
��������
���	
��	���

�����������	�����

�������	���
Corporate Headquarters
4440 Rosewood Drive
Pleasanton CA 94588

www.commerceone.com

http://www.commerceone.com

XDK Pro Developer’s Guide, Version 4.0

Copyright © 2000 Commerce One, Inc. All rights reserved.

January 2001

COMMERCE ONE, Inc. Information in this document is subject to change without notice. Companies, names
and data used in examples herein are fictitious unless otherwise noted.

This documentation and the software described constitute proprietary and confidential information protected by
copyright laws, trade secret, and other laws. No part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval system, without the prior written permission of
Commerce One.

Commerce One, Many Markets. One Source., Global Trading Web, BuySite, Enterprise Buyer, MarketSite,
Global Trading Platform, Common Business Library, XML Development Kit, XML Commerce Connector,
MarketView, SupplyOrder, iMerge and iExtract are trademarks or registered trademarks of Commerce One, Inc.
All other company, product, and brand names are used for identification purposes only and may be trademarks of
their respective owners.

http://www.commerceone.com

Preface

Purpose of this Book

The XDK Pro Developer’s Guide explains how to use the Commerce
One XML Parser (CXP), how to use the SOX to Java compiler, and how
to interface with CXP via SAX.

Who Should Read this Book

This document is intended for CommerceOne System administrators
and customers.

What’s Included in this Book

The following information is included in this book.

Chapter 1 Introduction

Chapter 1 provides a brief overview of XDK Pro.

Chapter 2 What is SOX

Chapter 2 describes SOX and SOX features.

Chapter 3 Programming Models

Chapter 3 describes the programming interfaces used by application
developers to build electronic commerce applications and services that
manipulate XML documents.

Chapter 4 How to Use the Commerce One XML Parser (CXP)

Chapter 4 explains how to use the Commerce One XML Parser (CXP)
and provides examples of using CXP.

Chapter 5 Interfacing with CXP via SAX

Chapter 5 describes how to use CXP with SAX and provides a SAX
sample.
XDK Pro Developer’s Guide v

Preface
Chapter 6 How to Use the SOX to Java Compiler (X2J)

Chapter 6 describes the X2J options and provides examples of using
X2J.

Chapter 7 From a Document to a Bean and Back (RoundTrip)

Chapter 7 describes the SimpleRoundTrip Application.

Chapter 8 Creating and Manipulating a SOX Bean

Chapter 8 explains how to create and manipulate a SOX bean.

Chapter 9 Document Framework

Chapter 9 describes the programmatic interfaces used by applications
for handling and manipulating documents.

Related Information

In this book, the terms below are defined as:

Enter Refers to typing letters or numbers on the
computer keyboard. If upper or lower case is
mandatory, this is stated. If it is not, then either
may be used.

Press Refers to pressing one of the special keys on the
computer keyboard, such as Tab, Ctrl or Alt. If it
is necessary to press-and-hold a special key
followed by another key, this is stated.

Click Refers to positioning the mouse pointer (or
cursor) over a screen button image and clicking
the left mouse button. If pressing the right mouse
button is required, this is stated as right-click.
vi XDK Pro Developer’s Guide

Preface
XDK Pro Technical Support

Please write the names and numbers for your installation’s technical
support contact personnel below:

If you cannot resolve a problem using thsi manual, contact your
technical support representative and ask him/her to contact Commerce
One Technical Support by email at xdk_support@commerceone.com.
XDK Pro Developer’s Guide vii

Preface
viii XDK Pro Developer’s Guide

Contents
Contents

Preface .. v
Purpose of this Book ...v
Who Should Read this Book ..v
What’s Included in this Book ...v
Related Information ..vi
XDK Pro Technical Support ... vii

Contents... ix

Chapter 1: Introduction.. 1-1
In This Chapter .. 1-1
Recommended Reading Order .. 1-1
Other Useful Documents ... 1-2

Chapter 2: What is SOX? ... 2-3
In This Chapter .. 2-3
SOX Definition ... 2-3
SOX Versus DTDs ... 2-3
Additional SOX Features ... 2-4
Definitions .. 2-5
What to Read Next .. 2-6

 Chapter 3: Programming Models3-1
In This Chapter .. 3-1
Programming Model Definition .. 3-1
What to Read Next .. 3-3

Chapter 4: Using the Commerce One XML Parser.......................... 4-1
What is CXP? .. 4-1
Class Paths ... 4-3
CXP Options .. 4-3
How to Use Schema Paths and URNs .. 4-6
XDK Pro Developer’s Guide ix

Contents
How to Use Catalogs ... 4-8
IExamples of Using CXP ... 4-10
Example of Using a Sample File with CXP .. 4-12
Interpreting Error Messages .. 4-14

 General Validation Errors ... 4-14
Encoding Errors .. 4-14

Chapter 5: Interfacing with CXP via SAX ... 5-1
Simple Event API for XML (SAX) .. 5-1
CXP and SAX .. 5-1
Using CXP with SAX ... 5-3

SAX Sample .. 5-6
Examples ... 5-8

CXP and XT .. 5-8
Options .. 5-9
Examples .. 5-10

Chapter 6: How to Use the SOX to Java Compiler (X2J) 6-1
In This Chapter .. 6-1
What is X2J? ... 6-1
Class Paths ... 6-1
X2J Options ... 6-1
How URNs are Used in Code Generation ... 6-4
Examples of Using X2J ... 6-5
Examples of Using a Sample File with X2J ... 6-7
Troubleshooting ... 6-9

Chapter 7: The Simple RoundTrip Application................................ 7-1
In This Chapter .. 7-1
The SimpleRoundTrip Application ... 7-4
An Example ... 7-5

Chapter 8: Creating and Manipulating a Sox Bean 8-1
In This Chapter .. 8-1
Example ... 8-1
XDK Pro Developer’s Guide x

Contents
 Chapter 9: Document Framework.. 9-1
In This Chapter .. 9-1
Terminology ... 9-2
Document Representation Classes ... 9-5

Representations .. 9-5
DocumentObject ... 9-7
DocumentStream .. 9-8
DocumentBytes ... 9-10

Document Representation Factory and Schema Lookup .. 9-12
Entity Manager .. 9-13
External Source .. 9-13
DocumentFactory .. 9-14

Document Interfaces ... 9-16
Document .. 9-17
Doclet .. 9-18
Marshaller ... 9-19
UnMarshaller ... 9-19
Type .. 9-20
Version .. 9-21
 Identity ... 9-22

Envelope .. 9-22
Main Abstraction ... 9-22
Properties .. 9-24
URICatalog Document .. 9-27
Attachments .. 9-27
Client Side Usage ... 9-28
Service Side Usage .. 9-30

Sending and Receiving Documents .. 9-33
Interfaces .. 9-33
Exceptions .. 9-33
DocumentListener ... 9-35
DocumentResponder .. 9-35
DocumentServant ... 9-36

Document Wrappers .. 9-37
Reply ... 9-37
Forward ... 9-37
XDK Pro Developer’s Guide xi

Contents

xii XDK Pro Developer’s Guide

Chapter 1
Introduction

In This Chapter

This chapter provides a brief introduction to XDK Pro.

Recommended Reading Order

Depending upon your level of expertise with XML and XML Schemas,
we recommend the following reading order.

� If you are not familiar with either XML or SOX (Schema for Object-
Oriented XML), then you will need to do some background reading
on XML before reading this document. See the next section titled,
Other Useful Documents, for a pointer to documentation on XML.

� If you have XML experience, but do not know SOX, then you should
start with Chapter 2, What Is SOX, and then read some of the other
documents referred to in Other Useful Documents, before going on to
the remaining chapters in this document.

� If you have XML and SOX experience, and would like to learn more
about the SOX beans, then you can go directly to Chapter 3,
Programming Models.

� If you have XML and SOX experience, and would like to develop
applications that use a SOX Validation Parser, refer to Chapter 4,
How to User the Commerce One XML Parser.
XDK Pro Developer’s Guide 1-1

Introduction
Other Useful Documents

Fro more information on XML, read the XML 1.0 Specification located
at http://www.w3.org/TR/PR-xml.html.

We recommend that you read the document SOXTutorial.pdf, (found on
this CD), to learn how to read and write SOX documents. Once you
have read this document, you should be well equipped to start writing
your own SOX documents.

For a more in-depth knowledge of the syntax and features of SOX, read
SOXSpecification.pdf, (also included on this CD).

For more details on how to use SAX, go to:

� http://www.megginson.com/SAX/

and

� http://www.megginson.com/SAX/SAX1/

These sites contain complete descriptions of SAX 1.0 and SAX 2.0.

For more information on XSLT, go to http://www.xml.com/pub/rg/
XSLT.

For more information on XT and the canonical XML format, see James
Clark’s web site at http://www.jclark.com
1-2 XDK Pro Developer’s Guide

http://www.w3.org/TR/PR-xml.html
http://www.megginson.com/SAX/SAX1/
http://www.xml.com/pub/rg/XSLT
http://www.xml.com/pub/rg/XSLT
http://www.jclark.com
http://www.megginson.com/SAX/

Chapter 2
What is SOX?

In This Chapter

This chapter describes SOX (Schema for Object-Oriented XML).

SOX Definition

A schema is a set of rules that defines the structure of a document.

A Document Type Definition (DTD), is a particular type of schema
language that is used to define XML documents. Given a schema (or a
DTD), you can create instances of XML documents that conform to that
schema. You can use the validating parser to automatically check
whether an XML instance document conforms to a schema.

 SOX is an XML schema definition language developed by Commerce
One to support the use of XML for electronic commerce. We developed
SOX because we believe that DTDs are inadequate for the purposes of
e-commerce. DTDs are not sufficient to meet the scalability, reliability,
and extensibility requirements of a large, distributed, rapidly evolving
electronic market place. Also, DTDs are generally considered quite
difficult to use. SOX is an easy to use alternative to DTDs, that also
supports the needs of any highly decentralized environment (for
example the Internet).

SOX Versus DTDs

The main features of SOX that support usability and scalability in
distributed, e-commerce environments are:

� SOX adds to XML the ability to define types for data. SOX supports
a set of intrinsic data types and has the ability to support user-defined
data types such as ranges of integers. For example, the text value of
an element or the value of an attribute can be declared to be an
integer, and a conforming SOX validator will check that constraint.
XDK Pro Developer’s Guide 2-3

What is SOX?
This enhances the safety and reliability of the applications that use
the XML instance documents defined according to SOX schemas as
opposed to DTDs.

� SOX enhances XML by providing the ability to extend previously
defined element types via the use of namespaces and inheritance. In
short, it adds object-oriented programming concepts to XML.
Although DTDs support parameter entities, which can be used for
reusability and extensibility, parameter entities are difficult to use;
and they introduce significant risk with respect to the safety and
reliability of applications that use the resulting XML document
instances.

� SOX encourages reuse of elementtype and datatype definitions via
namespaces. This means that the definitions in one schema can reuse
the definitions in other schemas by importing these other schemas.
Definitions that are generally useful can then be reused and extended
any number of times by other schemas. This potentially decreases the
amount of definitions needed, and promotes a higher degree of
consistency in the way similar data is defined in widely different
schemas. In contrast, DTDs do not have namespace support. This is a
problem when DTDs are scaled to thousands of marketplaces around
the world.

Additional SOX Features

Commerce applications must be able to define data types other than
strings, for example prices, quantities and dates. From a programming
point of view, it would be much easier to be able to treat these pieces of
data as strongly typed values such as prices, quantities, dates and so on.
The only data type DTDs support in element values is string. While it is
possible to build specialized mechanisms to allow parties to tell each
other the data type through the use of attributes, it is more descriptive
and maintainable to describe the appropriate data types in a schema
language. In addition it enables a greater amount of validation of the
data, as well as facilitating more immediate error catching [XML99].

XML is becoming one of the backbones of electronic commerce. This
means that schemas for document types will proliferate. In such a
situation, writing a new schema is much less error prone and convenient
if we can build upon previously defined element types, and not define
everything from scratch. DTD mechanisms to support reuse across
2-4 XDK Pro Developer’s Guide

What is SOX?
schemas are extremely labor intensive and error prone. Placing support
for reuse via the explicit import of namespaces directly in the schema
language, with further support in document instances, is safer from a
programming point of view and it scales well to a distributed world.

Next, various groups might share a basic document type, but each group
will need to customize that document type for their own purposes. Also,
as the needs of a market place change, document types will need to be
extended or changed. Unfortunately, changing document types implies
that the applications that use these document types will have to be
updated if they are not to break. To facilitate the de-coupling of changes
to document types from the evolution of the applications that use these
document types, SOX provides element type extension and versioning
mechanisms. For example, an application using a basic purchase order
will not break when it is provided with a purchase order that has been
customized to handle the needs of the chemicals industry [XML99].

Definitions

The rest of the documentation uses the following terminology:

� Schema refers to a SOX schema document. A schema defines the
element types and data types that can be found in an XML instance of
that schema.

� An XML instance document is valid if it is well-formed and its
contents and structure obey all the rules specified in the schema or
DTD it claims to conform to. Generally a validating parser tests a
document’s validity.

� SAX refers to the Simple event API for XML.

� XT refers to James Clark’s Java implementation of an XSLT
processor.
XDK Pro Developer’s Guide 2-5

What is SOX?
What to Read Next

Now that you have some information on what SOX is, you should get
some knowledge about how to use it.

We recommend that you read the document SOXTutorial.pdf, (included
on this CD), for a tutorial on reading and writing SOX documents. The
tutorial enables you to start writing your own SOX documents.

The sample SOX schemas and XML instances used in the
SOXTutorial.pdf document are included in this installation. They are
located underneath the sample directory.

For a more in-depth knowledge of the syntax and features of SOX, refer
to the document SOXSpecification.pdf, included on this CD.
2-6 XDK Pro Developer’s Guide

Chapter 3
Programming Models

In This Chapter

This chapter describes the X2J programming model including the
syntax, semantics, and failure semantics.

