
C Generic e*Way Extension Kit
Developer’s Guide

Release 5.0.5 for Schema Run-time
Environment (SRE)

Copyright © 2005, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open
Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Version 20100712153859.

C Generic e*Way Extension Kit Developer’s Guide 2

Contents
Contents

Chapter 1

Introduction 7
Intended Reader 7

Components 7
stcewgenericdll.exe 7
stcewgenericdll.def 8

 Supported Operating Systems 8

System Requirements 8
Additional Information 9

e*Way Extensions and External Applications 9
Basics Steps to Extend the C Generic e*Way 10

Chapter 2

Installation 11
Files/Directories Created by the Installation 11

sdk.taz Files 11

Chapter 3

Extending the .def File 13
Introduction 13

Layout 13

.def file Keywords: General Information 14
White Space 14
Integer Parameters 15
Floating-point Parameters 15
String and Character Parameters 15
Path Parameters 15
Comments 15
“Header” Information 16

Defining a New Section 16
Section Syntax 17
Parameter Syntax 18

Order of Keywords 18
C Generic e*Way Extension Kit Developer’s Guide 3

Contents
Parameter Types 19
Parameters Requiring Single Values 19
Parameters Accepting a Single Value From a Set 20
Parameters Accepting Multiple Values From a Set 21

Specifying Ranges 23
Specifying Units 24
Displaying Options in ASCII, Octal, Hex, or Decimal 26

Factor 27
Encrypting Strings 28

Configuration Keyword Reference 29
Schedule Syntax 32

Defining Default Schedules 33

Configuration Parameters and the Configuration Files 34
Examples 34

Testing and Debugging the .def File 37
Common Error Messages 37

Sample .def File 38

Accessing Configuration Parameters Within the APIs 40
Variable-name Format 40
Getting Variable Values 41

Chapter 4

Configuration 42
e*Way Configuration Parameters 42

General Settings 42
Journal File Name 42
Max Resends Per Message 43
Max Failed Messages 43
Forward External Errors 43

Communication Setup 44
Exchange Data Interval 44
Zero Wait Between Successful Exchanges 44
Start Exchange Data Schedule 44
Stop Exchange Data Schedule 45
Down Timeout 45
Up Timeout 46
Resend Timeout 46

DLL Configuration 46
Operational Details 47
Dynamic Load Library File 53
Startup Function 54
Process Outgoing Message Function 54
Exchange Data with External Function 55
External Connection Establishment Function 56
External Connection Verification Function 56
External Connection Shutdown Function 56
Acknowledgment Function 57
Shutdown Command Notification Function 57
C Generic e*Way Extension Kit Developer’s Guide 4

Contents
Example of DLL Configuration Section Settings 58

Chapter 5

External Interface 59
Overview 59

C Generic e*Way Header File 59
Type Definitions List 67

Method Prototypes 68
PFNEWGENDLL_STARTUP 68
PFNEWGENDLL_SHUTDOWN 69
PFNEWGENDLL_CONNECTIONESTABLISH 69
PFNEWGENDLL_VERIFY 70
PFNEWGENDLL_CONNECTIONSHUTDOWN 70
PFNEWGENDLL_PROCESSOUTGOINGEVENT 71
PFNEWGENDLL_GETEXTERNALEVENT 72
PFNEWGENDLL_EXTERNALEVENTACKNOWLEDGEMENT 72

Helper Functions 73
GenericEWayHelperSetUserData 73
GenericEWayHelperGetUserData 74
GenericEWayHelperGetConfigVariable 75

Sample Template Source Code 76

Sample Source Code Description 77

Chapter 6

Suggested Method Implementation 80
Considerations 80

Sample C APIs 80
startup.cxx 80
FileExt_Startup 80
shutdown.cxx 83
FileExt_Shutdown 83
connestablish.cxx 84
FileExt_ConnEstablish 84
connverify.cxx 85
FileExt_ConnVerify 85
connshutdown.cxx 86
FileExt_ConnShutdown 86
send.cxx 87
FileExt_SendExternalEvent 87
recv.cxx 89
FileExt_GetExternalEvent 89
ack.cxx 91
FileExt_EventAcknowledgmenet 91
C Generic e*Way Extension Kit Developer’s Guide 5

Contents
Chapter 7

Configuring the e*Way with the Schema Designer 94
Implementing a Sample Schema 94

Step 1: Commit Files to the Schema 94
Step 2: Create an e*Way Component 95
Step 3: Configure the e*Way 96
Editing a .def File Within a Schema 97

Index 98
C Generic e*Way Extension Kit Developer’s Guide 6

Chapter 1

Introduction

The C Generic e*Way Extension Kit enables the developer to extend the client side of
e*Gate Integrator by using standard C DLLs. This document describes how to install
and configure the C Generic e*Way.

1.1 Intended Reader
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate system; to have expert-level knowledge of
Windows 2000 and/or UNIX operations and administration; to be thoroughly familiar
with and possess an understanding of C and C++ programming languages and
Windows-style GUI operations.

1.2 Components
The C Generic e*Way is comprised the following:

stcewgenericdll.exe, the executable component

stcewgenericdll.def, the executable configuration definition file

stcewgenericdll.h, the header file, which is used with the external interface object
to define necessary type definitions.

Method Protoypes, which control the Communications segment of the e*Way.

Helper functions, which assist with data access.

stcewgenericdll.exe

This executable component, stcewgenericdll.exe, is the core of the e*Way that
communicates and manipulates Events traveling between an external system and
e*Gate, using the C external function scripts. It implements the communication
between the external system and e*Gate and loads and interprets the configuration file
used by the e*Way to determine how to deal with data to and from the external system.
C Generic e*Way Extension Kit Developer’s Guide 7

Chapter 1 Section 1.3
Introduction Supported Operating Systems
stcewgenericdll.def

The configuration definition file, stcewgenericdll.def, contains all the configuration
parameters used by the e*Way executable. Some of these parameters form the basic
characteristics for the e*Way itself, while others are functions that allow the e*Way to
communicate with a specific external system. The remaining parameters consist of a set
of variables used by the environment. These configuration parameters are set using the
e*Way Editor.

1.3 Supported Operating Systems
For information about the operating systems supported by the e*Gate Integrator
system, see the readme.txt file provided on the installation CD.

1.4 System Requirements
To use the C Generic e*Way, you need the following:

A TCP/IP network connection.

Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes. The amount necessary varies based on the type and size of the data being
processed and any external applications performing the processing.
C Generic e*Way Extension Kit Developer’s Guide 8

Chapter 1 Section 1.5
Introduction e*Way Extensions and External Applications
1.4.1 Additional Information
The C Generic e*Way Extension Kit supports the following:

Solaris SunPro C, version 5.0 for Solaris

HP "C" Compiler, version 3.15 for HP-UX 11.0

AIX VisualAge, version 4.0

Microsoft C, version 6.0

JBM C89 compiler version 2.10. Makefiles are based on GNUmake.

1.5 e*Way Extensions and External Applications
Figure 1 illustrates how the C Generic e*Way accesses an external application.

Figure 1 Extending the C Generic e*Way

1 A dynamic link library or dll (on 2000) or shared (on UNIX) library is created from
user-created source code to extend the C Generic e*Way.

2 The C Generic e*Way is configured to use the user-created dll or shared library.

3 A user-written C script uses the External Interface (EI) protocol and the user-created
library to access the external application.

User Defined Extended C Generic e*Way

ExtensionC Generic e*Way

External Application

EXT
APP
API

User Created Dynamic/
Shared lib

EXT
APP
API

EI
object

Extending the C Generic e*Way to an External Application
C Generic e*Way Extension Kit Developer’s Guide 9

Chapter 1 Section 1.5
Introduction e*Way Extensions and External Applications
1.5.1 Basics Steps to Extend the C Generic e*Way
To extend the C Generic e*Way for access to an external application, follow these basic
steps:

1 Create a dynamic link library or shared library for the C Generic e*Way to use at
run-time to access the external application. To do this, create source code in C or
C++ using the EI protocol to “wrap” the external application’s API calls; then,
compile and link the source code to create the dynamic or shared library.

2 Modify the stcewgenericdll.def file template as needed to allow proper configuring
of the C Generic e*Way with the Configuration GUI. If you do modify the file
template, you must import the changed template to the appropriate schema.

3 Write C code that invokes the EI object to enable use of the “wrapped” external
application API calls.

4 Configure the C Generic e*Way to use the dynamic link library or shared library
you created to extend the C Generic e*Way.

5 Run the extended C Generic e*Way in your e*Gate environment.
C Generic e*Way Extension Kit Developer’s Guide 10

Chapter 2

Installation

This chapter describes the following:

Files/Directories Created by the Installation on page 11

2.1 Files/Directories Created by the Installation
The C Generic e*Way Extension Kit includes the files shown in Table 1. The files will be
stored within the "egate\client" tree on the Participating Host and committed to the
default schema on the Registry Host.

2.1.1 sdk.taz Files
The C Generic e*Way Extension Kit requires additional files that are located in sdk.taz
on the installation CD. It includes the .lib, .dll, and .h header files, which are not
installed as part of the Registry Host and Participating Host as part of the e*Gate
installation.

You must extract sdk.taz to any directory of your choice in your own development
environment. The directories and files you must include are listed below.

.h files

You must include the following directories when compiling your DLL:

<sdk>/include

<sdk>/include/common/message

<sdk>/include/stc

In your source files (*.cxx), the following header files must also be included:

<sdk>/include/ewgenericdllfuncs.h

<sdk>/include/tracelog.h

Table 1 : Files created by the e*Gate installation

e*Gate Directory File(s)

\client\bin stcewgenericdll.exe

\Server\registry\repository\default\configs\stcewgenericdll stcewgenericdll.def
C Generic e*Way Extension Kit Developer’s Guide 11

Chapter 2 Section 2.1
Installation Files/Directories Created by the Installation
.lib files (for Windows only)

<sdk>\lib\win32\stc_common.lib

<sdk>\lib\win32\stc_stcapis.lib

.dll files

<sdk>/bin/<operating system name>/stc_common.dll
C Generic e*Way Extension Kit Developer’s Guide 12

Chapter 3

Extending the .def File

This chapter describes how to extend the .def file and discusses the .def file keywords
and their arguments. In addition, it also discusses how to test and debug the .def file
and lists some of the common error messages. It also provides information on
configuration parameters and the .cfg file.

3.1 Introduction
The C Generic e*Way is configured using the e*Way Editor, a graphical user interface
(GUI) that enables you to change configuration parameters quickly and easily. A
definition file (.def) configures the e*Way Editor to gather those parameters by
specifying the name and type of each parameter, as well as other information (such as
the range of permissible options for a given parameter). The e*Way Editor stores the
values that you assign to those parameters within two configuration files. The
configuration files contain similar information but are formatted differently. The .cfg
file contains the parameter values in delimited records and is parsed by the e*Way at
run time. The .sc file contains the parameter values and additional information needed
by the GUI. The e*Way Editor loads the .sc file—not the .cfg file— when you edit the
configuration settings for an e*Way. Both configuration files are generated
automatically by the e*Way Editor whenever the configuration settings are saved.

The .def file for the C Generic e*Way contains a set of parameters that are required and
may not be modified. You can extend the .def file if your modifications to the C Generic
e*Way require the definition of user-settable parameters. This chapter discusses the
structure of the .def and the configuration files and the syntax of the keywords used to
configure the e*Way Editor to gather the desired configuration parameters. The e*Way
Editor itself is discussed elsewhere; for more information, see the e*Gate Integrator
User’s Guide or the e*Way Editor’s Help system.

Important

We strongly recommend that you make no changes whatsoever to the default
stcewgenericdll.def file. However, you should use that file as a base from which you
create your extensions. Save a copy of the file under a unique name and make your
changes to the copy.

3.1.1 Layout
The .def file has three major divisions:
C Generic e*Way Extension Kit Developer’s Guide 13

Chapter 3 Section 3.2
Extending the .def File .def file Keywords: General Information
The header describes basic information about the file itself, such as version number,
modification history, and comments.

The sub-header contains several read-only variables that are for internal use only
and must not be modified from their default values.

The body contains configuration parameters grouped into sections. Three sections
(General Settings, Communications Parameters, and DLL Configuration) must be
included in all C Generic e*Way .def files; additional sections can be added as
needed to support user-created functions.

3.2 .def file Keywords: General Information
All keywords and their arguments are enclosed in balanced parentheses. Keyword
arguments can be a quoted string, a quoted character, an integer, a parenthesis-
bounded list, a keyword modifier, or additional keywords.

Examples:

(name “TCP Port Number“)

(eway-type
(direction "<ANY">)

)

(set
(value (1 2 3))
(config-default (1 2 3))

)

(range
 (value (const 1 const 1024)
)

3.2.1 White Space
White space that is not contained within double-quotation marks, including tabs and
newlines, is ignored except as a separator between keywords.

For example, the following are equivalent:

(user-comment (value "") (config-default ""))

(user-comment
(value "")
(config-default "")

)

Whitespace within quotation marks is interpreted literally. For example, (name
“Extra Spaces”) will display as

Extra Spaces

in the e*Way Editor’s list of names.
C Generic e*Way Extension Kit Developer’s Guide 14

Chapter 3 Section 3.2
Extending the .def File .def file Keywords: General Information
3.2.2 Integer Parameters
The maximum value for integer parameters ranges from approximately -2 billion to 2
billion (specifically, -2,147,483,648 to 2,147,483,647). Most ranges will be smaller, such as
“1 to 10” or “1 to 1,000.”

3.2.3 Floating-point Parameters
Floating-point parameters and floating-point arithmetic are not supported.

3.2.4 String and Character Parameters
String and character parameters may contain all 255 ASCII characters. The “extended”
characters are entered using an escaped format:

Characters such as tab, newline, and carriage return can be entered as \t, \n, and
\c, respectively.

Characters may also be entered in octal or hexadecimal format using \o or \x,
respectively (for example, \x020 for ASCII character 32).

Strings are delimited by double quotes, characters by single quotes. Examples:

Strings: "abc" "Administrator"

Characters: '0' '\n'

Single quotation marks, double-quotation marks, and backslashes that are not used as
delimiters (for example, when used within the text of a description) must be escaped
with a backslash, as shown respectively below:

\'

\"

\\

3.2.5 Path Parameters
Path parameters can contain the same characters as other string parameters; however,
the characters entered should be valid for pathnames within the operating system on
which the e*Way runs.

Backslashes in DOS pathnames must be escaped (as in c:\\home\\egate).

3.2.6 Comments
Comments within the .def file begin with a semi-colon (;). Any semi-colon that appears
in column 1, or that is preceded by at least one space character and that does not appear
within quotation marks, is interpreted as a comment character.
C Generic e*Way Extension Kit Developer’s Guide 15

Chapter 3 Section 3.3
Extending the .def File Defining a New Section
Examples

; this is a valid comment, because it begins in column 1
(name "Section name") ; this is also a valid comment, because it is separated by a space

3.2.7 “Header” Information
“Header” information that developers may use to maintain a revision history for the
.def file is stored within the (general-info) section. All the information in this section is
maintained by the user; no e*Gate product modifies this information.

Table 2 describes the user-editable parameters in the (general-info) section. The use of
these fields is not required and they may be left blank, but all the fields must be present.
The format and contents of these fields is completely at the developer’s discretion, as
long as rules for escaped characters are observed (see “String and Character
Parameters” on page 15 for more information). Any (general-info) parameters that are
not shown in the table below are reserved and should not be modified except by
direction of Oracle support personnel.

3.3 Defining a New Section
The (section) keyword defines a section within the .def file. The syntax of the new
section is described immediately below. Each section requires at least one parameter;
see “Parameter Syntax” on page 18 for more information on defining parameters.

Note: Section names and parameter names within a section must be unique.

Table 2 User-editable (general-info) parameters

Parameter name Describes

version The version number

revision The revision number

user The user who last edited the file

modified The modification date

creation The creation date

description A description for this .def file, displayed within the e*Way Editor from
the File menu’s Tips option. Quotation marks within the description
must be escaped (\").

user-comment Comments left by the user (rather than the developer), accessed within
the e*Way Editor from the File menu’s User notes option. Unless you
wish to provide a default set of “user notes,” we recommend you leave
this field blank.
C Generic e*Way Extension Kit Developer’s Guide 16

Chapter 3 Section 3.3
Extending the .def File Defining a New Section
3.3.1 Section Syntax
Sections within the .def file have the following syntax:

(section
 (name "section name")

... at least one parameter definition ...

(description "description text”)
(user-comment
 (value "")
 (config-default "")
) ; end of user comment
) ; end of section

The section name, description text, and user-comment “value” will appear in the e*Way
Editor, as shown in Figure 2.

Figure 2 e*Way Editor main controls

Notes

1 The user-comment feature enables users to make notes about a section or parameter
that will be stored along with the configuration settings and save those notes along
with the configuration settings. Under most circumstances, we recommend that
developers leave the (user-comment) fields blank, but you can enter information in
the (user-comment) field if you want to ensure that all user notes for a given section
begin with preset information.

