
SeeBeyond Proprietary and Confidential

e*Way Intelligent Adapter for
SNA User’s Guide

Release 5.0.5 for Schema Run-time Environment (SRE)

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology
Corporation. The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's
intellectual property rights concerning that trademark. This document may contain references to other company, brand, and product
names. These company, brand, and product names are used herein for identification purposes only and may be the trademarks of
their respective owners.

© 2005 SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20050406042415.

e*Way Intelligent Adapter for SNA User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents

e*Way Intelligent Adapter for SNA User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Preface 7
Intended Reader 7

Organization 7

Nomenclature 8

Online Use 8

Writing Conventions 8

Additional Documentation 9

Chapter 1

Introduction 10
SNA Architectural Overview 10

Supported Logical Unit Types 13
SNA LU6.2 13
SNA LUA 14
SNA LU0 14

SNA e*Way Overview 15
e*Way Components 15
Supported Operating Systems 16

Chapter 2

Installation 17
System Requirements 17

Supported Operating Systems 17
English Version 17
Korean Version 18

Environment Configuration 18

External System Requirements 19
SNA LU6.2 19
SNA LU0, LU1, LU2, LU3 19
Solaris Patch Requirements 19

Contents

e*Way Intelligent Adapter for SNA User’s Guide 4 SeeBeyond Proprietary and Confidential

External Configuration Requirements 20
Configuring the SNA Server and Client 20

All Platforms 20
Additional Procedures for Solaris 20

Installing the e*Way 21
Windows Systems 21

Installation Procedure 21
Subdirectories and Files 23

UNIX Systems 24
Installation Procedure 24
Subdirectories and Files 25

Optional Example Files 26
Installation Procedure 26
Subdirectories and Files 27

Chapter 3

Implementation 29
Overview 29

Pre-Implementation Tasks 29
Implementation Sequence 30
Viewing e*Gate Components 30

Creating a Schema 31

Creating Event Types 32

Creating Event Type Definitions 32
Assigning ETDs to Event Types 32

Defining Collaborations 34

Creating Intelligent Queues 35

Exception Handling 36

Enabling TP Trace 37

Known Issues and Limitations 37

Sample Schema 38
LU6.2 38

Chapter 4

Setup Procedures 42
Overview 42

Setting Up the e*Way 43
Creating the e*Way 43
Modifying e*Way Properties 44
Configuring the e*Way 45

Using the e*Way Editor 46

Contents

e*Way Intelligent Adapter for SNA User’s Guide 5 SeeBeyond Proprietary and Confidential

Changing the User Name 49
Setting Startup Options or Schedules 49
Activating or Modifying Logging Options 51
Activating or Modifying Monitoring Thresholds 52

Troubleshooting the e*Way 53
Configuration Problems 53
System-related Problems 54

Chapter 5

Operational Overview 55
e*Way Architecture 55

Basic e*Way Processes 57
Initialization Process 58
Connect to External Process 59
Data Exchange Process 60
Disconnect from External Process 63
Shutdown Process 63

Chapter 6

Configuration Parameters (LU6.2) 64
Overview 64

General Settings 65

Communication Setup 67

Monk Configuration 70
Specifying Function or File Names 70
Specifying Multiple Directories 70
Load Path 70

SNA Client Configuration 79

Chapter 7

Configuration Parameters (LUA) 82
Overview 82

General Settings 83

Communication Setup 85

Monk Configuration 88
Specifying Function or File Names 88
Specifying Multiple Directories 88
Load Path 88

SNA LUA Client Configuration 97

Contents

e*Way Intelligent Adapter for SNA User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 8

API Functions 98
Overview 98

Native e*Way Functions 99
LU6.2 99
LUA 108

Standard e*Way Functions 113
LU6.2 113
LUA 120

Generic e*Way Functions 126

Index 134

e*Way Intelligent Adapter for SNA User’s Guide
7

SeeBeyond Proprietary and Confidential

Preface

This Preface contains information regarding the User’s Guide itself.

P.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the SeeBeyond™ e*Gate™ Integrator system, and have a
working knowledge of:

Windows and UNIX operations and administration

Windows-style GUI operations

SNA Server, LU6.2 and/or LU0, and CPIC APIs

P.2 Organization
This User’s Guide is organized into two parts. The first part, consisting of Chapters 1-4,
introduces the e*Way and describes the procedures for installing the e*Way and
implementing a working system incorporating the e*Way. Chapter 3 also contains
descriptions of the sample schemas provided with the product. These can be used to
test your system following installation and, if appropriate, as templates you can modify
to produce your own custom schemas. This part should be of particular interest to a
System Administrator or other user charged with the task of getting the system up and
running.

The second part, consisting of Chapters 5-8, describes the architecture and internal
functionality of the e*Way. This part should be of particular interest to a Developer
involved in customizing the e*Way for a specific purpose. Information contained in this
part that is necessary for the initial setup of the e*Way is cross-referenced in the first
part of the guide, at the appropriate points in the procedures.

Section P.3
Preface Nomenclature

e*Way Intelligent Adapter for SNA User’s Guide
8

SeeBeyond Proprietary and Confidential

P.3 Nomenclature
Note that for purposes of brevity, the e*Way Intelligent Adapter for SNA is frequently
referred to as the SNA e*Way, or simply the e*Way.

P.4 Online Use
This User’s Guide is provided in Adobe Acrobat’s Portable Document Format (PDF).
As such, it can be printed out on any printer or viewed online. When viewing online,
you can take advantage of the extensive hyperlinking imbedded in the document to
navigate quickly throughout the Guide.

Hyperlinking is available in:

The Table of Contents

The Index

Within the chapter text, indicated by blue print

Existence of a hyperlink hotspot is indicated when the hand cursor points to the text.
Note that the hotspots in the Index are the page numbers, not the topics themselves.
Returning to the spot you hyperlinked from is accomplished by right-clicking the
mouse and selecting Go To Previous View on the resulting menu.

P.5 Writing Conventions
The writing conventions listed in this section are observed throughout this document.

Monospaced (Courier) Font

Computer code and text to be typed at the command line are set in Courier as shown
below.

Configuration for BOB_Promotion

java -jar ValidationBuilder.jar

Variables within a command line, or attributes within a function signature, are set in
italics as shown below:

stcregutil -rh host-name -un user-name -up password -sf

Bold Sans-serif Font

User Input: Click Apply to save, or OK to save and close.

File Names and Paths: In the Open field, type D:\setup\setup.exe.

Parameter, Function, and Command Names: The default parameter localhost is
normally only used for testing; the Monk function iq-put places an Event into an IQ.

Section P.6
Preface Additional Documentation

e*Way Intelligent Adapter for SNA User’s Guide
9

SeeBeyond Proprietary and Confidential

P.6 Additional Documentation
Many of the procedures included in this User’s Guide are described in greater detail
in the e*Gate Integrator User’s Guide.

e*Way Intelligent Adapter for SNA User’s Guide 10 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter provides a brief overview on SNA fundamentals and an introduction to
the e*Way Intelligent Adapter for SNA.

1.1 SNA Architectural Overview
SNA (System Network Architecture) is a data communications architecture developed
by IBM to specify common conventions for communication between various IBM
hardware and software products. It is specifically designed to address issues of the
reliability and flexibility of sharing data between components and their peripherals.
Many vendors other than IBM also support SNA, allowing their products to interact
with SNA networks.

An addressable unit on an SNA network is called a node, and is made up of four
functional components forming a hierarchy as shown in Figure 1.

Figure 1 SNA Node Architecture

To establish a communications session, SNA uses Logical Units (LUs) as entry points
into the network. There are several types of LUs, currently type 0 through type 6.2.
Most of the LU types are specific to IBM operating environments, but type 6 is intended
for use in a distributed data processing environment.

Generally, an LU can communicate only with another LU of the same type, but specific
exceptions to this rule exist with type 6.2. LU6.2 is the least-restrictive of the various LU
types, and also supports multiple concurrent sessions. As a result, it is the LU most
widely supported by other system vendors.

Like the OSI model, SNA functions are divided into seven hierarchical layers, but the
layers are not identical. Their relationships to each other, and to the SNA node
functionality, are shown in Figure 2. The Transport Network handles the lower three

SNA Node

End User Logical Unit
(LU)

Pysical Unit
(PU) Data Link SNA

Network

Chapter 1 Section 1.1
Introduction SNA Architectural Overview

e*Way Intelligent Adapter for SNA User’s Guide 11 SeeBeyond Proprietary and Confidential

layers, while the Network Accessible Units (NAU) implement the upper four layers by
using the services of the Transport Network to establish communication between
nodes.

Figure 2 SNA Functional Layers

SNA defines formats and protocols between these layers that allow equivalent layers in
different nodes to communicate with each other. Also, each layer provides services to
the layer above, and requests services from the layer below. As an example, the
communication path between two Transmission Control layers would appear as shown
in Figure 3.

User Process

Logical Unit

Physical Unit

Data Link

SNA Functions

Transaction Services

Presentation Services

Data Flow Control

Transmission Control

Path Control

Data Link Control

Physical Control

SNA Layers

Application

Presentation

Session

Transport

Network

Data Link

Physical

OSI Layers

Chapter 1 Section 1.1
Introduction SNA Architectural Overview

e*Way Intelligent Adapter for SNA User’s Guide 12 SeeBeyond Proprietary and Confidential

Figure 3 Equivalent-Layer Communications Path

SNA uses a standard method for the exchange of data within a network. This standard
method defines how to establish a route between components, how to send and receive
data reliably, how to recover errors, and how to prevent flow problems.

Originally designed for networks in which a mainframe computer controls the
communications relationships, SNA has since evolved to incorporate protocols and
implementations to allow two user processes to communicate with each other directly.
These two different networking models, or roles, are referred to as hierarchical and
peer-oriented, respectively. The peer-oriented model is designed to allow distributed
control of the communications process independent of the mainframe.

The peer-to-peer connection between two user processes is known as a conversation,
while the peer-to-peer connection between two LUs is known as a session. A session is

Transaction Services

Presentation Services

Data Flow Control

Transmission Control

Path Control

Data Link Control

Physical Control

SNA Node A

Transaction Services

Presentation Services

Data Flow Control

Transmission Control

Path Control

Data Link Control

Physical Control

SNA Node B

Chapter 1 Section 1.1
Introduction SNA Architectural Overview

e*Way Intelligent Adapter for SNA User’s Guide 13 SeeBeyond Proprietary and Confidential

generally a long-term connection between two LUs, while a conversation is generally of
shorter duration.

Figure 4 Sessions and Conversations

What is shown in Figure 2 and Figure 4 as a User Process is also known as a Transaction
Program (TP). Also, the interface between a User Process and an LU is known as
Presentation Services.

1.1.1 Supported Logical Unit Types

SNA LU6.2

LU 6.2, also known as APPC (Advanced Program-to-Program Communication), is used
for Transaction Programs communicating with each other in a distributed data
processing environment. In a CPIC (Common Programming Interface for
Communications) implementation, CPIC provides the API that contains the
commands, known as verbs, that are used by LU 6.2 to establish communication
sessions.

Two types of Presentation Service interfaces are possible with LU6.2: mapped
conversations and unmapped, or basic, conversations. Table 1 summarizes the set of
LU6.2 commands for basic conversations. Equivalent commands for mapped
conversations have the prefix <MC_> added to the command name. Note that “control
operator verbs” are not listed.

User Process

Logical Unit

Physical Unit

Data Link

SNA Node X

User Process

Logical Unit

Physical Unit

Data Link

SNA Node Y

Conversation

Session

Chapter 1 Section 1.1
Introduction SNA Architectural Overview

e*Way Intelligent Adapter for SNA User’s Guide 14 SeeBeyond Proprietary and Confidential

SNA LUA

The e*Way Intelligent Adapter for SNA uses the Conventional Logical Unit Application
(LUA) interface from Data Connection Limited to communicate with LU0, LU1, LU2,
and LU3 hosts, using their SNAP-IX SNA function library. The LUA interface acts at
the request/response unit (RU) level, and supports an extensive set of functions.

SNA LU0

The e*Way Intelligent Adapter for SNA also supports the LU0 interface from Data
Connection Limited to communicate with LU0 hosts. This provides a less-complex,
alternative interface that supports a subset of the functions contained in the LUA
interface.

Note: The e*Way Intelligent Adapter for SNA currently supports LUA and LU0 only on
the Solaris operating system.

Table 1 LU6.2 Commands

Name Description

ALLOCATE Allocates a conversation with another program.

CONFIRM Sends a confirmation request to the remote process
and waits for a reply.

CONFIRMED Sends a confirmation reply to the remote process.

DEALLOCATE De-allocates a conversation.

FLUSH Forces the transmission of the local SEND buffer to
the other LU.

GET_ATTRIBUTES Obtains information about a conversation.

PREPARE_TO_RECEIVE Changes the conversation state from SEND to
RECEIVE.

RECEIVE_AND_WAIT Waits for information (either data or confirmation
request) to be received from the partner process.

RECEIVE_IMMEDIATE Receives any information that is available in the local
LU’s buffer, but does not wait for information to
arrive.

REQUEST_TO_SEND Notifies the partner process that the local process
wants to send data. When a “send” indication is
received from the partner process, the conversation
state changes.

SEND_DATA Sends one data record to the partner process.

SEND_ERROR Informs the partner process that the local process
has detected an application error.

Chapter 1 Section 1.2
Introduction SNA e*Way Overview

e*Way Intelligent Adapter for SNA User’s Guide 15 SeeBeyond Proprietary and Confidential

1.2 SNA e*Way Overview
The SNA e*Way is an interface that makes uni-directional calls to an SNA Server. The
SNA Server acts as a high-speed gateway between distributed SNA Clients and the
SNA network having a mainframe host system (see Figure 5).

The SNA e*Way enables the SeeBeyond e*Gate Integrator system to access an SNA
network environment to drive entire transactions, including conversational
transactions. The connection requires a TCP/IP connection with, and the appropriate
link service to, the SNA server in use. The SNA Client and the e*Gate Participating
Host reside on the same platform.

In a typical data exchange using the SNA e*Way, the e*Way invokes either the LU6.2 or
LU0 protocol to enable the SNA client to send requests to the SNA server.

Figure 5 SNA Data Exchange

Note: The SNA e*Way does not support bi-directional transaction calls. Two e*Ways
must be configured to handle inbound and outbound data transfer.

1.2.1 e*Way Components
The SNA e*Way incorporates the following components:

stcewgenericmonk.exe, the executable component (installed with e*Gate)

Configuration files, which the e*Way Editor uses to define configuration
parameters

Monk function scripts, discussed in Chapter 8.

For a list of installed files, see Chapter 2.

IDC

SNA
Protocol

Client
Mainframe

SNA
Protocol
Server

SNA Network

TP 1 TP 2

LAN

Chapter 1 Section 1.2
Introduction SNA e*Way Overview

e*Way Intelligent Adapter for SNA User’s Guide 16 SeeBeyond Proprietary and Confidential

1.2.2 Supported Operating Systems
The e*Way Intelligent Adapter for e*Gate currently supports the following
combinations of LU types and operating systems.

Note: The e*Gate Schema Designer runs only on Windows operating systems.

Table 2 English-language Version

Operating System LU0 LU1 LU2 LU3 LU6.2

Windows 2000, Windows XP,
and Windows Server 2003

- - - - X

IBM AIX 5.1L and 5.2 - - - - X

Sun Solaris 8 X X X X X

Table 3 Korean-language Version

Operating System LU0 LU1 LU2 LU3 LU6.2

Sun Solaris 8 X X X X X

e*Way Intelligent Adapter for SNA User’s Guide 17 SeeBeyond Proprietary and Confidential

Chapter 2

Installation

This chapter describes the requirements and procedures for installing the e*Way
software. Procedures for implementing a working system, incorporating instances of
the e*Way, are described in Chapter 3.

Note: Please read the readme.txt file located in the addons\ewsna directory on the
installation CD-ROM for important information regarding this installation.

2.1 System Requirements
To use the e*Way Intelligent Adapter for e*Gate, you need the following:

1 An e*Gate Participating Host.

2 A TCP/IP network connection.

3 Sufficient free disk space to accommodate e*Way files:

Approximately 200 KB on Windows systems

Approximately 400 KB on Solaris systems

Approximately 200 KB on AIX systems

Note: Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies, based on the type and size of the data being
processed.

2.1.1 Supported Operating Systems

The e*Way Intelligent Adapter for SNA is available on the following operating systems:

English Version

English versions of:

Windows 2000, Windows 2000 SP1, Windows 2000 SP2

Windows XP

Solaris 8

Chapter 2 Section 2.1
Installation System Requirements

e*Way Intelligent Adapter for SNA User’s Guide 18 SeeBeyond Proprietary and Confidential

Solaris 9

AIX 5.1

AIX 5.2

Korean Version

Korean versions of:

Solaris 8

Solaris 9

2.1.2 Environment Configuration
No changes are required to the Participating Host’s operating environment to support
this e*Way.

Chapter 2 Section 2.2
Installation External System Requirements

e*Way Intelligent Adapter for SNA User’s Guide 19 SeeBeyond Proprietary and Confidential

2.2 External System Requirements

2.2.1 SNA LU6.2
To enable the e*Way to communicate properly with the SNA Server system, the
following are required:

Microsoft e*Gate Server 4.0 client

Administrative access to the SNA server

Sunlink e*Gate Server 9.1 (Solaris)

IBM Communication Server 6.0 (AIX)

CPI-C version 1.2

Appropriate link service for the e*Gate Server in use

2.2.2 SNA LU0, LU1, LU2, LU3
Data Connection Limited’s SNAP-IX library is required for the e*Way to communicate
properly with an e*Gate LU0, LU1, LU2, or LU3 Server system.

2.2.3 Solaris Patch Requirements
Solaris operating systems require the following e*Gate version 9.1 patches before the
e*Gate e*Way can be installed. If the patch is not installed, the setup program detects it.
These patches can be downloaded from http://sunsolve.sun.com.

Table 4 Sun-Solaris Patches

Note: Once these patches have been installed, the configuration file shows two pu2s. Use
vi to edit out one of them. Each time the configuration is changed, you must start up
the sunsetup script:

<fullpath>/opt/SUNWpu21/.sunsetup

The sunsetup menu provides a list of options.

