receivers have afetch parameter that retrieves a number of
messages and caches them for processing. If these messages are not
processed, they are returned to the queue.

Reliability
Messages on a queue have factors that impact the reliability of messages:

m Message selectors limit the number of messages that a client will receive.
Messages could stay on the queue until areceiver either providesaliberal
message selector or no message selector at al. A queue might appear
empty to areceiver that deselects all the existing messages even though
other messages might still be in the queue.

m Message destruction due to administrator action permanently disposes of
gueued messages.

m Message destruction due to expiration might permanently dispose of a
message but the message could—if flagged by the sender—berouted to the

SonicMQ Programming Guide 161

Chapter 6: Point-to-Point Messaging

message server’s dead message queue where it does not expire. An
Administrative application can set up an authorized receiver on the dead
message queue to determine whether to recast the message, resend it asis,

or discard it.

Note The effects of dynamic routing on message ordering and reliability are
discussed at greater length in the scenarios in Chapter 7, “Dynamic Routing
Architecture,” and in the SonicMQ Deployment Guide.

Advantages and Constraints in PTP Domains

Consider typical rea-world analogies for the basic domains:

m Point-to-Point — An available agent for airline check-in takes the person
a the front of the line. If there are no agents, you just wait.

m Publish and Subscribe — Airport controllers broadcast gate changes to
all subscribing airline agents, travel agents, support services, and Web
information pages. If you are not connected, you do not get the data.

The concepts of Pub/Sub can be used to simulate PTP functionality by setting
up asingle administered topic, then giving only one subscriber accessto it as
adurable subscriber. However, Pub/Sub hasrestrictions that PTP does not. See

Table 18.

Table 18. Advantages of the Point-to-Point Messaging Model

Point-to-Point

Publish and Subscribe

Multiple Receivers— Can set up multiple receiversto
take turns at receiving the frontmost message. The
message is delivered only once.

Cannot establish another consumer to share the
message |oad. The one message is delivered to
every active subscriber.

Queue Browser — Can browse the queueto seewhat is
outstanding and what is frontmost.

Cannot know if the messages are awaiting delivery.

Dead M essage Queue — Can expressinterest in a
delivery guarantee and set properties that will channel
messages to a specia queue when they expire. Also can
choose to send an administrative event to a management
console.

Cannot know if messages are delivered to any
subscriber at al.

162

SonicMQ Programming Guide

Advantages and Constraints in PTP Domains

Multiple Receivers

Every gueuereceiver isamessage consumer for its associated queue, prepared
to receive the next avail able message. While all the receiversin an active multi-
receiver system will expect to get all messages, they do so collectively. A
hundred messagesto four receivers should result in receivers processing about
twenty-five messages each.

Queue receivers do not automatically get messages. Having an active session
where an application creates a queue does not result in messages getting
delivered to the application. Either an asynchronous listener or a synchronous
receiver can be used.

Message Queue Listener

A message listener isinvoked to initiate asynchronous monitoring of the
session thread for messages on the queue:
setMessageListener(MessageListener listener)

where listener isthe message listener to associate with this session.

The listener is often assigned just after creating the queue receiver from the
session, so that the listener is bound to the queue to which the receiver was just
made:

Javax.jms.Queue receiveQueue = session.createQueue (rQueue);

Javax. jms.QueueReceiver gReceiver =
session.createReceiver(receiveQueue);

gReceiver.setMessagelL istener(this);
As aresult, asynchronous message receipt becomes exclusive for the session.

Message sending is not limited when message listeners are in use. Sending is
aways synchronous.

Message Queue Receiver

The QueueReceiiver interface provides methods for synchronous calls to fetch
messages. The variants manage the potential block by either not waiting if
there are no messages or timing out after a specified wait period.

SonicMQ Programming Guide 163

Chapter 6: Point-to-Point Messaging

Receive
To receive the next message produced for the queue receiver, use the method:

Message receive()

This call blocks indefinitely until amessage is produced. When a receive
method iscalled in atransacted session, the message remainswith the receiver
until the transaction commits. The return value is the next message produced
for thisreceiver. If asession isclosed while blocking, the return is null.

Receive with Timeout

To receive the next message on the queue within a specified time interval and
cause atimeout when the interval has elapsed, use the method:

Message receive(long timeOut)
where timeout is the timeout value (in milliseconds)
Thiscall blocksuntil amessage arrives or thetimeout expires. Thereturn value

is the next message produced for this queue receiver, or null if oneisnot
available.

Receive No Wait

To immediately receive the next available message on the queue or, otherwise,
instantly timeout, use the method:
Message receiveNoWait()

It receives the next message if oneis available. The return value is the next
message produced for this queue receiver, or null if oneis not available.

164 SonicMQ Programming Guide

Advantages and Constraints in PTP Domains

Prefetch Count and Threshold

SonicM Q extends the standard QueueReceiver interface to enable the
programmer to set and get parameters of the message receiver that allow
performance tuning:

m Count — The number of messagesthat the receiver will take off the queue
to buffer locally for consumption and acknowledgement. The default
PrefetchCount valueis 3.

m Threshold — The minimum number of messages in the local buffer that
will allow a new receiver to append more messages to the buffer. The
default PrefetchThreshold valueis 1.

For example, athreshold value of 2 and a prefetch count of 5 causes the
QueueReceiver to fetch batches of five messages from the message server
whenever the number of messages locally waiting for processing drops below
two.

The threshold value cannot be greater than the count value.

setPrefetchCount
progress.message.- jclient._QueueReceiver.setPrefetchCount(int count)
where count is the number of messages to prefetch.

When the prefetchCount Valueis greater than one, the message server can send

multiple messages as part of a single QueueReceiver request. Thiscanimprove
performance.

getPrefetchCount
progress.message.- jclient_QueueReceiver.getPrefetchCount()

Returns the PrefetchCount positive integer value.

setPrefetchThreshold

progress.message.- jclient.QueueReceiver.setPrefetchThreshold(int
threshold)

where threshold is the threshold value for prefetching messages.

SonicMQ Programming Guide 165

Chapter 6: Point-to-Point Messaging

Setting this to a value greater than zero alows the QueueReceiver to aways
have messages available for processing locally without waiting for a message
server interaction. Thisimproves performance.

When the number of messages waiting to be processed by the QueueReceiver
fallsto, or below, the PrefetchThreshold number, anew batch of messageswill
be fetched.

getPrefetchThreshold
progress.message.- jclient._QueueReceiver.getPrefetchThreshold()

Returns the PrefetchThreshold positive integer value.

Queue Browsing

A QueueBrowser lets aclient look at messages in a queue without removing
them. Queue browsing isatask that retrievesacursor in the queue at its current
location, forward or backward to the currently-adjacent message. Asthe queue
can be loading and unloading very quickly, browsing is most useful when
assessing queue size and rates of growth. Instead of actual message data, the
enumeration method can return just the integer count of messages on the
queue.

createBrowser

The browser can be created with a session method:

session.createBrowser (Queue queue)

where queue is the queue you want to browse.

createBrowserMessage (MessageSelector)

A message sdector string can be added to qudify the messages that are browsed. See
“Message Selector” on page 145 for information about selector syntax.
session.createBrowser (QueueSession session,

Queue queue,
String messageSelector)

166

SonicMQ Programming Guide

Advantages and Constraints in PTP Domains

where:
— session isthe queue session in which you want to browse.
— queue isthe gueue you want to browse.

— messageSelector iSthe selector string that qualifies the messages
you want to browse.

getMessageSelector
You can get the message selector expression being used with:

String getMessageSelector()

getEnumeration

You can get an enumeration for browsing the current queue messages in the
sequence that messages would be received with:

Java.util _Enumeration getEnumeration()

getQueue
You can get the queue name associated with an active browser with:

getQueue()

close

Always close resources when they are no longer needed with:
close()

QueueBrowser Sample

The sample application QueuePTP\QueueMonitor Uses the Queue Browser to
display current queue contents in a Java Window. Some of its code is listed
below:

// Create a browser on the queue and show the messages waiting in it.
Javax.jms.Queue q = (Javax.jms.Queue) theQueues.elementAt(i);
textArea.append('Browsing queue \""" + g.getQueueName() + '"\'\n'");

// Create a queue browser
System.out.print (“'Creating QueueBrowser for \"" +

g-getQueueName() + "\"...");
Javax.jms.QueueBrowser browser = session.createBrowser(q);
System.out.printin ('[done]™");=
int cnt = 0;

SonicMQ Programming Guide 167

Chapter 6: Point-to-Point Messaging

Enumeration e = browser.getEnumeration();
if(le.has MoreElements())
textArea.append (*'<no messages in queue>'");
else
while(e.hasMoreElements())
System.out.print ("' --> getting message " +
String.valueOf(++cnt) + ");
Javax.jms.Message message = (Javax.jms.Message)
e.nextElement();
System.out.printIn(""['* + message + "]'");
if (message !'= null)

String msgText = getContents (message);
textArea.append(msgText + '\n"");

Handling Undelivered Messages

SonicM Q provides a service whereby an undeliverable message can—if the
sender requested the additional service—be taken off its queue and then re-
engueued on a standard system queue where it will reside until acted on. The
dead message queue (DMQ) is afinite data store that is usually managed by
message server administrator applications.

You, the programmer, can express interest in trapping items when they are
undelivered items. You can set that you want a message to:

m Beplaced in the dead message queue when it is discovered to be expired.

= Send anotification, an administrative event.

Note There are several other reasons a message could be undelivered in adynamic
routing deployment. See Chapter 7, “Dynamic Routing Architecture,” for
more about undelivered messages in such an architecture.

Setting Important Messages to Get Saved If They Expire

Important messages should be sent with a PERSISTENT delivery mode and
flagged to be preserved on expiration or when they cannot be routed

168 SonicMQ Programming Guide

Advantages and Constraints in PTP Domains

successfully across routing nodes. You could choose to also generate an
administrative event. The following code sample shows those settings:
// Create a BytesMessage for the payload. Make sure the message
// is delivered within 2 hours (7,200,000 milliseconds).
// 1T expires, send a notification and save the message.
Javax. jms._BytesMessage msg = session.createBytesMessage();
msg.setBytes(payload) ;
// Set “undelivered” behavior.
msg.setBooleanProperty (PRESERVE_UNDELIVERED, true);
msg.setBooleanProperty(NOTIFY_UNDELIVERED, true);
// Send the message with PERSISTENT, TimeToLive values.
gsender .send(msg,
Javax. jms.DeliveryMode .PERSISTENT,
Javax.jms.Message.DEFAULT_PRIORITY,
7200000) ;

Setting Quick Messages to Generate Administrative Notice

Send a small message using high priority, with the expectation that this
message will be delivered in ten minutes. Only notification events are needed.
// Create a BytesMessage for the payload. Make sure the message
// is delivered within 10 minutes (600,000 milliseconds).
// If expires, send a notification.
Javax. jms.BytesMessage msg = session.createBytesMessage();
msg.setBytes(payload) ;
// Set “undelivered’ behavior. Using the property names that
// are defined as static final Strings in
// progress.messages.-jclient.Constants ensures catching errors.
msg.setBooleanProperty(NOTIFY_UNDELIVERED, true);
// Send the message for fast delivery, or not at all.
gsender .send(msg,
Javax. jms.DeliveryMode .NON_PERSISTENT,
8, // Expedite at a high priority
600000); // 10 minutes

SonicMQ Programming Guide 169

Chapter 6: Point-to-Point Messaging

Life Cycle of a Guaranteed Message

A message gets sent to the dead message queue only when the application
developer declares it important to do so.

Setting the Message to Be Preserved

The application developer can choose to set the property of a message that is
about to be sent to declare that the entire message should be preserved if it is
undeliverable as follows:

msg.setBooleanProperty(PRESERVE_UNDELIVERED, true);
You can choose to al so generate an administrative event.

Setting the Message to Generate an Administrative Event

You could express an interest in being advised whether or not a message was
delivered without needing to preserve the original message. Thisis distinctly
more efficient both in terms of the message traffic density and the requirements
of dequeueing undelivered messages. To declare that an administrative event
should be generated, set the appropriate message property:

msg.setBooleanProperty(NOTIFY_UNDELIVERED, true);

Sending the Message
The sending application sends the message metadata and the message payl oad.
It can expect that the message gets delivered to an interested receiver.
Letting the Message Get Delivered or Expire

A message can be acknowledged as delivered to areceiver. If the messageis
NON_PERSISTENT, it isvolatileif there is a system outage. If the messageis
PERSISTENT, it will recover from a system outage.

Post-Processing of Expired Message

When amessage' s expiration time—asmarked inthe message’ s MSExpiration
header field—has passed, the message server dequeues the message and
examines the sender’s settings.

170 SonicMQ Programming Guide

Advantages and Constraints in PTP Domains

Degueueing only takes place when the messages are reviewed. Inert or low
volume queues may have messages that expire but do not become undelivered
until areceive or browse mechanism compels the message server to look at the
message. Two properties are inspected to seeif either or both further
processing steps is requested:

m JIMS_SonicMQ_preserveUndelivered — If true, the expired messageis
transferred to the dead message queue

m JIMS_SonicMQ_notifyundelivered — If true, the expired message generates
an administrative notice.

Processing of Enqueuing Expired Messages

When an expired message is transferred to the dead message queue, it hasthe
reason code UNDELIVERED_TTL_EXPIRED. When the message istransferred to the
gueue SonicMQ.deadMessage, the message server adds two properties:

JIMS_SonicMQ_undeliveredReasonCode = <reason code>
JIMS_SonicMQ_undeliveredTimestamp = <GMT time> [as long]

The message retains its original msbestination header field value. Thisis
unlike all other types of queues where all IM S destinations match the queue
definition.

Also the message retainsits original Jvsexpiration header field value. When
the message is retrieved from the dead message queue, you can examine its
properties including the time at which it was declared undeliverable, an
indicator of the time on the system clock where the message expired..

Important Messagesin the dead message queue with aPERSISTENT delivery mode will not
expire. If you have access to administrative functions on amessage server, stay
alert and degqueue dead messages as soon as possible. M essages with NoN-
PERSISTENT delivery mode are volatile and will perish if the message server
restarts.

SonicMQ Programming Guide 171

Chapter 6: Point-to-Point Messaging

Sending of Administrative Notification

When an expired message requests administrative notification, anoticeis sent
with the following information:

Undelivered Reason Code. Thisis stored in the
IMS_SonicMQ_undelivered_ReasonCode 0N the origina message. In this
case, the message is reason code 1, UNDELIVERED_TTL_EXPIRED—
undelivered because the message's timeToL ive expired.

Messagel D from JvmsMessage 1D on the original message.
Destination from Jusbestination of the original message.

Timestamp when the message was handled as a dead message. Thisis
stored in the JMS_SonicMQ_undeliveredTimestamp if the messageis saved.

Name of the message server where the notification originated. Thisis
important in clustered message server deployments.

Preserved as set in the JMs_SonicMQ_preserveUndelivered property on the
original message. If true, the message has been saved in the dead message
gueue on the server where the message was declared undeliverable.

Programmer Callback for Undelivered Message Notification

Programmatic handling of the undelivered message event uses the
management API callsin progress.message.tools.BrokerManager.
You must create a class that implements the callback for the
brokerUndel iveredMsgNotification method.

See the Javadoc for the BrokermManager class and 1BrokerManagerListener
interface in the progress.message. tools package for more information on
these calls.

172

SonicMQ Programming Guide

Advantages and Constraints in PTP Domains

Getting Messages Out of the Dead Message Queue

Thefollowing code showsthe use of synchronous receives against messagesin
the DMQ:

import progress.message.-jclient.Constants;

// Create a QueueReceiver against the dead message queue.

Session session =
connect.createQueueSession(false,CLIENT _ACKNOWLEDGE) ;

Queue dmg = session.createQueue ("'SonicMQ.deadMessage');
QueueReceiver receiver = session.createQueueReceiver(dmq);

connect.start();

// Empty the dead message queue.
while(true)

{
Message m = receiver.receive();
int code =
m.getintegerProperty(Constants.UNDELIVERED_ REASON_CODE) ;
if (code == Constants.UNDELIVERED TTL_EXPIRED)
{
// Handle due to normal timeout.
}
}

SonicMQ Programming Guide 173

Chapter 6: Point-to-Point Messaging

174 SonicMQ Programming Guide

Chapter 7 Dynamic Routing Architecture

About Dynamic Routing

This chapter describes some additional Point-to-Point programming
techniquesthat areimportant when SonicMQ is used with a Dynamic Routing
Architecture (DRA) in Business-to-Business (B2B) deployments. A DRA
deployment is characterized by the use of remote queues, queuesidentified by
adouble colon (::) in their name which must be accessed in special ways.
When using remote queues, keep the following pointsin mind:

m Messages sent to aremote queue that do not reach it must be directed to
the Dead M essage Queue (DM Q) of the current server or they will be lost.

= A client cannot browse a remote queue, even if the client is connected to
the server containing the remote queue.

= A client cannot read aremote queue directly, even if the client is connected
to the server containing the remote queue.

To learn about the architecture, functions, and configuration of a SonicMQ
Dynamic Routing Architecture, see the SonicMQ Deployment Guide.

The behavior of amessage under DRA is dependent on severa factors:
m Isthe queuelocal or globa?
m Doesthe queue exist on the local message server?

m Isthe message server part of acluster?If it ispart of acluster, isthe queue
aglobal queue elsewhere in the routing node?

SonicMQ Programming Guide 175

Chapter 7: Dynamic Routing Architecture

= How was the queue name referenced when the application created the
gueue? For example:

— <queue> (non-remote queue)
— <routing node name>::<queue> (remote queue)

— ::<queue> (remote queue on local cluster)

Message Behavior on Global and Local Queues

The following scenarios describe the view of a Java client trying to send a
message to a global queue, g, or alocal queue, 1. Each of these queues exists
in some scenarios and does not exist in others. The Q_NAME changes in each
scenario. Messages are set up to be saved in the Dead Message Queue.

The following code describes what is executed on the client in each scenario:

// Static setup
private static String Q_NAME = <Various>

// Set the msg to be preserved in the Dead Message Queue.

msg.setBooleanProperty(““IJMS_SonicMQ_preserveUndelivered”, true);

// Create a Queue and send the message to this queue.
Javax. jms.Queue theQueue = session.createQueue(Q_NAME);
Javax. jms._.QueueSender sender = session.createQueueSender(null);

sender.send (theQueue, msQ);

176 SonicMQ Programming Guide

Message Behavior on Global and Local Queues

Undelivered Message Reason Codes

The reason names of the SonicM Q associates with undelivered messages are
Strings iN progress.message . jclient.Constants. Table 19 lists those
constants that relate to all queues and those relating only to DRA.

Table 19. Reason Codes for Undelivered Messages

Value |Reason Scope | Reason Marked as Undeliverable
1 UNDELIVERED_TTL_EXPIRED All The current system time on the message server
(as GMT) exceeds the message’s expiration
time (as GMT).
3 UNDEL IVERED_ROUTING_INVAL ID_NODE DRA The target routing node in the destination

cannot be found in the message server's list of
routing connections.

4 UNDEL IVERED_ROUT ING_INVALID_DESTINATION DRA Message received by a message server from a
remote routing node has amessage destination|
that does not exist asaglobal queuein the
current routing node.

5 UNDEL IVERED_ROUT ING_TIMEOUT DRA M essage received by a message server cannot
establish aremote connection to the
destination routing node after trying for the
specified period of time.

6 UNDEL IVERED_ROUT ING_ INDOUBT DRA M essageisunacknowledged between message]
servers, leaving the message in doubt. The
message servers try to re-establish the
connection and resolve the situation.

