
Generic Multi-Mode e*Way
Extension Kit User’s Guide

Release 5.0.5 for Schema Run-time
Environment (SRE)

Copyright © 2005, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open
Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Version 20100715114209.

Generic Multi-Mode e*Way Extension Kit User’s Guide 2

Contents
Contents

List of Figures 13

List of Tables 15

Preface 16
Intended Reader 16

Organization 16

Writing Conventions 18

Chapter 1

Introduction 20
Overview 20

Supported Operating Systems 21

System Requirements 22
Host System Requirements 22

GUI Host Requirements 22

Prerequisites for Installing and Using the Kit 22

Chapter 2

Installation 23
Installing the Generic Multi-Mode e*Way Extension Kit on Windows 23

Pre-installation 23
Installation Procedure 23

Installing the Generic Multi-Mode e*Way Extension Kit on UNIX 24
Pre-installation 24
Installation Procedure 24

Files/Directories Created by the Installation 25
Generic Multi-Mode e*Way Extension Kit User’s Guide 3

Contents
Chapter 3

Architectural Overview 30
Overview of e*Way Operation 30

Component Parts 30

Multi-Mode e*Ways 31
Multi-Mode e*Way Characteristics 31

Collaborations and Event Type Definitions 34
Java Collaboration Service 37

e*Way Connections 39
Configuring e*Way Connections 39

Chapter 4

Functional Flow 41
Overview of Run-Time Operation 41

Step 1: Initialize 42
1A: Environment Phase 42

About .ctl files 42
1B: Startup Phase 42

Step 2: Execute 43
ETD Initialization Flow 43
Automatic Connection and Connection Management 44
ETD Reset Flow 44

Step 3: Shutdown/Reload 45
Shutdown/Reload Flow 45

Chapter 5

e*Way Development Methodology 46
e*Way Development Considerations 46

e*Way Design Planning 46

e*Way Design Considerations 47
Establishing Connectivity Protocols and Defining Event Types 47
Facilities for Collecting Metadata 48
Communication Modes and Integration Interfaces 49
APIs for Third-Party Systems 50
Generic Multi-Mode e*Way Extension Kit User’s Guide 4

Contents
Chapter 6

e*Way Development Workflow 51
Java Classes Used in e*Way Connection ETDs 51

Class Relationships 51
Application Programming Interfaces (APIs) 53

Subcollaboration Rules 54
Caveats 55
Implications for e*Way Development 55

Implementing Your Design 56
Creating .java Files 56

Class Development and Configuration 56
e*Way Connections with Connection Management 60
Classes and Interactions for Connection Management 61
Developing an e*Way with Connection Management Support 65
e*Way Connections with Transaction Processing and XA 68
Classes and Interactions for Transaction Processing 69
Sequence of Interactions 70

Compiling .java Files 73
How Classpaths Are Determined 74

Creating .ctl Files 74
Creating .def Files 74
Creating the .xsc File 75

Building and Testing Your Components 75
Running the installETD Script 75

Windows: installETD.bat 76
UNIX: installETD.sh 76

Validating the Results 77

Packaging and Distribution 77
About the Packaging of the Samples in the Kit 78

Scripts 78

Chapter 7

Event Type Definitions 79
Events and ETDs 79

ETDs and e*Gate 80
ETD Nodes 80

Overview of the XSC Format 81
General Rules for Entities 81
General Rules for Attributes 82

Using Entities and Attributes 82
Sketching an Outline: Entities and Their Hierarchy 84
Fundamental Entity Relationships and Attributes 85

Designing Your Entities 86
Sample File XAFileETD.xsc 86
Generic Multi-Mode e*Way Extension Kit User’s Guide 5

Contents
Notes, Tips, and Caveats 88
Metadata Representation 88
Character Sets and Encodings 88

Chapter 8

Developing an e*Way Using ETD Builder Components 89
Overview 89

ETD Builder Development Process Overview 90
ETD Builder Components 91
ETD Builder Architecture 92
What the ETD Builder Does for End Users 94
How an ETD Builder Operates 94

The e*Way Run-Time Environment 95

e*Gate Deployment Scripts 96

Back-end Converter for the ETD Builder 96
Understanding the Builder API 97
Creating and Deploying an ETD by Command-Line Interface 98

stcinstd 99

Front-end Wizards for the ETD Builder 99
Overview of ETD Builder Wizards 99
Using Heavyweight or Lightweight Visual Basic to Create an ETD Builder Wizard 101

Using Heavyweight Visual Basic to Create an ETD Builder Wizard 102
Using Lightweight Visual Basic to Create an ETD Builder Wizard 104

Wizard Icons 107
Deploying and Validating an ETD Builder Wizard 108

Sample Code for the Builder API 108
RmiDemoSvr 108
RmiDemoSvrIntf.java 109
GmeekDemoBuilder.java 112

Chapter 9

Developing an e*Way Using the Builder API 119
Overview 119

Using the Sample e*Ways 119
Tasks for Completing the Sample e*Ways 120

Task 1: One-Time Setup Steps 122
Pre-installation 122
One-Time Setup Steps 123
One-Time Setup Steps for the RMI Server 124

Task 2: Creating the Back-end for the ETD Builder 124

Task 3: Building the e*Way and e*Way Connection 125
To set up the e*Gate files associated with the e*Way and e*Way connection 126
Generic Multi-Mode e*Way Extension Kit User’s Guide 6

Contents
To build the e*Way and e*Way connection 127
To register the e*Way and e*Way Connection with e*Gate 127
To validate the new e*Way Connection within e*Gate 130

Task 4: Creating and Deploying an ETD Builder Wizard 132
Using Heavyweight Visual Basic to Create an ETD Builder Wizard 132
Using Lightweight Visual Basic to Create an ETD Builder Wizard 138

Creating the Java Wizard 139
Deploying the ETD wizard in e*Gate 141

Modifying stcewgmeekdemoeway.ctl 141
Modifying ETDWizards.ini 143
Deploying the ETD Wizard in e*Gate 143

Task 5: Testing the Wizard with a Stand-alone Visual Basic Tester 145

Task 6: Creating and Registering the ETD Using the Command Line 148

Task 7: Testing Outside of the e*Gate Environment 151
Running the runRmitest Script for the Rmi Server 151
RmiDemoClient.java 151
Running the runrmiclient Script for the Rmi Server 152

Rerunning the installEWAY Script 153

Task 8: Understanding the Sample Implemented in a Schema 153
Importing the GmeekDemoEwaySample.zip Schema 153
Sample Data INDATA 154

Chapter 10

Developing the Automatic e*Way Connection 155
Overview 155

Classes and Interactions for the Automatic Connection Sample 156
ETD Class 156
Connector Class 157

Overview of the Automatic Connection Sample 158

Installing the Sample 159

Setting Up the Automatic Connection Sample Files 159
Editing/Viewing the .java Files 159

SampleETD.java 160
SampleETDConnector.java 168
SampleETDDefs.java 170
SampleETDExternalClass.java 171
SampleETDExternalException.java 173
SampleETDTester.java 173

Customizing the Compile Script 174
Compiling the .java Files and Creating the .jar File 175
Editing/Viewing the .ctl Files 175
Editing/Viewing the .def Files 176
Editing/Viewing the .xsc File 176

Installing the Sample Files to e*Gate 179
Customizing the install.ctl File 179
Generic Multi-Mode e*Way Extension Kit User’s Guide 7

Contents
Testing Outside of e*Gate 179
SampleETDTester.java 179
Running the runTester File 180

Running the installETD Script 181
Validating the Sample Files Within e*Gate 181

Understanding the SampleETD Implemented in a Schema 182
Importing the MySchema.zip Schema 182
Sample Data INDATA 183

Chapter 11

Developing an e*Way Connection With Connection
Management 185
Overview 185

Classes and Interactions for the Connection Management Sample 186
ETD Class 186
Connector Class 188

Overview of the Connection Management Sample 190

Installing the Sample 190

Setting Up the Connection Management Sample Files 191
Editing/Viewing the .java Files 192
TCPClient 192

TCPClientETD.java 192
TCPClientETDConnector.java 208
TCPClientDefs.java 211
TCPClient.java 211
TCPClientException.java 213

TCPServer 213
TCPServer.java 214
RunServer.bat 214

Customizing the Compile Script 214
Compiling the .java Files and Creating the .jar File 215
Editing/Viewing the .ctl Files 215
Editing/Viewing the .def Files 216
Editing/Viewing the .xsc File 216

Installing the Sample Files to e*Gate 217
Customizing the install.ctl File 217
Testing Outside of e*Gate 217

Running the runServer Script for TcpEchoServer 217
TcpClient.java 218
Running the runTester Script for TcpEchoServer 218

Running the installETD Script 219
Validating the Sample Files Within e*Gate 219

Understanding the TcpClientETD Implemented in a Schema 221
Importing the TcpEcho.zip Schema 221
Sample Data INDATA 221
Generic Multi-Mode e*Way Extension Kit User’s Guide 8

Contents
Chapter 12

Developing a Transactional e*Way Connection 223
Overview 223

Transactional Interfaces for e*Way Connection ETDs 224
Architecture of the Sample Transactional e*Way Connection 224

Classes and Interactions for the Transactional Sample 225
ETD Class 226

Overview of the Transactional Sample 227

Installing the Sample 227

Setting Up the Transactional Sample Files 228
Editing/Viewing the .java Files 228

XAFileETD.java 229
XAFileETDDefs.java 230
Resource.java 230
XidValue.java 231
XAFile.java 232
XAFileETDConnector.java 232
EwayConnectionETDImpl.java 232

Customizing the Compile Script 232
Compiling the .java Files and Creating the .jar File 233
Editing/Viewing the XAFileETD.ctl File 233
Editing/Viewing the XAFile.def File 234
Editing/Viewing the XAFileETD.xsc File 234

Installing the Sample Files to e*Gate 235
Customizing the install.ctl File 235
Creating a Schema for the New ETD 235
Running the installETD Script 235
Validating the Sample Files Within e*Gate 236

Understanding the ETD Implemented in a Schema 237
Importing XAFile.zip Into e*Gate 237
Sample INDATA 239

Chapter 13

Best Practices 241
Designing e*Way ETD Classes 242

General 242
Using Abstract Class EwayConnectionETDImpl 242
Using Abstract Class EwayConnETDConnectorExtImpl 242
Do’s and Don’ts for the Connector Class 243
Using a Delegate Class 243
Using Inner Classes 243

Handling Messageable ETDs 243

Handling Exceptions 244
Generic Multi-Mode e*Way Extension Kit User’s Guide 9

Contents
Exception Handling Within ETD Entities 244

Troubleshooting and Debugging 244
Log Files 245
Adding Trace Logging 245
Debug Levels and Flags 246
Alert Notifications 247
Using the eventSend() Method to Send Alert Notifications 247
Debugging 250
Using Internal Templates 251
Wrapping Third-Party APIs Using JNI 251

Oracle SeeBeyond JMS 252

Working With the Back-end Builder 252
Incremental Testing 252
Designing the Front-End GUI 252

Chapter 14

e*Way Classes and Methods 254
Viewing Javadocs 254

Appendix A

Extending the .def File 256
Introduction 256

Layout 257

.def file Keywords: General Information 257
White Space 257
Integer Parameters 258
Floating-point Parameters 258
String and Character Parameters 258
Path Parameters 258
Comments 258
Header Information 259

Defining a New Section 259
Section Syntax 260
Parameter Syntax 261

Order of Keywords 261
Parameter Types 262
Parameters Requiring Single Values 262
Parameters Accepting a Single Value From a Set 263
Parameters Accepting Multiple Values From a Set 264

Specifying Ranges 266
Specifying Units 267
Displaying Options in ASCII, Octal, Hexadecimal, or Decimal 269

Factor 270
Encrypting Strings 271
Generic Multi-Mode e*Way Extension Kit User’s Guide 10

Contents
Configuration Keyword Reference 272

Configuration Parameters and the Configuration Files 275
Examples 276

Testing and Debugging the .def File 281
Common Error Messages 282

Sample .def File 283

Accessing Configuration Parameters Within the APIs 285
Format for Variable Names 285
Referencing the Parameter 285
Getting Variable Values 286

Appendix B

The XSC Format 287
Overview 287

Example of Required Entities 288

Entities 289
The <etd> Entity 289

Syntax 289
Required Attributes for <etd> 290
Optional Attributes for <etd> 290
Entities Directly Contained by <etd> 292
Compatibility Notes for <etd> 292

The <javaProps> Entity 292
Syntax 292
Required Attributes for <javaProps> 292
Optional Attributes for <javaProps> 293
Entities Directly Contained by <javaProps> 293
Compatibility Notes for <javaProps> 294

The <jar> Entity 294
Syntax 294

The <interface> Entity 294
Syntax 294
Required Attribute for <interface> 294
Entities Directly Contained by <interface> 294
Compatibility Notes for <interface> 294

Delimiter-Related Entities (SSC only) 295
Required Attributes for <delim> 296
Optional Attributes for <delim> 296
Entities Directly Contained by <delim> 296
Required and Optional Attributes for <delimGroup> 296
Entities Directly Contained by <delimGroup> 296
Attributes for <beginDelim> and <endDelim> 297

The <node> and <class> Entities 297
Syntax 297
Required Attributes for <node> 298

The <method> Entity 298
Syntax 299
Required Attributes for <method> 299
Generic Multi-Mode e*Way Extension Kit User’s Guide 11

Contents
Optional Attributes for <method> 299
The <param> Entity 300

Syntax 300
Required Attributes for <param> 300
Optional Attributes for <param> 300

Table of XSC Entities and Their Attributes 300
Default Values 300
Types 300

Method Signature Syntax 304

Identifier Characters 305

JCS Properties 305

Appendix C

The RMI Server 307
Experimenting with Other Simulations of External Systems 307

Overview 307
Experimenting with Other APIs for the Provided “External System” 309

Sample Code for RMI 309
RmiDemoSvrIntf.java 310
RmiDemoClient.java 310
RmiDemoSvrImpl.java 312
RmiDemoSvr.java 317

Index 319
Generic Multi-Mode e*Way Extension Kit User’s Guide 12

List of Figures
List of Figures

Figure 1 Basic e*Gate Data Flow Relationships 20

Figure 2 Multi-Mode e*Way 32

Figure 3 e*Way within e*Gate Integrator 33

Figure 4 Stand-alone e*Way 33

Figure 5 Inbound Collaboration 34

Figure 6 Outbound Collaboration 35

Figure 7 Typical ETD Builder 36

Figure 8 Event Type Definitions 37

Figure 9 Java Component Relationships 38

Figure 10 e*Way Connection Configuration 39

Figure 11 Sequence of ETD Initialization Flow 43

Figure 12 Sequence of ETD Reset Flow 44

Figure 13 Sequence of Shutdown/Reload Flow 45

Figure 14 Class Relationships of the ETD and Connector Classes 52

Figure 15 Class Relationships of an ETD Class 57

Figure 16 SampleETDConnector (Connector Class) Relationship 59

Figure 17 ETD Class for a Connection Management e*Way 62

Figure 18 Connector Class for a Connection Management e*Way 64

Figure 19 Class Interactions for a Connection Management e*Way 67

Figure 20 ETD Class for an XA-enabled e*Way Connection 70

Figure 21 Sequence of Class Interactions in XA: Initialization Phase 71

Figure 22 Sequence of Class Interactions in XA: Translation Phase 72

Figure 23 ETD Builder Development Process 91

Figure 24 ETD Builder Architecture 93

Figure 25 Connector Types: Connection Management and Automatic Connection 95

Figure 26 Relationships Between the ETD Editor and the Builder Wizards 100

Figure 27 ETD Builder Wizard Using Heavyweight Visual Basic 102

Figure 28 ETD Builder Wizard Using Lightweight Visual Basic 105

Figure 29 e*Way Connection Properties Dialog Box 130

Figure 30 Results of Validating the e*Way Connection 131

Figure 31 Gmeek Wizard in Microsoft Visual Basic 133

Figure 32 Gmeek Wizard in Microsoft Visual Basic: IntroductionFrameControl 134
Generic Multi-Mode e*Way Extension Kit User’s Guide 13

List of Figures
Figure 33 Gmeek Wizard in Microsoft Visual Basic: Gmeek SourceFrameControl 135

Figure 34 Gmeek Wizard in Microsoft Visual Basic: SummaryFrameControl 136

Figure 35 Wizard Project Properties 138

Figure 36 Example of Customized Java Wizard Dialog 140

Figure 37 Wizard Project Properties 141

Figure 38 Heavyweight Visual Basic Wizard Icon 144

Figure 39 Lightweight Visual Basic Wizard Icon 145

Figure 40 QA Wizards Stand-alone Tester 146

Figure 41 Generated .xsc in Notepad 147

Figure 42 New Event Type Definition Dialog 148

Figure 43 Event Type Definition Selection Dialog 150

Figure 44 Account.xsc Viewed in the ETD Editor 150

Figure 45 Architecture of the Automatic Connection Sample 155

Figure 46 ETD Class (SampleETD) for the Automatic Connection Sample 157

Figure 47 Connector Class (SampleETDConnector) 158

Figure 48 e*Way Connection Type SampleETD 181

Figure 49 SampleETD.xsc 182

Figure 50 Architecture of Connection Management Sample 186

Figure 51 Extending ETDImpl: The ETD Class for the Connection Management Sample 187

Figure 52 Connector Class for the Connection Management Sample 189

Figure 53 e*Way Connection Type TcpClientETD 220

Figure 54 TcpClientETD.xsc 220

Figure 55 Architecture of e*Way Connection: Transactional Sample 225

Figure 56 ETD Class for the Sample XA-enabled e*Way Connection 226

Figure 57 e*Way Connection Properties for XAFileETD 236

Figure 58 ETD Editor Display of XAFileETD 237

Figure 59 Configuration Editor Display of XAFileETD.cfg: Connector Section 238

Figure 60 Configuration Editor Display of XAFileETD.cfg 239

Figure 61 e*Way Connection Editor Main Controls 260

Figure 62 A parameter requiring a single value 263

Figure 63 A parameter requiring one of a set of values 263

Figure 64 A parameter requiring one of a set of values 265

Figure 65 A parameter that performs unit conversion 267

Figure 66 A parameter using (factor) 271

Figure 67 The sampleETD.def file in the e*Way Connection Editor 284

Figure 68 The sampleETD.def File in Text Editor 284

Figure 69 Sample RMI System Architecture 308

Figure 70 Creating an RMI Application 310
Generic Multi-Mode e*Way Extension Kit User’s Guide 14

List of Tables

Generic Multi-Mode e*Way Extension Kit User’s Guide 15

List of Tables

Table 1 Product Files Shipped on the CD-ROM 25

Table 2 Product File Shipped on the CD-ROM in setup\addons\gmeek 26

Table 3 Product Files Contained in File gmeek.taz 26

Table 4 e*Way Connection Control Techniques 44

Table 5 e*Way Categories 47

Table 6 Escape Codes for Special Characters 88

Table 7 e*Gate Deployment Scripts 96

Table 8 Standard Properties for the SetProp and GetProp COM Interfaces 100

Table 9 Development Directories 122

Table 10 Files to Copy from e*Gate Participating Host to C:\gmeekjars 122

Table 11 As-Shipped Settings in RmiAccounTester.java 125

Table 12 Usage and Parameters for the installEWAY script 128

Table 13 Return Values 139

Table 14 Connection Management Sample Files 191

Table 15 Transactional Sample Files 228

Table 16 Trace Events (Logging Levels) 246

Table 17 Contents of the GMEEK\html folder 255

Table 18 User-editable (general-info) parameters 259

Table 19 Basic Parameter Keywords 262

Table 20 .def-file keywords 272

Table 21 Attributes and Entities 301

Table 22 Signature Key Letters for Java Primitive Types 304

Table 23 JCS Properties 306

Preface

This Preface identifies the intended reader, describes nomenclature and writing
conventions, outlines the organization of information, and provides a list of related
documents.

P.1 Intended Reader
The reader of this guide is presumed to be an experienced Java programmer who wants
to create e*Ways, e*Way Connections, and Event Type Definition (ETD) builders and
deploy them for e*Gate end users. As a reader of this guide, you should have a
thorough understanding of the following:

The external application for which the extension is to be written.

The structure and format of the data to be modeled in your ETDs, which will be
transported and transformed by your e*Ways and e*Way Connections.

Terminology, concepts, and operation of e*Gate Integrator 4.5.1 and later:

Java-based Events, ETDs, and the ETD Editor.

Java Collaborations, Collaboration Rules, and the Collaboration Rules Editor.

Java-based e*Ways, e*Way Connections, and the Configuration Editor.

Java programming language and environment; Java Native Interface (JNI).

In addition, as a reader of this guide, you should have familiarity with Microsoft Visual
Basic.

P.2 Organization
This User’s Guide is organized into the following chapters:

Chapter 1 “Introduction”: Introduces the guide and lists prerequisites for installing
and using the kit.

Chapter 2 “Installation”: Describes the procedures for installing the kit on Windows
and UNIX operating systems.
Generic Multi-Mode e*Way Extension Kit User’s Guide
16

Section P.2
Preface Organization
Chapter 3 “Architectural Overview”: Reviews e*Gate concepts and terminology,
explains the purpose and function of e*Way Connections, and provides an in-depth
summary of the technical material covered in the rest of the guide.

Chapter 4 “Functional Flow”: Explains the run-time behavior of the Multi-Mode
e*Way from startup to shutdown.

Chapter 5 “e*Way Development Methodology”: Provides development and design
considerations for creating an e*Way.

Chapter 6 “e*Way Development Workflow”: Explains the typical steps you need to
take to develop, deploy, and validate a custom e*Way Connection.

Chapter 7 “Event Type Definitions”: Describes the e*Gate Event Type Definitions
(ETDs), focusing on their role in the Generic Multi-Mode e*Way Extension Kit User’s
Guide.

Chapter 8 “Developing an e*Way Using ETD Builder Components”: Provides a
detailed discussion of the concepts and common practice for creating an ETD Builder—
the tool used by end users to create ETDs.

Chapter 9 “Developing an e*Way Using the Builder API”: Guides you through the
creation and deployment of a simple ETD for a fictional accounting application. For the
purpose of the sample, the APIs called by the ETD are simulated using a Remote
Method Invocation (RMI) server.

Chapter 10 “Developing the Automatic e*Way Connection”: Guides you through the
creation and deployment of a sample project, discussing the sample code and
providing steps for compiling it, creating the .xsc files, .def files, and .ctl files,
deploying the new e*Way Connection component, and using it in a sample
Collaboration.

Chapter 11 “Developing an e*Way Connection With Connection Management”:
Provides a similar sample to that in Chapter 10, guiding you through the creation and
deployment of a sample project that uses connection management.

Chapter 12 “Developing a Transactional e*Way Connection”: Provides a similar
sample to those in Chapter 10 and Chapter 11, guiding you through the creation and
deployment of a sample project that uses XA.

Chapter 13 “Best Practices”: Recommends best practices for developing and deploying
a custom e*Way.

Chapter 14 “e*Way Classes and Methods”: Lists the Java classes that contain the
methods used to extend the functionality of an e*Way. Also provides instructions for
accessing the Generic Multi-Mode e*Way Extension Kit Javadocs.

Appendix A “Extending the .def File”: Provides an in-depth description of the syntax
and keywords in the .def (default configuration-file template) file, to enable you to
enhance its capabilities.

Appendix B “The XSC Format”: Specifies the content, structure, and rules governing
XSC elements and attributes.

Appendix C “The RMI Server”: Describes the use of an RMI server to simulate a
generic external system.
Generic Multi-Mode e*Way Extension Kit User’s Guide
17

Section P.3
Preface Writing Conventions
Javadocs: The API documentation is provided as Javadoc files on the e*Gate Integrator
Installation CD-ROM.

Note: Refer to the Readme.txt file for any last-minute information regarding the Generic
Multi-Mode e*Way Extension Kit.

P.3 Writing Conventions
The writing conventions listed in this section are observed throughout this document.

Hypertext links

When you are using this guide online, cross-references are also hypertext links and
appear in blue text as shown below. Click the blue text to jump to the section.

Command line

Text to be typed at the command line is displayed in a special font as shown below.

java -jar ValidationBuilder.jar

Variables within a command line are set in the same font and bold italic as shown
below.

stcregutil -rh host-name -rs schema-name -un user-name
-up password -ef output-directory

Code and samples

Computer code and samples (including printouts) on a separate line or lines are set in
Courier as shown below.

Configuration for BOB_Promotion

However, when these elements (or portions of them) or variables representing several
possible elements appear within ordinary text, they are set in italics as shown below.

path and file-name are the path and file name specified as arguments to -fr in the
stcregutil command line.

Notes and cautions

Points of particular interest or significance to the reader are introduced with Note,
Caution, or Important, and the text is displayed in italics, for example:

Note: The Actions menu is only available when a Properties window is displayed.

User input

The names of items in the user interface such as icons or buttons that you click or select
appear in bold as shown below.

Click Apply to save, or OK to save and close.
Generic Multi-Mode e*Way Extension Kit User’s Guide
18

Section P.3
Preface Writing Conventions
File names and paths

When names of files are given in the text, they appear in bold as shown below.

Use a text editor to open the ValidationBuilder.properties file.

When file paths and drive designations are used, with or without the file name, they
appear in bold as shown below.

In the Open field, type D:\setup\setup.exe where D: is your CD-ROM drive.

Parameter, function, and command names

When names of parameters, functions, and commands are given in the body of the text,
they appear in bold as shown below:

The default parameter localhost is normally only used for testing.

You can use the stccb utility to start the Control Broker.
Generic Multi-Mode e*Way Extension Kit User’s Guide
19

Chapter 1

Introduction

The Generic Multi-Mode e*Way Extension Kit enables you to develop custom Multi-
Mode e*Ways and e*Way Connections using Java with e*Gate 4.5.1 or later. This guide
provides an overview of the architecture, functional flow, and development
methodology of Multi-Mode e*Ways. In addition, this guide explains how to use the kit
to create and deploy the e*Ways and e*Way Connections to communicate with each of
your existing IS systems, networks, and/or applications.

Note: This guide describes the e*Way development process for each supported version of
e*Gate. Any steps that are unique to a particular version of e*Gate are noted.

1.1 Overview
e*Way Intelligent Adapters (e*Ways) are the gateways to the e*Gate Integrator system.
They bring data from outside to inside e*Gate, pass data from inside to outside e*Gate,
or both. e*Ways establish connectivity with applications in either of the following ways:

Inbound: receives unprocessed data from external components, transforms it into
Events, and forwards it to other e*Gate components.

Outbound: sends processed data to external components.

In e*Gate, e*Ways are mainly responsible for data transport. Figure 1 shows a
simplified system setup of data flow.

Figure 1 Basic e*Gate Data Flow Relationships

In the sample system shown in Figure 1, e*Gate system data flow occurs in the
following basic steps:

e*Gate System

Inbound e*Way
Intelligent

Queue
Outbound

e*WayEvent
A

System BSystem A Event
B

Generic Multi-Mode e*Way Extension Kit User’s Guide 20

Chapter 1 Section 1.2
Introduction Supported Operating Systems
Events (which are predefined data packets) flow into e*Gate from an external
system (System A) through an inbound e*Way.

The inbound e*Way transforms Events from Event Type A to Event Type B, and
then places them in an Intelligent Queue (IQ) for temporary storage.

The outbound e*Way takes the Events from the IQ and sends them out of e*Gate to
another external system (System B), without changing them.

e*Way Connections are the encoding of access information for one particular gateway to
an external system. An e*Way with an e*Way Connection functions in the same manner
as shown in Figure 1, except that it can transfer multiple components of data in both
directions at the same time, to and from multiple IQs. Also, any Java-enabled
Collaboration can use several e*Way Connection components simultaneously, to
transfer data to and from multiple external systems.

A Multi-Mode e*Way is a flexible multi-threaded type of e*Way executable (stceway.exe)
that uses e*Way Connections as its interfaces between the e*Gate Java Collaboration
Service (JCS) and external systems.

The following sections of this introductory chapter discuss supported operating
systems and prerequisites for using the kit.

1.2 Supported Operating Systems
The Generic Multi-Mode e*Way Extension Kit is available on the same operating
systems as the e*Gate Integrator. For more information, see the readme.txt file provided
on the installation CD.
Generic Multi-Mode e*Way Extension Kit User’s Guide 21

Chapter 1 Section 1.3
Introduction System Requirements
1.3 System Requirements
To develop e*Ways using the Generic Multi-Mode e*Way Extension Kit, you need the
following:

An e*Gate Participating Host.

A TCP/IP network connection.

A computer running Windows, to allow you to use the e*Gate Schema Designer
and ETD Editor

Additional disk space for e*Way executable, configuration, library, and script files.
The disk space is required on both the Participating and the Registry Host.
Additional disk space is required to process and queue the data that this e*Way
processes; the amount necessary varies based on the type and size of the data being
processed, and any external applications performing the processing.

Installed on the Participating Host

Java JDK version 16.1_19

The e*Way must be configured and administered using the Schema Designer.

Note: Additional disk space may be required to process and queue the data that this e*Way
processes. The amount necessary can vary based on the type and size of the data
being processed and any external applications doing the processing.

1.3.1 Host System Requirements
The external system requirements are different for a GUI (Graphical User Interface)
host machine—specifically a machine running the ETD Editor and the Java
Collaboration Editor GUIs---versus a Participating Host which is used solely to run the
e*Gate schema.

GUI Host Requirements

To enable the GUI editors to communicate with the external system, the following items
must be installed on any host machines running the GUI editors:

If you are using driver types 1, 2, or 3, the client library for your specific database
installed on Windows to utilize the ETD builder.

ODBC driver.

1.4 Prerequisites for Installing and Using the Kit
The Generic Multi-Mode e*Way Extension Kit requires a pre-existing installation of
e*Gate.
Generic Multi-Mode e*Way Extension Kit User’s Guide 22

Chapter 2

Installation

This chapter describes the procedures for installing the Generic Multi-Mode e*Way
Extension Kit.

“Installing the Generic Multi-Mode e*Way Extension Kit on Windows” on
page 23

“Installing the Generic Multi-Mode e*Way Extension Kit on UNIX” on page 24

“Files/Directories Created by the Installation” on page 25

2.1 Installing the Generic Multi-Mode e*Way Extension Kit
on Windows

You install this kit as you would any other application Add-on in accordance with the
following instructions.

2.1.1 Pre-installation
Exit all Windows programs before running the setup program, including any
antivirus applications.

You must have Administrator privileges to install the kit.

2.1.2 Installation Procedure
To install the Generic Multi-Mode e*Way Extension Kit on a Windows system

1 Log in as an Administrator to the workstation on which you are installing the kit.

2 Insert the installation CD-ROM into the CD-ROM drive.

3 If the CD-ROM drive’s Autorun feature is enabled, the setup application launches
automatically; skip ahead to step 4. Otherwise, use the Windows Explorer or the
Control Panel’s Add/Remove Applications feature to launch the file setup.exe on
the CD-ROM drive.

4 The InstallShield setup application launches. Follow the installation instructions
until you arrive at the Please choose the product to install dialog box.

5 Select e*Gate Integrator, then click Next.
Generic Multi-Mode e*Way Extension Kit User’s Guide 23

Chapter 2 Section 2.2
Installation Installing the Generic Multi-Mode e*Way Extension Kit on UNIX
6 Follow the on-screen instructions until you come to the second Please choose the
product to install dialog box.

7 Clear the check boxes for all selections except Add-ons, and then click Next.

8 Follow the on-screen instructions until you come to the Select Components dialog
box.

9 Select (but do not check) Agents, and then click Change. The SelectSub-
components dialog box appears.

10 Select kit. Click Continue to return to the Select Components dialog box, then click
Next.

11 Follow the rest of the on-screen instructions to install the kit. Be sure to install the
kit files in the client installation directory suggested by the installation utility.

Note: Unless you are directed to do so by Oracle support personnel, do not change the
suggested installation directory setting.

12 After installation is complete, exit the installation utility and launch the Schema
Designer.

For more information about configuring the kit, see the e*Gate Integrator User’s
Guide.

2.2 Installing the Generic Multi-Mode e*Way Extension Kit
on UNIX

2.2.1 Pre-installation
Root privileges are not required to install the kit. Log in with the user name of the user
who will own the kit files. Be sure that this user has sufficient privileges to create files in
the e*Gate directory tree.

2.2.2 Installation Procedure
To install the Generic Multi-Mode e*Way Extension Kit on a UNIX system

1 Log in on the workstation containing the CD-ROM drive, and insert the CD-ROM
into the drive.

2 If necessary, mount the CD-ROM drive.

3 At the shell prompt, type

cd /cdrom

4 Start the installation script by typing

setup.sh
Generic Multi-Mode e*Way Extension Kit User’s Guide 24

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
5 A menu of options will appear. Select the Install e*Way option. Then, follow the
additional on-screen directions.

6 Follow the rest of the on-screen instructions to install the kit. Be sure to install the
kit files in the client installation directory suggested by the installation utility.

Note: Unless you are directed to do so by Oracle support personnel, do not change the
suggested installation directory setting.

7 After installation is complete, exit the installation utility and launch the Schema
Designer.

For more information about configuring the kit, see the e*Gate Integrator User’s
Guide.

2.3 Files/Directories Created by the Installation
The kit installation process installs the files within the e*Gate directory tree. Files are
installed within the egate\client tree on the Participating Host and committed to the
default schema on the Registry Host.

The files listed in the following table are provided on the installation CD-ROM.

Note: Files named with _451 are for use with e*Gate version 4.5.1.

Table 1 Product Files Shipped on the CD-ROM

File Purpose / Contents

ewayETDxsc.xsd XML Schema Definition file for XSC specification. It validates the .xsc files.

Note: This file only specifies those attributes that are relevant to e*Way ETDs.

gmeek.taz Compressed file containing source code, ETD files, and compile and install
scripts for the sample ETDs. For detailed contents, see Table 3 “Product
Files Contained in File gmeek.taz” on page 26.

GmeekDemoEway
Sample.zip

MySchema.zip
TcpEcho.zip
XAFile.zip

Sample e*Gate schemas for validating the various samples:

Schema for the simple XSC 0.4–compliant e*Way sample.
Schema for the Connection Management e*Way sample.
Schema for the Transactional e*Way sample.

GmeekDemoEway
Sample_451.zip

Sample e*Gate version 4.5.1 schema for validating the schema for the simple
XSC 0.4–compliant e*Way sample.

INDATA.zip Compressed file containing sample input data for validating the samples.

VBGmeekWizard.zip Compressed file containing the Visual Basic forms and project files, libraries,
and other files for creating a wizard (front end) for the “heavyweight” ETD
Builder sample.
Generic Multi-Mode e*Way Extension Kit User’s Guide 25

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
Decompressing the common.taz file loads the files shown in Table 2.

Decompressing the gmeek.taz file loads the files shown in Table 3 to the gmeek folder:

Table 2 Product File Shipped on the CD-ROM in setup\addons\gmeek

File Purpose / Contents

common.taz Compressed file containing two .jar files (stcewcommonbuilder.jar and
stcgmeek.jar) and two .ctl files (gmeek.ctl and connectionpoint.ctl) used by
the kit in developing ETD builders.

Readme.txt Technical notes and installation instructions.

Table 3 Product Files Contained in File gmeek.taz

File Purpose

In gmeek/SampleETD/
EwayConnectionETDImpl.java
SampleETD.java
SampleETDConnector.java
SampleETDDefs.java
SampleETDExternalClass.java
SampleETDExternalException.java
SampleETDTester.java
compile.bat
compile.sh

A simple (mostly no-op) implementation of the ETD
interface.
ETD java source.
Connector class source.
Property names from e*Way connection config file.
Sample to illustrate interface to an external.
Sample to support the external.
Source of stand alone ETD tester.
Windows batch script for compiling the source.
UNIX shell script for compiling the source.

In gmeek/TcpClientETD/
server/TCPEchoServer.java
server/compile.bat
server/compile.sh
server/runServer.bat
server/runServer.sh
EwayConnETDConnectorExtImpl.java
EwayConnectionETDImpl.java
TcpClient.java
TcpClientETD.java
TcpClientETDConnector.java
TcpClientETDDefs.java
TcpClientException.java
compile.bat
compile.sh

Source for a sample socket server.
Windows batch script for compiling the source.
UNIX shell script for compiling the source.
Windows script to start the socket server.
UNIX shell script to start the socket server.
A simple (mostly no-op) implementation of the
connector extension interface.
A simple (mostly no-op) implementation of the ETD
interface.
A sample socket client.
ETD java source.
Connector class source.
Property names from e*Way connection config file.
Sample to support the external.
Windows batch script for compiling the source.
UNIX shell script for compiling the source.
Generic Multi-Mode e*Way Extension Kit User’s Guide 26

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
In gmeek/XAFileETD/
EwayConnectionETDImpl.java
Resource.java
XAFile.java
XAFileETD.java
XAFileETDConnector.java
XAFileETDDefs.java
XidValue.java
compile.bat
compile.sh

A simple (mostly no-op) implementation of the ETD
interface.
XA resource implementation.
Source sample.
ETD java source.
Connector class source.
Property names from e*Way connection config file.
This is an implementation of the Xid class for XA.
Windows batch script for compiling the source.
UNIX shell script for compiling the source.

In gmeek/builder/javawizard/
GmeekWizard.java
JConverterIntf.java
RegModel.java
compile.bat
compile.sh

Sample Java Wizard GUI.
Interface class for the Java Wizard.
Utility class for eGate registry.
Windows batch script for compiling the source.
UNIX shell script for compiling the source.

In gmeek/builder/apiDemo/
GmeekDemoBuilder.java
compile.bat
compile.sh
runapidemo.bat
runapidemo.sh
runapidemo1.bat
runapidemo1.sh

Sample builder program that uses the GMEEK builder
API.
Windows batch script for compiling the source.
UNIX shell script for compiling the source.
Windows script to run the builder to generate e*Way
runtime.
UNIX script to run the builder to generate e*Way
runtime.
Windows script to run the builder to generate ETD.
UNIX script to run the builder to generate ETD.

In gmeek/builder/rmiDemoSvr/
RmiDemoClient.java
RmiDemoSvr.java
RmiDemoSvrImpl.java
RmiDemoSvrIntf.java
compile.bat
compile.sh
runRmitest.bat
runRmitest.sh
runrmiclient.bat
runrmiclient.sh

Sample RMI client source.
Sample RMI server source.
Sample RMI server implementation.
Sample RMI server remote interface.
Windows batch script for compiling the source.
UNIX shell script for compiling the source.
Windows script to run the RMI server.
UNIX script to run the RMI server.
Windows script to run RMI client.
UNIX script to run RMI client.

In gmeek/classes/
stcexception.jar Contains the exceptions that may be thrown in the

GmeekDemoEwaySample_451 sample.

In gmeek/installETD/
installETD.bat
installETD.sh

Windows script to install a ETD in command line.
UNIX script to install a ETD in command line.

Table 3 Product Files Contained in File gmeek.taz (Continued)

File Purpose
Generic Multi-Mode e*Way Extension Kit User’s Guide 27

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
In gmeek/installETD/ETD4Account/
Account.ctl
Account.jar
Account.xsc

e*Gate-specific files for the Accounting example.
Sample ETD .install ctl file.
Sample ETD .jar.
Sample ETD .xsc.

In gmeek/installETD/SampleETD/
SampleETD.ctl
SampleETD.def
SampleETD.xsc
connectionpoint.ini
install.ctl
runTester.bat
runTester.sh

ETD .ctl file.
Connection point .def.
Sample ETD .xsc.
Content to append to connectionpoint.ini.
Sample ETD install .ctl file.
Windows script to run the test.
UNIX script to run the test.

In gmeek/installETD/TcpClientETD/
TcpClientETD.ctl
TcpClientETD.def
TcpClientETD.xsc
connectionpoint.ini
install.ctl
runTester.bat
runTester.sh

ETD .ctl file.
Connection point .def.
Sample ETD .xsc.
Content to append to connectionpoint.ini.
Sample ETD install .ctl file.
Windows script to run the test.
UNIX script to run the test.

In gmeek/installETD/XAFileETD/
XAFileETD.ctl
XAFileETD.def
XAFileETD.xsc
connectionpoint.ini
install.ctl
runTester.bat
runTester.sh

ETD .ctl file.
Connection point .def.
Sample ETD .xsc.
Content to append to connectionpoint.ini.
Sample ETD install .ctl file.
Windows script to run the test.
UNIX script to run the test.

In gmeek/installETD/utils/
errs.sh
inifile.sh
utils.sh

UNIX script.
UNIX script.
UNIX script.

In gmeek/installEWAY/
installEWAY.bat
installEWAY.sh

Windows script to install e*Way.
UNIX script to install e*Way.

In gmeek/installEWAY/utils/
errs.sh
inifile.sh
utils.sh

UNIX script.
UNIX script.
UNIX script.

Table 3 Product Files Contained in File gmeek.taz (Continued)

File Purpose
Generic Multi-Mode e*Way Extension Kit User’s Guide 28

Chapter 2 Section 2.3
Installation Files/Directories Created by the Installation
In gmeek/installEWAY/GmeekDemoEway/
DemoRmiConnector.java
ETDWizards.ini
EwayConnectorExtImpl.java
GmeekDemoEway.def
GmeekDemoEwayETDbuilder.jar
GmeekDemoEwayrt.jar
gmeekdemoewaywizard.ctl
GmeekWizard.bmp
GmeekWizard.dll
GmeekWizard.jar
GmeekWizardLight.bmp
GmeekWizardLight.dll

RmiDemoSvr.jar
addon.log
compile.bat
compile.sh
connectionpoint.ini
stcewgmeekdemoeway.ctl

Sample connector class source.
Content to append to ETDWizards.ini.
Sample connector base class source.
Connection point .def.
Back-end builder .jar.
e*Way runtime .jar.
Wizard .ctl file.
Heavy Visual Basic wizard icon bitmap.
Heavy Visual Basic wizard ActiveX dll.
Java wizard jar (works with lightweight Visual Basic).
Lightweight Visual Basic wizard icon bitmap.
Lightweight Visual Basic wizard ActiveX dll (works
with Java wizard).
Sample external system .jar.
Content to append to addon.log.
Windows batch script for compiling the source.
UNIX shell script for compiling the source.
Content to append to connectionpoint.ini.
e*Way .ctl file used to load the e*Way.

In gmeek/installEWAY/
GmeekDemoEway_451/

DemoRmi_451Connector.java
EwayConnectorImpl.java
GmeekDemoEwayETDbuilder_451.jar
GmeekDemoEway_451.def
GmeekDemoEway_451rt.jar
RmiDemoSvr.jar
addon.log
compile.bat
compile.sh
connectionpoint.ini
stcewgmeekdemoeway_451.ctl
tempaddon.log

Sample connector class source.
Sample connector base class source.
Back-end builder .jar.
Connection point .def.
e*Way runtime .jar.
Sample external system .jar.
Content to append to addon.log.
Windows batch script for compiling the source.
UNIX shell script for compiling the source.
Content to append to connectionpoint.ini.
e*Way .ctl file used to load the e*Way.
Content to append to temporary addon.log.

In gmeek/testdata/
test.prop Test for SampleETD.

Table 3 Product Files Contained in File gmeek.taz (Continued)

File Purpose
Generic Multi-Mode e*Way Extension Kit User’s Guide 29

Chapter 3

Architectural Overview

This chapter provides an overview of how e*Ways operate and describes the
components that comprise an e*Way. It then describes Multi-Mode e*Ways, describing
the architecture of their component parts and their relationship with Collaborations
and Event Type Definitions. It also describes the architecture and relationship between
Multi-Mode e*Ways and e*Way Connections.

3.1 Overview of e*Way Operation
e*Ways provide points of contact between the e*Gate system and external applications.
e*Ways handle the communication details necessary to send and receive information,
including:

Responding to or generating positive and negative acknowledgments

Rules that govern resend and reconnect criteria

Time-out logic

Data envelope parsing and reformatting

Buffer size

Retrieval/transmission schedules

In addition to handling communications, e*Ways are also able to apply business logic
within Collaboration Rules to perform any of e*Gate’s range of data identification,
manipulation, and transformation operations.

e*Ways are tailored to meet the communication requirements of a specific application
or protocol.

3.1.1 Component Parts
Functionally, each individual e*Way contains the following component parts:

Executable Component: An .exe file, this component is the engine of the e*Way. It
performs the operations necessary to send, receive, and process data.

Configuration Files: These .cfg files store the parameters that govern the e*Way’s
functions. For example, the configuration for a TCP/IP e*Way specifies the port
numbers to send and receive data. The configuration for a file-based e*Way
specifies the name of the directory to poll for input data.
Generic Multi-Mode e*Way Extension Kit User’s Guide 30

Chapter 3 Section 3.2
Architectural Overview Multi-Mode e*Ways
Library Files: These files (such as .dll files under Windows) support the operations
that the executable component and functions require.

Function Definitions: Depending on the e*Way, these functions are written in C,
Java, or Monk.

Library files are loaded automatically by the script or executable file that calls them.
All the other listed components are associated with the e*Way using either the Schema
Designer or the e*Way Configuration Editor.

An e*Way derives its character from the e*Way executable file (stcew*.exe) it uses and
the particular configuration file created and tailored for it. All parts of the e*Way,
including the executable file, its configuration file, its Monk scripts and library files (if
any), are either properties of the e*Way component or called by elements of those
properties. The logic that the e*Way executes to process information is carried out by
Collaborations assigned to each e*Way.

The procedures required to create and configure the e*Way component within the
Schema Designer are discussed in the e*Gate Integrator User’s Guide.

3.2 Multi-Mode e*Ways
A Multi-Mode e*Way is a multi-threaded component that extends the routing and
transforming of data within e*Gate, and exchanges information with multiple external
systems. A Multi-Mode e*Way uses e*Way Connections to send and receive topics
directly to and from multiple external systems, and Oracle SeeBeyond JMS IQ
Managers, or both.

The e*Way Connections are gateways to external systems, allowing a single e*Way to
adopt several configuration profiles simultaneously to communicate with external
systems.

3.2.1 Multi-Mode e*Way Characteristics
Multi-Mode e*Ways have the following characteristics:

Adapting: Multi-Mode e*Ways are multifaceted, as they must interact with and
adapt to multiple external systems. They normally communicate with e*Gate as
well, but it is possible to configure a Multi-Mode e*Way so that it merely bridges
between two or more external systems without bringing data into e*Gate.

Transporting: Acting as “smart” gateways, Multi-Mode e*Ways direct the flow of
multiple components of data in and out of e*Gate.

Collaborating: Inbound and outbound e*Gate Collaborations reside in Multi-Mode
e*Ways and form the core of their operation. They determine:

The routing (publishing/subscribing) of the Events they handle.

Any transformation of data as it passes through the Multi-Mode e*Way.

Multi-Mode e*Ways interact with Collaborations as follows:
Generic Multi-Mode e*Way Extension Kit User’s Guide 31

Chapter 3 Section 3.2
Architectural Overview Multi-Mode e*Ways
Every Multi-Mode e*Way requires at least one Collaboration, but it can have more
than one.

The Collaboration(s) hosted by a Multi-Mode e*Way must not use <EXTERNAL>
as either a subscription source or a publication destination.

Every Multi-Mode e*Way Collaboration that publishes internal e*Gate Events
requires at least one IQ.

Multi-Mode e*Way properties are set in the e*Gate Schema Designer.

Figure 2 shows the flow of a Multi-Mode e*Way.

Figure 2 Multi-Mode e*Way

Each e*Way performs one or more Collaborations. Bidirectional data flow requires at
least two Collaborations, one Inbound and one Outbound, as shown in Figure 2. Each
Collaboration processes a stream of messages, or Events, containing data or other
information.

Each Collaboration that publishes its processed Events internally (within e*Gate
Integrator) requires one or more Intelligent Queues (IQs) to receive the Events. See
Figure 3 on page 33. Any Collaboration that publishes its processed Events only to an
external system does not require an IQ to receive Events.

Multi-Mode e*Way

External
System

e*Way
Connection

External
System

Inbound
Collaboration

e*Way
Connection

e*Way
Connection

Outbound
Collaboration

Inbound
Collaboration
Generic Multi-Mode e*Way Extension Kit User’s Guide 32

Chapter 3 Section 3.2
Architectural Overview Multi-Mode e*Ways
Figure 3 e*Way within e*Gate Integrator

Although usually implemented within e*Gate Integrator as shown in Figure 3, this
e*Way can also be implemented as a stand-alone bridge between two or more external
systems. See Figure 4.

Figure 4 Stand-alone e*Way

e*Gate Integrator

Multi-Mode e*Way

External
System

e*Way
Connection

External
System

Inbound
Collaboration

e*Way
Connection

e*Way
Connection

Outbound
Collaboration

Inbound
Collaboration

IQ

IQ

IQ or
JMS

Multi-Mode e*Way

External
System

e*Way
Connection

External
System

Collaboration

e*Way
Connection
Generic Multi-Mode e*Way Extension Kit User’s Guide 33

Chapter 3 Section 3.3
Architectural Overview Collaborations and Event Type Definitions
3.3 Collaborations and Event Type Definitions
Collaborations execute the business logic that enables the e*Way to perform its
intended task. Each Collaboration executes a specified Collaboration Rule, which
contains the actual instructions to execute the business logic and specifies the
applicable Event Type Definitions (ETDs). Events represent instances of their
corresponding Event Types. Figure 5 shows a typical inbound Collaboration.

Figure 5 Inbound Collaboration

A corresponding look inside a typical outbound Collaboration is shown in Figure 6.
In this diagram, two e*Way Connections are shown, feeding two external systems.
More than two e*Way Connections are accommodated in each e*Way and, as stated
previously, multiple Collaborations as well.

e*Gate Integrator

Multi-Mode e*Way

Inbound
Collaboration

Event
Type A

Event
Type B

Collaboration Rule

Intelligent
Queue

ETD
A

ETD
B

e*Way
Connection

Other e*Gate
Components
Generic Multi-Mode e*Way Extension Kit User’s Guide 34

Chapter 3 Section 3.3
Architectural Overview Collaborations and Event Type Definitions
Figure 6 Outbound Collaboration

ETDs are representations of the data structure required by specific external systems.
Transforming data from one format to another in accordance with the ETD is a major
part of the processing performed by the e*Way. Building an ETD requires knowledge of
the internal data structure of the specific application. This information is obtained by
extracting metadata from the external application. (The importance of metadata is
discussed in “e*Way Design Considerations” on page 47.)

In core e*Gate Integrator, the collection of metadata is automated by using an ETD
Builder. A typical ETD Builder is shown in Figure 7 on page 36. The builder contains a
wizard, accessed from within the ETD Editor GUI, which presents various options for
your selection. A back-end converter then performs the prescribed metadata extraction.
The resulting ETD is accessed in the ETD Editor.

e*Gate Integrator

Multi-Mode e*Way

Outbound
Collaboration

Event
Type A

Intelligent
Queue

Other e*Gate
Components

Event
Type C

e*Way
Connection

Event
Type B

e*Way
Connection

Collaboration Rule

ETD
A

ETD
B

ETD
C

Generic Multi-Mode e*Way Extension Kit User’s Guide 35

Chapter 3 Section 3.3
Architectural Overview Collaborations and Event Type Definitions
Figure 7 Typical ETD Builder

Version 4.5.2 or later of the Generic Multi-Mode e*Way Extension Kit User’s
Guideprovides an ETD Builder API. You can use this API either to create a command-
line interface for building an ETD or to create an ETD Builder wizard that end users can
access from within the ETD Editor. Details of the back-end (converter) and front end
(builder wizard) are discussed in Chapter 8 “Developing an e*Way Using ETD
Builder Components” on page 89 and Chapter 9 “Developing an e*Way Using the
Builder API” on page 119.

Once compiled, an ETD has two components, an .xsc file and a .jar file, both having the
same file name. The .jar file contains .class files whose names correspond to the root
node names in the ETD. Ultimately, the ETD is used within a Collaboration Rule to
define the structure of the corresponding Event. At run time, the Collaboration Rule is
instantiated according to information contained in a .ctl file contained in the e*Gate
Registry (see Figure 8).

Front-end
Wizard

ETD
Builder Wizard

Application
Metadata

Back-end
Converter

e*Gate
ETD Files

(*.xsc, *.java)

Front-end
Wizard

Application
Metadata

Back-end
Converter

e*Gate
ETD Files

(*.xsc, *.jar)
Generic Multi-Mode e*Way Extension Kit User’s Guide 36

Chapter 3 Section 3.3
Architectural Overview Collaborations and Event Type Definitions
Figure 8 Event Type Definitions

3.3.1 Java Collaboration Service
The Java Collaboration Service (JCS) provides an environment that allows you to use a
Java class to implement the business logic that transforms Events as they move through
e*Gate. When data passes through e*Gate by way of a Java Collaboration, a Java Virtual
Machine (JVM) is instantiated and uses the associated Java Collaboration Rules class to
accomplish the data transformation.

The relationships between the various Java e*Way components is depicted as a nested
structure, as shown in Figure 9.

Instantiate

Registry

.ctl

.classstructure root node

root node

root node

Collaboration Rule

ETD

.xsc .jar
Generic Multi-Mode e*Way Extension Kit User’s Guide 37

Chapter 3 Section 3.3
Architectural Overview Collaborations and Event Type Definitions
Figure 9 Java Component Relationships

A Multi-Mode e*Way serves as a container for one or more Collaborations whose
Collaboration Rules use JCS. The Java Collaboration Service makes it possible to
develop Collaboration Rules that execute e*Gate business logic using Java code.
Using the Java Collaboration Editor, you create Java classes that implement the
executeBusinessRules(), userInitialize(), and userTerminate() methods.

To use the Java Collaboration Service, you create a Collaboration Rule and select Java as
the service. Using Event Type instances of previously defined ETDs, you then use the
Java Collaboration Rules Editor to add the rules and logic between the Event Type
instances. Compiling the Collaboration Rule creates a Java Collaboration Rules class
and all required supporting files. This Java class implements the data transformation
logic.

For more information on the Java Collaboration Service, see the e*Gate Integrator
Collaboration Services Reference Guide.

Multi-Mode e*Way

Java Collaboration Service

Collaboration

Collaboration
Rule
Generic Multi-Mode e*Way Extension Kit User’s Guide 38

Chapter 3 Section 3.4
Architectural Overview e*Way Connections
3.4 e*Way Connections
The e*Way Connections provide portals to external systems, allowing a single Multi-
Mode e*Way to adopt several configuration profiles simultaneously. Individual e*Way
Connections are configured using the e*Way Connection Editor to establish a particular
kind of interaction with the external system.

3.4.1 Configuring e*Way Connections
An e*Way Connection to an external application is set up as shown in Figure 10. A .def
file supplied with the e*Way is a template, configured for the specific application using
the e*Way Connection Editor, and instantiated as a .cfg file for each e*Way Connection.

Figure 10 e*Way Connection Configuration

Multi-Mode e*Way

Java Collaboration Service

Collaboration

e*Way Connection Editor

connectionpoint.ini

Collaboration Rule

External
System

.cfg

.def

e*Way
Connection

ETD

Event
Type
Generic Multi-Mode e*Way Extension Kit User’s Guide 39

Chapter 3 Section 3.4
Architectural Overview e*Way Connections
The e*Way Connection Editor allows you to modify all parameters of a Multi-Mode
e*Way that control how the e*Way communicates with an external application. Because
each e*Way functions in a specific way to provide an interface to a specific external
application or communications protocol, each e*Way Connection has a unique set of
configuration parameters.

The connectionpoint.ini file, stored in the configs directory, lists all e*Way Connections
that are offered to the user by the GUI. For each e*Way Connection, it also specifies the
directory for the associated .def file.
Generic Multi-Mode e*Way Extension Kit User’s Guide 40

Chapter 4

Functional Flow

This chapter explains the run-time behavior of the Multi-Mode e*Way from startup to
shutdown.

4.1 Overview of Run-Time Operation
Integration run-time execution involves various interfaces between the Multi-Mode
e*Way (which houses user Collaborations) and the main e*Gate components (such as
the e*Gate Registry, the IQ Managers with their associated IQs, and the JMS subsystem
and associated JMS interfaces).

The basic functional flow of the Multi-Mode e*Way at run time is represented by a
three-step process:

1 Initialize—When a Multi-Mode e*Way is started (normally, through the Control
Broker) it goes through a two-phase initialization process that allows it to perform
its configured Collaborations.

