
XML PORTAL
CONNECTOR

DEVELOPER GUIDE AND API
REFERENCE

Version 4.0

Corporate Headquarters
4440 Rosewood Drive
Pleasanton, CA 94588-3050

www.commerceone.com

XML Portal Connector Developer Guide and API Reference, Version 4.0

Copyright © 2000, 2001 Commerce One, Inc. All rights reserved.

February 2001

COMMERCE ONE, Inc. Information in this document is subject to change without notice. Companies,
names, and data used in examples herein are fictitious unless otherwise noted.

This documentation and the software described constitute proprietary and confidential information
protected by copyright laws, trade secret, and other laws. No part of this publication may be reproduced
or distributed in any form or by any means, or stored in a database or retrieval system, without the prior
written permission of Commerce One, Inc.

Copyright © 2001. Commerce One, Many Markets. One Source. Global Trading Web, Commerce
One.net, MarketSite, XML Common Business Library, XML Development Kit, eLink, Net Market
Maker, RoundTrip, and SupplyOrder are either trademarks or registered trademarks of Commerce One,
Inc. Enterprise Buyer and MarketSet are trademarks of Commerce One, Inc and SAPMarkets. All other
company, product, and brand names are trademarks of their respective owners.

iii

Contents

Preface ..xiii
Purpose of this Guide ..xiii
Documentation Conventions ...xiii
Audience .. xiv
How to Use this Guide .. xiv
Related Information ... xv
If You Need Help ... xv

1. Overview of XPC .. 1-1
In This Chapter ...1-1
XPC Concepts and Terminology ..1-1
Help In Customizing ...1-4
xCBL Document Exchange Choreography ..1-4

2. XPC Manager ... 2-1
In This Chapter ...2-1
Overview of Framework and Terminology ..2-1
Loading XPC Manager ...2-2
Enabling and Disabling Services ..2-3
Configuring a Service ...2-3

Service Level Configuration ..2-3
Configuring a Service’s Action Director ..2-4

Adding a Subscription ...2-5
Removing a Subscription ..2-5
Editing a Subscription’s Action List ...2-5

iv

Action List Buttons .. 2-7
Timed Service Execution ... 2-8
Sharing Components Across Action Lists .. 2-8
Exception List Execution .. 2-8

Adding Services ... 2-9
Removing Services .. 2-10
Action Director Runtime Processing .. 2-10

Action Director Places Inputs into Data Manager ... 2-10
Action Director Enables Component Outputs .. 2-11
Action Director Adds Component Outputs to the Linked List ... 2-11
Error Handling .. 2-11

... 2-11

3. Building Custom Integrations .. 3-1
In This Chapter .. 3-1
Overview of XPC Integration ... 3-2

“Helper” features .. 3-2
File System Document Exchange .. 3-3

Multiple Transactions ... 3-4
API based integration .. 3-4

Inbound Messages ... 3-4
Outbound Messages .. 3-5

XPath-based Document Programming Model ... 3-5
XPath Tester .. 3-5
XPCDocHandle Functional Definition .. 3-6
Using the Position() Predicate to Narrow Your Selection ... 3-7
Testing for the Value or Presence of a Node ... 3-8
Using Compound Predicates .. 3-8
XPCDocHandle Limitations .. 3-8

Correlation Across Sessions .. 3-10
Example Inbound Flow: Order .. 3-11
Example ERP flow .. 3-12
Example outbound flow: OrderResponse ... 3-13

Building a Custom Component .. 3-13
Sample Components .. 3-14
Helper Methods .. 3-14

Error Handling .. 3-16

v

Setting ErrorInfo ..3-18
ErrorInfo Coding Conventions ...3-18
Recommended Price Check Completion Codes ...3-18
Recommended Availability Check Completion Codes ..3-19
Recommended Order Status Completion Codes ..3-20
Recommended Sales Order Completion Codes ...3-21

Other APIs ..3-23
Deploying a Component ...3-23

Deploying with JAR Files ..3-23
Deploying Without Generating a JAR File ..3-24

4. Trading Partner Preconfiguration .. 4-1
In This Chapter ...4-1
Loading the Trading Partner Preconfiguration ...4-1
Supported Services ..4-1

Overview of Transactions ...4-3
Associated XPC Services ...4-4
Document Exchange Details ..4-4
XPCAdvanceShipmentNotice30Outbound Service ..4-5
XPCAdvanceShipmentNotice30Inbound Service ...4-5
Overview of Transactions ...4-7
Associated XPC Services ...4-8
Document Exchange Details ..4-8
XPCAuctionCreate30Outbound Service ...4-10
XPCAuctionCreate30Inbound Service ...4-11
XPCAuctionCreateResponse30Outbound Service ..4-12
XPCAuctionCreateResponse30Inbound Service ...4-12
XPCAuctionResult30Outbound Service ...4-13
XPCAuctionResult30Inbound Service ..4-13
XPCAuctionResultResponse30Outbound Service ...4-14
XPCAuctionResultResponse30Inbound Service ..4-15
Overview of Transactions ...4-16
Associated XPC Services ...4-17
Document Exchange Details ..4-17
XPCAvailabilityCheckRequest30Inbound Service ..4-17
Overview of Transaction ...4-18
Associated XPC Services ...4-19

vi

Document Exchange Details .. 4-19
XPCAvailabilityToPromise30Outbound Service. .. 4-20
XPCAvailabilityToPromise30Inbound Service. .. 4-20
XPCAvailabilityToPromiseResponse30Outbound Service. ... 4-21
XPCAvailabilityToPromiseResponse30Inbound Service. .. 4-21
Overview of Transaction .. 4-22
Associated XPC Services .. 4-23
Document Exchange Details .. 4-23
XPCInvoice30Outbound Service .. 4-23
XPCInvoice30Inbound Service .. 4-24
XPCMessageAcknowledgement30Inbound Service .. 4-25
Overview of Transactions ... 4-26
Associated XPC Services .. 4-27
Document Exchange Details .. 4-27
XPCOrderRequest30Outbound Service .. 4-29
XPCOrderRequest30Inbound Service ... 4-30
XPCCorrelatedOrder30Outbound Service ... 4-31
XPCOrder30Outbound Service .. 4-32
XPCOrder30Inbound Service ... 4-32
XPCOrderResponseFromOrder30Outbound Service .. 4-33
XPCOrderResponse30Inbound Service .. 4-34
XPCChangeOrder30Outbound Service ... 4-34
XPCChangeOrder30Inbound Service .. 4-35
XPCOrderResponseFromChangeOrder30Outbound Service ... 4-36
Overview of Transactions ... 4-37
Associated XPC Services .. 4-38
Document Exchange Details .. 4-38
XPCOrderStatusRequest30Inbound Service ... 4-38
Overview of Transactions ... 4-39
Associated XPC Services .. 4-40
Document Exchange Details .. 4-40
XPCPaymentRequest30Outbound Service ... 4-41
XPCPaymentRequest30Inbound Service .. 4-41
XPCPaymentRequestAcknowledgement30Outbound Service .. 4-42
XPCPaymentRequestAcknowledgment30Inbound Service ... 4-42

vii

Overview of Transactions ...4-43
Associated XPC Services ...4-44
Document Exchange Details ..4-44
XPCPlanningSchedule30Outbound Service ..4-46
XPCPlanningSchedule30Inbound Service ...4-47
XPCPlanningScheduleResponse30Outbound Service ..4-48
XPCPlanningScheduleResponse30Inbound Service ...4-48
XPCShippingSchedule30Outbound Service ..4-49
XPCShippingSchedule30Inbound Service ...4-50
XPCShippingScheduleResponse30Outbound Service ..4-51
XPCShippingScheduleResponse30Inbound Service ...4-51
Overview of Transactions ...4-52
Associated XPC Services ...4-53
Document Exchange Details ..4-53
XPCPriceCheckRequest30Inbound Service ..4-53
Overview of Transactions ...4-54
Associated XPC Services ...4-55
Document Exchange Details ..4-55
XPCProductCatalog30Outbound Service ...4-55
XPCProductCatalog30Inbound Service ...4-56
Overview of Transactions ...4-57
Associated XPC Services ...4-58
Document Exchange Details ..4-58
XPCRequestForQuotation30Outbound Service ...4-59
XPCRequestForQuotation30Inbound Service ..4-59
XPCQuote30Outbound Service ..4-60
XPCQuote30Inbound Service ..4-61
Overview of Transactions ...4-62
Associated XPC Services ...4-63
Document Exchange Details ..4-63
XPCRemittanceAdvice30Outbound Service ..4-64
XPCRemittanceAdvice30Inbound Service ...4-64
Overview of Transactions ...4-65
Associated XPC Services ...4-66
Document Exchange Details ..4-66

viii

XPCTimeSeriesRequest30Outbound Service ... 4-67
XPCTimeSeriesRequest30Inbound Service .. 4-68
XPCCorrelatedTimeSeries30Outbound Service .. 4-69
XPCTimeSeries30Outbound Service ... 4-69
XPCTimeSeries30Inbound Service .. 4-70
XPCTimeSeriesResponse30Outbound Service ... 4-71
XPCTimeSeriesResponse30Inbound Service ... 4-71
Overview of Transactions ... 4-72
Associated XPC Services .. 4-73
Document Exchange Details: Registering a Trading Partner ... 4-74
Document Exchange Details: Deleting a Trading Partner .. 4-74
Document Exchange Details: Registering a Trading Partner User 4-75
Document Exchange Details: Deleting a Trading Partner User ... 4-76
XPCTradingPartnerUserInformation30Inbound Service .. 4-77
XPCTradingPartnerUserDelete30Inbound Service .. 4-78
XPCTradingPartnerOrganizationInformation30Inbound Service ... 4-78
XPCTradingPartnerOrganizationDelete30Inbound Service ... 4-79
XPCTradingPartnerResponse30Inbound Service .. 4-80
XPCTradingPartnerUserInformation30Outbound Service ... 4-80
XPCTradingPartnerUserDelete30Outbound Service ... 4-81
XPCTradingPartnerOrganizationInformation30Outbound Service 4-81
XPCTradingPartnerOrganizationDelete30Outbound Service .. 4-82
XPCTradingPartnerResponseFromTPOrganizationInfo30Outbound Service 4-82
XPCTradingPartnerResponseFromTPOrganizationDelete30Outbound Service 4-83
XPCTradingPartnerResponseFromTPUserInfo30Outbound Service 4-83
XPCTradingPartnerResponseFromTPUserDelete30Outbound Service 4-84

5. XPC Component Library ... 5-1
In This Chapter .. 5-1
Component Location .. 5-1
Default Response Builders .. 5-2
MarketSite Messaging Layer (MML) and Document Querying Components 5-10
File System Components ... 5-12
Sample Integrators .. 5-19
Other System Components ... 5-21

ix

6. Testing Your Integrations ... 6-1
In This Chapter ...6-1
Overview of the Invoker ..6-1
Modifying the Sample Request Documents ...6-2
Testing Your Customizations ...6-2
Debugging Your Components ..6-3

7. API Reference .. 7-1
Packages ..7-1
package com.commerceone.xpc.abs.. 7-3

class XPCAbstractComponent ... 7-4
package com.commerceone.xpc.common.. 7-6

class XPCConfigParams .. 7-7
class XPCDataMgr ... 7-8
class XPCResult ... 7-9
class XPCContractDescriptor ... 7-10

package com.commerceone.xpc.components .. 7-11
class CreateCorrelatingEnvelope ... 7-15
class CreateEnvelope... 7-16
class DefaultAuctionCreateResponse30Builder ... 7-17
class DefaultAuctionResultResponse30Builder ... 7-19
class DefaultAvailabilityCheckResponse30Builder... 7-21
class DefaultAvailabilityCheckResponseBuilder (deprecated) ... 7-24
class DefaultAvailabilityToPromiseResponse30Builder ... 7-26
class DefaultOrder30Builder... 7-28
class DefaultOrderResponse30Builder .. 7-31
class DefaultOrderResponseFromChangeOrder30Builder .. 7-33
class OrderStatusResponse30Builder.. 7-36
class DefaultOrderStatusResponseBuilder (deprecated) ... 7-39
class DefaultPaymentRequestAck30Builder .. 7-40
class DefaultPlanningScheduleResponse30Builder... 7-42
class DefaultPriceCheckResponse30Builder ... 7-44
class DefaultPriceCheckResponseBuilder ... 7-47
class DefaultPriceCheckResponseBuilder (deprecated) .. 7-49
class DefaultPurchaseOrderResponseBuilder (deprecated) .. 7-51
class DefaultQuote30Builder .. 7-52
class DefaultShippingScheduleResponse30Builder... 7-55
class DefaultTimeSeries30Builder.. 7-57
class DefaultTimeSeriesResponse30Builder ... 7-59
class DefaultTPRResponseFromOrganizationDelete30Builder ... 7-61

x

class DefaultTPRResponseFromOrganizationInfo30Builder ... 7-63
class DefaultTPResponseFromUserDelete30Builder .. 7-65
class DefaultTPRResponseFromUserInfo30Builder .. 7-67
class ExceptionHandler.. 7-69
class FileStore.. 7-70
class GetCorrelationKey .. 7-76
class GetStringFromDocument .. 7-77
class LookupXCCArchive... 7-78
class MessageAcknowledgmentSender .. 7-79
class Responder .. 7-80
class StreamToDocument.. 7-81
class Transmitter.. 7-82

package com.commerceone.xpc.helpers ... 7-83
class XPCDocHandle... 7-84
class XPCErrorInfo... 7-87

package com.commerceone.xpc.my_integrators ... 7-88
class myAvailabilityCheckIntegrator30... 7-89
class myAvailabilityCheckIntegrator (deprecated) ... 7-92
class myOrderStatusIntegrator30 .. 7-94
class myOrderStatusIntegrator (deprecated) ... 7-97
class myPriceCheckIntegrator30 ... 7-100
class myPriceCheckIntegrator (deprecated) .. 7-103

package com.commerceone.xpc.swi.common ... 7-105
interface XPCContract ... 7-106

package com.commerceone.xpc.swi.framework .. 7-107
interface XPCConfig... 7-108
interface XPCProcess .. 7-109
interface XPCTransmit ... 7-110

package com.commerceone.xpc.gedi .. 7-111
class Descriptor.. 7-112
class StringMapper .. 7-113
class CompressStream.. 7-114
class CreateGEDIEnvelope ... 7-115
class GetAttachment .. 7-116
class DecompressStreamToFileSystem .. 7-117

A. Using a Transmitter API .. A-1
In this Appendix ...A-1
Stand-Alone Client ...A-1
Setting Up a Client Environment ..A-2

Configuring a Client ..A-2

xi

Required Jar Files ... A-4
Transmitter Parameters ... A-4

Synchronous .. A-4
TIMEOUT_PARAM_KEY ... A-4
ACK_PARAM_KEY .. A-4

Peer-to-peer and One-way .. A-5
ACK_PARAM_KEY .. A-5

Transmitter API ... A-6
When Using the client.prop file .. A-6
When Not Using the client.prop file ... A-9
Changing Debug Level .. A-12

Exception Handling ... A-13
Catching Exceptions in a Stand-alone Client .. A-13
Example 1 .. A-17
Example 2 .. A-18
Example 3 .. A-19
Example 4 .. A-20
Example 5 .. A-21
Example 6 .. A-22
Example 7 .. A-23

B. Security Credential ... B-1
In This Appendix .. B-1
Credential of Document Originator .. B-1
Function of Credential ... B-1
Access Control Application of Credential in Business Services .. B-2

XML/SOX Credential Public APIs .. B-2
com.commerceone.ccs.doclet.security.Security_sox

Interface Credential .. B-2
Credential Usage Example .. B-5

C. Generic EDI ... C-1
In This Chapter .. C-1
Overview of Generic EDI ... C-1

GEDI Envelope Structure .. C-2
Header ... C-2
Body ... C-2

xii

Attachment ...C-2
EDI File Properties ...C-2
EDI Recipient ID Mapping ..C-3
Outbound Processing ...C-3
Inbound Processing ...C-3
Error Processing ..C-4

Generic EDI Components ..C-4
Generic EDI SOX Schema ..C-6

xiii

Preface

Purpose of this Guide

The XML Portal Connector (XPC) provides an API that can be used by
trading partners to automate the processing of xCBL documents. The
XPC Developer Guide and API Reference provides information
necessary to use this API. It includes:

! An overview of XPC architecture

! An explanation of customizations used to integrate business
document transactions with the trading partner’s back office system

! Information about how to use the XPC Manager to configure the
component execution flow in XPC Services

! A description of the Trading Partner Preconfiguration

! Descriptions of the XPC Component Library

! Instructions for using the Invoker to test an integrations

! Descriptions of XPC Java classes, interfaces, and methods

! Information about the Transmitter API

! Information about the Credential API

Documentation Conventions

All pathnames in this book are expressed relative to the root directory of
the XPC installation.

xiv

Audience

This book is for individuals responsible for processing MarketSite business
transactions for trading partner back-end integration or application development. It
assumes that you have the following skills:

! Ability to read and write Java 2 code

! Familiarity with the trading partner’s target back office system

! Ability to read SOX schemas

How to Use this Guide

The information in this book is logically organized for your development and testing
of XPC customizations. The following table describes each chapter in this guide:

In addition, Appendixes A, B, and C, respectively, provide information on the
Transmitter API, the Security Credential, and the components used to convert xCBL
documents to EDI and vice versa.

Chapter Description

1 Provides an overview of XPC architecture and an introduction to some
important concepts.

2 Describes how to use XPC Manager to add, remove, enable, and
configure XPC Services and components.

3 Provides guidelines for developing custom integrations.

4 Describes the services in the Trading Partner Preconfiguration.

5 Provides descriptions, inputs, outputs, and configurations for the XPC
Component Library.

6 Provides tips on using the Invoker to test your integration.

7 Is a reference for selected XPC APIs.

xv

Related Information

You may find this additional documentation helpful:

If You Need Help

Commerce One Technical Support is available to all Commerce One customers who
purchase XPC software directly from Commerce One. If you cannot resolve a
problem by using the Commerce One manuals or on-line help, ask the designated
person to contact Technical Support via email (csc@commerceone.com).

Documentation Description

XPC Installation and
Administration Guide

This guide, which is available on the
XPC 4.0 product CD, describes how to
install and configure XPC and how to
perform common administrative tasks.

Javadoc for the Commerce
One CCS, XDK, and XPC
packages

These API descriptions are available
in the \docs\api\ccs, \docs\api\xdk
and doc\api\xpc directories of the
XPC installation.

XDK Pro Developer Guide This guide, which is available on the
XPC 4.0 product CD, describes how
to use the Commerce One XML
Parser (CXP) and the SOX to Java
compiler, and how to interface with
CXP via SAX.

xCBL Online Reference
Guide

This guide, which is available at
www.xcbl.org, describes the
structure of Commerce One’s
xCBL3.0 documents.

HotFS Installation and
Configuration Guide

This guide describes how to install and
configure HotFS including XCC
configuration, sample scenarios, and
client and service setup and
execution.

xvi

If you purchased or obtained XPC software from your Global MarketPlace, Systems
Integration Partner, or any source other than Commerce One, please refer to that
source for technical support. Please do not contact Commerce One directly.

Overview of XPC 1-1

1 Overview of XPC

In This Chapter

This chapter provides an overview of the Commerce One XML Portal
Connector (hereafter referred to as XPC). It includes the following
information:

! XPC Concepts and Terminology on page 1

! Help In Customizing on page 4

! xCBL Document Exchange Choreography on page 4

XPC Concepts and Terminology

XPC facilitates integration between MarketSite and the back office
systems of trading partners. XPC provides a set of components plus a
Framework within which the components are designed to run. Trading
partners and third party integrators can use the components out of the
box, extend them, or replace them with new components tailored to their
specific needs.

XPC components are Java methods designed to facilitate the flow of
information through xCBL documents. Components perform such
functions as reading xCBL request documents, archiving documents
and their envelopes, preparing default response documents, modifying
the default response documents with data from the back office system,
and sending MessageAcknowledgements.

The following diagram illustrates the major pieces that play a role in
transmitting information between the trading partner’s back office
system and MarketSite.

XPC Concepts and Terminology

1-2 XPC Developer Guide and API Reference

The following paragraphs describe various parts of this diagram and introduce
important XPC concepts and terminology:

! Service Framework

XPC contains a framework to deploy special Java objects known as services. XPC
handles two types of services: Document Services and Timed Services.

XPC Server
Service Framework

Archive

Router

XPC Document
Service

Action
Director

Components

4

MarketSite
Commnication

xCBL
Versioning

MarketSite

Application, Trading Partner Information System

XPC Timed
Service

Action
Director

Components

4

XPC Concepts and Terminology

Overview of XPC 1-3

Previous Commerce One XML Commerce Connector based technology exposed
an XCC Service programming API. With XPC 4.0, this API is deprecated in favor
of XPC component APIs that run in Action Director enabled services.

! XPC Document Services

These services are activated when a document of the specified type is received.
Document Services generally perform actions to process the incoming document.

! XPC Timed Services

These services wake up at user-defined intervals to handle outgoing documents of
the specified document_type.

! XPC Components

A component is a Java class responsible for a particular type of functionality. All
components extend the XPCAbstractComponent class. XPC includes a Component
Library, a set of predefined components designed to assist with xCBL
choreography, interface with the file system, and perform other functions.

! Action Director

An action is defined as the execution of a component’s public method. Each XPC
Service has an Action Director that determines which components it executes and
in what order. Standard components provide only a single method, the process
method. Components that provide multiple methods are known as extended
components.

! XPC Manager

XPC Manager is a user interface that runs in your browser. You can use it to add,
enable, disable, remove and configure services and to configure components.

! Communication with MarketSite

XPC uses either SonicMQ or HTTPS transport protocols to communicate with
MarketSite.

! Archive

XPC automatically archives both inbound and outbound peer-to-peer and one- way
documents.

! xCBL Versioning

XPC is configured to define the xCBL version supported by the Document
Services. If necessary, XPC transforms an envelope to the expected xCBL version
before sending it to the router to ensure that the Document Service receives
documents in the specified xCBL version.

Help In Customizing

1-4 XPC Developer Guide and API Reference

! Router

The Router sends each xCBL document to the correct service -- either a document
service for incoming message or the transmitter service for outgoing messages.

! Stand-alone transmitter

The Transmitter Java class can be wrapped in an external application to
communicate with MarketSite outside the server.

Help In Customizing

Building an integration consists of:

! Creating a logical list of actions to execute for each incoming document type using
standard and custom XPC components

! Creating custom components containing the specific business logic required by the
back office system

XPC comes with a “head-start” to customization. The Trading Partner
Preconfiguration sets up an out-of-the-box XPC integration that serves as a useful
starting point for developing an integration. The sample components, such as the
XPCDefaultPriceCheckResponseBuilder component, demonstrate how to build these
custom components.

XPC also includes the XPCDocHandle Java class, which allows you to access
specific portions of an xCBL document using XML query strings based on the XPath
standard.

xCBL Document Exchange Choreography

XPC manages the exchange of xCBL documents from the sending party to the
receiving party. Each type of document exchange is governed by a set of rules,
sometimes referred to as a contract. The contract determines what happens when a
particular type of document is received--how the receiving party acknowledges
receipt, what types of documents are sent in reply, and when they are sent. XPC
handles multiple versions of xCBL-- xCBL 2.0, 2.2, and 3.0--each with its own
document types and choreographies.

XPC handles the following types of document exchanges:

! One-way exchanges for request documents that do not require a response. When a
one-way document is received, the recipient sends a MessageAcknowledgement

xCBL Document Exchange Choreography

Overview of XPC 1-5

or, if the request cannot be understood or cannot be processed, an Error document.
One-way exchanges include the AdvanceShipmentNotice, Invoice,
PlanningSchedule, ProductCatalog, and RemittanceAdvice xCBL documents.

! Synchronous exchanges for request documents that require an immediate response
by XPC. These exchanges hold the XPC connection open until the response
document has been sent. Synchronous exchanges include the
AvailabilityCheckRequest, PriceCheckRequest, and OrderStatus xCBL
documents.

! Peer-to-peer asynchronous exchanges for request documents that are request
documents that are responded to in a separate session. This choreography
introduces the concept of correlation across sessions. The responder may be
generating the response and receiving the request in different sessions. The sender
has to remember the state it was in when it made the request. Order Management
and Time Series are examples of transactions that use asynchronous exchanges.

Some document exchanges are simple, involving just a single request document, a
single response document, and a MessageAcknowledgement for each. The diagram
below illustrates such an exchange. The buyer sends a RequestForQuotation and the
supplier responds with a Quote.

xCBL Document Exchange Choreography

1-6 XPC Developer Guide and API Reference

Other exchanges are more complex, involving the exchange of multiple documents.
The following OrderManagement diagram illustrates a complex exchange. The
supplier sends an Order Request, the buyer responds with an Order, the supplier sends
a ChangeOrder, and so forth.

Overview of Framework and Terminology

XPC Manager 2-1

2 XPC Manager

In This Chapter

XPC Manager is the XPC configuration environment It is a browser based user
interface that runs on the XPC's built-in web server. You use this tool to define the
runtime configuration for processing business data and to define the sequences of
actions, or methods on a Java objects, that will be invoked under specified conditions.

This chapter provides some conceptual material about XPC Services, Action
Directors, and components. It also explains how to use XPC Manager to enable or
disable XPC services, to configure their Action Directors and components, to create
additional services to be run within XPC, and to delete services from XPC.

Overview of Framework and Terminology

At runtime, the XPC server has any number of services running. The core functions of
XPC--communication, routing, archiving, version transformation--are all performed
by services.There are two types of services available to the XPC developer to process
document exchanges:

! Document services are invoked when an envelope is received that adheres to the
subscription of the service. Typically, a subscription defines a document type,
sender id, and receiver id. A document service can be defined as synchronous or
asynchronous. Synchronous document services reply to invocation with a
business document. Asynchronous document services assume the reply is initiated
in a separate session, generally via a timed service.

! Timed services are invoked when a timer expires. The timer can be set to fire at
any time interval and is specified in milliseconds. A timed service is responsible
for processing an outgoing envelope. Timed services can also perform functions
for out-of-band regular processes, server maintenance or archive processing for
example.

These services run an Action Director which executes Action Lists. An Action List
is a sequence of Java methods to be invoked sequentially. Java objects that provide
such methods are known as XPC Components.

Loading XPC Manager

2-2 XPC Developer Guide and API Reference

A Document Service may contain multiple subscriptions, each defining its own action
list. A Timed Service defines an action list that is executed each time its timer expires.
Both types of services have an Exception action list that specifrying the actions to
invoke when an exception is thrown.

XPC Components are subclasses of XPCAbstractComponent, which serves as an
API to define inputs, outputs, and configurations. XPC comes with a library of
standard components and a developer can create custom components and deploy them
in the framework.

XPC Manager allows the configuration of this framework.

Loading XPC Manager

Before running the XPC Manager, you must load XPC’s self-signed certificate into
your browser. This certificate is automatically created when you install XPC.

To load the self-signed certificate on Internet Explorer 5:

1. Select Tools->Internet Options->Content Tab->Certificates->Import

2. Select <install:root>/bin/client.p12

Load XPC Manager as follows:

1. Start the XPC server. For information about starting XPC, see the XPC Installation
and Administration Guide.

2. Browse to https://localhost:4433/servlet/XPCManager (case matters!)

Note If you use Configure XPC to change the port your XPC server is listening
on from the default of 4433, you will need to modify this URL
appropriately.If you cannot load XPC Manager, restart XPC from the
command line and check the logs. For more information, see the
Troubleshooting chapter of the XPC Installation and Administration
Guide.

XPC comes with a set of predefined services that support xCBL 3.0. These can be
loaded from the XPC Configuration user interface. Please see the Trading Partner
Preconfiguration chapter for more information.

NoteChanges you make with XPC Manager will not take effect until the XPC
Server has been stopped and restarted.

Configuring a Service

XPC Manager 2-3

Enabling and Disabling Services

Enabling a service adds it to the list of services that start when the XPC Server is
started. The Services screen of XPC Manager contains a list of all available XPC
Document Services and Timed Services. Services are listed together in alphabetical
order.

The Enabled column to the right of the service names contains a check box for each
service. Services that have been enabled are checked; those not enabled are not
checked. You can change the enablement status of any number of XPC services at the
same time by toggling the check boxes.

Note For information about which services to enable, see the Trading Partner
Preconfiguration chapter.

To enable or disable services:

1. Click the Enabled column to the right of the service to change its status from
disabled to enabled or vice versa. If you make a mistake, click the Enabled column
again to undo the change.

2. When you are satisfied with the changes, click the Save button at the top or bottom
of the screen. XPC Manager asks you to confirm that you want to save the current
configuration.

3. Click OK to save the changes or Cancel to cancel without saving.

The changes will take effect the next time the XPC Server is started.

Configuring a Service

You must configure each service separately. To select a service for configuration:

1. Select the service from the Services page by setting the Select radio button to the
right of its name and clicking the Edit button.

2. Click the Service Level Configuration link to configure the service.

Service Level Configuration

1. The Service Name cannot be the same as any other service name. By convention,
document service names end with “Inbound” and timed service names end with
“Outbound.”

2. Service Type is either Document or Timed.

Configuring a Service’s Action Director

2-4 XPC Developer Guide and API Reference

3. Document services can be either Synchronous or Asynchronous. Synchronous
document services reply to an invocation with a business document. In xCBL, the
price check, availability check, and order status transactions require synchronous
document services.

4. Specify the service’s arguments in the Add New Keys area, one argument at a
time. Type the argument’s key in the New Key text box and its value in the New
Value text box. Then click the Add button to add the argument to the Service
Configuration area.

If you add an argument by mistake, select the argument by clicking the button to its
left, then click the Remove button. The argument is removed from the list.

For Timed Services, you can configure the the following arguments:

" timeout specifies, in milliseconds, the frequency with which the timer expires.

" inclusive A true setting means that the time taken executing the service method
called on each timeout is included when calculating when each timeout should
occur; false means that the time taken executing the service method is not taken
into consideration.

" messagestore, which can be set to either on or off. This should be set to on for
asynchronous documents, causing transmitted envelopes to be archived; when
set to off , transmitted envelopes are not archived.

For Document Services, you can configure the following arguments:

" maximumThreads The default setting, 1, results in single-threaded services.
Integrations that require concurrent processing should set maximumThreads to a
high enough value to handle the volume of incoming documents queued to the
service.

" initialThreads Setting this to a non-zero value avoids the overhead of creating
threads as documents are queued.

5. When the argument list is complete, click Save to save the changes or Cancel to
cancel without saving.

The configuration will take effect the next time the XPC Server is started.

Configuring a Service’s Action Director

You must configure each service separately. To select a service for configuration:

1. Select the service from the Services page by checking the Select button to the right
of its name.

Configuring a Service’s Action Director

XPC Manager 2-5

2. Click the Edit button to display the Action Director Configuration Screen for the
service. The Current Subscription List lists the documents to which the service
subscribes.

Adding a Subscription

Subscriptions determine which envelopes the service will process. Only Document
services may create subscriptions. Each subscription within a service must be unique.

To subscribe to an additional document type:

1. Type the subscription in the Create New Subscription text box. If you make a
mistake, click the Clear button to clear the text box.

A subscription consists of an Sender MPID, Receiver MPID, Document Type
separated by periods. The sender and receiver can be ommitted, or the plus sign (+)
wildcard specified. For example, use the following subscription to process
PaymentRequest documents from any sender and to any receiver:

+.+.PaymentRequest

2. When you are satisfied with the subscription, click Add to add it to the Current
Subscription List.

3. Click Save to save the changes or Reset to clear the changes from the screen.

The new subscription will take effect the next time the XPC Server is started.

Removing a Subscription

To remove a subscription:

1. Select the subscription from the Current Subscription List

2. Click Remove.

3. Click Save to save the changes or Reset to clear the changes from the screen.

The subscription will be removed the next time the XPC Server is started.

Editing a Subscription’s Action List

Each entry in the list is a call to a method on an XPC component. To edit the Action
List for a subscription:

1. Select the Subscription Name or Exception Action List from the Current
Subscription List.

Configuring a Service’s Action Director

2-6 XPC Developer Guide and API Reference

2. Click the View button to display the Action List in the bottom half of the screen.
Actions are listed in the order they are executed. The list displays the component
name, method name, inputs, and outputs for each action.

3. To remove an action, select the action from the list and click the Remove button.

NoteEach Timed Service must have at least one action. If a Timed Service
contains only one action, you will not be allowed to remove it.

4. You can add an action either at the end of the list, before another action, or after
another action.

a) To add a new action at the end of the list, click the Add button.

b) To add a new action before or after an existing action, select the action from the
list and click the Insert Before or Insert After button.

New actions are temporarily assigned the name of new_ followed by a sequence
number, the default method, process, and the default creation mode, once. Use the
Edit button to specify the actual name of the action’s class and method, its
component code, creation mode and any arguments.

NoteThe Save buttons will be disabled until the new component has been
defined with code which is in the server's class path at the start of the
server and a method has been specified which exists in the specified class.

5. To edit an action, select the action from the list and click the Edit button. You can
edit the following fields from the Edit Component pages:

a) Component Name must be a Java class that XPC recognizes and must be
unique for each component.

b) Component Method must specify the name of a method in the specified Java
class.

c) Component Code is the fully qualified package name of the Java class and
must be a subclass of XPCAbstractComponent.

NoteThe component code specified must be in the server's classpath at the time
of specification or the XPCManager will not allow the save.

d) Creation is either Once or Invocation. A creation mode of Once indicates that
a single instance of the component’s class is shared by all threads within the
service for a single action list. If the creation mode is Invocation, a new
instance of the component’s class is instantiated each time the Action Director is
executed. For Document services, this causes instantiation each time a
document is received. For Timed services, it causes instantiation whenever the
timer expires. Typically, sharing a single instance of a component’s class places

Configuring a Service’s Action Director

XPC Manager 2-7

higher requirements for thread-safety than does the invocation creation mode.
Standard XPC components are thread-safe, regardless of whether they are
created once or on invocation.

6. Specify the component’s arguments in the Add New Keys area one argument at a
time.

Note Please reference the XPC Component Library chapter for a list of
available configurations for standard XPC components.

Type the argument’s key in the New Key text box and its value in the New Value
text box. Then click the Add button to add the argument to the Component
Configuration area. If you add an argument by mistake, select the argument by
clicking the button to its left, then click the Remove button to remove the argument
from the list.

Action List Buttons

-Under Input and Output are a list of items and data types. These are the items that
will be included in the DataManager object that is passed to the component upon
action invocation.The input and output items only show class name and the name
assigned to the output/input by the class. To display a tooltip with the fully qualified
class name of the inputs/outputs, hold the cursor over the input/output names.

Components self-describe their inputs and outputs through the getInputList and
getOutputList methods of XPCAbstractComponent.

Through the drop-down, a component’s input can be assigned to a previous
component’s output.

This drop down list has available the following potential entries:

! -Last. The last previous component’s output that is the same – or superclass – of
the input datatype.

! requestEnvelope. The invoking envelope (only available for Document services)

! -requestDocument. The primary document from the invoking envelope (only
available for Document services)

! -component.method.output. All previous components’ output that is the same – or
superclass – of the input datatype.

! Use Generic. Assign this subscription to the generic action list for the service.
This allows multiple subscriptions to share the same action list. To display the
generic action list for editing, push View Generic.

Configuring a Service’s Action Director

2-8 XPC Developer Guide and API Reference

Timed Service Execution

Special considerations apply to the execution of an action list within a timed service.
The first action within a timed service's action list is known as an event source. An
event source typically retrieves an event from some external entity, and provides
output arguments that represent the event which can then be used by subsequent
actions in the action list. An example of an event source would be the readEnvelope
action on the FileStore component. It retrieves an envelope from the file system, then
provides the envelope as an output argument.

Once the event source action has completed, execution of the action list then
proceeds sequentially as would be the case for an action list executing within a
document service. However, when all actions in the list have been executed, the
Action Director does not exit as would be the case with a document service. Instead it
reinvokes the initial event source action. This allows the event source to pick up
another event and have it processed by the rest of action list.

This looping execution of the action list continues until the event source action
indicates to the Action Director that it has no more events. This indication is achieved
through use of a non-zero result value for the XPC action. For more information
about how non-zero results are handled, see Error Handling on page 11 of this
chapter. The Action Director then not only halts the current sequential processing of
the action list, but also exits its looping execution of the action list as a whole, ending
processing of this timeout.

Sharing Components Across Action Lists

In a service, two actions may share the same java component, and call the same or
different methods.

If two actions define a component of the same Component Name and Component
Code and Creation is set as “once”, they will share the same instance of the
component.

If two actions share one component, and an action is edited to use another component,
Save must also be selected on the Action List screen to save proper state.

Exception List Execution

The exception list is invoked when an exception is thrown by a component in an
action list. This exception action list assumes that the action director will have two
data elements: the name of the component that threw the exception and the Exception
object.

Adding Services

XPC Manager 2-9

Adding Services

To add a service:

1. From the Services page, select Add New Service button.

2. Type the name of the service in the Service Name text box. This cannot be the
same as any existing service name. By convention, document service names end
with “Inbound” and timed service names with “Outbound.”

3. Choose either Document or Timed from the Service Type drop down list.

4. For document services, choose either Synchronous or Asynchronous from the
Transaction Type drop down list.Transaction Type.

5. Specify the service’s arguments in the Add New Keys area, one argument at a
time. Type the argument’s key in the New Key text box and its value in the New
Value text box. Then click the Add button to add the argument to the Service
Configuration area.

If you add an argument by mistake, select the argument by clicking the button to its
left, then click the Remove button. The argument is removed from the list.

6. When the argument list is complete, click Save to save the changes or Cancel to
cancel without saving.

The next time the server is started, the new service will appear in the list of services
on the Services screen.

Before using the service, you must enable it For information about enabling services,
see Enabling and Disabling Services on page 3.

You may also want to configure the service in order to change its subscription list,
arguments, or action list. For information about configuring services, see
Configuring a Service’s Action Director on page 4.

Note Each Timed Service must have at least one action. If a Timed Service
contains only one action, you will not be allowed to remove it. If a timed
service is created and the action list is not filled in with at least one action,
it will fail to initialize.

Removing Services

2-10 XPC Developer Guide and API Reference

Removing Services

You may only select one service at a time for removal. To remove a service:

1. Select the service by clicking its radio button in the far right column.

2. Click the Save button at the top or bottom of the screen. XPC Manager asks you to
confirm that you want to save the current configuration.

3. Click Save to save the changes or Cancel to cancel without saving.

The services will be removed after you stop and restart the XPC Server.

Action Director Runtime Processing

The Action Director manages the inputs and outputs of each action, keeping a
chronological list of all outputs that have been generated by executed actions. For
XPC document services, the list is initially populated with the received document and
the envelope that contains it. For XPC timed services, the list is initially empty.

When a particular action is to be executed, the Action Director looks for the most
recently generated outputs that match the types of input arguments defined for the
component's method and passes them to the method. When the method's invocation is
complete, the Action Director takes the method's outputs and adds them to the start of
the list.

The Action Director maintains a linked list of all previously produced component
outputs. It searches this list for output whose Class is assignable to the Class of the
input argument. For a document service, this list is initialized with an Envelope object
(requestEnvelope) and document object (requestDocument).

By default, the Action Director selects as input arguments the most recently
produced output of the appropriate class. Using the XPC Manager, an input can link
to a particular output argument of a previously executed component. The explicit
linkage requires that the Class of the output argument be assignable to the Class of the
input argument to which it is being linked.

Action Director Places Inputs into Data Manager

If the Action Director finds the required input in the linked list, it places the
associated value into the Data Manager and “get-enables” the argument. Only
arguments that have been get-enabled can subsequently be read by the component
invoking the Data Manager’s get() method.

XPC Manager 2-11

If the get() method tries to read an argument that has not been get-enabled, it throws
an IllegalArgumentException, which can be caught by the component. If the Action
Director cannot find a required input, it generates a NullPointerException, causing the
execution of the Action Director’s Exception action list.

Action Director Enables Component Outputs

The Action Director “set-enables” each argument in the component’s output list. Only
arguments that have been set-enabled can be written by the component invoking the
Data Manager’s set() method. If the set() method tries to write an argument that has
not been set-enabled, it throws an IllegalArgumentException, which can be caught by
the component.

Action Director Adds Component Outputs to the Linked List

Once the component has successfully executed, the Action Director adds its
component outputs to the head of the linked list. These outputs will be the first ones to
be searched for the next component’s required inputs.

Note If the component throws an exception, none of its outputs will be added to
the linked list, regardless of whether they have been written by calls to the
Data Manager’s set() method.

Error Handling

The return value of all invocable methods of an XPC component is an object of type
XPCResult. This class contains an integer value that allows the method to indicate to
the Action Director the success or failure of the method’s execution. A value of zero
indicates successful execution; a non-zero value indicates failure, causing the Action
Director to terminate processing of its action list.

2-12 XPC Developer Guide and API Reference

Building Custom Integrations 3-1

3 Building Custom Integrations

In This Chapter

This chapter provides guidelines for general information about
customizing XPC. It includes:

! Overview of XPC Integration on page 2

! File System Document Exchange on page 3

! API based integration on page 4

! XPath-based Document Programming Model on page 5

! Correlation Across Sessions on page 10

! Building a Custom Component on page 13

! Error Handling on page 16

! Other APIs on page 23

! Deploying a Component on page 23

Overview of XPC Integration

3-2 XPC Developer Guide and API Reference

Overview of XPC Integration

XPC runs at a trading partner site exchanging xCBL messages with other trading
partners over MarketSite. XPC is customized to integrate these xCBL messages with
the trading partner’s back office system.

This MarketSite message exchange must follow an xCBL choreography. An
integration consists of configuring the XPC with appropriate document and timed
services to process the incoming and outgoing messages corresponding to the trading
partner’s role in the choreography.

