
SeeBeyond Proprietary and Confidential

e*Way Intelligent Adapter for
WebSphere Application
Server User’s Guide

Release 5.0.5 for Schema Run-time Environment (SRE)

Java Version

The information contained in this document is subject to change and is updated periodically to reflect changes to the applicable
software. Although every effort has been made to ensure the accuracy of this document, SeeBeyond Technology Corporation
(SeeBeyond) assumes no responsibility for any errors that may appear herein. The software described in this document is furnished
under a License Agreement and may be used or copied only in accordance with the terms of such License Agreement. Printing,
copying, or reproducing this document in any fashion is prohibited except in accordance with the License Agreement. The contents
of this document are designated as being confidential and proprietary; are considered to be trade secrets of SeeBeyond; and may be
used only in accordance with the License Agreement, as protected and enforceable by law. SeeBeyond assumes no responsibility for
the use or reliability of its software on platforms that are not supported by SeeBeyond.

SeeBeyond, e*Gate, e*Way, and e*Xchange are the registered trademarks of SeeBeyond Technology Corporation in the United States
and/or select foreign countries. The SeeBeyond logo, SeeBeyond Integrated Composite Application Network Suite, eGate, eWay,
eInsight, eVision, eXchange, eView, eIndex, eTL, ePortal, eBAM, and e*Insight are trademarks of SeeBeyond Technology
Corporation. The absence of a trademark from this list does not constitute a waiver of SeeBeyond Technology Corporation's
intellectual property rights concerning that trademark. This document may contain references to other company, brand, and product
names. These company, brand, and product names are used herein for identification purposes only and may be the trademarks of
their respective owners.

© 2005 SeeBeyond Technology Corporation. All Rights Reserved. This work is protected as an unpublished work under the
copyright laws.

This work is confidential and proprietary information of SeeBeyond and must be maintained in strict confidence.

Version 20050405202915.

e*Way Intelligent Adapter for WebSphere Application
Server User’s Guide 2 SeeBeyond Proprietary and Confidential

Contents

e*Way Intelligent Adapter for WebSphere Application
Server User’s Guide 3 SeeBeyond Proprietary and Confidential

Contents

Chapter 1

Introduction 6
Intended Reader 6

Overview 6

Supported Operating Systems 7

System Requirements 7
External System Requirements 8

Chapter 2

Services, XA Transactions, and Enterprise Messaging 9
J2EE Services 9

Java Naming and Directory Interface (JNDI) 9
WebSphere Naming Service 9

Java Messaging Service (JMS) 10
Enterprise JavaBeans (EJBs) 11

Enterprise JavaBean Architecture 11
Message Driven Beans 11
Session Beans 11
Entity Beans 12

Overview of e*Gate and WebSphere Application Server Messaging 12

XA Transactions 13
XA Transaction Process Overview 13

Guaranteed Exactly Once Delivery 14
XA Transactions With SeeBeyond JMS and the WebSphere Application Server 14

Designing an MDB to Support XA Transactions 14
Designing a Session Bean to Support XA Transactions 15

e*Gate and WebSphere Application Server Messaging Modes 17
e*Gate Integration and SeeBeyond JMS 18

SeeBeyond JMS 19
FSContext Naming Service 19
SeeBeyond JMS and SeeBeyond BindJMSFactory 19
Message Flow from e*Gate to WebSphere 24

Contents

e*Way Intelligent Adapter for WebSphere Application
Server User’s Guide 4 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration 30
Configuring Components for Asynchronous Messaging Implementation using
SeeBeyond JMS 30

JMS IQ Manager 30
Multi-Mode e*Way Configuration 31

Creating a Multi-Mode e*Way 31
Multi-Mode e*Way Configuration Parameters 32

Multi-Mode e*Way Configuration Parameters 33
JVM Settings 33

JNI DLL Absolute Pathname 33
CLASSPATH Prepend 34
CLASSPATH Override 34
CLASSPATH Append From Environment Variable 35
Initial Heap Size 35
Maximum Heap Size 35
Maximum Stack Size for Native Threads 35
Maximum Stack Size for JVM Threads 36
Disable JIT 36
Remote debugging port number 36
Suspend option for debugging 36
Auxiliary JVM Configuration File 36

General Settings 37
Rollback Wait Interval 37
Standard IQ FIFO 37

e*Way Connection Configuration 37
Creating an e*Way Connection 38

Configuring the JMS e*Way Connection Parameters 39
General Settings 39
Message Service 41

Configuring the WebSphere Application Server Components 43
Defining SeeBeyond JMS in the WebSphere Application Server 43
Managing SeeBeyond JMS in the WebSphere Application Server 44
Configuring Resources in WebSphere for SeeBeyond JMS 45

Configuring JMS Connection Factories for SeeBeyond JMS 46
Configuring JMS Destinations for SeeBeyond JMS 47
Configuring Listener Ports for SeeBeyond JMS 49

Chapter 4

Implementation 52
Implementation Process Overview 52

Preparing for the Sample Schemas 53
Considerations 53
Preparing for Implementing the Sample Schemas 53

Creating the Sample Schemas 54
Installing a Sample Schema 55

WebSphere Sample Schemas 55

Contents

e*Way Intelligent Adapter for WebSphere Application
Server User’s Guide 5 SeeBeyond Proprietary and Confidential

Setting up the WebSphere Schemas 55
JMSQueueSend and JMSQueueReceive Sample 55

Configuring the JMSQueueSend and JMSQueueReceive Sample 57
Creating Collaborations 58

JMSXAQueueSend Sample 63
Configuring the JMSXAQueueSend Sample 64
Creating Collaborations 65

JMSTopicPublish and JMSTopicSubscribe Sample 66
Configuring the JMSTopicPublish and JMSTopicSubscribe Sample 67
Creating Collaborations 69

JMSXATopicPublish Sample 74
Configuring the JMSXATopicPublish Sample 75
Creating Collaborations 76

Executing the Sample Schemas 77

Index 78

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 6 SeeBeyond Proprietary and Confidential

Chapter 1

Introduction

This chapter provides a brief introduction to the SeeBeyond e*Way Intelligent Adapter
for WebSphere Application Server. It includes:

A general overview of the e*Way’s functionality.

A general overview of the WebSphere® Application Server.

Information about supported operating systems and system requirements.

1.1 Intended Reader
The reader of this guide is presumed:

To be a developer or system administrator with the responsibility of maintaining
e*Gate.

To have high-level knowledge of Windows or UNIX operations and administration.

To be familiar with WebSphere Application Server administration.

To have high-level knowledge of Java™, J2EE™ Services, JMS™, and Enterprise
JavaBeans™.

1.2 Overview
The e*Way Intelligent Adapter for WebSphere Application Server

The e*Way Intelligent Adapter for WebSphere Application Server (WebSphere
Application Server e*Way) provides a communication interface that facilitates
integration of external applications and systems with IBM’s WebSphere Application
Server via e*Gate Integrator.

The WebSphere Application Server e*Way supports asynchronous enterprise
messaging from e*Gate to WebSphere and from WebSphere to e*Gate.

WebSphere Application Server

IBM’s WebSphere Application Server is used to build new applications with graphical
interfaces. It provides an architecture for building business logic in re-usable
components so that a Web server can easily access data.

Chapter 1 Section 1.3
Introduction Supported Operating Systems

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 7 SeeBeyond Proprietary and Confidential

The WebSphere Application Server is J2EE (Java 2, Enterprise Edition) 1.3 compliant
and uses J2EE services. WebSphere’s J2EE compliant architecture enables you to create
applications that provide standardization, scalability, security, and reusability.

The WebSphere Application Server uses Enterprise JavaBeans (EJBs). EJBs are the units
of work that an Application Server is responsible for and exposes to the external world.

The WebSphere Application Server allows you to build EJBs and deploy them, making
them available to other applications on various systems. These EJBs are Java programs
written by the developer and deployed to the WebSphere Application Server. The
WebSphere Application Server offers services such as connectivity, business logic, re-
usability, security, concurrency (access is serialized), and transactionality (uses XA to
assure a successful message transfer or update or message rollback).

Chapter 2, discusses J2EE services, building and deploying EJBs, and enterprise
messaging. Chapter 2 also discusses how the WebSphere Application Server e*Way
supports asynchronous enterprise messaging between e*Gate and WebSphere.

1.3 Supported Operating Systems
The WebSphere Application Server e*Way is available on the following operating
systems:

Windows 2000, Windows XP, and Windows Server 2003

IBM AIX 5.1L and 5.2

Sun Solaris 8 and 9

1.4 System Requirements
To use the WebSphere Application Server e*Way, you need the following:

An e*Gate Participating Host.

A TCP/IP network connection.

Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

Note: Open and review the Readme.txt for the WebSphere Application Server e*Way for
any additional requirements prior to installation. The Readme.txt is located in
..\samples\ewwebsphere\java-WAS5.1

Chapter 1 Section 1.4
Introduction System Requirements

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 8 SeeBeyond Proprietary and Confidential

1.4.1. External System Requirements
IBM WebSphere® Application Server 5.0

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 9 SeeBeyond Proprietary and Confidential

Chapter 2

Services, XA Transactions, and Enterprise
Messaging

This chapter describes the J2EE services and enterprise messaging services that are
used by the WebSphere Application Server and the WebSphere Application Server
e*Way. It includes:

A general overview of J2EE services.

A general overview of enterprise messaging services.

A general overview of how the e*Way works with the WebSphere Application
Server via asynchronous messaging.

Information about asynchronous processing.

Information about how the e*Way handles messaging using SeeBeyond JMS.

A description of how the e*Way works with the WebSphere Application Server.

2.1 J2EE Services
The following sections provide an overview to the JNDI™, JMS and EJB services.

2.1.1. Java Naming and Directory Interface (JNDI)
Java Naming and Directory Interface™ (JNDI) is a set of APIs that allows a Java
program to store objects and lookup objects using multiple naming services in a
standard manner. A naming service may be LDAP, a file system, or an RMI registry.
Each naming service has a corresponding provider implementation that can be used
with JNDI. JNDI can span across naming services in a federated naming service. This
allows any Java code using JNDI to be portable against any naming service. For
example, no code changes should be needed by the Java client code to run against an
LDAP server or an RMI registry.

WebSphere Naming Service

To see all the registered names in the WebSphere Naming Service, you can run the
dumpNameSpace.bat script or open it up in a text editor. For more information on the

Chapter 2 Section 2.1
Services, XA Transactions, and Enterprise Messaging J2EE Services

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 10 SeeBeyond Proprietary and Confidential

WebSphere Naming Service, see the IBM WebSphere Application Server Version 5.0
Handbook.

2.1.2. Java Messaging Service (JMS)
The Java Messaging Service (JMS) allows client portability with any JMS
implementation. The clients do not communicate with each other directly. Instead, the
clients send messages to each other via JMS. Each client in a JMS environment connects
to a messaging server. The messaging server facilitates the flow of messages among all
clients and guarantees that all messages arrive at the appropriate destinations.

There are two possible destinations that a client sends messages to or receives messages
from. They are Topic and Queue (see Figure 1 and Figure 2). The difference between a
Topic and a Queue is that all subscribers to a Topic receive the same message when the
message is published while only one subscriber to a Queue receives a message when
the message is sent. For more information see SeeBeyond JMS on page 19.

Figure 1 Topic - The Publish-Subscribe Model

Figure 1 shows multiple subscribers receiving the same messages when the publisher
publishes the message to a Topic. This is the Publish-Subscribe model.

Figure 2 Queue - The Point-to-Point Model

In contrast, the Point-to-Point model (Figure 2) allows for only one of the receivers to
receives the message when a sender sends a message to a Queue.

Topic fPublisher Subscriber

Subscriber

Subscriber

Msg
A

Msg
A

Msg
A

Msg
A

Queue fSender Receiver

Receiver

Receiver

Msg
A

Msg
A

Chapter 2 Section 2.1
Services, XA Transactions, and Enterprise Messaging J2EE Services

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 11 SeeBeyond Proprietary and Confidential

2.1.3. Enterprise JavaBeans (EJBs)

Enterprise JavaBean Architecture

Enterprise JavaBean architecture supports the development and deployment of
component-based distributed business applications. Applications written using the
Enterprise JavaBean architecture are scalable, transactional, and multi-user secure.
These applications may be written once, and then deployed on any server platform that
supports the Enterprise Java Beans 2.1 Specification.

If a developer writes an EJB that adheres to the Enterprise JavaBean specification, the
EJB can be deployed on any EJB container regardless of the type of software container
or application server. The EJB developer does not need to write any code relating to
transactions or threads. These services are provided by the container in which an EJB is
deployed. The EJB developer must define the attributes of the EJB in its deployment
descriptor in order to take advantage of these services offered by the container.

Message Driven Beans

A Message Driven Bean (MDB) is a type of EJB that handles asynchronous subscription
and publication of JMS messages. An MDB is often compared to a Stateless Session
Bean because it does not have any state context. An MDB differs from Session and
Entity Beans in that it has no local/remote or localhome/home interfaces.

A MDB is a specialized EJB that triggers whenever there is activity on a specific queue.
A MDB is not exposed to a client. Rather, it simply subscribes to a Topic or a Queue,
receives messages from the container via the Topic or Queue, and then processes the
messages it receives from the container. MDBs enable client components to send
messages to an EJB container without having to wait for a reply.

An MDB implementation requires two interfaces: javax.ejb.MessageBean and
javax.jms.MessageListener. At a minimum, the MDB must implement the
setMessageDrivenContext, ejbCreate, and ejbRemove methods from the
javax.ejb.MessageBean interface. In addition, the MDB must implement the
onMessage method of the javax.jms.MessageListener interface. The container calls the
onMessage method, passing in a javax.jms.Message when a message is available for
the MDB.

Session Beans

A Session Bean is another type of EJB. The Session Bean consists of the remote, home,
and bean classes. A client gets a reference to the Session Bean's home interface in order
to create the Session Bean remote object, which is essentially the bean's factory. The
Session Bean is exposed to the client with the remote interface. The client uses the
remote interface to invoke the bean's methods. The actual implementation of the
Session Bean is done with the bean class.

Chapter 2 Section 2.2
Services, XA Transactions, and Enterprise Messaging Overview of e*Gate and WebSphere Application Server Messaging

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 12 SeeBeyond Proprietary and Confidential

Entity Beans

An Entity Bean, like a Session Bean, consists of the remote, home, and bean classes. The
client references the Entity Bean's home interface in order to create the Entity Bean
remote object (essentially the bean's factory). The Entity Bean is exposed to the client
with the remote interface which the client uses to invoke the bean's methods. The
implementation of the Entity Bean is done with the bean class.

2.2 Overview of e*Gate and WebSphere Application
Server Messaging

e*Gate interacts with the WebSphere Application Server via asynchronous messaging.
Asynchronous messaging interaction means that a request is sent but the sender does
not wait for a response. It can be thought of as analogous to a mail message in which
mail is sent and forgotten until sometime later when a response is received.

Figure 3 shows how the WebSphere Application Server e*Way supports asynchronous
enterprise messaging from e*Gate to WebSphere.

Figure 3 Message flow from e*Gate to WebSphere

Figure 4 shows how the WebSphere Application Server e*Way supports asynchronous
enterprise messaging from WebSphere to e*Gate.

e*Gate JMS
client

lookup1
lookup2

publish

SeeBeyond
JMS

e*Gate to MDB
subscribed message Listener MDB

publish

WebSphere Enterprise Application

JNDI

Chapter 2 Section 2.3
Services, XA Transactions, and Enterprise Messaging XA Transactions

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 13 SeeBeyond Proprietary and Confidential

Figure 4 Message flow from WebSphere to e*Gate

2.3 XA Transactions
XA transactions require XA-compliant software systems. If cooperating software
systems are XA-compliant, they guarantee that for each unit of data transferred
between systems:

No data is lost.

No unit of data is duplicated.

2.3.1. XA Transaction Process Overview
The X/Open XA Specification defines the interactions between the Transaction
Manager (TM) and the Resource Manager (RM). The TM, also known as the XA
Coordinator, manages the XA or global transactions. The RM manages a particular
resource such as a database or a JMS system. In addition, an XA Resource exposes a set
of methods or functions for managing the resource.

In order to be involved in an XA transaction, an XA Resource must make itself known
to the TM. This process is called enlistment. Once an XA Resource is enlisted, the TM
ensures that the XA Resource takes part in a transaction and makes the appropriate
method calls on the XA Resource during the lifetime of the transaction.

