
e*Gate Integrator
Collaboration Services
Reference Guide

Release 5.0.5 for Schema Run-time
Environment (SRE)

Copyright © 2005, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open
Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Version 20100902163147.

e*Gate Integrator Collaboration Services Reference Guide 2

Contents
Contents

List of Figures 5

List of Tables 6

Chapter 1

Introduction 7
Purpose and Scope 7

Intended Audience 7

Organization of Information 8

Chapter 2

Requirements for Supported Collaboration Services 9
Supported Collaboration Services 9

Requirements 10
System Requirements 10
Java 2 SDK Requirements on UNIX Systems 10

Chapter 3

Monk-Related and Pass Through Collaboration Services 12
Monk Collaboration Service 12

Monk ID Collaboration Service 13

Route Table Collaboration Service 13

Pass Through Collaboration Service 13

Chapter 4

Java Collaboration Service (JCS) 14
Description 14
e*Gate Integrator Collaboration Services Reference Guide 3

Contents
Using the Java Collaboration Service 14
Creating Java Collaboration Rules Components 15
Implementing Java Collaboration Rule Components 19
Dealing With Long CLASSPATH Parameters 20
Committing Java Classes and .jar Files to the Registry 21

Using the .ctl File to Download Entries from the Registry 21

Parameters for the JCS Initialization String 23

Chapter 5

C Collaboration Service 26
Header File: HTRANSCC.h 26

Developing the C Dynamic-Link Library (DLL) File 33
Monk IQ Functions That Do Not Support JMS IQs 34

The C Collaboration APIs 35
ccollab_free() 36
ccollab_init() 37
ccollab_term() 38
ccollab_translate() 39

Using the C Collaboration Service 40

C Collaboration Rules and the Schema Designer 41

Implementing the C Collaboration Rule 41

Index 43
e*Gate Integrator Collaboration Services Reference Guide 4

List of Figures

e*Gate Integrator Collaboration Services Reference Guide 5

List of Figures

Figure 1 Creating a New Collaboration Rules Component 15

Figure 2 Adding the STCJavaPassThrough.class Collaboration Rules 16

Figure 3 Selecting the Java Collaboration Service 16

Figure 4 Adding Collaboration Instances 17

Figure 5 Adding the Business Logic (Java Code) 18

Figure 6 Collaboration Rules - Properties Dialog Box 19

Figure 7 Selecting the C Collaboration Service 42

List of Tables

e*Gate Integrator Collaboration Services Reference Guide 6

List of Tables

Table 1 Java 2 SDK DLL Search Path Environment Variables 10

Table 2 JCS Initialization Parameters 23

Chapter 1

Introduction

This chapter provides the introduction, general purpose and scope, and organization of
the e*Gate Integrator Collaboration Services Reference Guide. It also provides sources of
related documentation and information.

1.1 Purpose and Scope
Collaboration Services are provided as part of the Oracle eBusiness IntegrationTM Suite.
This guide describes each Collaboration Service and discusses how to select and
implement the service in a production environment.

This guide explains the following Collaboration Services:

Monk

Pass Through

Java

C

Important: Any operational explanations in this guide are generic, for reference purposes only,
and do not necessarily address the specifics of configuring individual Collaboration
Services.

1.2 Intended Audience
The reader of this guide is presumed to be a developer or system administrator with
responsibility for maintaining the e*Gate Integrator system. This person must also have
expert-level knowledge of Windows XP/Windows 2000 and UNIX operations and
administration and to be thoroughly familiar with Windows-style GUI operations. Use
of a language-specific Collaboration Service (Monk, C, or Java) requires familiarity with
the appropriate language.
e*Gate Integrator Collaboration Services Reference Guide 7

Chapter 1 Section 1.3
Introduction Organization of Information
1.3 Organization of Information
This document has five chapters and one appendix:

Chapter 1 “Introduction” on page 7—Provides a general preview of this document,
its purpose, scope, and organization.

Chapter 2 “Requirements for Supported Collaboration Services” on page 9—
Provides an overview of the system requirements for the Collaboration Services
that the e*Gate Integrator system supports.

Chapter 3 “Monk-Related and Pass Through Collaboration Services” on
page 12—Describes the Monk and Pass Through Collaboration Services, including
the Monk-related services.

Chapter 4 “Java Collaboration Service (JCS)” on page 14—Describes the Java
Collaboration Service and provides in-depth information on how to use it

Chapter 5 “C Collaboration Service” on page 26—Explains how the
C Collaboration Service enables the developer to utilize the C and C++
programming languages to write a Dynamic Link Library (.dll) file.
e*Gate Integrator Collaboration Services Reference Guide 8

Chapter 2

Requirements for Supported Collaboration
Services

Collaboration Services are the libraries that provide the low-level facilities by which
Collaborations execute Collaboration Rules.

2.1 Supported Collaboration Services
e*Gate Integrator supports seven Collaboration Services:

C Collaboration Service

Java Collaboration Service (JCS)

Monk Collaboration Service

Monk ID Collaboration Service

Pass Through Collaboration Service

Route Table Collaboration Service

XSLT Collaboration Service
(Available with the XML Toolkit add-on. For information on the XSLT Collaboration
Service, see the XML Toolkit guide.)

The Collaboration Services are automatically installed when you install an e*Gate
Participating Host. For information about installing e*Gate, see the e*Gate Integrator
Installation Guide.
e*Gate Integrator Collaboration Services Reference Guide 9

Chapter 2 Section 2.2
Requirements for Supported Collaboration Services Requirements
2.2 Requirements

2.2.1 System Requirements
Most of the Collaboration Services have no requirements beyond those required by a
standard e*Gate Integrator installation.

All Collaboration Services require an e*Gate Integrator Participating Host version
5.0.5 SRE or later.

For information on downloading Java 2 SDK and using it in conjunction with
e*Gate, see the e*Gate Integrator Installation Guide.

2.2.2 Java 2 SDK Requirements on UNIX Systems
Important:

Do not move Java 2 SDK to any other location. It must remain where it was installed
by the Oracle eBusiness Integration Suite Setup program.

The installation process enters the Java 2 SDK location into the UNIX Object Data
Manager (ODM). Changing the location prevents the proper execution of the Java
JNI dynamic-link library (DLL) needed by the JCS.

The user environment on the Participating Host must have the DLL search path
environment variable set to include all Java 2 SDK directories that contain shared
libraries.

The variable names and shared library file extensions of these vary, according to the
operating system, as shown in Table 1.