In the Environment phase, it obtains component information and downloads
files from the e*Gate Registry, such as .ctl, .jar, .exe, and .dll files.

In the Setup phase, it starts the VM and then creates and starts separate threads
to initialize each Collaboration.

For complete details on this two-phase step, see “Step 1: Initialize” on page 42.

2 Execute—After the Multi-Mode e*Way and its Collaborations are initialized, as
incoming Events trigger instantiation of e*Way Connection classes, the e*Way
enters the Collaboration execution phase. During this phase, Collaborations process
Events according to Collaboration Rules and ETDs.

For complete details on this step, see “Step 2: Execute” on page 43.

3 Shutdown/Reload—If a Collaboration or e*Way Connection configuration is
modified during execution, the e*Way must be reloaded. Both shutdown and reload
trigger execution of the e*Way’s termination task sequence. When the Multi-Mode
e*Way is shut down, the appropriate cleanup must be performed.

For complete details on this step, see “Step 3: Shutdown/Reload” on page 45.
Generic Multi-Mode e*Way Extension Kit User’s Guide 41

Chapter 4 Section 4.2
Functional Flow Step 1: Initialize
4.2 Step 1: Initialize
The initialization step has two phases: the Environment phase and the Setup phase.

4.2.1 1A: Environment Phase
In the Environment phase, the e*Way obtains component information and downloads
component files from the e*Gate Registry. This includes configuration information set
through the GUI, such as the JVM settings, the Control Broker port, the Collaboration
maps specifying publications and subscriptions, the Event Types used, and the
corresponding .jar files, as well as any .exe files and .dll files that are needed, including
those required by the IQ and Collaboration Services. It also downloads a .ctl file for
each Collaboration.

About .ctl files

Each Collaboration Rule has an associated .ctl file, <collabRuleName>.ctl, called its
control file (or, sometimes, its initialization file). The control file for a Collaboration Rule:

Serves as a way to specify components that must be downloaded to the client side,
where the e*Way will be executed.

Specifies how the classpath for the Collaboration Rule is generated.

These .ctl files reside in the collaboration_rules\ subdirectory. On the server side, this
subdirectory is in the e*Gate Registry repository, of the <schemaName>\runtime\
directory (and also in the <schemaName>\sandbox\<userName>\ directory if it exists).
At run time, in the Environment phase of the initialization step, the items listed in the
Collaboration Rule .ctl files are downloaded to the collaboration_rules\ subdirectory
on the client side, where they will be loaded in the e*Way’s Startup phase.

Each e*Way ETD has its own associated .ctl file, named <etdType>.ctl, stored in the etd\
subdirectory.

Note: <etdType> must match the value of the type attribute for the <etd> entity in the
corresponding .xsc file. See Chapter 7.

When a .ctl file for a Collaboration Rule is created, the contents of the .ctl files for all of
the ETDs it uses are appended.

4.2.2 1B: Startup Phase
The startup phase consists of:

1 Starting the JVM.

2 Creating a thread for each Collaboration.

3 Starting each thread. When started, each Collaboration thread then:

A Retrieves additional information from the e*Gate Registry.

B Loads the configuration.
Generic Multi-Mode e*Way Extension Kit User’s Guide 42

Chapter 4 Section 4.3
Functional Flow Step 2: Execute
C Initializes the Java Collaboration Service (JCS). After it is initialized, the JCS
attaches to the JVM, initializes the e*Way Connections, and initializes the user
Collaboration.

4.3 Step 2: Execute
1 Upon receiving the first Event (or, for inbound ETD instances, the first scheduled

get interval), the Java Collaboration Service:

A Initializes the user Collaboration.

B Creates ETDs.

C Initializes ETDs.

2 Starts the business process.

3 After processing each Event, calls the reset() method on each ETD (see ETD Reset
Flow on page 44).

4.3.1 ETD Initialization Flow
Figure 11 gives an overview of the functional flow of the ETD initialization process.

Figure 11 Sequence of ETD Initialization Flow

Note: The roles of the classes and methods mentioned in this section are explained in much
greater detail in “e*Way Development Workflow” on page 51.

1 The Collaboration instantiates and calls initialize() on the e*Way Connection’s ETD
class.

2 The ETD object’s initialize() method instantiates the EBobConnectorFactory, and
then calls createConnector().

User Java
Collaboration

e*Way
Connection
ETD Class

EBobConnectorFactory
e*Way

Connection's
Connector Class

External
API

initialize

new

(createConnector)

(newInstance)

(getProperties)

new

(extInitialize)

(setExternalClass)

1

2

3

5

4

Generic Multi-Mode e*Way Extension Kit User’s Guide 43

Chapter 4 Section 4.3
Functional Flow Step 2: Execute
3 A new instance of the Connector class is created, and the configuration values from
the e*Way Connection’s .cfg file are loaded into a Properties object. The connector
object is then returned to the ETD object.

4 The ETD object obtains configuration values by calling the getProperties() method
on its connector object.

5 A typical implementation instantiates and initializes the external APIs.

4.3.2 Automatic Connection and Connection Management
As indicated in section 4.3 (Step 2: Execute on page 43), the instantiation of e*Way
Connection classes occurs when the first inbound Event is received by the associated
Collaboration.

The connection to the external system associated with the e*Way Connection is
established either through Automatic Connection or through Connection Management.
Table 4 shows two e*Way Connection control techniques.

Table 4 e*Way Connection Control Techniques

For more information on e*Way Connection Control Techniques, see the e*Gate
Integrator User’s Guide.

4.3.3 ETD Reset Flow

Figure 12 Sequence of ETD Reset Flow

1 A rule statement in the Collaboration is executed, causing the e*Way Connection’s
ETD method to be called.

2 A call is made to the external system’s APIs.

3 The reset() method is called after all rule statements in the Collaboration have been
executed.

Automatic Connection Mode Connection Management Mode

available in e*Gate 4.5.1 or later available in e*Gate version 4.5.2 or later

establishes connection automatically registers with a Connection Manager

User Java
Collaboration

ETD Class
Instance

External
API

ETD method
External Java

API call
reset

1

2

3

Generic Multi-Mode e*Way Extension Kit User’s Guide 44

Chapter 4 Section 4.4
Functional Flow Step 3: Shutdown/Reload
4.4 Step 3: Shutdown/Reload
Upon shutdown or reload, the Java Collaboration Service:

1 Calls terminate() on each ETD.

2 Calls user terminate on each User Collaboration.

3 Releases all internal resources.

4 Detaches from the JVM.

4.4.1 Shutdown/Reload Flow

Figure 13 Sequence of Shutdown/Reload Flow

1 Shutdown or reload is triggered by the Control Broker.

2 The e*Way container complies by calling onTerminate() on all its Collaborations.

3 The terminate() method is called on each e*Way Connection ETD used in the
Collaboration.

Note: Special considerations apply to the terminate() method in the case of
Subcollaboration Rules; see “Implications for e*Way Development” on page 55.

User Java
Collaborations

e*Way Connection
Instance ETD Classes

Control
Broker

e*Way
Container

1

2

3

shutdown
or reload

terminate

onTerminate
Generic Multi-Mode e*Way Extension Kit User’s Guide 45

Chapter 5

e*Way Development Methodology

This chapter provides considerations for the development and design of an e*Way.

5.1 e*Way Development Considerations
The following areas are critical to the development of an e*Way:

Careful planning of both the e*Gate components and the project itself.

Gathering and validating requirements and creating a library of use cases.

Designing the code, including:

Connectivity and data factors—for example, needing to connect to servers
using a variety of open or propriety protocols and data formats.

Opportunities to re-use existing code or components.

Facilities offered by the external system or systems for collecting metadata.

Communication modes and integration interfaces.

Open or third-party–specific Application Programming Interfaces (APIs).

Implementing your design and validating the implementation.

Building and testing your components.

Packaging and distributing your deliverables.

5.2 e*Way Design Planning
At a minimum, your planning process should include the following:

Identify what will be required in the integration solution. For example:

e*Gate components, including existing e*Ways.

Platforms to be supported, such as operating systems and versions.

Underlying third-party systems.

Development and deployment tools.
Generic Multi-Mode e*Way Extension Kit User’s Guide 46

Chapter 5 Section 5.3
e*Way Development Methodology e*Way Design Considerations
5.3 e*Way Design Considerations
The purpose of an e*Way will dictate the type of e*Way you design. You can leverage
existing e*Ways or ETD libraries to create your e*Way. Many of the off-the-shelf
e*Ways—especially those in the protocol-wrapper, database, and Web interface
categories—are highly generic and self-contained, and are used as the building blocks
of the new e*Way.

Table 5 shows examples of the types of e*Ways that are currently available.

You can also take advantage of the many pre-packaged e*Gate ETD libraries, such as
CIDX, cXML, HIPAA, UN/EDIFACT, RosettaNet, X12, and xCBL.

Additional e*Way design considerations include:

Establishing connectivity protocols

Metadata collection

Communication and integration

Third-Party System APIs

These are described in the following sections.

5.3.1 Establishing Connectivity Protocols and Defining Event Types
Most third-party systems operate on a client/server or multi-tiered architecture.
When developing e*Ways, you may be required to connect to the appropriate servers
using one or combinations of the following protocols:

Application-specific proprietary protocols, such as MQSeries or COM/DCOM.

Industry-specific open standard protocols, such as SOAP, JDBC, or JMS.

Common Internet protocols, such as TCP/IP, FTP, HTTP, CGI, or SMTP.

Table 5 e*Way Categories

Type of e*Way Description and Examples

Protocol-wrapper e*Ways e*Ways that implement standard Internet protocols. Examples
include TCP/IP, FTP, SMTP (e-mail), HTTP(S), Dial-up
(Kermit, z-modem), and LDAP.

Database e*Ways Examples include Oracle, Sybase, UDB/DB2, ODBC, and
JDBC.

Web interface e*Ways Examples include CGI, MSIIS, ISAPI, and SOAP.

Enterprise application
e*Ways

Some enterprise application types are:
Customer Resource Management (CRM). Examples include
Siebel, Clarify, and Vantive.
Enterprise Resource Planning (ERP). Examples include SAP and
PeopleSoft.
Billing systems. Examples include Kenan and Portal
Groupware. Examples include Lotus Notes.
Generic Multi-Mode e*Way Extension Kit User’s Guide 47

Chapter 5 Section 5.3
e*Way Development Methodology e*Way Design Considerations
These protocols may include data format provisions. These must be considered when
you define your custom ETDs.

Many enterprise applications or third-party systems use data structured in proprietary
data formats. To be able to work with these data, they must be represented in e*Gate
through ETDs, as discussed in Chapter 7 “Event Type Definitions” on page 79.

For complex ETDs, you should consider the use of internal and/or external ETD
templates:

If your ETD has different areas with identical subtree definitions, you can decrease
effort and increase maintainability by using internal templates instead of re-creating
the subtree for each new place it is used. Internal templates are local to the ETD.

You can use external templates to allow your ETD to reference a frozen copy of
another ETD of the same type. An external template is an ETD you can reuse to
duplicate a particular structure in other ETDs. The modularity of this approach
lends itself to team development, especially of multiple interrelated ETDs.

5.3.2 Facilities for Collecting Metadata
Metadata is generic data that describes, characterizes, or qualifies the Events that travel
through the system. One of the most important considerations in creating e*Ways is to
determine whether the third-party system, or a knowledgeable vendor, provides tools
for gathering metadata. Such tools greatly facilitate the design of ETDs.

Examples

Two specific examples (illustrating the wide variety of external systems that may be
encountered) are SAP and Jacada:

SAP, an ERP architecture, provides facilities that are queried for a set of business
objects available in the system. It provides an API that allows you to find out what
operations are available for these objects and what the input and output data look
like for these operations.

Jacada, a “screen-scraper” for interfacing with legacy mainframe systems, provides
APIs that are utilized to query for a set of services and their associated methods that
are easily mapped to ETDs.

In cases like SAP and Jacada, the use of tools specifically provided for interfacing with
the external system diminishes ambiguity and reduces the need for special-purpose
research and requirements analysis. This allows you to create well-defined integration
scenarios.

XML

The e*Gate XML Toolkit contains e*Gate-related information on builders, converters,
and so on. It includes the e*Gate Registry API for XML Schema metadata. This is useful
for any external system that uses XML based on pre-packaged Document Type
Definitions (DTDs), XML Schema Documents (XSDs), and Extensible Stylesheet
Language Transformations (XSLTs).

In systems that make use of XML for data exchange, metadata can usually be obtained
through a vendor-specific or standards-based library of DTDs (or the equivalent, such
Generic Multi-Mode e*Way Extension Kit User’s Guide 48

Chapter 5 Section 5.3
e*Way Development Methodology e*Way Design Considerations
as xCBL for Commerce One), or by tools used to generate these DTDs. It can often be
worthwhile to develop or enhance these tools yourself.

5.3.3 Communication Modes and Integration Interfaces
In addition to the protocols used, you must consider the semantics of the
communication interface during data exchange. Whether for outbound delivery or
inbound delivery, you must determine strategies to address the quality of service and
responsiveness of the data exchange.

Strategies for outbound delivery

The following questions must be addressed:

Is synchronous data transfer required? (In other words, will the client be blocked
during the call?) If so, is it best accomplished through simple Request/Reply, or
through remote procedure calls such as RPC or Java RMI?

Is asynchronous data transfer required? If so, can it be accomplished through a
“fire-and-forget” strategy, or is a response required for some (or all) data that is
sent?

Is polling required? (For example, the Batch and FTP e*Ways provide data transfer
based on a time schedule.)

Is JMS applicable? (For a further discussion of JMS, see “Oracle SeeBeyond JMS”.)

Strategies for inbound delivery

The recommended mechanism for delivering Events (messages) inbound to e*Gate is
the Oracle SeeBeyond implementation of Java Message Service (JMS).
When considering how or whether to implement JMS, the following questions must be
addressed:

Is connection pooling support required?

Where should JMS client API calls be placed for all the components involved?

What JMS programming models should be employed?

Oracle SeeBeyond JMS

Oracle SeeBeyond JMS supports both persistent and non-persistent delivery modes:

Persistent mode guarantees delivery; if a failure occurs for any reason (such as a
disconnect or a transient load problem), the system continues to attempt redelivery.

Non-persistent mode has lower overhead, but does not guarantee delivery.

The Oracle SeeBeyond implementation of JMS also supports both of the messaging
models defined in the JMS specification:

In the publish-and-subscribe (pub/sub) model, one producer can broadcast a message
to many consumers on a virtual channel called a topic. Publish-and-subscribe is an
excellent mechanism for many-to-many conversations, with consumers registering
their interest in certain messages by subscribing to a topic. Because this model is
push-based, consumers do not have to request or poll the topic for new messages.
Generic Multi-Mode e*Way Extension Kit User’s Guide 49

Chapter 5 Section 5.3
e*Way Development Methodology e*Way Design Considerations
In the point-to-point (p2p) model, JMS clients can send and receive messages
through virtual channels called queues. A message from a queue is consumed when
it is first received; thus, even when a queue has many receivers, each message is
received only once. This model is desirable for one-on-one conversations and for
messages that need to be processed separately, serially, or both.

In either model, messages are transmitted synchronously or asynchronously. Both
models support request-reply messaging, where a client expects to receive a response as
a result of a sent message.

e*Gate version 4.5.2 JMS includes the message selector feature, which supports the
following additional capabilities:

In the publish-and-subscribe (pub/sub) model, when a message needs to be
distributed to many clients, message header data visible to the JMS provider can
allow the provider to handle much of the filtering and routing, without impacting
each client application.

In the point-to-point (p2p) model, if a message is sent to a single receiver and the
criteria of filtering and categorization are included in the message, the receiving
client can discard any message that is not required.

5.3.4 APIs for Third-Party Systems
Third-party systems usually provide Application Programming Interfaces (APIs) that
expose native functions. These APIs can generally be called using any or all of the
following: C/C++, Java, COM interfaces, and CORBA interfaces.

Wrapping these APIs and exposing the relevant methods needed for integration with
other systems is a common approach in the development of e*Ways. Java-based e*Ways
are implemented as thin wrappers around these third-party APIs through the
appropriate interfaces.

“Developing an e*Way Using the Builder API” on page 119, guides you through the
process of creating an ETD whose API calls are simulated by corresponding stubs in an
RMI (Remote Method Invocation) server.
Generic Multi-Mode e*Way Extension Kit User’s Guide 50

Chapter 6

e*Way Development Workflow

This chapter provides high-level information for creating an e*Way, including custom
e*Way Connections and ETDs. The following are described in this chapter:

Usage of the Java classes in e*Way Connection ETDs

Subcollaboration rules

e*Way development execution, including:

Design implementation

Building and testing components

Packaging and distribution

6.1 Java Classes Used in e*Way Connection ETDs
Each .xsc file must have a corresponding .jar file that contains all associated Java
classes. The .xsc file exposes methods for accessing attributes, as well as exposed
methods in third-party wrapped classes, so that end users can view them through the
e*Gate GUI.

Before developing your Multi-Mode e*Way, you should thoroughly review the third-
party Application Programming Interfaces (APIs) that are available to you. The API’s
tell you what objects are available and how input and output data look. The
functionality of the e*Way you create is determined by how you wrap these APIs and
which methods you expose.

6.1.1 Class Relationships
A custom Multi-Mode e*Way must contain classes that implement two key interfaces:

Its ETD class must extend the supplied abstract class EwayConnectionETDImpl,
which implements the interface ETD.

Its connection class must implement the interface EBobConnector.

For complete information on the ETD and EBobConnector interfaces, refer to the
Javadoc in “e*Way Classes and Methods” on page 254.

A class diagram for the ETD and connector classes you create is shown in Figure 14.
Generic Multi-Mode e*Way Extension Kit User’s Guide 51

Chapter 6 Section 6.1
e*Way Development Workflow Java Classes Used in e*Way Connection ETDs
Figure 14 Class Relationships of the ETD and Connector Classes

Specific examples are provided with the kit:

In the sample that illustrates Automatic Connection, Figure 47 on page 158 shows
the connector class (SampleETDConnector) implements the EBobConnector

+initialize() : void
+terminate() : void
+reset() : void
+marshal() : unsigned char
+unmarshal() : void
+retrieveMode() : int
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

«interface»
ETD

+initialize(in jCollabCcontroller, in key : String, in mode : int) : void
+retrieveKey() : String
+retrieveMode() : int
+terminate() : void
+reset() : bool
+marshal() : unsigned char
+unmarshal() : void
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

EwayConnectionETDImpl

+initialize(in jCollabController, in key : String, in mode : int)
+reset() : boolean
+terminate() : boolean
+myMethod1() : void
+myMethod2() : void
+myMethod3() : void
+setAttribute1() : void
+getAttribute1() : String
+getAttribute2() : String

-myExtDelegate (optional attribute)
-myETDConnector (recommended)

myETD

+open(in intoEgate : bool) : void
+close() : void
+isOpen() : boolean
+getProperties() : <unspecified>

«interface»
EBobConnector

+open() : void
+close() : void
+isOpen() : boolean

MyConnector

1 1
Generic Multi-Mode e*Way Extension Kit User’s Guide 52

Chapter 6 Section 6.1
e*Way Development Workflow Java Classes Used in e*Way Connection ETDs
interface, and Figure 46 on page 157 shows how the ETD class (SampleETD)
extends the EwayConnectionETDImpl abstract class.

In the sample that illustrates Connection Management, Figure 52 on page 189
shows how the connector class (EBobConnectorExtImpl) extends the abstract class
EBobConnectorExt, and Figure 51 on page 187 shows how the ETD class
(TcpClientETD) implements the ETDExt interface.

In the sample that illustrates Transactional functionality, the connector class
(XAFileETDConnector) is the same as for the Automatic Connection sample.
Figure 56 on page 226 shows how the ETD class (XAFileETD) implements the
ETDExt interface as well as the JXAResourceAdapter interface.

6.1.2 Application Programming Interfaces (APIs)
For an Automatic e*Way Connection, the custom APIs consist of the following:

EBobConnectorFactory—A factory class that instantiates the connector class you
develop (by means of its createConnector() method) and loads your configuration.

JCollabController—An instance of this class is associated with each Collaboration;
the this.jCollabController object holds references to the various objects needed by
the Collaboration.

CollabConnException, CollabDataException, and CollabResendException—
Classes for handling exceptions that are thrown inside either of the classes you
develop (ETD or connector); these exceptions are caught in the end user’s
Collaboration.

EBobConnectionException—Class for handling exceptions that are thrown inside
the connector class you develop.

ETD—The interface that must be implemented by the ETD class you develop.

EBobConnector—The interface that must be implemented by the connector class
you develop.

For a Connection-Managed e*Way Connection, the custom APIs consist of the
following:

EBobConnectorExt—For Connection Management e*Ways, interface that must be
implemented by the connector class you develop (instead of EBobConnector).

EBobConnectorExtFactory—For Connection Management e*Ways, this the factory
class corresponding to EBobConnectorFactory.

JConnectionManager—Specifies the interface implemented by the Connection
Manager. This interface provides the methods called by ETDs that need to support
Connection Management.

JConnectionNotifier— implemented by user Collaborations to specify actions/
rules (in the onConnectionUp() or onConnectionDown() methods, enabled by
Connection State Trapping) that are called based on the state of a connection.

Note: Implementing JConnectionNotifier only applies to ETDs that utilize the
Automatic connection establishment mode.
Generic Multi-Mode e*Way Extension Kit User’s Guide 53

Chapter 6 Section 6.2
e*Way Development Workflow Subcollaboration Rules
For a Transactional e*Way Connection, the custom APIs consist of the following:

JTransactionAdapter—Specifies the interface implemented by the ETDs that
support one-phase transactions (non-XA). It provides the methods called by the
Transaction Manager to commit or roll back non-XA transactions.

JXAResourceAdapter—Specifies the interface implemented by the XA Resource
Managers. It provides the methods called by the Transaction Coordinator
component of the Transaction Manager on XA ETDs.

For details, see the Javadoc files supplied on the e*Gate Integrator Installation CD-
ROM.

Note: APIs for Standard (.ssc file-based) ETDs are described in the e*Gate User’s
Guide. .ssc file based ETDs are not Java-enabled. For details on .ssc based entities,
see “Delimiter-Related Entities (SSC only)” on page 295.

6.2 Subcollaboration Rules
A Collaboration Rule are used as a parent or a child of another Collaboration Rule. This
allows you to insulate connectivity from transformation by separating out
transformation-specific Collaboration Rules and maintaining them as individual units.

Every Collaboration Rule is either:

Used as a Root Collaboration Rule—in other words, a Collaboration Rule invoked by
e*Gate itself; or

Used as a Subcollaboration Rule, invoked by a parent Collaboration Rule.

A Collaboration Rule, when used as a Root Collaboration Rule, is like a main program;
when used as a Subcollaboration Rule, it is like a subroutine. For example:

A Subcollaboration Rule allows you to reuse a valuable piece of work in another
context without having to reinvent it or reconstruct it from scratch.

Typically, a Subcollaboration Rule takes care of details or special-purpose parsings
and transformations, allowing the parent Collaboration Rule to be simpler and
more general.

Every Collaboration Rule runs in a mapping environment defined by its container:

A Root Collaboration Rule's mapping environment is defined through the e*Gate
GUI—namely, the Collaboration Properties dialog box.

A Subcollaboration Rule's mapping environment is defined programmatically,
through its parent's call to setInstanceMap().

For more information on Subcollaboration Rules, especially the JSubCollabMapInfo
object and the JCollabController.createSubCollabMapInfo() and setInstanceMap()
methods, refer to the material in the e*Gate Integrator User’s Guide.
Generic Multi-Mode e*Way Extension Kit User’s Guide 54

Chapter 6 Section 6.2
e*Way Development Workflow Subcollaboration Rules
6.2.1 Caveats
The following caveats apply to Collaboration Rules invoked as Subcollaboration Rules:

Two-phase transaction processing—that is, Prepare/Commit/Rollback—can only
be handled at the Root Collaboration Rule level, never by a Subcollaboration Rule.

A Collaboration Rule that uses ELS are invoked as a Subcollaboration Rule, but its
executeBusinessRules() code runs immediately, bypassing its ELS-specific code.

Collaboration Rules that use an API ETD—other than database ETDs—are
ineligible for being used as Subcollaboration Rules.

When an outbound Event Type instance is set to Manual Publish, its data is
handled by its ETD’s send() method (or not at all), and cannot be intercepted by its
container. In other words, for a manually published Event Type instance, its data
goes wherever send() sends it—typically to an IQ or to a JMS e*Way Connection.

When an ETD is being used in a Subcollaboration Rule, you must override the
terminate() method of your ETD class. For details, see “Implications for e*Way
Development”.

6.2.2 Implications for e*Way Development
Subcollaboration Rules have the following implications for e*Way development:

What to do: Override the terminate() method of your ETD class.

Why: The terminate() method needs to check whether it is being called from within
a Subcollaboration Rule. For details, see the isSubCollaboration() method in the
Javadocs in “e*Way Classes and Methods” on page 254.

When an ETD is being used in a Subcollaboration Rule, the Connector object
returned by the createConnectorExt() method is the same instance used by the Root
Collaboration Rule. The isInSubcollab boolean flag is set here, to be used later by
the terminate() method to determine whether or not to close the connection. If the
connection is in a Subcollaboration Rule, it should not close external connections at
this time. Instead, it must release resources used in the Subcollaboration Rule
without closing the external connection. Later, the connection will be closed in the
Root Collaboration Rule.

What to do: Make sure your e*Way Connection ETD implements the additional
methods setConnector() and getConnector().

Why: To support Subcollaboration Rules, your e*Way ETDs must be able to share
connectors. The set|getConnector() methods are called during initialization of your
ETD based on whether the current Collaboration Rule is a Subcollaboration or a
Root Collaboration Rule.
Generic Multi-Mode e*Way Extension Kit User’s Guide 55

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
6.3 Implementing Your Design
Implementation of an e*Way Connection ETD class involves the following steps:

1 Create the .java files.

2 Create a compile.bat (or, on UNIX, compile.sh) file that reflect your development
environment, and compile the .java files to create .jar files.

3 Create .ctl files that reflect your CLASSPATH environment.

4 Create .def files for your e*Way Connections’ default configuration parameters.

5 Create the .xsc files, using either an XML editor or a text editor such as Notepad, so
that your ETDs’ methods and properties are graphically exposed to the end user
through the ETD Editor and the Collaboration Editor.

6.3.1 Creating .java Files
Sample files have been provided and require only minor edits to enable the sample
schemas to be implemented; MySchema.zip contains the files for a simple Automatic
Connection e*Way, and TcpEcho.zip contains the files for a more complex Connection
Management e*Way.

This section provides the basic information necessary to create code, compile it, and
commit your files to the e*Gate Registry, including the following:

Class development and configuration instructions

Information and instructions for incorporating support for e*Way Connections with
Connection management

Information and instructions for incorporating support for XA-enabled e*Way
Connections.

Class Development and Configuration

The following are instructions for creating and configuring the classes that will be
stored in the .java file.

1 What to do: Create your ETD class, using the class relationships shown in either:

Figure 15 on page 57, for a 4.5.1 e*Way that does not use Connection
Management; or

Figure 17 on page 62, for an e*Way that does use Connection Management.
(Additional steps are required; details of these steps are provided in “e*Way
Connections with Connection Management” on page 60.)

Why: Java Collaborations operate based on instances of inbound and outbound ETD
classes. ETD classes are classes that implement the Java interface com.stc.jcsre.ETD.

Note: For details on the ETD interface, see the Javadoc files supplied on the e*Gate
Integrator Installation CD-ROM.
Generic Multi-Mode e*Way Extension Kit User’s Guide 56

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
Collaborations expect to operate on objects that implement the ETD interface. The ETD
interface includes the methods involved in obtaining data from or putting them in
e*Gate queues (such as IQs or JMS). It also includes the initialize(), reset(), and
terminate() methods that are called as part of the standard Collaboration life cycle.

Figure 15 Class Relationships of an ETD Class

+initialize() : void
+term inate() : void
+reset() : void
+marshal() : unsigned char
+unmarshal() : void
+retrieveMode() : int
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

«interface»
ETD

+initialize(in jCollabCcontroller, in key : String, in mode : int) : void
+retrieveKey() : String
+retrieveMode() : int
+term inate() : void
+reset() : bool
+marshal() : unsigned char
+unmarshal() : void
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

EwayConnectionETDIm pl

+initialize(in jCollabController, in key : String, in mode : int)
+reset() : boolean
+term inate() : boolean
+copyAndAddProperty() : void
+saveOutputPropertyFile() : void
+addProperty() : void
+setOutFilename() : void
+getOutFilename() : String
+setOutDirectory() : void
+getOutDirectory() : String

-myExtDelegate
-myETDConnector

Sam pleETD
Generic Multi-Mode e*Way Extension Kit User’s Guide 57

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
An e*Way Connection has an associated class that implements the ETD interface.
We refer to this class as your ETD class.

The class EwayConnectionETDImpl is a sample provided to implement the ETD
interface. It is an abstract class that your ETD class must extend, and it provides the
default implementation used for e*Way Connection (non-messageable) ETDs. The
EwayConnectionETDImpl class should not normally be modified; any additional
desired functionality should be included in your ETD class.

By extending EwayConnectionETDImpl, your ETD class inherits common
behavior when interacting with e*Gate IQs and JMS.

Note: Since it is not intended for message parsing, EwayConnectionETDImpl contains
empty implementations of the marshal() and unmarshal() methods. For more
information on parsing messageable ETDs, see “Handling Messageable ETDs”
on page 243.

We refer to the class that extends EwayConnectionETDImpl as your e*Way
Connection ETD class. This is the class that exposes your ETD’s functionality; the
methods generated by the Collaboration Rules Editor correspond to methods in
your ETD.

2 What to do: Create a delegate object in your ETD class.

Why: Delegation is the use of a separate class encapsulating specific functionality
In this case, the functionality being encapsulated consists of the calls dealing with
the external system or entity. A reference to the delegate object (an instance of the
Delegate class) is kept in the ETD class. Delegation allows for cleaner separation of
functions dealing with an external system; for example, you can wrap third-party
API calls in a delegate class. This is a useful technique for developing most ETDs
where the API calls are isolated and wrapped easily.

3 What to do: Override the initialize() method of your ETD class.

Why: If you support Connection Management or transaction processing, you need
to call some registration methods. The initialization procedure performed here
includes obtaining the associated connector for the ETD using
EBobConnectorFactory or EBobConnectorExtFactory. Once the connector is
available, the ETD has access to configuration information. Any initialization that
needs to be done on the external system through third-party APIs through the
Delegate class may be done here as well.

4 What to do: Instantiate your connector class, using the class relationships shown in
either:

Figure 16 on page 59, for a 4.5.1 e*Way that does not use Connection
Management; or

Figure 17 on page 62, for an e*Way that uses Connection Management.
(Additional steps are required; details of these steps are provided in “e*Way
Connections with Connection Management” on page 60.)
Generic Multi-Mode e*Way Extension Kit User’s Guide 58

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
Why: The implementation of your e*Way Connection’s configuration and
connection management functions must be provided in a class that extends
EBobConnector; this class is referred to as the connector class for your ETD.

The EBobConnector interface is used encapsulate the connection methods open(),
close(), and isOpen(), as well as the getProperties() method, which allows access to
configuration values as Java Properties.

In e*Gate version 4.5.2, the EBobConnector interface was extended by the
EBobConnectorExt interface to support Connection Management functionality.

Note: For details on all interfaces and methods, see the Javadoc files supplied on the e*Gate
Integrator Installation CD-ROM.

Figure 16 SampleETDConnector (Connector Class) Relationship

5 What to do: Override your ETD class’s reset() method so that it returns true if you do
not want the ETD instance to be re-instantiated for each new incoming Event.

Why: This provides an opportunity to clear any resources or cached information.

6 What to do: Override your ETD class’s terminate() method.

Why: The terminate() method is called when the Multi-Mode e*Way shuts down,
terminating its configured Collaboration Rules. The Collaboration Controller will
need to call terminate() on ETDs in Subcollaboration Rules as well before returning
control to the parent Collaboration Rule.

7 What to do: Create your ETD’s connector class; this is the class that implements the
EBobConnector or EBobConnectorExt class.

Example: The abstract class EwayConnETDConnectorExtImpl in the TCP Client
sample provides a default implementation of the EBobConnectorExt interface.
You can use this class as boilerplate code and extend it for your connector class.
For a class diagram showing how this works, see Figure 51 on page 187.

+open(in intoEgate : bool) : vo id
+close() : void
+ isO pen() : boolean
+getProperties() : P roperties

«interface»
EBobConnector

+open() : void
+close() : vo id
+isO pen() : boolean

Sam pleETDConnector

EBobConnecto
r interface

Oracle-provided
sample connector
class that implements
the interface
Generic Multi-Mode e*Way Extension Kit User’s Guide 59

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
e*Way Connections with Connection Management

In e*Gate version 4.5.2, Connection Management offers the following connection
establishment options:

Automatic—The connection to the external system is established automatically.
If the connection is lost, connection is re-established.

In Automatic connection establishment mode, user Collaborations are notified of
external connections being established and disestablished. The end user can take
advantage of these notifications in the Collaboration Rules Editor through the
option Enable Connection State Trapping on the File menu. Enabling this option
indicates that the user Collaboration class will implement the JConnectionNotifier
interface, which contains an onConnectionUp() and an onConnectionDown()
method. The user can specify rules to be executed in these methods. For example,
the user might choose to insert a rule that sends an Alert into the
onConnectionDown() method.

On Demand—The connection to the external system is established before the
Collaboration executes business rules. After the business rules are executed, the
e*Way disconnects from the external system.

Manual—The end user is responsible for establishing connection with the external
system by adding Collaboration Rules that call the connect() method.

An e*Way Connection with Connection Management allows you to do all of the
following.

Control when a connection is established:

Connection occurs when Collaboration is loaded.

Connection occurs when Collaboration is executed.

Connection is performed manually as an additional method on the ETD.

Connection to external are overridden by the custom values in the
Collaboration.

Control when a connection is closed:

Disconnect at end of Collaboration’s life.

Disconnect at end of Collaboration executeBusinessRules() processing.

Disconnect at timeout.

Disconnect on method call.

Monitor connectivity.

Specify the methods to be called based on connection status.

Use Connection Sharing.

The functionality listed above primarily involves changes in how the ETD class is
coded. The ability to supply actions in the user Collaboration when an external
connection ends abnormally, or when it is initially established or re-established after
disconnection, is provided if the user Collaboration implements the
Generic Multi-Mode e*Way Extension Kit User’s Guide 60

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
JConnectionNotifier interface. The JConnectionNotifier interface contains the
methods onConnectionUp() and onConnectionDown().

The Connection Management sample uses a very simple TCP/IP client that connects to
a server that echoes back messages sent to it. The class diagrams for this sample show
the extensions to the basic interfaces used in the sample described in Chapter 10.

Classes and Interactions for Connection Management

As noted previously, the ETD class and connector class for a Connection Management
e*Way are slightly different from the ETD and connector classes for an Automatic
Connection e*Way, and have different interactions. These differences are discussed in
detail in the following sections.

ETD class

For the Connection Management sample, the class diagram for the ETD class for the
e*Way Connection is shown in Figure 17.
Generic Multi-Mode e*Way Extension Kit User’s Guide 61

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
Figure 17 ETD Class for a Connection Management e*Way

+initialize() : void
+terminate() : void
+reset() : void
+marshal() : unsigned char
+unmarshal() : void
+retrieveMode() : int
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

«interface»
ETD

+initialize(in jCollabCcontroller, in key : String, in mode : int) : void
+retrieveKey() : String
+retrieveMode() : int
+terminate() : void
+reset() : bool
+marshal() : unsigned char
+unmarshal() : void
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

EwayConnectionETDImpl

+getConnector() : <unspecified>
+setConnector() : void
+get$Configuration() : <unspecified>

«interface»
ETDExt

+initialize(in jCollabController, in key : String, in mode : int)
+reset() : boolean
+terminate() : boolean
+sendToServer(in inputMessage : String) : void
+sendToServer() : void
+getReply() : String
+setServer() : void
+getServer() : String
+hasServer() : boolean
+omitServer() : void
+setPort() : void
+getPort() : String
+hasPort() : boolean
+omitPort() : void
+connect() : void
+disconnect() : void
+isConnected() : boolean
+setConnector(in connector : EBobConnectorExt) : void
+getConnector() : EBobConnectorExt
+get$Configuration() : ConnConfigBase

-myExtDelegate : TcpClient
-myETDConnector : TcpClientETD
-isInSubCollab : boolean
-cfgProps
-server : String
-port : String
-message : String
-replyMessage : String
-_connection : Connection (TcpClientETD inner)

TcpClientETD
Generic Multi-Mode e*Way Extension Kit User’s Guide 62

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
As shown in Figure 17, the ETDExt interface extends the ETD interface to allow setting
and getting the Connector object associated with an ETD. The configuration associated
with the ETD can also be obtained as an object. These are needed mainly to allow the
user to set connection parameters on the ETD. The corresponding changes in the .xsc
file are discussed in the next section.

Connector class

For a Connection Management e*Way, the class diagram for the connector class for the
e*Way Connection is shown in Figure 18.
Generic Multi-Mode e*Way Extension Kit User’s Guide 63

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
Figure 18 Connector Class for a Connection Management e*Way

+open(in intoEgate : bool) : void
+close() : void
+isOpen() : boolean
+getProperties() : Properties

«interface»
EBobConnector

+open(in intoEgate : Boolean) : void
+open(in props : java.util.Properties) : void
+close() : void
+isOpen() : boolean

myETDConnector

+open(in props : java.util.Properties) : void
+getName() : String
+getConfigurationFilename() : String
+setLastActivityTime() : String
+getLastActivityTime() : long
+setLastError(in lastError : java.lang.Throwable) : void
+getLastError() : java.lang.Throwable
+releaseResources() : void
+setJCollabController() : void
+getJCollabController() : JCollabController
+setRetroMode(in retromode : Boolean) : void
+isRetroMode() : boolean
+isSubCollabSupported() : boolean
+isXA() : boolean

«interface»
EBobConnectorExt

+EBobConnectorExtImpl(in props : Properties)
+open(in props : Properties)
+getName() : String
+getConfigurationFilename() : String
+setLastActivityTime(in time : long) : void
+getLastActivityTime() : long
+setLastError(in lastError : java.lang.Throwable) : void
+getLastError() : java.lang.Throwable
+releaseResources() : void
+setJCollabController(in collabCntrl : JCollabController) : void
+getJCollabController() : JCollabController
+setRetroMode(in mode : Boolean) : void
+isRetroMode() : boolean
+isSubCollabSupported() : boolean
+isXA() : boolean

EBobConnectorExtImpl

Your connector class
should extend the
implementation
supplied by Oracle.

EBobConnectorExtImpl
is a Oracle-supplied
implementation of
EBobConnectorExt.

EBobConnectorExt is the
extension of EBobConnector
that allows your connector
class to use Connection
Management.

EBobConnector is the
standard interface for
all connector classes,
either directly or
indirectly.
Generic Multi-Mode e*Way Extension Kit User’s Guide 64

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
As shown in Figure 18, the EBobConnector class subclass EBobConnectorExt adds the
methods that interact with the Collaboration Controller and the Connection Manager.
The default implementation EBobConnectorExtImpl has been supplied; you can just
extend this class to implement the connector class for your e*Way Connection.

Developing an e*Way with Connection Management Support

The following summarizes the steps that differ when developing an e*Way with
Connection Management support:

Java code changes

e*Way Connection ETDs must implement ExtETD.

In the initialize() method:

Add a call to obtain your connection manager using
JCollabController.getConnectionManager().

Use EBobConnectorExtFactory to instantiate your EBobConnectorExt
implementation class, referred to as your Connector (you can extend the
default implementation EBobConnectorExtImpl). The factory sets the mode
call retro mode (this is false if you are using an e*Gate installation that
supports Connection Management).

Register your connector with the Connection Manager—for example:
jConnMgr.registerConnector(myETDConnector);
Here, jConnMgr is a reference to the Connection Manager.

Make sure your e*Way Connection ETD implements the additional methods
setConnector() and getConnector(). To support Subcollaboration Rules, your
e*Way ETDs must be able to share connectors. The set/getConnector() methods
are called during initialization of your ETD based on whether you are in a
Subcollaboration Rule or not.

If you are supporting Manual mode, you must add the appropriate attributes
and methods that will allow the user to set the connection parameters and
perform the following method calls from the ETD:

connect()

disconnect()

isConnected()

When a method using your external connection is called, you must call
setLastActivityTime() to mark when the connection was last used. Ideally, this
should be put in one place per operation using the connection. For instance,
setLastActivityTime() may be called inside the commit method for database
operations.

.xsc file changes

If you are supporting Manual mode, add nodes for configuration information.
This corresponds to the items in your e*Way Connection’s .cfg file. The values
specified in the .cfg file are used as the default values. The end user of the
e*Way Connection just needs to be able to set the same values to support the
Generic Multi-Mode e*Way Extension Kit User’s Guide 65

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
Manual connection mode. The associated Java code for this will be based on the
ConnConfigBase class.

If you are supporting Manual mode, add nodes for connecting, disconnecting,
and checking the external connection:

connect()

disconnect()

isConnected()

The corresponding Java implementation for these methods must use the connection
configuration set in the nodes listed above.

.def file changes

In the Connector section, add a new item, Connection Establishment Mode.
The valid values must be one of the following constants:

Automatic

OnDemand

Manual

Connection Inactivity Timeout—This value is used to specify timeout (in
milliseconds) for the Automatic connection establishment mode. If this is not
set, or if it is set to 0, the connection is not brought down due to inactivity. The
connection is always kept alive; if it goes down, the re-establishment of the
connection is automatically attempted. If a non-zero value is specified, the
Connection Manager tries to monitor for inactivity so the connection is brought
down if the value specified is reached.

Connection Verification Interval—This value is used to specify the minimum
period of time (milliseconds) between checks for connection status to the
external server. If the connection to the server is detected to be down during
verification, the user Collaboration's onConnectionDown() method is called.
If the connection comes from a previous connection error, the user
Collaboration's onConnectionUp() method is called. If no value is specified,
60000 ms is used.

The sequence diagram in Figure 19 shows the interactions among the ETD classes, the
Collaboration Controller, and the Connection Manager.
Generic Multi-Mode e*Way Extension Kit User’s Guide 66

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
Figure 19 Class Interactions for a Connection Management e*Way

1 In the JCollabControllerImpl object, the initialize() method is called. An instance
of the JConnectionManager is created.

2 The user Collaboration is instantiated by the Collaboration Controller.

3 The initialize() method of the Connection Manager is called.

4 The Connection Manager obtains a reference to the user Collaboration using it from
the Collaboration Controller.

5 The initialize() method of the user Collaboration is called by the Collaboration
Controller, and the user Collaboration instantiates its e*Way ETDs.

6 The user Collaboration calls the initialize() method of its e*Way ETDs. The ETD
creates its Connector object in the initialize() method, obtaining its configuration
from the .cfg file as Java properties. The Connector configuration includes the
connection establishment mode (Automatic, OnDemand, or Manual).

7 The e*Way ETD gets the Connection Manager from the Collaboration controller so
it can register the Connector object it instantiated.

8 The e*Way ETD sets a reference to the Collaboration Controller in its Connector.

9 The e*Way ETD registers its Connector object with the Connection Manager.

JCollabControllerImpl JConnectionManagerImpl User Collaboration eway ETD 1 ETD 1 Connector
new()initialize()

initialize()

new()

initialize()
new()

initialize()

getConnectionManager()

registerConnector()

getUserCollaboration()

preExecuteBizRules()

postExecuteBizRules()

translate()

manage()

setJCollabController()

new (via ConnectorFactory)()

open()

close()

OnConnectionUp()
onConnectionDown()

manage()
getName, getConfigurationFile()

(1)
(2)

(3)
(4)
(5)

(6)
(7)

(8)

(9)

(10)
(11)

(12)

(13)
(14)

(15)
Generic Multi-Mode e*Way Extension Kit User’s Guide 67

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
At this point, initialization of connectors and registration of interface implementors
is completed. The Connection Manager should have performed the appropriate
actions to inform the Collaboration Controller of specific junctures when timer
events will be generated triggering calls to its manage() method.

10 The manage() method is the main method that implements the Connection
Manager functions. One of its functions is to monitor connections.

11 The Connection Manager polls the registered connectors by calling their isOpen()
methods. It calls the onConnectionUp() and onConnectionDown() methods on the
user Collaboration based on the change in connection status detected.

12 In the translate() method of the Collaboration Controller, the preExecuteBizRule()
method of the Connection Manager is called before performing any business rules.

13 The manage() method will include logic called to loop through the registered
connectors and determine if its associated connection needs to be activated.

14 The Connection Manager calls the open() method for the connectors that need to
activate its connection.

15 The postExecuteBizRule() method in the Connection Manager is called after the
user’s Collaboration Rules are executed by the Collaboration Controller. This
method will call the close() method of registered connectors for e*Way Connections
that are configured to OnDemand mode.

e*Way Connections with Transaction Processing and XA

e*Gate supports both one-phase and two-phase commit transactions through its
implementation in user Collaborations of the Java Transaction API (JTA) specification:

http://java.sun.com/products/jta/

JTA specifies an architecture for building transactional application servers and defines a
set of interfaces for various components of this architecture. The components are:

the Application Program (AP)

the Application Server (AS)

Resource Managers (RMs)

In e*Gate, the AP is represented by the Collaboration, which runs inside the Multi-
Mode e*Way; the Multi-Mode e*Way acts as the AS. The RMs are the ETDs that allow
access to external resources.

Note: Two-phase transaction processing — that is, Prepare/Commit/Rollback — can only
be handled at the Root Collaboration Rule level, never by a Subcollaboration Rule.

Distributed transactions and JTA

A distributed transaction is a transaction that goes across multiple independent RMs. For
example, the transaction might include an Oracle database at the corporate office, and
an SQL Server database at the partner’s warehouse. The involved RMs attempt to
complete and commit their part of the transaction. If any part of the transaction fails, all
RMs roll back their respective updates. This is accomplished using the two-phase commit
Generic Multi-Mode e*Way Extension Kit User’s Guide 68

http://java.sun.com/products/jta/

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
protocol. In this protocol, the activity of one or more RMs is controlled by a Transaction
Manager (TM).

JTA provides a Java mapping of the industry-standard XA protocol (defined by the X/
Open Consortium) used between RMs and a TM for coordinating transactions across
distributed systems. Two-phase commit is part of the XA specification.

Two-phase commit protocol

The activity of one or more RMs is controlled by the TM (also referred to as the
transaction coordinator). There are five steps in the two-phase commit protocol.

1 An application invokes the commit() method in the TM.

2 The TM contacts the various RMs relevant to the transaction and directs them to
prepare to commit the transaction. This is the beginning of the first phase.

3 Each RM must be able to guarantee the ability to either commit the transaction or
else to perform a rollback of the transaction. (For example, most RMs write to a
journal file in durable storage that contains the intended changes.) Any RM that is
unable to prepare the transaction sends a negative response to the TM.

4 All responses from the involved RMs are collected.

5 The TM sends a command to the involved RMs. (This is the second phase.) The
command takes one of two possible forms:

If any response of the RMs is negative, the TM sends a rollback() command.

If all of the RM responses are affirmative, the TM sends a commit() command.
The transaction cannot fail after this point.

The Multi-Mode e*Way container has a TM component that interacts with e*Way
Connections and ETDs. The TM contains Oracle SeeBeyond JMS publications that act as
RMs. e*Gate provides JTA-compliant interfaces which must be implemented by e*Way
Connection ETDs to be able to participate as RMs in transactional Collaborations.

For details of implementing one-phase (non–XA-compliant) and two-phase (XA-
compliant) transaction processing in e*Way Connection ETDs, see “Transactional
Interfaces for e*Way Connection ETDs” on page 224.

Classes and Interactions for Transaction Processing

For an XA-enabled ETD Connection, the connector class is the same as for the
Automatic Connection sample, but the ETD class is slightly different and has different
interactions. These differences are discussed in detail in the following sections.

ETD class

For the Transactional sample, the class diagram for the ETD class for the e*Way
Connection is shown in Figure 20.
Generic Multi-Mode e*Way Extension Kit User’s Guide 69

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
Figure 20 ETD Class for an XA-enabled e*Way Connection

Sequence of Interactions

The following sequence diagrams show the interactions among the Collaboration
Controller, the Transaction Manager, the Connection Manager, the Collaboration, and
the XA-enabled ETD during the initialization phase (Figure 21) and the translation
phase (Figure 22).

+initialize() : void
+terminate() : void
+reset() : void
+marshal() : unsigned char
+unmarshal() : void
+retrieveMode() : int
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

«interface»
ETD

+initialize(in jCollabCcontroller, in key : String, in mode : int) : void
+retrieveKey() : String
+retrieveMode() : int
+terminate() : void
+reset() : bool
+marshal() : unsigned char
+unmarshal() : void
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

EwayConnectionETDImpl

+getConnector() : EBobConnectorExt
+setConnector(in conn : EBobConnectorExt) : void
+get$Configuration() : ConnConfigBase

«interface»
ETDExt

+initialize(in jCollabController, in key : String, in mode : int)
+reset() : boolean
+terminate() : boolean
+writefile() : boolean
+setFilepath(in filepath : String) : void
+getFilepath() : String
+setMyExtDelegate() : void
+getMyExtDelegate() : XAFile

-myExtDelegate
XAFileETD

+start(in aKey : String) : void
+end(in aKey : String) : void
+forget() : void
+recover() : void
+prepare() : void
+commit() : void
+rollback() : void
+...()

«interface»
XAResource

+open() : Object
+....()

XAFile

+start() : void
+end() : void
+forget() : void
+recover() : void
+isSameRM() : boolean
+prepare() : void
+setTransactionTimeout() : void
+getTransactionTimeout() : int
+commit() : void
+rollback() : void
+...()

Resource 11

1

1

+xaOpen(in aKey : String) : void
+xaClose(in aKey : String) : void
+getXAResource() : XAResource

«interface»
JXAResourceAdapter
Generic Multi-Mode e*Way Extension Kit User’s Guide 70

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
Figure 21 Sequence of Class Interactions in XA: Initialization Phase

In the following steps, the Collab Controller is JCollabController, the Transaction
Manager is JTransactionManager, and the Connection Manager is JConnectionManager.

1 The Collab Controller calls initialize() on the Transaction Manager. This process
includes initialization of its associated Transaction Coordinator component.

2 The Collab Controller calls initialize() on the Connection Manager. The Connection
Manager starts with an empty list of connectors and obtains a reference to the user
Collaboration. If the user Collaboration implements JConnectionNotifier, the
Connection Manager will call onConnectionUp() and onConnectionDown() on the
user Collaboration based on the state of registered connectors.

3 The Collab Controller calls initialize() on the user Collaboration.

4 The user Collaboration instantiates its ETDs when the first Event arrives (or as
triggered by the “get” interval of the inbound ETD—for example, Figure 21 shows
the XA ETD, which may be one of the Collaboration's inbound or outbound ETDs).

5 The user Collaboration calls the initialize() method for all its ETDs.

JCollabController JConnectionManager User Collaboration XA ETDJTransactionManager

initialize()

initialize()

getConnectionManager()

registerConnector()

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

initialize()

initialize() createInstance()

register()

register() getXAResource()
Generic Multi-Mode e*Way Extension Kit User’s Guide 71

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
6 Each ETD—assuming it supports Connection Management—registers itself with
the Connection Manager. The Connection Manager adds the connector to its
appropriate connector list based on the connection establishment mode.

7 The XA ETD registers an object which implements the JXAResourceAdapter
interface with the Collab Controller. This is generally XA ETD object itself and will
be treated by the Transaction Manager as the Resource Manager.

Note: For non-XA transactions, the ETD uses the registerTransactionAdapter()
method to register.

8 The Collab Controller registers the Resource Manager that was registered in step 7
with the Transaction Manager. The associated Transaction Coordinator uses the
getXAResource() method to obtain a reference to the XA resource associated with
the Resource Manager, and then the Transaction Manager enlists the XA resource.
The sequence of these interactions is shown in Figure 22.

Figure 22 Sequence of Class Interactions in XA: Translation Phase

1 On each iteration of the Execute phase of a Collaboration, the Collab Controller calls
xaStart(), demarcating the start of the XA transaction.

JCollabController JConnectionManager User CollaborationTransactionManager

(1) (2)

(3)

(4)

(5)

(6)

xaOpen()

start()

xaStart()
XA Resource

recover()

[optional] commit()/rollback()

executeBizRules()

XA ETD

JMS subscribe/publish()
reset()

XA ETD method()
(7)

(8)
(9)xaEnd()

xaPrepare()
end()

onPrepare()

commitPublishers()

commitSubscribers()

[nonXA] commit()

[nonXA]commit()

prepare()

xaClose()

onCommit()

(10)

(15)

(14)

(11)

(12)
(13)

(16)

(17)

(20)

(21)

commit()xaCommit()
(18)

(19)
Generic Multi-Mode e*Way Extension Kit User’s Guide 72

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
2 The Transaction Manager calls xaOpen() on the ETD (Resource Manager).

3 If necessary, based on the state of the transaction, the Transaction Manager calls
recover() on XA resource.

4 As necessary (as part of recovery), the Transaction Manager calls commit() or
rollback().

5 The Transaction Manager calls start() on the XA resources that are part of the
transaction.

6 The Collab Controller starts calling the business rules in the user Collaboration.

7 The business rules in the user Collaboration include calls to the methods exposed
by the XA ETD.

8 If there are any JMS message subscriptions and publications involved in the
Collaboration, the messages are obtained or published from JMS through the Collab
Controller.

9 After all rules in the Collaboration have been performed, the ETD’s reset() method
is called.

10 The Collab Controller can now demarcate the end of the XA transaction, calling
xaEnd() on the Transaction Manager.

11 The Transaction Manager calls the end() method for all XA resources.

12 The Collab Controller calls xaPrepare() on the Transaction Manager to start the
prepare stage of the two-phase commit protocol.

13 The Transaction Manager instructs XA resources to perform prepare() to check if all
participants are ready to commit the transaction.

14 The Collab Controller calls onPrepare() on the user Collaboration.

15 In steps 15 through 18, for ETDs that implement the JTransactionAdapter interface
supporting one-phase commit, the Collab Controller ensures that commit() is
called. This is also done for JMS publications, JMS subscriptions, and non-XA ETDs.

19 The Collab Controller calls xaCommit() to commit the XA transaction. This causes
commit() to be called on all XA resources.

20 The Transaction Manager calls xaClose() on the XA ETD to demarcate the end of the
XA transaction.

21 The Collab Controller calls onCommit() on the user Collaboration.

6.3.2 Compiling .java Files
Acompile.bat file (and, for UNIX, compile.sh), are provided with the sample. This file
sets the CLASSPATH and creates a .jar file for the .class files upon compilation of
the .java files. For details, see “Customizing the Compile Script” on page 174.

The following edits must be made to the compile.bat (or compile.sh) file:

1 Specify the correct location if your e*Gate installation resides anywhere other than
the root \eGate\ directory on your local drive.
Generic Multi-Mode e*Way Extension Kit User’s Guide 73

Chapter 6 Section 6.3
e*Way Development Workflow Implementing Your Design
2 Specify the correct path location for your JDK installation.

3 When creating e*Way Connections from scratch, modify the directory locations in
the .bat (or .sh) file as needed.

How Classpaths Are Determined

When a Multi-Mode e*Way starts the JVM for running Java Collaborations, it specifies
the classpath based on the configuration specified in the .cfg file for the Multi-Mode
e*Way. Each Collaboration also has an associated .ctl file—<collabruleName>.ctl—
which lists any class files and .jar files the Collaboration needs at run time.

e*Gate version 4.5.1 and e*Gate version 4.5.2

In e*Gate version 4.5.1, the classpath is set up by the e*Way and specified when the JVM
is started. In e*Gate version 4.5.2, a dynamic class loader is used. The function of a
dynamic class loader is to load the classes the Collaboration needs, effectively setting
the classpath. This occurs when a Collaboration is initialized (after the JVM has already
started).

6.3.3 Creating .ctl Files
The .ctl file contains the information required by the GUI to be able to successfully load
the ETD; for example, the samples use a file named install.ctl (see “Editing/Viewing
the .ctl Files” on page 175, or similar material on page 215 or page 235). If the ETD uses
any .jar files, they must be specified in the .ctl file. The following considerations apply:

The file name of the .ctl file must match the file name of the .xsc for the ETD.