7 UNDEL IVERED_ROUT ING_CONNECTION DRA Routing connection username and password
—AUTHENTICATION_FAILURE were not authorized at arouting node while
connecting to the remote message server.

8 UNDEL IVERED_ROUT ING_CONNECTION DRA Routing connection username did not have
—AUTHORIZATION_FAILURE appropriate permissions to connect to the
specified routing node.

9 UNDEL IVERED_MESSAGE_TOO_LARGE_FOR_QUEUE| Al| Message is larger than the maximum size of
the queue.

SonicMQ Programming Guide 177

Chapter 7: Dynamic Routing Architecture

Sending to a Message Server Where Queues Exist
This scenario has the following environment:
m The message server's nameis SonicMQ .
= Routing node name is NODE (ROUTING_NODE_NAME=NODE) .
m Queue g exists as aglobal queue.
m Queue I existsasaloca queue.
m Therouting table is aware of another routing node named pPortal.

Figure 29 illustrates the scenario.

Client
sender.send(msg) I_—>

Server

To Routing Node
“Portal”

»

routing queue »

BROKER_NAME=Soni ¢ MQ
ROUTI NG_NODE_ NAME=NODE

Figure 29. Message Server Where Specified Queues Exist

178 SonicMQ Programming Guide

Message Behavior on Global and Local Queues

Table 20 shows the expected behavior for different values of Q_NanE (the queue

name used by the client).

Table 20. Routing Behavior on a Server Where Specified Queues Exist

Q_NAME Behavior Message Goes To...
1 Send succeeds. 1 queue on SonicMQ
NODE: : 1 Send succeeds. Message goes to routing Dead Message Queue on SonicMQ
queue, but cannot be delivered because Reason code:
queueis not global. UNDEL IVERED_ROUT ING_INVAL ID_DEST INATION
| Same as NODE: : I. Dead Message Queue on SonicMQ
Reason code:
UNDEL IVERED_ROUTING_INVAL ID_DESTINATION
g Send succeeds. g gqueue on SonicMQ
NODE: :g Send succeeds. g queue on SonicMQ
I:g Same as NODE: :g. g queue on SonicMQ

Portal: :appQ

Send succeeds. Message is routed to the
Portal Routing Node.

Portal’s appQ if it isavailable;
otherwise, Dead Message Queue on Portal

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

Acme: tappQ

Send succeeds. However, no routing
information exists for the routing node
named Acme.

Dead Message Queue on SonicMQ

Reason code:
UNDELIVERED_ROUTING_INVALID_NODE

SonicMQ Programming Guide

179

Chapter 7: Dynamic Routing Architecture

Sending to a Message Server Where Queues Do Not Exist
In this scenario, the setup is as follows:
m The message server's nameis SonicmQ.
= Routing node name is NODE (ROUTING_NODE_NAME=NODE).
m Queue g does not exist (asaglobal queue).
m Queue 1 does not exist (asalocal queue).
m Therouting table is aware of another routing node named pPortal.

Figure 30 illustrates the scenario.

Client
sender.send(msg) I_—»

Server

routing queue

BROKER_NAME=Soni cMQ
ROUTI NG_NODE_NAME=NODE

To Routing Node
“Portal”

>

Figure 30. Message Server Where Specified Queues Do Not Exist

180 SonicMQ Programming Guide

Message Behavior on Global and Local Queues

Table 21 shows the expected behavior for different values of Q_NanE (the queue

name used by the client).

Table 21. Routing Behavior on Server Where Specified Queues Do Not Exist

Q_NAME Behavior Message Goes To...
1 Client gets javax. jms.JIMSExceptionon | N/A
send.
NODE: :1 Send succeeds. Message goes to routing Dead Message Queue on SonicMQ
gueue, but cannot be delivered because Reason code:
queue does not exist. UNDEL IVERED_ROUT ING_INVAL ID_DEST INATION
i | Same asNODE: : I. Dead Message Queue on SonicMQ
Reason code:
UNDEL IVERED_ROUT ING_INVALID_DEST INATION
g Client gets javax. jms.JIMSExceptionon | N/A
send.
NODE: :g Send succeeds. Message goes to routing Dead Message Queue on SonicMQ
gueue, but cannot be delivered because Reason code:
queue does not exist. UNDEL IVERED_ROUT ING_INVAL ID_DEST INATION
e} Same as NODE: :-g. Dead Message Queue on SonicMQ

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

Portal : :appQ

Send succeeds. Message is routed to the
Portal routing node.

Portal’s appQ if it isavailable;
otherwise, Dead Message Queue on Portal

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

Acme: tappQ

Send succeeds. However, no routing
information exists for the routing node
named Acme.

Dead Message Queue on SonicMQ

Reason code:
UNDELIVERED_ROUTING_INVALID_NODE

SonicMQ Programming Guide

181

Chapter 7: Dynamic Routing Architecture

Sending to a Cluster Routing Node With Queues Everywhere
In this scenario, the setup is as follows:
m There are two message serversin the cluster: sonicaA and SonicB.

= Routing node name isNODE (ROUTING_NODE_NAME=NODE) for both message
servers.

m Queue g existsas agloba queue on both message servers.

m Queue 1 existsasaloca queue on both message servers.

m Theclient is connected to SonicA.

m Therouting table is aware of another routing node named portal.

Figure 31 illustrates the scenario.

1
:
Client ,
1
1

[

Server

BROKER_NAME=Soni cA
ROUTI NG_NCDE_ NAME=NCDE

To Routing Node
“Portal”

|-
|

BROKER _NAME=Soni cB
ROUTI NG_NODE_NAME=NCDE

Figure 31. Cluster Routing Node Where Queues Exist On Every Server

182 SonicMQ Programming Guide

Message Behavior on Global and Local Queues

Table 22 showsthe expected behavior for different values of Q_NauE (the queue

name used by the Client).

Table 22. Routing Behavior on a Cluster Node Where Queues Exist on Each Server

Q_NAME Behavior Message Goes To...
1 Send succeeds. 1 queue on SonicA
NODE: : 1 Send succeeds. Message goes to routing Dead Message Queue on SonicA
queue, but cannot be delivered because Reason code:
queueis not global. UNDEL IVERED_ROUTING_INVALID_DESTINATION
| Same as NODE: : I Dead Message Queue on SonicA
Reason code:
UNDEL IVERED_ROUTING_INVALID_DESTINATION
g Send succeeds g queue on SonicA
NODE: :g Send succeeds g queue on SonicA
I:g Same as NODE: :g g queue on SonicA

Portal: :appQ

Send succeeds. Message is routed to the
Portal Routing Node

Portal’s appQ if it isavailable;
otherwise, Dead Message Queue on Portal

Reason code:
UNDELIVERED_ROUTING_INVALID_DESTINATION

Acme: tappQ

Send succeeds. However, no routing
information exists for the routing node
named Acme

Dead Message Queue on SonicA

Reason code:
UNDELIVERED_ROUTING_INVALID_NODE

Notice that the behavior isidentical to that of the non-clustered case because

both message servers are identically configured.

SonicMQ Programming Guide

183

Chapter 7: Dynamic Routing Architecture

Send to a Cluster Routing Node With Queues in One Place

In this example, the setup is as follows:

There are two message serversin the cluster: sonicA and SonicB

Routing node name is NODE (ROUTING_NODE_NAME=NODE) for both message
servers.

Queueg, g, exists asaglobal queue, but only on Sonics
Queue, I, exists asalocal queue, but only on SonicB
The Client is connected to SonicA

The Routing Table is aware of another routing node named Portal

Figure 32 illustrates the scenario.

Client

sender.send(msg)

BROKER_NAME=Soni cA
ROUTI NG_NCDE_NAME=NCDE

To Routing Node
“Portal”

»
»

BROKER_NAME=Soni cB
ROUTI NG_NODE_ NAVE=NCDE

Figure 32. Cluster Routing Node where Queues Exist on Only One Server

184

SonicMQ Programming Guide

Message Behavior on Global and Local Queues

Table 23 showsthe expected behavior for different values of Q_NauE (the queue

name used by the Client).

Table 23. Routing Behavior on Cluster Node Where Queues Exist on Only One Server

Q_NAME Behavior Message Goes To...
1 Client gets javax. jms.JIMSExceptionon | N/A
send.
NODE: :1 Send succeeds. Message goes to routing Dead Message Queue on SonicA
gueue, which routesit to SonicB. But Reason code:
SonicB”s routing queue cannot deliver it '
; UNDEL IVERED_ROUTING_INVALID_DESTINATION
because the queue is not global.
o1 Same as NODE: : 1 Dead Message Queue on SonicA
Reason code:
UNDEL IVERED_ROUTING_INVALID_DESTINATION
g Client gets javax. jms.JIMSExceptionon | N/A
send.
NODE: :g Send succeeds. M essage goes to routing g queue on SonicB
gueue, which routesit to SonicB, which
deliversit.
I:g Same asNODE: :g g queue on SonicB

Portal : :appQ

Send succeeds. Message is routed to the
Portal Routing Node

Portal’s appQ if it isavailable;
otherwise, Dead Message Queue on Portal

Reason code:
UNDEL IVERED_ROUTING_INVALID_DESTINATION

Acme: tappQ

Send succeeds. However, no routing
information exists for the routing node
named, Acme

Dead Message Queue on SonicA

Reason code:
UNDELIVERED_ROUTING_INVALID_NODE

SonicMQ Programming Guide

185

Chapter 7: Dynamic Routing Architecture

Reply-to Mechanisms for a DRA Application

Thetypical Reply-to mechanism, described in “ Reply-to Mechanisms’ on
page 153, is appropriate for local message servers. But this solution depends
on temporary queues, which are not global and therefore cannot be used in a
request/response mechanism in a DRA application. Instead, a client
application should implement a synchronous request/reply layer on top of the
Dynamic Routing Architecture.

The standard synchronous request/reply design patterns are complicated under
DRA because of several issues:

= Creation of unique queues
m Accessto queues across B2B security domains

The techniques described here provide an alternate technique for
Request/Reply scenario is an example. Thereis nothing inherent in the
Dynamic Routing Architecture that makes this the only way of implementing
synchronous request/reply.

Setting Applications to Use Simple Request Messages

Where the standard request/reply mechanism uses the amsreplyTo header field,
aDRA application might use the header field instead when the application
needs a dialog with other applications to do tasks like price check, inventory
status, or credit rating. Typically the dialog is nearly real-time; the application
is blocking for afew seconds.

You would use simple request messages to:
m Create request messages with settings for brisk, synchronous requests.

— Low Quality of Service: Small NON-PERSISTENT, unencrypted
messages.
— A timeToLive that isexplicit and brief.

— Message expiration is handled by notification. The message is not
persisted in a dead message queue.

— A high Priority setting to expedite delivery.

m Implement aretry mechanism in case arequest islost.

186

SonicMQ Programming Guide

Reply-to Mechanisms for a DRA Application

Using Specific Shared Reply Queues

Imagine a configuration consisting of a number of nodes called trading
partners, each belonging to a different company, and communicating through
aspecia node called aportal. Thistype of configuration is discussed in detail
in the SonicMQ Deployment Guide. To protect its position as a necessary
intermediary as well as to maintain security, the company that controls the
portal must ensure that the trading partners do not communicate directly with
one another.

The normal design pattern using a JM S TemporaryQueue might not prevent
trading partners from knowing about each other’s requests. Instead, each
trading partner should maintain a specific routing queue, perhaps called tmpQ,
at its site configured at the portal to ensure security.

Establishing this special purpose queue allowsfor easier administration. Items
on thetmpQ queue can be assumed to be transient, and the trading partner can
clean up the queue without losing important business documents.

Because many applications at the trading partner might want to simultaneously
make requests and get replies, they can share the trading partner’ssingletmpQ
gueue. By using message selectors, each application can match up requests
with targeted replies.

Consider the following code sample for sharing areply queue:

// Create a request

TextMessage m = session.createTextMessage();
m.setJMSReplyTo("'acme: :tmpQ'"); // pseudo-code
m.setText("'Inventory Check: #1234'");

// Create a unique queue receiver for the reply
// Notice the use of selector

String uniquelD = createUniqueld();
m.setProperty(*'AppUniqueld”, uniquelD);
QueueReceiver qr = session.createQueueReceiver

"tmpQ", "AppUniquelD = + uniquelD + "*');
// Wait 7 seconds for a reply.

TextMessage rep = gr-.receive(m, 7000);

SonicMQ Programming Guide 187

Chapter 7: Dynamic Routing Architecture

188 SonicMQ Programming Guide

Chapter 8

Publish and Subscribe Messaging

About Publish and Subscribe Messaging

Publish and Subscribe (Pub/Sub) is a messaging model, shown in Figure 33,
where a message is sent to a topic—a content node known by a publisher and
active subscribers—so that each subscriber to the content node getsthe message.

The one-to-many model keeps topic publishersindependent of the topic

subscribers. In fact, publishers could be sending messages to topics where no
subscribers exist.

createTopicConnection()

createTopicSession()

createTopic(String)

createPublisher{topic)

_r_____

createSubscriber{topic)

1
I

I

;] |
setMessageListener ¥

Figure 33. Publish and Subscribe Messaging Model

SonicMQ Programming Guide

189

Chapter 8: Publish and Subscribe Messaging

Mechanisms exist to allow messages to persist for subscribers who have
expressed a durable interest in atopic. The characteristics of durable
subscriptions are discussed later in this chapter.

See Chapter 9, “Hierarchical Name Spaces,” for information about how
SonicMQ lets applications subscribe to sets of topic content nodes.

Coding Topics, Subscribers, Publishers, and Listeners

Thefollowing code excerpted from the chat sample application shows how to
create the objects used in a TopicSession for Pub/Sub communication—the
topic, the subscriber, the publisher, and the message:

//The topic is defined as a hierarchical topic

String APP_TOPIC = "jms.samples.chat";

//The session method is used to create the topic

Javax.jms._Topic topic = session.createTopic (APP_TOPIC);

//The subscriber uses the session method to create a subscriber to it

Javax. jms._TopicSubscriber subscriber =
session.createDurableSubscriber(topic, user);

//The subscriber sets a listener for the topic

subscriber.setMessagelListener(this);

//The publisher uses the session method to create a publisher

publisher = session.createPublisher(topic);

// Publish a message to the topic

private void jmsPublish (String aMessage)
try
Javax.jms.TextMessage msg = session.createTextMessage();
msg.setText(user + ": " + aMessage);
publisher.publish(msg);
catch (javax.jms.JMSException jmse)

Jmse.printStackTrace();

190

SonicMQ Programming Guide

Topic

Topic

Topics are objects that provide the publisher, message server, and subscriber
with a destination for JIM S methods. Topics can be static objects under
administrative control, dynamic objects created as needed, or temporary
objects created for very limited use. The topic name is a string of any
Jjava.lang.String length.

SonicM Q provides extended topic management and security with hierarchical
name spaces; for example, jms.samples.chat. Some charactersand stringsare
reserved for the features of hierarchical topic structures:

m . (period) delimits hierarchical nodes.

= ¥ (asterisk) and # (pound) are used as template characters.

= $(dollarsign) and the strings $sys and $1sys are administrative topics.
See Chapter 9, “Hierarchical Name Spaces,” for more information.

You can programmatically store and retrieve defined topics. SonicMQ letsyou
store topic names in JNDI or asgmplefile storeand then reference the object
indirectly (by name) in some context. See Chapter 12, “ L ookup of
Administered Objects,” for more information.

SonicMQ Programming Guide 191

Chapter 8: Publish and Subscribe Messaging

Publisher

Every time aPub/Sub session wantsto send amessage to atopic, it must create
apublisher inthe session for the sel ected topic. Theonly exceptioniswhenyou
intend to establish an unbound topic—anull topic name that, for example,
enables the TopicRequestor to bind to that topic space.

Creating the Publisher

The sampl e code shows the creation of the topic and the creation of the
publisher to that topic:
Javax.jms._Topic topic = session.createTopic(*'jms.samples.chat');
publisher = session.createPublisher(topic);

Figure 34 shows the Explorer view of the parameters and context when you
create a publisher to atopic.

[?'.-'.j SonicM@ Explorer [_ O] x]

Explarer Wigw Help
_4 Root - Create Mew Publisher

s Cetificate Stores

‘ JMS Administered Ohject Stares Toplc:ljms.samples.chat Create I
E-/ 4 Message Brokers

=4 localhost:2506:aConnectiD.alUser (Sonich @) ﬂl
@ Topics

Queues

Routing - -

- Melics Established Publishers

i # Events

=] _A TopicSession: aTopicSession non-transacted AUTO_ACK]
SRR ubishers
i e jms.samples.chat
“-# SBubscribers

jms.samples.chat

al | , Close |

Manage test publishers

Figure 34. Explorer View of Creating a Publisher

When security is active for topics, the publisher’s permission to publish is
checked. If thetopic is unspecified in the security database, the publisher’'s
right to create new topicsis checked.

192

SonicMQ Programming Guide

Publisher

Creating the Message

The message is created as a session method for the preferred message type.
The chat sample uses the following code to accept input and then create,
populate, and publish theinput as atext message, prepended with the username
of the publisher:

while (true)
{

String s = stdin.readLine();
if (s =null)

exit(Q);
else if (s.length() >0)
{

Javax. jms.TextMessage msg = session.createTextMessage();
msg.setText(username + "1 " + s);
publisher.publish(msg);

Publishing to a Topic

The chat sample simply puts text into the body of the message and accepts
every default that is provided for amessage. Some message header information
is defined by the message server while other header information can be
specified by using a publish method with a more complex signature, such as
the following:

publisher_publish(Message message,
int deliveryMode,
int priority,
long timeToLive)

where:
m message IS ajavax.jms message.
m deliveryMode iS[NON_PERSISTENT|PERSISTENT[NON_PERSISTENT_ASYNC].
m priority iS[0...9] whereoislowest and 9 is highest.

m timeToLive iS [0...n] whereo is“forever” and any other positive
value n isin milliseconds.

SonicMQ Programming Guide 193

Chapter 8: Publish and Subscribe Messaging

Figure 35 shows the Explorer view of the header fields in a text message.

[‘-r'.-'.j SonicMQ Explorer

= B
Explorer Wiew Help
_ARoot Header' Properties | Bocy|
-# Cetificate Stores
-# JMS Administered Object Stores MName alue
B3 Message Brokers JMEDestination jms.samples.chat
El-_4 localhost2506:aConnectiD. allser (Sonichy JMSDeliverMode MNOMN_PERSISTENT
Topics JnSMessanelD |DiBCOBTEE: 30001 E307ECA..
Queues MSTimestarnp Fri Moy 24 13:26:44 EST 2000
Fouting IMSCorrelationD
Metrics JIMSReplyTo
Bvents JMSRedelivered false
-4 TopicSession: aTopicSession non-transacted AUTO_ACK
=4 Publishers JMBTW? -
[—— oy JMEExpiration Sat Moy 2513:26:44 EST 2000
E-_4 Subscribers : 0
% jms.samples.chat non-durable local delivery

Summary

Message Type: Texd Message hd
Delivery Mode: MOM_PERSISTENT v
Priority: 0 -

Time To Live (m): [T
. _ oo |

Fublish test messages

Figure 35. Explorer View of a Message Header Fields After Publishing

194 SonicMQ Programming Guide

Subscriber

Subscriber

A topic subscriber is a message consumer that receives messages wheniit is
active and has specified that it has an interest in atopic. Figure 36 showsthe
Explorer view of the parameters and context when subscribing to atopic.