For AIX Participating Hosts Only:

If certain Program Temporary Fixes (PTFs) are not installed, then the LIBPATH
environment variable must be set to:

The jre/bin directory first, followed by the jre/bin/classic directory, then followed
by the directories of other software, as needed.

Table 1 Java 2 SDK DLL Search Path Environment Variables

On these operating systems . . .
The DLL search path
environment variable is . . .

And the file
extension is . . .

Solaris
Red Hat Linux

LD_LIBRARY_PATH .so

HP-UX SHLIB_PATH .sl

IBM AIX LIBPATH .a
e*Gate Integrator Collaboration Services Reference Guide 10

Chapter 2 Section 2.2
Requirements for Supported Collaboration Services Requirements
If, for example, Java 2 SDK is installed under /usr/java_dev2, then:

For the Bourne or Korn shell, add this line into the egateclient.sh file, immediately
before the export LIBPATH statement:

LIBPATH=/usr/java_dev2/jre/bin:/usr/java_dev2/jre/bin/
classic:$LIBPATH

For the C shell, add this line immediately after the statements that set LIBPATH:

setenv LIBPATH /usr/java_dev2/jre/bin:/usr/java_dev2/jre/bin/
classic:'printenv LIBPATH'

This intervention is necessary because the Java JNI DLL causes a core dump unless the
LIBPATH is set as such.
e*Gate Integrator Collaboration Services Reference Guide 11

Chapter 3

Monk-Related and Pass Through
Collaboration Services

This chapter describes the Monk, Monk-related, and Pass Through Collaboration
Services.

The two Monk-related Collaboration Services are:

Monk ID Collaboration Service

Route Table Collaboration Service

Note: The Java Pass Through class, STCJavaPassThrough.class, uses the Java
Collaboration Service (JCS), not the Pass Through Collaboration Service.
See “Creating Java Collaboration Rules Components” on page 15.

3.1 Monk Collaboration Service
The Monk Collaboration Service supports the development of business logic and other
e*Gate Integrator components using the proprietary Monk language.

Monk files can be created with any text editor such as Notepad or vi, or by using the
e*Gate Collaboration Rules Editor in the Schema Designer.

Most Monk files should be given the .monk extension.

Files created by the Monk Collaboration Rules Editor, which are used to transform data
within a Collaboration, are assigned the .tsc extension by default. Do not confuse these
with the standard extensions for Monk ETDs (.ssc) and for Java-enabled ETDs (.xsc).
e*Gate Integrator Collaboration Services Reference Guide 12

Chapter 3 Section 3.2
Monk-Related and Pass Through Collaboration Services Monk ID Collaboration Service
3.2 Monk ID Collaboration Service
The Monk ID Collaboration Service supports the execution of Collaboration-ID Rules.

In versions of e*Gate Integrator earlier than release 4.0, Collaboration-ID Rules were
commonly used to validate inbound Events.

In release 4.0 and later:

Perform all such validation within a standard Collaboration Rule.

Use Collaboration-ID Rules only for backward compatibility with prior versions of
e*Gate Integrator.

Collaboration-ID rules are normally created with the e*Gate Collaboration-ID Editor,
although they can also be created or modified with text files.

The default file extension is .isc.

3.3 Route Table Collaboration Service
The Route Table Collaboration Service is used for upgrading from e*Gate version 3.x, as
described in the e*Gate Integrator Upgrade Guide.

3.4 Pass Through Collaboration Service
The Pass Through Collaboration Service supports copying input Events to output
Events, leaving the Event contents unchanged. It performs a byte-for-byte copy for all
data that it processes, and requires no Collaboration Rules.

Note: Do not use the Pass Through Collaboration Service to communicate with e*Way
Connections. Use the Java Pass Through class, STCJavaPassThrough.class,
instead. See “To create a Java Pass Through Collaboration Rules
component” on page 15.
e*Gate Integrator Collaboration Services Reference Guide 13

Chapter 4

Java Collaboration Service (JCS)

This chapter describes the Java Collaboration Service and how to use it.

4.1 Description
The Java Collaboration Service (JCS) supports using a Java class to implement the
business logic that transforms Events as they move through the e*Gate Integrator.
When data passes through e*Gate using a Java Collaboration, the JCS instantiates a Java
Virtual Machine (JVM) and uses the associated Java Collaboration Rules class to
accomplish the data transformation. (See Chapter 1 for requirements specific to
Java 2 SDK.)

Unlike the Monk Collaboration Service, which allows only one-to-one Collaboration
between Events, the Java Collaboration Service allows many-to-many Collaborations.

4.2 Using the Java Collaboration Service
To use the Java Collaboration Service:

1 Create a Collaboration Rule and select Java as the service.

2 Using the Java Collaboration Rules Editor, add the rules and logic between the
instances of previously defined Event Type Definitions (ETDs).

3 Compile the Collaboration Rules to create a Java Collaboration Rules class and all
required support files.

The resulting Java class implements the data transformation logic.

Note: Though it is not recommended, you can manually create .class files that use the Java
Collaboration Service without using the Java Collaboration Rules Editor.

Important: Before creating a Java Collaboration, you must have created the Java-enabled ETDs
(.xsc files) used by the Collaboration. For information on creating a Java ETD, refer
to the material on the Java ETD Editor in the e*Gate Integrator User’s Guide, or
refer to the online help for the Java ETD Editor.
e*Gate Integrator Collaboration Services Reference Guide 14

Chapter 4 Section 4.2
Java Collaboration Service (JCS) Using the Java Collaboration Service
4.2.1 Creating Java Collaboration Rules Components
When creating a new Collaboration Rules component, you must specify inbound and
outbound Event Type instances and the rules for transforming the data between them.
See “To create a Java Collaboration Rules component” on page 16.

The Java Pass Through Collaboration Rule, however is a predefined Collaboration
Rules component that, like the Pass Through Collaboration Service, transports data
without transforming it—there is no need to specify data transformation rules.

Unlike the Java Pass Through Collaboration Service, however, you can use the Java
Pass Through Collaboration Rules component to communicate with e*Way
Connections. You are neither required nor permitted to specify instance names or
initialization strings.

The following procedures summarize the detailed procedures in the e*Gate Integrator
User’s Guide.