The .ctl file must specify all .jar files containing classes associated with your ETD.

The .ctl file must specify all third-party .jar files associated with your ETD.

Note: .ctl file names must be lowercase. The Visual Basic Collaboration Editor will not
download any files that are not lowercase.

6.3.4 Creating .def Files
The e*Way Connection is configured using the e*Way Connection Editor, a GUI that
enables you to change configuration parameters quickly and easily. A default
configuration-file template (.def file) configures the e*Way Connection Editor to gather
those parameters by specifying the name and type of each parameter, as well as other
information (such as the range of permissible options for a given parameter).

The .def file has three major divisions:

The header describes basic information about the file itself, such as version number,
modification history, and comments.

The sub-header contains several read-only variables that are for internal use. Those
default values must not be modified.
Generic Multi-Mode e*Way Extension Kit User’s Guide 74

Chapter 6 Section 6.4
e*Way Development Workflow Building and Testing Your Components
The body contains configuration parameters, grouped into sections:

Two sections (Connector and External Configuration) must be included in all
e*Way Connection .def files.

Additional sections are added as needed to support user-created functions.

For detailed information, see Appendix A “Extending the .def File” on page 256.

6.3.5 Creating the .xsc File
The developer must create the required .xsc file including the necessary functionality
and structure. The .xsc file is an XML file that allows the GUI to load your ETD and
generate correct code in the Collaboration Rules Editor. For more information, see
“Event Type Definitions” on page 79.

6.4 Building and Testing Your Components
To validate the e*Gate components you have created, you must perform the following
steps:

1 Open or create a schema into which to commit the files, and then run installETD
script (installETD.bat on Windows, or installETD.sh on UNIX) to make the files
available to e*Gate.

2 Validate the results by refreshing the schema, run the components, and then
monitor the components using the in-schema Java Debugger. For more information
on the Java Debugger, see “Troubleshooting and Debugging” on page 244.

6.4.1 Running the installETD Script
The kit provides the installETD script as an easy way to install the customized files into
an existing e*Gate schema. For example, to double-check a sample the first time you go
through it, you can create an empty schema, run installETD, and check to see that the
results match your expectations. Alternatively, you can run installETD to update a
complex pre-existing schema with minor changes.

If your Participating Host and Registry Host are running on different computers, you
must have stcinstd running against the schema and Registry Host in use while
running the installETD script.

1 Type the following text at the command line:

stcinstd -rh <host> -rs <schema> -un <username> -up <password> -ss

2 Press ENTER.

Note: In the stcinstd command line as shown, the flag -ss is optional and means to run
the host as a service.
Generic Multi-Mode e*Way Extension Kit User’s Guide 75

Chapter 6 Section 6.4
e*Way Development Workflow Building and Testing Your Components
For information on the Windows version of the installETD script, see Windows:
installETD.bat on page 76. For information on the UNIX version of the installETD
script, see UNIX: installETD.sh on page 76.

Windows: installETD.bat

Usage

installETD.bat -e etdName -s schemaName [optional params]

Parameters

-g <directoryName>— Specifies the name of the e*Gate root directory (the same value
specified in compile.bat as EGAT_ROOTDIR). If not specified, the default is: \eGate

-e <etdName>—Required; specifies the name of the ETD to install. The installETD
script fails if no corresponding install subdirectory exists.

-s <schemaName>—Required; specifies the name of the e*Gate schema.

-h <hostName>—Specifies the name of the e*Gate Registry Host. If not specified, the
default value is: localhost (in a Windows environment especially, it is common for an
e*Way developed using this kit to be developed on the same machine where e*Gate is
installed).

-r <portNumber> — Specifies the port number where the e*Gate Registry runs. If not
specified, the default value is: 23001.

-u <userName>—In conjunction with the -p flag, must specify a username/password
combination that is valid for this Registry Host.

-p <password>—In conjunction with the -u flag, must specify a username/password
combination valid for the Registry Host.

-?— Displays help information.

Example

To run the installETD script, open a Command Prompt, change the correct directory,
and enter the following command:

.\installETD -e yourETD -s yourSchema -h localhost -g c:\eGate

Notes

By default, an installation log file named <etdName>_install_log.txt is created in the
root directory of \. If a different location is preferable, you can modify the value of
environmental variable __LOGDIR, either within the installETD.bat or externally.

UNIX: installETD.sh

Usage

./installETD.sh -e etdName -s schemaName [optional params]

Parameters

-g <directoryName>— Specifies the name of the e*Gate root directory (the same value
specified in compile.sh as EGATE_ROOTDIR). If not specified, the default is: /eGate.
Generic Multi-Mode e*Way Extension Kit User’s Guide 76

Chapter 6 Section 6.5
e*Way Development Workflow Packaging and Distribution
-e <etdName>—Required; specifies the name of the ETD to install. The installETD
script fails if no corresponding install subdirectory exists.

-s <schemaName>—Required; specifies the name of the e*Gate schema.

-h <hostName>—Specifies the name of the e*Gate Registry Host. If not specified, the
default value is: localhost.

-r <portNumber> — Specifies the port number where the e*Gate Registry runs. If not
specified, the default value is: 23001.

-u <userName>—In conjunction with the -p flag, must specify a username/password
combination that is valid for this Registry Host.

-p <password>—In conjunction with the -u flag, must specify a username/password
combination valid for the Registry Host.

-v—Specifies verbose mode (full prompts and explanations).

Example

./installETD.sh -g /home/user1/eGate -e yourETD -s yourSchema -
h localhost -u Administrator -p STC

By default, an installation log file named <etdName>_install_<###>.txt is created, where
<###> is the process-ID (pid) of the current process. If a different location is preferable,
you can modify the value of environmental variable DIR_SOURCE, either within the
installETD.sh or externally.

Note: For a complete explanation on using the e*Gate command line, including the
stcinstd command, see the e*Gate Integrator System Administration and
Operations Guide.

6.4.2 Validating the Results
1 In e*Gate Schema Designer, open your schema (or, if the schema is already open, on

the View menu, click Refresh to update the display with the latest changes), and
then double-check that your new files have been successfully committed.

2 Start the Control Broker and then, in Schema Manager, start all the components in
the schema. Double-check any Alert Notifications the system has issued, and
browse the trace and logging files as needed. To use the e*Gate Java Debugger,
right-click the Multi-Mode e*Way and, on the shortcut menu, click Debugger.

For more information on Alerts, trace and log files, and the debugger, see the
appropriate topics in “Troubleshooting and Debugging” on page 244.

6.5 Packaging and Distribution
When developing your files, it is important to use a source code control system to
manage these components as you make changes between builds, to ensure that files
that logically belong together are updated as a unit. For example, when you check in
Generic Multi-Mode e*Way Extension Kit User’s Guide 77

Chapter 6 Section 6.5
e*Way Development Workflow Packaging and Distribution
files for SampleETD, you should create a separate directory where the .ctl, .def,
and .xsc files for SampleETD are together.

For your source code directory structure, you can use whatever setup you normally
use; the directory structure used in the samples provided in samples\sdk\gmeek\ is
one possibility, but not a requirement.

About the Packaging of the Samples in the Kit

The gmeek.taz file is extracted into any directory, using either the Winzip program or
the UNIX uncompress command. There is no restriction on where you extract the
contents of this file and on the directory structure you use for your source code. The
directory structure of the installETD\ directory, on the other hand, is set up so that the
installETD scripts are used in a generic fashion (see “Scripts”). It is simplest to keep
files that make up a particular ETD together in the same directory, namely the .jar file
output from the compiled source code, the .xsc, .def, and .ctl files. For distribution,
these files may be bundled into a compressed file with an accompanying version file.

6.5.1 Scripts
Once the components are built, they are deployed in an e*Gate installation by means of
scripts, either as .bat files on Windows, or as .sh files on UNIX. Sample installation
scripts have been provided with the kit.

The installETD script performs the following steps:

Updates the connectionpoint.ini file, located in the configs\ directory of the e*Gate
Registry repository.

The connectionpoint.ini file is a Windows-style .ini file that has a separate section
for each ETD. Each ETD section has a configsDir variable that specifies the
subdirectory in the configs\ directory where the ETD's .def file is stored. The utility
stcregutil.exe must be used to download files from the Registry. A .ctl file is used to
specify what files to download or commit to the Registry.

Commits the e*Way ETD’s .jar file, .xsc file, and .def file.

There is a .ctl file associated with the e*Way Connection. For example, if the name of
the ETD is SampleETD, a .ctl file named SampleETD.ctl will be committed into the
etd\ directory of the e*Gate Registry repository.

The .jar and .xsc files for the ETD must also be committed into the etd\ directory.

The .def file for the e*Way must be committed into the configs\ subdirectory for
the e*Way; for example, the file SampleETD.def would be committed into the
directory configs\SampleETD\.
Generic Multi-Mode e*Way Extension Kit User’s Guide 78

Chapter 7

Event Type Definitions

This chapter provides the following:

A description of the role of the Event Type Definition (ETD).

An overview of the Application Programming Interfaces (APIs).

An overview of the XSC format. Complete details on the XSC formats are provided
in Appendix B “The XSC Format” on page 287.

General notes, tips, and caveats for creating custom ETDs.

7.1 Events and ETDs
e*Gate uses the following terminology.

An Event (equivalently, a message) is a unit package of data processed by the e*Gate
system. The data has a defined structure, such as a known number of fields with
known characteristics and delimiters. Events are classified by Event Type.

An Event Type (called a topic in some contexts) is a class of Events with common
characteristics. An Event Type is also a logical name entry in e*Gate that points to a
single Event Type Definition (ETD).

An Event Type Definition, or ETD, is a structural representation of an Event—in
other words, the blueprint for describing an Event—that Collaboration Rules can
use when parsing, transforming, or routing data. An ETD has a treelike structure,
and is composed of entities called nodes. A root node has no parent; a leaf node (also
called a field) has no children. For more information on nodes, see “ETD Nodes”.

An ETD Builder is a special-purpose tool, usually a wizard, for guiding an end user
through the process of creating an empty ETD of a specific type. For information on
creating ETD builders, see Chapter 8 and Chapter 9.

Messageable and Non-messageable ETDs

A messageable ETD, also called a marshalable ETD, is one that contains no references
to content external to itself—such as to the current time, or to data residing in an
external system. A messageable ETD instance is marshaled (compressed into a data
stream), stored in an IQ or Oracle SeeBeyond JMS, and then extracted and
unmarshaled (parsed) as needed.

If an ETD node represents an object that is available only by calling an external
system, such as a database table, stored procedure, or prepared statement, then the
Generic Multi-Mode e*Way Extension Kit User’s Guide 79

Chapter 7 Section 7.1
Event Type Definitions Events and ETDs
ETD is non-messageable, and can thus contain internal state information or external
references that are resolved dynamically. The kit helps you create non-messageable
ETDs only.

ETDs and e*Gate

The e*Gate Schema Designer contains two important GUIs, the ETD Editor and the
Collaboration Rules Editor. When you develop a well-formed .xsc file and install it to
the correct location within e*Gate, end users can:

Load the .xsc file into the ETD Editor and use the Editor to view the ETD’s structure
and properties. The ETD Editor has GUI features like tree expand/compress,
property dialogs, and internal and external templates, Delimiters dialog box, and so
forth. The ETD Editor also can also be used to compile, test, and promote the ETD.

Load the ETD (along with other ETDs) into the Collaboration Rules Editor and
define business rules to describe the relationships between inbound and outbound
ETD instances. In the Collaboration Rules Editor you can use simple point-and-
click and drag-and-drop techniques to generate, modify, and compile Java
Collaborations.

Use the Configuration Editors to create and modify configuration files (.cfg files) for
e*Ways and e*Way Connections they create, based on the default configuration-file
templates (.def files) and the connectionpoint.ini file you supply. Details of this are
discussed in depth elsewhere; see “Creating .def Files” on page 74 and “Extending
the .def File” on page 256.

7.1.1 ETD Nodes
e*Way ETDs contain two types of nodes, attribute nodes and method nodes.

Attribute nodes correspond to private member variables in the ETD class. Such
nodes must have the Java Bean–style interface, with public getter and setter
methods for each exposed attribute—in other words, getYourNodeName() and
setMyNodeName(). For read-only attributes, the setter method would be omitted.
In general, static configuration parameters are obtained through the .cfg file (whose
default values are specified in the .def file), but parameters that might change
depending on the incoming Event are obtained through attributes exposed in the
ETD.

Method nodes may operate on parameters based on the exposed attributes, and
they may also be based on the parameters passed. As in Java, the XSC specification
allows for defining overloaded methods—in other words, a single method name
can have many different signatures. There are no restrictions on the methods
exposed in the ETD. As the developer of the e*Way Connection, you can provide
methods that call third-party APIs directly or indirectly through wrapper classes,
depending upon the design patterns used in the classes supporting the exposed
functionality.
Generic Multi-Mode e*Way Extension Kit User’s Guide 80

Chapter 7 Section 7.2
Event Type Definitions Overview of the XSC Format
7.2 Overview of the XSC Format

Note: The XSC 0.4 format is supported in e*Gate version 4.5.1 and later; the XSC 0.6
format is supported in e*Gate version 4.5.2 and later. Throughout this chapter,
whenever an XSC 0.6 construction is unsupported in XSC 0.4, it is explicitly
labeled as being 0.6–specific.

Terminology and typography

In this discussion, the word “tag” denotes the <> characters and the string they enclose,
whereas the word “entity” denotes what is described by the tag—in other words, the
content, from the begin-element tag through the end-element tag. Following the usual
shorthand, however, the typographical convention “the <xyz> entity” is used to
indicate the xyz entity, including its attributes and content.

7.2.1 General Rules for Entities
Every .xsc file must be a valid XML string composed of a valid combination of <etd>,
<javaProps>, <node>, <method>, and <param> entities and their attributes, as well as
possibly other entities not mentioned here.

Note: Rarer and more obscure entities are covered in Appendix B.

<etd>: There is exactly one <etd> entity in every .xsc file: Since an <etd ...> tag
begins the file and an </etd> tag ends the file, the entire file is itself a single <etd>
entity. An <etd> entity must contain one or more <node> entities, and can contain
at most one <javaProps> entity.

<javaProps>: There must be zero or one <javaProps> entity in every <etd> entity.
Standard practice is to place the <javaProps> entity directly after the <etd> entity.
In XSC 0.6, every <etd> entity must contain a <javaProps> entity.

<node>: There must be one or more <node> entities in every <etd> entity, and zero
or more <node> entities in every <node> entity. A <node> entity can contain zero
or more other <node> entities and zero or more <method> entities. A <node> entity
is of type “CLASS” if and only if it contains one or more <node> entities. The parent
of a <node> entity must be either a <node> entity of type “CLASS” or else the
<etd> entity.

<class>: An alias for <node>. If you use it, restrict it to those <node> entities that
are directly beneath the <etd> entity.

<method>: There must be zero or more <method> entities in every <node> entity.
A <method> entity can contain zero or more <param> entities; it cannot contain
any other entities. Ignoring the <interface> entity, the parent of a <method> entity
must be a <node> entity.

<param>: There must be zero or more <param> entities in every <method> entity.
A <param> entity cannot contain any other entities. The parent of a <param> entity
must be a <method> entity.
Generic Multi-Mode e*Way Extension Kit User’s Guide 81

Chapter 7 Section 7.2
Event Type Definitions Overview of the XSC Format
7.2.2 General Rules for Attributes
Each entity has its own set of required and optional attributes. The complete set of
required and recommended attributes for each entity is described in detail in
Appendix B. The following is true for all entities:

Every entity must have a name attribute and a uid attribute, and no uid attribute is
repeated within the .xsc file — in other words, each entity must be uniquely
identifiable by the value of its uid attribute.

Every entity can have an optional comment attribute.

Using Entities and Attributes

<etd>

In XSC 0.6, an <etd> entity must contain one or more <node> (and/or <class>) entities
and exactly one <javaProps> entity; it cannot contain any other types of entity.

The <etd ...> tag has three required attributes: type, xscVersion, and uid.

type: The value of the type attribute is used to define the ETD type. It is this value
that the user sees in the selection list when defining the connection type, and this
value must match the file name of the .ctl file.

xscVersion: For XSC 0.6, you should always set xscVersion=”0.6” to maximize
performance by bypassing backward compatibility checks against previous
versions.

Other attributes are discussed in “The <etd> Entity” on page 289.

<javaProps>

In XSC 0.6, there is exactly one <javaProps> entity in every <etd> entity. A <javaProps>
entity can contain zero or more <jar> entities and zero or more <interface> entities;
it cannot contain any other types of entity. The parent of a javaProps entity must be the
<etd> entity.

The <javaProps ...> tag has three required attributes: package, class, and uid.

package and class: Together, these two attributes define the fully qualified Java
class name of the Java class that implements the .xsc file. For example, when
class=”Z”, package=”w.x.y”, the filename will be “w/x/y/Z.java”.

Other attributes are discussed in “The <javaProps> Entity” on page 292.

<jar>

There are zero or more <jar> entities in every <javaProps> entity. A <jar> entity cannot
contain any other types of entity. The parent of a <jar> entity must be the <javaProps>
entity.

The <jar ...> tag has two required attributes: file and uid.

file: The value for the file attribute must be delimited by forward slashes (/),
regardless of operating system.
Generic Multi-Mode e*Way Extension Kit User’s Guide 82

Chapter 7 Section 7.2
Event Type Definitions Overview of the XSC Format
<interface>

The <interface> entity is reserved for future use.

<node>

name=text

Default value: (undefined)

type

Each node must be of one of the following types:

A template node has type=”CLASS” and can have a public=boolean attribute. It is
characterized by being a top-level node. The parent of a template node is the <etd>
entity. The sequence of <node> entities immediately inside the <etd> entity is
known as its local template list. Each local template must have a name that is unique
in the list—that is, no two top-level nodes may have the same name. If the <etd>
entity has a name attribute, its value must match the name attribute of a template
node.

A composite node also has type=”CLASS”, but lacks a public attribute. A node that
is a parent element (as opposed to a leaf) is composite if it is not a template.

Note: For both composite nodes and template nodes, the javaType attribute value defaults
to the fully qualified Java class name formed by the <javaProps> package value,
followed by all ancestor node names and the name of the node itself, separated by ".";
node names in this case are the <node> javaName values if present, and name
values otherwise.

A simple node has type=”FIELD”. Simple nodes describe data fields that are not
further subdivided or described elsewhere in the ETD. The javaType attribute value
defaults to “java.lang.String”; in this case, the encoding attribute can specify the
character encoding name used to convert between raw input/output byte data and
internal string values.

An enumeration node has type=”ENUMERATION”, and is also a leaf node. Nodes
of this type require a list of zero or more members that represent enumeration
elements. Enumeration elements are <member> entities with the allowable
attributes name and value. If any of the members of an enumeration has the value
attribute, then all its member must have it. If this is the case, all values should be
distinct strings.

A reference node has type=”REFERENCE”, and is a surrogate for an ETD part that is
defined either within the same .xsc file (in which case the node is called an internal
reference to a local template), or to a global template defined in another .xsc file (in
which case the node is called an external template). The distinction is signaled by the
reference attribute. When reference=filepath is defined, filepath is the relative path
and filename of the external .xsc file being referenced.

The <node> entity can take on a very wide variety of attributes, depending on its type.
For a complete discussion, see “The <node> and <class> Entities” on page 297 and
“Table of XSC Entities and Their Attributes” on page 300.
Generic Multi-Mode e*Way Extension Kit User’s Guide 83

Chapter 7 Section 7.2
Event Type Definitions Overview of the XSC Format
<method>

A <method> entity describes an explicit public method associated with a particular
generated class (if the parent of the <method> is a <node> entity) or implemented
interface (if the parent is an <interface> entity) in the ETD.

Implicit methods, on the other hand, are generated automatically for each node
depending on its attributes. Thus, you need not create Bean-style getter/setter
methods for each node unless you want to override them. Examples include:

get<nodeName>() is always generated.

set<nodeName>() is generated for writable nodes—in other words, nodes for which
readOnly=”false”.

has<nodeName>() is generated for nodes that might not receive data— in other
words, nodes for which minOccurs=”0”.

count<nodeName>() is generated for repeating nodes— in other words, nodes for
which maxOccurs is either greater than “1” or equal to “unbounded”.

The <method ...> tag has four required attributes: name, signature, returnType, and
uid. (The signature attribute is syntactically optional, but highly recommended.)

returnType: The value of the returnType attribute is required to specify the data
type of the method. Examples:

returnType=”void”

returnType=”java.lang.String”

Array types are denoted by a trailing pair of brackets: returnType=datatype[].

signature: The presence of a valid signature attribute allows the e*Gate system to
load the ETD more quickly, since it need not parse every method entity on the fly.
For complete details on the signature attribute of the <method> entity, see “Method
Signature Syntax” on page 304.

For additional details on the entity itself, see “The <method> Entity” on page 298.

<param>

There are zero or more <param> entities in every <method> entity. A <param> entity
cannot contain any other entities. The parent of a <param> entity must be a <method>
entity.

The <param ...> tag has three required attributes: name, paramType, and uid.

<throws>

At the present time, the <throws> entity is reserved for future use.

7.2.3 Sketching an Outline: Entities and Their Hierarchy
The outline of an .xsc file will always resemble the following:

(1) <etd ...>
(2) <javaProps .../>
(3) <node ...>
(4) <method .../>
Generic Multi-Mode e*Way Extension Kit User’s Guide 84

Chapter 7 Section 7.2
Event Type Definitions Overview of the XSC Format
(5) <method ...>
(6) <param .../>
(7) </method>
(8) </node>
(9) <node ...>
(10) <node ...>
(11) <node .../>
(12) [...]
(13) </node>
(14) </node>
(15) <node ...>
(16) [...]
(17) </node>
(18) [...]
(19) </etd>

If you are familiar with the interactive ETD Editor, you can see the similarities between
the lexical format shown above and the graphical tree displayed in the GUI:

There is one container of the entire structure, designated by <etd ...> and </etd>
tags.

There are multiple nodes belonging to a parent, and nodes can nest to an indefinite
degree, but each node is the child of one unique parent. Thus, there is a strict
hierarchy, and each node has a uniquely determined level in the hierarchy.

A node can (but need not) contain one or more methods, and a method can (but
need not) contain parameters.

If you are creating an ETD from scratch, it is strongly recommended that you first
sketch out its overall outline in a manner resembling the outline shown above.

7.2.4 Fundamental Entity Relationships and Attributes
The following six lines represent a near minimum for a valid .xsc file:

(1) <etd name="myRoot" type="myType" xscVersion="0.4" uid="0">
(2) <javaProps package="myPackage" class="myClass" uid="1"/>
(3) <node name="myRoot" type="CLASS" uid="6">
(4) <node name="Child" type="FIELD" uid="28" />
(5) </node>
(6) </etd>

This file illustrates several important points:

The contents of the .xsc file must be a valid XML string.

The <etd ...> tag occurs once, at the beginning, and the </etd> tag ends the file.

There is no more than one <javaProps> entity, and its parent is the <etd> entity.

Attribute values are almost always strings enclosed by double quotes.

Each entity requires a uid attribute, and all uid attribute values must be unique.

In addition to uid, the <etd> entity takes other required attributes:

A name attribute, which must match the name attribute of exactly one <node>.

A type attribute. In e*Gate, this must match the filename of a .ctl file.
Generic Multi-Mode e*Way Extension Kit User’s Guide 85

Chapter 7 Section 7.3
Event Type Definitions Designing Your Entities
An xscVersion attribute is required in XSC 0.6 (and must have the value “0.6”).
It is also highly recommended in XSC version 0.4, because it provides better
performance, compatibility, portability, and maintainability.

The <javaProps> entity has two additional required attributes: package and class.

Every <node> entity has two additional required attributes: name and type.

Any <node> entity of type=”CLASS” must contain at least one other entity.

A <node> entity of type=”FIELD” cannot contain any entities.

7.3 Designing Your Entities
After you have created an outline of your .xsc file (see “Sketching an Outline: Entities
and Their Hierarchy” on page 84), it is helpful to flesh out the outline to some extent
by sketching in the required and recommended attributes. For example:

(1) <etd name="" type="" packageName="" uid="" comment=””>
(2) <javaProps package="" class="" uid="" comment=””/>
(3) <node name="" type="CLASS" [other attributes] uid="" comment=””>
(4) <node type="" [other attributes] uid="" comment=””/>
(5) <node
(6) name=""
(7) type=""
(8) otherattr=""
(9) [...]
(10) uid=""
(11) comment=””
(12) </node>
(13) <method name="" returnType="" signature=”” uid="" comment=””/>
(14) <method name="" returnType="" signature=”” uid="" comment=””/>
(15) <param name="" type="PARAM" paramType="" uid="" comment=””/>
(16) </method>
(17) <method .../>
(18) </node>
(19) </etd>

7.3.1 Sample File XAFileETD.xsc
This section provides a listing and an explanation of the XAFileETD.xsc file provided
with this kit.

Listing

(1) <?xml version="1.0" encoding="UTF-8"?>
(2) <etd name="XAFileETD" type="XAFileETD" xscVersion="0.6" uid="0" >
(3) <javaProps package="xasample" class="myClass" codeAvailable="true"

uid="1" />
(4) <node name="XAFileETD" type="CLASS" uid="2">
(5) <method name="writeFile" signature="writeFile()Z"

returnType="boolean" comment="This method sends the passed string to
the specified file (if specified) under XA transactional environment."
uid="3">

(6) <param name="XAFileETDObj" paramType="xasample.XAFileETD"
comment="The XAFileETD object itself or null for default." uid="4" />

(7) <param name="msg" paramType="java.lang.String" comment="The
message to post to the file." uid="5" />
Generic Multi-Mode e*Way Extension Kit User’s Guide 86

Chapter 7 Section 7.3
Event Type Definitions Designing Your Entities
(8) <param name="filenamepath" paramType="java.lang.String"
comment="The output file name with path or null for default." uid="6" />

(9) <param name="testdelay" paramType="java.lang.String" comment="A
test milliseconds delay string to allow manual error to be introduced or
null for default of none." uid="7" />

(10) </method>
(11) </node>
(12) </etd>

Notes

Line 1: You can include XML comments in an .xsc file, just as you can in any other
XML string. As you can see, an XML comment is different from the comment
attribute, which is specific to the e*Gate ETD construct and is intended to help the
end user understand and document the ETD.

Line 2: When designing custom ETD e*Ways, it is standard to re-use the ETD name
as its type. Do not use a standard type name (such as “DB” or “IDOC”) for an ETD
that is not based on that standard.

Line 2: For the <etd> entity’s uid attribute (which is required, just as it is for all
other entities), it is customary to assign the special value “0”.

Lines 2 through 9: You can use any uid assignment scheme you want, provided that
every uid value is different from all others in the same file.

Line 3: In the <javaProps> entity, the package and class attributes specify the fully
qualified Java class name of the Java class that implements the root node of
the .xsc file. For example, if class=”Z” and package=”x.y”, the file name is “x/y/
Z.java”. For complete details on rules for specifying package and class names,
see “The <javaProps> Entity” on page 292.

Line 3: In the <javaProps> entity, the boolean codeAvailable attribute provides a
quick way of keeping track of whether the ETD currently matches its compiled
state. If codeAvailable=”false”, the ETD is “dirty”; in other words, there are
changes to it that are not reflected in the mostly recently compiled version.

Line 4: If the <etd> entity has a name attribute defined, the .xsc file must have
exactly one <node> entity whose name matches the name of the <etd> entity. This
special node is called the root node, and it is this node that is displayed in the center
pane of the ETD Editor when the ETD is first loaded. If the <etd> entity directly
contains other <node> entities in addition to this root node, the Editor displays the
other direct-children nodes as internal templates.

Line 5: The signature attribute of the <method> entity has a special syntax that
allows you to compactly record the aspects of a signature that render it unique for a
particular method, such as the data types of the parameter list and the return value.
For complete details, see “Method Signature Syntax” on page 304.

Lines 5 through 9: For <method> and <param> entities, you should take a special
effort to supply clear and meaningful comments to help end users understand the
purpose and function of each method and its parameters. A good example is shown
in the comment for the parameter named “testdelay” in line 9.
Generic Multi-Mode e*Way Extension Kit User’s Guide 87

Chapter 7 Section 7.4
Event Type Definitions Notes, Tips, and Caveats
You can include special characters in comments, such as \ (backslash) or " (double
quotations), by putting them into “normal safe” form—in other words, using the
Unicode convention \uxxxx to encode escape characters.

7.4 Notes, Tips, and Caveats

Metadata Representation

The XSC format uses only entities and attribute strings for storing its metadata; it does
not use PCDATA or CDATA text, and does not use XML comments or externally
defined entities.

Character Sets and Encodings

.xsc files are implicitly UTF-8 encoded, but restricting them to flat ASCII provides
maximum compatibility with existing XML tools. All generic identifiers and attribute
names are plain ASCII, and the case convention is thisCaseStyle—in other words,
lowercase for the first component, initial-uppercase for the second and subsequent
components, and without underscores.

Characters that have some special meaning in XML or cannot be displayed must be
encoded in Unicode. A character outside the range U+0021 through U+007E, or one
that is special to XML (such as & < > \ ") is represented as \u followed by its
Unicode value written as four hexadecimal digits (case irrelevant). This encoding is
called the “normal-safe” form, since it will not be affected by attribute normalization.
However, it must be explicitly encoded and decoded when going between XSC and the
internal representation of such an attribute as a string of Unicode characters. For
example, the normal-safe form of this string—a b (letter a, space, space, letter b)—
would be "a\u0020\u0020b". XML also allows characters such as & and > to be
escaped using the form '&' and '<'.

Table 6 contains the list of characters and their XML forms.

Table 6 Escape Codes for Special Characters

Unicode character XML form

"&" "&"

"<" "<"

">" ">"

other U+0020 through U+007E the character itself

anything else "&#xnnnn" (where nnnn is the hexadecimal
Unicode representation of the character)
Generic Multi-Mode e*Way Extension Kit User’s Guide 88

Chapter 8

Developing an e*Way Using ETD Builder
Components

This chapter explains the purpose and function of ETD builders, explains the key
aspects of some typical ETD builder code and API calls, and explains the purpose and
function of the four components required to develop an e*Way:

1 A prepackaged run-time environment for the e*Way: <eWayName>rt.jar

2 e*Gate deployment files, including a .def file to define configuration parameters
and default values that allow end users to create and save custom configurations,
and an .ini file to make the e*Way Connection visible to e*Gate.

3 A back-end converter for the e*Way’s ETD builder: <eWayName>ETDbuilder.jar

4 A front-end wizard for the ETD builder.

Note: The ETD builder component can only be used with version 4.5.2 of e*Gate or later. If
you are using e*Gate version 4.5.1, you must use the command line, not the ETD
builder wizard, to build the ETD. For details on building the ETD from the
command line, see “Creating and Deploying an ETD by Command-Line
Interface” on page 98.

8.1 Overview
e*Gate supplies a wide variety of ETD builder wizards that allow end users to create an
ETD that is tailor-made for a particular e*Way. For example, users of the Jacada e*Way
can create an ETD using the JacadaWizard, and users of a variety of databases can
create ETDs using the DBWizard.

When you supply a custom e*Way Connection for an external system, you can also
provide an ETD builder that is tailor-made for that external system. The part of the
builder that communicates with the external system, models its metadata, and outputs
Java and XSC code is called the back-end; the wizard is the front end.

Note: End users running e*Gate version 4.5.2 must install an ESR before they can use
builder wizards created using this kit. For details, see the Readme.txt file on the
e*Gate Integrator Installation CD-ROM (...\setup\addons\gmeek\Readme.txt).
Generic Multi-Mode e*Way Extension Kit User’s Guide 89

Chapter 8 Section 8.2
Developing an e*Way Using ETD Builder Components ETD Builder Development Process Overview
You can supply a fully functional e*Way without a front-end wizard, but doing so
requires your end users to use a command-line interface to invoke the builder and
install the ETD. For more information on using the command-line interface, see “Task
6: Creating and Registering the ETD Using the Command Line” on page 148.

To provide a front end, you can create the ETD builder wizard using either
heavyweight Visual Basic or lightweight Visual Basic. Both approaches are discussed in
this chapter, and the sample e*Way instructions in Chapter 9 provides step-by-step
procedures for each approach.

For best practices about the ETD builder, see “Working With the Back-end Builder” on
page 252.

8.2 ETD Builder Development Process Overview
Figure 23 shows the process of creating an ETD builder and lists the chapters that
correspond to each step in the ETD builder development process.
Generic Multi-Mode e*Way Extension Kit User’s Guide 90

Chapter 8 Section 8.2
Developing an e*Way Using ETD Builder Components ETD Builder Development Process Overview
Figure 23 ETD Builder Development Process

8.2.1 ETD Builder Components
To develop an e*Way with an ETD builder component, you must obtain the metadata
that describes the objects of the external system. Once this is accomplished, the ETD
builder can create the ETD from the metadata that corresponds to the external system.

U s e m e ta d a ta to
c re a te th e b a c k -

e n d b u ild e r
p ro to ty p e

T e s t b a c k -e n d
b u ild e r a n d

g e n e ra te e * W a y
ru n t im e

A n a ly z e e x te rn a l s y s te m
re q u ire m e n ts a n d m e ta d a ta

M a n u a lly lo a d
th e E T D in to

e * G a te

L o a d .d e f a n d r t
. ja r f i le e * W a y
c o n n e c t io n in

e * G a te

C re a te th e s a m p le
s c h e m a to in v o k e
e x te rn a l s y s te m

U n it te s t in g
w ith e x te rn a l

s y s te m

D e s ig n V B w iz a rd

A d d .b m p , .d l l , . ja r ,
.c t l f i le s to w o rk in g

d ire c to r y

D e p lo y th e e * W a y

T e s t b a c k -e n d
b u i ld e r a n d

g e n e ra te E T D

* In d ic a te s
o p t io n a l te s t in g

p ro c e s s

*

See Chapter 5

See this chapter

See this chapter

See Chapter 9

See Chapter 9

See Appendix C

See this chapter

See Chapter 9

See Chapter 13
Generic Multi-Mode e*Way Extension Kit User’s Guide 91

Chapter 8 Section 8.2
Developing an e*Way Using ETD Builder Components ETD Builder Development Process Overview
For example, the e*Gate end user may want to use an ETD representing an Account
object in a billing system. In order to represent this object as an ETD, the e*Way
developer must obtain the metadata describing the objects of the billing system.

An ETD builder consists of:

A component that obtains information about the objects defined by the e*Gate end
user.

A component which obtains the metadata from the external system and translates
the metadata to the ETD.

8.2.2 ETD Builder Architecture
Figure 24 shows the ETD builder components and their relationships.
Generic Multi-Mode e*Way Extension Kit User’s Guide 92

Chapter 8 Section 8.2
Developing an e*Way Using ETD Builder Components ETD Builder Development Process Overview
Figure 24 ETD Builder Architecture

API

 import ...
 import ...
 {

 .
 .
 .

 .
 .
 .
 }
 }
 }

... ();

... ();

... ();

ETD

Java code.xsc file

<etd name=...>
 <javaProps...>
 <node...>
 <.../>
 <.../>
 </node>
 <...>
 <node ...>
 .
 .
 .
 </node>
 .
 .
 .
</etd>

e*Gate GUI:
ETD Editor

JINTEGRA

JVM

COM

Builder
Back End

Builder
Wizard

 (VB form)

metadata

external system

Files registered and used by e*Gate:
· etd\<new-directory>\filename.xsc
· etd\filename.ctl
· configs\<new-directory>\filename.def
· configs\connectionpoint.ini

GetProp

SetProp

Start

D
is

pl
ay

 E
TD

 in
 E

di
to

r

hostnm
port
regnm
xscfilenm
...

GMEEK
Builder API

Front End
Generic Multi-Mode e*Way Extension Kit User’s Guide 93

Chapter 8 Section 8.2
Developing an e*Way Using ETD Builder Components ETD Builder Development Process Overview
8.2.3 What the ETD Builder Does for End Users
When end users of your e*Way run the ETD builder you supply, it does the following:

It determines the type of input required from the user and, through the front-end
wizard, prompts the user to supply all necessary information.

If required, it creates new directories that are specific to the ETD.

It creates an ETD-specific .xsc file. This makes the ETD visible to the ETD Editor.

It creates an ETD-specific .java files, compiles them, and writes them to a .jar file.

It creates an ETD-specific .ctl file. This makes the ETD available to the Collaboration
Rules Editor.

It creates an ETD-specific .def file. This defines default configuration parameter
values and allows the end user to create .cfg files using the Configuration Editor.

It runs the installEWAY automation command file. This modifies the
connectionpoint.ini file (which allows the e*Way Connection to be visible to the
e*Gate Configuration Editor), and it registers the new and modified files with the
e*Gate Registry.

8.2.4 How an ETD Builder Operates
When the end user initiates the creation of a new ETD, the ETD Editor invokes the
WizardManager. The WizardManager reads the e*Gate Registry’s addon.log file and
uses the information in that file to retrieve a list of wizards that have been installed by
the end user’s Participating Host, and to download the applicable wizard icons from
the e*Gate Registry to the local machine.

The ETD Editor displays these wizard icons in the New Event Type Definition dialog
box. When the user selects and launches a wizard, the WizardManager downloads the
corresponding wizard DLL from the e*Gate Registry (unless it was already
downloaded) and instantiates a wizard object that implements the Wizard interface.

To pass information such as username, port, and password, the ETD Editor uses the
wizard’s setProperty() method. Next, the Editor invokes the wizard’s start() method.

The wizard collects and validates information from the user, interacts with the Registry,
and calls the back-end builder. The back-end builder creates the .xsc and .jar files for
the ETD. After the files are built, the wizard invokes the e*Gate Registry API to install
them to e*Gate. Finally, the wizard’s start() method returns control to the ETD Editor.

At this point, the ETD Editor can invoke the wizard’s getProperty() method to learn
further information about the wizard’s end result. Finally, the ETD is displayed in the
five-panel window, and the user can view or modify it using the ETD Editor.

The remainder of this chapter focuses on the purpose and function of the four e*Way
components you must provide to your end users:

1 The e*Way Run-Time Environment on page 95.

2 e*Gate Deployment Scripts on page 96.

3 Back-end Converter for the ETD Builder on page 96.
Generic Multi-Mode e*Way Extension Kit User’s Guide 94

Chapter 8 Section 8.3
Developing an e*Way Using ETD Builder Components The e*Way Run-Time Environment
4 Front-end Wizards for the ETD Builder on page 99.

8.3 The e*Way Run-Time Environment
The run-time environment is a .jar file that packages the e*Way’s Connector classes.
The Connector classes contain the code that handles connections with the external
system. Using the builder API, you can choose between two types of handling
connections with the external system:

Connectors that support Connection Management.

Automatic connectors, which do not support Connection Management.

These connector types are shown in Figure 25.

Figure 25 Connector Types: Connection Management and Automatic Connection

For e*Gate version 4.5.2 or later, always use Connection Management in your
connectors. In practice, this means implementing the EBobConnectorExt interface.

For e*Gate version 4.5.1, always use Automatic Connection in your connectors.
In practice, this means implementing the EBobConnector interface.

Interface
EBobConnectorExt

Class Module
EwayConnectorExtImpl

Class Module
YourConnector_with_Ext

im
plem

ents
extends

e*Way with
Connection Mangement

Interface
EBobConnector

Class Module
EwayConnectorImpl

Class Module
YourConnector_without_Ext

im
plem

ents
extends

Automatic Connection
e*Way
Generic Multi-Mode e*Way Extension Kit User’s Guide 95

Chapter 8 Section 8.4
Developing an e*Way Using ETD Builder Components e*Gate Deployment Scripts
The APIs provided with the kit create the code for EwayConnectorExtImpl or
EwayConnectorImpl, and you normally will not need to modify them directly. Instead,
you modify the skeleton connector code generated, adding appropriate logic for
connecting to your external system. In this example, you would add the logic either to
YourConnector_with_Ext (for an e*Way that will run on e*Gate version 4.5.2 or later, or
else to YourConnector_without_Ext (for an e*Way that will run on e*Gate version
4.5.1).

For a step-by-step procedure for creating a run-time environment for the sample e*Way,
see Task 3: Building the e*Way and e*Way Connection on page 125.

8.4 e*Gate Deployment Scripts
Along with the e*Way runtime .jar file, the builder API generates deployment scripts
which are used to commit the e*Gate runtime .jar to the e*Gate Registry. The builder
generates the scripts listed in Table 7.

8.5 Back-end Converter for the ETD Builder
As a developer of an ETD builder, you are responsible for supplying its back-end
converter, which includes:

All necessary base classes.

Java code for modeling the metadata of the external system. (End users populate the
model when they run the builder.) The modeling is done using the builder API.

The files required to integrate the builder into the end user’s e*Gate system.

Table 7 e*Gate Deployment Scripts

File Name Description

connectionpoint.ini Contains extra lines to append to connectionpoint.ini in the
e*Gate Registry.

<eWayName>.def Contains the connection configuration parameters.

<eWayName>wizard.ctl Contains a list of file names used by the builder wizard.

stcew<eWayName>.ctl Contains a list of files to be loaded from the e*Way working
directory to the e*Gate Registry.

<ETDName>etd.ctl This file is not generated by default. To manually load the
ETD to the Registry, you must specify this file from the
command line to invoke the back-end builder.

ETDWizards.ini Contains extra lines to append the e*Gate ETD Wizards.ini
to the e*Gate Registry.

addon.log Contains extra lines to append the addon.log to the e*Gate
Registry.
Generic Multi-Mode e*Way Extension Kit User’s Guide 96

Chapter 8 Section 8.5
Developing an e*Way Using ETD Builder Components Back-end Converter for the ETD Builder
A way of registering the files with the end user’s e*Gate system.

If you expect end users to build ETDs through a command-line interface, you will need
to supply them with the information they need for their system, such as directory and
file names and instructions for customizing, compiling, and running various scripts
that you furnish. These scripts are generated by the back-end converter.

For a step-by-step procedure for creating a back-end converter for the sample e*Way,
see Task 2: Creating the Back-end for the ETD Builder on page 124.

8.5.1 Understanding the Builder API
Building a back-end requires you to have good knowledge of the builder API and the
metadata in the external system. The samples are meant to reinforce your knowledge of
the builder API and help you understand design patterns for a builder using APIs. For
example:

The sample discussed in Chapter 9 is designed so that the run-time builder and the
ETD builder are both in the com.stc.eways.samples.gmeek.builder.apiDemo class.

In the sample code file RmiAccountTester.java, the installEway() method becomes
the run-time builder, and the compile() methods become the ETD builder. See the
source code listing of GmeekDemoBuilder.java on page 112.

The following subsections provide examples of typical design patterns for a builder
using APIs.

To create a root node and specify connector properties

(1) // The following call creates a new root node.
(2) GmeekETDRootNode aEtd= new GmeekETDRootNode(etd_nm,xscfname,etd_pkg_nm);

(3) // The following call informs the root node of the
// type of connector.

(4) GmeekConnectorModel aCnctr = aEtd.getConnector(
EWAY_CONNECTOR_NAME,EWAY_CONNECTOR_TYPE,EWAY_PACKAGE_NAME);

(5) // The following calls tell the connector model which
// connection parameters to use. Repeat everything that
// you specified for the connector in the installEWAY method.

(6) aCnctr.setConnectionProperty("Rmi","Host","localhost");
(7) aCnctr.setConnectionProperty("Rmi","Port","11990");
(8) aCnctr.setConnectionProperty("Rmi","Name","RmiDemoSvr");

To create a internal template with subnodes

(1) // The following call adds an internal template.

(2) GmeekETDNode TheValueNode = aEtd.addInternalTemplate("TheValue4");

(3) // The following calls add subnodes to this internal template.

(4) TheValueNode.addSimpleTypeUsrField("stringValue",
GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);

(5) TheValueNode.addSimpleTypeUsrField("shortValue",
GmeekTreeNode.TreeNodeType.FIELD_TYPE_INT);

(6) TheValueNode.addSimpleTypeUsrField("longValue",
GmeekTreeNode.TreeNodeType.FIELD_TYPE_LONG);
Generic Multi-Mode e*Way Extension Kit User’s Guide 97

Chapter 8 Section 8.5
Developing an e*Way Using ETD Builder Components Back-end Converter for the ETD Builder
(7) TheValueNode.addSimpleTypeUsrField("intValue",
GmeekTreeNode.TreeNodeType.FIELD_TYPE_INT);

(8) TheValueNode.addSimpleTypeUsrField("doubleValue",
GmeekTreeNode.TreeNodeType.FIELD_TYPE_DOUBLE);

To use an internal template

(1) // The following calls add a repeating subnode (Account Reps)
// to the root node, ...

(2) GmeekETDNode anode = aEtd.addInnerNode("ACCOUNT_REPS");
(3) anode.setMinMaxOccur(1,GmeekTreeNode.TreeNodeOccurrence.UNBOUNDED);

(4) // ... but this repeating subnode uses the internal template.
(5) anode.setInternalTemplateName("TheValue4");

To add a repeating subnode

(1) // The following calls add a repeating subnode (Shipping Addr)
(2) // to the root node.
(3)
(4) GmeekETDNode ShippingAddrNode=aEtd.addInnerNode("SHIPPING_ADDR");
(5)
(6) ShippingAddrNode.setMinMaxOccur(

1,GmeekTreeNode.TreeNodeOccurrence.UNBOUNDED);

(7) ShippingAddrNode.addSimpleTypeUsrField(
"SHIP_ALIAS",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);

(8) ShippingAddrNode.addSimpleTypeUsrField(
"SHIP_NAME",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);

(9) ShippingAddrNode.addSimpleTypeUsrField(
"SHIP_ADDRESS",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);

(10) ShippingAddrNode.addSimpleTypeUsrField(
"SHIP_ADDRESS_2",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);

(11) ShippingAddrNode.addSimpleTypeUsrField(
"SHIP_MAIL_STOP",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);

(12) ShippingAddrNode.addSimpleTypeUsrField(
"SHIP_CITY",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);

(13) ShippingAddrNode.addSimpleTypeUsrField(
"SHIP_STATE",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);

(14) ShippingAddrNode.addSimpleTypeUsrField(
"SHIP_ZIP",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);

8.5.2 Creating and Deploying an ETD by Command-Line Interface
The ETD builder component can only be used with e*Gate version 4.5.2 or later. Users
of e*Gate version 4.5.1 must use the command line to build the ETD. This section
explains how you (and your end users, if you do not supply a front end) can set up a
script that:

1 Defines an appropriate classpath.

2 Compiles the .java files using this classpath.

3 Packages the results into an appropriately named .jar file.
Generic Multi-Mode e*Way Extension Kit User’s Guide 98

Chapter 8 Section 8.6
Developing an e*Way Using ETD Builder Components Front-end Wizards for the ETD Builder
4 Copies the files to an accumulator location containing e*Gate deployment files.

5 Loads the ETD to the e*Gate Registry based on the generated .ctl file by:

A Using the back-end builder with the option <etdName>.ctl=Yes to generate
the .ctl file.

Important: You must generate the .ctl file. The .ctl file contains a list of the .xsc, and .jar files,
and the location in the e*Gate registry to commit those files.

B Using the following stcregutil command:

stcregutil -rh host-name -rs schema-name -un user-name
-up password -fc . -ctl etdName.ctl

This registers the ETD (the .xsc and .jar files) into e*Gate.

stcinstd

If your Participating Host and Registry Host are running on different computers, you
must have stcinstd running against the schema and Registry Host in use while
running the stcregutil command.

To run stcinstd against the schema and the Registry Host

1 Type the following text at the command line:

stcinstd -rh <host> -rs <schema> -un <username> -up <password> -ss

2 Press ENTER.

Note: In the stcinstd command line as shown, the flag -ss is optional and indicates to run
the host as a service.

For a complete explanation on using the e*Gate command line, including the stcinstd
command, see the e*Gate Integrator System Administration and Operations Guide.

For more information on building the ETD from the command line, see Task 6:
Creating and Registering the ETD Using the Command Line on page 148.

8.6 Front-end Wizards for the ETD Builder

Important: If you provide a builder wizard, you must inform users about the ESR required to
run the wizard on an e*Gate version 4.5.2 system.

8.6.1 Overview of ETD Builder Wizards
An ETD builder wizard is a self-contained application that is called by the e*Gate ETD
Editor (a Visual Basic application). It uses JINTEGRA (the Visual Basic-Java bridge
Generic Multi-Mode e*Way Extension Kit User’s Guide 99

Chapter 8 Section 8.6
Developing an e*Way Using ETD Builder Components Front-end Wizards for the ETD Builder
supplied by Oracle) to bridge between Visual Basic and Java components, and also uses
the Java API to invoke the back-end converter. Figure 24 on page 93 shows the overall
architecture supporting the operation of an ETD builder wizard.

Figure 26 diagrams the relationship between the ETD Editor and the builder wizards.

Figure 26 Relationships Between the ETD Editor and the Builder Wizards

The ETD Editor invokes the wizard through three COM interfaces:

The SetProp interface is used by the ETD Editor to communicate property names
and values to the wizard.

The GetProp interface is used by the ETD Editor to glean property names and
values that the wizard has set.

The Start interface causes the wizard to begin running.

The SetProp and GetProp interfaces use some standard properties as shown inTable 8:

Table 8 Standard Properties for the SetProp and GetProp COM Interfaces

Property Name Purpose

user name
port
password

Together, these three properties allow the
wizard to communicate with the e*Gate
Registry.

«interface»
Wizard

ETD Editor

+ getProperty() : String
+ setProperty
+ start

WizardManager

SOAPWizardSSCWizard YourWizard

uses

uses

implements implementsim
pl

em
en

ts
Generic Multi-Mode e*Way Extension Kit User’s Guide 100

Chapter 8 Section 8.6
Developing an e*Way Using ETD Builder Components Front-end Wizards for the ETD Builder
8.6.2 Using Heavyweight or Lightweight Visual Basic to Create an
ETD Builder Wizard

The ETD builder wizard is written in heavyweight or lightweight Visual Basic,
according to your preferences and resources. However, you cannot use both. It is
recommended that you decide on the type of Visual Basic and use that type throughout
the entire process of developing an ETD builder wizard. If you have a schema that used
one kind of wizard to create an ETD, you will not be able to create a new ETD or
regenerate an old ETD using the new type of wizard.

There is a slight difference in architecture between the two types of Visual Basic.
Compare Figure 27 on page 102 to Figure 28 on page 105.

Traditionally, ETD builder wizards are developed in heavyweight Visual Basic. This
approach is presented in this chapter; see “Using Heavyweight Visual Basic to Create
an ETD Builder Wizard” on page 102.

Developers who are less familiar with Visual Basic (or prefer Java) can instead develop
the wizard using lightweight Visual Basic. Lightweight Visual Basic minimizes the
amount of Visual Basic coding required. This approach is also presented in this chapter;
see “Using Lightweight Visual Basic to Create an ETD Builder Wizard” on page 104.

Regardless of the Visual Basic type you use, after you have created the ETD builder
wizard, you must create the files that deploy the wizard to e*Gate and validate the
results; see “Deploying and Validating an ETD Builder Wizard” on page 108.

For a step-by-step procedure for creating front-end wizards for the sample e*Way, see
“Task 4: Creating and Deploying an ETD Builder Wizard” on page 132.

.xsc file path This property tells the wizard where to put
the generated .xsc and .jar files.

Table 8 Standard Properties for the SetProp and GetProp COM Interfaces

Property Name Purpose
Generic Multi-Mode e*Way Extension Kit User’s Guide 101

Chapter 8 Section 8.6
Developing an e*Way Using ETD Builder Components Front-end Wizards for the ETD Builder
Using Heavyweight Visual Basic to Create an ETD Builder Wizard

Figure 27 illustrates the architecture of a wizard written in heavyweight Visual Basic.

Figure 27 ETD Builder Wizard Using Heavyweight Visual Basic

Writing your ETD builder wizard using heavyweight Visual Basic gives it a similar look
and feel to the builder wizards supplied by Oracle. With this approach, you can capture
user input, such as the root node name and package name for the ETD, and store those
parameters as Visual Basic variables.

e*Gate
Registry

metadata
API

ETD

Java code.xsc file

JINTEGRA

JVM

COM

Back-End
Converter

Ja
va

 A
PI

Builder
Wizard

(VB form)

external system

GetProp

SetProp

Start

hostnm
port
regnm
xscfilenm

VB forms

metadata

Front End
Generic Multi-Mode e*Way Extension Kit User’s Guide 102

Chapter 8 Section 8.6
Developing an e*Way Using ETD Builder Components Front-end Wizards for the ETD Builder
Using heavyweight Visual Basic allows you to quickly create a new wizard by re-using
the Visual Basic code from the wizard template supplied with the kit, such as:

Forms: frm_RegistryFileDialog, frmWizard;

Modules: modConstants, STC_Global_Functions;

Class Modules: class_eGateRegistry, Converter, STC_Jvm.

In the class module Converter, the public functions GetProp(), GetPropKeys(),
SetProp(), and Start() are implemented by all wizards. These are the common COM
interfaces that the ETD Editor uses to communicate with wizards. In all cases, the last
line in the Start() method launches the wizard, as shown below:

frmWizard.Show vbModal

Registry and Classpath

Because the heavyweight Visual Basic approach requires handling the Registry calls
from within the wizard, class_eGateRegistry is provided to allow you to obtain an
object reference to the e*Gate Registry.

Each ETD builder requires you to set up a specific classpath. To obtain the classpath
data, the wizard must query the Registry and read the corresponding .ctl file in the etd/
directory. For example, in the Chapter 9 sample, this file is etd/
gmeekdemoewaywizard.ctl.

This .ctl file, which was previously stored in the Registry as part of the Generic Multi-
Mode e*Way Extension Kit e*Way installation, contains all the .jar information for the
back-end to run. The wizard then builds a classpath string containing the .jar files
specified in the .ctl file. After building the classpath, the wizard invokes a JVM to which
the classpath is provided so that the back-end can run correctly. When the ETD builder
returns, the corresponding .xsc file is created, and are displayed by the ETD Editor.

Note: .ctl file names must be lowercase.

Except for the classpath building and the hand-off to the JVM, very little handshaking
is required among the ETD Editor, the wizard, and the back-end. The algorithm for
parsing the .ctl file and building the classpath string is provided in the sample. It is
recommended that you reuse the algorithm provided.

Invoking the Back-end Builder

A heavyweight Visual Basic wizard requires JINTEGRA to invoke the back-end Java
builder.

To invoke the back-end builder, do the following:

1 Private m_objJvm As New STC_Jvm: This creates a new STC_Jvm object. All
wizards have this surrogate STC_Jvm class.

2 lRet = m_objJvm.SetClasspath(m_classPath): This sets up the JVM classpath so
that the back-end can run properly.

3 lRet = m_objJvm.Start(JINTEGRACLASS): This starts the underlying JVM,
through ExecCmdNoWait().
Generic Multi-Mode e*Way Extension Kit User’s Guide 103

Chapter 8 Section 8.6
Developing an e*Way Using ETD Builder Components Front-end Wizards for the ETD Builder
4 objGmeek = m_objJvm.GetJavaClass(GMEEKBACKENDETDBUILDERCLASS):
This causes the builder classes in the back-end to be loaded to the JVM.

5 objGmeek.compile strEtdName, "ACCOUNT", m_strXSCFile, strPkgName:
This calls methods specific to the back-end, generates the .xsc and .jar files, and
places them in the designated directory. No complicated data structures are passed
over JVM; instead, the .xsc and .jar files for the ETD are stored in a pre-arranged
location for the ETD Editor to display.

ActiveX DLL

The final product is an ActiveX DLL. This DLL is copied to the working directory for
your e*Way. In the Chapter 9 sample, it is named GmeekWizard.dll, and it is located in
the installEWAY\GmeekDemoEway\ directory. Also, since the .ctl file has a list of all
e*Way components that need to be loaded into eGate Registry, this DLL is referenced in
the corresponding stc<eWayName>.ctl file. For example, the file GmeekWizard.dll is
referenced in the stcewgmeekdemoeway.ctl.

Using Lightweight Visual Basic to Create an ETD Builder Wizard

Most Java e*Way programmers prefer to code in Java as much as possible. Since the
wizard is only used to capture user input, it can easily be written in Java using
lightweight Visual Basic. Figure 28 on page 105 illustrates the architecture of a wizard
written using lightweight Visual Basic and Java Swing. Java Swing is used for
developing Java GUI API’s.