2 The description is displayed when the user clicks the “Tips” button. Use this field to
create “online help” for a section or parameter. We recommend that you provide a
description for every section and every parameter that you create.

Section name

User comments (see
Note 1 below)

Description (see
Note 2 below)

Parameter name
C Generic e*Way Extension Kit Developer’s Guide 17

Chapter 3 Section 3.3
Extending the .def File Defining a New Section
3.3.2 Parameter Syntax
Parameters within the .def file use the following basic structure:

(param-keyword
(name "Parameter name goes here")
(value val)
(config-default val)

...additional keywords (range, units, set) as required...

(description "description text”)
(user-comment

 (value "")
 (config-default "")
)
) ; end of parameter definition

The keywords that are invariably required to define a parameter are

A parameter keyword, discussed below

The parameter’s name: (name)

The initial default value: (value)

The “configuration default”: (config-default), which the user can restore by clicking

. This value can be overridden by the config-default keyword specified within
a (set) command; see “Parameters Accepting a Single Value From a Set” on
page 20 and “Parameters Accepting Multiple Values From a Set” on page 21 for
more information.

Note: The (value) keyword is always followed immediately by the (config-default)
keyword.

The “description” (see the Notes for “Section Syntax” on page 17 for additional
information)

The “user comment” (see the Notes for “Section Syntax” on page 17 for additional
information), which has its own value and configuration default.

Additional keywords may be required, based upon the parameter keyword and user
requirements; these will be discussed in later sections.

Order of Keywords

Keywords must appear in this order:

1 parameter definition*

2 name*

3 value*

4 config-default*

5 set
C Generic e*Way Extension Kit Developer’s Guide 18

Chapter 3 Section 3.3
Extending the .def File Defining a New Section
6 range

7 units

8 show-as

9 factor

10 description*

11 user-comment*

Note: Keywords marked with * are mandatory for all parameters. The set keyword is
mandatory for -set and -set-multi parameters. The remaining keywords (items 6
through 9) are optional and depending on developer requirements may appear in any
combination, but they must appear in the above order.

Parameter Types

There are eight types of parameters. The table below lists the types of parameters that
can be defined, the keyword required to define them, and the values that the keyword
can accept for the (value) and (config-default) keywords.

Parameters Requiring Single Values

Parameters requiring single values are defined within the basic structure shown in
“Parameter Syntax” on page 18.

Table 3 Basic parameter keywords

Type
Parameter
keyword

Accepts values Example

Integer int integer 7500

Character char single-quoted character 'a'
'!'
'\o123' (octal)

String string double-quoted string “Hello, world”

Date date comma-delimited date
in MMM,dd,yyyy format

AUG,13,2000

Time time colon-delimited time in
24-hour hh:mm:ss
format

15:30:00

Path path path; DOS pathnames
should use escaped
backslashes

/home/egate/client (UNIX)
c:\\home\\egate\\client (DOS)

Schedule schedule schedule See “Schedule Syntax” on page 32
C Generic e*Way Extension Kit Developer’s Guide 19

Chapter 3 Section 3.3
Extending the .def File Defining a New Section
Figure 3 A parameter requiring a single value

The parameter is defined using a parameter keyword, as listed in Table 3 on page 19.

Example

To create a parameter that accepts a single integer as input, and to specify “3” as the
default and configuration-default value, enter the following:

(int
 (name "Parameter requiring a single integer")
 (value 3)
 (config-default 3)
 (description "

 This parameter requires a single integer as input.
")
 (user-comment
 (value "")
 (config-default "")
)
) ; end of parameter definition

If you want to limit the values that the user may enter, you may include the optional
(range) keyword; see “Specifying Ranges” on page 23 for more information.

Parameters Accepting a Single Value From a Set

Adding the suffix -set to the basic parameter keyword (int-set, string-set, path-set, and
so on) defines a parameter that accepts one of a given list of values.

Figure 4 A parameter requiring one of a set of values

Sets require modifications to the basic parameter syntax (shown in “Parameter Syntax”
on page 18):

An additional required keyword, (set), defines the elements of the set.

Within the (set) keyword, (value) and (config-default) require arguments within
parenthesis-bound lists, as in the following:

(value (1 2 3))
(config-default (1 2 3))

To prevent a user from to adding or removing choices from the list you provide, add
the const keyword to the “value” declaration:

(value const (1 2 3))
(config-default (1 2 3))
C Generic e*Way Extension Kit Developer’s Guide 20

Chapter 3 Section 3.3
Extending the .def File Defining a New Section
To specify an empty set, enter the keyword none, as below:

(value none)
(config-default none)

Note: “-set-multi” keywords use a different syntax to define an empty set; see
“Parameters Accepting Multiple Values From a Set” on page 21 for more
information.

Other important considerations:

The value specified as the initial (value) for the parameter must match at least one
of the the values specified for (config-default) within the (set) keyword.

The initial value within the (set) keyword’s (config-default) list must be within the
(set) keyword’s (value) list. However, we strongly recommend that you simply
make the two lists identical.

Example

To create a parameter that accepts one of a fixed set of integers (like the one shown in
Figure 4 above), enter the following:

(int-set
 (name "Single-choice set (int-set)")
 (value 1)
 (config-default 1)
 (set
 (value const (1 2 3))
 (config-default (1 2 3))
)
 (description "Provides a single choice from a list of integers.”)
 (user-comment
 (value "")
 (config-default "")
)
) ; end of int-set

Note: The values specified by the (set) keyword must be within any values specified by the
(range) keyword. See “Specifying Ranges” on page 23 for more information.

Parameters Accepting Multiple Values From a Set

Adding the suffix -set-multi to the basic parameter keyword (int-set-multi, string-set-
multi, path-set-multi, and so on) defines a parameter that accepts one or more options
from a given list of values.
C Generic e*Way Extension Kit Developer’s Guide 21

Chapter 3 Section 3.3
Extending the .def File Defining a New Section
Figure 5 A parameter requiring one of a set of values

Sets require modifications to the basic parameter syntax (shown in “Parameter Syntax”
on page 18):

An additional required keyword, (set), defines the elements of the set.

Within the (set) keyword, (value) and (config-default) require arguments within
parenthesis-bound lists, as in the following:

(value (1 2 3))
(config-default (1 2 3))

To prevent a user from to adding or removing choices from the list you provide, add
the const keyword to the “value” declaration:

(value const (1 2 3))
(config-default (1 2 3))

To specify an empty set, enter an empty pair of parentheses “()”, as below:

(value ())
(config-default ())

“-set” keywords use a different syntax to define an empty set; see “Parameters
Accepting a Single Value From a Set” on page 20 for more information.

Other important considerations:

The value specified as the initial (value) for the parameter must match at least one
of the the values specified for (config-default) within the (set) keyword.

The initial value within the (set) keyword’s (config-default) list must be within the
(set) keyword’s (value) list. However, we strongly recommend that you simply
make the two lists identical.
C Generic e*Way Extension Kit Developer’s Guide 22

Chapter 3 Section 3.3
Extending the .def File Defining a New Section
Example

To create a parameter that accepts one of a fixed set of integers (like the one shown in
Figure 5 above), enter the following:

(int-set-multi
 (name "Multiple-choice set (int-set-multi)")
 (value (1 3))
 (config-default (1 3))
 (set
 (value (1 2 3 4 5))
 (config-default (1 2 3 4 5))
)
 (description "Integer with a modifiable multiple-option set")
 (user-comment
 (value "")
 (config-default "")
)
) ; end of int-set-multi

Note: The order in which keywords appear is very important. See “Order of Keywords”
on page 18 for more information.

3.3.3 Specifying Ranges
The (range) keyword enables you to limit the range of options that the user may input
as a parameter value for int and char parameters. You may specify a fixed range, or
allow the user to modify the upper limit, the lower limit, or both limits. Range limits are
inclusive. The values you specify as limits indicate the lowest or highest acceptable
value.

The syntax of (range) is as follows:

(range
 (value ([const] lower-limit [const] upper-limit))
 (config-default (lower-limit upper-limit))
)

The optional const keyword specifies that the limit is fixed; if the keyword is omitted,
the limit can be modified by the user. The const keyword must precede each limit if
both limits are to be fixed.
C Generic e*Way Extension Kit Developer’s Guide 23

Chapter 3 Section 3.3
Extending the .def File Defining a New Section
Example

This example illustrates how to define a parameter that accepts an integer as input and
limits the range of legal values from zero to ten.

(int
 (name "Single integer with fixed range")
 (value 5)
 (config-default 5)
 (range
 (value (const 0 const 10))
 (config-default (0 10))
)
 (description "Accepts a single integer, limited to a fixed
range.")
 (user-comment
 (value "")
 (config-default "")
)
) ; end of int parameter

You may also use (range) to specify a character range; for example, a range of “A to Z”
would limit input to uppercase letters, and a range of “! to ~” limits input to the
standard printable ASCII character set (excluding space).

Note: You may also specify ranges for -set and -set-multi parameters (int-set, char-set,
and so on).

3.3.4 Specifying Units
The (units) keyword enables int parameters to accept input and display the list of
available options in different units, provided that each unit is an integer multiple of a
base unit.

Figure 6 A parameter that performs unit conversion

Acceptable groups of units include

Seconds, minutes, hours, days

Bytes, kilobytes, megabytes

Unit conversions that require floating-point arithmetic are not supported.

The syntax of the (units) keyword is

(units
 ("base-unit":1 "first-unit":a "second-unit":b ... "nth-unit":n)

 (value "default-unit")
 (config-default "default-unit")
)

Units selector
C Generic e*Way Extension Kit Developer’s Guide 24

Chapter 3 Section 3.3
Extending the .def File Defining a New Section
where a, b, and n are the numbers by which the base unit size should be multiplied to
perform the conversion to the respective units. The base unit should normally have a
value of 1, as shown above; while the e*Way Editor will permit other values, it is highly
unlikely that an application would require any other number. The units themselves
have no meaning to the e*Way Editor other than the relationships you define (in other
words, the Editor does not identify or process “seconds” or other common units as
such).

Example

To specify a set of time units (seconds, minutes, hours, and days), enter the following:

(units
 ("Seconds":1 "Minutes":60 "Hours":3600 "Days":86400)

 (value "Seconds")
 (config-default "Seconds")
)

Units, Default Values, and Ranges

Any time you use the (units) keyword within a parameter, you must make sure that the
default values can be expressed as integer values of each unit. Observing this principle
prevents end users from receiving error messages when changing e*Way Editor values
in a specific order. For example, if you specified the time units in the example above,
but assigned the parameter a default value of “65 seconds,” any user who selects the
minutes unit without changing the default value will receive an error message, because the
e*Way Editor cannot convert 65 seconds to an integral number of minutes. Ranges,
however, will be rounded to the nearest integer.

Note: No matter what default value you specify, a user will always see an error message if
an inconvertible value is entered and the unit selector is changed. We recommend
that you design your parameters so that error messages are not displayed when
default values are entered.
C Generic e*Way Extension Kit Developer’s Guide 25

Chapter 3 Section 3.3
Extending the .def File Defining a New Section
Example

To define a time parameter that displays values in seconds or minutes, with a default of
120 seconds and a fixed range of 60 to 3600 seconds (1 minute to 60 minutes), enter the
following:

(int
 (name "Single integer with fixed range")
 (value 120)
 (config-default 120)
 (range
 (value (const 60 const 3600))
 (config-default (60 3600))
)
 (units
 ("Seconds":1 "Minutes":60)
 (value "Seconds")
 (config-default "Seconds")
)
 (description "Accepts a value between 1 and 60 minutes, with

a default units value in seconds.")
 (user-comment
 (value "")
 (config-default "")
)
) ; end parameter

Note: The order in which keywords appear is very important. See “Order of Keywords”
on page 18 for more information.

3.3.5 Displaying Options in ASCII, Octal, Hex, or Decimal
The (show-as) keyword enables you to create int or char parameters that a user can
display in ASCII, octal, hexadecimal, or decimal formats.

The syntax of the (show-as) keyword is

(show-as
 (format-keyword1 [format-keyword2 ... format-keywordn])
 (value format-keyword)
 (config-default format-keyword)
)

where format-keyword is one of the following:

ascii

octal

hex

decimal

Format keywords are case-insensitive, and may be used in any combination and in any
order.

Be sure that any default values you specify for a parameter that uses (show-as) can be
represented in each of the (show-as) formats. For example, if you are using (show-as) to
show an integer parameter in both decimal and hex formats, the default value must be
non-negative.
C Generic e*Way Extension Kit Developer’s Guide 26

Chapter 3 Section 3.3
Extending the .def File Defining a New Section
Example

To create a parameter that accepts a single character in the character-code range
between 32 and 127 and that can display the character value in ASCII, hex, or octal,
enter the following:

(char
 (name "A single ASCII character")
 (value '\o100')
 (config-default '\o100')
 (range
 (value (const '\o040' const '\o177'))
 (config-default ('\o040' '\o177'))
)
 (show-as
 (Ascii Octal Hex)
 (value Octal)
 (config-default Octal)
)
 (description "Accepts a single character between ASCII 32 and ASCII 127.")
 (user-comment
 (value "")
 (config-default "")
)
) ; end char parameter

Note: The order in which keywords appear is very important. See “Order of Keywords”
on page 18 for more information.

Factor

The (factor) keyword enables users to enter an arithmetic operator (+, –, *, or /) as part
of an int parameter; for example, to indicate that a value should increase by five units,
the user would enter the integer “5” and the factor “+”.

Figure 7 A parameter using (factor)

The syntax of the (factor) keyword is

(factor
('operator1' ['operator2'... 'operatorN'])
(value 'operator'
(config-default 'operator')

)

where operator is one of the four arithmetic operators +, –, *, or / (forward slash).

Example

To define a parameter that accepts an integer between 1 and 5 with a factor of + or – (as
in Figure 7 above), enter the following:

(int
(name "Integer with factor")
(value 1)
(config-default 1)
(range

(value (const 1 const 5))
(config-default (1 5))
C Generic e*Way Extension Kit Developer’s Guide 27

Chapter 3 Section 3.3
Extending the .def File Defining a New Section
)
(factor

('+' '-')
(value '+')
(config-default '+')

)
(description "Enter an integer between 1 and 5 and a factor of +

or -.")
(user-comment

(value "")
(config-default "")

)
) ; end int parameter

Note: The (factor) keyword must be the final keyword before the (description) keyword.
See “Order of Keywords” on page 18 for more information.

Encrypting Strings

Encrypted strings (such as for passwords) are stored in string parameters; to specify
encryption, use the encrypt keyword, as in the following:

(string encrypt
...additional keywords follow...

The e*Way Editor uses the parameter that immediately precedes the encrypted
parameter as its encryption key; therefore, be sure that the parameter that prompts for
the encrypted data is not the first parameter in a section. The easiest way to accomplish
this is to define a “username” parameter that immediately precedes the encrypted
“password” parameter. If you need to specify an encryption key other than the user
name, you must define a separate parameter for this purpose.

Text entered into an encrypted-string parameter is displayed as asterisks (“***”).

Example

To create a password parameter, enter the following immediately following the parameter
definition for the corresponding user name (not shown):

(string encrypt
 (name "Password")
 (value "")
 (config-default "")
 (description "The e*Way Editor will encrypt this value.")
 (user-comment
 (value "")
 (config-default "")
)
)

Note: The encrypt keyword can only follow the string keyword. The only parameter type
that can be encrypted is string; integer, character, path, time, date, or schedule
parameters cannot be encrypted.
C Generic e*Way Extension Kit Developer’s Guide 28

Chapter 3 Section 3.4
Extending the .def File Configuration Keyword Reference
3.4 Configuration Keyword Reference
Table 4 lists the keywords that may appear in the .def file.

Table 4 .def-file keywords

Keyword Purpose
For more information,

see this section

app-protocol Reserved; do not change from the default “<ANY>”.

cfg-icon Reserved; do not change from the default “” (null string).

char Declares a character parameter “Parameter Types” on
page 19

char-set Declares a set of characters, one of
which must be selected (via radio
button)

“Parameters Accepting a
Single Value From a Set” on
page 20

char-set-multi Declares a set of characters, any of
which may be selected (via check
boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 21

config-default Specifies the values that will be restored
when the user clicks the e*Way Editor’s

 button

“Parameter Syntax” on
page 18

const Specifies that a value cannot be
changed by the user

“Specifying Ranges” on
page 23

creation Records creation date or other
information.