Programming Model Definition

The term programming model refers to the programming interfaces that
application developers use to build electronic commerce applications
and services that manipulate XML documents. A programming model
presents an abstract yet well-defined interface to which applications can
be built. In our case, a programming model defines the syntax,
semantics, and failure semantics of accessing various parts of a
document.

� Syntax - defines exactly how a particular schema is mapped to
classes and operations in a specific programming language.

� Semantics - define the behavior of the system when calls and
operations are performed.

� Failure semantics - define the conditions under which failures can
occur, how they are presented to the application, and the actions an
application can take to address a failure.

The characteristics of an application are strongly influenced by the type
of programming model that is used. The choice of programming model
influences how easy or difficult it is to change an application as new
document types are introduced. In some cases we need programming
models that allow data to be discovered dynamically. In other cases it is
more important to easily extract and insert data of the correct type out of
the programmatic representation of a document and thereby ensure a
higher-level of safety.
XDK Pro Developer’s Guide 3-1

Programming Models
In the XML arena, applications are currently developed using the
Document Object Model (DOM) and the Simple Event API for XML
(SAX) programming models. The Commerce One XDK Professional
software package introduces a new, typed, Java Beans based
programming model for XML called X2J. The model enables the
development of safer, more robust, but still flexible XML based
applications. The X2J programming model is enabled by the SOX XML
Schema language discussed in the previous chapter. It is designed to
take advantage of Java’s object-oriented features to enable extensibility
and evolvability for XML based applications.

X2J represents XML schema documents as SOX Beans that are typed
Java Bean classes, and XML instance documents as instantiations of
these classes. X2J was designed from the perspective of e-commerce,
and therefore tries to fulfil the following criteria, which we consider to
be of high relevance for e-commerce applications:

� Safe and static checking of how documents are used.

� Safe introduction of extensions.

� Memory footprint and performance considerations.

� The ease of use and the support a programming model provides to
developers.

� Flexibility and dynamic discovery of data.

� Maintenance and cost of ownership implications.

The typed X2J programming model consists of both a generic set of
classes and interfaces, as well as classes and interfaces that are specific
for a particular document type. Document type specific classes and
interfaces expose data as being of the type that was defined in the
schema. If an attribute was defined as an integer in the schema it will be
an integer in the programming model. The process of producing such a
programming model requires an XML Schema that has type
information.
3-2 XDK Pro Developer’s Guide

Programming Models
What to Read Next

For a comparison between DOM, SAX, and X2J, and a more detailed
overview of X2J, refer to Koistinen et al. [XML99], included in this
package.

We recommend that you first read the document BeanTutorial.pdf
(found in this package), for a tutorial on reading and using the SOX
Beans corresponding to SOX documents.

Next, proceed to Chapter 6, How to Use the SOX to Java Compiler
(X2J).
XDK Pro Developer’s Guide 3-3

Programming Models
3-4 XDK Pro Developer’s Guide

Chapter 4
Using the Commerce One XML
Parser

What is CXP?

CXP is a validating XML 1.0 and SOX 2.0 Parser. You can use it to
validate document instances against DTDs that are XML 1.0 compliant,
or schemas that are SOX 2.0 compliant. You can also use it to validate
schemas against the SOX 2.0 specification. CXP automatically
recognizes whether a document instance should be parsed as an XML
1.0 instance of a DTD, a SOX 2.0 schema document, or an XML 1.0
instance of a SOX 2.0 schema. This is determined from the first few
lines of the document.

Note that a SOX schema is, in fact, a valid XML 1.0 document itself,
conforming to a DTD called schema.dtd. All SOX schemas must
conform to this DTD to be valid SOX. If a SOX schema is used as input,
CXP will validate the schema against its DTD in addition to doing a
SOX-level validation of the schema document. The SOX validation is
done to check for those SOX restraints that cannot be checked by
merely validating against the DTD.

The following three cases are the use cases for CXP. They are
distinguished from each other by the first lines in the document that is
parsed.
XDK Pro Developer’s Guide 4-1

Using the Commerce One XML Parser
Validating an XML Instance against a DTD
If you pass CXP a document that starts with the header below, it is
validated as an XML 1.0 document against the DTD specified in
example.dtd. The keyword tree in the DOCTYPE declaration is
the name of the root element of the instance. The name of the root
element and the URL of the DTD may vary from one document to
another.

Validating a SOX Schema
If you pass CXP a SOX schema that starts with the header below, it is
validated in two ways. First it will be validated as a valid XML 1.0
document against the DTD specified in schema.dtd. Second, it is
validated as a SOX 2.0 schema to ensure that it conforms to the SOX
restrictions that the DTD cannot check. The parser determines that the
docuemnt is a SOX schema due to the name of the root element being
“schema” and the URL being that of schema.dtd. Therefore all SOX
schemas will start with this exact doctype tag.

<?XML version="1.0">

<!DOCTYPE tree SYSTEM

"urn:x-commerceone:document:com:mycompany:xml:example.dtd$1.0">

<?XML version="1.0">

<!DOCTYPE schema SYSTEM

"urn:x-commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">
4-2 XDK Pro Developer’s Guide

Using the Commerce One XML Parser
Validating an XML Instance against a SOX Schema
If you pass CXP an XML 1.0 instance that starts with the header below,
it is validated against the schema CBL.sox as an instance of the SOX 2.0
schema specified in CBL.sox. The schema URL may vary from
one document to another.

Class Paths

It is fine to not have a classpath system variable set when running CXP.
The provided scripts for running CXP sets the classpath system variable
appropriately.

CXP Options

This section assumes that you have installed XDK in the default
location. You should run CXP with the provided script. On Windows,
this script is named cxp.bat and is located in
c:\commerceone\xdkpro. On Solaris this script is named
cxp.sh and is located in /opt/CMRCxdkp.

Running CXP with no options presents usage information on the screen:

<?soxtype urn:x-commerceone:document:com:commerceone:CBL:CBL.sox$1.0?>

cxp.INFO: Usage is
"cxp [-p schema path][-c catalog-system-id]
[-o output file][-n parse n times][-enc encoding]
[-novalid no validation][-e parse entity][-t timing info]
[-v verbose output][-g canonical form]
[-help help screen] [-f accept files][Document(s): document list]"
XDK Pro Developer’s Guide 4-3

Using the Commerce One XML Parser
The following table describes the CXP options

CXP Option Description

-p <schema-
path>

The schema path; a semicolon delimited list of paths to use as root for
schema search. This is similar in notion to a class path. CXP needs to
know the root path from which to resolve any URNs that the input
document refers to. If the document is a SOX schema, or an XML
instance conforming to a SOX schema, then the schema refers to
schema.dtd and it is necessary to include a path that can resolve the
URN of that file. In this installation, this path is the
c:\commerceone\xdkpro directory on windows and
/opt/CMRCxdkp on Solaris. This is the same directory that the
CXP script is located in.

This option is ignored when a catalog is specified (see the -c
option). If neither this option, nor the -c option, is specified, CXP
assumes that you are providing only relative filenames in your
document. These filenames are relative to the current directory. Note
that some command line applications require you to quote semi-colon
separated paths. If you have not placed your schemas in the XDK
installation, you also have to add a path to your schema.

 -c <catalog-
system-id>

 The catalog-system-id causes CXP to load a URN catalog. A URN
catalog maps schemas or DTDs specified in the input document to
their physical locations on the file-system. When this option is
supplied, the -p <schema-path> option is ignored. For more
information, refer to the section on how to use catalogs.

-o <output
file>

CXP sends the output to the file specified.

-n <number> The number of times CXP parses each document. The value should be
an integer. If the option is not used, the document will be parsed once.
This option can be useful with the -t option to determine parse time.
4-4 XDK Pro Developer’s Guide

Using the Commerce One XML Parser
-enc
<encoding>

 Specifies the XML file encoding to use. Supported encodings are the
same as the encodings supported by the particular JVM being used.
Some possible values are "UTF8", "Unicode", "SJIS", "8859_1",
"8859_15", "ASCII", "Big5", "GB2312", "KSC5601", "Cp874", "JIS".
If this option is not used, the default encoding is UTF8. No matter
what encoding you use, all the files encountered in one parse must use
the same encoding. You cannot for example, parse an instance that
uses one encoding, that in turn refers to a schema that uses another
encoding.

-novalid CXP does not validate the document against a DTD or a schema if this
option is specified. This option does not take an argument. This option
has no effect when validating a SOX schema, as a SOX schema is
always validated.

-e CXP parses an XML document as an external entity if this option is
specified. This option does not take an argument.

-t CXP outputs the amount of time it took to do the parse if this option is
specified. This option does not take an argument.

-v CXP outputs verbose messages during the parse if this option is
specified. This option does not take an argument. With this option, CXP
displays additional information related to instance validation while
validating the document. This information is helpful in finding and fixing
problems in your document.

-g Outputs the canonical form of the input document if this option is
specified. This option does not take an argument. See
http://www.jclark.com for information on canonical formats.

-help CXP shows detailed help information (similar to this) if this option is
specified. This option does not take an argument.

CXP Option Description
XDK Pro Developer’s Guide 4-5

Using the Commerce One XML Parser
How to Use Schema Paths and URNs

As discussed previously, an XML instance of a SOX 2.0 schema always
starts with a soxtype declaration. The soxtype declaration contains the
URI of the schema to which the instance document claims to conform.
CXP is able to automatically locate a schema from a URI, as long as you
follow a strict formula for the URI, in the shape of a Commerce One
format URN. The same URN format is used for namespace imports.

In the following example, let us assume that the schema is contained in
a file sample.sox. Since the Commerce One implementation uses the
URI of the schema to determine the physical location of the schema, a
strict formula has to be followed in constructing the URI if the schema
is to be located and used by CXP:

1. The URI must always start with
 "urn:x-commerceone:document:".
 This part specifies that the Commerce One specific scheme for the
mapping, and must be used verbatim in order for the mapping to
function properly.

2. The part after the scheme states the directory hierarchy in which the
file is located. In this example the remaining portion of the URI will
be sample:xdk:sox:sample.sox$1.0. The portion of the

-f The -f option forces CXP to accept regular file names for the input
files. By default CXP assumes that the input document name provided
is a URI. Since a URI will always contain at least one colon, ":", CXP
can recognize that an input file that contains no colons must be a file
name, and process the input as a file name instead of a URI. However,
in those cases where you use a filename that contains a colon such as
c:\schemas\TestSchema.sox, you can tell CXP to interpret the
input as a file name by using the -f option. For example, in Windows,
given the file po.xml, you can use either "cxp
\commerceone\po.xml" or

"cxp -f c:\commerceone\po.xml". This option does not take an
argument.

Document(s) The name of one single document, or several documents separated by
spaces, that CXP should parse. This can be in either file or URI format,
(see the -f option above).

CXP Option Description
4-6 XDK Pro Developer’s Guide

Using the Commerce One XML Parser
URI before sample.sox is a representation of a partial path to the file
sample.sox, with the file separator replaced by colons. This path
is followed by the name of the schema file, in this case
sample.sox, and then the version token. The version token in this
release must always be 1.0, as versions are not yet supported.

3. Determine what the root of your schema tree is on your file system.
This is a location in the file hierarchy underneath which all your
schemas are located. The root is the same as the argument to the -p
option explained in the section titled CXP Options earlier in this
chapter. The root is represented as (ROOT) in this example.

4. Exactly underneath the root, the path to the schema file in this
example has to start with "sample\xdk\sox\". Notice that the
part of the path following the root is exactly the same as the URN
fragment specified in step 3, up to the file name sample.sox, with
the colons replaced by file separators.

5. Next, the version is reflected in the path to the schema by an extra
directory level: n1_0. This directory is the last directory in the path,
and the schema is located in this directory. The schema must be
physically located in a directory representing the version. The version
is modified before being used in the path, by adding an "n" before the
version, and substituting the period, ".", with an underscore, "_".
Version 1.0 therefore becomes "n1_0" in the physical path of the
file. Thus, the file sample.sox is located in the directory
"(ROOT)\sample\xdk\sox\n1_0".

6. The complete physical path to the file represented by the
URN urn:x-commerceone:document:sample:
xdk:sox:sample.sox$1.0 is therefore:
(ROOT)\sample\xdk\sox\n1_0\sample.sox

To use the above-described URN mechanism to allow CXP to locate
schemas you need to give CXP the (ROOT) directory. This directory is
given to CXP as the value for the schemapath option -p.
XDK Pro Developer’s Guide 4-7

Using the Commerce One XML Parser
How to Use Catalogs

If you do not want to use the URN mapping mechanism described in the
previous section in your SOX schemas and XML document instances,
you can instead use catalogs to locate the necessary schemas or DTDs.
A catalog is a valid XML document that maps the URN of a schema or a
DTD to a physical location on your file system. When a catalog file is
provided, CXP will use this catalog to search for the schemas or DTDs
specified in the input document. If no mapping is found between the
URN and a physical file, CXP will display an error message saying that
the SOX schema or DTD could not be loaded.

For example, if you want to create an XML instance of a SOX schema
sample.xml and you don’t want to use the URN mapping mechanism,
you can use the following header instead:

Note that CXP requires the mapped URI to start with “urn:”.

In order for CXP to successfully locate the schema referred to in the
soxtype declaration, you need to create a catalog file, for example
catalogs.xml, that maps urn:sample.sox to a physical location. The
following is a sample catalogs.xml file.

The file names that you map to, must use forward slashes as file
separators.

Note that the URI used in the catalog has to exactly match the one found
in the soxtype declaration.