E":',! SonicMQ Explorer [_ (O] x]
Esxplorer Wiew Help
A Root r Greate New Subscriber
- # Certificate Stores
0 JMS Administered Object Stores Topic: ims.samples.chat | Create |
E1-_4 Message Brokers
34 localhost2506:aConnectiD alser (Sanicha) Message Selectar
% Topics [Durable
o Queues
% Routing N3"""“33|
o ® Metrics ™ Mo Local Delivery Clear
- Events
=] _A TopicSession: aTopicSession non-transacted AUTC_ACK]
=4 Publishers
.\ le# jms.samples.chat Established Subscribers |
hers jms.samples.chat non-durakle local delivery |
s samples.chat non-durable local delivery
Uisubscribeand Close | Cluse |
4 | »
Manage test subscribers

Figure 36. Explorer View of Subscribing to a Topic

The entries describe the parameters of the non-durabl e subscribe method:

TopicSubscriber createSubscriber

where:

(Topic topic,
String messageSelector,
boolean noLocal)

m topic iS astring that specifies the name of atopic.

m messageSelector iSastring that defines selection criteria.

m nolocal iSaBoolean where true sets the option not to receive
messages from subscribed topics that were published locally.

Multiple subscribersin a session could have overlapping subscriptions defined
in their message selectors and hierarchical topics. In this case, all subscribers
in the session would get the message delivered.

SonicMQ Programming Guide

195

Chapter 8: Publish and Subscribe Messaging

Durable Subscriber

Creating atopic subscription as dur able expresses that the client wants to
receive all the messages published on atopic even if the client connection is
not active. The message server notes the durabl e subscription and ensures that
all messages from the topic’s publishers are retained until they are either
acknowledged by the durable subscriber or the messages have expired. The
entries describe the parameters of the createburableSubscriber method:
TopicSubscriber createDurableSubscriber
(Topic topic,
String subscriptionName,

String messageSelector,
boolean nolLocal)

where:
m topic iS astring that specifies the name of atopic.

m subscriptionName is astring of arbitrary alphanumeric text and any
symbols except “.”, “*", “#”, and “$". The subscription name
identifies this unigue subscription. It is combined with the user name
and the client identifier to define the durable interest. A typical value
for the subscription name is a descriptor for the message selector. For
example, adurable subscription for messages where the priority value
is greater than 7 might have the subscription name HighPriority.

m messageSelector iSastring that defines selection criteria.

m nolLocal isaBoolean where true sets the option to not receive
messages from subscribed topics that were published locally.

Durable Subscriptions Not Allowed for Temporary Topics

A durable subscription is not allowed for atemporary topic. An attempt to
create aburableSubscriber ON a TempTopic Will throw an exception.

Unsubscribing from a Durable Subscription

While you can stop listening to atopic, there is message server overhead
expended when trying to deliver messages to subscribers, especially when the
messages might be persistent and the subscribers durable. The unsubscribe
method unsubscribes a durable subscription that has been created by a client.

196

SonicMQ Programming Guide

Subscriber

This method del etes the state maintained on behalf of the subscriber by its
message message server:

unsubscribe(String name)

where name is the name used to identify this subscription.
If you unsubscribe to a durabl e subscription with undelivered messages and
then re-establish a durable subscription to the same topic with the same name,

undelivered messages that have not expired for the previous subscription will
be delivered to the new durable subscription.

Unsubscribing to Durable Subscription Requires Inactive
Subscriber

Aninactivedurablesubscription isadurable subscription that existsbut does
not currently have a message consumer subscribed to it. A burableSubscriber
must be inactive before using the unsubscribe () method on that durable
subscription.

An error will occur when aclient tries to delete a durable subscription:
= Whileit has an active TopicSubscriber for it
m While amessage received by it is part of a current transaction

m While amessage received by it has not been acknowledged

SonicMQ Programming Guide 197

Chapter 8: Publish and Subscribe Messaging

Message Ordering and Reliability

The services available in a Pub/Sub messaging model add other servicesto
message ordering and reliability.

General Services

Asynchronous message delivery lets messages be delivered with arange of
options to assure an appropriate quality of service:

The producer can set the life span of the message, the ddlivery mode, and
the message priority.

The message server will store the message for later delivery and manage
both acknowledgement to the producer and acknowledgement from the
consume.

The consumer can express a durable interest in atopic.

While general services are impacted by many uncontrollable environmental
factors from latency to machine outages, there are internal factors that add
complexity. Message delivery is distinctly non-linear.

Message ordering and redelivery can both contribute to message delivery that
isreliable.

Message Ordering

A predictable sequence of messagesis a series of messages that have the same
priority from a single publisher in asingle session. Even if transacted, the
messages are delivered sequentially from the message server to the consumers.
The sequence of messages received by aconsumer has several other influences
in Pub/Sub domains:

Changing a priority on amessage from a publisher can result in adelivery
of ahigh priority messageto anewly-activated subscription before an ol der

message.
M essages from other sessions and other connections are not required to be

in specified sequence relative to messages from another session or
connection.

198

SonicMQ Programming Guide

Message Ordering and Reliability

m Published messages that are not acknowledged are redelivered to durable
subscribers with an indication of the redelivery attempt. Asaresult a
redelivered message could be received after a message that was
timestamped later.

Reliability

The assurance that a message will be received by a consumer has several other
influences in Pub/Sub domains:

= A publisher never isguaranteed that any subscriber existsfor atopic where
messages are published.

m Subscriber message selectors limit the number of messages that a client
will receive. Regular subscriptions and durable subscriptions with a
message selector definition that excludes a message will never get that

message.
m Message destruction dueto expiration or administrator action (removing a
durable subscription) permanently disposes of stored messages.

SonicMQ Programming Guide 199

Chapter 8: Publish and Subscribe Messaging

200 SonicMQ Programming Guide

Chapter 9

Hierarchical Name Spaces

About Hierarchical Name Spaces

Hierarchical name spaces are a topi c-grouping mechanism available with
SonicM Q. When you use topicsin the Pub/Sub domain, the publisher, message
server, and subscriber all adhere to the IM S standards. But SonicMQ extends
topic management in away that adds virtually no overhead when publishing,
yet provides faster access, easier filtering, and flexible subscriptions.

By delimiting nodes when naming atopic, a hierarchy of contentsis created at
the message server. This chapter describes how and when to use hierarchical
name spaces.

Advantages of Hierarchical Name Spaces

Naming conventions become cumbersome to work with when long strings are
passed around as identifiers. SonicMQ offers the ahility to use a naming and
directory service with the naming and management of topics. As aresult,
topics are easier to specify and control for clients and are correspondingly
faster to manage and control by the message server.

While atopic hierarchy can be flat (linear), atopic hierarchy typically builds
from one or more root topics, adding other topicsin levels of
parent-child relationships to create a hierarchical naming structure.

The SonicMQ administrator can set and monitor security with the same
template character devices to assure that the scope of message permissionsis
appropriate for each user individually and as amember of one or more groups.
See the SonicMQ I nstallation and Administration Guide to learn how security
can control access to topic name spaces.

SonicMQ Programming Guide 201

Chapter 9: Hierarchical Name Spaces

In most messaging systems, there is a one-level structure, as shownin
Figure 37.

(.
E_] SalesData

El-_| SalesDataAustralia
E|_| SalesData. France
E|_| SalesData. France.Pariz
B] SalesData 54

B] SalesForce

B] Suppart

Figure 37. Topic Structure Without Hierarchies

Without hierarchies, many topicsare stacked onto onelevel. When many topics
areused, it getsincreasingly difficult to maintain accessto the naming structure
and to denote topic relationships.

Hierarchical name spacesin SonicMQ use a parent-child subordinated folder
structure, as shown in Figure 38.

=
Bl SalesData

J Australia
= France
R Paris
H-JUSA
-] SalesForce
-] Support

Figure 38. Topic Structure With Hierarchies

With hierarchies, atopic named SalesData.France.Paris denotes a content
node in ahierarchical structure that can participate in selection mechanisms
that refer to its depth in the structure (third-level), the name of the node itsel f
(Paris), and its memberships (Paris is member of France and a member of
SalesData, among others).

Meaningful namesin atopic hierarchy offer many other advantages for
message retrieval and security authorization, as discussed later in this chapter.

202

SonicMQ Programming Guide

Publishing a Message to a Topic

Publishing a Message to a Topic

Structuring useful topic hierarchiesoptimi zesthe management of the hierarchy
for the message server and its accessibility by subscribers.

Publishing a message to atopic encourages use of hierarchy delimiters and
deprecates the use of afew special characters and topic names.

Topic Notation that Enables Topic Hierarchies

Hierarchical name spaces usethe same notation asfully qualified packagesand
classes: period delimited strings. Security controls whether or not an
authenticated user has permission to publish to atopic content node.

See the SonicMQ Ingtallation and Administration Guide to learn how security
can control publication to topic content nodes.

Reserved Characters when Publishing

Three characters are reserved for special use:

= Delimit the hierarchical nodes with . (period). For example, the chat
sampl e uses the topic hame jms.samples.chat.

= Donotuse™ (asterisk), $ (dollarsign), or # (pound) in topic names.
m Reservessys and s1sys for administrative topics.

For example, the chat sample uses the topic name jms.samples.chat.

Topic Structure, Syntax, and Semantics

There are few constraints on atopic hierarchy. SonicM Q supports:

m Unlimited number of topics at any content node

= Unlimited depth to the hierarchy (period-separated strings)

= Unlimited length for the name of any topic node, and any topic

= Unlimited length for the complete string that defines a specific node

s Unlimited number of topic hierarchies

SonicMQ Programming Guide 203

Chapter 9: Hierarchical Name Spaces

Compact, balanced structures always outperform bulky unwieldy hierarchical
structures. There are, however, some naming constraints:

The name must be one or more characters in length with neither leading
nor trailing blank space. Embedded spaces are acceptable.

Thetopic hierarchiesrooted at $sys and $1svs are reserved for the message
Server’s system messages.

Note For moreinformation on $sys and $1sys, see the SonicMQ Installation and
Administration Guide.

Topic Syntax and Semantics

The following naming conventions apply to topic naming:

Case sensitive — Topic names are case sensitive (like the Javalanguage).
For example, SonicM Q recogni zes ACCOUNTS and Accounts astwo different
topic names.

Spacesin names — Topic names can include the space character. For
example, accounts payable. Spaces aretreated just like any other
character in the topic name.

Empty string — A topic level can be an empty string. For example, a. .c
is athree-level topic name whose middie level is empty. Theroot nodeis
not a content node, so just an empty string (« «) is not avalid topic level
for publication.

Note Thevalue null indicates an absence of content, or a zero-length string. The
Unicode null character (\x0000) is not anull in this convention.

Message Server Management of Topic Hierarchies

Topic hierarchies empower the message server in two significant ways:

Selection and filtering of topicsis, for most purposes, already
accomplished. Access to multiple topicsisindexed for much faster
retrieval than flat naming systems.

Security that would otherwise be set for each topic individually can be
established for a content node and, optionally, its subordinate nodes.

204

SonicMQ Programming Guide

Subscribing to Nodes in the Topic Hierarchy

Subscribing to Nodes in the Topic Hierarchy

Subscriptions are created in the IM S standard way with the Topic and the
TopicSubscriber methods. As shown in Figure 39, to get messages published
for U S A Credit, use the topic name Credit.U S A.

E1-_ 1 Credi
] Australia
-] France
SjusaA
-] Delivery
=1 Orders
] Australia
_| France
Jjusa
-] Warehousing

Figure 39. Subscribing to the Topic Credit.U S A

While hierarchical topics enable powerful security and accelerate the retrieval
of topics by the message server, SonicM Q topic hierarchies enable unique
multiple topic subscriptions, allowing you to:

m Subscribe to many topics quickly.
= Subscribe to topics whose complete name is unknown.
m Traversetopic structuresin powerful ways.

When you use topic hierarchies, message sel ectors—an inherently slow and
recurring process—can often be eliminated.

Template Characters

Wildcards are specia charactersin a sample string that are interpreted when
evaluating a set of stringsto form alist of qualified names. In this case,
however, the special charactersarereferred to astemplate char acter s because
the entire string and its special characters can be stored for later evaluation by

SonicMQ Programming Guide 205

Chapter 9: Hierarchical Name Spaces

durable subscriptions and security permissions. The selection of topic namesis
dynamic, evaluated every time that the topic the time that it is requested.

The. (period) delimiter isused together withthe* (asterisk) and the # (pound)
template characters when subscriptions are fulfilled. Using these characters
avoids having to subscribe to multiple topics and offers benefits to managers
who might need to see information or events across several areas. Client
applications can only use template characters when subscribing to a set of
topics or binding a set of topics to a message handler. M essages must be
published on fully specified topic hames.

Using template characters is somewhat different from using the usual
wild cards as discussed below.

There are two SonicMQ template characters:
= ¥ (asterisk) — Selects al topics at this content node.

m #(pound) — Selects all topics at this content node and its subordinate
hierarchy.

Theintent of thetemplate charactersisto allow aset of managed topicsto exist
in amessage system in away that lets subscribers choose broad subscription
parameters that will include preferred topics and avoid irrel evant topics.

There are some constraints:

= Unlike shell searches, you cannot qualify a selection, such as
Alpha.B*.Charlie. YOU Can use Alpha.*.Charlie. At acontent level, a
template character precludes using other template characters.

= The# symbol can only be used once and only in the last node position.
You can useAlpha.#, Of *_*_Charlie.#Or just #, but not #.Beta.Charlie or
#.Beta.#.

m Character replacement, as used in shell searches with the question mark
character (?), is not allowed.

SonicMQ will deliver a message to more than one message handler if the
message’s topic matches bindings from multiple handlers.

The content levels in the topic name space consider theroot level <« aslevel o.

206

SonicMQ Programming Guide

Subscribing to Nodes in the Topic Hierarchy

Using Template Characters in Symmetric Hierarchies

When hierarchical structuresare strictly defined, simpletemplates can be used.

For example, the topic hierarchy shown in Figure 40 appears to strictly assign

busi nessfunctions—Credit, Delivery, Orders, and Warehousing—to first-level

(parent) nodes and a standard set of country names—Australia, France, USA—
to second-level (child) nodes.

-0
EP;_J Credit
----- | Ausztralia
----- | France
..... CJUsSA
-] Deliven
=] Orders
-----] Ausztralia
----- | France
..... CJuUSA
-] Warehousing

Figure 40. Symmetric Topic Structure

Template Character for All Topics at a Content Level

Using the strict topic hierarchy shown in Figure 40, aclient application could
subscribe to each of the three topic nodes for credit.

By using atemplate character, the application can subscribeto all second-level
Credit topics by subscribing to credit.*, a subscription that will deliver
messages sent to these destinations:

m Credit.Australia

m Credit.France

m Credit.U S A

Template Character for a Topic at a Content Level

A subscription to the topic expression =.u s A in the hierarchy in Figure 40
selectsal u s Atopicsat the second level of the hierarchy.

This subscription will deliver messages sent to these destinations:

m Credit.U S A

m Orders.U S A

SonicMQ Programming Guide 207

Chapter 9: Hierarchical Name Spaces

Using Template Characters in Asymmetric Topic Hierarchies

When there are several topic levels, as shown in Figure 41, subscribing to all
theu s A topicsis complicated by an inconsistent topic-naming structure.

=] SalesData

E-L] Australia

-] France

M UsA

-] SalesFaorce

E-L] Australia

-] France

B US4

=1 Suppart
=] CallCenter
=

H-__1l France

B USA
-] SupportEngineer
H-] WebKnowledgeP ase

Figure 41. Asymmetric Topic Structure

In this case, the # template character can be used to subscribe to the
U s Atopic levelsin the hierarchy regardless of intervening nodes, such that
#.U S A subscribes to topics at these destinations:

m SalesData.U S A
m SalesForce.U S A
m Support.CallCenter.U S A

Without this ability, you would have to subscribe to both ~.u s A and
*_*_U S A to create the same subscriptions.

Note When you use the "#" template character as the |eading character in an
expression, you can inadvertently reveal messages in unseen lower levels.

208 SonicMQ Programming Guide

Subscribing to Nodes in the Topic Hierarchy

Template Character for Subscribing to All Topics

Subscribing to the topic name # will receive al messages, including the
reserved system topics $sys and $1Sys.

The MessageMonitor sample displaysall the messagesthat are published on the
message server host by subscribing to #.

Template Character for All Topics Under a Topic Hierarchy

When it is not known how deep the topic structure extends and all subordinate
topics are of interest, appending .# extends the subscriptionsto all topics at or
below that level—for example, support.# subscribesto:

— Support.CallCenter

— Support.CallCenter.Australia

— Support.CallCenter._France

— Support.CallCenter.U S A

— Support.SupportEngineer

— Support.WebKnowledgeBase

plus any subordinate levels below those topic nodes.

Multiple Template Characters in an Expression

Some template characters can be combined in a single expression.
You can:

m Useonly one template character at atopic level.
(Support.*=.u s A isinvalid.)

m Usethe pound sign only oncein an expression. (#.U S A.# is invalid.)
Examples of multiple template charactersin an expression are:

m Use#.U s A.>tosubscribeto just thetopicsat u s A hodes however deep
in the topic structure, but not messagesat #.U s A.

m Use*.*.U s A.*>to subscribeto just thetopicsat level 4 u s A nodes, but
not those at *.*.u s A.

SonicMQ Programming Guide 209

Chapter 9: Hierarchical Name Spaces

Examples of a Topic Name Space

The hypothetical topic hierarchy shown in Figure 42 has nodes that might
represent levels of responsibility in the enterprise.

=1] Credit
----- | Australia
----- | France
B JUSA
EJ Reviews
_| Alpha
EJ Suppliers
fel] Alpha
=] Delivery
B-_] AiFreight
B-_] OHare
o) Bids
i e[] CalForBids
J Oy
=] Orders
B Australia
J France
B JUSA
J BesperSend
_| SalesHistary

Figure 42. A Sample Hierarchy of Topics

Publishing Messages to a Hierarchical Topic
The publisher produces messages to asingle fully quaified topic, such as:

static final String MESSAGE_TOPIC = "Credit.U S A_Customers";

Business cases where a publisher might use a hierarchical topic are:

Requestsfor regular credit updates about suppliers are routed to Credit.U
S A.Suppliers and use JMsReplyTo mechanisms.

Messages that are sent to credit agencies at secure Internet topics
Credit.U S A.Customers and Credit.U S A.Suppliers should be accessible

only by authorized applications.

210

SonicMQ Programming Guide

Examples of a Topic Name Space

Credit agencies can respond to credit requests through the special topic
Credit.U S A.Reviews. USe aReviews topic to get secure responsesto credit
requests without synchronous blocks.

As orders are processed through application software, any problems or
delays send amessage to the appropriate sales force beeper number listed
in the application. The message producer uses

Orders.U S A.BeeperSend, attaching the beeper number as the
IMSCorrelationlD Or SonicM Q-supplied message property.

Messages are sent that outline expected shipping needs to topics like
Delivery_AirFreight._Ohare.CallForBids.

Subscribing to Sets of Hierarchical Topics
Subscribers to topics can also specify afully qualified topic:

private static final String MESSAGE_TOPIC = "Credit.U S A";

or use template characters to subscribe to sets of topics:

private static final String MESSAGE_TOPIC = "Credit.*";

Business cases where a subscriber gains advantage by using template
characters to subscribe to hierarchical topics are:

Accounting subscribesto Credit.U S A_Customers.Reviews but the auditor
subscribesto credit.U s A.# to watch all credit activity.