For an XA transaction to complete, all the RMs participate in a two-phase commit. A
commit in an XA transaction is called a two-phase commit because there are two passes
made in the committing process. In the first pass, the TM asks each of the RMs whether
they will encounter any problems committing the transaction. If any RM objects to
committing the transaction, then all work done by any party on any resource involved
in the XA transaction must all be rolled back. The TM calls the rollback method on each
of the enlisted XA Resources. However, if no RMs object to committing, then the second

lookup1

lookup2

WebSphere Enterprise Application

SeeBeyond
JMS

Session Bean to
e*Gate

publish

Listener

Session
Bean

JNDI

e*Gate JMS
client

subscribed message

Chapter 2 Section 2.3
Services, XA Transactions, and Enterprise Messaging XA Transactions

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 14 SeeBeyond Proprietary and Confidential

pass involves the TM actually calling commit on each of the enlisted XA Resources.
This process guarantees a transaction that can span multiple resources.

Guaranteed Exactly Once Delivery

Occasionally, a failure condition can occur in data transfer systems. Data can be lost
through system errors. To compound these problems, identical data is often delivered
more than once after system restarts.

The WebSphere Application Server e*Way allows you to guarantee that each unit of
data is delivered exactly once. In e*Gate, this feature is called Guaranteed Exactly Once
Delivery (GEOD). Along with e*Gate, the e*Way guarantees exact delivery by utilizing
the XA protocol.

2.3.2. XA Transactions With SeeBeyond JMS and the WebSphere
Application Server

Both SeeBeyond JMS and WebSphere Application Server implement the X/Open XA
interface specifications. Because both systems support XA, the EJBs running inside the
WebSphere container can either send or receive messages via either a topic or a queue.
When running in XA, these EJBs can also participate in global transactions involving
other EJBs.

In a Container Managed Transaction (CMT), the WebSphere container interacts closely
with the TM. This interaction is so close that the transactions can be transparent to an
EJB developer. Since the transactional attributes of EJBs are defined through their
deployment descriptors, they allow the container to transparently handle the XA
transactions on behalf of the EJBs.

The WebSphere TM coordinates the XA transactions. The SeeBeyond JMS XA Resource
is enlisted to the XA transaction, making the WebSphere TM aware that the SeeBeyond
JMS XA Resource is involved in the XA transaction.

You must carefully and intentionally design MDBs and Session Beans in order to
support XA transactions.

Designing an MDB to Support XA Transactions

MDBs handle messages read from JMS destinations within the scope of a transaction. If
transaction handling is specified for a JMS destination, the JMS listener starts a global
transaction before it reads any incoming message from that destination. When the MDB
processing has finished, the JMS listener commits or rolls back the transaction using
Java Transaction API (JTA) transaction control.

When designing an MDB with a CMT, it must be carefully designed to support XA
transactions. The MDB design must meet the following requirements:

The MDB’s connection factory must be an XA connection factory.

The MDB’s listening port must have the JNDI name pointing to an XA connection
factory.

Chapter 2 Section 2.3
Services, XA Transactions, and Enterprise Messaging XA Transactions

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 15 SeeBeyond Proprietary and Confidential

Note: All messages retrieved from a specific destination have the same transactional
behavior. If non-WebSphere XA connection factories are used, then the JMS
resources are not recovered if the server fails.

Designing a Session Bean to Support XA Transactions

XA resources can be used to publish messages to SeeBeyond JMS by using standard
JMS APIs in a Session Bean. The EJB server enlists the JMS session of the JMS
connection to the SeeBeyond JMS server as part of a transaction. When the transaction
commits, the EJB server and SeeBeyond JMS server perform a two-phase commit.

When designing a Session Bean with a CMT, it must be carefully designed to support
XA transactions. The Session Bean design must meet the following requirements:

The Session Bean’s transaction type must be properly set.

The Session Bean’s resource reference must specify the logical name for the
resource, specify the JNDI name, and specify the JNDI name type.

The transaction attributes of the Session Bean method must be specified either by
the bean provider or by the application assembler.

Designing a Session Bean to support XA transactions has more complex requirements
than designing MDBs. The following section describes the requirements in detail,
explains how to meet the design requirements, and discusses caveats to be aware of
during the design process.

Configuring the Session Bean’s Transaction Type

In WebSphere Application Server Developer Studio, configure the Session Bean’s
transaction type to Container.

Once properly configured, the WebSphere Application Server Developer studio puts
<transaction-type>Container</transaction-type> in the bean’s deployment descriptor.

Specifying the Logical Name, the JNDI Name, and the JNDI Resource Type

Edit the bean’s Resource References section by typing a logical name. The Resource
Reference uses a logical name to locate a connection factory object. These objects define
connections to external resources such as SeeBeyond JMS connection factories.

1 Type a logical name for the resource. The sample schemas (see Chapter 4) use the
logical name SBYN/Queue/sbynConnectionFactoryXA for the resource. In the
Session Bean Java code, it enables a JNDI look up using the following:

java:comp/env/ SBYN/Queue/sbynConnectionFactoryXA

2 In the JNDI Name field, type the JNDI name for the
STCXAQueueConnectionFactory.

Note: You must also configure the JNDI name in the WebSphere Application Server
administrative console. This information is provided in “Configuring JMS
Connection Factories for SeeBeyond JMS” on page 46.

3 Type javax.jms.QueueConnectionFactory as the resource type.

Chapter 2 Section 2.3
Services, XA Transactions, and Enterprise Messaging XA Transactions

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 16 SeeBeyond Proprietary and Confidential

Once configured, the WebSphere Application Server Developer studio places the
following in the bean’s deployment descriptor:

<resource-ref id="ResourceRef_1042659891564">
 <res-ref-name>SBYN/Queue/sbynConnectionFactoryXA</res-ref-name>
 <res-type>javax.jms.QueueConnectionFactory</res-type>
 <res-auth>Application</res-auth>
 <res-sharing-scope>Unshareable</res-sharing-scope>
 </resource-ref>

The sample Session Bean Java code using the configured resources is as follows:
initCtx = new InitialContext();
QueueConnectionFactory qcf = (QueueConnectionFactory) initCtx.lookup("java:comp/env/
SBYN/Queue/sbynConnectionFactoryXA);
Queue queue = (Queue) initCtx.lookup("java:comp/env/JMSQueue/sbynqueuefromWSXA");
QueueConnection qc = qcf.createQueueConnection();
qc.start();
QueueSession qs = qc.createQueueSession(true,Session.AUTO_ACKNOWLEDGE);
QueueSender sender = qs.createSender(queue);

Because the container manages the transactional enlistment of JMS sessions on behalf of
a bean, the parameters of the createSession (Boolean transacted, int
acknowledgeMode), createQueueSession (Boolean transacted, int acknowledgeMode),
and createTopicSession (Boolean transacted, int acknowledgeMode) methods are
ignored.

The Enterprise Java Beans 2.1 Specification recommends that the bean provider specify
that a session is transacted, but provide 0 for the value of acknowledgment mode.

Bean Design and Deployment Caveats

Though the JNDI is bound to a XAQueueConnectionFactory, you must set
QueueConnectionFactory as the resource type. In addition, QueueConnectionFactory
must be used through out your Session Bean code--not XAQueueConnectionFactory.

Important: You must use QueueConnectionFactory in your Session Bean Java code. Using
XAQueueConnectionFactory will cause a Java class casting error.

The JNDI name must bind to XAQueueConnectionFactory. If the JNDI name is not
bound to an XA resource, you will get a run time exception error that reads that the
“resource only implements one phase protocol but requires two phase protocol”.

The reason you must select QueueConnectionFactory as the resource type is that the
real physical connection is managed by the container. When the bean provider does a
lookup, the bean provider only receives a logical reference to the physical connection.
The Enterprise Java Beans 2.1 Specification requires the bean provider to use
javax.jms.QueueConnection or javax.jms.TopicConnectionFactory interfaces as a
logical reference type.

Configuring the Transaction Attributes of the Session Bean Method

The transaction attributes must be specified either by the person programming the
beans or by the person deploying the beans.

If you are programming beans, use WebSphere Application Server Developer Studio to
specify the attributes. If you are deploying beans, use WebSphere Application Server
Application Assembly Tool. For more information, see the WebSphere Application
Server Developer Studio and WebSphere Application Server Application Assembly
Tool user documentation.

Chapter 2 Section 2.4
Services, XA Transactions, and Enterprise Messaging e*Gate and WebSphere Application Server Messaging Modes

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 17 SeeBeyond Proprietary and Confidential

Once you configure the transaction attributes, the ejb-jar.xml file is generated with the
following:

<assembly-descriptor id="AssemblyDescriptor_1039145481360">
 <container-transaction id="MethodTransaction_1042659891574">
 <description>XATopicSendToSbynJMS:+:</description>
 <method>
 <ejb-name>PubMsgToSbynJMSXA</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>sendToSbynJms</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>int</method-param>
 </method-params>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 <container-transaction id="MethodTransaction_1042659891575">
 <description>XAQueueSendToSBynJMS:+:</description>
 <method>
 <ejb-name>QSendMsgToSBynJMSXA</ejb-name>
 <method-intf>Remote</method-intf>
 <method-name>sendToSbynJms</method-name>
 <method-params>
 <method-param>java.lang.String</method-param>
 <method-param>int</method-param>
 </method-params>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>

Runtime Behavior of the ejb-jar.xml File

The Session Bean’s method sendToSbynJms trans-attribute is set as Required. The
container then invokes this method with a valid transaction context. If the calling client
is already associated with a transaction context, the container invokes the method
within the same transactional context. If the calling client does not have an existing
context, then the container automatically starts a new transactional context. The
container automatically enlists all the resources managers accessed by the method.

In the sample schemas (see Chapter 4), the method sendToSbynJms is called from the
onMessage() method in a MDB with a CMT, so this method receives the transactional
context from the MDB. Our sample demonstrates that if sending a reply message to
SeeBeyond JMS fails then the container rolls back the message received by the MDB.
The listener port receives the same message until the maximum retry counts are
reached. Once reached, the listener port then stops for user intervention on failed
transaction.

2.4 e*Gate and WebSphere Application Server Messaging
Modes

As discussed in Overview of e*Gate and WebSphere Application Server Messaging
on page 12, e*Gate interacts with the WebSphere Application Server via asynchronous
messaging.

The WebSphere Application Server e*Way supports the following two asynchronous
messaging modes.

Session Beans publishing or sending to SeeBeyond JMS mode

Session beans are used for publishing and sending Topic or Queue messages through
SeeBeyond JMS. In this mode, the WebSphere EJBs publish to SeeBeyond JMS.

Chapter 2 Section 2.4
Services, XA Transactions, and Enterprise Messaging e*Gate and WebSphere Application Server Messaging Modes

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 18 SeeBeyond Proprietary and Confidential

MDBs subscribing to SeeBeyond JMS mode

MDBs are used for asynchronous subscription of messages from a JMS Topic or Queue.
In this mode, a message published to SeeBeyond JMS causes an MDB stored in
WebSphere to execute as a result of the arriving message.

Figure 5 shows the WebSphere Application Server and e*Gate components involved in
both modes of asynchronous messaging. The arrows represent message flow.

Figure 5 WebSphere Application Server and e*Gate Components

These two asynchronous messaging modes are discussed in the following section.

2.4.1. e*Gate Integration and SeeBeyond JMS
The following sections describe the WebSphere Application Server e*Way’s integration
with the WebSphere Application Server using the SeeBeyond implementation of JMS.

Note: The SeeBeyond implementation of JMS is referred to as SeeBeyond JMS.

The WebSphere Application Server e*Way incorporates SeeBeyond JMS into the
WebSphere environment by registering the following SeeBeyond JMS administrative
objects:

Connection factories

MDB
EJB

Session
Beans

EJB Container

WebSphere Application Server

SeeBeyond
Queue/Topic
Connection
Factory

SeeBeyond JMS
JMS
Connection

Java
Collaboration

Lookup &
Use

JNDI

e*Gate

SeeBeyond
Queues
Topics

SeeBeyond
Queues
Topics

MDBs

Chapter 2 Section 2.4
Services, XA Transactions, and Enterprise Messaging e*Gate and WebSphere Application Server Messaging Modes

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 19 SeeBeyond Proprietary and Confidential

Queues

Topics

This enables EJBs in WebSphere to receive or send messages to and from e*Gate.

In order to implement these modes, two other subsystems are used: the FSContext
naming service (Sun’s File System Context Provider) and the EJB container (for Session
Beans and MDBs as defined in EJB 2.0).

SeeBeyond JMS

SeeBeyond JMS uses a localhost and the default port is 7555. In the sample schema
described in Chapter 4, SeeBeyond JMS uses a localhost and port 26000. You can run
the SeeBeyond JMS Server using a different host name. However, the binding name
used in the program must match the external JNDI name used in the WebSphere
Generic JMS provider configuration.

FSContext Naming Service

SeeBeyond JMS does not register JMS administrative objects with a naming service. It
does not mandate any naming service at all. In order to integrate with WebSphere, you
must use the FSContext naming service (Sun Microsystem’s File System Context
Provider).

FSContext is a standard JNDI source that generates a .bindings file in the URL you
provide. You must configure WebSphere to read this file system context and bind the
names into WebSphere’s own name space.

The FSContext naming service allows you to bind the following SeeBeyond JMS objects:

TopicConnectionFactory

QueueConnectionFactory

Topic(s)

Queue(s)

By binding instances of these objects, any EJB can get a hold of the references to these
objects by looking them up in the naming service using JNDI.

A sample stand-alone Java program is provided with the WebSphere Application
Server e*Way that uses the FSContext naming service. For a complete listing of the
stand-alone Java program, see “BindJMSFactory File” on page 20. BindJMSFactory is
provided to generate a .bindings file in the provider URL.

SeeBeyond JMS and SeeBeyond BindJMSFactory

The program BindJMSFactory.java uses a file based naming service. BindJMSFactory
uses FSContext to bind SeeBeyond JMS objects to a file-based naming service into a
specified directory. You must configure the JMS Provider resource to access the
specified directory in the WebSphere Administrative Console. See External Provider
URL in “Managing SeeBeyond JMS in the WebSphere Application Server” on
page 44.

Chapter 2 Section 2.4
Services, XA Transactions, and Enterprise Messaging e*Gate and WebSphere Application Server Messaging Modes

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 20 SeeBeyond Proprietary and Confidential

SeeBeyond’s Connection Factory and JMS topic and queue are bound to the FSContext
inside the BindJMSFactory.java program. The files compile.sh and runit.sh are sample
execution scripts provided to compile and build the bindings file.

The following SeeBeyond JMS ConnectionFactory objects are also bound to the
FSContext inside the BindJMSFactory.java program:

STCTopicConnectionFactory

STCQueueConnectionFactory

STCXATopicConnectionFactory

STCXAQueueConnectionFactory

In addition, various JMS destination objects are bound to FSContext as well. JMS
destination objects require the user to change the BindJMSFactory program to match
the SeeBeyond JMS configuration of the topics and queues.

Once properly configured as a generic JMS provider in WebSphere, the bindings file
can be read by WebSphere. WebSphere then binds the objects to WebSphere’s
namespace for the MDBs to access.

BindJMSFactory File

As already mentioned, the BindJMSFactory file is a Java program that generates
bindings for several SeeBeyond JMS objects. You must compile and run the program
manually to generate the bindings and write SeeBeyond JMS objects into the FSContext
naming service.