Also note that if the URN that you are mapping to in the catalog is a
filename, it must not contain any colons. If any colons are present, then
CXP will assume that the filename is a URI. If you need to have a colon

<?soxtype urn:sample.sox?>

<?xml version="1.0"?>

<catalog>

 <map uri="urn:sample.sox" to="/sample/xdk/sox/n1_0”/>

</catalog>
4-8 XDK Pro Developer’s Guide

Using the Commerce One XML Parser
in your filename, such as in the case of mapping to a file on a different
drive, then the filename must start with "file:///" in order for it to
be a valid URI on your local system.

Now you can parse sample.xml from your command line for NT as
follows.

Parse sample.xml from your command line for Solaris, as follows.

CXP will now expect to find
 sample.sox in \sample\xdk\sox\n1_0

Be sure to use an identical URI in both the XML instance and the SOX
schema that it is an instance of. For example, the schema start tag of the
sample.sox document must look like this:

Otherwise, even if you map the URI in the catalog file, you will still get
an error message.

A catalog can also include other catalogs, by using the include
element:

This catalog now includes the other_catalog.xml catalog file.
This enables multiple catalogs to be used in one parsing. In the case of a
relative filename, the filename specified in the location attribute is
relative to the location of the catalog in which it is included.

cxp -c catalogs.xml sample.xml

./cxp.sh -c catalogs.xml sample.xml

<schema uri="urn:sample.sox">

<?xml version="1.0"?>

<catalog>

 <include location="/commerceone/catalogs/other_catalog.xml">

</catalog>
XDK Pro Developer’s Guide 4-9

Using the Commerce One XML Parser
IExamples of Using CXP

Let’s assume that the sample document below is located at
c:\testdocs\langstring.xml on windows and
/testdocs/langstring.xml on Solaris. Let’s assume that its
schema is located at
c:\mywork\com\mycompany\lang\n1_0\LangString.sox
on Windows, and /mywork/com/mycompany/lang/n1_0/
LangString.sox on Solaris.

Here are some examples of how to use some of the CXP command line
options:

� Example 1 (Windows):

� Example 1 (Solaris)

This is the simplest way to parse the document on the command line.
CXP will search for com\mycompany\lang\n1_0\LangString.sox
starting at the \mywork directory.

� Example 2 (Windows):

� Example 2 (Solaris)

CXP will parse this document twice and output the timing information
on your screen:

<?soxtype
"urn:x-commerceone:document:com:mycompany:lang:LangString.sox$1.0"?>
<LangString Lang="EN"></LangString>

cxp -p \mywork \testdocs\langstring.xml

./cxp.sh /mywork /testdocs/langstring.xml

cxp -p \mywork -n 2 -t \testdocs\langstring.xml

 ./cxp.sh -p /mywork -n 2 -t /testdocs/lanstring.xml
4-10 XDK Pro Developer’s Guide

Using the Commerce One XML Parser
5077

10

2543.0 / 10.0

This means that parsing the document took 5077 milliseconds in the
first iteration and 10 milliseconds in the second iteration. The average
time for an iteration was 2543 milliseconds. Excluding the first
iteration, the average time for an iteration was 10 milliseconds. The
reason the parse was so much faster on the second run is that the schema
is cached on the first run and reused on the second.

� Example 3 (Windows)::

� Example 3 (Solaris):

CXP will bypass the validation against the SOX schema and only verify
the well-formedness of the XML document, generate a canonical form,
and save it to the file LangString.out.

� Example 4 (Windows):

� Example 4 (Solaris)

cxp -p \mywork -novalid -g -o LangString.out
\testdocs\langstring.xml

./cxp.sh -p /mywork -novalid -g -o LangString.out
/testdocs/langstring.xml

cxp -v -p \mywork \testdocs\LangString.xml

./cxp.sh -v -p /mywork /testdocs/LangString.xml
XDK Pro Developer’s Guide 4-11

Using the Commerce One XML Parser
This will give you verbose information about the parse. Here is some
sample output:

cxp.INFO:ns="urn:x-c..." ordinal="1" says that the
parser has recognized a new namespace which it will refer to by number
1 from now on.

cxp.INFO: Element: soxtype:1[LangString:1] is the
representation of a content model for the document itself. ": 1"
indicates that the definition belongs to namespace 1. This content
model says that the document can have a root tag of "LangString".

Attribute group: LangString:1[Lang?]cxp.Info says that the
"LangString" element has an optional attribute "Lang".

Example of Using a Sample File with CXP

In this distribution we have included several sample SOX 2.0 schemas
and XML instances of those schemas. The sample SOX schemas are
located in (for Windows):

 or (for Solaris):

cxp.INFO:ns="urn:x-commerceone:document:com:mycompany:lang:
LangString.sox$1.0"ordinal="1"
cxp.INFO: Element: soxtype:1[LangString:1]
cxp.INFO: Attribute group: LangString:1[Lang?]

C:\commerceone\xdkpro\sample\xdk\sox\n1_0

/opt/CMRCxdkp/sample/xdk/sox/n1_0
4-12 XDK Pro Developer’s Guide

Using the Commerce One XML Parser
The sample instances of these schemas, are located in several directories
under (for Windows):

and under (for Solaris):

For example, corresponding to the SOX schema file (for Windows):

and for Solaris::

There is an XML instance document (for Windows):

and for Solaris:

To validate Film.xml against the schema to which it conforms, go to
the directory:\commerceone\xdkpro, and type the following on
the command line (for Windows):

For Unix, go to the directory:
/opt/CMRCxdkp/xdk, and type the following on thetype:

C:\commerceone\xdkpro\sample\xdk\instances\

/opt/CMRCxdkp/sample/xdk/instances/

C:\commerceone\xdkpro\xdk\sample\xdk\sox\n1_0\Film.sox,

/opt/CMRCxdkp/sample/xdk/sox/n1_0/Film.sox

C:\commerceone\xdkpro\sample\xdk\instances\basic\Film.xml

/opt/CMRCxdkp/sample/xdk/instances/basic/Film.xml

cxp -p \commerceone\xdkpro\ sample\xdk\instances\basic\Film.xml

./cxp.sh -p /opt/CMRCxdkp
sample/xdk sample/xdk/instances/basic/Film.xml
XDK Pro Developer’s Guide 4-13

Using the Commerce One XML Parser
Interpreting Error Messages

This section describes general validation errors and encoding errors.

 General Validation Errors

Given the following error message:

The creator="Validation" part designates which part of the
parsing process is generating the message. "Validation" indicates that
the parser is generating a validation error while parsing the actual
document instance.

Other common creators are:

� creator="AST": Errors generated from parsing the schema
pertaining to the referential integrity of the schema. This tells the
parser whether all the types used were actually defined properly.

� creator="CXP Lexer": Low level errors generated by the XML
lexer. These can occur in both schemas and documents and usually
pertain to problems with IO, invalid encodings or general syntax
errors.

� creator="CXP Parser": These errors come from the XML
parser section of CXP and relate to well-formedness of XML
documents. See the XML 1.0 specification for a more thorough
explanation of the difference between well-formed and valid.

The parser may also generate <WARNING>, <FATAL>, <CRITICAL>,
<INFO>, or

<STATUS> messages with the same format. The file:///TEMP/
langstring.xml:2:23: part of the message informs you that the
error occurred at line 2 column 23 in the file langstring.xml.

Encoding Errors

When the parser reports an error such as:

<ERROR creator="Validation">file:///TEMP/langstring.xml:2:23: Value
specified for enum "LangCode" is not one of the legal enumerated
values: must be one of "AA, AB, AF, AM, AR, AN"</ERROR>
4-14 XDK Pro Developer’s Guide

Using the Commerce One XML Parser
Invalid character number....

or

problem with IO or possible invalid character
for current encoding: Missing byte-order mark

it usually means that the parser is using an inappropriate encoding. By
default, CXP expects all XML files to be in UTF8 (which is backward
compatible with 7-bit ASCII). If you want to process documents with a

 different encoding, such as UTF16 or 8-bit Latin, you must use the
-enc <encoding> option. If you want to parse a Unicode
document, you need to make sure that your document has the
appropriate byte-order mark for your system; otherwise CXP is not able
to process it correctly.

NoteAll input files must use the same encoding. CXP cannot
dynamically switch encoding schemes while processing.

XDK Pro Developer’s Guide 4-15

Using the Commerce One XML Parser
4-16 XDK Pro Developer’s Guide

Chapter 5
Interfacing with CXP via SAX

Simple Event API for XML (SAX)

SAX is a public interface that a developer can use to gain access to
CXP. SAX is an event API, which means that the parser serializes the
instance document into a series of events, each corresponding to some
significant logical or physical element in the document. For example:
startDocument, endDocument, startElement,
endElement, and characters are some of the supported events.

 A SAX application connects to an XML parser through a SAX driver.
A driver is a class made available by the parser. It implements some or
all of SAX APIs.

 A SAX application handles the SAX events produced by the parser in
the handlers defined in the SAX specification. A handler is a class that
implements a SAX handler interface such a Document Handler,
ErrorHandler, or DTDHandler.

James Clark’s XSL processor XT is an example of such an application.
XT is provided in the XDK.

There are two versions of SAX: 1.0 and 2.0.

� SAX 1.0 provides the functionality for instantiating the parser,
parsing the instance documents and receiving basic document, error
and DTD events.

� SAX 2.0 includes all the SAX 1.0 functionality, defines methods for
configuring the parser, and provides more elaborate DTD events. A
parser is free to implement any or none of SAX 2.0 features.

CXP and SAX

CXP implements most of SAX 1.0 and some of SAX 2.0. The SAX 1.0
features that it does not implement are:
XDK Pro Developer’s Guide 5-1

Interfacing with CXP via SAX
� Parser.setLocale()

� DTDHandler events

� EntityResolver events

CXP implements the SAX 2.0 Configurable interface. This interface
allows a user to set parser features and properties. The provided
methods are setFeature and getFeature, and
setProperty and getProperty.

Each of the set methods takes two parameters: the name of the feature/
property (which is in the form of a URL), and the value of the feature/
property. The names of all the features and properties are defined in the
java interface com.commerceone.xdk.standards.sax.SAX20Strings
which can be found in the XDK API java doc.

The feature that can be set/get in the CXP SAX implementation are:

� Validation. The name of this feature is
"http://xml.org/sax/features/validation". This name is defined in
SAX20Strings as the constant SAX20_VALIDATION_FEATURE.
The associated value is of type boolean, and turns validation on or off
for the CXP parser. A value of true turns validation on, a value of
false turns validation off.

The properties that can be set are:

� Schema path. The name of this feature is
"http://commerceone.com/sax/properties/schemapath".
This name is defined in SAX20Strings as the constant
COMMERCEONE_SCHEMAPATH_PROPERTY. The associated
value is of type String. It sets the schema path the parser uses to
locate schemas from URN’s See the -p option for the CXP parser for
more information.

� Catalog. The name of this feature is
"http://commerceone.com/sax/properties/catalog".
This name is defined in SAX20Strings as the constant
COMMERCEONE_CATALOG_PROPERTY. The associated value
is of type String. It sets the catalog file the parser uses to locate
schemas from URN’s See the -c option for the CXP parser for more
information.
5-2 XDK Pro Developer’s Guide

Interfacing with CXP via SAX
� Catalogs. This enables you to specify more than one catalog file. The
name of this feature is
"http://commerceone.com/sax/properties/catalogs".
This name is defined in SAX20Strings as the constant
COMMERCEONE_CATALOGS_PROPERTY. The associated value
is of type Vector, populated with Strings. It sets the catalog URIs used
by the parser.

The CXP classes that implement the SAX drivers are SAX10Driver
and SAX20Driver. They are in the package
com.commerceone.xdk.standards.sax.

SAX10Driver implements SAX 1.0. Since it does not provide
configuration capabilities, there is no way to set the validation mode
(which is off by default) on the parser.

In order to run CXP in validating mode (which is how one takes
advantage of all the advanced CXP capabilities) SAX20Driver has to
be used.

Using CXP with SAX

The following steps describe how an application can use CXP with
SAX.

1. The following import statement must be present in your code:

2. Implement the handler interfaces in one or more handler classes.
One possibility is to extend HandlerBase, a SAX standard helper
class that implements all the handler interfaces and provides default
behavior (does nothing) for all the methods. You can then implement
the methods that are relevant for your implementation

import org.xml.sax.*;

import com.commerceone.xdk.standards.sax;

import com.commerceone.xdk.standards.sax.SAX20Driver;

import com.commerceone.xdk.standards.sax.SAX20Strings;
XDK Pro Developer’s Guide 5-3

Interfacing with CXP via SAX
.

3. To instantiate the parser, put one of the following statements in your
code:

or

class AllHandler extends HandlerBase

 {

 public void startDocument()

 throws SAXException

 {

 // handle the startDocument event

 }

 public void endDocument()

 throws SAXException

 {

 // handle the endDocument event

 }

 public void startElement(String name, AttributeList atts)
 throws SAXException

 {

 // handle the startElement event

 }

 public void endElement(String name)throws SAXException

 {

 // handle the endElementEvent

 }

}

org.xml.sax.Parser parser = new
com.commerceone.xdk.standards.sax.SAX10Driver();

org.xml.sax.Parser parser = new
com.commerceone.xdk.standards.sax.SAX20Driver();
5-4 XDK Pro Developer’s Guide

Interfacing with CXP via SAX
4. To set the handlers, use the following:\

5. To set features/properties in SAX20Driver, use the following:

// create one or more handler objects

AllHandler handler = new AllHandler();

// set the relevant handlers

parser.setDocumentHandler(handler);

parser.setErrorHandler(handler);

// cast the parser to Configurable
org.xml.sax.Configurable configurable =(org.xml.sax.Configurable)parser;

// set validating mode
boolean validation = true;
configurable.setFeature(SAX20_VALIDATION_FEATURE, validation);

// getting the current validation mode
validation = configurable.getFeature(SAX_VALIDATION_FEATURE);

// set schema path
String path = "/commerceone/xdk/xml/myschemas";
configurable.setProperty(COMMERCEONE_SCHEMAPATH_PROPERTY, path);

// setting the catalog property
String catalog = "file:///d:/mycatalogs/catalog.xml";
configurable.setProperty(COMMERCEONE_CATALOG_PROPERTY, catalog);

catalogs is a vector of strings that are catalog filenames.
Vector catalogs = new Vector();
catalogs.addElement("http://www.commerceone.com/catalogs/cat.xml");
catalogs.addElement("file:///myschemas/samplecatalog.xml");
catalogs.addElement("file:///d:/test/testcat.xml");

configurable.setProperty(COMMERCEONE_CATALOGS_PROPERTY, catalogs);
XDK Pro Developer’s Guide 5-5

Interfacing with CXP via SAX
6. Start the parsing of a SOX or XML instance document as follows:

7. At this point in the processing, events start to arrive at the registered
handlers.

It is also possible to parse an org.xml.sax.InputSource
instance, that can be instantiated with either a System ID, a
java.io.Reader object or a java.io.InputStream object. In
order for this to work, a System ID has to be set on the InputSource
object. Once the InputSource object has been created, this can be done
with a call to the method InputSource.setSystemId().The
system ID provided is necessary for CXP to work, and is used as a
working path for the source. The System ID will be used as a base for
any relative file names that are encountered.