Unlike a heavy weight Visual Basic wizard, in which you invoke the back-end Java
builder directly through JINTEGRA bridge, a lightweight Visual Basic wizard invokes a
Java Swing GUI.

Using a lightweight Visual Basic wizard, the back-end builder in not invoked directly.
Instead, the Java Swing wizard is invoked, which captures user input, validates user
input, and eventually invokes the back-end builder.
Generic Multi-Mode e*Way Extension Kit User’s Guide 104

Chapter 8 Section 8.6
Developing an e*Way Using ETD Builder Components Front-end Wizards for the ETD Builder
Figure 28 ETD Builder Wizard Using Lightweight Visual Basic

Even if lightweight is used, a Visual Basic component is still required to communicate
with the ETD Editor. The lightweight Visual Basic wizard exposes the following
methods:

GetProp()

SetProp()

GetPropKeys()

Start()

e*Gate
Registry

ETD

Java code.xsc file

JINTEGRA

JVM

COM

Back-End
Converter

Java API

external system

GetProp

SetProp

Start hostnm
port
regnm
xscfilenm

(lightweight VB)

GetProp

SetProp

Start

Java wizard (Swing)

Swing
forms

Java API

metadata

Front End

API

Builder
Wizard

(VB form)
Generic Multi-Mode e*Way Extension Kit User’s Guide 105

Chapter 8 Section 8.6
Developing an e*Way Using ETD Builder Components Front-end Wizards for the ETD Builder
Note: Rather than storing all the properties in Java, Oracle recommends storing the
properties as a Dictionary in Visual Basic. This avoids passing complicated data
structure over JINTEGRA.

When the ETD editor calls GetProp(), SetProp() and GetPropKeys(), the ETD editor
retrieves the value from the lightweight Visual Basic wizard, not from the Java code.
The property value is passed to Java only when the Start() method is called by the
editor.

Registry and Classpath

Each ETD builder requires you to set up a specific classpath. To obtain the classpath
data, the wizard must query the Registry and reads the corresponding .ctl file in the
etd/ directory. For example, in the Chapter 9 sample, this file is etd/
gmeekdemoewaywizard.ctl.

This .ctl file, which was previously stored in the Registry as part of the Generic Multi-
Mode e*Way Extension Kit e*Way installation, contains all the .jar information for the
back-end to run. The wizard then builds a classpath string containing the .jar files
specified in the .ctl file. After building the classpath, the wizard invokes a JVM and
provides this classpath to the JVM so that the back-end can run correctly. When the
ETD builder returns, the corresponding .xsc file is created, and is displayed by the ETD
Editor.

Note: .ctl file names must be lowercase.

Except for the classpath building and the hand-off to the JVM, very little handshaking
is required among the ETD Editor, the wizard, and the back-end. The algorithm for
parsing the .ctl file and building the classpath string is provided in the sample. It is
recommended that you reuse the algorithm provided.

Invoking the Back-end Builder

The following example shows how the wizard invokes the back-end builder in Visual
Basic:

(1) Public Function Start() As Long
(2) ...
(3) Set objGmeek2 = m_objJvm.GetJavaClass(GMEEKBACKENDETDWIZARDCLASS)
(4) If Not objGmeek2 Is Nothing Then
(5) Dim KeyArray As Variant
(6) Dim i As Long
(7) KeyArray = m_Props.Keys
(8) For i = LBound(KeyArray) To UBound(KeyArray)
(9) objGmeek2.SetProp KeyArray(i), m_Props.Item(KeyArray(i))
(10) Next i
(11) ret=objGmeek2.Start
(12) ...
(13) m_objJvm.Terminate
(14) set m_objJvm=Nothing
(15) Else
(16) ...
(17) start=ret
(18) ...

The Java Swing GUI class implements the following methods:

public void SetProp(String PropName, String PropValue);
Generic Multi-Mode e*Way Extension Kit User’s Guide 106

Chapter 8 Section 8.6
Developing an e*Way Using ETD Builder Components Front-end Wizards for the ETD Builder
public int Start() throws Exception;

In the sample in Chapter 9, the lightweight Visual Basic wizard is compiled into
GmeekWizardLight.dll, and the Java Swing portion is compiled into
GmeekWizard.jar. GmeekWizardLight.dll invokes SetProp() and Start() in
GmeekWizard.jar.

Append the following lines to the ETDWizards.ini file in the e*Gate Registry:

?GmeekDemoEway=GmeekDemoEway Wizard,
GmeekWizardLight.bmp,GmeekWizardLight.Converter,GmeekWizardLight.dll,

The last line instructs the ETD editor to launch the lightweight Visual Basic wizard.

ActiveX DLL

The final product is an ActiveX DLL. This DLL is copied to the working directory for
your e*Way. In the Chapter 9 sample, it is named GmeekWizardLight.dll, and it is
located in the installEWAY\GmeekDemoEway\ directory. Also, since the .ctl file has a
list of all e*Way components that need to be loaded into eGate Registry, this DLL is
referenced in the corresponding stc<eWayName>.ctl file. For example, the file
GmeekWizardLight.dll is referenced in the stcewgmeekdemoeway.ctl.

Note: In the lightweight Visual Basic wizard, the Java wizard .jar file must be added to
stcew<eWayName>.ctl so that the Java wizard can commit to the e*Gate
Registry.

8.6.3 Wizard Icons

Note: This section addresses features only available for e*Gate version 4.5.2 or later.

For both heavyweight Visual Basic and lightweight Visual Basic, you must create an
icon file for the wizard. The icon file enables the Editor to display the icon in its list of
builder wizards. You can use any tool to generate this icon, but it must be a .bmp file. In
the sample, the icon is named GmeekWizard.bmp. Again, as with the DLL, since
the .bmp file must be committed to the Registry, the corresponding stc<eWayName>.ctl
file must contain the icon’s file name.

In addition, the icon’s file name must match the name in the ETDWizards.ini file. Each
entry in ETDWizards.ini must follow this format:

<wizardName>, <wizardName>.bmp, <wizardName>.Converter

For example, in the sample, after building both the lightweight and heavyweight
wizards, the file contains the following:

GmeekWizard, GmeekWizard.bmp, GmeekWizard.Converter

GmeekWizardLight, GmeekWizardLight.bmp, GmeekWizardLight.Converter

The icon’s file name in the addon.log and ETDWizards.ini files must be identical. For
more information on the addon.log file, see “How an ETD Builder Operates” on
page 94. When the code in the sample generates the scripts, it provides a default name
for the wizard DLL.
Generic Multi-Mode e*Way Extension Kit User’s Guide 107

Chapter 8 Section 8.7
Developing an e*Way Using ETD Builder Components Sample Code for the Builder API
Important: If you create the wizard DLL with a different name, you must change the name in
both the addon.log and the ETDWizards.ini files.

8.6.4 Deploying and Validating an ETD Builder Wizard
The ETD builder wizard is deployed with the e*Way runtime environment. All DLL’s
and .jar files used by the ETD builder wizard must be specified in the
stcew<eWayName>.ctl file. These DLL and .jar files are copied to the e*Way working
directory through the use of installEWAY.bat.

After installing the e*Way, the ETD builder wizard is validated by invoking the ETD
Editor. The new wizard icon appears in the New Event Type Definition window.
Double click the wizard icon to validate that the ETD builder launches successfully.

8.7 Sample Code for the Builder API
This section lists and describes the source code files involved in exercising the builder
API, as used in Chapter 9. The sample code for the builder API is listed under
GmeekDemoBuilder.java on page 112.

“RmiDemoSvr”: Demonstrates using a Remote Method Invocation (RMI) server to
simulate a generic external system.

“RmiDemoSvrIntf.java”: The RMI remote interface determines the server
functionality that a remote object is allowed to call.

“GmeekDemoBuilder.java”: Sample program that demonstrates the use of the
builder API.

RmiDemoSvr

A sample external system is provided in the sample code directory builder/
rmiDemoSvr. The sample external system is an RMI server with the lookup name
RmiDemoSvr.

(1) package com.stc.eways.samples.gmeek.builder.rmiDemoSvr;
(2) import java.rmi.*;
(3) /** Remote interface specifying methods that must be provided by the server.
(4) *
(5) * @version $Revision: 1.1.2.1 $
(6) */
(7) public interface RmiDemoSvrIntf extends java.rmi.Remote
(8) {
(9) public String sayEcho(String myName) throws RemoteException;
(10) public boolean createAccount(java.util.Map data) throws RemoteException;
(11) public boolean deleteAccount(java.util.Map criteria) throws RemoteException;
(12) public boolean updateAccount(java.util.Map criteria) throws RemoteException;
(13) public java.util.HashMap retrieveAccount(java.util.HashMap criteria) throws
(14) RemoteException;
(15) public java.util.List retrieveAllAccountId() throws RemoteException;
(16) }
(17)
(18)
Generic Multi-Mode e*Way Extension Kit User’s Guide 108

Chapter 8 Section 8.7
Developing an e*Way Using ETD Builder Components Sample Code for the Builder API
RmiDemoSvrIntf.java

In the same directory, the implementation class is in RmiDemoSvrIntf.java. The
ACCOUNT data is represented as HashMap and saved to a file named account.data.

(1) package com.stc.eways.samples.gmeek.builder.rmiDemoSvr;
(2)
(3) import java.rmi.*;
(4) import java.rmi.server.*;
(5) import java.rmi.registry.*;
(6) import java.net.MalformedURLException;
(7) import java.io.*;
(8)
(9) /** Unicast remote object implementing RmiGmeek2Test interface.
(10) *
(11) * @version $Revision: 1.1.2.1 $
(12) */
(13) public class RmiDemoSvrImpl extends java.rmi.server.UnicastRemoteObject implements RmiDemoSvrIntf
(14) {
(15) File theFile = null;
(16) /** Constructs RmiDemoSvrImpl object and exports it on default port.
(17) */
(18) public RmiDemoSvrImpl() throws RemoteException
(19) {
(20) super();
(21) theFile = new File("account.data");
(22) try
(23) {
(24) if (!theFile.exists())
(25) {
(26) theFile.createNewFile();
(27) }
(28) }
(29) catch (IOException ex)
(30) {
(31) ex.printStackTrace();
(32) }
(33) }
(34)
(35) /** Constructs RmiDemoSvrImpl object and exports it on specified port.
(36) * @param port The port for exporting
(37) */
(38) public RmiDemoSvrImpl(int port) throws RemoteException
(39) {
(40) super(port);
(41) }
(42)
(43) /** Register RmiDemoSvrImpl object with the RMI registry.
(44) *
(45) * @param name name identifying the service in the RMI registry
(46) * @param create create local registry if necessary
(47) *
(48) * @throw RemoteException if cannot be exported or bound to RMI registry
(49) * @throw MalformedURLException if name cannot be used to construct a valid URL
(50) * @throw IllegalArgumentException if null passed as name
(51) */
(52) public static void registerToRegistry(String name, Remote obj, boolean create) throws
(53) RemoteException, MalformedURLException
(54) {
(55) if (name == null)
(56) {
(57) throw new IllegalArgumentException("registration name can not be null");
(58) }
(59)
(60) try
(61) {
(62) Naming.rebind(name, obj);
(63) }
(64) catch (RemoteException ex)
(65) {
(66) if (create)
(67) {
(68) Registry r = LocateRegistry.createRegistry(Registry.REGISTRY_PORT);
(69) r.rebind(name, obj);
(70) }
(71) else
(72) {
(73) throw ex;
(74) }
(75) }
(76) }
(77)
(78) /** return a string saying hello back to the client
(79) *
(80) */
(81) public String sayEcho(String myName) throws RemoteException
(82) {
(83) return "\nHello "+ myName + "!!\n";
Generic Multi-Mode e*Way Extension Kit User’s Guide 109

Chapter 8 Section 8.7
Developing an e*Way Using ETD Builder Components Sample Code for the Builder API
(84) }
(85)
(86) /** Create an account object in the output file and add it to the list
(87) * of accounts
(88) *
(89) * @param data map of accounts
(90) */
(91) public boolean createAccount(java.util.Map data) throws RemoteException
(92) {
(93) try
(94) {
(95) java.util.Vector allAccounts = new java.util.Vector();
(96) {
(97) FileInputStream fileinstrm = new FileInputStream(theFile);
(98) if (fileinstrm.available() > 0)
(99) {
(100) ObjectInputStream pin = new ObjectInputStream(fileinstrm);
(101) allAccounts = (java.util.Vector)pin.readObject();
(102) pin.close();
(103) }
(104) };
(105)
(106) allAccounts.add(data);
(107) {
(108) FileOutputStream fileonstrm = new FileOutputStream(theFile);
(109) ObjectOutputStream pout = new ObjectOutputStream(fileonstrm);
(110) pout.writeObject(allAccounts);
(111) pout.flush();
(112) pout.close();
(113) }
(114) }
(115) catch (Exception ex)
(116) {
(117) ex.printStackTrace();
(118) return false;
(119) }
(120) return true;
(121) }
(122)
(123) /** Delete an account object from the output file and remove it from
(124) * the list of accounts
(125) *
(126) * @param data map of accounts
(127) */
(128) public boolean deleteAccount(java.util.Map criteria) throws RemoteException
(129) {
(130) try
(131) {
(132) FileInputStream fileinstrm = new FileInputStream(theFile);
(133) java.util.Vector allAccounts = new java.util.Vector();
(134)
(135) if (fileinstrm.available() > 0)
(136) {
(137) ObjectInputStream pin = new ObjectInputStream(fileinstrm);
(138) allAccounts = (java.util.Vector)pin.readObject();
(139) pin.close();
(140) }
(141) else
(142) return false;
(143)
(144) for(int i =0; i< allAccounts.size();i++)
(145) {
(146) java.util.HashMap account = (java.util.HashMap)allAccounts.get(i);
(147) String queryAccountID = (String)criteria.get("ACCOUNT_ID");
(148) if (queryAccountID.compareToIgnoreCase((String)account.get("ACCOUNT_ID"))
(149) == 0)
(150) {
(151) allAccounts.remove(i);
(152) return true;
(153) }
(154) }
(155) {
(156) FileOutputStream fileonstrm = new FileOutputStream(theFile);
(157) ObjectOutputStream pout = new ObjectOutputStream(fileonstrm);
(158) pout.writeObject(allAccounts);
(159) pout.flush();
(160) pout.close();
(161) }
(162) }
(163) catch (Exception ex)
(164) {
(165) ex.printStackTrace();
(166) }
(167) return false;
(168) }
(169)
(170) /** Update an account object with the matching account id
(171) *
(172) * @param data map of accounts
(173) */
(174) public boolean updateAccount(java.util.Map criteria) throws RemoteException
(175) {
Generic Multi-Mode e*Way Extension Kit User’s Guide 110

Chapter 8 Section 8.7
Developing an e*Way Using ETD Builder Components Sample Code for the Builder API
(176) boolean updated = false;
(177) try
(178) {
(179) FileInputStream fileinstrm = new FileInputStream(theFile);
(180) java.util.Vector allAccounts = new java.util.Vector();
(181)
(182) if (fileinstrm.available() > 0)
(183) {
(184) ObjectInputStream pin = new ObjectInputStream(fileinstrm);
(185) allAccounts = (java.util.Vector)pin.readObject();
(186) pin.close();
(187) }
(188) else
(189) return false;
(190)
(191) for(int i =0; i< allAccounts.size();i++)
(192) {
(193) java.util.HashMap account = (java.util.HashMap)allAccounts.get(i);
(194) String queryAccountID = (String)criteria.get("ACCOUNT_ID");
(195) If (queryAccountID.compareToIgnoreCase(
(196) (String)account.get("ACCOUNT_ID")) == 0)
(197) {
(198) allAccounts.remove(i);
(199) allAccounts.add(criteria);
(200) updated = true;
(201) }
(202) }
(203)
(204) if(updated)
(205) {
(206) FileOutputStream fileonstrm = new FileOutputStream(theFile);
(207) ObjectOutputStream pout = new ObjectOutputStream(fileonstrm);
(208) pout.writeObject(allAccounts);
(209) pout.flush();
(210) pout.close();
(211) }
(212)
(213) }
(214) catch (Exception ex)
(215) {
(216) ex.printStackTrace();
(217) }
(218) return updated;
(219) }
(220)
(221) /** Return an account object with the matching account id
(222) *
(223) * @param data map of accounts
(224) */
(225) public java.util.HashMap retrieveAccount(java.util.HashMap criteria) throws
(226) RemoteException
(227) {
(228) try
(229) {
(230) FileInputStream fileinstrm = new FileInputStream(theFile);
(231) java.util.Vector allAccounts = new java.util.Vector();
(232) if (fileinstrm.available() > 0)
(233) {
(234) ObjectInputStream pin = new ObjectInputStream(fileinstrm);
(235) allAccounts = (java.util.Vector)pin.readObject();
(236) pin.close();
(237) }
(238)
(239) for (int i =0; i< allAccounts.size();i++)
(240) {
(241) java.util.HashMap account = (java.util.HashMap)allAccounts.get(i);
(242) String queryAccountID = (String)criteria.get("ACCOUNT_ID");
(243) if (queryAccountID.compareToIgnoreCase(
(244) (String)account.get("ACCOUNT_ID")) == 0)
(245) {
(246) return account;
(247) }
(248) }
(249) }
(250) catch (Exception ex)
(251) {
(252) ex.printStackTrace();
(253) }
(254) return null;
(255) }
(256)
(257) /** Retrieve all accounts in the list
(258) *
(259) * @param data map of accounts
(260) */
(261) public java.util.List retrieveAllAccountId() throws RemoteException
(262) {
(263) java.util.ArrayList theList = new java.util.ArrayList();
(264) try
(265) {
(266) FileInputStream fileinstrm = new FileInputStream(theFile);
(267) java.util.Vector allAccounts = new java.util.Vector();
Generic Multi-Mode e*Way Extension Kit User’s Guide 111

Chapter 8 Section 8.7
Developing an e*Way Using ETD Builder Components Sample Code for the Builder API
(268)
(269) if (fileinstrm.available() > 0)
(270) {
(271) ObjectInputStream pin = new ObjectInputStream(fileinstrm);
(272) allAccounts = (java.util.Vector)pin.readObject();
(273) pin.close();
(274) }
(275)
(276) for (int i =0; i< allAccounts.size();i++)
(277) {
(278) java.util.HashMap account = (java.util.HashMap)allAccounts.get(i);
(279) String queryAccountID = (String)account.get("ACCOUNT_ID");
(280) theList.add(queryAccountID);
(281) }
(282) }
(283) catch (Exception ex)
(284) {
(285) ex.printStackTrace();
(286) }
(287) return theList;
(288) }
(289) }

GmeekDemoBuilder.java

GmeekDemoBuilder.java is a sample program that demonstrates the use of the builder
API.

The import statements (3) through (5) shown below are required. They import the
e*Way-specific classes that are used in a typical ETD builder and the gmeek.model
classes that constitute the builder API.

(1) package com.stc.eways.samples.gmeek.builder.apiDemo;
(2)
(3) import java.io.*;
(4) import com.stc.eways.common.builder.generator.*;
(5) import com.stc.eways.gmeek.model.*;
(6)
(7) /** Sample builder program that uses the GMEEK builder API.
(8) * After this program is compiled, the resulting .class file
(9) * must be archived into the (eWayName)ETDBuilder.jar file.
(10) *
(11) * @version $Revision: 1.1.2.4 $
(12) */
(13) public class GmeekDemoBuilder
(14) {
(15)
(16) // All ETD builders should define the following variables for
(17) // e*Way name, package name, connector name, and connector type:
(18) //
(19) //Generate eway for eGate452 and above
(20) static String EWAY_NAME = "GmeekDemoEway";
(21) static String EWAY_PACKAGE_NAME = "com.stc.eways.GmeekDemoEway";
(22) static String EWAY_CONNECTOR_NAME = "DemoRmi";
(23) static String EWAY_CONNECTOR_TYPE =

GmeekConnectorModel.ConnectorType.CONNECTOR_SUPPORT_CONNECTION_MANAGER;
(24)
(25) //Generate eWay for eGate451 only, no connection management
(26) //static String EWAY_NAME = "GmeekDemoEway_451";
(27) //static String EWAY_PACKAGE_NAME = "com.stc.eways.GmeekDemoEway_451";
(28) //static String EWAY_CONNECTOR_NAME = "DemoRmi_451";
(29) //static String EWAY_CONNECTOR_TYPE =

GmeekConnectorModel.ConnectorType.CONNECTOR_NO_CONNECTION_MANAGER;
(30)
(31) public GmeekDemoBuilder()
(32) {
(33) }
(34)
(35) /**
(36) * Generates the e*Way install scripts, e*Way run-time
(37) * Java source, and compile scripts.
(38) *
(39) * @param eway_install_dir Specifies the directory to contain
(40) * the generated e*Way run-time source code.
(41) *
(42) * Both of the e*Way run-time source files are skeleton code only.
(43) * You will need to modify them to implement the connection logic.
(44) *
(45) * The (eWayName)ETDBuilder.jar is placed into this directory.
(46) * Remember that you must also put any third-party .jar files into
(47) * this same directory, so that the install script can pick up
(48) * the .jar files and commit them to the e*Gate Registry.
(49) *
(50) * @param gen_props Specifies a <code>java.util.Properties</code>.
(51) * If any of the files to be generated already exist, and if
Generic Multi-Mode e*Way Extension Kit User’s Guide 112

Chapter 8 Section 8.7
Developing an e*Way Using ETD Builder Components Sample Code for the Builder API
(52) * you want to regenerate the file, you need to specify the
(53) * file name as the key in gen_props (the value is always "Yes").
(54) * Otherwise, any files that already exist are not regenerated.
(55) *
(56) * @throws Exception
(57) */
(58) public void installEway(String eway_install_dir,java.util.Properties gen_props) throws Exception
(59) {
(60) File afile;
(61) try{
(62) afile = new File(eway_install_dir);
(63) }
(64) catch (NullPointerException ex)
(65) {
(66) throw new Exception("null eway working directory");
(67) }
(68)
(69) if (afile == null)
(70) {
(71) throw new Exception("eway working directory is not valid");
(72) }
(73)
(74)
(75) //if the installEWAY directory doesn't exist, create it.
(76) if (!afile.exists())
(77) afile.mkdir();
(78)
(79) try{
(80) // Start a GmeekEwayModel to store all information needed
(81) // to generate run-time code for the e*Way.
(82) //
(83) // EWAY_NAME and EWAY_PACKAGE_NAME are defined as global
(84) // static variables, to ensure that all methods in this
(85) // class use the same values.
(86) GmeekEwayModel aEway= new GmeekEwayModel(EWAY_NAME,EWAY_PACKAGE_NAME);
(87)
(88) //for CVS
(89) aEway.setVersion("$Revision: 1.1.2.4 $");
(90)
(91)
(92) // The following call causes GmeekEwayModel create a connector
(93) // for the e*Way, specifying the connector name and type.
(94) // EWAY_CONNECTOR_NAME is defined as a static variable, to
(95) // ensure that all methods in this class use the same values.
(96) //
(97) GmeekConnectorModel aCnctr = aEway.getConnector(EWAY_CONNECTOR_NAME,EWAY_CONNECTOR_TYPE);
(98)
(99) aCnctr.setVersion("$Revision: 1.1.2.4 $");
(100)
(101) // The following calls add all packages this connector will use.
(102) //
(103) aCnctr.addImportPackage("java.util.Properties");
(104) aCnctr.addImportPackage("java.net.UnknownHostException");
(105) aCnctr.addImportPackage("com.stc.eways.util.*");
(106) aCnctr.addImportPackage("com.stc.common.registry.RepositoryDirectories");
(107) aCnctr.addImportPackage("java.rmi.Naming");
(108) aCnctr.addImportPackage("com.stc.eways.samples.gmeek.builder.rmiDemoSvr.*");
(109)
(110) // The following calls provide the connector model with all the
(111) // connection properties, so that it can generate skeleton code
(112) // in the connector source.
(113) // These properties are also used in generating the .def file
(114) // (default configuration file) for the e*Way Connection.
(115) //
(116) aCnctr.setConnectionProperty("Rmi","Host","localhost");
(117) aCnctr.setConnectionProperty("Rmi","Port","11990");
(118) aCnctr.setConnectionProperty("Rmi","Name","RmiDemoSvr");
(119)
(120) // The following call causes the model to emit connector source
(121) // code. Parameter gen_props is of type java.util.Properties:
(122) // - If any of the files to be generated already exists, and if
(123) // you want to regenerate the file, you must specify the file
(124) // name as the key in gen_props (the value is always "Yes").
(125) // - If you do not specify any key value in gen_props, the
(126) // following method will not overwrite any pre-existing files.
(127) //
(128) aEway.emitEwayRunTime(eway_install_dir,gen_props);
(129) }
(130) catch (Exception ex)
(131) {
(132) ex.printStackTrace();
(133) File[] file_lst = afile.listFiles();
(134) for (int i = 0; i<file_lst.length;i++)
(135) file_lst[i].delete();
(136) // afile.delete();
(137) System.err.println("everything failed remove the eway working directory");
(138) }
(139)
(140) }
(141)
(142) /**
(143) * This method compiles the code without generating the files
Generic Multi-Mode e*Way Extension Kit User’s Guide 113

Chapter 8 Section 8.7
Developing an e*Way Using ETD Builder Components Sample Code for the Builder API
(144) * etd.ctl, compile.sh, and compile.bat.
(145) *
(146) * Call this version of the method if you will be running the
(147) * builder from an ETD builder wizard.
(148) *
(149) * @param etd_nm Specifies the root node name of the ETD.
(150) * For most ETD builders, this parameter is
(151) * input by the user.
(152) *
(153) * @param etd_typ_nm Specifies which type of ETD: ACCOUNT,
(154) * PAYROLL, etc.
(155) * This is unique to the ETD being built
(156) * as a sample.
(157) *
(158) * @param xscfname Specifies the full path name of the
(159) * generated .xsc file.
(160) * The .jar file will be put in the same
(161) * directory and will have the same prefix.
(162) *
(163) * @param etd_pkg_nm Specifies the package name of the ETD.
(164) * For almost all ETD builders, this parameter
(165) * is input by the user.
(166) */
(167) public void compile(String etd_nm,String etd_type_nm,String xscfname, String etd_pkg_nm) throws

Exception
(168) {
(169) this.compile(etd_nm,etd_type_nm,xscfname,etd_pkg_nm,null);
(170) }
(171) /**
(172) *This method will generate etd.ctl, compile,short and compile.bat files to
(173) *help you compile and install the etd from command line.
(174) *
(175) * Call this version of the method if you will be installing
(176) * the ETD from the command line.
(177) *
(178) * @param etd_nm Specifies the root node name of the ETD.
(179) * For most ETD builders, this parameter is
(180) * input by the user.
(181) *
(182) * @param etd_typ_nm Specifies which type of ETD: ACCOUNT,
(183) * PAYROLL, etc.
(184) * This is unique to the ETD being built
(185) * as a sample.
(186) *
(187) * @param xscfname Specifies the full path name of the
(188) * generated .xsc file.
(189) * The .jar file will be put in the same
(190) * directory and will have the same prefix.
(191) *
(192) * @param etd_pkg_nm Specifies the package name of the ETD.
(193) * For almost all ETD builders, this parameter
(194) * is input by the user.
(195) *
(196) * @param props Specifies the list of files to generate
(197) * for building the ETD in command mode:
(198) * etd.ctl, compile.bat, and compile.sh
(199) */
(200) public void compile(String etd_nm,String etd_type_nm,String xscfname, String

etd_pkg_nm,java.util.Properties props) throws Exception
(201) {
(202) try
(203) {
(204) System.out.println("etd_nm:"+etd_nm+" xscfname:"+xscfname+" pkg name:"+etd_pkg_nm);
(205)
(206) // The following call creates a new root node.
(207) GmeekETDRootNode aEtd= new GmeekETDRootNode(etd_nm,xscfname,etd_pkg_nm);
(208)
(209) aEtd.setVersion("$Revision: 1.1.2.4 $");
(210)
(211)
(212) // The following call informs the root node of the
(213) // type of connector.
(214) //
(215) GmeekConnectorModel aCnctr =

aEtd.getConnector(EWAY_CONNECTOR_NAME,EWAY_CONNECTOR_TYPE,EWAY_PACKAGE_NAME);
(216)
(217) // The following calls inform the connector model which
(218) // connection parameters to use. Repeat everything that
(219) // you specified for the connector in the installEWAY method.
(220) //
(221) aCnctr.setConnectionProperty("Rmi","Host","localhost");
(222) aCnctr.setConnectionProperty("Rmi","Port","11990");
(223) aCnctr.setConnectionProperty("Rmi","Name","RmiDemoSvr");
(224)
(225) // The following calls cause metadata to be output to a
(226) // text file for viewing purposes only. The output is
(227) // not used to build the ETD.
(228) //
(229) FileOutputStream afostrm = new FileOutputStream("Account.something");
(230) PrintStream aprnttsrm = new PrintStream(afostrm);
(231)
(232) // The following calls define the import packages for the ETD.
Generic Multi-Mode e*Way Extension Kit User’s Guide 114

Chapter 8 Section 8.7
Developing an e*Way Using ETD Builder Components Sample Code for the Builder API
(233) aEtd.addImportPackage("java.util.*");
(234) aEtd.addImportPackage("java.rmi.Naming");
(235)
(236) // The following call adds the "retrieveAccount" method
(237) // to the ETD.
(238) //
(239) GmeekETDMethod aMethod =

aEtd.addMethod("retrieveAccount",GmeekTreeNode.TreeNodeAccessType.PUBLIC_ACCESS,"void");
(240)
(241) // The following call adds the method body.
(242) aMethod.appendMethodBody("try { \n" +
(243) " java.util.HashMap creteria = new java.util.HashMap(); \n"+
(244) " creteria.put(\"ACCOUNT_ID\",this.getACCOUNT_ID()); \n" +
(245) " java.util.Map accountMap = myConnector.getRemoteRef().retrieveAccount(creteria); \n" +
(246) " if(accountMap.containsKey(\"ACCOUNT_NAME\")) { \n " +
(247) " String temp=(String)accountMap.get(\"ACCOUNT_NAME\"); \n" +
(248) " this.setACCOUNT_NAME(temp); \n" +
(249) " } \n" +
(250) " if(accountMap.containsKey(\"ACCOUNT_TYPE\")) { \n" +
(251) " String temp=(String)accountMap.get(\"ACCOUNT_TYPE\") ; \n" +
(252) " this.setACCOUNT_TYPE(temp); \n" +
(253) " } \n" +
(254) " if(accountMap.containsKey(\"ACCOUNT_REPS\")) { \n" +
(255) " java.util.Vector temp=(java.util.Vector)accountMap.get(\"ACCOUNT_REPS\"); \n" +
(256) " for (int i=0; i < temp.size(); i++) { \n" +
(257) " this.getACCOUNT_REPS(i).setstringValue((String)temp.get(i)); \n" +
(258) " } \n" +
(259) " } \n" +
(260) " if(accountMap.containsKey(\"ADDRESS\")) { \n" +
(261) " String temp=(String)accountMap.get(\"ADDRESS\"); \n" +
(262) " this.setADDRESS(temp); \n" +
(263) " } \n" +
(264) " if(accountMap.containsKey(\"ADDRESS_2\")) { \n" +
(265) " String temp=(String)accountMap.get(\"ADDRESS_2\"); \n" +
(266) " this.setADDRESS_2(temp); \n" +
(267) " } \n " +
(268) " if(accountMap.containsKey(\"BILLING_ADDR\")) { \n" +
(269) " java.util.Vector temp=(java.util.Vector)accountMap.get(\"BILLING_ADDR\"); \n" +
(270) " for (int i=0; i < temp.size(); i++) { \n" +
(271) " java.util.HashMap temp1 = (java.util.HashMap)temp.get(i); \n " +
(272) " if(temp1.containsKey(\"BILL_ADDRESS\")) \n" +
(273) " this.getBILLING_ADDR(i).setBILL_ADDRESS((String)temp1.get(\"BILL_ADDRESS\")); \n"

+
(274) " if(temp1.containsKey(\"BILL_ADDRESS_2\")) \n " +
(275) " this.getBILLING_ADDR(i).setBILL_ADDRESS_2((String)temp1.get(\"BILL_ADDRESS_2\"));

\n " +
(276) " if(temp1.containsKey(\"BILL_ALIAS\")) \n" +
(277) " this.getBILLING_ADDR(i).setBILL_ALIAS((String)temp1.get(\"BILL_ALIAS\")); \n " +
(278) " } \n " +
(279) " } \n" +
(280) " }catch (java.rmi.RemoteException ex) { \n " +
(281) " throw new CollabDataException(\"Exception caught.\", ex); \n " +
(282) " } \n "
(283));
(284)
(285) // The following calls add the other three methods --
(286) // "createAccount()", "deleteAccount()", and "updateAccount()".
(287) //
(288) aMethod =

aEtd.addMethod("createAccount",GmeekTreeNode.TreeNodeAccessType.PUBLIC_ACCESS,"void");
(289) aMethod =

aEtd.addMethod("deleteAccount",GmeekTreeNode.TreeNodeAccessType.PUBLIC_ACCESS,"void");
(290) aMethod =

aEtd.addMethod("updateAccount",GmeekTreeNode.TreeNodeAccessType.PUBLIC_ACCESS,"void");
(291)
(292) // The following calls add simple subnodes.
(293) aEtd.addSimpleTypeUsrField("ACCOUNT_NAME",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(294) aEtd.addSimpleTypeUsrField("ACCOUNT_ID",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(295) aEtd.addSimpleTypeUsrField("ACCOUNT_TYPE",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(296) aEtd.addSimpleTypeUsrField("COMPANY_NAME",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(297) aEtd.addSimpleTypeUsrField("INDUSTRY",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(298) aEtd.addSimpleTypeUsrField("CONTACT",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(299) aEtd.addSimpleTypeUsrField("ADDRESS",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(300) aEtd.addSimpleTypeUsrField("ADDRESS_2",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(301) aEtd.addSimpleTypeUsrField("CITY",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(302) aEtd.addSimpleTypeUsrField("STATE",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(303) aEtd.addSimpleTypeUsrField("ZIP",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(304) aEtd.addSimpleTypeUsrField("COUNTRY",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(305) aEtd.addSimpleTypeUsrField("PHONE",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(306) aEtd.addSimpleTypeUsrField("FAX",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(307) aEtd.addSimpleTypeUsrField("MAIL_STOP",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(308) aEtd.addSimpleTypeUsrField("EMAIL",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(309)
(310) // The following call adds an internal template.
(311) GmeekETDNode TheValueNode = aEtd.addInternalTemplate("TheValue4");
(312)
(313) // The following calls add subnodes to this internal template.
(314)

TheValueNode.addSimpleTypeUsrField("stringValue",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(315)

TheValueNode.addSimpleTypeUsrField("shortValue",GmeekTreeNode.TreeNodeType.FIELD_TYPE_INT);
Generic Multi-Mode e*Way Extension Kit User’s Guide 115

Chapter 8 Section 8.7
Developing an e*Way Using ETD Builder Components Sample Code for the Builder API
(316)
TheValueNode.addSimpleTypeUsrField("longValue",GmeekTreeNode.TreeNodeType.FIELD_TYPE_LONG);

(317) TheValueNode.addSimpleTypeUsrField("intValue",GmeekTreeNode.TreeNodeType.FIELD_TYPE_INT);
(318)

TheValueNode.addSimpleTypeUsrField("doubleValue",GmeekTreeNode.TreeNodeType.FIELD_TYPE_DOUBLE);
(319)
(320) // The following calls add a repeating subnode (Shipping Addr)
(321) // to the root node.
(322) //
(323) GmeekETDNode ShippingAddrNode=aEtd.addInnerNode("SHIPPING_ADDR");
(324) ShippingAddrNode.setMinMaxOccur(1,GmeekTreeNode.TreeNodeOccurrence.UNBOUNDED);
(325)
(326)

ShippingAddrNode.addSimpleTypeUsrField("SHIP_ALIAS",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(327)

ShippingAddrNode.addSimpleTypeUsrField("SHIP_NAME",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(328)

ShippingAddrNode.addSimpleTypeUsrField("SHIP_ADDRESS",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(329)

ShippingAddrNode.addSimpleTypeUsrField("SHIP_ADDRESS_2",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING)
;

(330)
ShippingAddrNode.addSimpleTypeUsrField("SHIP_MAIL_STOP",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING)
;

(331)
ShippingAddrNode.addSimpleTypeUsrField("SHIP_CITY",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);

(332)
ShippingAddrNode.addSimpleTypeUsrField("SHIP_STATE",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);

(333)
ShippingAddrNode.addSimpleTypeUsrField("SHIP_ZIP",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);

(334)
(335) // The following calls add a repeating and optional subnode (Billing Addr)
(336) // to the root node.
(337) //
(338) GmeekETDNode BillAddrNode=aEtd.addInnerNode("BILLING_ADDR");
(339) BillAddrNode.setMinMaxOccur(0,GmeekTreeNode.TreeNodeOccurrence.UNBOUNDED);
(340)

BillAddrNode.addSimpleTypeUsrField("BILL_ALIAS",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(341)

BillAddrNode.addSimpleTypeUsrField("BILL_NAME",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(342)

BillAddrNode.addSimpleTypeUsrField("BILL_ADDRESS",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(343)

BillAddrNode.addSimpleTypeUsrField("BILL_ADDRESS_2",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(344)

BillAddrNode.addSimpleTypeUsrField("BILL_CITY",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(345)

BillAddrNode.addSimpleTypeUsrField("BILL_STATE",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(346)

BillAddrNode.addSimpleTypeUsrField("BILL_ZIP",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(347)

BillAddrNode.addSimpleTypeUsrField("BILL_COUNTRY",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(348)
(349) // The following calls add a optional subnode (Payment)
(350) // to the root node.
(351) //
(352) GmeekETDNode PaymentNode=aEtd.addInnerNode("PAYMENT");
(353) PaymentNode.setMinMaxOccur(0,1);
(354)

PaymentNode.addSimpleTypeUsrField("PAYMENT_NAME",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(355)

PaymentNode.addSimpleTypeUsrField("DEPARTMENT",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(356)

PaymentNode.addSimpleTypeUsrField("CARD_NUMBER",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(357) PaymentNode.addSimpleTypeUsrField("STATE",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(358)

PaymentNode.addSimpleTypeUsrField("PMTTYPE_ID",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(359)

PaymentNode.addSimpleTypeUsrField("PURCHASE_LIMIT",GmeekTreeNode.TreeNodeType.FIELD_TYPE_DOUBLE);
(360) PaymentNode.addSimpleTypeUsrField("ADDRESS",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(361) PaymentNode.addSimpleTypeUsrField("CITY",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(362)

PaymentNode.addSimpleTypeUsrField("STORE_NAME",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(363)

PaymentNode.addSimpleTypeUsrField("FIRST_NAME",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(364)
(365) // The following calls add a must have subnode (Order)
(366) // to the root node.
(367) //
(368) GmeekETDNode OrderNode=aEtd.addInnerNode("ORDER");
(369) OrderNode.setMinMaxOccur(1,1);
(370)

OrderNode.addSimpleTypeUsrField("ORDER_NAME",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(371)

OrderNode.addSimpleTypeUsrField("DEPARTMENT",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(372) OrderNode.addSimpleTypeUsrField("ORDER_ID",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(373)

OrderNode.addSimpleTypeUsrField("ORDER_PARTY_ADDRESS",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(374)

OrderNode.addSimpleTypeUsrField("ORDER_PARTY_CITY",GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
(375)
(376) // The following calls add a repeating subnode (Account Reps)
Generic Multi-Mode e*Way Extension Kit User’s Guide 116

Chapter 8 Section 8.7
Developing an e*Way Using ETD Builder Components Sample Code for the Builder API
(377) // to the root node, ...
(378) //
(379) GmeekETDNode anode = aEtd.addInnerNode("ACCOUNT_REPS");
(380) anode.setMinMaxOccur(1,GmeekTreeNode.TreeNodeOccurrence.UNBOUNDED);
(381) // ... but this repeating subnode uses the internal template.
(382) anode.setInternalTemplateName("TheValue4");
(383)
(384) // The following calls add a repeating optional subnode (Trans Aliases)
(385) // to the root node, ...
(386) //
(387) anode = aEtd.addInnerNode("TRANS_ALIASES");
(388) anode.setMinMaxOccur(0,GmeekTreeNode.TreeNodeOccurrence.UNBOUNDED);
(389) // ... but this repeating subnode uses the internal template.
(390) anode.setInternalTemplateName("TheValue4");
(391)
(392) // The following calls add a nonrepeating optional subnode (OET Names)
(393) // to the root node, ...
(394) //
(395) anode = aEtd.addInnerNode("OET_NAMES");
(396) anode.setMinMaxOccur(0,1);
(397) // ... but this repeating subnode uses the internal template.
(398) anode.setInternalTemplateName("TheValue4");
(399)
(400)
(401) // The following calls add a nonrepeating must have subnode (Visitor Names)
(402) // to the root node, ...
(403) //
(404) anode = aEtd.addInnerNode("VisitorNames");
(405) anode.setMinMaxOccur(1,1);
(406) // ... but this repeating subnode uses the internal template.
(407) anode.setInternalTemplateName("TheValue4");
(408)
(409) // The following calls add a single subnode (Org Entity Types)
(410) // to the root node ...
(411) //
(412) GmeekETDNode orgEntityTypesNode = aEtd.addInnerNode("OrgEntityTypes");
(413) // ... but this repeating subnode uses the internal template.
(414) orgEntityTypesNode.setInternalTemplateName("TheValue4");
(415)
(416)
(417) // The following calls write the metadata you just entered
(418) // to a human-readable file.
(419) //
(420) aEtd.emitNesting(aprnttsrm);
(421) aprnttsrm.flush();
(422) aprnttsrm.close();
(423)
(424) // The following call takes all the ETD information that
(425) // was captured by the model and emits it to .java and
(426) // .xsc source.
(427) //
(428) aEtd.emitJavaAndXsc(props);
(429)
(430) // The following call compiles and archives (jars) the
(431) // Java source, thus generating the run-time package.
(432) //
(433) aEtd.generateRuntimePackage();
(434)
(435) } catch (Exception ex)
(436) {
(437) File axscFile = new File(xscfname);
(438) if(axscFile != null)
(439) {
(440) File xscDir = axscFile.getParentFile();
(441) if (xscDir != null)
(442) {
(443) File[] allfiles = xscDir.listFiles();
(444) try
(445) {
(446) for (int i=0;i < allfiles.length;i++)
(447) {
(448) allfiles[i].delete();
(449) }
(450) }catch (Exception f)
(451) {
(452) f.printStackTrace();
(453) }
(454) }
(455) }
(456) ex.printStackTrace();
(457) System.err.println("remove every partialy generated file");
(458)
(459) // Generate exception for caller of this routine to
(460) // determine cause of problem.
(461) //
(462) throw (new Exception("xsc files not generated"));
(463) }
(464)
(465)
(466) } //
(467)
(468) public static void main(String [] args) throws Exception
Generic Multi-Mode e*Way Extension Kit User’s Guide 117

Chapter 8 Section 8.7
Developing an e*Way Using ETD Builder Components Sample Code for the Builder API
(469) {
(470) if (args.length < 2)
(471) {
(472) System.out.println("Usage: java

com.stc.eways.samples.gmeek.builder.apiDemo.GmeekDemoBuilder -install <dirname> or \n");
(473) System.out.println("Usage: java

com.stc.eways.samples.gmeek.builder.apiDemo.GmeekDemoBuilder -compile etdname etd_type_name etdxscfile
etd_package_name");

(474) return;
(475) }
(476) if (args[0].compareToIgnoreCase("-install") == 0)
(477) {
(478) GmeekDemoBuilder builder = new GmeekDemoBuilder();
(479) java.util.Properties props = new java.util.Properties();
(480) if (args.length >= 2)
(481) {
(482)
(483) for(int i=2; i < args.length;i++)
(484) {
(485) int idx = args[i].indexOf("=");
(486) if(idx > 0)
(487) {
(488) String key=args[i].substring(0,idx);
(489) String val = args[i].substring(idx+1);
(490) System.out.println(args[i]+" "+key+" "+val);
(491) props.setProperty(key,val);
(492) }
(493)
(494) }
(495) }
(496) builder.installEway(args[1],props);
(497) }
(498) else if (args[0].compareToIgnoreCase("-compile") == 0)
(499) {
(500) GmeekDemoBuilder builder = new GmeekDemoBuilder();
(501)
(502)
(503) if (args.length >= 5)
(504) {
(505) java.util.Properties props = new java.util.Properties();
(506) for(int i=5; i < args.length;i++)
(507) {
(508) int idx = args[i].indexOf("=");
(509) if(idx > 0)
(510) {
(511) String key=args[i].substring(0,idx);
(512) String val = args[i].substring(idx+1);
(513) System.out.println(args[i]+" "+key+" "+val);
(514) props.setProperty(key,val);
(515) }
(516)
(517) }
(518) builder.compile(args[1],args[2],args[3],args[4],props);
(519) }
(520) else
(521) builder.compile(args[1],args[2],args[3],args[4]);
(522)
(523)
(524)
(525) }
(526)
(527)
(528) }
(529) }
(530)
(531)
Generic Multi-Mode e*Way Extension Kit User’s Guide 118

Chapter 9

Developing an e*Way Using the Builder API

9.1 Overview
Chapters seven through nine describe how to write the Java classes, .xsc files,
configuration files, and deployment files required to produce an ETD which
corresponds to an e*Way connection. The ETD produced in this process has predefined
nodes and methods that correspond to an external system.

This chapter guides you through the steps needed to create a sample e*Way that allows
end users to build ETDs dynamically, based on metadata from an external system.
This sample e*Way is much more complex than the other sample e*Ways described in
following chapters, because it requires you to simulate an external system, develop an
e*Way Connection tailored to that system, and develop and deploy an ETD builder. The
sample ETD builder uses the builder API to generate the Java source code and XSC that
constitute the ETD. This architecture is illustrated in Figure 24 on page 93.

As noted in Chapter 8, you must provide your end users with these four components:

1 A prepackaged run-time environment for the e*Way: <eWayName>rt.jar

2 e*Gate deployment files, including a .def file to define configuration parameters
and default values and allow end users to create and save custom configurations;
and an .ini file to make the e*Way Connection visible to e*Gate.

3 A back-end converter for the e*Way’s ETD builder: <eWayName>ETDbuilder.jar

4 A front-end wizard for the ETD builder.

Note: The front-end wizard for the ETD builder is only available for e*Gate version 4.5.2
or later. If your e*Way will operate in e*Gate version 4.5.1, you must provide
instructions for running the ETD builder from the command line. For more
information, see “Creating and Deploying an ETD by Command-Line
Interface” on page 98.

9.1.1 Using the Sample e*Ways
This chapter describes the steps required to create a sample e*Way for versions 4.5.1
and 4.5.2 or later of e*Gate. The steps to create the sample e*Ways are the same for all
versions with the following exception for e*Gate version 4.5.1:

the file names for e*Gate version 4.5.1 end with”_451”.
Generic Multi-Mode e*Way Extension Kit User’s Guide 119

Chapter 9 Section 9.1
Developing an e*Way Using the Builder API Overview
Upon completing the sample e*Way, you can deliver your end users an e*Way that
comprises:

1 A prepackaged run-time environment for the e*Way: GmeekDemoEwayrt.jar. The
e*Gate version 4.5.2 or later sample e*Way is named GmeekDemoEwaySample.
Each sample e*Way’s run-time .jar file is a package containing the classes and
source for the e*Way Connection.

2 The following set of e*Gate deployment files:

GmeekDemoEway.def: A file that defines default configuration parameters for
the e*Ways of the GmeekDemoEway type. The .def file makes parameters
visible to the e*Gate Configuration Editor and allows end users to create
customized configurations for the e*Way.

connectionpoint.ini: A fragment to be incorporated into the end user’s
connectionpoint.ini file that makes the e*Way Connections of type
GmeekDemoEway visible to e*Gate.

gmeekdemoeway.ctl: Contains a list of files to be loaded from the e*Way
working directory to the e*Gate Registry.

gmeekdemoewaywizard.ctl: Contains a list of files used by the builder wizard.

Note: .ctl file names must be lowercase. The Visual Basic Collaboration Editor will not
download any files that are uppercase.

3 A back-end converter for the ETD builder: GmeekDemoEwayETDbuilder.jar.
The back-end .jar file is a package containing all classes needed to build the ETD.
If you do not supply an ETD builder wizard, your end users must use this .jar file to
invoke the builder through a command-line interface.

4 Either one of two GUI programs that provide a front-end wizard for the ETD
builder, built with either heavyweight Visual Basic or lightweight Visual Basic. This
feature is only supported in e*Gate version 4.5.2 or later.

Important: When running the sample schema for the first time, we do recommend that you do
not modify the source files. We only recommend that you modify the source files
once you have become familiar with the e*Way development process.

Tasks for Completing the Sample e*Ways

The procedures in this chapter are organized into the following general tasks:

Task 1: One-Time Setup Steps on page 122. In this task, you perform one-time
steps to load and set up the product and to set up the RMI server that simulates an
external system.

Task 2: Creating the Back-end for the ETD Builder on page 124. In this task, you
browse the sample code that exercises the builder API, and then run the compile
script.

Task 3: Building the e*Way and e*Way Connection on page 125. In this task, you
create and package files needed by the e*Way and the e*Way Connection, and then
register the files in e*Gate.
Generic Multi-Mode e*Way Extension Kit User’s Guide 120

Chapter 9 Section 9.1
Developing an e*Way Using the Builder API Overview
Task 4: Creating and Deploying an ETD Builder Wizard on page 132. In this task,
you create a builder wizard (both approaches are presented— heavyweight Visual
Basic or lightweight Visual Basic) and then register the wizard with e*Gate.

Note: Using a kit-built ETD builder wizard on e*Gate Integrator version 4.5.2 requires an
ESR. Refer to the Readme.txt file for more information.

Task 5: Testing the Wizard with a Stand-alone Visual Basic Tester on page 145. In
this task, you verify that end users of your product can do the following within
e*Gate:

Create and configure a GmeekDemoEway type of e*Way Connection.

Use an ETD builder wizard to create one or more ETDs of type AccountETD.

Use these ETDs in a simple Collaboration Rule.

Task 6: Creating and Registering the ETD Using the Command Line on page 148.
In this task, you exercise the back-end only and verify that files are correctly built
and registered.

Note: If using e*Gate Integrator version 4.5.1, you are required to use the approach
detailed in Task 6 to build the ETD. Tasks 4 and 5 apply only to e*Gate version 4.5.2
or later.

Task 7: Testing Outside of the e*Gate Environment on page 151. In this task, you
validate the APIs outside of e*Gate.

Task 8: Understanding the Sample Implemented in a Schema on page 153. In this
task, you load the sample schema to see how the sample components appear and
behave in the e*Gate environment.
Generic Multi-Mode e*Way Extension Kit User’s Guide 121

Chapter 9 Section 9.2
Developing an e*Way Using the Builder API Task 1: One-Time Setup Steps
9.2 Task 1: One-Time Setup Steps
The following sub-tasks are needed to set up your system to create the sample:

Pre-installation on page 122

One-Time Setup Steps on page 123

One-Time Setup Steps for the RMI Server on page 124

9.2.1 Pre-installation
Ensure that your machine has Java SDK 1.6.0_19 installed on it and that you have access
to files on an e*Gate Participating Host at level 4.5.1 or later.

Note: Remember that an ESR is required to run the ETD Builder wizard on
e*Gate version 4.5.2. You will do this in a later task. If using e*Gate version 4.5.1,
see “Task 6: Creating and Registering the ETD Using the Command Line”
on page 148.

1 Locate where your Java SDK is installed. If it is not in C:\jdk1.3.1_02\, you will
need to open certain batch files or shell scripts in the following steps and modify
them so that they point to the correct Java SDK directory.

2 Create two parent directories on your machine, one to hold the Oracle-supplied .jar
files you need to reference, and one to hold the files you will develop. The samples
assume they are named as in Table 9.

3 Copy specific .jar files from your e*Gate Participating Host (<eGate>\client) into a
subdirectory of your C:\gmeekjars\ directory as shown in Table 10.

Table 9 Development Directories

Directory to Create Purpose

C:\gmeekjars\bin\java
C:\gmeekjars\classes
C:\gmeekjars\ThirdParty\sun

These directories hold .jar files supplied by
Oracle that you will need to reference when
creating the e*Way and ETD builder.

C:\gmeeksdk Holds your development work in progress.
Keep your code here so that it will not be
prematurely mingled with run-time files.

Table 10 Files to Copy from e*Gate Participating Host to C:\gmeekjars

e*Gate File to Copy
(from <eGate>\client\)

Destination

bin\java\gnu-regexp-1.1.1.jar C:\gmeekjars\bin\java
Generic Multi-Mode e*Way Extension Kit User’s Guide 122

Chapter 9 Section 9.2
Developing an e*Way Using the Builder API Task 1: One-Time Setup Steps
9.2.2 One-Time Setup Steps
The following steps only need to be done once, when you initially install the Generic
Multi-Mode e*Way Extension Kit. If you did not do the setup steps during your initial
installation, do the following steps.

1 Locate the following file on the e*Gate Integrator Installation CD-ROM:

setup\addons\gmeek\common.taz

2 Decompress common.taz and extract its .jar files into C:\gmeekjars\:

classes\stcewcommonbuilder.jar

classes\stcgmeek.jar

3 Locate the following directory on the e*Gate Integrator Installation CD-ROM:

samples\sdk\gmeek

4 Extract the files from samples\sdk\gmeek\gmeek.taz into C:\gmeeksdk\, which
creates directories and files, some of which are shown in the following list:

C:\gmeeksdk\gmeek\

C:\gmeeksdk\gmeek\classes\

C:\gmeeksdk\gmeek\installETD\

C:\gmeeksdk\gmeek\installEWAY\

C:\gmeeksdk\gmeek\testdata\

For a complete list of files and directories in gmeek.taz, see Table 3 on page 26.

5 Extract the files from samples\sdk\gmeek\VBGmeekWizard.zip into directory
C:\gmeeksdk\Wizards\. You will use these files to create an ETD builder wizard if
using e*Gate version 4.5.2 or later.

6 If using e*Gate version 4.5.1, copy C:\gmeeksdk\gmeek\classes\stcexception.jar
to C:\gmeekjars\classes and to <eGate>\client\classes.

bin\java\jcscomp.jar C:\gmeekjars\bin\java

bin\java\xerces.jar C:\gmeekjars\bin\java

classes\stcjcs.jar C:\gmeekjars\classes

classes\stcutil.jar C:\gmeekjars\classes

ThirdParty\sun\jta.jar C:\gmeekjars\ThirdParty\sun

ThirdParty\sun\jms.jar C:\gmeekjars\ThirdParty\sun

Table 10 Files to Copy from e*Gate Participating Host to C:\gmeekjars

e*Gate File to Copy
(from <eGate>\client\)

Destination
Generic Multi-Mode e*Way Extension Kit User’s Guide 123

Chapter 9 Section 9.3
Developing an e*Way Using the Builder API Task 2: Creating the Back-end for the ETD Builder
If using e*Gate version 4.5.2 or later, copy
eGate\Server\registry\repository\default\classes\stcexception.jar to
C:\gmeekjars\classes and to <eGate>\client\classes (if not already in this
directory).

9.2.3 One-Time Setup Steps for the RMI Server
The following steps only need to be done once to set up an RMI server.You will set up
the RMI server only for the purposes of the sample. The RMI server is used to simulate
an external system. For an overview and more information on the RMI server, see
Appendix C.

1 Change the current directory to C:\gmeeksdk\gmeek\builder\rmiDemoSvr\.

2 If your environment differs from the assumptions noted in the pre-installation steps
on page 122, edit the compile script and make appropriate substitutions.

3 Run the .\compile script.

Results

Running the compile script creates the following directories and files. If there are pre-
existing copies, they are overwritten.

File

.\RmiDemoSvr.jar

Directory

.\com\stc\eways\samples\gmeek\builder\rmiDemoSvr\

The following .class files within the ...\com\stc\...\rmiDemoSvr\ directory:

RmiDemoSvrIntf.class

RmiDemoClient.class

RmiDemoSvrImpl.class

RmiDemoSvrImpl_Skel.class

RmiDemoSvrImpl_Stub.class

RmiDemoSvr.class

These files allow you to run the RMI Server to simulate an external accounting system.