1 Select Option 6 (stop pu21).

2 Select Option 7 (stop gman).

3 Select Option 4 (start gman).

Package SNA component Patch

SUNWpu21 pu21server 106162-29

SUNWgman gateway mngr 106164-15

SUNWgmi configuration gui 106165-09

SUNWlu62 lu62 configs 105860-23

http://sunsolve.sun.com
http://sunsolve.sun.com
http://sunsolve.sun.com

Chapter 2 Section 2.3
Installation External Configuration Requirements

e*Way Intelligent Adapter for SNA User’s Guide 20 SeeBeyond Proprietary and Confidential

Note: When bringing down the SNA server, you must invoke option 6 and 7, but in
bringing up the SNA server, you must invoke option 4. The gman automatically
brings up your active SNA configuration.

2.3 External Configuration Requirements

Note: The configuration steps mentioned below are presented as a general guideline for
configuring the SNA system, and are not to be considered complete. Please refer to
your SNA Administration guide for detailed information on SNA System
Configuration. Each platform requires different parameters and information.

2.3.1 Configuring the SNA Server and Client

All Platforms

You must configure both the partner and the remote SNA systems to have an active
connection. Use the following procedure as a guide.

1 Configure a link station or service for the remote and partner system. This can be an
Ethernet or Token ring link for the LAN connection. Links vary for SDLC, QLLC
and channel connections.

2 Configure a local LU and a remote LU definition on each system. You need the
physical machine address, the control point name, or full computer name, and the
network name.

3 Define a mode on the remote and local SNA system. This mode name must be the
same on both systems in order to have an active connection and for the data to be
transferred.

4 Define a Symbolic Destination Name and Transaction Program (TP) name on both
systems. The names must match in order for the TPs to communicate with each
other. You must select the correct mode name for each TP name.

5 The status flag for DEALLOCATE must be a 4. You must set your external system to
send or receive this flag for the e*Way to process a shutdown.

Additional Procedures for Solaris

1 Create an information file that the e*Way can access. This file should have the same
name as entered for the e*Way’s SYMDESTNAME parameter.

2 Set the appropriate environmental variables for APPC_GATEWAY and
APPC_LOCA_LU.

Chapter 2 Section 2.4
Installation Installing the e*Way

e*Way Intelligent Adapter for SNA User’s Guide 21 SeeBeyond Proprietary and Confidential

2.4 Installing the e*Way

2.4.1 Windows Systems

Installation Procedure

Note: The installation utility detects and suggests the appropriate installation directory.
Use this directory unless advised otherwise by SeeBeyond.

To Install the e*Way on a Microsoft Windows System

1 Log in as an Administrator on the workstation on which you want to install the
e*Way (you must have Administrator privileges to install this e*Way).

2 Exit all Windows programs and disable any anti-virus applications before running
the setup program.

3 Insert the e*Way installation CD-ROM into the CD-ROM drive.

4 Launch the setup program.

A If the CD-ROM drive’s Autorun feature is enabled, the setup program should
launch automatically. Follow the on-screen instructions until the Choose
Product dialog box appears (see Figure 6). Check Add-ons, then click Next.

Figure 6 Choose Product Dialog

B If the setup program does not launch automatically, use the Windows Explorer
or the Control Panel’s Add/Remove Applications feature to launch the
following file on the CD-ROM drive (bypassing the Choose Product dialog):

setup\addons\setup.exe

Chapter 2 Section 2.4
Installation Installing the e*Way

e*Way Intelligent Adapter for SNA User’s Guide 22 SeeBeyond Proprietary and Confidential

5 Follow the on-screen instructions until the Select Components dialog box appears
(see Figure 7). Highlight—but do not check—eWays and then click Change.

Figure 7 Select Components Dialog

6 When the Select Sub-components dialog box appears (see Figure 8), check the
e*Gate e*Way.

Figure 8 Select e*Way Dialog

7 Click Continue, and the Select Components dialog box reappears.

8 Click Next and continue with the installation.

Chapter 2 Section 2.4
Installation Installing the e*Way

e*Way Intelligent Adapter for SNA User’s Guide 23 SeeBeyond Proprietary and Confidential

Subdirectories and Files

By default, the InstallShield installer creates the following subdirectories and installs
the following files within the \eGate\client tree on the Participating Host, and the
\eGate\Server\registry\repository\default tree on the Registry Host.

By default, the InstallShield installer also installs the following file within the
\eGate\Server\registry\repository\default tree on the Registry Host.

Table 5 Participating Host & Registry Host

Subdirectories Files

\bin\ stc_monksna.dll

\configs\stcewgenericmonk\ stcewsna.def
stcewsnalu0.def

\monk_library\ ewsna.gui

\monk_library\ewsna\ sna-conn-establish.monk
sna-conn-shutdown.monk
sna-conn-verify.monk
sna-incoming.monk
sna-init.monk
sna-neg-ack.monk
sna-outgoing.monk
sna-pos-ack.monk
san-shutdown.monk
sna-startup.monk

Table 6 Registry Host Only

Subdirectories Files

\ stcewsna.ctl

Chapter 2 Section 2.4
Installation Installing the e*Way

e*Way Intelligent Adapter for SNA User’s Guide 24 SeeBeyond Proprietary and Confidential

2.4.2 UNIX Systems

Installation Procedure

Note: You are not required to have root privileges to install this e*Way. Log on under the
user name that you wish to own the e*Way files. Be sure that this user has sufficient
privilege to create files in the e*Gate directory tree.

To install the e*Way on a UNIX system

1 Log onto the workstation containing the CD-ROM drive and, if necessary, mount
the drive.

2 Insert the e*Way installation CD-ROM into the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing:

setup.sh

5 A menu appears, containing several options. Select the Install e*Way option, and
follow any additional on-screen directions.

Note: The installation utility detects and suggests the appropriate installation directory.
Use this directory unless advised otherwise by SeeBeyond. Note also that no spaces
should appear in the installation path name.

Chapter 2 Section 2.4
Installation Installing the e*Way

e*Way Intelligent Adapter for SNA User’s Guide 25 SeeBeyond Proprietary and Confidential

Subdirectories and Files

The preceding installation procedure creates the following subdirectories and installs
the following files within the /eGate/client tree on the Participating Host, and the
/eGate/Server/registry/repository/default tree on the Registry Host.

The preceding installation procedure also installs the following file only within the
/eGate/Server/registry/repository/default tree on the Registry Host.

Table 7 Participating Host & Registry Host

Subdirectories Files

/bin/ stc_monksna.dll

/configs/stcewgenericmonk/ stcewsna.def
stcewsnalu0.def

/monk_library/ ewsna.gui

/monk_library/ewsna/ sna-conn-establish.monk
sna-conn-shutdown.monk
sna-conn-verify.monk
sna-incoming.monk
sna-init.monk
sna-neg-ack.monk
sna-outgoing.monk
sna-pos-ack.monk
san-shutdown.monk
sna-startup.monk

Table 8 Registry Host Only

Subdirectories Files

/ stcewsna.ctl

Chapter 2 Section 2.5
Installation Optional Example Files

e*Way Intelligent Adapter for SNA User’s Guide 26 SeeBeyond Proprietary and Confidential

2.5 Optional Example Files
The installation CD-ROM contains a pair of sample schema located in the
samples\ewsna directory.

sna_client.zip

This Client schema receives a file (testdata.fin) and uses a local SNA e*Way to send
it to a remote SNA e*Way. It then receives this file back through its inbound SNA
e*Way from another remote SNA e*Way and writes the Event to a file.

sna_server.zip

This is the remote schema that receives the message sent from the Client schema,
and then routes the message back to the SNA client.

testdata.fin

This is the input data for the Client schema.

To use the schemas, you must load them onto your system using the following
procedure. See Sample Schema on page 38 for descriptions of the sample schema and
instructions regarding its use.

Note: The e*Gate e*Way must be properly installed on your system before you can run the
sample schema.

2.5.1 Installation Procedure
To load a sample schema

1 Invoke the Open Schema dialog box and select New (see Figure 9).

Figure 9 Open Schema Dialog

2 Type the name you want to give to the schema (for example, SNA.Sample)

3 Select Create from export and navigate to the directory containing the sample
schema by clicking the Find button (see Figure 10).

Chapter 2 Section 2.5
Installation Optional Example Files

e*Way Intelligent Adapter for SNA User’s Guide 27 SeeBeyond Proprietary and Confidential

Figure 10 New Schema Dialog

4 Navigate to the SNA Client schema (sna_client.zip) and click Open.

Note: The schema installs with the host name localhost and control broker name
localhost_cb. If you want to assign your own names, copy the file sna_client.zip
to a local directory and extract the files. Using a text editor, edit the file
sna_client.exp, replacing all instances of the name localhost with your desired
name. Add the edited .exp file back into the .zip file.

5 Create a directory \eGate\data\input and copy the file testdata.fin into that
directory.

6 Create a second directory \eGate\data\sna\output for the output data files.

7 On another platform running SNA, import the SNA Server schema (sna_server.zip)
following the same procedure as in steps 1 - 4.

8 Create a directory.\eGate\data\sna\output for the output data files.

2.5.2 Subdirectories and Files
The preceding procedure creates the following subdirectories and installs the following
files within the \eGate\Server\registry\repository\<SchemaName> tree on the Registry
Host, where <SchemaName> is the name you have assigned to the schema in step 2.

Table 9 Subdirectories and Files - Server Schema

Subdirectories Files

\ server.ctl

\runtime\configs\stcewfile\ eater.cfg
eater.sc

\runtime\configs\stcewgenericmonk\ SNAInbound.cfg
SNAInbound.sc
SNAOutbound.cfg
SNAOutbound.sc

\runtime\monk_scripts\common\ blob.ssc

Chapter 2 Section 2.5
Installation Optional Example Files

e*Way Intelligent Adapter for SNA User’s Guide 28 SeeBeyond Proprietary and Confidential

Table 10 Subdirectories and Files - Client Schema

Subdirectories Files

\ client.ctl

\runtime\configs\stcewfile\ eater.cfg
eater.sc

\runtime\configs\stcewgenericmonk\ feeder.cfg
feeder.sc
SNAInbound.cfg
SNAInbound.sc
SNAOutbound.cfg
SNAOutbound.sc

\runtime\monk_scripts\common\ blob.ssc
genericmonk-connect.monk
genericmonk-eater.monk
genericmonk-feeder.monk
genericmonk-finish.monk
genericmonk-on-ack.monk
genericmonk-on-nak.monk
genericmonk-startup.monk

e*Way Intelligent Adapter for SNA User’s Guide 29 SeeBeyond Proprietary and Confidential

Chapter 3

Implementation

In this chapter we summarize the procedures required for implementing a working
system incorporating the e*Way Intelligent Adapter for SNA. Please refer to the e*Gate
Integrator User’s Guide for additional information.

3.1 Overview
This e*Way provides a specialized transport component for incorporation into an
operational schema. The schema also contains Collaborations, linking different data or
Event types, and Intelligent Queues. Typically, other e*Way types also are used as
components of the schema.

Note: The SNA e*Way does not support bi-directional transactions. Two e*Ways must be
configured to handle inbound and outbound data transfer.

A pair of sample schemas, included in the software package, are described at the end of
this chapter. These can be used to test your system following installation and, if
appropriate, as a template that you can modify to produce your own schemas.

3.1.1 Pre-Implementation Tasks
Installation of the e*Way

The first task, of course, is to install the e*Way as described in Chapter 2.

Installation of Sample Schemas

If you want to make use of the provided sample schemas, you must install them
manually as described in Optional Example Files on page 26.

Note: It is highly recommended that you make use of the sample schemas to familiarize
yourself with e*Way operation, test your system, and use as templates for your
working schemas.

Chapter 3 Section 3.1
Implementation Overview

e*Way Intelligent Adapter for SNA User’s Guide 30 SeeBeyond Proprietary and Confidential

3.1.2 Implementation Sequence

3.1.3 Viewing e*Gate Components
Use the Navigator and Editor panes of the e*Gate Schema Designer to view the various
e*Gate components. Note that you may only view components of a single schema at
one time, and that all operations apply only to the current schema. All procedures in
this chapter should be performed while displaying the Components Navigator pane.
See the e*Gate Integrator User’s Guide for a detailed description of the features and use of
the Schema Designer.

1 The first step is to create a new Schema—the
subsequent steps apply only to this Schema (see
Creating a Schema on page 31).

2 The second step is to define the Event Types you
are transporting and processing within the
Schema (see Creating Event Types on page 32).

3 Third, you need to associate the Event Types
created in the previous step with Event Type
Definitions (ETDs) derived from the applicable
Business Rules (see Creating Event Type
Definitions on page 32).

4 The fourth step is to create and configure the
required e*Ways (see Chapter 4).

5 Next is to define and configure the Collaborations
linking the Event Types from step 2 (see Defining
Collaborations on page 34).

6 Now you need to create Intelligent Queues to
hold published Events (see Creating Intelligent
Queues on page 35

7 Finally, you must test your Schema. Once you
have verified that it is working correctly, you may
deploy it to your production environment.

Define & Configure
Collaborations

Create & Configure
e*Ways

Create Schema

Generate Event Type
Definitions

Test & Deploy

Define Event Types

Create
Intelligent Queues

Chapter 3 Section 3.2
Implementation Creating a Schema

e*Way Intelligent Adapter for SNA User’s Guide 31 SeeBeyond Proprietary and Confidential

3.2 Creating a Schema
A schema is the structure that defines e*Gate system parameters and the relationships
between components within the e*Gate system. Schemas can span multiple hosts.

Because all setup and configuration operations take place within an e*Gate schema, a
new schema must be created, or an existing one must be started before using the
system. Schemas store all their configuration parameters in the e*Gate Registry.

To select or create a schema

1 Invoke the Open Schema dialog box and Open an existing schema or click New to
create a new schema.

Figure 11 Open Schema Dialog

2 Clicking New invokes the New Schema dialog box (Figure 12).

Figure 12 New Schema Dialog

3 Enter a new schema name and click Open.

4 The e*Gate Schema Designer then opens under your new schema name.

5 From the Options menu, click on Default Editor and select Monk.

6 Select the Components tab, found at the bottom of the Navigator pane of the e*Gate
Schema Designer window.

7 You are now ready to begin creating the necessary components for this new
schema.

Chapter 3 Section 3.3
Implementation Creating Event Types

e*Way Intelligent Adapter for SNA User’s Guide 32 SeeBeyond Proprietary and Confidential

3.3 Creating Event Types
Within e*Gate, messages and/or packages of data are defined as Events. Each Event
must be categorized into a specific Event Type within the schema.

To define the Event Types

1 In the e*Gate Schema Designer’s Navigator pane, select the Event Types folder.

2 On the Palette, click the New Event Type button .

3 In the New Event Type Component box, enter the name for the input Event Type
and click Apply. Use this method to create all required Event Types, for example:

InboundEvent

ValidEvent

InvalidEvent

4 After you have created the final Event Type, click OK.

3.4 Creating Event Type Definitions
Each Event Type now must be associated with an Event Type Definition within the
schema. In general, you select an existing ETD or create a new one based on an existing
template. See the e*Gate Integrator User’s Guide for additional information.

To create an Event Type Definition

1 In the e*Gate Event Type Editor, select Build.

2 In the Build an Event Type Definition dialog box, locate and select an ETD to use as
a template.

3 Edit the ETD properties as needed.

4 Rename and save as a new ETD (.ssc file).

3.4.1 Assigning ETDs to Event Types
After you have created the e*Gate system’s ETD files, you can assign them to existing
Event Types.

To assign ETDs to Event Types

1 In the Schema Designer window, select the Event Types folder in the Navigator/
Components pane.

2 In the Editor pane, select one of the Event Types you created.

3 Right-click on the Event Type and select Properties (or click in the toolbar).

The Event Type Properties dialog box appears. See Figure 13.

Chapter 3 Section 3.4
Implementation Creating Event Type Definitions

e*Way Intelligent Adapter for SNA User’s Guide 33 SeeBeyond Proprietary and Confidential

Figure 13 Event Type Properties Dialog Box

4 Under Event Type Definition, click Find, and the Event Type Definition Selection
dialog box appears (it is similar to the Windows Open dialog box).

5 Open the monk_scripts\common folder, then select the desired file name (*.ssc).

6 Click Select. The file populates the Event Type Definition field.

7 To save any work in the properties dialog box, click Apply to enter it into the
system.

8 When finished assigning ETDs to Event Types, click OK to close the properties
dialog box and apply all the properties.

Each Event Type is now associated with the specified Event Type Definition.

Chapter 3 Section 3.5
Implementation Defining Collaborations

e*Way Intelligent Adapter for SNA User’s Guide 34 SeeBeyond Proprietary and Confidential

3.5 Defining Collaborations
After you have created the required Event Type Definitions, you must define a
Collaboration to transform the incoming Event into the desired outgoing Event.

Collaborations are e*Way components that receive and process Event Types, then
forward the output to other e*Gate components. Collaborations consist of the
Subscriber, which “listens” for Events of a known type or from a given source, and the
Publisher, which distributes the transformed Event to a specified recipient. The same
Collaboration cannot be assigned to more than one e*Gate component.

Figure 14 Collaborations

The Collaboration is driven by a Collaboration Rule script, which defines the
relationship between the incoming and outgoing ETDs. You can use an existing
Collaboration Rule script, or use the Monk programming language to write a new
Collaboration Rule script. Once you have written and successfully tested a script, you
can then add it to the system’s run-time operation.

Collaborations are defined using the e*Gate Monk Collaboration Rules Editor. See the
e*Gate Integrator User’s Guide for instructions on using this Editor. The file extension for
Monk Collaboration Rules is .tsc.

SNA e*Way

CollaborationEvent
A

Event
B

Collaboration Rule

ETD
A

ETD
B

Chapter 3 Section 3.6
Implementation Creating Intelligent Queues

e*Way Intelligent Adapter for SNA User’s Guide 35 SeeBeyond Proprietary and Confidential

3.6 Creating Intelligent Queues
IQs are components that provide nonvolatile storage for Events within the e*Gate
system as they pass from one component to another. IQs are intelligent in that they are
more than just a “holding tank” for Events. They actively record information about the
current state of Events.

Each schema must have an IQ Manager before you can add any IQs to it. You must
create at least one IQ per schema for published Events within the e*Gate system. Note
that e*Ways that publish Events externally do not need IQs.

For more information on how to add and configure IQs and IQ Managers, see the e*Gate
Integrator System Administration and Operations Guide. See the e*Gate Integrator
Intelligent Queue Services Reference Guide and the SeeBeyond JMS Intelligent Queue
User’s Guide for complete information on working with IQs.