To create a Java Pass Through Collaboration Rules component

1 Use e*Gate Schema Designer to create and name a new Collaboration Rules
component, as shown in Figure 1.

Figure 1 Creating a New Collaboration Rules Component

2 Edit the properties of the new Collaboration Rules component.

3 In the Collaboration Rules - Properties dialog box, click Find in the Collaboration
Rules part of the General tab.

4 Navigate to the collaboration_rules\STCLibrary folder.

5 Click STCJavaPassThrough.class and click Select.

6 In the Properties dialog box, click OK to add STCJavaPassThrough.class as the
Collaboration Rules as shown in Figure 2.
e*Gate Integrator Collaboration Services Reference Guide 15

Chapter 4 Section 4.2
Java Collaboration Service (JCS) Using the Java Collaboration Service
Figure 2 Adding the STCJavaPassThrough.class Collaboration Rules

To create a Java Collaboration Rules component

1 Use e*Gate Schema Designer to create and name a new Collaboration Rules
component. See Figure 1 on page 15.

2 Edit the properties of the new Collaboration Rules component. If necessary, select
Java as the Collaboration Service on the General tab as shown in Figure 3.

Figure 3 Selecting the Java Collaboration Service

3 Open the Collaboration Mapping tab and click the Add Instance command button
to add a new instance (see Figure 4).

4 Enter a name in the Instance Name field.

The Collaboration Rules Editor uses the Instance Name to identify the source and
destination Events.
e*Gate Integrator Collaboration Services Reference Guide 16

Chapter 4 Section 4.2
Java Collaboration Service (JCS) Using the Java Collaboration Service
Figure 4 Adding Collaboration Instances

5 Click Find to display a list of ETD files (.xsc files), and then select the source ETD.

The name of the ETD is displayed in the ETD field.

6 In the Mode list, click In or In/Out.

7 Optionally, repeat steps 3 through 6 to create additional source Event instances.

8 As necessary, select the Trigger check box for one or more inbound Events.

9 Repeat steps 3 through 5 for each destination instance.

10 In the Mode list, click Out or In/Out for each destination instance.

11 You can select the Manual Publish check box for zero or more outbound Events.

12 Click Apply to save the changes.

13 Optionally, you can enter an initialization string to override certain run-time
settings.

14 Click the General tab.

15 Click the New command button in the Collaboration Rules part of the General tab
to open the Collaboration Rules Editor window (Figure 5).
e*Gate Integrator Collaboration Services Reference Guide 17

Chapter 4 Section 4.2
Java Collaboration Service (JCS) Using the Java Collaboration Service
Figure 5 Adding the Business Logic (Java Code)

16 Use the Collaboration Rules Editor to add the required business logic (Java code)
for this rule to the executeBusinessRules() method.

The Collaboration Rules Editor allows you to:

Drag a node into areas of the Properties pane to generate get() methods

Drag a node onto another node to generate get()/set() methods

Right-click a node to view its properties

Right-click a pane to gain access to external Java packages and their methods

17 For information about using the Collaboration Rules Editor, use its online help or
refer to the Chapter 7 of the e*Gate Integrator User’s Guide.

18 As you work on it, save and compile the Collaboration Rules class.

19 After the Collaboration Rules class compiles cleanly, promote it and close the
Collaboration Rules Editor to enter the .class and the corresponding control file
(.ctl) in the Collaboration Rules and Initialization file fields of the Collaboration
Rules - Properties dialog box, as shown in Figure 6.

20 These are the files that the Collaboration Rules component uses to perform the
required data transportation and transformation functions.
e*Gate Integrator Collaboration Services Reference Guide 18

Chapter 4 Section 4.2
Java Collaboration Service (JCS) Using the Java Collaboration Service
Figure 6 Collaboration Rules - Properties Dialog Box

4.2.2 Implementing Java Collaboration Rule Components
To define a Collaboration Rule that uses the JCS

1 Use e*Gate Schema Designer to create and name a new Collaboration Rules
component. See Figure 1 on page 15.

2 Edit the properties of the new Collaboration Rule. If necessary, select Java as the
Collaboration Service on the General tab as shown in Figure 3 on page 16.

3 Enter any required JCS initialization parameters in the Initialization string box.

For example:

-jnidll myjnidll -java1 com.mystc.myProgram

Table 2 on page 23 provides a list of the JCS initialization parameters.

For any parameter that contains embedded spaces, the entire parameter must be
contained within double quotes ("param name"). If it is not, the JCS will not be able
to locate the file specified and will not be able to perform initialization.

For example:

-jnidll "C:\Program Files\JavaSoft\JRE\1.2\bin\classic\jvm.dll"

Note: Certain initialization parameters cause the Collaboration Rules pane to become
available.

4 In the Collaboration Rules box, if required by the initialization parameter, enter the
appropriate path and filename.

Note: The class name may exist in a .jar or .zip file.
e*Gate Integrator Collaboration Services Reference Guide 19

Chapter 4 Section 4.2
Java Collaboration Service (JCS) Using the Java Collaboration Service
5 If the Collaboration Rule requires an additional .class or .jar file, enter its name in
the Initialization file box.

If more than one file is required, reference the necessary files in an e*Gate Registry
control file, and specify the Registry control file in the Initialization file box.

For more information, see “To commit the file new.jar to the classes/path within
the e*Gate repository” on page 21.

When committing the Java class, if it is placed into a Java package, you must use the
correct path location. This consists of the classes/ directory prepended to the
package name, with all periods (.) converted to forward slashes (/).

The path for this class name, for example:

com.stc.common.collabService.myClassFile

Is:

classes/com/stc/common/collabService/myClassFile

4.2.3 Dealing With Long CLASSPATH Parameters
In some instances, the classpath parameter can exceed 255 characters. There are several
ways to accommodate this:

The JCS automatically uses the CLASSPATH environmental variable. You can refer
to all .jar files and directories here, allowing for a hard-coded maximum of 4096
characters for the classpath supplied to Java.

If using one global CLASSPATH environmental variable for all JCS is not desirable,
you can reference different environmental variables in the -classpath, -cp, or
-jnidll options by enclosing the name with percent (%) characters. For example:

%YOURCLASSPATH%

If the JCS must also run on different Participating Hosts, then you can check all .jar,
.zip, and .class files into the e*Gate Registry and reference them from a Registry
Control file. The Registry Control file can then be entered into the Initialization file
text box of the Collaboration Rules - Properties dialog box. For example:

FILE1.jar,classes,FILETYPE_BINTEXT
FILE2.zip,classes,FILETYPE_BINTEXT
FILE3.class,classes,FILETYPE_BINTEXT

When the JCS processes this control file, it downloads the respective files and
constructs this string as part of the JVM classpath variable:

<EG SharedData>/classes/FILE1.jar;<EG SharedData>/classes/
FILE2.zip

The <EG SharedData>/classes directory is a standard part of the JVM classpath.
e*Gate Integrator Collaboration Services Reference Guide 20

Chapter 4 Section 4.2
Java Collaboration Service (JCS) Using the Java Collaboration Service
4.2.4 Committing Java Classes and .jar Files to the Registry
After compiling the Java Collaboration Rules, you must:

Commit the resultant .class files to the e*Gate Registry under the classes/ directory.