By listening to credit.U S A.*_Reviews the application gets only the
U SA responsesto all types of credit requestswithout risking synchronous
blocks.

A communications service monitors the message servers at its limited-
accessread-only topics. *. U s A.BeeperSend and then executesthe beeper
activation and download.

A French affiliate receives al messages that relate to French business by
subscribing to #.France. This captures:

— Orders.France

— Credit.France

— Delivery.InternationalClearing.France

A new bonded carrier in the Chicago areais authorized to monitor
#.0Ohare.CallForBids. Their bids turn around promptly based on the
agorithmsin their subscriber application.

SonicMQ Programming Guide 211

Chapter 9: Hierarchical Name Spaces

212 SonicMQ Programming Guide

Chapter 10

Management API

About the Management API

This chapter presents methods that provide comprehensive programmatic
control of administrative tasks. The SonicMQ Management APl lets
applications perform the tasks that would otherwise require the SonicMQ
Explorer GUI interface or the SonicM Q command-line interface, Admin tool,
toolsthat were both constructed using the methodsin the exposed M anagement
API.

The Management API facilitates:

m Message Server Management — Including methods for checking the
status of a message server, subscription to message server events, and
information about message servers and server clusters.

m Destination Management — Including management of queues and the
Quiality of Protection (QoP) provided on topics and queues.

= Access M anagement — Including maintenance of users, user groups, and
access control by usersto destinations.

» Routing Management — Including maintenance of routing users,
connections, and global destinations.

The exposed Management API is documented in the SonicM Q JavaDoc that
you can accessthrough the SonicM Q portal page, SonicMQ_Help.htm. From that
page you can access the top level of the JavaDoc that opens the
docs/api/progress/message/tools HTML files.

SonicMQ Programming Guide 213

Chapter 10: Management API

Using the Management API
An administration client differs from an ordinary (JMS) client in several ways:
» Anadministration client cannot create or access JM S objects.
m A JMSclient cannot access BrokerManager features.

= Anadministration client and a IMS client cannot share a connection. A
Javaprogram that performs JM S actions and uses BrokerM anager features
requires two connections.

To create an administration client, you must have broker . jar in your classpath.
Your administration client may require other jar filesin your classpath aswell.
L ook at bin\Admin.bat (Windows) or bin/Admin.sh (UNIX or Linux) to seethe
classpath for the Admin Tool.

When programming an administration client, keep the following pointsin
mind:

m Theclient must be amember of the Administrators group to access
security features. If the client is not amember of the Administrators group
it can still connect, but it cannot access information.

= You must include an implementation of 1BrokerManagerListener.
However, this implementation can ignore most messages.

m You should call disconnect() explicitly at the end of a program.

214 SonicMQ Programming Guide

Samples that Use the Management API

Samples that Use the Management API

Events

Severd samples areincluded in the SonicMQ ingtdlation that |et you experience
console and application uses of the Administration API. The samples explore
portions of the API.

The Events sample provides an application technique that replicates features
and functionality in the SonicM Q Explorer and the SonicMQ Admin tool.

The Events sample establishes the BrokerManager and its listener as follows:

public class Events

implements progress.message.tools. IBrokerManagerListener

// Create an instance of the BrokerManager.

m_manager = new progress.message.tools.BrokerManager
(this, m_broker, m_adminUser, m_adminPassword);

try
{

m_manager .connect();

m_manager .subscribeToBrokerEvents(m_events);

The natifications that are received are then formatted and displayed:

public synchronized void brokerEventNotification
(String description)

{
System.out.println (description);

}

The Events sample offers different ways to explore its capabilities of echoing
management events:

m Accessing, by default, al events
m Accessing selected events

= Piping the selected eventsinto atext file

Note Events are propagated among all servers of a SonicMQ cluster.

SonicMQ Programming Guide 215

Chapter 10: Management API

Accessing All Events

This sample procedure opens the management events monitor and then usesa
Talk Session to fire some events.

0 To start the Events sample:

1. Open a console window to the BrokerManager\Events folder, then enter:

--\..\SonicMQ Events

The application defaults to the username Administrator and its password
Administrator asyou must have administrator privilegesto do the task.

The Events sample starts on the 1ocalhost port 2506 and displays.

Type EXIT to stop listening for BrokerManager Events.

0 Starting and Stopping Talk

1. Open a console window to the QueuePTP\Talk folder, then enter:

--\..\SonicMQ Talk -u CreditReview
The Talk sample starts and the Events window displays:

>[00/11/23 18:39:50] Connection opened
[Broker=SonicMQ,User=CreditReview,ConnectID=$CONNECT$3%$]

In the Talk window, press Ctrl+C then enter v.
The Talk sample exits and the Events window displays:

[00/10/16 17:48:43] Connection dropped
[Broker=SonicMQ,User=CreditReview,ConnectID=$CONNECT$3%$]

Accessing Selected Events

The set of events that are accessed can be strictly defined. The events you can
choose are the following:

connect — Information about the user and the connectI D of a successful
connection to a message server.

reject — Information about a connection request that isrejected by a
server.

drop — Information about a connection that is lost without the client being
disconnected, for example, if the client dies.

216

SonicMQ Programming Guide

Samples that Use the Management API

m disconnect — Information about the user and the connectID of a
successful message server disconnection.

m undelivered — Information about a message that could not be delivered.
Undelivered messages may be enqueued in the dead message queue

(DMQ).

m dmgstatus — Indicatesthat the DM Q has exceeded adefined percentage of
its maximum size.

m redirect — Indicatesthat aconnect attempt has been redirected to another
server due to load balancing.

= all — All of these events. Thisis the default value.

0 To start the Events sample to display only selected events:

1. Open aconsole window to the BrokerManager\Events folder, then enter:
--\..\SonicMQ Events -e connect

2. Start then stop the Talk sample.

The connect event displays but the disconnect event does not display.

Piping Events Into a Log

You can use standard redirection methods to pipe event records to adisk file.

0 To send event information to a log file:

1. Open a console window to the BrokerManager\Events folder, then enter:
--\..\SonicMQ Events > LogThis.txt

2. Start then stop the Talk sample.
The events do not display in the console window.

3. Openthetext file LogThis.txt.
The events are recorded as in the following example.

Type EXIT to stop listening for BrokerManager Events.
>[00/11/23 18:39:50] Connection opened
[Broker=SonicMQ,User=CreditReview,Connect ID=$TMPAPP1D$0$]
[00/11/23 18:40:25] Connection dropped
[Broker=SonicMQ,User=CreditReview,ConnectD=$TMPAPP1D$0%]

SonicMQ Programming Guide 217

Chapter 10: Management API

Metrics

The Mmetrics sample provides an application technique that replicates features
and functionality in the SonicM Q Explorer and the SonicMQ Admin tool. The
following metrics are provided:

Memory Usage — The number of memory bytesin use by the VM
instance for the message server.

Physical Connections — The current number of socket connections.

Msgs Rcvd — The number of messages received by the server from
publishers or sendersin the last interval.

Msgs Rcvd/sec — The Msgs Revd metric as a per second rate.
Bytes Rcvd/sec — The byte-count of the Msgs Rcvd as a per second rate.

Msgs Dlvd — The number of messages delivered in the last interval. It
counts messages delivered to subscribersin the Pub/Sub domain and
messages delivered to queue receivers in the PTP domain.

Msgs Dlvd/sec — The Msgs DIvd metric as a per second rate.

The message server’s default interval length for metrics collection is

10 minutes, with arefresh rate of 20 seconds. Every time the message server
refreshes, it assesses the metrics. You can append the -r parameter and an
integer value for your preferred console refresh rate to the command line but
the message server’s actual refreshes are adjusted in itsbroker. ini file.

0 To start the Metrics sample:

1. Open aconsole window to the BrokerManager\Metrics folder, then enter:

--\..\SonicMQ Metrics

The application defaults to message server -b localhost:2506.
The username -u Administrator and its password -p Administrator are
defaulted as you must have administrator privileges to do the task.

The Mmetrics sample starts and displays an initialized set of information
similar to:

Metrics for Broker: SonicMQ
Memory Usage : 3250640
Physical Connections : 1
Msgs Rcvd : 9
Msgs Rcvd/sec : O

218

SonicMQ Programming Guide

Samples that Use the Management API

Bytes Rcvd/sec : 5
Msgs DIvd : 9
Msgs DIvd/sec : O

Type EXIT to stop polling for BrokerManager Metrics.
>

O To run QueueRoundTrip:

1. Open aconsolewindow to the QueuePTP\QueueRoundTrip folder, then enter:
--\..\SonicMQ QueueRoundTrip -n 100
The QueueRoundTrip sample runs 100 looped sends and receives.
The Metrics window displays information similar to the following:
Metrics for Broker: SonicMQ
Memory Usage : 3220616
Physical Connections : 2
Msgs Rcvd : 392
Msgs Rcvd/sec : 81
Bytes Rcvd/sec : 221

Msgs DIvd : 250
Msgs DIvd/sec : 90

Type EXIT to stop polling for BrokerManager Metrics.
>

2. Inthe Metrics window, enter EXIT.

Piping Metrics Into a Log

You can use standard redirection methods to pipe metric datato adisk file.
0 To send metrics datato alog file:

1. Open aconsole window to the BrokerManager\Metrics folder, then enter:
--\..\SonicMQ Metrics > LogThat.txt

The metrics sample runs but no data displaysin the console window.

Start and run any application on the same server to generate meaningful
changesinto thelog file. The events do not display in the console window.

3. Inthe Metrics window, enter EXIT.

Open the text file LogThat.txt. The metrics are recorded in the text file.

SonicMQ Programming Guide 219

Chapter 10: Management API

Setup Queues

You can create client application routines that let authorized users set up hew
queues and the parameters of those queues. This sample application replicates
features and functionality in the SonicMQ Explorer and the SonicMQ Admin
tool by simply acting on the command line entry to compl ete its task.

0 To setup aqueue programmatically:

1. Open a console window to BrokerManager\SetupQueue folder, then enter:
--\..\SonicMQ SetupQueues
plus the parameters you want to specify:
-b <broker:port> [Default: localhost:2506]
-u <username> [Default: Administrator]
-p <password> [Default: Administrator]
-r <retrieve_extent>[Default: 1200]
-s <save_extent> [Default: 1400]
-m <maxqueuesize> [Default: 1000]
plus switches that set the queue's status:
-global
-exclusive
plus the one or more queues that you want to create with the settings:
-gq <namel> -qg <name2> ...
for example:
--\..\SonicMQ SetupQueues -gq NewQueue -m 2000 -global

You can use the SonicM Q Explorer as shownin Figure 43 to display thelist of
gueues and—if you select the option—system queues.

Elorer View Help

4 Root Gueues | pessages
+ Cerlifcate Stores
i UMS Administered Object Stores Queue Global | Exclusive | Retrieve | Save Max_ |
-4 Message Brokers Sample@1 [m] [m] 1200 1400 1000
=24 localhost:2508:AnyiD.alser GonickQ) || [Sampleaz 1300 1400/ 1000
- Topics Sample03 1200 1400] 1000
1300[1400/ 1000
1200[1400/ 10000
1300 1400 1000
1400 |EI]

SampleQd
Sonichic

il
® Metrics
@ Events

¥ Include System Queues New Delete

Manage Queues and Queue Messages

Figure 43. Explorer View of a Newly Created Queue

220 SonicMQ Programming Guide

Samples that Use the Management API

Show Setup

The showsetup sample outputs information about the basic message recordsin
well-formed Admin tool command lines. By flowing output from ShowSetup
into afile, the configuration of the message server can be recreated by running
the file as an Admin tool script on another message server.

Accessing All Message Server Queue Information

This sample accepts the default server and administrative user to launch an
Admintool script and echo itsresultsinto either the console or afilewhereyou
have redirected the output.

0 To start the ShowSetup sample:

O Openaconsolewindow to the BrokerManager\showSetup folder, then enter:
--\..\SonicMQ ShowSetup

The console displays information similar to the following:

// Admin Script to duplicate the setup for broker "SonicMQ'".
// This broker is NOT security enabled.

// Connect to the broker.
connect broker localhost Administrator Administrator

// Create queues.

set queue NewQueue global shared 1200,1400,2000
set queue SampleQ3 local shared 1200,1400,1000
set queue SampleQ2 local shared 1200,1400,1000
set queue SampleQl local shared 1200,1400,1000
set queue SampleQ4 local shared 1200,1400,1000

// Override properties of system queues.
set queue SonicMQ.routingQueue local shared 1200,1400,1000
set queue SonicMQ.deadMessage local shared 1200,1400,10000

// Create routing connections for "SonicMQ"
// No routing connections defined.

// Close the Admin Shell.
bye

SonicMQ Programming Guide 221

Chapter 10: Management API

Accessing Selected Message Server Queue Information

You can choose the objects that you want reported:

queues — All PTP destinations including system queues.
routings — Routing table information.

qops — Quality of Protection.

acls — Access Control Lists when the security database is active.

users — Users when the security database is active. Passwords are not
reported

groups — User groups when the security database is active.

groupusers — Users in each user group when the security databaseis
active.

all — All of the above. Thisisthe default value.

Each option is declared with a -s parameter

0 To start the ShowSetup sample for specified objects

O Openaconsolewindow to the BrokerManager\showsetup folder, then enter:

--\..\SonicMQ ShowSetup -s queues

The console displays information similar to the following:

//

// Admin Script to duplicate the setup for broker "'SonicMQ".
// This broker is NOT security enabled.

//

// Connect to the broker.
connect broker localhost Administrator Administrator

// Create queues.

set queue NewQueue global shared 1200,1400,2000
set queue SampleQ3 local shared 1200,1400,1000
set queue SampleQ2 local shared 1200,1400,1000
set queue SampleQl local shared 1200,1400,1000
set queue SampleQ4 local shared 1200,1400,1000

// Override properties of system queues.
set queue SonicMQ.routingQueue local shared 1200,1400,1000
set queue SonicMQ.deadMessage local shared 1200,1400,10000

// Close the Admin Shell.
bye

222

SonicMQ Programming Guide

Samples that Use the Management API

Shutdown

The shutdown Sample provides programmeatic access to message server
shutdown for authorized users. This replicates the suggested administration
function in the Admin tool tool or the Explorer.

Important |n Chapter 2, “Examining the SonicMQ Samples,” the reliable samples
suggested the crude Ctrl+C technique to emulate unexpected message server
shutdown. This action should always be avoided in production.

Instead, call an applications like this one or use the Admin tool or Explorer
functions to perform an orderly message server shutdown.

The shutdown process is described in the following code segment from
Shutdown . java.:

é}ivate void shutdownBroker() throws Exception

// Create an instance of the BrokerManager, and then shut it down.
m_manager = new progress.message.tools.BrokerManager
(this, m_broker, m_adminUser, m_adminPassword);
try

m_manager .connect();
m_manager .shutdownBroker();
// Notify user that we have sent the request (successfully).
System.out.println

("'Shutdown request sent to broker \'"' + m_broker + "\".");
m_manager = null;

3

Notethat the brokershutdown request effectively disconnectsthisclient, soyou
cannot get notification of the shutdown request that was sent.

0 To shut down a server programmatically:

You could declare the server host, administrator and password but all of them
will default to the introductory values when not stated.

O Open aconsole window to the BrokerManager\shutdown folder, then enter:
--\..\SonicMQ Shutdown

SonicMQ Programming Guide 223

Chapter 10: Management API

0 To shut down a server programmatically with password prompting:

This variation of the shutdown sample performs a useful task when the -p
parameter contains prompt instead of the actual password for the username.
Under an evaluation setup, the host port is 1ocalhost: 2506 With the user
Administrator and the password Administrator.

1. Open aconsole window to the BrokerManager\shutdown folder, then enter:
--\..\SonicMQ Shutdown -p prompt

Thewindow displays: Enter password for user “Administrator™>
2. Enter Administrator and press Enter.
The window displays:

Shutdown request sent to broker "localhost:2506".

then the application exits.

3. Look at the console window where the message server was running.
Thefollowing text is displayed:

SonicMQ Broker started, now accepting tcp connections on port 2506

Received shutdown request, starting shutdown
Closing all client connections

Waiting 30 seconds for threads to shut down
SonicMQ Broker now exiting...

Press any key to continue . . .

4. When that console window has the focus and you press any key, the
console window closes.

224 SonicMQ Programming Guide

Chapter 11 Accessing SonicMQ Through

ActiveX/COM Clients

About SonicMQ Through ActiveX/COM

SonicM Q providesacomponent framework that allows JM S abjects embedded
in applications to communicate with the component framework on a Windows
platform.

The SonicMQ interface is packaged for ActiveX/COM so that the objects and
methods in the native Java classes are wrappered and the Java events are
presented like native ActiveX/COM control events.

SonicMQ clients under ActiveX/COM can have one connection to a message
server for each instance of the ActiveX/COM control that is active.

By bridging SonicMQ to ActiveX/COM, Windows devel opers can:

m Usefamiliar toolsto make componentsthat interfaceto SonicMQ —
Microsoft Visual C++, Microsoft Visual Basic,
Borland C++, Borland Delphi, Java and others.

m Run JMS-enabled componentsin popular applications —
Microsoft Office, Internet Explorer, Lotus® Notes, Lotus SmartSuite®,
and more.

SonicMQ Programming Guide 225

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Implementation Notes

The SonicMQ connection to ActiveX/COM enables many of the essential
functions of loosely coupled messaging:

m createlListener iSavailable for asynchronous communications with event
handlersthat provide onaMsmessage functionality similar to the IMS native
onMessage.

m Synchronous receivers can be used.

m Standard JM S message types are supported except for objectMessage. The
SonicM Q xMLMessage type is supported.

m ExceptionListeners are available for returning information about IMS
Exception events.

Thelimitations of the ActiveX/COM client interfaceimpose minor constraints:
m ConnectionFactories are not supported through the interface.

s Useof INDI to find destinations is not supported. However, other file-
based store and non-JNDI interfaces to directory services are available.

Requirements for an ActiveX/COM Client
The main elements of the ActiveX/COM client are:
m activex.jar inthe SonicMQ install directory’s\Iib\.
m Javasoft JRE v1.2 with JavaBeans Bridge for ActiveX/COM Plug-in
m The SonicMQ TypeLibrary, ActiveX.tlb

See the SonicMQ Installation and Administration Guide for moreinformation
about installing SonicMQ and its ActiveX/COM Client.

226 SonicMQ Programming Guide

SonicMQ ActiveX/COM Sample

SonicMQ ActiveX/COM Sample

The Visua Basic form, shown in Figure 44 with sample messages, provides
access to many of the fundamental procedures of an ActiveX/COM control
acting asaclient. The ssmple form islocated in the SonicMQ install directory
a samples/ActiveX/Chat/Chat.frm.

=, Chat o=|
Message: IBUY PRGS 20000 44,625 LIMIT Fublish Message |
Message Topic Transcript: Clear Transcript |
OTC_Ticker: PRGS 25000 42.25 =l
OTC_Ticker: MSFT 100000 £5.875
OTC_Ticker: SUNW 50000 122 50
OTC_Ticker: ASFT 25000 18.25
Activek<User: BUY PRGS 20000 44 625 LIMIT
|

Figure 44. SonicMQ ActiveX/COM Sample, Chat.frm, in Visual Basic

The SonicMQ ActiveX/COM sample form has the following fields and
buttons:

= Message text box — Theentry areafor text you want to send asamessage.
m Publish Message button — The action that publishes the message.

m Message Topic Transcript text box — Thelog of received messages.

m Clear Transcript button — Clearsthe Message Topic Transcript text box.