Chapter 3 Section 3.7
Implementation Exception Handling

e*Way Intelligent Adapter for SNA User’s Guide 36 SeeBeyond Proprietary and Confidential

3.7 Exception Handling
The SNA e*Way handles an external (remote) shutdown request by confirming the
request and throwing an application-specific exception. Specifically, if the remote
application issues a deallocate, the e*Way then throws the exception $Sna-Exception-
Fatal back to the calling Monk function. Please refer to the Exception Functionality
chapter of the Monk Developers Reference for details on catching exceptions.

Example Code

The following code sample, from the monk script sna_incoming.monk, demonstrates
how to catch this exception and issue a shutdown request to shut the e*Way down.

(if (string=? SNA_CONFIGURATION_SYNCHRONIZATION_LEVEL "NONE")
 (begin
 (try
 (set! pszData (sna-client-recv-no-synch hCon
SNA_CONFIGURATION_PACKETSIZE SNA_CONFIGURATION_TIMEOUT))
 (catch
 (($Sna-Exception-Fatal)
 (display (string-append "Exception string: "
 (exception-string) "."))
 (newline)
 (display "Caught Fatal Exception - calling shutdown\n")
 (shutdown-request)
)
 (otherwise
 (display (string-append "Exception category: "
 (number->string (exception-category)) "."))
 (newline)
 (display (string-append "Exception symbol: "
 (symbol->string (exception-symbol)) "."))
 (newline)
 (display (string-append "Exception string: "
 (exception-string) "."))
 (newline)
)
); catch
); try
); begin

Chapter 3 Section 3.8
Implementation Enabling TP Trace

e*Way Intelligent Adapter for SNA User’s Guide 37 SeeBeyond Proprietary and Confidential

3.8 Enabling TP Trace
On Solaris only, SNA LU6.2 TP trace can be turned on by setting the following
environment variable (if in C shell) prior to starting the e*Way:

setenv SUNLINK_CNT_API_TRACE 1
export SUNLINK_CNT_API_TRACE

A TP trace is written to the current directory.

3.9 Known Issues and Limitations
1 SNA e*Ways that send initialization must be started after the accepting program is

ready to accept.

2 The status flag for deallocate must be a 4. You must set your external system to send
or receive this flag for the e*Way to process a shutdown.

3 Issuing a shutdown while running in Non-Confirmed mode shuts down only the
e*Way to which you issued the command. Issuing a shutdown while running in
Confirmed mode shuts down the e*Way to which you issued the command and the
associated e*Way.

Chapter 3 Section 3.10
Implementation Sample Schema

e*Way Intelligent Adapter for SNA User’s Guide 38 SeeBeyond Proprietary and Confidential

3.10 Sample Schema

3.10.1 LU6.2
A sample schema pair for LU6.2 is provided with the e*Way to serve as an example for
testing and template purposes. In the sample schemas, data is drawn from a text file
using the file e*Way and sent to an external system using the SNA e*Way.

Note: For testing purposes, the Inbound File e*Way is replaced by a Generic Monk e*Way,
which enables repetitive processing.

The data returned from the external system is received by the SNA e*Way, then
forwarded to another file e*Way and stored in an output file on the local system (see
Figure 15).

Figure 15 Sample Schema - Overview

This Client schema incorporates several components, as listed in Table 11 and
illustrated in Figure 16 on page 39.

Table 11 Sample Schema Components

Type Logical Name Collaboration

SNA e*Way inbound_sna_eway ISNA_collab1

outbound_sna_eway OSNA_collab2

File e*Way Inbound Inbound_collab

Outbound Outbound_collab

Intelligent Queue Inbound_IQ N/A

Outbound_IQ N/A

e*Gate Integrator

Inbound
File e*Way

or
 Generic
e*Way

Outbound
File e*Way

Inbound
SNA

e*Way

SNA
Server

Input file

Outbound
SNA

e*Way

Output file

Chapter 3 Section 3.10
Implementation Sample Schema

e*Way Intelligent Adapter for SNA User’s Guide 39 SeeBeyond Proprietary and Confidential

Figure 16 Sample Schema - Detail

Collaboration Rule

The Collaboration Rule used by all Collaborations in the sample schema is named
Passthrough_Data, and provides a Pass Through Collaboration service. It both
subscribes and publishes to the Event Type Definition In.

Collaborations

Table 12 Inbound_collab Collaboration

Action Event Source/Destination

Subscribes to In <External>

Publishes to In Inbound_IQ

Table 13 ISNA_collab1 Collaboration

Action Event Source/Destination

Subscribes to In Inbound_collab

Publishes to In <External>

Table 14 OSNA_collab2 Collaboration

Action Event Source/Destination

Subscribes to In <External>

Publishes to In Outbound_IQ

Table 15 outbound_collab Collaboration

Action Event Source/Destination

Subscribes to In SNA_collab2

Publishes to In <External>

e*Gate Integrator
SNA

Server

Input file

Output file

Outbound_IQ

Inbound_IQ

Inbound

Inbound_collab

File/Generic e*Way

Outbound

Outbound_collab

File e*Way

Inbound

ISNA_collab1

SNA e*Way

Outbound

OSNA_collab2

SNA e*Way

Chapter 3 Section 3.10
Implementation Sample Schema

e*Way Intelligent Adapter for SNA User’s Guide 40 SeeBeyond Proprietary and Confidential

e*Way Configuration

* Enter the correct values for your system.

Table 16 Inbound and Outbound SNA e*Ways

Section Parameter Value

General Settings (all) (default)

Communication Setup Exchange Data Interval 0

Zero Wait Between
Successful Exchanges

No

Monk Configuration Auxiliary Library Directories monk_library/ewsna

Monk Environment
Initialization File

monk_library/ewsna/sna-
init.monk

Startup Function sna-startup

Process Outgoing Message
Function

sna-outgoing

Exchange Data With External
Function

sna-incoming

External Connection
Establishment Function

sna-conn-establish

External Connection
Verification Function

sna-conn-verify

External Connection
Shutdown Function

sna-conn-shutdown

Positive Acknowledgment
Function

sna-pos-ack

Negative Acknowledgment
Function

sna-neg-nack

(all others) (blank)

SNA Client Configuration SYMDESTNAME *

LocalTPName *

LOCAL_LU.Name *

PacketSize *

Timeout *

RequestReply Yes

Initialize Conversation Yes or No, as appropriate

Data Flow Inbound or Outbound

Synchronization Level Confirm or None

Chapter 3 Section 3.10
Implementation Sample Schema

e*Way Intelligent Adapter for SNA User’s Guide 41 SeeBeyond Proprietary and Confidential

Testing the Schema

1 Use the provided data file, testdata.fin, or create your own using any ASCII text
editor.

2 Launch your schema. If the schema was configured properly and your connection
to the test connection is valid, you should find response data from your requests in
the file:

\eGate\data\sna\output\sna_out.txt

Table 17 Inbound File/Generic e*Way

Section Parameter Value

General Settings AllowIncoming Yes

AllowOutgoing No

Poller(inbound) Setting Polldirectory C:\TEMP (change if desired)

Input File Mask (default)

Table 18 Outbound File e*Way

Section Parameter Value

General Settings AllowIncoming No

AllowOutgoing Yes

Poller(inbound) Setting Polldirectory C:\TEMP (change if desired)

Input File Mask sna_out.txt

e*Way Intelligent Adapter for SNA User’s Guide
42

SeeBeyond Proprietary and Confidential

Chapter 4

Setup Procedures

This chapter describes the procedures required to customize the SeeBeyond e*Way
Intelligent Adapter for e*Gate to operate within your production system.

4.1 Overview
After creating a schema, you must instantiate and configure the e*Gate e*Way to
operate within the schema. A wide range of setup options allow the e*Way to conform
to your system’s operational characteristics and your facility’s operating procedures.

The topics discussed in this chapter include the following:

Setting Up the e*Way

Creating the e*Way on page 43

Modifying e*Way Properties on page 44

Configuring the e*Way on page 45

Changing the User Name on page 49

Setting Startup Options or Schedules on page 49

Activating or Modifying Logging Options on page 51

Activating or Modifying Monitoring Thresholds on page 52

Troubleshooting the e*Way

Configuration Problems on page 53

System-related Problems on page 54

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way

e*Way Intelligent Adapter for SNA User’s Guide
43

SeeBeyond Proprietary and Confidential

4.2 Setting Up the e*Way

Note: The SNA e*Way does not support bidirectional transactions. Two e*Ways must be
configured to handle inbound and outbound data transfer.

4.2.1 Creating the e*Way
The first step in implementing an e*Way is to define the e*Way component using the
e*Gate Schema Designer.

To create an e*Way

1 Open the schema in which the e*Way is to operate.

2 Select the e*Gate Schema Designer Navigator's Components tab.

3 Open the host on which you want to create the e*Way.

4 Select the Control Broker you want to manage the new e*Way.

Figure 17 e*Gate Schema Designer Window (Components View)

5 On the Palette, click Create a New e*Way.

6 Enter the name of the new e*Way, then click OK.

7 All further actions are performed in the e*Gate Schema Designer Navigator's
Components tab.

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way

e*Way Intelligent Adapter for SNA User’s Guide
44

SeeBeyond Proprietary and Confidential

4.2.2 Modifying e*Way Properties
To modify any e*Way properties

1 Right-click on the desired e*Way and select Properties to edit the e*Way’s
properties. The properties dialog opens to the General tab (shown in Figure 18).

Note: The executable and default configuration files used by this e*Way are listed in
e*Way Components on page 15.

Figure 18 e*Way Properties (General Tab)

2 Make the desired modifications, then click OK.

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way

e*Way Intelligent Adapter for SNA User’s Guide
45

SeeBeyond Proprietary and Confidential

4.2.3 Configuring the e*Way
The e*Way’s default configuration parameters are stored in an ASCII text file with a
.def extension. The e*Way Editor provides a simple graphical interface for viewing and
changing those parameters to create a working configuration (.cfg) file.

To change e*Way configuration parameters

1 In the e*Gate Schema Designer’s Component editor, select the e*Way you want to
configure and display its properties.

Note: The executable and default configuration files used by this e*Way are listed in
e*Way Components on page 15.

Figure 19 e*Way Properties - General Tab

2 Under Configuration File, click New to create a new file or Find to select an existing
configuration file. If you select an existing file, an Edit button appears. Click this
button to edit the currently selected file.

3 You are now in the e*Way Configuration Editor.

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way

e*Way Intelligent Adapter for SNA User’s Guide
46

SeeBeyond Proprietary and Confidential

Using the e*Way Editor

Note: The e*Gate Schema Designer GUI runs only on the Windows operating system.

Figure 20 The e*Way Configuration Editor

The e*Way Editor controls fall into one of six categories:

The Menu bar allows access to basic operations (e.g., saving the configuration file,
viewing a summary of all parameter settings, and launching the Help system)

The Section selector at the top of the Editor window enables you to select the
category of the parameters you wish to edit

Section controls enable you to restore the default settings, restore the last saved
settings, display tips, or enter comments for the currently selected section

The Parameter selector allows you to jump to a specific parameter within the
section, rather than scrolling

Parameter controls enable you to restore the default settings, restore the last
saved settings, display tips, or enter comments for the currently selected
parameter

Parameter configuration controls enable you to set the e*Way’s various operating
parameters

Section
controls

Parameter
selector

Parameter
controls

Section
selector

Menu
Bar

Parameter
configuration
area

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way

e*Way Intelligent Adapter for SNA User’s Guide
47

SeeBeyond Proprietary and Confidential

Section and Parameter Controls

The section and parameter controls are shown in Table 19 below.

Table 19 Parameter and Section Controls

Note: The section controls affect all parameters in the selected section, whereas the
parameter controls affect only the selected parameter.

Parameter Configuration Controls

Parameter configuration controls fall into one of two categories:

Option buttons

Selection lists, which have controls as described in Table 20

Table 20 Selection List Controls

Button Name Function

Restore Default Restores default values

Restore Value Restores saved values

Tips Displays tips

User Notes Enters user notes

Button Name Function

Add to List Adds the value in the text box to the
list of available values.

Delete Items Displays a “delete items” dialog box,
used to delete items from the list.

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way

e*Way Intelligent Adapter for SNA User’s Guide
48

SeeBeyond Proprietary and Confidential

Command-line Configuration

In the Additional Command Line Arguments box, type any additional command line
arguments that the e*Way may require, taking care to insert them at the end of the
existing command-line string. Be careful not to change any of the default arguments
unless you have a specific need to do so.

Getting Help

To launch the e*Way Editor’s Help system

From the Help menu, select Help topics.

To display tips regarding the general operation of the e*Way

From the File menu, select Tips.

To display tips regarding the selected Configuration Section

In the Section Control group, click .

To display tips regarding the selected Configuration Parameter

In the Parameter Control group, click .

Note: “Tips” are displayed and managed separately from the Help system that launches
from the Toolbar’s Help menu. You cannot search for Tips within the Help system,
or view Help system topics by requesting Tips.

For detailed descriptions and procedures for using the e*Way Configuration Editor, see
the e*Gate Integrator User’s Guide.

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way

e*Way Intelligent Adapter for SNA User’s Guide
49

SeeBeyond Proprietary and Confidential

4.2.4 Changing the User Name
Like all e*Gate executable components, e*Ways run under an e*Gate user name. By
default, all e*Ways run under the Administrator user name. You can change this if your
site’s security procedures so require.

To change the user name

1 Display the e*Way’s properties dialog.

2 On the General tab, use the Run as user list to select the e*Gate user under whose
name this component is to run.

See the e*Gate Integrator System Administration and Operations Guide for more
information on the e*Gate security system.

4.2.5 Setting Startup Options or Schedules
SeeBeyond e*Ways can be started or stopped by any of the following methods:

The Control Broker can start the e*Way automatically whenever the Control
Broker starts.

The Control Broker can start the e*Way automatically whenever it detects that the
e*Way terminated execution abnormally.

The Control Broker can start or stop the e*Way on a schedule that you specify.

Users can start or stop the e*Way manually using an interactive monitor.

You determine how the Control Broker starts or shuts down an e*Way using options on
the e*Way properties Start Up tab (see Figure 21). See the e*Gate Integrator System
Administration and Operations Guide for more information about how interactive
monitors can start or shut down components.

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way

e*Way Intelligent Adapter for SNA User’s Guide
50

SeeBeyond Proprietary and Confidential

Figure 21 e*Way Properties (Start-Up Tab)

To set the e*Way’s startup properties

1 Display the e*Way’s properties dialog.

2 Select the Start Up tab.

3 To have the e*Way start automatically when the Control Broker starts, select the
Start automatically check box.

4 To have the e*Way start manually, clear the Start automatically check box.

5 To have the e*Way restart automatically after an abnormal termination:

A Select Restart after abnormal termination.

B Set the desired number of retries and retry interval.

6 To prevent the e*Way from restarting automatically after an abnormal termination,
clear the Restart after abnormal termination check box.

7 Click OK.

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way

e*Way Intelligent Adapter for SNA User’s Guide
51

SeeBeyond Proprietary and Confidential

4.2.6 Activating or Modifying Logging Options
Logging options enable you to troubleshoot problems with the e*Way and other e*Gate
components.

To set the e*Way debug level and flag

1 Display the e*Way’s Properties dialog.

2 Select the Advanced tab.

3 Click Log. The dialog window appears (see Figure 22).

Figure 22 e*Way Properties (Advanced Tab - Log Option)

4 Select DEBUG for the Logging level.

5 Select either e*Way (EWY) or e*Way Verbose (EWYV) for the Debugging flag. Note
that the latter has a significant negative impact on system performance.

6 Click OK.

The other options apply to other e*Gate components and are activated in the same
manner. See the e*Gate Integrator Alert and Log File Reference for additional information
concerning log files, logging options, logging levels, and debug flags.

Chapter 4 Section 4.2
Setup Procedures Setting Up the e*Way

e*Way Intelligent Adapter for SNA User’s Guide
52

SeeBeyond Proprietary and Confidential

4.2.7 Activating or Modifying Monitoring Thresholds
Monitoring thresholds enable you to monitor the throughput of the e*Way. When the
monitoring thresholds are exceeded, the e*Way sends a Monitoring Event to the
Control Broker, which routes it to the Schema Manager and any other configured
destinations.

1 Display the e*Way’s properties dialog.

2 Select the Advanced tab.

3 Click Thresholds.

4 Select the desired threshold options and click OK.

See the e*Gate Integrator Alert and Log File Reference for more information concerning
threshold monitoring, routing specific notifications to specific recipients, or for general
information about e*Gate’s monitoring and notification system.

Chapter 4 Section 4.3
Setup Procedures Troubleshooting the e*Way

e*Way Intelligent Adapter for SNA User’s Guide
53

SeeBeyond Proprietary and Confidential

4.3 Troubleshooting the e*Way
In the initial stages of developing your e*Gate Integrator system administration system,
most problems with e*Ways can be traced to configuration.

4.3.1 Configuration Problems
In the Schema Designer

Does the e*Way have the correct Collaborations assigned?

Do those Collaborations use the correct Collaboration Services?

Is the logic correct within any Collaboration Rules script employed by this e*Way’s
Collaborations?

Do those Collaborations subscribe to and publish Events appropriately?

Are all the components that “feed” this e*Way properly configured, and are they
sending the appropriate Events correctly?

Are all the components that this e*Way “feeds” properly configured, and are they
subscribing to the appropriate Events correctly?

In the e*Way Editor

Check that all configuration options are set appropriately.

Check that all settings you changed are set correctly.

Check all required changes to ensure they have not been overlooked.

Check the defaults to ensure they are acceptable for your installation.

On the e*Way’s Participating Host

Check that the Participating Host is operating properly, and that it has sufficient
disk space to hold the IQ data that this e*Way’s Collaborations publish.

Check that your path environment variable includes the location of the SNA
dynamically-loaded libraries. The name of this variable on the different operating
systems is:

PATH (Windows)

LD_LIBRARY_PATH (Solaris)

In the External Application

Check that the application is configured correctly, is operating properly, and is
sending or receiving the correct data appropriately.

Chapter 4 Section 4.3
Setup Procedures Troubleshooting the e*Way

e*Way Intelligent Adapter for SNA User’s Guide
54

SeeBeyond Proprietary and Confidential

4.3.2 System-related Problems
Check that the connection between the external application and the e*Way is
functioning appropriately.

Once the e*Way is up and running properly, operational problems can be due to:

External influences (network or other connectivity problems).

Problems in the operating environment (low disk space or system errors)

Problems or changes in the data the e*Way is processing.

Corrections required to Collaboration Rules scripts that become evident in the
course of normal operations.