For example, in the Quote choreography, the buyer has a timed service that generates
a RequestForQuotation message and a document service that receives the Quote
reply. The seller has a document service that receives the RequestForQuotation
message and a timed service that replies with a Quote message.

The development of an integration consists of defining the logic required for each of
these services. Following are some examples of this logic:

! simple exchange of xCBL documents with the back office system through the file
system

! transformation between xCBL and another format and file system exchange of
non-xCBL documents

! direct back office API calls

The logic is defined using the XPC Manager to string together lists of actions, and
configuring the components that perform the actions. For more information, see the
XPC Manager chapter.

XPC comes with a set of standard components as defined in the XPC Component
Library. For more information, see the XPC Component Library chapter. You may
need to create new components to handle your custom business logic.

“Helper” features

To assist in representation of business logic, XPC provides a XPath-based mechanism
to represent xCBL business data -- either programmatically or in component
configurations. This is available via a helper class, XPCDocHandle, that provides
XPath querying on xCBL documents. Also included is a browser based xCBL XPath
querying tool (https://localhost:4433/servlet/XPathTester).

File System Document Exchange

Building Custom Integrations 3-3

XPC provides the Trading Partner Preconfiguration (Chapter 4) which defines a
complete set of service definitions for all inbound and outbound xCBL 3.0
documents. These service definitions implement a configurable file system document
exchange scheme and will serve as a good starting point for an xCBL 3.0 based
integration project.

XPC provides default response builder components for all xCBL 3.0 request/response
pairs. These provide integration developers a starting point response. The integration
developer then only has to update the provided response as opposed to building it
from scratch.

File System Document Exchange

This method of integration assumes an agreed upon set of file system logic rules
between the XPC and an external process (the ERP system). These logic rules
include:

! Significance of directories. Example: incoming Orders in directory \inbound\order.

! Significance of file naming schemes. Example: PaymentRequest documents begin
with “pr” and have a “.cbl” extension.

These rules are defined by configuring the FileStore component using XPC Manager.
Using FileStore, each element of an envelope -- document, attachments, header -- can
have its own directory/file-naming definition. Please reference FileStore in Chapter 5
for a complete description of the functionality of this component.

An file system integration is inherently asynchronous. For both XPC and the external
process, a document is received via a file system polling mechanism. This polling
mechanism in the XPC can be implemented via a timed service initiated with the
readDocument or readStream action of FileStore.

In the Trading Partner Preconfiguration, all asynchronous document exchanges use
this scheme.

This integration scheme can be augmented with custom components. For example, if
the documents passed to the file system are not xCBL, a custom component could
perform a transformation before writing and after reading.

API based integration

3-4 XPC Developer Guide and API Reference

Multiple Transactions

Many non-xCBL formats may include multiple transactions per document, which are
not supported by xCBL. If single transaction documents cannot be produced by the
ERP system, a custom component can be developed to run as the initiating action in a
timed service (see Chapter 2, Timed Service Execution).

This custom component would follow the requirements of the initiating action:

! Assume that it will be invoked repeatedly

! Stop repeat by generating an exception

! Issue only one xCBL transaction

The last point is because all envelopes exchanged with MarketSite must contain a
single xCBL document.

Since a component can be configured to be invoked “once” (Chapter 2, Service Level
Configuration), its state in memory can be retained between this looping invocation.
The component can pick up the entire file and store in memory and remove and issue
the first transaction. For subsequent invocations, it would remove the next transaction
from memory. Throw exception when there’s nothing in memory or additional files.

API based integration

This method of integration uses direct calls between XPC and the back-office system.

Inbound Messages

For messages inbound from MarketSite, an XPC document service includes a custom
component performing the API calls: These calls might load, extract, or select data
from the back office system.

The Trading Partner Preconfiguration demonstrates making an API call using a
sample custom component with the PriceCheck, AvailabilityCheck, and OrderStatus
document services. These are the only xCBL 3.0 transactions that require
synchronous processing.

The same scheme can be used when responding in a peer to peer (asynchronous)
exchange. If you develop a component to extract business response data in real-time,
it can be deployed in a synchronous document service (see Chapter 2, Service Level
Configuration).

XPath-based Document Programming Model

Building Custom Integrations 3-5

Outbound Messages

For outbound messages that are in response to a request, the custom component could
be in the synchronous document service and the outbound message initiated by the
Responder component.

For outbound messages that are initiating requests, the ERP system may make direct
calls to MarketSite using the XPC Transmitter API, as detailed in Appendix A.

Or, a custom component can be developed to run as the initiating action in a timed
service (see Chapter 2, Timed Service Execution). This custom component could
perform a back office API call following the requirements of the initiating action:

! Assume that will be invoked repeatedly

! Stop repeat by generating an exception

! Only output a single xCBL transaction

XPath-based Document Programming Model

XPCDocHandle is a helper class that provides an easy way to interact with the
contents of an xCBL document. A developer constructs an XPCDocHandle with an
xCBL Java bean. The XPCDocHandle get() and set() methods use an XPath-like
string variable to represent the xCBL nodes (elements or attributes) to be
manipulated.

! The get() method takes an XPath String and returns a String or array of Strings. If
the XPath String defines an element within a looping section, it returns an array of
Strings.

! set() takes both the XPath String and a String or array of Strings to set in the bean.

XPath is a W3C recommended language for addressing parts of an XML document.
XPCDocHandle implements simple node selection capabilities and a subset of XPath
predicates. For a full description of the standard, visit the W3C website: http://
www.w3.org/TR/xpath.html.

XPath Tester

XPC includes a browser tool to test and build XPath query strings. These query
strings can then be cut-and-pasted into component source code or configurations.

1. Start XPC (XPath Tester runs off XPC’s web server)

XPath-based Document Programming Model

3-6 XPC Developer Guide and API Reference

2. Browse to https://localhost:4433/servlet/XPathTester

3. Load the document whose Xpath you want to test.

XPC provides sample documents in the < XPC Root>/sample/xpc/instances
directory. Each document type has its own subdirectory.

If you know where the document is located, type the path in the Current File Path
text box. Otherwise use the Browse button to locate it. Once you have entered the
path, click Load to load the document in the XML Source pane in the lower left
portion of the screen.

4. Type the Xpath to the node in the Enter Xpath text box or build the XPath by
selecting pieces of the xCBL document and using your browser’s Copy and Paste
commands to add them to the XPath string. Be sure to use a slash to separate
nodes.

5. When you have constructed the path, click Go. The node referenced by the Xpath
is displayed in the Results pane in the lower right portion of the screen.

The XPath string remains on the screen, in the Enter XPath text box, until you clear
it with the Reset button. You can continue to modify the string until it displays the
correct node in the Results pane. Once you are satisfied with the XPath string, use
your browser’s Copy command to copy it, then paste it into your code.

XPCDocHandle Functional Definition

An XPath string specifies the path to the desired node, beginning at the outermost
node--the document itself--and working inward towards the leaf nodes. XPath
notation uses the forward slash, /, between nodes and precedes attribute names with
the at symbol, @. The entire XPath string must be enclosed within a pair of double
quote characters, “ and “. Any double quote characters within the string must be
preceded by a backslash escape character, \, or they will be treated as the string
terminator.

Following is an example of an XPath string that retrieves the Quantity element from a
PriceCheckRequest document:

String XPATH_QUANTITY="PriceCheckRequest/

PriceCheckRequestDetail/ListOfPriceCheckRequestItemDetail/

PriceCheckRequestItemDetail/PriceCheckRequestBaseItemDetail/

TotalQuantity/Quantity”;

<PriceCheckRequest>

...

XPath-based Document Programming Model

Building Custom Integrations 3-7

The bold text below identifies which portion of the document is selected:

<PriceCheckRequestDetail>

<ListOfPriceCheckRequestItemDetail>

<PriceCheckRequestItemDetail>

<PriceCheckRequestBaseItemDetail>

<TotalQuantity>

<Quantity>-1</Quantity>

<TotalQuantity>

...

Using the Position() Predicate to Narrow Your Selection

XPCDocHandle knows from a document’s SOX schema whether a particular element
occurs only once or can be repeated any number of times. The
<PriceCheckRequestItemDetail>, element, for example, is a repeating element; there
is one instance for each item whose price is being checked. XPCDocHandle uses an
array to represent repeating elements even if the particular document you are
accessing has only a single instance.

The position() predicate allows you to retrieve elements based upon their position
within an array. Like all XPath predicates, it must be enclosed within left and right
square brackets, [and].

Adding the predicate below to an XPath string restricts the selection to the first
element in the array--that is, the element whose position is equal to 1:

[position()=1]

You could use the “is not equal to”operator, !=, instead of the “is equal to” operator, to
select every element other than the first, as below:

[position() !=1]

The syntax for the position() predicate is:

[position() comparison_operator n]

The comparison_operator can be =, <, <=, >, >=, or != and n can be any integer.

XPath-based Document Programming Model

3-8 XPC Developer Guide and API Reference

Testing for the Value or Presence of a Node

Other predicates allow you to restrict your selection based upon the existence of a
particular element or attribute, or upon its having a specified value. Adding the
following predicate to an XPath string restricts the selection to instances that have a
Currency attribute:

[@Currency]

If you add the following predicate to an XPath string, you only retrieve instances in
which the Currency attribute has a value of “USD”:

[@Currency=\”USD\”]

Similarly, the following predicate restricts your selection to instances in which the
Currency attribute has a value other than “USD”:

[@Currency!=\”USD\”]

NoteThis type of predicate allows only the = and != comparison operators.

Using Compound Predicates

You can also create predicates that combine these features. The following predicate,
for example, selects the first item in an array provided its Currency attribute has a
value of “USD”:

[position()=1 and @Currency=\”USD\”

XPCDocHandle Limitations

Note the following caveats when using XPCDocHandle to set values in the response
documents:

! The get(String atPath) and set(String atPath, Object objParams) methods in
XPCDocHandle cannot handle xpaths containing nodes where a choice must be
made in order to get to the next node in your xpath.

The xpath below, for example, cannot be specified in the get method, because the
Quantity node in this path contains a quantity choice. The choices are QuantityValue
and QuantityRange:

String XPATH_QUANTITY=”PriceCheckRequest/PriceCheckRequestDetail/

ListOfPriceCheckRequestItemDetail/PriceCheckRequestItemDetail/

XPath-based Document Programming Model

Building Custom Integrations 3-9

PriceCheckRequestBaseItemDetail/TotalQuantity/Quantity/QuantityValue”;

To work around this situation, use the get method to retrieve the node just before the
choice occurs and then manually get the selected choice, as below:

String XPATH_QUANTITY="PriceCheckRequest/

PriceCheckRequestDetail/ListOfPriceCheckRequestItemDetail/

PriceCheckRequestItemDetail/PriceCheckRequestBaseItemDetail/

TotalQuantity/Quantity;

Object quantityChoice =

ourQuantityObject.getQuantityChoice().getChoice();

if (quantityChoice instanceof QuantityValue) {

….

}

else if (quantityChoice instanceof QuantityRange) {

….

}

! XPC ignores any invalid values set by XPCDocHandle, returning instead the value
specified by the service’s defaultResponseBuilder component class. Values
specified in the service’s configuration file override these default values.
Specifying an obviously incorrect value in the configuration file is a convenient
way to alert your back office application to the presence of errors in the response
document.

The defaultAvailabilityCheckResponseBuilder class, for example, specifies an
AvailableQuanity equal to the quantity that was requested. Be careful not to
remove the following line, which changes the AvailableQuantity to -1, from the
service’s default.prop file:

AvResponseBuilder.config=Quantity= -1

! When the XPCDocHandlexDocHandle.get() method is called on a node that does
not exist in an xCBL document’s bean, it returns NULL. The
XPCDocHandlexDocHandle.set() method, however, cannot be used to set the
value of such a node; it throws an IllegalAccessError exception. Before calling the
set method on the node, you must first create the subtree that contains the node.

To set error information into a response document, for example, you must first
build the entire ErrorInfo branch of the xCBL document. The sample integrators

Correlation Across Sessions

3-10 XPC Developer Guide and API Reference

that ship with XPC call the XPCErrorInfo.buildErrorInfo() method to build the
CBL_sox.ErrorInfo object before calling the
hDocOutgoing.set(XPATH_ERRORINFO,vResults) method to set the value of the
error information.

The sample components included in these services demonstrate use of the XPC’s
XPath based document programming model.

Correlation Across Sessions

For a file system document exchange approach for handling peer to peer exchanges.,
a request is handled by an asynchronous document service, the response by a timed
service.

To respond to a request, the timed service must have both the response document and
the original request envelope. This is the reply() signature in
XPCAbstractComponent.

This can be managed by sharing a file name key from the request to the response. The
document service configures a FileStore action to store the request envelope using a
key. The responding time service determines the key to sends it to the
lookupEnvelope action on FileStore.

The Trading Partner Preconfiguration uses a component GetCorrelationKey to define
the naming scheme. By default, the key is the correlation id property of the envelope.
However, this component can be configured with an XPath query string to denote
specific data elements in the document.

The correlation key is defined by the document service. This means that the timed
service needs to determine this key from the response data passed to it by the ERP
system. This could be accomplished using a file naming scheme, or XPath query into
the document.

To facilitate this retrieval, XPC provides this common correlation key for all files
associated with an asynchronous the transaction—the request envelope, request
document, its envelope, the message acknowledgment document, the reply document,
and any attachments. XPC uses this correlation key, plus configurable prefixes,
extensions, and directory names, to determine where these the files are stored. The
ERP system uses the must use this same key to pass response documents back to
XPC.

Correlation Across Sessions

Building Custom Integrations 3-11

Example Inbound Flow: Order

The action director configuration for the Order document service specifies the
following actions:

1. Build default response (DefaultOrderResponse30Builder)

The default Action Taken is “NoAction”.

2. Determine file name key (GetCorrelationKey)

The GetCorrelationKey component This extracts the desired file name key from
the envelope. By default, this is the envelope’s Correlation ID, but you can use the
XPath configuration to obtain other values from the xCBL document --
concatenating the Buyer Account Code with the PO Number, for example.

3. Store the request envelope and its contents

The Filestore.storeEnvelope action stores the request envelope and each of its parts
in a separate subdirectory of the /filestore directory. The common correlation key
makes it easy to identify all files associated with a single request.

The following table shows the default subdirectory and file names assigned to the
request envelope, document, and any attachments. You can reconfigure the
component to specify new locations and file names.

4. Store the Default Response document

The FileStore.storeDocument component stores the default response document in
the filestore/default_response directory on the file system. The file naming
convention is based on the correlation key of the request document:

D_key.xml

Part Subdirectory Prefix, extension Description

Envelope /envelope E_key.env The entire MIME envelope

Document /request R_key.xml The xCBL document that is the body
of the envelope

Attachments /attachment A_#_key.att Each attachment has its own unique
number

Attachment
description

/meta M_key.adf File enumerating all the attachment
files and their locations

Correlation Across Sessions

3-12 XPC Developer Guide and API Reference

5. Store request envelope (Filestore.storeEnvelope)

This component takes the correlation key as an input, which comes from the output
of GetCorrelationKey. By default, the request envelope and each of its parts are
stored in a separate subdirectory of the /filestore directory:

Configurations for the file store component allow you to change these default file
locations and naming conventions.

6. Store default response document (FileStore.storeDocument)

This stores the response document as generated by the first action.

Example ERP flow

1. Pick up and load purchase order

2. Pick up the default response document from filestore/default_response directory,
update it, and save it to the /response directory where the timed service can pick it
up.

Warning! The ERP system needs a queuing mechanism to prevent it from
reprocessing a document. This could be implemented by moving
processed files to a different directory.

Ideally, the queuing mechanism should use the default response document
(filestore/default_response/D_key.xml). If the queue uses the request
envelope, that implies that the ERP archives this file -- and the timed
service action would need to be reconfigured to look in this archive
directory.

3. Store the Customized Response

The ERP calls picks up the default response from the filestore/default_response
directory and customizes it. It then stores the customized response in the /response
directory with the same file name as that used for the default response.

When the timed service wakes up, it looks for the customized response in the /
response directory.

Default
Response
Document

/default_response D_key.xml File containing the default
PurchaseOrderResponse document

Response
Document

/response D_key.xml File that the timed service must find

Building a Custom Component

Building Custom Integrations 3-13

Example outbound flow: OrderResponse

When the Timed Service wakes up, it executes the following actions:

1. Reads the response document (FileStore.readDocument)

This method picks up the next document found in the /filestore/response directory,
determines its correlation key, and archive directory and moves it in to the /
filestore/response_archive directory.

2. FileStore.lookupEnvelope to search the /request directory for the r_key.env file.
This file contains the envelope of the original request document.

This component captures the correlation key (the string between the configurable
prefix and the extension) from the file read and uses it to look up the original
request envelope. The ERP system must use the same file name key for persisting
the updated response as was used by the default response (though it can use a
different directory, prefix, and extension).

3. Looks up request envelope (FileStore.lookupEnvelope)

This component takes the correlation key issued above, and searches in the /request
directory for the r_key.env file (as persisted by the PurchaseOrder Action
Director).

4. Transmits to MarketSite (Responder)

Responder This uses the request envelope to transmit the customized publish
response document to MarketSite.

Building a Custom Component

XPC components must subclass XPCAbstractComponent.

public class myComponent extends

com.commerceone.xpc.abs.XPCAbstractComponent

Please reference Chapter 7 for a full description of this abstract class. The following
capabilities are available to components through this abstract class.

! Access configurations

! Define input names and types

! Define output names and types

! Transmit new message

Building a Custom Component

3-14 XPC Developer Guide and API Reference

! Respond to message

! Logging

Sample Components

XPC contains sample components for that perform synchronous processing. They
each take a request envelope and default response document as input, and generate an
updated response document as output. The source code for these components can be
found:

! <install:root>\sample\com\commerceone\sample\xpc\my_integrators\myAvailabilit
yCheckIntegrator30.java

! <install:root>\sample\com\commerceone\sample\xpc\my_integrators\myPriceChec
kIntegrator30.java

! <install:root>\sample\com\commerceone\sample\xpc\my_integrators\myOrderStatu
sIntegrator30.java

Helper Methods

Each of these sample components contains a “helper” method, doAvailabilityCheck,
doPriceCheck, and doOrderStatus. The signature of this private method includes the
most common data needed to understand the request and define the response. It is
called once for each item in the request.

This helper method serves to clearly isolate the location of the API call and the values
the call needs and generates. In most integrations of PriceCheck, AvailabilityCheck,
OrderStatus, it is only necessary to edit the helper method.

When editing helper methods, you must insert your own business logic to access the
database or file system in which you store information about item availability, price,
and order status. For example, this code could open a JDBC connection, create a SQL
SELECT statement, execute the SQL, and read the response into the result
parameters.

Adding Fields to the Helper Method signature

Each of the sample components contains two methods:

! A “helper” method, with a name such as doAvailabilityCheck() or doPriceCheck(),
which accepts as input the key fields of the request document and returns as output
the key fields of the response document, including any error information.

Building a Custom Component

Building Custom Integrations 3-15

! A process() method, which calls the helper method once for each line item to be
processed.

Because the helper methods are private, you cannot add fields to the signature. If you
require additional information that is not contained in the signature, you must modify
the process() method to include this information.

The signature of the doAvailabilityCheck() method, for example, accepts the buyer’s
account code, the supplier’s partID and extension, the requested quantity, and the unit
of measurement. These key fields uniquely identify the item whose availability is
being checked:

private XPCResult doAvailabilityCheck(

final String acctCode_Buyer, // [IN]Buyer Account Code

final String partID_Supplier, // [IN] Supplier’s PartId

final String partExt_Supplier, // [IN] Supplier’s PartId

extension

final String quantity, // [IN] Requested Quantity

final String uomCode, // [IN] Unit of Measure (UOM) code

StringBuffer resultQuantity, // [OUT] Available Quantity

StringBuffer resultUOM, // [OUT] Unit of Measure code

StringBuffer errorCode, // [OUT,OPTIONAL] Error code if any

StringBuffer errorMessage, // [OUT,OPTIONAL] Descriptive error

message

StringBuffer errorVendorMessage // [OUT,OPTIONAL] vendor

specific error message

)

If the item is processed successfully, the doAvailabilityCheck() method returns two
string buffers, one containing the available quantity and the other the unit of
measurement:

private XPCResult doAvailabilityCheck(

final String acctCode_Buyer, // [IN]Buyer Account Code

final String partID_Supplier, // [IN] Supplier’s PartId

final String partExt_Supplier, // [IN] Supplier’s PartId

extension

final String quantity, // [IN] Requested Quantity

final String uomCode, // [IN] Unit of Measure (UOM) code

Error Handling

3-16 XPC Developer Guide and API Reference

StringBuffer resultQuantity, // [OUT] Available Quantity

StringBuffer resultUOM, // [OUT] Unit of Measure code

StringBuffer errorCode, // [OUT,OPTIONAL] Error code if any

StringBuffer errorMessage, // [OUT,OPTIONAL] Descriptive error

message

StringBuffer errorVendorMessage // [OUT,OPTIONAL] vendor

specific error message

)

If business errors, such as an invalid PartID, prevent the item from being processed,
the doAvailabilityCheck() method returns three string buffers, one containing an error
code, one an error message suitable for display to users, and one a more technical
description of the error suitable for troubleshooting. These buffers are highlighted
below:

private XPCResult doAvailabilityCheck(

final String acctCode_Buyer, // [IN]Buyer Account Code

final String partID_Supplier, // [IN] Supplier’s PartId

final String partExt_Supplier, // [IN] Supplier’s PartId

extension

final String quantity, // [IN] Requested Quantity

final String uomCode, // [IN] Unit of Measure (UOM) code

StringBuffer resultQuantity, // [OUT] Available Quantity

StringBuffer resultUOM, // [OUT] Unit of Measure code

StringBuffer errorCode, // [OUT,OPTIONAL] Error code if any

StringBuffer errorMessage, // [OUT,OPTIONAL] Descriptive error

message

StringBuffer errorVendorMessage // [OUT,OPTION] vendor specific

error message

)

Error Handling

This section describes how XPC handles business errors. It includes information
about:

! Setting the ErrorInfo element in a response document

Error Handling

Building Custom Integrations 3-17

! ErrorInfo coding conventions

Business errors occur when XPC is able to create a response document but is unable
to fulfill the request. Business errors commonly result when the request document
includes fatal errors such as invalid account codes, expired contracts, or invalid part
numbers.

When a business error occurs, the component ceases to execute the action list and fills
the response document’s ErrorInfo element with information that describes the error.

Warning! Use of the ErrorInfo element indicates to the requesting application that
the request cannot be fulfilled. Use this element only for fatal errors. Do
not use ErrorInfo for warnings or informational messages.

Following is the SOX schema for the ErrorInfo element:

<elementtype name="ErrorInfo">

<model>

<sequence>

<element type="string" name="CompletionCode"/>

<element type="LangString" name="CompletionMsg"/>

<element type="SeverityCode" name="Severity"/>

<element type="ListOfParameter" occurs="?"/>

<element type="int" name="MinRetrySecs" occurs="?"/>

<element type="string" name="SwVendorErrorRef" occurs="?"/>

</sequence>

</model>

</elementtype>

You must specify values for the following required fields:

! CompletionCode, which specifies a standard error code.

! CompletionMsg, which provides a description of the error in language suitable for
display to users of the application.

! Severity, which should be set to “Error”.

The optional SwVendorErrorRef field can be used for system-specific error
information that may help in troubleshooting.

Error Handling

3-18 XPC Developer Guide and API Reference

The ErrorInfo schema does not have any enumerated values for CompletionCode.
This document provides a list of recommended CompletionCode values. This same
list will be available to various MarketSite buying solutions, giving trading partners
the option of implementing specific processing for specific codes.

Setting ErrorInfo

To set the error information in a reply document, modify the helper method in your
my_integrator component. To set the error information in the sample my_integrators
supplied by XPC, you need to modify:

! doAvailabilityCheck() in the myAvailabilityCheckIntegrator class

! doPriceCheck() in the myPriceCheckIntegrator class

! doOrderStatus() in the myOrderStatusIntegrator class

The modification consists of:

! Setting the errorCode to the appropriate CompletionCode value, as indicated in the
ErrorInfo Coding Conventions section below

! Setting the errorMessage to an error message description suitable for display to the
user

ErrorInfo Coding Conventions

CompletionCode values are all uppercase. Each code begins with a prefix, indicating
the type of document being processed, followed by a brief description of the problem.
XPC CompletionCodes use the following prefix conventions:

! Price Check errors begin with PC_

! Availability Check errors begin with AC_

! Order Status errors begin with OS_

! Sales Order (also known as Purchase Order) errors begin with SO_

! Standard errors that apply to all document types begin with STD_

Recommended Price Check Completion Codes

The PriceCheckResult document, which is generated in response to a
PriceCheckRequest, stores error information at both the detail and summary levels.

Error Handling

Building Custom Integrations 3-19

When an error related to an individual line item occurs, the error information is stored
in the item’s PriceCheckResult/ListOfPriceResultItem/PriceResultItem/
PriceErrorInfo element. The following table lists the recommended CompletionCodes
for different types of line item errors:

If errors occur for one or more line items, the
PriceCheckResult/PriceCheckSummary/PriceCheckSummaryErrorInfo/
CompletionCode element should be set to PC_ERROR_RESULTITEM. This element
should also be used for other errors that apply to the entire PriceCheckRequest.

The following table lists the recommended CompletionCodes for different types of
summary errors:

Recommended Availability Check Completion Codes

The AvailabilityCheckResult document, which is generated in response to an
AvailabilityCheckRequest, stores error information at both the detail and summary
levels.

Type of Error CompletionCode Severity

Part Number / SKU not found PC_SKU_NOTFOUND Error

Invalid Quantity specified PC_QTY_INVALID Error

General Error such as back-end or authentication
failure

STD_ERROR_GENERIC Error

Type of Error CompletionCode Severity

Invalid Account code STD_ACCOUNT_INVALID Error

No valid Contract or Contract Expired STD_CONTRACT_EXPIRED Error

General errors such as back-end failure STD_ERROR_GENERIC Error

Errors occurred during price checks for one or
more line items

PC_ERROR_RESULTITEM Error

Error Handling

3-20 XPC Developer Guide and API Reference

When an error related to an individual line item occurs, the error information is stored
in the item’s AvailabilityCheckResult/ListOfAvailabilityResultItem/
AvailabilityResultItem/AvailabilityErrorInfo element. The following table lists the
recommended CompletionCodes for different types of line item errors:

If errors occur for one or more line items, the AvailabilityCheckResult/
AvailabilityCheckSummary/SummaryErrorInfo/CompletionCode element should be
set to AC_ERROR_RESULTITEM. This element should also be used for other errors
that apply to the entire AvailabilityCheckRequest.

The following table lists the recommended CompletionCodes for different types of
summary errors:

Recommended Order Status Completion Codes

The OrderStatusResult document, which is generated in response to an
OrderStatusRequest document, stores error information at both the detail and
summary levels.

Note In general, Enterprise Buyer ignores the line item status information
transmitted during an OrderStatus transaction. It uses this information
only when the Order as a whole has been rejected.

Type of Error CompletionCode Severity

Part Number / SKU not found AC_SKU_NOTFOUND Error

Invalid Quantity specified AC_QTY_INVALID Error

General error such as back-end failure STD_ERROR_GENERIC Error

No inventory for this part number AC_NOINSTOCKQTY Error

Type of Error CompletionCode Severity

Invalid Account code STD_ACCOUNT_INVALID Error

General error such as back-end failure STD_ERROR_GENERIC Error

Errors occurred during availability checks for
one or more items

AC_ERROR_RESULTITEM Error

Error Handling

Building Custom Integrations 3-21

When an error occurs while checking the status of an individual line item, the
information is stored in the OrderStatusResult/ListOfOrderStatusDetailResult/
OrderStatusDetail element of the OrderStatusCheckResult document. The following
table lists the recommended CompletionCodes for different types of line item errors:

If errors occur for one or more line items, the OrderStatusResult/
OrderStatusCheckSummary/OrderStatusSummaryErrorInfo element should be set
with a CompletionCode of OS_ERROR_RESULTITEM and the Severity set to Error.

Recommended Sales Order Completion Codes

The OrderResponse document, which is generated in response to an Order document,
stores error information at both the detail and summary levels.

Line item errors related to price are stored in the OrderResponse/
ListOfOrderResponseDetail/OrderResponseDetail/OrderDetail/PriceErrorInfo
element. The following table lists the recommended CompletionCodes for different
types of line item errors related to price:

Type of Error CompletionCode Severity

Order not found OS_ORDER_NOTFOUND Error

Invalid account code STD_ACCOUNT_INVALID Error

General error such as back-end failure STD_ERROR_GENERIC Error

Type of Error CompletionCode Severity

Part / SKU not found SO_ITEM_NOTFOUND Error

LineNum/SubLine num not
unique

SO_LINENUMSUBLINENUM_NOTUNIQU
E

Error

Invalid PRICE, Price doesn’t
match

SO_PRICE_INVALID Error

Contract Expired SO_PRICECONTRACT_EXPIRED Error

General error such as back-end
failure

STD_ERROR_GENERIC Error

Error Handling

3-22 XPC Developer Guide and API Reference

Line item errors related to availability are stored in PurchaseOrderResponse/
ListOfOrderResponseDetail/OrderResponseDetail/OrderDetail/AvailabilityErrorInfo.
The following table lists the recommended CompletionCode values for different
types of line item errors related to availability:

If errors occurred at one or more line items, set the PurchaseOrderResponse/
OrderResponseSummary/OrderResponseErrorInfo to SO_ERROR_ORDERITEM.
The following table lists the recommended CompletionCode values for different
types of summary errors:

Type of Error CompletionCode Severity

Part / SKU not found SO_ITEM_NOTFOUND Error

The LineNum and SubLineNum
are not unique

SO_LINENUMSUBLINENUM_NOTUNIQUE Error

Invalid Qty SO_QTY_INVALID Error

Insufficient Qty SO_NOINSTOCKQTY Error

General error such as back-end
failure

STD_ERROR_GENERIC Error

Type of Error CompletionCode Severity

Invalid PO, General error SO_INVALID_DATA Error

Invalid PO, with invalid data in
the specified field (for example,
the SHIPTO field or the BILLTO
field).

SO_INVALID_DATA_<field_name>
For example:
SO_INVALID_DATA_SHIPTO
SO_INVALID_DATA_BILLTO
SO_INVALID_DATA_BILLTO_ZIP

Error

Invalid Account Code STD_ACCOUNT_INVALID Error

Errors occurred while processing
one or more line items

SO_ERROR_ORDERITEM Error

General error such as back-end
failure

STD_ERROR_GENERIC Error

Deploying a Component

Building Custom Integrations 3-23

Other APIs

More sophisticated component development may require the use of other Commerce
One supplied APIs, including:

! The XDK package, which allows for the direct manipulation of the contents of
documents and envelopes

! The Util package, which contains utility classes that may be used to create unique
identifiers

For information about using these APIs, see the Javadoc contained in the \doc\api\xdk
and doc\api\util directories of the XPC installation.

Deploying a Component

After modifying a component, you compile it to a class file such as
myPriceCheckIntegrator.class. This section describes how to package the component
as a JAR file and how to deploy without generating a JAR file.

Deploying with JAR Files

After modifying the component, compile it to a class file (for example,
myPriceCheckIntegrator.class), put the compiled files into a JAR file, and add the
JAR file to the classpath.

The following sample batch file uses Sun Microsystems JDK compiler to compile a
sample integrator. The batch code could be copied into a batch file (for example,
compile.bat) then executed from a command line (for example, compile
\sample\com\commerceone\xpc\
my_integrators\myPriceCheckIntegrator30.java).

"javac" -d classes -classpath

".;%XPCROOT%\lib\activation.jar;%XPCROOT%\lib\bussdocs.jar;%XPCROOT%\lib\XPC.jar;%X

PCROOT%\lib\ccs_server.jar;%XPCROOT%\lib\ccs_dir.jar;%XPCROOT%\lib\ccs_event.jar;%X

PCROOT%\lib\ccs_util.jar;%XPCROOT%\lib\ccs_xdk.jar;%XPCROOT%\lib\iaik.jar;%XPCROOT%

\lib\iaik_jce_applet.jar;%XPCROOT%\lib\iaik_ssl_applet.jar;%XPCROOT%\lib\jigsawlite

.jar;%XPCROOT%\lib\jmail.jar;%XPCROOT%\lib\jndi.jar;%XPCROOT%\lib\jsafe.jar;%XPCROO

T%\lib\jsdk.jar;%XPCROOT%\lib\mail.jar;%XPCROOT%\lib\swingall.jar;%XPCROOT%\lib\lda

p.jar;%XPCROOT%\lib\providerutil.jar;%XPCROOT%\lib\sax.jar;%XPCROOT%\lib\ccs_xdkdir

.jar" %*

Deploying a Component

3-24 XPC Developer Guide and API Reference

To add a new JAR to XPC’s classpath:

1. Open the file \etc\classpath\default.

2. Add a line containing the full path to the new JAR file.

3. Ensure there is an empty line after the last line in the file.

4. Stop and restart XPC.

To verify that the JAR file was correctly added:

1. Start the server.

2. Open the file \bin\CCSNTService.log.

3. Confirm the new JAR is present in this log file.

Deploying Without Generating a JAR File

You may also use the following option to deploy without generating a JAR file:

1. Compile the custom component’s .java file to a .class file.

2. Copy the .class file to the following directory:
\lib\com\commerceone\xpc\my_integrators\

3. Stop and restart XPC.

Supported Services

Trading Partner Preconfiguration 4-1

4 Trading Partner Preconfiguration

In This Chapter

This chapter provides information about the XPC Trading Partner Preconfiguration, a
set of preconfigured business services designed to support the xCBL 3.0 transactions
used by buyers and suppliers.

Loading the Trading Partner Preconfiguration

Loading the Trading Partner Preconfiguration loads a set of service definitions to
support xCBL 3.0. Once XPC has been installed on your computer, you can use the
following steps to load the Trading Partner Preconfiguration:

1. From the Start menu, select Programs | XMLPortal Connector 4.0 | Configure.
The Configure XPC window appears.

2. Click the Preconfigure Trading Partner button.

Note The Trading Partner Preconfiguration can only be loaded one time. Once
it has been loaded, the Preconfigure Trading Partner button is disabled.

After loading the Trading Partner Preconfiguration, you must enable each of the
services you will be running. For information about which services to enable, see the
remaining sections of this chapter. For information about how to enable services, see
the XPC Managerchapter.

Before using XPC services, it is likely that you will want to reconfigure them. XPC
Manager allows you to make various types of modifications to a service’s Action
Director. For information about reconfiguring services, see the XPC Manager chapter.

Supported Services

Each of the following sections provides information about the services associated
with a particular type of transaction:

! Advance Shipment Notice Services on page 3

! Auction Management Services on page 7

Supported Services

4-2 XPC Developer Guide and API Reference

! Availability Check Request Services on page 16

! Availability To Promise Services on page 18

! Invoice Services on page 22

! Message Acknowledgement and Error Services on page 25

! Order Management Services on page 26

! Order Status Request Services on page 37

! Payment Request Services on page 39

! Planning and Shipping Schedule Services on page 43

! Price Check Services on page 52

! Product Catalog Services on page 54

! Quote Services on page 57

! Remittance Advice Services on page 62

! Time Series Services on page 65

! Trading Partner Management Services on page 72

Advance Shipment Notice Services

Trading Partner Preconfiguration 4-3

Advance Shipment Notice Services

This section describes how to configure the XPC services used for Advance Shipment
Notice transactions. It includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transactions

Advance shipment notice transactions are one-way asynchronous document
exchanges. When suppliers send an AdvanceShipmentNotice to buyers, they expect
to receive a MessageAcknowledgement but do not expect a response document.

Following is an overview of advance shipment notice transactions:

1. A supplier sends AdvanceShipmentNotice to a buyer.

2. The buyer sends a MessageAcknowledgement document indicating that the
AdvanceShipmentNotice was received.

The following diagram illustrates the flow of xCBL documents:

Note The diagrams in this chapter do not include arrows depicting
MessageAcknowledgement documents. These are included in all peer-to-
peer and one-way asynchronous document exchanges for every
transaction.

Advance Shipment Notice Services

4-4 XPC Developer Guide and API Reference

Associated XPC Services

The following table lists the XPC services that buyers and suppliers must enable to
process these transactions:

Document Exchange Details

This section provides details about the services that manage Advance Shipment
Notice transactions:

1. The supplier’s back office system creates the AdvanceShipmentNotice and leaves
it in a designated location on its local file system.

2. The supplier’s XPCAdvanceShipmentNotice30Outbound service wakes up
periodically and searches the specified directory for the AdvanceShipmentNotice.
It places the document in an xCBL envelope and transmits it to MarketSite.

3. MarketSite routes the AdvanceShipmentNotice to the buyer.

4. The buyer’s XPCAdvanceShipmentNotice30Inbound service extracts the
AdvanceShipmentNotice from its envelope, sends a MessageAcknowledgement
document, and stores and stores the AdvanceShipmentNotice envelope, document,
and attachment in designated locations on its local file system.

XPC Service Used By
Buyers

Used By
Supplier

XPCAdvanceShipmentNotice30Outbound Service on page 5 #

XPCAdvanceShipmentNotice30Inbound Service on page 5 #

Advance Shipment Notice Services

Trading Partner Preconfiguration 4-5

XPCAdvanceShipmentNotice30Outbound Service

Supplier’s XPCAdvanceShipmentNotice30Outbound service wakes up periodically
and searches the specified directory for the AdvanceShipmentNotice. It places the
document in an xCBL envelope and transmits it to MarketSite.

XPCAdvanceShipmentNotice30Inbound Service

The Buyer’s XPCAdvanceShipmentNotice30Inbound service extracts the
AdvanceShipmentNotice from its envelope, sends a MessageAcknowledgement
document, and stores the AdvanceShipmentNotice envelope, document, and
attachment in designated locations on its local file system.

Action List Component Description

FileStore.readDocument Reads the AdvanceShipmentNotice document from
the file system, archives it, and uses it to build the
document object.

GetStringFromDocument Extracts a string from the document object by
applying the xPath configuration.

StringMapper Gets the TPID matching the extracted string from
the map file.

CreateEnvelope Creates an Envelope using the TPID as
RecepientId and senderTPID configuration as
senderId of the Envelope header.

Transmitter Transmits the Envelope to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives AdvanceShipmentNotice document and
send MessageAcknowledgement

Advance Shipment Notice Services

4-6 XPC Developer Guide and API Reference

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the AdvanceShipmentNotice
envelope, document, and attachment.

FileStore.storeEnvelope Stores the AdvanceShipmentNotice Envelope,
document and attachment on the file system.

Action List Component Description

Auction Management Services

Trading Partner Preconfiguration 4-7

Auction Management Services

This section describes how to configure the XPC services used for auction
management transactions. It includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transactions

Following is an overview of auction management transactions:

1. An auction is initiated by sending an AuctionCreate document. Forward auctions
are initiated by suppliers; reverse auctions by buyers.

2. Auction Services receives the AuctionCreate, organizes an auction, and notifies the
initiator and other interested parties by sending an AuctionCreateResponse
document.

3. Auction Services selects the winning bid and notifies the auction initiator by
sending an AuctionResult document.

4. The auction initiator replies with an AuctionResultResponse document.

The following diagram illustrates the flow of xCBL documents:

Auction Management Services

4-8 XPC Developer Guide and API Reference

Associated XPC Services

The following table lists the XPC services that auction initiators and auction services
must enable and configure to process auction management transactions:

Document Exchange Details

Details of the document exchange are provided below:

1. An auction is initiated by sending an AuctionCreate document. Forward auctions
are initiated by suppliers; reverse auctions by buyers.

a) The auction initiator’s back office system creates the AuctionCreate document
and leaves it in a designated location on its local file system.

b) The auction initiator’s XPCAuctionCreate30Outbound service wakes up
periodically and searches the specified directory for the
AuctionCreatedocument. It places the document in an xCBL envelope and
transmits it to MarketSite.

c) MarketSite routes the AuctionCreate document to Auction Services.

2. Auction Services receives the AuctionCreate, organizes an auction, and notifies the
initiator and other interested parties by sending an AuctionCreateResponse
document.

XPC Service Used By
Auction
Initiator

Used By
Auction
Service

XPCAuctionCreate30Outbound Service on page 10 #

XPCAuctionCreate30Inbound Service on page 11 #

XPCAuctionCreateResponse30Outbound Service on page 12 #

XPCAuctionCreateResponse30Inbound Service on page 12 #

XPCAuctionResult30Outbound Service on page 13 #

XPCAuctionResult30Inbound Service on page 13 #

XPCAuctionResultResponse30Outbound Service on page 14 #

XPCAuctionResultResponse30Inbound Service on page 15 #

Auction Management Services

Trading Partner Preconfiguration 4-9

a) Auction Services’s XPCAuctionCreate30Inbound service extracts the
AuctionCreate document from its envelope, builds a default
AuctionCreateResponse document, and stores both the AuctionCreate document
and the AuctionCreateResponse document in designated locations on its local
file system.

b) Auction Services’s XPCAuctionCreateResponse30Outbound service wakes up
periodically and searches the specified directory for the AuctionCreateResponse
document. It places the document in an xCBL envelope and transmits it to
MarketSite.

c) MarketSite routes the AuctionCreateResponse document to the initiator of the
auction.

d) The initiator’s XPCAuctionCreateResponse30Inbound service extracts the
AuctionCreateResponse document from its envelope, sends a
MessageAcknowledgement, and stores the AuctionCreateResponse document
and its envelope in a designated location on the local file system.