The form and its code demonstrate how to write a Microsoft Visual Basic
Pub/Sub application that uses the SonicMQ ActiveX/COM control. This
sample publishes and subscribes to a specified topic. Text you enter is
published and then received by all subscribers.

Warning Before you can run the SonicMQ ActiveX/COM sample you must ingtall the
SonicMQ ActiveX/COM control. See the SonicMQ Installation and
Administration Guide for prerequisites, installation, and setup instructions for
the SonicM Q ActiveX/COM control.

SonicMQ Programming Guide 227

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

0 To prepare the SonicMQ ActiveX/COM sample:
When the installation and setup are completed, do the following:
1. Loadthe project in Visual Basic.
2. Add areference to the control by choosing Project > References.

3. Inthe Available References list, select the reference SonicMQ Bean
Control.

Note [|f you areinstalling anew version of SonicM Q you may need to reset the path
to the control . Be sure the ActiveX/COM jar file that is referenced is the one
that is associated with the current version of SonicMQ.

O To modify Chat.frm when security is active:

If the message server isrunning with security, the sample source code must be
modified to include a valid username and password:

1. Inthe sample program chat.frm locate the line:
username = "ActiveXUser"

2. Change ActiveXuser to a username that has been set up in the Access
Control List.

3. Changethe next line, password = *'password" to contain the password for
the username you specified.

4. Save Chat.frm.

For more information, see the commentsin chat.frm.

0 To setup the message server and console client for the SonicMQ
ActiveX/COM sample:

1. Start the message server (if it isnot aready running) from the Start menu
command: Start > Programs > Progress SonicMQ > Start Broker.

2. Open aconsole window to the install directory folder
\samples\TopicPubSub\Chat.

3. Enter:
--\..\SonicMQ Chat -u Console_Client

228 SonicMQ Programming Guide

SonicMQ ActiveX/COM Sample

O To run the SonicMQ ActiveX/COM sample

The ActiveX/COM sample will use the message server and a console chat
window. The Visual Basic chat and the console chat will send each other
messages.

1. Inthe Visual Basic project, choose File > Make chat.exe. The path should
be into the samples directory Activex/chat.

2. Choose Run > Start. The form runs and its GUI window displays.
3. Typetext in the Message text box.

4. Click Publish Message. The text you entered displaysin the Message
Topic Transcript text box. The message also displaysin the console client
window prefaced by its client name Actiivexuser.

5. Inthe console client window, enter text and then press Enter. The text you
entered displays in the console window. The message also displaysin the
M essage Topic Transcript text box, prefaced by its client name

Console_Client.

6. Thetext you entered is retained in the M essage text box. Modify or clear
the text to send the next message.

Visual Basic Code for the ActiveX/COM Sample

The Visual Basic code that defines the functionality within the form in
Figure 44 is detailed in the following listing of chat.frm.

Note Theonly omission in the code isthe GUI form properties definitions.

VERSION 5.00
Begin VB.Form Chat
Caption = "Chat"
“ GUI form properties definitions were omitted here

Attribute VB_Name = "'Chat"

Attribute VB_GlobalNameSpace = False
Attribute VB Creatable = False
Attribute VB _Predeclaredld = True
Attribute VB_Exposed = False

SonicMQ Programming Guide 229

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

*Copyright (c) 1999, Progress Software Corporation - All Rights
Reserved

*Sample Application

Using the SonicMQ ActiveX control to Publish and Subscribe

This sample publishes and subscribes to a specified topic.

*Text you enter is published and then received by all subscribers.

Dim newProgressJMS As New SonicMQ.SonicMQ

The WithEvents keyword is required to receive asynchronous events
Dim WithEvents ProgressJMS As SonicMQ.SonicMQ
Attribute ProgressJMS.VB VarHelplD = -1

Dim sessionid As Long
Dim topicid As Long

Dim subscriberid As Long
Dim publisherid As Long
Dim messageid As Long
Dim mapmsgid As Long

Dim pubresult As Long
Dim setresult As Long
Dim result As Long

Dim username As String
Dim password As String
Dim connectresult As String

Private Sub Form_Load()
Set ProgressJMS = newProgressJMS
Dim listener As Long

’Set up parameters to connect to a broker running on the
same machine. Modify username and password if the broker
”is security enabled.

username = "ActiveXUser"
password = "‘password"

ProgressJMS._setBrokerURL (*"localhost:2506'")
ProgressJIMS.setClientID (“"ActiveXClient')
ProgressJMS.setUsername (username)
ProgressJMS.setPassword (password)

>Connect to broker.

connectresult =
ProgressJMS. jms_CreateTopicConnection_withDefaultUser()

If (connectresult < 0) Then
failmsg = "jms_CreateTopicConnection_withDefaultUser

failed"”

GoTo ErrorHandler

End If

230 SonicMQ Programming Guide

SonicMQ ActiveX/COM Sample

>Create a Pub/Sub session
sessionid = ProgressJMS. jms_CreateTopicSession
(False, ProgressJMS. jms_Session_AUTO_ACKNOWLEDGE)
IT (sessionid < 0) Then
failmsg = "jms_CreateTopicSession failed"”
GoTo ErrorHandler
End If

>ldentify the topic that we will publish and subscribe to
topicid = ProgressJMS. jms_CreateTopic
(sessionid, "jms.samples.chat')
If (topicid < 0) Then
failmsg = "jms_CreateTopic failed"”
GoTo ErrorHandler
End If

’Subscribe to the topic
subscriberid = ProgressJMS.jms_CreateSubscriber
(sessionid, topicid)
IT (subscriberid < 0) Then
failmsg = "jms_CreateSubscriber failed"
GoTo ErrorHandler
End If

Create a publisher to the topic
publisherid = ProgressJMS. jms_CreatePublisher
(sessionid, topicid)
If (publisherid < 0) Then
failmsg = "jms_CreatePublisher failed"
GoTo ErrorHandler
End IFf

We will listen for messages asynchronously, create a listener
listener = ProgressJMS. jms_CreateMessagelListener()
IT (listener < 0) Then
failmsg = "jms_CreateMessageListener failed"
GoTo ErrorHandler
End IFf

Attach the listener to the subscription created above
result = ProgressJMS. yjms_MessageConsumer_setMessagelL istener
(subscriberid, listener)
If (result < 0) Then
failmsg = "jms_MessageConsumer_setMessagelListener failed"
GoTo ErrorHandler
End If

Now that setup is complete, start the Connection
result = ProgressJMS. jms_Connection_start()
If (result < 0) Then
failmsg = "jms_Connection_start failed"”
GoTo ErrorHandler
End If

Exit Sub

SonicMQ Programming Guide 231

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

ErrorHandler:
ProgressJMS. jms_Connection_close
MsgBox failmsg, , "'SonicMQ Error"
Exit Sub
End Sub

Publishes the text entered in the MessageText field
Private Sub Publish_Click(Q)
messageid = ProgressJIMS. jms_Session_createTextMessage
(sessionid)
If (messageid >= 0 And MessageText.Text <> '""") Then
setresult = ProgressJMS. jms_TextMessage setText
(messageid, username + ": ' +
MessageText.Text)
pubresult = ProgressJMS. jms_PublishMessage
(publisherid, messageid)
> IMPORTANT - free up the message when we’re done
ProgressIMS. jms_Message_free (messageid)
End IFf
End Sub

’Disconnect from the broker on form unload

Private Sub Form_Unload(Cancel As Integer)
ProgressJMS. jms_Connection_close

End Sub

’Receives messages published to the topic, displays them in
MessageList
Private Sub ProgressJMS_onJMSMessage
(Byval OnJMSMessageEventl As Object)

Dim msgtype As String

Dim messageid As Integer

messageid = OnJMSMessageEventl._getMessagelD()

If (messageid >= 0) Then

msgtype = ProgressJIMS. jms_CheckMessageType(messageid)

’Check message type: this sample only works with text messages
IT (msgtype = "TextMessage') Then
MessageList.Text = MessagelList.Text +
ProgressJMS. jms_TextMessage getText(messageid) +

Chr(13) +
Chr(10)
Else
MessageList.Text = "Unknown message type received"
End IFf

> IMPORTANT - free up the message when we’re done
ProgressJMS. jms_Message_free (messageid)
End If
End Sub

232 SonicMQ Programming Guide

Tips and Techniques for SonicMQ ActiveX/COM

Private Sub ProgressJMS_onJMSException
(Byval OnJMSExceptionEvent As Object)
MessageList.Text = CStr(OnJMSExceptionEvent.getJMSExceptionld()) +
ey

OﬁjMSExceptionEvent.getJMSExceptionText()
End Sub

Private Sub Clear_Click(Q
MessageList.Text = "'
End Sub

Tips and Techniques for SonicMQ ActiveX/COM

The SonicMQ ActiveX/COM control optimizestheinterface between the IMS
objects and methods and the ActiveX/COM interface.

Identifiers

Anidentifier is a non-negative value returned when a function call returns
successfully. Identifiers with negative values, like status codes, indicate a
failure.

Identifiers are defined for the SonicMQ ActiveX/COM control so that its API
flattens the object-oriented structure of the IMS API, thus creating asingle
APIL.

For example, to create a TopicSubscriber object inthe IMS API:
1. Create aTopicConnection object.
2. From the TopicConnection methods, create a TopicSession object.
3. From the TopicSession methods, create a TopicSubscriber Object.
Contrast that with the single object ActiveX/COM control’s API:

1. Create aTopicConnection by calling the create connection method
Jjms_CreateTopicConnection().

2. Createthe Topicsession object by calling the method
jms_CreateTopicSession(). The ActiveX/COM control puts the
TopicSession object into atablein memory and a sessionld valueis
returned to the caller.

SonicMQ Programming Guide 233

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

3. Createthe Topicsubscriber object by calling the method
Jjms_CreateSubscriber() and passing the Session1D and TopiclD as

parameters so that the TopicSubscriber object can be associated with the

TopicSession Object.

Session ldentifier

The session identifier methods for both domains are:

Object Publish and Subscribe Domain Point-to-point Domain
Producer int int // sessionlD
Jms_TopicPublisher_getSessionlD Jms_QueueSender_getSessionlD
(int publisherliD); (int senderlID) ;
Consumer int int // sessionlD
Jjms_TopicSubscriber_getSessionlD Jms_QueueReceiver_getSessionlD
(int subscriberlD); (int receiverliD);
Destination int int // sessionlD

Jjms_Topic_getSessionlD
(int topiclD);

Jms_Queue_getSessionlD
(int queuelD);

Browser (PTP)

n/a

int // sessionlD
Jms_QueueBrowser_getSessionlD
(int gBrowserliD);

Looking Up the Chain of Objects

It can be useful to look up the chain of objects, for example, to identify the
parent TopicSession object for a TopicSubscriber. But in the flattened API of
the SonicM Q ActiveX/COM Control thisisnot possible. Methods areincluded
to resolve these problems, for example:

Jms_TopicSubscriber_getSessionID()
Thisreturns the sessionID of the subscriber’s TopicSession object.

Asynchronous Delivery

To support asynchronous message ddlivery, IM SMessagelL istener objectsareincluded
to atach to the MessageConsumers. To associate the 1istener1D with a

MessageL istener, the listenerID can be passed to the
Jims_MessageConsumer_setMessageListener() method. Asasingle

MessageL istener can attach to multiple MessageConsumers, the SonicMQ
ActiveX/COM control lets a jms_CreateMessageListener() method create a
MessageL istener and return a listener1D to the caller.

234

SonicMQ Programming Guide

Tips and Techniques for SonicMQ ActiveX/COM

Handling Messages

The IMS API can use a single message handler to receive all Message types.
After the Javaapplication receives aMessage object, it usesthe Java instanceof
operator to determine the type of the message; for example, TextMessage.
Because applications using the SonicM Q ActiveX/COM control are aware
only of amessagelD, the instanceof operation isnot viable. A new method is
added to the ActiveX/COM API to allow a message’s type to be determined:

Jms_CheckMessageType()
where the returned value will be one of the following String val ues:

"XMLMessage'* ""BytesMessage"*
"TextMessage" "ObjectMessage"'
""MapMessage'* ""StreamMessage"*
""Message"" "Unknown message type"

XML Messages

SonicM Q has added an xMLMessage type to its supported Message object types.
However, only the method’s jms_xMLMessage_getText() and
Jms_XMLMessage_setText() are applicable under ActiveX/COM, alowing the
message’'s XML character data to be accessed. Methods to manipulate the
DOM object are not supported under ActiveX/COM in thisrelease.

Resource Management

In ActiveX/COM applications that interface with SonicM Q, you should free
memory resources allocated to the message as soon as you are sure that the
message is no longer of interest:

Jms_Message_free(int messagelD);

See“Visual Basic Codefor the ActiveX/COM Sample” for an example of how
freeing resources is used by both the publisher and the subscriber of the

message.

SonicMQ Programming Guide 235

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Events

Two event methods are available in the SonicM Q ActiveX/COM control, the
onJMSMessage event and the onException event.

Asynchronous OnJMSMessage Event

The SonicMQ ActiveX/COM control produces an onJMsMessageEvent
whenever the control has asynchronously received a message for the
application.

The callback method or Event Sink defined in an application for
OnJMSMessageEvents iS the onIMSMessage() method that acceptsthe event as a
parameter.

The onamsMessageEvent requires that you use the getMessageld() method to
return the message 1D of the asynchronous message that is being delivered.

On Exception Events

The SonicMQ ActiveX/COM control produces a onIMSExceptionEvent that is
triggered whenever a Java Exception prevents a method from completing
successfully.

As most methods typically return a negative error code in the event of failure,
implementing support for onaMsException events in an application is not
strictly required.

The callback method or Event Sink defined in an application for
OnJMSExceptionEvents needsan ondMSException() method, which acceptsthat
event as a parameter.

The onJMSExceptionEvent USES the getIMSExceptionText() method among
othersto retrieve the text of the Java Exception.

Additional Exception methods are:

m String
getIMSGeneralException();

m int
getIMSGeneralExceptionCode();

236

SonicMQ Programming Guide

Tips and Techniques for SonicMQ ActiveX/COM

Connections

An instance of the SonicMQ ActiveX/COM control supportsasingle
connection to the message server. Once a connection is established, any
subsequent calls to create a connection are ignored. Asthere are cases when
multiple connections are needed, you can use multiple instances of the
SonicMQ ActiveX/COM control to establish the required number of
connections.

True ActiveX/COM Properties

True ActiveX/COM properties are properties where:

The properties can be found through introspection of the control

by the container.

A get method and set method are provided for the property.

The SonicMQ ActiveX/COM control makes the connection parameters
availableastrue ActiveX/COM propertiesas showninwith their respectiveget
and set methods. The connection parameters of the true ActiveX/COM
properties in the SonicM Q ActiveX/COM control are shown in Table 24.

Table 24. True ActiveX/COM Properties in the SonicMQ ActiveX/COM Control

Connection Parameter

set Method

get Method

UserName setUsername(String user); String getUsername();
Password setPassword(String password); String getPassword();
ClientID setClientID(String clientlD); String getClientID();
URL setBrokerURL(String brokerURL); String getBrokerURL();

Return Values

When the SonicM Q ActiveX/COM control’s public methods do not return data
from the fields of amessage, they return an integer status code or an identifier.

SonicMQ Programming Guide

237

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Status Codes

A status code of 0 isreturned when an operation succeeds and a negative value
is returned when an operation fails. The specific negative value has meaning,
indicative of the general areathat caused the failure.

For example, to create a TopicSubscriber object in the IMS API, you do the
following:

1
2.
3.

Create a TopicConnection object.
From the TopicConnection methods, create a TopicSession object.

From the TopicSession methods, create a TopicSubscriber object.

Contrast that with the single object ActiveX/COM control’s API:

1.

Create a TopicConnection by calling the create connection method
Jjms_CreateTopicConnection().

Create the TopicSession object by calling the method
jms_CreateTopicSession(). The ActiveX/COM control puts the
TopicSession object into atablein memory and a sessionld valueis
returned to the caller.

Create the TopicSubscriber object by calling the method
ims_CreateSubscriber(), passing the sessioniId and TopiclD as
parameters so that the TopicSubscriber object can be associated with the
TopicSession Object.

Enumerations

Because Java enumerations cannot be passed to a non-Java application,
javax. jms methods that return an enumeration are handled in the
ActiveX/COM control by four methods that comprise a simple loop that
replicates enumeration:

1
2.
3.

Point to the next e ement.
Get that element.
Determine whether there are more elements.

If there are more elements, go to Step 1.

238

SonicMQ Programming Guide

Syntax for SonicMQ ActiveX/COM Method Names

Constants

While the IMS API includes severa static variables, the ActiveX/COM
Control does not allow calling applications to use these static variables. This
limitation is overcome by wrapping the constants into methods.

For example, the current IMS Specification defines three static variables that
represent the Acknowledgement Modes for a Session:

m static final int AUTO_ACKNOWLEDGE = 1;

m static final int CLIENT_ACKNOWLEDGE = 2;

m static final int DUPS_OK_ACKNOWLEDGE = 3;

In the SonicM Q ActiveX/COM control’s API, the Acknowledgement Modes
for a Session are obtained by calling corresponding methods:

m int jms_Session_AUTO_ACKNOWLEDGE();

m int jms_Session_CLIENT ACKNOWLEDGE():

m int jms_Session_DUPS OK_ACKNOWLEDGE();

Syntax for SonicMQ ActiveX/COM Method Names

The standard naming method for SonicMQ API names in the SonicMQ
ActiveX/COM control APl is:

“jms_" + IMS APl Interface class name + “_” + method name
For example, the start () method in the Connection interface classis:

Jms_Connection_start()

Duplicate Names Are Differentiated
When duplicates occur, a distinguishing name is added:

“yms_ + IMS APl Interface class name + “_” + method name + “_” +
some distinguishing name

Duplicates occur primarily because overloading a method name. The two most
common cases are the constants as discussed above and the handling of Java's
ability to manage overloaded constructors that needs to be discretely stated in
ActiveX/COM implementations.

SonicMQ Programming Guide 239

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Java Method Overloading Is Handled

As ActiveX/COM does not allow two methods to have the same name where
Javadoes support method overloading, enabling different sets of argumentsto
perform variations of the basic function. To accommodate the IMS
functionality, the ActiveX/COM control names extend names to differentiate
the variants. For exampl e, the MessageConsumer methods:

m Message receive()

m Message receive(long timeOut)

are presented in the SonicM Q ActiveX/COM control’s API as:

m int // messagelD
Jms_MessageConsumer_receive(int consumerliD);

m int // messagelD
Jms_MessageConsumer_receive_withTimeOut(int consumerlID, long
timeOut);

Interface Class Names Are Often Omitted

In most cases, the complete interface name is part of a method name, for
example, Jms_MessageConsumer_receive()

Some common names are simplified to keep names brief. For example:

m jms_CreateTopicSession() does not need to be qualified by including
TopicConnection as part of its name.

m jms_Publish() can only belong to the TopicPublisher, so that Interface’s
class name was dropped from method’s name.

240 SonicMQ Programming Guide

Interface Mappings

Interface Mappings

Table 25 presents the set of tables in this chapter that detail the mapping of
javax.jms contructors and methods to the commands used with the
ActiveX/COM control.

Table 25. Interface Mapping from SonicMQ to the ActiveX/COM Control

Interface

Table 26, “Connection Interface” on page 242.

Table 27, “ Session I nterface” on page 243.

Table 28, “MessageConsumer Interface” on page 244.

Table 29, “MessageL istener Interface” on page 245.