Compile and store any other supporting Java classes in .jar files.

These .jar files must also be committed to the e*Gate Registry under the classes/
directory.

You normally commit files to the Registry using Schema Designer by clicking Commit
to Sandbox on the File menu. However, you can also commit files using the
stcregutil.exe command-line utility.

The following example shows how you can also commit files by running stcregutil with
the -fc (file commit) flag.

To commit the file new.jar to the classes/path within the e*Gate repository

1 Create a control (.ctl) file with a text editor giving it a name such as myjar.ctl. Each
line within the myjar.ctl file should have the following format, with no spaces
before of after the comma (,) characters:

new.jar,classes,FILETYPE_BINTEXT

2 Run the stcregutil utility by typing the following—on a single line—at the
command prompt:

stcregutil -rh registry -rs schema -un user-name
 -up password -fc classes -ctl myjar.ctl

For more information about the stcregutil.exe command-line utility, see the
e*Gate Integrator System Administration and Operations Guide.

You can also commit one file at a time using other File menu options, as described in
the following subsection.

Using the .ctl File to Download Entries from the Registry

If you want to use the .ctl file as a vehicle for downloading entries from the Registry,
you can use the special text editor provided within Schema Designer to make changes.
If you place your changes at the end of the file and then immediately recommit the .ctl
file, your changes are preserved.

Where . . . Is the . . .

registry Registry name to which to commit the file.

schema Schema name to which to commit the file.

user_name User name

password Password.

myjar Name of the .ctl file being committed.
e*Gate Integrator Collaboration Services Reference Guide 21

Chapter 4 Section 4.2
Java Collaboration Service (JCS) Using the Java Collaboration Service
To make permanent edits to a .ctl file

1 In Schema Designer, on the File menu, click Edit File to display the Open file
dialog box.

2 Set the Files of type to All files and then open the collaboration_rules folder.

3 Locate and open the .ctl file you want to edit.

4 Place your commands at the end of the file, after comment block beginning:

#USER DOWNLOADABLE ENTRIES
#

For example, after your edits, the file might look like this (emphasis added for
greater clarity):

[...]
#USER DOWNLOADABLE ENTRIES

Entries below this section will be preserved. Any entries
found above this section will be overwritten when the
collaboration rule is compiled.
#
/--Next two lines added by pc 2002-02-29 per TR 98765 ---\
MyFile.jar,C:\ThisPath\ThatPath\Folder,FILETYPE_BINTEXT
MyWord.txt,C:\MyPath,FILETYPE_ASCII
\--------------------------------------- End TR 98765 ---/
#

5 Exit the editor, saving your changes, and answer Yes when the system prompts you
to Commit the file.

6 In response to the system prompt, navigate to the location where the file should be
stored, and then save your changes.
e*Gate Integrator Collaboration Services Reference Guide 22

Chapter 4 Section 4.3
Java Collaboration Service (JCS) Parameters for the JCS Initialization String
4.3 Parameters for the JCS Initialization String
The following table lists all parameters and parameter values recognized by the Java
Collaboration Service. All parameters are optional.

Table 2 JCS Initialization Parameters

Parameter Value Purpose

-appendenvcp String Specifies any string or environment variable to
append the current CLASSPATH used by JCS.

The -appendenvcp parameter is preferred over the
-classpath parameter because it will not override any
necessary paths.

-classpath An absolute
path, or an
environmental
variable

Specifies the CLASSPATH that the JVM will use. If this
parameter is not specified, the JCS will create an
appropriate default CLASSPATH variable containing
all .jar files, class directories, and any additional files
declared as necessary.

This parameter can accept reference to an
environmental variable, for example:

-classpath %MYPATH%

Caution: The -classpath parameter completely
overrides the default CLASSPATH. If you specify
-classpath without supplying all the required paths,
or if some required paths are not available, the JCS
will not run. If, instead, you want to add or suggest a
classpath, use the -appendenvcp or -cp parameters.

-cp String Specifies any string or environment variable to
prepend the current CLASSPATH used by JCS.

The -cp parameter is preferred to -classpath because
it will not override any necessary paths.

-debug Integer Specifies a port number. A setting of -debug 8000 is
the default if nothing is specified.

 Allows you to run either JDB or e*Gate Java
Debugger or tracing and finding errors in
Collaboration Rules.

-def String Defines a Java property using the following format:
-def propertyname = value
e*Gate Integrator Collaboration Services Reference Guide 23

Chapter 4 Section 4.3
Java Collaboration Service (JCS) Parameters for the JCS Initialization String
-java1 None Specifies that the version of the jnidll location is for
Java version 1.1.7b.

If unspecified, the jnidll specified is assumed to
before Java 2:

Windows javai.dll

Solaris, Linux libjava.so

HP-UX libjava.sl

AIX libjava.a

-jnidll An absolute
path, or an
environmental
variable

Specifies the location of the (Java Native Interface
(JNI) dynamic-link library (DLL).

The absolute path name of where the installed Java
JNI DLL is located varies on different OS platforms:

OS Platform Java 2 Java 1

Windows jvm.dll avai.dll

Solaris
Linux

libjvm.so libjava.so

HP-UX libjvm.sl libjava.sl

AIX libjvm.a libjava.a

The JNI DLL must be located on the Participating
Host in the same directory in which the SDK or JRE
installed it.

The value assigned can contain a reference to an
environment variable enclosed between % symbols,
such as:

%JREJNIDLL%

Such variables can be used when multiple
Participating Hosts are used on different platforms.

-jvmprops A file name,
including a path
relative to the
Registry

Specifies the location of a single file that contains all
of the JVM property options. See the subsection
“Using the Java Virtual Machine (JVM) Properties
File” in the e*Gate Integrator User’s Guide for
information about creating and using a JVM
properties file.

-ldp An absolute
path, or an
environmental
variable

Overrides the default directory of the DLL. A suitable
library-link path is configured automatically by the
JCS.

This parameter prepends the specified paths to the
link-library path used. You could, for example, use
this parameter when Java code contains IDS-out-
wrapper classes that need a specified link-library file.