““Header” Information” on
page 16

date Declares a date parameter “Parameter Types” on
page 19

date-set Declares a set of dates, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 20

date-set-multi Declares a set of dates, one of which
must be selected (via radio button)

“Parameters Accepting
Multiple Values From a Set”
on page 21

delim1 Defines the line-separator delimiter
used within .cfg files. We recommend
that you do not modify this value.

delim2 Defines the parameter-name delimiter
used within .cfg files. We recommend
that you do not modify this value.

delim3 Defines the value-separating delimiter
used within .cfg files. We recommend
that you do not modify this value.
C Generic e*Way Extension Kit Developer’s Guide 29

Chapter 3 Section 3.4
Extending the .def File Configuration Keyword Reference
delim4 Defines the list-item-separating
delimiter used within .cfg files. We
recommend that you do not modify this
value.

description A description for the entry (displayed

using the e*Way Editor’s button

“Notes” on page 17

direction Reserved; do not change from the default “<ANY>”.

encrypt Encrypts a string, such as for passwords.
Valid only after the string keyword.

“Encrypting Strings” on
page 28

factor Defines an arithmetic operator to be
associated with an integer parameter

“Factor” on page 27

general-info Defines the “general information”
division of the .def file

““Header” Information” on
page 16

generated-cfg-path Specifies the path in which the .cfg file
will be stored. We recommend that you
do not modify this field.

int Declares an integer parameter “Parameter Types” on
page 19

int-set Declares a set of integers, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 20

int-set-multi Declares a set of integers, any of which
may be selected (via check boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 21

modified Records modification date or other
information

““Header” Information” on
page 16

name Specifies the name of a parameter or a
section

“Parameter Syntax” on
page 18

network-protocol Reserved; do not change from the default “<ANY>”.

os-platform Reserved; do not change from the default “<ANY>”.

path Declares a path parameter “Parameter Types” on
page 19

path-set Declares a set of paths, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 20

path-set-multi Declares a set of paths, any of which
may be selected (via check boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 21

Table 4 .def-file keywords

Keyword Purpose
For more information,

see this section
C Generic e*Way Extension Kit Developer’s Guide 30

Chapter 3 Section 3.4
Extending the .def File Configuration Keyword Reference
protocol-api-
version

Reserved; do not change from the default “<ANY>”.

range Specifies a range of values that
represent the upper and lower limits of
acceptable user input

“Specifying Ranges” on
page 23

revision Records revision numbering or other
information (entered manually by the
developer)

““Header” Information” on
page 16

schedule Declares a schedule parameter “Parameter Types” on
page 19 and “Schedule
Syntax” on page 32

schedule-set Declares a set of schedules, one of
which must be selected (via radio
button)

“Parameters Accepting a
Single Value From a Set” on
page 20 and “Schedule
Syntax” on page 32

schedule-set-multi Declares a set of schedules, any of
which may be selected (via check
boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 21 and “Schedule
Syntax” on page 32

section Defines a “section” of the .def file See “Section Syntax” on
page 17

set Defines the elements in a set “Parameters Accepting a
Single Value From a Set” on
page 20 and “Parameters
Accepting Multiple Values
From a Set” on page 21

show-as Selects the format in which character or
integer parameters will be displayed

“Displaying Options in
ASCII, Octal, Hex, or
Decimal” on page 26

string Declares a string parameter “Parameter Types” on
page 19

string-set Declares a set of strings, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 20

string-set-multi Declares a set of strings, any of which
may be selected (via check boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 21

super-client-type Reserved; do not change from the default “<ANY>”.

time Declares a time parameter “Parameter Types” on
page 19

Table 4 .def-file keywords

Keyword Purpose
For more information,

see this section
C Generic e*Way Extension Kit Developer’s Guide 31

Chapter 3 Section 3.4
Extending the .def File Configuration Keyword Reference
3.4.1 Schedule Syntax
Schedules can be time-based (as in “every ten minutes” or “every hour”), or calendar-
based (for a daily, weekly, monthly, or yearly schedule). The syntax for specifying
schedules as values and configuration defaults appears in the table below (all times are
specified in 24-hour format):

time-set Declares a set of times, one of which
must be selected (via radio button)

“Parameters Accepting a
Single Value From a Set” on
page 20

time-set-multi Declares a set of times, any of which
may be selected (via check boxes)

“Parameters Accepting
Multiple Values From a Set”
on page 21

units Determines in which units a parameter
will be displayed

“Specifying Units” on
page 24

user Records the name of the user who last
edited the file (entered manually by the
developer)

““Header” Information” on
page 16

user-comment Records a general comment to be
applied to the file (accessible via the
e*Way editor)

“Notes” on page 17

value Defines the initial value for a parameter “Parameter Syntax” on
page 18

version Records the name of the user who last
edited the file (entered manually by the
developer)

““Header” Information” on
page 16

Table 5 Schedule syntax

For this schedule... ...use this syntax Example

Every s seconds s
(s=seconds)

1800
(every 1800 seconds, or every 30
minutes)

Number of seconds after
the minute

:::::s
(s=seconds)

:::::10
(every ten seconds after the
minute)

Number of minutes and
seconds past the hour

::::m:s
(m=minutes; s=seconds)

::::15:00
(every fifteen minutes and zero
seconds after the hour)

Daily at time :::hh:mm:ss :::12:00:00
(daily at noon)

Table 4 .def-file keywords

Keyword Purpose
For more information,

see this section
C Generic e*Way Extension Kit Developer’s Guide 32

Chapter 3 Section 3.4
Extending the .def File Configuration Keyword Reference
Defining Default Schedules

It is significantly simpler to define schedules using the e*Way Editor than it is to create
schedule entries manually within the .def file, especially for complex schedules. The
only reason to define a schedule within a .def file is to establish a default schedule. If
you want to create a default schedule entry, and do not want to construct the entry
manually, use this procedure:

1 Define a schedule parameter with a blank (““) default.

2 Commit the .def file to a schema, and use the e*Gate Editor to define an entry for
the Start Exchange Data Schedule parameter. In this entry, create the schedule that
you eventually wish to use as a default. (Don’t be concerned if this is not the
parameter for which you want to define a default schedule; this is just a temporary
file.)

3 Save the configuration as temp (do not specify an extension) and exit the e*Way
Editor.

4 Pull down the Schema Designer’s File menu and select Edit File.

5 Use the file-selection controls to open the file /configs/stcewgenericcdll/temp.cfg.

6 The Notepad editor will launch. Scroll down until you find the “Communications
Setup” section; a sample appears below.

7 Use “copy and paste” to copy the schedule-definition string (in the figure above,
“:::12:00:00”).

Weekly at day-of-week at
time

::DD:hh:mm:ss
(DD=day of week)

::Su:12:00:00
(weekly, Sundays at noon)

Monthly, every nth day-of-
week at time

::DDn:hh:mm:ss
(DD=day of week; n=1, 2, 3, 4,
or 5)

::Su1:12:00:00
(monthly, the first Sunday, at
noon)

Monthly, every nth day at
time

::n:hh:mm:ss
(n=day of month)

::3:12:00:00
(monthly, the third day of the
month, at noon)

Yearly, at a given date at
time

:MM:dd:hh:mm:ss
(MM=month; dd=day)

:08:13:04:00:00
(every August 13th at 4:00 AM)

Yearly, every nth day of
month at time

:MM:DDn:hh:mm:ss
(MM=month; DD=day of
week; n=1, 2, 3, 4, or 5)

:05:We3:12:00:00
(yearly, every third Wednesday of
May, at noon)

Table 5 Schedule syntax

For this schedule... ...use this syntax Example

--
Section:Communication Setup
--
#
Communication Setup|Exchange Data
Interval|value=120|set=120|range=0,86400

Schedule definition
C Generic e*Way Extension Kit Developer’s Guide 33

Chapter 3 Section 3.5
Extending the .def File Configuration Parameters and the Configuration Files
8 Exit the editor; there is no need to save the file.

9 Pull down the Schema Designer’s File menu and select Edit File.

10 Use the file-selection controls to open the file /configs/stcewgenericcdll/
your_def_file (substituting the name of the .def file you want to modify).

11 Modify the (value) and (config-default) keywords within the desired schedule
parameter by pasting in the string that you copied in step 7 above.

12 Save the file and commit the modified file to the Registry (see “Editing a .def File
Within a Schema” on page 97 for more information).

3.5 Configuration Parameters and the Configuration Files
Parameters defined within the .def file are stored within two “configuration” files (.cfg
and .sc), which are generated by the e*Way Editor’s “Save” command. The following
rules apply to both .cfg and .sc files:

Keywords are not case sensitive, as they are converted to uppercase internally
before matching.

Comments begin with the “#” character, which must appear in column one (see the
example in the section immediately below).

Unlike the .def file, the .cfg and .sc files are sensitive to white space. White space
consists of single space characters, tabs, and newlines. Be careful not to insert extra
white space around delimiters or equal signs (for example “|value=3|” is legal, but
“|value = 3|” and “| value=3 |“ are illegal).

The following rule applies only to the .cfg file:

Each line and each element in the .cfg file is separated using delimiters (see delim1,
delim2, delim3, and delim4 in Table 4 on page 29). We strongly recommend that
you do not modify any of the default delimiters.

Note: The e*Way Editor will create a .cfg and .sc file automatically when you save your
configuration changes in the e*Way Editor. You should not need to modify either file
manually unless directed to do so by Oracle support personnel.

Although e*Ways are shipped with default .def files, no configuration files are
provided, because there is no “standard” configuration for any given e*Way. Users
must manually create a configuration profile using the e*Way Editor for every
e*Way component.

Examples

.cfg File

This example is excerpted from the “General Settings” section of a .cfg file that is
generated by the default stcewgenericcdll.def file.

C Generic e*Way Extension Kit Developer’s Guide 34

Chapter 3 Section 3.5
Extending the .def File Configuration Parameters and the Configuration Files
Section: General Settings

#
General Settings|Journal File Name|value=|set=
General Settings|Max Resends Per Message|value=5|set=5|range=1,1024
General Settings|Max Failed Messages|value=3|set=3|range=1,1024
General Settings|Forward External Errors|value=NO|set=NO,YES

.sc File

This example is excerpted from the “General Settings” section of a .sc file that is
generated by the default stcewgenericcdll.def file. Notice the amount of additional
information as compared to the .cfg file example of the same section above.

; ---
; Section: "General Settings"
; ---
(section
 (name "General Settings")
 (string-set
 (name "Journal File Name")
 (value "")
 (config-default "")
 (set
 (value (""))
 (config-default (""))
)
 (description "
 Journal File is used for the following conditions:
 - Journal a message when it exceeds the number of retries.
 - Journal an external error when it's not configured to
 forward to Egate.

 If an absolute path is not specified, the system data
 directory is prepended to the path.
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (int-set
 (name "Max Resends Per Message")
 (value 5)
 (config-default 5)
 (set
 (value (5))
 (config-default (5))
)
 (range
 (value (const 1 const 1024))
 (config-default (1 1024))
)
 (description "Max Resends Per Message:

 This parameter is the maximum number of times the e*Way
 will attempt to resend a message to the extenal after
 receiving an error. When this maximum is reached, the
 message is considered a failed message and is written to
 a journal file.
")
 (user-comment
 (value "")
 (config-default "")
C Generic e*Way Extension Kit Developer’s Guide 35

Chapter 3 Section 3.5
Extending the .def File Configuration Parameters and the Configuration Files
)
)
 (int-set
 (name "Max Failed Messages")
 (value 3)
 (config-default 3)
 (set
 (value (3))
 (config-default (3))
)
 (range
 (value (const 1 const 1024))
 (config-default (1 1024))
)
 (description "Max Failed Messages:

 This parameter is the maximum number of failed messages
 the e*Way will allow. If this many messages fail
 and are journaled, the e*Way will shutdown and exit.
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (string-set
 (name "Forward External Errors")
 (value "NO")
 (config-default "NO")
 (set
 (value const ("NO" "YES"))
 (config-default ("NO" "YES"))
)
 (description "Forward External Errors:

 If this parameter is set to YES then error messages that
 starts with DATAERR received from the external will be
 queued to the configured queue. If this parameter is set
 to NO then error messages will not be forward.
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (description "General Settings:

 This section contains a set of top level parameters:

 o Journal File Name
 o Max Resends Per Message
 o Max Failed Messages
 o Forward External Errors
")
 (user-comment
 (value "")
 (config-default "")
)
)

C Generic e*Way Extension Kit Developer’s Guide 36

Chapter 3 Section 3.6
Extending the .def File Testing and Debugging the .def File
3.6 Testing and Debugging the .def File
Testing the .def file is very straightforward; simply open the file with the e*Way Editor.
If the syntax of all parameters is correct, the e*Way Editor will launch, and you can
confirm that your sections, parameters, ranges, and options are as you intended.

There are two types of errors that you may encounter:

Logical errors: The e*Way Editor will load the .def file and will display no error
message, but the parameters are not defined as desired (for example, default
options are omitted, or a range was not properly defined). These errors are
corrected simply by replacing the undesired values with the desired ones.

Syntax errors: These “mechanical” errors involve missing parentheses, invalid
keywords and similar problems. These errors will cause the e*Way Editor to display
an error message and exit. This section deals primarily with errors of this type.

Note: You may also encounter syntax errors if you try to edit an existing configuration
profile that contains a corrupted .sc file. You should not attempt to modify .sc or .cfg
files outside of the e*Way Editor unless specifically instructed to do so by Oracle
personnel.

The e*Way Editor component that interprets the .def file provides only elementary
error messages when it encounters an error in the .def file. This section discusses the
most common errors you may encounter, and the steps you should take to debug a .def
file under development.

By far, the most common errors are

Missing parentheses. Proper indentation will help you catch most of these, and
some editors have features that find matching parentheses (such as the vi editor’s
SHIFT+% function).

Missing quotation marks. Be sure that characters are delimited by single quotes and
strings/paths by double quotes.

Quotation marks that should be escaped but are not. This usually occurs in the
argument to the (description) keyword; double-check that all quotations within
descriptions use \"escaped\" quotation marks.

Missing parameters. Refer to the examples in this chapter, or to the sample .def file
for the required parameters for each keyword.

Keywords out of order. See “Order of Keywords” on page 18.

Note: Using the templates provided in the sample .def file will help prevent many errors
before they occur; see “Sample .def File” on page 38 for more information.

3.6.1 Common Error Messages
The following section contains common error messages and their most common causes.
Each error message will contain the string L<nnn>, which indicates a line number (for
example, L<124> signifies “line 124”).
C Generic e*Way Extension Kit Developer’s Guide 37

Chapter 3 Section 3.7
Extending the .def File Sample .def File
SCparse : parse error, expecting `LP_keyword-name'
The keyword keyword-name was expected but not found. The keyword could be
missing or out of order, the keyword’s initial parenthesis could be missing, or the
previous keyword could have been terminated prematurely (for example, by an out-of-
place parenthesis or quote-parenthesis combination) or misspelled.

SCparse : parse error, expecting `RIGHT_PAREN'
The right parenthesis is missing, a close-quote is missing, as in (user-comment "), or
there is an extra or unescaped close-quote within a (description) keyword argument.

SCparse : parse error, expecting `LEFT_PAREN'
This error appears under a very wide range of conditions. A keyword could be
misspelled, there could be extraneous or unbalanced quotes or parentheses, a keyword
could be missing a left parenthesis, or extraneous material may have been found
between parameter declarations. Sometimes this error appears in conjunction with
expecting `LP_keyword-name'.

Param-Type<keyword>: Value is not within the allowed range.
An argument to a keyword has exceeded the limits defined by its accompanying
(range) keyword. Change either the (value) argument or the (range) limit.

param-typeTypeSet<keyword> : "n" is not in this Set.
A default value for a parameter has been specified that does not appear within the
default value of the (set) keyword.

SCparse : parse error, expecting `arg-type'
One type of argument was expected, but another has been found (for example, an
integer where as string was expected). Errors expecting LITERAL_STRING are
commonly caused by missing quotation marks. Errors expecting TIME_VAL,
DATE_VAL, or SCHEDULE_VAL can also be due to invalid data (such as a time of
12:00:99), or missing/extra delimiters.

CharVal : "\sequence" is not legal character.
There is an error in an escape sequence.

SCparse : parse error
This “general” error can be caused by a number of problems, such as misspelled
arguments within keywords.

3.7 Sample .def File
A .def file containing commented samples of a wide range of parameter definitions is
available on the e*Gate installation CD-ROM:

/samples/sdk/ewgendllextfile.def

You can use the ewgendllextfle.def file as a template from which you can build your
own extensions to your own .def file. Simply open the file with a text editor, select the
C Generic e*Way Extension Kit Developer’s Guide 38

Chapter 3 Section 3.7
Extending the .def File Sample .def File
desired parameter-definition template, and “copy and paste” the template into your
own .def file, where you can modify it as needed.

To open the sample.def file in the e*Way Editor:

1 Using the Schema Designer, commit the ewgendllextfile.def file to the directory
/configs/stcewgenericdll/ within any desired schema. We recommend that you do
not commit the file to the default schema; rather, use a schema reserved for testing
and development.