SAX Sample

A functional SAX sample can be found in the file
C:\commerceone\xdk\sample\apps\SAXTest.java. on
Windows and /opt/CMRCxdxp/sample/apps/SAXtest.java
on Solaris.
This sample is intended as:

� an example of how SAX can be used,

� a possible starting point in developing a SAX application with CXP,
and

� a debugging utility that sends the contents of the DocumentHandler
events to the console while parsing a document.

This sample does the following:

� Instantiates a parser (either the default parser or the one specified on
the command line).

� Sets a number of parser features, according to what the user specifies
on the command line.

� Attaches a document and an error handler to the parser.

� Starts parsing the XML document.

String systemId = "file:///commerceone/xdk/samples/sample.xml";
parser.parse(systemId);
5-6 XDK Pro Developer’s Guide

Interfacing with CXP via SAX
� Receives the events generated by the parser during the parse.

� Prints a representation of the document to the screen.

Note that for the sample to work, you must both compile the
SAXTest.java file and set your local classpath to point to the
compiled SAXTest class as well as the jar files that reside in the lib
directory of this installation.

This sample can also be connected to any SAX-supporting XML parser
and it can be used either from the command line or as part of another
package. The command line usage is:

The options to SAXTest are:

-p:<schema_path> sets the schema path. The value should be a
directory name. This option has the same functionality as CXP’s -p
option (Section 3.3).

-c:<catalog> sets the catalog URI. The required format is a URI
or a file name.

-e:<encoding> Sets the encoding that should be assumed while
parsing.

-v turns on validation. By default, the sample application sets the
parser in non-validating mode.

-f sets the force file mode to on. By default force file is off.

instance URI The XML or SOX instance document to parse.
The required format is a URI or a file name.

When the -v option is not used, the -p and -c parameters are
ignored. In validating mode (with option -v), use one of either -p or -
c, but not both. If you specify both -p and -c, -p is ignored.

javac SAXTest <options> <instance URI>
XDK Pro Developer’s Guide 5-7

Interfacing with CXP via SAX
Examples

The following examples assume that you are using the Sun VM java.

The CXP SAX driver is used by default, but this sample can be
connected to a different parser that supports SAX. To do this, set the
system variable "org.xml.sax.parser" to the class that
implements the SAX10 driver.

If you use another parser (as shown above), only the non-validating
mode is supported, since other parsers do not necessarily implement the
SAX 2.0 interfaces to configure the parser. Even if they do, they do not
have the same property and features names.

CXP and XT

XT also constitutes an example of a SAX application. It is available in
source code format, and has been used and tested with many SAX
parsers.

James Clark’s XSL processor, XT version 11051999, is installed as part
of the CXP package. XT can be plugged into any parser that supports
SAX 1.0. It can be used with CXP practically without any modification,
when the parser is run in non-validating mode.

If validation is desired, some changes are necessary to allow
configuring the parser. We provide a class called
com.commerceone.xdk.standards.xsl.XSL that connects
CXP with XT. We also provide a command line utility cxsl.bat in
the C:\comerceone\xdkpro directory on Windows and the
/opt/CMRCxdkp directory on Solaris, that you can use to run this
class.

java SAXTest file:///testdoc.xml

java SAXTest -p:/schemas;/commerceone/xdk
/testdoc.xml

java SAXTest -c:/catalogs/catalog.cat -v
/testdoc.xml

 java -Dorg.xml.sax.parser=com.xyz.Parser SAXTest testdoc.xml
5-8 XDK Pro Developer’s Guide

Interfacing with CXP via SAX
java com.commerceone.xdk.standards.xsl.XSL
-p <schema_path> -c <catalog_file> -novalid
<xml_file.xml> <xsl_file.xsl> <out_file>

Note In the current implementation, neither the XSL class, nor the
command line tool supports XSL include statements.

Options

The supported options are:

-p <schema_path> - sets the schema path. The value should be a
directory name. This option has the same functionality as CXP’s -p
option (Chapter 4.)

-c <catalog_file> - sets the catalog. This argument must be in
filename format.

-novalid - sets the parser to non-validating mode (validation is on
by default)

<xml_file.xml> - The XML file to use. This argument must be in
filename format.

<xsl_file.xsl> - The XSL file to use. This argument must be in
filename format.

<out_file> - A file to print the output to, instead of the screen. This
argument must be in filename format.

XDK Pro Developer’s Guide 5-9

Interfacing with CXP via SAX
Examples

In order for the following examples to work, you have to set the class
path either as an system environment variable or on the command line,
to include the sample class, as well as all the jar files contained in
C:\comerceone\xdkpro\lib directory for Windows and the
/opt/CMRCxdkp/lib directory on Solaris. A batch file, cxsl.bat
for Windows and cxsl.sh for Solaris that contains the class path as
well as the command line is provided as a more convenient way of
running the class XSL. XT can also be used as part of another
application, through its published interfaces.

The following example is the Windows version:

The following example is a Solaris version:

java com.commerceone.xdk.standards.xsl.XSL
\xml\file.xml \xml\file.xsl

java com.commerceone.xdk.standards.xsl.XSL
-p \schemas\myschemas \myfiles\file.xml
\myfiles\file.xsl

java com.commerceone.xdk.standards.xsl.XSL
-c \catalogs\catalog.cat \myfiles\file.xml
\myfiles\file.xsl

java com.commerceone.xdk.standards.xsl.XSL /xml/
file.xml /xml/file.xsl

java com.commerceone.xdk.standards.xsl.XSL
-p /schemas/myschemas /myfiles/file.xsl

java com.commerceone.xdk.standards.xsl.XSL
-p /schemas/myschemas/ /myfiles/file.xml
/myfiles/file.xsl
5-10 XDK Pro Developer’s Guide

Chapter 6
How to Use the SOX to Java
Compiler (X2J)

In This Chapter

This chapter describes how to use the SOX to Java Compiler.

What is X2J?

X2J is a SOX 2.0 to Java translator. It is used to map SOX 2.0 compliant
XML Schemas to Java code. It can also be used to validate SOX 2.0
schemas.

Class Paths

You do not need to have a classpath system variable set when running
X2J. The provided script for running X2J sets the classpath system
variable appropriately.

X2J Options

X2J should be run with the provided script, x2j.bat for Windows and
x2j.sh for Solaris, that resides in the C:\commerceone\xdkpro
directory on windows and /opt/CMRCxdkp directory on Solaris.
Running X2J with no options presents usage information on the screen:
XDK Pro Developer’s Guide 6-1

How to Use the SOX to Java Compiler (X2J)
The X2J options are:

X2J.INFO: Usage is X2J [-emit emit code]

[-v verbose][-help help screen]

[-? usage][-enc XML File encoding][-p schema path]

[-d Root Directory for generated code]

[-f accept files]

[schema: SOX schema file]

X2J Option Description

-emit X2J will emit Java code corresponding to the input SOX 2.0 schema.
This option does not take an argument. If this parameter is specified,
then the -d parameter below also has to be specified. Note that if you
do not use this option, X2J will not generate any code.

-v X2J outputs verbose messages during the parse if this option is
specified. This option does not take an argument. With this option, X2J
displays additional information related to compiling the schema. This
information is helpful in finding and fixing problems in your schema.

-help X2J shows detailed help information (similar to this) if this option is
specified. This option does not take an argument.

-enc
<encoding>

Specifies the XML file encoding to use. Supported encodings are the
same as the encodings supported by the particular JVM being used.
Some possible values are "UTF8", "Unicode", "SJIS", "8859_1",
"8859_15", "ASCII", "Big5", "GB2312", "KSC5601", "Cp874", "JIS". If
this option is not used, the default encoding is UTF8. No matter what
encoding you use, all the files encountered in one compile must use
the same encoding. You cannot for example compile a schema that
uses one encoding, that in turn refers to a schema that uses another
encoding.
6-2 XDK Pro Developer’s Guide

How to Use the SOX to Java Compiler (X2J)
-p <schema-
path>

 The schema path; a semicolon delimited list of paths to use as root for schema
search. This is similar in notion to a class path. X2J needs to know the root
path from which to resolve any URNs that the input document refers to. If the
document is a SOX schema, or an XML instance conforming to a SOX
schema, then the schema refers to schema.dtd and it is necessary to include a
path can resolve the URN of that file. In this installation, this path is the
c:\commerceone\xdkpro directory on Windows and
/opt/CMRCxdkp on Solaris that contains the command line tool scripts. If
you have not placed your schemas n the XDK installation, you must also add a
path to your schemas.

-d <root-
directory for
generated
code>

 An absolute path underneath which the generated code will be placed,
according to the package name of the generated code. The package
name of the generated code depends upon the URN of the schema
being compiled. This is similar in notion to the schema path. This
parameter has to be specified if the -emit flag is specified, and it is
not useful to specify it unless the -emit flag has been specified.

-f The -f option will force CXP to accept regular file names for the input
files. By default CXP assumes that the input document name provided
is a URI. Since a URI will always contain at least one colon, ":", CXP
can recognize that an input document that contains no colons must be
a file name, and process the input as a file name instead of a URI.
However, in those cases where you use a filename that contains a
colon such as c:\schemas\TestSchema.sox, you can tell CXP to
still interpret the input as a file name. The -f option enables this by
forcing CXP to always interpret the input as a file name. For example,
on Windows, given the file po.xml, you can use either

"cxp \commerceone\po.xml" or "cxp -f
c:\commerceone\po.xml". This option does not take an argument.

schema The name of one single schema that X2J should compile. This can be
in either file or URI format, (see the -f option above).

X2J Option Description
XDK Pro Developer’s Guide 6-3

How to Use the SOX to Java Compiler (X2J)
How URNs are Used in Code Generation

A detailed discussion of the mapping between URNs and schema
locations is provided in the section titled CXP Options in Chapter 4.. It
describes how our software uses the schema path in conjunction with
the schema or DTD URN, to locate the corresponding DTD and/or
schema files. In this section, we focus on how the schema URN is used,
in conjunction with the root directory for the generated code specified
by the -d option, to determine the directory path where the Java files
will be generated.

In the following example, let us assume that the schema is contained in
the file sample.sox. The Commerce One implementation uses the
URN of the schema to determine both the physical location of the
schema, and the package name of the Java code corresponding to the
schema. In this example the URN of sample.sox is:

The root of the generated code is $<ROOT DIRECTORY>. This is
what is provided with the argument to the -d option to X2J.

1. Recall that the URN always starts with
"urn:x-commerceone:document:". This part specifies the
scheme for the mapping, and does not map to anything in the path to
the generated code.

2. The "$1.0" token at the end of the URI indicates the schema
version. The version token in this release is always "$1.0" and does
not currently map to anything in the path to generated code.

3. The remaining portion of the URN,
sample:xdk:sox:sample.sox, is used to create the package
name of the generated code, and maps to the location of the generated
code. For the path the colons are replaced with file separators, and the
period, ’.’ in sample.sox is replaced by an underscore. The
resulting path is sample\xdk\sox\sample_sox. For the
package name the colons are replaced with periods, ".", and the
period, ’.’ in sample.sox is replaced by an underscore. The
resulting package name is sample.xdk.sox.sample_sox.

urn:x-commerceone:document:sample:xdk:sox:sample.sox$1.0
6-4 XDK Pro Developer’s Guide

How to Use the SOX to Java Compiler (X2J)
4. The root of the generated code tree on your file system is here
represented as <ROOT DIRECTORY>. This is the path specified
with the -d option to X2J. Combining this with the path generated
above, the location of the generated code on your file system will be
"<ROOT DIRECTORY>\sample\xdk\sox\sample_sox".

Examples of Using X2J

Let’s assume that the sample schema below is located at
c:\mywork\com\mycompany\lang\n1.0\LangString.sox
for windows or
/mywork/com/mycompany/lang/n1.0/LangString.sox
for Solaris.

Here are some examples of how to use some of the X2J command line
options:

Example 1 for Windows:

Example 1 for Solairs:

<?xml version="1.0"?>

<!DOCTYPE schema SYSTEM
"urn:x-commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">
<schema uri=
"urn:x-urn:x-commerceone:document:com:mycompany:lang:LangString$1.0

<elementtype name="LangString">

 <empty/>

 <attdef name="Lang" datatype="string">

 <required/>

 </attdef>

</elementtype>

</schema>

x2j -p \commerceone\xdkpro
\mywork\com\mycompany\lang\n1_0\LangString.sox

./x2j.sh -p /opt/CMRCxdkp /mywork/com/mycompany/lang/n1_0/LangString.sox
XDK Pro Developer’s Guide 6-5

How to Use the SOX to Java Compiler (X2J)
This is the simplest use of X2J. It has the effect of validating the schema
LangString.sox.