One of the most important tools in the troubleshooter’s arsenal is the e*Way log file. See
the e*Gate Integrator Alert and Log File Reference Guide for an extensive explanation of log
files, debugging options, and using the e*Gate Schema Manager system to monitor
operations and performance.

e*Way Intelligent Adapter for SNA User’s Guide
55

SeeBeyond Proprietary and Confidential

Chapter 5

Operational Overview

This chapter contains an overview of the architecture and basic internal processes of the
SNA e*Way.

5.1 e*Way Architecture
Conceptually, an e*Way can be viewed as a multi-layered structure, consisting of one
or more layers (see Figure 23). Each layer contains Monk scripts and/or functions, and
makes use of lower-level Monk functions residing in the layer beneath. You, as user,
primarily use the highest-level functions, which reside in the upper layer(s).

Figure 23 Typical e*Way Architecture

The upper layers of the e*Way use Monk functions to perform Business Process
modeling and ETD mapping, package data as e*Gate Events, send those Events to
Collaborations, and manage interaction with the external system. These layers are built
upon an e*Way Kernel layer that manages the basic operations of the e*Way, data
processing, and communication with other e*Gate components.

Additional Layer
(e.g., API Model)

Communications Layer
(e.g., RFC Transport)

e*Way Kernel Layer

e*GateExternal
Application

PUB/SUB

RFC

Typical e*Way

Chapter 5 Section 5.1
Operational Overview e*Way Architecture

e*Way Intelligent Adapter for SNA User’s Guide
56

SeeBeyond Proprietary and Confidential

The communication layers of the e*Way are single-threaded. Functions run serially,
and only one function can be executed at a time. Processing layers are multi-threaded,
with one executable thread for each Collaboration. Each thread maintains its own
Monk environment; therefore, information such as variables, functions, path
information, and so on cannot be shared between threads.

Collaborations execute the business logic that enable the e*Way to do its intended
work. In turn, each Collaboration executes a Collaboration Rule, containing the actual
instructions to execute the business logic. Each Collaboration that publishes its
processed Events internally (within e*Gate Integrator) requires one or more IQs to
receive the Events, as shown in Figure 24. Any Collaboration that publishes its
processed Events only to an external system does not require any IQs.

Figure 24 Collaborations and IQs

Configuration options that control the Monk environment and define the Monk
functions used to perform various e*Way operations are discussed in Chapter 6 and
Chapter 7. You can create and modify these functions using the SeeBeyond
Collaboration Rules Editor or a text editor (such as Microsoft Word or Notepad, or UNIX
vi). The available set of e*Way API functions is described in Chapter 8. Generally,
e*Way Kernel Monk functions should be called directly only when there is a specific
need not addressed by higher-level Monk functions, and should be used only by
experienced developers.

For more information on defining Collaborations, defining IQs, assigning
Collaborations to e*Ways, or configuring Collaborations to publish Events, see the
e*Gate Integrator User’s Guide.

e*Gate Integrator

SNA
Server

SNA e*Way
(Inbound)

CollaborationEvent
A

Event
B

Collaboration Rule

Intelligent
Queue

ETD
A

ETD
B

Chapter 5 Section 5.2
Operational Overview Basic e*Way Processes

e*Way Intelligent Adapter for SNA User’s Guide
57

SeeBeyond Proprietary and Confidential

5.2 Basic e*Way Processes

Note: This section describes the basic operation of a typical e*Way based on the Generic
e*Way Kernel. Not all functionality described in this section is used routinely by
this e*Way.

The most basic processes carried out by an e*Way are listed in Figure 25. In e*Ways
based on the Generic Monk e*Way Kernel (using stcewgenericmonk.exe), these
processes are controlled by the listed Monk functions. Configuration of these functions
is described in the referenced sections of this User’s Guide.

Figure 25 Basic e*Way Processes

A series of diagrams on the next several pages illustrate the interaction and operation of
these functions during the specified processes. Configuring the parameters associated
with these functions is covered in Chapter 6 and Chapter 7, while the functions
themselves are described in Chapter 8.

Process Monk Configuration Sections

Startup Function on page 72 and on page 90 (also see
Monk Environment Initialization File on page 71
and on page 89).

External Connection Establishment Function on
page 74 and on page 92, and
External Connection Verification Function on
page 75 and on page 93.

Event-driven Data Exchange
Process Outgoing Message Function on page 72
and on page 90.

Schedule-driven Data Exchange
Exchange Data with External Function on page 73
and on page 91;
Positive Acknowledgment Function on page 76
and on page 94;
Negative Acknowledgment Function on page 76
and on page 94.

External Connection Shutdown Function on
page 75 and on page 93.

Shutdown Command Notification Function on
page 77 and on page 95.

Connection to
External System

Data Exchange

Disconnection from
External System

e*Way Shutdown

e*Way Initialization

Chapter 5 Section 5.2
Operational Overview Basic e*Way Processes

e*Way Intelligent Adapter for SNA User’s Guide
58

SeeBeyond Proprietary and Confidential

Initialization Process

Figure 26 illustrates the e*Way’s initialization process, using the Monk Environment
Initialization File and Startup Function.

Figure 26 Initialization Process

Start e*Way

Load
Monk Initialization

file

Execute any Monk function
having the same name as

the initialization file

Load Startup file

Execute any Monk function
having the same name as

the startup file

Chapter 5 Section 5.2
Operational Overview Basic e*Way Processes

e*Way Intelligent Adapter for SNA User’s Guide
59

SeeBeyond Proprietary and Confidential

Connect to External Process

Figure 27 illustrates how the e*Way connects to the external system, using the External
Connection Establishment Function and External Connection Verification Function.

Figure 27 Connection Process

Note: The e*Way selects the connection function based on an internal up/down flag
rather than a poll to the external system. See Figure 29 on page 61 and Figure 28
on page 60 for examples of how different functions use this flag.

User functions can manually set this flag using Monk functions. See send-
external-up on page 130 and send-external-down on page 130 for more
information.

Connect e*Way to
external system

Is connection active?

Wait for Up Timeout
schedule

Call External Connection
Verification function

Wait for Down Timeout
schedule

Call External Connection
Establishment function

Yes

No

Chapter 5 Section 5.2
Operational Overview Basic e*Way Processes

e*Way Intelligent Adapter for SNA User’s Guide
60

SeeBeyond Proprietary and Confidential

Data Exchange Process

Event-driven

Figure 28 illustrates how the e*Way’s event-driven data exchange process works, using
the Process Outgoing Message Function.

The e*Way periodically checks the Failed Message counter against the value specified by
the Max Failed Messages parameter. When the Failed Message counter exceeds the
specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Figure 28 Event-Driven Data Exchange Process

Collaboration publishes
to External system

Call Process Outgoing
Message function

Set internal flag
Connection Down

Maximum
Resends per Message

exceeded?

Yes

Return

CONNERR DATAERR

Increment Failed
Message counter

Create journal
entry

Null
string

No
Journal

enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
Resend counter

RESEND

Chapter 5 Section 5.2
Operational Overview Basic e*Way Processes

e*Way Intelligent Adapter for SNA User’s Guide
61

SeeBeyond Proprietary and Confidential

Schedule-driven

Figure 29 illustrates how the e*Way’s schedule-driven data exchange process works for
incoming data, using the Exchange Data with External Function, Positive
Acknowledgment Function, and Negative Acknowledgment Function.

Figure 29 Schedule-Driven Data Exchange Process

Increment Failed
Message counter

DATAERR plus
additional data

Null
string

Data
(other than

error strings)

Forward
external
errors?

No

Yes

Set interval flag
Connection Down

CONNERR

Increment Failed
Message counter

DATAERR only

Journal
enabled?

Create journal
entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call
Exchange Data with External

function

Return

Chapter 5 Section 5.2
Operational Overview Basic e*Way Processes

e*Way Intelligent Adapter for SNA User’s Guide
62

SeeBeyond Proprietary and Confidential

Start can occur in any of the following ways:

Start Data Exchange time occurs

Periodically during data-exchange schedule (after Start Data Exchange time, but
before Stop Data Exchange time), as set by Exchange Data Interval

The start-schedule Monk function is called

Send Events to e*Gate can be implemented using any of the following Monk functions:

event-send-to-egate

event-send-to-egate-ignore-shutdown

event-send-to-egate-no-commit

The last of these is used when confirmation of correct transmission is required from the
external system. In this case, the e*Way sends information back to the external system
after receiving data. Depending upon whether the acknowledgment is positive or
negative, you subsequently use one of the following functions to complete the process
(see Figure 30):

event-commit-to-egate

event-rollback-to-egate

Figure 30 Send Event to e*Gate with Confirmation

After the function exits, the e*Way waits for the next Start time or command.

External
System

e*Way

REPLY FUNCTION

(event-commit-to-egate)

(event-rollback-to-egate)

e*Gate IQ
Manager

Results

Negative
Confirmation

Positive
Confirmation

Commit
Previously-
Sent Event

Roll Back
Previously-
Sent Event

(event-send-to-egate-no-
commit)DATA

Send Event
Without

Committing

Chapter 5 Section 5.2
Operational Overview Basic e*Way Processes

e*Way Intelligent Adapter for SNA User’s Guide
63

SeeBeyond Proprietary and Confidential

Disconnect from External Process

Figure 31 illustrates how the e*Way disconnects from the external system, using the
External Connection Shutdown Function.

Figure 31 Disconnect Process

Shutdown Process

Figure 32 illustrates how the e*Way shuts itself down, using the Shutdown Command
Notification Function.

Figure 32 Shutdown Process

Control Broker issues
Suspend command

Call External Connection Shutdown function
with SUSPEND_NOTIFICATION parameter

e*Way closes connection

Return any value

Control Broker issues
Shutdown command

Call Shutdown Notification function
with SHUTDOWN_NOTIFICATION parameter

e*Way shuts down

Wait for
shutdown-request

function

Return

Null string or
"SUCCESS"

any other value

Call waiting-to-shutdown
function

Inform External system
that Shutdown command

has been issued

(Optional)

e*Way Intelligent Adapter for SNA User’s Guide 64 SeeBeyond Proprietary and Confidential

Chapter 6

Configuration Parameters (LU6.2)

This chapter describes the LU6.2 configuration parameters for the e*Way Intelligent
Adapter for e*Gate.

6.1 Overview
The e*Way’s configuration parameters are set using the e*Way Editor; see Configuring
the e*Way on page 45 for procedural information. The e*Gate e*Way’s configuration
parameters are organized into the following sections. The default configurations are
provided in stcewsna.def.

General Settings on page 65

Communication Setup on page 67

Monk Configuration on page 70

SNA Client Configuration on page 79

Chapter 6 Section 6.2
Configuration Parameters (LU6.2) General Settings

e*Way Intelligent Adapter for SNA User’s Guide 65 SeeBeyond Proprietary and Confidential

6.2 General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid filename, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file is stored in the e*Gate
SystemData directory. There is no default value for this parameter.

Additional Information

An Event is journaled for the following conditions:

When the number of resends is exceeded (see Max Resends Per Message below)

When its receipt is due to an external error, but Forward External Errors is set to No

See the e*Gate Integrator System Administration and Operations Guide for more
information about file locations.

Max Resends Per Message

Description

Specifies the number of times the e*Way attempts to resend a message (Event) to the
external system after receiving an error. When this maximum is reached, the e*Way
waits for the number of seconds specified by the Resend Timeout parameter, and then
rolls back the Event to its publishing IQ.

Required Values

An integer from 1 to 1,024 (omit the comma). The default value is 5.

Max Failed Messages

Description

Specifies the maximum number of failed Events that the e*Way allows. When the
specified number of failed Events is reached, the e*Way shuts down and exits.

Required Values

An integer from 1 to 1,024 (omit the comma). The default value is 3.

Chapter 6 Section 6.2
Configuration Parameters (LU6.2) General Settings

e*Way Intelligent Adapter for SNA User’s Guide 66 SeeBeyond Proprietary and Confidential

Forward External Errors

Description

Description

Selects whether or not error messages received from the external system that begin
with the string “DATAERR” are queued to the e*Way’s configured queue. See Exchange
Data with External Function on page 73 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages are not to be forwarded.

Chapter 6 Section 6.3
Configuration Parameters (LU6.2) Communication Setup

e*Way Intelligent Adapter for SNA User’s Guide 67 SeeBeyond Proprietary and Confidential

6.3 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties in the Schema Designer controls
when the e*Way executable runs. The schedule you set within the parameters
discussed in this section (using the e*Way Editor) determines when data are
exchanged. Be sure you set the “exchange data” schedule to fall within the “run the
executable” schedule.

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External Function during scheduled data exchanges.

Required Values

An integer from 0 to 86,400 (omit the comma). The default value is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data
with External Function returns data, the setting of this parameter is ignored and
the e*Way invokes the Exchange Data with External Function immediately

If it is desired to invoke the Exchange Data with External Function again as soon as
possible when data is not queued to e*Gate via the return mechanism, the e*Way
Kernel Monk function insert-exchange-data-event can be called directly (prior to
leaving the exchange function) to accomplish this

If this parameter is set to zero, no exchange data schedule is set and the Exchange
Data with External Function is never called

See also

Start Exchange Data Schedule on page 68

Stop Exchange Data Schedule on page 69

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. The default value is No.

Chapter 6 Section 6.3
Configuration Parameters (LU6.2) Communication Setup

e*Way Intelligent Adapter for SNA User’s Guide 68 SeeBeyond Proprietary and Confidential

Additional Information

If this parameter is set to Yes, and the previous exchange function returned data,
the e*Way invokes the Exchange Data with External Function immediately

If it is desired to invoke the Exchange Data with External Function again as soon as
possible when data is not queued to e*Gate via the return mechanism, the e*Way
Kernel Monk function insert-exchange-data-event can be called directly (prior to
leaving the exchange function) to accomplish this

If this parameter is set to No, the e*Way always waits the number of seconds
specified by Exchange Data Interval between invocations of the Exchange Data
with External Function

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External Function.

Required Values

One of the following:

One or more specific dates/times

A single repeating, regular, interval (such as weekly, daily, or every n seconds)

Other Requirements

If you set a schedule using this parameter, you must also define all of the following
parameters. If you do not, the e*Way terminates execution when the schedule attempts
to start.

Exchange Data with External Function

Positive Acknowledgment Function

Negative Acknowledgment Function

Additional Information

When the schedule starts, the e*Way determines whether or not:

it is waiting to send an ACK or NAK to the external system (using the Positive
Acknowledgment Function or Negative Acknowledgment Function)

the connection to the external system is active

If no ACK/NAK is pending and the connection is active, the e*Way immediately
executes the Exchange Data with External Function. Thereafter, the Exchange Data
with External Function is called according to the Exchange Data Interval parameter
until the Stop Exchange Data Schedule time is reached.

Chapter 6 Section 6.3
Configuration Parameters (LU6.2) Communication Setup

e*Way Intelligent Adapter for SNA User’s Guide 69 SeeBeyond Proprietary and Confidential

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following:

One or more specific dates/times

A single repeating, regular, interval (such as weekly, daily, or every n seconds)

Down Timeout

Description

Specifies the number of seconds that the e*Way waits between calls to the External
Connection Establishment Function.

Required Values

An integer from 1 to 86,400 (omit the comma). The default value is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way waits between calls to the External
Connection Verification Function.

Required Values

An integer from 1 to 86,400 (omit the comma). The default is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way waits between attempts to resend an Event
to the external system, after receiving an error message.

Required Values

An integer from 1 to 86,400 (omit the comma). The default is 10.

Chapter 6 Section 6.4
Configuration Parameters (LU6.2) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 70 SeeBeyond Proprietary and Confidential

6.4 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system. The functions that you
specify within this section are Monk functions that the e*Way calls automatically as
part of its normal operations. The functions are not called under user control.

All the configuration options in this section—the functions or variables defined, and
the additional path information—are loaded into a separate Monk environment than is
used by the e*Way’s Collaborations and its Collaboration Rules scripts. You cannot
access any of these functions, variables, or path information from Collaboration Rules
scripts.

Specifying Function or File Names

For those parameters that accept a file or the name of a Monk function, the e*Way
presumes that the name of the file is the same as the name of the function to be
executed, plus a .monk extension. For example, the file startup.monk should contain
the definition for the function startup. If path information is specified, that path is
appended to the Load Path.

If you specify a file name, be sure that the file has one of the following extensions:

.monk

.tsc

.dsc

Specifying Multiple Directories

To specify multiple directories, manually enter the directory names rather than
selecting them with the File Selection button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Load Path

The Monk load path is the path Monk uses to locate files and data (set internally within
Monk). The default load paths are determined by the SharedExe and SystemData
settings in the .egate.store file. See the e*Gate Integrator System Administration and
Operations Guide for more information about this file.

Chapter 6 Section 6.4
Configuration Parameters (LU6.2) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 71 SeeBeyond Proprietary and Confidential

Additional Path

Description

Specifies a path to be appended to the Load Path. A directory specified here is searched
after searching the default load path.

Required Values

A pathname, or a series of paths separated by semicolons. There is no default value for
this parameter.

Note: This parameter is optional and may be left blank.

Additional information

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories is automatically loaded into the e*Way’s Monk environment.

Required Values

A pathname, or a series of paths separated by semicolons. The default value is
monk_library/ewsna.

Note: This parameter is optional and may be left blank.

Monk Environment Initialization File

Description

Specifies a file that contains environment initialization functions, which is loaded after
the Auxiliary Library Directories are loaded.

Required Values

A filename within the Load Path, or filename plus path information (relative or
absolute). If path information is specified, that path is appended to the load path. The
default value is sna-init.

Note: This parameter is optional and may be left blank.

Returns

The string “FAILURE” indicates that the function failed, and the e*Way exits; any other
string, including a null string, indicates success.

Chapter 6 Section 6.4
Configuration Parameters (LU6.2) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 72 SeeBeyond Proprietary and Confidential

Additional information

Use this feature to initialize the e*Way’s Monk environment (for example, to define
Monk variables that are used by the e*Way’s function scripts); it is good practice to
initialize any global Monk variables that may be used by any other Monk Extension
scripts

The internal function that loads this file is called once when the e*Way first starts up

The e*Way loads this file and try to invoke a function of the same base name as the
file name

Startup Function

Description

Specifies a Monk function that the e*Way loads and invokes upon startup or whenever
the e*Way’s configuration is reloaded. It is called after the e*Way loads the specified
Monk Environment Initialization File and any files within the specified Auxiliary
Library Directories. This function accepts no input, and must return a string.

This function should be used to initialize the external system before data exchange
starts.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is sna-startup.

Note: This parameter is optional and may be left blank.

Returns

The string “FAILURE” indicates that the function failed, and the e*Way exits; any other
string (including a null string) indicates success.