9.3 Task 2: Creating the Back-end for the ETD Builder
1 Change directories to C:\gmeeksdk\gmeek\builder\apiDemo\.

2 If your environment differs from the assumptions noted in the pre-installation steps
on page 122, edit the compile script and make appropriate substitutions.

3 Browse the sample code in GmeekDemoBuilder.java to understand the usage
pattern. For a listing and explanation, see “GmeekDemoBuilder.java” on page 112.
Generic Multi-Mode e*Way Extension Kit User’s Guide 124

Chapter 9 Section 9.4
Developing an e*Way Using the Builder API Task 3: Building the e*Way and e*Way Connection
This Java source code uses default values and settings as shown in Table 11.

You can make changes to validate or test the sample, but changing any of the
preceding will necessitate corresponding changes in other files.

4 Run the .\compile script.

Results

Running the compile script creates the following directories and files. If there were pre-
existing copies, they are overwritten.

Directory

.\com\stc\eways\samples\gmeek\builder\apiDemo

The following .class file within the ...\com\stc\...\apiDemo\ directory:

GmeekDemoBuilder.class

This class creates an “external accounting system” simulated by the RMI Server.

The following .jar file is rebuilt, making it generic:

..\GmeekDemoEwayETDbuilder.jar

The rebuilt .jar file overwrites the as-shipped copy located in

..\..\installEWAY\GmeekDemoEway\GmeekDemoEwayETDbuilder.jar

This .jar file allows you to test the back-end of ETD builder against the system
simulated by the RMI server.

9.4 Task 3: Building the e*Way and e*Way Connection
In this section, you will accomplish the following sub-tasks:

1 Run the runapidemo script to set up the e*Gate files associated with the e*Way
(including the corresponding e*Way Connection).

2 Make changes to source files and then run the compile script to build the e*Way.

3 Make changes to .ctl files and then run the installEWAY script to install the files to
the e*Gate system.

Table 11 As-Shipped Settings in RmiAccounTester.java

Item Original Setting or Value

e*Way name GmeekDemoEway

Package name com.stc.eways.GmeekDemoEway

e*Way Connection prefix DemoRmiConnector

RMI property named “Host” “localhost”

RMI property named “Port” “11990”

RMI property named “Name” “RmiDemoSvr”
Generic Multi-Mode e*Way Extension Kit User’s Guide 125

Chapter 9 Section 9.4
Developing an e*Way Using the Builder API Task 3: Building the e*Way and e*Way Connection
4 Verify that the e*Way and e*Way Connection were successfully installed.

Completion steps and results are provided for each sub-tasks below.

Note: In general, you install e*Ways and e*Way Connections to the default schema, to
make them available to all schemas. Accordingly, in this example, you will install
the e*Way Connection Type named GmeekDemoEway to the schema named
default.

To set up the e*Gate files associated with the e*Way and e*Way
connection

If you have made changes to any source files of the GmeekDemoEway sample, you
must do the following steps. If you have not made any changes to any source files, skip
ahead to step 2 of “To register the e*Way and e*Way Connection with e*Gate” on
page 127.

1 If appropriate, back up or move previously built versions (including the as-loaded
versions) of files in C:\gmeeksdk\gmeek\installEWAY\GmeekDemoEway\.

2 Change the current directory to C:\gmeeksdk\gmeek\builder\apiDemo\.

3 If your environment differs from the assumptions noted in the pre-installation steps
on page 122, edit the runapidemo script and make appropriate substitutions.

4 Run the .\runapidemo script.

Results

As a result of running the runapidemo script, the following e*Gate files are created in
gmeek\installEWAY\GmeekDemoEway:

compile.bat and compile.sh—Scripts that will be used to build the e*Way and
e*Way Connection.

connectionpoint.ini—Fragment to be manually incorporated in the e*Way
Connections master file.

EwayConnectorExtImpl.java—Base class for the e*Way Connection.

GmeekDemoEway.def—Default configuration parameters for the e*Way
Connection.

gmeekdemoewaywizard.ctl—The wizard uses this control file to load the class
path for the JVM.

stcewgmeekdemoeway.ctl—Control file to tell e*Gate how to register the e*Way.

DemoRmiConnector.java—Class for the e*Way Connection (skeleton code only).

Note: The files listed above are generated the first time you run the apidemo script. To
regenerate these files you must specify the file name with a value in the appropriate
batch files, as follows:

connectionpoint.ini=Yes
Generic Multi-Mode e*Way Extension Kit User’s Guide 126

Chapter 9 Section 9.4
Developing an e*Way Using the Builder API Task 3: Building the e*Way and e*Way Connection
To build the e*Way and e*Way connection

1 Change the current directory to ..\..\installEWAY\GmeekDemoEway\
(..\..\installEWAY\GmeekDemoEway_4.5.1 for e*Gate version 4.5.1).

The kit provides a compile script (compile.bat on Windows; compile.sh on UNIX)
to set CLASSPATH information and to create a .jar file for the compiled .java files
upon completion.

(1) set GMEEK_EXTRACTDIR=C:\gmeekjars
(2) set JAVA_PATH=C:\jdk1.3.1_02\bin
(3) set

MYCLASSPATH="%GMEEK_EXTRACTDIR%\classes\stcjcs.jar;%GMEEK_EXTRACTDIR%\c
lasses\stcexception.jar;%GMEEK_EXTRACTDIR%\classes\stcutil.jar;YourThir
dParty.jar;%CLASSPATH%"

(4)
(5) %JAVA_PATH%\javac -classpath %MYCLASSPATH% -d . *.java
(6) @REM jar up the classes
(7) %JAVA_PATH%\jar cvf GmeekDemoEwayrt.jar GmeekDemoEway*.class
(8) @REM jar up the source file to allow for debugger to use
(9) @REM copy *.java GmeekDemoEway\.
(10) @REM %JAVA_PATH%\jar uvf GmeekDemoEwayrt.jar GmeekDemoEway*.java
(11) @REM del GmeekDemoEway*.java
(12) del GmeekDemoEway*.class

As needed, make the following changes to reflect your environment:

1 Specify the correct location where the files were extracted, if you did not follow the
pre-installation steps. For example:

set GMEEK_EXTRACTDIR=C:\gmeekjars

2 Specify the correct path location for your JDK. For example:

JAVA_PATH=C:\jdk1.6.0\bin

3 When creating e*Way Connections from scratch, modify the directory locations in
the compile script as needed.

4 Run the .\compile script.

Results

Running the compile script creates the following directories and files. Any pre-existing
copies will have been overwritten.

File .\GmeekDemoEwayrt.jar

Directory .\com\stc\eways\GmeekDemoEway

To register the e*Way and e*Way Connection with e*Gate

1 Edit and modify each of the .ctl files—stcewgmeekdemoeway.ctl and
gmeekdemoewaywizard.ctl —by doing one or more of the following:

If your e*Way requires one or more third-party files, add them under the Third
Party .jar files with the appropriate concatenation of .jar files and their
containing directories.

Use forward slashes (/), even on Windows systems. For example:

their.jar,ThirdParty,FILETYPE_BINTEXT
Generic Multi-Mode e*Way Extension Kit User’s Guide 127

Chapter 9 Section 9.4
Developing an e*Way Using the Builder API Task 3: Building the e*Way and e*Way Connection
another.jar,ThirdParty/xml,FILETYPE_BINTEXT
jdom.jar,RelativePath/jdom/jdom-b7,FILETYPE_BINTEXT
andyetanother.jar,/AbsolutePath/To/Directory,FILETYPE_BINTEXT

If needed for the RMI simulation in this sample, be sure to substitute the name
of the file that you created in step 3 on page 124—that is, RmiDemoSvr.jar—
for the placeholder YourThirdParty.jar. For example:

RmiDemoSvr.jar,ThirdParty,FILETYPE_BINTEXT

2 Change to C:\gmeeksdk\gmeek\installEWAY\

3 Run the installEWAY script with the appropriate parameters. For this sample, to
install the e*Way named GmeekDemoEway to the schema named default, do the
following:

On Windows, open a Command Prompt, change directories to
gmeek\installEWAY, and enter the following command:

.\installEWAY -e GmeekDemoEway -s default -h localhost -g C:\eGate

On UNIX, open a shell, change directories to gmeek/installEWAY, and enter the
following command:

./installEWAY.sh -e GmeekDemoEway -s default -h localhost -g <eGate>

Table 12 shows the usage and parameters for Windows and UNIX.

Table 12 Usage and Parameters for the installEWAY script

Operating
System

Usage Parameters

Windows installEWAY [params] [param args -g: eGate root directory (default = \eGate)
-e: eWay name (required)
-s: eGate schema (required)
-h: eGate registry host
(default = localhost)
-r: eGate registry port (default = 23001)
-u: eGate registry user
(default=Administrator)
-p: eGate registry user password
(default=STC)
-?: help screen.

UNIX installEWAY.sh [params] [param args] -g: eGate root directory
-e: eWay name
-s: eGate schema
-h: eGate registry host
-r: eGate registry port
-u: eGate registry username
-p: eGate registry password
-v: verbose
Generic Multi-Mode e*Way Extension Kit User’s Guide 128

Chapter 9 Section 9.4
Developing an e*Way Using the Builder API Task 3: Building the e*Way and e*Way Connection
Note: If your Participating Host and Registry Host are running on different computers,
you must have stcinstd running against the schema and Registry Host in use
while running the stcregutil command.

1 Type the following text at the command line:

stcinstd -rh <host> -rs <schema> -un <username> -up <password> -ss

2 Press ENTER.

Note: In the stcinstd command line as shown, the flag -ss is optional and means to run
the host as a service.

For a complete explanation on using the e*Gate command line, including the stcinstd
command, see the e*Gate Integrator System Administration and Operations Guide.

Results

The results of running the installEWAY command are as follows:

The file connectionpoint.ini is retrieved from the Registry Host, backed up,
modified, and appended with an entry for the new e*Way (if not already present),
and the Registry version is updated.

The files specified in stcew<eWayStem>.ctl are registered with the Registry Host.
For example, stcewgmeekdemoeway.ctl registers the following.

Third-party .jar files and directories. For the sample, this is simulated by:

ThirdParty\RmiDemoSvr.jar

The .def (default configuration-parameter) file for the GmeekDemoEway
e*Way:

configs\GmeekDemoEway\GmeekDemoEway.def

The run-time .jar file for the GmeekDemoEway e*Way Connection:

classes\GmeekDemoEwayrt.jar

The .ctl file associated with the ETD builder wizard for GmeekDemoEway:

etd\gmeekdemoewaywizard.ctl

The .jar file for the back-end of the ETD builder for GmeekDemoEway:

classes\GmeekDemoEwayETDbuilder.jar

The .jar, .dll, and .bmp files for the ETD builder wizard:

classes\GmeekWizard.jar: the Swing GUI jar file. It is not needed unless
using lightweight Visual Basic.

classes\GmeekWizard.dll: the heavyweight Visual Basic Active X DLL.

classes\GmeekWizard.bmp: the bitmap icon.

stcewgmeekdemoeway.ctl

The results are written to a log file, C:\GmeekDemoEway_install_log.txt.
Generic Multi-Mode e*Way Extension Kit User’s Guide 129

Chapter 9 Section 9.4
Developing an e*Way Using the Builder API Task 3: Building the e*Way and e*Way Connection
To validate the new e*Way Connection within e*Gate

1 Start the e*Gate Schema Designer, log in to a Registry Host, and open or create a
schema. If necessary, activate the Components tab at the bottom of the Navigator
(left) pane.

2 In the Navigator pane, click the e*Way Connections folder.

3 Click the icon in the tool palette to create a new e*Way Connection.

4 In the New e*Way Connection dialog box, enter a name (such as eWC_Gmeek),
and then click OK.

5 In the component pane, right-click the new e*Way Connection and, on the context
menu, click Properties.

The e*Way Connection Properties dialog box appears.

6 Select GmeekDemoEway from the e*Way Connection Type menu, as shown in
Figure 29.

Figure 29 e*Way Connection Properties Dialog Box

This verifies that the e*Way Connection for GmeekDemoEway was successfully
registered to the connectionpoint.ini file.

7 In the e*Way Connection Type list, select GmeekDemoEway and click New.
Generic Multi-Mode e*Way Extension Kit User’s Guide 130

Chapter 9 Section 9.4
Developing an e*Way Using the Builder API Task 3: Building the e*Way and e*Way Connection
The Configuration Editor appears. Make sure that the parameter sections,
parameter names, and default values match the way they were set up in the
GmeekDemoEway.def file.

8 On the File menu, click Save As, and then enter cnpt2RmiSvr to save this all-
default configuration in a new .cfg file named cnpt2RmiSvr.cfg.

9 Make changes to parameters as necessary, such as changing the connection
management from Automatic Connection to Connection Management. When you
are done, on the File menu, click Save.

Results

You created a new e*Way Connection named cnpt2RmiSvr, of type GmeekDemoEway,
configured to use the parameters stored in GmeekDemoEway.def. See Figure 30.

Figure 30 Results of Validating the e*Way Connection

From now on, any Multi-Mode e*Way that uses this e*Way Connection is called a
GmeekDemoEway type of e*Way. Because you installed the files to the default schema,
you are able to create and deploy a GmeekDemoEway type of e*Way in any schema.
Generic Multi-Mode e*Way Extension Kit User’s Guide 131

Chapter 9 Section 9.5
Developing an e*Way Using the Builder API Task 4: Creating and Deploying an ETD Builder Wizard
9.5 Task 4: Creating and Deploying an ETD Builder Wizard
Traditionally, ETD builder wizards are developed in Visual Basic. This approach
(“heavyweight Visual Basic”) is one of two presented in this sample. See “Using
Heavyweight Visual Basic to Create an ETD Builder Wizard”.

Developers who are less familiar with Visual Basic can code most of the wizard using
native Java GUI tools. This approach (“lightweight Visual Basic”) is also presented in
this sample. See “Using Lightweight Visual Basic to Create an ETD Builder Wizard”.

You must decide whether to use heavyweight Visual Basic or lightweight Visual Basic
during the initial planning phase of creating your e*Way. We recommend that you use
either only heavyweight Visual Basic or only lightweight Visual Basic for the lifetime of
the e*Way.

Regardless of whether you use heavyweight Visual Basic or lightweight Visual Basic to
create the ETD builder wizard you must create the files that deploy the wizard to
e*Gate and validate the results. For more information about creating these files, see “To
compile the wizard into an Active X DLL”.

9.5.1 Using Heavyweight Visual Basic to Create an ETD Builder
Wizard

In this section, you will modify a generic Visual Basic wizard template, tailoring it to an
ETD builder wizard that corresponds to a simulated external accounting system. You
will then register the ETD builder wizard with e*Gate and validate it within e*Gate
using the ETD Editor of the Schema Designer GUI.

Although in the other e*Way samples you may install a specific ETD to a specific
schema, in this case you should install ETD builder wizards to the default schema in
order to make them available to all end users. An end user can only use a builder
wizard to create an ETD within a particular schema.

To create an ETD builder wizard

1 Extract and copy the files on the e*Gate Integrator Installation CD-ROM
in ...\samples\sdk\gmeek\ to a working directory

2 Open a new Visual Basic session by double-clicking the following file:

C:\gmeeksdk\Wizards\GmeekGroup.Visual Basicg

3 The Microsoft Visual Basic wizard appears, as shown in Figure 31.
Generic Multi-Mode e*Way Extension Kit User’s Guide 132

Chapter 9 Section 9.5
Developing an e*Way Using the Builder API Task 4: Creating and Deploying an ETD Builder Wizard
Figure 31 Gmeek Wizard in Microsoft Visual Basic

4 In the User Controls folder, click IntroductionFrameControl. The screen shown in
Figure 32 appears.
Generic Multi-Mode e*Way Extension Kit User’s Guide 133

Chapter 9 Section 9.5
Developing an e*Way Using the Builder API Task 4: Creating and Deploying an ETD Builder Wizard
Figure 32 Gmeek Wizard in Microsoft Visual Basic: IntroductionFrameControl

5 If you want to edit the introductory text of the wizard, highlight the existing text
and type in the new text. See the highlighted area in Figure 32.

Note: All changes made to text are automatically saved in Microsoft Visual Basic.

6 In the User Controls folder, click GmeekSourceFrameControl. The screen shown in
Figure 33 appears.
Generic Multi-Mode e*Way Extension Kit User’s Guide 134

Chapter 9 Section 9.5
Developing an e*Way Using the Builder API Task 4: Creating and Deploying an ETD Builder Wizard
Figure 33 Gmeek Wizard in Microsoft Visual Basic: Gmeek SourceFrameControl

The behavior of the three text boxes is defined in the function SetFieldFocus. If you
require more boxes to capture additional user input, use the SetFieldFocus function to
add them.

7 In the User Controls folder, click SummaryFrameControl. The screen shown in
Figure 34 appears.
Generic Multi-Mode e*Way Extension Kit User’s Guide 135

Chapter 9 Section 9.5
Developing an e*Way Using the Builder API Task 4: Creating and Deploying an ETD Builder Wizard
Figure 34 Gmeek Wizard in Microsoft Visual Basic: SummaryFrameControl

In Figure 34, the highlighted area shows a summary of the captured user input. The
Visual Basic Sub displays the values captured from Gmeek SourceFrameControl.

Generic wizard template forms in Microsoft Visual Basic

In the Forms folder, the frmWizard contains the controls tailored to your wizard. The
following three controls are embedded in this frame:

GmeekSourceFrameControl

IntroductionFrameControl

SummaryFrameControl

To create a new wizard using the template, modify the Public Sub SetStep(nStep As
Integer, nDirection As Integer) in frmWizard. Public Sub SetStep(nStep As Integer,
nDirection As Integer) defines how to navigate to different user controls. If you add a
user control, you must put the correct navigation rule here.

The navigation logic among the three controls is defined in the following Sub:

(1) Public Sub SetStep(nStep As Integer, nDirection As Integer)
(2) Dim retVal As Long
(3) Select Case nStep
(4) Case STEP_INTRO
(5) IntroductionFrameControl1.Visible = True
(6) GmeekSourceFrameControl1.Visible = False
(7) SummaryFrameControl1.Visible = False
(8)
(9) frmWizard.Caption = LoadResString(tcGMEEKWIZARD_INTRO)
(10) cmdFinish.Enabled = False
(11) cmdFinish.Visible = False
(12) cmdNav(3).Visible = True
(13)
Generic Multi-Mode e*Way Extension Kit User’s Guide 136

Chapter 9 Section 9.5
Developing an e*Way Using the Builder API Task 4: Creating and Deploying an ETD Builder Wizard
(14) If nDirection = DIR_BACK Then
(15) ' set focus to Next button
(16) cmdNav(3).SetFocus
(17) End If
(18)
(19) Case STEP_SELECT
(20) IntroductionFrameControl1.Visible = False
(21) SummaryFrameControl1.Visible = False
(22) GmeekSourceFrameControl1.Visible = True
(23) GmeekSourceFrameControl1.SetFocus
(24)
(25) frmWizard.Caption = LoadResString(tcGMEEK_WIZARD_STEP1)
(26) cmdFinish.Enabled = False
(27) cmdFinish.Visible = False
(28) cmdNav(3).Visible = True
(29)
(30) ' set focus on control field
(31) GmeekSourceFrameControl1.SetFieldFocus
(32)
(33) Case STEP_SUMMARY
(34) IntroductionFrameControl1.Visible = False
(35) GmeekSourceFrameControl1.Visible = False
(36) SummaryFrameControl1.Visible = True
(37) cmdFinish.Enabled = True
(38) cmdFinish.Visible = True
(39) cmdNav(3).Visible = False
(40) frmWizard.Caption = LoadResString(tcGMEEK_WIZARD_STEP2)
(41) End Select
(42)
(43) SetNavBtns nStep
(44)
(45) End Sub
(46)

To compile the wizard into an Active X DLL

1 Right-click and select Project Properties.

2 Set the GmeekWizard project type as an Active X DLL, as shown in Figure 35.
Generic Multi-Mode e*Way Extension Kit User’s Guide 137

Chapter 9 Section 9.5
Developing an e*Way Using the Builder API Task 4: Creating and Deploying an ETD Builder Wizard
Figure 35 Wizard Project Properties

3 To compile the wizard, from the File menu click File, and select Make
GmeekWizard.dll.

4 Copy the GmeekWizard.dll to the GmeekDemoEway working directory.

The GmeekWizard.dll is loaded into e*Gate when the installEWAY script is run.

Note: Make sure that the .dll and .bmp files are copied to the e*Way working directory. In
the sample, the working directory is gmeek/installEWAY/GmeekDemoEway.

9.5.2 Using Lightweight Visual Basic to Create an ETD Builder
Wizard

In this section, you will create an ETD builder wizard using lightweight Visual Basic,
tailoring it to an ETD builder wizard that corresponds to a simulated external
accounting system. You will then register the ETD builder wizard with e*Gate and
validate it within e*Gate using the ETD Editor of the Schema Designer GUI.

Although in the other e*Way samples you may install a specific ETD to a specific
schema, in this case you should install ETD builder wizards to the default schema in
order to make them available to all end users. An end user can only use a builder
wizard to create an ETD within a particular schema.
Generic Multi-Mode e*Way Extension Kit User’s Guide 138

Chapter 9 Section 9.5
Developing an e*Way Using the Builder API Task 4: Creating and Deploying an ETD Builder Wizard
The sample includes a lightweight Visual Basic wizard project, called
GmeekWizardLight. The advantages of using the lightweight Visual Basic approach
are:

it creates wizards with less Visual Basic code.

since the wizard is written in Java, there is neither a frmWizard Visual Basic Form,
nor any Visual Basic graphical user controls.

Creating the Java Wizard

The ETD Editor launches the lightweight Visual Basic wizard by invoking the Start()
method in lightweight Visual Basic. The Start() method then calls the corresponding
Start() method of the Java wizard.

The Java wizard is written using any of the Java foundation classes such as Swing or
AWT. All the Java files are compiled and packaged into GmeekWizard.jar.

The ETD Editor expects the return values listed in Table 13. You must use the same set
of return values when you code the Java wizard.

Important: If the Java wizard does not return the correct value to the ETD Editor, an error may
occur.

To create a Java ETD builder wizard launched from lightweight Visual Basic

1 In the sample code, the Java wizard implements the following interface:

public interface JConverterIntf {
public void SetProp(String PropName, String PropValue);

 public int Start() throws Exception;
}

2 Invoking the Start() method starts the JDialog window.

Note: The JDialog class is the main class for creating a dialog window. Use this class to
create a custom dialog.

3 Use the JDialog class for the Java wizard.

4 Call the back-end Compile() method. If all the input values are valid, the back-end
builder will generate the .xsc and .jar files and assign them to the designated
directory.

The sample Java wizard uses classes from Swing Java. This sample Java wizard dialog
appears as shown in Figure 36.

Table 13 Return Values

Return Value Definition

0 Success

-1 Not implemented

-2 Cancelled

-8 General Failure
Generic Multi-Mode e*Way Extension Kit User’s Guide 139

Chapter 9 Section 9.5
Developing an e*Way Using the Builder API Task 4: Creating and Deploying an ETD Builder Wizard
Figure 36 Example of Customized Java Wizard Dialog

Using the lightweight Visual Basic Converter class, the execution is transferred from
Visual Basic to the Java wizard when the Start() method is called.

The following sample code shows the Start() method in lightweight Visual Basic.

Public Function Start() As Long
...
If Not m_objJvm Is Nothing Then
Set objGmeek = m_objJvm.GetJavaClass(GMEEKBACKENDETDWIZARDCLASS)
If Not objGmeek Is Nothing Then
Dim KeyArray As Variant
Dim i As Long
KeyArray = m_Props.Keys
For i = LBound(KeyArray) To UBound(KeyArray)
 objGmeek.SetProp KeyArray(i),
m_Props.Item(KeyArray(i))
Next i
...
ret=objGmeek.Start
...
m_objJvm.Terminate
set m_objJvm=Nothing
Else
End If...
...
start=ret
...

The objGmeek.Start call transfers the execution to the Java wizard.

Note: The sample Java wizard includes a Main() method to enable running a stand-alone
test.

To compile the wizard into an Active X DLL

1 Right-click and select Project Properties.

2 Set the GmeekWizardLight project type as an Active X DLL, as shown in Figure 37.
Generic Multi-Mode e*Way Extension Kit User’s Guide 140

Chapter 9 Section 9.5
Developing an e*Way Using the Builder API Task 4: Creating and Deploying an ETD Builder Wizard
Figure 37 Wizard Project Properties

3 To compile the wizard, from the File menu click File, and select Make
GmeekWizardLight.dll.

4 Copy the GmeekWizardLight.dll to the GmeekDemoEway working directory.

Note: Make sure that the .dll, .bmp, and .jar files are copied to the e*Way working
directory. In the sample, the working directory is gmeek/installEWAY/
GmeekDemoEway.

The GmeekWizardLight.dll is loaded into e*Gate when the installEWAY script is run.
(as long as the stcewgmeekdemoeway.ctl file is modified accordingly). For more
information, see “Modifying stcewgmeekdemoeway.ctl” on page 141.

9.5.3 Deploying the ETD wizard in e*Gate
Whether using heavyweight Visual Basic or lightweight Visual Basic, to deploy the ETD
wizard in e*Gate you must modify both the stcewgmeekdemoeway.ctl file and the
ETDWizards.ini file. In addition, you must include all .dll and .bmp files.

Modifying stcewgmeekdemoeway.ctl

In the sample, the generated stcewgmeekdemoeway.ctl without any modifications
looks like the following:

##---
stcewgmeekdemoeway.ctl (The CTL used to install your eway
connection components)
Generic Multi-Mode e*Way Extension Kit User’s Guide 141

Chapter 9 Section 9.5
Developing an e*Way Using the Builder API Task 4: Creating and Deploying an ETD Builder Wizard

This CTL file is used to install your EWAY Runtime and builder in
eGate.
##---
stcexception.jar,classes,FILETYPE_BINTEXT
##---
Any Third party JAR files used
replace the YourThirdParty.jar with real name of the jar file
You can specify the path in ThirdParty directory
e.g. jdom.jar,ThirdParty/jdom/jdom-b7,FILETYPE_BINTEXT
##---
RmiDemoSvr.jar,ThirdParty,FILETYPE_BINTEXT
##---
The DEF file (if used) associated with your eway connection
##---
GmeekDemoEway.def,configs/GmeekDemoEway,FILETYPE_ASCIITEXT
##---
The runtime jar file (if used) associated with your eway connector
##---
GmeekDemoEwayrt.jar,classes,FILETYPE_BINTEXT
##---
The wizard ctl file (if used) associated with your eway ETD
builder
##---
gmeekdemoewaywizard.ctl,etd,FILETYPE_ASCIITEXT
##---
The backend builder jar file (if used) associated with your eway
ETD builder
##---
GmeekDemoEwayETDbuilder.jar,classes,FILETYPE_BINTEXT
##---
The Visual Basic ETD wizard BMP file (if used) associated with
your eway ETD builder
##---
GmeekWizard.bmp,bin/WizardIcons,FILETYPE_BINTEXT
##---
The Visual Basic ETD wizard DLL file (if used) associated with
your eway ETD builder
##---
GmeekWizard.dll,bin/win32,FILETYPE_BINTEXT
##---
The Java ETD wizard jar file (if used) associated with your eway
ETD builder
This Java Swing based wizard will work with a light weight Visual
Basic wizard
##---
GmeekWizard.jar,classes,FILETYPE_BINTEXT

Important: Make sure the .bmp and .dll file s are copied to the e*Way working directory.

To modify the stcewgmeekdemoeway.ctl file using heavyweight Visual Basic

1 Replace the following line:

#GmeekWizard.bmp,bin/WizardIcons,FILETYPE_BINTEXT

with

GmeekWizard.bmp,bin/WizardIcons,FILETYPE_BINTEXT

2 Replace the following line:

#GmeekWizard.dll,bin/win32,FILETYPE_BINTEXT
Generic Multi-Mode e*Way Extension Kit User’s Guide 142

Chapter 9 Section 9.5
Developing an e*Way Using the Builder API Task 4: Creating and Deploying an ETD Builder Wizard
with

GmeekWizard.dll,bin/win32,FILETYPE_BINTEXT

To modify the stcewgmeekdemoeway.ctl file using lightweight Visual Basic

1 Replace the following line:

#GmeekWizard.bmp,bin/WizardIcons,FILETYPE_BINTEXT

with

GmeekWizardLight.bmp,bin/WizardIcons,FILETYPE_BINTEXT

2 Replace the following line:

#GmeekWizard.dll,bin/win32,FILETYPE_BINTEXT

with

GmeekWizardLight.dll,bin/win32,FILETYPE_BINTEXT

3 Replace the following line:

#GmeekWizard.jar,classes,FILETYPE_BINTEXT

with

GmeekWizard.jar,classes,FILETYPE_BINTEXT

Modifying ETDWizards.ini

In the sample, the generated ETDWizards.ini file looks like the following:
?GmeekDemoEway=GmeekDemoEway Wizard,
GmeekDemoEwayWizard.bmp,GmeekDemoEwayWizard.Converter,GmeekDemoEwayWizard.dll,

To modify the ETDWizards.ini file using heavyweight Visual Basic

1 In the generated ETDWizards.ini file, replace the following line making sure it is all
in one line without a line break:

?GmeekDemoEway=GmeekDemoEway Wizard,
GmeekDemoEwayWizard.bmp,GmeekDemoEwayWizard.Converter,GmeekDemoEwayWizard.dll

with
?GmeekDemoEway=Demo Eway, GmeekWizard.bmp, GmeekWizard.Converter,GmeekWizard.dll,

To modify the ETDWizards.ini file using lightweight Visual Basic

1 In the generated ETDWizards.ini file, replace the following line making sure it is all
in one line without a line break:

?GmeekDemoEway=GmeekDemoEway Wizard,
GmeekDemoEwayWizard.bmp,GmeekDemoEwayWizard.Converter,GmeekDemoEwayWizard.dll

with
?GmeekDemoEway=Demo Eway Light, GmeekWizardLight.bmp,
GmeekWizardLight.Converter,GmeekWizardLight.dll,

Deploying the ETD Wizard in e*Gate

1 If you have finished creating other e*Way components, then you must run the
installEWAY script. The installEWAY script loads the wizard into e*Gate.
Generic Multi-Mode e*Way Extension Kit User’s Guide 143

Chapter 9 Section 9.5
Developing an e*Way Using the Builder API Task 4: Creating and Deploying an ETD Builder Wizard
2

3 You must manually append the ETDWizards.ini in your working directory to the
ETDWizards.ini in the Registry in:

<egate>\server\registry\repository\default\install

If using heavyweight Visual Basic

A The Demo Wizard icon appears in the Event Type Definition dialog, as shown in
Figure 38.

Figure 38 Heavyweight Visual Basic Wizard Icon

B Click the Demo Wizard icon to launch the wizard created in heavyweight Visual
Basic.

If using lightweight Visual Basic

A The Demo Wizard Light icon appears in the Event Type Definition dialog, as
shown in Figure 39.
Generic Multi-Mode e*Way Extension Kit User’s Guide 144

Chapter 9 Section 9.6
Developing an e*Way Using the Builder API Task 5: Testing the Wizard with a Stand-alone Visual Basic Tester
Figure 39 Lightweight Visual Basic Wizard Icon

B Click the Demo Wizard Light icon to launch the wizard created in lightweight
Visual Basic.

9.6 Task 5: Testing the Wizard with a Stand-alone Visual
Basic Tester

The Wizard Visual Basic sample includes a stand-alone Visual Basic tester QAWizards
project. You can use this project to test your ETD wizards outside of the ETD Editor.
However, you still must commit the .dll and .bmp files to the e*Gate Registry.

The Visual Basic tester runs the wizards and displays the .xsc file. It reads its own
ETDWizards.ini file, which is different in format from the ETDWizards.ini file in the
e*Gate Registry.

The ETDWizards.ini file is included in the sample Visual Basic project. The
ETDWizards have the following contents:

GmeekWizard

GmeekWizard.bmp

GmeekWizard.Converter

GmeekWizardLight

GmeekWizardLight.bmp

GmeekWizardLight.Converter

To validate the new ETD builder wizard using the stand-alone Visual Basic tester

1 In C:\gmeeksdk\Wizards, double click on GmeekGroup.vbg.
Generic Multi-Mode e*Way Extension Kit User’s Guide 145

Chapter 9 Section 9.6
Developing an e*Way Using the Builder API Task 5: Testing the Wizard with a Stand-alone Visual Basic Tester
2 Set the QAWizards Start Up project, and select the QAWizards.exe.

3 From the Run menu, click Start.

4 From the ETDWizards.ini file location menu, select the ETDWizards.ini file that
you extracted in the gmeeksdk/wizards directory.

Figure 40 shows the QAWizards stand-alone tester.

Figure 40 QA Wizards Stand-alone Tester

5 Select a wizard and click Launch Wizard. Launching the wizard generates the .xsc
file, shown in Figure 41.
Generic Multi-Mode e*Way Extension Kit User’s Guide 146

Chapter 9 Section 9.6
Developing an e*Way Using the Builder API Task 5: Testing the Wizard with a Stand-alone Visual Basic Tester
Figure 41 Generated .xsc in Notepad

The QAWizards merely displays the .xsc file without actually committing the ETD (.xsc
file) to the e*Gate Registry. You can view the ETD source Java code in the .jar file in the
C:\wizards\QAWizards\ directory.

6 By using Notepad or a similar text editor, verify that the .xsc file was generated
correctly.

To validate the new ETD builder within e*Gate

1 Start e*Gate Schema Designer, log in to the Registry Host, and open a schema. If
necessary, activate the Components tab at the bottom of the Navigator (left) pane.

2 In the New Event Type Definition dialog, double-click the Demo Wizard icon, as
shown in Figure 42.
Generic Multi-Mode e*Way Extension Kit User’s Guide 147

Chapter 9 Section 9.7
Developing an e*Way Using the Builder API Task 6: Creating and Registering the ETD Using the Command Line
Figure 42 New Event Type Definition Dialog

3 Follow the wizard instructions to:

A Enter a root node name.

B Enter a package name where the ETD Editor can place all the Java generated
classes associated with the ETD.

C Click OK and Finish to accept the names and open the ETD Editor dialog.

Results

Using the builder wizard, you create an ETD in e*Gate that captures all the data in the
original data source.

9.7 Task 6: Creating and Registering the ETD Using the
Command Line

Note: This section describes using the command line, not the ETD builder wizard, to build
the ETD. This is a required task if using e*Gate version 4.5.1. If you are using
e*Gate version 4.5.2 or later, we recommend using the ETD builder wizard to build
the ETD.

In this task, you will use the runapidemo1 script to create the Account ETD and then
register the files to the e*Gate system.

Although you installed e*Ways and e*Way Connections to the default schema to make
them available to all schemas in “Task 3: Building the e*Way and e*Way Connection”
on page 125, in this case, you must install the ETD to a specific schema. In this example,
you install the ETD named Account.
Generic Multi-Mode e*Way Extension Kit User’s Guide 148

Chapter 9 Section 9.7
Developing an e*Way Using the Builder API Task 6: Creating and Registering the ETD Using the Command Line
To set up the e*Gate files associated with the e*Way and e*Way connection

1 Change directories to C:\gmeeksdk\gmeek\builder\apiDemo\.

2 If your environment differs from the assumptions noted in the pre-installation steps
on page 122, edit the runapidemo1 script and make appropriate substitutions.

3 Run the .\runapidemo1 script.

Results

As a result of running the runapidemo1 script, the following are created:

.\Account.something—a human-readable text version of the metadata that was
extracted. This file is for viewing purposes only; it is not used by any other process.

..\..\installETD\ETD4Account\—Directory for files constituting the Account ETD:

Account.ctl—Control file to tell e*Gate how to register and manage the ETD.

Account.jar—Archive file for classes and the Java source code referenced by the
ETD.

Account.xsc—To allow the ETD to be viewed in e*Gate using the ETD Editor.

To register the ETD with e*Gate

1 Change directories to C:\gmeeksdk\gmeek\installETD\ETD4Account\.

2 Enter the following command, all on one line, making the appropriate substitutions
as needed for Registry Host, user name, user password, and remote schema:

stcregutil -rh <host-name> -rs <schema-name> -un <user-name>
-up <password> –fc . –ctl Account.ctl

To validate the new ETD within e*Gate

1 Open the schema used in step 2 of “To register the ETD with e*Gate”.

2 Open the ETD Editor.

3 Click File, Open.

4 Click the Account folder.
Generic Multi-Mode e*Way Extension Kit User’s Guide 149

Chapter 9 Section 9.7
Developing an e*Way Using the Builder API Task 6: Creating and Registering the ETD Using the Command Line
The ETD shown in Figure 43 appears.

Figure 43 Event Type Definition Selection Dialog

Select the Account.xsc file. The ETD Editor dialog shown in Figure 44 appears.

Figure 44 Account.xsc Viewed in the ETD Editor
Generic Multi-Mode e*Way Extension Kit User’s Guide 150

Chapter 9 Section 9.8
Developing an e*Way Using the Builder API Task 7: Testing Outside of the e*Gate Environment
Verify the following:

The root node contains fields for holding account name, account ID, and so forth.

The ETD contains subnodes for holding shipping address, billing address, and
payment information, as well as an internal template used by six reference nodes.

The ETD supplies methods createAccount(), deleteAccount(), updateAccount(),
and retrieveAccount() that e*Gate end users can invoke to access corresponding
APIs in the external system.

9.8 Task 7: Testing Outside of the e*Gate Environment
The GmeekDemoEway must be tested outside of the e*Gate environment. This section
describes how to validate the APIs outside of e*Gate. The RmiDemoClient.java and
RmiDemoSvr.java files contain the source code for testing the APIs, and the
runRmitest and runrmiclient scripts are provided to run the client and the server.

Running the runRmitest Script for the Rmi Server

To compile the Rmi Server

1 Do one of the following:

Invoke the javac:

javac rmiDemoSvr.java

Alternatively, you can use the compile.bat (or, on UNIX, compile.sh) file
supplied in gmeek/builder/rmiDemoSvr.

2 After the .java files have been compiled, run the script by opening a Command
Prompt and entering the command runRmitest.

Do one of the following:

On Windows, open a Command Prompt, change to the correct directory and then
run the runRmitest.bat file by entering the following:

.\runRmitest

On UNIX, open a shell, change to the correct directory, and then run the
runRmitest.sh file by entering the following:

./runRmitest.sh

Note: Initially, there should not be any output.

RmiDemoClient.java

An excerpt from the RmiDemoClient.java file is listed as follows.

 ...
public static void main(String args[])

 throws Exception
 {
Generic Multi-Mode e*Way Extension Kit User’s Guide 151

Chapter 9 Section 9.8
Developing an e*Way Using the Builder API Task 7: Testing Outside of the e*Gate Environment
 String url;

 if (args.length == 3)
 {
 url = new String("//"+args[0]+":"+args[1]+"/RmiDemoSvr");
 }
 else if (args.length == 2)
 {
 url = new String("//"+args[0]+"/RmiDemoSvr");
 }
 else
 {
 RmiDemoClient.usage();
 return;
 }

 // RMI registry lookup
 //
 RmiDemoSvrIntf echoRef = (RmiDemoSvrIntf)Naming.lookup(url);

 // Call echo method on server
 //
 System.out.println(echoRef.sayEcho(args[args.length-1]));

 // Retrive accounts from server
 //
 java.util.List alllist = echoRef.retrieveAllAccountId();

 System.out.println("total number of accounts: "+alllist.size());

 for (int i = 0; i < alllist.size(); i++)
 {
 System.out.println("ACCOUNT_ID: "+(String)alllist.get(i));
 }
...

Running the runrmiclient Script for the Rmi Server

Once the .java files have been compiled, run the runTester.bat file by opening a
Command Prompt and entering the command runTester. This populates the RMI
server with data.

Do one of the following:

On Windows, open a Command Prompt, change to the correct directory and then
run the runrmiclient.bat file by entering the following:

.\runrmiclient

On UNIX, open a shell, change to the correct directory, and then run the
runrmiclient.sh file by entering the following:

./runrmiclient.sh

The output in the client for runrmiclient should resemble the following:

(1)
(2) Hello lynn!!
(3)
(4) total number of accounts: 0
(5) create account: {ACCOUNT_TYPE=saving, ACCOUNT_ID=1000, ZIP=91006,

CITY=Monrovia, STATE=CA, ADDRESS=103 Main St.}
(6) ...
Generic Multi-Mode e*Way Extension Kit User’s Guide 152

Chapter 9 Section 9.9
Developing an e*Way Using the Builder API Task 8: Understanding the Sample Implemented in a Schema
Note: You must leave the RMI server running so that the GmeekDemoEway sample
schema can query the RMI server for data.

9.8.1 Rerunning the installEWAY Script
If you modify the source files, including the ETD builder wizard files, or if you modify
the .ctl file, you must:

rerun the installEWAY script.

re-validate the sample files within e*Gate.

For instructions on rerunning the installEWAY script, see Table 12 on page 128.

9.9 Task 8: Understanding the Sample Implemented in a
Schema

This section:

Describes how to load the sample schema included in
GmeekDemoEwaySample.zip, or for e*Gate version 4.5.1,
GmeekDemoEwaySample_4.5.1.zip.

Shows you how the sample components appear to the end user.

Shows you how the sample components behave in the e*Gate environment.

9.9.1 Importing the GmeekDemoEwaySample.zip Schema
To import the sample schema into e*Gate

1 Start the e*Gate Schema Designer GUI.

2 When the Schema Designer prompts you to log in, select the host that you specified
during installation, and enter your password.

3 You are then prompted to select a schema. Click New. The New Schema dialog box
opens. (Schemas can also be imported or opened from the e*Gate File menu by
selecting New Schema or Open Schema.)

4 Enter a name for the new Schema, for example,
GmeekDemoEwaySample_Schema, or any name as desired.

5 To import the sample schema select Create from Export, and use Find to locate and
select the GmeekDemoEwaySample.zip (or for e*Gate version 4.5.1,
GmeekDemoEwaySample_451.zip) file on the e*Gate Integrator Installation CD-
ROM or from the location it was copied in earlier.

GmeekDemoEwaySample.zip (or GmeekDemoEwaySample_451.zip) is the file
supplied in the sample directory.
Generic Multi-Mode e*Way Extension Kit User’s Guide 153

Chapter 9 Section 9.9
Developing an e*Way Using the Builder API Task 8: Understanding the Sample Implemented in a Schema
The e*Gate Schema Designer opens to the new schema. You are now ready to make any
configuration changes that may be necessary for this sample schema to run on your
specific system.

9.9.2 Sample Data INDATA
If you have not already extracted the INDATA.zip file into a temporary directory,
follow steps 1 and 2. If you have already done this step, skip steps 1 and 2 and begin
with step 3.

1 Extract the INDATA.zip file into a temporary directory.

2 Copy the extracted Account.fin file into the C:\INDATA directory.

Note: If you want or need to use a location other than C:\INDATA (for example, on
UNIX), you must change the string “\INDATA” to the correct location in your
e*Gate schema’s ewAccount configuration.

The presence of a file with extension .fin triggers the file e*Way to read its contents
while the e*Way is running.

The INDATA.zip file contains the Account.fin file, as follows.

Account.fin:

1000

Note: If the RMI server is not already running, you must run the runRmitest script, and
run the runrmiclient script. For details on running the runRmitest script, see
“Running the runRmitest Script for the Rmi Server” on page 151. For
details on running the runrmiclient script, see “Running the runrmiclient
Script for the Rmi Server” on page 152.

3 From a Command Prompt, enter the following command to have the e*Gate
Control Broker (stccb.exe) start the imported sample schema:

stccb -rh localhost -un Administrator -up STC -ln localhost_cb -rs
<schema name>

To use a Registry Host other than localhost, a username/password combination
other than Administrator/STC, and/or a logical Control Broker name other than
localhost_cb, make the appropriate substitutions.

Results

Once the schema is run, the expected output results should match the input. The output
is specified by the ewEater configuration. Successful execution creates a file named
AccountOut0.dat, AccountOut1.dat, AccountOut2.dat...or a similar file name in
C:\OUTDATA specified by the e*Way Connection.

The contents of the file should be:

ACCOUNT_ID:1000
ACCOUNT_TYPE:saving
Generic Multi-Mode e*Way Extension Kit User’s Guide 154

Chapter 10

Developing the Automatic e*Way
Connection

The Generic Multi-Mode e*Way Extension Kit provides a complete set of files for setting
up a sample e*Way Connection that handles connection/disconnection automatically:
an “Automatic Connection” e*Way Connection. This chapter takes you step by step
through the process of modifying the files, compiling them, placing them in the correct
locations, and validating them in the environment of an e*Gate schema.

The final section focuses on the sample schema, showing you how the user-created ETD
e*Way Connection fits into e*Gate so you can match up your development efforts with
features seen by end users.

10.1 Overview
Figure 45 shows the architecture of the Automatic Connection sample.

Figure 45 Architecture of the Automatic Connection Sample

e*Gate

ewFeeder
file e*Way

ewProps
Multi-Mode

e*Way
(crAddProperty

in
colProps Collab

Service)

iqFeeder

Sub Sample
Input ETD

(XML)

Natural
source

C:\INDATA
SampleInput.fin

Pub

C:\OUTDATA
Output.properties

C:\INDATA
Input.properties

Sample
ETD

(e*Way
Connection)
Generic Multi-Mode e*Way Extension Kit User’s Guide 155

Chapter 10 Section 10.2
Developing the Automatic e*Way Connection Classes and Interactions for the Automatic Connection Sample
10.2 Classes and Interactions for the Automatic Connection
Sample

The Automatic Connection sample uses an ETD class named SampleETD and a
connector class named SampleETDConnector.

10.2.1 ETD Class
Figure 46 shows the class diagram for the ETD class named SampleETD. The
EwayConnectionETDImpl interface extends the ETD interface to allow setting and
getting the Connector object associated with an ETD. The configuration associated with
the ETD can also be obtained as an object. These are needed mainly to allow the user to
set connection parameters on the ETD. The corresponding changes in the .xsc file are
discussed in “Editing/Viewing the .xsc File” on page 176.
Generic Multi-Mode e*Way Extension Kit User’s Guide 156

Chapter 10 Section 10.2
Developing the Automatic e*Way Connection Classes and Interactions for the Automatic Connection Sample
Figure 46 ETD Class (SampleETD) for the Automatic Connection Sample

10.2.2 Connector Class
The Automatic Connection sample uses a connector class named

+initialize() : void
+term inate() : void
+reset() : void
+marshal() : unsigned char
+unmarshal() : void
+retrieveMode() : int
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

«interface»
ETD

+initialize(in jCollabCcontroller, in key : String, in mode : int) : void
+retrieveKey() : String
+retrieveMode() : int
+term inate() : void
+reset() : bool
+marshal() : unsigned char
+unmarshal() : void
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

EwayConnectionETDIm pl

+initialize(in jCollabController, in key : String, in mode : int)
+reset() : boolean
+term inate() : boolean
+copyAndAddProperty() : void
+saveOutputPropertyFile() : void
+addProperty() : void
+setOutFilename() : void
+getOutFilename() : String
+setOutDirectory() : void
+getOutDirectory() : String

-myExtDelegate
-myETDConnector

Sam pleETD
Generic Multi-Mode e*Way Extension Kit User’s Guide 157

Chapter 10 Section 10.3
Developing the Automatic e*Way Connection Overview of the Automatic Connection Sample
SampleETDConnector. Its class diagram is shown in Figure 47.

Figure 47 Connector Class (SampleETDConnector)

10.3 Overview of the Automatic Connection Sample
Implementing and validating the Automatic Connection sample requires these steps:

Ensure your environment meets the prerequisites, and then load and unzip the
sample source/install files in gmeek.taz.

Review or edit the .java files to understand the logic contained within the code.

Edit the compile.bat script (or, on UNIX, compile.sh) to reflect your development
environment.

Run the compile script to compile the .java files and create .jar files.

Edit the .ctl and .def files to reflect both your environment and the functionality
required.

Edit the .xsc file to understand the logic required for it to perform correctly.

Optionally, edit the test.prop file and then run the runTester.bat file to test the
sample class outside of e*Gate.

Start the Schema Designer and create a schema into which to commit the sample.

Run the installETD script to make the sample files available to e*Gate.

Return to the Schema Designer and validate the results of the preceding steps.

Import the sample schema into e*Gate, start the Schema Manager, and validate the
behavior of the sample ETD and sample e*Way Connection.

+open(in intoEgate : bool) : void
+close() : void
+isOpen() : boolean
+getProperties() : Properties

«interface»
EBobConnector

+open() : void
+close() : void
+isOpen() : boolean

SampleETDConnector
Generic Multi-Mode e*Way Extension Kit User’s Guide 158

Chapter 10 Section 10.4
Developing the Automatic e*Way Connection Installing the Sample
10.4 Installing the Sample
The installation package for the Automatic Connection sample comprises the following
files:

gmeek.taz

MySchema.zip

INDATA.zip

To install the files

1 Copy the .taz/.zip files to a temporary directory.

2 Extract the gmeek.taz and INDATA.zip files to any convenient location. The path
location of these files will be used in scripts later.

Changes to the directory locations of the unzipped files will require changes to the
supplied scripts. For this reason, it is recommended that you complete the sample
before making any changes to directory locations or file names.

10.5 Setting Up the Automatic Connection Sample Files
In this section, the details for editing the samples scripts and creating the .java files are
broken down into steps:

“Editing/Viewing the .java Files” on page 159

“Customizing the Compile Script” on page 174

“Compiling the .java Files and Creating the .jar File” on page 175

“Editing/Viewing the .ctl Files” on page 175

“Editing/Viewing the .def Files” on page 176

“Editing/Viewing the .xsc File” on page 176

The gmeek.taz file contains all the sample code required to implement and validate a
sample e*Way Connection of the following varieties:

Automatic Connection

Connection Management

Transactional

See “Product Files Contained in File gmeek.taz” on page 26 for the contents of the
gmeek.taz file.

10.5.1 Editing/Viewing the .java Files
To deploy the sample schema contained in MySchema.zip, the files that are provided
require only minor edits. This section provides the information necessary to view the
Generic Multi-Mode e*Way Extension Kit User’s Guide 159

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
code, edit and compile it, and commit files to the e*Gate Registry. The code samples are
provided to further your understanding. The sample code is described in sections that
describe its purpose.

The source code files for the Automatic Connection sample are as follows:

SampleETD.java

SampleETDConnector.java

SampleETDDefs.java

SampleETDExternalClass.java

SampleETDExternalException.java

SampleETDTester.java

The following sections discuss each of these files in detail.

SampleETD.java

An e*Way Connection has an associated class that implements the ETD interface. We
refer to this class as your ETD class. The class EwayConnectionETDImpl is a sample
provided to implement the ETD interface. EwayConnectionETDImpl is an abstract
class that your ETD class must extend, and it provides the default implementation used
for e*Way Connection (non-messageable) ETDs. The EwayConnectionETDImpl class
should not normally be modified. Any additional desired functionality should be
included in your ETD class.

By extending EwayConnectionETDImpl, your ETD class inherits common behavior
when interacting with e*Gate IQs and Oracle SeeBeyond JMS IQ Managers.

Note: Since it is not intended for message parsing, EwayConnectionETDImpl contains
empty implementations of the marshal() and unmarshal() methods.

To modify SampleETD.java

The following steps show the possible changes that you may need to make to
SampleETD.java. These steps only show the sections of code that you will modify. See
page 163 for the entire contents of SampleETD.java.

1 The following source code, from SampleETD.java, shows a sample ETD class
skeleton.

(1) package sample;
(2)
(3) import java.util.Properties;
(4)
(5) import com.stc.common.collabService.EGate;
(6) import com.stc.common.collabService.JCollabController;
(7) import com.stc.common.collabService.CollabConnException;
(8) import com.stc.common.collabService.CollabDataException;
(9) import com.stc.common.collabService.CollabResendException;
(10) import com.stc.common.utils.ScEncrypt;
(11) import com.stc.jcsre.EBobConnectorFactory;
(12)
(13)
(14) public class SampleETD extends EwayConnectionETDImpl
Generic Multi-Mode e*Way Extension Kit User’s Guide 160

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
The import statements (1) through (8) are required. They import the e*Gate core classes
that are used in a typical ETD class.

2 Create a delegate object in your ETD class.

The delegate object is an instance of the Delegate class, which wraps the calls to an
external’s Java API. Use of a Delegate class is not mandatory, but it is
recommended as a best practice.

(15) myExtDelegate = new SampleETDExternalClass();
(16) }
(17)
(18) /**
(19) * Called by external (collab service) to initialize object.
(20) * Reads configuration from .cfg file, obtains a Connector
(21) * object used to establish connection with the external system
(22) * through the connector factory, initializes myExtDelegate.
(23) *
(24) * @param cntrCollab The Java Collaboration Controller
(25) * object.
(26) * @param key
(27) * @param mode
(28) * @see com.stc.jcsre.ETD
(29) *
(30) * @author SeeBeyond
(31) */

3 Override the initialize() method of your ETD class. Start by calling
super.initialize() to ensure you perform the default implementation’s initialization
code.

(32) public void initialize(JCollabController cntrCollab, String key, int
mode)

(33) (46) throws CollabConnException, CollabDataException
(34) (47) {
(35) (48) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(36) (49) "Inside SampleETD.initialize()");
(37) (50)
(38) (51) super.initialize(cntrCollab, key, mode);
(39) (52)

4 Instantiate your connector class. Use the EBobConnectorFactory class to do this.
The createConnector() method of this factory loads the configuration specified by
the user from the GUI (through the .cfg file). The configuration is saved as a Java
Properties object which becomes associated with the Connector object.

(40) EBobConnectorFactory connFactory = new EBobConnectorFactory();
(41)
(42) myETDConnector = (SampleETDConnector)
(43) connFactory.createConnector(cntrCollab, key, mode);
(44)
(45) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(46) "Created SampleETDConnector from EBobConnectorFactory.");

5 Initialize your ETD class using the Properties object from the configuration file.
After the connector class is instantiated and the associated properties are set, call
the getProperties() method and start obtaining configuration values from it.

(47) //Extract properties from .cfg file
(48) //
(49) this.cfgProps = myETDConnector.getProperties();
(50) ///
(51) // outFilename
Generic Multi-Mode e*Way Extension Kit User’s Guide 161

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(52) //
(53) String propsFilename =

cfgProps.getProperty(SampleETDDefs.ETD_DEF_PROP_NAME_FILENAME);
(54) try {
(55) if (propsFilename != null)
(56) {
(57) this.outFilename = propsFilename;
(58) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(59) "Default outFilename set to " + propsFilename);
(60) }
(61) }
(62) catch (Exception ex)
(63) {
(64) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,
(65) "Failed to set the default filename; Exception : " +

ex.toString());
(66) throw new CollabConnException("Failed to set the default filename;

Exception : " + ex.toString());
(67) }
(68)

6 Override the reset() method of your ETD class.

Note: Returning true indicates that the ETD will not be re-instantiated on the next Event.
Returning false indicates that the re-instantiation will take place for each Event.

(69) ///
(70) // //
(71) // reset //
(72) // //
(73) ///
(74)
(75) /**
(76) * Clears settings for document type, recipient, sender,
(77) * destination, xmlString, synchronous response string.
(78) *
(79) * @return true - don't re-instantiate this ETD on next event
(80) * false - causes re-instantiation
(81) */
(82) public boolean reset()
(83) {
(84) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(85) "reset() has been called!");
(86)
(87) myExtDelegate.reset();
(88)
(89) return true;
(90) }
(91)

7 Override the terminate() method of your ETD class.

(92) ///
(93) // //
(94) // terminate //
(95) // //
(96) ///
(97)
(98) /**
(99) * Closes external connection if NOT in a Subcollaboration Rule.
(100) * If in Subcollaboration, you must release resources used in
(101) * the Subcollaboration but don't close your external
(102) * connection.
Generic Multi-Mode e*Way Extension Kit User’s Guide 162

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(103) */
(104) public void terminate()
(105) {
(106) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(107) "terminate() has been called!");
(108)
(109) try {
(110) if (myETDConnector.isOpen())
(111) myETDConnector.close();
(112) }
(113) catch (com.stc.jcsre.EBobConnectionException ex)
(114) {
(115) }
(116) }
(117)

SampleETD.java listing

The next few pages contain the source code for the ETD class (SampleETD.java) in its
entirety.