Example 2 for Windows:

Example 2 for Solaris:

X2J validates the schema LangString.sox, and emits corresponding Java
code as specified by the SOX to Java mapping. The emitted code has the
package name com.mycompany.lang.LangString_sox, as
per the schema URI. For more details on the schema URI to Java
package mapping, see the Bean Tutorial included in this software
package. Finally, the emitted code is placed in the directory
\soxbeans\com\mycompany\lang\LangString_Sox
for Windows or in the directory
/soxbeans/com/mycompany/lang/LangString_Sox
for Solaris. This is a result of combining the generated bean root
directory as specified with the -d option, and the package name of the
generated code.

x2j -p \commerceone\xdkpro\ -d \soxbeans
-emit \mywork\com\mycompany\lang\n1_0\LangString.sox

./x2j.sh -p /opt/CMRCxdkp/ -d /soxbeans -emit
/mywork/com/mycompany/lang/n1_0/LangString.sox
6-6 XDK Pro Developer’s Guide

How to Use the SOX to Java Compiler (X2J)
Examples of Using a Sample File with X2J

In this distribution we have included several sample SOX 2.0 schemas.
The sample SOX schemas are located in
c:\commerceone\xdk\sample\xdk\sox\n1_0
for Windows or
/opt/CMRCxdkp/sample/xdk/sox/n1_0
for Solaris.

To compile the SOX schema file
Film.sox,
go to the sample directory
C:\commerceone\xdkpro for Windows or /opt/CMRCxdkp
for Solaris and type the following on the command line (for Windows)::

or for Soalris:

Compiling SOX Beans

When generating the Sox Beans from a SOX schema, a Java package
will be generated as described in the previous section.

To compile the sox beans, use any java compiler, and in the directory
containing the beans, compile all the generated java files. This can
easily be done by running any java compiler in the directory where the
beans were generated, specifying the file to compile to be *.java:

In Windows:

x2j.bat -p \commerceone\xdk -d \soxbeans -emit
sample\xdk\sox\n1_0\Film.sox

./x2j.sh -p /opt/CMRCxdkp -d /soxbeans -emit
sample/xdk/sox/n1_0/Film.sox

javac -d /commerceone/xdkpro/classes *.java
XDK Pro Developer’s Guide 6-7

How to Use the SOX to Java Compiler (X2J)
In Solaris::

The above example will compile all the java files in the current
directory, and place the compiled classes, in the directory
/commerceone/xdkpro/classes.

Keep in mind that you need to set the classpath to contain the XDK jar
files as well as a path to the generated beans (which is the directory
specified with the -d option to x2j) in your classpath. Either set it in the
system, or as an option to the compiler when compiling the beans. The
XDK jar files can be found in C:\commerceone\xdkpro\lib on
Windows and /opt/CMRCxdkp/lib on Solaris.

Also keep in mind that if your schema imports a second namespace, you
need to generate the Sox beans generated from that namespace first,
before you can compile the beans emitted from your current schema.
The classpath provided to the java compiler must include a path to the
beans generated from the imported namespace. For example, the sample
schema House.sox imports a different namespace Rooms:

In order for the Java Beans generated from House to compile, you need
to first compile the Java Beans generated from Rooms.sox, and then
include a path to the Rooms.sox beans in the classpath when compiling
the beans from House.sox.

javac -d \commerceone\xdkpro\classes *.java

<schema uri="urn:x-commerceone:document:sample:xdk:sox:House.sox$1.0">

<namespace prefix="room"
namespace="urn:x-commerceone:document:sample:xdk:sox:Rooms.sox$1.0"/>
6-8 XDK Pro Developer’s Guide

How to Use the SOX to Java Compiler (X2J)
Troubleshooting

Problem Solution

X2J reports:
Entity "<external-subset>" at location
"urn:x-commerceone:document:
com:commerceone:xdk:xml:schema.dtd$1.0"
cannot be opened due to: Domain urn does
not exist.

You did not specify a schema
path, so X2J can not interpret
the urn mapping. Use the -p
option to specify a schema
path that points to your
schemas, as well as
schema.dtd

X2J reports:
Entity "<external-subset>" at location
"urn:xcommerceone:document:com:commerceone:
xdk:xml:schema.dtd$1.0" cannot be opened
due to: Could not find file /commerceone/
xdk/foo/com/commerceone/xdk/xml/n1_0/
schema.dtd.

The schema path you
provided was not sufficient to
find schema.dtd. Make sure
the path you specify with the
-p option includes a path to
schema.dtd.

The application executed successfully, but you cannot
locate the generated beans.

You did not specify the
-emit and -d options
XDK Pro Developer’s Guide 6-9

How to Use the SOX to Java Compiler (X2J)
X2J reports an error such as:

Mismatched token: line(20), expecting MDC,
found

You may be using a lesser
version of the Virtual Machine
than recommended. See the
readme in the Doc Directory
in this installationfor the VM
version to use.

X2J reports an error such as
Invalid character number....
or:
problem with IO or possible invalid
character for current encoding: Missing
byte-order mark

Your document does not use
an appropriate encoding, or
may even contain mixed
encodings.

By default, X2J expects all
XML files to be in UTF8
(which is backward
compatible with 7-bit ASCII).
If you want to process
documents with a different
encoding, such as UTF16 or
8-bit Latin, you must use the
-enc <encoding> option.
If you want to compile a
Unicode document, you need
to make sure that your
document has the appropriate
byte-order mark for your
system, otherwise X2J will not
be able to process it correctly.
In addition, make sure your
document only contains one
encoding. If it has been
assembled from different
sources, it may contain
several different encodings.

Note that all input files used in
one run must use the same
encoding. X2J cannot
dynamically switch encoding
schemes while processing.

Problem Solution
6-10 XDK Pro Developer’s Guide

Chapter 7
The Simple RoundTrip Application

In This Chapter

This chapter describes how an application can use the XDK to read in an
XML instance document and obtain a Document Object, and how the
Document Object can be converted back into an XML instance
document. A functional example of this exercise can be found in
(Windows):

or in Solaris:

SimpleRoundTrip Application Basic Code

This section contains some of the basic code in the SimpleRoundTrip
application.

C:\commerceone\xdkpro\sample\apps\SimpleRoundTrip.java

 /opt/CMRCxdkp/sample/apps/SimpleRoundTrip.java
XDK Pro Developer’s Guide 7-1

The Simple RoundTrip Application
1. Create the CXP Parser and initialize the XDK:

2. Set the schema path for the parser (for Windows)::

For Solaris:

3. Convert the input XML instance document file into a URI:

import com.commerceone.xdk.base.parser.CXPParser;

import com.commerceone.xdk.initialize.XDK;

CXPParser cxpParser = new CXParser();

try {

 XDK.init();

}
catch(com.commerceone.xdk.excp.initialize.
AlreadyInitializedException aie){

//Handle Exception

}

String schema_path = "\commerceone\xdk";

cxpParse.setURNPath(schema_path);

String schema_path = "/opt/CMRCxdkp”;
cxpParse.setURNPath(schema_path);

import com.commerceone.util.net.URI;

File fsysid = new File("Film.xml");
URI fileURI = FileURIDomain.toURI(fsysid);
7-2 XDK Pro Developer’s Guide

The Simple RoundTrip Application
4. Open the URI corresponding to the XML instance document file as
an External Source:

5. Create a Document Factory:

6. Use the Document Factory to create a Document Object out of the
External Source:

7. Create an XML instance document out of the Document Object:

import com.commerceone.xdk.base.parser.URIEntityManager;

Import com.commerceone.xdk.base.parser.ExternalSource;

ExternalSource source = cxpParse.getEntityManager().open(fileURI);

import com.commerceone.xdk.metadox.factory.DocumentFactory;

DocumentFactory docFactory = new DocumentFactory();

import com.commerceone.xdk.metadox.model.object.DocumentObject;

DocumentObject indoc =(DocumentObject)docFactory.fromSource(source);

indoc.toStream(System.out);
XDK Pro Developer’s Guide 7-3

The Simple RoundTrip Application
The SimpleRoundTrip Application

To use the SimpleRoundTrip application from the command line,
you must compile the SimpleRoundTrip.java file, and use X2J to
compile the schema corresponding to the XML instance document that
you wish to use as input to the SimpleRoundTrip application. Also,
you must set your classpath to point to the compiled SimpleRoundTrip
class, the classes corresponding to the Sox Beans generated by the X2J
compiler, and the jar files that reside in the lib directory of this
installation.

Then, to use this application from the command line:

Running SimpleRoundTrip with no options will present usage
information on the screen:

usage: ./SimpleRoundTrip [-options]

 The SimpleRoundTrip options are:

java SimpleRoundTrip -p <options> <XML instance>

-p <path>
out <file>
-f
-?
-help
inputFile

Schemapath
File to which output is written
Accept files as input
This message
This message
Input File

Option Description

-p <schema-
path>

 The schema-path; for more detail on schema paths
see Chapter 4 or Chapter 6.

-out
<outfile>

The File to which the output XML instance document
should be written.

 -f This option forces the input XML instance document
name to be treated as a file name rather than as the
name of a URI. This option takes no parameter. For
more detail on this option see Chapter 4.
7-4 XDK Pro Developer’s Guide

The Simple RoundTrip Application
An Example

For this example to work, the Classpath must be set to include the Jar
files in the lib directory. The Simple Round Trip class and the compiled
beans for Film.sox.

The following example is for Windows::

 The following example is for Solaris::

-? Present the usage information.

-help Present the usage information.

inputFile The name of the XML instance document file or URI
that is to be round-tripped.

java SimpleRoundTrip -p \commerceone\xdkpro\
sample\xdk\instances\namespaces\Film.xml

java SimpleRoundTrip -p /opt/CMRCxdkp/
sample/xdk/instances/namespaces/Film.xml

Option Description
XDK Pro Developer’s Guide 7-5

The Simple RoundTrip Application
7-6 XDK Pro Developer’s Guide

Creating and Manipulating a Sox Bean
Chapter 8
Creating and Manipulating a Sox
Bean

In This Chapter

 This chapter describes how an application can use the XDK to create
and manipulate the Java Beans that result from compiling SOX
schemas.

Example

 In the following example, we will use the schema (for Windows)

 and (for Solaris)

and the bean Beverage.java as derived from the elementtype
Beverage defined in Beverage.sox

In order for this example to work, you also have to compile Sox Beans
from the schema Container.Sox, which is used by the Beverage
schema. You must do this before attempting to compile the Beverage
beans with a Java compiler.

C:\commerceone\xdkpro\sample\xdk\sox\n1_0\Beverage.sox

/opt/CMRCxdkp/sample/xdk/sox/n1_0/Beverage.sox
XDK Pro Developer’s Guide 8-1

Creating and Manipulating a Sox Bean
.

<elementtype name="Beverage">
 <model>
 <sequence>
 <element name="Name" type="string"/>
 <choice>
 <element name="Can" type="AluminumCan"
 prefix="containers"/>
 <element type="GlassBottle"
 prefix="containers"/>
 <element type="PaperCup"
 prefix="containers"/>
 </choice>
 </sequence>
 </model>
 <attdef name="Volume" datatype="float">
 <required/>
 </attdef>
 <attdef name="VolumeUnit" datatype="Unit">
 <default>fluid ounces</default>
 </attdef>
 <attdef name="Price" datatype="float">
 <required/>
 </attdef>
 <attdef name="Carbonated" datatype="boolean">
 <default>true</default>
 </attdef>
</elementtype>
8-2 XDK Por Developer’s Guide

Creating and Manipulating a Sox Bean
Given the elementtype Beverage, you get the interface Beverage
and the class BeverageImpl that implements Beverage from
x2j. For details on why the Beverage elementtype maps to the
presented Beverage interface, refer to the enclosed Sox Bean
Tutorial.

There are two methods of obtaining an instantiation of the Beverage
bean:

� You can instantiate the bean yourself:

� As described in the previous chapter, you can use the
DocumentFactory to read in an instance of a Beverage, and
get back a DocumentObject. This DocumentObject can
then be cast into a populated Beverage bean:

public interface Beverage extends ElementType {
 public BeverageAttributes
getBeverageAttributes();

 public void setName(String s);
 public String getName();

 public void setBeverageChoice(
 sample.xdk.sox.Beverage_sox.BeverageChoice
s);
 public sample.xdk.sox.Beverage_sox.BeverageChoice
 getBeverageChoice();
};

import sample.xdk.sox.Beverage_sox.*;

Beverage myBeverage = new BeverageImpl();

import sample.xdk.sox.Beverage_sox.*;

DocumentObject indoc = (DocumentObject)
 docFactory.fromSource(source);
Beverage myBeverage = (Beverage) indoc;
XDK Pro Developer’s Guide 8-3

Creating and Manipulating a Sox Bean
Once you have a bean, it is populated using the set() methods, and
accessed using the get() methods. Thus, to get the name of the
Beverage:

To set the name of the Beverage:

To access the attributes of the Beverage:

Note that you never need to create the BeverageAttributes
yourself. These are instantiated when the Beverage bean is
instantiated. To set a particular attribute, say Volume:

A functional example of this exercise can be found in (for Windows):

and (for Solaris):

The code presented above is some of the basic code in the
BeanManipulationExample application. The arguments to the
application are the same as those to the SimpleRoundTrip, and in
fact, the BeanManipulationExample application requires that
SimpleRoundTrip be compiled first.