3. Auction Services selects the winning bid and notifies the auction initiator by
sending an AuctionResult document.

a) Auction Services selects the winning bid.

b) Auction Services creates an AuctionResult document and stores it in a specified
location on its local file system.

c) Auction Services’ XPCAuctionResult30Outbound service wakes up
periodically and searches the specified directory for the AuctionResult
document. It places the document in an xCBL envelope and transmits it to
MarketSite.

d) MarketSite routes the AuctionResult document to the initiator of the auction.

e) The auction initiator’s XPCAuctionResult30Inbound service extracts the
AuctionResult document from its envelope, sends a MessageAcknowledgement,
and stores the AuctionResult document and its envelope in a designated location
on the local file system.

4. The auction initiator replies with an AuctionResultResponse document.

a) The auction initiator creates an AuctionResultResponse document and stores it
in a designated location on the local file system.

b) The auction initiator’s XPCAuctionResultResponse30Outbound service wakes
up periodically and searches the specified directory for the
AuctionResultResponse document. it places the document in an xCBL envelope
and transmits it to MarketSite.

Auction Management Services

4-10 XPC Developer Guide and API Reference

c) MarketSite routes the AuctionResultResponse document to Auction Services.

d) Auction Services’ XPCAuctionResultResponse30Inbound service extracts the
AuctionResultResponse document from its envelope, sends a
MessageAcknowledgement, and stores the AuctionResultResponse document
and its envelope in a designated location on the local file system.

XPCAuctionCreate30Outbound Service

The auction initiator’s XPCAuctionCreate30Outbound service wakes up periodically
and searches the specified directory for the AuctionCreatedocument. (Forward
auctions are initiated by suppliers; reverse auctions by buyers.) The service places the
document in an xCBL envelope and transmits it to MarketSite.

Action List Component Description

FileStore.readDocument Reads the AuctionCreate document from the file
system, archives it, and uses it to build the
document object.

GetStringFromDocument Gets the key string specified in the configuration.

StringMapper Gets the TPID matching the key string from the
map file.

CreateEnvelope Creates Envelope using the TPID as RecepientId
and senderTPID configuration as senderId of the
Envelope header.

Transmitter Transmits the Envelope to MarketSite.

Auction Management Services

Trading Partner Preconfiguration 4-11

XPCAuctionCreate30Inbound Service

Auction Services’s XPCAuctionCreate30Inbound service extracts the AuctionCreate
document from its envelope, builds a default AuctionCreateResponse document, and
stores both the AuctionCreate document and the AuctionCreateResponse document in
designated locations on its local file system.

Action List Component Description

MessageAcknowledgementSender Receives the AuctionCreate document and sends
a MessageAcknowledgement.

GetCorrelationKey Builds a CorrelationKey from the MessageId of
the envelope is used

DefaultAuctionCreateResponse30Buil
der

Builds a default AuctionCreateResponse
document.

FileStore.storeEnvelope Stores the AuctionCreate Envelope, document
and attachment on the file system. File names are
formed by concatenating the appropriate prefix
with the CorrelationKey.

FileStore.storeDocument Stores the default AuctionCreateResponse
document on the file system.

Auction Management Services

4-12 XPC Developer Guide and API Reference

XPCAuctionCreateResponse30Outbound Service

Auction Services’s XPCAuctionCreateResponse30Outbound service wakes up
periodically and searches the specified directory for the AuctionCreateResponse
document. It places the document in an xCBL envelope and transmits it to
MarketSite.

XPCAuctionCreateResponse30Inbound Service

The initiator’s XPCAuctionCreateResponse30Inbound service extracts the
AuctionCreateResponse document from its envelope, sends a
MessageAcknowledgement, and stores the AuctionCreateResponse document and its
envelope in a designated location on the local file system.

Action List Component Description

FileStore.readDocument Reads the AuctionCreateResponse document from
the file system and archives it. Builds the document
object from this document and builds filename key
string from the name of the file.

Filestore.lookupEnvelope Finds the original requesting envelope using the
filename key passed. The original envelope is
needed to send correlated response envelope.

Responder Sends the AuctionCreateResponse document to
MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the AuctionCreateResponse document
and sends a MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the AuctionCreateResponse
envelope, document.

FileStore.storeEnvelope Stores the AuctionCreateResponse Envelope,
document and attachment on the file system. File
names are formed by concatenating the
appropriate prefix with the CorrelationKey.

Auction Management Services

Trading Partner Preconfiguration 4-13

XPCAuctionResult30Outbound Service

Auction Services’ XPCAuctionResult30Outbound service wakes up periodically and
searches the specified directory for the AuctionCreateResponse document. It places
the document in an xCBL envelope correlated with the AuctionCreate envelope, and
transmits it to MarketSite.

XPCAuctionResult30Inbound Service

The auction initiator’s XPCAuctionResult30Inbound service extracts the
AuctionResult document from its envelope, sends a MessageAcknowledgement, and
stores the AuctionResult document and its envelope in a designated location on the
local file system.

Action List Component Description

FileStore.readDocument Reads the AuctionCreate document from file
system and archive it. Builds the document object
from the document read. Gets a key string from the
filename. The key string must match the filename
key used to persist the AuctionCreate envelope.

FileStore.lookupEnvelope Looks up AuctionCreate envelope that matches the
key string.

CreateCorrelatingEnvelope Creates the AuctionResult envelope using the
header information of the AuctionCreate envelope
looked up. Keep the correlationId same. Swap the
senderId and recipientId.

Transmitter Transmits the envelope to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the AuctionResult document and sends a
MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the AuctionResult envelope,
document, and attachment and the default
AuctionResultResponse document.

Auction Management Services

4-14 XPC Developer Guide and API Reference

XPCAuctionResultResponse30Outbound Service

The auction initiator’s XPCAuctionResultResponse30Outbound service wakes up
periodically and searches the specified directory for the AuctionResultResponse
document. It places the document in an xCBL envelope and transmits it to
MarketSite.

DefaultAuctionResultResponse30Buil
der

Builds a default AuctionResultResponse document.

FileStore.storeEnvelope Stores the AuctionResult Envelope, document and
attachment on the file system. File names are
formed by concatenating the appropriate prefix with
the CorrelationKey.

FileStore.storeDocument Stores the default AuctionResultResponse
document on the file system. The file name is
formed by concatenating the appropriate prefix with
the CorrelationKey.

Action List Component Description

FileStore.readDocument Reads AuctionResultResponse document from file
system and archive it. Builds the document object
from the document read. Builds filename key string
from the name of the file read.

FileStore.lookupEnvelope Finds the original requesting envelope using the
filename key passed. The original envelope is
needed to send correlated response envelope.

Responder Transmits the response document to MarketSite.

Action List Component Description

Auction Management Services

Trading Partner Preconfiguration 4-15

XPCAuctionResultResponse30Inbound Service

Auction Services’ XPCAuctionResultResponse30Inbound service extracts the
AuctionResultResponse document from its envelope, sends a
MessageAcknowledgement, and stores the AuctionResultResponse document and its
envelope in a designated location on the local file system.

Action List Component Description

MessageAcknowledgementSender Receives the AuctionResultResponse document
and sends a MessageAcknowledgement

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the AuctionResultResponse
envelope, document, and attachment.

FileStore.storeEnvelope Stores the AuctionResultResponse Envelope,
document and attachment on the file system. File
names are formed by concatenating the
appropriate prefix with the CorrelationKey.

Availability Check Request Services

4-16 XPC Developer Guide and API Reference

Availability Check Request Services

This section describes how to configure the XPC services used for availability check
request transactions. It includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transactions

Availability check transactions are synchronous document exchanges. The XPC
connection used to receive the request document remains open until the response
document is returned.

Following is an overview of the document exchange:

1. A buyer sends an AvailabilityCheckRequestDocument to determine the quantity of
a product the supplier has available to sell.

2. The supplier returns an AvailabilityCheckResult document indicating the available
quantity of the product.

The following diagram illustrates the flow of xCBL documents:

Availability Check Request Services

Trading Partner Preconfiguration 4-17

Associated XPC Services

The following table lists the XPC services that suppliers must enable to process
availability check request transactions:

Document Exchange Details

Details of the document exchange are provided below:

1. The buyer’s back office system creates an AvailabilityCheckRequest document and
transmits it to MarketSite.

2. MarketSite forwards the AvailabilityCheckRequest to the supplier.

3. The supplier’s XPCAvailabilityCheckRequest30Inbound service receives the
AvailabilityCheckRequest document, builds a default AvailabilityCheckResult
document based upon the request, updates the default AvailabilityCheckResult
document with business data from the back office system, and sends the
customized AvailabilityCheckResult document to MarketSite.

4. MarketSite forwards the AvailabilityCheckResult document to the buyer.

XPCAvailabilityCheckRequest30Inbound Service

XPC Service Used By
Buyer

Used By
Supplier

XPCAvailabilityCheckRequest30Inbound Service on page 17 #

Action List Component Description

DefaultAvailabilityCheckResponse30B
uilder

Receives the AvailabilityCheckRequest document
and uses it to build a default
AvailabilityCheckResult document

Customizer Customizes and updates the default
AvailabilityCheckResult document

Responder Sends the AvailabilityCheckResult document to
MarketSite.

Availability To Promise Services

4-18 XPC Developer Guide and API Reference

Availability To Promise Services

This section describes how to configure the XPC services used for availability to
promise transactions. It includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transaction

A typical document exchange is as follows:

! A buyer sends an AvailabilityToPromise document to a supplier to determine
when, where, and how many of the requested goods the supplier can provide.

! In response, the supplier sends the buyer an AvailabilityToPromiseResponse
indicating the quantity of goods available for the buyer.

The following diagram illustrates the flow of xCBL documents:

Availability To Promise Services

Trading Partner Preconfiguration 4-19

Associated XPC Services

The following table lists the XPC services that buyers and suppliers must enable to
process availability to promise transactions:

Document Exchange Details

Following is a detailed description of the exchange of documents:

1. The buyer’s back office system prepares an AvailabilityToPromise document and
leaves it in a designated location on its local file system.

2. Buyer’s XPCAvailabilityToPromise30Outbound service wakes up periodically and
searches the specified directory for the AvailabilityToPromise document. It places
the document in an xCBL envelope and transmits it to MarketSite.

3. MarketSite routes the AvailabilityToPromise document to the supplier.

4. The supplier’s XPCAvailabilityToPromise30Inbound service extracts the
AvailabilityToPromise document from its envelope, builds a default
AvailabilityToPromiseResponse document, and stores both the
AvailabilityToPromise and the AvailabilityToPromiseResponse documents in
designated locations on its local file system.

5. The supplier’s XPCAvailabilityToPromiseResponse30Outbound service wakes up
periodically and searches the specified directory for the
AvailabilityToPromiseResponse document. It places the document in an xCBL
envelope and transmits it to MarketSite.

6. MarketSite routes the AvailabilityToPromiseResponse document to the buyer.

7. The buyer’s XPCAvailabilityToPromise30ResponseInbound service extracts the
response document from its envelope, sends a MessageAcknowledgement, and

XPC Service Used By
Buyer

Used By
Supplier

Associated XPC Services on page 19 #

XPCAvailabilityToPromise30Inbound Service. on page 20 #

XPCAvailabilityToPromiseResponse30Outbound Service. on page
21

#

XPCAvailabilityToPromiseResponse30Inbound Service. on page 21 #

Availability To Promise Services

4-20 XPC Developer Guide and API Reference

stores the AvailabilityToPromiseResponse document and its envelope in a
designated location on the local file system.

XPCAvailabilityToPromise30Outbound Service.

XPCAvailabilityToPromise30Inbound Service.

Action List Component Description

FileStore.readDocument Reads the AvailabilityToPromise document from
the file system and archives it. Builds the document
object from the document.

GetStringFromDocument Extracts a string from the document object using
xPath configuration.

StringMapper Gets the TPID matching the extracted string from
the map file.

CreateEnvelope Creates an envelope for the document. Uses the
input string as the recipientId and the sender TPID
configuration as senderId.

Transmitter Transmits the envelope to MarketSite.

Action List Component Description

MessageAcknowledgementSender Builds envelope containing
MessageAcknowledgement document and
transmits it.

GetCorrelationKey Gets the correlation key from the envelope.

DefaultAvailabilityToPromiseRespons
eBuilder

Builds a default AvailabilityToPromiseResponse
document.

FileStore.storeEnvelope Stores the envelope, document, and attachments
on the file system.

FileStore.storeDocument Stores the response document on the file system.

Availability To Promise Services

Trading Partner Preconfiguration 4-21

XPCAvailabilityToPromiseResponse30Outbound Service.

XPCAvailabilityToPromiseResponse30Inbound Service.

Action List Component Description

FileStore.readDocument Reads the AvailabilityToPromiseResponse
document from file system and archive it. Builds the
document object from the document.

FileStore.lookupEnvelope Finds the original request envelope using the
filename key.

Responder Transmits the response document to MarketSite.

Action List Component Description

MessageAcknowledgementSender Builds and envelope for the
MessageAcknowledgement and transmits it.

GetCorrelationKey Gets the correlation key from the envelope.

FileStore.storeEnvelope Stores the envelope, document, and attachments
on the file system.

Invoice Services

4-22 XPC Developer Guide and API Reference

Invoice Services

This section describes how to configure the XPC services used for invoice
transactions. It includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transaction

Invoice transactions are one-way document exchanges. Following is a an overview of
an invoice transaction:

1. A supplier sends an Invoice document to a buyer.

2. The buyer sends a MessageAcknowledgement document indicating that the
Invoice was received.

The following diagram illustrates the flow of xCBL documents:

Invoice Services

Trading Partner Preconfiguration 4-23

Associated XPC Services

The following table lists the XPC services that buyers and suppliers must enable to
process invoice transactions:

Document Exchange Details

Following are the detailed steps involved in the exchange:

1. Supplier’s back office system creates the Invoice and leaves it in a designated
location on its local file system.

2. Supplier’s XPCInvoice30Outbound service wakes up periodically and searches the
specified directory for the Invoice. It places the document in an xCBL envelope
and transmits it to MarketSite.

3. MarketSite routes the Invoice to the Buyer.

4. The Buyer’s XPCInvoice30Inbound service extracts the Invoice from its envelope,
sends a MessageAcknowledgement document, and stores both documents in
designated locations on its local file system.

XPCInvoice30Outbound Service

Supplier’s XPCInvoice30Outbound service wakes up periodically and searches the
specified directory for the Invoice. It places the document in an xCBL envelope and
transmits it to MarketSite.

XPC Service Used By
Buyer

Used By
Supplier

XPCInvoice30Outbound Service on page 23 #

XPCInvoice30Inbound Service on page 24 #

Action List Component Description

FileStore.readDocument Reads the Invoice document from file system,
archives it and uses it to builds the document
object.

GetStringFromDocument Extracts a string from document object using xPath
configuration.

Invoice Services

4-24 XPC Developer Guide and API Reference

XPCInvoice30Inbound Service

The Buyer’s XPCInvoice30Inbound service extracts the Invoice from its envelope,
sends a MessageAcknowledgement document, and stores both documents in
designated locations on its local file system.

StringMapper Gets the TPID matching the extracted string from
the map file.

CreateEnvelope Creates Envelope using the TPID as RecepientId
and senderTPID configuration as senderId of the
Envelope header.

Transmitter Transmits the Envelope to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the Invoice document and sends a
MessageAcknowledgement

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the Invoice envelope, document, and
attachment.

FileStore.storeEnvelope Stores the Invoice Envelope, document and
attachment on the file system. File names are
formed by concatenating the appropriate prefix with
the CorrelationKey.

Action List Component Description

Message Acknowledgement and Error Services

Trading Partner Preconfiguration 4-25

Message Acknowledgement and Error Services

When an inbound peer-to-peer or one-way service receives an xCBL document, it
responds by sending a MessageAcknowledgement document. If the inbound service
cannot read the incoming document, it sends an Error document.

XPCMessageAcknowledgement30Inbound Service

When an asynchronous xCBL document is transmitted, the receiving trading partner
is responsible for automatically replying with a MessageAcknowledgement
document. This service receives and stores this receipt confirmation.

Action List Component Description

CorrelationKeyBuilder Receives the document. Builds a CorrelationKey
from the MessageId of the envelope.

FileStore.storeDocument Stores the MessageAcknowledgement document
on the file system.

Order Management Services

4-26 XPC Developer Guide and API Reference

Order Management Services

This section describes the XPC services used to process order management
transactions. It includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transactions

Following is a description of the flow of documents between buyer and supplier. This
flow may be initiated by either a supplier or a buyer. Each time a trading partner
receives a document from the other, it sends a MessageAcknowledgement document.

1. A supplier may solicit an order by sending an OrderRequest.

2. Buyer sends an Order, either in response to the supplier’s OrderRequest or
independently of any such request.

3. Seller sends an OrderResponse.

4. After sending the Order, buyer may send one or more ChangeOrder documents,
changing the details of the order.

5. Supplier sends an OrderResponse for each ChangeOrder received.

The diagram below illustrates the flow of xCBL documents:

Order Management Services

Trading Partner Preconfiguration 4-27

Associated XPC Services

The following table lists the XPC services that buyers and suppliers must enable and
configure to process order management transactions:

Document Exchange Details

Following is a description of the flow of documents between buyer and supplier:

1. Supplier may solicit an order by sending an OrderRequest.

e) The supplier’s back office system creates an OrderRequest and leaves it in a
designated location on its local file system.

f) The supplier’s XPCOrderRequest30Outbound Service service wakes up
periodically and searches the specified directory for the OrderRequest
document. It places the document in an xCBL envelope and transmits it to
MarketSite.

g) MarketSite routes the OrderRequest document to the buyer.

2. Buyer sends an Order, either in response to the supplier’s OrderRequest or

XPC Service Used By
Buyer

Used By
Supplier

XPCOrderRequest30Outbound Service on page 29 #

XPCOrderRequest30Inbound Service on page 30 #

XPCCorrelatedOrder30Outbound Service on page 31 #

XPCOrder30Outbound Service on page 32 #

XPCOrder30Inbound Service on page 32 #

XPCOrderResponseFromOrder30Outbound Service on page 33 #

XPCOrderResponse30Inbound Service on page 34 #

XPCChangeOrder30Outbound Service on page 34 #

XPCChangeOrder30Inbound Service on page 35 #

XPCOrderResponseFromChangeOrder30Outbound Service on
page 36

#

Order Management Services

4-28 XPC Developer Guide and API Reference

independently of any such request.

a) The buyer’s XPCOrderRequest30Inbound Service service extracts the
OrderRequest document from its envelope, builds a default Order document,
and stores both the OrderRequest and Order documents in designated locations
on its local file system.

b) The buyer’s XPCCorrelatedOrder30Outbound Service service and
XPCOrder30Outbound Service wake up periodically and search the
appropriate directories for the Order. XPCCorrelatedOrder30Outbound searches
for Orders created in response to an OrderRequest. XPCOrder30Outbound
searches for Orders that were not initiated by an OrderRequest. If either service
finds an unprocessed order, it creates an xCBL envelope for the document,
archives the envelope to the local file system, and transmits it to MarketSite.

c) MarketSite routes the Order document to the supplier.

3. The supplier sends an OrderResponse.

a) The supplier’s XPCOrder30Inbound Service service extracts the Order
document from its envelope, sends a MessageAcknowledgement document to
MarketSite, builds a default OrderResponse document. It stores both the Order
envelope and document in a designated location on the local file system, using a
prefix of OrderResponseFromOrder_. It stores the OrderResponse document in
a designated locations on its local file system.

b) The supplier’s XPCOrderResponseFromOrder30Outbound Service service
wakes up periodically and searches the designated directory for the
OrderResponse document with a prefix of OrderResponseFromOrder_. It places
the document in an xCBL envelope and transmits it to MarketSite.

c) MarketSite routes the OrderResponse to the buyer.

d) The buyer’s XPCOrderResponse30Inbound Service service extracts the
OrderResponse document from its envelope, sends a
MessageAcknowledgement, and stores the OrderResponse document and any
attachments in a designated location on its local file system.

4. The buyer may send one or more ChangeOrder documents, changing the details of
an Order.

a) The buyer’s back office system prepares a ChangeOrder and leaves it in a
designated location on its local file system.

b) The buyer’s XPCChangeOrder30Outbound Service service wakes up
periodically and searches the specified directory for the ChangeOrder. It places
the document in an xCBL envelope and transmits it to MarketSite.

c) MarketSite routes the ChangeOrder to the supplier.

Order Management Services

Trading Partner Preconfiguration 4-29

5. The supplier receives the ChangeOrder.

a) The supplier’s XPCChangeOrder30Inbound Service service extracts the
ChangeOrder document from its envelope, sends a MessageAcknowledgement,
and builds a default OrderResponse document. It stores the ChangeOrder
envelope, document, and any attachments in a designated location on its local
file system with a prefix of OrderResponseFromChangeOrder_. It stores the
OrderResponse in another designated location on its local file system.

6. The supplier sends a new OrderResponse incorporating the changes.

a) The supplier’s back office system creates a customized OrderResponse and
stores it in a designated location on its local file system.

b) The supplier’s XPCOrderResponseFromChangeOrder30Outbound Service
service wakes up periodically and searches the specified location for the
OrderResponse. It places the document in an xCBL envelope and transmits it to
MarketSite.

c) MarketSite routes the OrderResponse to the buyer.

d) The buyer’sXPCOrderRequest30Inbound Service service extracts the
OrderResponse document from its envelope, sends a
MessageAcknowledgement, and stores the OrderResponse document and any
attachments in a designated location on its local file system.

XPCOrderRequest30Outbound Service

The supplier’s XPCOrderRequest30Outbound service wakes up periodically and
searches the specified directory for the OrderRequest document. It places the
document in an xCBL envelope and transmits it to MarketSite.

Action List Component Description

FileStore.readDocument Reads the OrderRequest document from the file
system and archive it. Builds the document object
from the document read.

GetStringFromDocument Extracts a string from document object using xPath
configuration.

StringMapper Gets the TPID matching the extracted string from
the map file.

Order Management Services

4-30 XPC Developer Guide and API Reference

XPCOrderRequest30Inbound Service

The Buyer’s OrderRequest30Inbound service extracts the OrderRequest document
from its envelope, builds a default Order document, and stores both the OrderRequest
and Order documents in designated locations on its local file system.

CreateEnvelope Creates Envelope using the TPID as RecepientId
and senderTPID configuration as senderId of the
Envelope header.

Transmitter Transmits the Envelope to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the OrderRequest document and sends a
MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope.

DefaultOrder30Builder Builds a default Order document.

FileStore.storeEnvelope Stores the OrderRequest Envelope, document and
attachment on the file system. File names are
formed by concatenating the appropriate prefix with
the CorrelationKey.

FileStore.storeDocument Stores the default Order document on the file
system.

Action List Component Description

Order Management Services

Trading Partner Preconfiguration 4-31

XPCCorrelatedOrder30Outbound Service

The buyer’s XPCCorrelatedOrder30Outbound service wakes up periodically and
searches the appropriate directory for Orders created in response to an OrderRequest.
If it finds an unprocessed order, it creates an xCBL envelope for the document,
archives the envelope to the local file system, and transmits it to MarketSite.

Action List Component Description

FileStore.readDocument Reads the Order document from the file system,
archives it and uses it to build the document object.
Builds filename key string from the name of the file
read. The filename key string must be same as the
filename key of the OrderRequest envelope
persisted by XPCOrderRequest30Inbound service

FileStore.lookupEnvelope Looks up the OrderRequest envelope using the
filename key.

CreateCorrelatingEnvelope Creates the Order envelope using the header
information from the OrderRequest envelope.
Keeps the correlationId same. Swap the senderId
and recipientId.

GetCorrelationKey Builds filename key string to be used to store the
envelope just created. Use the xPath configuration
to extract the string from the Envelope's document
(document that's read in from the file).

OrderStore.storeDocument Stores the envelope on the file system for use by
XPCChangeOrderOutbound service in creating
ChangeOrder envelope.

Transmitter Transmits the Order envelope to MarketSite.

Order Management Services

4-32 XPC Developer Guide and API Reference

XPCOrder30Outbound Service

The buyer’s XPCOrderOutbound wakes up periodically and searches the appropriate
directory for Orders that were not initiated by an OrderRequest. If it finds an
unprocessed order, it creates an xCBL envelope for the document, archives the
envelope to the local file system, and transmits it to MarketSite.

XPCOrder30Inbound Service

The supplier’s Order30Inbound service extracts the Order document from its
envelope, sends a MessageAcknowledgement document to MarketSite, builds a
default OrderResponse document. It stores both the Order envelope and document in

Action List Component Description

FileStore.readDocument Reads the Order document from file system and
archive it. Builds the document object from the
document read.

GetStringFromDocument Extracts a string from document object by applying
xPath configuration.

StringMapper Gets the TPID matching the extracted string from
the map file.

CreateEnvelope Creates Envelope using the TPID as RecepientId
and senderTPID configuration as senderId of the
Envelope header.

GetCorrelationKey Builds filename key string to be used to store the
envelope just created. Use the xPath configuration
to extract the string from the Envelope's document
(document that's read in from the file).

OrderStore.storeDocument Stores the envelope to the file system. This
envelope is used when creating ChangeOrder
envelope in XPCChangeOrder30Outbound
services.

Transmitter Transmits the Order envelope to MarketSite.

Order Management Services

Trading Partner Preconfiguration 4-33

a designated location on the local file system, using a prefix of
OrderResponseFromOrder_. It stores the OrderResponse document in a designated
locations on its local file system.

XPCOrderResponseFromOrder30Outbound Service

The supplier’s OrderResponseFromOrder30Outbound service wakes up periodically
and searches the designated directory for the OrderResponse document with a prefix
of OrderResponseFromOrder_. It places the document in an xCBL envelope and
transmits it to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the Order document and sends a
MessageAcknowledgement

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the Order envelope, document, and
attachment and the default OrderResponse
document.

DefaultOrderResponse30Builder Builds a default OrderResponse document.

FileStore.storeEnvelope Stores the Order Envelope, document and
attachment on the file system.

FileStore.storeDocument Stores the default OrderResponse document on the
file system.

Action List Component Description

FileStore.readDocument Reads OrderResponse document from file system
and archive it. This document is supposed to be an
OrderResponse to an Order document. Builds the
document object from the document read. Builds
filename key string from the name of the file read.

FileStore.lookupEnvelope Finds the original requesting envelope using the
filename key passed. The original envelope is
needed to send correlated response envelope.

Responder Transmits the response document to MarketSite.

Order Management Services

4-34 XPC Developer Guide and API Reference

XPCOrderResponse30Inbound Service

The buyer’s XPCOrderResponse30Inbound service extracts the OrderResponse
document from its envelope, sends a MessageAcknowledgement, and stores the
OrderResponse document and any attachments in a designated location on its local
file system.

XPCChangeOrder30Outbound Service

The buyer’s XPCChangeOrder30Outbound service wakes up periodically and
searches the specified directory for the ChangeOrder. It places the document in an
xCBL envelope and transmits it to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the OrderResponse document and send
MessageAcknowledgement

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the OrderResponse envelope,
document, and attachment.

FileStore.storeEnvelope Stores the OrderResponse Envelope, document
and attachment on the file system.

Action List Component Description

FileStore.readDocument Reads the ChangeOrder document from file system
and archive it. Builds the document object from the
document read.

GetCorrelationKeyFromDocument Extracts a string from document object using xPath
configuration. This string must match the filename
key used when the outgoing Order envelope is
saved in XPCOrder30Outbound service.

FileStore.lookupEnvelope Looks up the envelope that matches the extracted
string. This is the Order envelope saved.

Order Management Services

Trading Partner Preconfiguration 4-35

XPCChangeOrder30Inbound Service

The supplier’s XPCChangeOrder30Inbound service extracts the ChangeOrder
document from its envelope, sends a MessageAcknowledgement, and builds a default
OrderResponse document. It stores the ChangeOrder envelope, document, and any
attachments in a designated location on its local file system with a prefix of
OrderResponseFromChangeOrder_. It stores the OrderResponse in another
designated location on its local file system.

CreateCorrelatingEnvelope Creates the ChangeOrder envelope using the
header information of the Order envelope retrieved.
Keep the correlationId, senderId and recipientId
same.

Transmitter Transmits the envelope to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the ChangeOrder document and sends a
MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the ChangeOrder envelope,
document, and attachment and the default
OrderResponse document.

DefaultOrderResponse30Builder Builds a default OrderResponse document

FileStore.storeEnvelope Stores the ChangeOrder Envelope, document and
attachment on the file system.

FileStore.storeDocument Stores the default OrderResponse document on the
file system.

Action List Component Description

Order Management Services

4-36 XPC Developer Guide and API Reference

XPCOrderResponseFromChangeOrder30Outbound Service

The supplier’s XPCOrderResponseFromChangeOrder30Outbound service wakes up
periodically and searches the specified location for the OrderResponse. It places the
document in an xCBL envelope and transmits it to MarketSite.

Action List Component Description

FileStore.readDocument Reads the OrderResponse document from the file
system and archives it. This document is supposed
to be an OrderResponse to an ChangeOrder
document. Builds the document object from the
document read. Builds filename key string from the
name of the file read.

FileStore.lookupEnvelope Finds the original requesting envelope using the
filename key passed. The original envelope is
needed to send correlated response envelope.

Responder Sends the OrderResponse document to
MarketSite.

Order Status Request Services

Trading Partner Preconfiguration 4-37

Order Status Request Services

This section describes the XPC services used to process order status request
transactions. It includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transactions

Price check transactions are synchronous document exchanges. The XPC connection
used to receive the request document remains open until the response document is
returned.

Following is an overview of the document exchange:

1. A buyer sends a PriceCheckRequestDocument to determine the price at which a
supplier will sell a particular quantity of goods.

2. The supplier returns a PriceCheckResult document indicating the available
quantity of the product.

The following diagram illustrates the flow of xCBL documents:

Order Status Request Services

4-38 XPC Developer Guide and API Reference

Associated XPC Services

The following table lists the XPC services that buyers must enable and configure to
process order management transactions:

Document Exchange Details

Details of the document exchange are provided below:

1. The buyer’s back office system creates an OrderStatusRequest document and
transmits it to MarketSite.

2. MarketSite forwards the OrderStatusRequest to the supplier.

3. The supplier’s OrderStatusRequest30Inbound service receives the
OrderStatusRequest document, builds a default OrderStatusResult document based
upon the request, updates the default OrderStatusResult document with business
data from the back office system, and sends the customized OrderStatusResult
document to MarketSite.

4. MarketSite forwards the OrderStatusResult document to the buyer.

XPCOrderStatusRequest30Inbound Service

XPC Service Used By
Buyer

Used By
Supplier

XPCOrderStatusRequest30Inbound Service on page 38 #

Action List Component Description

DefaultOrderStatusResponse30Builder Receives the OrderStatusRequest document
and builds default OrderStatusResult
document

Customizer Customizes and updates the default
OrderStatusResult document

Responder Sends the customized OrderStatusResult
document to MarketSite.

Payment Request Services

Trading Partner Preconfiguration 4-39

Payment Request Services

This section describes the XPC services used to process payment request transactions.
It includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transactions

Following is a description of the flow of financial management documents between
buyer and supplier:

! The buyer sends his financial institution a PaymentRequest document to initiate
payment to the supplier. The request can reference multiple orders, advance
shipment notices, or invoices.

! The financial institution sends the buyer a PaymentRequestAcknowledgment.

The following diagram illustrates the flow of xCBL documents:

Payment Request Services

4-40 XPC Developer Guide and API Reference

Associated XPC Services

The following table lists the XPC services that buyers and suppliers must enable to
process payment request transactions:

Document Exchange Details

1. The buyer’s back office system prepares a PaymentRequest document and leaves it
in a designated place on the local file system.

2. Buyer sends his financial institution a PaymentRequest document to initiate
payment to the supplier. The request can reference multiple orders, advance
shipment notices, or invoices.

3. The financial institution sends the buyer a PaymentRequestAcknowledgment.

XPC Service Used By
Buyer

Used By
Financial
Institution

XPCPaymentRequest30Outbound Service on page 41 #

XPCPaymentRequest30Inbound Service on page 41 #

XPCPaymentRequestAcknowledgement30Outbound Service on page
42

#

XPCPaymentRequestAcknowledgment30Inbound Service on page 42 #

Payment Request Services

Trading Partner Preconfiguration 4-41

XPCPaymentRequest30Outbound Service

XPCPaymentRequest30Inbound Service

Action List Component Description

FileStore.readDocument Reads the PaymentRequest document from the file
system and archives it. Builds the document object
from this document.

GetStringFromDocument Gets the key string specified in the configuration

StringMapper Gets the TPID matching the extracted string from
the map file.

CreateEnvelope Creates an Envelope using the TPID as
RecepientId and senderTPID configuration as
senderId of the Envelope header

Transmitter Transmits the Envelope to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the PaymentRequest document and
sends a MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the PaymentRequest envelope,
document, and attachment and the default
PaymentRequestAcknowledgement document.

DefaultPaymentRequestAck30Builder Builds the default
PaymentRequestAcknowledgement document.

FileStore.storeEnvelope Stores the PaymentRequest Envelope, document
and attachment on the file system.

FileStore.storeDocument Stores the default
PaymentRequestAcknowledgement document on
the file system.

Payment Request Services

4-42 XPC Developer Guide and API Reference

XPCPaymentRequestAcknowledgement30Outbound Service

XPCPaymentRequestAcknowledgment30Inbound Service

Action List Component Description

FileStore.readDocument Reads the PaymentRequestAcknowledgement
document from the file system and archive it. Builds
the document object from the document read.
Builds the filename key string from the name of the
file read.

FileStore.lookupEnvelope Finds the original requesting envelope using the
filename key passed. The original envelope is
needed to send correlated response envelope.

Responder Sends the PaymentRequestAcknowledgement
document to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the PaymentRequestAcknowledgment
document and sends a
MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the
PaymentRequestAcknowledgement envelope,
document, and attachment.

FileStore.storeEnvelope Stores the PaymentRequestAcknowledgment
Envelope, document and attachment on the file
system.

Planning and Shipping Schedule Services

Trading Partner Preconfiguration 4-43

Planning and Shipping Schedule Services

This section describes the XPC services used to process planning and shipping
schedule transactions. It includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transactions

The typical scenario is as follows:

! At fixed intervals, a buyer sends a supplier a PlanningSchedule that forecasts
product requirements over a long period of time.

! The supplier sends a PlanningScheduleResponse.

! At more frequent intervals, the buyer sends the supplier a ShippingSchedule,
associated with a particular PlanningSchedule, to communicate precise short-term
product delivery requirements.

! The supplier sends a ShippingScheduleResponse.

The diagram below illustrates the exchange:

Planning and Shipping Schedule Services

4-44 XPC Developer Guide and API Reference

Associated XPC Services

The following table lists the XPC services that buyers and suppliers must enable and
configure to process planning and shipping schedule transactions:

Document Exchange Details

Following are the detailed steps involved in the exchange:

1. Buyer’s back office system creates the PlanningSchedule and leaves it in a
designated location on its local file system.

2. Buyer’s XPCPlanningSchedule30Outbound service wakes up periodically and
searches the specified directory for the PlanningSchedule. It places the document
in an xCBL envelope and transmits it to MarketSite.

3. MarketSite routes the PlanningSchedule to the supplier.

4. The supplier’s XPCPlanningSchedule30Inbound service extracts the
PlanningSchedule from its envelope, builds a default PlanningScheduleResponse,
and stores both the PlanningSchedule and the PlanningScheduleResponse in
designated locations on its local file system.

5. The supplier’s XPCPlanningScheduleResponse30Outbound service wakes up
periodically and searches the specified directory for the

XPC Service Used By
Buyer

Used By
Supplier

XPCPlanningSchedule30Outbound Service on page 46 #

XPCPlanningSchedule30Inbound Service on page 47 #

XPCPlanningScheduleResponse30Outbound Service on page
48

#

XPCPlanningScheduleResponse30Inbound Service on page 48 #

XPCShippingSchedule30Outbound Service on page 49 #

XPCShippingSchedule30Inbound Service on page 50 #

XPCShippingScheduleResponse30Outbound Service on page
51

#

XPCShippingScheduleResponse30Inbound Service on page 51 #

Planning and Shipping Schedule Services

Trading Partner Preconfiguration 4-45

PlanningScheduleResponse. It places the document in an xCBL envelope and
transmits it to MarketSite.

6. MarketSite routes the PlanningScheduleResponse to the buyer.

7. The buyer’s XPCPlanningSchedule30ResponseInbound service extracts the
response document from its envelope, sends a MessageAcknowledgement, and
stores the PlanningScheduleResponse and its envelope in a designated location on
the local file system.

8. The buyer’s back office system prepares a ShippingSchedule associated with a
particular PlanningSchedule and leaves it in a designated location on the local file
system.

9. Buyer’s XPCShippingSchedule30Outbound service wakes up periodically and
searches the specified directory for the ShippingSchedule. It places the
ShippingSchedule in an xCBL envelope, correlated with the envelope of the
associated PlanningSchedule, and transmits it to MarketSite.

10. MarketSite routes the ShippingSchedule to the supplier.

11. The supplier’s XPCShippingSchedule30Inbound service extracts the
ShippingSchedule from its envelope, builds a default ShippingScheduleResponse,
and stores both the ShippingSchedule and the ShippingScheduleResponse in
designated locations on its local file system.

12. The supplier’s XPCShippingScheduleResponse30Outbound service wakes up
periodically and searches the specified directory for the
ShippingScheduleResponse. It places the document in an xCBL envelope and
transmits it to MarketSite.

13. MarketSite routes the ShippingScheduleResponse to the buyer.

14. The buyer’s XPCShippingSchedule30ResponseInbound service extracts the
response document from its envelope, sends a message acknowledgement, and
stores the ShippingScheduleResponse and its envelope in a designated location on
the local file system.

Planning and Shipping Schedule Services

4-46 XPC Developer Guide and API Reference

XPCPlanningSchedule30Outbound Service

Buyer’s XPCPlanningSchedule30Outbound service wakes up periodically and
searches the specified directory for the PlanningSchedule. It places the document in
an xCBL envelope and transmits it to MarketSite.

Action List Component Description

FileStore.readDocument Reads the PlanningSchedule document from the
file system and archives it. Builds the document
object from the document read.

GetStringFromDocument Extracts a string from document object using xPath
configuration.

StringMapper Gets the TPID matching the extracted string from
the map file.

CreateEnvelope Creates an Envelope using the TPID as
RecepientId and senderTPID configuration as
senderId of the Envelope header.

GetCorrelationKey Uses xPath configuration to extract the correlation
key from the PlanningSchedule document.

PlanningScheduleStore.storeDocume
nt

Stores the Envelope on the file system for later use
in creating Envelopes for ShippingSchedule
documents associated with this PlanningSchedule.
The name of the file is specified by the correlation
key.

Transmitter Transmits the Planning Schedule Envelope to
MarketSite.

Planning and Shipping Schedule Services

Trading Partner Preconfiguration 4-47

XPCPlanningSchedule30Inbound Service

The supplier’s XPCPlanningSchedule30Inbound service extracts the
PlanningSchedule from its envelope, builds a default PlanningScheduleResponse, and
stores both the PlanningSchedule and the PlanningScheduleResponse in designated
locations on its local file system.

Action List Component Description

MessageAcknowledgementSender Receives the PlanningSchedule document and
sends a MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the PlanningSchedule envelope,
document, and attachment and the default
PlanningScheduleResponse document.

DefaultPlanningScheduleResponse30
Builder

Builds a default PlanningScheduleResponse
document.

FileStore.storeEnvelope Stores the PlanningSchedule Envelope, document
and attachment on the file system.

FileStore.storeDocument Stores the default PlanningScheduleResponse
document on the file system.

Planning and Shipping Schedule Services

4-48 XPC Developer Guide and API Reference

XPCPlanningScheduleResponse30Outbound Service

The supplier’s XPCPlanningScheduleResponse30Outbound service wakes up
periodically and searches the specified directory for the PlanningScheduleResponse.
It places the document in an xCBL envelope and transmits it to MarketSite.

XPCPlanningScheduleResponse30Inbound Service

The buyer’s XPCPlanningSchedule30ResponseInbound service extracts the response
document from its envelope, sends a message acknowledgement, and stores the
PlanningScheduleResponse and its envelope in a designated location on the local file
system.

Action List Component Description

FileStore.readDocument Reads the PlanningScheduleResponse document
from the file system and archive it. Builds the
document object from the document read. Builds
filename key string from the name of the file read.

FileStore.lookupEnvelope Finds the original requesting envelope using the
filename key passed. The original envelope is
needed to send correlated response envelope.

Responder Sends the PlanningScheduleResponse document
to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the PlanningScheduleResponse
document and send MessageAcknowledgement

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the PlanningScheduleResponse
envelope, document, and attachment.

FileStore.storeEnvelope Stores the PlanningScheduleResponse Envelope,
document and attachment on the file system.

Planning and Shipping Schedule Services

Trading Partner Preconfiguration 4-49

XPCShippingSchedule30Outbound Service

Buyer’s XPCShippingSchedule30Outbound service wakes up periodically and
searches the specified directory for the ShippingSchedule. It places the
ShippingSchedule in an xCBL envelope, correlated with the envelope of the
associated PlanningSchedule, and transmits it to MarketSite.

Action List Component Description

FileStore.readDocument Reads the ShippingSchedule document from the
file system and archives it. Builds the document
object from the document read.

GetCorrelationKeyFromDocument Uses xPath configuration to extract a key string
from the file. The key string must match the
filename key that was used by the
XPCPlanningSchedule30Outbound service to
persist the associated PlanningSchedule envelope.

FileStore.lookupEnvelope Looks up the PlanningSchedule envelope that
matches the extracted key string.