Note: This section of source code displays an unencrypted password. It is purposely coded
this way to show you how to use the decrypt() method. However, Oracle
recommends not to use unencrypted passwords in a live production environment.

(1) package sample;
(2)
(3) import java.util.Properties;
(4)
(5) import com.stc.common.collabService.EGate;
(6) import com.stc.common.collabService.JCollabController;
(7) import com.stc.common.collabService.CollabConnException;
(8) import com.stc.common.collabService.CollabDataException;
(9) import com.stc.common.collabService.CollabResendException;
(10) import com.stc.common.utils.ScEncrypt;
(11) import com.stc.jcsre.EBobConnectorFactory;
(12)
(13)
(14) public class SampleETD extends EwayConnectionETDImpl
(15) {
(16) private String outDirectory = null;
(17) private String outFilename = null;
(18)
(19) private Properties cfgProps = null;
(20) private SampleETDExternalClass myExtDelegate = null;
(21) private SampleETDConnector myETDConnector = null;
(22)
(23) /**
(24) * SampleETD constructor
(25) */
(26) public SampleETD()
(27) {
(28) myExtDelegate = new SampleETDExternalClass();
(29) }
(30)
(31) /**
(32) * Called by external (collab service) to initialize object.
(33) * Reads configuration from config file, obtains a Connector object
(34) * used to establish connection with the external system through the
(35) * connector factory, initializes myExtDelegate.
(36) *
(37) * @param cntrCollab The Java Collaboration Controller object.
(38) * @param key
Generic Multi-Mode e*Way Extension Kit User’s Guide 163

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(39) * @param mode
(40) * @see com.stc.jcsre.ETD
(41) *
(42) * @author SeeBeyond
(43) */
(44) public void initialize(JCollabController cntrCollab, String key, int

mode)
(45) throws CollabConnException, CollabDataException
(46) {
(47) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(48) "Inside SampleETD.initialize()");
(49)
(50) super.initialize(cntrCollab, key, mode);
(51)
(52) EBobConnectorFactory connFactory = new EBobConnectorFactory();
(53)
(54) myETDConnector = (SampleETDConnector)

connFactory.createConnector(cntrCollab, key, mode);
(55)
(56) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(57) "Created SampleETDConnector from EBobConnectorFactory.");
(58)
(59) // Extract properties from .cfg file
(60) //
(61) this.cfgProps = myETDConnector.getProperties();
(62)
(63) //
(64) // outFilename
(65) //
(66) String propsFilename =

cfgProps.getProperty(SampleETDDefs.ETD_DEF_PROP_NAME_FILENAME);
(67) try {
(68) if (propsFilename != null)
(69) {
(70) this.outFilename = propsFilename;
(71) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(72) "Default outFilename set to " + propsFilename);
(73) }
(74) }
(75) catch (Exception ex)
(76) {
(77) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,
(78) "Failed to set the default filename; Exception : " +

ex.toString());
(79) throw new CollabConnException("Failed to set the default filename;

Exception : " + ex.toString());
(80) }
(81)
(82) //
(83) // outDirectory
(84) //
(85) String propsDirectory =

cfgProps.getProperty(SampleETDDefs.ETD_DEF_PROP_NAME_DIRECTORY);
(86) try {
(87) if (propsDirectory != null)
(88) {
(89) this.outDirectory = propsDirectory;
(90) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(91) "Default outDirectory set to " + propsDirectory);
(92) }
(93) }
(94) catch (Exception ex)
(95) {
(96) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,
Generic Multi-Mode e*Way Extension Kit User’s Guide 164

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(97) "Failed to set the default directory; Exception : " +
ex.toString());

(98) throw new CollabConnException("Failed to set the default
directory; Exception : " + ex.toString());

(99) }
(100)
(101) //
(102) // Username (NOT REQUIRED)
(103) //

Note: Username (NOT REQUIRED) indicates that the username is not required in this
sample.

(104) String propsUsername =
cfgProps.getProperty(SampleETDDefs.ETD_DEF_PROP_NAME_USERNAME);

(105) if (propsUsername != null)
(106) {
(107) //
(108) // password (NOT REQUIRED)
(109) ///

Note: Password (NOT REQUIRED) indicates that the password is not required in this
sample.

(110) String propsPassword =
cfgProps.getProperty(SampleETDDefs.ETD_DEF_PROP_NAME_PASSWORD);

(111) try
(112) {
(113) // Decrypt the encrypted password here.
(114) String passWordDecrypt = null;
(115) passWordDecrypt = ScEncrypt.decrypt(propsUsername,

propsPassword);
(116) if (passWordDecrypt != null)
(117) {
(118) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(119) "Stored password is " + passWordDecrypt);
(120) }
(121) else
(122) {
(123) EGate.traceln (EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,
(124) "Error decrypting Password.");
(125)
(126) throw new CollabConnException("Error decryping Password.");
(127) }
(128) }
(129) catch (Exception ex)
(130) {
(131) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,

ex.toString());
(132) throw new CollabConnException (ex.toString());
(133) }
(134) }
(135)
(136) //
(137) // Do some Initialization
(138) //
(139) try {
(140) if (myExtDelegate == null)
(141) myExtDelegate = new SampleETDExternalClass();
(142) myETDConnector.setExternalClass(myExtDelegate);
(143)
(144) // You can call any initialization methods in myExtDelegate here.
Generic Multi-Mode e*Way Extension Kit User’s Guide 165

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(145)
(146) }
(147) catch (Exception e)
(148) {
(149) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(150) "Exception caught initializing external.");
(151) e.printStackTrace();
(152) throw new CollabConnException("Exception caught initializing

external; Exception : " + e.toString());
(153) }
(154) }
(155)
(156) ///
(157) // //
(158) // Getter/setter methods for attributes exposed in ETD //
(159) // //
(160) ///
(161)
(162) /**
(163) * Call this in your Collaboration to set the outFilename attribute.
(164) *
(165) * @param filename - filename
(166) */
(167) public void setOutFilename(String filename)
(168) {
(169) this.outFilename = filename;
(170) }
(171)
(172) /**
(173) * Call this in your Collaboration to get the outFilename attribute.
(174) *
(175) * @return filename - filename
(176) */
(177) public String getOutFilename()
(178) {
(179) return(this.outFilename);
(180) }
(181)
(182) /**
(183) * Call this in your Collaboration to set the outDirectory attribute.
(184) *
(185) * @param directory - directory name
(186) */
(187) public void setOutDirectory(String directory)
(188) {
(189) this.outDirectory = directory;
(190) }
(191)
(192) /**
(193) * Call this in your Collaboration to get the outDirectory attribute.
(194) *
(195) * @return directory - directory name
(196) */
(197) public String getOutDirectory()
(198) {
(199) return(this.outDirectory);
(200) }
(201)
(202) ///
(203) // //
(204) // reset //
(205) // //
(206) ///
(207)
Generic Multi-Mode e*Way Extension Kit User’s Guide 166

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(208) /**
(209) * Clears settings for document type, recipient, sender, destination,
(210) * xmlString, synchronous response string.
(211) *
(212) * @return true - don't re-instantiate this ETD on next event
(213) * false - causes re-instantiation
(214) */
(215) public boolean reset()
(216) {
(217) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(218) "reset() has been called!");
(219)
(220) myExtDelegate.reset();
(221)
(222) return true;
(223) }
(224)
(225) ///
(226) // //
(227) // terminate //
(228) // //
(229) ///
(230)
(231) /**
(232) * Closes external connection if NOT in a Subcollaboration Rule.
(233) * If in Subcollaboration, you must release resources used in
(234) * the Subcollaboration but don't close your external connection.
(235) *
(236) */
(237) public void terminate()
(238) {
(239) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(240) "terminate() has been called!");
(241)
(242) try {
(243) if (myETDConnector.isOpen())
(244) myETDConnector.close();
(245) }
(246) catch (com.stc.jcsre.EBobConnectionException ex)
(247) {
(248) }
(249) }
(250)
(251)
(252) ///
(253) // //
(254) // Methods exposed in ETD //
(255) // //
(256) ///
(257)
(258) /**
(259) * Call this in your collaboration to copy the properties from the
(260) * input file and add a new property variable/value to it.
(261) *
(262) */
(263) public void copyAndAddProperty(String inputFilePath, String var,

String val)
(264) throws CollabConnException, CollabDataException,

CollabResendException
(265) {
(266) try {
(267) myExtDelegate.setPropFilePath(getOutDirectory() + "/" +

getOutFilename());
(268) myExtDelegate.copyAndAddProperty(inputFilePath, var, val);
Generic Multi-Mode e*Way Extension Kit User’s Guide 167

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(269) }
(270) catch (Exception e) {
(271) throw new CollabDataException(e.toString());
(272) }
(273) }
(274)
(275) public void addProperty(String var, String val)
(276) throws CollabConnException, CollabDataException,

CollabResendException
(277) {
(278) try {
(279) myExtDelegate.getOutProperties().setProperty(var, val);
(280) }
(281) catch (Exception e) {
(282) throw new CollabDataException(e.toString());
(283) }
(284) }
(285)
(286) /**
(287) * Call this in your collaboration to save the file associated with

the
(288) * ETD object attributes outDirectory and outFilename.
(289) *
(290) */
(291) public void saveOutPropertyFile()
(292) throws CollabConnException, CollabDataException,

CollabResendException
(293) {
(294) try {
(295) myExtDelegate.open();
(296) if (myExtDelegate.isOpen())
(297) myExtDelegate.save();
(298) myExtDelegate.close();
(299) }
(300) catch (Exception e) {
(301) throw new CollabDataException(e.toString());
(302) }
(303) }
(304)
(305) }

SampleETDConnector.java

The implementation of your e*Way Connection’s configuration and connection
management functions must be provided in a class which implements EBobConnector.
This class is referred to as your ETD’s Connector class.

The source code file for SampleETDConnector.java creates your ETD's Connector
class.

(1) package sample;
(2)
(3) import java.util.Properties;
(4)
(5) import com.stc.common.collabService.*;
(6) import com.stc.jcsre.*;
(7)
(8) public class SampleETDConnector implements EBobConnector
(9) {
(10) protected Properties props;
(11) private SampleETDExternalClass extClass = null;
(12)
(13) /**
Generic Multi-Mode e*Way Extension Kit User’s Guide 168

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(14) * Constructs an SampleETDConnector
(15) *
(16) * @param props A Properties object.
(17) */
(18) public SampleETDConnector(Properties props)
(19) {
(20) this.props = props;
(21) }
(22)
(23) /**
(24) * Opens the connector for accessing the external system.
(25) *
(26) * @param intoEgate <code>true</code> if connector is to
(27) * subscribe for events initially from an external and inbound to
(28) * e*Gate;
(29) * <code>false</code> if connector is to publish events
(30) * outbound from e*Gate and to an external
(31) *
(32) * @see com.stc.jcsre.EbobConnector
(33) *
(34) * @throws com.stc.jcsre.EBobConnectionException when connection
(35) * problems occur.
(36) */
(37) public void open(boolean intoEgate)
(38) throws com.stc.jcsre.EBobConnectionException
(39) {
(40) if (extClass == null)
(41) {
(42) throw new EBobConnectionException("External class is null");
(43) }
(44)
(45) // Implement opening connection to external system
(46) //
(47) String filename =
(48) props.getProperty(SampleETDDefs.ETD_DEF_PROP_NAME_FILENAME);
(49)
(50) String directory =
(51) props.getProperty(SampleETDDefs.ETD_DEF_PROP_NAME_DIRECTORY);
(52)
(53) String filepath = directory + "/" + filename;
(54)
(55) extClass.setPropFilePath(filepath);
(56) extClass.open();
(57) }
(58)
(59) /**
(60) * Closes the connector to the external system and releases
(61) * resources.
(62) * @see com.stc.jcsre.EbobConnector
(63) *
(64) * @throws com.stc.jcsre.EBobConnectionException When
(65) * connection problems occur.
(66) */
(67) public void close() throws com.stc.jcsre.EBobConnectionException
(68) {
(69) // Implement closing connection to external system
(70) //
(71) if (extClass != null)
(72) extClass.close();
(73) }
(74)
(75) /**
(76) * Verifies that the connector to the external system is still
(77) * available.
Generic Multi-Mode e*Way Extension Kit User’s Guide 169

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(78) * @return <code>true</code> if the connector is still open and
(79) * available;
(80) * <code>false</code> otherwise.
(81) *
(82) * @see com.stc.jcsre.EbobConnector
(83) *
(84) * @exception com.stc.jcsre.EBobConnectionException
(85) * When connection problems occur.
(86) */
(87) public boolean isOpen() throws
(88) com.stc.jcsre.EBobConnectionException
(89) {
(90) // Implement returning if connection to external system is open
(91) //
(92) if (extClass != null)
(93) return extClass.isOpen();
(94) else
(95) return false;
(96) }
(97)
(98) /**
(99) * Retrieves the connection properties (stored by constructor)
(100) * used by the
(101) * connector to access the external.
(102) *
(103) * @return Connection properties of the external system.
(104) */
(105) public java.util.Properties getProperties()
(106) {
(107) return props;
(108) }
(109)
(110) /**
(111) * Set to the delegate external class instance by the
(112) */
(113) public void setExternalClass(SampleETDExternalClass extClassInstance)
(114) {
(115) this.extClass = extClassInstance;
(116) }
(117) }

SampleETDDefs.java

The source code file SampleETDDefs.java defines the string constants and property
names to be pulled in from the default configuration-file template (.def file).

(1) package sample;
(2)
(3) public class SampleETDDefs {
(4)
(5) // Property names from eway connection config file
(6) //
(7) public static final String ETD_DEF_PROP_NAME_DIRECTORY =
(8) "External_Configuration.Directory";
(9)
(10) public static final String ETD_DEF_PROP_NAME_FILENAME =
(11) "External_Configuration.Filename";
(12)
(13) public static final String ETD_DEF_PROP_NAME_USERNAME =
(14) "External_Configuration.Username";
(15)
(16) public static final String ETD_DEF_PROP_NAME_PASSWORD =
(17) "External_Configuration.Password";
Generic Multi-Mode e*Way Extension Kit User’s Guide 170

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(18)
(19) }
(20)

SampleETDExternalClass.java

The source code file SampleETDExternalClass.java creates a class for interfacing with
the external system.

(1) package sample;
(2)
(3) import java.io.*;
(4) import java.util.Properties;
(5)
(6) import com.stc.common.collabService.*;
(7)
(8) /**
(9) * SampleETDExternalClass
(10) * Sample to illustrate interface to an external.
(11) */
(12) public class SampleETDExternalClass {
(13)
(14) private Properties myProp = null;
(15) private FileOutputStream myOut = null;
(16) private String propFilePath = null;
(17)
(18) /**
(19) * SampleETDExternalClass constructor
(20) */
(21) public SampleETDExternalClass()
(22) {
(23) }
(24)
(25) public void reset()
(26) {
(27) }
(28)
(29) public void copyAndAddProperty(String inputPath, String var, String

value)
(30) throws SampleETDExternalException {
(31)
(32) try {
(33)
(34) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(35) "Input Properties file is " + inputPath);
(36)
(37) FileInputStream fis = new FileInputStream(inputPath);
(38)
(39) // load file as Properties object
(40) //
(41) Properties tranProps = new Properties();
(42) tranProps.load(fis);
(43) fis.close();
(44) fis = null;
(45) tranProps.setProperty(var, value);
(46) this.setOutProperties(tranProps);
(47)
(48) // save to output prop file specified in this.propFilePath
(49) if (propFilePath == null)
(50) throw new SampleETDExternalException("Output prop file path not set.");
(51)
(52) }
(53) catch(Exception e) {
Generic Multi-Mode e*Way Extension Kit User’s Guide 171

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(54) throw new SampleETDExternalException("Error copying " +
(55) inputPath);
(56) }
(57) }
(58) public void setPropFilePath(String filePath)
(59) {
(60) this.propFilePath = filePath;
(61) }
(62)
(63) /* Save properties in file
(64) */
(65) public boolean save()
(66) {
(67) try {
(68) if (myOut == null)
(69) this.open();
(70)
(71) this.myProp.store(myOut, null);
(72) }
(73) catch (Exception e) {
(74) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(75) e.toString());
(76) return false;
(77) }
(78) return true;
(79) }
(80)
(81) /* Set output properties
(82) */
(83) public void setOutProperties(Properties prop)
(84) {
(85) myProp = prop;
(86) }
(87)
(88) /* Get output properties
(89) */
(90) public Properties getOutProperties()
(91) {
(92) return myProp;
(93) }
(94)
(95) /* output file open
(96) */
(97) public boolean open()
(98) {
(99) try {
(100) if (myOut == null)
(101) myOut = new FileOutputStream(propFilePath);
(102)
(103) return true;
(104) }
(105) catch (Exception e) {
(106) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(107) e.toString());
(108) return false;
(109) }
(110) }
(111)
(112) /* output file close
(113) */
(114) public boolean close()
(115) {
(116) if (myOut != null)
(117) {
Generic Multi-Mode e*Way Extension Kit User’s Guide 172

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(118) try {
(119) myOut.close();
(120) myOut = null;
(121) }
(122) catch (Exception e) {
(123) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(124) e.toString());
(125) return false;
(126) }
(127) }
(128) return true;
(129) }
(130)
(131) /* output file isOpen
(132) */
(133) public boolean isOpen()
(134) {
(135) if (myOut != null)
(136) return true;
(137) else
(138) return false;
(139) }
(140)
(141) }
(142)

SampleETDExternalException.java

The source code file SampleETDExternalException.java defines the exception class.

(1) package sample;
(2)
(3) import com.stc.eways.exception.*;
(4)
(5) public class SampleETDExternalException extends STCDataException
(6) {
(7) public SampleETDExternalException()
(8) {
(9) super();
(10) }
(11)
(12) public SampleETDExternalException(String ex)
(13) {
(14) super(ex);
(15) }
(16)
(17) public SampleETDExternalException(String ex, Exception e)
(18) {
(19) super(ex, e);
(20) }
(21) }
(22)

SampleETDTester.java

The source code file SampleETDTester.java creates an optional stand-alone test to be
used to test the sampleETDExternalClass class.

(1) package sample;
(2)
(3) import java.io.*;
(4)
Generic Multi-Mode e*Way Extension Kit User’s Guide 173

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(5) public class SampleETDTester {
(6) private SampleETDExternalClass extCall = null;
(7)
(8) public SampleETDTester() {
(9) extCall = new SampleETDExternalClass();
(10) }
(11)
(12) public void test(String inputPropFile,
(13) String var,
(14) String val,
(15) String outputPropFile) {
(16) try {
(17)
(18) // Set the output file
(19) //
(20) extCall.setPropFilePath(outputPropFile);
(21)
(22) // Copy and add a property to the Properties object from
(23) // the input file into the new output Properties.
(24) //
(25) extCall.copyAndAddProperty(inputPropFile, var, val);
(26)
(27) // Save the new Properties copy with the new property into
(28) // the output Properties file specified using setPropFilePath.
(29) //
(30) // This illustrates the typical interface to an external
(31) // system involving procedure that does open external, do work
(32) // with external, close external.
(33) //
(34) extCall.open();
(35) if (extCall.isOpen())
(36) extCall.save();
(37) extCall.close();
(38) }
(39) catch (Exception e) {
(40) }
(41) }
(42)
(43) public static void main(String args[]) {
(44) SampleETDTester tester = new SampleETDTester();
(45)
(46) System.out.println("");
(47) System.out.println("---------------------------------------");
(48) System.out.println("Input Properties file : " + args[0]);
(49) System.out.println("Property variable : " + args[1]);
(50) System.out.println("Property value : " + args[2]);
(51) System.out.println("Output Properties file: " + args[3]);
(52) System.out.println("---------------------------------------");
(53) System.out.println("");
(54) tester.test(args[0], args[1], args[2], args[3]);
(55) }
(56) }
(57)

10.5.2 Customizing the Compile Script
The kit provides a compile script (compile.bat on Windows; compile.sh on UNIX) to
set CLASSPATH information and to create a .jar file for the compiled .java files upon
completion.

(1) set GMEEK_EXTRACTDIR=C:\gmeekjars
(2) set JAVA_PATH=C:\jdk1.3.1_02\bin
Generic Multi-Mode e*Way Extension Kit User’s Guide 174

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
(3) set
MYCLASSPATH="%GMEEK_EXTRACTDIR%\classes\stcjcs.jar;%GMEEK_EXTRACTDIR%\c
lasses\stcexception.jar;%GMEEK_EXTRACTDIR%\classes\stcutil.jar;"

(4)
(5) %JAVA_PATH%\javac -classpath %MYCLASSPATH% -d . *.java
(6)
(7) @REM
(8) @REM jar up the classes
(9) @REM
(10) %JAVA_PATH%\jar cvf ..\installETD\SampleETD\SampleETD.jar

sample*.class
(11)
(12) @REM
(13) @REM jar up the source files to allow for debugger to use;
(14) @REM please remove the following for a release version
(15) @REM
(16) copy *.java sample
(17) %JAVA_PATH%\jar uvf ..\installETD\SampleETD\SampleETD.jar sample*.java
(18) del sample*.java

You may need to make one or more of the following edits:

1 set GMEEK_EXTRACTDIR=C:\gmeekjars

If your e*Gate installation resides anywhere other than the root \eGate directory on
your C drive, specify the correct location.

2 JAVA_PATH=c:\jdk1.3.1_02\bin

Specify the correct path location for your JDK.

3 When creating e*Way Connections from scratch, modify the directory locations in
compile.bat (or, on UNIX, compile.sh) as needed.

10.5.3 Compiling the .java Files and Creating the .jar File
Do one of the following:

On Windows, open a Command Prompt, change to the correct directory and then
run the compile.bat file by entering the following:

.\compile.bat

On UNIX, open a shell, change to the correct directory, and then run the compile.sh
file by entering the following:

./compile.sh

The script is designed to set the CLASSPATH and create the .jar file. The .jar file is then
saved to the gmeek\installETD\SampleETD directory.

10.5.4 Editing/Viewing the .ctl Files
The SampleETD.ctl file contains information required by the GUI to be able to
successfully load the ETD. Any .jar files that are required by the ETD must be included
here.

##--
#

Generic Multi-Mode e*Way Extension Kit User’s Guide 175

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
SampleETD.ctl (The ETD CTL file)
#
This CTL file is used by the GUIs. It specifies the JAR
files that are needed by your ETD classes for compilation
(in a Collaboration). It also specifies the JAR files needed
at run time.
#
##--

##--
JAR files containing the classes associated with your ETD

##--
SampleETD.jar,etd/SampleETD,FILETYPE_BINTEXT
stcexception.jar,classes,FILETYPE_BINTEXT

##--
Third-party JAR files used (listed as an example only)
#
##--
jcert.jar,ThirdParty/jsse/jsse1.0.2/classes,FILETYPE_BINTEXT
jnet.jar,ThirdParty/jsse/jsse1.0.2/classes,FILETYPE_BINTEXT
jsse.jar,ThirdParty/jsse/jsse1.0.2/classes,FILETYPE_BINTEXT

10.5.5 Editing/Viewing the .def Files
End users configure e*Ways using the e*Way Configuration Editor, a graphical user
interface (GUI) that enables one to change configuration parameters quickly and easily.
The e*Way Configuration Editor uses the default configuration-file template (.def file)
to classify each parameter by its type and name, and can specify other information as
well, such as the range of permissible options for a given parameter.

The Configuration Editor stores the values that you assign to those parameters within
two configuration files. Each configuration file contains similar information, but the
two are formatted differently:

The .cfg file contains the parameter values in delimited records and is parsed by the
e*Way at run time.

The .sc file contains the parameter values and additional information needed by the
GUI.

The e*Way Editor loads the .sc file—not the .cfg file—when you edit the configuration
settings for an e*Way. Both configuration files are generated automatically by the e*Way
Configuration Editor whenever the configuration settings are saved.

For more information on creating a custom .def file, see Appendix A “Extending the
.def File” on page 256.

10.5.6 Editing/Viewing the .xsc File
The sampleETD.xsc file contains the information provided by the .java files and
required by the GUI.
Generic Multi-Mode e*Way Extension Kit User’s Guide 176

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
ETD entity

The <etd> entity is the top-level entity in an .xsc file. It represents a complete ETD.
Every .xsc file must contain exactly one of these entities. In this example, the file’s
ETD entity is has the name “SampleETD”; it is a single, complete ETD with no
references to any other ETD.

(2) <etd name="SampleETD" type="SampleETD" xscVersion="0.6" uid="0">

The name attribute defines the name of the ETD. The name of this ETD is SampleETD.

The type attribute is used to define the Connection type. The value of the type attribute
is used in the selection list when creating an e*Way Connection within the e*Gate
Schema Designer. The e*Way Connection is “SampleETD”. The value of the type
attribute must also match that of the Connection’s ETD .ctl filename. The .ctl file is
stored in the gmeek\installETD directory until it is transferred to the Registry.

Finally, the uid attribute uniquely identifies the <etd> entity within the .xsc file. All
entities in the .xsc file are uniquely marked with the uid attribute. As a developer
writing the file, ensure that the uid attributes are unique for all entities in the file.

A Connection XSC must contain, at a minimum, the name, type, and uid attributes for
the <etd> entity.

Class node entities

The ETD structure begins with a <node> entity that represents the parent entity for the
ETD.

(4) <node name="SampleETD" type="class" uid="135">

The name attribute of the <node> entity must match the Java class name implementing
the ETD. In this case, the name is SampleETD. There must be a corresponding class,
named sampleETD.class, in the package named sample (as defined in the
packageName=”sample” attribute of the <etd> entity).

Because the implementation of the ETD is a customized Java class, the value for the
type attribute of the <node> entity must be set to “class”.
Generic Multi-Mode e*Way Extension Kit User’s Guide 177

Chapter 10 Section 10.5
Developing the Automatic e*Way Connection Setting Up the Automatic Connection Sample Files
The attributes minOccurs and maxOccurs define the minimum and maximum
occurrences allowed for this ETD. The example shows “1” and “1” respectively. The
minOccurs and maxOccurs attributes define the lowest and highest possible number of
occurrences of the given <node> below its parent. The values must both be non-
negative integers (or “unbounded” for maxOccurs, meaning no upper limit), and the
value for minOccurs must not exceed the value for maxOccurs. If unspecified, both
attributes default to “1”.

The optional attribute, if unspecified, defaults to “false”. If set to “true”, then the
node’s occurrence is optional. For example, if minOccurs=“6”, maxOccurs=“8”, and
optional=“true”, then the node can occur 6, 7 or 8 times, or not at all.

The uid attribute uniquely identifies each entity within the .xsc file. As a developer
writing the XSC, ensure that all uid attributes are unique for all entities in the .xsc file.

Class attribute node entities

To expose any Java class attributes of the class implementing the e*Way Connection,
node entities under the ETD node must be defined in the .xsc file. For example, when
the Automatic Connection was designed and implemented, it was given a class
attribute outFilename, and corresponding access class methods getFilename() and
setFilename() were also implemented; these methods allow the user to set or get the
filename of the properties file within the Collaboration. The nodes named directory
and property were also exposed to the user with the subsequent <node> entities.

For the second <node> entity, the value of the name attribute is set to “OutFilename”:

(5) <node name="OutFilename" type="FIELD" optional="true" comment="This
node contains the filename." uid="140" />

The <node> attributes minOccurs and maxOccurs define the minimum and maximum
occurrences allowed for this ETD. The example shows “1” and “1” respectively.

The the type attribute is set to “FIELD”.

The optional attribute, if unspecified, defaults to “false”. If set to “true”, then the
node’s occurrence is optional. In this example, the node can occur 1 time, or not at all.

The value of the comment attribute explains the purpose of this node.

Methods without parameters

To expose a class method of the Java class implementing the e*Way Connection, a
<method> entity must be defined for the method:

(7) <method name="saveOutPropertyFile" returnType="void" comment="This
method saves the Property file." uid="160" />

The attributes are a subset of the attributes explained in “Methods with parameters”.

Methods with parameters

The Automatic Connection sample was designed and implemented to use a method
called copyAndAddProperty(). This method takes the following parameters: a
filename, a variable, and a value. The method copies the property or properties set by
the user to a Java properties file (provided by the filename parameter), in a directory
(provided by the directory parameter), and adds a property-value pair.

The name attribute defines the method name; the value copyAndAddProperty
provides the name of the sample method as exposed to the end user.
Generic Multi-Mode e*Way Extension Kit User’s Guide 178

Chapter 10 Section 10.6
Developing the Automatic e*Way Connection Installing the Sample Files to e*Gate
The returnType attribute is set to the data type of the method’s return value.

The value of the comment attribute explains the purpose of this method.

(8) <method name="copyAndAddProperty" returnType="void" comment="This
method saves the Properties from the input file, adds the new property
specified then saves the updated properties to the output file specified
by the filename and directory attributes." uid="170">

(9) <param name="inputPropFilePath" paramType="java.lang.String"
comment="The filename where to copy the Properties from." uid="171" />

(10) <param name="variable" paramType="java.lang.String" comment="The
property variable name to add." uid="172" />

(11) <param name="value" paramType="java.lang.String" comment="The value to
be set for the corresponding variable added." uid="173" />

(12) </method>

10.6 Installing the Sample Files to e*Gate
After compiling the .java files and creating the .xsc file, you must commit all changes
and additions to the e*Gate Registry. The instructions for committing the changes are
contained in the installETD.* and install.ctl files provided.

10.6.1 Customizing the install.ctl File
The install.ctl file specifies the following information that must be modified when
necessary:

The .ctl file used by your ETD during run time.

The .jar files containing the classes associated with your ETD.

Any third-party .jar files used.

The .xsc file associated with your ETD.

The .def file (if used) associated with your e*Way Connection.

10.6.2 Testing Outside of e*Gate
This section is optional. It shows you how to validate the sample ETD outside of the
e*Gate environment. The SampleETDTester.java file contains the source code for
testing the ETD, and the runTester.bat file contains a script for running the tester.

SampleETDTester.java

The SampleETDTester.class file tests the SampleETDExternalClass.

(1) package sample;
(2)
(3) import java.io.*;
(4)
(5) public class SampleETDTester {
(6) private SampleETDExternalClass extCall = null;
(7)
(8) public SampleETDTester() {
Generic Multi-Mode e*Way Extension Kit User’s Guide 179

Chapter 10 Section 10.6
Developing the Automatic e*Way Connection Installing the Sample Files to e*Gate
(9) extCall = new SampleETDExternalClass();
(10) }
(11)
(12) public void test(String inputPropFile,
(13) String var,
(14) String val,
(15) String outputPropFile) {
(16) try {
(17)
(18) // Set the output file
(19) //
(20) extCall.setPropFilePath(outputPropFile);
(21)
(22) // Copy and add a property to the Properties object from
(23) // the input file into the new output Properties.
(24) //
(25) extCall.copyAndAddProperty(inputPropFile, var, val);
(26)
(27) // Save the new Properties copy with the new property into
(28) // the output Properties file specified using setPropFilePath.
(29) //
(30) // This illustrates the typical interface to an external
(31) // system involving procedure that does open external, do work
(32) // with external, close external.
(33) //
(34) extCall.open();
(35) if (extCall.isOpen())
(36) extCall.save();
(37) extCall.close();
(38) }
(39) catch (Exception e) {
(40) }
(41) }
(42)
(43) public static void main(String args[]) {
(44) SampleETDTester tester = new SampleETDTester();
(45)
(46) System.out.println("");
(47) System.out.println("--");
(48) System.out.println("Input Properties file : " + args[0]);
(49) System.out.println("Property variable : " + args[1]);
(50) System.out.println("Property value : " + args[2]);
(51) System.out.println("Output Properties file: " + args[3]);
(52) System.out.println("--");
(53) System.out.println("");
(54) tester.test(args[0], args[1], args[2], args[3]);
(55) }
(56) }

Running the runTester File

Once the .java files have been compiled, run the runTester.bat file by opening a
Command Prompt and entering the command runTester.

Do one of the following:

On Windows, open a Command Prompt, change to the correct directory and then
run the runTester.bat file by entering the following:

.\runTester

On UNIX, open a shell, change to the correct directory, and then run the
runTester.sh file by entering the following:

./runTester.sh

The output should resemble the following:

(1) #Thu May 16 14:08:33 PST 2002
(2) newProperty=testValue
(3) hello=world
Generic Multi-Mode e*Way Extension Kit User’s Guide 180

Chapter 10 Section 10.6
Developing the Automatic e*Way Connection Installing the Sample Files to e*Gate
10.6.3 Running the installETD Script
Do one of the following:

On Windows, open a Command Prompt, change directories to gmeek\installETD,
and enter the following command:

.\installETD -e sampleETD -s MySchema -h localhost -g c:\eGate

If you are installing to a different schema, host, or directory, make the appropriate
substitutions. For syntax details, see Windows: installETD.bat on page 76.

On UNIX, open a shell, change directories to gmeek/installETD, and enter the
following command:

./installETD.sh -e sampleETD -s MySchema -h localhost -g /eGate

If you are installing to a different schema, host, or directory, make the appropriate
substitutions. For syntax details, see UNIX: installETD.sh on page 76.

10.6.4 Validating the Sample Files Within e*Gate
Start the Schema Designer and open the schema into which the installETD command
was run.

Create a new e*Way Connection. If all of the files committed successfully, the e*Way
Connection Editor contains the SampleETD entry as a possible e*Way Connection Type,
as shown in Figure 48.

Figure 48 e*Way Connection Type SampleETD
Generic Multi-Mode e*Way Extension Kit User’s Guide 181

Chapter 10 Section 10.7
Developing the Automatic e*Way Connection Understanding the SampleETD Implemented in a Schema
From the ETD Editor, open the SampleETD.xsc. If all the files committed successfully it
should appear as shown in Figure 49.

Figure 49 SampleETD.xsc

You are ready to import the sample schema.

10.7 Understanding the SampleETD Implemented in a
Schema

This section:

Tells you how to load the sample schema included in MySchema.zip.

Shows you how the sample components appear to the end user.

Shows you how the sample components behave in the e*Gate environment.

10.7.1 Importing the MySchema.zip Schema
To import the sample schema into e*Gate

1 Start the e*Gate Schema Designer GUI.

2 When the Schema Designer prompts you to log in, select the host that you specified
during installation, and enter your password.
Generic Multi-Mode e*Way Extension Kit User’s Guide 182

Chapter 10 Section 10.7
Developing the Automatic e*Way Connection Understanding the SampleETD Implemented in a Schema
3 You are then prompted to select a schema. Click New. The New Schema dialog box
opens. (Schemas can also be imported or opened from the e*Gate File menu by
selecting New Schema or Open Schema.)

4 Enter a name for the new Schema, for example, My_Sample_Schema, or any name
as desired.

5 To import the sample schema select Create from Export, and use Find to locate and
select the MySchema.zip file on the e*Gate Integrator Installation CD-ROM, or
from the location it was copied in earlier.

MySchema.zip is the file supplied in the sample directory.

The e*Gate Schema Designer opens to the new schema. You are now ready to make any
configuration changes that may be necessary for this sample schema to run on your
specific system.

10.7.2 Sample Data INDATA
1 Extract the INDATA.zip file into a temporary directory.

2 Copy the extracted files into the C:\INDATA directory.

Note: If you want or need to use a location other than C:\INDATA (for example, on
UNIX), you must change the string “\INDATA” to the correct location in both
your e*Gate schema’s ewFeeder configuration and in the crAddProperty
Collaboration.

3 Rename the SampleInput.~in file to SampleInput.fin.

The presence of a file with extension .fin triggers the file e*Way to read its contents.

The INDATA.zip file contains two files: The SampleInput.~in file contains a new
XML value pair to be added to the input.properties structure, shown as follows.

SampleInput.~in:

<SampleInput>
<PropsName>Color</PropsName>
<PropsValue>Blue</PropsValue>

</SampleInput>

input.properties:

#Thu May 16 14:08:33 PST 2002
newproperty=testvalue
hello=world

4 From a Command Prompt, enter the following command to have the e*Gate
Control Broker (stccb.exe) start the imported sample schema:

stccb -rh localhost -un Administrator -up STC -ln localhost_cb -rs
<schema name>

To use a Registry Host other than localhost, a username/password combination
other than Administrator/STC, and/or a logical Control Broker name other than
localhost_cb, make the appropriate substitutions.
Generic Multi-Mode e*Way Extension Kit User’s Guide 183

Chapter 10 Section 10.7
Developing the Automatic e*Way Connection Understanding the SampleETD Implemented in a Schema
Results

Successful execution creates a file named output.properties in c:\OutData specified by
the e*Way Connection.

#Thu May 16 14:08:33 PST 2002
newproperty=testvalue
date=Thu May 16 14\:08\:33 PST 2002
hello=world
Color=Blue
Generic Multi-Mode e*Way Extension Kit User’s Guide 184

Chapter 11

Developing an e*Way Connection With
Connection Management

This Generic Multi-Mode e*Way Extension Kit also provides a complete set of files for
setting up an e*Way Connection that shows you how to implement the Connection
Management features.

Note: The Connection Management feature is available only in e*Gate version 4.5.2 or
later.

This chapter describes the necessary steps to add Connection Management into the
ETD and connector classes of your e*Way Connection. It describes each of the files and
takes you step by step through the process of modifying the files, compiling them,
placing them in the correct locations, and validating them within the environment of an
e*Gate schema.

The final section of this chapter takes you through the sample schema, showing you
how the user-created ETD and e*Way Connection fit into e*Gate so you can match up
your development efforts with the features seen by end users.

11.1 Overview
Figure 50 shows the architecture of the Connection Management sample.
Generic Multi-Mode e*Way Extension Kit User’s Guide 185

Chapter 11 Section 11.2
Developing an e*Way Connection With Connection Management Classes and Interactions for the Connection Management
Sample
Figure 50 Architecture of Connection Management Sample

11.2 Classes and Interactions for the Connection
Management Sample

The ETD class and the connector class for a Connection Management e*Way are slightly
different from the ETD and connector classes for an Automatic Connection e*Way, and
have different interactions. These differences are discussed in detail in the following
sections.

11.2.1 ETD Class
For the Connection Management sample, the class diagram for the ETD class for the
e*Way Connection is shown in Figure 51 on page 187.

e*Gate

ewFeeder
file e*Way

ewTCPclient
Multi-Mode

e*Way
(crTCPclient

in
colTCPclient collab

service)

iqFeeder

Sub
GenericOu

tEvent
ETD

Natural
sourceC:\INDATA

SampleInput.fin
Pu

b

C:\OUTDATA
output%d.dat

TcpClientETD
(e*Way

Connection)

GenericOutEvent
ETD

TcpEcho
server

TCP/IP

ewEater
file e*WayiqEater

Sub
Pub
Generic Multi-Mode e*Way Extension Kit User’s Guide 186

Chapter 11 Section 11.2
Developing an e*Way Connection With Connection Management Classes and Interactions for the Connection Management
Sample
Figure 51 Extending ETDImpl: The ETD Class for the Connection Management Sample

+initialize() : void
+terminate() : void
+reset() : void
+marshal() : unsigned char
+unmarshal() : void
+retrieveMode() : int
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

«interface»
ETD

+initialize(in jCollabCcontroller, in key : String, in mode : int) : void
+retrieveKey() : String
+retrieveMode() : int
+terminate() : void
+reset() : bool
+marshal() : unsigned char
+unmarshal() : void
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

EwayConnectionETDImpl

+getConnector() : <unspecified>
+setConnector() : void
+get$Configuration() : <unspecified>

«interface»
ETDExt

+initialize(in jCollabController, in key : String, in mode : int)
+reset() : boolean
+terminate() : boolean
+sendToServer(in inputMessage : String) : void
+sendToServer() : void
+getReply() : String
+setServer() : void
+getServer() : String
+hasServer() : boolean
+omitServer() : void
+setPort() : void
+getPort() : String
+hasPort() : boolean
+omitPort() : void
+connect() : void
+disconnect() : void
+isConnected() : boolean
+setConnector(in connector : EBobConnectorExt) : void
+getConnector() : EBobConnectorExt
+get$Configuration() : ConnConfigBase

-myExtDelegate : TcpClient
-myETDConnector : TcpClientETD
-isInSubCollab : boolean
-cfgProps
-server : String
-port : String
-message : String
-replyMessage : String
-_connection : Connection (TcpClientETD inner)

TcpClientETD
Generic Multi-Mode e*Way Extension Kit User’s Guide 187

Chapter 11 Section 11.2
Developing an e*Way Connection With Connection Management Classes and Interactions for the Connection Management
Sample
As shown in Figure 51, the ETDExt interface extends the ETD interface to allow setting
and getting the Connector object associated with an ETD. The configuration associated
with the ETD can also be obtained as an object. These are needed mainly to allow the
user to set connection parameters on the ETD. The corresponding changes in the .xsc
file are discussed in the next section.

11.2.2 Connector Class
For the Connection Management sample, the class diagram for the connector class for
the e*Way Connection is shown in Figure 52 on page 189.
Generic Multi-Mode e*Way Extension Kit User’s Guide 188

Chapter 11 Section 11.2
Developing an e*Way Connection With Connection Management Classes and Interactions for the Connection Management
Sample
Figure 52 Connector Class for the Connection Management Sample

+open(in intoEgate : bool) : void
+close() : void
+isOpen() : boolean
+getProperties() : Properties

«interface»
EBobConnector

+open(in intoEgate : Boolean) : void
+open(in props : java.util.Properties) : void
+close() : void
+isOpen() : boolean

myETDConnector

+open(in props : java.util.Properties) : void
+getName() : String
+getConfigurationFilename() : String
+setLastActivityTime() : String
+getLastActivityTime() : long
+setLastError(in lastError : java.lang.Throwable) : void
+getLastError() : java.lang.Throwable
+releaseResources() : void
+setJCollabController() : void
+getJCollabController() : JCollabController
+setRetroMode(in retromode : Boolean) : void
+isRetroMode() : boolean
+isSubCollabSupported() : boolean
+isXA() : boolean

«interface»
EBobConnectorExt

+EBobConnectorExtImpl(in props : Properties)
+open(in props : Properties)
+getName() : String
+getConfigurationFilename() : String
+setLastActivityTime(in time : long) : void
+getLastActivityTime() : long
+setLastError(in lastError : java.lang.Throwable) : void
+getLastError() : java.lang.Throwable
+releaseResources() : void
+setJCollabController(in collabCntrl : JCollabController) : void
+getJCollabController() : JCollabController
+setRetroMode(in mode : Boolean) : void
+isRetroMode() : boolean
+isSubCollabSupported() : boolean
+isXA() : boolean

EBobConnectorExtImpl
Generic Multi-Mode e*Way Extension Kit User’s Guide 189

Chapter 11 Section 11.3
Developing an e*Way Connection With Connection Management Overview of the Connection Management Sample
As shown in Figure 52, the EBobConnector class subclass EBobConnectorExt adds the
methods that interact with the Collaboration Controller and the Manager. The default
implementation EBobConnectorExtImpl has been supplied; you can just extend this
class to implement the connector class for your e*Way Connection.

11.3 Overview of the Connection Management Sample
The steps for implementing the Connection Management e*Way Connection begin with
the same steps required by the Automatic Connection sample:

Ensure your environment meets the prerequisites, and then load and unzip the
sample source/install files in gmeek.taz. (You have already done this if you
completed one of the previous samples.)

Review or edit the .java files to understand the logic contained within the code.

Edit the compile.bat script (or, on UNIX, compile.sh) to reflect your development
environment.

Run the compile script to compile the .java files and create .jar files.

Edit the .ctl and .def files to reflect both your environment and the functionality
required.

Edit the .xsc file to understand the logic required for it to perform correctly.

Start the Schema Designer and create a schema into which to commit the sample.

Run the installETD script to make the sample files available to e*Gate.

Return to the Schema Designer and validate the results of the preceding steps.

Import the sample schema into e*Gate, start the Schema Manager, and validate the
behavior of the TCP sample ETD and TCP sample e*Way Connection.

11.4 Installing the Sample
The installation package for the Connection Management sample comprises the
following files:

gmeek.taz

TcpEcho.zip

INDATA.zip

To install the files

1 Copy the .taz/.zip files to a temporary directory.

If you have already completed the Automatic Connection sample, you only need to
copy TcpEcho.zip, and you can skip step 2.
Generic Multi-Mode e*Way Extension Kit User’s Guide 190

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
2 If you have not already done so, extract the gmeek.taz and INDATA.zip files to a
convenient location. The path location of these files will be used in scripts later.

Changes to the directory locations of the unzipped files will require changes to the
supplied scripts. For this reason, it is recommended that you complete the sample
before making any changes to directory locations or file names.

11.5 Setting Up the Connection Management Sample Files
In this section, the details for editing the sample scripts and creating the .java files are
broken down into steps:

“Editing/Viewing the .java Files” on page 192

“Customizing the Compile Script” on page 214

“Compiling the .java Files and Creating the .jar File” on page 215

“Editing/Viewing the .ctl Files” on page 215

“Editing/Viewing the .def Files” on page 216

“Editing/Viewing the .xsc File” on page 216

The files that apply specifically to the Connection Management sample are shown in
Table 14.

Table 14 Connection Management Sample Files

Directory Files

gmeek\TcpClientETD\ compile.bat
compile.sh
TcpClient.java
TcpClientETD.java
TcpClientETDConnector.java
TcpClientETDDefs.java
TcpClientException.java

gmeek\TcpClientETD\server\ runServer.bat
TCPEchoServer.class
TCPEchoServer.java

gmeek\installETD installETD.bat (on Windows systems)
installETD.sh (on UNIX systems)

gmeek\installETD\TcpClientETD connectionpoint.ini
install.ctl
runTester.bat
runTester.sh
TcpClientETD.ctl
TcpClientETD.def
TcpClientETD.xsc
Generic Multi-Mode e*Way Extension Kit User’s Guide 191

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
11.5.1 Editing/Viewing the .java Files
The files that have been provided require only minor edits to enable the sample schema
contained in TcpEcho.zip to be implemented. This section provides the information
necessary to view the existing code, edit, compile, and commit to the e*Gate Registry.
The code samples are provided to further your understanding. The sample code is
described in sections that describe its purpose.

The source code files for the Connection Management sample are as follows:

TCPClientETD.java

TCPClientETDConnector.java

TCPClientDefs.java

TCPClient.java

TCPClientException.java

TCPClientServer.java

The following sections discuss each of these files in detail.

11.5.2 TCPClient

TCPClientETD.java

1 Create your ETD class.

An e*Way Connection has an associated class that implements the ETD interface.
This class is called your ETD class. The class EwayConnectionETDImpl is a sample
provided to implement the ETD interface. EwayConnectionETDImpl is an abstract
class that your ETD class must extend. EwayConnectionETDImpl provides the
default implementation used for e*Way Connection for non-messageable ETDs. The
EwayConnectionETDImpl class should not normally be modified. Any additional
desired functionality should be included in your ETD class.

By extending EwayConnectionETDImpl, your ETD class inherits common
behavior when interacting with e*Gate IQs and Oracle SeeBeyond JMS IQ
Managers.

Note: Since it is not intended for message parsing, EwayConnectionETDImpl contains
empty implementations of the marshal() and unmarshal() methods.

To modify TCPClientETD.java

The following steps show the changes that you will make to TCPClientETD.java.
These steps only show the sections of code that you will modify. See
“TCPClientETD.java listing” on page 200 for the entire contents of
TCPClientETD.java.

The following source code shows a sample ETD class skeleton (TcpClientETD).

(1) package tcpsample;
(2)
Generic Multi-Mode e*Way Extension Kit User’s Guide 192

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(3) import java.util.Properties;
(4)
(5) import com.stc.common.collabService.EGate;
(6) import com.stc.common.collabService.JCollabController;
(7) import com.stc.common.collabService.JConnectionManager;
(8) import com.stc.common.collabService.CollabConnException;
(9) import com.stc.common.collabService.CollabDataException;
(10) import com.stc.common.collabService.CollabResendException;
(11) import com.stc.jcsre.ETDExt;
(12) import com.stc.jcsre.EBobConnectorExtFactory;
(13) import com.stc.jcsre.EBobConnectorExt;
(14) import com.stc.jcsre.cfg.ConnConfigBase;
(15)
(16)
(17) public class TcpClientETD extends TcpClientETDImpl implements ETDExt

The import statements (3) through (14) are required. They import the e*Gate core
classes that are used in an ETD class utilizing a Connection Manager.

2 Create a delegate object in your ETD class.

(18) /**
(19) * Called by external (Collab Service) to initialize object.
(20) * Reads configuration from config file, obtains a connector object
(21) * used to establish connection with the external system through the
(22) * connector factory, initializes myExtDelegate.
(23) *
(24) * @param cntrCollab The Java Collaboration Controller object.
(25) * @param key
(26) * @param mode
(27) * @see com.stc.jcsre.ETD
(28) */

3 Override the initialize() method of your ETD class.

(29) public void initialize(JCollabController cntrCollab, String key, int
mode)

(30) throws CollabConnException, CollabDataException
(31) {
(32) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(33) "Inside TcpClientETD.initialize()");
(34)
(35) super.initialize(cntrCollab, key, mode);

4 Instantiate your connector class.

(36) EBobConnectorExtFactory connFactory = new EBobConnectorExtFactory();
(37) myETDConnector = (TcpClientETDConnector)

connFactory.createConnectorExt(cntrCollab, key, mode);
(38)
(39) if (myETDConnector != null)
(40) {
(41) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(42) "Created TcpClientETDConnector via EBobConnectorExtFactory.");
(43) }
(44) else
(45) {
(46) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(47) "Failed to create TcpClientETDConnector via

EBobConnectorExtFactory.");
(48) throw new CollabConnException("Unable to create

TcpClientETDConnector");
(49) }
(50)

5 Initialize your ETD class using the Properties from the configuration file.

(51) // Extract properties from .cfg file
Generic Multi-Mode e*Way Extension Kit User’s Guide 193

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(52) //
(53) this.cfgProps = myETDConnector.getProperties();
(54)
(55) if (this.cfgProps != null)
(56) {
(57) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(58) "Got TcpClientETDConnector Properties.");
(59) }
(60) else
(61) {
(62) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(63) "Failed to get TcpClientETDConnector Properties.");
(64) throw new CollabConnException("Failed to get TcpClientETDConnector

Properties.");
(65) }

6 Obtain the server name property from the configuration Properties object.

(66) ///
(67) // server
(68) ///
(69) String propsServer =

cfgProps.getProperty(TcpClientETDDefs.ETD_DEF_PROP_NAME_SERVER);
(70) try {
(71) if (propsServer != null)
(72) {
(73) this.server = propsServer;
(74) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(75) "Default server set to " + propsServer);
(76) }
(77) }
(78) catch (Exception ex)
(79) {
(80) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,
(81) "Failed to set the default server; Exception : " +

ex.toString());
(82) throw new CollabConnException("Failed to set the default server;

Exception : " + ex.toString());
(83) }
(84)

7 Obtain the port number as a string. This must be converted from the configuration
Properties object to an integer.

(85) ///
(86) // port
(87) ///
(88) String propsPort =

cfgProps.getProperty(TcpClientETDDefs.ETD_DEF_PROP_NAME_PORT);
(89) try {
(90) if (propsPort != null)
(91) {
(92) this.port = propsPort;
(93) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(94) "Default port set to " + propsPort);
(95) }
(96) }
(97) catch (Exception ex)
(98) {
(99) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,
(100) "Failed to set the default port; Exception : " + ex.toString());
(101) throw new CollabConnException("Failed to set the default port;

Exception : " + ex.toString());
(102) }
Generic Multi-Mode e*Way Extension Kit User’s Guide 194

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
8 Instantiate the delegate object. Set the external class in the connector object.

(103) ///
(104) // Do some Initialization
(105) ///
(106) try {
(107) myExtDelegate = new TcpClient();
(108)
(109) myETDConnector.setExternalClass(myExtDelegate);
(110)
(111) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(112) "Set TcpClient class delegate.");
(113) }
(114) catch (Exception e)
(115) {
(116) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(117) "Exception caught initializing external.");
(118) e.printStackTrace();
(119) throw new CollabConnException("Exception caught initializing

external; Exception : " + e.toString());
(120) }
(121)

9 If this ETD is used in a Subcollaboration Rule, the same Connector object returned
by the createConnectorExt() method is the same instance used by the parent
Collaboration. The isInSubcollab Boolean flag is set here, to be used later by the
terminate() method to determine whether or not to close the connection. If the
connection is in a Subcollaboration Rule, it should not be closed at this time; it will
be closed in the parent Collaboration.

(122) if (myETDConnector.isSubCollabSupported())
(123) {
(124) isInSubCollab = cntrCollab.isSubCollaboration();
(125) }
(126) if (!isInSubCollab)
(127) {
(128) myETDConnector.setJCollabController(cntrCollab);
(129) if (myETDConnector.isRetroMode())
(130) {
(131) myETDConnector.open(false);
(132) }

10 Register the connector object with the Connection Manager. This allows the
Connection Manager to call the Connector object’s open(), close(), and isOpen()
methods based on the Connection Management mode settings.

(133) else // register with Connection Manager
(134) {
(135) JConnectionManager conMgr = cntrCollab.getConnectionManager();
(136) conMgr.registerConnector(myETDConnector);
(137) }
(138) }
(139)
(140) }

11 Create the get___() and set____() methods to be used with attributes that are
exposed in the ETD.

(141) ///
(142) // //
(143) // Getter/setter methods for attributes exposed in ETD //
(144) // //
(145) ///
(146)
Generic Multi-Mode e*Way Extension Kit User’s Guide 195

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(147) /**
(148) * Call this in your Collaboration to set the server attribute.
(149) *
(150) * @param server - server host
(151) */
(152) public void setServer(String server)
(153) {
(154) this.server = server;
(155) }
(156)
(157) /**
(158) * Call this in your Collaboration to get the server attribute.
(159) *
(160) * @return server host
(161) */
(162) public String getServer()
(163) {
(164) return(this.server);
(165) }
(166)
(167) /**
(168) * Call this in your Collaboration to set the port attribute.
(169) *
(170) * @param server port
(171) */
(172) public void setPort(String port)
(173) {
(174) this.port = port;
(175) }
(176)
(177) /**
(178) * Call this in your Collaboration to get the port attribute.
(179) *
(180) * @return server port
(181) */
(182) public String getPort()
(183) {
(184) return(this.port);
(185) }
(186)
(187) /**
(188) * Call this in your Collaboration to set the message attribute.
(189) *
(190) * @param message
(191) */
(192) public void setMessage(String msg)
(193) {
(194) this.message = msg;
(195) }
(196)
(197) /**
(198) * Call this in your Collaboration to get the message attribute.
(199) *
(200) * @return message
(201) */
(202) public String getMessage()
(203) {
(204) return(this.message);
(205) }

12 Override the reset() method of your ETD class.

(206) ///
(207) // //
(208) // reset //
Generic Multi-Mode e*Way Extension Kit User’s Guide 196

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(209) // //
(210) ///
(211)
(212) public boolean reset()
(213) {
(214) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(215) "reset() has been called!");
(216)
(217) replyMessage = null;
(218)
(219) return true;
(220) }

13 Override the terminate() method of your ETD class. The connection should not be
closed if it is in a Subcollaboration Rule. It will be closed in the parent Collaboration
instead.