Table 2 JCS Initialization Parameters (Continued)

Parameter Value Purpose
e*Gate Integrator Collaboration Services Reference Guide 24

Chapter 4 Section 4.3
Java Collaboration Service (JCS) Parameters for the JCS Initialization String
-ms Integer Specifies the initial/starting heap size of the Java
Virtual Machine (JVM) in bytes.

The default value is 32000000.

You must use the -ms parameter to increase the
starting heap size if your process passes messages
larger than 32,000,000 bytes.

Caution: The -ms parameter impacts the
performance of your JCS. Inappropriate settings can
produce Java OutOfMemoryError conditions, and
setting the -ms value greater than the -mx value
produces an incompatible-size error message.

Consult the Java 2 SDK reference documentation and
evaluate the system performance implications before
setting the -ms and -mx parameters.

-mx Integer Specifies the maximum heap size of the Java Virtual
Machine (JVM) in bytes.

The default value is 64000000.

Caution: The -mx parameter impacts the
performance of your JCS. Inappropriate settings can
produce Java OutOfMemoryError conditions, and
setting the -mx value less than the -ms value
produces an incompatible-size error message.\

Consult the Java 2 SDK reference documentation and
evaluate the system performance implications before
setting the -ms and -mx parameters.

-noclasgc None Disables class garbage collection. If this parameter is
in place, no memory deallocation will take place for
the JVM.

-nojit None Disables the just-in-time compiler.

-suspend None When -suspend is specified, the JVM waits for an
attach to occur before executing the Collaboration
Rules component.

-verbose None Reports JVM information and all class loads.

-verbosegc None Enables garbage collection console activity.

None—A valid path name,
entered as the last value in the
Initialization string box, for
example:

com.mystc.myProgram

Specifies the location of the Collaboration Rules file.

When you use the last value of the initialization
string to specify the Collaboration Rules file, you do
not need to indicate a Collaboration Rules
component in the Collaboration Rules
box.

Table 2 JCS Initialization Parameters (Continued)

Parameter Value Purpose
e*Gate Integrator Collaboration Services Reference Guide 25

Chapter 5

C Collaboration Service

The C Collaboration Service supports using the C and C++ programming languages to
write dynamic-link library (DLL) files. When selected via the GUI from the
Collaboration Rules dialog box, e*Gate Integrator compiles and links the external
source code to create the dynamic or shared library.

For example:

You may already have a library or application written in C or C++, and want to
make it accessible to your e*Gate Integrator applications.

You may want to implement a portion of time-critical code, written in C or C++ ,
and have an e*Way call these functions.

You may have application-specific situations that are better handled outside the
Monk programming environment.

5.1 Header File: HTRANSCC.h
This section describes the HTRANSCC.h header file that passes a string into and out of
the interface object.

The object types passed between the application and external include character blobs,
wide character blobs, longs, booleans, characters, wide characters, double floating
point numbers, external interface objects and vectors of these types.

The external interface object implements the external interfaces. A structure is defined
that provides a location for object data and functions that implement the interface.

#ifndef STCCCOLLAB_H
#define STCCCOLLAB_H

#include "gendefs.h"
#include "stcapis.h"
#include "stctrans.h"

#ifdef __cplusplus
extern "C"
{
#endif

#define CEXT_VERSION "CEXTV1"

typedef void *HTRANSCC;
e*Gate Integrator Collaboration Services Reference Guide 26

Chapter 5 Section 5.1
C Collaboration Service Header File: HTRANSCC.h
//--
// IQInitialTopic
// --
//
// Purpose:
//
// provides access to the name of the Event Type that initiated
// the current translation.
//
// This is a C Collaboration equivalent of the iq-initial-topic
// Monk function.
//
// (For use within ccollab_translate)
//
// --
//
// Parameters:
//
// pcszInitialTopic:
// returns a null-terminated string containing the
// Initial topic name. The string must be pre-allocated.
//
// pvData: passes the incoming pvData parameter through for all
// calls. (For internal use.)
//
// return: if successful, this function will return TRUE.
//
//--
extern
BOOL
DLLEXP
APIDEF
IQInitialTopic (OUT char *pszInitialTopic,
 IN void *pvData);

//--
// IQGet
// --
//
// Purpose:
//
// retrieves and removes the next pending message from the
// default IQ for the current Collaboration.
//
// This is a C Collaboration equivalent of the iq-get Monk
// function.
//
// (For use within ccollab_translate.)
//
// --
//
// Parameters:
//
// pcszInputTopic:
// the name of the Event Type to get.
//
// hIQ: currently not in use. Must be NULL.
//
// pbMsgData: the retrieved byte data. NULL if call failed.
//
// pbMsgDataLen: the length of pbMsgData.
//
e*Gate Integrator Collaboration Services Reference Guide 27

Chapter 5 Section 5.1
C Collaboration Service Header File: HTRANSCC.h
// pvData: passes the incoming pvData parameter through for
// all calls. (For internal use.)
//
// return: if successful, this function will return TRUE.
//
//--
extern
DLLEXP
BOOL
APIDEF
IQGet (IN const char *pcszInputTopic,
 IN OUT HIQ hIQ,
 OUT char *pbMsgData,
 OUT DWORD *pbMsgDataLen,
 IN void *pvData);

//--
// IQInputTopics
// --
//
// Purpose:
//
// returns a comma-separated list of the names of all input
// Event Types for the current Collaboration.
//
// This is a C collaboration equivalent of the iq-input-topics
// Monk function.
//
// (For use within ccollab_translate.)
//
// --
//
// Parameters:
//
// pcszCVSInputTopics:
// provides a list of comma-separated values of
// all Event Types for the current collaboration.
// This string must be pre-allocated.
//
// pvData: passes the incoming pvData parameter through for
// all calls. (For internal use.)
//
// return: if successful, this function will return TRUE.
//
//--
extern
BOOL
DLLEXP
APIDEF
IQInputTopics (OUT char *pszCSVInputTopics,
 IN void *pvData);

//--
// IQOutputTopics
// --
//
// Purpose:
//
// returns a comma-separated list of the names of all output
// Event Types for the current Collaboration.
//
// This is a C Collaboration equivalent of the iq-output-topics
e*Gate Integrator Collaboration Services Reference Guide 28