2 Create or select an e*Way, and display its properties. Remember that this e*Way
cannot be used to manipulate data; it serves merely as a “placeholder” so you can
open the ewgendllextfile.def file with the e*Way Editor.

3 On the e*Way property sheet’s General tab, under Executable file, click Find.

4 Select stcewgenericdll.exe and click OK.

5 Under Configuration file, click New.

6 From the list of e*Way templates, select ewgendllextfile.

When the e*Way Editor launches, you will see several sections of sample parameters
(for example, “Single integer with modifiable lower limit,” “Single integer with
modifiable upper limit,” and so on), as shown in Figure 8.

Figure 8 The ewgendllextfile.def file in the e*Way Editor

After identifying the parameter you wish to copy, open sample.def in a text editor and
search for the parameter name. Then, simply copy the parameter and change the
sample values to the values you wish to use, as shown in Figure 9.
C Generic e*Way Extension Kit Developer’s Guide 39

Chapter 3 Section 3.8
Extending the .def File Accessing Configuration Parameters Within the APIs
Figure 9 The ewgendllextfile.def file in Wordpad

3.8 Accessing Configuration Parameters Within the APIs
TheC Generic e*Way automatically loads configuration parameters stored in the .cfg
file into variables within the APIs.

3.8.1 Variable-name Format
Variables are named using the format

SECTION-NAME_PARAM-NAME

where SECTION-NAME is the name of the section and PARAM-NAME is the name of
the parameter. The value of the parameter is stored as the value of the variable.

Variable names are in all upper case, and are case-sensitive. The section and parameter
names are separated by an underscore, and any spaces contained within section or
parameter names are also converted into underscores.

Examples

The value of the parameter named “Password” within the section “Authentication”
would be stored in the variable “AUTHENTICATION_PASSWORD” (all upper case).

Copy the code
between the
comments

Change
the values
as desired
C Generic e*Way Extension Kit Developer’s Guide 40

Chapter 3 Section 3.8
Extending the .def File Accessing Configuration Parameters Within the APIs
The value of the parameter named “Gateway ID” within the section “Connection
Parameters” would be stored in the variable
“CONNECTION_PARAMETERS_GATEWAY_ID”.

3.8.2 Getting Variable Values
Variable values are read using the helper function
GenericEWayHelperGetConfigVariable. The GenericEWayHelperGetConfigVariable
retrieves the configuration parameters that the e*Way extracted form the corresponding
configuration file.

Examples

DWORD cb;
char szFile[MAX_PATH];

cb = MAX_PATH;
if (!(GenericEWayHelperGetConfigVariable(hExt,

"File Settings",
"To eGate File Name",
&cb,
szFile,
0,
NULL)))

{
TRACE_0(TRACE_CONFIGURATION, TRACE_EVENT_FATAL,

"unable to get setting: File Settings - To eGate File Name");

goto ParamError;
}
...

See GenericEWayHelperGetConfigVariable on page 75 for more information.
C Generic e*Way Extension Kit Developer’s Guide 41

Chapter 4

Configuration

This chapter describes how to configure the C Generic e*Way.

4.1 e*Way Configuration Parameters
e*Way configuration parameters are set using the e*Way Editor.

To change e*Way configuration parameters:

1 In the Schema Designer’s Component editor, select the e*Way you want to
configure and display its properties.

2 Under Configuration File, click New to create a new file, Find to select an existing
configuration file, or Edit to edit the currently selected file.

3 In the Additional Command Line Arguments box, type any additional command
line arguments that the e*Way may require, taking care to insert them at the end of
the existing command-line string. Be careful not to change any of the default
arguments unless you have a specific need to do so.

For more information about how to use the e*Way Editor, see the e*Way Editor’s online
Help or the e*Gate Integrator User’s Guide.

The e*Way’s configuration parameters are organized into the following sections:

General settings

Communication Setup

DLL Configuration

4.1.1 General Settings
The General Settings control basic operational parameters.

Journal File Name

Description

Specifies the name of the journal file.
C Generic e*Way Extension Kit Developer’s Guide 42

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Required Values

A valid filename, optionally including an absolute path (for example,
c:\temp\filename.txt). If an absolute path is not specified, the file will be stored in the
e*Gate “SystemData” directory. See the e*Gate Integrator System Administration and
Operations Guide for more information about file locations.

Additional Information

An Event will be journaled for the following conditions:

When the number of resends is exceeded (see Max Resends Per Message below)

When its receipt is due to an external error, but Forward External Errors is set to No.
(See “Forward External Errors” on page 43 for more information.)

Max Resends Per Message

Description

Specifies the number of times the e*Way will attempt to resend a message (Event) to the
external system after receiving an error. When this maximum is reached, the message is
considered “Failed” and is written to the journal file.

Required Values

An integer between 1 and 1,024. The default is 5.

Max Failed Messages

Description

Specifies the maximum number of failed messages (Events) that the e*Way will allow.
When the specified number of failed messages is reached, the e*Way will shut down
and exit.

Required Values

An integer between 1 and 1,024. The default is 3.

Forward External Errors

Description

Selects whether error messages that begin with the string
“GEW_FAILURE_DATAERR” that are received from the external system will be
queued to the e*Way’s configured queue. See “Exchange Data with External Function”
on page 55 for more information.

Required Values

Yes or No. The default value, No, specifies that error messages will not be forwarded.

See “Schedule-driven Data Exchange Functions” on page 50 for information about
how the e*Way uses this function.
C Generic e*Way Extension Kit Developer’s Guide 43

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
4.1.2 Communication Setup
The Communication Setup parameters control the schedule by which the e*Way
obtains data from the external system.

Note: The schedule you set using the e*Way’s properties in the Schema Designer controls
when the e*Way executable will run. The schedule you set within the parameters
discussed in this section (using the e*Way Editor) determines when data will be
exchanged. Be sure you set the "exchange data" schedule to fall within the "run the
executable" schedule.

Exchange Data Interval

Description

Specifies the number of seconds the e*Way waits between calls to the Exchange Data
with External function during scheduled data exchanges.

Required Values

An integer between 0 and 86,400. The default is 120.

Additional Information

If Zero Wait Between Successful Exchanges is set to Yes and the Exchange Data with
External Function returns data, The Exchange Data Interval setting will be ignored
and the e*Way will invoke the Exchange Data with External Function immediately.

If this parameter is set to zero, there will be no exchange data schedule set and the
Exchange Data with External Function will never be called.

See “Down Timeout” on page 45 and “Stop Exchange Data Schedule” on page 45 for
more information about the data-exchange schedule.

Zero Wait Between Successful Exchanges

Description

Selects whether to initiate data exchange after the Exchange Data Interval or
immediately after a successful previous exchange.

Required Values

Yes or No. If this parameter is set to Yes, the e*Way will immediately invoke the
Exchange Data with External function if the previous exchange function returned data.
If this parameter is set to No, the e*Way will always wait the number of seconds
specified by Exchange Data Interval between invocations of the Exchange Data with
External function. The default is No.

See “Exchange Data with External Function” on page 55 for more information.

Start Exchange Data Schedule

Description

Establishes the schedule to invoke the e*Way’s Exchange Data with External function.
C Generic e*Way Extension Kit Developer’s Guide 44

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Required Values

One of the following:

One or more specific dates/times

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Also required: If you set a schedule using this parameter, you must also define both of
the following:

Exchange Data With External Function

Acknowledgment Function

If you do not do so, the e*Way will terminate execution when the schedule attempts to
start.

Additional Information

When the schedule starts, the e*Way determines whether it is waiting to send an
acknowledgment to the external system (using the Acknowledgment function) and
whether the connection to the external system is active. If no acknowledgment is
pending and the connection is active, the e*Way immediately executes the Exchange
Data with External function. Thereafter, the Exchange Data with External function will
be called according to the Exchange Data Interval parameter until the Stop Exchange
Data Schedule time is reached.

See “Exchange Data with External Function” on page 55, “Exchange Data Interval”
on page 44, and “Stop Exchange Data Schedule” on page 45 for more information.

Stop Exchange Data Schedule

Description

Establishes the schedule to stop data exchange.

Required Values

One of the following:

One or more specific dates/times

A single repeating interval (such as yearly, weekly, monthly, daily, or every n
seconds).

Down Timeout

Description

Specifies the number of seconds that the e*Way will wait between calls to the External
Connection Establishment function. See “External Connection Establishment
Function” on page 56 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.
C Generic e*Way Extension Kit Developer’s Guide 45

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Up Timeout

Description

Specifies the number of seconds the e*Way will wait between calls to the External
Connection Verification function. See “External Connection Verification Function”
on page 56 for more information.

Required Values

An integer between 1 and 86,400. The default is 15.

Resend Timeout

Description

Specifies the number of seconds the e*Way will wait between attempts to resend a
message (Event) to the external system, after receiving an error message from the
external system.

Required Values

An integer between 1 and 86,400. The default is 10.

4.1.3 DLL Configuration
The parameters in this section help you set up the information required by the e*Way to
utilize client side DLL for communication with the external system.

Conceptually, an e*Way is divided into two halves. One half (shown on the left in
Figure 10) handles communication with the external system; the other half manages the
Collaborations that process data and subscribe or publish to other e*Gate components.

Figure 10 e*Way Internal Architecture

Communication
with external
system

Business logic and
communication
within e*Gate

External
system

Other e*Gate
components

e*Gate Events

Datae*Way

Collaboration

Collaboration

Function

Function
C Generic e*Way Extension Kit Developer’s Guide 46

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
The “communications half” of the e*Way uses the DLL functions to start and stop
scheduled operations, exchange data with the external system, package data as e*Gate
“Events” and send those Events to Collaborations, and manage the connection between
the e*Way and the external system. The DLL Configuration options discussed in this
section control the environment and define the functions used to perform these basic
e*Way operations. You can create and modify these functions using the Collaboration
Rules Editor or a text editor (such as notepad, or UNIX vi).

The “communications half” of the e*Way is single-threaded. Functions run serially, and
only one function can be executed at a time. The “business logic” side of the e*Way is
multi-threaded, with one executable thread for each Collaboration. Each thread
maintains its own environment; therefore, information such as variables, functions,
path information, and so on cannot be shared between threads.

Operational Details

The functions in the “communications half” of the e*Way fall into the following groups:

A series of figures on the next several pages illustrate the interaction and operation of
these functions.

Type of Operation Name

Initialization Startup Function on page 54

Connection External Connection Establishment
Function on page 56
External Connection Verification
Function on page 56
External Connection Shutdown
Function on page 56

Schedule-driven data
exchange

Exchange Data with External
Function on page 55
Acknowledgment Function on
page 57
Negative Acknowledgment Function
on page 32

Shutdown Shutdown Command Notification
Function on page 57

Event-driven data
exchange

Process Outgoing Message Function
on page 54
C Generic e*Way Extension Kit Developer’s Guide 47

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Initialization Functions

Figure 11 illustrates how the e*Way executes its initialization functions.

Figure 11 Initialization Functions

Start e*Way

Load
"DLL"

Call Init Function

Call Startup function
C Generic e*Way Extension Kit Developer’s Guide 48

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Connection Functions

Figure 12 illustrates how the e*Way executes the connection establishment and
verification functions.

Figure 12 Connection establishment and verification functions

Note: The e*Way selects the connection function based on an internal “up/down” flag
rather than a poll to the external system. See Figure 14 on page 51 and Figure 16
on page 53 for examples of how different functions use this flag.

Figure 13 illustrates how the e*Way executes its “connection shutdown” function.

Connect e*Way to
external system

Internal
flag shows connection

active?

Wait for "Up Timeout"
schedule

Call External Connection
Verification function

Wait for "Down Timeout"
schedule

Call External Connection
Establishment function

Yes

No
C Generic e*Way Extension Kit Developer’s Guide 49

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Figure 13 Connection shutdown function

Schedule-driven Data Exchange Functions

Figure 14 on page 51 (on the next page) illustrates how the e*Way performs schedule-
driven data exchange using the Exchange Data with External Function. The Positive
Acknowledgement Function and Negative Acknowledgement Function are also
called during this process.

“Start” can occur in any of the following ways:

The “Start Data Exchange” time occurs

Periodically during data-exchange schedule (after “Start Data Exchange” time, but
before “Stop Data Exchange” time), as set by the Exchange Data Interval

The start-schedule function is called

After the function exits, the e*Way waits for the next “start schedule” time or command.

Control Broker issues
"Shutdown" command

Call External Connection Shutdown
function

e*Way closes connection

TRUE or FALSE
C Generic e*Way Extension Kit Developer’s Guide 50

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Figure 14 Schedule-driven data exchange functions

Shutdown Functions

Figure 15 on page 52 illustrates how the e*Way implements the shutdown request
function.

Increment "Failed
Message" counter

DATAERR plus
additional data GEW_SUCCESSData

(other than error
strings)

Forward external
errors?No

Yes

Set interval flag
"Connection Down"

GEW_FAILURE_CONNERR

Increment "Failed
Message" counter

DATAERR only

Journal
enabled?

Create journal entry

Yes

No

Start

Function exits

Send Event to
e*Gate

All
subscribing

Collaborations return
TRUE

?

Call Positive
Acknowledgment

function

Zero
wait after successful

exchange?

Call Negative
Acknowledgment

function

Yes

No

YesNo

Call Exchange Data with
External function

Return
C Generic e*Way Extension Kit Developer’s Guide 51

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Figure 15 Shutdown functions

Event-driven Data Exchange Functions

Figure 16 on the next page illustrates event-driven data-exchange using the Process
Outgoing Message Function.

Every two minutes, the e*Way checks the “Failed Message” counter against the value
specified by the Max Failed Messages parameter. When the “Failed Message” counter
exceeds the specified maximum value, the e*Way logs an error and shuts down.

After the function exits, the e*Way waits for the next outgoing Event.

Control Broker issues
"Shutdown" command

Call Shutdown Notification function

e*Way shuts down

Wait for
shutdown-request

function

Return

TRUE FALSE
C Generic e*Way Extension Kit Developer’s Guide 52

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Figure 16 Event-driven data-exchange functions

Note: For an example implementation of the DLL Configuration settings, see “Example
of DLL Configuration Section Settings” on page 58.

Dynamic Load Library File

Description

Specifies the DLL that will implement the configured functions within this section.

Required Values

A pathname, or a series of paths separated by semicolons. This parameter is optional
and may be left blank.

Collaboration publishes
to <EXTERNAL>

Call Process Outgoing
Message function

Set internal flag
"Connection

Down"

Maximum
Resends per Message

exceeded?

Yes

Return

GEW_FAILURE_CONNERR GEW_FAILURE_DATAERR

Increment "Failed
Message" counter

Create journal
entry

GEW_SUCCESS

No
Journal

enabled?

No

Function exits

Wait for Resend
Timeout period

Roll back Event to
its publishing IQ

Yes

Wait for Resend
Timeout period

Increment
"Resend" counter

GEW_FAILUE_RESEND
C Generic e*Way Extension Kit Developer’s Guide 53

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Additional information

The default load paths are determined by the “bin” and “Shared Data” settings in the
.egate.store file. See the e*Gate Integrator System Administration and Operations Guide for
more information about this file.

Startup Function

Description

Specifies a function that the e*Way will load and invoke upon startup or whenever the
e*Way’s configuration is reloaded. This function should be used to initialize the
external system before data exchange starts.

Required Values

The name of a function, or the name of a file (optionally including path information)
containing a function. This parameter is optional and may be left blank.

Additional information

The function accepts no input, and must return a string.

The string “FALSE” indicates that the function failed; “TRUE” indicates success.

This function will be called after the e*Way loads the specified “Environment
Initialization file” and any files within the specified Auxiliary Directories.

Process Outgoing Message Function

Description

Specifies the function responsible for sending outgoing messages (Events) from the
e*Way to the external system. This function is event-driven (unlike the Exchange Data
with External Function, which is schedule-driven).

Required Values

The name of a function, or the name of a file (optionally including path information)
containing a function. You may not leave this field blank.

Additional Information

The function requires a non-null string as input (the outgoing Event to be sent) and
must return a string.

The e*Way invokes this function when one of its Collaborations publishes an Event to
an <EXTERNAL> destination (as specified within the Schema Designer). The function
returns one of the following (see Figure 16 on page 53 for more details):

TRUE + GEW_SUCCESS: Indicates that the Event was published successfully to the
external system.

FALSE + GEW_FAILURE_RESEND: Indicates that the Event should be resent.

FALSE + GEW_FAILURE_CONNERR: Indicates that there is a problem
communicating with the external system.
C Generic e*Way Extension Kit Developer’s Guide 54

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
FALSE + GEW_FAILURE_DATAERR: Indicates that there is a problem with the
message (Event) data itself.

If a string other than the above mentioned is returned, the e*Way will create an
entry in the log file indicating that an attempt has been made to access an
unsupported function.

Note: If you wish to use event-send-to-egate to enqueue failed Events in a separate IQ,
the e*Way must have an inbound Collaboration (with appropriate IQs) configured
to process those Events. See event-send-to-egate on page 41 for more
information.