The BindJMSFactory Java file is included in the WebSphere Application Server e*Way.
The BindJMSFactory file is shown below.

public static void main(String[] args) {
 System.out.println("BindJMSFactory.main()");
 try {
 // Populate with needed properties
 Hashtable props = new Hashtable();

 /*
 *if use fscontext then the program will generate a .bindings in the PROVIDER_URL.
 *you can change the Context_PROVIDER_URL value.
 */
 if (args[0].compareToIgnoreCase("filebased") == 0) {
 props.put(Context.INITIAL_CONTEXT_FACTORY,
"com.sun.jndi.fscontext.RefFSContextFactory");
 props.put(Context.PROVIDER_URL, "file:C:\\websphere\\test");
 }
 else {
 /*
 *If you have WebSphere client installed and can access directly into WebSphere's
naming service
 *then use following initialContextfactory and url. You can change the
Context.PROVIDER_URL value
 *to reflect where the initial context is. Refer to WebSphere naming service
document.
 */
 props.put(Context.INITIAL_CONTEXT_FACTORY,
"com.ibm.websphere.naming.WsnInitialContextFactory");
 props.put(Context.PROVIDER_URL, "corbaloc:iiop:localhost:2809");
 props.put("java.naming.rmi.security.manager", "yes");
 };

 // Get the initial context with given properties
 jndiContext = new InitialContext(props);

 Properties factoryprops = new Properties();
 /* if you set com.seebeyond.jms.Trace.OutputFilename, it will cause enemous information
logged into the file
 * unless it is absolutely necessary, we recommend you do not do so.
 */
 //factoryprops.setProperty("com.seebeyond.jms.Trace.OutputFilename",
"C:\\eGate\\client\\logs\\wsmdbjms.log");

Chapter 2 Section 2.4
Services, XA Transactions, and Enterprise Messaging e*Gate and WebSphere Application Server Messaging Modes

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 21 SeeBeyond Proprietary and Confidential

 /* set the properties below will cause exception right away if our jms server goes down.
 */
 factoryprops.setProperty("com.seebeyond.jms.sockets.RetryCount", "0");
 factoryprops.setProperty("com.seebeyond.jms.sockets.RetryInterval", "0");

 /*
 *Bind SeeBeyond JMS Topic objects to the naming service: fscontext or
 *websphere's naming service directly.
 */
 // you can change localhost and port number
 STCTopicConnectionFactory JMSTopicProviderFactory = new
STCTopicConnectionFactory("localhost", 26000);
 JMSTopicProviderFactory.setProperties(factoryprops);
 TopicConnectionFactory tcf = null;
 try {
 /*you can change the jndi name here, the jndi name use here must be exactly same
 *as in the websphere's Generic JMS Provider's configuration External JNDI Name
 */
 tcf = (TopicConnectionFactory)
jndiContext.lookup("jms/Topic/sbynConnectionFactory");
 } catch (Throwable e) {
 System.out.println("jms/Topic/sbynConnectionFactory lookup exception");
 e.printStackTrace();
 System.out.println("jms/Topic/sbynConnectionFactory lookup exception ignored");
 }
 if (tcf == null) {
 System.out.println("tcf is null...bind jms/Topic/sbynConnectionFactory");

 jndiContext.bind("jms/Topic/sbynConnectionFactory", JMSTopicProviderFactory);
 } else {
 System.out.println("tcf is NOT null...unbind then re-bind
jms/Topic/sbynConnectionFactory");

 jndiContext.unbind("jms/Topic/sbynConnectionFactory");
 jndiContext.rebind("jms/Topic/sbynConnectionFactory", JMSTopicProviderFactory);
 }

 /*
 *This is the JMS destination used to send a message back to SeeBeyond JMS server. You
 *can use this JMS destination inside MDB or session bean. We recomend you use the topic
 *name as websphere's Generic JMS Provider JMS destination name. Even it is not necessary
 *to do so because websphere will go to look up the jndi, and only wants the object value.
 */
 Topic topic = new STCTopic("WSToEGateTopic");
 Topic t = null;
 try {
 /*you can change the jndi name here, the jndi name use here must be exactly same
 *as in the websphere's Generic JMS Provider's configuration External JNDI Name
 */
 t = (Topic) jndiContext.lookup("jms/Topic/sbyntopicfromWS");
 System.out.println(t.getClass().getName());
 } catch (Exception e) {
 }
 if (t == null) {
 System.out.println("t is null...bind WSToEGateTopic as jms/Topic/sbyntopicfromWS");

 jndiContext.bind("jms/Topic/sbyntopicfromWS", topic);
 } else {
 System.out.println("t is NOT null...re-bind WSToEGateTopic as
jms/Topic/sbyntopicfromWS ");

 jndiContext.unbind("jms/Topic/sbyntopicfromWS");
 jndiContext.rebind("jms/Topic/sbyntopicfromWS", topic);
 }

 /*
 *This is the JMS destination a MDB subscribe to. You set up a Listener port to subscribe
to
 *this topic, and in your MDB deployment descriptor, you indicate the listener port name.
 *We recomend you use the topic name as websphere's Generic JMS Provider JMS destination
name.
 *Even it is not necessary to do so because websphere will go to look up the jndi, and
only
 *wants the object value.
 */
 topic = new STCTopic("eGateJMSToMDBTopic");
 t = null;
 try {
 /*you can change the jndi name here, the jndi name use here must be exactly same
 *as in the websphere's Generic JMS Provider's configuration External JNDI Name
 */
 t = (Topic) jndiContext.lookup("jms/Topic/sbyntopicFromSbynJms");
 System.out.println(t.getClass().getName());
 } catch (Exception e) {
 }
 if (t == null) {
 System.out.println("t is null...bind eGateJMSToMDBTopic as
jms/Topic/sbyntopicFromSbynJms");

 jndiContext.bind("jms/Topic/sbyntopicFromSbynJms", topic);
 } else {

Chapter 2 Section 2.4
Services, XA Transactions, and Enterprise Messaging e*Gate and WebSphere Application Server Messaging Modes

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 22 SeeBeyond Proprietary and Confidential

 System.out.println("t is NOT null...re-bind eGateJMSToMDBTopic as
jms/Topic/sbyntopicFromSbynJms");

 jndiContext.unbind("jms/Topic/sbyntopicFromSbynJms");
 jndiContext.rebind("jms/Topic/sbyntopicFromSbynJms", topic);
 }

 /*
 *Bind SeeBeyond JMS XA Topic objects to the naming service: fscontext or
 *websphere's naming service directly.
 */
 // you can change localhost and port number
 STCXATopicConnectionFactory JMSTopicProviderFactoryXA = new
STCXATopicConnectionFactory("localhost", 26000);
 JMSTopicProviderFactoryXA.setProperties(factoryprops);
 XATopicConnectionFactory xatcf = null;
 try {
 /*you can change the jndi name here, the jndi name use here must be exactly same
 *as in the websphere's Generic JMS Provider's configuration External JNDI Name
 */
 xatcf = (XATopicConnectionFactory)
jndiContext.lookup("jms/Topic/sbynConnectionFactoryXA");
 } catch (Throwable e) {
 System.out.println("jms/Topic/sbynConnectionFactoryXA lookup exception");
 e.printStackTrace();
 System.out.println("jms/Topic/sbynConnectionFactoryXA lookup exception ignored");
 }
 if (xatcf == null) {
 System.out.println("xatcf is null...bind");

 jndiContext.bind("jms/Topic/sbynConnectionFactoryXA", JMSTopicProviderFactoryXA);
 } else {
 System.out.println("xatcf is NOT null...unbind then re-bind");

 jndiContext.unbind("jms/Topic/sbynConnectionFactoryXA");
 jndiContext.rebind("jms/Topic/sbynConnectionFactoryXA", JMSTopicProviderFactoryXA);
 }

 topic = new STCTopic("WSToEGateTopicXA");
 t = null;
 try {
 /*you can change the jndi name here, the jndi name use here must be exactly same
 *as in the websphere's Generic JMS Provider's configuration External JNDI Name
 */
 t = (Topic) jndiContext.lookup("jms/Topic/sbyntopicfromWSXA");
 System.out.println(t.getClass().getName());
 } catch (Exception e) {
 }
 if (t == null) {
 System.out.println("t is null...bind WSToEGateTopicXA as jms/Topic/sbyntopicfromWSXA
");

 jndiContext.bind("jms/Topic/sbyntopicfromWSXA", topic);
 } else {
 System.out.println("t is NOT null...re-bind WSToEGateTopicXA as
jms/Topic/sbyntopicfromWSXA");

 jndiContext.unbind("jms/Topic/sbyntopicfromWSXA");
 jndiContext.rebind("jms/Topic/sbyntopicfromWSXA", topic);
 }

 /*Topic the MDB subscribe to. The MDB must have container managed transaction attributes
 *in order to use XA.
 */
 topic = new STCTopic("eGateJMSToMDBTopicXA");
 t = null;
 try {
 /*you can change the jndi name here, the jndi name use here must be exactly same
 *as in the websphere's Generic JMS Provider's configuration External JNDI Name
 */
 t = (Topic) jndiContext.lookup("jms/Topic/sbyntopicFromSbynJmsXA");
 System.out.println(t.getClass().getName());
 } catch (Exception e) {
 }
 if (t == null) {
 System.out.println("t is null...bind eGateJMSToMDBTopicXA as
jms/Topic/sbyntopicFromSbynJmsXA");
 jndiContext.bind("jms/Topic/sbyntopicFromSbynJmsXA", topic);
 } else {
 System.out.println("t is NOT null...re-bind eGateJMSToMDBTopicXA as
jms/Topic/sbyntopicFromSbynJmsXA");

 jndiContext.unbind("jms/Topic/sbyntopicFromSbynJmsXA");
 jndiContext.rebind("jms/Topic/sbyntopicFromSbynJmsXA", topic);
 }

 /*
 *Bind Seebeyond JMS Queue administrative object to fscontext or websphere naming service.
 */
 STCQueueConnectionFactory JMSQueueProviderFactory = new
STCQueueConnectionFactory("localhost", 26000);

Chapter 2 Section 2.4
Services, XA Transactions, and Enterprise Messaging e*Gate and WebSphere Application Server Messaging Modes

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 23 SeeBeyond Proprietary and Confidential

 JMSQueueProviderFactory.setProperties(factoryprops);
 QueueConnectionFactory qcf = null;
 try {
 /*you can change the jndi name here, the jndi name use here must be exactly same
 *as in the websphere's Generic JMS Provider's configuration External JNDI Name
 */
 qcf = (QueueConnectionFactory)
jndiContext.lookup("jms/Queue/sbynConnectionFactory");
 } catch (Throwable e) {
 System.out.println("jms/Queue/sbynConnectionFactory lookup exception");
 e.printStackTrace();
 System.out.println("jms/Queue/sbynConnectionFactory lookup exception ignored");
 }
 if (qcf == null) {
 System.out.println("qcf is null...bind");
 jndiContext.bind("jms/Queue/sbynConnectionFactory", JMSQueueProviderFactory);
 } else {
 System.out.println("qcf is NOT null...unbind then re-bind");
 jndiContext.unbind("jms/Queue/sbynConnectionFactory");
 jndiContext.rebind("jms/Queue/sbynConnectionFactory", JMSQueueProviderFactory);
 }
 /*Queue object used inside session bean or MDB to send a message to
 *Seebeyond JMS queue.
 */
 Queue queue = new STCQueue("WSToEGateQueue");
 Queue q = null;
 try {
 /*you can change the jndi name here, the jndi name use here must be exactly same
 *as in the websphere's Generic JMS Provider's configuration External JNDI Name
 */
 q = (Queue) jndiContext.lookup("jms/Queue/sbynqueuefromWS");
 System.out.println(q.getClass().getName());
 } catch (Exception e) {
 }
 if (q == null) {
 System.out.println("q is null...bind");
 jndiContext.bind("jms/Queue/sbynqueuefromWS", queue);
 } else {
 System.out.println("q is NOT null...re-bind");
 jndiContext.unbind("jms/Queue/sbynqueuefromWS");
 jndiContext.rebind("jms/Queue/sbynqueuefromWS", queue);
 }

 /*Queue object MDB listens to. Remember to set up the listner port is WS
 *and configure the MDB the listner port name.
 */
 queue = new STCQueue("eGateJMSToMDBQueue");
 q = null;
 try {
 /*you can change the jndi name here, the jndi name use here must be exactly same
 *as in the websphere's Generic JMS Provider's configuration External JNDI Name
 */
 q = (Queue) jndiContext.lookup("jms/Queue/sbynqueueFromSbynJms");
 System.out.println(q.getClass().getName());
 } catch (Exception e) {
 }
 if (q == null) {
 System.out.println("q is null...bind");
 jndiContext.bind("jms/Queue/sbynqueueFromSbynJms", queue);
 } else {
 System.out.println("q is NOT null...re-bind");
 jndiContext.unbind("jms/Queue/sbynqueueFromSbynJms");
 jndiContext.rebind("jms/Queue/sbynqueueFromSbynJms", queue);
 }

 /*
 *Bind Seebeyond XA Queue object, you can change the localhost and port values.
 */
 STCXAQueueConnectionFactory JMSQueueProviderFactoryXA = new
STCXAQueueConnectionFactory("localhost", 26000);
 JMSQueueProviderFactoryXA.setProperties(factoryprops);
 XAQueueConnectionFactory xaqcf = null;
 try {
 xaqcf = (XAQueueConnectionFactory)
jndiContext.lookup("jms/Queue/sbynConnectionFactoryXA");
 } catch (Throwable e) {
 System.out.println("jms/Queue/sbynConnectionFactoryXA lookup exception");
 e.printStackTrace();
 System.out.println("jms/Queue/sbynConnectionFactoryXA lookup exception ignored");
 }
 if (xaqcf == null) {
 System.out.println("xaqcf is null...bind as jms/Queue/sbynConnectionFactoryXA");
 jndiContext.bind("jms/Queue/sbynConnectionFactoryXA", JMSQueueProviderFactoryXA);
 } else {
 System.out.println("qcf is NOT null...unbind then re-bind
jms/Queue/sbynConnectionFactoryXA");
 jndiContext.unbind("jms/Queue/sbynConnectionFactoryXA");
 jndiContext.rebind("jms/Queue/sbynConnectionFactoryXA", JMSQueueProviderFactoryXA);
 }

Chapter 2 Section 2.4
Services, XA Transactions, and Enterprise Messaging e*Gate and WebSphere Application Server Messaging Modes

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 24 SeeBeyond Proprietary and Confidential

 /*Queue object to let session bean or MDB send a message back to Seebeyond JMS.
 */
 queue = new STCQueue("WSToEGateQueueXA");
 q = null;
 try {
 /*you can change the jndi name here, the jndi name use here must be exactly same
 *as in the websphere's Generic JMS Provider's configuration External JNDI Name
 */
 q = (Queue) jndiContext.lookup("jms/Queue/sbynqueuefromWSXA");
 System.out.println(q.getClass().getName());
 } catch (Exception e) {
 }
 if (q == null) {
 System.out.println("q is null...bind WSToEGateQueueXA as
jms/Queue/sbynqueuefromWSXA");
 jndiContext.bind("jms/Queue/sbynqueuefromWSXA", queue);
 } else {
 System.out.println("q is NOT null...re-bind WSToEGateQueueXA as
jms/Queue/sbynqueuefromWSXA");
 jndiContext.unbind("jms/Queue/sbynqueuefromWSXA");
 jndiContext.rebind("jms/Queue/sbynqueuefromWSXA", queue);
 }

 /*
 *Queue object MDB listens to.
 */
 queue = new STCQueue("eGateJMSToMDBQueueXA");
 q = null;
 try {
 /*you can change the jndi name here, the jndi name use here must be exactly same
 *as in the websphere's Generic JMS Provider's configuration External JNDI Name
 */
 q = (Queue) jndiContext.lookup("jms/Queue/sbynqueueFromSbynJmsXA");
 System.out.println(q.getClass().getName());
 } catch (Exception e) {
 }
 if (q == null) {
 System.out.println("q is null...bind");

 jndiContext.bind("jms/Queue/sbynqueueFromSbynJmsXA", queue);
 } else {
 System.out.println("q is NOT null...re-bind eGateJMSToMDBQueueXA as
jms/Queue/sbynqueueFromSbynJms");

 jndiContext.unbind("jms/Queue/sbynqueueFromSbynJmsXA");
 jndiContext.rebind("jms/Queue/sbynqueueFromSbynJmsXA", queue);
 }

 } catch (NameNotFoundException ne) {
 System.out.println("BindJMSFactory NameNotFoundException: " + ne.getExplanation());
 System.out.println(ne.getRootCause());
 } catch (Exception e) {
 System.out.println("BindJMSFactory Exception: " + e.toString());
 e.printStackTrace();
 }
 }
}

Message Flow from e*Gate to WebSphere

Once WebSphere Application Server is properly configured, the server can begin
messaging. To manage the message flow from e*Gate to WebSphere, WebSphere uses
the SeeBeyond TopicConnectionFactory to create the necessary JMS
TopicConnection(s) and TopicSession(s). WebSphere also uses the SeeBeyond
QueueConnectionFactory to create the JMS QueueConnection(s) and QueueSession(s).

Similarly, the XATopicConnectionFactory is used to create the necessary JMS
XATopicConnection(s) and XATopicSession(s) and the SeeBeyond
XAQueueConnectionFactory is used to create the JMS XAQueueConnection(s) and
XAQueueSession(s) in MDBs using CMTs.

Figure 6 shows the components involved in messaging from e*Gate to WebSphere. The
solid arrows represent message flow and the dashed lines represent associations
between objects.

Chapter 2 Section 2.4
Services, XA Transactions, and Enterprise Messaging e*Gate and WebSphere Application Server Messaging Modes

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 25 SeeBeyond Proprietary and Confidential

Figure 6 Message Flow from e*Gate to WebSphere

Once you configure and deploy the WebSphere Application Server, you can use the
provided deployment descriptor to make sure the MDBs are properly configured.

EJB Deployment Descriptor ejb-jar.xml

A deployment descriptor is stored in the EJB .jar file. This standard EJB deployment
descriptor file uses the XML markup conventions in accordance with the syntax
described in the Enterprise Java Beans 2.1 Specification. The deployment descriptor
defines EJB structural information, such as the EJB name, class, home and remote
interfaces, bean type, environment entries, resource factory references, EJB references,
security role references, as well as additional information based on the bean type.

The deployment descriptor demonstrates scenarios for MDBs and for Session Beans.

MDB Scenarios

The following four scenarios for MDBs are included in the deployment descriptor:

StcJmsMDBQueue: uses normal queue connection with a bean managed
transaction.

StcJmsMDBQueueXABean: uses XA queue connection with a container managed
transaction.