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven, rather than schedule-
driven). The function requires a non-null string as input (i.e., the outgoing Event to be
sent), and must return a string.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is sna-outgoing.

Note: This parameter is required, and must not be left blank.

Chapter 6 Section 6.4
Configuration Parameters (LU6.2) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 73 SeeBeyond Proprietary and Confidential

Returns

A null string (““) indicates that the Event was published successfully to the external
system

A string beginning with RESEND indicates that the Event should be resent

A string beginning with CONNERR indicates that there is a problem with the
connection to the external system, and causes a rollback of the Event

A string beginning with DATAERR indicates that there is a problem with the
message (Event) data itself, and causes a rollback of the Event

A string beginning with SHUTDOWN indicates that the e*Way must exit
immediately

If any string other than one of the preceding is returned, the e*Way creates an entry
in the log file indicating that an attempt has been made to access an unsupported
function

Additional Information

The e*Way invokes this function when one of its Collaborations publishes an Event
to an external destination (as specified within the e*Gate Schema Designer).

Once this function has been called with a non-null string, the e*Way does not
process another Event until the current Event has been completely processed.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is invoked automatically by the Down Timeout or
manually by the start-schedule Monk function, and is responsible for either sending
data to or receiving data from the external system. If this function returns data, it is
queued to e*Gate in an inbound Collaboration. The e*Way must have at least one
Collaboration configured suitably to process the inbound Event, as well as any
required IQs.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is sna-incoming.

Note: This parameter is conditional and must be supplied only if the Exchange Data
Interval is set to a non-zero value.

Chapter 6 Section 6.4
Configuration Parameters (LU6.2) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 74 SeeBeyond Proprietary and Confidential

Returns

A null string (““) indicates that the data exchange was completed successfully, but
with no resultant data sent back to the e e*Gate system

A string beginning with CONNERR indicates that there is a problem with the
connection to the external system

A string beginning with DATAERR indicates that there is a problem with the
message (Event) data itself. If the error string contains data beyond the keyword,
the entire string is queued to e*Gate if an inbound Collaboration is so configured
and Forward External Errors is set to Yes. Queueing, however, is performed
without the subsequent sending of a ACK or NAK to the external system.

Any other string indicates that the contents of the string are packaged as an
inbound Event

Additional Information

Data can be queued directly to e*Gate by using the event-send-to-egate Monk
function or, if a two-phase approach is required, by using event-send-to-egate-no-
commit and then event-commit-to-egate or event-rollback-to-egate to commit or
rollback the enqueued events, as appropriate

Note: Until an Event is committed, it is not revealed to subscribers of that Event.

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way calls (repeatedly) when it has determined that
the connection to the external system is down. The function accepts no input and must
return a string.

This function is executed according to the interval specified within the Down Timeout
parameter, and is called only according to this schedule. Once the e*Way has
determined that its connection to the external system is up, it calls the External
Connection Verification Function (see next).

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is sna-conn-establish.

Note: This parameter is required, and must not be left blank.

Returns

A string beginning with SUCCESS or UP indicates that the connection was
established successfully

A string beginning with DOWN indicates that the connection was not established
successfully

Any other string, including a null string, indicates that the attempt to establish the
connection failed and the external state is unknown

Chapter 6 Section 6.4
Configuration Parameters (LU6.2) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 75 SeeBeyond Proprietary and Confidential

External Connection Verification Function

Description

Specifies a Monk function that the e*Way calls when its internal variables show that the
connection to the external system is up. It is executed according to the interval specified
within the Up Timeout parameter, and is called only according to this schedule.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is sna-conn-verify.

Note: This parameter is optional and may be left blank.

Returns

“SUCCESS” or “UP” indicates that the connection was established successfully

Any other string (including the null string) indicates that the attempt to establish
the connection failed

Additional Information

If this function is not specified, the e*Way executes the External Connection
Establishment Function in its place. This latter function also is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way calls to shut down the connection to the
external system. This function is invoked only when the e*Way receives a suspend
command from a Control Broker.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is sna-conn-shutdown.

Note: This parameter is required, and must not be left blank.

Input

A string indicating the purpose for shutting down the connection.

“SUSPEND_NOTIFICATION” - the e*Way is being suspended or shut down

“RELOAD_NOTIFICATION” - the e*Way is being reconfigured

Returns

A string, the value of which is ignored. Any return value indicates that the suspend
command can proceed and that the connection to the external system can be broken
immediately.

Chapter 6 Section 6.4
Configuration Parameters (LU6.2) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 76 SeeBeyond Proprietary and Confidential

Note: Include in this function any required “clean up” operations that must be performed
as part of the shutdown procedure, but before the e*Way exits.

Positive Acknowledgment Function

Description

This function is loaded during the initialization process and is called when all data
received from the external system has been processed and enqueued successfully.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is sna-pos-ack.

Note: This parameter is conditional and must be supplied only if the Exchange Data
with External Function is set to a non-zero value.

Required Input

A string, the inbound Event to e*Gate.

Returns

The string beginning with CONNERR indicates a problem with the connection to
the external system; when the connection is re-established, the function is called
again, with the same input data

Any other string, including a null string, indicates that the acknowledgement has
been sent to the external system successfully

Additional Information

After the Exchange Data with External Function returns a string that is
transformed into an inbound Event, the Event is handed off to one or more
Collaborations for further processing. The e*Way executes this function only if the
Event’s processing is completed successfully by all the Collaborations to which it
was sent; otherwise, the e*Way executes the Negative Acknowledgment Function.

This function can return data to be queued, but the e*Way will not acknowledge the
data with an ACK or NAK.

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Negative Acknowledgment Function

Description

This function is loaded during the initialization process and is called when the e*Way
fails to process or enqueue data received from the external system successfully.

Chapter 6 Section 6.4
Configuration Parameters (LU6.2) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 77 SeeBeyond Proprietary and Confidential

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is sna-neg-ack.

Note: This parameter is conditional and must be supplied only if the Exchange Data
with External Function is set to a non-zero value.

Required Input

A string, the inbound Event to e*Gate.

Returns

The string beginning with CONNERR indicates a problem with the connection to
the external system; when the connection is re-established, the function is called
again, using the same input data

Any other string, including a null string, indicates that the acknowledgement has
been sent to the external system successfully

Additional Information

This function is called only during the processing of inbound Events. After the
Exchange Data with External Function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. The e*Way executes this function if the Event’s processing is not
completed successfully by all the Collaborations to which it was sent; otherwise, the
e*Way executes the Positive Acknowledgment Function.

This function can return data to be queued, but the e*Way will not acknowledge the
data with an ACK or NAK.

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Shutdown Command Notification Function

Description

The e*Way calls this Monk function automatically to notify the external system that it is
about to shut down. This function also can be used to shut down the connection with
the external. The function accepts a string as input and must return a string.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is sna-conn-shutdown.

Note: This parameter is required, and must not be left blank.

Input

When the Control Broker issues a shutdown command to the e*Way, the e*Way calls
this function with the string “SHUTDOWN_NOTIFICATION” passed as a parameter.

Chapter 6 Section 6.4
Configuration Parameters (LU6.2) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 78 SeeBeyond Proprietary and Confidential

Returns

A null string or “SUCCESS” indicates that the shutdown can occur immediately

Any other string indicates that shutdown must be postponed; once postponed,
shutdown does not proceed until the Monk function shutdown-request is executed

Additional Information

If you postpone a shutdown using this function, be sure to use the
shutdown-request function to complete the process in a timely manner.

Chapter 6 Section 6.5
Configuration Parameters (LU6.2) SNA Client Configuration

e*Way Intelligent Adapter for SNA User’s Guide 79 SeeBeyond Proprietary and Confidential

6.5 SNA Client Configuration
The parameters in this section provide the information required by the Generic Monk
e*Way to support SNA LU6.2.

SYMDESTNAME

Description

Specifies the symbolic destination name on which the SNA client is running.

Required Values

A string; this field is case sensitive and can contain up to 64 ASCII characters.

Note: This parameter is required; you must not leave this field blank.

LOCALTPNAME

Description

Specifies the name of the local TP that is running on the local LU.

Required Values

A string; this field is case sensitive and should be 8 characters in length.

Note: This parameter is required; you must not leave this field blank.

LOCALLUNAME

Description

Specifies the name of the local LU as defined for the SunLink 6.2 server.

Required Values

A string; this field is case sensitive.

Note: This parameter is required for Sunlink P2P LU6.2 version 9.1, and is ignored on
other platforms.

PacketSize

Description

Specifies the number of bytes per packet of data.

Required Values

An integer from 0 to 864,000 (omit the comma). The default value is 1024.

Chapter 6 Section 6.5
Configuration Parameters (LU6.2) SNA Client Configuration

e*Way Intelligent Adapter for SNA User’s Guide 80 SeeBeyond Proprietary and Confidential

Timeout

Description

Specifies the number of milli-seconds to wait for a response, when making requests to
the server.

Required Values

An integer from 0 to 864,000 (omit the comma). The default value is 50000.

Use Ack Nak

Description

Specifies whether or not to use ACK and NAK for Request Reply.

Required Values

Yes or No. The default value is Yes.

Ack String

Description

Specifies the Positive acknowledgment value.

Required Values

A string. The default value is ACK.

Nak String

Description

Specifies the Negative acknowledgment value.

Required Values

A string. The default value is NAK.

Request Reply

Description

Specifies whether or not the Process Outgoing Function waits for a reply and posts that
reply to e*Gate.

Required Values

Yes or No. The default value is No.

Chapter 6 Section 6.5
Configuration Parameters (LU6.2) SNA Client Configuration

e*Way Intelligent Adapter for SNA User’s Guide 81 SeeBeyond Proprietary and Confidential

Initialize Conversation

Description

Specifies whether to initialize a conversation with the remote LU, or to accept
conversation from the remote LU.

Required Values

Yes or No. The default value is Yes.

Set the value to Yes to initialize a conversation with the remote LU.

Set the value to No to accept a conversation from a remote LU.

Data Flow

Description

Specifies the direction of data flow.

Required Values

Inbound or Outbound. The default value is Outbound.

Set the value to Outbound to allow the local LU to send data to the partner LU.

Set the value to Inbound to allow the local LU to receive data from the partner LU.

Synchronization Level

Description

Specifies the synchronization level of the conversation.

Required Values

Confirm or None. The default value is Confirm.

Select Confirm to set the synchronization level parameter, CM_SYNC_LEVEL, to
CM_CONFIRM.

Select None to set the synchronization level parameter, CM_SYNC_LEVEL, to
CM_NONE.

e*Way Intelligent Adapter for SNA User’s Guide 82 SeeBeyond Proprietary and Confidential

Chapter 7

Configuration Parameters (LUA)

This chapter describes the LUA configuration parameters for the e*Way Intelligent
Adapter for e*Gate.

7.1 Overview
The e*Way’s configuration parameters are set using the e*Way Editor; see Configuring
the e*Way on page 45 for procedural information. The e*Gate e*Way’s configuration
parameters are organized into the following sections. The default configurations are
provided in stcewsnalu0.def.

General Settings on page 83

Communication Setup on page 85

Monk Configuration on page 88

SNA LUA Client Configuration on page 97

Chapter 7 Section 7.2
Configuration Parameters (LUA) General Settings

e*Way Intelligent Adapter for SNA User’s Guide 83 SeeBeyond Proprietary and Confidential

7.2 General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.

Required Values

A valid filename, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file is stored in the e*Gate
SystemData directory. There is no default value for this parameter.

Additional Information

An Event is Journaled for the following conditions:

When the number of resends is exceeded (see Max Resends Per Message below)

When its receipt is due to an external error, but Forward External Errors is set to No

See the e*Gate Integrator System Administration and Operations Guide for more
information about file locations.

Max Resends Per Message

Description

Specifies the number of times the e*Way attempts to resend a message (Event) to the
external system after receiving an error. When this maximum is reached, the e*Way
waits for the number of seconds specified by the Resend Timeout parameter, and then
rolls back the Event to its publishing IQ.

Required Values

An integer from 1 to 1,024 (omit the comma). The default value is 5.

Max Failed Messages

Description

Specifies the maximum number of failed Events that the e*Way allows. When the
specified number of failed Events is reached, the e*Way shuts down and exits.

Required Values

An integer from 1 to 1,024 (omit the comma). The default value is 3.

Chapter 7 Section 7.2
Configuration Parameters (LUA) General Settings

e*Way Intelligent Adapter for SNA User’s Guide 84 SeeBeyond Proprietary and Confidential

Forward External Errors

Description

Description

Selects whether or not error messages received from the external system that begin
with the string “DATAERR” are queued to the e*Way’s configured queue. See Exchange
Data with External Function on page 91 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages are not to be forwarded.

Chapter 7 Section 7.3
Configuration Parameters (LUA) Communication Setup

e*Way Intelligent Adapter for SNA User’s Guide 85 SeeBeyond Proprietary and Confidential

7.3 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties in the Schema Designer controls
when the e*Way executable runs. The schedule you set within the parameters
discussed in this section (using the e*Way Editor) determines when data are
exchanged. Be sure you set the “exchange data” schedule to fall within the “run the
executable” schedule.

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External Function during scheduled data exchanges.

Required Values

An integer from 0 to 86,400 (omit the comma). The default value is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data
with External Function returns data, the setting of this parameter is ignored and
the e*Way invokes the Exchange Data with External Function immediately

If it is desired to invoke the Exchange Data with External Function again as soon as
possible when data is not queued to e*Gate via the return mechanism, the e*Way
Kernel Monk function insert-exchange-data-event can be called directly (prior to
leaving the exchange function) to accomplish this

If this parameter is set to zero, no exchange data schedule is set and the Exchange
Data with External Function is never called

See also

Down Timeout on page 87

Stop Exchange Data Schedule on page 86

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. The default value is No.

Chapter 7 Section 7.3
Configuration Parameters (LUA) Communication Setup

e*Way Intelligent Adapter for SNA User’s Guide 86 SeeBeyond Proprietary and Confidential

Additional Information

If this parameter is set to Yes, and the previous exchange function returned data,
the e*Way invokes the Exchange Data with External Function immediately

If it is desired to invoke the Exchange Data with External Function again as soon as
possible when data is not queued to e*Gate via the return mechanism, the e*Way
Kernel Monk function insert-exchange-data-event can be called directly (prior to
leaving the exchange function) to accomplish this

If this parameter is set to No, the e*Way always waits the number of seconds
specified by Exchange Data Interval between invocations of the Exchange Data
with External Function

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External Function.

Required Values

One or more schedules. The schedule can specify a date, time, or frequency (such as
yearly, weekly, monthly, daily, or every n seconds). There is no default value for this
parameter.

Also required

If you set a schedule using this parameter, you must also define all three of the
following:

Exchange Data with External Function

Positive Acknowledgment Function

Negative Acknowledgment Function

If you do not do so, the e*Way terminates execution when the schedule attempts to
start.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One or more schedules. The schedule can specify a date, time, or frequency (such as
yearly, weekly, monthly, daily, or every n seconds).

Chapter 7 Section 7.3
Configuration Parameters (LUA) Communication Setup

e*Way Intelligent Adapter for SNA User’s Guide 87 SeeBeyond Proprietary and Confidential

Down Timeout

Description

Specifies the number of seconds that the e*Way waits between calls to the External
Connection Establishment Function.

Required Values

An integer from 1 to 86,400 (omit the comma). The default value is 15.

Up Timeout

Description

Specifies the number of seconds the e*Way waits between calls to the External
Connection Verification Function.

Required Values

An integer from 1 to 86,400 (omit the comma). The default value is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way waits between attempts to resend an Event
to the external system, after receiving an error message.

Required Values

An integer from 1 to 86,400 (omit the comma). The default value is 10.

Chapter 7 Section 7.4
Configuration Parameters (LUA) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 88 SeeBeyond Proprietary and Confidential

7.4 Monk Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize Monk for communication with the external system. The functions that you
specify within this section are Monk functions that the e*Way calls automatically as
part of its normal operations. The functions are not called under user control.

All the configuration options in this section—the functions or variables defined, and
the additional path information—are loaded into a separate Monk environment than is
used by the e*Way’s Collaborations and its Collaboration Rules scripts. You cannot
access any of these functions, variables, or path information from Collaboration Rules
scripts.

Specifying Function or File Names

For those parameters that accept a file or the name of a Monk function, the e*Way
presumes that the name of the file is the same as the name of the function to be
executed, plus a .monk extension. For example, the file startup.monk should contain
the definition for the function startup. If path information is specified, that path is
appended to the Load Path.

If you specify a file name, be sure that the file has one of the following extensions:

.monk

.tsc

.dsc

Specifying Multiple Directories

To specify multiple directories, manually enter the directory names rather than
selecting them with the File Selection button. Directory names must be separated with
semicolons, and you can mix absolute paths with relative e*Gate paths. For example:

monk_scripts\my_dir;c:\my_directory

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Load Path

The Monk load path is the path Monk uses to locate files and data (set internally within
Monk). The default load paths are determined by the SharedExe and SystemData
settings in the .egate.store file. See the e*Gate Integrator System Administration and
Operations Guide for more information about this file.

Chapter 7 Section 7.4
Configuration Parameters (LUA) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 89 SeeBeyond Proprietary and Confidential

Additional Path

Description

Specifies a path to be appended to the Load Path. A directory specified here is searched
after searching the default load path.

Required Values

A pathname, or a series of paths separated by semicolons. There is no default value for
this parameter.

Note: This parameter is optional and may be left blank.

Additional information

The internal e*Way function that loads this path information is called only once, when
the e*Way first starts up.

Auxiliary Library Directories

Description

Specifies a path to auxiliary library directories. Any .monk files found within those
directories is automatically loaded into the e*Way’s Monk environment.

Required Values

A pathname, or a series of paths separated by semicolons. The default value is
monk_library/ewsnalu0.

Note: This parameter is optional and may be left blank.

Monk Environment Initialization File

Description

Specifies a file that contains environment initialization functions, which is loaded after
the Auxiliary Library Directories are loaded.

Required Values

A filename within the Load Path, or filename plus path information (relative or
absolute). If path information is specified, that path is appended to the load path. The
default value is snalu0-init.

Note: This parameter is optional and may be left blank.

Returns

The string “FAILURE” indicates that the function failed, and the e*Way exits; any other
string, including a null string, indicates success.