(221) ///
(222) // //
(223) // terminate //
(224) // //
(225) ///
(226)
(227) /**
(228) * Closes external connection if NOT in a Subcollaboration Rule.
(229) * If in Subcollaboration, you must release resources used in
(230) * the Subcollaboration but don't close your external connection.
(231) *
(232) */
(233) public void terminate() throws CollabConnException
(234) {
(235) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(236) "terminate() has been called!");
(237)
(238) try {
(239) if (!isInSubCollab)
(240) if (myETDConnector.isOpen())
(241) myETDConnector.close();
(242) }
(243) catch (com.stc.jcsre.EBobConnectionException ex)
(244) {
(245) }
(246) }

14 If you are supporting Manual mode, you must add the appropriate attributes and
methods that allows the user to set the connection parameters and perform the
following method calls from the ETD:

connect()

disconnect()

isConnected()

(247) ///
(248) // //
(249) // Methods to support Manual Connection Management mode //
(250) // //
(251) ///
(252)
(253) private Connection _connection = null;
(254)
(255) public Connection getConnection()
(256) {
Generic Multi-Mode e*Way Extension Kit User’s Guide 197

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(257) if (_connection == null)
(258) _connection = new Connection(myETDConnector.getProperties());
(259) return _connection;
(260) }
(261)
(262) public void setConnection(Connection conn)
(263) {
(264) _connection = conn;
(265) }
(266)
(267) public class Connection extends ConnConfigBase
(268) {
(269) public Connection()
(270) {
(271) }
(272)
(273) public Connection(Properties props)
(274) {
(275) setProperties(new Properties(props));
(276) }
(277)
(278) public java.lang.String getServer()
(279) {
(280) return getProperties().getProperty("Connection.Server");
(281) }
(282)
(283) public void setServer(java.lang.String val)
(284) {
(285) getProperties().setProperty("Connection.Server", val);
(286) }
(287)
(288) public boolean hasServer()
(289) {
(290) return (getServer() == null) ? false : true;
(291) }
(292)
(293) public void omitServer()
(294) {
(295) getProperties().remove("Connection.Server");
(296) }
(297)
(298) public java.lang.String getPort()
(299) {
(300) return getProperties().getProperty("Connection.Port");
(301) }
(302)
(303) public void setPort(java.lang.String val)
(304) {
(305) getProperties().setProperty("Connection.Port", val);
(306) }
(307)
(308) public boolean hasPort()
(309) {
(310) return (getPort() == null) ? false : true;
(311) }
(312)
(313) public void omitPort()
(314) {
(315) getProperties().remove("Connection.Port");
(316) }
(317) }
(318)
(319) public void connect() throws CollabConnException
(320) {
Generic Multi-Mode e*Way Extension Kit User’s Guide 198

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(321) if (myETDConnector != null)
(322) {
(323) boolean isManual =

("Manual".equals(myETDConnector.getProperties().getProperty("connector.
Connection_Establishment_Mode"))) ? true : false;

(324)
(325) if (!isManual && !myETDConnector.isRetroMode())
(326) throw new CollabConnException ("Connector was not configured to

be Manual. Can not call connect.");
(327)
(328) if (myETDConnector.isOpen())
(329) myETDConnector.close();
(330) if (_connection.getProperties() != null)
(331) myETDConnector.open(_connection.getProperties());
(332) else
(333) myETDConnector.open(true); // use default props from connector
(334) }
(335) else
(336) throw new CollabConnException("No TcpClientETDConnector

instance.");
(337) }
(338)
(339) public void disconnect() throws CollabConnException
(340) {
(341) if (myETDConnector != null)
(342) myETDConnector.close();
(343) else
(344) throw new CollabConnException ("No TcpClientETDConnector

instance.");
(345) }
(346)
(347) public boolean isConnected() throws CollabConnException
(348) {
(349) if (myETDConnector != null)
(350) return myETDConnector.isOpen();
(351) else
(352) throw new CollabConnException ("No TcpClientETDConnector

instance.");
(353) }
(354)
(355) public void setConnector(EBobConnectorExt connector)
(356) {
(357) myETDConnector = (TcpClientETDConnector) connector;
(358) }
(359)
(360)
(361) public EBobConnectorExt getConnector()
(362) {
(363) return myETDConnector;
(364) }
(365)
(366) public ConnConfigBase get$Configuration()
(367) {
(368) return _connection;
(369) }

15 Define the methods that are exposed in the ETD.

(370) ///
(371) // //
(372) // Methods exposed in ETD //
(373) // //
(374) ///
(375)
(376) /*
Generic Multi-Mode e*Way Extension Kit User’s Guide 199

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(377) * Call this in your Collaboration to send a string to the server.
(378) */
(379) public void sendToServer(String inputMessage)
(380) throws CollabConnException, CollabDataException,

CollabResendException
(381) {
(382) try {
(383) byte[] reply = myExtDelegate.send(getMessage().getBytes());
(384) replyMessage = new String(reply);
(385)
(386) if (!myETDConnector.isRetroMode())
(387) myETDConnector.setLastActivityTime(System.currentTimeMillis());
(388)
(389) }
(390) catch (Exception e) {
(391) throw new CollabDataException(e.toString());
(392) }
(393) }
(394) public void sendToServer()
(395) throws CollabConnException, CollabDataException,

CollabResendException
(396) {
(397) sendToServer(this.message);
(398) }
(399)
(400) /**
(401) * Call this in your Collaboration to get the reply from the server.
(402) */
(403) public String getReply()
(404) throws CollabConnException, CollabDataException,

CollabResendException
(405) {
(406) try {
(407) if (replyMessage != null)
(408) return replyMessage;
(409) }
(410) catch (Exception e) {
(411) throw new CollabDataException(e.toString());
(412) }
(413) return null;
(414) }
(415)
(416) }
(417)

TCPClientETD.java listing

The next few pages contain the source code for the ETD class (TCPClientETD.java) in
its entirety.

(1) package tcpsample;
(2)
(3) import java.util.Properties;
(4)
(5) import com.stc.common.collabService.EGate;
(6) import com.stc.common.collabService.JCollabController;
(7) import com.stc.common.collabService.JConnectionManager;
(8) import com.stc.common.collabService.CollabConnException;
(9) import com.stc.common.collabService.CollabDataException;
(10) import com.stc.common.collabService.CollabResendException;
(11) import com.stc.jcsre.ETDExt;
(12) import com.stc.jcsre.EBobConnectorExtFactory;
(13) import com.stc.jcsre.EBobConnectorExt;
(14) import com.stc.jcsre.cfg.ConnConfigBase;
(15)
Generic Multi-Mode e*Way Extension Kit User’s Guide 200

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(16)
(17) public class TcpClientETD extends TcpClientETDImpl implements ETDExt
(18) {
(19) private String server = null;
(20) private String port = null;
(21) private String message = null;
(22) private String replyMessage = null;
(23)
(24) private Properties cfgProps = null;
(25) private TcpClient myExtDelegate = null;
(26) private TcpClientETDConnector myETDConnector = null;
(27) private boolean isInSubCollab = false;
(28)
(29) public TcpClientETD()
(30) {
(31) }
(32)
(33) /**
(34) * Called by external (Collab Service) to initialize object.
(35) * Reads configuration from config file, obtains a connector object
(36) * used to establish connection with the external system through the
(37) * connector factory, initializes myExtDelegate.
(38) *
(39) * @param cntrCollab The Java Collaboration Controller object.
(40) * @param key
(41) * @param mode
(42) * @see com.stc.jcsre.ETD
(43) */
(44) public void initialize(JCollabController cntrCollab, String key, int

mode)
(45) throws CollabConnException, CollabDataException
(46) {
(47) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(48) "Inside TcpClientETD.initialize()");
(49)
(50) super.initialize(cntrCollab, key, mode);
(51)
(52) EBobConnectorExtFactory connFactory = new

EBobConnectorExtFactory();
(53) myETDConnector = (TcpClientETDConnector)

connFactory.createConnectorExt(cntrCollab, key, mode);
(54)
(55) if (myETDConnector != null)
(56) {
(57) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(58) "Created TcpClientETDConnector via EBobConnectorExtFactory.");
(59) }
(60) else
(61) {
(62) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(63) "Failed to create TcpClientETDConnector via

EBobConnectorExtFactory.");
(64) throw new CollabConnException("Unable to create

TcpClientETDConnector");
(65) }
(66)
(67) // Extract properties from .cfg file
(68) //
(69) this.cfgProps = myETDConnector.getProperties();
(70)
(71) if (this.cfgProps != null)
(72) {
(73) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(74) "Got TcpClientETDConnector Properties.");
Generic Multi-Mode e*Way Extension Kit User’s Guide 201

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(75) }
(76) else
(77) {
(78) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(79) "Failed to get TcpClientETDConnector Properties.");
(80) throw new CollabConnException("Failed to get TcpClientETDConnector

Properties.");
(81) }
(82)
(83)
(84) ///
(85) // server
(86) ///
(87) String propsServer =

cfgProps.getProperty(TcpClientETDDefs.ETD_DEF_PROP_NAME_SERVER);
(88) try {
(89) if (propsServer != null)
(90) {
(91) this.server = propsServer;
(92) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(93) "Default server set to " + propsServer);
(94) }
(95) }
(96) catch (Exception ex)
(97) {
(98) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,
(99) "Failed to set the default server; Exception : " +

ex.toString());
(100) throw new CollabConnException("Failed to set the default server;

Exception : " + ex.toString());
(101) }
(102)
(103) ///
(104) // port
(105) ///
(106) String propsPort =

cfgProps.getProperty(TcpClientETDDefs.ETD_DEF_PROP_NAME_PORT);
(107) try {
(108) if (propsPort != null)
(109) {
(110) this.port = propsPort;
(111) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_DEBUG,
(112) "Default port set to " + propsPort);
(113) }
(114) }
(115) catch (Exception ex)
(116) {
(117) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_ERROR,
(118) "Failed to set the default port; Exception : " + ex.toString());
(119) throw new CollabConnException("Failed to set the default port;

Exception : " + ex.toString());
(120) }
(121)
(122) ///
(123) // Do some Initialization
(124) ///
(125) try {
(126) myExtDelegate = new TcpClient();
(127)
(128) myETDConnector.setExternalClass(myExtDelegate);
(129)
(130) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(131) "Set TcpClient class delegate.");
(132) }
Generic Multi-Mode e*Way Extension Kit User’s Guide 202

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(133) catch (Exception e)
(134) {
(135) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(136) "Exception caught initializing external.");
(137) e.printStackTrace();
(138) throw new CollabConnException("Exception caught initializing

external; Exception : " + e.toString());
(139) }
(140)
(141) if (myETDConnector.isSubCollabSupported())
(142) {
(143) isInSubCollab = cntrCollab.isSubCollaboration();
(144) }
(145) if (!isInSubCollab)
(146) {
(147) myETDConnector.setJCollabController(cntrCollab);
(148) if (myETDConnector.isRetroMode())
(149) {
(150) myETDConnector.open(false);
(151) }
(152) else // register with Connection Manager
(153) {
(154) JConnectionManager conMgr = cntrCollab.getConnectionManager();
(155) conMgr.registerConnector(myETDConnector);
(156) }
(157) }
(158)
(159) }
(160)
(161) ///
(162) // //
(163) // Getter/setter methods for attributes exposed in ETD //
(164) // //
(165) ///
(166)
(167) /**
(168) * Call this in your Collaboration to set the server attribute.
(169) *
(170) * @param server - server host
(171) */
(172) public void setServer(String server)
(173) {
(174) this.server = server;
(175) }
(176)
(177) /**
(178) * Call this in your Collaboration to get the server attribute.
(179) *
(180) * @return server host
(181) */
(182) public String getServer()
(183) {
(184) return(this.server);
(185) }
(186)
(187) /**
(188) * Call this in your Collaboration to set the port attribute.
(189) *
(190) * @param server port
(191) */
(192) public void setPort(String port)
(193) {
(194) this.port = port;
(195) }
Generic Multi-Mode e*Way Extension Kit User’s Guide 203

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(196)
(197) /**
(198) * Call this in your Collaboration to get the port attribute.
(199) *
(200) * @return server port
(201) */
(202) public String getPort()
(203) {
(204) return(this.port);
(205) }
(206)
(207) /**
(208) * Call this in your Collaboration to set the message attribute.
(209) *
(210) * @param message
(211) */
(212) public void setMessage(String msg)
(213) {
(214) this.message = msg;
(215) }
(216)
(217) /**
(218) * Call this in your Collaboration to get the message attribute.
(219) *
(220) * @return message
(221) */
(222) public String getMessage()
(223) {
(224) return(this.message);
(225) }
(226)
(227) ///
(228) // //
(229) // reset //
(230) // //
(231) ///
(232)
(233) public boolean reset()
(234) {
(235) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(236) "reset() has been called!");
(237)
(238) replyMessage = null;
(239)
(240) return true;
(241) }
(242)
(243) ///
(244) // //
(245) // terminate //
(246) // //
(247) ///
(248)
(249) /**
(250) * Closes external connection if NOT in a Subcollaboration Rule.
(251) * If in Subcollaboration, you must release resources used in
(252) * the Subcollaboration but don't close your external connection.
(253) *
(254) */
(255) public void terminate() throws CollabConnException
(256) {
(257) EGate.traceln(EGate.TRACE_EWAY, EGate.TRACE_EVENT_INFORMATION,
(258) "terminate() has been called!");
(259)
Generic Multi-Mode e*Way Extension Kit User’s Guide 204

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(260) try {
(261) if (!isInSubCollab)
(262) if (myETDConnector.isOpen())
(263) myETDConnector.close();
(264) }
(265) catch (com.stc.jcsre.EBobConnectionException ex)
(266) {
(267) }
(268) }
(269)
(270) ///
(271) // //
(272) // Methods to support Manual Connection Management mode //
(273) // //
(274) ///
(275)
(276) private Connection _connection = null;
(277)
(278) public Connection getConnection()
(279) {
(280) if (_connection == null)
(281) _connection = new Connection(myETDConnector.getProperties());
(282) return _connection;
(283) }
(284)
(285) public void setConnection(Connection conn)
(286) {
(287) _connection = conn;
(288) }
(289)
(290) public class Connection extends ConnConfigBase
(291) {
(292) public Connection()
(293) {
(294) }
(295)
(296) public Connection(Properties props)
(297) {
(298) setProperties(new Properties(props));
(299) }
(300)
(301) public java.lang.String getServer()
(302) {
(303) return getProperties().getProperty("Connection.Server");
(304) }
(305)
(306) public void setServer(java.lang.String val)
(307) {
(308) getProperties().setProperty("Connection.Server", val);
(309) }
(310)
(311) public boolean hasServer()
(312) {
(313) return (getServer() == null) ? false : true;
(314) }
(315)
(316) public void omitServer()
(317) {
(318) getProperties().remove("Connection.Server");
(319) }
(320)
(321) public java.lang.String getPort()
(322) {
(323) return getProperties().getProperty("Connection.Port");
Generic Multi-Mode e*Way Extension Kit User’s Guide 205

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(324) }
(325)
(326) public void setPort(java.lang.String val)
(327) {
(328) getProperties().setProperty("Connection.Port", val);
(329) }
(330)
(331) public boolean hasPort()
(332) {
(333) return (getPort() == null) ? false : true;
(334) }
(335)
(336) public void omitPort()
(337) {
(338) getProperties().remove("Connection.Port");
(339) }
(340) }
(341)
(342) public void connect() throws CollabConnException
(343) {
(344) if (myETDConnector != null)
(345) {
(346) boolean isManual =

("Manual".equals(myETDConnector.getProperties().getProperty("connector.
Connection_Establishment_Mode"))) ? true : false;

(347)
(348) if (!isManual && !myETDConnector.isRetroMode())
(349) throw new CollabConnException ("Connector was not configured to

be Manual. Cannot call connect.");
(350)
(351) if (myETDConnector.isOpen())
(352) myETDConnector.close();
(353) if (_connection.getProperties() != null)
(354) myETDConnector.open(_connection.getProperties());
(355) else
(356) myETDConnector.open(true); // use default props from connector
(357) }
(358) else
(359) throw new CollabConnException("No TcpClientETDConnector

instance.");
(360) }
(361)
(362) public void disconnect() throws CollabConnException
(363) {
(364) if (myETDConnector != null)
(365) myETDConnector.close();
(366) else
(367) throw new CollabConnException ("No TcpClientETDConnector

instance.");
(368) }
(369)
(370) public boolean isConnected() throws CollabConnException
(371) {
(372) if (myETDConnector != null)
(373) return myETDConnector.isOpen();
(374) else
(375) throw new CollabConnException ("No TcpClientETDConnector

instance.");
(376) }
(377)
(378) public void setConnector(EBobConnectorExt connector)
(379) {
(380) myETDConnector = (TcpClientETDConnector) connector;
(381) }
Generic Multi-Mode e*Way Extension Kit User’s Guide 206

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(382)
(383)
(384) public EBobConnectorExt getConnector()
(385) {
(386) return myETDConnector;
(387) }
(388)
(389) public ConnConfigBase get$Configuration()
(390) {
(391) return _connection;
(392) }
(393)
(394) ///
(395) // //
(396) // Methods exposed in ETD //
(397) // //
(398) ///
(399)
(400) /*
(401) * Call this in your Collaboration to send a string to the server.
(402) */
(403) public void sendToServer(String inputMessage)
(404) throws CollabConnException, CollabDataException,

CollabResendException
(405) {
(406) try {
(407) byte[] reply = myExtDelegate.send(getMessage().getBytes());
(408) replyMessage = new String(reply);
(409)
(410) if (!myETDConnector.isRetroMode())
(411) myETDConnector.setLastActivityTime(System.currentTimeMillis());
(412)
(413) }
(414) catch (Exception e) {
(415) throw new CollabDataException(e.toString());
(416) }
(417) }
(418) public void sendToServer()
(419) throws CollabConnException, CollabDataException,

CollabResendException
(420) {
(421) sendToServer(this.message);
(422) }
(423)
(424) /**
(425) * Call this in your Collaboration to get the reply from the server.
(426) */
(427) public String getReply()
(428) throws CollabConnException, CollabDataException,

CollabResendException
(429) {
(430) try {
(431) if (replyMessage != null)
(432) return replyMessage;
(433) }
(434) catch (Exception e) {
(435) throw new CollabDataException(e.toString());
(436) }
(437) return null;
(438) }
(439)
(440) }
(441)
Generic Multi-Mode e*Way Extension Kit User’s Guide 207

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
TCPClientETDConnector.java

Creates your ETD’s connector class.

The implementation of your e*Way Connection’s configuration and connection
management functions must be provided in a class which implements
EBobConnector. This class is referred to as the connector class of your ETD.

The following source code provided contains the information required for this
connector class.

(1) package tcpsample;
(2)
(3) import java.util.Properties;
(4)
(5) import com.stc.common.collabService.EGate;
(6) import com.stc.jcsre.EBobConnectorExtFactory;
(7) import com.stc.jcsre.EBobConnectorExt;
(8) import com.stc.jcsre.EBobConnectorExtImpl;
(9) import com.stc.jcsre.EBobConnectionException;
(10)
(11) public class TcpClientETDConnector extends EBobConnectorExtImpl
(12) {
(13) private TcpClient extClass;
(14)
(15) public TcpClientETDConnector(Properties props)
(16) {
(17) super(props);
(18) }
(19)
(20) /**
(21) * Opens the connector for accessing the external system.
(22) *
(23) * @param intoEgate <code>true</code> if connector is to subscribe
(24) * to Events initially from an external and inbound
(25) * to e*Gate;
(26) * <code>false</code> if connector is to publish
(27) * Events outbound from e*Gate and to an external.
(28) *
(29) * @see com.stc.jcsre.EbobConnector
(30) *
(31) * @throws com.stc.jcsre.EBobConnectionException when connection

problems occur.
(32) */
(33) public void open(boolean intoEgate)
(34) throws com.stc.jcsre.EBobConnectionException
(35) {
(36)
(37) // Implement opening connection to external system
(38) //
(39) if (props == null)
(40) {
(41) lastError = new EBobConnectionException("Connector properties not

set.");
(42) throw (EBobConnectionException)lastError;
(43) }
(44)
(45) String server =

props.getProperty(TcpClientETDDefs.ETD_DEF_PROP_NAME_SERVER);
(46) if (server == null)
(47) {
(48) lastError = new EBobConnectionException("Server is not specified

in the config file.");
Generic Multi-Mode e*Way Extension Kit User’s Guide 208

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(49) throw (EBobConnectionException)lastError;
(50) }
(51)
(52) String port =

props.getProperty(TcpClientETDDefs.ETD_DEF_PROP_NAME_PORT);
(53) if (port == null)
(54) {
(55) lastError = new EBobConnectionException("Port is not specified in

the config file.");
(56) throw (EBobConnectionException)lastError;
(57) }
(58)
(59)
(60) if (extClass != null)
(61) extClass.open(server, Integer.parseInt(port));
(62) else
(63) {
(64) lastError = new EBobConnectionException("TcpClient instance is

null.");
(65) throw (EBobConnectionException)lastError;
(66) }
(67) }
(68)
(69) public void open(Properties connectProps)
(70) throws com.stc.jcsre.EBobConnectionException
(71) {
(72) if (connectProps == null)
(73) {
(74) lastError = new EBobConnectionException("Passed connector

properties is null.");
(75) throw (EBobConnectionException)lastError;
(76) }
(77)
(78) String server =

connectProps.getProperty(TcpClientETDDefs.ETD_DEF_PROP_NAME_SERVER);
(79) if (server == null)
(80) {
(81) lastError = new EBobConnectionException("Server is not specified

in the config file.");
(82) throw (EBobConnectionException)lastError;
(83) }
(84)
(85) String port =

connectProps.getProperty(TcpClientETDDefs.ETD_DEF_PROP_NAME_PORT);
(86) if (port == null)
(87) {
(88) lastError = new EBobConnectionException("Port is not specified in

the config file.");
(89) throw (EBobConnectionException)lastError;
(90) }
(91)
(92) if (extClass != null)
(93) extClass.open(server, Integer.parseInt(port));
(94) else
(95) {
(96) lastError = new EBobConnectionException("No TcpClient class

instance!");
(97) throw (EBobConnectionException)lastError;
(98) }
(99) }
(100)
(101) /**
(102) * Closes the connector to the external system and releases

resources.
Generic Multi-Mode e*Way Extension Kit User’s Guide 209

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(103) *
(104) * @see com.stc.jcsre.EbobConnector
(105) *
(106) * @throws com.stc.jcsre.EBobConnectionException When connection

problems occur.
(107) */
(108) public void close() throws com.stc.jcsre.EBobConnectionException
(109) {
(110) // Implement closing connection to external system
(111) //
(112) if (extClass != null)
(113) extClass.close();
(114) else
(115) {
(116) lastError = new EBobConnectionException("No TcpClient class

instance!");
(117) throw (EBobConnectionException)lastError;
(118) }
(119) }
(120)
(121) /**
(122) * Verifies that the connector to the external system is still

available.
(123) *
(124) * @return <code>true</code> if the connector is still open and

available;
(125) * <code>false</code> otherwise.
(126) *
(127) * @see com.stc.jcsre.EbobConnector
(128) *
(129) * @exception com.stc.jcsre.EBobConnectionException
(130) * When connection problems occur.
(131) */
(132) public boolean isOpen() throws

com.stc.jcsre.EBobConnectionException
(133) {
(134) // Implement returning if connection to external system is open
(135) //
(136) if (extClass != null)
(137) return extClass.isOpen();
(138) else
(139) return false;
(140) }
(141)
(142) /**
(143) * Set to the delegate external class instance by the
(144) */
(145) public void setExternalClass(TcpClient extClassInstance)
(146) {
(147) this.extClass = extClassInstance;
(148) }
(149)
(150) /**
(151) * Get to the delegate external class instance by the
(152) */
(153) public TcpClient getExternalClass()
(154) {
(155) return this.extClass;
(156) }
(157) }
(158)
(159)
Generic Multi-Mode e*Way Extension Kit User’s Guide 210

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
TCPClientDefs.java

Defines the string constants and property names to be pulled in from the default
configuration-file template (.def file) in the source file TCPClientETDDefs.java.

(1) package tcpsample;
(2)
(3) public class TcpClientETDDefs {
(4)
(5) // Property names from e*Way Connection config file
(6) //
(7) public static final String ETD_DEF_PROP_NAME_SERVER =
(8) "TCPIP_Configuration.Server";
(9)
(10) public static final String ETD_DEF_PROP_NAME_PORT =
(11) "TCPIP_Configuration.Port";
(12)
(13) }
(14)

TCPClient.java

Creates your class for interfacing with the external system.

(1) package tcpsample;
(2)
(3) import java.io.*;
(4) import java.net.*;
(5) import java.util.Properties;
(6)
(7) public class TcpClient
(8) {
(9) private InputStream in = null;
(10) private OutputStream out = null;
(11) private Socket socket = null;
(12)
(13) public TcpClient()
(14) {
(15) }
(16)
(17) public void open(String server, int serverPort)
(18) {
(19) try {
(20) socket = new Socket(server, serverPort);
(21) socket.setSoTimeout(10000);
(22) socket.setSoLinger(true, 10000);
(23) socket.setTcpNoDelay(true);
(24)
(25) System.err.println("Connected to server... sending echo string");
(26)
(27) in = socket.getInputStream();
(28) out = socket.getOutputStream();
(29) }
(30) catch (Exception e) {
(31) }
(32) }
(33)
(34) public void close()
(35) {
(36) try {
(37) socket.close();
(38) }
(39) catch (Exception e) {
Generic Multi-Mode e*Way Extension Kit User’s Guide 211

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(40) }
(41) }
(42)
(43) public boolean isOpen()
(44) {
(45) if (in == null || out == null || socket == null)
(46) return false;
(47)
(48) try {
(49) byte[] reply = send("ping".getBytes());
(50)
(51) if ("ping".equals(new String(reply)))
(52) return true;
(53) }
(54) catch (TcpClientException te) {
(55) return false;
(56) }
(57) return false;
(58) }
(59)
(60) public byte[] send(byte[] inBuffer)
(61) throws TcpClientException
(62) {
(63) byte[] outBuffer = new byte[inBuffer.length];
(64)
(65) try {
(66) System.err.println("Sending msg to server...");
(67)
(68) // send msg to server
(69) out.write(inBuffer);
(70)
(71) // receive back same msg from server
(72) int totalBytesRcvd = 0;
(73) int bytesRcvd;
(74) while (totalBytesRcvd < inBuffer.length)
(75) {
(76) if ((bytesRcvd = in.read(outBuffer, totalBytesRcvd,
(77) outBuffer.length - totalBytesRcvd)) ==

-1)
(78) throw new SocketException("Connection closed prematurely");
(79)
(80) totalBytesRcvd += bytesRcvd;
(81) }
(82) }
(83) catch (IOException ie) {
(84) throw new TcpClientException("Got IO exception.");
(85) }
(86) catch (Exception e) {
(87) throw new TcpClientException("Got exception sending message.");
(88) }
(89)
(90) return outBuffer;
(91) }
(92)
(93) public static void main(String[] args)
(94) {
(95) if (args.length < 1)
(96) System.out.println("Usage: java tcpsample.TcpClient <msg>");
(97)
(98) try {
(99) TcpClient myClient = new TcpClient();
(100)
(101) myClient.open("localhost", 9999);
(102)
Generic Multi-Mode e*Way Extension Kit User’s Guide 212

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(103) if (myClient.isOpen())
(104) System.out.println("--- connection is open ---");
(105) else
(106) System.out.println("--- connection is closed ---");
(107)
(108) System.out.println("Sending " + args[0]);
(109)
(110) byte[] fromServer = myClient.send(args[0].getBytes());
(111)
(112) System.out.println("Received: " + new String(fromServer));
(113)
(114) if (myClient.isOpen())
(115) System.out.println("--- connection is open ---");
(116) else
(117) System.out.println("--- connection is closed ---");
(118)
(119) myClient.close();
(120) }
(121) catch (Exception e) {
(122) System.out.println("Got exception running test.");
(123) }
(124) }
(125) }
(126)
(127)

TCPClientException.java

Defines the exception class in source file TCPClientException.java.

(1) package tcpsample;
(2)
(3) import com.stc.eways.exception.STCDataException;
(4)
(5) public class TcpClientException extends STCDataException
(6) {
(7) public TcpClientException()
(8) {
(9) super();
(10) }
(11)
(12) public TcpClientException(String ex)
(13) {
(14) super(ex);
(15) }
(16)
(17) public TcpClientException(String ex, Exception e)
(18) {
(19) super(ex, e);
(20) }
(21) }
(22)
(23)

11.5.3 TCPServer
TCPServer.java is a simple server sample which echoes back messages sent to it by the
associated client. You can use it to test the TCPClient ETD. The script RunServer.bat is
used to run the server on port 9999. The client and the server must be configured to run
on the same port.
Generic Multi-Mode e*Way Extension Kit User’s Guide 213

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
TCPServer.java
(1) import java.net.*;
(2) import java.io.*;
(3)
(4) public class TCPEchoServer {
(5)
(6) private static final int BUFSIZE = 32;
(7)
(8) public static void main(String[] args) throws IOException {
(9)
(10) if (args.length != 1)
(11) throw new IllegalArgumentException("Parameter(s): <Port>");
(12)
(13) int servPort = Integer.parseInt(args[0]);
(14)
(15) ServerSocket servSock = new ServerSocket(servPort);
(16)
(17) int recvMsgSize;
(18) byte[] byteBuffer = new byte[BUFSIZE];
(19)
(20) for (;;) {
(21) Socket clntSock = servSock.accept();
(22)
(23) System.out.println("Handling client at " +
(24) clntSock.getInetAddress().getHostAddress() + " on port " +
(25) clntSock.getPort());
(26)
(27) InputStream in = clntSock.getInputStream();
(28) OutputStream out = clntSock.getOutputStream();
(29)
(30) while ((recvMsgSize = in.read(byteBuffer)) != -1)
(31) out.write(byteBuffer, 0, recvMsgSize);
(32)
(33) clntSock.close();
(34) }
(35) }
(36) }
(37)

RunServer.bat
(1) java -classpath . TCPEchoServer 9999

11.5.4 Customizing the Compile Script
The kit provides a compile script (compile.bat on Windows; compile.sh on UNIX) to
set CLASSPATH information and to create a .jar file for the compiled .java files upon
completion.

(1) set GMEEK_EXTRACTDIR=C:\gmeekjars
(2) set JAVA_PATH=C:\jdk1.3.1_02\bin
(3) set

MYCLASSPATH="%GMEEK_EXTRACTDIR%\classes\stcjcs.jar;%GMEEK_EXTRACTDIR%\c
lasses\stcexception.jar;%GMEEK_EXTRACTDIR%\classes\stcutil.jar;"

(4)
(5) %JAVA_PATH%\javac -classpath %MYCLASSPATH% -d . *.java
(6)
(7) @REM
(8) @REM jar up the classes
(9) @REM
(10)
Generic Multi-Mode e*Way Extension Kit User’s Guide 214

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
(11)
(12) %JAVA_PATH%\jar cvf ..\installETD\TcpClientETD\TcpClientETD.jar

tcpsample*.class
(13)
(14) @REM
(15) @REM jar up the source files to allow for debugger to use;
(16) @REM please remove the following for a release version
(17) @REM
(18) copy *.java tcpsample
(19) %JAVA_PATH%\jar uvf ..\installETD\TcpClientETD\TcpClientETD.jar

tcpsample*.java
(20) del tcpsample*.java

As needed, make the following changes to reflect your environment:

1 set GMEEK_EXTRACTDIR=C:\gmeekjars

Specify the correct location, if your e*Gate installation resides anywhere other than
the root \eGate directory on your C drive.

2 JAVA_PATH=c:\jdk1.3.1_02\bin

Specify the correct path location for your JDK.

3 When creating e*Way Connections from scratch, modify the directory locations in
the compile script as needed.

11.5.5 Compiling the .java Files and Creating the .jar File
Open a Command Prompt, change to the correct directory and run the compile script:

On Windows

.\compile.bat

On UNIX

./compile.sh

The script is designed to set the CLASSPATH and create the .jar file. The .jar file is then
saved to the gmeek\installETD\TCPClientETD directory.

11.5.6 Editing/Viewing the .ctl Files
The TCPClientETD.ctl contains the information required by the GUI to be able to
successfully load the ETD. Any .jar files required by the ETD must be included here.

##--
#
TcpClientETD.ctl (The ETD CTL file)
#
This CTL file is used by the GUIs. It specifies the JAR
files that are needed by your ETD classes for compilation
(in a Collaboration). It also specifies the JAR files needed
at run time.
##--

##--
JAR files containing the classes associated with your ETD

##--
TcpClientETD.jar,etd/TcpClientETD,FILETYPE_BINTEXT
Generic Multi-Mode e*Way Extension Kit User’s Guide 215

Chapter 11 Section 11.5
Developing an e*Way Connection With Connection Management Setting Up the Connection Management Sample Files
stcexception.jar,classes,FILETYPE_BINTEXT

11.5.7 Editing/Viewing the .def Files
End users configure e*Ways using the e*Way Configuration Editor, a graphical user
interface (GUI) that allows one to change configuration parameters quickly and easily.
The e*Way Configuration Editor uses the default configuration-file template (.def file)
to classify each parameter by its type and name, and can specify other information as
well, such as the range of permissible options for a given parameter.

The Configuration Editor stores the values that you assign to those parameters within
two configuration files. Each configuration file contains similar information, but the
two are formatted differently:

The .cfg file contains the parameter values in delimited records and is parsed by the
e*Way at run time.

The .sc file contains the parameter values and additional information needed by the
GUI.

The e*Way Editor loads the .sc file—not the .cfg file—when you edit the configuration
settings for an e*Way. Both configuration files are generated automatically by the e*Way
Configuration Editor whenever the configuration settings are saved.

For more information on creating a custom .def file, see Appendix A “Extending the
.def File” on page 256.

11.5.8 Editing/Viewing the .xsc File
The .xsc file provided with the sample contains the information provided by the .java
files and required by the GUI.

TcpClientETD.xsc listing

<?xml version="1.0" encoding="UTF-8"?>
<etd name="TcpClientETD" type="TcpClientETD" xscVersion="0.6" uid="0" >
<javaProps package="tcpsample" codeAvailable="true" uid="1" />
<node name="Connection" type="CLASS" uid="cfg1">
 <node name="Server" optional="true" comment="Server" uid="cfg9" type="FIELD" />
<method name="hasServer" signature="hasServer()Z" returnType="boolean" comment="test
if element is present" uid="cfg10" />
 <method name="omitServer" signature="omitServer()V" returnType="void" comment="omit
element" uid="cfg11" />
 <node name="Port" optional="true" comment="Port" uid="cfg12" javaType="long"
type="FIELD" />
 <method name="hasPort" signature="hasPort()Z" returnType="boolean" comment="test if
element is present" uid="cfg13" />
 <method name="omitPort" signature="omitPort()V" returnType="void" comment="omit
element" uid="cfg14" />
 </node>
<node name="TcpClientETD" type="CLASS" uid="135">
<node name="Connection" type="FIELD" javaType="Connection" uid="cfg33" />
<node name="Server" type="FIELD" optional="true" comment="This node contains the
filename." uid="140" />
 <node name="Port" type="FIELD" optional="true" comment="This node contains the
directory." uid="143" />
 <node name="Message" type="FIELD" optional="true" comment="This node contains the
message sent if the no arg sendToServer method is used." uid="144" />
<method name="sendToServer" returnType="void" comment="This method sends the passed
string to the server." uid="170">
 <param name="message" paramType="java.lang.String" comment="The message to send
to the server." uid="171" />
 </method>
 <method name="sendToServer" returnType="void" comment="This method sends the
current value of getMessage to the server." uid="174"/>
Generic Multi-Mode e*Way Extension Kit User’s Guide 216

Chapter 11 Section 11.6
Developing an e*Way Connection With Connection Management Installing the Sample Files to e*Gate
<method name="getReply" returnType="java.lang.String" comment="This method returns the
reply message from the server." uid="160" />
<method name="connect" returnType="void" signature="connect()V" uid="31" />
 <method name="disconnect" returnType="void" signature="disconnect()V" uid="32" />
 <method name="isConnected" returnType="boolean" signature="isConnected()Z" uid="33"
/>
</node>
</etd>

11.6 Installing the Sample Files to e*Gate
After compiling the .java files and creating the .xsc file, you must commit all changes
and additions to the e*Gate Registry. The instructions for committing the changes are
contained in the installETD.* and install.ctl files provided.

11.6.1 Customizing the install.ctl File
The install.ctl file specifies the following information that must be modified when
necessary:

The .ctl file used by your ETD during run time.

The .jar files containing the classes associated with your ETD.

Any third-party .jar files used.

The .xsc file associated with your ETD.

The .def file (if used) associated with your e*Way Connection.

11.6.2 Testing Outside of e*Gate
This section is optional. It shows you how to validate the APIs used by TcpClientETD
outside of the e*Gate environment. The TcpClient.java and TCPEchoServer.java files
contain the source code for testing the APIs, and the runServer scripts are provided to
run the server.

Running the runServer Script for TcpEchoServer

To compile the TCP Server

1 Do one of the following:

Invoke the javac:

javac TCPEchoServer.java

Alternatively, you can use the compile.bat (or, on UNIX, compile.sh) file
supplied in gmeek\TcpClientETD\server\.

2 After the .java files have been compiled, run the script by opening a Command
Prompt and entering the command runServer.

Do one of the following:
Generic Multi-Mode e*Way Extension Kit User’s Guide 217

Chapter 11 Section 11.6
Developing an e*Way Connection With Connection Management Installing the Sample Files to e*Gate
On Windows, open a Command Prompt, change to the correct directory and then
run the runServer.bat file by entering the following:

.\runServer

On UNIX, open a shell, change to the correct directory, and then run the
runServer.sh file by entering the following:

./runServer.sh

Note: Initially, there should not be any output.

TcpClient.java

The most important portion of the TcpClient.java file is listed as follows.

 ...
 public static void main(String[] args)
 {
 if (args.length < 1)
 System.out.println("Usage: java tcpsample.TcpClient <msg>");

 try {
 TcpClient myClient = new TcpClient();

 myClient.open("localhost", 9999);

 if (myClient.isOpen())
 System.out.println("--- connection is open ---");
 else
 System.out.println("--- connection is closed ---");

 System.out.println("Sending " + args[0]);

 byte[] fromServer = myClient.send(args[0].getBytes());

 System.out.println("Received: " + new String(fromServer));

 if (myClient.isOpen())
 System.out.println("--- connection is open ---");
 else
 System.out.println("--- connection is closed ---");

 myClient.close();
 }
 catch (Exception e) {
 System.out.println("Got exception running test.");
 }
 }
 ...

Running the runTester Script for TcpEchoServer

Once the .java files have been compiled, run the runTester.bat file by opening a
Command Prompt and entering the command runTester.

Do one of the following:

On Windows, open a Command Prompt, change to the correct directory and then
run the runTester.bat file by entering the following:

.\runTester
Generic Multi-Mode e*Way Extension Kit User’s Guide 218

Chapter 11 Section 11.6
Developing an e*Way Connection With Connection Management Installing the Sample Files to e*Gate
On UNIX, open a shell, change to the correct directory, and then run the
runTester.sh file by entering the following:

./runTester.sh

The output for TcpClient should resemble the following:

(1) Connected to server... sending echo string
(2) Sending msg to server...
(3) --- connection is open ---
(4) Sending hello
(5) Sending msg to server...
(6) Received: hello
(7) ...

At the same time, the output for TcpEchoServer should resemble the following:

(1) Handling client at 127.0.0.1 on port 2588
(2) Handling client at 127.0.0.1 on port 2589
(3) ...

11.6.3 Running the installETD Script
If you do not already have a schema into which to commit your files, create one (such as
TcpEcho). Then, do one of the following:

On Windows, open a Command Prompt, change directories to gmeek\installETD,
and enter the following command:

.\installETD -e TCPClientETD -s TcpEcho -h localhost -g c:\eGate

If you are installing to a different schema, host, or directory, make the appropriate
substitutions. For syntax details, see Windows: installETD.bat on page 76.

On UNIX, open a shell, change directories to gmeek/installETD, and enter the
following command:

./installETD.sh -e TCPClientETD -s TcpEcho -h localhost -g /eGate

If you are installing to a different schema, host, or directory, make the appropriate
substitutions. For syntax details, see UNIX: installETD.sh on page 76.

11.6.4 Validating the Sample Files Within e*Gate
Start the Schema Designer and open the schema into which the installETD command
was run.

Create a new e*Way Connection. If all of the files committed successfully, the e*Way
Connection Editor contains theTcpClientETD entry as a possible e*Way Connection
Type, as shown in Figure 53.
Generic Multi-Mode e*Way Extension Kit User’s Guide 219

Chapter 11 Section 11.6
Developing an e*Way Connection With Connection Management Installing the Sample Files to e*Gate
Figure 53 e*Way Connection Type TcpClientETD

From the ETD Editor, open the TcpClientETD.xsc. If all the files committed successfully
it should appear as shown in Figure 54.

Figure 54 TcpClientETD.xsc
Generic Multi-Mode e*Way Extension Kit User’s Guide 220

Chapter 11 Section 11.7
Developing an e*Way Connection With Connection Management Understanding the TcpClientETD Implemented in a Schema
11.7 Understanding the TcpClientETD Implemented in a
Schema

This section:

Tells you how to load the sample schema included in TcpEcho.zip.

Shows you how the sample components appear to the end user.

Shows you how the sample components behave in the e*Gate environment.

11.7.1 Importing the TcpEcho.zip Schema
To import the sample schema into e*Gate version 4.5.2 and later

1 Start the e*Gate Schema Designer GUI.

2 When the Schema Designer prompts you to log in, select the host that you specified
during installation, and enter your password.

3 You are then prompted to select a schema. Click New. The New Schema dialog box
opens. (Schemas can also be imported or opened from the e*Gate File menu by
selecting New Schema or Open Schema.)

4 Enter a name for the new Schema, for example, Tcp_Echo_Sample_Schema, or any
name as desired.

5 To import the sample schema select Create from Export, and use Find to locate and
select the TcpEcho.zip file on the e*Gate Integrator Installation CD-ROM or from
the location it was copied in earlier.

TcpEcho.zip is the file supplied in the sample directory.

The e*Gate Schema Designer opens to the new schema. You are now ready to make any
configuration changes that may be necessary for this sample schema to run on your
specific system.

11.7.2 Sample Data INDATA
If you have not already extracted the INDATA.zip file into a temporary directory,
follow steps 1 and 2. If you have already done this step, skip steps 1 and 2 and begin
with step 3.

1 Extract the INDATA.zip file into a temporary directory.

2 Copy the extracted files into the C:\INDATA directory.

Note: If you want or need to use a location other than C:\INDATA (for example, on
UNIX), you must change the string “\INDATA” to the correct location in your
e*Gate schema’s ewFeeder configuration.

3 Rename the SampleInput.~in file to SampleInput.fin.
Generic Multi-Mode e*Way Extension Kit User’s Guide 221

Chapter 11 Section 11.7
Developing an e*Way Connection With Connection Management Understanding the TcpClientETD Implemented in a Schema
The presence of a file with extension .fin triggers the file e*Way to read its contents
while the e*Way is running.

The INDATA.zip file contains the SampleInput.~in file, as follows.

SampleInput.~in:

<SampleInput>
<PropsName>Color</PropsName>
<PropsValue>Blue</PropsValue>

</SampleInput>

Note: If the server is not already running, run the runServer script. For details on
running the runServer script, see “Running the runServer Script for
TcpEchoServer” on page 217.

4 From a Command Prompt, enter the following command to have the e*Gate
Control Broker (stccb.exe) start the imported sample schema:

stccb -rh localhost -un Administrator -up STC -ln localhost_cb -rs
<schema name>

To use a Registry Host other than localhost, a username/password combination
other than Administrator/STC, and/or a logical Control Broker name other than
localhost_cb, make the appropriate substitutions.

Results

Once the schema is run, the output results should match the input. The output is
specified by the ewEater configuration. Successful execution creates a file named
output0.dat, or output1.dat, ... or a similar file name in C:\OUTDATA specified by the
e*Way Connection.
Generic Multi-Mode e*Way Extension Kit User’s Guide 222

Chapter 12

Developing a Transactional e*Way
Connection

The Generic Multi-Mode e*Way Extension Kit provides a complete set of files for setting
up a sample e*Way Connection that employs an XA-compliant Resource Manager and
Transaction Manager —in other words, an “XA-enabled” e*Way Connection.

This chapter describes each of the files and takes you step by step through the process
of modifying the files, compiling them, placing them in the correct locations, and
validating them within the environment of an e*Gate schema.

The final section of this chapter takes you through the sample schema, showing you
how the user-created ETD and e*Way Connection fit into e*Gate so you can match up
your development efforts with the features seen by end users.

Note: The e*Gate User’s Guide provides an overview of XA terms and concepts and an
architectural review of XA as it applies to e*Gate Collaborations. The overview in
the following section expands on the material in the e*Gate User’s Guide, taking
an e*Way-centric view of transactional processing rather than a Collaboration-
centric view.

12.1 Overview
As discussed in “e*Way Connections with Transaction Processing and XA” on
page 68, e*Gate supports one-phase as well as two-phase commit transactions through
its implementation in user Collaborations of the Java Transaction API (JTA)
specification. The relevant JTA components are:

the Application Program (AP), represented in e*Gate by the Collaboration.

the Application Server (AS), represented in e*Gate by the Multi-Mode e*Way.

Resource Managers (RMs), represented in e*Gate by the ETDs that allow access to
external resources.
Generic Multi-Mode e*Way Extension Kit User’s Guide 223

Chapter 12 Section 12.1
Developing a Transactional e*Way Connection Overview
12.1.1 Transactional Interfaces for e*Way Connection ETDs
One-phase transactional processing (XA-noncompliant)

To enable e*Way Connection ETDs to participate in one-phase transactions, the ETD
class—in other words, the class that implements the ETD interface—must register
itself with the Transaction Manager using the method registerTransactionAdapter().

In addition, the ETD class must implement the JTransactionAdapter interface.
The JTransactionAdapter interface contains the following methods:

public void commit() throws CollabConnException;

public void rollback() throws CollabConnException;

public boolean isPublisher();

public java.lang.String getID();

For information on the methods themselves, see the Javadoc files supplied on the
e*Gate Integrator Installation CD-ROM.

Two-phase transactional processing (XA-compliant)

To allow your XA Resource Manager (managed by the underlying e*Way Connection
ETD) to be recognized by the e*Gate Transaction components, the e*Way ETD must
register itself with the Transaction Manager using the register() method, and the e*Way
ETD must also implement the JXAResourceAdapter interface.

The JXAResourceAdapter interface contains the following methods:

public void xaOpen(java.lang.String aKey) throws CollabConnException;

public XAResource getXAResource() throws CollabConnException;

public void xaClose(java.lang.String aKey) throws CollabConnException;

For a discussion of the concepts and overall approach, refer to “e*Way Connections
with Transaction Processing and XA” on page 68; for information on the methods
themselves, see the Javadoc files supplied on the e*Gate Integrator Installation CD-
ROM.

12.1.2 Architecture of the Sample Transactional e*Way Connection
The architecture of the Transactional sample is diagrammed in Figure 55 on page 225.
Generic Multi-Mode e*Way Extension Kit User’s Guide 224

Chapter 12 Section 12.2
Developing a Transactional e*Way Connection Classes and Interactions for the Transactional Sample
Figure 55 Architecture of e*Way Connection: Transactional Sample

In this sample schema, the XAFileETD e*Way Connection contains simple logic to
process the file content of an input file feeding through the file e*Way to a BLOB ETD.
The file’s content is published to a JMS–enabled queue (an XA-compliant resource) and
eventually arrives at the Collaboration business rule of the Multi-Mode e*Way. This is
where the logic of an XA-compliant resource is used to create temporary journal files
(temp\id-yyy.*) corresponding to the different phases of the transaction.

When the XA-compliant resource is completely ready, a commit() command is issued
and the designated output file is created or overwritten. However, if any external error
conditions occur before the commit() logic is fully executed, the file is not created or
overwritten. Instead, the file is re-created by the rollback() recovery logic of the XA-
compliant resource the next time the e*Gate environment is properly set up again.
There is no need to read the input file again.

12.2 Classes and Interactions for the Transactional Sample
For the Transactional sample, the flow sequence is discussed in Figure 21 (“Sequence of
Class Interactions in XA: Initialization Phase” on page 71) and Figure 22 (“Sequence of
Class Interactions in XA: Translation Phase” on page 72). The connector class is the
same as for the Automatic Connection sample (see “TCPClientETDConnector.java” on
page 208). However, the ETD class is slightly different and has different interactions.
These differences are discussed in detail in the following section.

e*Gate

Feeder
file e*Way eater

Multi-Mode
e*Way

(eater_colrule
in

eater_collab collab
Service)

JMS
XAFile_iq

Sub

blob ETD

input file:
 C:\INDATA\SampleInput.fin

Pub

output file:
 C:\INDATA\XAFiletest.txt

XAFileETD
(e*Way

Connection)

blob ETD

blob ETD

files in temp dir = C:\temp\:
 Xid-fff-ggg-bbb.start
 Xid-fff-ggg-bbb.target
 Xid-fff-ggg-bbb.prepared

XA C
om

m
it
Generic Multi-Mode e*Way Extension Kit User’s Guide 225

Chapter 12 Section 12.2
Developing a Transactional e*Way Connection Classes and Interactions for the Transactional Sample
12.2.1 ETD Class
For the Transactional sample, the class diagram for the ETD class for the e*Way
Connection is shown in Figure 56.

Figure 56 ETD Class for the Sample XA-enabled e*Way Connection

The relationships between class XAFileETD and interfaces EwayConnectionETDImpl,
ETD, and ETDExt are similar to that for TcpClientETD shown in Figure 51 on page 187.
Figure 56 shows the delegate object (XAFile) along with the Resource object it contains.
The Resource object implements the XAResource interface, which defines the contract
between a Resource Manager and the e*Gate Transaction Manager, and the XAFileETD
class implements the JXAResourceAdapter interface. To keep the kit as generic as
possible, the sample does not involve a sophisticated Resource Manager such as a
DBMS, so the Resource object takes on the role of XA Resource Manager.

+initialize() : void
+terminate() : void
+reset() : void
+marshal() : unsigned char
+unmarshal() : void
+retrieveMode() : int
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

«interface»
ETD

+initialize(in jCollabCcontroller, in key : String, in mode : int) : void
+retrieveKey() : String
+retrieveMode() : int
+terminate() : void
+reset() : bool
+marshal() : unsigned char
+unmarshal() : void
+available() : bool
+next() : bool
+send() : void
+send(in topicName : String) : void
+receive() : bool
+receive(in topicName : String) : bool
+rawInput() : unsigned char
+topic() : String
+publications() : Variant
+subscriptions() : Variant

EwayConnectionETDImpl

+getConnector() : EBobConnectorExt
+setConnector(in conn : EBobConnectorExt) : void
+get$Configuration() : ConnConfigBase

«interface»
ETDExt

+initialize(in jCollabController, in key : String, in mode : int)
+reset() : boolean
+terminate() : boolean
+writefile() : boolean
+setFilepath(in filepath : String) : void
+getFilepath() : String
+setMyExtDelegate() : void
+getMyExtDelegate() : XAFile

-myExtDelegate
XAFileETD

+start(in aKey : String) : void
+end(in aKey : String) : void
+forget() : void
+recover() : void
+prepare() : void
+commit() : void
+rollback() : void
+...()

«interface»
XAResource

+open() : Object
+....()

XAFile

+start() : void
+end() : void
+forget() : void
+recover() : void
+isSameRM() : boolean
+prepare() : void
+setTransactionTimeout() : void
+getTransactionTimeout() : int
+commit() : void
+rollback() : void
+...()

Resource 11

1

1

+xaOpen(in aKey : String) : void
+xaClose(in aKey : String) : void
+getXAResource() : XAResource

«interface»
JXAResourceAdapter
Generic Multi-Mode e*Way Extension Kit User’s Guide 226

Chapter 12 Section 12.3
Developing a Transactional e*Way Connection Overview of the Transactional Sample
12.3 Overview of the Transactional Sample
Implementing and validating the Transactional sample requires the following steps:

Ensure your environment meets the prerequisites, and then load and unzip the
sample source/install files in gmeek.taz. (You have already done this if you
completed one of the previous samples.)

Review or edit the .java files to understand the logic contained within the code.

Edit the compile.bat script (or, on UNIX, compile.sh) to reflect your development
environment.

Run the compile script to compile the .java files and create a .jar file.

Edit the .ctl and .def files to reflect both your environment and the functionality
required.

Review or edit the .xsc file to understand the logic required for it to perform
correctly.

Start the Schema Designer and create a schema into which to commit the sample.

Run the installETD script to make the sample files available to e*Gate.

Return to the Schema Designer and validate the results of the preceding steps.

Import the sample schema into e*Gate, start the Schema Manager, and validate the
behavior of the sample ETD and sample e*Way Connection.

12.4 Installing the Sample
The installation package for the Transactional sample comprises the following files:

XAFile.zip (e*Gate schema for the Transactional sample)

gmeek.taz

INDATA.zip

To install the files

1 Copy the files to a temporary directory.

If you have already completed one of the previous samples, you only need to copy
XAFile.zip.

2 Extract the gmeek.taz file (and, if necessary, the INDATA.zip file) to a convenient
location. The path location of these files will be used in scripts later.

Note: Changes to the directory locations of the unzipped files will require changes to the
supplied scripts. For this reason, it is recommended that you complete the sample
before making any changes to directory locations or file names.
Generic Multi-Mode e*Way Extension Kit User’s Guide 227

Chapter 12 Section 12.5
Developing a Transactional e*Way Connection Setting Up the Transactional Sample Files
12.5 Setting Up the Transactional Sample Files
In this section, the details for editing the sample scripts and creating the .java files are
broken down into steps:

“Editing/Viewing the .java Files” on page 228

“Customizing the Compile Script” on page 232

“Compiling the .java Files and Creating the .jar File” on page 233

“Editing/Viewing the XAFileETD.ctl File” on page 233

“Editing/Viewing the XAFile.def File” on page 234

“Editing/Viewing the XAFileETD.xsc File” on page 234

“Customizing the install.ctl File” on page 235

“Creating a Schema for the New ETD” on page 235

The files that apply specifically to the Transactional sample are shown Table 15. Unless
otherwise specified, when this chapter refers to <filename>.java, .ctl, .def, and so forth,
the corresponding directory names are implied.

12.5.1 Editing/Viewing the .java Files
The files that have been provided require only minor edits to allow you to deploy the
sample schema contained in XAFile.zip. This section provides the information
necessary to view the code, edit and compile it, and commit files to the e*Gate Registry.

Table 15 Transactional Sample Files

Directory Files

gmeek\XAFileETD\ compile.bat
compile.sh
EwayConnectionETDImpl.java
Resource.java
XAFile.java
XAFileETD.java
XAFileETDConnector.java
XAFileETDDefs.java
XidValue.java

gmeek\installETD\ installETD.bat (on Windows systems)
installETD.sh (on UNIX systems)

gmeek\installETD\XAFileETD\ connectionpoint.ini
install.ctl
runTester.bat
runTester.sh
XAFileETD.ctl
XAFileETD.def
XAFileETD.xsc
Generic Multi-Mode e*Way Extension Kit User’s Guide 228

Chapter 12 Section 12.5
Developing a Transactional e*Way Connection Setting Up the Transactional Sample Files
The code samples are provided to further your understanding. The sample code is
described in sections that describe its purpose.

The source code files for the Transactional sample are as follows:

XAFileETD.java

XAFileETDDefs.java

Resource.java

XidValue.java

XAFile.java

XAFileETDConnector.java

EwayConnectionETDImpl.java

The following sections discuss each of these files in detail.

XAFileETD.java

XAFileETD is the main e*Way Connection ETD class which may be instantiated in a
Collaboration as an e*Way Connection ETD. The class relationships discussed in
“TCPClient” on page 192 apply here as well.

The following source code shows a portion of the sample ETD class skeleton for
XAFileETD:

(1) package xasample;
(2) import java.util.Properties;
(3) import com.stc.common.collabService.EGate;
(4) import com.stc.common.collabService.JCollabController;
(5) import com.stc.common.collabService.JConnectionManager;
(6) import com.stc.common.collabService.CollabConnException;
(7) import com.stc.common.collabService.CollabDataException;
(8) import com.stc.common.collabService.CollabResendException;
(9) import com.stc.jcsre.ETDExt;
(10) import com.stc.jcsre.EBobConnectorExtFactory;
(11) import com.stc.jcsre.EBobConnectorExt;
(12) import com.stc.jcsre.cfg.ConnConfigBase;

(13) import java.io.*;
(14) import java.util.Date;
(15) import java.lang.Thread;
(16) import javax.transaction.xa.*;
(17) import com.stc.common.collabService.JXAResourceAdapter;

(18) public class XAFileETD extends EwayConnectionETDImpl implements ETDExt,
JXAResourceAdapter

(19)
(20) import xasample.*;

The import statements (2) through (17) are required.