StcJmsMDBTopic: uses normal topic connection with a bean managed transaction.

StcJmsMDBTopicXABean: uses XA topic connection with a container managed
transaction.

Session Bean Scenarios

The following four scenarios for Session Beans are included in the deployment
descriptor:

To External

 SBYN
 Queue
 Connection
 Factory

Port

Outbound
Topic
MDB

EJB Container

JMS

Queue
Session

To External

 SeeBeyond
 JMS Connection

 Queue
 MDB

e*Gate host
JNDI

 SBYN
 Topic
 Connection
 Factory

SBYN
Topics

SBYN
Queues

 Topic
 MDB

Topic
Session

WebSphere host

Chapter 2 Section 2.4
Services, XA Transactions, and Enterprise Messaging e*Gate and WebSphere Application Server Messaging Modes

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 26 SeeBeyond Proprietary and Confidential

PubMsgToSbynJMS: used by StcJmsMDBTopic to pubish a reply under the topic
name WSToEGateTopic using a bean managed transaction.

PubMsgToSbynJMSXA: used by StcJmsMDBTopicXA to pubish a reply under the
topic name WSToEGateTopicXA using a container managed transaction.

QSendMsgToSbynJMS: used by StcJmsMDBQueue to send a reply message to Sbyn
JMS under the queue name WSToEGateTopic using a bean managed transaction.

QSendMsgToSbynJMSXA: used by StcJmsMDBQueueXA to send a reply message
to SeeBeyond JMS under the queue name WSToEGateQueueXA using a container
managed transaction.

The deployment descriptor is packaged in the EJB .ear file. The deployment descriptor
is shown below.

<enterprise-beans>
<message-driven id="MessageDriven_1039467765519">

<ejb-name>StcJmsMDBQueue</ejb-name>
<ejb-class>rchen.ws.StcJmsMDBQueueBean</ejb-class>
<transaction-type>Bean</transaction-type>
<acknowledge-mode>Auto-acknowledge</acknowledge-mode>
<message-driven-destination id="MessageDrivenDestination_1040078368394">

<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<ejb-ref id="EjbRef_1042572354113">

<description>call this stateless session bean to send a reply q msg</description>
<ejb-ref-name>QSendMsgToSbynJMS</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>rchen.ws.QSendMsgToSbynJMSHome</home>
<remote>rchen.ws.QSendMsgToSbynJMS</remote>
<ejb-link>QSendMsgToSbynJMS</ejb-link>

</ejb-ref>
</message-driven>
<message-driven id="MessageDriven_1039468201164">

<ejb-name>StcJmsMDBTopic</ejb-name>
<ejb-class>rchen.ws.StcJmsMDBTopicBean</ejb-class>
<transaction-type>Bean</transaction-type>
<acknowledge-mode>Auto-acknowledge</acknowledge-mode>
<message-driven-destination id="MessageDrivenDestination_1040078368395">

<destination-type>javax.jms.Topic</destination-type>
<subscription-durability>Durable</subscription-durability>

</message-driven-destination>
<ejb-ref id="EjbRef_1042066078650">

<description>call this session bean to pub a topic msg</description>
<ejb-ref-name>PubMsgToSbynJMS</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>rchen.ws.PubMsgToSbynJMSHome</home>
<remote>rchen.ws.PubMsgToSbynJMS</remote>
<ejb-link>PubMsgToSbynJMS</ejb-link>

</ejb-ref>
</message-driven>
<message-driven id="MessageDriven_1039655482969">

<ejb-name>StcJmsMDBQueueXABean</ejb-name>
<ejb-class>rchen.ws.StcJmsMDBQueueXABeanBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination id="MessageDrivenDestination_1040078368396">

<destination-type>javax.jms.Queue</destination-type>
</message-driven-destination>
<ejb-ref id="EjbRef_1042659891544">

<ejb-ref-name>QSendMsgToSBynJMSXA</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>rchen.ws.QSendMsgToSBynJMSXAHome</home>
<remote>rchen.ws.QSendMsgToSBynJMSXA</remote>
<ejb-link>QSendMsgToSBynJMSXA</ejb-link>

</ejb-ref>
</message-driven>
<message-driven id="MessageDriven_1039655528475">

<ejb-name>StcJmsMDBTopicXABean</ejb-name>
<ejb-class>rchen.ws.StcJmsMDBTopicXABeanBean</ejb-class>
<transaction-type>Container</transaction-type>
<message-driven-destination id="MessageDrivenDestination_1040078368441">

<destination-type>javax.jms.Topic</destination-type>
<subscription-durability>Durable</subscription-durability>

</message-driven-destination>
<ejb-ref id="EjbRef_1042066353040">

<description>call session bean using XA</description>
<ejb-ref-name>PubMsgToSbynJMSXA</ejb-ref-name>
<ejb-ref-type>Session</ejb-ref-type>
<home>rchen.ws.PubMsgToSbynJMSXAHome</home>
<remote>rchen.ws.PubMsgToSbynJMSXA</remote>
<ejb-link>PubMsgToSbynJMSXA</ejb-link>

</ejb-ref>

Chapter 2 Section 2.4
Services, XA Transactions, and Enterprise Messaging e*Gate and WebSphere Application Server Messaging Modes

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 27 SeeBeyond Proprietary and Confidential

</message-driven>
<session id="PubMsgToSbynJMSXA">

<ejb-name>PubMsgToSbynJMSXA</ejb-name>
<home>rchen.ws.PubMsgToSbynJMSXAHome</home>
<remote>rchen.ws.PubMsgToSbynJMSXA</remote>
<ejb-class>rchen.ws.PubMsgToSbynJMSXABean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<resource-ref id="ResourceRef_1042144807763">

<res-ref-name>SBYN/Topic/sbynConnectionFactoryXA</res-ref-name>
<res-type>javax.jms.TopicConnectionFactory</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>
<resource-ref id="ResourceRef_1042743354248">

<res-ref-name>JMSTopic/sbyntopicfromWSXA</res-ref-name>
<res-type>javax.jms.Topic</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>
</session>
<session id="PubMsgToSbynJMS">

<ejb-name>PubMsgToSbynJMS</ejb-name>
<home>rchen.ws.PubMsgToSbynJMSHome</home>
<remote>rchen.ws.PubMsgToSbynJMS</remote>
<ejb-class>rchen.ws.PubMsgToSbynJMSBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Bean</transaction-type>
<resource-ref id="ResourceRef_1042144807764">

<res-ref-name>SBYN/Topic/sbynConnectionFactory</res-ref-name>
<res-type>javax.jms.TopicConnectionFactory</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>
<resource-ref id="ResourceRef_1042743214514">

<description/>
<res-ref-name>JMSTopic/sbyntopicfromWS</res-ref-name>
<res-type>javax.jms.Topic</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>
</session>
<session id="QSendMsgToSbynJMS">

<ejb-name>QSendMsgToSbynJMS</ejb-name>
<home>rchen.ws.QSendMsgToSbynJMSHome</home>
<remote>rchen.ws.QSendMsgToSbynJMS</remote>
<ejb-class>rchen.ws.QSendMsgToSbynJMSBean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Bean</transaction-type>
<resource-ref id="ResourceRef_1042659279411">

<res-ref-name>SBYN/Queue/sbynConnectionFactory</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>
<resource-ref id="ResourceRef_1042743478108">

<description/>
<res-ref-name>JMSQueue/sbynqueuefromWS</res-ref-name>
<res-type>javax.jms.Queue</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>
</session>
<session id="QSendMsgToSBynJMSXA">

<ejb-name>QSendMsgToSBynJMSXA</ejb-name>
<home>rchen.ws.QSendMsgToSBynJMSXAHome</home>
<remote>rchen.ws.QSendMsgToSBynJMSXA</remote>
<ejb-class>rchen.ws.QSendMsgToSBynJMSXABean</ejb-class>
<session-type>Stateless</session-type>
<transaction-type>Container</transaction-type>
<resource-ref id="ResourceRef_1042659891564">

<res-ref-name>SBYN/Queue/sbynConnectionFactoryXA</res-ref-name>
<res-type>javax.jms.QueueConnectionFactory</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>
<resource-ref id="ResourceRef_1042743586536">

<description/>
<res-ref-name>JMSQueue/sbynqueuefromWSXA</res-ref-name>
<res-type>javax.jms.Queue</res-type>
<res-auth>Application</res-auth>
<res-sharing-scope>Unshareable</res-sharing-scope>

</resource-ref>
</session>

</enterprise-beans>

Chapter 2 Section 2.4
Services, XA Transactions, and Enterprise Messaging e*Gate and WebSphere Application Server Messaging Modes

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 28 SeeBeyond Proprietary and Confidential

ibm-ejb-jar-bnd.xmi

The EJB deployment .jar file contains the ibm-ejb-jar-bnd.xmi file. This file specifies
the listener port name, listenerInputPortName.

You must configure the listener port name in the WebSphere Application Server
Administrative Console. For more information on configuring the see “Configuring
Listener Ports for SeeBeyond JMS” on page 49.

The following ibm-ejb-jar-bnd.xmi file shows the listener port configuration of the
four MDBs.

<ejbbnd:EJBJarBinding xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"
xmlns:ejbbnd="ejbbnd.xmi" xmlns:ejb="ejb.xmi" xmlns:commonbnd="commonbnd.xmi"
xmlns:common="common.xmi" xmi:id="EJBJarBinding_1">

<ejbJar href="META-INF/ejb-jar.xml#ejb-jar_ID"/>
<ejbBindings xmi:type="ejbbnd:MessageDrivenBeanBinding"

xmi:id="MessageDrivenBeanBinding_1039468220142" listenerInputPortName="ListPortSbynJMSQueue">
<enterpriseBean xmi:type="ejb:MessageDriven" href="META-INF/ejb-

jar.xml#MessageDriven_1039467765519"/>
<ejbRefBindings xmi:id="EjbRefBinding_3"

jndiName="ejb/rchen/ws/QSendMsgToSbynJMSHome">
<bindingEjbRef href="META-INF/ejb-jar.xml#EjbRef_1042572354113"/>

</ejbRefBindings>
</ejbBindings>
<ejbBindings xmi:type="ejbbnd:MessageDrivenBeanBinding"

xmi:id="MessageDrivenBeanBinding_1039468220143" listenerInputPortName="ListPortSbynJMSTopic">
<enterpriseBean xmi:type="ejb:MessageDriven" href="META-INF/ejb-

jar.xml#MessageDriven_1039468201164"/>
<ejbRefBindings xmi:id="EjbRefBinding_1" jndiName="ejb/rchen/ws/PubMsgToSbynJMSHome">

<bindingEjbRef href="META-INF/ejb-jar.xml#EjbRef_1042066078650"/>
</ejbRefBindings>

</ejbBindings>
<ejbBindings xmi:type="ejbbnd:MessageDrivenBeanBinding"

xmi:id="MessageDrivenBeanBinding_1039655682770" listenerInputPortName="ListPortSbynJMSQueueXA">
<enterpriseBean xmi:type="ejb:MessageDriven" href="META-INF/ejb-

jar.xml#MessageDriven_1039655482969"/>
<ejbRefBindings xmi:id="EjbRefBinding_4"

jndiName="ejb/rchen/ws/QSendMsgToSBynJMSXAHome">
<bindingEjbRef href="META-INF/ejb-jar.xml#EjbRef_1042659891544"/>

</ejbRefBindings>
</ejbBindings>
<ejbBindings xmi:type="ejbbnd:MessageDrivenBeanBinding"

xmi:id="MessageDrivenBeanBinding_1039655682771" listenerInputPortName="ListPortSbynJMSTopicXA">
<enterpriseBean xmi:type="ejb:MessageDriven" href="META-INF/ejb-

jar.xml#MessageDriven_1039655528475"/>
<ejbRefBindings xmi:id="EjbRefBinding_2"

jndiName="ejb/rchen/ws/PubMsgToSbynJMSXAHome">
<bindingEjbRef href="META-INF/ejb-jar.xml#EjbRef_1042066353040"/>

</ejbRefBindings>
</ejbBindings>
<ejbBindings xmi:id="PubMsgToSbynJMSXA_Bnd" jndiName="ejb/rchen/ws/PubMsgToSbynJMSXAHome">

<enterpriseBean xmi:type="ejb:Session" href="META-INF/ejb-jar.xml#PubMsgToSbynJMSXA"/>
<resRefBindings xmi:id="ResourceRefBinding_11"

jndiName="jms/Topic/sbynConnectionFactoryXA">
<bindingResourceRef href="META-INF/ejb-jar.xml#ResourceRef_1042144807763"/>

</resRefBindings>
<resRefBindings xmi:id="ResourceRefBinding_1042743354248"

jndiName="jms/Topic/sbyntopicfromWSXA">
<bindingResourceRef href="META-INF/ejb-jar.xml#ResourceRef_1042743354248"/>

</resRefBindings>
</ejbBindings>
<ejbBindings xmi:id="EnterpriseBeanBinding_1042063736475"

jndiName="ejb/rchen/ws/PubMsgToSbynJMSHome">
<enterpriseBean xmi:type="ejb:Session" href="META-INF/ejb-jar.xml#PubMsgToSbynJMS"/>
<resRefBindings xmi:id="ResourceRefBinding_12"

jndiName="jms/Topic/sbynConnectionFactory">
<bindingResourceRef href="META-INF/ejb-jar.xml#ResourceRef_1042144807764"/>

</resRefBindings>
<resRefBindings xmi:id="ResourceRefBinding_1042743214514"

jndiName="jms/Topic/sbyntopicfromWS">
<bindingResourceRef href="META-INF/ejb-jar.xml#ResourceRef_1042743214514"/>

</resRefBindings>
</ejbBindings>
<ejbBindings xmi:id="EnterpriseBeanBinding_1042570847336"

jndiName="ejb/rchen/ws/QSendMsgToSbynJMSHome">
<enterpriseBean xmi:type="ejb:Session" href="META-INF/ejb-jar.xml#QSendMsgToSbynJMS"/>
<resRefBindings xmi:id="ResourceRefBinding_1"

jndiName="jms/Queue/sbynConnectionFactory">
<bindingResourceRef href="META-INF/ejb-jar.xml#ResourceRef_1042659279411"/>

</resRefBindings>
<resRefBindings xmi:id="ResourceRefBinding_1042743478108"

jndiName="jms/Queue/sbynqueuefromWS">
<bindingResourceRef href="META-INF/ejb-jar.xml#ResourceRef_1042743478108"/>

</resRefBindings>
</ejbBindings>

Chapter 2 Section 2.4
Services, XA Transactions, and Enterprise Messaging e*Gate and WebSphere Application Server Messaging Modes

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 29 SeeBeyond Proprietary and Confidential

<ejbBindings xmi:id="EnterpriseBeanBinding_1042657625956"
jndiName="ejb/rchen/ws/QSendMsgToSBynJMSXAHome">

<enterpriseBean xmi:type="ejb:Session" href="META-INF/ejb-
jar.xml#QSendMsgToSBynJMSXA"/>

<resRefBindings xmi:id="ResourceRefBinding_2"
jndiName="jms/Queue/sbynConnectionFactoryXA">

<bindingResourceRef href="META-INF/ejb-jar.xml#ResourceRef_1042659891564"/>
</resRefBindings>
<resRefBindings xmi:id="ResourceRefBinding_1042743586536"

jndiName="jms/Queue/sbynqueuefromWSXA">
<bindingResourceRef href="META-INF/ejb-jar.xml#ResourceRef_1042743586536"/>

</resRefBindings>
</ejbBindings>

</ejbbnd:EJBJarBinding>

For more information on using asynchronous messaging with the WebSphere
Application Server, see the IBM WebSphere Application Server Version 5.0 Handbook.

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 30 SeeBeyond Proprietary and Confidential

Chapter 3

Configuration

This chapter provides procedures for configuring the WebSphere Application Server
e*Way.

The configuration process includes three main steps:

1 Configure the IQ Manager Type.

2 Create and configure a Multi-mode e*Way, which routes and transforms data
within e*Gate. See “Multi-Mode e*Way Configuration Parameters” on page 32.

3 Create and configure a WebSphere Application Server e*Way which enables e*Gate
to communicate with the WebSphere Application Server. This step includes the
following:

A Configure components and properties of SeeBeyond JMS. See Configuring
Components for Asynchronous Messaging Implementation using SeeBeyond
JMS on page 30.

B Configure the WebSphere Application Server. See Configuring the WebSphere
Application Server Components on page 43.

Once properly configured, e*Gate Integrator uses the Multi-Mode e*Way Connection
and the WebSphere Application Server e*Way Connection to send messages to the
WebSphere Application Server.

3.1 Configuring Components for Asynchronous Messaging
Implementation using SeeBeyond JMS

If you have not already done so, launch the Schema Designer and select a sample
schema that uses SeeBeyond JMS.