Chapter 7 Section 7.4
Configuration Parameters (LUA) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 90 SeeBeyond Proprietary and Confidential

Additional information

Use this feature to initialize the e*Way’s Monk environment (for example, to define
Monk variables that are used by the e*Way’s function scripts); it is good practice to
initialize any global Monk variables that may be used by any other Monk Extension
scripts

The internal function that loads this file is called once when the e*Way first starts up

The e*Way loads this file and try to invoke a function of the same base name as the
file name

Startup Function

Description

Specifies a Monk function that the e*Way loads and invokes upon startup or whenever
the e*Way’s configuration is reloaded. It is called after the e*Way loads the specified
Monk Environment Initialization File and any files within the specified Auxiliary
Library Directories. This function accepts no input, and must return a string.

This function should be used to initialize the external system before data exchange
starts.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is snalu0-startup.

Note: This parameter is optional and may be left blank.

Returns

The string “FAILURE” indicates that the function failed, and the e*Way exits; any other
string (including a null string) indicates success.

Process Outgoing Message Function

Description

Specifies the Monk function responsible for sending outgoing messages (Events) from
the e*Way to the external system. This function is event-driven, rather than schedule-
driven). The function requires a non-null string as input (i.e., the outgoing Event to be
sent), and must return a string.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is snalu0-outgoing.

Note: This parameter is required, and must not be left blank.

Chapter 7 Section 7.4
Configuration Parameters (LUA) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 91 SeeBeyond Proprietary and Confidential

Returns

A null string (““) indicates that the Event was published successfully to the external
system

A string beginning with RESEND indicates that the Event should be resent

A string beginning with CONNERR indicates that there is a problem with the
connection to the external system, and causes a rollback of the Event

A string beginning with DATAERR indicates that there is a problem with the
message (Event) data itself, and causes a rollback of the Event

A string beginning with SHUTDOWN indicates that the e*Way must exit
immediately

If any string other than one of the preceding is returned, the e*Way creates an entry
in the log file indicating that an attempt has been made to access an unsupported
function

Additional Information

The e*Way invokes this function when one of its Collaborations publishes an Event
to an external destination (as specified within the e*Gate Schema Designer).

Once this function has been called with a non-null string, the e*Way does not
process another Event until the current Event has been completely processed.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events.

Exchange Data with External Function

Description

Specifies a Monk function that initiates the transmission of data from the external
system to the e*Gate system and forwards that data as an inbound Event to one or more
e*Gate Collaborations. This function is invoked automatically by the Down Timeout or
manually by the start-schedule Monk function, and is responsible for either sending
data to or receiving data from the external system. If this function returns data, it is
queued to e*Gate in an inbound Collaboration. The e*Way must have at least one
Collaboration configured suitably to process the inbound Event, as well as any
required IQs.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is snalu0-incoming.

Note: This parameter is conditional and must be supplied only if the Exchange Data
Interval is set to a non-zero value.

Chapter 7 Section 7.4
Configuration Parameters (LUA) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 92 SeeBeyond Proprietary and Confidential

Returns

A null string (““) indicates that the data exchange was completed successfully, but
with no resultant data sent back to the e e*Gate system

A string beginning with CONNERR indicates that there is a problem with the
connection to the external system

A string beginning with DATAERR indicates that there is a problem with the
message (Event) data itself. If the error string contains data beyond the keyword,
the entire string is queued to e*Gate if an inbound Collaboration is so configured
and Forward External Errors is set to Yes. Queueing, however, is performed
without the subsequent sending of a ACK or NAK to the external system.

Any other string indicates that the contents of the string are packaged as an
inbound Event

Additional Information

Data can be queued directly to e*Gate by using the event-send-to-egate Monk
function or, if a two-phase approach is required, by using event-send-to-egate-no-
commit and then event-commit-to-egate or event-rollback-to-egate to commit or
rollback the enqueued events, as appropriate

Note: Until an Event is committed, it is not revealed to subscribers of that Event.

External Connection Establishment Function

Description

Specifies a Monk function that the e*Way calls (repeatedly) when it has determined that
the connection to the external system is down. The function accepts no input and must
return a string.

This function is executed according to the interval specified within the Down Timeout
parameter, and is called only according to this schedule. Once the e*Way has
determined that its connection to the external system is up, it calls the External
Connection Verification Function (see next).

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is snalu0-conn-establish.

Note: This parameter is required, and must not be left blank.

Returns

A string beginning with SUCCESS or UP indicates that the connection was
established successfully

A string beginning with DOWN indicates that the connection was not established
successfully

Any other string, including a null string, indicates that the attempt to establish the
connection failed and the external state is unknown

Chapter 7 Section 7.4
Configuration Parameters (LUA) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 93 SeeBeyond Proprietary and Confidential

External Connection Verification Function

Description

Specifies a Monk function that the e*Way calls when its internal variables show that the
connection to the external system is up. It is executed according to the interval specified
within the Up Timeout parameter, and is called only according to this schedule.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is snalu0-conn-verify.

Note: This parameter is optional and may be left blank.

Returns

“SUCCESS” or “UP” indicates that the connection was established successfully

Any other string (including the null string) indicates that the attempt to establish
the connection failed

Additional Information

If this function is not specified, the e*Way executes the External Connection
Establishment Function in its place. This latter function also is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a Monk function that the e*Way calls to shut down the connection to the
external system. This function is invoked only when the e*Way receives a suspend
command from a Control Broker.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is snalu0-shutdown.

Note: This parameter is required, and must not be left blank.

Input

A string indicating the purpose for shutting down the connection.

“SUSPEND_NOTIFICATION” - the e*Way is being suspended or shut down

“RELOAD_NOTIFICATION” - the e*Way is being reconfigured

Returns

A string, the value of which is ignored. Any return value indicates that the suspend
command can proceed and that the connection to the external system can be broken
immediately.

Chapter 7 Section 7.4
Configuration Parameters (LUA) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 94 SeeBeyond Proprietary and Confidential

Note: Include in this function any required “clean up” operations that must be performed
as part of the shutdown procedure, but before the e*Way exits.

Positive Acknowledgment Function

Description

This function is loaded during the initialization process and is called when all data
received from the external system has been processed and enqueued successfully.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is snalu0-pos-ack.

Note: This parameter is conditional and must be supplied only if the Exchange Data
with External Function is set to a non-zero value.

Required Input

A string, the inbound Event to e*Gate.

Returns

The string beginning with CONNERR indicates a problem with the connection to
the external system; when the connection is re-established, the function is called
again, with the same input data

Any other string, including a null string, indicates that the acknowledgement has
been sent to the external system successfully

Additional Information

After the Exchange Data with External Function returns a string that is
transformed into an inbound Event, the Event is handed off to one or more
Collaborations for further processing. The e*Way executes this function only if the
Event’s processing is completed successfully by all the Collaborations to which it
was sent; otherwise, the e*Way executes the Negative Acknowledgment Function.

This function can return data to be queued, but the e*Way will not acknowledge the
data with an ACK or NAK.

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Negative Acknowledgment Function

Description

This function is loaded during the initialization process and is called when the e*Way
fails to process or enqueue data received from the external system successfully.

Chapter 7 Section 7.4
Configuration Parameters (LUA) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 95 SeeBeyond Proprietary and Confidential

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is snalu0-neg-ack.

Note: This parameter is conditional and must be supplied only if the Exchange Data
with External Function is set to a non-zero value.

Required Input

A string, the inbound Event to e*Gate.

Returns

The string beginning with CONNERR indicates a problem with the connection to
the external system; when the connection is re-established, the function is called
again, using the same input data

Any other string, including a null string, indicates that the acknowledgement has
been sent to the external system successfully

Additional Information

This function is called only during the processing of inbound Events. After the
Exchange Data with External Function returns a string that is transformed into an
inbound Event, the Event is handed off to one or more Collaborations for further
processing. The e*Way executes this function if the Event’s processing is not
completed successfully by all the Collaborations to which it was sent; otherwise, the
e*Way executes the Positive Acknowledgment Function.

This function can return data to be queued, but the e*Way will not acknowledge the
data with an ACK or NAK.

Note: If you configure the acknowledgment function to return a non-null string, you must
configure a Collaboration (with appropriate IQs) to process the returned Event.

Shutdown Command Notification Function

Description

The e*Way calls this Monk function automatically to notify the external system that it is
about to shut down. This function also can be used to shut down the connection with
the external. The function accepts a string as input and must return a string.

Required Values

The name of a Monk function or the name of a file containing a Monk function. The
default value is snalu0-conn-shutdown.

Note: This parameter is required, and must not be left blank.

Input

When the Control Broker issues a shutdown command to the e*Way, the e*Way calls
this function with the string “SHUTDOWN_NOTIFICATION” passed as a parameter.

Chapter 7 Section 7.4
Configuration Parameters (LUA) Monk Configuration

e*Way Intelligent Adapter for SNA User’s Guide 96 SeeBeyond Proprietary and Confidential

Returns

A null string or “SUCCESS” indicates that the shutdown can occur immediately

Any other string indicates that shutdown must be postponed; once postponed,
shutdown does not proceed until the Monk function shutdown-request is executed

Additional Information

If you postpone a shutdown using this function, be sure to use the
shutdown-request function to complete the process in a timely manner.

Chapter 7 Section 7.5
Configuration Parameters (LUA) SNA LUA Client Configuration

e*Way Intelligent Adapter for SNA User’s Guide 97 SeeBeyond Proprietary and Confidential

7.5 SNA LUA Client Configuration
The parameters in this section provide the information required by the Generic Monk
e*Way to support SNA LUA (including LU0).

Local LU Name

Description

Specifies the Local LU defined on VTAM for local host.

Required Values

A string; this field is case sensitive. There is no default value for this parameter.

Note: This parameter is required; you must not leave this field blank.

Max Message Size

Description

Specifies the maximum number of bytes per packet of data. This number also
determines the size of the buffers.

Required Values

An integer from 1 to 864,000 (omit the comma). The default value is 1024

Note: This parameter is required; you must not leave this field blank.

Receive Timeout

Description

Specifies the number of milli-seconds to wait when reading from the SNA server.

Required Values

An integer from 1 to 864,000 (omit the comma). The default is 50000.

Control Bytes

Description

Specifies the number bytes to preserve at the beginning of the data. These are generally
used for information such as the MUX header.

Required Values

An integer from 0 to 864,000 (omit the comma). The default is 0.

e*Way Intelligent Adapter for SNA User’s Guide 98 SeeBeyond Proprietary and Confidential

Chapter 8

API Functions

This chapter describes the various API functions used by the e*Gate e*Way.

8.1 Overview
The e*Gate e*Way’s functions fall into the following categories:

Native e*Way Functions

LU6.2 on page 99

LUA on page 108

Standard e*Way Functions

LU6.2 on page 113

LUA on page 120

Generic e*Way Functions on page 126

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 99 SeeBeyond Proprietary and Confidential

8.2 Native e*Way Functions
The functions described in this section control the SNA e*Way’s interaction with SNA,
and can only be called from within a Collaboration Rules script.

8.2.1 LU6.2
The SNA e*Way’s native Monk functions for LU6.2 are:

sna-accept-conversation on page 99

sna-change-state on page 100

sna-change-state-no-synch on page 100

sna-confirmed on page 101

sna-client-connect on page 102

sna-client-connect-no-synch on page 102

sna-client-disconnect on page 103

sna-client-isconnected on page 103

sna-client-recv on page 104

sna-client-recv-no-synch on page 105

sna-client-send on page 105

sna-client-send-no-synch on page 106

sna-accept-conversation

Description

Allows the client to accept conversation by means of the following sequence.

1 Calls CMSLTP to specify the local TP name.

2 Calls CMACCP to accept the conversation.

3 Calls CMWAIT to wait for the local LU to attach the conversation.

Signature

(sna-accept-conversation LocalTPName)

Parameters

Returns

Returns Boolean #t (true) if successful; otherwise, returns #f (false).

Name Type Description

LocalTPName string The Local TP Name associated with the SNA Server.

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 100 SeeBeyond Proprietary and Confidential

Throws

None.

Location

stc_monksna.dll

sna-change-state

Description

Changes the state of the SNA conversation as follows:

If the parameter State = SEND, calls CMPTR to change the state to RECEIVE

If the parameter State = RECEIVE, calls CMRTS to change the state to SEND

After calling CMRTS, calls CMCFMED to get confirmation that the request to
send was received

Signature

(sna-change-state ServerHandle State)

Parameters

Returns

Returns Boolean #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Additional Information

Before a send or receive can be called, the conversation must be in the correct state.
For the client to send an Event to the server, the state must be send. In order to
receive an Event from the server, the state must be receive. This must be
synchronized with the server. Neither a send nor a receive occurs unless both TPs
are synchronized.

If the conversation is already in the state being requested, an error is returned.

Location

stc_monksna.dll

sna-change-state-no-synch

Description

Changes the state of the SNA conversation with no synchronization calls.

Name Type Description

ServerHandle opaque handle The handle to the SNA Server.

State string The Server State (send or receive).

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 101 SeeBeyond Proprietary and Confidential

Signature

(sna-change-state ServerHandle State)

Parameters

Returns

Returns Boolean #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Additional Information

Before a send or receive can be called, the conversation must be in the correct state.
For the client to send an Event to the server, the state must be send. In order to
receive an Event from the server, the state must be receive. This must be
synchronized with the server. Neither a send nor a receive occurs unless both TPs
are synchronized.

If the conversation is already in the state being requested, an error is returned.

sna-confirmed

Description

Calls CMCFMD to reply to a confirmation request from the partner program to verify
that there was no error detected by the local program within the data received.

Signature

(sna-confirmed ServerHandle)

Parameters

Returns

Returns Boolean #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Name Type Description

ServerHandle opaque handle The handle to the SNA Server.

State string The Server State (send or receive).

Name Type Description

ServerHandle opaque handle The handle to the SNA Server

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 102 SeeBeyond Proprietary and Confidential

Additional Information

SNA requires that the local and the partner program issue a ‘confirmed’ call after each
instance of data received. The conversation is blocked until such confirmation is
received. The ‘confirmed’ call synchronizes the processing of the two TPs.

Location

stc_monksna.dll

sna-client-connect

Description

Opens a connection to the specified server by means of the following sequence.

1 Calls CMINIT, to initialize the conversation with the partner LU.

2 Calls CMSPM, to set the processing mode to CM_BLOCKING.

3 Calls CMSSL, to set the synchronization level to CM_CONFIRM.

4 Calls CMALLC, to allocate the conversation with the partner LU.

Signature

(sna-client-connect SymDestName)

Parameters

Returns

Returns the handle to the SNA Server.

Throws

None.

Location

stc_monksna.dll

sna-client-connect-no-synch

Description

Opens a connection to the specified server and defaults the synchronization level to
CM_NONE.

Signature

(sna-client-connect SymDestName)

Name Type Description

SymDestName string The Symbolic Destination Name associated with the
SNA Server (see SYMDESTNAME on page 79).

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 103 SeeBeyond Proprietary and Confidential

Parameters

Returns

Returns the handle to the SNA Server.

Throws

None.

Location

stc_monksna.dll

sna-client-disconnect

Description

Closes the connection to the SNA server.

Signature

(sna-client-disconnect ServerHandle)

Parameters

Returns

Returns Boolean #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Additional Information

Generally, the TP that is sending data should deallocate the conversation; however, if
you are receiving data and want to disconnect, first call sna-change-state “SEND”.

Location

stc_monksna.dll

sna-client-isconnected

Description

Verifies that the connection to the SNA server is open.

Name Type Description

SymDestName string The Symbolic Destination Name associated with the
SNA Server (see SYMDESTNAME on page 79).

Name Type Description

ServerHandle opaque handle The handle to the SNA Server.

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 104 SeeBeyond Proprietary and Confidential

Signature

(sna-client-isconnected ServerHandle)

Parameters

Returns

Returns Boolean #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Location

stc_monksna.dll

sna-client-recv

Description

Contacts the specified SNA server to advise that it is ready to receive any data (Event)
that is available from the server.

1 Calls CMRCV to receive data from partner LU.

2 Calls CMCFMD to send confirmation to the partner that the data was received
successfully.

Signature

(sna-client-recv ServerHandle PacketSize Timeout)

Parameters

Returns

Returns a string representing the Event.

Throws

None.

Name Type Description

ServerHandle opaque handle The handle to the SNA Server

Name Type Description

ServerHandle opaque handle The handle to the SNA Server.

PacketSize integer The size of the packet in bytes (see PacketSize on
page 79)

Timeout integer The amount of milli-seconds to wait for a response
from the Server before a Timeout is issued (see
Timeout on page 80).

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 105 SeeBeyond Proprietary and Confidential

Additional Information

The states must be synchronized prior to making this call. The local program state must
be in the ‘receive’ mode.

Location

stc_monksna.dll

sna-client-recv-no-synch

Description

Contacts the specified SNA server to advise that it is ready to receive any data (Event)
that is available from the server. There are no synchronization calls with this function.

Signature

(sna-client-recv ServerHandle PacketSize Timeout)

Parameters

Returns

Returns a string representing the Event.

Throws

None.

Additional Information

The states must be synchronized prior to making this call. The local program state must
be in the ‘receive’ mode.

Location

stc_monksna.dll

sna-client-send

Description

Sends an Event to the specified SNA server.

Signature

(sna-client-send ServerHandle Event)

Name Type Description

ServerHandle opaque handle The handle to the SNA Server.

PacketSize integer The size of the packet in bytes (see PacketSize on
page 79).

Timeout integer The amount of milli-seconds to wait for a response
from the Server before a Timeout is issued (see
Timeout on page 80).

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 106 SeeBeyond Proprietary and Confidential

Parameters

Returns

Returns Boolean #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Additional Information

The states must be synchronized prior to making this call. The local program state must
be in the ‘send’ mode.

Location

stc_monksna.dll

sna-client-send-no-synch

Description

Sends an Event to the specified SNA server.

1 Calls CMSEND to send data to the partner LU, and then

2 Issues CMCFM to request a confirmation from the partner LU that the data sent
was received successfully.

Signature

(sna-client-send ServerHandle Event)

Parameters

Returns

Returns Boolean #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Additional Information

No synchronization is required prior to making this call. The local program state must
be in the ‘send’ mode.

Name Type Description

ServerHandle opaque handle The handle to the SNA Server

Event string The Event to be sent.

Name Type Description

ServerHandle opaque handle The handle to the SNA Server

Event string The Event to be sent.

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 107 SeeBeyond Proprietary and Confidential

Location

stc_monksna.dll

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 108 SeeBeyond Proprietary and Confidential

8.2.2 LUA
The SNA e*Way’s native Monk functions for LUA (and LU0) are:

snalu0-connect on page 108

snalu0-disconnect on page 108

snalu0-isconnected on page 109

snalu0-send on page 110

snalu0-recv on page 110

snalu0-get-property on page 111

snalu0-set-property on page 111

snalu0-connect

Description

Calls RUI_INIT, which notifies VTAM that a connection is desired.