Table 30, “MessageProducer Interface” on page 245.

Table 31, “DeliveryMode Interface” on page 246.

Table 32, “TopicConnectionFactory Interface” on page 246.

Table 33, “TopicConnection Interface” on page 247.

Table 34, “TopicSession Interface” on page 247.

Table 35, “Topic Interface (Extends Destination)” on page 248.

Table 36, “TopicPublisher Interface” on page 248.

Table 37, “TopicRequestor and Temporary Topic (Extends Topic) Interfaces’ on
page 248.

Table 38, “TopicSubscriber Interface” on page 249.

Table 39, “QueueConnectionFactory Interface” on page 249.

Table 40, “QueueConnection Interface” on page 249.

Table 41, “QueueSession Interface” on page 250.

Table 42, “Queue Interface (Extends Destination)” on page 250.

Table 43, “QueueSender Interface (Extends MessageProducer)” on page 251.

SonicMQ Programming Guide 241

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Table 25. Interface Mapping from SonicMQ to the ActiveX/COM Control

Interface

page 251.

Table 44, “ QueueRequestor and TemporaryQueue (Extends Queue) Interfaces’ on

Table 45, “QueueReceiver Interface (Extends MessageConsumer)” on page 251.

Table 46, “ QueueBrowser Interface” on page 252.

Table 47, “Message Interface” on page 252.

Table 48, “BytesMessage | nterface (Extends Message)” on page 256.

Table 49, “MapMessage | nterface (Extends Message)” on page 258.

Table 50, “ StreamM essage I nterface (Extends Message)” on page 260.

Table 51, “TextMessage | nterface (Extends Message)” on page 261.

Table 52, “XMLMessage | nterface (Extends TextMessage)” on page 262.

Table 53, “Other Interfaces’ on page 262.

Connections and Sessions

Table 26. Connection Interface

javax.jms API

SonicMQ ActiveX/COM API

String
getClientID(Q

String
getClientID();

void
setClientID(String clientlID)

void
setClientID(String clientiD);

void
setExceptionListener(ExceptionListener
listener)

void int // status code

start() Jjms_Connection_start()

void int // status code

stop(Q) Jms_Connection_stop()

242 SonicMQ Programming Guide

Interface Mappings

Table 26. Connection Interface (continued)

javax.jms API

SonicMQ ActiveX/COM API

void
close()

int // status code
Jjms_Connection_close()

Table 27. Session Interface

javax.jms API

SonicMQ ActiveX/COM API

static final int AUTO_ACKNOWLEDGE = 1;

int
Jms_Session_AUTO_ACKNOWLEDGE ();

static final int CLIENT_ACKNOWLEDGE = 2;

int
Jms_Session_CLIENT_ACKNOWLEDGE ():

static final int DUPS_OK_ ACKNOWLEDGE = 3;

int
Jms_Session_DUPS_OK_ACKNOWLEDGE();

createMessage()

int // messagelD
Jms_Session_createMessage(int sessionlD);

createBytesMessage ()

int // messagelD
Jms_Session_createBytesMessage
(int sessionlD);

createMapMessage()

int // messagelD
Jms_Session_createMapMessage
(Int sessionlD);

createStreamMessage()

int // messagelD
Jms_Session_createStreamMessage
(Int sessionlD);

createTextMessage()

int // messagelD
JmsSession_createTextMessage
(Int sessionlD);

createTextMessage(String string)

int // messagelD
Jms_Session_createTextMessage withBody
(Int sessionlD, String body);

boolean Boolean

getTransacted() Jms_Session_getTransacted(int sessioniD);
void int // status code

commit() Jms_Session_commit(int sessionlD);

void int // status code

rollback() Jms_Session_rollback(int sessionlD);

SonicMQ Programming Guide

243

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Table 27. Session Interface (continued)

javax.jms API

SonicMQ ActiveX/COM API

void int // status code

close() Jms_Session_close(int sessionlD);
void int // status code

recover() Jms_Session_recover(int sessionlD);

getMessageListener()

void
setMessagelListener(MessagelListener
listener)

onException(JMSException exception);

Producers and Consumers

Table 28. MessageConsumer Interface

javax.jms API

SonicMQ ActiveX/COM API

String String

getMessageSelector()

Jms_MessageConsumer_getMessageSelector
(int consumerliD);

receive()

int // messagelD
Jms_MessageConsumer_receive
(int consumerliD);

receive(long timeOut)

int // messagelD
Jms_MessageConsumer_receive_withTimeOut
(int consumeriD, long timeOut);

Message int // messagelD
receiveNoWait() Jms_MessageConsumer_receiveNoWait
(int consumerliD);
void int // status code
close() Jjms_MessageConsumer_close
(int consumerliD);
244 SonicMQ Programming Guide

Interface Mappings

Table 29. MessagelListener Interface

javax.jms API

SonicMQ ActiveX/COM API

void
onMessage(Message message);

Jms_CreateMessagelL istener

int // listenerlD
Jms_MessageConsumer_getMessageListener
(int consumerliD)

int // status code
Jms_MessageConsumer_setMessageListener
(int consumerlID, int listenerlD)

where listenerlID is generated by the
jms_CreateMessagelL istener method

Table 30. MessageProducer Interface

javax.jms API

SonicMQ ActiveX/COM API

setDisableMessagelD(boolean value)

int // status code
Jms_MessagProducer_setDisableMessagelD
(int producerlID, boolean value);

boolean
getDisableMessagelD()

Boolean
Jms_MessageProducer_getDisableMessagelD
(Int producerliD);

setDisableMessageTimestamp(boolean
value)

int // status code
Jms_MessageProducer_setDisableMessageTimestamp
(int producerlD, boolean value);

boolean
getDisableMessageTimestamp()

Boolean
Jms_MessageProducer_getDisableMessageTimestamp
(Int producerliD);

setDeliveryMode(int deliveryMode)

int // status code
Jms_MessageProducer_setDel iveryMode
(Int producerlD, int deliveryMode);

int
getDeliveryMode()

int // integer value (otherwise null)
Jms_MessageProducer_getDel iveryMode
(Int producerliD);

setPriority(int priority)

int // status code
Jms_MessageProducer_setPriority
(Int producerlD, int priority);

SonicMQ Programming Guide

245

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Table 30. MessageProducer Interface

javax.jms API SonicMQ ActiveX/COM API
int int // integer value (otherwise null)
getPriority(Q Jms_MessageProducer_getPriority

(Int producerliD);

setTimeToLive(long timeToLive) int // status code
Jms_MessageProducer_setTimeToLive
(Int producerliD, long timeToLive);

int int // integer value (otherwise null)
getTimeToLive() Jms_MessageProducer_getTimeToLive
(Int producerliD);

close() int // status code
Jms_MessageProducer_close(int producerliD);

Table 31. DeliveryMode Interface

javax.jms API SonicMQ ActiveX/COM API

static final int NON_PERSISTENT = 1; int
Jms_DeliveryMode NON_PERSISTENT();

static final int PERSISTENT = 2; int
Jms_DeliveryMode PERSISTENT();

Publish and Subscribe (Topics)

Table 32. TopicConnectionFactory Interface

javax.jms API SonicMQ ActiveX/COM API

createTopicConnection() int // status code
Jjms_CreateTopicConnection_withDefaultUser()

createTopicConnection int // status code
(String userName, String password) Jjms_CreateTopicConnection
(String userName, String password)

246 SonicMQ Programming Guide

Interface Mappings

Table 33. TopicConnection Interface

javax.jms API

SonicMQ ActiveX/COM API

createTopicSession
(boolean transacted,
int acknowledgeMode)

int // sessionlD
Jjms_CreateTopicSession
(boolean transacted, int acknowledgeMode)

Table 34. TopicSession Interface

javax.jms API

SonicMQ ActiveX/COM API

createTopic(String topicName)

int // topiclD
Jjms_CreateTopic(int sessionlD, String topicName);

createSubscriber(Topic topic)

int // subscriberlD
Jms_CreateSubscriber(int sessionlD, int topiclD);

createSubscriber(Topic topic,
String messageSelector, boolean
noLocal)

int // subscriberlID
Jms_CreateSubscriber_withSelector

(int sessionlD, int topiclD,

String messageSelector, Boolean noLocal);

createDurableSubscriber
(Topic topic, String name)

int // subscriberlD
Jms_CreateDurableSubscriber
(int sessionlD, int topiclD, String name);

createDurableSubscriber

(Topic topic, String name, String
messageSelector,

boolean noLocal)

int // subscriberlD
Jms_CreateDurableSubscriber_withSelector
(int sessionlD, int topiclD, String name,
String messageSelector, Boolean noLocal);

createPublisher(Topic topic)

int // publisherlD
Jjms_CreatePublisher(int sessionlD, int topiclD);

createTemporaryTopic()

int // topiclD
Jjms_CreateTemporaryTopic(int SessioniD);

unsubscribe(String name)

int // status code
Jms_Unsubscribe(int sessionlD, String topicName);

SonicMQ Programming Guide

247

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Table 35. Topic Interface (Extends Destination)

javax.jms API

SonicMQ ActiveX/COM API

String String

getTopicName() Jjms_Topic_getTopicName(int topiclD);
String String

toString(); Jms_Topic_toString(int topiclD);

Table 36. TopicPublisher Interface

javax.jms API

SonicMQ ActiveX/COM API

getTopic()

int // topiclD
Jjms_TopicPublisher_getTopic(int publisheriD);

publish(Message message)

int // status code
Jms_PublishMessage
(int publisherlID, int messagelD);

publish(Message message, int
deliveryMode, int priority, long
timeToLive)

int // status code
Jms_PublishMessage withConditions
(int publisherlID, int messagelD,
int deliveryMode, int priority,
long timeToLive);

publish(Topic topic, Message message)

int // status code
JmsPubl ishMessageToTopic(publisherlD,
int topiclD, int messagelD);

publish(Topic topic, Message message,
int deliveryMode, int priority,
long timeToLive)

int // status code
JmsPublishMessageToTopic_withConditions(
publisherlID, int topiclD, int messagelD,
int deliveryMode, int priority,

long timeToLive);

Table 37. TopicRequestor and TemporaryTopic (Extends Topic) Interfaces

javax.jms API

SonicMQ ActiveX/COM API

TopicRequestor
(TopicSession session, Topic topic)

request(Message message)

248

SonicMQ Programming Guide

Interface Mappings

Table 37. TopicRequestor and TemporaryTopic (Extends Topic) Interfaces

javax.jms API SonicMQ ActiveX/COM API

close() -

Temporary Topic: int // status code

delete() jms_TemporaryTopic_delete(int topiclD);

Table 38. TopicSubscriber Interface

javax.jms API SonicMQ ActiveX/COM API

getTopic() int // topiclD
Jms_TopicSubscriber_getTopic(int subscriberlD);

getNoLocal) Boolean
Jjms_TopicSubscriber_getNoLocal (int subscriberID);

Point-to-point (Queues)

Table 39. QueueConnectionFactory Interface

javax.jms API SonicMQ ActiveX/COM API
createQueueConnection() int // status code
Jms_CreateQueueConnection_withDefaultUser();
createQueueConnection int // status code
(String userName, Jms_CreateQueueConnection
String password) (String userName, String password);

Table 40. QueueConnection Interface

javax.jms API SonicMQ ActiveX/COM API
createQueueSession int // sessionid
(boolean transacted, Jms_createQueueSession

int acknowledgeMode) (boolean transacted, int acknowledgeMode);

SonicMQ Programming Guide 249

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Table 41. QueueSession Interface

javax.jms API SonicMQ ActiveX/COM API
createQueue(String queueName) int // queuelD

Jms_CreateQueue(int sessionlD, String name);
createReceiver(Queue queue) int // gReceiverlD

Jms_CreateQueueReceiver(int sessionlD, int queuelD);
createReceiver(Queue queue, int // qReceiverlD
String messageSelector) Jms_CreateQueueReceiver_withSelector

(int sessionlD, int queuelD, String messageSelector);
createSender(Queue queue) int // gSenderlD

Jms_CreateQueueSender(int sessionlD, int queuelD);
createBrowser(Queue queue) int // gBrowserlD

Jms_CreateQueueBrowser (int sessionlD, int queuelD);
createBrowser(Queue queue, int // gBrowserlD
String messageSelector) Jms_CreateQueueBrowser_withSelector

(Int sessionlID, int queuelD, String messageSelector):

createTemporaryQueue() int // queue
Jms_CreateTemporaryQueue(int sessioniD);

Table 42. Queue Interface (Extends Destination)

javax.jms API SonicMQ ActiveX/COM API
getQueueName() String

Jms_Queue_getQueueName(int queuelD);
String String
toString(); Jjms_Queue_toString(int queuelD);

250 SonicMQ Programming Guide

Interface Mappings

Table 43. QueueSender Interface (Extends MessageProducer)

javax.jms API

SonicMQ ActiveX/COM API

getQueue()

int // queuelD
Jms_QueueSender_getQueue(int gSenderliID);

send(Message message)

int // status code
Jms_SendMessage
(int gSenderlID, int messagelD);

send(Message message, int deliveryMode,
int priority, long timeToLive)

int // status code
Jms_SendMessage_withConditions
(int gSenderlID, int messagelD,
int deliveryMode, int priority,
long timeToLive);

send(Queue queue, Message message)

int // status code
Jms_SendMessageToQueue

(int gSenderlID, int queuelD, int messagelD);

send(Queue queue, Message message, int
deliveryMode, int priority, long
timeToLive)

int // status code
Jms_SendMessageToQueue_withConditions

(int gSenderlID, int queuelD, int messagelD, int

deliveryMode, iInt priority,
long timeTolLive);

Table 44. QueueRequestor and TemporaryQueue (Extends Queue) Interfaces

javax.jms API

SonicMQ ActiveX/COM API

QueueRequestor(QueueSession session, Queue queue) -

request(Message message)

close() -
TemporaryQueue: int // status code
delete() Jms_TemporaryQueue_delete

(Int queuelD);

Table 45. QueueReceiver Interface (Extends MessageConsumer)

javax.jms API

SonicMQ ActiveX/COM API

getQueue() int // queuelD

Jms_QueueReceiver_getQueue(int gReceiverliD);

SonicMQ Programming Guide

251

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Table 46. QueueBrowser Interface

javax.jms API

SonicMQ ActiveX/COM API

getQueue() int // queuelD
Jms_QueueBrowser_getQueue(int gBroswerliD)
String String
getMessageSelector(| jms_QueueBrowser_getMessageSelector(int gBrowseriD);
Enumeration int // Message Queue Enumeration ID
getEnumeration() Jms_QueueBrowser_getEnumeration(int gBrowserlID);
int // Message ID
Jms_QueueBrowserEnumeration_nextElement(int enumerationliD) ;
Boolean // Message ID
Jms_QueueBrowserEnumeration_hasMoreElements(int enumerationliD)
close() int // status code
Jms_QueueBrowser_close(int gBrowserlID);
Messages

Table 47. Message Interface

javax.jms API

SonicMQ ActiveX/COM API

getJMSMessage D)

static final int int

DEFAULT_DELIVERY_MODE = -1; Jjms_Message DEFAULT DELIVERY_MODE();
static final int int

DEFAULT_PRIORITY = -1; Jms_Message_DEFAULT_PRIORITY();
static final int int

DEFAULT_TIME_TO LIVE = -1; Jjms_Message DEFAULT TIME_TO _LIVE();
String String

Jms_Message_getIMSMessageID(int messagelD);

void int // status code
setJMSMessagelD(String id) Jms_Message_setJIMSMessagelD
(int messagelD, String id);
long Long
getIMSTimestamp() Jms_Message_getIMSTimestamp(int messagelD);
252 SonicMQ Programming Guide

Interface Mappings

Table 47. Message Interface (continued)

javax.jms API

SonicMQ ActiveX/COM API

setIMSTimestamp(long timestamp)

int // status code
Jms_Message_setJIMSTimestamp
(int messagelD, long timestamp);

byte []

getJMSCorrelationlDAsBytes()

byte[] 7/
Jms_Message_getJIMSCorrelationlDAsBytes
(Int messagelD);

byte[])
setJMSCorrelationlDAsBytes
(byte[] correlationlD)

int // status code
Jms_Message_setJIMSCorrelationlDAsBytes
(int messagelD, byte[] correlationlD);

String
setJMSCorrelationlD
(String correlationlD)

int // status code
Jms_Message_setJIMSCorrelationlD
(int messagelD, String correlationiD);

getJMSCorrelationID()

String
Jms_Message_getIMSCorrelationID(int messagelD);

(Destination replyTo)

getJIMSReplyTo() int // destinationlD
Jms_Message _getJIMSReplyTo(int messagelD);
setIMSReplyTo int // status code

Jms_Message_setIMSReplyTo(int messagelD, int
destinationliD);

(Destination destination)

int int // destinationlD
getJMSDestination() Jms_Message_getIMSDestination(int messagelD);
setJMSDestination int // status code

Jms_Message_setJIMSDestination
(Int messagelD, int destinationiD);

int
getJMSDel iveryMode ()

int
Jms_Message _getJIMSDel iveryMode(int messagelD);

setJMSDel iveryMode
(int deliveryMode)

int // status code
Jms_Message_setIMSDel iveryMode
(int messagelD, int deliveryMode);

boolean
getJMSRedelivered()

Boolean
Jms_Message_getIMSRedelivered(int messagelD);

setJMSRedelivered
(boolean redelivered)

int // status code
Jms_Message_setJIMSRedelivered(int messagelD);

String
getIMSType()

String
Jms_Message_getIMSType(int messagelD);

SonicMQ Programming Guide

253

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Table 47. Message Interface (continued)

javax.jms API

SonicMQ ActiveX/COM API

setIMSType(String type)

int // status code
Jms_Message_setJMSType
(Int messagelD , String type);

long
getJMSExpiration()

long
Jms_Message _getIMSExpiration(int messagelD);

setJMSExpiration(long expiration)

int // status code
Jms_Message_setIMSExpiration(int messagelD,
long expiration);

int
getIMSPriority(Q)

int
Jms_Message_getPriority(int messagelD);

setIMSPriority(int priority)

int // status code
Jms_Message_setJIMSPriority(int messagelD, int
priority);

propertyExists(String name)

clearProperties() int // status code
Jms_Message_clearProperties(int messagelD);
boolean Boolean

Jms_Message_propertyExists
(Int messagelD String name);

boolean
getBooleanProperty(String name)

Boolean
Jms_Message_getBooleanProperty
(Int messagelD, String name);

byte
getByteProperty(String name)

Byte
Jms_Message _getByteProperty
(Int messagelD, String name);

short
getShortProperty(String name)

Short
Jms_Message_getShortProperty
(Int messagelD, String name);

int
getintProperty(String name)

Integer
Jms_Message _getintProperty
(Int messagelD, String name);

long
getLongProperty(String name)

Long
Jms_Message _getlLongProperty
(Int messagelD, String name);

float
getFloatProperty(String name)

Float
Jms_Message_getFloatProperty
(int messagelD, String name);

254

SonicMQ Programming Guide

Interface Mappings

Table 47. Message Interface (continued)

javax.jms API

SonicMQ ActiveX/COM API

double
getDoubleProperty(String name)

Double
Jms_Message_getDoubleProperty
(Int messagelD, String name);

String
getStringProperty(String name)

String
Jms_Message_getStringProperty
(Int messagelD, String name);

(String name, boolean value)

Object Not implemented.

getObjectProperty(String name)

Enumeration String[]

getPropertyNames() Jms_Message_getPropertyNames(int messagelD);
setBooleanProperty int // status code