CreateCorrelatingEnvelope Creates the ShippingSchedule envelope using the
correlationId, senderId, and recipientId information
from the PlanningSchedule envelope.

Transmitter Transmits the ShippingSchedule envelope to
MarketSite.

Planning and Shipping Schedule Services

4-50 XPC Developer Guide and API Reference

XPCShippingSchedule30Inbound Service

The supplier’s XPCShippingSchedule30Inbound service extracts the
ShippingSchedule from its envelope, builds a default ShippingScheduleResponse,
and stores both the ShippingSchedule and the ShippingScheduleResponse in
designated locations on its local file system.

Action List Component Description

MessageAcknowledgementSender Receives the ShippingSchedule document and
sends a MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the ShippingSchedule envelope,
document, and attachment and the default
ShippingScheduleResponse document.

DefaultShippingScheduleResponse30
Builder

Builds a default ShippingScheduleResponse
document.

FileStore.storeEnvelope Stores the ShippingSchedule Envelope, document
and attachment on the file system.

FileStore.storeDocument Stores the default ShippingScheduleResponse
document

Planning and Shipping Schedule Services

Trading Partner Preconfiguration 4-51

XPCShippingScheduleResponse30Outbound Service

The supplier’s XPCShippingScheduleResponse30Outbound service wakes up
periodically and searches the specified directory for the ShippingScheduleResponse.
It places the document in an xCBL envelope and transmits it to MarketSite.

XPCShippingScheduleResponse30Inbound Service

The buyer’s XPCShippingSchedule30ResponseInbound service extracts the response
document from its envelope, sends a message acknowledgement, and stores the
ShippingScheduleResponse and its envelope in a designated location on the local file
system.

Action List Component Description

FileStore.readDocument Reads the ShippingScheduleResponse document
from the file system and archive it. Builds the
document object from the document read. Builds
filename key string from the name of the file read.

FileStore.lookupEnvelope Finds the original requesting envelope using the
filename key passed. The original envelope is
needed to send correlated response envelope.

Responder Sends the ShippingScheduleResponse document
to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the ShippingScheduleResponse
document and sends a
MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the ShippingScheduleResponse
envelope, document, and attachment.

FileStore.storeEnvelope Stores the ShippingScheduleResponse Envelope,
document and attachment on the file system.

Price Check Services

4-52 XPC Developer Guide and API Reference

Price Check Services

This section describes the XPC services used to process price check transactions. It
includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transactions

Price check transactions are synchronous document exchanges. The XPC connection
used to receive the request document remains open until the response document is
returned.

Following is an overview of the document exchange:

1. A buyer sends a PriceCheckRequestDocument to determine the price at which a
supplier will sell a particular quantity of goods.

2. The supplier returns a PriceCheckResult document indicating the available
quantity of the product.

The following diagram illustrates the flow of xCBL documents:

Price Check Services

Trading Partner Preconfiguration 4-53

Associated XPC Services

The following table lists the XPC services that suppliers must enable to process price
check transactions:

Document Exchange Details

Details of the document exchange are provided below:

1. The buyer’s back office system creates a PriceCheckRequest document and
transmits it to MarketSite.

2. MarketSite forwards the PriceCheckRequest to the supplier.

3. The supplier’s XPCPriceCheckRequest30Inbound service receives the
PriceCheckRequest document, builds a default PriceCheckResult document based
upon the request, updates the default PriceCheckResult document with business
data from the back office system, and sends the customized PriceCheckResult
document to MarketSite.

4. MarketSite forwards the PriceCheckResult document to the buyer.

XPCPriceCheckRequest30Inbound Service

XPC Service Used By
Buyer

Used By
Supplier

XPCPriceCheckRequest30Inbound Service on page 53 #

Action List Component Description

DefaultPriceCheckResponse30Builder Receives the PriceCheckRequest document and
builds a default PriceCheckResult document.

Customizer Customizes and updates the default
PriceCheckResult document.

Responder Sends the customized PriceCheckResult document
to MarketSite.

Product Catalog Services

4-54 XPC Developer Guide and API Reference

Product Catalog Services

This section describes the XPC services used to process product catalog transactions.
It includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transactions

ProductCatalog transactions are one-way document exchanges. Suppliers send a
ProductCatalog to a buyer to communicate product offerings and their prices. The
supplier expects to receive a MessageAcknowledgment indicating that the
ProductCatalog was received but do not expect a response document.

The following diagram illustrates the flow of xCBL documents:

Product Catalog Services

Trading Partner Preconfiguration 4-55

Associated XPC Services

The following table lists the XPC services that buyers and suppliers must enable and
configure to process product catalog transactions:

Document Exchange Details

Following are the detailed steps involved in the exchange:

1. Supplier’s back office system creates the ProductCatalog and leaves it in a
designated location on its local file system.

2. Supplier’s XPCProductCatalog30Outbound service wakes up periodically and
searches the specified directory for the ProductCatalog. It places the document in
an xCBL envelope and transmits it to MarketSite.

3. MarketSite routes the ProductCatalog to the Buyer.

4. The Buyer’s XPCProductCatalog30Inbound service extracts the ProductCatalog
from its envelope, sends a MessageAcknowledgement document, and stores both
documents in designated locations on its local file system.

XPCProductCatalog30Outbound Service

Supplier’s XPCProductCatalog30Outbound service wakes up periodically and
searches the specified directory for the ProductCatalog. It places the document in an
xCBL envelope and transmits it to MarketSite.

XPC Service Used By
Buyer

Used By
Supplier

XPCProductCatalog30Outbound Service on page 55 #

XPCProductCatalog30Inbound Service on page 56 #

Action List Component Description

FileStore.readDocument Reads the ProductCatalog document from the file
system and archives it. Builds the document object
from the document read.

GetStringFromDocument Gets the key string specified in the configuration.

Product Catalog Services

4-56 XPC Developer Guide and API Reference

XPCProductCatalog30Inbound Service

The Buyer’s XPCProductCatalog30Inbound service extracts the ProductCatalog from
its envelope, sends a MessageAcknowledgement document, and stores both
documents in designated locations on its local file system.

StringMapper Gets the TPID matching the key string from the
map file.

CreateEnvelope Creates an Envelope using the TPID as
RecepientId and senderTPID configuration as
senderId of the Envelope header.

Transmitter Transmits the Envelope to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the ProductCatalog document and sends
a MessageAcknowledgement.

GetCorrelationKey Builds a CorrelationKey to be used for file name
when persisting. MessageId of the envelope is
used

FileStore.storeEnvelope Stores the ProductCatalog Envelope, document
and attachment on the file system.

Action List Component Description

Quote Services

Trading Partner Preconfiguration 4-57

Quote Services

This section describes the XPC services used to process quote transactions. It
includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transactions

Quote transactions are peer-to-peer transactions. Following is an overview of quote
transactions:

1. A buyer sends a supplier a RequestForQuotation document requesting the price of
goods or services.

2. The supplier responds with a Quote document indicating the price of goods or
services.

The following diagram illustrates the flow of xCBL documents:

Quote Services

4-58 XPC Developer Guide and API Reference

Associated XPC Services

The following table lists the XPC services that buyers and suppliers must enable and
configure to process quote transactions:

Document Exchange Details

Following are the detailed steps involved in the exchange:

1. Buyer’s back office system creates the RequestForQuotation document and leaves
it in a designated location on its local file system.

2. Buyer’s XPCRequestForQuotation30Outbound service wakes up periodically and
searches the specified directory for the RequestForQuotation document. It places
the document in an xCBL envelope and transmits it to MarketSite.

3. MarketSite routes the RequestForQuotation document to the Supplier.

4. Supplier’s XPCRequestForQuotation30Inbound service extracts the
RequestForQuotation document from its envelope, sends a
MessageAcknowledgement document to the buyer, builds a default Quote
document, and stores both the RequestForQuotation document and the Quote
document in designated locations on its local file system.

5. Supplier’s XPCQuote30Outbound service wakes up periodically and searches the
specified directory for the Quote document. It places the document in an xCBL
envelope and transmits it to MarketSite.

6. MarketSite routes the Quote document to Buyer.

7. Buyer’s XPCQuote30Inbound service extracts the Quote document from its
envelope, sends a MessageAcknowledgement document to the supplier, and stores
the Quote document and its envelope in a designated location on the local file
system.

XPC Service Used By
Buyer

Used By
Supplier

XPCRequestForQuotation30Outbound Service on page 59 #

XPCRequestForQuotation30Inbound Service on page 59 #

XPCQuote30Outbound Service on page 60 #

XPCQuote30Inbound Service on page 61 #

Quote Services

Trading Partner Preconfiguration 4-59

XPCRequestForQuotation30Outbound Service

Buyer’s XPCRequestForQuotation30Outbound service wakes up periodically and
searches the specified directory for the RequestForQuotation document. It places the
document in an xCBL envelope and transmits it to MarketSite.

XPCRequestForQuotation30Inbound Service

Supplier’s XPCRequestForQuotation30Inbound service extracts the
RequestForQuotation document from its envelope, builds a default
ResponseDocument, and stores both the RequestDocument and the
ResponseDocument in designated locations on its local file system.

Action List Component Description

FileStore.readDocument Reads the RequestForQuotation document from
the file system and archive it. Builds the document
object from the document read.

GetStringFromDocument Extracts a string from document object using xPath
configuration.

StringMapper Gets the TPID matching the extracted string from
the map file.

CreateEnvelope Creates an Envelope using the TPID as
RecepientId and senderTPID configuration as
senderId of the Envelope header.

Transmitter Transmits the Envelope to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the RequestForQuotation document and
sends a MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the RequestForQuotation envelope,
document, and attachment and the default Quote
document.

Quote Services

4-60 XPC Developer Guide and API Reference

XPCQuote30Outbound Service

Supplier’s XPCQuote30Outbound service wakes up periodically and searches the
specified directory for the Quote document. It places the document in an xCBL
envelope and transmits it to MarketSite.

DefaultRequestForQuotationRespons
e30Builder

Builds a default Quote document.

FileStore.storeEnvelope Stores the RequestForQuotation Envelope,
document and attachment on the file system.

FileStore.storeDocument Stores the default Quote document on the file
system.

Action List Component Description

FileStore.readDocument Reads the Quote document from file system and
archive it. Builds the document object from the
document read. Builds filename key string from the
name of the file read.

FileStore.lookupEnvelope Finds the original requesting envelope using the
filename key passed. The original envelope is
needed to send correlated response envelope.

Responder Sends the Quote document to MarketSite.

Action List Component Description

Quote Services

Trading Partner Preconfiguration 4-61

XPCQuote30Inbound Service

Buyer’s XPCQuote30Inbound service extracts the Quote document from its envelope,
sends a message acknowledgement, and stores the Quote document and its envelope
in a designated location on the local file system.

Action List Component Description

MessageAcknowledgmentSender Receives the Quote document and sends a
MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the Quote envelope, document, and
attachment.

FileStore.storeEnvelope Stores the Quote Envelope, document and
attachment on the file system.

Remittance Advice Services

4-62 XPC Developer Guide and API Reference

Remittance Advice Services

This section describes the XPC services used to process remittance advice
transactions. It includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transactions

Remittance advice transactions are one-way document exchanges.

Following is an overview of remittance advice transactions:

1. A buyer sends a RemittanceAdvice to a supplier to indicate that payment was
initiated.

2. The supplier sends a MessageAcknowledgement to the buyer indicating that the
RemittanceAdvice was received.

Remittance Advice Services

Trading Partner Preconfiguration 4-63

Associated XPC Services

The following table lists the XPC services that buyers and suppliers must enable and
configure to process remittance advice transaction:

Document Exchange Details

Following are the detailed steps involved in the exchange:

1. Buyer’s back office system creates the RemittanceAdvice and leaves it in a
designated location on its local file system.

2. Buyer’s XPCRemittanceAdvice30Outbound service wakes up periodically and
searches the specified directory for the RemittanceAdvice. It places the document
in an xCBL envelope and transmits it to MarketSite.

3. MarketSite routes the RemittanceAdvice to the Supplier.

4. The Supplier’s XPCRemittanceAdvice30Inbound service extracts the
RemittanceAdvice from its envelope, sends a MessageAcknowledgement
document, and stores both documents in designated locations on its local file
system.

XPC Service Used By
Buyer

Used By
Supplier

XPCRemittanceAdvice30Outbound Service on page 64 #

XPCRemittanceAdvice30Inbound Service on page 64 #

Remittance Advice Services

4-64 XPC Developer Guide and API Reference

XPCRemittanceAdvice30Outbound Service

Buyer’s XPCRemittanceAdvice30Outbound service wakes up periodically and
searches the specified directory for the RemittanceAdvice. It places the document in
an xCBL envelope and transmits it to MarketSite.

XPCRemittanceAdvice30Inbound Service

The Supplier’s XPCRemittanceAdvice30Inbound service extracts the
RemittanceAdvice from its envelope, sends a MessageAcknowledgement document,
and stores both documents in designated locations on its local file system.

Action List Component Description

FileStore.readDocument Reads the RemittanceAdvice document from the
file system and archives it. Builds the document
object from the document read.

GetStringFromDocument Extracts a string from document object using xPath
configuration.

StringMapper Gets the TPID matching the extracted string from
the map file.

CreateEnvelope Creates Envelope using the TPID as RecepientId
and senderTPID configuration as senderId of the
Envelope header.

Transmitter Transmits the envelope to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the RemittanceAdvice document and
sends a MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the RemittanceAdvice envelope,
document, and attachment.

FileStore.storeEnvelope Stores the RemittanceAdvice Envelope, document
and attachment on the file system.

Time Series Services

Trading Partner Preconfiguration 4-65

Time Series Services

This section describes the XPC services used to process time series transactions. It
includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transactions

Following is an overview of a time series transaction:

1. The supplier may request time series data by sending the buyer a
TimeSeriesRequest.

2. The buyer sends a TimeSeries document either in response to the supplier’s
TimeSeriesRequest or independently of any such request.

3. The supplier sends the buyer a TimeSeriesResponse document identifying any
errors in the TradingPartner document.

The following diagram illustrates the flow of xCBL documents:

Time Series Services

4-66 XPC Developer Guide and API Reference

Associated XPC Services

The following table lists the XPC services that buyers and suppliers must enable to
process time series transactions:

Document Exchange Details

1. The supplier may request time series data by sending the buyer a
TimeSeriesRequest.

a) Supplier’s back office system creates the TimeSeriesRequest and leaves it in a
designated location on its local file system.

b) Supplier’s XPCTimeSeriesRequest30Outbound service wakes up periodically
and searches the specified directory for the TimeSeriesRequest. It places the
document in an xCBL envelope and transmits it to MarketSite.

c) MarketSite routes the TimeSeriesRequest to the buyer.

2. The buyer sends a TimeSeries document either in response to the supplier’s
TimeSeriesRequest or independently of any such request.

a) The buyer’s XPCTimeSeriesRequest30Inbound service extracts the
TimeSeriesRequest from its envelope, builds a default TimeSeries document,
and stores both the TimeSeriesRequest and the TimeSeries in designated
locations on its local file system.

b) The buyer’s XPCTimeSeries30Outbound and
XPCCorrelatedTimeSeries30Outbound services wake up periodically.

XPC Service Used By
Buyer

Used By
Supplier

XPCTimeSeriesRequest30Outbound Service on page 67 #

XPCTimeSeriesRequest30Inbound Service on page 68 #

XPCCorrelatedTimeSeries30Outbound Service on page 69 #

XPCTimeSeries30Outbound Service on page 69 #

XPCTimeSeries30Inbound Service on page 70 #

XPCTimeSeriesResponse30Outbound Service on page 71 #

XPCTimeSeriesResponse30Inbound Service on page 71 #

Time Series Services

Trading Partner Preconfiguration 4-67

XPCCorrelatedTimeSeries30Outbound searches the appropriate directory for
the TimeSeries document created in response to a TimeSeriesRequest.

XPCTimeSeries30Outbound searches the appropriate directory for the
TimeSeriesRequest.

If either service finds a TimeSeries document, it creates and xCBL envelope,
archives the envelope to the local file system, and transmits the TimeSeries
document to MarketSite.

c) MarketSite routes the TimeSeries document to the supplier.

3. The supplier sends the buyer a TimeSeriesResponse document identifying any
errors in the TradingPartner document.

a) The supplier’s XPCTimeSeries30Inbound service extracts the
TradingPartnerResponse document from its envelope, sends a
MessageAcknowledgement document to MarketSite, and builds a default
TimeSeriesResponse document. It stores both the TimeSeries envelope and
document in a designated location on the local file system. It stores the
TimeSeriesResponse document in a designated location on its local file system.

b) The supplier’s XPCTimeSeriesResponse30Outbound service wakes up
periodically and searches the specified directory for the TimeSeriesResponse. It
places the document in an xCBL envelope and transmits it to MarketSite.

c) MarketSite routes the TimeSeriesResponse to the buyer.

d) The buyer’s XPCTimeSeriesResponse30Inbound service extracts the response
document from its envelope, sends a MessageAcknowledgement, and stores the
TimeSeriesResponse and its envelope in a designated location on the local file
system.

XPCTimeSeriesRequest30Outbound Service

The supplier’s XPCTimeSeriesRequest30Outbound service wakes up periodically
and searches the specified directory for the TimeSeriesRequest. It places the
document in an xCBL envelope and transmits it to MarketSite.

Action List Component Description

FileStore.readDocument Reads the TimeSeriesRequest document from the
file system and archives it. Builds the document
object from the document read.

getStringFromDocument Extracts a string from document object using xPath
configuration.

Time Series Services

4-68 XPC Developer Guide and API Reference

XPCTimeSeriesRequest30Inbound Service

The buyer’s XPCTimeSeriesRequest30Inbound service extracts the
TimeSeriesRequest from its envelope, builds a default TimeSeries document, and
stores both the TimeSeriesRequest and the TimeSeries in designated locations on its
local file system.

StringMapper Gets the TPID matching the extracted string from
the map file.

CreateEnvelope Creates an Envelope using the TPID as
RecepientId and senderTPID configuration as
senderId of the Envelope header.

Transmitter Transmits the Envelope to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the TimeSeriesRequest document and
sends a MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the TimeSeriesRequest envelope,
document, and attachment and the default
TimeSeries document.

DefaultTimeSeriesBuilder Builds a default TimeSeries document.

FileStore.storeEnvelope Stores the TimeSeriesRequest Envelope,
document and attachment on the file system.

FileStore.storeDocument Stores the default TimeSeries document on the file
system.

Action List Component Description

Time Series Services

Trading Partner Preconfiguration 4-69

XPCCorrelatedTimeSeries30Outbound Service

The buyer’s XPCCorrelatedTimeSeries30Outbound service wakes up periodically
and searches the appropriate directory for the TimeSeries document created in
response to a TimeSeriesRequest. If it finds a TimeSeries document, it creates an
xCBL envelope, archives the envelope to the local file system, and transmits the
TimeSeries document to MarketSite.

XPCTimeSeries30Outbound Service

The buyer’s XPCTimeSeries30Outbound service wakes up periodically and searches
the appropriate directory for the TimeSeries document created independently of a
TimeSeriesRequest. It creates an xCBL envelope, archives the envelope to the local
file system, and transmits the TimeSeries document to MarketSite.

Action List Component Description

FileStore.readDocument Reads the TimeSeries document from file system
and archive it. Builds the document object from the
document read. Builds filename key string from the
name of the file read. The filename key string must
be same as the filename key of the
TimeSeriesRequest envelope persisted by
XPCTimeSeriesRequest30Inbound service.

FileStore.lookupEnvelope Looks up the TimeSeriesRequest envelope using
the filename key.

CreateCorrelatingEnvelope Creates the TimeSeries envelope based on the
header information of the TimeSeriesRequest
envelope. Keep the correlationId same. Swap the
senderId and recipientId.

Transmitter Transmits the TimeSeries envelope to MarketSite.

Action List Component Description

FileStore.readDocument Reads the TimeSeries document from file system
and archive it. Builds the document object from the
document read.

GetStringFromDocument Extracts a string from document object using xPath
configuration.

Time Series Services

4-70 XPC Developer Guide and API Reference

XPCTimeSeries30Inbound Service

The supplier’s XPCTimeSeries30Inbound service extracts the
TradingPartnerResponse document from its envelope, sends a
MessageAcknowledgement document to MarketSite, and builds a default
TimeSeriesResponse document. It stores both the TimeSeries envelope and document
in a designated location on the local file system. It stores the TimeSeriesResponse
document in a designated location on its local file system.

StringMapper Gets the TPID matching the extracted string from
the map file.

CreateEnvelope Creates an Envelope using the TPID as
RecepientId and senderTPID configuration as
senderId of the Envelope header.

Transmitter Transmits the Order envelope to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the TimeSeries document and sends a
MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the TimeSeries envelope, document,
and attachment and the default
TimeSeriesResponse document.

DefaultTimeSeriesResponse30Builder Builds a default TimeSeriesResponse document.

FileStore.storeEnvelope Stores the TimeSeries Envelope, document and
attachment on the file system.

FileStore.storeDocument Stores the default TimeSeriesResponse document
on the file system.

Action List Component Description

Time Series Services

Trading Partner Preconfiguration 4-71

XPCTimeSeriesResponse30Outbound Service

The supplier’s TradingPartner1’s XPCTimeSeriesResponse30Outbound service
wakes up periodically and searches the specified directory for the
TimeSeriesResponse. It places the document in an xCBL envelope and transmits it to
MarketSite.

XPCTimeSeriesResponse30Inbound Service

The supplier’s XPCTimeSeriesResponse30Inbound service extracts the response
document from its envelope, sends a MessageAcknowledgement, and stores the
TimeSeriesResponse and its envelope in a designated location on the local file
system.

Action List Component Description

FileStore.readDocument Reads the TimeSeriesResponse document from
the file system and archives it. Builds the document
object from the document read. Builds filename key
string from the name of the file read.

FileStore.lookupEnvelope Finds the original requesting envelope using the
filename key passed. The original envelope is
needed to send correlated response envelope.

Responder Sends the response document to MarketSite.

Action List Component Description

MessageAcknowledgementSender Receives the TimeSeriesResponse document and
sends a MessageAcknowledgement.

GetCorrelationKey Builds a CorrelationKey to be used for file name
when persisting. MessageId of the envelope is
used

FileStore.storeEnvelope Stores the TimeSeriesResponse Envelope,
document and attachment on the file system.

Trading Partner Management Services

4-72 XPC Developer Guide and API Reference

Trading Partner Management Services

This section describes the XPC services used to process trading partner management
transactions. It includes the following information:

! An overview of the transaction

! A list of XPC services to enable and configure

! A detailed description of the document exchange

! A description of each service’s default Action Director

Overview of Transactions

This section describes the document exchanges involved in the following
transactions:

! Registering a trading partner

! Deleting a trading partner

! Registering a trading partner user

! Deleting a trading partner user

The following diagram illustrates the exchange of xCBL documents:

Trading Partner Management Services

Trading Partner Preconfiguration 4-73

Associated XPC Services

The following table lists the XPC services that trading partners and registration
services must enable to process trading partner management transaction:

XPC Service Used By
Trading
Partner

Used By
Registra
tion
Service

XPCTradingPartnerOrganizationInformation30Outbound
Service on page 81

#

XPCTradingPartnerOrganizationInformation30Inbound Service
on page 78

#

XPCTradingPartnerResponseFromTPOrganizationInfo30Outbo
und Service on page 82

#

XPCTradingPartnerResponse30Inbound Service on page 80 #

XPCTradingPartnerOrganizationDelete30Outbound Service on
page 82

#

XPCTradingPartnerOrganizationDelete30Inbound Service on
page 79

#

XPCTradingPartnerResponseFromTPOrganizationDelete30Outb
ound Service on page 83

#

XPCTradingPartnerUserInformation30Outbound Service on
page 80

#

XPCTradingPartnerUserInformation30Inbound Service on page
77

#

XPCTradingPartnerResponseFromTPUserInfo30Outbound
Service on page 83

#

XPCTradingPartnerUserDelete30Outbound Service on page 81 #

XPCTradingPartnerUserDelete30Inbound Service on page 78 #

XPCTradingPartnerResponseFromTPUserDelete30Outbound
Service on page 84

#

Trading Partner Management Services

4-74 XPC Developer Guide and API Reference

Document Exchange Details: Registering a Trading Partner

1. A trading partner registers with the registration service.

a) Organization1’s back office system creates the
TradingPartnerOrganizationInformation document and leaves it in a designated
location on its local file system.

b) Organization1’s XPCTradingPartnerOrganizationInformation30Outbound
service wakes up periodically and searches the specified directory for the
TradingPartnerOrganizationInformation document. It places the document in an
xCBL envelope and transmits it to MarketSite.

c) MarketSite routes the RequestDocument to the registration service.

2. The registration service sends a TradingPartnerResponse document.

a) The registration service’s
XPCTradingPartnerOrganizationInformation30Inbound service extracts the
TradingPartnerOrganizationInformation document from its envelope, builds a
default TradingPartnerResponse, and stores both the
TradingPartnerOrganizationInformation document and the
TradingPartnerResponse document in designated locations on its local file
system. The TradingPartnerResponse is stored in a file with the prefix
TradingPartnerResponseFromTPOrganizationInfo_.

a) The registration service’s
XPCTradingPartnerResponseFromTPOrganizationInfo30Outbound service
wakes up periodically and searches the specified directory for the
TradingPartnerResponse. It places the document in an xCBL envelope and
transmits it to MarketSite.

b) MarketSite routes the TradingPartnerResponse to TradingPartner1.

c) TradingPartner1’s XPCTradingPartnerResponse30Inbound service extracts the
response document from its envelope, sends a MessageAcknowledgement, and
stores the TradingPartnerResponse and its envelope in a designated location on
the local file system.

Document Exchange Details: Deleting a Trading Partner

1. A trading partner notifies the registration service to remove it from the trading
partner registry.

a) The trading partner’s back office system creates the
TradingPartnerOrganizationDelete document and leaves it in a designated
location on its local file system.

b) The trading partner’s XPCTradingPartnerOrganizationDelete30Outbound

Trading Partner Management Services

Trading Partner Preconfiguration 4-75

service wakes up periodically and searches the specified directory for the
TradingPartnerOrganizationDelete document. It places the document in an
xCBL envelope and transmits it to MarketSite.

c) MarketSite routes the TradingPartnerOrganizationDelete to the registration
service.

2. The registration service sends a TradingPartnerResponse document.

a) The registration service’s XPCTradingPartnerOrganizationDelete30Inbound
service extracts the TradingPartnerOrganizationDelete document from its
envelope, builds a default TradingPartnerResponse, and stores both the
TradingPartnerOrganizationDelete document and the TradingPartnerResponse
document in designated locations on its local file system. The
TradingPartnerResponse is stored in a file with the prefix
TradingPartnerResponseFromTPOrganizationDelete_.

a) The registration service’s
XPCTradingPartnerResponseFromTPOrganizationDelete30Outbound service
wakes up periodically and searches the specified directory for the
TradingPartnerResponse. It places the document in an xCBL envelope and
transmits it to MarketSite.

b) MarketSite routes the TradingPartnerResponse to the trading partner.

c) The trading partner’s XPCTradingPartnerResponse30Inbound service extracts
the response document from its envelope, sends a MessageAcknowledgement,
and stores the TradingPartnerResponse and its envelope in a designated location
on the local file system.

Document Exchange Details: Registering a Trading Partner User

1. A trading partner registers one of its users with the registration service.

a) The trading partner’s back office system creates the
TradingPartnerUserInformation document and leaves it in a designated location
on its local file system.

b) The trading partner’s XPCTradingPartnerUserInformation30Outbound service
wakes up periodically and searches the specified directory for the
TradingPartnerUserInformation document. It places the document in an xCBL
envelope and transmits it to MarketSite.

c) MarketSite routes the TradingPartnerUserInformation document to the
registration service.

2. The registration service sends a TradingPartnerResponse document.

a) The registration service’s XPCTradingPartnerUserInformation30Inbound

Trading Partner Management Services

4-76 XPC Developer Guide and API Reference

service extracts the TradingPartnerUserInformation document from its
envelope, builds a default TradingPartnerResponse, and stores both the
TradingPartnerUserInformation document and the TradingPartnerResponse
document in designated locations on its local file system. The
TradingPartnerResponse is stored in a file with the prefix
TradingPartnerResponseFromTPUserInfo_.

a) The registration service’s
XPCTradingPartnerResponseFromTPUserInfo30Outbound service wakes up
periodically and searches the specified directory for the
TradingPartnerResponse. It places the document in an xCBL envelope and
transmits it to MarketSite.

b) MarketSite routes the TradingPartnerResponse to the trading partner.

c) The trading partner’s XPCTradingPartnerResponse30Inbound service extracts
the response document from its envelope, sends a MessageAcknowledgement,
and stores the TradingPartnerResponse and its envelope in a designated location
on the local file system

Document Exchange Details: Deleting a Trading Partner User

1. A trading partner notifies the registration service that a user has been deleted.

a) The trading partner’s back office system creates the TradingPartnerUserDelete
document and leaves it in a designated location on its local file system.

b) Organization1’s XPCTradingPartnerUserDelete30Outbound service wakes up
periodically and searches the specified directory for the
TradingPartnerUserDelete document. It places the document in an xCBL
envelope and transmits it to MarketSite.

c) MarketSite routes the TradingPartnerUserDelete to the registration service.

2. The registration service sends a TradingPartnerResponse document.

a) The registration service’s XPCTradingPartnerUserDelete30Inbound service
extracts the TradingPartnerUserDelete document from its envelope, builds a
default TradingPartnerResponse, and stores both the TradingPartnerUserDelete
document and the TradingPartnerResponse document in designated locations on
its local file system. The TradingPartnerResponse is stored in a file with the
prefix TradingPartnerResponseFromTUserDelete_.

b) The registration service’s
XPCTradingPartnerResponseFromTPUserDelete30Outbound service wakes up
periodically and searches the specified directory for the
TradingPartnerResponse. It places the document in an xCBL envelope and
transmits it to MarketSite.

Trading Partner Management Services

Trading Partner Preconfiguration 4-77

c) MarketSite routes the TradingPartnerResponse to the trading partner.

d) The trading partner’s XPCTradingPartnerResponse30Inbound service extracts
the response document from its envelope, sends a MessageAcknowledgement,
and stores the TradingPartnerResponse and its envelope in a designated location
on the local file system.

XPCTradingPartnerUserInformation30Inbound Service

Action List Component Description

MessageAcknowledgementSender Receives the TradingPartnerUserInformation
document and sends a
MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the TradingPartnerUserInformation
envelope, document, and attachment and the
default TradingPartnerResponse document.

DefaultTPResponseFromUserInfo30B
uilder

Builds a default TradingPartnerResponse
document

FileStore.storeEnvelope Stores the TradingPartnerUserInformation
Envelope, document and attachment on the file
system.

FileStore.storeDocument Stores the default TradingPartnerResponse
document in a file whose name begins with the
prefix TradingPartnerResponseFromTPUserInfo_.

Trading Partner Management Services

4-78 XPC Developer Guide and API Reference

XPCTradingPartnerUserDelete30Inbound Service

XPCTradingPartnerOrganizationInformation30Inbound Service

Action List Component Description

MessageAcknowledgmentSender Receives the TradingPartnerUserDelete document
and sends a MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the TradingPartnerUserDelete
envelope, document, and attachment and the
default TradingPartnerResponse document.

DefaultTPResponseFromUserDelete30
Builder

Builds a default TradingPartnerResponse
document.

FileStore.storeEnvelope Stores the TradingPartnerUserDelete Envelope,
document and attachment on the file system.

FileStore.storeDocument Stores the default TradingPartnerResponse
document on the file system.

Action List Component Description

MessageAcknowledgementSender Receives the
TradingPartnerOrganizationInformation document
and sends a MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the
TradingPartnerOrganizationInformation envelope,
document, and attachment and the default
TradingPartnerResponse document.

DefaultTPResponseFromOrganization
Info30Builder

Builds a default TradingPartnerResponse
document.

Trading Partner Management Services

Trading Partner Preconfiguration 4-79

XPCTradingPartnerOrganizationDelete30Inbound Service

FileStore.storeEnvelope Stores the TradingPartnerOrganizationInformation
Envelope, document and attachment on the file
system.

FileStore.storeDocument Stores the default TradingPartnerResponse
document on the file system.

Action List Component Description

MessageAcknowledgementSender Receives the TradingPartnerOrganizationDelete
document and sends a
MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey to be used for file name
when persisting. MessageId of the envelope is
used

DefaultTPResponseFromOrganization
Delete30Builder

Builds a default TradingPartnerResponse
document.

FileStore.storeEnvelope Stores the TradingPartnerOrganizationDelete
Envelope, document and attachment on the file
system.

FileStore.storeDocument Stores the default TradingPartnerResponse
document on the file system.

Action List Component Description

Trading Partner Management Services

4-80 XPC Developer Guide and API Reference

XPCTradingPartnerResponse30Inbound Service

XPCTradingPartnerUserInformation30Outbound Service

Action List Component Description

MessageAcknowledgementSender Receives the TradingPartnerResponse document
and sends a MessageAcknowledgement.

CorrelationKeyBuilder Builds a CorrelationKey from the MessageId of the
envelope. The CorrelationKey, concatenated with
the appropriate prefix, forms the names of the files
used to store the TradingPartnerResponse
envelope, document, and attachment.

FileStore.storeEnvelope Stores theTradingPartnerResponse Envelope,
document and attachment on the file system.

Action List Component Description

FileStore.readDocument Reads the TradingPartnerUserInformation
document from the file system and archive it. Builds
the document object from the document read.

GetStringFromDocument Gets the key string specified in the configuration.

StringMapper Gets the TPID matching the key string the map file.

CreateEnvelope Creates an Envelope using the TPID as
RecepientId and senderTPID configuration as
senderId of the Envelope header.

Transmitter Transmits the Envelope to MarketSite.

Trading Partner Management Services

Trading Partner Preconfiguration 4-81

XPCTradingPartnerUserDelete30Outbound Service

XPCTradingPartnerOrganizationInformation30Outbound Service

Action List Component Description

FileStore.readDocument Reads the TradingPartnerUserDelete document
from the file system and archives it. Builds the
document object from the document read.

GetStringFromDocument Gets the key string specified in the configuration

StringMapper Gets the TPID matching the key string the map file.

CreateEnvelope Creates an Envelope using the TPID as
RecepientId and senderTPID configuration as
senderId of the Envelope header.

Transmitter Transmits the Envelope to MarketSite.

Action List Component Description

FileStore.readDocument Reads the TradingPartnerOrganizationInformation
document from file system and archives it. Builds
the document object from the document read.

GetStringFromDocument Gets the key string specified in the configuration.

StringMapper Gets the TPID matching the key string the map file.

CreateEnvelope Creates an Envelope using the TPID as
RecepientId and senderTPID configuration as
senderId of the Envelope header.

Transmitter Transmits the Envelope to MarketSite.

Trading Partner Management Services

4-82 XPC Developer Guide and API Reference

XPCTradingPartnerOrganizationDelete30Outbound Service

XPCTradingPartnerResponseFromTPOrganizationInfo30Outbound Service

Action List Component Description

FileStore.readDocument Reads the TradingPartnerOrganizationDelete
document from the file system and archives it.
Builds the document object from the document
read.

GetStringFromDocument Gets the key string specified in the configuration.

StringMapper Gets the TPID matching the key string the map file.

CreateEnvelope Creates an Envelope using the TPID as
RecepientId and senderTPID configuration as
senderId of the Envelope header.

Transmitter Transmits the Envelope to MarketSite.

Action List Component Description

FileStore.readDocument Reads the TradingPartnerResponse document
from the file system and archives it. This document
is supposed to be a TradingPartnerResponse to a
TradingPartnerOrganizationInfomation document.
Builds the document object from the document
read. Builds filename key string from the name of
the file read.

FileStore.lookupEnvelope Finds the original requesting envelope using the
filename key passed. The original envelope is
needed to send correlated response envelope

Responder Sends the response document to MarketSite.

Trading Partner Management Services

Trading Partner Preconfiguration 4-83

XPCTradingPartnerResponseFromTPOrganizationDelete30Outbound Service

XPCTradingPartnerResponseFromTPUserInfo30Outbound Service

Action List Component Description

FileStore.readDocument Reads the TradingPartnerResponse document
from the file system and archive sit. This document
is supposed to be a TradingPartnerResponse to a
TradingPartnerOrganizationDelete document.
Builds the document object from the document
read. Builds filename key string from the name of
the file read.

FileStore.lookupEnvelope Finds the original requesting envelope using the
filename key passed. The original envelope is
needed to send correlated response envelope.

Responder Sends the response document to MarketSite.

Action List Component Description

FileStore.readDocument Reads the TradingPartnerResponse document
from the file system and archives it. This document
is supposed to be a TradingPartnerResponse to a
TradingPartnerUserInformation document. Builds
the document object from the document read.
Builds filename key string from the name of the file
read.

FileStore.lookupEnvelope Finds the original requesting envelope using the
filename key passed. The original envelope is
needed to send correlated response envelope.

Responder Sends the response document to MarketSite.

Trading Partner Management Services

4-84 XPC Developer Guide and API Reference

XPCTradingPartnerResponseFromTPUserDelete30Outbound Service

Action List Component Description

FileStore.readDocument Reads the TradingPartnerResponse document
from the file system and archives it. Builds the
document object from the document. Builds
filename key string from the name of the file read.

FileStore.lookupEnvelope Finds the original requesting envelope using the
filename key passed. The original envelope is
needed to send correlated response envelope.

Responder Sends the TradingPartnerResponse document to
MarketSite.

Component Location

XPC Component Library 5-1

5 XPC Component Library

In This Chapter

This chapter describes the XPC Component Library. It includes a description of the
component, required inputs, expected outputs, and values that can be externally
configured.

Components fall into the following categories:

! Default response builders, which create default responses to incoming request
documents

! MarketSite Messaging Layer (MML) components, which create envelopes for
response documents, and XPath-based document querying components.

! File system components, which pass information to and from the file system

! Sample integrators, which can be customized to update the default response
documents with data from the back office system

! Other system components, which performs such tasks as handling exceptions and
transmitting documents to MarketSite.

Components marked as deprecated should be used only with xCBL 2.x documents.

For more information about the components and methods in this table, see the API
Reference chapter.

Component Location

When configuring a component from the Component Library using XPC Manager,
you must specify the fully qualified class name. For all standard XPC components,
the component code is found at:

com.commerceone.xpc.components.<component class>.

Default Response Builders

5-2 XPC Developer Guide and API Reference

Default Response Builders

The following components are used to build default responses to incoming request
documents:

Name and Description Inputs, Outputs, and Configurations

DefaultAuctionCreateResponse30Builder
Builds a default AuctionCreateResponse document in
response to an incoming AuctionCreate document.

Inputs:
DefaultAuctionCreateDoc -
DocumentObject - the incoming
AuctionCreate request document.

Outputs:
DefaultAuctionCreateResponseDoc -
DocumentObject - the default
AuctionCreateResponse document.

Configurations:
None

DefaultAuctionResultResponse30Builder
Builds a default AuctionResultResponse document in
response to an incoming AuctionResult document.

Inputs:
DefaultAuctionResultDoc -
DocumentObject - the incoming
AuctionResult document.

Outputs:
DefaultAuctionResultResponseDoc -
DocumentObject - the default
AuctionResultResponse document.

Configurations:
None

DefaultAvailabilityCheckResponse30Builder
Returns a default AvailabilityCheckResult document in
response to an incoming AvailabilityCheckRequest
document.

Inputs:
DefaultAvailabilityCheckRequestDoc -
DocumentObject - the
AvailabilityCheckRequest document.

Outputs:
DefaultAvailabilityCheckResponse -
DocumentObject - the default
AvailabilityCheckResult document

Configurations:
Quantity - the available quantity of the item
UOMCode - the unit of measurement code
in which the quantity is expressed

Default Response Builders

XPC Component Library 5-3

DefaultAvailabilityCheckResponseBuilder
(deprecated)
Returns a default xCBL 2.x AvailabilityCheckResponse
document in response to an incoming xCBL 2.x
AvailabilityCheckRequest document.

Inputs:
DefaultAvailabilityCheckRequestDoc -
DocumentObject - the
AvailabilityCheckRequest document.

Outputs:
DefaultAvailabilityCheckResponse -
DocumentObject - the default
AvailabilityCheckResult document

Configurations:
Quantity - the available quantity of the item
UOMCode - the unit of measurement code
in which the quantity is expressed

DefaultAvailabilityToPromiseResponse30Builde
r
Builds a default AvailabilityToPromiseResponse
document based on an incoming AvailabilityToPromise
document.

Inputs:
DefaultAvailabilityToPromiseDoc -
DocumentObject - the incoming
AvailabilityToPromise document

Outputs:
DefaultAvailabilityToPromiseResponseDoc
- DocumentObject - the default
AvailabilityToPromise response document.

Configurations:
None

DefaultOrder30Builder
Builds a default Order document in response to an
incoming OrderRequest document.

Inputs:
DefaultOrderRequest30Doc -
DocumentObject - the incoming
OrderRequest document

Outputs:
DefaultOrder30Doc - DocumentObject -
the default Order document.

Configurations:
None

Name and Description Inputs, Outputs, and Configurations

Default Response Builders

5-4 XPC Developer Guide and API Reference

DefaultOrderResponse30Builder
Builds a default OrderResponse document in response to
an incoming Order document.

Inputs:
DefaultOrder30Doc - DocumentObject -
the incoming Order document.

Outputs:
DefaultOrderresponse30Doc -
DocumentObject - the default
OrderResponse document.

Configurations:
None

DefaultOrderResponseFromChangeOrder30Bui
lder
Builds a default OrderResponse document in response to
an incoming ChangeOrder document.

Inputs:
DefaultChangeOrder30Doc -
DocumentObject - the incoming
ChangeOrder document.