3.1.1. JMS IQ Manager
Verify that the IQ Manager Type is set to SeeBeyond JMS (see Figure 7).

Since the WebSphere Application Server e*Way publishes Events to JMS, the IQ
Manager type in your Participating Host must be set to SeeBeyond JMS.

Chapter 3 Section 3.1
Configuration Configuring Components for Asynchronous Messaging Implementation using SeeBeyond JMS

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 31 SeeBeyond Proprietary and Confidential

Figure 7 SeeBeyond JMS IQ Manager

3.1.2. Multi-Mode e*Way Configuration
A Multi-Mode e*Way is a multi-threaded component used to route and transform data
within e*Gate. Multi-Mode e*Ways can use multiple simultaneous e*Way Connections
to communicate with external systems and Intelligent Queues (IQs).

This section provides instructions for using the e*Gate Schema Designer to create and
configure a Multi-Mode e*Way.

Additional Information

This document contains basic instructions for creating and configuring a Multi-Mode
e*Way. The following resources contain additional information:

e*Gate Integrator User’s Guide.

Standard e*Way Intelligent Adapter User’s Guide.

SeeBeyond JMS Intelligent Queue User’s Guide.

e*Way Editor’s online Help.

Creating a Multi-Mode e*Way

1 In the e*Gate Schema Designer Navigator, click the Components tab.

2 Open the host on which you want to create the e*Way.

3 Click the Create a New e*Way button.

4 Type a name for the new e*Way and click OK.

Chapter 3 Section 3.1
Configuration Configuring Components for Asynchronous Messaging Implementation using SeeBeyond JMS

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 32 SeeBeyond Proprietary and Confidential

5 Right-click the new e*Way and select Properties.

The e*Way Properties dialog box is displayed.

6 In the Executable File field, select stceway.exe (located in the bin\ directory) if it is
not selected by default.

7 In the Additional Command Line Arguments field, type any additional command
line arguments at the end of the existing command-line string. Do not change any of
the default arguments unless you have a specific need to do so.

8 Under the Configuration File field, click one of the following:

Click New to create a new configuration file.

Click Find to select an existing configuration file.

Note: If a configuration file has already been assigned to this e*Way, you can edit it by
clicking Edit.

The e*Way Configuration Editor is displayed.

9 Set the parameters of the configuration file.

Note: Configuration file parameter settings are explained in Multi-Mode e*Way
Configuration Parameters on page 32.

10 After setting the parameters, click Save.

11 Select Promote to Run Time.

12 Click OK to close the e*Way Properties dialog box.

Multi-Mode e*Way Configuration Parameters

As described in Creating a Multi-Mode e*Way on page 31, you can use the e*Way
Configuration Editor to set the Multi-Mode e*Way configuration parameters. These
parameters are described in this section.

To change Multi-Mode e*Way configuration parameters

1 In the Schema Designer’s Component editor, select the e*Way you want to
configure and display its properties. The Executable file for Multi-mode e*Ways is
stceway.exe.

2 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have specific need to do so.

3 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file. The Editor opens to edit
settings for the Multi-Mode e*Way. The Edit Settings dialog box opens.

4 Configure the e*Way as needed for your system. Any necessary settings for a
specific sample schemas are provided in Chapter 4.

Chapter 3 Section 3.1
Configuration Configuring Components for Asynchronous Messaging Implementation using SeeBeyond JMS

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 33 SeeBeyond Proprietary and Confidential

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

3.1.3 Multi-Mode e*Way Configuration Parameters
As described in Creating a Multi-Mode e*Way on page 31, you can use the e*Way
Configuration Editor to set the Multi-Mode e*Way configuration parameters. These
parameters are described in this section.

The Multi-Mode e*Way has two sets of parameters:

JVM Settings on page 33

General Settings on page 37

3.1.4 JVM Settings
The JVM Settings section contains the following parameters associated with the JVM
(Java Virtual Machine):

JNI DLL Absolute Pathname on page 33

CLASSPATH Prepend on page 34

CLASSPATH Append From Environment Variable on page 35

Initial Heap Size on page 35

Maximum Heap Size on page 35

Maximum Stack Size for Native Threads on page 35

Maximum Stack Size for JVM Threads on page 36

Disable JIT on page 36

Remote debugging port number on page 36

Suspend option for debugging on page 36

JNI DLL Absolute Pathname

Description

Specifies the absolute pathname to where the JNI DLL installed by the Java 2 SDK 1.3 is
located on the Participating Host.

Required Values

A valid pathname.

Chapter 3 Section 3.1
Configuration Configuring Components for Asynchronous Messaging Implementation using SeeBeyond JMS

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 34 SeeBeyond Proprietary and Confidential

Additional Information

The JNI DLL name varies on different operating system (OS) platforms, as outlined in
Table 1.

The value assigned can contain a reference to an environment variable. This is done by
enclosing the variable name within a pair of percent-sign (%) symbols. For example:

%MY_JNIDLL%

Such variables can be used when multiple Participating Hosts are used on different
platforms.

Important: To ensure that the JNI DLL loads successfully, the Dynamic Load Library search
path environment variable must be set appropriately to include all the directories
under the Java 2 SDK (or JDK) installation directory that contain shared libraries
(UNIX) or DLLs (Windows).

CLASSPATH Prepend

Description

Specifies paths to be prepended to the CLASSPATH environment variable for the JVM.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Additional Information

If left unset, no paths will be prepended to the CLASSPATH environment variable.

Existing environment variables may be referenced in this parameter by enclosing the
variable name in a pair of percent-sign (%) symbols. For example:

%MY_PRECLASSPATH%

CLASSPATH Override

Description

Specifies the complete CLASSPATH variable to be used by the JVM. If left unset, an
appropriate CLASSPATH environment variable (consisting of required e*Gate
components concatenated with the system version of CLASSPATH) will be set.

Note: All necessary .jar and .zip files needed by e*Gate and the JVM must be included. It
is advised that you use the CLASSPATH Prepend variable.

Table 1 Java 2 JNI DLL Name by Operating System

Operating System Java 2 JNI DLL Name

Windows 2000 / XP jvm.dll

Solaris libjvm.so

AIX libjvm.a

Chapter 3 Section 3.1
Configuration Configuring Components for Asynchronous Messaging Implementation using SeeBeyond JMS

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 35 SeeBeyond Proprietary and Confidential

Required Values

An absolute path or an environment variable. This parameter is optional.

Additional Information

Existing environment variables can be referenced in this parameter by enclosing the
variable name in a pair of percent-sign (%) symbols. For example:

%MY_CLASSPATH%

CLASSPATH Append From Environment Variable

Description

Specifies whether the path is appended for the CLASSPATH environmental variable
to .jar and .zip files needed by the JVM.

Required Values

An absolute path or an environmental variable. This parameter is optional.

Initial Heap Size

Description

Specifies the value for the initial heap size in bytes. If set to 0 (zero), the preferred value
for the initial heap size of the JVM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Heap Size

Description

Specifies the value for the maximum heap size for native threads in bytes. If set to 0
(zero), the preferred value for the maximum heap size of the JVM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Maximum Stack Size for Native Threads

Description

Specifies the value for the maximum stack size for native threads in bytes. If set to 0
(zero), the default value will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Chapter 3 Section 3.1
Configuration Configuring Components for Asynchronous Messaging Implementation using SeeBeyond JMS

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 36 SeeBeyond Proprietary and Confidential

Maximum Stack Size for JVM Threads

Description

Specifies the value for the maximum stack size for JVM threads in bytes. If set to 0
(zero), the preferred value for the maximum heap size of the JVM will be used.

Required Values

An integer between 0 and 2147483647. This parameter is optional.

Disable JIT

Description

Specifies whether the Just-In-Time (JIT) compiler will be disabled.

Required Values

YES or NO.

Note: This parameter is not supported for Java Release 1.

Remote debugging port number

Description

Specifies the port number for the remote debugging of the JVM.

Required Values

An integer between 2000 and 65536.

Suspend option for debugging

Description

Specifies whether the option for debugging will be enabled or suspended upon JVM
startup.

Required Values

YES or NO.

Auxiliary JVM Configuration File

Description

Specifies the relative path to a JVM properties file.

Required Values

A valid relative path name. This parameter is optional.

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 37 SeeBeyond Proprietary and Confidential

3.1.5 General Settings
The General Settings section contains the following parameters:

Rollback Wait Interval on page 37

Standard IQ FIFO on page 37

Rollback Wait Interval

Description

Specifies the period of time (in milliseconds) to wait before rolling back a message
(retaining a message and cancelling an unsuccessful transaction).

Required Values

An integer between 0 and 99999999.

Standard IQ FIFO

Description

Specifies whether the e*Way retrieves messages from all STC-standard Intelligent
Queues (IQs) in First-In-First-Out (FIFO) order

Required Values

YES or NO. YES enables FIFO. Subscribing Collaboration retrieves Events for each
triggering Event Type/publishing Collaboration to which it subscribes. The Events
retrieved are those with the highest priority and the oldest sequence number. The
subscribing Collaboration then compares the priorities of all Events it retrieves, and
among messages of the highest priority, it publishes the one with the oldest enqueue
time.

Selecting NO disables FIFO. The Collaboration cycles through a list of triggering Event
Type/publishing Collaborations to which it subscribes. The IQ Manager returns the
oldest, unread Event (by sequence number) of the highest priority for that Event
Type/publishing Collaboration combination. The subscribing Collaboration then
processes this Event before retrieving another Event.

For more information about the Multi-Mode e*Way, see the Standard e*Way Intelligent
Adapter User’s Guide.

3.2 e*Way Connection Configuration
e*Way Connections manage the access information for specific external connections.
The e*Way Connection configuration file contains the parameters necessary for
connecting with the WebSphere Application Server.

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 38 SeeBeyond Proprietary and Confidential

You will use the e*Gate Schema Designer to create a SeeBeyond JMS e*Way Connection
and set its configuration parameters, as described in this section.

3.2.1 Creating an e*Way Connection
Create and configure an e*Way Connection. The connection type should be set to
“SeeBeyond JMS”.

Note: For the sample, the e*Way Connection is referred to as “conJMSQueueConsumer”.

Set the Event Type “get” interval to 5000.

To create and configure a SeeBeyond JMS e*Way Connection

1 Activate the Components tab at the bottom of the Navigator (left) pane in the
Schema Designer.

2 In the Navigator pane, click the e*Way Connections folder.

3 Click the e*Way Connection icon in the tool palette to create a new e*Way
Connection.

4 In the New e*Way Connection dialog box, type a name (for the samples in
Chapter 4, type the name conJMSQueueConsumer), and then click OK to create the
e*Way Connection.

5 Double-click the new e*Way Connection. The e*Way Connection Properties dialog
box opens.

6 From the e*Way Connection Type drop-down box, select SeeBeyond JMS. Set the
Event Type “get” interval to 5000.

Click New under the e*Way Connection Configuration File field. The New JMS
e*Way Connect dialog box opens. Indicate whether the e*Way Connection is intended
for by selecting either:

External: Connect to JMS IQ Manager which is not in the current schema

Internal: Connect to JMS IQ Manager within this schema

If External is selected, you must configure the e*Way Connection, including
ServerNamer, Hostname, and Port Number. If Internal is selected, you select a JMS IQ
Manager from the drop-down, and the ServerName, Hostname, and Port Number are
read in from the Registry. See Figure 8.

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 39 SeeBeyond Proprietary and Confidential

Figure 8 JMS e*Way Connection properties

7 Click Edit under the e*Way Connection Configuration File field. The Edit Settings
dialog box opens. Enter the correct parameters for your e*Way Connection as
defined in the following pages. When all parameters have been entered, from the
File menu click Save and Promote to Run Time.

Configuring the JMS e*Way Connection Parameters

For more information about the JMS e*Way Connections, see the SeeBeyond JMS IQ
Manager User’s Guide.

This section describes the JMS e*Way configuration parameters. For SeeBeyond JMS,
the e*Way Connection configuration parameters are organized into two sections:

General Settings on page 39

Message Service on page 41

General Settings

The General Settings control overall properties of the e*Way Connection. This section
contains the following parameters:

Connection Type on page 40

Transaction Type on page 40

Delivery Mode on page 40

Maximum Number of Bytes to read on page 41

Default Outgoing Message Type on page 41

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 40 SeeBeyond Proprietary and Confidential

Message Selector on page 41

Factory Class Name on page 41

Connection Type

Description
Specifies the type of connection to be established.

For publication/subscription behavior where each message is delivered to all
current subscribers to the Topic, select Topic.

For point-to-point behavior (equivalent to “subscriber pooling” for conventional
IQs) where each message is delivered to only one recipient in the pool, select
Queue.

Required Values
Topic or Queue.

Transaction Type

Description
Specifies the type of transaction to be instantiated.

Important: XA transactions for the WebSphere Application Server e*Way are managed by the
WebSphere TransactionManager, NOT the e*Gate TransactionManager. For XA
transactions make sure that the XAConnectionFactory(ies) are configured for the
startup class.

In Internal (one-phase transactional) style, a commit is necessary. The message is
not saved until either a commit or a rollback is received.

In XA-compliant (two-phase transactional style) a two-phase commit is done: The
sender sends a prepare, and the commit occurs if and only if all receivers are
prepared. Collaborations that use Guaranteed Exactly Once Delivery (GEOD) of
Events require XA-compliant transaction types. Note: This does not affect XA
Transactions for the WebSphere Application Server e*Way. Read “Important”
above.

In Non-Transactional mode, the message is automatically saved on the server and
no commit is necessary.

Required Values
Internal, non-transactional, or XA-compliant.

Delivery Mode

Description
Setting Delivery Mode to Persistent guarantees that the JMS IQ Manager stores
each message safely to disk. Setting it to Non-Persistent does not guarantee that the
message is stored safely to disk. Non-Persistent provides better performance but
does not provide recovery.

Required Values
Non-Persistent or Persistent.

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 41 SeeBeyond Proprietary and Confidential

Important: If the JMS IQ Manager halts when in Non-Persistent mode, undelivered messages
are lost.

Maximum Number of Bytes to read

Description
Your setting for this parameter depends on the size of your messages. For example,
if you can anticipate that very large messages will be read, set this parameter
accordingly.

Required Values
1 to 200000000. The default is 5000.

Default Outgoing Message Type

Description
For messages that carry no payload, or carry only a simple TextMessage payload
(such as XML documents), you can set this option to Text.

For messages whose payload is known to be incompatible with other messaging
systems, or whose payload is unknown, keep this option set to Bytes.

Required Values
Text. The default is Bytes.

Message Selector

Description
Specifies the Message Selector to be used for subscriptions.

Required Values
A string. The maximum length of query is set to 512 characters, including a null
terminator.

Note: This parameter does not check syntax. If the syntax is incorrect, the selector is
ignored and the subscriber is not created.

Factory Class Name

Description
For SeeBeyond e*Way Connections, keep the default setting:
com.stc.common.collabService.SBYNJMSFactory

Required Values
Default: com.stc.common.collabService.SBYNJMSFactory

Message Service

The parameters in this section specify the low-level information required to establish
the JMS. This section contains the following parameters:

Server Name on page 42

Host Name on page 42

Port Number on page 42

Maximum Message Cache Size on page 42

Chapter 3 Section 3.2
Configuration e*Way Connection Configuration

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 42 SeeBeyond Proprietary and Confidential

Server Name

Description
Specifies the name of the server (JMS IQ Manager) with which e*Gate
communicates.

Required Values
A valid server name.

Host Name

Description
Specifies the name of the host on which the server (JMS IQ Manager) is running.

Required Values
A valid host name.

Port Number

Description
Specifies the port number on which the JMS IQ Manager is running.

Required Values
A valid port number between 2000 and 1000000000.

Maximum Message Cache Size

Description
Specifies the maximum size of the message cache in bytes.

Required Values
An integer between 1 and 2147483647.

Configure the e*Way as needed for your system.

Chapter 3 Section 3.3
Configuration Configuring the WebSphere Application Server Components

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 43 SeeBeyond Proprietary and Confidential

3.3 Configuring the WebSphere Application Server
Components

This section describes the configuration required for sending messages between
WebSphere Application Server and SeeBeyond JMS.

To use SeeBeyond JMS, you must configure the properties of SeeBeyond JMS in the
WebSphere Application Server. First you must define SeeBeyond JMS in WebSphere,
and then you must manage SeeBeyond JMS in the WebSphere Application Server
Administrative Console, as shown in Figure 9.

Figure 9 WebSphere Application Server Administrative Console

3.3.1. Defining SeeBeyond JMS in the WebSphere Application
Server

Use the administrative console to complete the following steps to define SeeBeyond
JMS in the WebSphere Application Server.