Jms_Message_setBooleanProperty
(Int messagelD, String name, Boolean value);

setByteProperty
(String name, byte value)

int // status code
Jms_Message_setByteProperty
(int messagelD, String name, Byte value);

setShortProperty
(String name, short value)

int // status code
Jms_Message_setShortProperty
(int messagelD, String name, Short value);

setintProperty
(String name, int value)

int // status code
Jms_Message_setIntProperty
(int messagelD, String name, Integer value);

setLongProperty
(String name, long value)

int // status code
Jms_Message_setLongProperty
(int messagelD, String name, Long value);

setFloatProperty
(String name, float value)

int // status code
Jms_Message_setFloatProperty
(int messagelD, String name, Float value);

setDoubleProperty
(String name, double value)

int // status code
Jms_Message_setDoubleProperty
(int messagelD, String name, Double value);

setStringProperty
(String name, String value)

int // status code
Jms_Message_setStringProperty
(Int messagelD, String name, String value);

setObjectProperty
(String name, Object value)

int // status code
Jms_Message_setObjectProperty
(Int messagelD, String name, Object value);

SonicMQ Programming Guide

255

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Table 47. Message Interface (continued)

javax.jms API

SonicMQ ActiveX/COM API

acknowledge) int // status code
Jms_Message_acknowledge(int messagelD):
clearBody() int // status code

Jms_Message_clearBody(int messagelD);

Table 48. BytesMessage Interface (Extends Message)

javax.jms API

SonicMQ ActiveX/COM API

boolean Boolean

readBoolean() Jms_BytesMessage_readBoolean(int messagelD);

byte Byte

readByte() Jms_BytesMessage_readByte(int messagelD);

int Integer

readUnsignedByte() Jms_BytesMessage readUnsignedByte(int messagelD);
short Short

readShort() Jms_BytesMessage readShort(int messagelD);

int Integer

readUnsignedShort() Jms_BytesMessage_ readUnsignedShort(int messagelD);
char char

readChar() Jms_BytesMessage_readChar(int messagelD);

int Integer

readInt() Jms_BytesMessage_readInt(int messagelD);

long Long

readLong() Jms_BytesMessage_readlLong(int messagelD);

float Float

readFloat() Jms_BytesMessage_readFloat(int messagelD);

double Double

readDouble() Jms_BytesMessage_readDouble(int messagelD);
String String

readUTFQ Jms_BytesMessage_readUTF(int messagelD);

256 SonicMQ Programming Guide

Interface Mappings

Table 48. BytesMessage Interface (Extends Message) (continued)

javax.jms API

SonicMQ ActiveX/COM API

int
readBytes
(byte[] value)

Byte[]
Jms_BytesMessage_ readBytes
(Int messagelD, int length);

int
readBytes
(byte[] value, int length)

Not implemented.

writeBoolean(boolean value)

int // status code
Jms_BytesMessage writeBoolean
(int messagelD, boolean value);

writeByte(byte value)

int // status code
Jms_BytesMessage writeByte
(int messagelD, byte value):

writeShort(short value)

int // status code
Jms_BytesMessage writeShort
(int messagelD, short value);

writeChar(char value)

int // status code
Jms_BytesMessage writeChar
(int messagelD, char value);

writelnt(int value)

int // status code
Jms_BytesMessage writelnt
(int messagelD, int value):

writeLong(long value)

int // status code
Jms_BytesMessage writelLong
(int messagelD, long value);

writeFloat(float value)

int // status code
Jms_BytesMessage writeFloat
(int messagelD, float value);

writeDouble(double value)

int // status code
Jms_BytesMessage_writeDouble
(Int messagelD, double value);

writeUTF(String value)

int // status code
Jms_BytesMessage writeUTF
(Int messagelD, String value);

writeBytes(byte[] value)

int // status code
Jms_BytesMessage writeBytes
(Int messagelD, byte[] value);

writeBytes
(byte[] value, int offset,int
length)

int // status code
Jms_BytesMessage writeBytes atOffset

(int messagelD, byte[] value, int offset, int length);

SonicMQ Programming Guide

257

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Table 48. BytesMessage Interface (Extends Message) (continued)

javax.jms API

SonicMQ ActiveX/COM API

writeObject(Object value)

int // status code
Jms_BytesMessage writeObject
(Int messagelD, Object value);

reset()

int // status code
Jms_BytesMessage reset(int messagelD);

Table 49. MapMessage Interface (Extends Message)

javax.jms API

SonicMQ ActiveX/COM API

boolean
getBoolean(String name)

Boolean
Jms_MapMessage_getBoolean(int messagelD, String name);

byte
getByte(String name)

Byte
Jms_MapMessage_getByte(int messagelD, String name);

char
getChar(String name)

char
Jms_MapMessage_getChar(int messagelD, String name);

int
getInt(String name)

int // integer value
Jms_MapMessage_getInt(int messagelD, String name);

getBytes(String name)

long long

getlLong(String name) Jms_MapMessage_getLong(int messagelD, String name);
float float

getFloat(String name) Jms_MapMessage_getFloat(int messagelD, String name);
double double

getDouble(String name) Jms_MapMessage_getDouble(int messagelD, String name);
String String

getString(String name) Jms_MapMessage_getString(int messagelD, String name);
byte[] byte[]

Jms_MapMessage_getBytes(int messagelD, String name);

(String name, boolean value)

Object Not implemented.

getObject(String name)

Enumeration String[]

getMapNames () Jms_MapMessage_getMapNames(int messagelD);
setBoolean int // status code

Jms_MapMessage_setBoolean
(int messagelD, String name, boolean value);

258

SonicMQ Programming Guide

Interface Mappings

Table 49. MapMessage Interface (Extends Message) (continued)

javax.jms API

SonicMQ ActiveX/COM API

setByte
(String name, byte value)

int // status code
Jms_MapMessage_setByte
(int messagelD, String name, byte value);

setShort
(String name, short value)

int // status code
Jms_MapMessage_setShort
(iInt messagelD, String name, short value);

setChar
(String name, char value)

int // status code
Jms_MapMessage_setChar
(Int messagelD, String name, char value);

setInt(String name, int value)

int // status code
Jms_MapMessage_setlInt
(int messagelD, String name, int value);

setLong
(String name, long value)

int // status code
Jms_MapMessage_setlLong
(int messagelD, String name, long value);

setFloat
(String name, float value)

int // status code
Jms_MapMessage_setFloat
(int messagelD, String name, float value);

setDouble
(String name, double value)

int // status code
Jms_MapMessage_setDouble
(int messagelD, String name, double value);

setString
(String name, String value)

int // status code
Jms_MapMessage_setString
(int messagelD, String name, String value);

setBytes
(String name, byte[] value)

int // status code
Jms_MapMessage_setBytes
(int messagelD, String name, byte[] value);

setBytes
(String name, byte[] value,
int offset, int length)

int // status code
Jms_MapMessage_setBytes_atOffset

(Int messagelD, String name, byte[] value ,
int offset, int length)

setObject
(String name, Object value)

int // status code
Jms_MapMessage_setObject
(int messagelD, String name, Object value);

boolean
itemExists(String name)

Boolean
Jms_MapMessage_itemExists(String name);

SonicMQ Programming Guide

259

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Table 50. StreamMessage Interface (Extends Message)

javax.jms API

SonicMQ ActiveX/COM API

readBytes(byte[] value)

boolean Boolean

readBoolean() Jms_StreamMessage_readBoolean(int messagelD);
byte Byte

readByte() Jms_StreamMessage_readByte(int messagelD);
short Short

readShort() Jms_StreamMessage_readShort(int messagelD);
char char

readChar() Jms_StreamMessage_readChar(int messagelD);
int Integer // integer value

readInt() Jms_StreamMessage_readlnt(int messagelD);
long Long

readLong() Jms_StreamMessage_readlLong(int messagelD);
float Float

readFloat() Jms_StreamMessage_readFloat(int messagelD);
double Double

readDouble() Jms_StreamMessage_readDouble(int messagelD);
String String

readString() Jms_StreamMessage_readString(int messagelD);
int byte[]

Jms_StreamMessage_readBytes(int messagelD, int length);

(boolean value)

Object Not implemented.
readObject()
writeBoolean int // status code

Jms_StreamMessage_writeBoolean
(int messagelD, boolean value);

writeByte(byte value)

int // status code
Jms_StreamMessage_writeByte (int messagelD, byte value);

writeShort(short value)

int // status code
Jms_StreamMessage writeShort (int messagelD,short value);

writeChar(char value)

int // status code
Jms_StreamMessage_writeChar(int messagelD, char value);

writelnt(int value)

int // status code
Jms_StreamMessage writelnt
(Int messagelD, int value);

260

SonicMQ Programming Guide

Interface Mappings

Table 50. StreamMessage Interface (Extends Message) (continued)

javax.jms API

SonicMQ ActiveX/COM API

writeLong(long value)

int // status code
Jms_StreamMessage writelLong
(int messagelD, long value);

writeFloat(float value)

int // status code
Jms_StreamMessage writeFloat
(int messagelD, float value);

writeDouble(double value)

int // status code
Jms_StreamMessage writeDouble
(Int messagelD, double value);

writeString(String value)

int // status code
Jms_StreamMessage writeString
(int messagelD, String value);

writeBytes(byte[] value)

int // status code
Jms_StreamMessage_writeBytes
(int messagelD, byte[] value);

writeBytes
(byte[] value, int
offset, int length)

int // status code
Jms_StreamMessage_writeBytes atOffset

(int messagelD, byte[] value, int offset,
int length);

writeObject(Object value)

int // status code
Jms_StreamMessage writeObject(
int messagelD, Object value);

reset()

int // status code
Jms_StreamMessage_reset(int messagelD);

Table 51. TextMessage Interface (Extends Message)

javax.jms API

SonicMQ ActiveX/COM API

setText(String string)

int // status code
Jms_TextMessage_setText(int messagelD, String textBody);

String
getText()

String
Jms_TextMessage_getText(int messagelD);

SonicMQ Programming Guide

261

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

Note The xMLMessage interface extends javax. jms, referencing it as a
progress.message.jclient API.

Table 52. XMLMessage Interface (Extends TextMessage)

progress.message.jclient. API SonicMQ ActiveX/COM API
(progress.message.- jclient._Session) int // status code
session) .createXMLMessage () Jms_Session_CreateXMLMessage(int sessionlD);

int // status code
Jms_Session_CreateXMLMessage withBody
(Int sessionlD, String textBody);

Special Purpose

The ActiveX/COM commands listed in Table 53 have no similar command in
either javax.jms Or progress.message. jclient.
Table 53. Other Interfaces

NO ANALOGOUS JMS METHOD SonicMQ ActiveX/COM API

SESSION ID (Topic Pub/Sub) int
Jms_TopicPublisher_getSessionID(int publisherlID);

int
Jms_TopicSubscriber_getSessionID(int subscriberlD);

int
Jms_Topic_getSessionID(int topiclD);

SESSION ID (Queue PTP) int // sessionlD
Jms_Queue_getSessionID(int queuelD);

int // sessionlD
Jms_QueueBrowser_getSessionID(int gBrowserliD);

int // sessionlD
Jms_QueueReceiver_getSessionID(int receiverliD);

int // sessionlD
Jms_QueueSender_getSessionlID(int senderiD) ;

262 SonicMQ Programming Guide

Interface Mappings

Table 53. Other Interfaces

NO ANALOGOUS JMS METHOD SonicMQ ActiveX/COM API

MESSAGE TYPE String
Jms_CheckMessageType(int messagelD);

Java clients check the Message using
instanceOf to determine the message

type.

EXCEPTIONS String
getIMSGeneralException();
int
getJMSGeneralExceptionCode();

RESOURCE MANAGEMENT int

Jms_Message_free(int messagelD);
Cues the ActiveX/COM control to free
any memory that it has reserved for the
indicated message.

SonicMQ Programming Guide 263

Chapter 11: Accessing SonicMQ Through ActiveX/COM Clients

264 SonicMQ Programming Guide

Chapter 12 | pokup of Administered Objects

About Administered Objects

The administered objects are objects that are defined independently of a
SonicM Q message server. These objects, set in the context of an application,
provide the application with deployment details by just choosing a
configuration name. As aresult, developers are removed from the burden of
defining and maintaining configuration details.

Within the IM S specification, the objects that can be administered are:
m ConnectionFactories

— QueueConnectionFactory
— TopicConnectionFactory

m Destinations
— Queue
— Topic

These objects depend on the configuration of the message server—such asiits
location, its default port, aswell as what other applications are running on the
message Server.

SonicM Q supports administered objects that are created using the SonicMQ
Explorer. See theSonicMQ Installation and Administration Guide for
information about administered objects and the SonicMQ Explorer.

SonicMQ Programming Guide 265

Chapter 12: Lookup of Administered Objects

Note The sample code segmentsin this chapter use TopicConnections and Topics.
The coding for QueueConnections and Queues is similar.

Issues When Using Administered Objects

From the point of view of the programmer, there are issues that make
administered objects problematic to use:

ConnectionFactories—What is the right message server and its
connection?

Dedtinations— How can | avoid name conflicts?

When several applications are using similar destination naming strategies,
the programmer wants assurance that inadvertent conflicts are avoided
atogether.

These issues are easily managed: store administered objects in some object
store and then reference the object indirectly (by name) in some context.

SonicM Q supports INDI and a simple file store to perform these functions.

Creating New Administered Objects

You can create ConnectionFactories and Destinations as new Java objects.
Typically, thisis done as follows:

Javax. jms.QueueConnectionFactory factory;
// Create the factory as a new object. Hard code the broker name.

factory = (new progress.message.jclient.QueueConnectionFactory
(““localhost:2506""));

// Continue, creating connection from the factory

// Continue, creating the session from the connection.

/7 Finally, create the Queue for our application.

Javax.jms_.Queue queue = session.createQueue “SampleQl™);

266

SonicMQ Programming Guide

Serialized Java Objects in a File System

Serialized Java Objects in a File System

SonicMQ allows you to administratively store objects as Serialized Java
Objects (.sjo) in afile system. By updating the .sjo objects through the
SonicMQ Explorer you can isolate the programmer from specific message
server configuration parameters and destination names. The task of
maintaining and deploying the .sjo files remains.

Setting Up Serialized Objects

The following sample demonstrates how serialized objects can be set up. The
sample assumes:

m TheTopicConnectionFactory for the sample applicationis stored in thefile
ChatConnectionFactory.sjo.

m TheTopic for the application is stored in the file chatTopic.sjo.

m A new method, readFile, is used for both administered objects:

/**
*Read an object from the given file.
*@param Filename The name of the file.
*@return The deserialized object. If the file does not contain
a valid JMS managed object or there is some
* read/deserialization problem, then return null.
*/

private Object readFile(String filename)
{

try
{

jJava.io._FilelnputStream fis =
new java.io.FilelnputStream(filename);

jJjava.io.ObjectlnputStream ois =
new java.io.ObjectlnputStream(fis);

Object readObj = ois.readObject();

fis.close();
return readObj;

¥
catch(Exception e) { } // return null
return null;

}

SonicMQ Programming Guide 267

Chapter 12: Lookup of Administered Objects

Using Serialized Objects

After setting up serialized objects, those objects can be used. Within the
application code where the connection is established, use the readri le method
to read the active javax.jms objects:

Javax. jms.TopicConnectionFactory factory;

// Read in the factory from a file

factory = (Javax-jms.TopicConnectionFactory)
readFile("'ChatConnectionFactory.sjo');

// Continue, creating connection from the factory

// Continue, creating the session from the connection.

7/ Finally, retrieve the TOPIC for our application

Javax.jms.Topic topic = (Javax.jms.Topic)
readFile (‘'ChatTopic.sjo™);

Using JNDI to Interface With a Directory Server

Important

Even with serialized objectsin the file system, you still have to manage the
deployment and naming of the .sjo files. The INDI package provides better
administration and standard mechanisms for deployment and naming. JNDI
provides interfaces to standard directory servers such as those that are
compliant with the Lightweight Directory Access Protocol (LDAP).

JINDI services and LDAP directory servers are distinct products that you must
install and configure separate from SonicM Q. The Javasoft INDI Web site can
point you to evaluation editions of LDAP directory servers so that you can
explore these services.

Theway INDI worksis common to al JNDI providers; the differenceisinthe
way you establish the naming context. This INDI sample assumes that:

m The QueueConnectionFactory and Queue are stored in a default context.
m The name of the QueueConnectionFactory object is TalkConnFactory.
m Thename for the Queue object is TalkQueue.

m Thenames are bound in the directory service under acme.com.

268

SonicMQ Programming Guide

Using JNDI to Interface With a Directory Server

Warning The sample alows a possibility of raising a javax.naming.NamingException in
the setup for the IMS application.

try

{
// Set up the JINDI naming context (this example uses

// Javasoft’s LDAP SPI implementation, and requires an
// underlying LDAP service)

java.util_Hashtable env = new java.util_Hashtable();

env._put(jJava.naming.Context_INITIAL _CONTEXT_FACTORY,
"‘com.sun.jndi . ldap.LdapCtxFactory');

env._put(javax.naming.Context_PROVIDER_URL,
""lIdap://localhost:389/0=acme.com'™);

Javax._.naming.directory.DirContext ctx =
new javax.naming.directory. InitialDirContext(env);

Javax. jms.QueueConnectionFactory factory;
// Read in the factory from our naming context

factory = (javax.jms.QueueConnectionFactory)
ctx. lookup(*'cn=TalkConnFactory");

// Continue, creating connection from the factory

// Continue, creating the session from the connection.