Exchange Data with External Function

Description

Specifies a function that initiates the transmission of data from the external system to
the e*Gate system and forwards that data as an inbound Event to one or more e*Gate
Collaborations. This function is called according to a schedule (unlike the Process
Outgoing Message Function, which is event-driven).

Required Values

The name of a function, or the name of a file (optionally including path information)
containing a function. This parameter is optional and may be left blank.

Additional Information

The function accepts no input and must return a string (see Figure 14 on page 51 for
more details):

TRUE + GEW_SUCCESS: Indicates that the Event was published successfully to the
external system.

FALSE + GEW_FAILURE_RESEND: Indicates that the Event should be resent.

FALSE + GEW_FAILURE_CONNERR: Indicates that there is a problem
communicating with the external system.

FALSE + GEW_FAILURE_DATAERR: Indicates that there is a problem with the
message (Event) data itself.

Any other string: The contents of the string are packaged as an inbound Event. The
e*Way must have at least one Collaboration configured suitably to process the
inbound Event, as well as any required IQs.

This function is initially triggered by the Start Data Exchange schedule or manually by
the function start-schedule. After the function has returned true and the data received
by this function has been acknowledged (by the Acknowledgment Function), the
e*Way checks the Zero Wait Between Successful Exchanges parameter. If this
parameter is set to Yes, the e*Way will immediately call the Exchange Data with
External function again; otherwise, the e*Way will not call the function until the next
scheduled “start exchange” time.
C Generic e*Way Extension Kit Developer’s Guide 55

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
External Connection Establishment Function

Description

Specifies a function that the e*Way will call when it has determined that the connection
to the external system is down.

Required Values

The name of a function, or the name of a file (optionally including path information)
containing a function. This field cannot be left blank.

Additional Information

The function accepts no input and must return a string:

“TRUE” : Indicates that the connection was established successfully.

“FALSE”: Indicates that the attempt to establish the connection failed.

This function is executed according to the interval specified within the Down Timeout
parameter, and is only called according to this schedule.

The External Connection Verification function (see below) is called when the e*Way
has determined that its connection to the external system is up.

External Connection Verification Function

Description

Specifies a function that the e*Way will call when its internal variables show that the
connection to the external system is up.

Required Values

The name of a function. This function is optional; if no External Connection
Verification function is specified, the e*Way will execute the External Connection
Establishment function in its place.

Additional Information

The function accepts no input and must return a string:

“TRUE”: Indicates that the connection was established successfully.

“FALSE”: Indicates that the attempt to establish the connection failed.

This function is executed according to the interval specified within the Up Timeout
parameter, and is only called according to this schedule.

The External Connection Establishment function (see above) is called when the e*Way
has determined that its connection to the external system is down.

External Connection Shutdown Function

Description

Specifies a function that the e*Way will call to shut down the connection to the external
system.
C Generic e*Way Extension Kit Developer’s Guide 56

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
Required Values

The name of a function, or the name of a file (optionally including path information)
containing a function. This parameter is optional.

Acknowledgment Function

Description

Specifies a function that the e*Way will call when the external Event has been
processed.

Required Values

The name of a function, or the name of a file (optionally including path information)
containing a function. This parameter is required if the Exchange Data with External
function is defined.

Additional Information

The function requires a non-null string as input (the Event to be sent to the external
system) and must return a string:

TRUE: The function completed execution successfully.

FALSE : Indicates a problem with the connection to the external system. When the
connection is re-established, the Acknowledgment function will be called again,
with the same input data.

After the Exchange Data with External function returns a string that is transformed
into an inbound Event, the Event is handed off to one or more Collaborations for
further processing. If the Event’s processing is completed successfully by all the
Collaborations to which it was sent, the e*Way executes the Positive Acknowledgment
function (otherwise, the e*Way executes the Negative Acknowledgment function).

Shutdown Command Notification Function

Description

Specifies a function that will be called when the e*Way receives a “shut down”
command from the Control Broker. This parameter is optional.

Required Values

The name of a function, or the name of a file (optionally including path information)
containing a function.

Additional Information

The function accepts a string as input and must return a string:

TRUE: Indicates that the shutdown can occur immediately.

If there are no external configuration requirements, do not omit this section; instead,
insert the following paragraph:

There are no configuration changes required in the external system. All necessary
configuration changes can be made within e*Gate.
C Generic e*Way Extension Kit Developer’s Guide 57

Chapter 4 Section 4.1
Configuration e*Way Configuration Parameters
4.1.4 Example of DLL Configuration Section Settings
The following is an example implementation of the DLL Configuration settings:

--
Section:DLL Configuration
--
#
DLL Configuration|Dynamic Load Library File|value=/export/home/devgate/egate/client/bin/
jcw_File.dll|set=/export/home/devgate/egate/client/bin/jcw_File.dll
DLL Configuration|Startup Function|value=FileExt_Startup|set=FileExt_Startup
DLL Configuration|Process Outgoing Message
Function|value=FileExt_SendExternalEvent|set=FileExt_SendExternalEvent
DLL Configuration|Exchange Data With External
Function|value=FileExt_GetExternalEvent|set=FileExt_GetExternalEvent
DLL Configuration|External Connection Establishment
Function|value=FileExt_ConnExtablish|set=FileExt_ConnExtablish
DLL Configuration|External Connection Verification
Function|value=FileExt_ConnVerify|set=FileExt_ConnVerify
DLL Configuration|External Connection Shutdown Function|value=FileExt_Shutdown|set=FileExt_Shutdown
DLL Configuration|Acknowledgment
Function|value=FileExt_EventAckknowledegment|set=FileExt_EventAckknowledegment
DLL Configuration|Shutdown Command Notification
Function|value=FileExt_ConnShutdown|set=FileExt_ConnShutdown
C Generic e*Way Extension Kit Developer’s Guide 58

Chapter 5

External Interface

This chapter provides the entire C Generic e*Way header file and describes how the
header file is used with the external interface object. The overview discusses important
concepts and conventions and subsequent sections discuss each type definition in
detail.

5.1 Overview
The C Generic e*Way allows you to create a dynamic-link library (DLL) (for Windows
2000), or a shared library (for UNIX), that contains an external interface object. This
object holds the types and methods that can be passed between the external application
and the C Generic e*Way.

It is important to understand that the C Generic e*Way expects the functions written in
your DLL or shared library to be C exports. If you write your DLL or shared library in
C++, you MUST declare all functions as extern “C”. If you do not export the functions
as extern “C”, the compiler will mangle the function names and the e*Way will not be
able to find your function. Exporting the functions as extern “C” prevents this name
mangling.

Note: For Windows users only: if your functions are written in C and you are using the
.cxx extension, all of your functions must be wrapped as extern “C”.

It is also important to adhere to certain calling conventions depending on the platform
where you are creating your extension. As an example, see APIDEF in the function
pointer prototypes in the “C Generic e*Way Header File”. Using APIDEF as an
example, Win32 would expect your functions to be exported with the WINAPI calling
convention. However, in UNIX this would be defined as white space.

5.2 C Generic e*Way Header File
The external interface object defines a structure that contains a location where the user
can place data for the object as well as functions that implement the interface. The
functions are defined in the section “Method Prototypes” on page 68.

#ifndef EWGENERICDLLFUNCS_H
#define EWGENERICDLLFUNCS_H
C Generic e*Way Extension Kit Developer’s Guide 59

Chapter 5 Section 5.2
External Interface C Generic e*Way Header File
#ifdef __cplusplus
extern "C"
{
#endif

typedef void *HGENEWAYDLL;

typedef enum
{
 GEW_SUCCESS = 0,
 GEW_FAILURE_CONNERR = 1,
 GEW_FAILURE_DATAERR = 2,
 GEW_FAILURE_RESEND = 3

} eGEWState_;

//---
// PFNEWGENDLL_STARTUP
// ---
//
// Purpose:
//
// initializes the external dll.
//
// ---
//
// Parameters:
//
// hExt: state handle. this is the handle to be used with the //
"AddUserData" and "GetUserData" helper function.
//
// dwFlags:
// bit flags. Reserved for future use.
//
// pvReserved:
// this param is reserved for future use.
//
// return: TRUE if the open was successful, FALSE if an error
// occurred.
//
//---

typedef
BOOL
(APIEXP *PFNEWGENDLL_STARTUP)(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

//---
// PFNEWGENDLL_SHUTDOWN
// ---
//
// Purpose:
//
// called just before the e*Way shuts down.
//
// ---
//
// Parameters:
//
C Generic e*Way Extension Kit Developer’s Guide 60

Chapter 5 Section 5.2
External Interface C Generic e*Way Header File
// hExt: state handle. any user data that has been associated
// with it must be freed at this time.
//
// dwFlags:
// bit flags. Reserved for future use.
//
// pvReserved:
// this param is reserved for future use.
//
// return: TRUE if the open was successful, FALSE if an error
// occured.
//
//---

typedef
BOOL
(APIEXP *PFNEWGENDLL_SHUTDOWN)(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

//---
// PFNEWGENDLL_CONNECTIONESTABLISH
// ---
//
// Purpose:
//
// this entry point is called when the e*Way comes up and if
// the e*Way's state is "down".
//
// if the return is FALSE, the e*Way's state becomes "down",
// if TRUE, it becomes "up".
//
// ---
//
// Parameters:
//
// hExt: state handle.
//
// dwFlags:
// bit flags. Reserved for future use.
//
// pvReserved:
// this param is reserved for future use.
//
// return: TRUE if the open was successful, FALSE if an error
// occured.
//
//---

typedef
BOOL
(APIEXP *PFNEWGENDLL_CONNECTIONESTABLISH)(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

//---
// PFNEWGENDLL_CONNECTIONVERIFY
// ---
//
// Purpose:
//
// this entry point is called on the schedule and when the
// e*Way's state is "up".
//
C Generic e*Way Extension Kit Developer’s Guide 61

Chapter 5 Section 5.2
External Interface C Generic e*Way Header File
// if the return is FALSE, the e*Way's state becomes "down",
// if TRUE, it becomes "up".
//
// ---
//
// Parameters:
//
// hExt: state handle.
//
// dwFlags:
// bit flags. Reserved for future use.
//
// pvReserved:
// this param is reserved for future use.
//
// return: TRUE if the open was successful, FALSE if an error
// occured.
//
//---

typedef
BOOL
(APIEXP *PFNEWGENDLL_CONNECTIONVERIFY)(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

//---
// PFNEWGENDLL_CONNECTIONSHUTDOWN
// ---
//
// Purpose:
//
// this entry point is called when the e*Way needs to shutdown
// all external connections.
//
// ---
//
// Parameters:
//
// hExt: state handle.
//
// dwFlags:
// bit flags. Reserved for future use.
//
// pvReserved:
// this param is reserved for future use.
//
// return: TRUE if the open was successful, FALSE if an error
// occured.
//
//---

typedef
BOOL
(APIEXP *PFNEWGENDLL_CONNECTIONSHUTDOWN)(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

//---
// PFNEWGENDLL_PROCESSOUTGOINGEVENT
// ---
//
// Purpose:
C Generic e*Way Extension Kit Developer’s Guide 62

Chapter 5 Section 5.2
External Interface C Generic e*Way Header File
//
// this entry point is called when an event comes from e*Gate
// destined for the external system.
//
// ---
//
// Parameters:
//
// hExt: state handle.
//
// pcEvent:
// read-only pointer to the event data.
//
// peState:
// status enumeration returned to the e*Way to indicate a
// state change.
//
// dwFlags:
// bit flags. Reserved for future use.
//
// pvReserved:
// this param is reserved for future use.
//
// return: TRUE if the open was successful, FALSE if an error
// occured.
//
//---

typedef
BOOL
(APIEXP *PFNEWGENDLL_PROCESSOUTGOINGEVENT)(IN HGENEWAYDLL hExt,
 IN PCSTC_BLOB pcEvent,
 OUT eGEWState_ *peState,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

//---
// PFNEWGENDLL_GETEXTERNALEVENT
// ---
//
// Purpose:
//
// this entry point is called on one of the e*Way's exchange
// data schedules to "poll" the external for data to send to
// e*Gate.
//
// ---
//
// Parameters:
//
// hExt: state handle.
//
// pEvent:
// an initialized STC_BLOB structure is passed in and if
// there is external data available, the callee should
// allocate the data member of this structure and fill
// in the size for the return. the ACK or NAK entry point
// will get called with the same pEvent, at this point,
// the data can be freed.
//
// peState:
// status enumeration returned to the e*Way to indicate a
// state change.
C Generic e*Way Extension Kit Developer’s Guide 63

Chapter 5 Section 5.2
External Interface C Generic e*Way Header File
//
// dwFlags:
// bit flags. Reserved for future use.
//
// pvReserved:
// this param is reserved for future use.
//
// return: TRUE if the open was successful, FALSE if an error
// occured.
//
//---

typedef
BOOL
(APIEXP *PFNEWGENDLL_GETEXTERNALEVENT)(IN HGENEWAYDLL hExt,
 OUT STC_BLOB *pEvent,
 OUT eGEWState_ *peState,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

//---
// PFNEWGENDLL_EXTERNALEVENTACKNOWLEDGEMENT
// ---
//
// Purpose:
//
// this entry point is called when the external event has been
// processed by e*Gate. The "fSuccess" parameter indicates
// whether e*Gate processing was successful or not - FALSE
// indicating "not".
//
// ---
//
// Parameters:
//
// hExt: state handle.
//
// fSuccess:
// TRUE if the external event was successfully processed
// by e*Gate, FALSE if an error occurred.
//
// pEvent:
// an STC_BLOB structure whose members were previously
// filled in by the GetExternalEvent method. It is this
// entry point's responsibility to free any memory that
// was allocated for the event during the
// GetExternalEvent call.
//
// pcExtraCollabReturnData:
// an OPTIONAL read-only pointer to an STC_BLOB structure
// that contains any return structure from the collaboration.
// Do not try to free this data!
//
// peState:
// status enumeration returned to the e*Way to indicate a
// state change.
//
// dwFlags:
// bit flags. Reserved for future use.
//
// pvReserved:
// this param is reserved for future use.
//
C Generic e*Way Extension Kit Developer’s Guide 64

Chapter 5 Section 5.2
External Interface C Generic e*Way Header File
// return: TRUE if the open was successful, FALSE if an error
// occurred.
//
//---

typedef
BOOL
(APIEXP *PFNEWGENDLL_EXTERNALEVENTACKNOWLEDGEMENT)

(IN HGENEWAYDLL hExt,
 IN BOOL fSuccess,
 IN STC_BLOB *pEvent,
 IN PCSTC_BLOB pcExtraCollabReturnData,
 OUT eGEWState_ *peState,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

//
// the following helper functions are exposed from
// stc_stcapis.lib/dll
//

//---
// GenericEWayHelperSetUserData
// ---
//
// Purpose:
//
// the extension dll should call this function in thier init
// function to add a reference to thier data to the
// HGENEWAYDLL handle.
//
// Use the GetUserData function to retrieve it. There is only
// one "slot" for user data.
//
// On the shutdown function, the dll should call the
// GetUserData and free the contents.
//
// ---
//
// Parameters:
//
// hExt: state handle.
//
// cbData: number of bytes pointed to by pbData.
//
// pvData: pointer to the data to be stored in hExt. This memory
// is set by reference only and is not duplicated in hExt.
//
// dwFlags:
// bit flags. Reserved for future use.
//
// pvReserved:
// this param is reserved for future use.
//
// return: TRUE if successful, FALSE if an error occured.
//
//---

extern
DLLEXP
BOOL
APIDEF
C Generic e*Way Extension Kit Developer’s Guide 65

Chapter 5 Section 5.2
External Interface C Generic e*Way Header File
GenericEWayHelperSetUserData(IN HGENEWAYDLL hExt,
 IN DWORD cbData,
 IN void *pvData,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

//---
// GenericEWayHelperGetUserData
// ---
//
// Purpose:
//
// the extension dll should call this function to access
// previously stored application data. this is done by using
// the AddUserData function.
//
// the address returned is the same memory address that was
// originally stored with the AddUserData function. in other
// words, freeing this pointer will free the originally
// allocated memory.
//
// ---
//
// Parameters:
//
// hExt: state handle.
//
// pcbData:
// number of bytes pointed to by ppbData.
//
// ppvData:
// pointer to a pointer to the data originally stored in
// hExt.
//
// dwFlags:
// bit flags. Reserved for future use.
//
// pvReserved:
// this param is reserved for future use.
//
// return: TRUE if successful, FALSE if an error occurred.
//
//---

extern
DLLEXP
BOOL
APIDEF
GenericEWayHelperGetUserData(IN HGENEWAYDLL hExt,
 OUT DWORD *pcbData,
 OUT void **ppvData,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

//---
// GenericEWayHelperGetConfigVariable
// ---
//
// Purpose:
//
C Generic e*Way Extension Kit Developer’s Guide 66

Chapter 5 Section 5.2
External Interface C Generic e*Way Header File
// to allow the extension DLL to retrieve configuration
// parameter that the e*Way extracted from its configuration
// file.
//
// ---
//
// Parameters:
//
// hExt: state handle.
//
// pcszSectionName:
// configuration section name.
//
// pcszItemName:
// configuration item name
//
// pcbReturnValue:
// size in bytes of the string returned. [IN] should be //
set to the maximum length that can be returned in pszValue.
//
// pszReturnValue:
// optional buffer to recieve the value string. if this
// parameter is NULL or is not large enough to hold the value,
// this function will return FALSE and the GETLASTERROR()
// will be set to GENERROR_INSUFFICIENT_DATA
//
// dwFlags:
// bit flags. Reserved for future use.
//
// pvReserved:
// this param is reserved for future use.
//
// return: TRUE if successful, FALSE if an error occured.
//
//---

extern
DLLEXP
BOOL
APIDEF
GenericEWayHelperGetConfigVariable(IN HGENEWAYDLL hExt,
 IN const char *pcszSectionName,
 IN const char *pcszItemName,
 IN OUT DWORD *pcbReturnValue,
 IN OUT OPTIONAL char *pszReturnValue,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

#ifdef __cplusplus
}
#endif

#endif // EWGENERICDLLFUNCS_H

5.2.1 Type Definitions List
eGEWState_

Structure

typedef enum
C Generic e*Way Extension Kit Developer’s Guide 67

Chapter 5 Section 5.3
External Interface Method Prototypes
{
 GEW_SUCCESS = 0,
 GEW_FAILURE_CONNERR = 1,
 GEW_FAILURE_DATAERR = 2,
 GEW_FAILURE_RESEND = 3

} eGEWState_;

Description

These are the types of return values for state queries.