1 In the navigation tree, expand Resources -> Generic JMS Providers.

2 Click New in the content page.

3 Define SeeBeyond JMS by specifying the appropriate values in the General
Properties page.

4 Click OK.

Chapter 3 Section 3.3
Configuration Configuring the WebSphere Application Server Components

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 44 SeeBeyond Proprietary and Confidential

5 To save your configuration, click Save on the task bar of the Administrative
Console window.

3.3.2. Managing SeeBeyond JMS in the WebSphere Application
Server

Use the administrative console to complete the following steps to manage SeeBeyond
JMS in the WebSphere Application Server. This process configures the properties of
SeeBeyond JMS in WebSphere.

1 In the navigation tree, expand Resources.

2 Under Scope select the Node in which the SeeBeyond JMS has been installed.

3 Click Apply.

4 Under General Properties configure the following properties:

A Name

Type a descriptive name, such as SeeBeyond JMS. This represents the name of the
JMS provider and is for administrative purposes.

B Description

Type a description of SeeBeyond JMS for administrative purposes.

C Classpath

A list of paths or .jar file names which together form the location for the resource
provider classes. You must include the following .jar files:

stcjms.jar

fscontext.jar

providerutil.jar

Note: After any relevant ESRs are applied, copy the latest stcjms.jar file from the
\classes subdirectory in the e*Gate directory to a local destination, such as
$(WS_INSTALL_ROOT)/lib. Also, the fscontext.jar and the providerutil.jar
files should already be in $(MQ_INSTALL_ROOT) as part of the MQ Series
(embedded messaging) installation of the WebSphere Application Server.

D Native Path

An optional path to any native libraries (.dll, .so).

E External initial context factory

Type com.sun.jndi.fscontext.RefFSContextFactory. This is the Java classname of
the initial context factory.

F External provider URL

The SeeBeyond JMS URL for external JNDI lookups. This specifies how JNDI
lookups should be performed. For example, type “C:\\websphere\test”.

Chapter 3 Section 3.3
Configuration Configuring the WebSphere Application Server Components

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 45 SeeBeyond Proprietary and Confidential

The SeeBeyond JMS objects are bound to a file-based naming service in the
directory specified in this field. For more information on this process, see
“SeeBeyond JMS and SeeBeyond BindJMSFactory” on page 19.

Figure 10 shows the External Provider URL field in the WebSphere Application
Server Administrative console. The sample directory C:\\websphere\test is
shown in the field as an example of a directory specified to receive any bound JMS
objects.

Figure 10 External Provider URL

Note: Make sure that the .bindings file generated by the BindJMSFactory sample Java
program corresponds to the directory specified in the External Provider URL field.

5 Click OK or Apply.

6 After clicking OK or Apply, use the Additional Properties panel to bind the
SeeBeyond JMS resource into the WebSphere JNDI namespace.

3.3.3. Configuring Resources in WebSphere for SeeBeyond JMS
Use the WebSphere administrative console to register JMS destinations and JMS
connection factories into the WebSphere namespace. Using the administrative console,
you must configure the following four JMS connection factories:

queue connection factory (XA or non-XA)

topic connection factory (XA or non-XA)

queue destinations

Chapter 3 Section 3.3
Configuration Configuring the WebSphere Application Server Components

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 46 SeeBeyond Proprietary and Confidential

topic destinations

Configuring JMS Connection Factories for SeeBeyond JMS

The connection factories create connections with SeeBeyond JMS for a specific JMS
queue or topic destination. Each connection factory contains the configuration
parameters needed to create a connection to a JMS destination.

To configure properties for the four JMS connection factory objects that will connect to
SeeBeyond JMS, complete the following steps.

1 In the navigation tree, expand Resources->Generic JMS Providers.

2 Select SeeBeyond JMS.

This displays a table of properties for SeeBeyond JMS and links to the types of JMS
resources supported.

3 Under Additional Properties, click on JMS Connection Factories.

This displays the SeeBeyond JMS connection factory administered objects available
to application servers under the selected scope. The connection factory
administered objects are used to connect to SeeBeyond JMS.

Figure 11 shows the connection factory administered objects at the selected scope.

Figure 11 SeeBeyond JMS Connection Factories

4 You must create four connection factories. To create a new connection factory
object, click New in the content pane as shown in Figure 11.

To change the properties of an existing connection factory, click one of the
connection factories displayed.

Chapter 3 Section 3.3
Configuration Configuring the WebSphere Application Server Components

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 47 SeeBeyond Proprietary and Confidential

5 The following configuration properties must be specified for each connection
factory object to connect to SeeBeyond JMS.

A Name

Type a descriptive name, such as SeeBeyond JMS. This represents the name of the
JMS provider and is for administrative purposes.

B Type

Select QUEUE or TOPIC. This represents whether the connection factory is used for
point-to-point messaging (QUEUE) or for publish/subscribe messaging (TOPIC).

C JNDI Name

Type a valid JNDI name. This represents the JNDI name used to bind the
connection factory into the application server’s namespace.

D Description

A description of the connection factory for administrative purposes.

E Category

A category used to classify or group this connection factory, for administrative
purposes.

F External JNDI Name

The connection factory JNDI name, as registered in the FSContext. WebSphere will
read the FSContext under this external JNDI name and bind the same object under
the JNDI name. See “JNDI Name” on page 47.

G User ID

The user ID used for authentication if the calling application does not provide a
user ID and password.

H Password

The password used with the user ID property for authentication if the calling
application does not provide a user ID and password.

6 Click OK once you complete configuring the queue connection factory.

7 Click Save to save the configuration.

To have the configuration take effect, stop then restart the application servers.

Configuring JMS Destinations for SeeBeyond JMS

A Generic JMS destination defines the configuration properties of either a queue (for
point-to-point messaging) or a topic (for Publish/subscribe messaging) provided by
the selected generic JMS provider. The JMS destination objects represent destinations
hosted by SeeBeyond JMS.

To complete the sample you must configure properties for eight JMS destinations.

Chapter 3 Section 3.3
Configuration Configuring the WebSphere Application Server Components

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 48 SeeBeyond Proprietary and Confidential

To configure JMS destinations

1 In the navigation tree, expand Resources->Generic JMS Providers
->SbynJmsProviderResource->Additional Properties ->JMS Destinations.

Figure 12 shows the JMS destinations at the selected scope.

Figure 12 JMS Destinations

2 To create a new JMS destination, click New.

3 Configuration properties must be specified for a JMS destination to connect to
SeeBeyond JMS. The configuration properties required for the sample are listed in
Table 3.

A Name

Type the following names for each JMS destination you create.

Table 2 JMS Destination Configuration Properties

Name JNDI name Description

WSToEGateQueue jms/Queue/sbynqueuefromWS WS to SBYN JMS QUEUE s

WSToEGateQueueXA jms/Queue/sbynqueuefromWSXA WS to SBYN JMS QUEUE XA

 WSToEGateTopic jms/Topic/sbyntopicfromWS WS to SBYN JMS Topic

WSToEGateTopicXA jms/Topic/sbyntopicfromWSXA WSToEGateTopicXA

eGateJMSToMDBQueue jms/Queue/sbynqueueFromSbynJms eGateJMSToMDBQueue

eGateJMSToMDBQueueXA jms/Queue/sbynqueueFromSbynJmsXA eGateJMSToMDBQueueXA

 eGateJMSToMDBTopic jms/Topic/sbyntopicFromSbynJms MDB sub to Topic

eGateJMSToMDBTopicXA jms/Topic/sbyntopicFromSbynJmsXA eGateJMSToMDBTopicXA

Chapter 3 Section 3.3
Configuration Configuring the WebSphere Application Server Components

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 49 SeeBeyond Proprietary and Confidential

WSToEGateQueue

WSToEGateQueueXA

WSToEGateTopic

WSToEGateTopicXA

eGateJMSToMDBQueue

eGateJMSToMDBQueueXA

eGateJMSToMDBTopic

eGateJMSToMDBTopicXA

B JNDI Name

The JNDI Name represents the JNDI name for either the queue or topic used by the
JMS destination. Type the following JNDI Name for each JMS destination you
create.

jms/Queue/sbynqueuefromWS

jms/Queue/sbynqueuefromWSXA

jms/Topic/sbyntopicfromWS

jms/Topic/sbyntopicfromWSXA

jms/Queue/sbynqueueFromSbynJms

jms/Queue/sbynqueueFromSbynJmsXA

jms/Topic/sbyntopicFromSbynJms

jms/Topic/sbyntopicFromSbynJmsXA

C Description

Type a description for each JMS destination you create.

4 Click OK once you complete configuring the JMS destinations.

5 Click Save to save the configuration.

To have the configuration take effect, stop then restart the application server.

Configuring Listener Ports for SeeBeyond JMS

The listener ports define the association between a connection factory, a destination,
and a deployed MDB. MDBs listen upon listener ports for messages. Each listener port
specifies the JMS Connection Factory and JMS Destination that a deployed MDB will
listen upon.

To complete the sample you must configure properties for four listener ports.

To configure listener ports

1 In the navigation tree, expand Application Servers->server1->Message Listener
Service->Listener Ports.

Figure 13 shows the listener ports at the selected scope.

Chapter 3 Section 3.3
Configuration Configuring the WebSphere Application Server Components

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 50 SeeBeyond Proprietary and Confidential

Figure 13 Listener Ports

2 To create a new listener port, click New.

3 Configuration properties must be specified for a listener port to connect to
SeeBeyond JMS. The configuration properties required for the sample are listed in
Table 3.

A Name

Type the following names for each listener port you create.

ListPortSbynJMSQueue

ListPortSbynJMSQueueXA

ListPortSbynJMSTopic

ListPortSbynJMSTopicXA

B Description

Type a description for each listener port you create.

C Connection factory JNDI Name

Table 3 Listener Port Configuration Properties

Name Connection factory JNDI name Destination factory JNDI name

ListPortSbynJMSQueue jms/Queue/sbynConnectionFactory jms/Queue/sbynqueueFromSbynJms

ListPortSbynJMSQueueXA jms/Queue/sbynConenctionFactoryXA jms/Queue/sbynqueueFromSbynJMSXA

ListPortSbynJMSTopic jms/Topic/sbynConnectionFactory jms/Topic/sbyntopicFromSbyn.Jms

ListPortSbynJMSTopicXA jms/Topic/sbynConnectionFactoryXA jms/Topic/sbyntopicFromSbynJmsXA

Chapter 3 Section 3.3
Configuration Configuring the WebSphere Application Server Components

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 51 SeeBeyond Proprietary and Confidential

The Connection factory JNDI Name represents the JNDI name for the JMS
connection factory used by the listener port. Type the following Connection Factory
JNDI Name for each listener port you create.

jms/Queue/sbynConnectionFactory

jms/Queue/sbynConenctionFactoryXA

jms/Topic/sbynConnectionFactory

jms/Topic/sbynConnectionFactoryXA

D Destination JNDI Name

The Destination JNDI Name represents the JNDI name for the destination used by
the listener port. Type the following Destination JNDI name for each listener port
you create.

jms/Queue/sbynqueueFromSbynJms

jms/Queue/sbynqueueFromSbynJMSXA

jms/Topic/sbyntopicFromSbyn.Jms

jms/Topic/sbyntopicFromSbynJmsXA

4 Click OK once you complete configuring the listener port.

5 Click Save to save the configuration.

To have the configuration take effect, stop then restart the application server.

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 52 SeeBeyond Proprietary and Confidential

Chapter 4

Implementation

This chapter contains basic information for implementing the WebSphere Application
Server e*Way in a production environment. The sample schemas that are included with
the e*Way are intended to demonstrate and provide a comprehensive overview of the
e*Way implementation process.

This chapter provides detailed information for creating and configuring the necessary
components for the WebSphere Application Server e*Way sample schemas. Review
this information carefully, as it illustrates how to implement the WebSphere
Application Server e*Way in your own production environment.

4.1 Implementation Process Overview
The WebSphere Application Server e*Way enables e*Gate to connect with the
WebSphere Application Server. When the WebSphere Application Server e*Way is
installed with e*Gate Integrator, you can create and configure schemas using the e*Gate
Schema Designer.

A schema contains the parameters for components that control, route, and transform
data as it moves through e*Gate in a predefined system configuration. For the most
part, the steps involved in creating an e*Way have already been implemented for the
imported sample schemas.

Implementing the WebSphere Application Server e*Way

To implement the WebSphere Application Server e*Way within an e*Gate system
requires the following:

Install the WebSphere Application Server e*Way.

Create one or more e*Way components and configure the properties and
parameters.

Define the necessary e*Way Connections and configure the properties and
parameters.

Define Collaboration Rules to extract selected information from a source Event and
process it according to the Collaboration Service associated with the Collaboration
Rules.

Define Collaborations to receive and process Event Types and then forward the
output to other e*Gate components.

Chapter 4 Section 4.2
Implementation Preparing for the Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 53 SeeBeyond Proprietary and Confidential

Configure any other components necessary to complete the schema.

Test the schema and make any necessary adjustments.

This chapter describes how to perform each of these steps using various sample
schemas as demonstration tools.

Note: For additional information on creating or modifying any component within the
e*Gate Schema Designer, see the e*Gate Schema Designer’s online Help.

4.2 Preparing for the Sample Schemas
The following pages contain sample schemas that explain how the components for the
WebSphere Application Server e*Way are implemented.

The section, “Creating the Sample Schemas” on page 54 describes the various sample
schemas for the WebSphere Application Server e*Way available on the installation CD-
ROM.

The Host and Control Broker are automatically created and configured during the
e*Gate installation. The default name for each is the name of the host on which the
e*Gate Schema Designer GUI is installed.

Note: For more information about creating or modifying any component within the e*Gate
Schema Designer, see the e*Gate Schema Designer’s online Help.

4.2.1. Considerations
XA transactions for the WebSphere Application Server e*Way are managed by the
WebSphere TransactionManager, NOT the e*Gate TransactionManager or in the
e*Way Connection parameters. For XA transactions make sure that the
XAConnectionFactory is configured in the BindJMSFactory class.

Any third-party J2EE-compliant Integrated Development Environment (IDE) tool
can be used to create the application .jar file.

4.2.2. Preparing for Implementing the Sample Schemas
Before creating one or more of the sample schemas you must do the following to enable
asynchronous messaging between WebSphere EJB and SeeBeyond JMS.

Step 1: Configure WebSphere to create JNDI entries for SeeBeyond JMS

Configure WebSphere to create JNDI entries in the directory service for SeeBeyond JMS
on WebSphere Application Server instance startup. For more information, see
“Configuring the WebSphere Application Server Components” on page 43.

Step 2: Create new message driven beans

Use the WebSphere Studio Application Developer to build EJBs, or use the .jar file
provided.

Chapter 4 Section 4.3
Implementation Creating the Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 54 SeeBeyond Proprietary and Confidential

Step 3: Packaging and deployment

Use the WebSphere Application Assembly Tool to package the EJB for deployment to
other applications. The WebSphere Application Assembly Tool is provided in the
WebSphere Application Server installation.

Step 4: Install the EJB in WebSphere

Import the already created EJB .jar file into WebSphere Application Assembly Tool.
This step generates the EJB .ear file.

Note: While preparing for the application installation, make sure that the Override
existing bindings option is selected. The .bindings file generated by the sample
Java program BindJMSFactory should be selected for the specific .bindings file field
to overwrite the default binding.

4.3 Creating the Sample Schemas
Sample schemas for the WebSphere Application Server e*Way asynchronous (JMS)
implementation is available in the ..\samples\ewwebsphere\java-WAS5.1 folder of
the installation CD-ROM. Import the websphere_sample.zip file into e*Gate to create
the following:

WebSphere Sample Schemas on page 55 contains the four samples listed below
that demonstrate WebSphere Application Server e*Way asynchronous messaging
using the SeeBeyond JMS Connection. To install the
JMSAsynchProducersConsumer sample import
JMSAsynchProducersConsumer.zip into e*Gate.

JMSQueueSend and JMSQueueReceive Sample on page 55 demonstrates
asynchronous messaging from e*Gate to WebSphere via the SeeBeyond JMS
Queue. The e*Way picks up a message and publishes it to the SeeBeyond JMS
Queue. The message is then subscribed to by the WebSphere MDB.

JMSXAQueueSend Sample on page 63 demonstrates asynchronous interaction
with an XA transaction. The e*Way picks up a message and publishes it to the
SeeBeyond JMS Queue. The message is then subscribed to by the WebSphere
XA MDB.

JMSTopicPublish and JMSTopicSubscribe Sample on page 66 demonstrates
asynchronous messaging in which the e*Way picks up a message from a file
and publishes it to the SeeBeyond JMS Topic where the message is subscribed to
by the WebSphere MDB.

JMSXATopicPublish Sample on page 74 demonstrates asynchronous
interaction with an XA transaction. The e*Way publishes to an XA JMS Topic
which is subscribed to by a WebSphere MDB.

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 55 SeeBeyond Proprietary and Confidential

4.3.1. Installing a Sample Schema
Once you have imported the .zip files in to e*Gate, you must import the schema at the
startup of the e*Gate Schema Designer, or select New Schema from the File menu of the
e*Gate Enterprise. For either case, select Create from export and navigate to the .zip file
containing the sample.