7 Finally, retrieve the Queue for our application

Javax.jms.Queue queue = (Javax-jms.Queue)
ctx. lookup(*"‘cn=TalkQueue');

// Close the context when done
ctx.close();

}

catch (Javax.naming.NamingException ne)

{

SonicMQ Programming Guide 269

Chapter 12: Lookup of Administered Objects

270 SonicMQ Programming Guide

Index

A

Access Control Lists 33, 36
report in an application 222
acknowledgement
acknowledge method 100
acknowledgeM ode
session parameter 100
active ping 114, 116
ActiveX/COM
APl mapping 241
check message type 263
creating an XML message 262
Exceptions 263
freeing resources 263
managing method overloading 240
naming conventions 239
overview 38
SessionID 262
syntax 239
administered objects
ConnectionFactories 93
definition 265
Destinations 105
readFile 267
applet 38
application 76
application identifier 89
asynchronous 143, 163
ActiveX/COM application 234
authentication
consumer 36

in ConnectionFactory 96

producer 33

using security for the sasmples 42
authorization

consumer 36

producer 33

using security for the sasmples 42
auto acknowledgment 101

B

body of a message
setting and getting 132
Text 85
XML (DOM format) 84
browsing queues 166
sample 53
Business-to-Business 175

C

characters
reserved
in a Subscription name 196

in Destination names 137
in hierarchical name spaces 203
in Topic names 105, 191
in User names 39
template 203, 206

SonicMQ Programming Guide

271

Index

CheckMessageType (ActiveX/COM) 263
clearProperties 129
client acknowledgement 101
client identifier 90
client session 89
cluster 26, 175
coerce

property value to permitted type 131
commit 57

definition 102
compiling modified SonicMQ samples 44, 79
connect

close 107

events 216

start 107

stop 107
connectiD 96
connection

definition 30

multiple 111

retry when broken 62

through ActiveX/COM control 237
connection identifier 89
ConnectionFactories

administered objects 265

definition 93
constants 239
consumer 31
CorrelationID 124, 139

sample application 72
count, prefetch 165
createBrowser 166
createDurableSubscriber 106, 196
createMessage 106, 121, 193
createPublisher 105
createQueue 104
createQueueConnection 99
createQueueReceiver 106
createQueueSession 100
createSender 105
createSubscriber 106, 195
createTopic 104
createTopicConnection 99
createTopicSession 100

D

dbtool 86, 88
Dead Message Queue 175, 176
events 217
persistence 142
programming 168
QoSlevel 37
sample 63, 65
default values 126
delivery mode
default value 126
message header field 123
on the message server 142
producer parameter 193
Desdtination
administered objects 265
destination 123, 138
unbound 138
disconnect
events 217
Document Object Model 48, 84, 122
documentation, available 20
DOM 48, 84, 122, 132
drop
events 216
dropped connection 116
sample application 60
duplicates OK acknowledgement 101
durable subscription
definition 196
handling on the message server 142
QoS 35
sample application 69
unsubscribing 196
Dynamic Routing Architecture 41, 175
undelivered reason codes 177
working withaDMQ 63

E

encryption 33
enumeration

handling in ActiveX/COM 238
enumeration, queue browsing 167

272

SonicMQ Programming Guide

Index

Events
sample 215

events
notify undelivered 168

events, sesson 107

Exceptions
General Exception (ActiveX/COM) 263
General ExceptionCode (ActiveX/COM) 263
handling in the ActiveX/COM control 236
handling on the connection 116

expiration 125, 140, 142, 170
QoSleve 36

Explorer
checking default queues 45
Dead Message Queue 66
setting propertiesto preserve if undelivered 64
startup 45

F

failover
checking settings 98
implementing 97

filters 145

flow control 109
disabling 110

G

getPropertyNames 129
globa

gueue setting 220
global queues 186

H

header fields 123
default values 126
hierarchical name spaces 201
as message filters 196
sample application 77
host 43
hosthame 96

IBrokerManagerListener 214
identifier 89

identifiers (ActiveX/COM) 233
indoubt messages 177
instanceof 51

integrity 34

J

JMS provider 26
JMSX properties 128
JNDI
lookup of Destinations 105
lookup of Topics 138, 191
managing administered objects 268
JRE
for ActiveX/COM 226
installed 25
VM 25
identifying 21

L

latency 137
lazy acknowledgement 101
LDAP
managing administered objects 269
Linux
security database 86
starting the SonicM Q Explorer 45
listeners 143, 163
ActiveX/COM application 234
load balancing
checking settings 98
implementing 97
loca
gueue setting 220
localhost 43
loop test 78

SonicMQ Programming Guide

273

Index

M

Management API
Events sample 215
ShowSetup sample 221
Shutdown sample 223
Map message
enhancing the sasmple 81
sample 49
message
undelivered 177
message ordering 136
PTP 161
Pub/Sub 198
message reliability 136
PTP 161
Pub/Sub 199
message selector 145
on QueueBrowser 167
sample 75, 76
message server
definition 26
failure, handling 116
management of destination parameters 142
management of topic hierarchies 202
refresh settings 65
shutdown from an application 223
starting 43
message traffic
Pub/Sub 54
message types 103, 120
Message free (ActiveX/COM) 263
MessagelD 123
method overloading
handling in ActiveX/COM 240

N

name spaces 77, 201
network failure 116
noLoca 195, 196
notification

when undelivered 172
notify undelivered 128
NoWait 144, 164

null
in comparison tests 149
in topic naming 204

O

object model 29
one-to-many 27
one-to-one 27

P

password
prompt before server shutdown 223
persistence
message delivery mode 123
on the message server 142
QoS options 34
ping interval 114
Point-to-Point 27
port 43, 96
prefetch
count 165
threshold 165
preserve unddivered 128
priority
default value 126
header field 125
on the message server 142
publish parameter 193
QoSlevel 35
privacy 34
producer 31, 138
properties 127
dead message 68
propertyExists 129
protocol 96
PTP 27
Pub/Sub 27
publish 126
method 193
Publish and Subscribe 27
publisher 138, 192

274

SonicMQ Programming Guide

Index

Q

QoP
report in an application 222
Quality of Protection
listing 32
Quality of Service
listing 32
sample
durable subscription 60
persistent storage 60
reliable connection 60
sample application 60
queue
browser 166
browser sample 53
dead messages 176
default queues in database 45
extents 220
global 175
listener 163
remote 175
set up 160
show setup from an application 221
size 220
unbound 138

R

readFile 267
reason codes 177
receivers 144, 163
multiple 163
redelivered 35, 124
redirect
events 217
reject
events 216
reliable connection 60
remote queue 175
replier 73, 74
ReplyTo 124, 139
request and reply 153
QoSleve 36, 37

shared reply queues 187
requestor 73, 74
retry connection 99
rollback 57

definition 102
routing

problems causing non-delivery 177
routing node

message behaviors 175
routing nodes 26
routing table 178

report in an application 222

S

samples
Chat (ActiveX/COM) 227
Chat (Pub/Sub) 46
extended for common topics 79
Dead Messages (PTP) 63
DurableChat (Pub/Sub) 69
extended for common topics 79

Events (Management API) 215
GlobalTalk 41
Hierarchical Chat (Pub/Sub) 77
Map messages (PTP) 49

extended for other datatypes 81
MessageM onitor (Pub/Sub) 54
QueueMonitor (PTP) 53
ReliableChat (Pub/Sub) 60
ReliableTak (PTP) 61
Request and Reply (PTP) 73
Request and Reply (Pub/Sub) 74
RoundTrip (PTP) 78, 80

extended for various behaviors 80
SelectorChat (Pub/Sub) 76
SelectorTalk (PTP) 75
SetupQueue (Management API) 221
Shutdown (Management API) 223
Tak (PTP) 47
Transacted Messages (PTP) 56
Transacted M essages (Pub/Sub) 57
XMLChat (Pub/Sub) 48
XMLMessage (PTP) 49

SonicMQ Programming Guide

275

Index

XMLMessage (Pub/Sub) 49 subscriber
extended with additional data 82 definition 195
XMLTalk (PTP) 48 durable 196
scripts subscription name 91
batch files 44 support, technical 21
for compiling modified samples 44 synchronous 143, 163
for running samples 44 syntax :
shell scripts 44 message selector string 146
security notations used in this manual 17
database 42 SonicMQ ActiveX/COM methods 239
st up 86 topic names 202
enhanced samples 85 system queues 66
in topic name spaces 201 system topics 203
permission for publisher 192
selector string 75, 76 T
send 126
serialized Java objects 267 TCP RESET 116
session 89 technical support 21
definition 30, 100 template characters 203, 206
multiple 100 topics 137, 191
objects 103 temporary destination 72, 154, 186
SessionID (ActiveX/COM) 234 Thread.sieep 99
Queue_get 262 threshold, prefetch 165
QueueBrowser_get 262 timeout 144, 164
QueueReceiver_get 262 timestamp 123
QueueSender_get 262 undelivered 128
Topic_get 262 time-to-live
TopicSubscriber_get 262 default value 126
setDocument 132 DurableChat sample 71
ShowSetup message property 128
sample 221 on the message server 142
Shutdown publish parameter 193
sample 223 topic
single-message acknowledgement 101 common in samples 79
SonicMQ Explorer definition 191
checking defaullt queues 45 hierarchical name spaces 137, 191
creating a publisher 192 unbound 138, 192
creating a subscriber 194 topic hierarchy 201
message properties 129 TopicRequestor
publishing a message 194 listing of code 155
starting 45 transacted
SQL 75,76 session parameter 100
SQL92 145 transacted session
starting a connection 107 definition 102
starting the message server 43 type 124, 139
stopping a connection 107 typographical conventions 17

276 SonicMQ Programming Guide

Index

U

unbound 138, 192
undelivered 177
events 217
notify 37, 64, 128
preserve 37, 64, 128
reason codes 128, 171, 177
timestamp 128
UNIX
security database 86
shell scripts 44
starting the message server 43

starting the SonicM Q Explorer 45

unsubscribe 25, 197
URL 96
user name 90
users
report in an application 222

V

valueOf 131
Visua Basic 227

W

wildcards 78

Windows
security database 86
starting the message server 43
starting the SonicM Q Explorer 45

X

XML message
ActiveX/COM application 235
create method 106
create through ActiveX/COM 262
creator syntax 121
enhanced sample 82
getDocument 133
sample application 48

XML parser 48, 132

SonicMQ Programming Guide

277

Index

278 SonicMQ Programming Guide

	Preface
	About This Manual
	How This Book is Organized
	Conventions in This Manual
	Typographical Conventions and Syntax Notation
	Note, Important, and Warning Flags

	Available Documentation
	Worldwide Technical Support

	Chapter�1 Overview
	About SonicMQ
	Java Message Service
	JMS: �Key Component of the Java Platform for the Enterprise
	JMS 1.0.2 Specification

	Java Development Environment

	Programming Concepts
	Clients Connect to the SonicMQ Message Server Architecture
	SonicMQ Is a JMS Provider
	SonicMQ Messaging Models
	SonicMQ Objects and Their Relationships
	SonicMQ Object Model
	Connections and Sessions
	Producers and Consumers

	Quality of Service and Protection
	SonicMQ Clients
	ActiveX/COM Client
	Java Applet Client

	Chapter�2 Examining the SonicMQ Samples
	About SonicMQ Samples
	SonicMQ Samples
	Other Samples Available
	Extending the Samples
	How Security Impacts Client Activities

	Running the SonicMQ Samples
	Starting the Message Server Under Windows, Linux, or UNIX
	Client Console Windows
	Using the Sample Scripts
	Using the SonicMQ Explorer

	Chat and Talk Samples
	Chat Application (Pub/Sub)
	Talk Application (PTP)
	Reviewing the Chat and Talk Samples

	Samples of Additional Message Types
	XML Messages
	XML Messages (PTP)
	XML Messages (Pub/Sub)

	Map Messages (PTP)
	Reviewing the Additional Message Type Samples

	Message Traffic Monitor Samples
	QueueMonitor Application (PTP)
	MessageMonitor Application (Pub/Sub)

	Transaction Samples
	TransactedTalk Application (PTP)
	TransactedChat Application (Pub/Sub)
	Reviewing the Transaction Samples

	Reliable, Persistent, and Durable Messaging Samples
	Reliable Connections
	ReliableTalk Application (PTP)
	ReliableChat Application (Pub/Sub)

	Persistent Storage Application (PTP)
	DurableChat Application (Pub/Sub)
	Reviewing Reliable, Persistent, and Durable Messaging

	Request and Reply Samples
	Request and Reply (PTP)
	Request and Reply (Pub/Sub)
	Reviewing the Request and Reply Samples

	Selection and Wildcard Samples
	SelectorTalk Application (PTP)
	SelectorChat Application (Pub/Sub)
	Hierarchical Chat Application (Pub/Sub)
	Reviewing the Selection and Wildcard Samples

	Test Loop Sample
	QueueRoundTrip Application (PTP)

	Extending the Samples
	Use Common Topics Across Clients
	Trying Different RoundTrip Settings
	Modifying the MapMessage to Use Other Data Types
	Modifying the XMLMessage to Show More Data
	Using Samples with Security Initialized
	Removing Security from the Database

	Chapter�3 SonicMQ Client Sessions
	About Client Sessions
	Identifiers
	ConnectID
	User Name
	ClientID
	Subscription Name

	Communication Layer
	ConnectionFactory
	Lookup a Stored Context
	Lookup a Serialized Object in a File Store
	Lookup on a JNDI LDAP Server

	Direct Creation of the ConnectionFactory Object
	Load Balancing and Failover Lists

	Connection
	createQueueConnection
	createTopicConnection
	Connection Retry

	Session
	Explicit Acknowledgement
	Acknowledgement Mode
	Recover

	Transacted Sessions

	Session Objects
	create [Destination]
	Point-to-Point: createQueue
	Publish and Subscribe: createTopic
	Using a Lookup for Destinations
	Temporary Destinations

	create [MessageProducer]
	Point-to-Point: createSender
	Publish and Subscribe: createPublisher

	create [MessageConsumer]
	Point-to-Point: createReceiver
	Publish and Subscribe: create[Durable]Subscriber

	create [Message]

	Starting, Stopping, and Closing Connections
	connect.start
	connect.stop
	Behavior of Producers and Consumers in a Stopped Connection

	connect.close
	Behavior of Producers and Consumers in a Closed Connection

	Closing a Session
	Flow Control
	Using Multiple Connections, Sessions, and Consumers
	Multiple Connections
	Multiple Sessions on a Connection

	Coding Connections and Sessions
	Get a Connection and Session
	Using Active Pings to Monitor the Health of the Connection

	Create Session Objects and the Listeners
	Start the Connection
	Handle Exceptions on the Connection
	Handling Dropped Connection Errors Caught with Active Pings
	Exception Listeners are Not Intended for JMS Errors

	JMS Messaging Domains

	Chapter�4 Messages
	About Messages
	Message Type
	Creating a Message
	XML Type

	Message Structure
	Messages and Selectors

	Message Header Fields
	Setting Header Values When Sending/Publishing
	Default Header Values

	Message Properties
	User-defined Properties
	Provider-defined Properties (JMS_SonicMQ)
	JMS-defined Properties (JMSX)
	Setting Message Properties
	Property Methods
	propertyExists
	clearProperties
	set[type]Property
	getPropertyNames
	get[type]Property

	Message Body
	Setting the Message Body
	Setting the Body for an XML Type

	Getting the Message Body
	Getting the Body from an XML Type

	Chapter�5 Message Producers and Consumers
	About Message Producers and Message Consumers
	Generic Messaging Model

	Message Ordering and Reliability
	Destinations
	Steps in Message Production
	Create the Topic Publisher on the PublisherSession Thread
	Create the Producer on the Producer Session Thread
	Create the Message Type and Set Its Body
	Set Message Header Fields
	Set the Message Properties
	Produce the Message

	Message Management by the Message Server
	Message Listeners, Receivers, and Selectors
	Message Listeners
	Message Receiver
	Receive
	Receive with Timeout
	Receive No Wait

	Message Selector
	Message Selector Syntax
	Comparing Exact and Inexact Values

	Steps in Listening, Receiving and Consuming Messages
	Implement the Message Listener
	Create the Destination and Consumer, then Listen
	Handle a Received Message
	Special Handling When the Message Type is Uncertain
	Parse an XML Message and Extracting Data from Fields

	Get Message Header Fields
	Get Message Properties
	Consume the message

	Reply-to Mechanisms
	Temporary Destinations Managed by a Requestor Helper Class
	Requestor Application
	Replier Application
	Design for Handling Requests
	Writing a Topic Requestor

	Producers and Consumers in JMS Messaging Domains

	Chapter�6 Point-to-Point Messaging
	About Point-to-Point Messaging
	Coding Queues, Senders, and Receivers
	Coding Sample

	Message Ordering and Reliability in PTP
	Message Ordering
	Reliability

	Advantages and Constraints in PTP Domains
	Multiple Receivers
	Message Queue Listener
	Message Queue Receiver
	Receive
	Receive with Timeout
	Receive No Wait

	Prefetch Count and Threshold
	setPrefetchCount
	getPrefetchCount
	setPrefetchThreshold
	getPrefetchThreshold

	Queue Browsing
	createBrowser
	createBrowserMessage (MessageSelector)
	getMessageSelector
	getEnumeration
	getQueue
	close

	QueueBrowser Sample

	Handling Undelivered Messages
	Setting Important Messages to Get Saved If They Expire
	Setting Quick Messages to Generate Administrative Notice

	Life Cycle of a Guaranteed Message
	Setting the Message to Be Preserved
	Setting the Message to Generate an Administrative Event
	Sending the Message
	Letting the Message Get Delivered or Expire
	Post-Processing of Expired Message
	Processing of Enqueuing Expired Messages
	Sending of Administrative Notification

	Programmer Callback for Undelivered Message Notification
	Getting Messages Out of the Dead Message Queue

	Chapter�7 Dynamic Routing Architecture
	About Dynamic Routing
	Message Behavior on Global and Local Queues
	Undelivered Message Reason Codes
	Sending to a Message Server Where Queues Exist
	Sending to a Message Server Where Queues Do Not Exist
	Sending to a Cluster Routing Node With Queues Everywhere
	Send to a Cluster Routing Node With Queues in One Place

	Reply-to Mechanisms for a DRA Application
	Setting Applications to Use Simple Request Messages
	Using Specific Shared Reply Queues

	Chapter�8 Publish and Subscribe Messaging
	About Publish and Subscribe Messaging
	Coding Topics, Subscribers, Publishers, and Listeners
	Topic
	Publisher
	Creating the Publisher
	Creating the Message
	Publishing to a Topic

	Subscriber
	Durable Subscriber
	Durable Subscriptions Not Allowed for Temporary Topics
	Unsubscribing from a Durable Subscription
	Unsubscribing to Durable Subscription Requires Inactive Subscriber

	Message Ordering and Reliability
	General Services
	Message Ordering
	Reliability

	Chapter�9 Hierarchical Name Spaces
	About Hierarchical Name Spaces
	Advantages of Hierarchical Name Spaces

	Publishing a Message to a Topic
	Topic Notation that Enables Topic Hierarchies
	Reserved Characters when Publishing
	Topic Structure, Syntax, and Semantics
	Topic Syntax and Semantics

	Message Server Management of Topic Hierarchies
	Subscribing to Nodes in the Topic Hierarchy
	Template Characters
	Using Template Characters in Symmetric Hierarchies
	Template Character for All Topics at a Content Level
	Template Character for a Topic at a Content Level

	Using Template Characters in Asymmetric Topic Hierarchies
	Template Character for Subscribing to All Topics
	Template Character for All Topics Under a Topic Hierarchy
	Multiple Template Characters in an Expression

	Examples of a Topic Name Space
	Publishing Messages to a Hierarchical Topic
	Subscribing to Sets of Hierarchical Topics

	Chapter�10 Management API
	About the Management API
	Using the Management API

	Samples that Use the Management API
	Events
	Accessing All Events
	Accessing Selected Events
	Piping Events Into a Log

	Metrics
	Piping Metrics Into a Log

	Setup Queues
	Show Setup
	Accessing All Message Server Queue Information
	Accessing Selected Message Server Queue Information

	Shutdown

	Chapter�11 Accessing SonicMQ Through ActiveX/COM Clients
	About SonicMQ Through ActiveX/COM
	Implementation Notes
	Requirements for an ActiveX/COM Client

	SonicMQ ActiveX/COM Sample
	Visual Basic Code for the ActiveX/COM Sample

	Tips and Techniques for SonicMQ ActiveX/COM
	Identifiers
	Session Identifier
	Looking Up the Chain of Objects
	Asynchronous Delivery

	Handling Messages
	XML Messages

	Resource Management
	Events
	Asynchronous OnJMSMessage Event
	On Exception Events

	Connections
	True ActiveX/COM Properties
	Return Values
	Status Codes

	Enumerations
	Constants

	Syntax for SonicMQ ActiveX/COM Method Names
	Duplicate Names Are Differentiated
	Java Method Overloading Is Handled
	Interface Class Names Are Often Omitted

	Interface Mappings
	Connections and Sessions
	Producers and Consumers
	Publish and Subscribe (Topics)
	Point-to-point (Queues)
	Messages
	Special Purpose

	Chapter�12 Lookup of Administered Objects
	About Administered Objects
	Issues When Using Administered Objects
	Creating New Administered Objects

	Serialized Java Objects in a File System
	Setting Up Serialized Objects
	Using Serialized Objects

	Using JNDI to Interface With a Directory Server

	Index