Signature

(snalu0-connect luName timeout)

Parameters

Returns

Returns a handle for subsequent SNA calls.

Throws

None.

Examples

(define hSNA (snalu0-connect “T1860C01”)

Location

monksnalua.monk

snalu0-disconnect

Description

Calls RUI_INIT, which notifies VTAM that the connection no longer desired.

Name Type Description

luName string A zero-delimited string specifying the local LU name
(see Local LU Name on page 97).

timeout int Timeout in milliseconds to wait for a response from
the server before timing out (see Receive Timeout
on page 97).

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 109 SeeBeyond Proprietary and Confidential

Signature

(snalu0-disconnect snaHandle)

Parameters

Returns

Returns Boolean #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Examples

(snalu0-disconnect hSNA)

Location

monksnalua.monk

snalu0-isconnected

Description

Sends a status to SNA Server to verify that the connection handle is still valid.

Signature

(snalu0-isconnected snaHandle)

Parameters

Returns

Returns Boolean #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Examples

(if (snalu0-isconnected hSNA)
(display “handle still good\n”)
(display “handle bad\n”)

)

Location

monksnalua.monk

Name Type Description

snaHandle Opaque handle The handle to the SNA Server.

Name Type Description

snaHandle Opaque handle The handle to the SNA Server.

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 110 SeeBeyond Proprietary and Confidential

snalu0-send

Description

Sends an Event to the specified SNA Server.

Signature

(snalu0-send snaHandle event)

Parameters

Returns

Returns Boolean #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Examples

(snalu0-send hSNA “Hello There”)

Location

monksnalua.monk

snalu0-recv

Description

Receives an Event from the specified SNA Server.

Signature

(snalu0-recv snaHandle packetSize timeout)

Parameters

Returns

Returns the data string received from SNA.

Name Type Description

snaHandle Opaque handle The handle to the SNA Server.

event String Data to send to the SNA Server.

Name Type Description

snaHandle Opaque handle The handle to the SNA Server.

packetSize Integer The size of the packet in bytes to read.

timeout Integer Timeout in milliseconds to wait for a response from
the server before timing out (see Receive Timeout
on page 97).

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 111 SeeBeyond Proprietary and Confidential

Throws

None.

Examples

(set! data(snalu0-recv hSNA 200 2000))

Location

monksnalua.monk

snalu0-get-property

Description

Obtains the property from the previous send or receive call.

Signature

(snalu0-get-property snaHandle propertyName)

Parameters

Returns

Returns Boolean #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Examples

(snalu0-send hSNA “Hello There”)

Location

monksnalua.monk

snalu0-set-property

Description

Sets the specified property in SNA, generally precedes the receive or send call.

Name Type Description

snaHandle Opaque handle The handle to the SNA Server.

propertyName String SNA Property types:
lua_th
lua_rh
lua_flag1
lua_flag2
lua_message_type
lua_inc_th_snf (returns current snf + 1)
lua_th_snf (returns current sequence number)

Chapter 8 Section 8.2
API Functions Native e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 112 SeeBeyond Proprietary and Confidential

Signature

(snalu0-set-property snaHandle propertyName propertyValue)

Parameters

Returns

Returns Boolean #t (true) if successful; otherwise, returns #f (false).

Throws

None.

Examples

(snalu0-send hSNA “Hello There”)

Location

monksnalua.monk

Name Type Description

snaHandle Opaque handle The handle to the SNA Server.

propertyName String SNA Property types:
lua_th
lua_rh
lua_flag1
lua_flag2
lua_message_type
lua_inc_th_snf (returns current snf + 1)
lua_th_snf (returns current sequence number)

propertyValue String Property value to set.

Chapter 8 Section 8.3
API Functions Standard e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 113 SeeBeyond Proprietary and Confidential

8.3 Standard e*Way Functions
The functions described in this section control the SNA e*Way’s communications center
and are defined within the configuration file. None of these functions is available to
Collaboration Rules scripts executed by the e*Way.

8.3.1 LU6.2
The SNA e*Way’s standard Monk functions for LU6.2 are:

sna-init on page 113

sna-conn-establish on page 114

sna-conn-verify on page 114

sna-conn-shutdown on page 115

sna-incoming on page 115

sna-outgoing on page 116

sna-pos-ack on page 117

sna-neg-ack on page 117

sna-shutdown on page 118

sna-startup on page 119

sna-init

Description

Begins the initialization process for the e*Way. This function loads the stc_monksna.dll
file and the initialization file, thereby making the function scripts available for future
use.

Signature

(sna-init)

Parameters

None.

Returns

The string “FAILURE” causes the e*Way to shut down. Any other return indicates
success.

Throws

None.

Chapter 8 Section 8.3
API Functions Standard e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 114 SeeBeyond Proprietary and Confidential

Additional Information

Within this function, any necessary global variables to be used by the function scripts
could be defined. The internal function that loads this file is called once when the
e*Way first starts up.

See Monk Environment Initialization File on page 71 for more information.

Location

sna-init.monk

sna-conn-establish

Description

Establishes a connection to the external system.

Signature

(sna-conn-establish)

Parameters

None.

Returns

The string “UP” indicates the connection was established successfully. Anything else
indicates no connection.

Throws

None.

Additional Information

See External Connection Establishment Function on page 74 for more information.

Location

sna-conn-establish.monk

sna-conn-verify

Description

Used to verify whether or not the connection to the external system is established.

Signature

(sna-conn-verify)

Parameters

None.

Returns

The string “UP” indicates the connection is currently established. Anything else
indicates no connection.

Chapter 8 Section 8.3
API Functions Standard e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 115 SeeBeyond Proprietary and Confidential

Throws

None.

Additional Information

See External Connection Verification Function on page 75 and on page 93 for more
information.

Location

sna-conn-verify.monk

sna-conn-shutdown

Description

Requests that the external connection shut down.

Signature

(sna-conn-shutdown shutdown)

Parameters

Returns

The string “SUCCESS” indicates that the shutdown can occur immediately. Any other
return value indicates that the shutdown Event must be delayed until a shutdown-
request call is executed successfully.

Throws

None.

Additional Information

If a return value of “SUCCESS” is not returned, then you must execute a shutdown-
request call from within a Monk function to allow the requested shutdown to process
to continue.

See External Connection Shutdown Function on page 75 for more information.

Location

sna-conn-shutdown.monk

sna-incoming

Description

Sends a received Event from the external system to e*Gate. The function expects no
input.

Name Type Description

shutdown string The function that passes the string
"SUSPEND_NOTIFICATION" to the external system
before the e*Way shuts down.

Chapter 8 Section 8.3
API Functions Standard e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 116 SeeBeyond Proprietary and Confidential

Signature

(sna-incoming)

Parameters

None.

Returns

An empty string indicates a successful operation, but nothing is sent to e*Gate.

A string containing Event data indicates successful operation, and the returned
Event is sent to e*Gate.

The string “CONNERR” indicates a problem with the connection to the external
system. When the connection is re-established this function is re-executed with the
same input Event.

Throws

None.

Additional Information

See Exchange Data with External Function on page 73 for more information.

Location

sna-incoming.monk

sna-outgoing

Description

Sends a received Event from e*Gate to the external system.

Signature

(sna-outgoing event-string)

Parameters

Returns

An empty string indicates a successful operation.

The string “RESEND” causes the Event to be immediately resent.

The string “CONNERR” indicates a problem with the connection to the external
system. When the connection is re-established this function is re-executed with the
same input Event.

The string “DATAERR” indicates the function had a problem processing data. If the
e*Gate journal is enabled, the Event is journaled and the failed Event count is
increased. (The input Event is essentially skipped in this process.) Use the event-
send-to-egate function to place bad Events in a bad Event queue.

Name Type Description

event-string string The Event to be processed.

Chapter 8 Section 8.3
API Functions Standard e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 117 SeeBeyond Proprietary and Confidential

Throws

None.

Additional Information

See Process Outgoing Message Function on page 72 for more information.

Location

sna-outgoing.monk

sna-pos-ack

Description

Sends a positive acknowledgment to the external system after all Collaborations to
which the e*Way sent data have processed and enqueued that data successfully.

Signature

(sna-pos-ack arg)

Parameters

Returns

An empty string indicates a successful operation. The e*Way is then be able to
proceed with the next request.

The string “CONNERR” indicates a problem with the connection to the external
system. When the connection is re-established, the function is called again.

Additional Information

See Positive Acknowledgment Function on page 76 for more information.

Location

sna-pos-ack.monk

sna-neg-ack

Description

Sends a negative acknowledgment to the external system when the e*Way fails to
process and queue Events from the external system.

Signature

(sna-neg-ack arg)

Name Type Description

arg string The Event for which an acknowledgment is sent.

Chapter 8 Section 8.3
API Functions Standard e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 118 SeeBeyond Proprietary and Confidential

Parameters

Returns

An empty string indicates a successful operation.

The string “CONNERR” indicates a problem with the connection to the external
system. When the connection is re-established, the function is called again.

Throws

None.

Additional Information

See Negative Acknowledgment Function on page 76 for more information.

Location

sna-neg-ack.monk

sna-shutdown

Description

Notifies the external system that the e*Way is shutting down.

Signature

(sna-shutdown command)

Parameters

Returns

Returns a null string.

Throws

None.

Additional Information

See Shutdown Command Notification Function on page 77 for more information.

Location

sna-shutdown.monk

Name Type Description

arg string The Event for which a negative acknowledgment is
sent.

Name Type Description

command string The function that passes the string
"SHUTDOWN_NOTIFICATION" to the external
system before the e*Way shuts down.

Chapter 8 Section 8.3
API Functions Standard e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 119 SeeBeyond Proprietary and Confidential

sna-startup

Description

Invokes startup and is used for function loads that are specific to this e*Way.

Signature

(sna-startup)

Parameters

None.

Returns

The string “FAILURE” causes the e*Way to shut down. Any other return indicates
success.

Throws

None.

Additional Information

This function should be used to initialize the external system before data exchange
starts. Any additional variables may be defined here.

See Startup Function on page 72 for more information.

Location

sna-startup.monk

Chapter 8 Section 8.3
API Functions Standard e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 120 SeeBeyond Proprietary and Confidential

8.3.2 LUA
The SNA e*Way’s standard Monk functions for LUA (and LU0) are:

snalu0-init on page 120

snalu0-conn-establish on page 121

snalu0-conn-verify on page 121

snalu0-conn-shutdown on page 121

snalu0-incoming on page 122

snalu0-outgoing on page 123

snalu0-pos-ack on page 123

snalu0-neg-ack on page 124

snalu0-shutdown on page 124

snalu0-startup on page 125

snalu0-init

Description

Begins the initialization process for the e*Way. This function loads the
stc_monksnalu0.dll file and the initialization file, thereby making the function scripts
available for future use.

Signature

(snalu0-init)

Parameters

None.

Returns

The string “FAILURE” causes the e*Way to shut down. Any other return indicates
success.

Throws

None.

Additional Information

Within this function, any necessary global variables to be used by the function scripts
could be defined. The internal function that loads this file is called once when the
e*Way first starts up.

See Monk Environment Initialization File on page 89 for more information.

Chapter 8 Section 8.3
API Functions Standard e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 121 SeeBeyond Proprietary and Confidential

snalu0-conn-establish

Description

Establishes a connection to the external system.

Signature

(snalu0-conn-establish)

Parameters

None.

Returns

The string “UP” indicates the connection was established successfully. Anything else
indicates failure to connect.

Throws

None.

Additional Information

See External Connection Establishment Function on page 92 for more information.

snalu0-conn-verify

Description

Used to verify whether or not the connection to the external system is established.

Signature

(snalu0-conn-verify)

Parameters

None.

Returns

The string “UP” if connection established. Any other value indicates the connection is
not established.

Throws

None.

Additional Information

See External Connection Verification Function on page 93 for more information.

snalu0-conn-shutdown

Description

Requests that the external connection shut down. A return value of “SUCCESS”
indicates that the shutdown can occur immediately. Any other return value indicates

Chapter 8 Section 8.3
API Functions Standard e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 122 SeeBeyond Proprietary and Confidential

that the shutdown Event must be delayed. The user is then required to execute a
(shutdown-request on page 131) call from within a Monk function to allow the
requested shutdown to process to continue.

Signature

(snalu0-conn-shutdown shutdown)

Parameters

Returns

The string “SUCCESS” allows an immediate shutdown to occur. Anything else delays
shutdown until the shutdown-request is executed successfully.

Throws

None.

Additional Information

See External Connection Shutdown Function on page 93 for more information.

snalu0-incoming

Description

Sends a received Event from the external system to e*Gate. The function expects no
input.

Signature

(snalu0-incoming)

Parameters

None.

Returns

An empty string indicates a successful operation, but nothing is sent to e*Gate.

A string containing Event data indicates successful operation, and the returned
Event is sent to e*Gate.

The string “CONNERR” indicates a problem with the connection to the external
system. When the connection is re-established this function is re-executed with the
same input Event.

Throws

None.

Name Type Description

shutdown string The function that passes the string
"SUSPEND_NOTIFICATION" to the external system
before the e*Way shuts down.

Chapter 8 Section 8.3
API Functions Standard e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 123 SeeBeyond Proprietary and Confidential

Additional Information

See Exchange Data with External Function on page 91 for more information.

snalu0-outgoing

Description

Sends a received Event from e*Gate to the external system.

Signature

(snalu0-outgoing event-string)

Parameters

Returns

An empty string indicates a successful operation.

The string “RESEND” causes the Event to be immediately resent.

The string “CONNERR” indicates a problem with the connection to the external
system. When the connection is re-established this function is re-executed with the
same input Event.

The string “DATAERR” indicates the function had a problem processing data. If the
e*Gate journal is enabled, the Event is journaled and the failed Event count is
increased. (The input Event is essentially skipped in this process.) Use the event-
send-to-egate function to place bad events in a bad event queue.

Throws

None.

Additional Information

See Process Outgoing Message Function on page 90 for more information.

snalu0-pos-ack

Description

Sends a positive acknowledgment to the external system after all Collaborations to
which the e*Way sent data have processed and enqueued that data successfully.

Signature

(snalu0-pos-ack arg)

Name Type Description

event-string string The Event to be processed.

Chapter 8 Section 8.3
API Functions Standard e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 124 SeeBeyond Proprietary and Confidential

Parameters

Returns

An empty string indicates a successful operation. The e*Way is then be able to
proceed with the next request.

The string “CONNERR” indicates a problem with the connection to the external
system. When the connection is re-established, the function is called again.

Additional Information

See Positive Acknowledgment Function on page 94 for more information.

snalu0-neg-ack

Description

Sends a negative acknowledgment to the external system when the e*Way fails to
process and queue Events from the external system.

Signature

(snalu0-neg-ack arg)

Parameters

Returns

An empty string indicates a successful operation.

The string “CONNERR” indicates a problem with the connection to the external system.
When the connection is re-established, the function is called again.

Throws

None.

Additional Information

See Negative Acknowledgment Function on page 94 for more information.

snalu0-shutdown

Description

Notifies the external system that the e*Way is shutting down.

Name Type Description

arg string The Event for which an acknowledgment is sent.

Name Type Description

arg string The Event for which a negative acknowledgment is
sent.

Chapter 8 Section 8.3
API Functions Standard e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 125 SeeBeyond Proprietary and Confidential

Signature

(snalu0-shutdown command)

Parameters

Returns

Returns a null string.

Throws

None.

Additional Information

See Shutdown Command Notification Function on page 95 for more information.

snalu0-startup

Description

Invokes startup and is used for function loads that are specific to this e*Way.

Signature

(snalu0-startup)

Parameters

None.

Returns

The string “FAILURE” causes the e*Way to shut down. Any other return indicates
success.

Throws

None.

Additional Information

This function should be used to initialize the external system before data exchange
starts. Any additional variables may be defined here.

See Startup Function on page 90 for more information.

Name Type Description

command string The function that passes the string
"SHUTDOWN_NOTIFICATION" to the external
system before the e*Way shuts down.

Chapter 8 Section 8.4
API Functions Generic e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 126 SeeBeyond Proprietary and Confidential

8.4 Generic e*Way Functions
The functions described in this section are implemented in the e*Way Kernel layer and
control the e*Way’s most basic operations. They can be used only by the functions
defined within the e*Way’s configuration file. None of these functions is available to
Collaboration Rules scripts executed by the e*Way. These functions are located in
stcewgenericmonk.exe.

The current set of basic Monk functions is:

event-commit-to-egate on page 126

event-rollback-to-egate on page 127

event-send-to-egate on page 127

event-send-to-egate-ignore-shutdown on page 128

event-send-to-egate-no-commit on page 128

get-logical-name on page 129

insert-exchange-data-event on page 129

send-external-up on page 130

send-external-down on page 130

shutdown-request on page 131

start-schedule on page 131

stop-schedule on page 132

waiting-to-shutdown on page 132

event-commit-to-egate

Description

Commits the Event sent previously to the e*Gate system using event-send-to-egate-no-
commit.

Signature

(event-commit-to-egate string)

Parameters

Returns

Boolean true (#t) if the data is committed successfully; otherwise, false (#f).

Name Type Description

string string The data to be sent to the e*Gate system.

Chapter 8 Section 8.4
API Functions Generic e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 127 SeeBeyond Proprietary and Confidential

Throws

None.

event-rollback-to-egate

Description

Rolls back the Event sent previously to the e*Gate system using event-send-to-egate-
no-commit, following receipt of a rollback command from the external system.

Signature

(event-rollback-to-egate string)

Parameters

Returns

Boolean true (#t) if the data is rolled back successfully; otherwise, false (#f).

Throws

None.

event-send-to-egate

Description

Sends data that the e*Way has already received from the external system into the
e*Gate system as an Event.

Signature

(event-send-to-egate string)

Parameters

Returns

A Boolean true (#t) if the data is sent successfully; otherwise, a Boolean false (#f).

Throws

None.

Name Type Description

string string The data to be rolled back to the e*Gate
system.

Name Type Description

string string The data to be sent to the e*Gate system

Chapter 8 Section 8.4
API Functions Generic e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 128 SeeBeyond Proprietary and Confidential

Additional information

This function can be called by any e*Way function when it is necessary to send data to
the e*Gate system in a blocking fashion.

See also

event-send-to-egate-ignore-shutdown on page 128

event-send-to-egate-no-commit on page 128

event-send-to-egate-ignore-shutdown

Description

Sends data that the e*Way has already received from the external system into the
e*Gate system as an Event—but ignores any pending shutdown issues.