String myBeverageName = myBeverage.getName();

myBeverage.setName("Coca Cola");

BeverageAttributes myBeverageAttributes =
 myBeverage.getBeverageAttributes();

myBeverage.getBeverageAttributes().setVolume(51.0);

C:\commerceone\xdkpro\sample\apps\BeanManipulationExample.java

/opt/CMRCxdkp/sample/apps/BeanManipulationExample.java
8-4 XDK Por Developer’s Guide

Document Framework
Chapter 9
Document Framework

In This Chapter

In this chapter we describe the programmatic interfaces used by
applications for handling and manipulating documents. We call these
interfaces the Document Framework. The Document Framework is the
contract between the XDK and third party application developers. It
provides a set of interfaces to the XDK, to be used by third parties such
as service developers. These interfaces provide an abstract view of a
document regardless of the programmatic representation that is used for
the document and therefore an application can handle a document of any
representation appropriately. The Document Framework is designed
with the following intents:

1. The XDK needs to define document representations so that users can
act on documents without knowing about content, format or
representation, while applications can create representations of
documents that enables them to manipulate the document in the most
efficient manner.

2. Third parties must be able to handle attachments as well as versions
of documents.

The Document Framework allows a variety of document
representations, locales, and formats.
XDK Pro Developer’s Guide 9-1

Document Framework
Terminology

Term Description

Document This is the base abstraction in the Document Framework.
Documents have type, identity, content and more.

Document
Representation
.

A document can have one representation at a time out of
several possible alternatives. Some possible representations
are DocumentObject (Bean, COM), DocumentStream (raw
character stream) and DocumentBytes(raw byte stream).
Representations are only meaningful for Service
implementations

Document
Content

The actual content of a document, e.g. a PurchaseOrder
document holds information about item, price, references and
more.

Document Format In a normalized world we would only assume XML derived
from SOX. However, we know that this is not always the case
for XDK users. Formats are meaningful concepts for users of
services as well as service implementers. It is part of the
contract, so both Service Description and Service
Specification documents list format requirements.

Document Type An XML document has a document type. In SOX derived
XML we talk about SOX type. In DTD derived XML we talk
about DOC type.

Document Type
Version

As Document Types change, it is important to identify
versions of types. For example if a new field was added to a
PurchaseOrder, it is still of the same type as before, but now
has a new version number. A service accepting PurchaseOrder
can decide what versions it accepts, if external mapping is
required, etc. It is important to remember that Document
Version (instance) and Document Type Version (type) are two
different concepts.
9-2 XDK Pro Developer’s Guide

Document Framework
Document
Version

Documents are often versioned. For example a bookkeeping
document (Document Exchange Protocol) gets signatures
appended as Business documents are migrating through the
system. The specific bookkeeping document has changed, that
is it has a new version, but its identity is still the same. It is
important to remember that Document Version (instance) and
Document Type Version (type) are two different concepts.

Document Identity A document needs to have a unique identity. The scope of the
uniqueness is application specific, but XCC still needs the
guarantee that two documents that are different do not have
the same identity. The Util package in the Commerce Platform
system provides an Interface called Identity with
implementations for UUID and Long. An application specific
identity, say PurchaseOrder number, combined with the scope
should also be allowed. For unknown Document Streams a
size/hash value can be used together with the scope.

Document Locale For internationalization reasons a document has an associated
locale. This is to identify Language Code, Country Code and
Variant. The language codes are the lower-case two-letter
codes as defined by ISO-639. The country codes are the
upper-case two-letter codes as defined by ISO-3166. The
Variant codes are vendor and browser-specific. For example,
use WIN for Windows, MAC for Macintosh and POSIX for
POSIX.

Document
Wrapper

This is a class that contains Documents. Examples of
Document Wrappers are Envelopes and Reply wrappers. The
way we contain the Document Stream and create another
representation of a Document is different from
DocumentWrapper. A DocumentWrapper is a Document.

Envelope This is the base abstraction in the Document Framework.
Envelopes hold one and only one document. They can also
hold attachments. Properties are kept to facilitate routing and
application service code. An Envelope is a DocumentWrapper
and ergo a Document.

Term Description
XDK Pro Developer’s Guide 9-3

Document Framework
Message When an Envelope is transmitted over a wire it becomes a
message. That message is a 1-1 mapping of the envelope into
an on-the-wire format using MIME and XML.

Quality of Service
(QoS)

A term used to qualify the level of service in various aspects.
In the case of exchanging documents, it is interesting to talk
about security, guaranteed delivery, response time and such.
Synchronous or asynchronous are NOT QoS statements.

URN A Uniform Resource Name (URN) is a persistent, location-
independent resource identifier. The syntax of a URN consists
of three parts: a reserved "urn:" identifier, a Namespace
Identifier (NID) string, and a Namespace Specific String (NSS
NIDs can only contains the characters a-z, A-Z, and the dash
(-) character). Examples: urn:x-someidentifier:somestring-
19980101231145, urn:isbn:1-56592-169-0. We want to stress
the difference between identities, which are meant for
machines, and symbolic names, which are meant for humans.
A UUID is an identity. A URN is a symbolic name.

URI Catalog Catalog to map a symbolic URI to a URI that has transport
and location information.

UUID A UUID is a 16-byte globally unique identity. We want to
stress the difference between identities, which are meant for
machines, and symbolic names, which are meant for humans.
A UUID is an identity. A URN is a symbolic name.

Term Description
9-4 XDK Pro Developer’s Guide

Document Framework
Document Representation Classes

Representations

An XML Document has several different possible programmatic
representations. In the XDK, we have identified five basic
representations, but we anticipate that additional representations may be
required in the future. The five basic representations are:

� DocumentObject: Representation as strongly typed Java objects.

� DocumentStream: Representation as a raw character stream.

� DocumentBytes: Representation as a raw byte stream.

The DocumentStream and DocumentBytes representations are in fact
intended to support non-XML documents as well.

We use the term programming model for the view of an incoming XML
document used by an e-commerce application developer. Different uses
of a document will require different programming models. The idea of
the Document Framework is to provide a structure that enables efficient
programmatic manipulation of documents.

Term Description

DocumentObject
[SOX to Java
Mapping]

A more strongly typed programming model than DOM. With
this model programmers get a more convenient and safer way
of manipulating and reading documents that conforms to SOX
schemas. Each element is represented by a typed object that
has the methods for accessing and manipulating the content
specified for the element in the Schema.
XDK Pro Developer’s Guide 9-5

Document Framework
The Document Framework has separate classes for each of these
programming models. A representation of a particular document either
extends the corresponding Document Framework class, or is
encapsulated by it. The figure below illustrates that each document
representation has a corresponding class that implements the
Document interface.

DocumentTree, DocumentObject and DocumentEvents
are representations of XML documents. DocumentStream and
DocumentBytes on the other hand can be used to represent XML
documents or documents in any other form, such as binary EDI
documents, MicroSoft Word documents and so on.

 DocumentStream Provides a simple character stream that contains the
document. The document has not been processed in any way
when the application receives it. This programming model is
very important for MarketSite hubs that perform only routing.
This programming model enables fast routing and de-couples
routing nodes from any document specific knowledge.
Programming with formats other than XML will benefit from
this representation.

DocumentBytes Provides a simple byte stream that contains the document.
The document has not been processed in any way when the
application receives it. This programming model is similar to
DocumentStream, except it uses raw bytes.

Term Description

Implements Implements

Implements
9-6 XDK Pro Developer’s Guide

Document Framework
DocumentObject

The DocumentObject is an abstract base type for all interfaces that
implement the X2J representation of documents. The X2J Mapping
defines a class ElemenTypeImpl that extends the
DocumentObject class. For each elementtype X, according to X2J,
there is a generated interface X, and a generated class Ximpl that
implements X. Since DocumentObject implements Document,
the class Ximpl corresponding to X also implements Document. The
figure below illustrates the mapping for elements in the X2J mapping.
The emitted entities are filled with gray.

Figure 9-1 The DocumentObject Representation

DocumentObject

ElementType

PurchaseOrder Address LineItem

PurchaseOrderImpl

implements

AddressImpl LineItemImpl

ElementTypeImpl
XDK Pro Developer’s Guide 9-7

Document Framework
DocumentStream

The DocumentStream is a base class for all character stream based
document representations. The DocumentStream programming
model allows an application to keep a document as a raw stream. The
stream can be an XML document or a document in some other format.
The application can retrieve the stream and process it in any way that it
wants. It could even apply one of the other XML document
representations to it using the UnMarshall interface methods.

The DocumentStream representation is particularly useful for non-
XML documents or when there is no need to interpret the document
content in order to handle the document. Header based routing is an
example of the latter.

package com.commerceone.xdk.metadox.model.stream;

public class DocumentStream extends AbstractDocument
 implements AnnotatedDocument,CharacterDocument
{
 public DocumentStream(DataSource s);
 public DocumentStream(DataSource s, Type type);

 public Reader getStream();
 public void toStream(Writer w);
}

9-8 XDK Pro Developer’s Guide

Document Framework
The DocumentStream deals with DataSources:

A simple data source is ReaderDataSource, which converts a Java
Reader to a DataSource:

The DocumentStream representation is immutable. When the
representation is created we can assign an identity or MIME type to the
representation. For the other document representations, the MIME type
will implicitly always be something along the lines of text/XML.

package com.commerceone.xdk.swi.metadox.marshall;

public interface DataSource
{

 public void toStream(Writer writer)
 throws java.io.IOException;

 public Reader getReader()
 throws java.io.IOException;

 public void close()
 throws java.io.IOException;

 public DataSource copy()
 throws java.io.IOException;

}

package com.commerceone.xdk.metadox.model.stream;

import java.io.Reader;

public class ReaderDataSource implements DataSource
{
 public ReaderDataSource(Reader r)
}

XDK Pro Developer’s Guide 9-9

Document Framework
DocumentBytes

The DocumentBytes is an abstract base class for all bytestream
based document representations. The DocumentBytes programming
model allows an application to keep a document as a raw stream. The
application can retrieve the stream and process it in any way.

The DocumentBytes representation is particularly useful for binary
documents when no concept of character encoding is appropriate.

package com.commerceone.xdk.metadox.model.bytes;

public class DocumentBytes extends AbstractDocument
 implements AnnotatedDocument,BinaryDocument
{
 public DocumentStream(DataSource s);
 public DocumentStream(DataSource s, Type type);

 public void toStream(OutputStream os);
}

9-10 XDK Pro Developer’s Guide

Document Framework
The DocumentByte deals with ByteSources:

A simple data source is StreamByteSource, which converts a Java
InputStream to a ByteSource:

The DocumentBytes representation is immutable. When the
representation is created we can assign an identity or MIME type to the
representation. For the other document representations the MIME type
will implicitly always be something along the lines of application/
octetstream.

package com.commerceone.xdk.swi.metadox.marshall;

public interface ByteSource
{
 public void toStream(OutputStream os)
 throws java.io.IOException;

 public InputStream getInputStream()
 throws java.io.IOException;

 public void close()
 throws java.io.IOException;

 public ByteSource copy()
 throws java.io.IOException;
}

package com.commerceone.xdk.metadox.model.bytes;

import java.io.InputStream;

public class StreamByteSource implements ByteSource
{
 public StreamByteSource(InputStream is)
}

XDK Pro Developer’s Guide 9-11

Document Framework
Document Representation Factory and Schema Lookup

The goal of this section is to describe the support provided by the
Document Framework for creating Document Representations. For this
purpose, the Document Framework provides the DocumentFactory.
The purpose of the DocumentFactory is to define a general
interface for creating document representations, given an external
source. Each document representation (or programming model) has to
provide a factory class that implements the DocumentFactory
interface. The figure below describes the relationship between the
interfaces BasicDocumentFactory and DocumentFactory
and their implementations.

To be able to describe the DocumentFactory interface, we need to
first describe an EntityManager. The purpose of an
EntityManager is to return a reference to an external data source
given an URI. This external data source can in turn be handed over to
the DocumentFactory for the creation of a Document
Representation. There can exist many different implementations of
EntityManagers, each using its own underlying lookup
mechanisms. In some cases the lookup mechanism is a file mapping
URIs to concrete addresses. In other cases an EntityManager
implementation might use an LDAP directory for looking up a concrete
address. Furthermore, the EntityManager may use different
mechanisms for different types of URIs.

Figure 9-2 Factory Interfaces

The DocumentFactory interface requires that the client know about
appropriate policies for finding schema information so that incoming
documents can be validated against the schema they conform to. Both

BeanFactory

<<interface>>
BasicDocument
Factory

Application

implements

<<interface>>
DocumentFacto
ry

DOMFactoryBasicBeanFact
ory

implements

uses

uses
9-12 XDK Pro Developer’s Guide

Document Framework
DocumentFactory and BasicDocumentFactory provide a
method named fromSource. The argument to fromSource is
different in the two interfaces. For the DocumentFactory the
fromSource expects an ExternalSource. In the
BasicDocumentFactory fromStream expects a Reader. This
means an implementation of BasicDocumentFactory must
establish the policies on which a client relies. On the other hand, it
simplifies the usage of the factory from the client’s perspective.

Entity Manager

The entity manager takes a URI and resolves it to an
ExternalSource that can be used for XML processing. The
EntityManager interface can be implemented in many different
ways. We envision the following implementations:

� An implementation that uses an URN catalog. The catalog maps
URNs (A specialization of URI’s) to files.

� An implementation that defines a mapping of URNs to a path that is
used to search for files. This is similar to the CLASSPATH
mechanism in Java where package names are mapped to files paths.

� An implementation that looks up an URI in an LDAP registry which
returns a URL or file name. The manager then opens the named file
or URL and returns a corresponding ExternalSource.

Here we show the interface for the EntityManager.

External Source

The external source represents a stream (Reader) and context
information that is considered valuable. In particular, it contains:

package com.commerceone.xdk.base.parser;

import com.commerceone.util.net.URI;

public interface EntityManager
{
 ExternalSource open(URI sysid)
 throws java.io.IOException;
}

XDK Pro Developer’s Guide 9-13

Document Framework
� A system identifier representing the resource.

� The URI that was used to locate the resource.

� The particular entity manager that was used to locate the resource.

Above we show the ExternalSource interface as it is currently
defined in the XDK.

DocumentFactory

An application must be able to request a particular representation of a
document from the Document Framework. More specifically, an
application should be able to request an X2J object, DOM object, or
other representation that is made available in the current installation.