4.4 WebSphere Sample Schemas
The WebSphere sample schemas contains four e*Ways configured to utilize the
SeeBeyond JMS Connection. The e*Ways deliver and receive messages to and from the
Enterprise JavaBeans running inside the WebSphere container. The schemas also
configure the IQ Manager as a SeeBeyond JMS IQ Manager. There are two modes of
operation occurring in the sample schemas: e*Ways sending or publishing messages to
a Queue or Topic, and e*Ways which receive or subscribe to a Queue or a Topic.

4.4.1. Setting up the WebSphere Schemas
When setting up the WebSphere schemas, do the following:

1 For directions on importing the sample see Installing a Sample Schema on page 54.

2 Make sure that the sample schema is running first prior to deploying the EJBs. This
ensures that the SeeBeyond IQ Manager (SeeBeyond JMS Server) is available so that
the WebSphere container can create the connections on behalf of the MDBs during
deployment.

3 Do NOT feed messages into the feeder e*Ways UNTIL the sample EJBs are
deployed. This guarantees that there are subscriber or receiver MDBs running
before messages are sent to Topics or Queues.

4 Start the WebSphere server.

5 Deploy the sample EJBs.

6 Feed messages to the feeder e*Ways. Messages are then published to SeeBeyond
JMS. The MDB subscribes to and receives the messages to the EJBs. The messages
are then visible in the WebSphere SystemOut.log file. MDBs process the messages
and publish them back to SeeBeyond JMS. Finally, the eater e*Ways get the
messages from JMS and the messages are then written to files.

4.4.2. JMSQueueSend and JMSQueueReceive Sample
JMSQueueSend e*Way

In this sample, the JMSQueueSend e*Way (stcewfile.exe) acts as a feeder of messages to
the eGateJMSToMDBQueue queue. The JMSQueueSend e*Way looks for files with
extension .qfin as input files (the input directory configured is C:\InputData). The
colJMSQueueSend Collaboration subscribes to external (for an event from a file) and
publishes to the conJMSQueueProducer JMS Connection. The conJMSQueueProducer

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 56 SeeBeyond Proprietary and Confidential

JMS Connection is configured to use the internal SeeBeyond JMS IQ Manager as the
JMS server. The colJMSQueueSend Collaboration uses the crJMSQueueSend
Collaboration Rule which copies data from the source event to the output event.

JMSQueueReceive e*Way

The JMSQueueReceive e*Way (stcewfile.exe) acts as a eater of messages coming from
the WSToEGateQueue queue. The colJMSQueueReceive Collaboration subscribes to
the conJMSQueueConsumer JMS Connection on the WSToEGateQueue queue. The
conJMSQueueConsumer JMS Connection is configured to use the internal SeeBeyond
JMS IQ Manager as the JMS server. The colJMSQueueReceive Collaboration uses the
crJMSQueueReceive Collaboration Rule which displays the message received to
standard output and publishes the message to the external.

JMSQueueSend and JMSQueueReceive Sample Message Flow

Figure 14 shows the components of the JMSQueueSend and JMSQueueReceive sample.

Figure 14 JMSQueueSend and JMSQueueReceive Sample Components

As shown in Figure 14, the File Feeder reads a file containing the input message event.
A feeder Collaboration subscribes from external and publishes the input message as a
eGateJMSToMDBQueue event to the JMS Connection. The JMS Connection is
configured to use a JMS Queue and acts as a QueueSender. Both the JMS Connection
and the MDB are configured to connect to the JMS IQ Manager as the JMS server. The
MDB receives messages from the eGateJMSToMDBQueue queue and displays the
message it receives to the WebSphere console. The MDB sends the message to the
WSToEGateQueue. The file eater receives messages from the WSToEGateQueue and
writes it to an output file.

JMSQueueSend

File Feeder JMS
Connection MDB JMS Queue

JMS
Connection

ConnectionConnection

ConJMSQueueProducer eGateJMStoMDBQueue
WebSphere Container

JMS Queue

JMSQueueReceive WSToEGateQueue

JMS IQ Manager

File Eater

Connection

ConJMSQueueConsumer

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 57 SeeBeyond Proprietary and Confidential

Configuring the JMSQueueSend and JMSQueueReceive Sample

Once the sample has been successfully imported into e*Gate, you must configure it to
correspond to the system as necessary.

Configuring the e*Ways

Each of the configuration files associated with the e*Way must be configured as
needed, saved, and promoted to run time. Specifically, the parameters listed in Table 4
must be configured as shown.

Table 5 e*Way Configuration Parameters - JMSQueueReceive

Table 4 e*Way Configuration Parameters - JMSQueueSend

e*Way Configuration Parameters

General Settings - Set as directed, otherwise leave as default.

AllowIncoming YES

AllowOutgoing NO

PerformanceTesting NO

Outbound (send) settings - Set as directed, otherwise leave as default.

OutputDirectory C:\DATA

OutputFileName output%d.dat

MultipleRecordsPerFile YES

MaxRecordsPerFile 10000

AddEOL Yes

Poller (inbound) settings - Set as directed, otherwise leave as default.

PollDirectory C:\INDATA

InputFileMask *.qfin

PollMilliseconds 1000

RemoveEOL YES

MultipleRecordsPerFile NO

MaxBytesPerLine 4096

BytesPerLineIsFixed NO

File Records Per eGate Event 1

Performance Testing - Set as directed, otherwise leave as default.

Performance Testing 100

InboundDuplicates 1

e*Way Configuration Parameters

General Settings - Set as directed, otherwise leave as default.

AllowIncoming NO

AllowOutgoing YES

PerformanceTesting NO

Outbound (send) settings - Set as directed, otherwise leave as default.

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 58 SeeBeyond Proprietary and Confidential

Configuring the e*Way Connection

Each of the configuration files associated with the e*Way must be configured as
needed, saved, and promoted to run time. Specifically, the parameters listed in Table 6
must be configured as shown.

The conJMSQueueConsumer and conJMSQueueProducer e*Way Connection
parameters associated with the JMSQueueSend and JMSQueueReceive sample appear
as shown in Table 6.

For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection Parameters on page 39.

Creating Collaborations

JMSQueueSend Collaboration Rule Mapping

The Collaboration Mapping associated with the crJMSQueueSend Collaboration Rule
appears as shown in Figure 15.

OutputDirectory C:\DATA

OutputFileName queuereceive%d.dat

MultipleRecordsPerFile YES

MaxRecordsPerFile 10000

AddEOL Yes

Poller (inbound) settings - See Table 4 on page 57.

Performance Testing - See Table 4 on page 57.

Table 6 e*Way Connection Parameters - JMSQueueSend and JMSQueueReceive

e*Way Connection Parameters

General Settings - Set as directed, otherwise leave as default.

Connection Type Queue

Transaction Type Internal

SDelivery Mode Persistent

Maximum Number of Bytes to read 10000000

Default Outgoing Message Type Text

Message Selector

Factory Class Name com.stc.commonService.SBYNJMSFactory

Message Service - Set as directed, otherwise leave as default.

Server Name localhost_iqmgr

Host Name localhost

Port Number 26000

Maximum Message Cache Size 100

e*Way Configuration Parameters

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 59 SeeBeyond Proprietary and Confidential

Figure 15 crJMSQueueSend - Collaboration Mapping

JMSQueueReceive Collaboration Rule Mapping

The Collaboration Mapping associated with the crJMSQueueReceive Collaboration
Rule appears as shown in Figure 16.

Figure 16 crJMSQueueReceive - Collaboration Mapping

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 60 SeeBeyond Proprietary and Confidential

JMSQueueSend Collaboration Rules

The crJMSQueueSend Collaboration Rules appear as shown in Figure 17.

Figure 17 Collaboration Rules - crJMSQueueSend

Each new rule is created by clicking the rule button on the Business Rules toolbar. For
additional information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide. The crJMSQueueSend business rules are created as follows:

1 “Copy blob data to Send” is created by dragging Data located under Source Events
command node and dropping it on Data located under the Destination Events.

2 “Display message to send” is created by dragging Data located under Source
Events command node into the Rule Properties, Rules window and entering code
before and after to create the following code:

System.out.println("\nSending Message:\n*****Start of Message*****\n" + getinBlob().get_Data()
+ "\n*****End of Message*****\n")

JMSQueueReceive Collaboration Rules

The crJMSQueueReceive Collaboration Rules appear as shown in Figure 18.

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 61 SeeBeyond Proprietary and Confidential

Figure 18 Collaboration Rules - crJMSQueueReceive

Each new rule is created by clicking the rule button on the Business Rules toolbar. For
additional information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide. The crJMSQueueReceive business rules are created as follows:

1 “Copy blob data to Send” is created by dragging Data located under Source Events
command node and dropping it on Data located under the Destination Events.

2 “Display message to send” is created by dragging Data located under Source
Events command node into the Rule Properties, Rules window and entering code
before and after to create the following code:

System.out.println("\nSending Message:\n*****Start of Message*****\n" + getinBlob().get_Data()
+ "\n*****End of Message*****\n")

JMSQueueSend Collaboration Properties

The colJMSQueueSend Collaboration Properties for the JMSQueueSend sample
appears as shown in Figure 19.

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 62 SeeBeyond Proprietary and Confidential

Figure 19 colJMSQueueSend - Collaboration Properties

JMSQueueReceive Collaboration Properties

The colJMSQueueReceive Collaboration Properties for the JMSQueueReceive sample
appear as shown in Figure 20.

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 63 SeeBeyond Proprietary and Confidential

Figure 20 colJMSQueueReceive - Collaboration Properties

4.4.3. JMSXAQueueSend Sample
In this sample, the JMSXAQueueSend e*Way (stcewfile.exe) acts as a feeder of
messages to the eGateJMSToMDBQueueXA queue. The JMSXAQueueSend e*Way
looks for files with the extension .xaqfin as input files (the input directory configured is
C:\INDATA). The colJMSXAQueueSend Collaboration subscribes to external (for an
event from a file) and publishes to the conJMSXAQueueProducer JMS Connection. The
conJMSXAQueueProducer JMS Connection Point is configured to use the internal
SeeBeyond JMS IQ Manager as the JMS server. The colJMSXAQueueSend
Collaboration uses the crJMSQueueSend Collaboration Rule which copies data from
the source event to the output event.

JMSXAQueueSend e*Way

Figure 21 shows the components of the JMSXAQueueSend sample.

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 64 SeeBeyond Proprietary and Confidential

Figure 21 JMSXAQueueSend Sample Components

As shown in Figure 21, the File Feeder reads a file containing the input message event.
A feeder Collaboration subscribes from external and publishes the input message to the
JMS Connection as a eGateJMSToMDBQueueXA event. The JMS Connection is
configured to use a JMS Queue and therefore acts as a QueueSender. Both the JMS
Connection and the MDB are configured to connect to the JMS IQ Manager as the JMS
server. The MDB receives the message and prints to the SystemOut.log file in
WebSphere/logs/<servername>.

Configuring the JMSXAQueueSend Sample

Once the sample has been successfully imported into e*Gate, you must configure it to
correspond to the information as necessary.

Configuring the e*Ways

Each of the configuration files associated with the e*Way must be configured as
needed, saved, and promoted to run time.

The JMSXAQueueSend e*Way Connection Configuration settings are the same as
those in Table 6 on page 58.

Configuring the e*Way Connection

Each of the configuration files associated with the e*Way must be configured as
needed, saved, and promoted to run time.

Configuration parameters for the conJMSXAQueueProducer e*Way Connection used
with the JMSXAQueueSend sample are the same as those in Table 4 on page 57 with
the exception of those shown in Table 7.

Table 7 e*Way Connection Parameters - JMSXAQueueProducer

e*Way Connection Parameters

General Settings - Set as directed, otherwise leave as default.

Connection Type Queue

Transaction Type XA-Compliant

SDelivery Mode Persistent

JMSQueueSend

File
Feeder

JMS
Connection XA MDBJMS Queue

JMS IQ
Manager

ConnectionConnection

ConJMSXAQueueProducer eGateJMSToMDBQueueXA
WebSphere Container

JMS IQ Manager

Sys temOut . log

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 65 SeeBeyond Proprietary and Confidential

For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection Parameters on page 39.

Creating Collaborations

JMSXAQueueSend Collaboration Rule Mapping

The JMSXAQueueSend sample uses the crJMSQueueSend Collaboration Rule Mapping
(see crJMSQueueSend - Collaboration Mapping on page 59).

JMSXAQueueSend Collaboration Rules

The JMSXAQueueSend sample uses the JMSQueueSend Collaboration Rules (see
Collaboration Rules - crJMSQueueSend on page 60).

JMSXAQueueSend Collaboration Properties

The colJMSXAQueueSend Collaboration for the JMSXAQueueSend sample appears as
follows in Figure 22.

Maximum Number of Bytes to read 10000000

Default Outgoing Message Type Text

Message Selector

Factory Class Name com.stc.commonService.SBYNJMSFactory

Message Service - Set as directed, otherwise leave as default.

Server Name localhost_iqmgr

Host Name localhost

Port Number 26000

Maximum Message Cache Size 100

Table 7 e*Way Connection Parameters - JMSXAQueueProducer

e*Way Connection Parameters

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 66 SeeBeyond Proprietary and Confidential

Figure 22 colJMSXAQueueSend - Collaboration Properties

4.4.4. JMSTopicPublish and JMSTopicSubscribe Sample
JMSTopicPublish e*Way

In this sample, the JMSTopicPublish e*Way (stcewfile.exe) acts as a feeder of messages
to the eGateJMSToMDBTopic topic. The JMSTopicPublish e*Way looks for files with
the extension .tfin as input files (the configured input directory is C:\INDATA). The
colJMSTopicPublish Collaboration subscribes to external (for an event from a file) and
publishes to the conJMSTopicProducer JMS Connection. The conJMSTopicProducer
JMS Connection is configured to use the internal SeeBeyond JMS IQ Manager as the
JMS server. The colJMSTopicPublish Collaboration uses the crJMSTopicPublish
Collaboration Rule which simply copies data from the source event to the output event.

JMSTopicSubscriber e*Way

The JMSTopicSubscriber e*Way (stcewfile.exe) acts as an eater of messages coming
from the WSToEGateTopic topic. The colJMSTopicSubscribe Collaboration subscribes
to the conJMSTopicConsumer JMS Connection on the WSToEGateTopic topic. The
conJMSTopicConsumer JMS Connection is configured to use the internal SeeBeyond
JMS IQ Manager as the JMS server. The colJMSTopicSubscribe uses the
crJMSTopicSubscribe Collaboration Rule, which displays the message received to
standard output, and publishes the message to the external (writes the message
received to a file).

JMSTopicPublish and JMSTopicSubscribe Message Flow

Figure 23 shows the components of the JMSTopicPublish and JMSTopicSubscribe
sample.

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 67 SeeBeyond Proprietary and Confidential

Figure 23 JMSTopicPublish and JMSTopicSubscribe Sample Components

As shown in Figure 23, the File Feeder reads a file containing the input message event.
A feeder Collaboration subscribes from external and publishes the input message, as a
eGateJMSToMDBTopic event, to the JMS Connection. The JMS Connection is
configured to use a JMS Topic, acting as a TopicPublisher. Both the JMS Connection
and the MDB are configured to connect to the JMS IQ Manager as the JMS server. The
MDB then publishes the message to WSToEGateTopic.

Configuring the JMSTopicPublish and JMSTopicSubscribe Sample

Once the sample has been successfully imported into e*Gate, you must configure it to
correspond to the information as necessary.

Configuring the e*Ways

Each of the configuration files associated with the e*Way must be configured as
needed, saved, and promoted to run time.

Configuration parameters for the JMSTopicPublish e*Way used with the
JMSTopicPublish and JMSTopicSubscribe sample are the same as those in Table 4 on
page 57 with the exception of the following shown in Table 8.

Table 8 e*Way Configuration Parameters - JMSTopicPublish

e*Way Configuration Parameters

General Settings - See Table 4 on page 57.

Outbound (send) settings - See Table 4 on page 57.

Poller (inbound) settings - Set as directed, otherwise see Table 4 on page 57.

InputFileMask *.tfin

Performance Testing - See Table 4 on page 57.

JMSTopicPublish

File Feeder JMS
Connection MDB JMS Topic

JMS
Connection

ConnectionConnection

eGateJMStoMDBTopic
WebSphere Container

JMS Topic

JMSTopicSubscribe WSToEGateTopic

JM S IQ M anager

File Eater

Connection

ConJMSTopicConsumer

ConJMSTopicProducer

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 68 SeeBeyond Proprietary and Confidential

Parameters for the JMSTopicSubscribe e*Way configuration used with the
JMSTopicPublish and JMSTopicSubscribe sample appear as shown in Table 9.

Configuring the e*Way Connection

Each of the configuration files associated with the e*Way must be configured as
needed, saved, and promoted to run time.