Outputs:
DefaultOrderResponse30Doc -
DocumentObject - the default
OrderResponse document.

Configurations:
None

OrderStatusResponse30Builder
Builds a default OrderStatusResponse document in
response to an incoming OrderStatusRequest document.

Inputs:
DefaultOrderStatusRequestDoc -
DocumentObject - the incoming
OrderStatusRequest document.

Outputs:
DefaultOrderStatusResponse -
DocumentObject - the default
OrderStatusResponse document.

Configurations:
Status - the status of the order.
“OrderStatusNotAccepted” by default.

Name and Description Inputs, Outputs, and Configurations

Default Response Builders

XPC Component Library 5-5

DefaultOrderStatusResponseBuilder
(deprecated)
Returns a default xCBL 2.x OrderStatusResponse
document in response to an incoming
OrderStatusRequest document.

Inputs:
DefaultOrderStatusRequestDoc -
DocumentObject - the OrderStatusRequest
document

Outputs:
DefaultOrderStatusResponse -
DocumentObject - the default
OrderStatusResult document

Configurations:
Status - the status of the order

DefaultPaymentRequestAck30Builder
Builds a default PaymentRequestAcknowledgment
document in response to an incoming PaymentRequest
document.

Inputs:
DefaultPaymentRequest30Doc -
DocumentObject - the incoming
PaymentRequest document.

Outputs:
DefaultPaymentrequestAck30Doc -
DocumentObject - the default
PaymentRequestAcknowledgment
document.

Configurations:
None

DefaultPlanningScheduleResponse30Builder
Builds a default PlanningScheduleResponse document
in response to an incoming PlanningSchedule request
document.

Inputs:
DefaultPlanningScheduleDoc -
DocumentObject - the incoming

Outputs:
DefaultPlanningScheduleResponseDoc -
DocumentObject - the default
PlanningScheduleResponse document.

Configurations:
None

Name and Description Inputs, Outputs, and Configurations

Default Response Builders

5-6 XPC Developer Guide and API Reference

DefaultPriceCheckResponse30Builder
Returns a default PriceCheckResponse in response to an
incoming PriceCheckRequest document.

Inputs:
DefaultPriceCheckRequestDoc -
DocumentObject - the input
PriceCheckRequest document

Outputs:
DefaultPriceCheckResponse -
DocumentObject - the default
PriceCheckResult document

Configurations:
UnitPrice - the unit price for the item
UOMCode - the unit of measurement code
in which the unit price is expressed

DefaultPriceCheckResponseBuilder
(deprecated)
Returns a default xCBL 2.x PriceCheckResponse in
response to an incoming PriceCheckRequest document.

Inputs:
DefaultPriceCheckRequestDoc -
DocumentObject - the input
PriceCheckRequest document

Outputs:
DefaultPriceCheckResponse -
DocumentObject - the default
PriceCheckResult document

Configurations:
UnitPrice - the unit price for the item
UOMCode - the unit of measurement code
in which the unit price is expressed

DefaultPurchaseOrderResponseBuilder
(deprecated)
Returns a default xCBL 2.x PurchaseOrderResponse in
response to an incoming PurchaseOrderRequest
document.

Inputs:
DefaultPurchaseOrderRequestDoc -
DocumentObject - the input
PurchaseOrderRequest document

Outputs:
DefaultPurchaseOrderResponse -
DocumentObject - the default
PurchaseOrderResponse document

Configurations:
None

Name and Description Inputs, Outputs, and Configurations

Default Response Builders

XPC Component Library 5-7

DefaultQuote30Builder
Builds a default Quote document in response to a
RequestForQuotation document.

Inputs:
DefaultRequestForQuoteDoc -
DocumentObject - the incoming
RequestForQuotation document.

Outputs:
DefaultQuoteDoc - DocumentObject - the
default Quote document

Configurations:
None

DefaultShippingScheduleResponse30Builder
Builds a default ShippingScheduleResponse document
in response to a ShippingSchedule request document.

Inputs:
DefaultShippingScheduleDoc -
DocumentObject - the incoming
ShippingSchedule document.

Outputs:
DefaultShippingScheduleResponseDoc -
DocumentObject - the default
ShippingScheduleResponse document.

Configurations:
None

DefaultTimeSeries30Builder
Builds a default TimeSeriesResponse document in
response to a TimeSeries document.

Inputs:
DefaultTimeSeriesRequest30Doc -
DocumentObject - the incoming
TimeSeriesRequest document.

Outputs:
DefaultTimeSeries30Doc -
DocumentObject - the default TimeSeries

Configurations:
None

Name and Description Inputs, Outputs, and Configurations

Default Response Builders

5-8 XPC Developer Guide and API Reference

DefaultTimeSeriesResponse30Builder
Builds a default TimeSeriesResponse document in
response to an incoming TimeSeriesRequest document.

Inputs:
DefaultTimeSeries30Doc -
DocumentObject - the incoming
TimeSeries document.

Outputs:
DefaultTimeSeriesResponse30Doc -
DocumentObject - the default
TimeSeriesResponse document.

Configurations:
None

DefaultTPRResponseFromOrganizationDelete3
0Builder
Builds a default TradingPartnerResponse document in
response to an incoming
TradingPartnerOrganizationDelete document.

Inputs:
DefaultTPOrganizationDelete30Doc -
DocumentObject - the incoming
TradingPartnerOrganizationDelete
document.

Outputs:
DefaultTradingPartnerResponse30Doc -
DocumentObject - the default
TradingPartnerResponse document.

Configurations:
None

DefaultTPRResponseFromOrganizationInfo30B
uilder
Builds a default TradingPartnerResponse document in
response to an incoming
TradingPartnerOrganizationInformation document.

Inputs:
DefaultTPOrganizationInformation30Doc -
DocumentObject - the incoming
TradingPartnerOrganizationInformation
document.

Outputs:
DefaultTradingPartnerResponse30Doc -
DocumentObject - the default
TradingPartnerResponse document.

Configurations:
None

Name and Description Inputs, Outputs, and Configurations

Default Response Builders

XPC Component Library 5-9

DefaultTPResponseFromUserDelete30Builder
Builds a default TradingPartnerResponse document in
response to an incoming TradingPartnerUserDelete
document.

Inputs:
DefaultTPUserDelete30Doc -
DocumentObject - the incoming
TradingPartnerUserDelete document.

Outputs:
DefaultTradingPartnerResponse30Doc -
DocumentObject - the default
TradingPartnerResponse document.

Configurations:
None

DefaultTPRResponseFromUserInfo30Builder
Builds a default TradingPartnerResponse document in
response to an incoming TradingPartnerUserInformation
document.

Inputs:
DefaultTPUserInformation30Doc -
DocumentObject - the incoming
TradingPartnerUserInformation document.

Outputs:
DefaultTradingpartnerResponse30Doc -
DocumentObject - the default
TradingPartnerResponse document.

Configurations:
None

Name and Description Inputs, Outputs, and Configurations

MarketSite Messaging Layer (MML) and Document Querying Components

5-10 XPC Developer Guide and API Reference

MarketSite Messaging Layer (MML) and Document Querying
Components

The following components are used to create envelopes for response documents.

Name and Description Inputs, Outputs, and Configurations

CreateCorrelatingEnvelope
Creates an Envelope for a response
document. The RecipientTPID of
the new envelope matches the
SenderTPID of the request
envelope. The CorrelationId of the
new envelope matches that of the
request envelope.

Inputs:
Document - the incoming request document
Envelope - the envelope that transmitted the request
document

Outputs:
Envelope - the output envelope created for the response
document

Configurations:
Addressing - String - the addressing mechanism for the new
envelope. If “swap” (the default), the sender of the original
document becomes the recipient of the new document and the
recipient of the original document becomes the sender of the
new document. If “keep” the new document’s sender and
recipient are the same as those of the request document.
TransmissionMode - String - The transmission mode for the
document exchange. One of the following: one_way for one-
way transmission, peer_peer for peer-to-peer transmission, or
sync for synchronous transmission

MarketSite Messaging Layer (MML) and Document Querying Components

XPC Component Library 5-11

CreateEnvelope
Creates an envelope for a document.

Inputs:
document - Document - the document for which the envelope
will be created.

Outputs:
recipientTPID - String - the document recipient’s Trading
Partner ID (TPID).

Configurations:
senderTPID - String - the document sender’s Trading Partner
ID key string to be looked up from the mapping file specified
by the mapFile configuration. This is required.
TransmissionMode - String - the transmission mode for the
document exchange. One of the following: one_way for one-
way transmission, peer_peer for peer-to-peer transmission, or
sync for synchronous transmission.
mapFile - Full path to the file which contains the key string
and TPID value pairs.

GetCorrelationKey
Returns the correlation key of an
envelope.

Inputs
envelope - Envelope - the request envelope

Outputs
correlationKey - String - the correlation ID of the envelope

Configurations
KeyProperty - determines whether the correlation key is
generated from the incoming envelope’s CorrelationId (the
default) or its MessageId.
Xpath - a correlation key specification that reflects the values
of one or more xCBL elements or attributes. Takes
precedence over the KeyProperty setting.

GetStringFromDocument
Queries a document using an XPath
string and outputs the results of the
query as a string. This component
uses the XPCDocHandle helper
class for XPath-based querying.

Inputs:
document - DocumentObject - the xCBL document

Outputs:
correlationKey - String - the value queried from the document

Configurations:
DefaultString - an alternative correlation key to be output
xPath - query string. For more informtion, see theBuilding
Custom Integrations chapter.

Name and Description Inputs, Outputs, and Configurations

File System Components

5-12 XPC Developer Guide and API Reference

File System Components

The components below pass information to and from the file system:

Name and Description Inputs, Outputs, and Configurations

All components in the FileStore
class

The following configurations are common to all
methods of the FileStore class:

! Overwrite - determines whether new files overwrite
existing files with the same name. A “no” setting throws
an error if an existing file with the specified name is
found. A “yes” setting archives the most recent version
of the file by appending a dollar sign ($) to its file name.
A “history” setting archives all versions of the file by
appending a dollar sign and version number to the most
recent version’s file name is appended by a dollar sign ($)
and version number to an existing file when it is
overwritten.

! RootDirectory - the root archive directory used for all
configurations.

FileStore.copyFile
Copies the file named by the input string
from the File.Source.Directory to the
File.Target.Directory defined in the
configuration file. File name format will
be [Prefix][filename key][extension].

Inputs:

! filenameKey - String - the correlation key of the file to be
copied

Outputs:

! None
Configurations:

! File.Source.Directory - the directory in which the
original file is located

! File.Target.Directory - the directory into which the file
will be copied

! File.Prefix - a set of characters to be added at the
beginning of the file name specified by filenameKey

! File.Extension - a set of characters to be added at the end
of the file name specified by filenameKey

File System Components

XPC Component Library 5-13

FileStore.lookupEnvelope
Reads the envelope with the specified
correlation key from the file system.
Archives the envelope to a separate
Envelope.Archive.Directory if one is
defined.

Inputs:

! correlationKey - String - the correlation key of the
envelope

Outputs:

! lookupEnvelope - Envelope - the archived envelope
Configurations:

! Envelope.Directory - the directory in which the envelope
is currently stored

! Envelope.Archive.Directory - the directory in which the
envelope archive will be stored

! Envelope.Prefix - string (by default, E_) with which each
envelope file name begins

! Envelope.Extension - string (by default, .env) with which
each envelope file name ends

Name and Description Inputs, Outputs, and Configurations

File System Components

5-14 XPC Developer Guide and API Reference

FileStore.readDocument
Reads a document from a directory.
Outputs the document along with the
correlation key. Archives the document to
a separate Document.Archive.Directory
if one is defined. This method follows the
conventions required for an initiating
action in a Timed Service. It continues to
read and issue documents until no more
are found.

Inputs:

! None
Outputs:

! documentRead - Document - the document to be read

! correlationKey - String - the correlation key of the
document

Configurations:

! Document.Directory - directory in which the document is
stored. The default directory name varies by XPC service
and reflects the type of document being archived. For
services that archive request documents, a default
directory called “default_request” is used. For services
that archive response documents, a default directory
called “default_response” is used.

! Document.Archive.Directory - the directory in which the
document will be archived

! Document.Prefix - string (by default, D_) with which the
document file name begins

! Document.Extension - string (by default, .xml) with
which the document file name ends

Name and Description Inputs, Outputs, and Configurations

File System Components

XPC Component Library 5-15

FileStore.readStream
Reads a file from a directory. Outputs a
streamed input file and a correlation key
to the Stream.Directory. Archives the file
to a separate Stream.Archive.Directory if
one is defined. This method follows the
conventions required for an initiating
action in a Timed Service. It will keep
reading files and issuing streams until no
more are found.

Inputs:

! None
Outputs:

! streamRead - InputStream - the streamed input file

! correlationKey - String - the correlation key
Configurations:

! Stream.Directory - the directory in which the streamed
input file will be stored.

! Stream.Archive.Directory - the directory in which the file
will be archived once it has been streamed.

! Stream.prefix - string (by default, D_) with which the
stream file name begins.

! Stream.Extension - string (by default, .xml) with which
the stream file name ends.

FileStore.storeDocument
Stores the input document.

Inputs:

! documentToStore - Document - the input document

! correlationKey - String - the correlation key
Outputs:

! None
Configurations:

! Document.Directory - directory in which the document
will be stored

! Document.Prefix - string (by default, D_) with which the
document file name begins

! Document.Extension - string (by default, .xml) with
which the document file name ends

Name and Description Inputs, Outputs, and Configurations

File System Components

5-16 XPC Developer Guide and API Reference

FileStore.storeEnvelope
Stores an envelope, request document and
attachments.

Inputs:

! envelopeToStore - Envelope - the envelope to be stored

! correlationKey - String - the correlation key
Outputs:

! None
Configurations:

! Document.Directory - directory in which the document is
archived.

! Envelope.Attachment.Description.Directory - directory
in which descriptions of attachments are stored

! Envelope.Attachment.Description.Extension - string (by
default, .adf) with which each attachment description file
name ends

! Envelope.Attachment.Description.Prefix - string with
which each attachment description file name begins.

! Envelope.Attachment.Directory - directory in which the
attachments are stored.

! Envelope.Attachment.Extension - string (by default, .att)
with which each attachment file name ends

! Envelope.Attachment.NameURI.[Name].Directory - the
attachment directory naming convention, which is based
upon attachment name

! Envelope.Attachment.Prefix - string with which each
attachment file name begins.

(continued on following page)

Name and Description Inputs, Outputs, and Configurations

File System Components

XPC Component Library 5-17

FileStore.storeEnvelope (continued
from previous page)

Configurations:

! Envelope.Directory - directory in which the envelope is
stored.

! Envelope.Document.Directory - directory in which the
document is stored.

! Envelope.Document.Extension - string with which each
document file name ends

! Envelope.Document.Prefix - string with which each
document file name begins.

! Envelope.Extension - string (by default, .env) with which
each envelope file name ends

! Envelope.Prefix - string with which each envelope file
name begins.

FileStore.storeStream
Stores the input stream.

Inputs:

! streamToStore - InputStream - streamed data

! correlationKey - String - correlation key
Outputs:

! None
Configurations:

! Stream.Directory - the directory in which the streamed
input is stored.

! Stream.Prefix - string (by default, D_) with which the
stream file name begins.

! Stream.Extension - string (by default, .xml) with which
the stream file name ends.

StreamToDocument
Converts the input stream to an xCBL
document.

Inputs:
streamRead - InputStream - streamed input

Outputs:
document - DocumentObject - an xCBL document

Configurations:
None

Name and Description Inputs, Outputs, and Configurations

File System Components

5-18 XPC Developer Guide and API Reference

StringMapper.process
Uses a flat file to match the recipient ID
to the corresponding recipient TPID used
by MarketSite. If no matching recipient
TPID is found an exception is thrown.

Inputs:
receiverID - String - the receiver ID from the EDI file

Outputs:
receiverTPID - String - the Trading Partner ID for the
receiver

Configurations:
mapFile - the map.txt file used to map Receiver IDs to
Trading Partner IDs

Name and Description Inputs, Outputs, and Configurations

Sample Integrators

XPC Component Library 5-19

Sample Integrators

The following components are used to customize the default response documents
with actual business data:

Name and Description Inputs, Outputs, and Configurations

myAvailabilityCheckIntegrator30.process
Customizes the default response document by
calling the doAvailabilityCheck helper method
once for each item whose availability is being
checked.

Inputs:
RequestDoc -XCBL30_sox.AvailabilityRequest
- the AvailabilityCheckRequest document
ResultDoc - XCBL30_sox.AvailabilityResult -
the default AvailabilityCheckResult document

Outputs:
ResultDoc - XCBL30_sox.AvailabilityResult -
the AvailabilityCheckResult document

Configurations:
None

myAvailabilityCheckIntegrator.process
(deprecated)
Customizes the default response document by
calling the doAvailabilityCheck helper method
once for each item whose availability is being
checked.

Inputs:
RequestDoc - CBL_sox.AvailabilityRequest -
the AvailabilityCheckRequest document
ResultDoc - CBL_sox.AvailabilityResult - the
default AvailabilityCheckResult document

Outputs:
ResultDoc - CBL_sox.AvailabilityResult - the
AvailabilityCheckResult document

Configurations:
None

myOrderStatusIntegrator30.process
Customizes the default response document by
calling the doOrderStatus() method once for each
item whose status is being checked.

Inputs:
RequestDoc -XCBL30_sox.OrderStatusRequest
- the OrderStatusRequest document
ResultDoc - XCBL30_sox.OrderStatusResult -
the default OrderStatusResult document

Outputs:
ResultDoc - XCBL30_sox.OrderStatusResult -
the OrderStatusResult document

Configurations:
None

Sample Integrators

5-20 XPC Developer Guide and API Reference

myOrderStatusIntegrator.process
(deprecated)
Customizes the default response document by
calling the doOrderStatus() method once for each
item whose status is being checked.

Inputs:
RequestDoc - CBL_sox.OrderStatusRequest -
the OrderStatusRequest document
ResultDoc - CBL_sox.OrderStatusResult - the
default OrderStatusResult document

Outputs:
ResultDoc - CBL_sox.OrderStatusResult - the
OrderStatusResult document

Configurations:
None

myPriceCheckIntegrator30.process
Customizes the default response document by
calling the doPriceCheck() method once for each
item whose price is being checked.

Inputs:
RequestDoc - XCBL30_sox.PriceCheckRequest
- the PriceCheckRequest document
ResultDoc - XCBL30_sox.PriceCheckResult-
the default PriceCheckResult document

Outputs:
ResultDoc - XCBL30_sox.PriceCheckResult -
the PriceCheckResult document

Configurations:
None

myPriceCheckIntegrator.process
(deprecated)
Customizes the default response document by
calling the doPriceCheck() method once for each
item whose price is being checked.

Inputs:
RequestDoc - CBL_sox.PriceCheckRequest -
the PriceCheckRequest document
ResultDoc - CBL_sox.PriceCheckResult- the
default PriceCheckResult document

Outputs:
ResultDoc - CBL_sox.PriceCheckResult - the
PriceCheckResult document

Configurations:
None

Name and Description Inputs, Outputs, and Configurations

Other System Components

XPC Component Library 5-21

Other System Components

The following components performs such tasks as handling exceptions and
transmitting documents to MarketSite

Name and Description Inputs, Outputs, and Configurations

ExceptionHandler
Logs an event and builds an Error document
based on a previously thrown exception.

Inputs:
exception - Exception - a previously thrown
exception
componentName - String - the component that threw
the exception

Outputs:
replyDocument - Document - an Error document
based on the exception

Configurations:
None

LookupXCCArchive
Retrieves the archived envelope whose
referenceId or correlationId matches that of
the input envelope. The standard XPC archive
mechanism is checked for the envelope. This
archive is described in the Administration
chapter of the XPC Installation and
Administration Guide.

Inputs:
inputEnvelope - Envelope - the envelope containing
the error document

Outputs:
outputEnvelope - Envelope - the archived envelope
whose correlation key matches that of the input
envelope.
correlationKey - String - the correlation key

Configurations:
None

MessageAcknowledgmentSender
Creates an envelope containing a
MessageAcknowledgement document and
transmits it to the sender of the original
document.

Inputs:
inputEnvelope - Envelope - the envelope containing
the original document

Outputs:
None

Configurations:
None

Other System Components

5-22 XPC Developer Guide and API Reference

Responder
Sends a response document to the initiator of a
previously received request envelope.

Inputs:
replyDocument - DocumentObject - the response
document

Outputs:
None

Configurations:
None

Transmitter
Transmits an envelope to the destination
specified in the envelope’s properties.

Inputs:
requestEnv - Envelope - the request envelope

Outputs:
None

Configurations:
None

Name and Description Inputs, Outputs, and Configurations

Testing Your Integrations 6-1

6 Testing Your Integrations

In This Chapter

Once you have customized the way XPC handles a particular request
document you can use the XPC Invoker in test mode to verify that the
customization is working as it should. The Invoker allows you to send
sample xCBL documents to XPC and to examine XPC’s reply
documents.

This chapter describes how to use the Invoker test your integrations. It
includes the following information:

! Overview of the Invoker on page 1

! Modifying the Sample Request Documents on page 2

! Testing Your Customizations on page 2

! Debugging Your Components on page 3

Overview of the Invoker

The Invoker is a graphical user interface that runs on the same machine
as the XPC server. To facilitate the creation of new Envelopes, the
Invoker comes packaged with pre-configured xCBL Documents for
each supported transaction. You can modify these documents so that
they more closely represent your own business data.

You can use the Invoker in Test mode to send the modified xCBL
documents to the running XPC server. XPC replies either synchronously
or asynchronously with the appropriate response document, which you
can view with the Invoker. As you send and receive envelopes, you can
examine the behavior of each component to verify that your
customizations are working correctly.

Modifying the Sample Request Documents

6-2 XPC Developer Guide and API Reference

For more information about the Invoker, please see Using the XPC Invoker in the
Administration chapter of the XPC Installation and Administration Guide.

Modifying the Sample Request Documents

To facilitate the creation of new Envelopes, the Invoker comes packaged with pre-
configured xCBL Documents for the supported transaction types. These samples are
stored in the \sample\xpc\instances folder of your XPC installation, which contains a
separate subfolder named after each transaction type. Each folder contains one or
more samples of the named xCBL document.

These templates are provided as examples of each request type. To provide a better
test of your integration, you need to modify the templates so that they include the
values you want to test. Following are some examples of changes you could make:

! Change PartIDs to part numbers your company actually uses.

! Make sure the AvailabilityCheckRequest document includes parts for which there
is no available supply as well as parts that are currently available.

Testing Your Customizations

Before testing the XPC installation, verify that XPC is started and that you have
configured XPC correctly.

1. Start XPC Invoker.
To start the Invoker on NT, go to Start | Programs | XML Portal Connector 4.0 |
Invoker.

NoteThe recommended screen resolution for the Invoker is 1024x768.

2. From the Transaction Filter pull-down menu, select the first transaction you want
to test. For example, to check your price check integration, select the PriceCheck
transaction.

3. Click New to create a new envelope for the transaction.

4. Go to the \sample\xpc\instances folder, then to the folder for the transaction you
want to test. Select the xCBL document you modified for the transaction.

5. Click Send.
After a few seconds, the Invoker displays the response Envelope.

6. Open the response Envelope and verify that the response document contains the
expected information.

Debugging Your Components

Testing Your Integrations 6-3

Debugging Your Components

When testing your components within the debugging environment of your integrated
development environment, you execute the XPC Server as a standalone Java program
rather than as an NT service. This involves executing the main() method of the
com.commerceone.ccs.server. CCSServer class, supplying the location of your XPC
server root as the ‘-root’ command line argument. Additionally, your IDE will need to
know the location of each JAR file used by the server. The required JAR files are
listed in the file \etc\classpath\default in your XPC installation.

Following is a sample command line using Sun Microsystems jdk:

java -classic -Xms4m -Xmx512m

com.commerceone.ccs.server.CCSServer –root

c:\commerceone\xpc\runtime\servers\defaultserver

Note This command line assumes that the required JAR files have already been
configured within the IDE.

Debugging Your Components

6-4 XPC Developer Guide and API Reference

Packages

API Reference 7-1

7 API Reference

This chapter contains reference information about the XML Portal Connector
application programming interface. It describes the major XPC packages, classes,
interfaces, and methods.

More sophisticated component development may require the use of the following
Commerce One supplied APIs:

! The XDK package, which allows for the direct manipulation of the contents of
documents and envelopes

! The Util package, which contains utility classes that may be used to create unique
identifiers

For information about using these APIs, see the Javadoc contained in the \doc\api\xdk
and doc\api\util directories of the XPC installation.

Packages

This reference provides information about the following packages

com.commerceone.xpc.abs This package contains XPCAbstractComponent, the
superclass of XPC components. All components—those
provided by XPC for out-of-the-box use, user-developed
extensions of these components, and new components
developed by users—are subclasses of this class. This
provides a link between components and the XCC
Server’s service framework, which is used for publishing
document replies, logging events, and so forth.

com.commerceone.xpc.common This package contains classes used by all components.
They include classes used to pass configuration
parameters, input and output arguments, and the result of
executing a component.

Packages

7-2 XPC Developer Guide and API Reference

com.commerceone.xpc.components Contains component classes used to build error
documents, send default responses to incoming CBL
documents, store envelopes, request documents, and
attachments on the file system, and convert streamed
input to xCBL documents.

com.commerceone.xpc.helpers This package contains classes whose methods can
be used to access the information in request
documents and to build both the data portion and
the error portion of response documents

com.commerceone.xpc.my_integrators Contains working samples of component classes
used to build and send default responses to
requests for item availability, item price, or order
status. You can use these components as models
when extending XPCAbstractComponent to build
your own integrations. Unlike the sample
components in this class, your own components
should issue response documents with actual
availability, price, or order status information
retrieved from your backend system.

com.commerceone.xpc.swi.common This package contains an interface implemented
by all XPC components. Its methods are used to
define a component’s input and output arguments.

com.commerceone.xpc.swi.framework This package contains a number of interfaces that
are implemented by each XPC component. These
interfaces provide methods for naming the
component, setting its configuration parameters,
invoking its execution method, and transmitting
request envelopes and response documents.

com.commerceone.xpc.gedi This package contains component classes used by the
XPC Generic EDI Wrapper service to receive and
transport ANSI X12 and EDIFACT formatted EDI files
through MarketSite. These classes are used to parse data
from EDI files, map RecipientIDs to RecipientTPIDs in
a flat file, compress and decompress files, and create and
populate envelopes.

Packages

API Reference 7-3

package com.commerceone.xpc.abs

Description

Provides the superclass of XPC components.

Classes

XPCAbstractComponent Is the superclass of XPC components. All components,
including components provided by XPC for out-of-the-
box use, user-developed extensions of these
components, and new components developed by users,
are subclasses of this component.

Packages

7-4 XPC Developer Guide and API Reference

package com.commerceone.xpc.abs
class XPCAbstractComponent

Description

Is the superclass of XPC components. All components, including components
provided by XPC for out-of-the-box use, user-developed extensions of these
components, and new components developed by users, are subclasses of this
component.

Implements

! interface XPCAdmin

! interface XPCConfig

! interface XPCProcess

! interface XPCTransmit

! interface XPCContract

Extended By

All XPC components

Methods

getEntityManager()

getEnvelopeFactory()

public final String getName()
Returns the component name.

public void setName(String name)
Sets the name for the component.

public final boolean config(XPCTransmit container, XPCConfigParams configParams)
Configures the component using the configParams. Returns true if the configuration was
successful; false, otherwise. Note: this method is called by the infrastructure only; it is not for
use by XPC users.
container - XPCTransmit - the container within which the component is running
configParams - XPCConfigParams - parameters used to configure the component

Packages

API Reference 7-5

public final String getConfigParam(String key)
Returns the value for the given key from the configuration parameters.

protected final void logMessage(String logMessage)
Creates a standard event with the specified message and logs the event with an event ID of
“XPC_COMP_ERRORGENERIC.”

protected final void logError(String errMessage)
Creates a standard event with the specified message and invokes the EventGenerator to log
the event with an event ID of “XPC_COMP_ERRORGENERIC.”

protected final void reply(Envelope reqEnv, Document replyDoc)
Sends the reply document to the initiator of the original request.
reqEnv - Request envelope
replyDoc - Reply document

protected final void transmit(Envelope env)
Transmits the envelope to the destination specified in the envelope’s properties.

protected final EnvelopeFactory getEnvelopeFactory()
Returns the Envelope factory. Components call this method to get the EnvelopeFactory,
which they use for creating envelopes.

public abstract XPCContractDescriptor[] getInputList(String methodName)
Gets the list of input argument descriptors for the named method. Implemented by subclasses
to define the input arguments of their methods.

public abstract XPCContractDescriptor[] getOutputList(String methodName)
Gets the list of output argument descriptors for the named method. Implemented by
subclasses to define the output arguments of their methods.

public XPCResult process(XPCDataMgr dataMgr)
Invocation method for standard components. Implemented by subclasses to define the
invocation method of standard components.

Packages

7-6 XPC Developer Guide and API Reference

package com.commerceone.xpc.common

Description

This package contains classes used by all components. They include classes used to
pass configuration parameters, input and output arguments, and the results of
executing a component.

Classes

XPCConfigParams This utility class gets configuration parameters from the
default.prop file. These parameters may be specified either as
Java.util.Properties objects or as strings in the form
parameter_name=parameter_value. Consecutive parameters
are separated by commas.

XPCDataMgr This class is used to pass data from one component to another.

XPCResult This class is used to pass the integer code and descriptive
string that result from the execution of a component.
Successful executions have a ResultCode of 0 and a
ResultString of “SUCCESS.” Unsuccessful executions have a
non-zero ResultCode.

XPCContractDescriptor This class is used to describe the name and type of an input or
output argument of a component’s method.

Packages

API Reference 7-7

package com.commerceone.xpc.common
class XPCConfigParams

Description

This utility class gets configuration parameters from the default.prop file of the
service in which the component is running. These parameters may be specified either
as Java.util.properties objects or as strings in the form
parameter_name=parameter_value,.

Constructors

Methods

public XPCConfigParams(String nameValueString)
This class is only constructed by the XPC Framework. Creates a comma-separated list of

configuration parameters in the form parameter_name1=parameter_value1,
parameter_name2=parameter_value2...
For example, the following string specifies the values of three parameters, url, userid, and
password:
url=http://www.commerceone.com,userid=admin,password=mypassword

public XPCConfigParams(Properties prop)
Creates a configuration parameter from a java.util.Properties object.

public boolean getConfigParam(String key)
Returns the value of the configuration parameters specified by the key.

public void listContents(java.io.PrintStream out)
Prints the values of all configuration parameters.

Packages

7-8 XPC Developer Guide and API Reference

package com.commerceone.xpc.common
class XPCDataMgr

Description

This class is used to pass data from one component to another. A component accesses
its input arguments through calls to the get() method and writes its output arguments
through calls to the set() method.

Constructors

Methods

public XPCDataMgr(XPCPropertiesPrototype prototype)
This class is constructed only by the XPC insfrastructure. Uses the XPCPropertiesPrototype
object passed to it to control the reading of input arguments and the writing of output
arguments.
prototype - The prototype that controls the getting and setting of arguments

public Object get(String key)
Gets the value of the named argument. If the argument is not get-enabled, throws an
IllegalArgumentException.
key - String - the name of the argument to get

public void set(String key, Object value)
Sets the argument to the specified value. If the argument is not set-enabled, throws an
IllegalArgumentException.
key - the name of the argument to set.

Packages

API Reference 7-9

package com.commerceone.xpc.common
class XPCResult

Description

This class is used to pass the integer code and descriptive string that result from the
execution of a component. Successful executions have a ResultCode of 0 and a
ResultString of “SUCCESS.” Unsuccessful executions have a non-zero ResultCode.

Constructors

Variables

Methods

public XPCResult(int resultCode)

public final static int SUCCESS=0

public int getResultCode()
Returns the integer result code.

public void setResultCode(int resultCode)
Sets the integer result code.

public String getResultString()
Returns a text string that describes the result of executing the action.

public void setResultString(String resultStr)
Sets the text string that describes the result of executing the action.

Packages

7-10 XPC Developer Guide and API Reference

package com.commerceone.xpc.common
class XPCContractDescriptor

Description

This class is used to describe the name and type of an input or output argument.

Constructors

Methods

public XPCContractDescriptor(final String aName, final Class aClass)

public String getName()
Returns the name of an input or output argument.

public Class getContract()
Returns the type of an input or output argument.

Packages

API Reference 7-11

package com.commerceone.xpc.components

Description

Contains component classes used to handle exceptions, build and send default
responses to incoming xCBL documents, store envelopes, request documents, and
attachments on the file system, and convert streamed input to xCBL documents.

Classes

CreateCorrelatingEnvelope Creates an Envelope for a response document.
The RecipientTPID of the new envelope
matches the SenderTPID of the request
envelope. The CorrelationId of the new
envelope matches that of the request envelope.

CreateEnvelope Creates an envelope for a document.

DefaultAuctionCreateResponse30Builder Builds a default AuctionCreateResponse
document in response to an incoming
AuctionCreate document.

DefaultAuctionResultResponse30Builder Builds a default AuctionResultResponse
document in response to an incoming
AuctionResult document.

DefaultAvailabilityCheckResponse30Builder Returns a default AvailabilityCheckResult
document in response to an incoming
AvailabilityCheckRequest document. Do not
use this component with release 2.x xCBL
documents; use the
DefaultAvailabilityCheckResponseBuilder
instead.

DefaultAvailabilityCheckResponseBuilder
(deprecated)

Returns a default xCBL 2.x
AvailabilityCheckResponse document in
response to an incoming xCBL 2.x
AvailabilityCheckRequest document. Do not
use this component with release 3.x xCBL
documents.

DefaultAvailabilityToPromiseResponse30Buil
der

Builds a default
AvailabilityToPromiseResponse document
based on an incoming AvailabilityToPromise
document.

Packages

7-12 XPC Developer Guide and API Reference

DefaultOrder30Builder Builds a default Order document in response
to an incoming OrderRequest document.

DefaultOrderResponse30Builder Builds a default OrderResponse document in
response to an incoming Order document.

DefaultOrderResponseFromChangeOrder30B
uilder

Builds a default OrderResponse document in
response to an incoming ChangeOrder
document.

OrderStatusResponse30Builder Builds a default OrderStatusResponse
document in response to an incoming
OrderStatusRequest document.

DefaultOrderStatusResponseBuilder
(deprecated)

Returns a default OrderStatusResponse
document in response to an incoming
OrderStatusRequest document. This
component should be used only with release
2.x xCBL documents

DefaultPaymentRequestAck30Builder Builds a default
PaymentRequestAcknowledgment document
in response to an incoming PaymentRequest
document.

DefaultPlanningScheduleResponse30Builder Builds a default PlanningScheduleResponse
document in response to an incoming
PlanningSchedule request document.

DefaultPriceCheckResponse30Builder Returns a default PriceCheckResponse in
response to an incoming PriceCheckRequest
document. Do not use this component with
release 2.x xCBL documents; Use the
DefaultPriceCheckResponseBuilder
component instead.

DefaultPriceCheckResponseBuilder
(deprecated)

Returns a default PriceCheckResponse in
response to an incoming PriceCheckRequest
document. This component should be used
only with release 2.x xCBL documents.

DefaultPurchaseOrderResponseBuilder
(deprecated)

Returns a default PurchaseOrderResponse in
response to an incoming
PurchaseOrderRequest document. This
component should be used only with release
2.x xCBL documents.

Packages

API Reference 7-13

DefaultQuote30Builder Builds a default Quote document in response
to a RequestForQuotation document.

DefaultShippingScheduleResponse30Builder Builds a default ShippingScheduleResponse
document in response to a ShippingSchedule
request document.

DefaultTimeSeries30Builder Builds a default TimeSeriesResponse
document in response to a TimeSeries
document.

DefaultTimeSeriesResponse30Builder Builds a default TimeSeriesResponse
document in response to an incoming
TimeSeriesRequest document.

DefaultTPRResponseFromOrganizationDelete
30Builder

Builds a default TradingPartnerResponse
document in response to an incoming
TradingPartnerOrganizationDelete document.

DefaultTPRResponseFromOrganizationInfo30
Builder

Builds a default TradingPartnerResponse
document in response to an incoming
TradingPartnerOrganizationInformation
document.

DefaultTPResponseFromUserDelete30Builder Builds a default TradingPartnerResponse
document in response to an incoming
TradingPartnerUserDelete document.

DefaultTPRResponseFromUserInfo30Builder Builds a default TradingPartnerResponse
document in response to an incoming
TradingPartnerUserInformation document.

ExceptionHandler This standard component logs an event and
builds an Error document based on a
previously thrown exception.

FileStore This extended component provides methods
for storing envelopes, request documents, and
attachments in directories on the file system
and for reading the archived files.

GetCorrelationKey This standard component returns the
correlation key of an envelope.

GetStringFromDocument Reads the correlation key in the xCBL
document and returns it to the Data Manager.

Packages

7-14 XPC Developer Guide and API Reference

LookupXCCArchive Accepts an Error document as input and
returns the archived envelope with the
corresponding correlation key.

MessageAcknowledgmentSender Creates an envelope containing a
MessageAcknowledgment document and
transmits it to the sender of the original
document.

Responder Sends a response document to the initiator of a
previously received request envelope.

StreamToDocument This standard component converts streamed
input to an xCBL document.

Transmitter Transmits an envelope to the destination
specified in the envelope’s properties.

Packages

API Reference 7-15

package com.commerceone.xpc.components
class CreateCorrelatingEnvelope

Description

Creates a new envelope based on the properties of the incoming request envelope.The
TransmissionMode configuration detemines whether the document exchange is one-
way, peer-to-peer, or synchronous.

The new envelope has the same CorrelationId as the original envelope. If the
Addressing configuration is “keep” the new envelope has the same senderTPID and
RecipientTPID as the original envelope. If the Addressing configuration is “swap”
the SenderTPID of the original envelope is used as the RecipientTPID of the new
envelope and the RecipientTPID of the new envelope is used as the SenderTPID of
the new envelope.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

Document - the incoming request document
Envelope - the envelope that transmitted the request document

Outputs:
Envelope - the output envelope created for the response document

Configurations:
Addressing - String - the addressing mechanism for the new envelope. If “swap” (the
default), the sender of the original document becomes the recipient of the new document and
the recipient of the original document becomes the sender of the new document. If “keep”
the new document’s sender and recipient are the same as those of the request document.
TransmissionMode - String - The transmission mode for the document exchange. One of the
following: one_way for one-way transmission, peer_peer for peer-to-peer transmission, or
sync for synchronous transmission

Packages

7-16 XPC Developer Guide and API Reference

package com.commerceone.xpc.components
class CreateEnvelope

Description

Creates an envelope for a document.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

document - Document - the document for which the envelope will be created.
Outputs:

recipientTPID - String - the document recipient’s Trading Partner ID (TPID).
Configurations:

senderTPID - String - the document sender’s Trading Partner ID key string to be looked up
from the mapping file specified by the mapFile configuration. This is required.
TransmissionMode - String - the transmission mode for the document exchange. One of the
following: one_way for one-way transmission, peer_peer for peer-to-peer transmission, or
sync for synchronous transmission.
mapFile - full path to the file that contains the key string and TPID value pairs.

Packages

API Reference 7-17

package com.commerceone.xpc.components
class DefaultAuctionCreateResponse30Builder

Description

Builds a default AuctionCreateResponse document in response to an AuctionCreate
document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as “Other” or
set to the current ID or date and time. The following table lists the field settings:

Field Setting

AuctionCreateResponsePurpose “Other”

AuctionCreateResponseIssueDate current date and time

AuctionCreateResponseID new ID

RefNum copied from request document

RefDate current date and time

BasicResponseCode “Other”

AuctionResponseCodedOther null

AuctionCreateHeader null

Language copied from request document

AuctionCreateResponseNote null

AuctionItemID copied from request document

AuctionItemName copied from request document

AuctionItemDescription copied from request document

AuctionItemHierarchyLevel copied from request document

AuctionLineItemNum copied from request document

AuctionItemResponseCode “Other”

AuctionItemResponseCodedOther null

Packages

7-18 XPC Developer Guide and API Reference

Extends

XPCAbstractComponent

Methods

ListOfAuctionItemComponentResponse
(multiple fields)

copied from request document

TotalNumberOfAuctionItems copied from request document

TotalNumberOfParticipants copied from request document

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultAuctionCreateDoc - DocumentObject - the incoming AuctionCreate request
document.

Outputs:
DefaultAuctionCreateResponseDoc - DocumentObject - the default AuctionCreateResponse
document.

Configurations:
None

Field Setting

Packages

API Reference 7-19

package com.commerceone.xpc.components
class DefaultAuctionResultResponse30Builder

Description

Builds a default AuctionResultResponse document in response to an AuctionResult
document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as “Other” or
set to the current ID or date and time. The following table lists the field settings:

Extends

XPCAbstractComponent

Field Setting

Purpose “Other”

AuctionResultResponseIssueDate current date and time

AuctionResultResponseID new UUID

AuctionCreateReference copied from request document

AuctionResultReference copied from request document

AuctionresultResponseCoded “Other”

AuctionResultResponseCodedOther null

Language copied from request document

GeneralNote null

Packages

7-20 XPC Developer Guide and API Reference

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultAuctionResultDoc - DocumentObject - the incoming Auctionresult document.
Outputs:

DefaultAuctionResultResponseDoc - DocumentObject - the default AuctionResultResponse
document.

Configurations:
None

Packages

API Reference 7-21

package com.commerceone.xpc.components
class DefaultAvailabilityCheckResponse30Builder

Description

Builds a default AvailabilityCheckResult document in response to an incoming
AvailabilityCheckRequest document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.Both the QuantityValue and the
UnitOfMeasurement can be reset using the XPC Manager.