5.3 Method Prototypes
The file ewgenericdllfuncs.h defines the following function prototypes:

PFNEWGENDLL_STARTUP on page 68

PFNEWGENDLL_SHUTDOWN on page 69

PFNEWGENDLL_CONNECTIONESTABLISH on page 69

PFNEWGENDLL_VERIFY on page 70

PFNEWGENDLL_CONNECTIONSHUTDOWN on page 70

PFNEWGENDLL_PROCESSOUTGOINGEVENT on page 71

PFNEWGENDLL_GETEXTERNALEVENT on page 72

PFNEWGENDLL_EXTERNALEVENTACKNOWLEDGEMENT on page 72

PFNEWGENDLL_STARTUP

Syntax

PFNEWGENDLL_STARTUP (hExt, dwFlags, pvReserved)

Description

PFNEWGENDLL_STARTUP initializes the external dll.

GEW_SUCCESS Success

GEW_FAILURE_CONNERR Connection Error

GEW_FAILURE_DATAERR Data Error

GEW_FAILURE_RESEND Resend
C Generic e*Way Extension Kit Developer’s Guide 68

Chapter 5 Section 5.3
External Interface Method Prototypes
Parameters

Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

PFNEWGENDLL_SHUTDOWN

Syntax

PFNEWGENDLL_SHUTDOWN (hExt, dwFlags, pvReserved)

Description

PFNEWGENDLL_SHUTDOWN is called to request the e*Way shutdown the external
connection.

Parameters

Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

PFNEWGENDLL_CONNECTIONESTABLISH

Syntax

PFNEWGENDLL_CONNECTIONESTABLISH (hExt, dwFlags, pvReserved)

Description

PFNEWGENDLL_CONNECTIONESTABLISH is called when the e*Way state comes
“up” and if the e*Way’s state is “down”. If the return value is FALSE, the e*Way’s state
is defined as “down”, if TRUE, the state is defined as “up”.

Name Type Description

hExt state handle This is the handle to be used with
the “AddUserData” and
“GetUserData” helper functions.

dwFlags DWORD Reserved for future use.

pvReserved void Reserved for future use.

Name Type Description

hExt state handle This is the handle previously
associated with user data, that must
be freed at this time.

dwFlags DWORD Reserved for future use.

pvReserved void Reserved for future use.
C Generic e*Way Extension Kit Developer’s Guide 69

Chapter 5 Section 5.3
External Interface Method Prototypes
Parameters

Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

PFNEWGENDLL_VERIFY

Syntax

PFNEWGENDLL_VERIFY (hExt, dwFlags, pvReserved)

Description

PFNEWGENDLL_VERIFY is called on the schedule and when the e*Way’s state is
“up”. If the return is FALSE, the e*Way’s state is defined as “down”, if TRUE, the state
is defined as“up”.

Parameters

Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

PFNEWGENDLL_CONNECTIONSHUTDOWN

Syntax

PFNEWGENDLL_CONNECTIONSHUTDOWN (hExt, dwFlags, pvReserved)

Description

PFNEWGENDLL_CONNECTIONSHUTDOWN is called by the e*Way to shutdown
all external connections.

Name Type Description

hExt state handle This is the handle to be used with
the SetUserData and GetUserData
helper functions.

dwFlags DWORD Bit flags. Reserved for future use.

pvReserved void Reserved for future use.

Name Type Description

hExt state handle This is the handle to be used with
the SetUserData and GetUserData
helper functions.

dwFlags bit flags Reserved for future use.

pvReserved void Reserved for future use.
C Generic e*Way Extension Kit Developer’s Guide 70

Chapter 5 Section 5.3
External Interface Method Prototypes
Parameters

Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

PFNEWGENDLL_PROCESSOUTGOINGEVENT

Syntax

PFNEWGENDLL_PROCESSOUTGOINGEVENT (hExt, pcEvent, peState, dwFlags,
pvReserved)

Description

PFNEWGENDLL_PROCESSOUTGOINGEVENT is called when an Event is received
from e*Gate, destined for the external system.

Parameters

Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

Name Type Description

hExt state handle This is the handle to be used with
the SetUserData and GetUserData
helper functions.

dwFlags bit flags Reserved for future use.

pvReserved void Reserved for future use.

Name Type Description

hExt state handle This is the handle to be used with
the SetUserData and GetUserData
helper functions.

pcEvent pointer A read-only pointer to the Event
data.

peState integer Status enumeration returned to the
e*Way to indicate a state change.

dwFlags DWORD Bit flags. Reserved for future use.

pvReserved void Reserved for future use.
C Generic e*Way Extension Kit Developer’s Guide 71

Chapter 5 Section 5.3
External Interface Method Prototypes
PFNEWGENDLL_GETEXTERNALEVENT

Syntax

PFNEWGENDLL_GETEXTERNALEVENT (hExt, pEvent, peState, dwFlags,
pvReserved)

Description

PFNEWGENDLL_STARTUP is called by one of the e*Way’s exchange data schedules
when the e*Way “polls” the external for data to send to e*Gate.

Parameters

Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

PFNEWGENDLL_EXTERNALEVENTACKNOWLEDGEMENT

Syntax

PFNEWGENDLL_EXTERNALEVENTACKNOWLEDGEMENT (hExt, fSuccess,
pEvent, pcExtraCollabReturnData, peState, dwFlags, pvReserved)

Description

PFNEWGENDLL_EXTERNALEVENTACKNOWLEDGEMENT is called when the
external Event has been processed by e*Gate. The fSuccess parameter indicates whether
e*Gate processing was successful or not - FALSE indicating “not successful”.

Name Type Description

hExt state handle This is the handle to be used with
the SetUserData and GetUserData
helper functions.

pEvent Blob An initialized STC_BLOB structure is
passed in, if there is external data
available, the callee should allocate
the data member of this structure
and fill in the size for the return. The
ACK or NAK entry point will get
called with the same pEvent. At this
point, the data can be freed.

peState integer Status enumeration returned to the
e*Way to indicate a state change.

dwFlags DWORD Bit flags. Reserved for future use.

pvReserved void Reserved for future use.
C Generic e*Way Extension Kit Developer’s Guide 72

Chapter 5 Section 5.4
External Interface Helper Functions
Parameters

Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

5.4 Helper Functions
The following helper functions are exposed from stc_stcapis.lib/dll:

GenericEWayHelperSetUserData on page 73

GenericEWayHelperGetUserData on page 74

GenericEWayHelperGetConfigVariable on page 75

GenericEWayHelperSetUserData

Syntax

GenericEWayHelperSetUserData (hExt, cbData, pvData, dwFlags, pvReserved)

Name Type Description

hExt state handle This is the handle to be used with
the SetUserData and GetUserData
helper functions.

fSuccess TRUE or FALSE Indicates whether the e*Gate
processed the external Event
successfully.

pEvent BLOB An STC_BLOB structure whose
members were previously filled in
by GetExternalEvent method. This
entry point frees any memory
allocated for the Event during the
GetExternalEvent call.

pcExtraCollabReturnData pointer An optional read-only point to an
STC_BLOB structure that contains
any return structure from the
collaboration. Do not try to free this
data.

peState integer Status enumeration returned to the
e*Way to indicate a state change.

dwFlags bit flags Reserved for future use.

pvReserved void Reserved for future use.
C Generic e*Way Extension Kit Developer’s Guide 73

Chapter 5 Section 5.4
External Interface Helper Functions
Description

GenericEWayHelperSetUserData is called by the extension dll in the corresponding
init function to add a reference to its data to the HGENEWAYDLL handle. Once the
handle has been stored, use the GetUserData function to retrieve it. There is only one
“slot” for user data. In the shutdown function, the dll should call the GetUserData
pointer and free the contents.

Parameters

Return Values

Bool

Returns TRUE if successful; otherwise, returns FALSE.

GenericEWayHelperGetUserData

Syntax

GenericEWayHelperGetUserData (hExt, pcbData, ppvData, dwFlags, pvReserved)

Description

GenericEWayHelperGetUserData is called by the extension dll to access previously
stored application data. The data was stored by using the SetUserData function. The
address returned is the same memory address that was originally allocated memory by
SetUserData.

Parameters

Name Type Description

hExt state handle This is the handle to be used with the
SetUserData and GetUserData helper
functions.

cbData integer The number of bytes pointed to by pbData

pvData pointer A pointer to the data to be stored in hExt.
This memory is set by reference only and is
not duplicated in hExt.

dwFlags DWORD Bit Flags. Reserved for future use.

pvReserved void Reserved for future use.

Name Type Description

hExt state handle This is the handle to be used with
the SetUserData and GetUserData
helper functions.

pcbData integer The number of bytes pointed to by
ppbData

ppvData pointer A pointer to a pointer to the data
originally stored in hExt.
C Generic e*Way Extension Kit Developer’s Guide 74

Chapter 5 Section 5.4
External Interface Helper Functions
Return Values

Bool

Returns TRUE if successful; otherwise, returns FALSE.

GenericEWayHelperGetConfigVariable

Syntax

GenericEWayHelperGetConfigVariable (hExt, pcszSectionName,
pcszItemName, pcbReturnValue,pszReturnValue, dwFlags, pvReserved)

Description

GenericEWayHelperGetConfigVariable allows the extension dll to retrieve the
configuration parameters that the e*Way extracted from the corresponding
configuration file.

Parameters

Return Values

Bool

Returns TRUE if successful; otherwise, returns FALSE.

dwFlags DWORD Bit Flags. Reserved for future use.

pvReserved void Reserved for future use.

Name Type Description

hExt state handle The handle to be used with the SetUserData
and GetUserData helper functions.

pcszSectionName pointer control string
zero delimited.

The configuration section name.

pcszItemName pointer control string
zero delimited

A pointer to a pointer to the data originally
stored in hExt.

pcbReturnValue integer The size in bytes of the string returned. It
should be set to the maximum length that
can be returned in pszValue.

pszReturnValue zero delimited pointer An optional buffer to receive the value
string. If this parameter is NULL or is not
large enough to hold the value, this
functions will return FALSE and the
GETLASTERROR() will be set to
GENERROR_INSUFFICIENT_DATA.

dwFlags DWORD Bit Flags. Reserved for future use.

pvReserved void Reserved for future use.

Name Type Description
C Generic e*Way Extension Kit Developer’s Guide 75

Chapter 5 Section 5.5
External Interface Sample Template Source Code
5.5 Sample Template Source Code
The following sample source code is a template that provides an example of how to use
the C Generic e*Way’s headers, types, methods, and functions to provide access to an
external application.

The header files that are referenced as include files can be copied from the SDK folder
on the root level of the installation CD.

A detailed description of the source code (ewgenericdll) follows the sample.

#ifndef EWGENDLLEXTFILE_H
#define EWGENDLLEXTFILE_H

#include "gendefs.h"
#include "stcapis.h"
#include "ewgenericdllfuncs.h"

#ifdef __cplusplus
extern "C"
{
#endif

typedef struct GENDLLEXT_FILEEXT_DATA_
{
 DWORD cbStruct; // set to
sizeof(GENDLLEXT_FILEEXT_DATA)

 DWORD cRecvEvents;

 char szToEgateFile[MAX_PATH];

 char szFromEgateFile[MAX_PATH];
 FILE *pFromEgateFile;

} GENDLLEXT_FILEEXT_DATA;

extern
DLLEXP
BOOL
APIDEF
FileExt_Startup(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

extern
DLLEXP
BOOL
APIDEF
FileExt_Shutdown(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

extern
DLLEXP
BOOL
APIDEF
FileExt_ConnEstablish(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

extern
C Generic e*Way Extension Kit Developer’s Guide 76

Chapter 5 Section 5.6
External Interface Sample Source Code Description
DLLEXP
BOOL
APIDEF
FileExt_ConnVerify(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

extern
DLLEXP
BOOL
APIDEF
FileExt_ConnShutdown(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

extern
DLLEXP
BOOL
APIDEF
FileExt_SendExternalEvent(IN HGENEWAYDLL hExt,
 IN PCSTC_BLOB pcEvent,
 OUT eGEWState_ *peState,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

extern
DLLEXP
BOOL
APIDEF
FileExt_GetExternalEvent(IN HGENEWAYDLL hExt,
 OUT STC_BLOB *pEvent,
 OUT eGEWState_ *peState,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

extern
DLLEXP
BOOL
APIDEF
FileExt_EventAckknowledgement(IN HGENEWAYDLL hExt,
 IN BOOL fSuccess,
 IN STC_BLOB *pEvent,
 IN PCSTC_BLOB pcExtraCollabReturnData,
 OUT eGEWState_ *peState,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

#ifdef __cplusplus
}
#endif

#endif // EWGENDLLEXTFILE_H

5.6 Sample Source Code Description
This section is a description of the ewgendllext.h Source Code Sample that creates an
application-specific dynamic link library (dll) or shard library (.so) for extending the
e*Way functionality.
C Generic e*Way Extension Kit Developer’s Guide 77

Chapter 5 Section 5.6
External Interface Sample Source Code Description
These are the standard header files needed by this dynamic or shared library:

#include "gendefs.h"
#include "stcapis.h"

This is the header file that defines the structures, parameters, methods and functions
used by this e*Way:

#include "ewgenericdllfuncs.h"

This indicates that this is a C++ header file:

#ifdef __cplusplus
extern "C"
{
#endif

This is the Type Definition GENDLLEXT_FILEEXT_DATA

typedef struct GENDLLEXT_FILEEXT_DATA_
{
 DWORD cbStruct; // set to
sizeof(GENDLLEXT_FILEEXT_DATA)

 DWORD cRecvEvents;

 char szToEgateFile[MAX_PATH];

 char szFromEgateFile[MAX_PATH];
 FILE *pFromEgateFile;

} GENDLLEXT_FILEEXT_DATA;

The following are the external API definitions:

extern
DLLEXP
BOOL
APIDEF
FileExt_Startup(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

extern
DLLEXP
BOOL
APIDEF
FileExt_Shutdown(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

extern
DLLEXP
BOOL
APIDEF
FileExt_ConnEstablish(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

extern
DLLEXP
BOOL
APIDEF
FileExt_ConnVerify(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);
C Generic e*Way Extension Kit Developer’s Guide 78

Chapter 5 Section 5.6
External Interface Sample Source Code Description
extern
DLLEXP
BOOL
APIDEF
FileExt_ConnShutdown(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

extern
DLLEXP
BOOL
APIDEF
FileExt_SendExternalEvent(IN HGENEWAYDLL hExt,
 IN PCSTC_BLOB pcEvent,
 OUT eGEWState_ *peState,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

extern
DLLEXP
BOOL
APIDEF
FileExt_GetExternalEvent(IN HGENEWAYDLL hExt,
 OUT STC_BLOB *pEvent,
 OUT eGEWState_ *peState,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

extern
DLLEXP
BOOL
APIDEF
FileExt_EventAckknowledgement(IN HGENEWAYDLL hExt,
 IN BOOL fSuccess,
 IN STC_BLOB *pEvent,
 IN PCSTC_BLOB pcExtraCollabReturnData,
 OUT eGEWState_ *peState,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);
C Generic e*Way Extension Kit Developer’s Guide 79

Chapter 6

Suggested Method Implementation

This chapter includes information pertinent to implementing the C Generic e*Way.