Chapter 5 Section 5.1
C Collaboration Service Header File: HTRANSCC.h
// Monk function.
//
// (For use within ccollab_translate.)
//
// --
//
// Parameters:
//
// pcszCVSInputTopics:
// provides a list of comma-separated values of
// all Event Types for the current Collaboration.
// This string must be pre-allocated.
//
// pvData: passes the incoming pvData parameter through for
// all calls. (For internal use.)
//
// return: if successful, this function will return TRUE.
//
//--
extern
DLLEXP
BOOL
APIDEF
IQOutputTopics (OUT char *pszCSVOutputTopics,
 IN void *pvData);

//---

// IQPut
// --
//
// Purpose:
//
// places an event on the output queue, but does not commit
// it to the queue until the transformation function returns
// successfully.
//
// This is a C Collaboration equivalent of the iq-output-topics
// Monk function.
//
// (For use within ccollab_translate.)
//
// --
//
// Parameters:
//
// pcszOutputTopic:
// pass the name of the output topic to publish.
//
// pbMsgData:
// pass the data to publish.
//
// pcszCSVInputEventTypes:
// pass a comma-separated list of the input
// Event Types which were used to create this data.
//
// dwPriority:
// priority to assign to the output Event.
//
// dwMajorSeqNumber:
// major sequence number to assign.
//
// dwMinorSeqNumber:
e*Gate Integrator Collaboration Services Reference Guide 29

Chapter 5 Section 5.1
C Collaboration Service Header File: HTRANSCC.h
// minor sequence number to assign.
//
// pvData: passes the incoming pvData parameter through for
// all calls. (For internal use.)
//
// return: if successful, this function will return TRUE.
//
//--
extern
BOOL
DLLEXP
APIDEF
IQPut (IN const char *pcszOutputTopic,
 IN const STC_BLOB *pbMsgData,
 IN const char *pcszCSVInputTopics,
 IN DWORD dwPriority,
 IN DWORD dwMajorSeqNumber,
 IN DWORD dwMinorSeqNumber,
 IN void *pvData);

//--
// ccollab_init
// --
//
// Purpose:
//
// Used to initialize the DLL
//
// The handle that is optionally returned is passed into all
// other functions.
//
// --
//
// Parameters:
//
// phCC: if successful, a STC Session handle that is needed
// for all STC APIs.
//
// pcszInitFile:
// if pcszInitFile[0] != 0x00, then this is
// the initialization file configured for the
// Collaboration.
//
// pcszInitialization:
// if pcszInitialization[0] != 0x00, then this
// is the initialization string configured for
// the Collaboration.
//
// dwFlags: bit flags. Reserved for future use.
//
// pvReserved: this param is reserved for future use and
// MUST be set to NULL.
//
// return: if successful, this function should return TRUE.
// If an error occurs, it should return FALSE and
// make a call to SETLASTERROR(x) where "x" is the
/ GENERRO_xxx code defined in generror.h.
//
//--
extern
DLLEXP
BOOL
APIDEF
e*Gate Integrator Collaboration Services Reference Guide 30

Chapter 5 Section 5.1
C Collaboration Service Header File: HTRANSCC.h
ccollab_init(OUT HTRANSCC *phCC,
 IN const char *pcszInitFile,
 IN const char *pcszInitialization,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

//--
// ccollab_translate
// --
//
// Purpose:
//
// translate pInMsg to pReturnMsg.
//
// --
//
// Parameters:
//
// hCC: The handle returned from ccollab_init.
//
// pInMsg: pointer to a blob that is the Event to translate.
//
// pReturnMsg: the address of an STC_BLOB that, upon success,
// the implementation should fill out the cbData and
// pbData members with the translated Event.
//
// dwFlags: bit flags. Reserved for future use.
//
// pvData: This variable is required as a parameter to all
// IQ Service calls.
//
// return: if successful, this function should return TRUE.
// If an error occurs, it should return FALSE and
// make a call to SETLASTERROR(x) where "x" is the
/ GENERRO_xxx code defined in generror.h.
//
//--
extern
DLLEXP
BOOL
APIDEF
ccollab_translate(IN HTRANSCC hCC,
 IN STC_BLOB *pInMsg,
 IN OUT STC_BLOB *pReturnMsg,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvData);

//--
// ccollab_free
// --
//
// Purpose:
//
// free the memory allocated via the call to ccollab_translate
// for the pReturnMsg blob.
//
// --
//
// Parameters:
//
// hCC: The handle returned from ccollab_init
//
e*Gate Integrator Collaboration Services Reference Guide 31

Chapter 5 Section 5.1
C Collaboration Service Header File: HTRANSCC.h
// pReturnMsg: the address of an STC_BLOB that the pbData needs
// to be de-allocated. This function should set the
// cbData = 0 and the pbData = NULL.
//
// return: if successful, this function should return TRUE.
// If an error occurs, it should return FALSE and
// make a call to SETLASTERROR(x) where "x" is the
/ GENERRO_xxx code defined in generror.h.
//
//--
extern
DLLEXP
BOOL
APIDEF
ccollab_free(IN HTRANSCC hCC,
 IN STC_BLOB *pReturnedMsg);

//--
// ccollab_term
// --
//
// Purpose:
//
// notification of termination and oportunity to clean up hCC.
//
// --
//
// Parameters:
//
// hCC: The handle returned from ccollab_init
//
// return: if successful, this function should return TRUE.
// If an error occurs, it should return FALSE and
// make a call to SETLASTERROR(x) where "x" is the
/ GENERRO_xxx code defined in generror.h.
//
//--
extern
DLLEXP
BOOL
APIDEF
ccollab_term(IN HTRANSCC hCC);

//--
// ccollab_version
// --
//
// Purpose:
//
// signals intent to use enhanced C collaboration features
// (such as IQ Service functions)
//
//--
//
// Parameters:
//
// pszVersion: store CEXT_VERSION to enable features
// (pszVersion is pre-allocated)
//
//--
extern
DLLEXP
e*Gate Integrator Collaboration Services Reference Guide 32

Chapter 5 Section 5.2
C Collaboration Service Developing the C Dynamic-Link Library (DLL) File
void
APIDEF
ccollab_version(OUT char *pszVersion);

#ifdef __cplusplus
}
#endif

#endif // STCCCOLLAB_H

5.2 Developing the C Dynamic-Link Library (DLL) File
The sample code in the following newcollab.c (or .cpp) file shows the business logic the
C Collaboration Service uses. The .c (or .cpp) file must be compiled externally into a .dll
file.