The conJMSTopicProducer e*Way Connection Parameters associated with the
JMSTopicPublish and JMSTopicSubscribe sample appear as shown in Table 10.

Table 9 e*Way Configuration Parameters - ewJMSTopicSubscribe

e*Way Configuration Parameters

General Settings - Set as directed, otherwise leave as default.

AllowIncoming NO

AllowOutgoing YES

PerformanceTesting NO

Outbound (send) settings - Set as directed, otherwise leave as default.

OutputDirectory C:\DATA

OutputFileName topicrecv%d.dat

MultipleRecordsPerFile NO

MaxRecordsPerFile 10000

AddEOL Yes

Poller (inbound) settings - Set as directed, otherwise leave as default.

PollDirectory C:\INDATA

InputFileMask *.fin

PollMilliseconds 1000

RemoveEOL YES

MultipleRecordsPerFile YES

MaxBytesPerLine 4096

BytesPerLineIsFixed NO

File Records Per eGate Event 1

Performance Testing - Set as directed, otherwise leave as default.

Performance Testing 100

InboundDuplicates 1

Table 10 e*Way Connection Parameters - conJMSTopicProducer

e*Way Connection Parameters

General Settings - Set as directed, otherwise leave as default.

Connection Type Topic

Transaction Type Internal

SDelivery Mode Persistent

Maximum Number of Bytes to read 5000

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 69 SeeBeyond Proprietary and Confidential

For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection Parameters on page 39.

The conJMSTopicConsumer e*Way Connection Parameters associated with the
JMSTopicPublish and JMSTopicSubscribe sample appear as shown in Table 11.

Creating Collaborations

JMSTopicPublish Collaboration Rule Mapping

The Collaboration Mapping associated with the crJMSTopicPublish Collaboration Rule
appears as shown in Figure 24.

Default Outgoing Message Type Text

Message Selector

Factory Class Name com.stc.commonService.SBYNJMSFactory

Message Service - Set as directed, otherwise leave as default.

Server Name localhost_iqmgr

Host Name localhost

Port Number 26000

Maximum Message Cache Size 100

Table 11 e*Way Connection Parameters - conJMSTopicConsumer

e*Way Connection Parameters

General Settings - Set as directed, otherwise leave as default.

Connection Type Topic

Transaction Type Internal

SDelivery Mode Persistent

Maximum Number of Bytes to read 10000000

Default Outgoing Message Type Text

Message Selector

Factory Class Name com.stc.commonService.SBYNJMSFactory

Message Service - Set as directed, otherwise leave as default.

Server Name localhost_iqmgr

Host Name localhost

Port Number 26000

Maximum Message Cache Size 100

Table 10 e*Way Connection Parameters - conJMSTopicProducer

e*Way Connection Parameters

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 70 SeeBeyond Proprietary and Confidential

Figure 24 crJMSTopicPublish - Collaboration Mapping

JMSTopicSubscribe Collaboration Rule Mapping

The Collaboration Mapping associated with the crJMSTopicSubscribe Collaboration
Rule appears as shown in Figure 25.

Figure 25 crJMSTopicSubscribe - Collaboration Mapping

crJMSTopicPublish Collaboration Rules

The crJMSTopicPublish Collaboration Rules appears as shown in Figure 26.

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 71 SeeBeyond Proprietary and Confidential

Figure 26 Collaboration Rules - crJMSTopicPublish

Each new rule is created by clicking the rule button on the Business Rules toolbar. For
additional information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide. The crJMSTopic Publish business rules are created as follows:

1 “Copy blob data to Publish” is created by dragging Data located under Source
Events command node and dropping it on Data located under the Destination
Events.

2 “Display message to Publish” is created by dragging Data located under Source
Events command node into the Rule Properties, Rules window and entering code
before and after to create the following code:

System.out.println("\nMessage to Publish:\n*****Start of Message*****\n" +
getinBlob().get_Data() + "\n*****End of Message*****\n")

JMSTopicSubscribe Collaboration Rules

The crJMSTopicSubscribe Collaboration Rules appear as shown in Figure 27.

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 72 SeeBeyond Proprietary and Confidential

Figure 27 Collaboration Rules - crJMSTopicSubscribe

Each new rule is created by clicking the rule button on the Business Rules toolbar. For
additional information on using the Java Collaboration Rules Editor, see the e*Gate
Integrator User’s Guide.

The crJMSTopicSubscribe business rules are created as follows:

1 “Display received JMS message” is created by dragging Data located under
Source Events command node into the Rule Properties, Rules window and entering
code before and after to create the following code:

System.out.println ("\nGot JMS Message:\n*****Start of
Message*****\n" + getinJMSTopic().get_Data() + "\n*****End of
Message*****\n")

2 “Set blob output results” is created by dragging Data located under Source Events
command node and dropping it on Data located under the Destination Events.

JMSTopicPublish Collaboration Properties

The colJMSTopicPublish Collaboration properties for the JMSQueueSend sample
appear as shown in Figure 28.

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 73 SeeBeyond Proprietary and Confidential

Figure 28 colJMSTopicPublish - Collaboration Properties

JMSTopicSubscribe Collaboration Properties

The colJMSTopicSubscribe Collaboration properties for the JMSTopicSubscribe sample
appear as shown in Figure 29.

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 74 SeeBeyond Proprietary and Confidential

Figure 29 colJMSTopicSubscribe - Collaboration Properties

4.4.5. JMSXATopicPublish Sample
In this sample, the JMSXATopicPublish e*Way (stcewfile.exe) acts as a feeder of
messages to the eGateJMSToMDBTopicXA topic. The JMSXATopicPublish e*Way
looks for files with the extension “*.xatfin” as input files (the input directory configured
is C:\INDATA). The colJMSXATopicPublish Collaboration subscribes to external for
an event from a file and publishes to the conJMSXATopicProducer JMS Connection.
The conJMSXATopicProducer JMS Connection is configured to use the internal
SeeBeyondJMS IQ Manager as the JMS server.

The colJMSXATopicPublish Collaboration uses the crJMSTopicXAPublish
Collaboration rule which copies data from the source event and writes to
eGateJMSToMDBTopicXA. The MDB receives the message and prints to the
SystemOut.log file in WebSphere/logs/<servername>.

JMSXATopicPublish Message Flow

Figure 30 shows the components of the JMSXATopicPublish sample.

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 75 SeeBeyond Proprietary and Confidential

Figure 30 JMSXATopicPublish Sample Components

Configuring the JMSXATopicPublish Sample

Once the sample has been successfully imported into e*Gate, you must configure it to
correspond to the information as necessary.

Configuring the e*Ways

Each of the configuration files associated with the e*Way must be configured as
needed, saved, and promoted to run time.

Configuration Parameters for ewJMSXATopicPublish e*Way configuration used with
JMSXATopicPublish are the same as those in Table 10 on page 68.

Configuring the e*Way Connection

Each of the configuration files associated with the e*Way must be configured as
needed, saved, and promoted to run time.

Connection Parameters for conJMSXATopicProducer e*Way connection must be set as
shown in Table 12.

Table 12 e*Way Connection Parameters - conJMSXATopicProducer

e*Way Connection Parameters

General Settings - Set as directed, otherwise leave as default.

Connection Type Topic

Transaction Type XA-Compliant

SDelivery Mode Persistent

Maximum Number of Bytes to read 10000000

Default Outgoing Message Type Text

Message Selector

Factory Class Name com.stc.commonService.SBYNJMSFactory

Message Service - Set as directed, otherwise leave as default.

Server Name localhost_iqmgr

Host Name localhost

JMSXATopicPublish

File
Feeder

JMS
Connection XA MDB XA Topic

JMS IQ
Manager

ConnectionConnection

conJMSXATopicProducer eGateJMSToMDBTopicXA
WebSphere Container

publish
SystemOut.log

JMS IQ Manager

Chapter 4 Section 4.4
Implementation WebSphere Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 76 SeeBeyond Proprietary and Confidential

For more information on e*Way Connection Configuration Parameters for JMS see
Configuring the JMS e*Way Connection Parameters on page 39.

Creating Collaborations

JMSXATopicPublish Collaboration Rule Mapping

The JMSXATopicPublish sample uses the crJMSTopicXAPublish Collaboration
Mapping (see Table 25 on page 70).

JMSXATopicPublish Collaboration Rules

The JMSXATopicPublish Sample uses the crJMSTopicXAPublish Collaboration Rule
(see Table 27 on page 72).

JMSXATopicPublish Collaboration Properties

The colJMSTopicPublish Collaboration for the JMSXATopicPublish sample appears as
shown in Figure 31.

Figure 31 colJMSXATopicPublish - Collaboration Properties

Port Number 26000

Maximum Message Cache Size 100

Table 12 e*Way Connection Parameters - conJMSXATopicProducer

e*Way Connection Parameters

Chapter 4 Section 4.5
Implementation Executing the Sample Schemas

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 77 SeeBeyond Proprietary and Confidential

4.5 Executing the Sample Schemas
Execute the WebSphere sample schemas as follows:

1 At the command prompt, enter the following:

stccb -rh hostname -rs schemaname -un username -up user password
-ln hostname_cb

Note: Substitute the italicized values with the specific values for your schema.

2 Start the Schema Manager.

3 When prompted, enter the host name which contains the Registry Host started in
step 1 above.

4 Select the sample schema.

5 Verify that the Control Broker is connected (the message on the Control tab of the
console will indicate command succeeded and the status as up).

6 Right-click the IQ Manager (hostname_iqmgr) and click Start.

7 Right-click each e*Way and click Start.

8 View the output by copying the output file (specified in the Outbound e*Way
configuration file) to another location. Open the file in the new location.

Note: Do not open the destination file while the schema is running. This will cause errors.

Index

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 78 SeeBeyond Proprietary and Confidential

Index

B
BindJMSFactory file 20

C
Collaboration Mapping 58
Collaboration Rules 60
Configuration Parameters

General Settings 39
Configuration parameters

General Settings
Connection Type 40
Default Outgoing Message Type 41
Delivery Mode 40
Factory Class Name 41
Maximum Number of Bytes to read 41
Message Selector 41
Transaction Type 40

Message Service
 41
Host Name 42
Maximum Message Cache Size 42
Port Number 42
Server Name 42

Control Broker 77

D
Dynamic Load Library (DLL)

DLL search path environment variable 34

E
e*Gate integration and SeeBeyond JMS 18
e*Gate Integrator 30
e*Gate Integrator User’s Guide 31
e*Gate Schema Manager 53
e*Way

Functionality overview 6
e*Way Connection 37

Creating 38
JMS parameters 39
SeeBeyond JMS configuration 37

e*Way Intelligent Adapter for WebSphere

Application Server 6
EJBs 11

Architecture 11
Entity Beans 12
Message Driven Beans 11
Session Beans 11

Enterprise JavaBeans 11
Architecture 11
Entity Beans 12
Message Driven Beans 11
Session Beans 11

G
Guaranteed Exactly Once Delivery (GEOD)

overview 14
XA-compliance, how achieved 14

I
Implementation 52

Process overview 52
Samples

Asynchronous messaging overview 53
Samples schemas 53

Intelligent Queues (IQs) 31
IQ Manager 77

J
Java Messaging Service 10

SeeBeyond JMS 19
Java Virtual Machine (JVM) 33
JMS 10

SeeBeyond JMS 19
JMS e*Way Connection

Parameters 39
JMS IQ Manager 30

M
Message flow

e*Gate to WebSphere 24
Multi-Mode e*Way 32

Configuration parameters 32, 33
General settings 37
JVM settings 33

O
Online Help 31
Operating systems

supported 7

Index

e*Way Intelligent Adapter for WebSphere
Application Server User’s Guide 79 SeeBeyond Proprietary and Confidential

Output file 77

P
Participating Host 34

Q
Queue 10

R
Registry Host 77

S
Sample Schema

Considerations 53
Sample schemas

Installing 55
Samples

JMSQueueSend
Collaboration properties 61
Collaboration Rules 60
Parameters 57

JMSQueueSend and JMSQueueReceive 55
JMSTopicPublish

Collaboration properties 72
Collaboration Rules 70

JMSTopicPublish and JMSTopicSubscribe
Parameters 67

JMSTopicSubscribe
Collaboration properties 73
Collaboration Rules 71

JMSXAQueueSend 63
Collaboration properties 65
Collaboration Rules 65
Parameters 64

JMSXATopicPublish 74
Parameters 75

JMSXATopicSubscribe
Collaboration properties 76
Collaboration Rules 76

Schema
Executing the schema 77

Schema Monitor 77
SeeBeyond JMS 19
SeeBeyond JMS components

Configuring 30
SeeBeyond JMS Intelligent Queue User’s Guide 31
Standard e*Way Intelligent Adapter User’s Guide
37
stceway.exe 32

System requirements 7
external 8

T
Topic 10

W
WebSphere Application Server

Administrative console 43
Components 43

WebSphere sample schema 55
Executing the schema 77

X
XA compliance, see also GEOD 14
XA transactions

Overview 13

	e*Way Intelligent Adapter for WebSphere Application Server User’s Guide
	Contents
	Introduction
	1.1 Intended Reader
	1.2 Overview
	1.3 Supported Operating Systems
	1.4 System Requirements
	1.4.1. External System Requirements

	Services, XA Transactions, and Enterprise Messaging
	2.1 J2EE Services
	2.1.1. Java Naming and Directory Interface (JNDI)
	WebSphere Naming Service

	2.1.2. Java Messaging Service (JMS)
	2.1.3. Enterprise JavaBeans (EJBs)
	Enterprise JavaBean Architecture
	Message Driven Beans
	Session Beans
	Entity Beans

	2.2 Overview of e*Gate and WebSphere Application Server Messaging
	2.3 XA Transactions
	2.3.1. XA Transaction Process Overview
	Guaranteed Exactly Once Delivery

	2.3.2. XA Transactions With SeeBeyond JMS and the WebSphere Application Server
	Designing an MDB to Support XA Transactions
	Designing a Session Bean to Support XA Transactions

	2.4 e*Gate and WebSphere Application Server Messaging Modes
	2.4.1. e*Gate Integration and SeeBeyond JMS
	SeeBeyond JMS
	FSContext Naming Service
	SeeBeyond JMS and SeeBeyond BindJMSFactory
	Message Flow from e*Gate to WebSphere

	Configuration
	3.1 Configuring Components for Asynchronous Messaging Implementation using SeeBeyond JMS
	3.1.1. JMS IQ Manager
	3.1.2. Multi-Mode e*Way Configuration
	Creating a Multi-Mode e*Way
	Multi-Mode e*Way Configuration Parameters

	3.1.3 Multi-Mode e*Way Configuration Parameters
	3.1.4 JVM Settings
	JNI DLL Absolute Pathname
	CLASSPATH Prepend
	CLASSPATH Override
	CLASSPATH Append From Environment Variable
	Initial Heap Size
	Maximum Heap Size
	Maximum Stack Size for Native Threads
	Maximum Stack Size for JVM Threads
	Disable JIT
	Remote debugging port number
	Suspend option for debugging
	Auxiliary JVM Configuration File

	3.1.5 General Settings
	Rollback Wait Interval
	Standard IQ FIFO

	3.2 e*Way Connection Configuration
	3.2.1 Creating an e*Way Connection
	Configuring the JMS e*Way Connection Parameters
	General Settings
	Message Service

	3.3 Configuring the WebSphere Application Server Components
	3.3.1. Defining SeeBeyond JMS in the WebSphere Application Server
	3.3.2. Managing SeeBeyond JMS in the WebSphere Application Server
	3.3.3. Configuring Resources in WebSphere for SeeBeyond JMS
	Configuring JMS Connection Factories for SeeBeyond JMS
	Configuring JMS Destinations for SeeBeyond JMS
	Configuring Listener Ports for SeeBeyond JMS

	Implementation
	4.1 Implementation Process Overview
	4.2 Preparing for the Sample Schemas
	4.2.1. Considerations
	4.2.2. Preparing for Implementing the Sample Schemas

	4.3 Creating the Sample Schemas
	4.3.1. Installing a Sample Schema

	4.4 WebSphere Sample Schemas
	4.4.1. Setting up the WebSphere Schemas
	4.4.2. JMSQueueSend and JMSQueueReceive Sample
	Configuring the JMSQueueSend and JMSQueueReceive Sample
	Creating Collaborations

	4.4.3. JMSXAQueueSend Sample
	Configuring the JMSXAQueueSend Sample
	Creating Collaborations

	4.4.4. JMSTopicPublish and JMSTopicSubscribe Sample
	Configuring the JMSTopicPublish and JMSTopicSubscribe Sample
	Creating Collaborations

	4.4.5. JMSXATopicPublish Sample
	Configuring the JMSXATopicPublish Sample
	Creating Collaborations

	4.5 Executing the Sample Schemas

	Index
	B
	C
	D
	E
	G
	I
	J
	M
	O
	P
	Q
	R
	S
	T
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