Each document representation will provide a class that implements the
DocumentFactory interface. When an application needs a particular
representation, it will get an instance of the corresponding factory
object, and call the fromSource method. The fromSource method
requires an ExternalSource that may have been retrieved by using
an EntityManager.

In some cases, one can establish a more widely applicable policy for
URI lookup. Having such a policy will not only make lookup
consistent, but it will also enable the usage of a simplified interface.
The BasicDocumentFactory defines the interfaces that are used
if a pre-defined URI lookup policy has been established. More

package com.commerceone.xdk.base.parser;

import java.io.Reader;
import com.commerceone.util.net.URI;

public interface ExternalSource
{
 Reader getReader();

 String getSystemId();

 URI getURI();

 EntityManager getEntityManager();
9-14 XDK Pro Developer’s Guide

Document Framework
specifically, an application library can implement
BasicDocumentFactory in terms of a DocumentFactory. If an
application uses a BasicDocumentFactory, it only needs to
provide the Reader to create a document representation. This means
that the application need not determine the lookup policies used. It does
need, however, to be aware of the policies that are used, so that
information can be installed appropriately. It also means that all
applications using the same BasicDocumentFactory will use the
same policies. This makes configuration more consistent and easier to
maintain. The DocumentFactory and
BasicDocumentFactory interfaces are outlined below.

package com.commerceone.xdk.metadox.factory;

public class BasicDocumentFactory implements
UnMarshaller
{
 public void fromSource(Reader reader);
}

public class DocumentFactory implements UnMarshaller
{
 public void fromSource(ExternalSource extSource);
}

XDK Pro Developer’s Guide 9-15

Document Framework
Document Interfaces

In this section we describe the Document interface that all document
representations are required to implement. Recall that one of the
purposes of the Document Framework is to enable third parties to
manipulate documents without any knowledge of the document
representation. The Document interface enables us to fulfill this
purpose. The structure of the Document interfaces is as illustrated by the
figure below.

Figure 9-3 Document Interfaces

The Document interface collects all the functionality that a document
representation must provide to any software component manipulating
documents. This functionality can be divided into three parts:

� Marshalling - allows a client to create a stream representation of
a document, and create a document from a stream respectively

� UnMarshalling- Same as Marshalling

� Doclet - provides methods for getting the document type, version,
locale and identity of a document.

The following sections describe these interfaces in more detail.

<<interface>>
Doclet

<<interface>>
Marshaller

<<interface>>
Document

<<interface>>
Identity

<<interface>>
Locale

<<interface>>
Version
9-16 XDK Pro Developer’s Guide

Document Framework
Document

Document is the interface third parties use to handle a document
regardless of its content and representation. To handle a document, an
application only needs to know the information provided through the
Document interface. As discussed earlier, specific document
representations are subtypes of Document.

To retrieve document content, application services and clients need to
pick a representation class - the generated X2J classes,
DocumentBytes, or DocumentStream.

For documents, the method getDocument() returns the current
representation of the document. For Document Wrappers, e.g.
Envelopes, the method returns the document they hold.

The method getPartFactory() returns a BodyPartFactory.
The BodyPartFactory is what creates a MIME message part for the
document in question.

package com.commerceone.xdk.swi.metadox.meta;

public interface Document extends Doclet, Marshaller
{
 public Document getDocument();

 public BodyPartFactory getPartFactory();
}

XDK Pro Developer’s Guide 9-17

Document Framework
Doclet

Doclet is the interface that defines the basic set of identifying
information a document is required to support. This information is
needed by components that cannot be dependent on the content of a
document. Examples of such components include tracing, auditing,
logging and billing. A Doclet has a Type, Identity, Version
and Locale.

The Type information represents the document type to which the
document instance complies. As part of the message sending (Envelope
over the wire) the type information is extracted and put in the headers.

The Identity is for most documents a globally unique identity. The
QoS of identity depends on implementation requirements. Identity
may for example be used for tracing and audit log keys in databases.
The Identity is normally not represented in XML, but is extracted and
put in headers when sent.

The Version field for Document Instances is a placeholder for the
future.

Finally, Doclet provides the locale that was defined for the document
instance. Observe that we use the Locale type provided by JDK.
Language, country and variants are available.

package com.commerceone.xdk.swi.metadox.meta;

import java.util.Locale;

public interface Doclet extends Serializable
{
 Type getType();
 Identity getIdentity();
 Version getVersion();
 Locale getLocale();
}

9-18 XDK Pro Developer’s Guide

Document Framework
Marshaller

The Marshaller interface provides methods to marshal the document
representation out to a stream. The operation requires an output stream.
A character encoding can be optionally provided. Every programmatic
representation of a document provides this capability since it
implements the Document interface.

UnMarshaller

The Unmarshaller interface provides a method for converting a
document stream into a document representation. Recall that this
function is actually performed by a DocumentFactory, which therefore
needs to implement this interface.

To keep the UnMarshaller interface clean, the
DocumentFactory is instantiated with the right
ExternalSource and EntityManager reference. In this
manner, the need for multiple factories using different environment
setups is not excluded.

package com.commerceone.xdk.metadox.doclet;

public interface Marshaller
{
 void toStream(OutputStream os);
 void toStream(OutputStream os, String encoding);
}

package com.commerceone.xdk.swi.metadox.marshall;

public interface UnMarshaller
{
 public Document fromStream(Reader reader);
}

XDK Pro Developer’s Guide 9-19

Document Framework
Type

The interface Type is used to encapsulate type-related information. With
this information applications can make processing decisions based on
document type. For instance, an application can express that it will only
accept PurchaseOrder documents of version "2.1" and "2.2", defined by
owner "urn:x-commerceone". This information therefore allows for the
management of change as the system evolves.

Note that XML documents and binary documents have different notions
of a type. Binary documents only have a MIME type. The MIME type
for XML is "application/xml". This allows for internationalized XML.

Document type is for XML documents derived from the SOX type. The
value for other documents is undefined. A default value of "Unknown"
is returned in such cases.

Owner is to be able to differentiate between the documents defined by
different vendors or consortium. For example, a Purchase Order from
Commerce One and the one defined by OBI are not likely to be
identical.

package com.commerceone.xdk.swi.metadox.type;

public interface Type extends Serializable
{
 public String getOwner();
 public Version getTypeVersion();

 public String getDocumentType();
 public String getMimeType();

 public boolean equals(Object obj);
 public PropertyValue toPropertyValue();
 public ParameterList toParameterList();
}

9-20 XDK Pro Developer’s Guide

Document Framework
Version

Version is an interface defined in
com.commerceone.util.identity.Version. Versions apply
to document instances and document types. Document representations
also use the Version interface to represent schema versions.

We assume the following numbered version format: (1.1.32 - Major,
minor, revision).

� "1.1" is earlier than "1.2"

� "1.2.233" is a preliminary version.

� "2.2" has the same major version as "2.89"

When creating a version object from a String we assume the
NumberedVersion implementation. An exception is thrown if the
format does not match.

package com.commerceone.util.identity;

public interface Version
{
 public String toString();
 public byte[] toBytes();
 public boolean equals(Object obj);
 public int compareTo(Version anotherVersion);
 public boolean sameMajor(Version version);
 public boolean isPreliminary();
}

XDK Pro Developer’s Guide 9-21

Document Framework
 Identity

Identity is an interface defined in
com.commerceone.util.identity.Identity.

For most documents, the Identity is globally unique. The QoS of
identity will depend on implementation requirements. A user readable
format and a machine efficient format is provided.

Envelope

Main Abstraction

An Envelope is both a Document and a wrapper for a Document.
Along with Document, it is one of the two main abstractions in the
Document Framework.

An Envelope holds exactly one document. Other documents are
added and managed as attachments. Attachments can be XML
documents or of any other format. Envelopes also have a Property list
with key, value pairs, a Context document, and a URI catalog document
to resolve references to attachments. Finally, Envelopes can optionally
contain a credential for security.

package com.commerceone.util.identity;

public interface Identity extends Serializable
{
 public String toString();
 public byte[] toBytes();
 public boolean equals(Object obj);
}

9-22 XDK Pro Developer’s Guide

Document Framework
The interface declaration below shows the available methods for
Envelopes. Envelope extends the Document interface.

package com.commerceone.xdk.swi.metadox.meta;

import java.util.Properties;
import java.util.Enumeration;
import
com.commerceone.xdk.swi.metadox.property.ManagedProperties
;

import com.commerceone.util.net.URI;

public interface Envelope extends Document
{
 public Enumeration getAttachments();
 public Document getAttachment(URI ref);

 public void addAttachment(Document doc);
 public void addAttachment(Document doc, URI id);

 public Document getCredential();

 public ManagedProperties getProperties();

public CatalogReader getCatalog()
}

XDK Pro Developer’s Guide 9-23

Document Framework
Properties

Envelopes have properties, which can be used for routing and
bookkeeping. There are two different types of properties -- managed
properties and user provided properties. Managed properties are write
once and then read only, user provided properties have no such support.
Properties are richer than the default Java properties class as they can
have an associated parameter list (like RFC822 headers).

Note that none of the managed properties are set by end-user code!

Property Who? When? Why?

x-Document-Type Envelope Envelope creation
time

To enable fast
routing on the
server.

x-Message-Id Envelope Envelope creation
time

To track messages.

x-Correlation-Id Service Service has reply
document ready,
want to publish back

To track messages,
and resulting
messages.

x-Request-Mode Transmitter Set by application. To let the sender
specify processing
hints related to the
request. Read more
below.

x-Date-Received Server Agent When the
Envelope reaches
the server.

To keep some
bookeeping
regarding dates.
System and legal
reasons.

x-Date-Sent Transmitter closest to
the wire. E.g. an
InternalPublisher
doesn’t set this
property.

Just before the
Envelope is sent over
the wire

To keep some
bookeeping
regarding dates.
System and legal
reasons.
9-24 XDK Pro Developer’s Guide

Document Framework
The Envelope property x-Request-Mode is used to hold processing
hints. A hint is meant to override any default values the receiver has
stored, or lookup. However hints can be ignored due to transport, or
server policies.

x-Receiver-Id Transmitter returned
from first lookup.

Lookup required
receiver info,
stored in resulting
Transmitter
instance. Set by
the application.

To make sure the
Envelope reaches
the right
destination. May it
be a hosted, or
integrated service.
Used for routing on
the server.

x-Sender-Id Transmitter returned
from first lookup.

Set by application. To make sure the
recipient has
enough knowledge
to lookup info it
needs, e.g.
preferred callback
address.

Property Who? When? Why?
XDK Pro Developer’s Guide 9-25

Document Framework
A class EnvelopeHeaders is prepared to declare constants for the
keys of the managed properties.

package com.commerceone.xdk.swi.metadox.property;

public interface PropertiesConstants
{
 public static final String REQUEST_MODE_KEY =
 "x- Request-Mode";
 public static final String SENDER_ID_KEY =
 "x-Sender-Id";
 public static final String RECIPIENT_ID_KEY =
 "x-Recipient-Id";
 public static final String DATE_SENT_KEY =
 "x-Date-Sent";
 public static final String DATE_RECEIVED_KEY =
 "x-Date-Recieved";
 public static final String DOCUMENT_TYPE_KEY =
 "x-Document-Type";
 public static final String MESSAGE_ID_KEY =
 "x-Message-Id";
 public static final String CORRELATION_ID_KEY =
 "x-Correlation-Id";

 public String[] getManagedKeys();
}

9-26 XDK Pro Developer’s Guide

Document Framework
Application developers can add properties for their own processing.
The EnvelopeProperty class takes an instance of
EnvelopeHeaders in its constructor. It uses the value of
getManagedKeys() to decide what properties are managed and
what are user defined.

URICatalog Document

The URI Catalog is maintained in the envelope, and is the first data that
is used in resolving references from within a document. For instance,
the document inside the envelope may refer to an attachment in the
same envelope. The catalog helps resolve this relationship.

Attachments

There are two different levels of support for attachments:

1. Attachments may be stored in the Envelope.

2. A URI may be bound to an element in a Document. The URI is used
to bind an attachment in the Envelope.

package com.commerceone.xdk.metadox.meta;

public interface EnvelopeProperties
{
 public PropertyValue get(String key, String
 default_value);
 public boolean set(String key, PropertyValue value);
 public boolean set(String key, String value);
}

public interface PropertyValue
{

 public String getValue();
 public ParameterList getParameters();

 public String toString();
}

XDK Pro Developer’s Guide 9-27

Document Framework
We refer to the latter by Named and Bound attachments. The former is
just attachments. An Iterator on the Envelope is provided when named
and bound attachments are not used.

Client Side Usage

On the client side, the programmer is concerned with creating the
envelope and sending it to the business partner for processing by a
business service. Where a Named and Bound attachment is used, the
developer needs to set the reference attribute on the element. In that
operation use a URI that is later used when adding the attachment to the
envelope. Note that this is a very weak binding, but is the preferred
choice.

In this example we are using the DocumentObject representation. We
create the PurchaseOrder document and set some elements. We create a
LineItem, introduce a reference to an external attachment, and add the
line item to the purchase order. We now create a DocumentStream
document that will contain an MicroSoft Word file. We create the
envelope with the PurchaseOrder as the argument to the constructor. We
then add the attachment using the URI we used in the line item
9-28 XDK Pro Developer’s Guide

Document Framework
.