#include "HTRANSCC.h"

BOOL

ccolab_init(OUT HTRANSCC *phCC,
IN const char *pcszInitFile,

IN const char *pcszInitString,

IN DWORD dwFlags,

IN OUT OPTIONAL void *pvReserved)

 return(TRUE);

BOOL

ccollab_translate(HTRANSCC hCC,

 STC_BLOB *sInBlob,

 STC_BLOB *sOutBlob,

 DWORD dwFlags, void *pvReserved)

sOutBlob->pbData = (BYTE *)malloc(sInBlob->cbData);
if (!(sOutBlob->pbData))
{

return(FALSE);
}
sOutBlob->cbData = sInBlob->cbData;
memcpy(sOutBlob->pbData, sInBlob->pbData, sInBlob->cbData);
return(TRUE);

}

BOOL

collab_free(IN HTRANSCC hCC,
e*Gate Integrator Collaboration Services Reference Guide 33

Chapter 5 Section 5.2
C Collaboration Service Developing the C Dynamic-Link Library (DLL) File
 IN STC_BLOB *pReturnedMsg)

if (pReturnedMsg)
{

if (pReturnedMsg->pbData)
{

 free(pReturnedMsg->pbData);
}

pReturnedMsg->pbData = NULL;

 pReturnedMsg->cbData = 0;
}

 return(TRUE);

BOOL

collab_term (IN HTRANSCC hCC)

 return (TRUE);

Within the ccollab_translate function, you can implement any code you like to perform
the business logic required by this Collaboration.

5.2.1 Monk IQ Functions That Do Not Support JMS IQs
The following Monk functions do not support JMS IQs:

iq-get-header

iq-mark-unusable

iq-peek
e*Gate Integrator Collaboration Services Reference Guide 34

Chapter 5 Section 5.3
C Collaboration Service The C Collaboration APIs
5.3 The C Collaboration APIs
This subsection describes the e*Gate Integrator APIs that are available within the
C Collaboration Service:

ccollab_free() on page 36

ccollab_init() on page 37

ccollab_term() on page 38

ccollab_translate() on page 39
e*Gate Integrator Collaboration Services Reference Guide 35

Chapter 5 Section 5.3
C Collaboration Service The C Collaboration APIs
ccollab_free()

Syntax

ccollab_free(IN HTRANSCC hCC,
 IN STC_BLOB *pReturnedMsg);

Description

ccollab_free() deallocates the memory associated with the pReturnedMsg in the
ccollab_translate() call.

Parameters

Return Value

Boolean: If successful, returns true; otherwise, returns false.

Name Type Description

hCC HTRANSC The handle indicated by ccollab_init().

pReturnedMsg Pointer A pointer to the message or blob associated with
ccollab_translate().
e*Gate Integrator Collaboration Services Reference Guide 36

Chapter 5 Section 5.3
C Collaboration Service The C Collaboration APIs
ccollab_init()

Syntax

ccollab_init(OUT HTRANSCC *phCC,
 IN const char *pcszInitFile,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

Description

ccollab_init() is defined in the loadable extension library. It is called directly after
loading the library. It initializes an interface object and returns it to the calling function.

Parameters

Return Value

Boolean: If successful, returns true; otherwise, returns false.

Name Type Description

phCC Pointer A pointer to the handle.

Pass this function the address of an empty
handle, and the function will return the handle
for use by other functions.

pcszInitFile Zero-delimited string A full path pointer to initialization file.

dwFlags DWORD Reserved. Must be set to zero.

pvReserved Void Reserved. Must be set to null.
e*Gate Integrator Collaboration Services Reference Guide 37

Chapter 5 Section 5.3
C Collaboration Service The C Collaboration APIs
ccollab_term()

Syntax

ccollab_term(IN HTRANSCC hCC);

Description

ccollab_term deallocates any memory associated with the initial ccollab_init() call.

Parameters

Return Value

Boolean: If successful, returns true; otherwise, returns false.

Name Type Description

hCC HTRANSCC The handle indicated by ccollab_init().
e*Gate Integrator Collaboration Services Reference Guide 38

Chapter 5 Section 5.3
C Collaboration Service The C Collaboration APIs
ccollab_translate()

Syntax

ccollab_translate(IN HTRANSCC hCC,
 IN STC_BLOB *pInMsg,
 OUT STC_BLOB *pReturnMsg,
 IN DWORD dwFlags,
 IN OUT OPTIONAL void *pvReserved);

Description

ccollab_translate() provides a pointer (pInMsg) string to external, accepts the message
as a blob (pReturnMsg), and allocates memory as necessary.

Parameters

Return Value

Boolean: If successful, returns true; otherwise, returns false.

Name Type Description

hCC HTRANSCC The handle indicated by ccollab_init().

pInMsg String A read only pointer string.

pReturnMsg String A message, as a blob.

dwFlags DWORD Reserved. Must be set to zero.

pvReserved Void Reserved. Must be set to null.
e*Gate Integrator Collaboration Services Reference Guide 39

Chapter 5 Section 5.4
C Collaboration Service Using the C Collaboration Service
5.4 Using the C Collaboration Service
After the .c file has been compiled externally, the resultant .dll file must be committed
to the run-time environment e*Gate Registry under the bin/ directory.

You can commit files to the Registry using either the:

Schema Designer (click Commit to Sandbox on the File menu)

stcregutil.exe command-line utility

The example in this section shows how to commit/retrieve files by using stcregutil,
implementing the -fr and -fc commands.

To commit (import) the new .dll file to the bin/ path within the e*Gate Repository

1 Use a text editor to create a control (.ctl) file, such as mydll.ctl. Each line in this file
must have the following format, with no spaces before or after the comma (,)
characters:

new.dll,path_location,FILETYPE_BINTEXT

2 Run the stcregutil utility by typing the following—on a single line—at the
command prompt:

stcregutil -rh registry -rs schema -un user-name -up password -fc
path_location -ctl mydll.ctl

For more information about the stcregutil.exe command-line utility, see the e*Gate
Integrator System Administration and Operations Guide. You can also retrieve/commit a
file using the Schema Designer’s File menu options. See the Schema Designer online
Help system for more information.

Where . . . Is the . . .

registry Registry name to which to commit the file.

schema Schema name to which to commit the file.

user_name User name

password Password.

path_location Path location.

mydll Name of the .ctl file being committed.
e*Gate Integrator Collaboration Services Reference Guide 40

Chapter 5 Section 5.5
C Collaboration Service C Collaboration Rules and the Schema Designer
5.5 C Collaboration Rules and the Schema Designer
After you have committed your C .dll file to the Registry, you must use the
Collaboration Rules Editor to define an e*Gate Collaboration Rules component.