Fields in the default response document are set as follows:

Field Setting

AvailabilityCheckResultID copied from request document

AvailabilityCheckResultIssueDate copied from request document

SupplierParty copied from request document

SupplierIDReferenceDate copied from request document

BuyerParty copied from request document

BuyerIDReferenceDate copied from request document

AvailabilityShipToParty copied from request document

AvailabilityCheckResultLanguage copied from request document

AvailabilityCheckResultNote null

ResultListOfAttachment copied from request document

LineItemNum copied from request document

LineItemType copied from request document

ParentItemNumber copied from request document

ItemIdentifiers copied from request document

Packages

7-22 XPC Developer Guide and API Reference

ListOfDimension copied from request document

TotalQuantity copied from request document

MaxBackOrderQuantity copied from request document

OffCatalogFlag copied from request document

ListOfItemReferences copied from request document

CountryOfOrigin copied from request document

CountryOfDestination copied from request document

FinalRecipient copied from request document

ConditionsOfSale copied from request document

HazardousMaterials copied from request document

CheckResultTransport copied from request document

QuantityValue copied from request document, if
supplied, or set to -1. Can be
reconfigured in XPC Manager.

UnitOfMeasurement copied from request document, if
supplied, or set to 1. Can be
reconfigured in XPC Manager.

AvailabilityErrorInfo null

GeneralLineItemNote copied from request document

LineItemAttachment copied from request document

AvailabilityItemErrors 0

SummaryErrorInfo null

TotalNumberOfLineItem copied from request document

Field Setting

Packages

API Reference 7-23

Methods

public XPCResult process(XPCDataMgr dataMgr)
Gets the input document from the Data Manager, calls the buildResponse method, and sets
the default AvailabilityCheckResult document in the Data Manager.

Inputs:
DefaultAvailabilityCheckRequestDoc - DocumentObject - the AvailabilityCheckRequest
document.

Outputs:
DefaultAvailabilityCheckResponse - DocumentObject - the default AvailabilityCheckResult
document

Configurations:
Quantity - the available quantity of the item
UOMCode - the unit of measurement code in which the quantity is expressed

Packages

7-24 XPC Developer Guide and API Reference

package com.commerceone.xpc.components
class DefaultAvailabilityCheckResponseBuilder (deprecated)

Builds a default AvailabilityCheckResult document in response to an incoming
AvailabilityCheckRequest document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Extends

XPCAbstractComponent

Field Setting

AvailabilityCheckHeader (multiple fields) copied from request document

Quantity copied from request document, if
supplied; otherwise, -1. May be
reset in XPC Manager.

UnitOfMeasurement copied from request document, if
supplier; otherwise
UOMCode.10. May be reset in
XPC Manager.

ErrorInfo null

AvailabilityItemErrors 0

Packages

API Reference 7-25

Methods

public XPCResult process(XPCDataMgr dataMgr)
Gets the input document from the Data Manager, calls the buildResponse method, and sets
the default AvailabilityCheckResponse document in the Data Manager.

Inputs:
DefaultAvailabilityCheckRequestDoc - DocumentObject - the AvailabilityCheckRequest
document.

Outputs:
DefaultAvailabilityCheckResponse - DocumentObject - the default AvailabilityCheckResult
document

Configurations:
Quantity - the available quantity of the item
UOMCode - the unit of measurement code in which the quantity is expressed

Packages

7-26 XPC Developer Guide and API Reference

ackage com.commerceone.xpc.components
class DefaultAvailabilityToPromiseResponse30Builder

Description

Builds a default AvailabilityToPromiseResponse document based on an incoming
AvailabilityToPromise document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Field Setting

RefNum new ID

RefDate current date and time

AvailabilityResponseIssueDate current date and time

AvailabilityToPromiseID copied from request document

AvailabilityToPromiseResponseCode “Other”

AvailabilityToPromiseResponseCodedOther null

ListOfReferenceCoded copied from request document

AvailabilityDeliveryOption copied from request document

InitiatingParty copied from request document

AvailabilityShipToParty copied from request document

AvailabilityResponseHeaderTransport copied from request document

GeneralNote copied from request document

ListOfAttachment copied from request document

AvailabilityToPromisePurposeCode “Other”

AvailabilityToPromisePurposeCodedOther null

AvailabilityToPromiseBaseItemDetail copied from request document

Packages

API Reference 7-27

Extends

XPCAbstractComponent

Methods

AvailabilityToPromiseResponseDeliveryDetail copied from request document

AvailabilityToPromiseResponseTransportDetail copied from request document

AvailabilityToPromiseResponseItemListOfAttach
ment

copied from request document

AvailabilityToPromiseGeneralNote null

TotalNumberOfLineItems

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultAvailabilityToPromiseDoc - DocumentObject - the incoming AvailabilityToPromise
document.

Outputs:
DefaultAvailabilityToPromiseResponseDoc - DocumentObject - the default
AvailabilityToPromiseresponse document.

Configurations:
None

Field Setting

Packages

7-28 XPC Developer Guide and API Reference

package com.commerceone.xpc.components
class DefaultOrder30Builder

Description

Builds a default Order document in response to an incoming OrderRequest document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings:

Field Setting

BuyerOrderNumber copied from request document

SellerOrderNumber copied from request document

ListOfMessageID copied from request document

OrderIssueDate current date and time

OrderReferences copied from request document

ReleaseNumber null

Purpose copied from request document

RequestedResponse copied from request document

OrderType NewOrder

OrderCurrency copied from request document

TaxAccountingCurrency copied from request document

OrderLanguage copied from request document

OrderTaxReference copied from request document

OrderInvoiceMediumTypeCoded copied from request document

OrderInvoiceMediumTypeCodedOther copied from request document

OrderDates copied from request document

Packages

API Reference 7-29

BuyerParty copied from request document if
non-null; otherwise, UN.

AgencyCodedOther null

AgencyDescription null

CodeListIdentifierCoded null

CodeListIdentifierCodedOther null

Ident “ “

ListOfIdentifier null

MDFBusiness false

NameAddress null

OrderContact null

ReceivingContact null

ShippingContact null

Correspondencelanguage null

BuyerTaxInformation copied from request document

SellerParty copied from request document

SellerTaxInformation copied from request document

ShipToParty copied from request document

BillToParty copied from request document

RemitToParty copied from request document

ShipFromParty copied from request document

WherehouseParty null

SoldToParty null

ManufacturingToParty null

MaterialIssuer null

Field Setting

Packages

7-30 XPC Developer Guide and API Reference

Extends

XPCAbstractComponent

Methods

ListOfPartyCoded copied from request document

PartLocation null

ListOfTransport copied from request document

OrderTermsOfDelivery copied from request document

OrderHeaderPrice copied from request document

OrderPaymentInstructions copied from request document

OrderAllowancesOrCharges copied from request document

OrderHeaderNote copied from request document

ListOfStructuredNote copied from request document

OrderHeaderAttachments copied from request document

OrderDetail copied from request document

OrderSummary copied from request document

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultOrderRequest30Doc - DocumentObject - the incoming Orderrequest document.
Outputs:

DefaultOrder30Doc - DocumentObject - the default Order document.
Configurations:

None

Field Setting

Packages

API Reference 7-31

package com.commerceone.xpc.components
class DefaultOrderResponse30Builder

Description

Builds a default OrderResponse document in response to an incoming Order
document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Extends

XPCAbstractComponent

Field Setting

BuyerOrderNumber copied from request document

SellerOrderNumber copied from request document

ListOfMessageID copied from request document

OrderResponseIssueDate current date and time

OrderResponseDocTypeCoded OrderResponse

OrderResponseDocTypeCodedOther null

RefNum “ “

RefDate “ “

ChangeOrderReference null

SellerParty copied from request document

BuyerParty copied from request document

ListOfReferenceCoded copied from request document

Purpose copied from request document

ResponseTypeCoded NotAccepted

Packages

7-32 XPC Developer Guide and API Reference

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultOrder30Doc - DocumentObject - the incoming Order document.
Outputs:

DefaultOrderresponse30Doc - DocumentObject - the default OrderResponse document.
Configurations:

Packages

API Reference 7-33

package com.commerceone.xpc.components
class DefaultOrderResponseFromChangeOrder30Builder

Description

Builds a default OrderResponse document in response to an incoming ChangeOrder
document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Field Setting

BuyerOrderNumber copied from request document

SellerOrderNumber copied from request document

ListOfMessageID copied from request document

OrderResponseIssueDate current date and time

OrderresponseDocTypeCoded ChangeOrderResponse

OrderResponseDocTypeCodedOther null

OrderReference copied from request document

RefNum “ “

RefDate null

SellerParty copied from request document

BuyerParty copied from request document

ListOfReferenceCoded copied from request document

Purpose copied from request document

ResponseTypeCoded NotAccepted

ResponseTypeCodedOther null

ChangeOrderHeader copied from request document

Packages

7-34 XPC Developer Guide and API Reference

Extends

XPCAbstractComponent

OrderHeaderChanges null

OrderResponseHeaderNote copied from request document

ListOfStructuredNote copied from request document

itemDetailResponseCoded New

ItemDetailResponseCodedOther null

PriceErrorInfo null

AvailabilityErrorInfo null

ListOfErrorInfo null

ListOfReferenceCoded copied from request document

ChangeOrderItemDetail copied from request document

ItemDetailChanges null

LineItemNote copied from request document

ListOfStructuredNote copied from request document

PackageDetailResponseCoded New

PackageDetailResponseCodedOther null

ChangeOrderPackageDetail copied from request document

PackageDetailChanges null

PackageDetailNote copied from request document

ErrorInfo null

OriginalOrderSummary copied from request document

RevisedOrderSummary copied from request document

Field Setting

Packages

API Reference 7-35

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultChangeOrder30Doc - DocumentObject - the incoming ChangeOrder document.
Outputs:

DefaultOrderResponse30Doc - DocumentObject - the default OrderResponse document.
Configurations:

Packages

7-36 XPC Developer Guide and API Reference

package com.commerceone.xpc.components
class OrderStatusResponse30Builder

Description

Builds a default OrderStatusResponse document in response to an incoming
OrderStatusRequest document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Field Setting

OrderStatusID copied from request document

OrderStatusIssueDate current date and time

OrderStatusResultParty copied from request document

OrderStatusResultLanguage copied from request document

OrderStatusResultNote copied from request document

ResultListOfAttachment copied from request document

AccountCode copied from request document

BuyerReferenceNumber copied from request document

SellerReferenceNumber copied from request document

OrderReference copied from request document

OrderDate copied from request document

OrderStatusDate current date and time

StatusEventCoded configured in XPC Manager

StatusEventCodedother null

StatusReasonCoded Other

StatusReasonCodedOther null

Packages

API Reference 7-37

StatusNote null

ErrorInfo null

LineItemNum copied from request document

LineItemType copied from request document

ParentItemNumber copied from request document

ItemIdentifiers copied from request document

ListOfDimension copied from request document

TotalQuantity copied from request document

MaxBackOrderQuantity copied from request document

OffCatalogFlag copied from request document

ListOfitemReferences copied from request document

CountryOfOrigin copied from request document

CountryOfDestination copied from request document

FinalRecipient copied from request document

ConditionsOfSale copied from request document

HazardousMaterials copied from request document

OrderStatusItemResultTransport copied from request document

VarianceQty copied from request document

ItemStatusQuantity copied from request document

StatusEventCoded configured in XPC Manager

StatusEventCodedOther null

StatusReasonCoded Other

StatusReasonCodedOther null

StatusNote null

Field Setting

Packages

7-38 XPC Developer Guide and API Reference

Extends

XPCAbstractComponent

Methods

ErrorInfo null

PaymentStatusEvent null

ShipmentStatusEvent null

GeneralLineItemNote copied from request document

LineItemAttachment copied from request document

OrderStatusCheckItemError 0

OrderStatusSummaryErrorInfo null

TotalNumberOfLineItem OrderStatusCheckItemError

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultOrderStatusRequestDoc - DocumentObject - the incoming OrderStatusRequest
document.

Outputs:
DefaultOrderStatusResponse - DocumentObject - the default OrderStatusResponse
document.

Configurations:
Status - the status of the order. “OrderStatusNotAccepted” by default.

Field Setting

Packages

API Reference 7-39

package com.commerceone.xpc.components
class DefaultOrderStatusResponseBuilder (deprecated)

Description

Returns a default OrderStatusResponse in response to an incoming
OrderStatusRequest document. For each line item whose status is being requested, the
default response specifies a StatusEventCodeElement of “NoInfo,” which can be reset
in the default.prop file, and the following hardcoded values:

! StatusNote of ““

! StatusEventCodeOther of ““

! StatusReasonCodeElement of StatusReasonCode._Other

! StatusReasonCodeOther of ““

! OrderStatusDate of NULL

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Gets the input document from the Data Manager, calls the buildResponse method, and sets
the default AvailabilityCheckResponse document in the Data Manager.

Inputs:
DefaultOrderStatusRequestDoc - DocumentObject - the OrderStatusRequest document

Outputs:
DefaultOrderStatusResponse - DocumentObject - the default OrderStatusResult document

Configurations:
Status - the status of the order

Packages

7-40 XPC Developer Guide and API Reference

package com.commerceone.xpc.components
class DefaultPaymentRequestAck30Builder

Description

Builds a default PaymentRequestAcknowledgment document in response to an
incoming PaymentRequest document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Field Setting

PaymentRequestAcknCoded Other

PaymentrequestAcknCodedOther null

PaymentRequestAcknIssueDate current date and time

PaymentRequestAcknID ““

PaymentRequestIDReference copied from request document

CertificateAuthority null

SuccessfulReceptIndicator true

GeneralNote null

Language copied from request document

ConfirmationID ““

PaymentDocumentID copied from request document

PaymentSequenceNo copied from request document

SettlementAmount copied from request document

DebitAmount null

CreditAmount null

PayerParty copied from request document

Packages

API Reference 7-41

Extends

XPCAbstractComponent

Methods

PayeeParty copied from request document

BuyerParty copied from request document

SupplierParty copied from request document

BillToParty copied from request document

ListOfPartyCoded copied from request document

FinancialInstitutionDetail copied from request document

ListOfRateOfExchangeDetail copied from request document

ExceptionNote null

PaymentRequestNote null

ListOfPaymentException null

EncryptedInfo null

PaymentRequestAcknSummary copied from request document

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultPaymentRequest30Doc - DocumentObject - the incoming PaymentRequest
document.

Outputs:
DefaultPaymentrequestAck30Doc - DocumentObject - the default
PaymentRequestAcknowledgment document.

Configurations:
None

Field Setting

Packages

7-42 XPC Developer Guide and API Reference

package com.commerceone.xpc.components
class DefaultPlanningScheduleResponse30Builder

Description

Builds a default PlanningScheduleResponse document in response to an incoming
PlanningSchedule request document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Field Setting

ScheduleResponseID new UUID

ScheduleResponseIssueDate current date and time

RefNum copied from request document

RefDate current date and time

ListOfReferenceCoded null

BuyerParty copied from request document

SellerParty copied from request document

PurposeCode “Other”

PurposeCodedOther null

ResponseTypeCode “Other”

ResponseTypeCodedOther null

Language copied from request document

OriginalPlanningScheduleHeader copied from request document

ChangedPlanningScheduleHeader null

PlanningScheduleResponseHeaderNote null

ListOfStructuredNote null

Packages

API Reference 7-43

Extends

XPCAbstractComponent

Methods

ListOfAttachment null

DetailResponseCoded “Other”

DetailResponseCodedOther null

OriginalLocationGroupedPlanningDetail
OR
OriginalMaterialGroupedPlanningDetail

copied from request document

ChangedLocationGroupedPlanningDetail
OR
ChangedMaterialGroupedPlanningDetail

null

LineItemNote null

ListOfStructuredNote null

ListOfAttachment null

TotalNumberOfLineItems the number of
LocationGroupedPlanningResponse
elements
OR
the number of
MaterialGroupedPlanningResponse
elements

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultPlanningScheduleDoc - DocumentObject - the incoming
Outputs:

DefaultPlanningScheduleResponseDoc - DocumentObject - the default
PlanningScheduleResponse document.

Configurations:
None

Field Setting

Packages

7-44 XPC Developer Guide and API Reference

package com.commerceone.xpc.components
class DefaultPriceCheckResponse30Builder

Description

Returns a default PriceCheckResponse in response to an incoming
PriceCheckRequest document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Field Setting

PriceCheckResultID copied from request document

PriceCheckResultIssueDate current date and time

SupplierParty copied from request document

SupplierPartyReferenceDate copied from request document

BuyerParty copied from request document

BuyerIDReferenceDate copied from request document

PriceCheckShipToParty copied from request document

PriceCheckCurrency copied from request document

QuoteDate copied from request document

PriceCheckResultLanguage copied from request document

PriceCheckResultNote copied from request document

ResultListOfAttachment copied from request document

LineItemNum copied from request document

LineItemType copied from request document

ParentItemNumber copied from request document

ItemIdentifiers copied from request document

Packages

API Reference 7-45

ListOfDimension copied from request document

TotalQuantity copied from request document

MaxBackOrderQuantity copied from request document

OffCatalogFlag copied from request document

ListOfItemReferences copied from request document

CountryOfOrigin copied from request document

CountryOfDestination copied from request document

FinalRecipient copied from request document

ConditionsOfSale copied from request document

HazardousMaterials copied from request document

CheckResultTransport copied from request document

UnitPriceValue -1. may be reconfigured with
XPC Manager

Currency copied from request document.
May be reconfigured with XPC
Manager.

UOMCoded must be configured with XPC
manager

UOMCodedOther null

PriceBasisQuantity null

ValidityDates null

PriceQuantityRange null

PriceMultiplier null

PriceErrorInfo null

GeneralLineItemNote copied from request document

LineItemAttachment copied from request document

Field Setting

Packages

7-46 XPC Developer Guide and API Reference

Extends

XPCAbstractComponent

Methods

PriceCheckItemError 0

PriceCheckSummaryErrorInfo null

TotalNumberOfLineItem copied from request document

public XPCResult process(XPCDataMgr dataMgr)
Gets the input document from the Data Manager, calls the buildResponse method, and sets
the default PriceCheckResponse document in the Data Manager.

Inputs:
DefaultPriceCheckRequestDoc - DocumentObject - the input PriceCheckRequest document

Outputs:
DefaultPriceCheckResponse - DocumentObject - the default PriceCheckResult document

Configurations:
UnitPrice - the unit price for the item
UOMCode - the unit of measurement code in which the unit price is expressed

Field Setting

Packages

API Reference 7-47

package com.commerceone.xpc.components
class DefaultPriceCheckResponseBuilder

Description

Returns a default PriceCheckResponse in response to an incoming
PriceCheckRequest document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings:.

Extends

XPCAbstractComponent

Field Setting

StartDate null

EndDate null

WuantityRange null

UnitPrice -1. may be reconfigured with
XPC Manager.

CurrencyCode copied from request document.
May be reconfigured with XPC
Manager.

UnitOfMeasure copied from request document.
May be reconfigured with XPC
Manager.

Packages

7-48 XPC Developer Guide and API Reference

Methods

public XPCResult process(XPCDataMgr dataMgr)
Gets the input document from the Data Manager, calls the buildResponse method, and sets
the default PriceCheckResponse document in the Data Manager.

Inputs:
DefaultPriceCheckRequestDoc - DocumentObject - the input PriceCheckRequest document

Outputs:
DefaultPriceCheckResponse - DocumentObject - the default PriceCheckResult document

Configurations:
UnitPrice - the unit price for the item
UOMCode - the unit of measurement code in which the unit price is expressed

Packages

API Reference 7-49

package com.commerceone.xpc.components
class DefaultPriceCheckResponseBuilder (deprecated)

Description

Returns a default PriceCheckResponse in response to an incoming
PriceCheckRequest document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings:.

Extends

XPCAbstractComponent

Field Setting

StartDate null

EndDate null

QuantityRange null

UnitPrice -1. may be reconfigured with
XPC Manager.

CurrencyCode copied from request document.
May be reconfigured with XPC
Manager.

UnitOfMeasure copied from request document.
May be reconfigured with XPC
Manager.

Packages

7-50 XPC Developer Guide and API Reference

Methods

public XPCResult process(XPCDataMgr dataMgr)
Gets the input document from the Data Manager, calls the buildResponse method, and sets
the default PriceCheckResponse document in the Data Manager.

Inputs:
DefaultPriceCheckRequestDoc - DocumentObject - the input PriceCheckRequest document

Outputs:
DefaultPriceCheckResponse - DocumentObject - the default PriceCheckResult document

Configurations:
UnitPrice - the unit price for the item
UOMCode - the unit of measurement code in which the unit price is expressed

Packages

API Reference 7-51

package com.commerceone.xpc.components
class DefaultPurchaseOrderResponseBuilder (deprecated)

Description

Returns a default PurchaseOrderResponse in response to an incoming
PurchaseOrderRequest document.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Gets the input document from the Data Manager, calls the buildResponse method, and sets
the default PurchaseOrderResponse document in the Data Manager.

Inputs:
DefaultPurchaseOrderRequestDoc - DocumentObject - the input PurchaseOrderRequest
document

Outputs:
DefaultPurchaseOrderResponse - DocumentObject - the default PurchaseOrderResponse
document

Configurations:
None

Packages

7-52 XPC Developer Guide and API Reference

package com.commerceone.xpc.components
class DefaultQuote30Builder

Description

Builds a default Quote document in response to a RequestForQuotation document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings

Field Setting

QuoteIssueDate current date and time

RefNum new UUID

RefDate current date and time

Reference copied from request document's
RequestQuoteID field if supplied;
otherwise, null

ReferenceReleaseNumber "0" if request document's
RequestQuoteID field is supplied;
otherwise, null

QuoteTypeCode "Other"

QuoteTypeCodedOther null

QuoteParty copied from request document

QuoteTransport copied from request document

QuoteCurrency copied from request document

QuoteAllowOrCharge copied from request document

QuoteTermsOfPayment copied from request document

QuoteTermsOfDelivery copied from request document

TaxReference array with 0 elements

QuoteLanguage copied from request document

Packages

API Reference 7-53

Extends

XPCAbstractComponent

GeneralNotes null

ListOfAttachment null

QuoteTypeCode "Other"

QuoteTypeCodedOther null

LineItemNum copied from request document

LineItemType copied from request document

ParentItemNumber copied from request document

ItemIdentifiers copied from request document

ListOfDimension copied from request document

TotalQuantity copied from request document

MaxBackOrderQuantity copied from request document

OffCatalogFlag copied from request document

ListOfItemReferences copied from request document

CountryOfOrigin copied from request document

CountryOfDestination copied from request document

FinalRecipient copied from request document

ConditionsOfSale copied from request document

HazardousMaterials copied from request document

RequestQuoteReference null

OrderParty null

ListOfQuotePackageDetail copied from request document

TotalNumberOfLineItems copied from request document from

Field Setting

Packages

7-54 XPC Developer Guide and API Reference

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultRequestForQuoteDoc - DocumentObject - the incoming RequestForQuotation
document.

Outputs:
DefaultQuoteDoc - DocumentObject - the default Quote document

Configurations:
None

Packages

API Reference 7-55

package com.commerceone.xpc.components
class DefaultShippingScheduleResponse30Builder

Description

Builds a default ShippingScheduleResponse document in response to a
ShippingSchedule request document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Field Setting

ScheduleResponseID new UUID

ScheduleResponseIssueDate current date and time

RefNum copied from request document

RefDate current date and time

ListOfReferenceCoded null

BuyerParty copied from request document

SellerParty copied from request document

PurposeCode “Other”

PurposeCodedOther null

ResponseTypeCode “Other”

ResponseTypeCodedOther null

Language copied from request document

OriginalShippingScheduleHeader copied from request document

ChangedShippingScheduleHeader null

ShippingScheduleResponseHeaderNote null

ListOfStructuredNote null

Packages

7-56 XPC Developer Guide and API Reference

Extends

XPCAbstractComponent

Methods

ListOfAttachment null

DetailResponseCode “Other”

DetailResponseCodedOther null

OriginalLocationGroupedShippingDetail
OR
OriginalMaterialGroupedShippingDetail

copied from request document

ChangedLocationGroupedShippingDetail
OR
ChangedMaterialGroupedShippingDetail

null

LineItemNote null

ListOfStructuredNote null

ListOfAttachment null

TotalNumberOfLineItems number of
LocationGroupedShippingResponse
or
MaterialGroupedShippingResponse
elements

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultShippingScheduleDoc - DocumentObject - the incoming ShippingSchedule
document.

Outputs:
DefaultShippingScheduleResponseDoc - DocumentObject - the default
ShippingScheduleResponse document.

Configurations:
None

Field Setting

Packages

API Reference 7-57

package com.commerceone.xpc.components
class DefaultTimeSeries30Builder

Description

Builds a default TimeSeries document in response to a TimeSeriesRequest document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Extends

XPCAbstractComponent

Field Setting

TimeSeriesHeader (multiple fields) all fields copied from request
document

ListOfCharacteristicCombinations copied from request document

TimeSeriesKeyFigurePurposeCoded copied from request document

TimeSeriesKeyFigurePurposeCodedOther copied from request document

TimeSeriesKeyFigureResponseCoded null

TimeSeriesKeyFigureResponseCodedOther null

CharacteristicCombinationID copied from request document

KeyFigureInformation copied from request document

UnitOfMeasurement copied from request document

StartDate current date and time

EndDate current date and time

TimeSeriesValue -1.0

TimeSeriesDataNote null

TimeSeriesSummary copied from request document

Packages

7-58 XPC Developer Guide and API Reference

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultTimeSeriesRequest30Doc - DocumentObject - the incoming TimeSeriesRequest
document.

Outputs:
DefaultTimeSeries30Doc - DocumentObject - the default TimeSeries

Configurations:
None

Packages

API Reference 7-59

package com.commerceone.xpc.components
class DefaultTimeSeriesResponse30Builder

Description

Builds a default TimeSeriesResponse document in response to an incoming
TimeSeriesRequest document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Field Setting

TimeSeriesResponseIssueDate current date and time

RefNum “ “

RefDate null

TimeSeriesReference copied from request document

TimeSeriesPlanningData copied from request document

TimeSeriesResponseParty copied from request document

TimeSeriesResponseCodedOther copied from request document

TimeSeriesHeaderResponseCodedOther “ “

ChangedTimeSeriesHeader copied from request document

Language copied from request document

GeneralNotes copied from request document

TimeSeriesDetailResponseCoded copied from request document

TimeSeriesDetailResponseCodedOther “ “

ListOfChangedCharacteristicCombinations copied from request document

ListOfChangedTimeSeriesKeyFigureData copied from request document

TimeSeriesResponseSummary copied from request document

Packages

7-60 XPC Developer Guide and API Reference

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultTimeSeries30Doc - DocumentObject - the incoming TimeSeries document.
Outputs:

DefaultTimeSeriesResponse30Doc - DocumentObject - the default TimeSeriesResponse
document.

Configurations:
None

Packages

API Reference 7-61

package com.commerceone.xpc.components
class DefaultTPRResponseFromOrganizationDelete30Builder

Description

Builds a default TradingPartnerResponse document in response to an incoming
TradingPartnerOrganizationDelete document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings

Extends

XPCAbstractComponent

Field Setting

RefNum “ “

RefDate null

PrimaryReturnCoded PrimaryReturnCode.00

PrimaryReturnCodeDescription null

ListOfSecondaryMessageInformation null

TradingPartnerPrimaryID copied from request document

AlternateID null

UserID null

ReturnedIdentificationURN null

RedirectURL SURI

ServiceID null

Packages

7-62 XPC Developer Guide and API Reference

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultTPOrganizationDelete30Doc - DocumentObject - the incoming
TradingPartnerOrganizationDelete document.

Outputs:
DefaultTradingPartnerResponse30Doc - DocumentObject - the default
TradingPartnerResponse document.

Configurations:
None

Packages

API Reference 7-63

package com.commerceone.xpc.components
class DefaultTPRResponseFromOrganizationInfo30Builder

Description

Builds a default TradingPartnerResponse document in response to an incoming
TradingPartnerOrganizationInformation document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Extends

XPCAbstractComponent

Field Setting

RefNum “ “

RefDate null

PrimaryReturnCoded PrimaryReturnCode.00

PrimaryReturnCodeDescription null

ListOfSecondaryMessageInformation null

TradingPartnerPrimaryID copied from request document

AlternateID null

UserID null

ReturnedIdentificationURN null

RedirectURL SURI

ServiceID null

Packages

7-64 XPC Developer Guide and API Reference

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultTPOrganizationInformation30Doc - DocumentObject - the incoming
TradingPartnerOrganizationInformation document.

Outputs:
DefaultTradingPartnerResponse30Doc - DocumentObject - the default
TradingPartnerResponse document.

Configurations:
None

Packages

API Reference 7-65

package com.commerceone.xpc.components
class DefaultTPResponseFromUserDelete30Builder

Description

Builds a default TradingPartnerResponse document in response to an incoming
TradingPartnerUserDelete document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Extends

XPCAbstractComponent

Field Setting

RefNum “ “

RefDate null

PrimaryReturnCoded PrimaryReturnCode.00

PrimaryReturnCodeDescription null

ListOfSecondaryMessageInformation null

TradingPartnerPrimaryID copied from request document

AlternateID null

UserID copied from request document

ReturnedIdentificationURN null

RedirectURL SURI

ServiceID null

Packages

7-66 XPC Developer Guide and API Reference

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultTPUserDelete30Doc -DocumentObject - the incoming TradingPartnerUserDelete
document.

Outputs:
DefaultTradingPartnerResponse30Doc - DocumentObject - the default
TradingPartnerResponse document.

Configurations:
None

Packages

API Reference 7-67

package com.commerceone.xpc.components
class DefaultTPRResponseFromUserInfo30Builder

Description

Builds a default TradingPartnerResponse document in response to an incoming
TradingPartnerUserInformation document.

Optional fields in the response document are filled with nulls. Required fields are
either copied from the request document, set to a constant value such as -1 or set to
the current ID or date and time.

The following table lists the field settings.

Extends

XPCAbstractComponent

Field Setting

RefNum “ “

RefDate null

PrimaryReturnCoded PrimaryReturnCode.00

PrimaryReturnCodeDescription null

ListOfSecondaryMessageInformation null

TradingPartnerPrimaryID copied from request document

AlternateID null

UserID copied from request document

ReturnedIdentificationURN null

RedirectURL SURI

ServiceID null

Packages

7-68 XPC Developer Guide and API Reference

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

DefaultTPUserInformation30Doc - DocumentObject - the incoming
TradingPartnerUserInformation document.

Outputs:
DefaultTradingpartnerResponse30Doc - DocumentObject - the default
TradingPartnerResponse document.

Configurations:
None

Packages

API Reference 7-69

package com.commerceone.xpc.components
class ExceptionHandler

Description

This standard component logs an event and builds an Error document based on a
previously thrown exception.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Logs an event and builds an Error document based on a previously thrown exception. Returns
the result of the component’s execution.

Inputs:
exception - Exception - a previously thrown exception
componentName - String - the component that threw the exception

Outputs:
replyDocument - Document - an Error document based on the exception

Configurations:
None

Packages

7-70 XPC Developer Guide and API Reference

package com.commerceone.xpc.components
class FileStore

Description

This extended component provides methods for storing envelopes, request
documents, and attachments in directories on the file system and for reading the
archived files. Both the archive directories and the filename formats can be
configured.

Extends

XPCAbstractComponent

Class-wide Configurations

! Overwrite - determines whether new files overwrite existing files with the same
name. Three settings--no, yes, or history--are available.

" A “no” setting throws an error if an existing file with the specified name is
found.

" A “yes” setting archives the most recent version of the file by appending a dollar
sign ($) to its file name.

" A “history” setting archives all versions of the file by appending a dollar sign
and version number to the most recent version’s file name is appended by a
dollar sign ($) and version number to an existing file when it is overwritten. For
example, when the file xyz is overwritten, the first version of the file is renamed
xyz$1. The next time xyz is overwritten, the second version of the file is
renamed xyz$2. The file named xyz always contains the most current version.

! RootDirectory - the root archive directory. This directory is used for all
configurations.

Packages

API Reference 7-71

Methods

public XPCResult storeEnvelope(XPCDataMgr dataMgr)
Stores an envelope, request document and attachments.

Inputs:

! envelopeToStore - Envelope - the envelope to be stored

! correlationKey - String - the correlation key

Outputs:

! None

Configurations:

! Document.Directory - directory in which the document is archived. The default directory
name varies by XPC service and reflects the type of document being archived. For services
that archive request documents, a default directory called “default_request” is used. For
services that archive response documents, a default directory called “default_response” is
used.

! Envelope.Directory - directory (by default, envelope) in which the envelope is stored.

! Envelope.Document.Directory - directory in which the document is stored. The default
directory name varies by XPC service and reflects the type of document being archived. For
services that archive response documents, a default directory called “response” is used. For
services that archive request documents, the default directory name is “request.” For services
that archive one-way documents, a default directory called “oneway” is used.

! Envelope.Attachment.Directory - directory (by default, attachment) in which the attachments
are stored

! Envelope.Attachment.Description.Directory - directory (by default, meta) in which
descriptions of attachments are stored

! Envelope.Prefix - string with which each envelope file name begins. By default, this is the
name of the document being archived followed by an underscore (for example, Quote_ or
AvailabilityToPromiseResponse_).

! Envelope.Document.Prefix - string with which each document file name begins. By default,
this is the name of the document being archived followed by an underscore (for example,
Quote_ or AvailabilityToPromiseResponse_).

(Configurations continued on next page)

Packages

7-72 XPC Developer Guide and API Reference

! Envelope.Attachment.Prefix - string with which each attachment file name begins. By
default, this is the name of the document being archived followed by an underscore (for
example, Quote_ or AvailabilityToPromiseResponse_).

! Envelope.Attachment.Description.Prefix - string with which each attachment description file
name begins. By default, this is the name of the document being archived followed by an
underscore (for example, Quote_ or AvailabilityToPromiseResponse_).

! Envelope.Attachment.NameURI.[Name].Directory - the attachment directory naming
convention, which is based upon attachment name

! Envelope.Document.Extension - string (by default, .xml) with which each document file
name ends

! Envelope.Extension - string (by default, .env) with which each envelope file name ends

! Envelope.Attachment.Extension - string (by default, .att) with which each attachment file
name ends

! Envelope.Attachment.Description.Extension - string (by default, .adf) with which each
attachment description file name ends

public XPCResult storeStream(XPCDataMgr dataMgr)
Stores the input stream.

Inputs:

! streamToStore - InputStream - streamed data

! correlationKey - String - correlation key
Outputs:

! None
Configurations:

! Stream.Directory - the directory in which the streamed input is stored.

! Stream.Prefix - string (by default, D_) with which the stream file name begins.

! Stream.Extension - string (by default, .xml) with which the stream file name ends.

Packages

API Reference 7-73

public XPCResult storeDocument(XPCDataMgr dataMgr)
Stores the input document.

Inputs:

! documentToStore - Document - the input document

! correlationKey - String - the correlation key
Outputs:

! None
Configurations:

! Document.Directory - directory in which the document will be stored

! Document.Prefix - string (by default, D_) with which the document file name begins

! Document.Extension - string (by default, .xml) with which the document file name ends

public XPCResult readStream(XPCDataMgr dataMgr)
Reads a file from a directory. Outputs a streamed input file and a correlation key to the
Stream.Directory. Archives the file to a separate Stream.Archive.Directory if one is defined.

Inputs:

! None
Outputs:

! streamRead - InputStream - the streamed input file

! correlationKey - String - the correlation key
Configurations:

! Stream.Directory - the directory in which the streamed input file will be stored.

! Stream.Archive.Directory - the directory in which the file will be archived once it has been
streamed.

! Stream.prefix - string (by default, D_) with which the stream file name begins.

! Stream.Extension - string (by default, .xml) with which the stream file name ends.

Packages

7-74 XPC Developer Guide and API Reference

public XPCResult readDocument(XPCDataMgr dataMgr)
Reads a document from a directory. Outputs the document along with the correlation key.
Archives the document to a separate Document.Archive.Directory if one is defined.

Inputs:

! None
Outputs:

! documentRead - Document - the document to be read

! correlationKey - String - the correlation key of the document
Configurations:

! Document.Directory - directory in which the document is stored. The default directory name
varies by XPC service and reflects the type of document being archived. For services that
archive request documents, a default directory called “default_request” is used. For services
that archive response documents, a default directory called “default_response” is used.

! Document.Archive.Directory - the directory in which the document will be archived

! Document.Prefix - string (by default, D_) with which the document file name begins

! Document.Extension - string (by default, .xml) with which the document file name ends

public XPCResult lookupEnvelope(XPCDataMgr, dataMgr)
Reads the envelope with the specified correlation key from the file system. Archives the
envelope to a separate Envelope.Archive.Directory if one is defined.

Inputs:

! correlationKey - String - the correlation key of the envelope
Outputs:

! lookupEnvelope - Envelope - the archived envelope
Configurations:

! Envelope.Directory - the directory in which the envelope is currently stored

! Envelope.Archive.Directory - the directory in which the envelope archive will be stored

! Envelope.Prefix - string (by default, E_) with which each envelope file name begins

! Envelope.Extension - string (by default, .env) with which each envelope file name ends

Packages

API Reference 7-75

public XPCResult copyFile(XPCDataMgr dataMgr))
This extended method copies a file named by the input string from the File.Source.Directory to the
File.Target.Directory defined in the configuration file. File name format will be [Prefix][filename
key][extension].

Inputs:

! filenameKey - String - the correlation key of the file to be copied
Outputs:

! None
Configurations:

! File.Source.Directory - the directory in which the original file is located

! File.Target.Directory - the directory into which the file will be copied

! File.Prefix - a set of characters to be added at the beginning of the file name specified by
filenameKey

! File.Extension - a set of characters to be added at the end of the file name specified by
filenameKey

Packages

7-76 XPC Developer Guide and API Reference

package com.commerceone.xpc.components
class GetCorrelationKey

Description

Returns the correlation key of an envelope.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Generates a correlation key that can be used to identify a transaction. If xPath is set, key
string is the value corresponding to the xPath in the root document of the envelope. If xPath is
not set, correlation id of the envelope will be the output.

Inputs
envelope - Envelope - the request envelope

Outputs
correlationKey - String - the correlation ID of the envelope

Configurations
KeyProperty - determines whether the correlation key is generated from the incoming
envelope’s CorrelationId (the default) or its MessageId. The Xpath configuration may be used
to specify a correlation key other than the CorrelationId or MessageId; this setting takes
precedence over the KeyProperty setting.
Xpath - a correlation key specification that reflects the values of one or more xCBL elements
or attributes. The specification is constructed from one or more xpath-like strings, each of
which represents the path to an xCBL element or attribute. Nodes within the path are
separated by forward slashes (/), attribute names are preceded by the at symbol (@), and the
entire xPath string is surrounded by angle brackets (< and >). The string <PurchaseOrder/
OrderHeader/OrderReference/BuyerRefNum>, for example, represents the value of the
BuyerRefNum element in the PurchaseOrder document.
If an xPath configuration contains more than one xpath string, individual strings are separated
by one or more characters. With the exception of the angle bracket characters, any characters
may be used to separate consecutive xpath strings. In the following xPath configuration, for
example, the underscore character (_) is used to separate the two xpath strings:
<PurchaseOrder/OrderHeader/POIssuedDate>_<PurchaseOrder/OrderHeader/
OrderReference/BuyerRefNum>
The resulting xPath configuration consists of the date the purchase order was issued followed
by an underscore character and the buyer’s purchase order number (for example:
200000805T01:01:01_123456789)

Packages

API Reference 7-77

package com.commerceone.xpc.components
class GetStringFromDocument

Description

Reads the correlation key from an xCBL document and returns it to the Data
Manager.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Reads the correlation key from an xCBL document and returns it to the Data Manager. The
xPath configuration is used to specify which portion of the document is used as the
correlation key. The DefaultString configuration is used may to specify the default correlation
key returned when the xPath configuration is not set or returns an empty string.

Inputs:
document - DocumentObject - the xCBL document

Outputs:
correlationKey - String - the correlation key of the xCBL document

Configurations:
DefaultString - an alternative correlation key to be output if xPath is not configured or returns
an empty string
xPath - a correlation key specification that reflects the values of one or more xCBL elements
or attributes. The specification is constructed from one or more xpath-like strings, each of
which represents the path to an xCBL element or attribute. Nodes within the path are
separated by forward slashes (/), attribute names are preceded by the at symbol (@), and the
entire xPath string is surrounded by angle brackets (< and >). The string <PurchaseOrder/
OrderHeader/OrderReference/BuyerRefNum>, for example, represents the value of the
BuyerRefNum element in the PurchaseOrder document.
If an xPath configuration contains more than one xpath string, individual strings are separated
by one or more characters. With the exception of the angle bracket characters, any characters
may be used to separate consecutive xpath strings. In the following xPath configuration, for
example, the underscore character (_) is used to separate the two xpath strings:
<PurchaseOrder/OrderHeader/POIssuedDate>_<PurchaseOrder/OrderHeader/
OrderReference/BuyerRefNum>
The resulting xPath configuration consists of the date the purchase order was issued followed
by an underscore character and the buyer’s purchase order number (for example:
200000805T01:01:01_123456789).