6.0.1 Considerations
The JCS can not be run from the collaboration rule associated with the e*Way’s
collaboration. It is however, possible to run the JCS from another e*Way (or work slice,
such as a file e*Way) publish to a queue and pass the translated information to the C
Generic e*Way via a queue.

6.1 Sample C APIs
The following sample methods demonstrate the suggested usage for each of the eight
APIs present. Any additional APIs created for the application-specific C Generic e*Way,
should use these samples as templates.

The naming of the methods within the sample use the following naming conventions:

ApplicationName_FunctionName

For the basic functions, it is recommended that the developer maintain the function
name, while editing/adapting the application-specific name. In the sample, FileExt
replaced ApplicationName.

startup.cxx

FileExt_Startup

Syntax

FileExt_Startup (hExt, dwFlags, *pvReserved)

Description

FileExt_Startup initializes the external dll.
C Generic e*Way Extension Kit Developer’s Guide 80

Chapter 6 Section 6.1
Suggested Method Implementation Sample C APIs
Parameters

Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

Name Type Description

hExt state handle The handle to be used
with the SetUserData
and GetUserData helper
functions.

dwFlags DWORD Reserved for future use.

pvReserved void Reserved for future use.
C Generic e*Way Extension Kit Developer’s Guide 81

Chapter 6 Section 6.1
Suggested Method Implementation Sample C APIs
Example

BOOL
APIDEF
FileExt_Startup(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved)
{
 BOOL fRet;
 DWORD cb;
 GENDLLEXT_FILEEXT_DATA *pExtData;

 GNU_USEARG(dwFlags);
 GNU_USEARG(pvReserved);

 pExtData = (GENDLLEXT_FILEEXT_DATA *)malloc(sizeof(GENDLLEXT_FILEEXT_DATA));

 if (!(pExtData))
 {
 goto MallocFailed;
 }

 memset(pExtData, 0x00, sizeof(GENDLLEXT_FILEEXT_DATA));

 pExtData->cbStruct = sizeof(GENDLLEXT_FILEEXT_DATA);

 cb = MAX_PATH;

 if (!(GenericEWayHelperGetConfigVariable(hExt,
 "File Settings",
 "To eGate File Name",
 &cb,
 pExtData->szToEgateFile,
 0,
 NULL)))
 {
 TRACE_0(TRACE_CONFIGURATION, TRACE_EVENT_FATAL,
 "unable to get setting: File Settings - To eGate File Name");

 goto ParamError;
 }

 cb = MAX_PATH;

 if (!(GenericEWayHelperGetConfigVariable(hExt,
 "File Settings",
 "From eGate File Name",
 &cb,
 pExtData->szFromEgateFile,
 0,
 NULL)))
 {
 TRACE_0(TRACE_CONFIGURATION, TRACE_EVENT_FATAL,
 "unable to get setting: File Settings - From eGate File Name");

 goto ParamError;
 }

 if (!(GenericEWayHelperSetUserData(hExt,
 sizeof(GENDLLEXT_FILEEXT_DATA),
 pExtData,
 0,
 NULL)))
 {
 goto AddUserDataFailed;
 }

 fRet = TRUE;

CommonReturn:
 return(fRet);

ErrorReturn:
 DELETE_MALLOC(pExtData);
 fRet = FALSE;
 goto CommonReturn;

TRACE_RETURN_ERROR_SET(TRACE_EWAY, ParamError);
TRACE_RETURN_ERROR_SET(TRACE_EWAY, AddUserDataFailed);
TRACE_RETURN(TRACE_EWAY, MallocFailed, GENERROR_MEMORY_ALLOCATION);
}

C Generic e*Way Extension Kit Developer’s Guide 82

Chapter 6 Section 6.1
Suggested Method Implementation Sample C APIs
shutdown.cxx

FileExt_Shutdown

Syntax

FileExt_Shutdown (hExt, dwFlags, *pvReserved)

Description

FileExt_Shutdown requests the external to shutdown.

Parameters

Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

Example

BOOL
APIDEF
FileExt_Shutdown(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved)
{
 BOOL fRet;
 DWORD cb;
 GENDLLEXT_FILEEXT_DATA *pExtData;

 GNU_USEARG(dwFlags);
 GNU_USEARG(pvReserved);

 pExtData = NULL;

 if (!(GenericEWayHelperGetUserData(hExt,
 &cb,
 (void **)&pExtData,
 0,
 NULL)))
 {
 goto GetUserDataFailed;
 }

 if (pExtData->pFromEgateFile)
 {
 fclose(pExtData->pFromEgateFile);
 pExtData->pFromEgateFile = NULL;
 }

 GenericEWayHelperSetUserData(hExt, 0, NULL, 0, NULL);

 fRet = TRUE;

CommonReturn:
 DELETE_MALLOC(pExtData);
 return(fRet);

ErrorReturn:
 fRet = FALSE;

Name Type Description

hExt state handle The handle previously
associated with user
data, that must be freed
at this time.

dwFlags DWORD Reserved for future use.

pvReserved void Reserved for future use.
C Generic e*Way Extension Kit Developer’s Guide 83

Chapter 6 Section 6.1
Suggested Method Implementation Sample C APIs
 goto CommonReturn;

TRACE_RETURN_ERROR_SET(TRACE_EWAY, GetUserDataFailed);
}

connestablish.cxx

FileExt_ConnEstablish

Syntax

FileExt_ConnEstablish is called when the e*Way state comes “up” and if the e*Way’s
state is “down”. If the return is FALSE, the e*Way’s state becomes “down”, if TRUE, it
becomes “up”.

Parameters

Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

Example

BOOL
APIDEF
FileExt_ConnEstablish(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved)
{
 BOOL fRet;
 DWORD cb;
 GENDLLEXT_FILEEXT_DATA *pExtData;

 GNU_USEARG(dwFlags);
 GNU_USEARG(pvReserved);

 if (!(GenericEWayHelperGetUserData(hExt,
 &cb,
 (void **)&pExtData,
 0,
 NULL)))
 {
 goto GetUserDataFailed;
 }

 if (!(pExtData->pFromEgateFile))
 {
 pExtData->pFromEgateFile = fopen(pExtData->szFromEgateFile, "ab+");

 if (!(pExtData->pFromEgateFile))
 {
 goto fopenFailed;
 }
 }

 fRet = TRUE;

Name Type Description

hExt state handle The handle to be used
with the SetUserData
and GetUserData helper
functions.

dwFlags DWORD Bit flags. Reserved for
future use.

pvReserved void Reserved for future use.
C Generic e*Way Extension Kit Developer’s Guide 84

Chapter 6 Section 6.1
Suggested Method Implementation Sample C APIs
CommonReturn:
 return(fRet);

ErrorReturn:
 fRet = FALSE;
 goto CommonReturn;

TRACE_RETURN_ERROR_SET(TRACE_EWAY, GetUserDataFailed);
TRACE_RETURN_ERROR_SET(TRACE_EWAY, fopenFailed);
}

connverify.cxx

FileExt_ConnVerify

Syntax

FileExt_ConnVerify (hExt, dwFlags, *pvReserved)

Description

FileExt_ConnVerify verifies on schedule that the e*Way’s state is “up”. If the return is
FALSE, the e*Way’s state becomes “down”, if TRUE, the state becomes “up”.

Parameters

Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

Example

BOOL
APIDEF
FileExt_ConnVerify(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved)
{
 BOOL fRet;
 DWORD cb;
 GENDLLEXT_FILEEXT_DATA *pExtData;

 GNU_USEARG(dwFlags);
 GNU_USEARG(pvReserved);

 pExtData = NULL;

 if (!(GenericEWayHelperGetUserData(hExt,
 &cb,
 (void **)&pExtData,
 0,
 NULL)))
 {

Name Type Description

hExt state handle This is the handle to be
used with the
SetUserData and
GetUserData helper
functions.

dwFlags bit flags Reserved for future use.

pvReserved void Reserved for future use.
C Generic e*Way Extension Kit Developer’s Guide 85

Chapter 6 Section 6.1
Suggested Method Implementation Sample C APIs
 goto GetUserDataFailed;
 }

 if (!(pExtData->pFromEgateFile))
 {
 goto NotOpen;
 }

 fRet = TRUE;

CommonReturn:
 return(fRet);

ErrorReturn:
 fRet = FALSE;
 goto CommonReturn;

TRACE_RETURN_ERROR_SET(TRACE_EWAY, GetUserDataFailed);
TRACE_RETURN(TRACE_EWAY, NotOpen, GENERROR_OPEN);
}

connshutdown.cxx

FileExt_ConnShutdown

Syntax

FileExt_ConnShutdown (hExt, dwFlags, *pvReserved)

Description

FileExt_ConnShutdown is called to request the e*Way shutdown the external
connection.

Parameters

Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

Example

BOOL
APIDEF
FileExt_ConnShutdown(IN HGENEWAYDLL hExt,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved)
{
 BOOL fRet;
 DWORD cb;
 GENDLLEXT_FILEEXT_DATA *pExtData;

Name Type Description

hExt state handle The handle to be used
with the SetUserData
and GetUserData helper
functions.

dwFlags bit flags Reserved for future use.

pvReserved void Reserved for future use.
C Generic e*Way Extension Kit Developer’s Guide 86

Chapter 6 Section 6.1
Suggested Method Implementation Sample C APIs
 GNU_USEARG(dwFlags);
 GNU_USEARG(pvReserved);

 if (!(GenericEWayHelperGetUserData(hExt,
 &cb,
 (void **)&pExtData,
 0,
 NULL)))
 {
 goto GetUserDataFailed;
 }

 if (pExtData->pFromEgateFile)
 {
 fclose(pExtData->pFromEgateFile);
 pExtData->pFromEgateFile = NULL;
 }

 fRet = TRUE;

CommonReturn:
 return(fRet);

ErrorReturn:
 fRet = FALSE;
 goto CommonReturn;

TRACE_RETURN_ERROR_SET(TRACE_EWAY, GetUserDataFailed);
}

send.cxx

FileExt_SendExternalEvent

Syntax

FileExt_SendExternalEvent (hExt, pcEvent, *peState, dwFlags,
*pvReserved)

Description

FileExt_SendExternalEvent is called when an Event is received from e*Gate, destined
for the external system.

Parameters

Name Type Description

hExt state handle The handle to be used
with the SetUserData
and GetUserData helper
functions.

pcEvent pointer A read-only pointer to
the Event data.
C Generic e*Way Extension Kit Developer’s Guide 87

Chapter 6 Section 6.1
Suggested Method Implementation Sample C APIs
Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

Example

BOOL
APIDEF
FileExt_SendExternalEvent(IN HGENEWAYDLL hExt,
 IN PCSTC_BLOB pcEvent,
 OUT eGEWState_ *peState,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved)
{
 BOOL fRet;
 DWORD cb;
 GENDLLEXT_FILEEXT_DATA *pExtData;

 GNU_USEARG(dwFlags);
 GNU_USEARG(pvReserved);

 pExtData = NULL;

 if (!(GenericEWayHelperGetUserData(hExt,
 &cb,
 (void **)&pExtData,
 0,
 NULL)))
 {
 goto GetUserDataFailed;
 }

 if (!(pExtData->pFromEgateFile))
 {
 *peState = GEW_FAILURE_CONNERR;

 goto NotOpen;
 }

 if (fwrite(pcEvent->pbData,
 sizeof(BYTE),
 pcEvent->cbData,
 pExtData->pFromEgateFile) != pcEvent->cbData)
 {
 *peState = GEW_FAILURE_CONNERR;

 fclose(pExtData->pFromEgateFile);
 pExtData->pFromEgateFile = NULL;
 }

 fRet = TRUE;

peState integer Status enumeration
returned to the e*Way to
indicate a state change.

dwFlags DWORD Bit flags. Reserved for
future use.

pvReserved void Reserved for future use.

Name Type Description
C Generic e*Way Extension Kit Developer’s Guide 88

Chapter 6 Section 6.1
Suggested Method Implementation Sample C APIs
CommonReturn:
 return(fRet);

ErrorReturn:
 fRet = FALSE;
 goto CommonReturn;

TRACE_RETURN_ERROR_SET(TRACE_EWAY, GetUserDataFailed);
TRACE_RETURN(TRACE_EWAY, NotOpen, GENERROR_OPEN);
}

recv.cxx

FileExt_GetExternalEvent

Syntax

FileExt_GetExternalEvent (hExt, *pEvent, *peState, dwFlags, *pvReserved)

Description

FileExt_GetExternalEvent is called by one of the e*Way’s exchange data schedules
when the e*Way “polls” the external for data to send to e*Gate.

Parameters

Name Type Description

hExt state handle The handle to be used
with the SetUserData
and GetUserData helper
functions.

pEvent Blob If there is external data
available, the initialized
STC_BLOB structure is
passed in. The callee
should allocate the data
member of this structure
and fill in the size for the
return. The ACK or NAK
entry point will get called
with the same pEvent. At
this point, the data can
be freed.

peState integer Status enumeration
returned to the e*Way to
indicate a state change.

dwFlags DWORD Bit flags. Reserved for
future use.

pvReserved void Reserved for future use.
C Generic e*Way Extension Kit Developer’s Guide 89

Chapter 6 Section 6.1
Suggested Method Implementation Sample C APIs
Return Values

Bool
Returns TRUE if successful; otherwise, returns FALSE.

Example

BOOL
APIDEF
FileExt_GetExternalEvent(IN HGENEWAYDLL hExt,
 OUT STC_BLOB *pEvent,
 OUT eGEWState_ *peState,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved)
{
 BOOL fRet;
 DWORD cb;
 GENDLLEXT_FILEEXT_DATA *pExtData;
 FILE *pFile;
 size_t cbRead;
 long cbFile;
 char sz[MAX_PATH];
 char szRename[MAX_PATH];
 char *psz;

 GNU_USEARG(dwFlags);
 GNU_USEARG(pvReserved);

 pExtData = NULL;
 pFile = NULL;

 if (!(GenericEWayHelperGetUserData(hExt,
 &cb,
 (void **)&pExtData,
 0,
 NULL)))
 {
 goto GetUserDataFailed;
 }

 pFile = fopen(pExtData->szToEgateFile, "rb");

 if (!(pFile))
 {
 goto NotReady;
 }

 if (fseek(pFile, 0, SEEK_END) != 0)
 {
 goto fseekFailed;
 }

 cbFile = ftell(pFile);

 if (cbFile == (-1))
 {
 goto ftellFailed;
 }

 rewind(pFile);

 pEvent->cbData = (DWORD)cbFile;
 pEvent->pbData = (BYTE *)malloc(cbFile);

 if (!(pEvent->pbData))
 {
 goto MallocFailed;
 }

 cbRead = fread(pEvent->pbData, sizeof(BYTE), (size_t)pEvent->cbData, pFile);

 if ((cbRead == 0) ||
 (cbRead != (size_t)pEvent->cbData))
 {
 TRACE_4(TRACE_EWAY, TRACE_EVENT_DEBUG,
 "found file, but read failed cbRead=%lu event cbData=%lu. Error: %s (0x%08X)",
 (ULONG)cbRead,
 (ULONG)pEvent->cbData,
 GenerrorGetErrorText(GETLASTERROR()),
 GETLASTERROR());

 goto freadFailed;
 }

 fclose(pFile);
 pFile = NULL;

 //
C Generic e*Way Extension Kit Developer’s Guide 90

Chapter 6 Section 6.1
Suggested Method Implementation Sample C APIs
 // rename file...
 //

 strcpy(sz, pExtData->szToEgateFile);

 psz = strchr(sz, C_DIRSLASH);

 if (psz)
 {
 *psz = 0x00;
 psz++;
 }
 else
 {
 psz = sz;
 }

 pExtData->cRecvEvents++;

 _chdir(sz);

 sprintf(szRename, "%s_%lu.done", psz, (ULONG)pExtData->cRecvEvents);

 if (rename(psz, szRename) == (-1))
 {

 goto RenameFailed;
 }

 fRet = TRUE;

CommonReturn:
 return(fRet);

ErrorReturn:
 pEvent->cbData = 0;
 DELETE_MALLOC(pEvent->pbData);

 if (pFile)
 {
 fclose(pFile);
 }

 fRet = FALSE;
 goto CommonReturn;

TRACE_RETURN_ERROR_SET(TRACE_EWAY, GetUserDataFailed);
TRACE_RETURN_ERROR_SET(TRACE_EWAY, RenameFailed);
TRACE_RETURN_ERROR_SET(TRACE_EWAY, freadFailed);
TRACE_RETURN_ERROR_SET(TRACE_EWAY, ftellFailed);
TRACE_RETURN_ERROR_SET(TRACE_EWAY, fseekFailed);
TRACE_RETURN(TRACE_EWAY, NotReady, GENERROR_NOTREADY);
TRACE_RETURN(TRACE_EWAY, MallocFailed, GENERROR_MEMORY_ALLOCATION);
}

ack.cxx

FileExt_EventAcknowledgmenet

Syntax

FileExt_EventAcknowledgment (hExt, fSuccess, *pEvent, pcExtraCollabReturnData,
*peState, dwFlags, *pvReserved)

Description

FileExt_EventAcknowledgment is called when the external Event has been processed
by e*Gate. The fSuccess parameter indicates whether e*Gate processed the data
successfully or not - FALSE indicating “not successful”.
C Generic e*Way Extension Kit Developer’s Guide 91

Chapter 6 Section 6.1
Suggested Method Implementation Sample C APIs
Parameters

Return Values

Bool
Returns TRUE if successful; FALSE if an error occurred.