Signature

(event-send-to-egate-ignore-shutdown string)

Parameters

Returns

Boolean true (#t) if the data is sent successfully; otherwise, false (#f).

Throws

None.

See also

event-send-to-egate on page 127

event-send-to-egate-no-commit on page 128

event-send-to-egate-no-commit

Description

Sends data that the e*Way has received from the external system to the e*Gate system
as an Event—but without Committing, pending confirmation from the external system
of correct transmission of the data.

Signature

(event-send-to-egate-no-commit string)

Name Type Description

string string The data to be sent to the e*Gate system.

Chapter 8 Section 8.4
API Functions Generic e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 129 SeeBeyond Proprietary and Confidential

Parameters

Returns

Boolean true (#t) if the data is sent successfully; otherwise, false (#f).

Throws

None.

See also

event-commit-to-egate on page 126

event-rollback-to-egate on page 127

event-send-to-egate on page 127

event-send-to-egate-ignore-shutdown on page 128

get-logical-name

Description

Returns the logical name of the e*Way.

Signature

(get-logical-name)

Parameters

None.

Returns

The name of the e*Way (as defined by the e*Gate Schema Designer).

Throws

None.

insert-exchange-data-event

Description

While the Exchange Data with External Function is still active, this function can be
called to initiate a repeat call to it—whether or not data was queued to e*Gate via the
function’s return mechanism following the initial call.

Signature

(insert-exchange-data-event)

Name Type Description

string string The data to be sent to the e*Gate system.

Chapter 8 Section 8.4
API Functions Generic e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 130 SeeBeyond Proprietary and Confidential

Parameters

None.

Returns

None.

Throws

None.

See also

Exchange Data with External Function on page 73 (LU6.2) or Exchange Data with
External Function on page 91 (LUA/LU0).

Exchange Data Interval on page 67 (LU6.2) or Exchange Data Interval on page 85
(LUA/LU0).

Zero Wait Between Successful Exchanges on page 67 (LU6.2) or Zero Wait Between
Successful Exchanges on page 85 (LUA/LU0).

send-external-up

Description

Informs the e*Way that the connection to the external system is up.

Signature

(send-external-up)

Parameters

None.

Returns

None.

Throws

None.

send-external-down

Description

Informs the e*Way that the connection to the external system is down.

Signature

(send-external-down)

Parameters

None.

Chapter 8 Section 8.4
API Functions Generic e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 131 SeeBeyond Proprietary and Confidential

Returns

None.

Throws

None.

shutdown-request

Description

Completes the e*Gate shutdown procedure that was initiated by the Control Broker but
was interrupted by returning a non-null value within the Shutdown Command
Notification Function. Once this function is called, shutdown proceeds immediately.

Signature

(shutdown-request)

Parameters

None.

Returns

None.

Throws

None.

Additional Information

Once interrupted, the e*Way’s shutdown cannot proceed until this Monk function is
called. If you do interrupt an e*Way shutdown, we recommend that you complete the
process in a timely fashion.

See also

Shutdown Command Notification Function on page 77 (LU6.2) or Shutdown
Command Notification Function on page 95 (LUA/LU0).

start-schedule

Description

Requests that the e*Way execute the Exchange Data with External Function specified
within the e*Way’s configuration file. Does not affect any defined schedules.

Signature

(start-schedule)

Parameters

None.

Chapter 8 Section 8.4
API Functions Generic e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 132 SeeBeyond Proprietary and Confidential

Returns

None.

Throws

None.

See also

Exchange Data with External Function on page 73 (LU6.2) or Exchange Data with
External Function on page 91 (LUA/LU0).

stop-schedule

Description

Requests that the e*Way halt execution of the Exchange Data with External Function
specified within the e*Way’s configuration file. Execution is stopped when the e*Way
concludes any open transaction. Does not effect any defined schedules, and does not
halt the e*Way process itself.

Signature

(stop-schedule)

Parameters

None.

Returns

None.

Throws

None.

See also

Exchange Data with External Function on page 73 (LU6.2) or Exchange Data with
External Function on page 91 (LUA/LU0).

waiting-to-shutdown

Description

Informs the external application that a shutdown command has been issued.

Signature

(waiting-to-shutdown)

Parameters

None.

Returns

Boolean true (#t) if successful; otherwise, false (#f).

Chapter 8 Section 8.4
API Functions Generic e*Way Functions

e*Way Intelligent Adapter for SNA User’s Guide 133 SeeBeyond Proprietary and Confidential

Throws

None.

Index

e*Way Intelligent Adapter for SNA User’s Guide 134 SeeBeyond Proprietary and Confidential

Index

A
Ack String parameter 80
Additional Path parameter 71, 89
APIs - see functions, Monk
Assigning ETDs to Event Types 32
Autorun 21
Auxiliary Library Directories parameter 71, 89

C
Changing the User Name 49
Collaboration 34, 53, 56

Rules 56
Service 53

Communication Setup - see configuration
configuration

Communication Setup (LU0) 85–87
Communication Setup (LUA) 67–69
General Settings (LU0) 83–84
General Settings (LUA) 65–66
Monk Configuration (LU0) 88–96
Monk Configuration (LUA) 70–78
SNA Client Configuration (LU0) 97
SNA Client Configuration (LUA) 79–81

configuration parameters
Ack String 80
Additional Path 71, 89
Auxiliary Library Directories 71, 89
Control Bytes 97
Data Flow 81
Down Timeout 69, 87
Exchange Data Interval 67, 85
Exchange Data With External Function 73, 91
External Connection Establishment Function 74,

92
External Connection Shutdown Function 75, 93
External Connection Verification Function 75, 93
Forward External Errors 84
Forward External Errors (LUA) 66
Initialize Conversation 81
Journal File Name 83
Journal File Name (LUA) 65
Local LU Name 79, 97
Max Failed Messages 83

Max Failed Messages (LUA) 65
Max Message Name 97
Max Resends Per Message 83
Max Resends Per Message (LUA) 65
Monk Environment Initialization File 71, 89
Nak String 80
Negative Acknowledgment Function 76, 94
PacketSize 79
Positive Acknowledgement Function 76, 94
Process Outgoing Message Function 72, 90
Receive Timeout 97
Request Reply 80
Resend Timeout 69, 87
Shutdown Command Notification Function 77,

95
Start Exchange Data Schedule 68, 69, 86, 87
Startup Function 72, 90
Stop Exchange Data Schedule 69, 86
SYMDESTNAME 79
Synchronization Level 81
Timeout 80
Up Timeout 69, 87
Use Ack Nak 80
Zero Wait Between Successful Exchanges 67, 85

configuration procedures 45
Control Bytes parameter 97
conventions, writing in document 8

D
Data Flow parameter 81
Down Timeout parameter 69, 87

E
e*Way

configuration 45
creating 43
Installation 21
Properties 44
Schedules 49
Startup Options 49
troubleshooting 53

Editor
Collaboration Rules 56

Event Type 32
Event Type Definition (ETD) 32
event-commit-to-egate function 126
event-rollback-to-egate function 127
Events 55
event-send-to-egate function 127
event-send-to-egate-ignore-shutdown function 128
event-send-to-egate-no-commit function 128
Exchange Data Interval parameter 67, 85

Index

e*Way Intelligent Adapter for SNA User’s Guide 135 SeeBeyond Proprietary and Confidential

Exchange Data with External Function parameter
73, 91

External Connection Establishment Function
parameter 74, 92

External Connection Shutdown Function parameter
75, 93

External Connection Verification Function
parameter 75, 93

F
Forward External Errors (LUA) parameter 66
Forward External Errors parameter 84
functions (see also functions, Monk)

Generic 126–133
Native 99–112
Standard 113–125

functions, Monk
event-commit-to-egate 126
event-rollback-to-egate 127
event-send-to-egate 127
event-send-to-egate-ignore-shutdown 128
event-send-to-egate-no-commit 128
get-logical-name 129
insert-exchange-data-event 129
send-external down 130
send-external-up 130
shutdown-request 131
sna-accept-conversation 99
sna-change-state 100
sna-change-state-no-synch 100
sna-client-connect 102
sna-client-connect-no-synch 102
sna-client-disconnect 103
sna-client-isconnected 103
sna-client-recv 104
sna-client-recv-no-synch 105
sna-client-send 105
sna-client-send-no-synch 106
sna-confirmed 101
sna-conn-establish 114
sna-conn-shutdown 115
sna-conn-verify 114
sna-incoming 115
sna-init 113
snalu0-connect 108
snalu0-conn-establish 121
snalu0-conn-shutdown 121
snalu0-conn-verify 121
snalu0-disconnect 108
snalu0-get-property 111
snalu0-incoming 122
snalu0-init 120
snalu0-isconnected 109

snalu0-neg-ack 124
snalu0-outgoing 123
snalu0-pos-ack 123
snalu0-recv 110
snalu0-send 110
snalu0-set-property 111
snalu0-shutdown 124
sna-neg-ack 117
sna-outgoing 116
sna-pos-ack 117
sna-shutdown 118
sna-startup 119, 125
start-schedule 131
stop-schedule 132
waiting-to-shutdown 132

G
General Settings - see configuration
Generic e*Way Functions 126–133
get-logical-name function 129

I
Initialize Conversation parameter 81
insert-exchange-data-event function 129
Installation procedures

e*Way (UNIX) 24
e*Way (Windows) 21

InstallShield 21
Intelligent Queue (IQ) 35, 53

J
Journal File Name (LUA) parameter 65
Journal File Name parameter 83

L
Load Path, Monk 70, 88
Local LU Name parameter 79, 97
logging options 51

M
Max Failed Messages (LUA) parameter 65
Max Failed Messages parameter 83
Max Message Name parameter 97
Max Resends Per Message (LUA) parameter 65
Max Resends Per Message parameter 83
monitoring thresholds 52
Monk Configuration

Load Path 70, 88

Index

e*Way Intelligent Adapter for SNA User’s Guide 136 SeeBeyond Proprietary and Confidential

Specifying File Names 70, 88
Specifying Function Names 70, 88
Specifying Multiple Directories 70, 88

Monk Configuration - see configuration
Monk Environment Initialization File parameter 71,

89
Monk functions - see functions, Monk

N
Nak String parameter 80
Native e*Way Functions - see functions
Negative Acknowledgment Function parameter 76,

94

P
PacketSize parameter 79
parameters - see configuration parameters
Participating Host 53
Patch Requirements, Solaris 19
Positive Acknowledgment Function parameter 76,

94
procedures

configuration 45
installation 21

Process Outgoing Message Function parameter 72,
90

Properties, e*Way 44
publish 53

Q
Queue - see Intelligent Queue (IQ)

R
Receive Timeout parameter 97
Request Reply parameter 80
Resend Timeout parameter 69, 87

S
Schedules 49
send-external down function 130
send-external-up function 130
Setting Startup Options or Schedules 49
Shutdown Command Notification Function

parameter 77, 95
shutdown-request function 131
SNA Client Configuration 79
SNA Client Configuration - see configuration
sna-accept-conversation function 99

sna-change-state function 100
sna-change-state-no-synch function 100
sna-client-connect function 102
sna-client-connect-no-synch function 102
sna-client-disconnect function 103
sna-client-isconnected function 103
sna-client-recv function 104
sna-client-recv-no-synch function 105
sna-client-send function 105
sna-client-send-no-synch function 106
sna-confirmed function 101
sna-conn-establish function 114
sna-conn-shutdown function 115
sna-conn-verify function 114
sna-incoming function 115
sna-init function 113
snalu0-connect function 108
snalu0-conn-establish function 121
snalu0-conn-shutdown function 121
snalu0-conn-verify function 121
snalu0-disconnect function 108
snalu0-get-property function 111
snalu0-incoming function 122
snalu0-init function 120
snalu0-isconnected function 109
snalu0-neg-ack function 124
snalu0-outgoing function 123
snalu0-pos-ack function 123
snalu0-recv function 110
snalu0-send function 110
snalu0-set-property function 111
snalu0-shutdown function 124
sna-neg-ack function 117
sna-outgoing function 116
sna-pos-ack function 117
sna-shutdown function 118
sna-startup function 119, 125
Solaris Patch Requirements 19
Standard e*Way Functions - see functions
Start Exchange Data Schedule parameter 68, 69, 86,

87
start-schedule function 131
Startup Function parameter 72, 90
Startup Options 49
Stop Exchange Data Schedule parameter 69, 86
stop-schedule function 132
subscribe 53
SYMDESTNAME parameter 79
Synchronization Level parameter 81

T
Timeout parameter 80
troubleshooting the e*Way 53

Index

e*Way Intelligent Adapter for SNA User’s Guide 137 SeeBeyond Proprietary and Confidential

U
UNIX installation procedures 24
Up Timeout parameter 69, 87
Use Ack Nak parameter 80
User name 49

W
waiting-to-shutdown function 132
Windows installation procedures 21

Z
Zero Wait Between Successful Exchanges parameter

67, 85

	e*Way Intelligent Adapter for SNA User’s Guide
	Contents
	Preface
	P.1 Intended Reader
	P.2 Organization
	P.3 Nomenclature
	P.4 Online Use
	P.5 Writing Conventions
	P.6 Additional Documentation

	Introduction
	1.1 SNA Architectural Overview
	1.1.1 Supported Logical Unit Types
	SNA LU6.2
	SNA LUA
	SNA LU0

	1.2 SNA e*Way Overview
	1.2.1 e*Way Components
	1.2.2 Supported Operating Systems

	Installation
	2.1 System Requirements
	2.1.1 Supported Operating Systems
	English Version
	Korean Version

	2.1.2 Environment Configuration

	2.2 External System Requirements
	2.2.1 SNA LU6.2
	2.2.2 SNA LU0, LU1, LU2, LU3
	2.2.3 Solaris Patch Requirements

	2.3 External Configuration Requirements
	2.3.1 Configuring the SNA Server and Client
	All Platforms
	Additional Procedures for Solaris

	2.4 Installing the e*Way
	2.4.1 Windows Systems
	Installation Procedure
	Subdirectories and Files

	2.4.2 UNIX Systems
	Installation Procedure
	Subdirectories and Files

	2.5 Optional Example Files
	2.5.1 Installation Procedure
	2.5.2 Subdirectories and Files

	Implementation
	3.1 Overview
	3.1.1 Pre-Implementation Tasks
	3.1.2 Implementation Sequence
	3.1.3 Viewing e*Gate Components

	3.2 Creating a Schema
	3.3 Creating Event Types
	3.4 Creating Event Type Definitions
	3.4.1 Assigning ETDs to Event Types

	3.5 Defining Collaborations
	3.6 Creating Intelligent Queues
	3.7 Exception Handling
	3.8 Enabling TP Trace
	3.9 Known Issues and Limitations
	3.10 Sample Schema
	3.10.1 LU6.2

	Setup Procedures
	4.1 Overview
	4.2 Setting Up the e*Way
	4.2.1 Creating the e*Way
	4.2.2 Modifying e*Way Properties
	4.2.3 Configuring the e*Way
	Using the e*Way Editor
	Section and Parameter Controls
	Parameter Configuration Controls
	Command-line Configuration
	Getting Help

	4.2.4 Changing the User Name
	4.2.5 Setting Startup Options or Schedules
	4.2.6 Activating or Modifying Logging Options
	4.2.7 Activating or Modifying Monitoring Thresholds

	4.3 Troubleshooting the e*Way
	4.3.1 Configuration Problems
	4.3.2 System-related Problems

	Operational Overview
	5.1 e*Way Architecture
	5.2 Basic e*Way Processes
	Initialization Process
	Connect to External Process
	Data Exchange Process
	Disconnect from External Process
	Shutdown Process

	Configuration Parameters (LU6.2)
	6.1 Overview
	6.2 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	6.3 Communication Setup
	Exchange Data Interval
	Zero Wait Between Successful Exchanges
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Down Timeout
	Up Timeout
	Resend Timeout

	6.4 Monk Configuration
	Specifying Function or File Names
	Specifying Multiple Directories
	Load Path
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	6.5 SNA Client Configuration
	SYMDESTNAME
	LOCALTPNAME
	LOCALLUNAME
	PacketSize
	Timeout
	Use Ack Nak
	Ack String
	Nak String
	Request Reply
	Initialize Conversation
	Data Flow
	Synchronization Level

	Configuration Parameters (LUA)
	7.1 Overview
	7.2 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	7.3 Communication Setup
	Exchange Data Interval
	Zero Wait Between Successful Exchanges
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Down Timeout
	Up Timeout
	Resend Timeout

	7.4 Monk Configuration
	Specifying Function or File Names
	Specifying Multiple Directories
	Load Path
	Additional Path
	Auxiliary Library Directories
	Monk Environment Initialization File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Positive Acknowledgment Function
	Negative Acknowledgment Function
	Shutdown Command Notification Function

	7.5 SNA LUA Client Configuration
	Local LU Name
	Max Message Size
	Receive Timeout
	Control Bytes

	API Functions
	8.1 Overview
	8.2 Native e*Way Functions
	8.2.1 LU6.2
	sna-accept-conversation
	sna-change-state
	sna-change-state-no-synch
	sna-confirmed
	sna-client-connect
	sna-client-connect-no-synch
	sna-client-disconnect
	sna-client-isconnected
	sna-client-recv
	sna-client-recv-no-synch
	sna-client-send
	sna-client-send-no-synch

	8.2.2 LUA
	snalu0-connect
	snalu0-disconnect
	snalu0-isconnected
	snalu0-send
	snalu0-recv
	snalu0-get-property
	snalu0-set-property

	8.3 Standard e*Way Functions
	8.3.1 LU6.2
	sna-init
	sna-conn-establish
	sna-conn-verify
	sna-conn-shutdown
	sna-incoming
	sna-outgoing
	sna-pos-ack
	sna-neg-ack
	sna-shutdown
	sna-startup

	8.3.2 LUA
	snalu0-init
	snalu0-conn-establish
	snalu0-conn-verify
	snalu0-conn-shutdown
	snalu0-incoming
	snalu0-outgoing
	snalu0-pos-ack
	snalu0-neg-ack
	snalu0-shutdown
	snalu0-startup

	8.4 Generic e*Way Functions
	event-commit-to-egate
	event-rollback-to-egate
	event-send-to-egate
	event-send-to-egate-ignore-shutdown
	event-send-to-egate-no-commit
	get-logical-name
	insert-exchange-data-event
	send-external-up
	send-external-down
	shutdown-request
	start-schedule
	stop-schedule
	waiting-to-shutdown

	Index
	A
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	W
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