Packages

7-78 XPC Developer Guide and API Reference

package com.commerceone.xpc.components
class LookupXCCArchive

Description

Retrieves the archived envelope whose referenceId matches that of the input
envelope. If no match is found, retrieves the archived envelope whose correlationId
matches that of the input envelope. If neither match is found, returns an
outputEnvelope of null.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

inputEnvelope - Envelope - the envelope containing the error document
Outputs:

outputEnvelope - Envelope - the archived envelope whose correlation key matches that of the
input envelope.
correlationKey - String - the correlation key

Configurations:
None

Packages

API Reference 7-79

package com.commerceone.xpc.components
class MessageAcknowledgmentSender

Description

Creates an envelope containing a MessageAcknowledgement document and transmits
it to the sender of the original document.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Inputs:

inputEnvelope - Envelope - the envelope containing the original document
Outputs:

None
Configurations:

None

Packages

7-80 XPC Developer Guide and API Reference

package com.commerceone.xpc.components
class Responder

Description

This standard component sends a response to a previously-received request envelope.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Sends a response to a previously-received request envelope. Gets the request envelope and
response document from the Data Manager. Returns the result of the component’s execution.

Inputs:
replyDocument - DocumentObject - the response document

Outputs:
None

Configurations:
None

Packages

API Reference 7-81

package com.commerceone.xpc.components
class StreamToDocument

Description

This standard component converts streamed input to an xCBL document.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Converts the input stream to an xCBL document.

Inputs:
streamRead - InputStream - streamed input

Outputs:
document - DocumentObject - an xCBL document

Configurations:
None

Packages

7-82 XPC Developer Guide and API Reference

package com.commerceone.xpc.components
class Transmitter

Description

Gets the request envelope from the data manager and transmits it to its destination.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Gets the request envelope from the data manager and transmits it to its destination.

Inputs:
requestEnv - Envelope - the request envelope

Outputs:
None

Configurations:
None

Packages

API Reference 7-83

package com.commerceone.xpc.helpers

Description

This package contains classes whose methods can be used to access the information
in request documents and to build both the data portion and the error portion of
response documents.

XPCDocHandle Provides methods for traversing documents, obtaining the values
of specified fields, and setting the values of fields. In practice, this
is used to obtain the values of key fields from xCBL request
documents, such as the PriceCheckRequest document, and to set
the values of corresponding fields in xCBL response documents,
such as the PriceCheckResponse document.

XPCErrorInfo Builds the error information portion of a response document.

Packages

7-84 XPC Developer Guide and API Reference

package com.commerceone.xpc.helpers
class XPCDocHandle

Description

Provides methods for traversing documents, obtaining the values of specified fields,
and setting the values of fields. In practice, this is used to obtain the values of key
fields from xCBL request documents, such as the PriceCheckRequest document, and
to set the values of corresponding fields in xCBL response documents, such as the
PriceCheckResponse document.

Packages

API Reference 7-85

Methods

public Object get(final String atPath)
Returns a node from the xCBL request document.
The method takes as its input an XPath string to the xCBL element or attribute whose
value will be returned. The string has the same structure as the xCBL request document,
and includes each node that must be traversed to get to the desired element or attribute.
Nodes are separated by forward slashes (/). Attribute names are preceded by the at
symbol (@)

For example, get("PriceCheckRequest/PriceCheckRequestDetail/
ListOfPriceCheckRequestItemDetail/PriceCheckRequestItemDetail/
PriceCheckRequestBaseItemDetail/ItemIdentifiers/PartNumbers/SellerPartNumber/
PartNum/PartID") returns an array containing the suppliers part id of each item as
specified in the PriceCheckRequest document. The method selects the PartID element:
from the PartNum element
from the SellerPartNumber element
from the PartNumbers element
from the ItemIdentifiers element
from the PriceCheckRequestBaseItemDetail element
from the PriceCheckRequestItemDetail element
from the ListOfPriceCheckRequestItemDetail element
from the PriceCheckRequestDetail element
from the PriceCheckRequest input document

Rather than specifying complete paths to each element or attribute, as above, you can
create symbolic names for these paths in your integrators. For example, the following
entry in the sample myPriceCheckIntegrator30 creates a variable,
XPATH_PARTID_SUPPLIER, whose value is the path to the PartID element in the
PriceCheckRequest document:

static private final String XPATH_PARTID_SUPPLIER = "PriceCheckRequest/
PriceCheckRequestDetail/ListOfPriceCheckRequestItemDetail/
PriceCheckRequestItemDetail/PriceCheckRequestBaseItemDetail/ItemIdentifiers/
PartNumbers/SellerPartNumber/PartNum/PartID";

The variable name, XPATH_PARTID_SUPPLIER, can then be specified as the input
string in get(XPATH_PARTID_SUPPLIER).

Packages

7-86 XPC Developer Guide and API Reference

public Object set(final String atPath, final Object objParams)
Sets the value of a node in the xCBL response document.

The method takes two arguments. The first specifies the path to the xCBL element(s) or
attribute(s) whose value will be set. The second specifies the value, or array of values, to
be assigned to these element(s) or attribute(s).

The path to the xCBL element or attribute is specified by an Xpath string with the same
structure as the xCBL result document. The string includes each node that must be
traversed to get to the desired element or attribute. Nodes are separated by forward
slashes (/). Attribute names are preceded by the at symbol (@)

For example, set("PriceCheckResult/PriceCheckResultDetail/
ListOfPriceCheckResultItemDetail/PriceCheckResultItemDetail/ResultPrice/Price/
UnitPrice/UnitPriceValue", resultPrices) sets the unit price for each item whose price was
requested. For each item, the method sets the UnitPriceValue element:
of the UnitPrice element
within the Price element
within the ResultPrice element
within the PriceCheckResultItemDetail element
within the ListOfPriceCheckResultItemDetail element
within the PriceCheckResultDetail element
within the PriceCheckResult response document

Rather than specifying complete paths to each element or attribute, as above, you can
create symbolic names for these paths in your integrators. For example, the following
entry in the sample myPriceCheckIntegrator30 creates a variable,
XPATH_RESULT_PRICE, whose value is the path to the UnitPriceValue element in the
PriceCheckResult document:

static private final String XPATH_RESULT_PRICE = "PriceCheckResult/
PriceCheckResultDetail/ListOfPriceCheckResultItemDetail/
PriceCheckResultItemDetail/ResultPrice/Price/UnitPrice/UnitPriceValue";

The variable name, XPATH_RESULT_PRICE, can then be specified as the first
argument in the set method, as below:
set(XPATH_RESULT_PRICE, resultPrices)

Packages

API Reference 7-87

package com.commerceone.xpc.helpers
class XPCErrorInfo

Description

Builds the error information portion of a response document.

Constructors

Methods

public XPCErrorInfo()
Creates a new string buffer for the error code.
Creates a new string buffer for the error message to be displayed to the user.
Creates a new string buffer for the vendor-specific error message that may be used for
troubleshooting.
Sets a default value of 0 for the minimum number of seconds to wait before retrying the
request.
Sets withParams to NULL, indicating that there are no other error parameters.

public boolean isSet()
Returns “false” if the length of the ErrCode is 0, “false” otherwise.

final public StringBuffer getCode()
Returns the error code.

final public StringBuffer getMessage()
Returns an error message suitable for display to application users.

final public StringBuffer getVendorRef()
Returns an error message suitable for troubleshooting.

final public int getSeverity()
Returns the severity of the error.

final public int getMinRetry()
Returns the minimum number of seconds to wait before trying the request again.

final public String[] getParams()
Returns other error parameters.

public ErrorInfo buildErrorInfo()
Builds a new ErrorInfo CBL element for inclusion in the response document.

Packages

7-88 XPC Developer Guide and API Reference

package com.commerceone.xpc.my_integrators

Description

Contains working samples of components used to send default responses to requests
for item availability, item price, or order status. You can use these components as
models when extending XPCAbstractComponent to build your own integrations.
Unlike the sample components in this class, your own components should issue
response documents with actual availability, price, or order status information
retrieved from your backend system.

myAvailabilityCheckIntegrator30 This sample component is provided for you to
use as a model when developing your own
Availability Check integration.

myAvailabilityCheckIntegrator (deprecated) This sample component is provided for you to
use as a model when developing your own
Availability Check integration.

myOrderStatusIntegrator30 This sample component is provided for you to
use as a model when developing your own
Order Status integration.

myOrderStatusIntegrator (deprecated) This sample component is provided for you to
use as a model when developing your own
Order Status integration.

myPriceCheckIntegrator30 This sample component is provided for you to
use as a model when developing your own
Price Check integration.

myPriceCheckIntegrator (deprecated) This sample component is provided for you to
use as a model when developing your own
Price Check integration.

Packages

API Reference 7-89

package com.commerceone.xpc.my_integrators
class myAvailabilityCheckIntegrator30

Description

This class provides methods that may be used to access the contents of an
AvailabilityCheckRequest document, determine the availability of each item, and
return an AvailabilityCheckResponse document. You may use these methods as
models when building your own Availability Check integration. Unlike these
methods, however, your own methods should extract actual data from your backend
system and use it to build your AvailabilityCheckResponse document.

Extends

XPCAbstractComponent

Packages

7-90 XPC Developer Guide and API Reference

Methods

private XPCResult doAvailabilityCheck
(final String acctCode_Buyer,
final String partID_Supplier,
final String partExt_Supplie
final String quantity,
final String uomCode,
StringBuffer resultQuantity,
StringBuffer resultUOM,
StringBuffer errorCode,
StringBuffer errorMessage,
StringBuffer errorVendorMessage)

You may use this sample helper method as a model when building your own Availability
Check integration. It retrieves key information from the incoming AvailabilityCheckRequest
document, displays information about the part whose availability is being checked, and
returns a default AvailabilityCheckResponse document.
When building your own integration, you must add custom code to retrieve the available
quantity and unit of measurement from your backend system and set these fields in the
AvailabilityCheckResponse document. Your custom code must handle any errors in the
request document by setting the optional error code, error message, and other error
information in the ErrorInfo portion of the AvailabilityCheckResponse document.

Inputs:
acctCode_Buyer - String - the buyer’s account code
partID_Supplier - String - the supplier’s part number for the item
partExt_Supplier - String - the supplier’s part number extension for the item
quantity - String - the requested quantity
uomCode - String - the unit of measurement in which the quantity is expressed

Outputs:
resultQuantity - StringBuffer - the available quantity of the item
resultUOM - StringBuffer - the unit of measurement in which the available quantity is
expressed
errorCode - StringBuffer - the error code, if any
errorMessage - StringBuffer - a descriptive error message suitable for display to users
vendorErrorMessage - StringBuffer - a vendor-specific error message suitable for
troubleshooting

Packages

API Reference 7-91

public XPCResult process(XPCDataMgr dataMgr)
Calls doAvailabilityCheck helper method once for each item whose availability is being
checked.

Inputs:
RequestDoc - XCBL30_sox.AvailabilityRequest - the AvailabilityCheckRequest document
ResultDoc - XCBL30_sox.AvailabilityResult - the default AvailabilityCheckResult document

Outputs:
ResultDoc - XCBL30_sox.AvailabilityResult - the AvailabilityCheckResult document

Configurations:
None

Packages

7-92 XPC Developer Guide and API Reference

class myAvailabilityCheckIntegrator (deprecated)

Description

This class provides methods that may be used to access the contents of an
AvailabilityCheckRequest document, determine the availability of each item, and
return an AvailabilityCheckResponse document. You may use these methods as
models when building your own Availability Check integration. Unlike these
methods, however, your own methods should extract actual data from your backend
system and use it to build your AvailabilityCheckResponse document.

Extends

XPCAbstractComponent

Packages

API Reference 7-93

Methods

private XPCResult doAvailabilityCheck
You may use this sample helper method as a model when building your own Availability
Check integration. It retrieves key information from the incoming AvailabilityCheckRequest
document, displays information about the part whose availability is being checked, and
returns a default AvailabilityCheckResponse document.
When building your own integration, you must add custom code to retrieve the available
quantity and unit of measurement from your backend system and set these fields in the
AvailabilityCheckResponse document. Your custom code must handle any errors in the
request document by setting the optional error code, error message, and other error
information in the ErrorInfo portion of the AvailabilityCheckResponse document.

Inputs:
acctCode_Buyer - String - the buyer’s account code
partID_Buyer - String - the buyer’s part number for the item
partExt_Buyer - String - the buyer’s part number extension for the item
partID_Supplier - String - the supplier’s part number for the item
partExt_Supplier - String - the supplier’s part number extension for the item
quantity - String - the requested quantity
uomCode - String - the unit of measurement in which the quantity is expressed

Outputs:
resultQuantity - StringBuffer - the available quantity of the item
resultUOM - StringBuffer - the unit of measurement in which the available quantity is
expressed
errorCode - StringBuffer - the error code, if any
errorMessage - StringBuffer - a descriptive error message suitable for display to users
vendorErrorMessage - StringBuffer - a vendor-specific error message suitable for
troubleshooting

public XPCResult process(XPCDataMgr dataMgr)
Calls doAvailabilityCheck helper method once for each item whose availability is being
checked.

Inputs:
RequestDoc - CBL_sox.AvailabilityRequest - the AvailabilityCheckRequest document
ResultDoc - CBL_sox.AvailabilityResult - the default AvailabilityCheckResult document

Outputs:
ResultDoc - CBL_sox.AvailabilityResult - the AvailabilityCheckResult document

Configurations:
None

Packages

7-94 XPC Developer Guide and API Reference

package com.commerceone.xpc.my_integrators
class myOrderStatusIntegrator30

Description

This class provides methods that may be used to access the contents of an
OrderStatusRequest document, determine the status of the order, and return an
OrderStatus Response document. You may use these methods as models when
building your own Order Status integration. Unlike these methods, however, your
own methods should extract actual data from your backend system and use it to build
your OrderStatusResponse document.

Extends

XPCAbstractComponent

Packages

API Reference 7-95

Methods

private XPCResult doOrderStatus(final String accountCode,
final String refNum_Buyer,
final String orderDate,
StringBuffer resultStatusCode,
StringBuffer resultStatusNote,
StringBuffer resultStatusDate,
StringBuffer errorCode,
StringBuffer errorMessage,
StringBuffer errorVendorMessage)

You may use this sample helper method as a model when building your own Order Status
integration. It retrieves key information from the incoming OrderStatusRequest document,
displays information about the line item whose status is being checked, and returns a default
OrderStatusResponse document.
When building your own integration, you must add custom code to retrieve the status from your
backend system and set this information in the OrderStatusResponse document. Your custom code
must handle any errors in the request document by setting the optional error code, error message,
and other error information in the ErrorInfo portion of the OrderStatusResponse document.

Inputs:

! accountCode - String - the buyer’s account code

! refNum_Buyer - String - the buyer’s reference number for the order

! refNum_Supplier - String - the supplier’s reference number for the order

! orderDate - String - the date the item was ordered
Outputs:

! resultStatusCode - StringBuffer - the status code

! resultStatusNote - StringBuffer - a description of the status

! resultStatusDate - StringBuffer - the date associated with the status

! errorCode - StringBuffer - error code if any

! errorMessage - StringBuffer - an error message suitable for user display

! errorVendorMessage - StringBuffer - an error message suitable for troubleshooting

Packages

7-96 XPC Developer Guide and API Reference

public XPCResult process(XPCDataMgr dataMgr)
Calls the doOrderStatus helper method once for each item whose status is being checked.

Inputs:
RequestDoc - XCBL30_sox.OrderStatusRequest - the OrderStatusRequest document
ResultDoc - XCBL30_sox.OrderStatusResult - the default OrderStatusResult document

Outputs:
ResultDoc - XCBL30_sox.OrderStatusResult - the OrderStatusResult document

Configurations:
None

Packages

API Reference 7-97

package com.commerceone.xpc.my_integrators
class myOrderStatusIntegrator (deprecated)

Description

This class provides methods that may be used to access the contents of an
OrderStatusRequest document, determine the status of the order, and return an
OrderStatus Response document. You may use these methods as models when
building your own Order Status integration. Unlike these methods, however, your
own methods should extract actual data from your backend system and use it to build
your OrderStatusResponse document.

Extends

XPCAbstractComponent

Packages

7-98 XPC Developer Guide and API Reference

Methods

private XPCResult doOrderStatus(final String account Code, // [IN] Buyer account code
final String refNum_Buyer, // [IN] Buyer’s ref num for the order
//final String refNum_Supplier, // [IN] Supplier’s ref num for the order
final String orderDate // [IN] Ordered Date
StringBuffer resultStatusCode, // [OUT] Order Status code
StringBuffer resultStatusNote, // [OUT] Descriptive string for Status
StringBuffer resultStatusDate, // [OUT] date of the status
StringBuffer errorCode, // [OUT,OPTIONAL] Error code if any
StringBuffer errorMessage, // [OUT,OPTIONAL] Descriptive error Message
StringBuffer errorVendorMessage // [OUT,OPTIONAL] vendor specific error message
)

You may use this sample helper method as a model when building your own Order Status
integration. It retrieves key information from the incoming OrderStatusRequest document,
displays information about the line item whose status is being checked, and returns a default
OrderStatusResponse document.
When building your own integration, you must add custom code to retrieve the status from
your backend system and set this information in the OrderStatusResponse document. Your
custom code must handle any errors in the request document by setting the optional error
code, error message, and other error information in the ErrorInfo portion of the
OrderStatusResponse document.

Inputs:

! accountCode - String - the buyer’s account code

! refNum_Buyer - String - the buyer’s reference number for the order

! refNum_Supplier - String - the supplier’s reference number for the order

! orderDate - String - the date the item was ordered
Outputs:

! resultStatusCode - StringBuffer - the status code

! resultStatusNote - StringBuffer - a description of the status

! resultStatusDate - StringBuffer - the date associated with the status

! errorCode - StringBuffer - error code if any

! errorMessage - StringBuffer - an error message suitable for user display

! errorVendorMessage - StringBuffer - an error message suitable for troubleshooting

Packages

API Reference 7-99

public XPCResult process(XPCDataMgr dataMgr)
Calls the doOrderStatus helper method once for each item whose status is being checked.

Inputs:
RequestDoc - CBL_sox.OrderStatusRequest - the OrderStatusRequest document
ResultDoc - CBL_sox.OrderStatusResult - the default OrderStatusResult document

Outputs:
ResultDoc - CBL_sox.OrderStatusResult - the OrderStatusResult document

Configurations:
None

Packages

7-100 XPC Developer Guide and API Reference

package com.commerceone.xpc.my_integrators
class myPriceCheckIntegrator30

Description

This class provides methods that may be used to access the contents of a
PriceCheckRequest document, determine the price of each item, and return a
PriceCheckResponse document. You may use these methods as models when
building your own PriceCheck integration. Unlike these methods, however, your own
methods should extract actual data from your backend system and use it to build your
Price CheckResponse document.

Extends

XPCAbstractComponent

Packages

API Reference 7-101

Methods

private XPCResult doPriceCheck
(final String acctCode_Buyer,
final String partID_Supplier,
final String partExt_Supplier,
final String quantity,
final String uomCode,
StringBuffer resultPrice,
StringBuffer resultCurrency,
StringBuffer errorCode,
StringBuffer errorMessage,
StringBuffer errorVendorMessage)
You may use this sample helper method as a model when building your own Price Check integration. It
retrieves key information from the incoming PriceCheckRequest document, displays information about the
part whose availability is being checked, and returns a default PriceCheckResponse document.
When building your own integration, you must add custom code to retrieve the available quantity and unit
of measurement from your backend system and set these fields in the PriceCheckResponse document. Your
custom code must handle any errors in the request document by setting the optional error code, error
message, and other error information in the ErrorInfo portion of the PriceCheckResponse document.
Inputs:

! acctCode_Buyer - String - the buyer’s account code

! partID_Supplier - String - the supplier’s part number for the item

! partExt_Supplier - String - the supplier’s part number extension for the item

! quantity - String - the requested quantity of the item

! uomCode - String - the code for the unit in which the requested quantity is expressed
Outputs:

! resultPrice - StringBuffer - the supplier’s unit price for the item

! resultCurrency - StringBuffer - the currency code in which the supplier’s price is expressed.

! errorCode - StringBuffer - the error code

! errorMessage - StringBuffer - an error message suitable for display to users

! errorVendorMessage - StringBuffer - an error message suitable for debugging purposes

Packages

7-102 XPC Developer Guide and API Reference

public XPCResult process(XPCDataMgr dataMgr)
Calls the doPriceCheck helper method once for each item whose price is being checked.

Inputs:
RequestDoc - XCBL30_sox.PriceCheckRequest - the PriceCheckRequest document
ResultDoc - XCBL30_sox.PriceCheckResult- the default PriceCheckResult document

Outputs:
ResultDoc - XCBL30_sox.PriceCheckResult - the PriceCheckResult document

Configurations:
None

Packages

API Reference 7-103

package com.commerceone.xpc.my_integrators
class myPriceCheckIntegrator (deprecated)

Description

This class provides methods that may be used to access the contents of a
PriceCheckRequest document, determine the price of each item, and return a
PriceCheckResponse document. You may use these methods as models when
building your own PriceCheck integration. Unlike these methods, however, your own
methods should extract actual data from your backend system and use it to build your
Price CheckResponse document.

Extends

XPCAbstractComponent

Packages

7-104 XPC Developer Guide and API Reference

Methods

private XPCResult doPriceCheck
(final String acctCode_Buyer, // [IN] Buyer Account Code
final String partID_Supplier, // [IN] Supplier’s PartId
final String partExt_Supplier, // [IN] Supplier’s PartId extension
final String quantity, // [IN] Requested Quantity
final String uomCode, // [IN] UOM
StringBuffer resultPrice, // [OUT] Supplier’s Price
StringBuffer resultCurrency, // [OUT] Currency of Supplier’s Price
StringBuffer errorCode, // [OUT,OPTIONAL] ErrorCode if any
StringBuffer errorMessage, // [OUT,OPTIONAL] Descriptive Error Message
StringBuffer errorVendorMessage // [OUT,OPTIONAL] vendor Error Message
)

Determines the price of a single line item. Returns string buffers containing either the item’s
price and its currency code or information about errors that occurred while checking the price.

Inputs:

! acctCode_Buyer - String - the buyer’s account code

! partID_Supplier - String - the supplier’s part number for the item

! partExt_Supplier - String - the supplier’s part number extension for the item

! quantity - String - the requested quantity of the item

! uomCode - String - the code for the unit in which the requested quantity is expressed
Outputs:

! resultPrice - StringBuffer - the supplier’s unit price for the item

! resultCurrency - StringBuffer - the currency code in which the supplier’s price is expressed.

! errorCode - StringBuffer - the error code

! errorMessage - StringBuffer - an error message suitable for display to users

! errorVendorMessage - StringBuffer - an error message suitable for debugging purposes

public XPCResult process(XPCDataMgr dataMgr)
Calls the doPriceCheck helper method once for each item whose price is being checked.

Inputs:
RequestDoc - CBL_sox.PriceCheckRequest - the PriceCheckRequest document
ResultDoc - CBL_sox.PriceCheckResult- the default PriceCheckResult document

Outputs:
ResultDoc - CBL_sox.PriceCheckResult - the PriceCheckResult document

Configurations:
None

Packages

API Reference 7-105

package com.commerceone.xpc.swi.common

Description

This package contains an interface implemented by all XPC components. Its methods
are used to retrieve the input and output argument descriptors.

Interfaces

XPCContract This interface is implemented by all XPC components. Its
methods return descriptions of the component’s methods’ input
and output arguments.

Packages

7-106 XPC Developer Guide and API Reference

package com.commerceone.xpc.swi.common
interface XPCContract

Description

This interface is implemented by all XPC components.

Implemented By

XPCAbstractComponent

Methods

public XPCContractDescriptor[] getInputList(String methodName)
Returns an array of contract descriptors for the input arguments of the specified method.
methodName - the name of the component’s execution method (““ for standard components
that use the process method).

public XPCContractDescriptor[] getOutputList(String methodName)
Returns an array of contract descriptors for the output arguments of the specified method.
methodName - the name of the component’s execution method (““ for standard components
that use the process method).

Packages

API Reference 7-107

package com.commerceone.xpc.swi.framework

Description

This package contains a number of interfaces that are implemented by each XPC
component. These interfaces provide methods for naming the component, setting its
configuration parameters, invoking its execution method, and transmitting request
envelopes and response documents.

XPCConfig This interface is implemented by all XPC components. Its
methods retrieve configuration parameters and use them to
configure the component.

XPCProcess This interface is implemented by all XPC standard
components. Its process() method is invoked by the Action
Director.

XPCTransmit This interface is implemented by the
XPCAbstractComponent subclass.

Packages

7-108 XPC Developer Guide and API Reference

package com.commerceone.xpc.swi.framework
interface XPCConfig

Description

This interface is implemented by all XPC components. Its methods retrieve
configuration parameters and use them to configure the component.

Implemented By

XPCAbstractComponent

Methods

public boolean config(XPCTransmit container, XPCConfigParams configParams);
Configures the component using configParams. Returns “true” if the configuration was
successful; “false” otherwise. This method is final within its only implementation,
XPCAbstractComponent and is invoked only by the XPC Framework. Concrete subclasses
can override this method to access the configuration parameters.
container - the Transmit container
configParams - parameters for configuring the component

public boolean config(XPCConfigParams configParams);
Configures the component using configParams. Returns “true” if the configuration was
successful; “false” otherwise.
configParams - parameters for configuring the component

public String getConfigParam(String key);
Retrieves the specified configuration parameter from configParams.
Key - the name of the parameter to be retrieved

Packages

API Reference 7-109

package com.commerceone.xpc.swi.framework
interface XPCProcess

Description

This interface is implemented by all XPC standard components. Its process() method
is invoked by the Action Director.

Implemented By

All subclasses of XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Invokes the component’s execution method and returns the results of the execution.
dataMgr - the data with which the component is to be invoked.

Packages

7-110 XPC Developer Guide and API Reference

package com.commerceone.xpc.swi.framework
interface XPCTransmit

Description

This interface is implemented by the XPCAbstractComponent subclass.

Implemented By

XPCAbstractComponent

Methods

public void transmitReply(Envelope reqEnv, Document replyDoc)
Transmits a reply document. Throws the DocumentExchangeException if the envelope is not
correctly formed or the data is invalid.
reqEnv - the original request envelope
replyDoc - the document to be sent as a reply

public void transmitEnvelope(Envelope env)
Transmits a request envelope.Throws the DocumentExchangeException if the envelope is not
correctly formed or the data is invalid.
env - the envelope sent as a request

Packages

API Reference 7-111

package com.commerceone.xpc.gedi

Description

This package contains classes used by the XPC Generic EDI Wrapper service to
receive and transport ANSI X12 and EDIFACT formatted EDI files through
MarketSite. These classes are used to parse data from EDI files, map RecipientIDs to
RecipientTPIDs in a flat file, compress and decompress files, and create and populate
envelopes.

Descriptor Takes a key string of an EDI file as input and creates a GEDI
document as output. The Receiver and Sender IDs are parsed
from the EDI file and are used to populate the GEDI
document.

StringMapper Finds the ReceiverID's matching ReceiverTPID in a flat file.

CompressStream Takes in an input stream from the data manager, compresses
the input stream and converts the zipped output stream to a
document. The "zipped" document is returned to the data
manager.

CreateGEDIEnvelope Creates an envelope and populates it with a GEDI document,
an attachment document, and a receiverTPID from the data
manager as well as a senderTPID and attachmentURI from
the default.prop configuration. Note: The URI used by the
trading partner sending the transaction must match the URI
used by the trading partner receiving the transaction.

GetAttachment Unwraps the GEDIEnvelope from the env file, converts the
attachment in the GEDIEnvelope into an input stream and
returns the input stream to the data manager.

DecompressStreamToFileSystem Decompresses an input stream and saves it to a specified
directory on the local file system with a specified file name.
Takes in an input stream and file name from the data manager
and receives a directory path from the default.prop
configuration.

Packages

7-112 XPC Developer Guide and API Reference

package com.commerceone.xpc.gedi
class Descriptor

Description

Takes a key string of an EDI file as input and creates a GEDI document as output. The
Receiver and Sender IDs are parsed from the EDI file and are used to populate the
GEDI document.

Extends
XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Reads the EDI file input stream one character at a time until the entire header line has been
read, determines what type of parsing is needed based on the first three characters of the
header line (ISA or UNB), creates and populates the GEDI document, and returns the GEDI
document to the dataMgr.

Inputs:
fileKey - String - the filename key of the EDI file. This string is used to construct the path to
the file to be processed.

Outputs:
xmlDocument - GEDI Document - the GEDI document.

Configurations:
The following configurations reflect the EDI standard (X12 or EDIFACT) that is being used.
All are set in the Descriptor.config configuration in the XPCGEDIOutBound default.prop
file. The delimiters and segment terminator should be consistent with the EDI standard being
used. If a delimiter or terminator is an unprintable symbol, use the ASCII code for the symbol
instead of the actual symbol.
subDataElement - the X12 or EDIFACT delimiter
dataElementTerminator - the second EDIFACT delimiter
segmentTerminator - the escape character that indicates the beginning of a new line
ediStandard - the EDI standard that determines which parser to use The default configuration
is EDIFACT. If you are using the X12 standard, set ediStandard to X12.
Prefix - the prefix of the file name to be constructed.
Extension - the extension of the file name to be constructed.
Directory - the full path to the directory where the file resides.

Packages

API Reference 7-113

package com.commerceone.xpc.gedi
class StringMapper

Description

Finds the Recipient TPID (Trading Partner ID)that corresponds to the Recipient ID in
the EDI file. Mappings between Recipient ID and Recipient TPID are stored in the
map.txt file. This file has the following structure:

SAMPLERECEIVERID=SAMPLETPID

SAMPLE2RECEIVERID=SAMPLE2TPID

To map a Recipient TPID to a Recipient ID, use a text editor to modify the map.txt
file in the \gedi\tpid_map directory. Be sure that there are unnecessary blank spaces
following the TPID information, as such spaces will be included in the TPID that is
copied to the XML document and envelope, causing a mismatch with the MarketSite
Trading Partner ID.

Note You must stop and restart the server for these changes to take effect.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Uses a flat file to match the recipient ID to the corresponding recipient TPID used by
MarketSite. If no matching recipient TPID is found an exception is thrown.

Inputs:
receiverID - String - the receiver ID from the EDI file

Outputs:
receiverTPID - String - the Trading Partner ID for the receiver

Configurations:
mapFile - the map.txt file used to map Receiver IDs to Trading Partner IDs

Packages

7-114 XPC Developer Guide and API Reference

package com.commerceone.xpc.gedi
class CompressStream

Description

This class takes in an input stream from the Data Manager, compresses it, and
converts the zipped output stream to a document. The "zipped" document is returned
to the Data Manager.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Takes in an input stream from the Data Manager, compresses it, and converts the zipped
output stream to a document. The "zipped" document is returned to the Data Manager.

Inputs:
inputStream - InputStream - the input stream

Outputs:
zipDocument - DocumentObject - the compressed output stream

Configurations:
None

Packages

API Reference 7-115

package com.commerceone.xpc.gedi
class CreateGEDIEnvelope

Description

Creates a Generic EDI Wrapper MIME envelope and populates it with a GEDI
document, an attachment document ("zipped" document), and a receiverTPID from
the data manager as well as a senderTPID and attachmentURI from the default.prop
configuration file.

Note The URI used by the trading partner sending the transaction must match
the URI used by the trading partner receiving the transaction.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Gets the receiving Trading partner ID, GEDI document, and attachment document from the
Data Manager, creates a URI from the configuration string, creates the envelope, sets
information and documents to the envelope, sets the EnvelopePropertyValue to peer to peer
transmission, and returns the envelope to the Data Manager.

Inputs:
receiverTPID - String - The receiver’s Trading Partner ID
FilenameKey - String - the configuration string
xmlDocument - GEDI - the GEDI document
zipDocument - Document - the attachment

Outputs:
GEDIEnvelope - Envelope - the envelope returned to the Data Manager

Configurations:
senderTPID - the sender’s ID key to be looked up from the mapping file specified by mapFile
configuration
attachmentURI - the URI of the attachment
mapFile - Full path to the file that contains the key string and TPID value pairs.

Packages

7-116 XPC Developer Guide and API Reference

package com.commerceone.xpc.gedi
class GetAttachment

Description

Unwraps the GEDIEnvelope from the envelope, converts the attachment in the
GEDIEnvelope into an input stream and returns the input stream to the Data Manager.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Gets the GEDIEnvelope from the Data Manager, unwraps the attachment from the envelope
with the specified URI, converts it into a document. The "zipped" document is converted into
an input stream and returned to the dataMgr. When utilizing the toStream method, the 8859_1
character encoding is required.

Inputs:
GEDIEnvelope - Envelope - the GEDI envelope

Outputs:
attachment - Input Stream - the input stream created from the attachment

Configurations:
URI - the URI of the envelope

Packages

API Reference 7-117

package com.commerceone.xpc.gedi
class DecompressStreamToFileSystem

Description

Decompresses an input stream and saves it to a specified directory on the local file
system with a specified file name. Takes an input stream and file name from the Data
Manager and receives a directory from the default.prop configuration.

Extends

XPCAbstractComponent

Methods

public XPCResult process(XPCDataMgr dataMgr)
Gets the InputStream and the envelope correlation ID from the dataMgr. The component
unzips the InputStream. The correlation ID is then used to name the unzipped file that is
placed in a configurable directory on the local file system.

Inputs:
attachment - InputStream - the input stream from the Data Manager
filename - String - the path to the file

Outputs:
None

Configurations:
fileDir - the directory in which the decompressed file will be stored

Packages

7-118 XPC Developer Guide and API Reference

Stand-Alone Client

A-1

A Using a Transmitter API

In this Appendix

This appendix describes how to use a TransmitterAPI to create stand-alone clients for
sending document(s)/envelope and provides some examples of creating entity
manager, document(s) and envelope.

This appendix includes the following sections:

! Stand-Alone Client on page 1

! Setting Up a Client Environment on page 2

! Transmitter Parameters on page 4

! Transmitter API on page 6

! Exception Handling on page 13

! Examples to Create EntityManager/ Document/Envelope on page 17

For more information on how to create a document(s)/envelope, please refer to XDK
Developer's Guide under XPC documentation directory, or other XDK
documentations from the XDK Pro product.

Stand-Alone Client

You can use the Stand-alone client to interact with a MarketSite XPC.

The stand-alone client can synchronously transmit envelopes and receive responses to
the envelope, and asynchronously transmit envelopes. A stand-alone client is external
to the XPC Server (which doesn't require a XPC server to run) and cannot receive and
process asynchronous replies. In MarketSite 4.0, the TransmitterAPI will do the
transformation without any explicit API call, but by setting three versioning related
properties.

An XPC client can communicate with a MarketSite/XPC server in one of three ways:

! Synchronous

Setting Up a Client Environment

A-2 XPC Developer Guide and API Reference

For each transmitted message, the calling thread within the client blocks until
either a response envelope is received, or error document such as timeout is
received. The PriceCheck is an example of a synchronous document.

! Peer-to-peer

For each transmitted message, the calling thread will receive either a transmission
OK document (for internal use) right away, or an error document, so the client is
not blocked. However, it will not receive the response envelope. In order to receive
the response envelope, you must run the XPC Server containing the service that
subscribes to this response document. The Order is an example of a peer-to- peer
document.

! One-way

The message is sent asynchronously. No reply is expected and the client is not
blocked.

Setting Up a Client Environment

The simplest way to create a working stand-alone client is to clone the existing
DocSender Sample included in the XPC Installation. This sample demonstrates how
TransmitterAPI can be used as well as how XDK Document Framework, SOX Bean
are used.

You can find the sample DocSender under

<XPCInstallRoot>/sample/com/commerceone/sample/xpc/docsender

in the package of com/commerceone/sample/xpc/docsender.

For additional information about the sample, such as the contents of each java class in
the sample or information on compiling or running, refer to the README.txt file at
the above location.

Configuring a Client

XPC looks for the necessary SOX schema path, transmission data, and other
necessary properties, in either the client.prop file in the current directory where
the client is started, or in the Config object passed programmatically. For additional
information, refer to Transmitter API on page 6 in this chapter.

Setting Up a Client Environment

A-3

The Configure XPC tool modifes the XPC Server's inbound and outbound
connectivity information. This tool also modifies two client.prop files for either
purpose:

! <install:root>/bin/client.prop. This file always points to MarketSite. It is used by
the PingMarketSite program as described in the Install/Admin guide.

! <install:root>/etc/config/client.prop. This file always points to the local server. It
is used by the Invoker tool.

Your stand-alone client can use either of these client.prop files. If you make a copy of
either of these files and move them, you will need to manually synchronize any
changes made in Configure XPC.

If client.prop is used and it couldn't be found in the current directory where the client
is started, the program will exit. You can find a sample of client.prop under the
<XPCInstallRoot>/bin directory.

Please note there is a case that client.prop can’t locate in the same directory that client
is started. To solve this problem, you can read the property file in other location, load
it to Properties object, and pass it to Config object as these:

String propertyFilePath = …;

ConfigProperties prop = null;

try {

FileInputStream fis = new

FileInputStream(propertyFilePath);

Properties tranProps = new Properties();

tranProps.load(fis);

prop = new ConfigProperties(tranProps);

} Catch(Exception ex){

…

}

The properties that need to be set either in client.prop, or programmatically in
Config object, are listed later in the section and explained in the XPC Installation and
Administration Guide.

Transmitter Parameters

A-4 XPC Developer Guide and API Reference

Required Jar Files

In addition to the jar files required for XDK API to create the Document and
Envelope and the jar files for the CBL documents (depending on the version), the
following jar files are needed to use Transmitter API:

! client.jar

! broker.jar

! jndi.jar

! jms.jar

! ccs_server.jar

! ccs_event.jar

! ccs_util.jar

! vgateway.jar

! iaik.jar

Transmitter Parameters

For each transmission method used in a stand-alone client, the following specific keys
are valid. You can obtain the values for the constant values from:

com.commerceone.xdk.swi.metadox.property.Properties Constants

Synchronous

TIMEOUT_PARAM_KEY

Request time-out in milliseconds or INFINITE_TIMEOUT_VALUE.

ACK_PARAM_KEY

Must be set to ACK_NO_PARAM_VALUE.

For example,

Transmitter Parameters

A-5

Peer-to-peer and One-way

ACK_PARAM_KEY

Must be set to ACK_YES_PARAM_VALUE.

For example,

String timeout = ...
Envelope request_env = …;

ParameterList modeParams = new ParameterList();

modeParams.set(PropertiesConstants.ACK_PARAM_KEY,

PropertiesConstants.ACK_NO_PARAM_VALUE);

modeParams.set(PropertiesConstants.TIMEOUT_PARAM_KEY, timeout);

EnvelopePropertyValue propValue = new

EnvelopePropertyValue(PropertiesConstants.SYNC_MODE_VALUE,

modeParams);

request_env.setRequestMode(propValue);

Transmitter API

A-6 XPC Developer Guide and API Reference

Transmitter API

When Using the client.prop file

Step 1: Instantiate TransmitterFactory object by using the properties in client.prop from the current
directory where the client is started.
TransmitterFactor transmitterFactory = new TransmitterFactory()

Step 2:Create DocumentResponder/DocumentListener from MarketSite/destination MPID and user
Properties object, depending on the request mode.
DocumentResponder responder = transmitterFactory.getResponder(TradingPart-
nerAddres s internalized_destination, Properties userProps);// for Synchronous

OR

DocumentListener listener =
transmitterFactory.getListener(TradingPartnerAddress
internalized_destination, Properties userProps);// for Peer-t-Peer or
OneWay

The following fields are required to be set in the user Properties Object (userProps):

Envelope request_env = …;

ParameterList modeParams = new ParameterList();

modeParams.set(PropertiesConstants.ACK_PARAM_KEY,

PropertiesConstants.ACK_YES_PARAM_VALUE);

EnvelopePropertyValue propValue = new

EnvelopePropertyValue(PropertiesConstants.PEER_PEER_MODE_VALUE,

modeParams);// for PEER-TO-PEER mode

//EnvelopePropertyValue propValue = new

EnvelopePropertyValue(PropertiesConstants.ONEWAY_MODE_VALUE,

modeParams);// for ONEWAY mode

request_env.setRequestMode(propValue);

Transmitter API

A-7

Note These keys are case sensitive and must be entered exactly as listed below:

! DOCTYPE - This field is always required

! marketparticipantid - This field is always required

! authpref - This field is required when http(s) protocol is used. The value could be
uidpswd, or cert, or none (used mostly for testing purposes)

! sonicmq.authpref - This field is required when sonic protocol is used. The value
could be uidpswd, or none (used from MarketSite to XPC, or testing purposes)

! userid - This field is required when authpref/ sonicmq.authpref is set to
uidpswd as a way of authentication

! password - This field is required when authpref/ sonicmq.authpref is
set to uidpswd as the way of authentication

! server_root- This field is required when authpref is set to cert as the way of
authentication. This specifies a directory with the following subdirectories:

! certs subdirectory that contains a file named serverstore for keystore

! config/startup subdirectory that contains a file named https- server.prop and in
this file, these three properties need to be set:

! iaik.jigsaw.ssl.keystore=serverstore// this file name should match file name
above for keystore

! iaik.jigsaw.ssl.keystore.password=...//encrypted password

! iaik.jigsaw.ssl.rsa.keyAndCertificate=...//entry name for keystore

An example of server_root directory is:

<RootOfServerInstall>/transmitter/ccs

You can also include the above user properties in client.prop, load all the properties
to Properties object, and selectively pass the above user properties to Properties
object userProps used in getResponder() and getListener().

Step3: Send the request envelope and receive the response envelope only if in Synchronous mode.