Example

BOOL
APIDEF
FileExt_EventAckknowledgement(IN HGENEWAYDLL hExt,
 IN BOOL fSuccess,
 IN STC_BLOB *pEvent,
 IN PCSTC_BLOB pcExtraCollabReturnData,
 OUT eGEWState_ *peState,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved)
{
 BOOL fRet;
 DWORD cb;
 GENDLLEXT_FILEEXT_DATA *pExtData;

Name Type Description

hExt state handle The handle to be used
with the SetUserData
and GetUserData helper
functions.

fSuccess TRUE or FALSE A string that indicates
whether the e*Gate
processed the external
Event successfully.

pEvent BLOB An STC_BLOB structure
whose members were
previously filled in by
GetExternalEvent
method. This entry point
frees any memory that
was allocated for the
Event during the
GetExternalEvent call.

pcExtraCollabRet
urnData

pointer An optional read-only
point to an STC_BLOB
structure that contains
any return structure from
the collaboration. Do not
try to free this data.

peState integer Status enumeration
returned to the e*Way to
indicate a state change.

dwFlags bit flags Reserved for future use.

pvReserved void Reserved for future use.
C Generic e*Way Extension Kit Developer’s Guide 92

Chapter 6 Section 6.1
Suggested Method Implementation Sample C APIs
 GNU_USEARG(dwFlags);
 GNU_USEARG(pvReserved);
 GNU_USEARG(pcExtraCollabReturnData);

 pExtData = NULL;

 if (!(GenericEWayHelperGetUserData(hExt,
 &cb,
 (void **)&pExtData,
 0,
 NULL)))
 {
 goto GetUserDataFailed;
 }

 if (pExtData->pFromEgateFile)
 {
 fflush(pExtData->pFromEgateFile);
 }

 fRet = TRUE;

CommonReturn:
 DELETE_MALLOC(pEvent->pbData);
 pEvent->cbData = 0;
 return(fRet);

ErrorReturn:
 fRet = FALSE;
 goto CommonReturn;

TRACE_RETURN_ERROR_SET(TRACE_EWAY, GetUserDataFailed);
}

C Generic e*Way Extension Kit Developer’s Guide 93

Chapter 7 Section 7.1
Configuring the e*Way with the Schema Designer Implementing a Sample Schema
Chapter 7

Configuring the e*Way with the Schema
Designer

7.1 Implementing a Sample Schema
The instructions in this chapter discuss how to implement the C Generic e*Way using
the Schema Designer.

After you have created the extension dll, any required functions, and the .def file (if
necessary) for the new e*Way, you must do the following:

1 Commit any files you have created to the appropriate directories within a schema.

2 Create an e*Way component within the schema.

3 Configure the e*Way as required.

7.1.1 Step 1: Commit Files to the Schema

Note: Do not commit files to the default schema unless you want those files to be
inherited by all new schemas. Even if this is the desired outcome, we recommend
that you always commit files to a non-default schema during testing and
development of new e*Way components.

1 Make sure that the files you wish to commit to the e*Gate schema are accessible
from the same system as the Schema Designer GUI, either from a local file system or
from a mapped network drive (you cannot commit files to the schema using a UNC
path).

2 Using the Schema Designer, login into the schema that will support the new e*Way.

3 Pull down the File menu and select Commit to Sandbox.

4 The Select Local File to Commit dialog appears. Use the file-selection controls to
locate the file you want to commit and click Open.

5 The Select Directory for Committed File dialog appears. Use the directory-
selection controls to locate the directory to you want to commit the file and click
Select. Select the directory according to those shown in Table 6.
C Generic e*Way Extension Kit Developer’s Guide 94

Chapter 7 Section 7.1
Configuring the e*Way with the Schema Designer Implementing a Sample Schema
Any ETD (.ssc) and Collaboration Rules (.tsc) files that you create for this e*Way should
be stored in the schema within the /monk_scripts/common directory, but you do not
need to commit any such files manually if you create them using the e*Gate ETD or
Collaboration Rules Editors. If you use another editor to create these files (such as
Notepad, Wordpad, or vi), you must commit the files manually.

Note: Remember that committing files to the Sandbox makes them available for testing.
Files must be promoted to the run-time schema before they can be used in the
working “production” environment. For more information, see the Team Registry
user’s guide or the Schema Designer’s Help system.

7.1.2 Step 2: Create an e*Way Component
After all the required files have been committed to the schema, you can create the
e*Way component.

1 In the Component editor, create a new e*Way.

2 Display the new e*Way’s properties.

3 On the General tab, under Executable File, click Find.

4 Select the file stcewgenericdll.exe.

5 Under Configuration file, click New.

6 The e*Way Template Selection dialog box appears. From the list, select the .def file
that you created for this e*Way and click OK. The name will be listed without the
“.def” extension. For example, if you created the file my_eway.def, the file will be
listed as my_eway, as shown below:

Table 6 Schema directories

For a file of this type... ...commit to this directory

.def /configs/stcewgenericdll

.monk (e*Way functions) monk_scripts/eway_name
(We recommend that you create a separate
directory for your custom e*Way scripts.)

.dll /bin
C Generic e*Way Extension Kit Developer’s Guide 95

Chapter 7 Section 7.1
Configuring the e*Way with the Schema Designer Implementing a Sample Schema
7 The e*Way Editor will launch. You are ready to configure the e*Way; continue with
the next section.

7.1.3 Step 3: Configure the e*Way
Once you have selected your e*Way template, you are ready to use the e*Way Editor to
configure this e*Way component.

1 If you followed the instructions in the previous two sections, the e*Way Editor has
now launched (shown in the figure below).

Use the e*Way Editor to make any configuration changes you require. For more
information about configuring e*Ways or how to use the e*Way Editor, see the
e*Gate Integrator User’s Guide.

2 When you have finished making configuration changes, pull down the File menu
and select Save.
C Generic e*Way Extension Kit Developer’s Guide 96

Chapter 7 Section 7.1
Configuring the e*Way with the Schema Designer Implementing a Sample Schema
3 Enter a name for the configuration file and click OK.

4 Exit the e*Way Editor. You will return to the e*Way’s property sheet. Click OK to
close the properties sheet, or continue to make other changes to the e*Way
component’s properties.

Note: Once you have installed and configured this e*Way, you must incorporate it into a
schema by defining and associating the appropriate Collaborations, Collaboration
Rules, IQs, and Event Types before this e*Way can perform its intended functions.
For more information about any of these procedures, please see the Schema
Designer’s online Help system.

7.1.4 Editing a .def File Within a Schema
To edit a .def file that has already been committed to a schema:

1 Launch the Schema Designer and login to the schema containing the .def file that
you want to edit.

2 Pull down the File menu and select Edit File.

3 Use the file-selection controls to open the .def file. The Notepad editor will launch
and open the file you have selected.

4 Save any changes and exit the editor.

5 Commit the edited file back to the schema (the Schema Designer will automatically
prompt you to perform this procedure).

See the Schema Designer’s online help for more information.
C Generic e*Way Extension Kit Developer’s Guide 97

Index
Index

A
accessing parameter values within Monk 40
ack.cxx 91
ASCII codes, displaying in different formats 26

B
basic steps to extend a generic e*Way 10

C
.cfg file 34
(char) keyword 19
character parameter syntax 15
comments

within the .def file 15
within the configuration file 34

configuration 34
configuration definition file 8
configuration files 34
configuration parameters

accessing within Monk environment 40
Down Timeout 45
Exchange Data Interval 44
Exchange Data With External Function 55
External Connection Establishment Function 55
External Connection Shutdown Function 56
External Connection Verification Function 56
Forward External Errors 43
Journal File Name 42
Max Failed Messages 43
Max Resends Per Message 43
Process Outgoing Message Function 54
Resend Timeout 46
Shutdown Command Notification Function 57
Start Exchange Data Schedule 45
Startup Function 54
Stop Exchange Data Schedule 45
Up Timeout 46

connestablish.cxx 84
connshutdown.cxx 86
connverify.cxx 85
const keyword 23

D
(date) keyword 19
debugging the .def file 37
delim keywords 29, 34
description keyword 17
displaying ASCII codes 26
Down Timeout parameter 45

E
encrypting string parameters 28
error messages in .def file parsing 37
escape character, using 15
Exchange Data Interval parameter 44
Exchange Data with External Function parameter 55
External Connection Establishment Function
parameter 55
External Connection Shutdown Function parameter
56
External Connection Verification Function
parameter 56
external interface 59

F
(factor) keyword 27
floating-point numbers 15
formats, displaying parameters in varying 26
Forward External Errors parameter 43

G
GenericEWayHelperGetConfigVariable 75
GenericEWayHelperGetUserData 74
GenericEWayHelperSetUserData 73

H
helper functions 73

GenericEWayHelperGetConfigVariable 75
GenericEWayHelperGetUserData 74
GenericEWayHelperSetUserData 73

I
indentation 14
(int) keyword 19
integer parameter, range of valid 15

J
Journal File Name parameter 42
C Generic e*Way Extension Kit Developer’s Guide 98

Index
K
keywords in .def file

reference 29–32

L
limiting ranges 23

M
Max Failed Messages parameter 43
Max Resends Per Message parameter 43
Method Prototypes 68
method prototypes 72

PFNEWGENDLL_CONNECTIONESTABLISH
69

PFNEWGENDLL_CONNECTIONSHUTDOW
N 70

PFNEWGENDLL_EXTERNALEVENTACKNO
WLEDGEMENT 72

PFNEWGENDLL_PROCESSOUTGOINGEVEN
T 71

PFNEWGENDLL_SHUTDOWN 69
PFNEWGENDLL_STARTUP 68
PFNEWGENDLL_VERIFY 70

Monk environment variables, storing configuration
parameters 40

N
newlines as whitespace 14

P
parameter ranges 23
parameter sets 20, 21
parameter syntax, .def file

general 14
integer parameters 15
path parameters 15
string and character parameters 15

parameter types 19
parse errors 37
password parameters, defining 28
(path) keyword 19
path parameters 15
PFNEWGENDLL_CONNECTIONESTABLISH 69
PFNEWGENDLL_CONNECTIONSHUTDOWN 70
PFNEWGENDLL_EXTERNALEVENTACKNOWL
EDGEMENT 72
PFNEWGENDLL_GETEXTERNALEVENT 72
PFNEWGENDLL_PROCESSOUTGOINGEVENT
71

PFNEWGENDLL_SHUTDOWN 69
PFNEWGENDLL_STARTUP 68
PFNEWGENDLL_VERIFY 70
Process Outgoing Message Function parameter 54

Q
quotation marks in .def files, escaping 15

R
(range) keyword 23
ranges

defining 23
fixing upper or lower limits 23
units and default values 25

recv.cxx 89
Resend Timeout parameter 46

S
sample .def file 38
sample template source code 76
.sc file 34
(schedule) keyword 19
schedule parameter syntax 32
SCparse error messages 37
section keyword 17
send.cxx 87
-set keyword suffix 20
(set) keyword, example 21, 23
-set-multi keyword suffix 21
(show-as) keyword 26
Shutdown Command Notification Function
parameter 57
shutdown.cxx 83
Start Exchange Data Schedule parameter 45
Startup Function parameter 54
startup.cxx 80
stcewgenericmonk.exe 7
Stop Exchange Data Schedule parameter 45
(string) keyword 19
string parameter syntax 15
string parameters, encrypting 28
suggested implementation

ack.cxx 91
connestablish.cxx 84
connshutdown.cxx 86
connverify.cxx 85
recv.cxx 89
send.cxx 87
shutdown.cxx 83
startup.cxx 80
C Generic e*Way Extension Kit Developer’s Guide 99

Index
T
tabs as whitespace 14
(time) keyword 19
"Tips" button, text displayed 17
type definitions 67

U
(units) keyword 24
Up Timeout parameter 46
user-comment keyword 16, 17

V
value ranges, specifying 23
variables within Monk environment, storing
configuration parameters 40

W
whitespace 14
C Generic e*Way Extension Kit Developer’s Guide 100

	C Generic e*Way Extension Kit Developer’s Guide
	Contents
	Introduction
	1.1 Intended Reader
	1.2 Components
	stcewgenericdll.exe
	stcewgenericdll.def

	1.3 Supported Operating Systems
	1.4 System Requirements
	1.4.1 Additional Information

	1.5 e*Way Extensions and External Applications
	1.5.1 Basics Steps to Extend the C Generic e*Way

	Installation
	2.1 Files/Directories Created by the Installation
	2.1.1 sdk.taz Files

	Extending the .def File
	3.1 Introduction
	3.1.1 Layout

	3.2 .def file Keywords: General Information
	3.2.1 White Space
	3.2.2 Integer Parameters
	3.2.3 Floating-point Parameters
	3.2.4 String and Character Parameters
	3.2.5 Path Parameters
	3.2.6 Comments
	3.2.7 “Header” Information

	3.3 Defining a New Section
	3.3.1 Section Syntax
	3.3.2 Parameter Syntax
	Order of Keywords
	Parameter Types
	Parameters Requiring Single Values
	Parameters Accepting a Single Value From a Set
	Parameters Accepting Multiple Values From a Set

	3.3.3 Specifying Ranges
	3.3.4 Specifying Units
	3.3.5 Displaying Options in ASCII, Octal, Hex, or Decimal
	Factor
	Encrypting Strings

	3.4 Configuration Keyword Reference
	3.4.1 Schedule Syntax
	Defining Default Schedules

	3.5 Configuration Parameters and the Configuration Files
	Examples

	3.6 Testing and Debugging the .def File
	3.6.1 Common Error Messages

	3.7 Sample .def File
	3.8 Accessing Configuration Parameters Within the APIs
	3.8.1 Variable-name Format
	3.8.2 Getting Variable Values

	Configuration
	4.1 e*Way Configuration Parameters
	4.1.1 General Settings
	Journal File Name
	Max Resends Per Message
	Max Failed Messages
	Forward External Errors

	4.1.2 Communication Setup
	Exchange Data Interval
	Zero Wait Between Successful Exchanges
	Start Exchange Data Schedule
	Stop Exchange Data Schedule
	Down Timeout
	Up Timeout
	Resend Timeout

	4.1.3 DLL Configuration
	Operational Details
	Dynamic Load Library File
	Startup Function
	Process Outgoing Message Function
	Exchange Data with External Function
	External Connection Establishment Function
	External Connection Verification Function
	External Connection Shutdown Function
	Acknowledgment Function
	Shutdown Command Notification Function

	4.1.4 Example of DLL Configuration Section Settings

	External Interface
	5.1 Overview
	5.2 C Generic e*Way Header File
	5.2.1 Type Definitions List

	5.3 Method Prototypes
	PFNEWGENDLL_STARTUP
	PFNEWGENDLL_SHUTDOWN
	PFNEWGENDLL_CONNECTIONESTABLISH
	PFNEWGENDLL_VERIFY
	PFNEWGENDLL_CONNECTIONSHUTDOWN
	PFNEWGENDLL_PROCESSOUTGOINGEVENT
	PFNEWGENDLL_GETEXTERNALEVENT
	PFNEWGENDLL_EXTERNALEVENTACKNOWLEDGEMENT

	5.4 Helper Functions
	GenericEWayHelperSetUserData
	GenericEWayHelperGetUserData
	GenericEWayHelperGetConfigVariable

	5.5 Sample Template Source Code
	5.6 Sample Source Code Description

	Suggested Method Implementation
	6.0.1 Considerations
	6.1 Sample C APIs
	startup.cxx
	FileExt_Startup
	shutdown.cxx
	FileExt_Shutdown
	connestablish.cxx
	FileExt_ConnEstablish
	connverify.cxx
	FileExt_ConnVerify
	connshutdown.cxx
	FileExt_ConnShutdown
	send.cxx
	FileExt_SendExternalEvent
	recv.cxx
	FileExt_GetExternalEvent
	ack.cxx
	FileExt_EventAcknowledgmenet

	Configuring the e*Way with the Schema Designer
	7.1 Implementing a Sample Schema
	7.1.1 Step 1: Commit Files to the Schema
	7.1.2 Step 2: Create an e*Way Component
	7.1.3 Step 3: Configure the e*Way
	7.1.4 Editing a .def File Within a Schema

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W