// Create Bean/
PurchaseOrder po = new PurchaseOrderImpl;
EnvelopeFactory ef = … // Get from transmitter/service
po.setAddress(…); // Document specific manipulation
…

LineItem line_item = new LineItemImpl();

// Associate the attachment with the line item element
// Reference is the name used in the SOX for this attribute
line_item.setReference("urn:customsdecl");

po.setLineItem(line_item);

// Read Attachment Document from Disk
FileInputStream fis = new FileInputStream("file.doc");
InputStreamReader reader = new InputStreamReader(fis);
DocumentStream attachment =
new DocumentStream(new ReaderDataSource(reader),"application/
ms-word");

// Create Envelope. Add a named and bound attachment
Envelope env = new ef.creatEnvelope(po);
env.addAttachment(attachment, "urn:customsdecl");

// Send Envelope
DocumentResponder responder = …;
Envelope reply_env = Responder.processDocument(env);
XDK Pro Developer’s Guide 9-29

Document Framework
Service Side Usage

All document services implement the method handleDocument()
from the DocumentListener interface. This method gets the same
Envelope that was created at the client. A few more properties might
have been added along the way.

void handleDocument(Envelope env)
{
 // Document is here as an unparsed DocumentStream
 Document doc = env.getDocument();

 // Keep one of the following 4 lines depending on
 programming model expected.

 // DocumentStream doc_stream =
 DocumentStream.createFrom(doc);
 PurchaseOrder po = PurchaseOrder.createFrom(doc);
 LineItem line_item = po.getLineItem();

 // Reference was the name used in the SOX description
 URI ref = line_item.getReference();
 // Get Attachment from Envelope
 DocumentStream attachment = env.getAttachment(ref);

 // Or, iterate over Attachments
 Enumeration attachments = env.getAttachments();
 while (attachments.hasMoreElements())
{
 Document att_doc = attachments.getNextElement();
}}
/ /}}
9-30 XDK Pro Developer’s Guide

Document Framework
Externalization and Internalization

Each document and document wrapper knows how to externalize itself -
this is given from the Marshaller interface. An envelope sent over a
wire becomes a message. The message has an identity equal to the
envelope id. The format of the message is Multipart MIME with
RFC822 headers, where properties are translated into headers. The URI
Catalog and each document, including attachments, becomes a part. A
signed Document is represented as a multi-part with the document and
the signature as XML documents are XML-ified, attachments get a
native representation.

The following example illustrates how properties and documents have
been packaged in a MIME message. The example also shows how an
attachment of type MS-Word is referenced from within the element
LineItem, and listed in the URN catalog for later resolution. The
attachment is an MicroSoft Word document.

Message-ID:
<220.925008744770.JavaMail.kenneth@xke.commerceone.com>
Date: Sat, 24 Apr 1999 19:51:12 -0700 (PDT)
Subject: PO - 8a42d0a0-8783-0000-027f-000001234000
x-Message-Id: 8a42d0a0-8789-0000-027f-000001543000
x-Receiver-Id: urn:x-commerceone:tradingpartner:4711 (Office Depot)
x-Sender-Id: urn:x-commerceone:tradingpartner:3092 (Commerce One)
x-Document-Type: urn:x-commerceone:PO:1.0
Content-type: multi-part/related; boundary="-----";
Mime-Version: 1.0
Content-Description: Commerce One Envelope Message Format
version 1.0

Content-type: application/xml; owner=x-commerceone type=PO
version=1.0
Content-ID: 8a42d0a0-8783-0000-027f-000001234000
Content-Description: Commerce One Document Format XML/SOX

<?xml version="1.0"?>
<!DOCTYPE PurchaseOrder SYSTEM
"urn:xcommerceone:sox:PurchaseOrder:1.0">
XDK Pro Developer’s Guide 9-31

Document Framework
<PurchaseOrder>
<LineItem attachment="urn:customsdecl">
 Calculator
</LineItem>
</PurchaseOrder>

Content-type: application/xml; type=catalog
Content-ID: 8a42d0a0-8782-0000-027f-000001567000

<?xml version="1.0"?>
<catalog>
<map urn="urn:customsdecl" to="uuid:8a42d0a0-8782-0011-027f-
000001987000"/>
</catalog>

Content-type: application/ms-word
Content-ID: 8a42d0a0-8782-0011-027f-000001987000
Content-Disposition: attachment; filename=hippo.doc
Content-Description:

Lshfakshflkjasdfkv cxz BDyqFKS>JFH;kjZBC
DHF;HSDF:jhZXLJNF;DHLKJNflHF
………….

9-32 XDK Pro Developer’s Guide

Document Framework
Sending and Receiving Documents

Interfaces

Part of the Document Framework is the definition of the interfaces that
are used to send and receive documents and envelopes. This is to
achieve a common style for exchange of information. Third party
application developers are responsible for the development of classes
that implement these interfaces.

The Document Framework interfaces are

� DocumentListener (for a one-way outbound)

� DocumentResponder (for two-way)

� DocumentServant (for one-way inbound).

Exceptions

The framework comes with an exception hierarchy. Programmers can
catch and handle fine-grained exceptions or a category of exceptions.
Exceptions related to document exchange inherit from the exception
class DocumentExchangeException.

The sub-category EstablishException is used for exceptions
related to the establishment of the connection -- Bad URL, Connection
unavailable, Access denied and more. The exception is always raised in
system code. Completion code is always NO.

The sub category TransferException is used for exceptions
related to the transfer of information. A connection was established, but
information did not reach the intended service. The exception is always
raised in system code. Completion code is always NO.

The sub category ProcessingException is used for exceptions
related to the processing of information. This is typically related to
marshalling and unmarshalling. The exception is always raised in
system code. Completion code is always NO if the error happened at the
server. If the error happened in error code on the way back, the
completion code can be YES or MAYBE.
XDK Pro Developer’s Guide 9-33

Document Framework
The sub category ServiceException is used for exceptions related
to business level problems. The exception is always raised in
application code. Completion code is defined by application semantics.
Unhandled exceptions in services are caught and transferred back
accordingly.

package com.commerceone.xdk.excp.metadox.send;

public class DocumentExchangeException extends
DocumentException
{
 public static final int YES=1;
 public static final int NO=2;
 public static final int MAYBE=3;

 public final int getCompletionStatus()
}

// Something went bad when setting up the connection
public class EstablishException extends
DocumentExchangeException {}

// Something went bad sending the information
public class TransferException extends
DocumentExchangeException {}

// Something went wrong processing the information sent
public class ProcessingException extends
DocumentExchangeException {}

// Something went wrong in the User Defined Service
public class ServiceException extends
DocumentExchangeException {}
9-34 XDK Pro Developer’s Guide

Document Framework
DocumentListener

The DocumentListener interface is used for the outbound passing of
envelopes between entities. The entities can be object, services, or
servers. It can be local or remote. It can be queued or not.

The state and semantics of the implementation decide the appropriate
action. A user only cares about the interface.

DocumentResponder

The DocumentResponder interface is used for the two-way passing of
envelopes between entities. The entities can be object, services, or
servers. It can be local, or remote. Since a return envelope is expected
this interface is only implemented for express, synchronous
communication.

The state and semantics of the implementation decide the appropriate
action. A user only cares about the interface.

package com.commerceone.xdk.metadox.send;

public interface DocumentListener
{
 public void handleDocument(Envelope env)
 throws DocumentExchangeException;
}

package com.commerceone.xdk.metadox.send;

public interface DocumentResponder
{
public Envelope processDocument(Envelope envelope)
 throws DocumentExchangeException;
}

XDK Pro Developer’s Guide 9-35

Document Framework
DocumentServant

The DocumentServant interface is used for the inbound passing of
envelopes between entities. The entities can be object, services, or
servers. It can be local or remote. Since a return envelope is expected,
this interface is only implemented for express, synchronous
communication.

The state and semantics of the implementation decide the appropriate
action. A user only cares about the interface.

package com.commerceone.xdk.swi.metadox.send;

public interface DocumentServant
{
 public Envelope getDocument()
 throws DocumentExchangeException;
}

9-36 XDK Pro Developer’s Guide

Document Framework
Document Wrappers

A set of DocumentWrapper classes is available, whose only purpose is
to wrap a document in an intermediate wrapper, to allow routing based
on a well-defined template instead of the actual document type. A Reply
wrapper has no meaning if no service subscribes to Reply documents,
knows how to unpack them, and how to handle the wrapped document.
The same applies to Forward and Store wrappers.

Reply

When the application has a reply document for the request, it wraps the
document in a Reply wrapper and publishes it back to the same router it
subscribed to. This is not used by application services directly.

Forward

This can be used to wrap a document for forwarding within a server, or
between servers. If no service accepted a document, the router wraps it
in the Forward wrapper and publishes it again. By default, a Lost and
Found service picks up forwarded documents. A smart service can try to
find another router in the system that can route the forwarded document.
This is not used by application services.

package com.commerceone.xdk.metadox.dox;

public class Reply extends DocumentWrapper
{
 public Reply(Document doc);
}

package com.commerceone.xdk.metadox.dox;

public class Forward extends DocumentWrapper
{
 public Forward(Document doc);
}

XDK Pro Developer’s Guide 9-37

Document Framework
Store

This can be used to wrap a document that is supposed to be stored, such
as when a service wants a document stored but does not want to be
responsible for the task. A Storage service can be installed to take care
of storing. Wrapping a document in a Store document just indicates a
desire to have the document stored.

package com.commerceone.xdk.metadox.dox;

public class Store extends DocumentWrapper
{
public Store(Document doc);
}

9-38 XDK Pro Developer’s Guide

	Commerce One XDK Pro™
	Preface
	Purpose of this Book
	Who Should Read this Book
	What’s Included in this Book
	Chapter 1 Introduction
	Chapter 2 What is SOX
	Chapter 3 Programming Models
	Chapter 4 How to Use the Commerce One XML Parser (CXP)
	Chapter 5 Interfacing with CXP via SAX
	Chapter 6 How to Use the SOX to Java Compiler (X2J)
	Chapter 7 From a Document to a Bean and Back (RoundTrip)
	Chapter 8 Creating and Manipulating a SOX Bean
	Chapter 9 Document Framework

	Related Information
	XDK Pro Technical Support

	Contents
	Chapter 1
	Introduction
	In This Chapter
	Recommended Reading Order
	Other Useful Documents

	Chapter 2
	What is SOX?
	In This Chapter
	SOX Definition
	SOX Versus DTDs
	Additional SOX Features
	Definitions
	What to Read Next

	Chapter 3
	Programming Models
	In This Chapter
	Programming Model Definition
	What to Read Next

	Chapter 4
	Using the Commerce One XML Parser
	What is CXP?
	Class Paths
	CXP Options
	How to Use Schema Paths and URNs
	1. The URI must always start with "urn:x-commerceone:document:". This part specifies that the Com...
	2. The part after the scheme states the directory hierarchy in which the file is located. In this...
	3. Determine what the root of your schema tree is on your file system. This is a location in the ...
	4. Exactly underneath the root, the path to the schema file in this example has to start with "sa...
	5. Next, the version is reflected in the path to the schema by an extra directory level: n1_0. Th...
	6. The complete physical path to the file represented by the URN urn:x-commerceone:document:sampl...

	How to Use Catalogs
	IExamples of Using CXP
	Example of Using a Sample File with CXP
	Interpreting Error Messages
	General Validation Errors
	Encoding Errors

	Chapter 5
	Interfacing with CXP via SAX
	Simple Event API for XML (SAX)
	CXP and SAX
	Using CXP with SAX
	1. The following import statement must be present in your code:
	2. Implement the handler interfaces in one or more handler classes. One possibility is to extend ...
	3. To instantiate the parser, put one of the following statements in your code:
	4. To set the handlers, use the following:\
	5. To set features/properties in SAX20Driver, use the following:
	6. Start the parsing of a SOX or XML instance document as follows:
	7. At this point in the processing, events start to arrive at the registered handlers.
	SAX Sample

	Examples
	CXP and XT
	Options
	Examples

	Chapter 6
	How to Use the SOX to Java Compiler (X2J)
	In This Chapter
	What is X2J?
	Class Paths
	X2J Options
	How URNs are Used in Code Generation
	1. Recall that the URN always starts with "urn:x-commerceone:document:". This part specifies the ...
	2. The "$1.0" token at the end of the URI indicates the schema version. The version token in this...
	3. The remaining portion of the URN, sample:xdk:sox:sample.sox, is used to create the package nam...
	4. The root of the generated code tree on your file system is here represented as <ROOT DIRECTORY...

	Examples of Using X2J
	Examples of Using a Sample File with X2J
	Compiling SOX Beans
	Troubleshooting

	Chapter 7
	The Simple RoundTrip Application
	In This Chapter
	1. Create the CXP Parser and initialize the XDK:
	2. Set the schema path for the parser (for Windows)::
	3. Convert the input XML instance document file into a URI:
	4. Open the URI corresponding to the XML instance document file as an External Source:
	5. Create a Document Factory:
	6. Use the Document Factory to create a Document Object out of the External Source:
	7. Create an XML instance document out of the Document Object:

	The SimpleRoundTrip Application
	An Example

	Chapter 8
	Creating and Manipulating a Sox Bean
	In This Chapter
	Example

	Chapter 9
	Document Framework
	In This Chapter
	1. The XDK needs to define document representations so that users can act on documents without kn...
	2. Third parties must be able to handle attachments as well as versions of documents.

	Terminology
	Document Representation Classes
	Representations
	DocumentObject
	Figure 9-1 The DocumentObject Representation

	DocumentStream
	DocumentBytes

	Document Representation Factory and Schema Lookup
	Figure 9-2 Factory Interfaces
	Entity Manager
	External Source
	DocumentFactory

	Document Interfaces
	Figure 9-3 Document Interfaces
	Document
	Doclet
	Marshaller
	UnMarshaller
	Type
	Version
	Identity

	Envelope
	Main Abstraction
	Properties
	URICatalog Document
	Attachments
	1. Attachments may be stored in the Envelope.
	2. A URI may be bound to an element in a Document. The URI is used to bind an attachment in the E...

	Client Side Usage
	Service Side Usage
	Externalization and Internalization

	Sending and Receiving Documents
	Interfaces
	Exceptions
	DocumentListener
	DocumentResponder
	DocumentServant

	Document Wrappers
	Reply
	Forward
	Store