Envelope reply_env = responder.processDocument(request_env); //for Synchronous

OR

listener.handleDocument(request_env);/for Peer-to-Peer or Oneway

Transmitter API

A-8 XPC Developer Guide and API Reference

For Synchronous Envelope:

Properties userProps = new Properties();

QName qname_doctype = new QName(null,"urn:x-

commerceone:document:com:commerceone:CBL:CBL.sox$1.0",

"PurchaseOrder");//or what ever your document is other than

PurchaseOrder under the urn of CBL

userProps.put("DOCTYPE", qname_doctype);

userProps.put("marketparticipantid",

request_env.getSenderId().toString());

userProps.put("authpref", "uidpswd");

userProps.put("userid", "admin");

userProps.put("password", "mypassword");

userProps.put("Sonicmq.authpref", "none");

String destinationMPID = …

TradingPartnerAddress internalized_destination =

TradingPartnerAddress.internalize(destinationMPID);

TransmitterFactory tf = new TransmitterFactory();

DocumentResponder responder =

(DocumentResponder)tf.getResponder(internalized_destination,

userProps);

reply_env = responder.processDocument((Envelope)request_env);

Transmitter API

A-9

For PEER-TO-PEER/ONEWAY Envelope:

When Not Using the client.prop file

Step 1:Instantiate TransmitterFactory object by using the properties in Config object and EntityManager
object

TransmitterFactory transmitterFactory = new TransmitterFactory(Config
config, EntityManager entityManager)

The following keys must be set in the Config object. The keys are case sensitive and
should be entered exactly as listed. The possible values and descriptions of the keys
are provided in the XPC Installation and Administration Guide.

DocumentListener listener =

(DocumentListener)tf.getListener(internalized_destination,

userProps);

listener.handleDocument((Enevelope)request_env);

Key

ccs.comm.em.fs

ccs.comm.em.fs.path

ccs.comm.em.ldap

ccs.comm.dir.schemaroot

ccs.comm.dir.username

ccs.comm.dir.password

ccs.comm.tx.fs

ccs.comm.tx.ldap

ccs.comm.tx.dir.tproot

ccs.comm.tx.dir.username

Transmitter API

A-10 XPC Developer Guide and API Reference

ccs.comm.tx.dir.password

ccs.comm.transmitter.cache

ccs.comm.transmitter.cache.refresh

ccs.comm.transmitter.destination.name

<destinationMPID>.doctype

<destinationMPID>.<doctype>.docformat

<destinationMPID>.<doctype>.protocols

<destinationMPID>.<doctype>.protocol.https.args

<destinationMPID>.<doctype>.protocol.sonic.args

Versioning Related Key

transformation.registry

transformation.internalversion

transformation.externalversion

Sonic MQ Related Key

sonicmq.broker.url

sonicmq.broker.username

sonicmq.broker.password

sonicmq.syncresponsequeue.name

sonicmq.connection.close

sonicmq.authpref

jms.client.ssl.enable

jms.client.ssl.provider.class

jms.client.ssl.cipher.suites

jms.client.ssl.client.requireTrustedRoot

Transmitter API

A-11

Step 2. Create DocumentResponder/DocumentListener from MarketSite/destination MPID and user
Properties object, depending on the request mode.(The same as when using client.prop)

DocumentResponder r = transmitterFactory.getResponder(Address destination,

Properties userProps);

OR

DocumentListener l = transmitterFactory.getListener(Address destination, Properties

userProps);

The following fields must be set in the Properties Object (userProps) which is the
same as when using client.prop:

Note These keys are case sensitive and must be entered exactly as listed below:

! DOCTYPE - This field is always required

! marketparticipantid - This field is always required

! authpref - This field is required when http(s) protocol is used. The value could be
uidpswd, or cert, or none(used mostly for testing purposes)

! sonicmq.authpref - This field is required when sonic protocol is used. The value
could be uidpswd, or none (used from MarketSite to XPC, or testing purposes)

! userid - This field is required when authpref/ sonicmq.authpref is set to

jms.client.ssl.client.trustedRoot.dir

Import com.commerceone.ccs.config.ConfigProperties;

ConfigProperties cp = new ConfigProperties();

cp.put("ccs.comm.em.fs", "true");

…

EntityManager entityManager = …//refer example in XDK API at the

end of the chapter

TransmitterFactory transmitterFactory = new TransmitterFactory(cp,

entityManager);

Transmitter API

A-12 XPC Developer Guide and API Reference

uidpswd as a way of authentication

! password - This field is required when authpref/sonicmq.authpref is set to
uidpswd as the way of authentication

! server_root- This field is required when authpref is set to cert as the way of
authentication. This specifies a directory that has the structure of:

! - certs subdirectory that contains a file named serverstore for keystore

! - config/startup subdirectory that contains a file named https- server.prop and in
this file, these three properties need to be set:

iaik.jigsaw.ssl.keystore=serverstore// this file name should match

file name above for keystore

iaik.jigsaw.ssl.keystore.password=...//encrypted password

iaik.jigsaw.ssl.rsa.keyAndCertificate=...//entry name for keystore

An example of server_root directory is:
<RootOfServerInstall>/transmitter/ccs

You can also include the above user properties in the place that the other Config
object properties are kept, load all the properties to Properties object, and
selectively pass the above user properties to Properties object userProps used in
getResponder() and getListener().

Step3: Send request envelope and receive the response envelope only if in Synchronos mode. (The

same as when using client.prop)

Envelope reply_env = responder.processDocument(request_env); //for
Synchronous

OR

listener.handleDocument(request_env);/for Peer-to-Peer or Oneway

Changing Debug Level

By default, the debug level is set up with the most print out(Level 0). This can be
adjusted programmatically between 0-5 with Level 5 the least print out. This will be
changed in next release to set in client.prop. Here is how to set:

String level = …;

Debug.log.setLevel(Integer.parseInt(level));

Exception Handling

A-13

Exception Handling

Catching Exceptions in a Stand-alone Client

Client-side errors in using a transmitter are always seen as exceptions. The error
happens before or during connection time. All Exceptions are derived from
DocumentExchangeException.

A client can experience the following types of exceptions:

! XDK Related Error

Error occurs with bean processing or conversion, marshalling/unmarshalling of
envelope, etc.

! Sonic Related Error

This can be an error to authenticate to local broker, to connect to local broker,
queue not found, message size too big, etc.

! Transformation Related Error

Error occurs during the transformation before the envelope is sent out

! TransmitterProperty Related Error

Error with the transmitter information set in the envelope header, user Properties
object as well as in the client.prop or Config object.

! Connection Related Error

An error occurs while establishing connection

! Transfer Related Error

A connection is established, and an error occurs during the transmission of
document and evenlope data

! Server Related Error

The message was transferred, but an error occurred during processing. An error
doc is sent back. It could be the error of authentication, recipient not found, etc.

The exceptions that can be thrown for any transmitter include but are not limited to:

Exception Handling

A-14 XPC Developer Guide and API Reference

Type Exception Description

TransmitterProperty com.commer-
ceone.ccs.excp.comm.sender.Tr
ansmitterPropertyException

Error with the transmitter infor-
mation set in the envelope
header, user Properties object as
well as in the client.prop or
Config object.

com.commer-
ceone.ccs.excp.comm.commu-
nicator.InvalidParameterExcepti
on

Used only for Sonic. Missing/
incorrect sonic related proper-
ties set in client.prop or Config
object, or in user Properties
object.

com.commerceone.ccs.excp.co
mm.communicator.EnvelopePar
ameterException

Used only for Sonic. Missing/
incorrect properties set in the
envelope header.

Connection com.commerceone.xdk.excp.me
tadox.send.EstablishException

Error while establishing
connection.

com.commerceone.ccs.excp.co
mm.sender.ConnectionExceptio
n

Extends from
EstablishException. Could be
bad destination address, etc.

com.commerceone.ccs.excp.co
mm.communicator.Destination
NotFoundException

Used only for Sonic. Couldn’t
find Queue specified for
destination or sync response.

com.commerceone.ccs.excp.co
mm.communicator.TransportEx
ception

Used only for Sonic. JMS
transport error.

Transfer com.commerceone.xdk.excp.me
tadox.send.TransferException

A connection was established,
and an error occurs during the
transmission of document and
envelope data. Could be a
problem of I/O, etc.

Exception Handling

A-15

Server com.commerceone.ccs.excp.co
mm.sender.ServerException

The message was transferred,
but something goes wrong in
processing the message and
error doc is sent back. Could be
problem of authentication,
recipient not found, etc.

com.commerceone.ccs.excp.co
mm.communicator.ServerExcep
tion

Used only for Sonic. The same
purpose as ServerException
above.

com.commerceone.ccs.excp.co
mm.communicator.TimeoutExc
eption

Used only for Sonic. Timeout
error for Sync request.

Sonic com.commerceone.ccs.excp.co
mm.communicator.SecurityExc
eption

Error to authenticate to local
broker

com.commerceone.ccs.excp.co
mm.communicator.Connection
NotEstablishedException

Error to connect to local broker

com.commerceone.ccs.excp.co
mm.communicator.MessageToo
BigException

Message size too big that
exceeds the max of 10MB

Transformation com.commerceone.versiongate
way.exception.TransformExecE
xception

Error occurs during the
transformation before the
envelope is sent out

XDK com.commer-
ceone.xdk.excp.meta-
dox.send.ProcessingException

Error occurs when doing the
bean processing or conversion.
Could be a problem related to
marshalling and unmarshalling.

Type Exception Description

Exception Handling

A-16 XPC Developer Guide and API Reference

com.commer-
ceone.xdk.excp.meta-
dox.model.RepresentationConv
ersionException

Extends from ProcessingExcep-
tion. Could be problem to trans-
late from one representation to
other.

com.commerceone.xdk.excp.me
tadox.model.ResourceConversi
onException

Extends from
RepresentationConversionExce
ption. Error accessing a
resource when trying to convert
the old representation into the
new representation.

com.commerceone.xdk.excp.me
tadox.factory.EnvelopeInvariant
Exception

Could be problem with
envelope header, main
document, attachment(s),
catalog, or corrupted/incorrect
mime data etc.

com.commerceone.xdk.excp.me
tadox.factory.CatalogUnmarshal
lingException

Extends
EnvelopeInvariantException,
Error unmarshalling the
Envelope Catalog.

com.commerceone.xdk.excp.me
tadox.meta.NoSuchAttachment
Exception

Attachment reference does not
exist in Envelope.

com.commerceone.xdk.excp.me
tadox.meta.AttachmentRetrieva
lException

Error retrieving the attachment.

Type Exception Description

Examples to Create EntityManager/ Document/Envelope

A-17

Examples to Create EntityManager/ Document/Envelope

The following examples have been tested and some are also included in the
DocSender sample.

Example 1

To initiate XDK before using any XDK API

import com.commerceone.xdk.initialize.XDK;
import
com.commerceone.xdk.excp.initialize.AlreadyInitializedExcep
tion;

try{
XDK.init();
}catch(AlreadyInitializedException e){
...
}

Examples to Create EntityManager/ Document/Envelope

A-18 XPC Developer Guide and API Reference

Example 2

To create EntityManager object from a schema path directories with each directory in
a String object:

import com.commerceone.xdk.base.parser.URIEntityManager;
import com.commerceone.xdk.base.parser.EntityManager;
import
com.commerceone.xdk.base.parser.DirectorySearchURIDomain;

java.util.Vector fileVector = new java.util.Vector();
java.io.File file = null;

String schemaPath1 = ...;
Java.io.File File = new java.io.File(schemaPath1);
fileVector.addElement(file);

String schemaPath2 = ...;
file = new java.io.File(schemaPath2);
fileVector.addElement(file);

URIEntityManager em = new URIEntityManager();
DirectorySearchURIDomain domain = new
DirectorySearchURIDomain(fileVector,"urn");
em.addDomain(domain);

Examples to Create EntityManager/ Document/Envelope

A-19

Example 3

To create EntityManager object from a schema path directories with all directories
separated by separator(;) in a String object:

import com.commerceone.xdk.base.parser.URIEntityManager;
import com.commerceone.xdk.base.parser.EntityManager;
import
com.commerceone.xdk.base.parser.DirectorySearchURIDomain;

java.util.Vector fileVector = new java.util.Vector();
java.io.File file = null;

String path = schemaPath1 + ";" + schemaPath2 + ... // ";"
is used as separator here

java.util.StringTokenizer st = new
java.util.StringTokenizer(path,";"); // ";" is a separator
used in the String path
while (st.hasMoreTokens()){
fileVector.addElement(new java.io.File(st.nextToken()));
}
URIEntityManager em = new URIEntityManager();
DirectorySearchURIDomain domain = new
DirectorySearchURIDomain(fileVector,"urn");
em.addDomain(domain);

Examples to Create EntityManager/ Document/Envelope

A-20 XPC Developer Guide and API Reference

Example 4

To create Document object from a String (DocType needs to be passed):

import com.commerceone.xdk.swi.metadox.marshall.DataSource;
import
com.commerceone.xdk.metadox.model.stream.StringDataSource;
import com.commerceone.xdk.metadox.type.DocumentType;
import
com.commerceone.xdk.metadox.model.stream.DocumentStream;
import com.commerceone.xdk.swi.metadox.meta.Document;

String xmlString = ...
DataSource dataSource = new StringDataSource(xmlString);
QName qname_doctype = new QName(null,"urn:x-
commerceone:document:com:commerceone:CBL:CBL.sox$1.0",
"PurchaseOrder");//or what ever your document is other than
PurchaseOrder under the urn of CBL
DocumentType docType = new DocumentType(qname_doctype);

Document doc = new DocumentStream(dataSource, docType);

Examples to Create EntityManager/ Document/Envelope

A-21

Example 5

To create Document object from a file (option 1: DocType needs to be passed):

import com.commerceone.xdk.swi.metadox.marshall.DataSource;
import
com.commerceone.xdk.metadox.model.stream.ReaderNowDataSourc
e;
import com.commerceone.xdk.metadox.type.DocumentType;
import
com.commerceone.xdk.metadox.model.stream.DocumentStream;
import com.commerceone.xdk.swi.metadox.meta.Document;

String fileName = ...
DataSource dataSource = new FileReaderNowDataSource(new
Reader(fileName));
QName qname_doctype = new QName(null,"urn:x-
commerceone:document:com:commerceone:CBL:CBL.sox$1.0",
"PurchaseOrder");//or what ever your document is other than
PurchaseOrder under the urn of CBL
DocumentType docType = new DocumentType(qname_doctype);//
or what ever your document is other than PurchaseOrder
Document doc = new DocumentStream(dataSource, docType);

Examples to Create EntityManager/ Document/Envelope

A-22 XPC Developer Guide and API Reference

Example 6

To create Document object from a file. (option2: gets doc type automatically from the
document by parsing part of the document with some performance overhead):

import com.commerceone.util.net.URI;
import com.commerceone.xdk.base.parser.FileURIDomain;
import com.commerceone.xdk.base.parser.URIEntityManager;
import com.commerceone.xdk.metadox.factory.DocumentFactory
import com.commerceone.xdk.swi.metadox.meta.Document;

String fileName = ...
URI instanceURI = FileURIDomain.toURI(new File(filename));
URIEntityManager em = ...// use the example to create
EntityManager

ExternalSource source = em.open(instanceURI);
DocumentFactory docFactory = new DocumentFactory();
Document doc = docFactory.fromSource(source);
source.close();

Examples to Create EntityManager/ Document/Envelope

A-23

Example 7

To create a request envelope:

For Example,
import com.commerceone.xdk.metadox.factory.EnvelopeFactory;
import
com.commerceone.xdk.metadox.message.TradingPartnerAddress;
import
com.commerceone.xdk.swi.metadox.property.PropertiesConstants;
import javax.mail.internet.ParameterList;
import com.commerceone.xdk.metadox.meta.EnvelopePropertyValue;
import com.commerceone.xdk.base.parser.EntityManager;
import com.commerceone.xdk.swi.metadox.meta.Envelope

EntityManager entityManager =...;// use example to create
EntityManager
EnvelopeFactory envFactory = new
EnvelopeFactory(entityManager);
Envelope request_env = null;
try{
request_env = envFactory.createEnvelope(doc);
}catch(Exception ex){
...
}

request_env.setCorrelationId(env.getIdentity());
String recipientID = ...;
request_env.setRecipientId(new
TradingPartnerAddress(recipientID()));
request_env.setSenderId(new TradingPartnerAddress("TEST"));
…//refer to Transmitter Parameters session for detail what to
set
request_env.setRequestMode(..);

Examples to Create EntityManager/ Document/Envelope

A-24 XPC Developer Guide and API Reference

Function of Credential

Security Credential B-1

B Security Credential

In This Appendix

This appendix provides information about the security credential. It includes the
following sections:

! Credential of Document Originator on page 1

! Function of Credential on page 1

! Access Control Application of Credential in Business Services on page 2

Credential of Document Originator

All document envelopes received by a target business service (either deployed on an
XPC Server running in e-marketplace or a XPC Server running on a Trading Partner
site) will contain the authenticated credential of the document Originating party, that
is, the trading partner that sent the document to the target business service. The
Credential is included into the document envelope at the time of authentication of the
sending Trading partner (the document sender) by the MarketSite Authentication
Service running in the Portal Router in MS 4.0 based e-marketplace (or the
MarketSite Authentication Service running in Level-1 Server in a MS 3.x based e-
marketplace).

Included here is the definition and function of Credential; the Java Bean API for the
SOX/XML Credential document represented as Java bean component; and an
example of how Credentials can be used by end-user business services application (to
make application-level authorization decisions) while integrating with the MarketSite
4.0/MarketSet 2.0 platform environments.

Function of Credential

Credentials represent the identity of the document sending trading partner as a result
of completion of the process of authenticating the documents sender by the
MarketSite/MarketSet Portal Router. Credentials are created by the MarketSite
Authentication Service independent of the transport protocol used by the document
sending party. Hence, a trading partner A involved in a document exchange

Access Control Application of Credential in Business Services

B-2 XPC Developer Guide and API Reference

transaction with another trading partner B via its e-marketplace’s Portal Router will
get the same Credential of the trading partner A regardless of the transport protocol
(e.g., Sonic/JMS or HTTPS) employed during the document exchange.

The credential of an authenticated sender contains registered, authenticated identity
attributes of the principal, i.e. trading partner transacting via MarketSite/MarketSet.
Credentials are included in the XML document envelope (as a XML document
attachment) along with the original business document(s) that are part of the business
transaction. The document envelope, containing the business document and
authenticated Credential, is forwarded by the MarketSite/MarketSet Portal Router to
the target trading partner business service. The identity and TP registration
information contained in the Credential can be used by the target business service to
make application-level authorization decisions within the business service logic.

Furthermore, the Credential feature is identical to older versions of MarketSite 3.x
based e-marketplaces (which use Level-1 Server).

Access Control Application of Credential in Business Services

Business Service and/or Document Service writers can design their services to
process Credentials that do application-level authorizations such that sending Trading
partner’s document is processed by business service keeping into consideration the
following access control criteria:

! Registered e-marketplace identity of the sending Trading partner (i.e., MPID);

! Business Service level Access rights of the trading partner

The Business Service will need to maintain its own access control list (for example, a
Customer account table in a SQL database or a mapping of the MPID or role in a
Credential to specific transaction authorizations) which can be employed in
conjunction with the Credential included in the Document Envelope.

The Credential API below describes the relevant authenticated attributes contained in
the Credential.

XML/SOX Credential Public APIs

Included here is the Java Bean API for SOX/XML based Credential.

com.commerceone.ccs.doclet.security.Security_sox

Access Control Application of Credential in Business Services

Security Credential B-3

Interface Credential

All Superinterfaces:

com.commerceone.xdk.swi.metadox.meta.Doclet, com.commerceone.xdk.swi.meta-
dox.meta.Document, com.commerceone.xdk.maplibs.jbschema.jbmapping.ElementType,
com.commerceone.xdk.swi.metadox.marshall.Marshaller, java.io.Serializable

All Known Implementing Classes:

CredentialImpl

public interface Credential

extends com.commerceone.xdk.maplibs.jbschema.jbmapping.ElementType

This is the interface emitted for element type :Credential

/*
* This interface, although accessible in the Credential API, currently does not do anything useful .
*
*/

AccessRights getAccessRightsList()

/*
* This API returns the AuthorizingEntityID of the sending Trading Partner.

Field Summary
static

com.commerceone.xdk.base.event.QName

DOC_TYPE

static java.lang.String SYSTEM_ID

Method Summary

Access Control Application of Credential in Business Services

B-4 XPC Developer Guide and API Reference

*
*/
java.lang.String getAuthorizingEntityID()

/*
* This API returns the registered e-mail, address of the sending Trading Partner.
*
*/
java.lang.String getEmailAddress()

/*
* This API returns the registered MarketParticipant ID (aka MPID) of the sending TP.
*
*/
java.lang.String getMktSitePartpntID()

/*
* This API returns the registered location (i.e., city/town) of the sending TP.
*
*/
java.lang.String getSubjectLocation()

/*
* This API returns the registered organization name of the sending TP.
*
*/
java.lang.String getSubjectOrgName()

/*
* This API returns the registered organization unit (e.g., company division/department) name of
* the sending TP.
*
*/
java.lang.String getSubjectOrgUnitName()

/*
* This API returns all the registered TP roles (e.g., “Buyer” or “Supplier”) of the sending TP.
*
*/

Access Control Application of Credential in Business Services

Security Credential B-5

java.lang.String[] getSubjectTPRole()

/*
* This API returns a specific registered TP role (within the roles list) of the sending TP.
*
* @param int index of the specific role entry in the roles array
*/
java.lang.String getSubjectTPRole(int index)

/*
* This API returns the registered legal name (e.g., company name registered with a D&B Registration
* authority or equivalent company registration agencies elsewhere in the world) of the sending TP.
*
*/
java.lang.String getTPName()

/*
* This API returns the registered “well-known” name (e.g., an abbreviated company name) of
* the sending TP.
*
*/
java.lang.String getTPShortName()

Credential Usage Example

An end-user business service can access the Credential packaged in the document
envelope that is routed to in the following way. The getCredenitial() is an example of
a convenience function that returns the Credential of the sender that is transacting
with the receiving business service. This Credential can be used to check the
authorization level of the document sending party as part of the application logic
implemented in the business service.

import com.commerceone.xdk.swi.metadox.meta.Envelope;

import com.commerceone.ccs.doclet.security.Security_sox.Credential;

import com.commerceone.xdk.excp.metadox.send.DocumentExchangeException;

private Credential getCredential(Envelope envelope)

throws DocumentExchangeException

{

Access Control Application of Credential in Business Services

B-6 XPC Developer Guide and API Reference

Credential cred =

(Credential)envelope.getCredential(DocumentObject.REPRESENTATION);

if (cred != null)

{

String[] roles = cred.getSubjectTPRole();

if (roles != null)

{

for (int i=0; i< roles.length; i++)

{

System.out.println("Credential:getSubjectTPRole[" + i +

"]: " + roles[i]);

}

}

System.out.println("Credential:getMktSitePartpntID() " +

cred.getMktSitePartpntID());

System.out.println("Credential:getTPName() " + cred.getTPName());

System.out.println("Credential:getTPShortName() " + cred.getTPShortName());

System.out.println("Credential:getSubjectLocation(): " +

cred.getSubjectLocation());

}

return cred;

}

C-1

C Generic EDI

In This Chapter

This chapter provides information about Generic EDI. It includes the
following information:

! Overview of Generic EDI on page 1

! Generic EDI Components on page 4

! Generic EDI SOX Schema on page 6

Overview of Generic EDI

Generic EDI gives trading partners the ability to exchange any ANSI
X12 or EDIFACT EDI document over MarketSite. Trading partners
place EDI documents into the local file system. From there XPC picks
up the EDI documents, places each document into an xCBL envelope,
and transmits the envelopes to MarketSite. MarketSite routes the
envelopes to the destination trading partner where the EDI document is
extracted from the envelope.

The processes at the trading partner’s site are performed by XPC. XPC
runs inside the trading partner’s firewall. It functions as the
communication component that sits between the trading partner’s EDI
subsystem and MarketSite. XPC wraps and unwraps EDI documents.

Overview of Generic EDI

C-2 XPC Developer Guide and API Reference

The following diagram shows how an EDI document is routed from one trading
partner’s back office system to another.

GEDI Envelope Structure

For transmission between XPC and MarketSite, an EDI document is wrapped in a
GEDI envelope. The envelope has three important areas.

Header

The header contains the routing information telling MarketSite where the EDI
envelope goes. XPC determines the MarketSite Trading Partner ID (TPID) of the
destination. XPC extracts the recipient identifier from the EDI document, and uses an
external file to translate it into a TPID.

Body

The body contains the GEDI xCBL document. This document can include the
following information:

! Receiver Identifier (key identifying destination in an EDI document)

! EDI Standard (ANSI, EDIFACT, Other)

! Transaction count (or, message count)

! Transaction count breakdown (message count per transaction type)

! Sender Identifier (key in an EDI document)

All entries in this document are optional.

Attachment

The envelope has a single attachment. This is the compressed EDI document.

EDI File Properties

! EDI files sent to MarketSite must contain only one interchange.

XPC
3.2

MarketSite XPC
3.2

EDI
Sub-

system
Back
Office

EDI
Sub-
system

Back
Office

Firewall Firewall

Overview of Generic EDI

C-3

! EDI file interchange must contain a Recipient ID and a Sender ID.

! EDI files placed in the outbound directory by trading partners must not be
compressed. The Descriptor component will not be able to parse the Receiver ID
and Sender ID from compressed EDI files.

! EDI files placed in the outbound directory by trading partners must not be
encrypted. The Descriptor component will not be able to parse the Receiver ID and
Sender ID from encrypted EDI files.

! Only ANSI X12 and EDIFACT formatted EDI files will be parsed correctly by the
Descriptor component.

! ANSI X12 EDI files must have an ISA tag denoting the beginning of an
interchange.

! EDIFACT EDI files must have a UNB tag denoting the beginning of an
interchange.

EDI Recipient ID Mapping

The Recipient ID parsed from the EDI file must have a corresponding Recipient TPID
in the map.txt file. The map.txt file must not contain any extra (unnecessary) blank
spaces after the Recipient TPID information.

Outbound Processing

XPC periodically wakes up and searches a specified directory for new EDI files. For
each EDI document found, XPC:

1. Creates a GEDI xCBL document and fills it with the receiver ID and sender ID
extracted from the EDI document

2. Translates this receiver ID to a receiver TPID using an external properties file

3. Compresses the EDI document

4. Creates the GEDI envelope

5. Transmits the GEDI envelope to MarketSite

Inbound Processing

When a GEDI envelope is received from MarketSite, XPC:

1. Detaches the EDI attachment

Generic EDI Components

C-4 XPC Developer Guide and API Reference

2. Decompresses the EDI document

3. Saves the EDI document to the file system

Error Processing

If any failures are encountered during outbound processing, the EDI document is
moved from the archive directory to the error document directory.

However when an error occurs during inbound processing an error document is sent
back to the sending XPC. At the sending XPC the XPCError service will search the
XCC archive for the matching envelope and copy it to the error document directory.

Generic EDI Components

The following table provides a summary of component methods, inputs, outputs, and
externally defined configurations. For more information about the components and
methods in this table, see the API Reference chapter.

Component.method Inputs, Outputs, and
Configurations

Description

CompressStream.proces
s

Input Name and Type

n inputStream - InputStream
Output Name and Type

n zipDocument - DocumentObject
Configurations

n None

Takes an input stream from the
data manager, compresses the
input stream and converts the
zipped output stream to a
document. The “zipped”
document is returned to the data
manager.

Generic EDI Components

C-5

CreateGEDIEnvelope.pr
ocess

Input Name and Type

n receiverTPID - String

n FilenameKey - String

n xmlDocument - GEDI

n zipDocument - Document
Output Name and Type

n GEDIEnvelope - Envelope
Configurations

n SENDER_TPID

n URI

Gets the RECEIVER_TPID,
XML_DOC (GEDI document),
and ATTACH_DOC (“zipped”
document) from the data
manager, creates a URI from the
configuration string, creates the
envelope, sets information and
documents to the envelope, sets
EnvelopePropertyValue to peer
to peer transmission, and returns
the envelope to the data
manager.

DecompressStreamToFi
leSystem.process

Input Name and Type

n attachment - Input Stream

n filename - String
Output Name and Type

n None
Configurations

n fileDir

Gets the InputStream and the
envelope correlation ID from the
dataMgr. The component unzips
the InputStream. The correlation
ID is then used to name the
unzipped file which is placed in
a configurable directory on the
local file system.

Descriptor.process Input Name and Type

n ediInputStream - Input Stream
Output Name and Type

n xmlDocument - GEDI
Configurations

n subDataElement

n dataElementTerminator

n segmentTerminator

n ediStandard

Takes in a keystring of an EDI
file as an input and creates a
GEDI document as an output.
The Receiver and Sender IDs are
parsed from the EDI file and are
used to populate the GEDI
document.

Component.method Inputs, Outputs, and
Configurations

Description

Generic EDI SOX Schema

C-6 XPC Developer Guide and API Reference

Generic EDI SOX Schema

This appendix contains the SOX schema for a Generic EDI document.

<?xml version="1.0"?>

<!DOCTYPE schema SYSTEM "urn:x-

commerceone:document:com:commerceone:xdk:xml:schema.dtd$1.0">

<schema uri="urn:x-commerceone:document:com:commerceone:xpc:gedi:GEDI.sox$1.0">

<!-- All strings are in GEDI are defined as gedistring so that in future this can be

extended to add constraints and length. Right now it is set to 255 max -->

<datatype name ="gedistring">

<varchar maxlength = "255" />

</datatype>

<datatype name="EDIStandardCode">

<explain>

<p> Defines the various EDI Standards like X12, EDIFACT</p>

</explain>

<enumeration datatype="NMTOKEN">

GetAttachment.process Input Name and Type

n GEDIEnvelope - Envelope
Output Name and Type

n attachment - Input Stream
Configurations

n URI

Gets the GEDIEnvelope from
the data manager, unwraps the
attachment from the envelope
with specified URI, converts it
into a document. The “zipped”
document is converted into an
input stream and returned to the
dataMgr. When utilizing the
toStream method, the 8859_1
character encoding is required.

Component.method Inputs, Outputs, and
Configurations

Description

Generic EDI SOX Schema

C-7

<!-- Other standard -->

<option>Other</option>

<!-- ANSI Standard EDI -->

<option>ANSI</option>

<!-- EDIFACT Standard -->

<option>EDIFACT</option>

</enumeration>

</datatype>

Generic EDI SOX Schema

C-8 XPC Developer Guide and API Reference

	Preface
	Purpose of this Guide
	Documentation Conventions
	Audience
	How to Use this Guide
	Related Information
	If You Need Help

	1 Overview of XPC
	In This Chapter
	XPC Concepts and Terminology
	Help In Customizing
	xCBL Document Exchange Choreography

	2 XPC Manager
	In This Chapter
	Overview of Framework and Terminology
	Loading XPC Manager
	Enabling and Disabling Services
	Configuring a Service
	Service Level Configuration

	Configuring a Service’s Action Director
	Adding a Subscription
	Removing a Subscription
	Editing a Subscription’s Action List
	Action List Buttons

	Timed Service Execution
	Sharing Components Across Action Lists
	Exception List Execution

	Adding Services
	Removing Services
	Action Director Runtime Processing
	Action Director Places Inputs into Data Manager
	Action Director Enables Component Outputs
	Action Director Adds Component Outputs to the Linked List
	Error Handling

	3 Building Custom Integrations
	In This Chapter
	Overview of XPC Integration
	“Helper” features

	File System Document Exchange
	Multiple Transactions

	API based integration
	Inbound Messages
	Outbound Messages

	XPath-based Document Programming Model
	XPath Tester
	XPCDocHandle Functional Definition
	Using the Position() Predicate to Narrow Your Selection
	Testing for the Value or Presence of a Node
	Using Compound Predicates
	XPCDocHandle Limitations

	Correlation Across Sessions
	Example Inbound Flow: Order
	Example ERP flow
	Example outbound flow: OrderResponse

	Building a Custom Component
	Sample Components
	Helper Methods

	Error Handling
	Setting ErrorInfo
	ErrorInfo Coding Conventions
	Recommended Price Check Completion Codes
	Recommended Availability Check Completion Codes
	Recommended Order Status Completion Codes
	Recommended Sales Order Completion Codes

	Other APIs
	Deploying a Component
	Deploying with JAR Files
	Deploying Without Generating a JAR File

	4 Trading Partner Preconfiguration
	In This Chapter
	Loading the Trading Partner Preconfiguration
	Supported Services
	Advance Shipment Notice Services
	Overview of Transactions
	Associated XPC Services
	Document Exchange Details
	XPCAdvanceShipmentNotice30Outbound Service
	XPCAdvanceShipmentNotice30Inbound Service

	Auction Management Services
	Overview of Transactions
	Associated XPC Services
	Document Exchange Details
	XPCAuctionCreate30Outbound Service
	XPCAuctionCreate30Inbound Service
	XPCAuctionCreateResponse30Outbound Service
	XPCAuctionCreateResponse30Inbound Service
	XPCAuctionResult30Outbound Service
	XPCAuctionResult30Inbound Service
	XPCAuctionResultResponse30Outbound Service
	XPCAuctionResultResponse30Inbound Service

	Availability Check Request Services
	Overview of Transactions
	Associated XPC Services
	Document Exchange Details
	XPCAvailabilityCheckRequest30Inbound Service

	Availability To Promise Services
	Overview of Transaction
	Associated XPC Services
	Document Exchange Details
	XPCAvailabilityToPromise30Outbound Service.
	XPCAvailabilityToPromise30Inbound Service.
	XPCAvailabilityToPromiseResponse30Outbound Service.
	XPCAvailabilityToPromiseResponse30Inbound Service.

	Invoice Services
	Overview of Transaction
	Associated XPC Services
	Document Exchange Details
	XPCInvoice30Outbound Service
	XPCInvoice30Inbound Service

	Message Acknowledgement and Error Services
	XPCMessageAcknowledgement30Inbound Service

	Order Management Services
	Overview of Transactions
	Associated XPC Services
	Document Exchange Details
	XPCOrderRequest30Outbound Service
	XPCOrderRequest30Inbound Service
	XPCCorrelatedOrder30Outbound Service
	XPCOrder30Outbound Service
	XPCOrder30Inbound Service
	XPCOrderResponseFromOrder30Outbound Service
	XPCOrderResponse30Inbound Service
	XPCChangeOrder30Outbound Service
	XPCChangeOrder30Inbound Service
	XPCOrderResponseFromChangeOrder30Outbound Service

	Order Status Request Services
	Overview of Transactions
	Associated XPC Services
	Document Exchange Details
	XPCOrderStatusRequest30Inbound Service

	Payment Request Services
	Overview of Transactions
	Associated XPC Services
	Document Exchange Details
	XPCPaymentRequest30Outbound Service
	XPCPaymentRequest30Inbound Service
	XPCPaymentRequestAcknowledgement30Outbound Service
	XPCPaymentRequestAcknowledgment30Inbound Service

	Planning and Shipping Schedule Services
	Overview of Transactions
	Associated XPC Services
	Document Exchange Details
	XPCPlanningSchedule30Outbound Service
	XPCPlanningSchedule30Inbound Service
	XPCPlanningScheduleResponse30Outbound Service
	XPCPlanningScheduleResponse30Inbound Service
	XPCShippingSchedule30Outbound Service
	XPCShippingSchedule30Inbound Service
	XPCShippingScheduleResponse30Outbound Service
	XPCShippingScheduleResponse30Inbound Service

	Price Check Services
	Overview of Transactions
	Associated XPC Services
	Document Exchange Details
	XPCPriceCheckRequest30Inbound Service

	Product Catalog Services
	Overview of Transactions
	Associated XPC Services
	Document Exchange Details
	XPCProductCatalog30Outbound Service
	XPCProductCatalog30Inbound Service

	Quote Services
	Overview of Transactions
	Associated XPC Services
	Document Exchange Details
	XPCRequestForQuotation30Outbound Service
	XPCRequestForQuotation30Inbound Service
	XPCQuote30Outbound Service
	XPCQuote30Inbound Service

	Remittance Advice Services
	Overview of Transactions
	Associated XPC Services
	Document Exchange Details
	XPCRemittanceAdvice30Outbound Service
	XPCRemittanceAdvice30Inbound Service

	Time Series Services
	Overview of Transactions
	Associated XPC Services
	Document Exchange Details
	XPCTimeSeriesRequest30Outbound Service
	XPCTimeSeriesRequest30Inbound Service
	XPCCorrelatedTimeSeries30Outbound Service
	XPCTimeSeries30Outbound Service
	XPCTimeSeries30Inbound Service
	XPCTimeSeriesResponse30Outbound Service
	XPCTimeSeriesResponse30Inbound Service

	Trading Partner Management Services
	Overview of Transactions
	Associated XPC Services
	Document Exchange Details: Registering a Trading Partner
	Document Exchange Details: Deleting a Trading Partner
	Document Exchange Details: Registering a Trading Partner User
	Document Exchange Details: Deleting a Trading Partner User
	XPCTradingPartnerUserInformation30Inbound Service
	XPCTradingPartnerUserDelete30Inbound Service
	XPCTradingPartnerOrganizationInformation30Inbound Service
	XPCTradingPartnerOrganizationDelete30Inbound Service
	XPCTradingPartnerResponse30Inbound Service
	XPCTradingPartnerUserInformation30Outbound Service
	XPCTradingPartnerUserDelete30Outbound Service
	XPCTradingPartnerOrganizationInformation30Outbound Service
	XPCTradingPartnerOrganizationDelete30Outbound Service
	XPCTradingPartnerResponseFromTPOrganizationInfo30Outbound Service
	XPCTradingPartnerResponseFromTPOrganizationDelete30Outbound Service
	XPCTradingPartnerResponseFromTPUserInfo30Outbound Service
	XPCTradingPartnerResponseFromTPUserDelete30Outbound Service

	5 XPC Component Library
	In This Chapter
	Component Location
	Default Response Builders
	MarketSite Messaging Layer (MML) and Document Querying Components
	File System Components
	Sample Integrators
	Other System Components

	6 Testing Your Integrations
	In This Chapter
	Overview of the Invoker
	Modifying the Sample Request Documents
	Testing Your Customizations
	Debugging Your Components

	7 API Reference
	Packages
	package com.commerceone.xpc.abs
	class XPCAbstractComponent

	package com.commerceone.xpc.common
	class XPCConfigParams
	class XPCDataMgr
	class XPCResult
	class XPCContractDescriptor

	package com.commerceone.xpc.components
	class CreateCorrelatingEnvelope
	class CreateEnvelope
	class DefaultAuctionCreateResponse30Builder
	class DefaultAuctionResultResponse30Builder
	class DefaultAvailabilityCheckResponse30Builder
	class DefaultAvailabilityCheckResponseBuilder (deprecated)
	class DefaultAvailabilityToPromiseResponse30Builder
	class DefaultOrder30Builder
	class DefaultOrderResponse30Builder
	class DefaultOrderResponseFromChangeOrder30Builder
	class OrderStatusResponse30Builder
	class DefaultOrderStatusResponseBuilder (deprecated)
	class DefaultPaymentRequestAck30Builder
	class DefaultPlanningScheduleResponse30Builder
	class DefaultPriceCheckResponse30Builder
	class DefaultPriceCheckResponseBuilder
	class DefaultPriceCheckResponseBuilder (deprecated)
	class DefaultPurchaseOrderResponseBuilder (deprecated)
	class DefaultQuote30Builder
	class DefaultShippingScheduleResponse30Builder
	class DefaultTimeSeries30Builder
	class DefaultTimeSeriesResponse30Builder
	class DefaultTPRResponseFromOrganizationDelete30Builder
	class DefaultTPRResponseFromOrganizationInfo30Builder
	class DefaultTPResponseFromUserDelete30Builder
	class DefaultTPRResponseFromUserInfo30Builder
	class ExceptionHandler
	class FileStore
	class GetCorrelationKey
	class GetStringFromDocument
	class LookupXCCArchive
	class MessageAcknowledgmentSender
	class Responder
	class StreamToDocument
	class Transmitter

	package com.commerceone.xpc.helpers
	class XPCDocHandle
	class XPCErrorInfo

	package com.commerceone.xpc.my_integrators
	class myAvailabilityCheckIntegrator30
	class myAvailabilityCheckIntegrator (deprecated)
	class myOrderStatusIntegrator30
	class myOrderStatusIntegrator (deprecated)
	class myPriceCheckIntegrator30
	class myPriceCheckIntegrator (deprecated)

	package com.commerceone.xpc.swi.common
	interface XPCContract

	package com.commerceone.xpc.swi.framework
	interface XPCConfig
	interface XPCProcess
	interface XPCTransmit

	package com.commerceone.xpc.gedi
	class Descriptor
	class StringMapper
	class CompressStream
	class CreateGEDIEnvelope
	class GetAttachment
	class DecompressStreamToFileSystem

	A Using a Transmitter API
	In this Appendix
	Stand-Alone Client
	Setting Up a Client Environment
	Configuring a Client
	Required Jar Files

	Transmitter Parameters
	Synchronous
	TIMEOUT_PARAM_KEY
	ACK_PARAM_KEY

	Peer-to-peer and One-way
	ACK_PARAM_KEY

	Transmitter API
	When Using the client.prop file
	When Not Using the client.prop file
	Changing Debug Level

	Exception Handling
	Catching Exceptions in a Stand-alone Client

	Examples to Create EntityManager/ Document/Envelope
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7

	B Security Credential
	In This Appendix
	Credential of Document Originator
	Function of Credential
	Access Control Application of Credential in Business Services
	XML/SOX Credential Public APIs
	com.commerceone.ccs.doclet.security.Security_sox Interface Credential
	Credential Usage Example

	C Generic EDI
	In This Chapter
	Overview of Generic EDI
	GEDI Envelope Structure
	Header
	Body
	Attachment

	EDI File Properties
	EDI Recipient ID Mapping
	Outbound Processing
	Inbound Processing
	Error Processing

	Generic EDI Components
	Generic EDI SOX Schema