To create a C Collaboration Service

1 Commit the .dll or .ctl file to the e*Gate Registry.

2 Define the Event Types to which the C Collaboration will subscribe and publish.

3 Create the Collaboration Rules that use the C Collaboration Service.

4 Configure a Collaboration to use the C Collaboration Rule, and configure a BOB or
e*Way to execute this Collaboration, as described in the following subsection.

Note: You cannot execute the C .dll file within a function called by the communications
component of an e*Way.

5 Configure any other e*Gate Integrator components as necessary to create a working
schema.

6 Test the schema, making any correction as necessary to the e*Gate Integrator
configuration or to any Collaboration Rules components.

7 After successfully testing the C .dll, promote it to the run-time environment, using
either the:

Promote to Runtime command on the Schema Designer File menu

stcregutil.exe command-line utility

5.6 Implementing the C Collaboration Rule
To define a Collaboration Rule that uses the C Collaboration Service

1 Use e*Gate Schema Designer to create and name a new Collaboration Rules
component. See Figure 1 on page 15.

2 Edit the properties of the new Collaboration Rule, selecting C as the Collaboration
Service on the General tab of the Collaboration Rules - Property dialog box, as
shown in Figure 7.

3 Click Find in the Collaboration Rules part of the dialog box to select the name of the
.dll file that you created to use with this Collaboration.

4 Configure the Subscriptions and Publications tabs as you would for any other
Collaboration Rules component.

5 Click OK to close the Collaboration Rules - Properties dialog box and return to the
Schema Designer.
e*Gate Integrator Collaboration Services Reference Guide 41

Chapter 5 Section 5.6
C Collaboration Service Implementing the C Collaboration Rule
Figure 7 Selecting the C Collaboration Service
e*Gate Integrator Collaboration Services Reference Guide 42

Index
Index

Symbols
-appendenvcp 23
-classpath 23
-cp 23
-debug 23
-def 23
-java1 24
-jnidll 24
-ldp 24
-ms 25
-mx 25
-noclasgc 25
-nojit 25
-suspend 25
-verbose 25
-verbosegc 25

A
AIX Participating Hosts 10
appendenvcp (initialization parameter for JCS) 23

C
C Collaboration Service 26

business logic 33
ccollab_translate 34
classpath

exceeding 255 characters 20
initialization parameter for JCS 23

Collaboration Rules
Java, configuring 19
Pass Through, Java 15, 16

Collaboration Services
C Collaboration 9
Java Collaboration 9
Monk 9
Monk ID 9
Pass Through 9
Route Table 9
supported by e*Gate 9

committing files to the registry 21
cp, initialization parameter for JCS 23

D
debug, initialization parameter for JCS 23
def, initialization parameter for JCS 23
Dynamic Link Library 26

F
functions, Monk, that do not support JMS IQs 34

H
header file, HTRANSCC.h 26
HTRANSCC.h, header file 26

I
implementing

C Collaboration Rule 41
JCS Collaboration rule 19

importing files to the Registry. See committing files
initialization parameters, JCS 23
intended audience, reference guide 7
IQ functions, Monk, that do not support JMS IQs 34

J
Java 2 SDK on UNIX

requirements 10
search path environment variables 10

Java Collaboration Rules, configuring 19
Java Collaboration Service 14, 14–25

defined 14
initialization parameters for 23
methods 23
using 14

Java Pass Through Collaboration Rule
creating 15
defined 15
illustrated 16

java1initialization parameter, JCS 24
JCS. See Java Collaboration Service
JMS IQs

unsupported by Monk functions, list of 34
jnidll initialization parameter, JCS 24
jvmprops, initialization parameter for JCS 24

L
ldp, initialization parameter for JCS 24

M
Monk Collaboration Service 12
e*Gate Integrator Collaboration Services Reference Guide 43

Index
Monk functions that do not support JMS IQs 34
Monk ID Collaboration Service 13
ms, initialization parameter for JCS 25
mx, initialization parameter for JCS 25

N
noclasgc, initialization parameter for JCS 25
nojit, initialization parameter for JCS 25

O
organization of information in reference guide 8
OutOfMemoryError conditions 25

P
Pass Through

class (Java Collaboration Rule) 15, 16
class, Java Collaboration Rules 15
Collaboration Service 13

Pass Through Collaboration Service 13
PTFs, required for AIX Participating Hosts 10

R
reference guide

intended audience 7
organization of information 8
purpose and scope 7

Registry, committing files 21
requirements 10

Java 2 SDK 10
Route Table Collaboration Service 13

S
search path environment variables, Java 2 SDK 10
STCJavaPassThrough.class 15
stcregutil 21
supported collaboration service 9
suspend (initialization parameter for JCS) 25
system requirements 10

Java 2 SDK 10

V
verbose initialization parameter, JCS 25
verbosegc, initialization parameter for JCS 25
e*Gate Integrator Collaboration Services Reference Guide 44

	e*Gate Integrator Collaboration Services Reference Guide
	Contents
	List of Figures
	List of Tables
	Introduction
	1.1 Purpose and Scope
	1.2 Intended Audience
	1.3 Organization of Information

	Requirements for Supported Collaboration Services
	2.1 Supported Collaboration Services
	2.2 Requirements
	2.2.1 System Requirements
	2.2.2 Java 2 SDK Requirements on UNIX Systems

	Monk-Related and Pass Through Collaboration Services
	3.1 Monk Collaboration Service
	3.2 Monk ID Collaboration Service
	3.3 Route Table Collaboration Service
	3.4 Pass Through Collaboration Service

	Java Collaboration Service (JCS)
	4.1 Description
	4.2 Using the Java Collaboration Service
	4.2.1 Creating Java Collaboration Rules Components
	4.2.2 Implementing Java Collaboration Rule Components
	4.2.3 Dealing With Long CLASSPATH Parameters
	4.2.4 Committing Java Classes and .jar Files to the Registry
	Using the .ctl File to Download Entries from the Registry

	4.3 Parameters for the JCS Initialization String

	C Collaboration Service
	5.1 Header File: HTRANSCC.h
	5.2 Developing the C Dynamic-Link Library (DLL) File
	5.2.1 Monk IQ Functions That Do Not Support JMS IQs

	5.3 The C Collaboration APIs
	ccollab_free()
	ccollab_init()
	ccollab_term()
	ccollab_translate()

	5.4 Using the C Collaboration Service
	5.5 C Collaboration Rules and the Schema Designer
	5.6 Implementing the C Collaboration Rule

	Index
	Symbols
	A
	C
	D
	F
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	V