In addition to the e*Gate core classes that are imported as discussed in“TCPClient”
on page 192, there are a few more new classes to import:

javax.transaction.xa.*—needed for XA-related classes such as XAResource and
Xid.
Generic Multi-Mode e*Way Extension Kit User’s Guide 229

Chapter 12 Section 12.5
Developing a Transactional e*Way Connection Setting Up the Transactional Sample Files
com.stc.common.collabService.JXAResourceAdapter—as mentioned earlier, this
XAFile ETD must implement the JXAResourceAdapter interface so that with
proper registration, the Transaction Manager can call back various methods of
the external XA resource, such as commit(), rollback(), start(), prepare(), and so
forth, using the getXAResource() method to obtain the reference to the Resource
object for this XAFileETD sample.

java.lang.Thread—needed for an optional delay parameter. (When you
validate the sample, this delay allows you to manually introduce an external
error so you can test XA recovery.)

java.util.Date—needed for prepending a timestamp to the output file.

For typical actions, strategies, and rationales regarding the following steps, see
“Creating .java Files” on page 56:

Create a Delegate object in your ETD class: See step 2 on page 58, and remember
that your ETD class in this sample is XAFile.

Override the initialize() method of your ETD class: See step 3 on page 58.

Instantiate your connector class: See step 4 on page 58.

Override your ETD class’s reset() method: See step 5 on page 59.

Override your ETD class’s terminate() method: See step 6 on page 59.

Create your ETD’s connector class: See step 7 on page 59.

Additionally, for this XA sample, you use the registerConnector() method to register
the connector object myETDConnector with the Connection Manager (obtained
through the getConnectionManager() method of the JCollabController input
parameter of the initialize() method to override) and also to register the ETD class itself
(which is an implementation of the JXAResourceAdapter interface) with the Transaction
Manager using a simple register() method of the JCollabController input parameter.

The XAFileETD class only needs to implement the getXAResource() method of the
JXAResourceAdapter interface. The method getXAResource() is invoked to obtain a
reference to the Resource object associated with the Resource Manager (XAResource)
actually held by the delegate object XAFile; the implementation of the methods
xaOpen() and xaClose() are placeholders for this ETD.

XAFileETDDefs.java

In source code file XAFileETDDefs.java, certain constants are used by the other classes
in the sample package. These consist of string constants and property names; the latter
are associated with the default configuration-file template (.def file).

Resource.java

Create your class for interfacing with the external system—in this case, an XA-
compliant Resource Manager. You may opt to include the definition of Resource as an
inner class for the XAFile class for this sample.
Generic Multi-Mode e*Way Extension Kit User’s Guide 230

Chapter 12 Section 12.5
Developing a Transactional e*Way Connection Setting Up the Transactional Sample Files
Resource is a sample class containing the methods that interact with an external
entity —in this case, the native file system, but normally the external entity is a
complete XA-compliant Resource Manager (perhaps provided as a third-party
component) that may or may not support Connection Pooling. Notice that the XAFile
class contains an instance of this class serving as a delegate that performs the method
calls made by the e*Gate Collaboration user through an XAFileETD object.

For more details on each XAResource interface method, see the Javadocs for
javax.transaction.xa.XAResource in “e*Way Classes and Methods” on page 254.

The start() method creates a file with the Transaction Manager–generated XID as
the basis for the file name and a .start file extension in the temporary directory.
At first, the file does not contain any detail.

The end() method performs a flush on the buffer associated with the output target
file (which is at this point a temporary file in the temporary directory) specified in
the .def file.

The prepare() method takes the temporary file in the temporary directory
containing the flushed data and renames to a .prepared file, signifying that the
prepare() operation is finished.

The commit() method renames the .prepared file to the name currently contained
in .target file in the temporary directory (after the output target file is first removed,
if already exists) and performs cleanup to remove the remaining .target file.

The recover() method obtains the list of transaction branches—in other words, a list
of XIDs—that are currently in prepared states, by extracting the XIDs from the file
names of all the .prepared files left in the temporary directory.

The rollback() method cleans up all the temporary files in the temporary directory.
These consist of .target, .prepared, and .start files, if any.

The setTransactionTimeout() method is not implemented, since there is no
underlying Resource Manager for this sample. As supplied, it always returns false,
dooming any attempt to use this method. If a Resource Manager is available,
provide the appropriate logic—for example, you could invoke the corresponding
transaction timeout setup method for the resource.

The getTransactionTimeout() and forget() methods are also not fully implemented,
for similar reasons.

The isSameRM() method normally compares the current Resource Manager with
another Resource Manager. However, there is no other Resource Manager involved
in this case, and so this method is not implemented fully.

XidValue.java

XidValue is an implementation of the Xid interface, which is a Java mapping of the X/
Open transaction identifier (XID) structure. The Xid interface is used by the e*Gate
Transaction Manager and the Resource Managers.

The three parts of an XID must meet he following criteria:

The format identifier is unique to the implementation;
Generic Multi-Mode e*Way Extension Kit User’s Guide 231

Chapter 12 Section 12.5
Developing a Transactional e*Way Connection Setting Up the Transactional Sample Files
The global identifier uniquely identifies the transaction across a collection of server.

The branch qualifier (also called the branch identifier) identifies one of several
branches inside the transaction.

In the XA sample provided, the Xid does not make use of the generation logic that the
XidValue class implements. Instead, it is used to obtain the field values originated by
the e*Gate Transaction Manager.

XAFile.java

XAFile is the same delegate object discussed in chapters 10 and 11. For additional
information on the rationale and usage of the delegate object, refer to “Creating .java
Files” on page 56 and to “Using a Delegate Class” on page 243.

XAFileETDConnector.java

The XAFileETDConnector class is the counterpart of the TcpclientETD sample
TcpClientETDConnector. For more information, refer “Editing/Viewing the .java
Files” on page 159.

Notice that an additional helper method is included: isXA(). This returns a Boolean true
to indicate that the ETD is XA-enabled. This is useful for implementing logic to prohibit
XA operations from running at the Subcollaboration Rule level. See “Caveats” on
page 55.

EwayConnectionETDImpl.java

EwayConnectionETDImpl implements the ETD class so as to provide all the default
implementations used for e*Way Connection (non-messageable) ETDs. For more
information, refer to “Editing/Viewing the .java Files” on page 159.

Note: Since it is not intended for message parsing, EwayConnectionETDImpl contains
empty implementations of the marshal() and unmarshal() methods. For more
information on parsing messageable ETDs, see “Handling Messageable ETDs”
on page 243.

12.5.2 Customizing the Compile Script
The kit provides a compile script (compile.bat on Windows; compile.sh on UNIX) to
set CLASSPATH information and to create a .jar file for the compiled .java files upon
completion.

(1) set GMEEK_EXTRACTDIR=C:\gmeekjars
(2) set JAVA_PATH=C:\jdk1.3.1_02\bin
(3) set

MYCLASSPATH="%GMEEK_EXTRACTDIR%\classes\stcjcs.jar;%GMEEK_EXTRACTDIR%\T
hirdParty\sun\jta.jar;%GMEEK_EXTRACTDIR%\classes\stcexception.jar;"

(4)
(5) %JAVA_PATH%\javac -classpath %MYCLASSPATH% -d . *.java
(6)
(7) @REM
(8) @REM jar up the classes
Generic Multi-Mode e*Way Extension Kit User’s Guide 232

Chapter 12 Section 12.5
Developing a Transactional e*Way Connection Setting Up the Transactional Sample Files
(9) @REM
(10)
(11)
(12) %JAVA_PATH%\jar cvf ..\installETD\XAFileETD\XAFileETD.jar

xasample*.class
(13)
(14) @REM
(15) @REM jar up the source files to allow for debugger to use;
(16) @REM please remove the following for a release version
(17) @REM
(18) copy ..\XAFileETD*.java xasample
(19) %JAVA_PATH%\jar uvf ..\installETD\XAFileETD\XAFileETD.jar

xasample*.java
(20) del xasample*.java

Note: The jta.jar file contains the classes for javax.transaction.xa and is installed by
default for e*Gate version 4.5.2 and later.

As needed, make the following changes to reflect your environment:

1 set GMEEK_EXTRACTDIR=C:\gmeekjars

If your e*Gate installation resides anywhere other than the root \eGate directory on
your C drive, specify the correct location.

2 JAVA_PATH=c:\jdk1.3.1_02\bin

Specify the correct path location for your JDK.

3 When creating e*Way Connections from scratch, modify the directory locations in
compile.bat (or, on UNIX, in compile.sh) as needed.

12.5.3 Compiling the .java Files and Creating the .jar File
Open a Command Prompt, change to the correct directory and run the compile script:

On Windows

.\compile.bat

On UNIX

./compile.sh

The script is designed to set the CLASSPATH and create the .jar file. The .jar file is then
saved to the gmeek\installETD\XAFileETD directory.

12.5.4 Editing/Viewing the XAFileETD.ctl File
The XAFileETD.ctl file contains information required by the GUI to be able to
successfully load the ETD. Any .jar files that are required by the ETD, such as third-
party .jar files, must be included here.

XAFileETD.ctl

(1) ##--
(2) #
(3) # XAFileETD.ctl (The ETD CTL file)
(4) #
Generic Multi-Mode e*Way Extension Kit User’s Guide 233

Chapter 12 Section 12.5
Developing a Transactional e*Way Connection Setting Up the Transactional Sample Files
(5) # This CTL file is used by the GUIs. It specifies the JAR files
(6) # that are needed by your ETD classes for compilation
(7) # (in a Collaboration). It also specifies the JAR files
(8) # needed during run time.
(9) ##---
(10)
(11) ##---
(12) # JAR files containing the classes associated with your ETD
(13) #
(14) ##---
(15) XAFileETD.jar,etd/XAFileETD,FILETYPE_BINTEXT

12.5.5 Editing/Viewing the XAFile.def File
For a general description of the purpose and operation of default configuration-file
templates (.def files), see “Editing/Viewing the .def Files” on page 176. For this
sample, you can add or modify additional parameters entries as needed if you plan to
use this sample as a working code template. For more information on creating a
custom .def file, see Appendix A “Extending the .def File” on page 256.

12.5.6 Editing/Viewing the XAFileETD.xsc File
The .xsc file provided with the sample contains the information provided by the .java
files and required by the GUI. If you want the end user to see additional methods or
properties in the GUI (ETD Editor, Collaboration Rules Editor), update this .xsc file
appropriately. Complete details on the XSC formats are provided in Appendix B “The
XSC Format” on page 287.

XAFileETD.xsc

(1) <?xml version="1.0" encoding="UTF-8"?>
(2) <etd name="XAFileETD" type="XAFileETD" xscVersion="0.6" uid="0" >
(3) <javaProps package="xasample" codeAvailable="true" uid="1" />

(4) <node name="XAFileETD" type="CLASS" uid="2">
(5) <method name="writefile" returnType="boolean" comment="This method

sends the passed string to the specified file (if specified) under XA
transactional environment." uid="3">

(6) <param name="XAFileETDObj" paramType="xasample.XAFileETD"
comment="The XAFileETD object itself or null for default." uid="4" />

(7) <param name="msg" paramType="java.lang.String" comment="The
message to post to the file." uid="5" />

(8) <param name="filenamepath" paramType="java.lang.String"
comment="The output file name with path or null for default." uid="6" />

(9) <param name="testdelay" paramType="java.lang.String" comment="A
test milliseconds delay string to allow manual error to be introduced or
null for default of none." uid="7" />

(10) </method>
(11) </node>
(12) </etd>
Generic Multi-Mode e*Way Extension Kit User’s Guide 234

Chapter 12 Section 12.6
Developing a Transactional e*Way Connection Installing the Sample Files to e*Gate
12.6 Installing the Sample Files to e*Gate
After you have compiled the .java files to create one or more .jar file(s), customized
the .def and .ctl files so they correspond to your environment, and created or
customized the .xsc file for your ETD, you are ready to customize the install.ctl file and
use the installETD script to commit all your files to the e*Gate Registry.

After compiling the .java files and creating the .xsc file, you must commit all changes
and additions to the e*Gate Registry. The instructions for committing the changes are
contained in the installETD.* and install.ctl files provided.

12.6.1 Customizing the install.ctl File
If you have made additional changes to the sample, modify the install.ctl file so that it
correctly reflects all the following:

The .ctl file used by your ETD at run time.

The .jar files containing the classes associated with your ETD.

Any third-party .jar files used.

The .xsc file associated with your ETD.

The .def file associated with your e*Way Connection.

12.6.2 Creating a Schema for the New ETD
If you do not have a pre-existing schema into which you want to commit the ETD files
for the Transactional sample, start the Schema Designer and create a schema named, for
example, XAFile.

12.6.3 Running the installETD Script
Do one of the following:

On Windows, open a Command Prompt, change directories to gmeek\installETD,
and enter the following command:

.\installETD -e XAFileETD -s XAFile -h localhost -g c:\eGate

If you are installing to a different schema, host, or directory, make the appropriate
substitutions. For syntax details, see Windows: installETD.bat on page 76.

On UNIX, open a shell, change directories to gmeek/installETD, and enter the
following command:

./installETD.sh -e XAFileETD -s XAFile -h localhost -g /eGate

If you are installing to a different schema, host, or directory, make the appropriate
substitutions. For syntax details, see UNIX: installETD.sh on page 76.
Generic Multi-Mode e*Way Extension Kit User’s Guide 235

Chapter 12 Section 12.6
Developing a Transactional e*Way Connection Installing the Sample Files to e*Gate
12.6.4 Validating the Sample Files Within e*Gate
You can double-check your connectionpoint.ini file and XAFileETD.xsc file within
e*Gate by following these steps:

1 Start Schema Designer and open the schema into which the e*Way Connection was
committed.

2 Create a new e*Way Connection. If all of the files committed successfully, the e*Way
Connection Editor contains the XAFileETD entry as a possible e*Way Connection
Type, as shown in Figure 57.

Figure 57 e*Way Connection Properties for XAFileETD

Note: You do not need to create a new e*Way Connection Configuration file at this point.

The contents of the e*Way Connection Type field correspond to the
connectionpoint.ini file. If this field does not have an entry for XAFileETD, close
the e*Way Connection Editor, make the necessary changes to the
connectionpoint.ini file, and revalidate.

Note: To edit the connectionpoint.ini from the sandbox, you must edit it in both the
runtime and sandbox of the schema in the server repository. Also, you must remove
the old existing file from the client.

Start the ETD Editor and open the file XAFileETD.xsc, as shown in Figure 58.
Generic Multi-Mode e*Way Extension Kit User’s Guide 236

Chapter 12 Section 12.7
Developing a Transactional e*Way Connection Understanding the ETD Implemented in a Schema
Figure 58 ETD Editor Display of XAFileETD

If your sample does not look like this, analyze the problem, close the Editor, make
the necessary changes, and validate it again. When your sample looks like Figure
58, you are ready to import the sample schema into e*Gate.

12.7 Understanding the ETD Implemented in a Schema
This section:

Tells you how to load the sample version of the XAFile schema.

Shows you how the sample components appear to the end user.

Shows you how the sample components behave in the e*Gate environment.

12.7.1 Importing XAFile.zip Into e*Gate
To import the sample schema into e*Gate version 4.5.2 and later

1 Start the e*Gate Schema Designer GUI.

2 When the Schema Designer prompts you to log in, select the host that you specified
during installation, and enter your password.
Generic Multi-Mode e*Way Extension Kit User’s Guide 237

Chapter 12 Section 12.7
Developing a Transactional e*Way Connection Understanding the ETD Implemented in a Schema
3 You are then prompted to select a schema. Click New. The New Schema dialog box
opens. (Schemas can also be imported or opened from the e*Gate File menu by
selecting New Schema or Open Schema.)

4 Enter a name for the new Schema, for example, XAFile_Sample_Schema, or any
name as desired.

5 To import the sample schema select Create from Export, and use Find to locate and
select the XAFile.zip file on the e*Gate Integrator Installation CD-ROM.

XAFile.zip is the file copied earlier in “Installing the Sample” on page 227.

The e*Gate Schema Designer opens to the new schema. You are now ready to make any
configuration changes that may be necessary for this sample schema to run on your
specific system.

To validate the results

1 In the XAFile schema, open the e*Way Connections folder and verify that it
contains an e*Way Connection named XAFileETD.

2 Edit the configuration settings of the XAFileETD e*Way Connection.

The connector section of the GUI should resemble Figure 59.

Figure 59 Configuration Editor Display of XAFileETD.cfg: Connector Section

If you changed the name of the ETD and/or the name of the ETD Connector, update
the type and class parameter entries accordingly.
Generic Multi-Mode e*Way Extension Kit User’s Guide 238

Chapter 12 Section 12.7
Developing a Transactional e*Way Connection Understanding the ETD Implemented in a Schema
The File Configuration section of the GUI should resemble Figure 60.

Figure 60 Configuration Editor Display of XAFileETD.cfg

If one or more alternative directory locations are needed, update the Filepath and/
or Temporary Directory parameter entries. Also, if the XAFile.def file was updated
to contain different or additional parameters for the ETD and connector classes,
create a new e*Way Connection configuration.

12.7.2 Sample INDATA
To validate the transactional sample using the data provided

1 Extract the INDATA.zip file into the C:\INDATA\ directory.

This is the location expected by the configuration of file e*Way being used as the
feeder. The contents of the file are very simple:

<SampleInput><PropsName>Color</PropsName><PropsValue>Blue</
PropsValue></SampleInput>

2 Rename the sample input file from SampleInput.~in to SampleInput.fin

The presence of a file with extension .fin triggers the file e*Way to read its contents.
Generic Multi-Mode e*Way Extension Kit User’s Guide 239

Chapter 12 Section 12.7
Developing a Transactional e*Way Connection Understanding the ETD Implemented in a Schema
3 From a Command Prompt, enter the following command to have the e*Gate
Control Broker (stccb.exe) start the imported sample schema:

stccb -rh localhost -un Administrator -up STC -ln localhost_cb -rs
<schema name>

To use a Registry Host other than localhost, a username/password combination
other than Administrator/STC, and/or a logical Control Broker name other than
localhost_cb, make the appropriate substitutions.

Results

After a delay of approximately five seconds, a successful run generates the file
c:\indata\XAFiletest.txt with the following content:

<Sun Jun 16 13:59:59 PDT 2002>
<SampleInput><PropsName>Color</PropsName><PropsValue>Blue</
PropsValue></SampleInput>

The timestamp prepended at the top of the file reflects the date and time of the run.

As the SampleInput.fin is renamed by the feeder e*Way back to SampleInput.~in,
if you are looking at the temporary directory (c:\temp by default), you will see two
temporary files flicker into and out of existence, with names like:

Xid-<fid>-<gid>-<bid>.start
Xid-<fid>-<gid>-<bid>.target

where

<fid> is associated with the format ID of the Xid from the Transaction Manager.

<gid> is associated with the global ID of the Xid from the Transaction Manager.

<bid> is associated with the branch ID of the Xid from the Transaction Manager.

To re-run the test, rename the SampleInput.~in file back to SampleInput.fin (thus re-
triggering the feeder e*Way).

Forcing an error condition and validating recovery

To test the recovery capability of this XAFile e*Way, re-run the test with one change:
Immediately after you see the Xid-fff-ggg-bbb.* files appear in the temporary directory,
manually stop the Control Broker process. (The default five-second delay was built in
to the sample so as to provide enough time to do this.)

Stopping the Control Broker this way creates an external error condition, and thus no
XAFiletest.txt output file will be created. However, the next time the Control Broker is
manually started up and run normally, the rollback recovery logic will be automatically
activated. The e*Way will use the temporary Xid-fff-ggg-bbb.* files to put the correct
data into the XAFiletest.txt output file, without any need to re-read the input file
SampleInput.fin. You can test this by deleting or moving the file out of the
C:\INDATA directory.
Generic Multi-Mode e*Way Extension Kit User’s Guide 240

Chapter 13

Best Practices

This chapter provides recommendations for developing and deploying custom e*Way
Connections and e*Gate integrations. It consists of the following topics:

Designing the classes for your e*Way Connection ETD on page 242.

Using the abstract class EwayConnectionETDImpl

Using the abstract class EwayConnETDConnectorExtImpl

The intended use of the Connector class and tips on where it should not be used.

Using a delegate class

Using inner classes

Handling messageable ETDs on page 243.

Handling exceptions on page 244.

Troubleshooting and debugging on page 244.

Log files

Adding trace logs to your code

Sending Alerts

Using the e*Gate Java Debugger

Cross-platform issues on page 251.

Wrapping third-party APIs using JNI

Using JMS on page 252.

Known Limitations on page 252.

Note: In order to implement practices in this chapter, you should be thoroughly familiar
with the design and development considerations discussed in Chapter 5. These
same considerations apply to defining a viable overall integration architecture.
Generic Multi-Mode e*Way Extension Kit User’s Guide 241

Chapter 13 Section 13.1
Best Practices Designing e*Way ETD Classes
13.1 Designing e*Way ETD Classes

13.1.1 General
The following are general tips and notes to consider when designing your e*Way.

When creating classes for interfacing with an external system, the usual practice is
to build your e*Way ETDs so that a class that encapsulates the calls to the external
system's Java API is provided.

For more information, see “Using a Delegate Class” on page 243.

For an example, see “SampleETDExternalClass.java” on page 171.

When defining the string constants and property names to be parsed from the .def
configuration-file template, it is good practice to put all string constant definitions
in a separate class.

For an example, see “SampleETDDefs.java” on page 170.

An exception class that extends the STCException is used in your external API
wrapper class.

See “Handling Exceptions” on page 244.

For an example, see “SampleETDExternalException.java” on page 173.

The STCException class, provided in the stcexception.jar file, is an implementation
of Chained Exceptions as described on the following web site:
http://developer.java.sun.com/developer/technicalArticles/Programming/exceptions2

Note: For details on all classes and interfaces, see the Javadocs on the e*Gate
Integrator Installation CD-ROM.

The following sections provide specific tips on designing the classes for your e*Way
Connection ETD.

13.1.2 Using Abstract Class EwayConnectionETDImpl
The ETD interface that implements the abstract class EwayConnectionETDImpl is
used in all three samples provided with the kit. Each sample contains the same
boilerplate code. The abstract class provides a default implementation that allows you
to use the abstract class and extend it for your own ETD. Most of the methods have
empty implementations. The methods that you must override to generate an e*Way
Connection ETD are described in “Creating .java Files” on page 56.

13.1.3 Using Abstract Class EwayConnETDConnectorExtImpl
Two of the e*Way Connection samples provided—the Connection Management sample
and the Transactional sample—use the EBobConnectorExt interface that implements
the abstract class EwayConnETDConnectorExtImpl. Both samples contain the same
boilerplate code. The abstract class provides a default implementation which again
Generic Multi-Mode e*Way Extension Kit User’s Guide 242

http://developer.java.sun.com/developer/technicalArticles/Programming/exceptions2

Chapter 13 Section 13.2
Best Practices Handling Messageable ETDs
allows you to use the abstract class and extend it for your own connector. The methods
that you must override to generate your e*Way connector class are described in
“Creating .java Files” on page 56.

13.1.4 Do’s and Don’ts for the Connector Class
The connector class must only contain the functionality that obtains the connection
properties and opens and closes the connection to the external system. This may
involve using calls to the external system’s API. The connector class should not contain
methods that perform external operations other than those that involve configuring or
establishing a connection. Instead, it is good practice to use a delegate class to wrap
calls that use the external system’s API to perform these operations.

13.1.5 Using a Delegate Class
The samples provided show the use of a class that contains the API calls to interface
directly with the external system. The ETD class serving as a Delegate object which
performs the actual work behind the external methods exposed by the ETD contains a
reference to this class. This practice is optional, as some developers may not want the
extra layer of coding involved. Use of delegation works very well for encapsulating a
well-defined set of calls in third-party APIs. Other design patterns, where appropriate,
can also be used in designing the classes around the methods exposed by the ETD class.

13.1.6 Using Inner Classes
Use of inner classes in ETDs is recommended. These inner classes can encapsulate
entities associated with the main entity represented by the ETD. For example, an ETD
that represents an Account object in SAP might contain an inner class that holds
account details. Inner classes are used for objects passed as input parameters to
Account methods, and can be used for the output parameters are used as well.

13.2 Handling Messageable ETDs
Although this document focuses on developing nonmessageable ETD classes only, a
Collaboration is configured with both messageable and non-messageable ETDs on
either end (inbound or outbound).

A messageable ETD on the inbound side must be unmarshaled (parsed) for its data
to be available to e*Gate. This is done when the Multi-Mode e*Way calls
unmarshal() on the ETD class.

When a messageable ETD is on the outbound side of the Collaboration, it must be
marshaled from Java objects to byte streams, and sent to a persistent destination
such as a Oracle SeeBeyond JMS queue or topic, or IQ.

When non-messageable or e*Way ETDs are specified on the inbound side of the
Collaboration, the “get” interval configuration for the corresponding e*Way
Generic Multi-Mode e*Way Extension Kit User’s Guide 243

Chapter 13 Section 13.3
Best Practices Handling Exceptions
Connection is used as the interval between business rules execution. (For further
information on the “get” interval, see the e*Gate Integrator User’s Guide.) This allows
users to write Collaborations to poll the external system periodically for data.

If non-messageable ETDs are on the outbound side of the Collaboration, they normally
perform an operation based on rules that depend in some way on the data coming from
the inbound side of the Collaboration. Note that when messageable data needs to be
parsed, data is extracted from messageable ETDs and passed to non-messageable ETDs
(usually as parameters to methods). The parsing functionality is not normally part of
non-messageable ETDs, so it is common practice to use multiple ETDs, bringing
messageable ETDs into a Collaboration if parsing data is needed. Also, if data obtained
from the external system has to be saved as a message for placement into queues, it
normally needs to be processed by messageable ETDs on the outbound side of the
Collaboration.

13.3 Handling Exceptions
Your implementation of e*Way Connection ETDs will need to handle exceptions at the
appropriate places. It is good practice to define specific exception classes by subclassing
the com.stc.eways.exception.STCDataException class. This is an implementation of
chained exceptions, based on Sun’s recommendations published on the following web
site:

http://developer.java.sun.com/developer/technicalArticles/Programming/exceptions2

When a Collaboration throws an exception, it rolls back the Event received by the
Collaboration. As a developer, you can throw Collab[...]Exception exceptions from
your ETD class—such as CollabConnException, CollabDataException, or
CollabResendException—and let the user handle them in the Collaboration. You can
also throw more specific exceptions for the user to handle in the Collaboration.

Exception Handling Within ETD Entities

Use the class com.stc.jcs.JCSProperties (see “JCS Properties” on page 305) to hold the
throws attribute data.

13.4 Troubleshooting and Debugging
The e*Gate system provides the following basic troubleshooting tools:

Log files, trace logging, and levels/flags

Schema Monitoring and Alert notifications

e*Gate Java Debugger

This section provides an introduction to these e*Gate features.
Generic Multi-Mode e*Way Extension Kit User’s Guide 244

http://developer.java.sun.com/developer/technicalArticles/Programming/exceptions2

Chapter 13 Section 13.4
Best Practices Troubleshooting and Debugging
13.4.1 Log Files
An important source of information about your e*Gate configuration comes from log
files. The e*Gate system’s logging facility allows you to trace and store detailed
operations information.

Each of the following components can generate log files:

e*Way Intelligent Adapters

Business Object Brokers (BOBs)

Intelligent Queue (IQ) Managers

Control Brokers

e*Insight Business Process Manager modules

Each log file is clearly labeled as belonging to the component that generated it. You can
control the type and amount of debugging information that appears in the log file for
each component.

13.4.2 Adding Trace Logging
When you write the Java code for an e*Way Connection or a user Collaboration, it is
standard practice to add calls to display trace logs. The log generated is stored in a file
called <eWayComponent>.log, where <eWayComponent> is the logical name for the
Multi-Mode e*Way configured in the Schema Designer GUI. The log file is stored in
<eGateRootDirectory>\client\logs where <eGateRootDirectory> is the root directory in
which e*Gate is installed.

To add program trace logging, use the traceln() method of the class
com.stc.common.collabService.EGate, using one of the following two signatures.

public static void traceln(long tid, long event,
java.lang.String message)

public static void traceln(long tid, long event,
byte[] blob, java.lang.String tracestr)

The value to use for the event flag (the second parameter) for ETD debugging purposes
is defined as follows:

public final static long TRACE_EVENT_DEBUG = 0x00000001; // (D)
public final static long TRACE_EVENT_TRACE = 0x00000002; // (T)
public final static long TRACE_EVENT_INFORMATION = 0x00000004; // (I)
public final static long TRACE_EVENT_WARNING = 0x00000010; // (W)
public final static long TRACE_EVENT_APIERROR = 0x00000020; // (A)
public final static long TRACE_EVENT_LOGERROR = 0x00000040; // (E)
public final static long TRACE_EVENT_FATAL = 0x00000080; // (F)
public final static long TRACE_EVENT_ERR = TRACE_EVENT_APIERROR;

The traceln() output is written to the log file according the Event mask. As shown in
Table 16, the trace entry is shown only if the Trace ID (debugging flag) is active and the
Trace Event Logging Level) is in effect at run time.
Generic Multi-Mode e*Way Extension Kit User’s Guide 245

Chapter 13 Section 13.4
Best Practices Troubleshooting and Debugging
The Logging Level decreases in intensity from top (TRACE) to bottom (NONE). As
indicated in Table 16, some Event masks are always shown, regardless of Logging Level.

Note: TRACE_EVENT_LOGERROR places an entry in the log file as well as in the
Windows Event Viewer System Log. It is good practice to restrict its use to highly
important or urgent errors only.

When using EGate.traceln() for debugging purposes, it is good practice to use
TRACE_EVENT_TRACE or TRACE_EVENT_DEBUG. This way, after your ETD is up
and running properly, you can configure it to use the INFO logging level (which
generates a much smaller amount of data).

Note: When debugging passwords, be sure to keep them encrypted. Use the
ScEncrypt.decrypt utility to decrypt an encrypted password. For more
information, see “Encrypting Strings” on page 271.

13.4.3 Debug Levels and Flags
The e*Gate system has the ability to record many kinds of information in log files,
depending on the debug levels and flags you set. This logging control feature helps you
log only the information you want to record.

Each system Event that is logged has the following basic properties:

A debug level that describes the general nature of a system Event, for example,
whether the Event is fatal, nonfatal error-related, or only informational.

One or more debug flags that describe the source of a system Event. For example,
CB Events originate from the Control Broker, EWY Events originate from e*Ways,
MNK Events describe the workings of Monk scripts, and so on. Many components
produce both verbose-mode and normal-mode (nonverbose) system Events.

When you set up logging for a component in the Schema Designer, you specify the
debug level and flags of the system Events you want to log. The resulting log file will
contain a record of only those system Events whose level and flags match the level and
flags you specified.

Table 16 Trace Events (Logging Levels)

Logging
Level

TRACE_EVENT_...

...TRACE ...DEBUG ...INFORMATION ...WARNING ...LOGERROR ...FATAL

TRACE shown shown shown shown shown shown

DEBUG not shown shown shown shown shown shown

INFO not shown not shown shown shown shown shown

WARNING not shown not shown shown shown shown shown

ERROR not shown not shown shown shown shown shown

FATAL not shown not shown shown shown shown shown

NONE not shown not shown shown shown shown shown
Generic Multi-Mode e*Way Extension Kit User’s Guide 246

Chapter 13 Section 13.4
Best Practices Troubleshooting and Debugging
13.4.4 Alert Notifications
The e*Gate system continually issues monitoring Events to provide information on how
well the overall system is functioning. All major e*Gate components and features issue
these Events through internal system operations. The Control Broker converts
monitoring Events into notifications (notification Events) and sends them to Schema
Monitors.

Note: In e*Gate, an Event is a package of data and an e*Gate Event is a packet of
information that is exchanged with external applications.

Notifications that indicate problems or change of status inside e*Gate are called Alert
notifications. These appear as message readouts in the Schema Manager GUI which
provide immediate information on system problems.

The Schema Manager window also displays readouts of monitoring Event and
notification status messages with information on the normal functioning of
components. However, the Alert notifications, called Alerts in the GUI, contain the
actual e*Gate error messages.

Alert notifications provide important information on system problems and where to
start your troubleshooting. You can also monitor status and Alert notifications by other
means.

For complete information, refer to the following:

The Alert Agent User’s Guide

The e*Gate Integrator Alert and Log File Reference Guide.

The e*Gate Integrator User’s Guide.

13.4.5 Using the eventSend() Method to Send Alert Notifications
The eventSend() method is used to send Alert notifications. Complete information
about this method is provided in the Javadocs on the e*Gate Integrator Installation CD-
ROM and in the e*Gate Integrator User’s Guide.

Example

eventSend(Alerter.ALERTCAT_MESSAGE_CONTENT,
Alerter.ALERTSUBCAT_USERAUTH,
Alerter.ALERTINFO_IOFAILED,
35827, "Disk Full", "", "");

Description

The eventSend() method sends Alert notification Events to the Control Broker. These
are viewed in the Schema Manager or the Alert Agent, if they are configured to display
them.

Access to the eventSend() method is provided indirectly through the JCollaboration
class, supplied in the package com.stc.jcsre.JCollaboration, from which all Java
Collaboration are subclassed.
Generic Multi-Mode e*Way Extension Kit User’s Guide 247

Chapter 13 Section 13.4
Best Practices Troubleshooting and Debugging
public abstract class JCollaboration
extends java.lang.Object

However, eventSend() is a member method of the Alerter class, supplied in the
package com.stc.common.collabService, class JCollabController:

public class JCollabController;
public class Alerter
extends java.lang.Object

Syntax

public boolean eventSend(alertCategory, alertSubcategory,
alertInfoCode, reasonCode, reasonName,
eventInfo, additionalInfo)

public boolean eventSend(severityLevel, alertCategory,
alertSubcategory, elemType, reasonCode,
reasonName, eventInfo, additionalInfo)

eventSend(com.stc.common.collabService.JCollabController jController,
alertCategory, alertSubcategory, alertInfoCode, reasonCode,
reasonName, eventInfo, additionalInfo)

Parameters

alertCategory Constants

Name Type Description

alertCategory java.lang.String Alert-Category Constant (see “alertCategory Constants”).

alertSubcategory java.lang.String Alert-Subcategory Constant (see “alertSubcategory
Constants”).

alertInfoCode java.lang.String Info-Code Constant (see “alertInfoCode Constants”).

reasonCode int Status or error code generated by the operating system
or the application generating the Event.

reasonName java.lang.String Reason why the Event occurred.

eventInfo java.lang.String Reserved for user agents or other applications using the
API to create monitoring Events that use this field. It is an
empty string ("").

additionalInfo java.lang.String Reserved for future use. It is an empty string ("").

severityLevel java.lang.String Severity-level Constant (see “severityLevel Constants”).

elemType java.lang.String Element-type Constant (see “elemType Constants”).

Name Description

Alerter.ALERTCAT_STATE_ELEM Element state

Alerter.ALERTCAT_MESSAGE_CONTENT Message content

Alerter.ALERTCAT_STATE_EXTERNAL External state

Alerter.ALERTCAT_OPERATIONAL Operational

Alerter.ALERTCAT_PERFORMANCE Performance
Generic Multi-Mode e*Way Extension Kit User’s Guide 248

Chapter 13 Section 13.4
Best Practices Troubleshooting and Debugging
alertSubcategory Constants

alertInfoCode Constants

Alerter.ALERTCAT_RESOURCE Resource

Alerter.ALERTCAT_USERDEFINED User-defined

Name Description

Alerter.ALERTSUBCAT_CUSTOM Custom category

Alerter.ALERTSUBCAT_DOWN Down

Alerter.ALERTSUBCAT_UP Up

Alerter.ALERTSUBCAT_UNRESP Unresponsive

Alerter.ALERTSUBCAT_RESP Respond

Alerter.ALERTSUBCAT_CANTCONN Unable to connect

Alerter.ALERTSUBCAT_CONN Connected

Alerter.ALERTSUBCAT_LOSTCONN Lost connection

Alerter.ALERTSUBCAT_UNUSABLE Unusable/cannot ID

Alerter.ALERTSUBCAT_INTEREST Interest

Alerter.ALERTSUBCAT_EXPIRED Expired

Alerter.ALERTSUBCAT_INTHRESH Input threshold

Alerter.ALERTSUBCAT_OUTTHRESH Output threshold

Alerter.ALERTSUBCAT_USERAUTH User authentication

Alerter.ALERTSUBCAT_DELIVERY Alert delivery

Alerter.ALERTSUBCAT_UNQUEUEABLE Unqueueable

Alerter.ALERTSUBCAT_DISKTHRESH Disk threshold

Alerter.ALERTSUBCAT_IQLIMIT IQ limit

Alerter.ALERTSUBCAT_STATUS Status

Alerter.ALERTSUBCAT_TIMER Timer

Name Description

Alerter.ALERTINFO_NONE None

Alerter.ALERTINFO_FATAL Fatal

Alerter.ALERTINFO_CONTROLLED Controlled

Alerter.ALERTINFO_USER User

Alerter.ALERTINFO_LOW Low

Alerter.ALERTINFO_HIGH High

Name Description
Generic Multi-Mode e*Way Extension Kit User’s Guide 249

Chapter 13 Section 13.4
Best Practices Troubleshooting and Debugging
severityLevel Constants

elemType Constants

Return Type

Boolean—Returns true when an Alert Event is sent successfully.

Throws

None.

13.4.6 Debugging
You can use the e*Gate Java Debugger to debug Collaborations and e*Way ETDs. The
debugger attaches to the JVM and connects to a particular port on the host on which
you are running the Collaboration. The e*Gate Java Debugger is based on the Java
Platform Debugger Architecture (JPDA) Java Debug Interface (JDI).

Alerter.ALERTINFO_IOFAILED I/O failure

Alerter.ALERTINFO_BELOW Below

Alerter.ALERTINFO_ABOVE Above

Name Description

Alerter.SEVERITY_LEVEL_UNDEFINED Undefined

Alerter.SEVERITY_LEVEL_TRACE Trace

Alerter.SEVERITY_LEVEL_DEBUG Debugging

Alerter.SEVERITY_LEVEL_INFO Information

Alerter.SEVERITY_LEVEL_WARNING Warning

Alerter.SEVERITY_LEVEL_ERROR Error

Alerter.SEVERITY_LEVEL_FATAL Fatal

Name Description

Alerter.ALERTCAT_STATE_ELEM Element state

Alerter.ALERTCAT_MESSAGE_CONTENT Message content

Alerter.ALERTCAT_STATE_EXTERNAL External state

Alerter.ALERTCAT_OPERATIONAL Operational

Alerter.ALERTCAT_PERFORMANCE Performance

Alerter.ALERTCAT_RESOURCE Resource

Alerter.ALERTCAT_USERDEFINED User-defined

Name Description
Generic Multi-Mode e*Way Extension Kit User’s Guide 250

Chapter 13 Section 13.4
Best Practices Troubleshooting and Debugging
To access the debugger

1 In Schema Manager, right-click the Multi-Mode e*Way and, on the shortcut menu,
click Debugger.

2 The e*Gate Java Debugger dialog box appears, and the Stop in Method dialog box
prompts you to specify the Collaboration Rules you want to debug.

You can use the e*Gate Java Debugger to set and clear breakpoints, go to a specific
statement, step into, over, or out of specific blocks of code, stop in a specific class or
method, break on a specified exception, and perform other operations.

For complete information on the e*Gate Java Debugger, refer to the e*Gate Integrator
User’s Guide.

13.4.7 Using Internal Templates
When using internal templates, you may encounter the following:

GmeekETDNode TemplateNode =
aEtd.addInternalTemplate("INTERNAL_TEMPLATE1");
TemplateNode.addInnerNode("INNERNODE_NAME1");
TemplateNode.addSimpleTypeUsrField("FIELD_NAME1",
GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
TemplateNode.setInternalTemplateName("INTERNAL_TEMPLATE1");

This generates the following error message:

Exception in thread "main" java.io.IOException: Compiler errors.
F:/java_compile/output/com/sbyn/TestOutput/TestOutput.java:36: cannot
resolve symbol
symbol : class INTERNAL_TEMPLATE1
location: class com.sbyn.TestOutput.TestOutput
 private INTERNAL_TEMPLATE1 _INTERNAL_TEMPLATE1 = null;
 ^

If you receive the error message, check your code. The setInternalTemplate() method
should be used against an actual node instead of against the actual templates. To avoid
generating an error, you must use internal templates as shown in the following
example:

GmeekETDNode TemplateNode =
aEtd.addInternalTemplate("INTERNAL_TEMPLATE1");
GmeekETDNode InnerNode =
TemplateNode.addInnerNode("INNERNODE_NAME1");
InnerNode.addSimpleTypeUsrField("FIELD_NAME1",
GmeekTreeNode.TreeNodeType.FIELD_TYPE_STRING);
InnerNode.setInternalTemplateName("INTERNAL_TEMPLATE1");

For more information on error messages, see “Working With the Back-end Builder” on
page 252.

13.4.8 Wrapping Third-Party APIs Using JNI
Some third-party systems provide only C or C++ APIs for certain OS platforms. In such
cases, the APIs are usually wrapped using Java Native Interface (JNI) so they are
exposed as Java classes. If you use JNI to wrap a third-party API, be sure to specify the
Generic Multi-Mode e*Way Extension Kit User’s Guide 251

Chapter 13 Section 13.5
Best Practices Oracle SeeBeyond JMS
JNI library component in your .ctl file, as well as any libraries it depends on. Any other
support classes (usually stored in a .jar file) that are used by the JNI component should
also be specified in the .ctl file for your ETD.

13.5 Oracle SeeBeyond JMS
For information on how the Oracle SeeBeyond implementation of JMS appears to the
e*Gate end user, refer to the Oracle SeeBeyond JMS Intelligent Queue User’s Guide.

Information on JMS architecture, design, and APIs is contained in the e*Gate API Kit
Developer’s Guide.

13.6 Working With the Back-end Builder
This section provides best practices for designing the back-end builder. This includes
performing incremental tests at each step of the design process, and taking various
efficiency measures when designing the front-end GUI.

Incremental Testing

You do not have to finish the GUI portion in order to test the generated ETD. To test the
ETD, you can invoke the back-end builder through the command line and it will
generate an ETD. To load this ETD to the e*Gate registry, use the stcregutil command.
For more information on using the stcregutil command, see “Task 6: Creating and
Registering the ETD Using the Command Line” on page 148.

To test the generated runtime package

1 Call the open (Properties connectorProps) method from a test driver, making sure
you can connect to the external system.

2 Run the installEWAY script to install the runtime package to e*Gate.

3 Modify the stcew<EwayName>.ctl file to include the packages you have created,
such as the third party .jar files and various utility .jar files, .def files, and
runtime .jar files.

4 Run the installEWAY script to load the .jar files. Whenever loading a new e*Way to
the registry, we recommend loading it to a default schema.

Designing the Front-End GUI

When designing the front-end GUI for the back-end builder, it is recommended that
you take the following measures:

The first step in the design process is to decide whether to use heavyweight Visual
Basic or lightweight Visual Basic. This is imperative because if you have already
implemented heavyweight Visual Basic in production, the lightweight Visual Basic
Generic Multi-Mode e*Way Extension Kit User’s Guide 252

Chapter 13 Section 13.6
Best Practices Working With the Back-end Builder
wizard cannot modify the ETD built with heavyweight Visual Basic. The same is
true if implementing lightweight Visual Basic in production—the heavyweight
Visual Basic wizard cannot modify an ETD built with lightweight Visual Basic.

Note: For more information on using heavyweight or lightweight Visual Basic, see
“Using Heavyweight or Lightweight Visual Basic to Create an ETD
Builder Wizard” on page 101.

Try to store as much data as possible in the Visual Basic layer, and pass the simple
data structured properties through JINTEGRA. For example, use a Visual Basic
Dictionary to store the structured properties, but only pass the individual
properties one at a time through JINTEGRA as String, int, long, etc.

In the sample Visual Basic project, we use QAWizards, an executable which invokes
the wizard DLL. We recommend using QAWizards to test the wizard.

We recommend utilizing the Visual Basic debugger.

If your wizard DLL is built correctly, the .xsc file displays properly in a text editor.
Verify that the .xsc is correct by viewing it in a text editor.
Generic Multi-Mode e*Way Extension Kit User’s Guide 253

Chapter 14

e*Way Classes and Methods

The Generic Multi-Mode e*Way Extension Kit contains Java methods that are used to
extend the functionality of e*Ways. For example, Java methods are added to make it
easier to set information in and get information from the e*Way ETD Editor.

The Generic Multi-Mode e*Way Extension Kit Java methods are organized into the
following related Java classes.

The various Java classes and methods available for use in Collaborations are described
in the Javadocs. The Javadocs provide a complete explanation of each method.

14.1 Viewing Javadocs
For e*Gate version 4.5.3 or later, to view Javadocs from the CD-ROM

1 From the GUI CD-ROM, navigate to \docs\Javadocs\GMEEK\html

2 Click on index.html to view the Generic Multi-Mode e*Way Extension Kit Javadocs
in your Web browser.

For e*Gate version 4.5.3 or later, to view Javadocs installed on your local drive

1 Navigate to <eGate>\client\docs\Javadocs\GMEEK\html

2 Click on index.html to view the Generic Multi-Mode e*Way Extension Kit Javadocs
in your Web browser.

EBobConnector GmeekETDRootNode

EBobConnectorExt GmeekEwayModel

EBobConnectorExtFactory JCollabController

EBobConnectorExtImp JConnectionManager

EBobConnectorFactory JConnectionNotifier

Egate JTransactionAdapter

ETD JXAResourceAdapter

GmeekConnectorModel ScEncrypt

GmeekETDMethod STCException

GmeekETDNode
Generic Multi-Mode e*Way Extension Kit User’s Guide 254

Chapter 14 Section 14.1
e*Way Classes and Methods Viewing Javadocs
For e*Gate version 4.5.2 or earlier, to view Javadocs from the CD-ROM

1 From the GUI CD-ROM, navigate to \docs\Javadocs\GMEEK\html

2 Click on index.html to view the Generic Multi-Mode e*Way Extension Kit Javadocs
in your Web browser.

For e*Gate version 4.5.2 or earlier, to copy Javadocs to your local drive

You must manually copy the Generic Multi-Mode e*Way Extension Kit Javadocs from
the GUI CD-ROM to your local drive.

1 Navigate to \docs\Javadocs

2 Select and copy the GMEEK folder to <eGate>\client\docs\Javadocs

The GMEEK\html folder contains the com folder and the files shown in Table 17.

Important: You must copy the entire contents of the GMEEK folder.

3 Navigate to the location where you copied the GMEEK folder, then to the html
directory.

4 Click on index.html to view the Generic Multi-Mode e*Way Extension Kit Javadocs
in your Web browser.

Table 17 Contents of the GMEEK\html folder

Folder and File names

com

allclasses-frame.html

help-doc.html

index.html

index-all.html

overview-summary.html

overview-tree.html

package-list

packages.html

serialized-form.html

stylesheet.css
Generic Multi-Mode e*Way Extension Kit User’s Guide 255

Appendix A

Extending the .def File

This appendix describes how to extend the default configuration-file template (.def file)
and describes the .def file keywords and their arguments. In addition, it also describes
how to test and debug the .def file and lists some common error messages. It also
provides information on configuration parameters and the .cfg file.

A.1 Introduction
The e*Way Connection is configured using the e*Way Connection Editor, a GUI that
enables you to change configuration parameters quickly and easily. A default
configuration-file template (.def file) allows the e*Way Connection Editor to gather
those parameters by specifying the name and type of each parameter, as well as other
information (such as the range of permissible options for a given parameter).

The e*Way Connection Editor stores the values that you assign to those parameters in
two configuration files, the .cfg file and the .sc file. These two files contain similar
information but are formatted differently:

The .cfg file contains the parameter values in delimited records and is parsed by the
e*Way at run time.

The .sc file contains the parameter values and additional information needed by the
GUI.

The e*Way Connection Editor loads the .sc file—not the .cfg file— when you edit the
configuration settings for an e*Way. Both configuration files are generated
automatically by the e*Way Connection Editor whenever the configuration settings are
saved.

The .def file for the e*Way Connection contains a set of parameters that are required
and must not be modified. You can extend the .def file if your modifications to the
e*Way Connection require the definition of user-set parameters. This chapter describes
the structure of the .def and configuration files and the syntax of the keywords used to
configure the e*Way Connection Editor to gather the desired configuration parameters.

Important: We strongly recommend that you make no changes whatsoever to the default
sampleETD.def file. However, you should use that file as a base from which you
create your extensions. Save a copy of the file under a unique name and make your
changes to the copy.
Generic Multi-Mode e*Way Extension Kit User’s Guide 256

Appendix A Section A.2
Extending the .def File .def file Keywords: General Information
A.1.1 Layout
The .def file has three major divisions:

The header describes basic information about the file itself, such as version number,
modification history, and comments.

The sub-header contains several read-only variables that are for internal use only.
The default values of these variables must not be modified.

The body contains configuration parameters which are grouped into sections. Two
sections (Connector and External Configuration) must be included in all e*Way
Connection .def files; additional sections are added as needed to support user-
created functions.

A.2 .def file Keywords: General Information
All keywords and their arguments are enclosed in balanced parentheses. Keyword
arguments are a quoted string, a quoted character, an integer, a parenthesis-bounded
list, a keyword modifier, or additional keywords.

Examples:

(name “Sample e*Way“)

(eway-type
(direction "<ANY">)

)

(set
(value (1 2 3))
(config-default (1 2 3))

)

(range
 (value (const 1 const 1024)
)

A.2.1 White Space
White space that is not contained within double-quotation marks, including tabs and
newlines, is ignored except as a separator between keywords.

For example, the following are equivalent:

(user-comment (value "") (config-default ""))

(user-comment
(value "")
(config-default "")

)

Whitespace within quotation marks is interpreted literally. For example, (name
“Extra Spaces”) will display as
Generic Multi-Mode e*Way Extension Kit User’s Guide 257

Appendix A Section A.2
Extending the .def File .def file Keywords: General Information
Extra Spaces

in the e*Way Connection Editor’s list of names.

A.2.2 Integer Parameters
The maximum value for integer parameters ranges from approximately -2 billion to 2
billion (specifically, -2,147,483,648 to 2,147,483,647). Most ranges will be smaller, such as
“1 to 10” or “1 to 1,000.”

A.2.3 Floating-point Parameters
Floating-point parameters and floating-point arithmetic are not supported.

A.2.4 String and Character Parameters
String and character parameters may contain all 255 ASCII characters. The “extended”
characters are entered using an escaped format, as follows:

Characters such as tab, newline, and carriage return are entered as \t, \n, and \c,
respectively.

Characters may also be entered in octal or hexadecimal format using \o or \x,
respectively (for example, \x020 for ASCII character 32).

Strings are delimited by double quotes, characters by single quotes. Examples:

Strings: "abc" "Administrator"

Characters: '0' '\n'

Single quotation marks, double quotation marks, and backslashes that are not used as
delimiters (for example, when used within the text of a description) must be escaped
with a backslash:

\' —Use this two-character sequence to code the single-quote character (').

\" —Use this two-character sequence to code the double-quote character (").

\\ —Use this two-character sequence to code the backslash character (\).

A.2.5 Path Parameters
Path parameters can contain the same characters as other string parameters. However,
the characters entered should be valid for path names within the operating system on
which the e*Way runs.

Backslashes in Windows path names must be escaped (for example,\\home\\egate).

A.2.6 Comments
Comments within the .def file begin with a semicolon (;). Any semicolon that appears
in column 1, or that is preceded by at least one space character and that does not appear
Generic Multi-Mode e*Way Extension Kit User’s Guide 258

Appendix A Section A.3
Extending the .def File Defining a New Section
within quotation marks, is interpreted as a comment character. You cannot represent a
null in a comment; in other words, 0x00 (or \000) is an impermissible character.

Examples

; this is a valid comment, because it begins in column 1
(name "Section name") ; this is also a valid comment, because its semicolon is preceded by a space

A.2.7 Header Information
Header information that developers can use to maintain a revision history for the .def
file is stored within the (general-info) section. All the information in this section is
maintained by the user; no e*Gate product modifies this information.

Table 18 describes the user-editable parameters in the (general-info) section. The use of
these fields is not required and they may be left blank, but all the fields must be present.
The format and contents of these fields are completely at the developer’s discretion as
long as rules for escaped characters are observed. For more information, see “String
and Character Parameters” on page 258.

Note: Any (general-info) parameters that are not shown in Table 18 are reserved and
should not be modified except by direction of Oracle Support staff.

A.3 Defining a New Section
The (section) keyword defines a section within the .def file. The syntax of the new
section is described in “Section Syntax”. Each section requires at least one parameter.
For more information on defining parameters, see “Parameter Syntax” on page 261.

Note: Section names and parameter names within a section must be unique.

Table 18 User-editable (general-info) parameters

Parameter name Describes

version The product version name

revision The revision number

user The user who last edited the file

modified The modification date

creation The creation date

description A description for this .def file, displayed within the e*Way Connection Editor
from the File menu’s Tips option. Quotation marks within the description,
whether single (') or double (") must be backslash-escaped (\' or \").

user-comment Comments left by the user (rather than the developer), accessed within the
e*Way Connection Editor from the File menu’s User notes option. Unless you
want to provide a default set of user notes, you should leave this field blank.
Generic Multi-Mode e*Way Extension Kit User’s Guide 259

Appendix A Section A.3
Extending the .def File Defining a New Section
A.3.1 Section Syntax
Sections within the .def file have the following syntax:

(section
 (name "section name")

... at least one parameter definition ...

(description "description text”)
(user-comment
 (value "")
 (config-default "")
) ; end of user comment
) ; end of section

The section name, description text, and user-comment “value” will appear in the e*Way
Connection Editor. An example is shown in Figure 61.

Figure 61 e*Way Connection Editor Main Controls

Notes

1 The user-comment feature enables users to make and save notes about a section or
parameter that will be stored along with the configuration settings. Under most
circumstances, we recommend that developers leave the (user-comment) fields
blank, but you can enter information in the (user-comment) field if you want to
ensure that all user notes for a given section begin with preset information.

2 The description is displayed when the user clicks the Tips button. Use this field to
create “online help” for a section or parameter. We recommend that you provide a
description for every section and every parameter that you create.

Section name

User comments (see
Note 1 below)

Description (see
Note 2 below)

Parameter name
Generic Multi-Mode e*Way Extension Kit User’s Guide 260

Appendix A Section A.3
Extending the .def File Defining a New Section
A.3.2 Parameter Syntax
Parameters within the .def file use the following basic structure:

(param-keyword
(name "Parameter name goes here")
(value val)
(config-default val)

...additional keywords (range, units, set) as required...

(description "description text”)
(user-comment

 (value "")
 (config-default "")
)
) ; end of parameter definition

The keywords that are required to define a parameter are

A parameter keyword

The parameter’s name: (name)

The initial default value: (value)

The “configuration default”: (config-default), which the user can restore by clicking
the revert button, shown below.

This value is overridden by the config-default keyword specified within a (set)
command; see “Parameters Accepting a Single Value From a Set” on page 263 and
“Parameters Accepting Multiple Values From a Set” on page 264 for more
information.

Note: The (value) keyword is always followed immediately by the (config-default)
keyword.

The “description” (for additional information, see the Notes for “Section Syntax”
on page 260).

The “user comment” (for additional information, see the Notes for “Section
Syntax” on page 260), which has its own value and configuration default.

Additional keywords may be required, based upon the parameter keyword and user
requirements; these will be discussed in later sections.

Order of Keywords

Keywords must appear in this order:

1 parameter definition*

2 name*

3 value*
Generic Multi-Mode e*Way Extension Kit User’s Guide 261

Appendix A Section A.3
Extending the .def File Defining a New Section
4 config-default*

5 set

6 range

7 units

8 show-as

9 factor

10 description*

11 user-comment*

Note: Keywords marked with * are mandatory for all parameters. The set keyword is
mandatory for -set and -set-multi parameters. The remaining keywords (items 6
through 9) are optional and, depending on developer requirements, may appear in
any combination, but they must appear in the above order.

Parameter Types

There are eight types of parameters. Table 19 lists the types of parameters that are
defined, the keyword required to define them, and the values that the keyword can
accept for the (value) and (config-default) keywords.

Parameters Requiring Single Values

Parameters requiring single values are defined within the basic structure shown in
“Section Syntax” on page 260.

Table 19 Basic Parameter Keywords

Type
Parameter
keyword

Accepts values Example

Integer int integer 7500

Character char single-quoted character 'a'
'!'
'\o123' (octal)

String string double-quoted string "Hello, world"

Date date comma-delimited date
in MMM,dd,yyyy format

AUG,13,2002

Time time colon-delimited time in
24-hour hh:mm:ss
format

15:30:00

Path path path; Windows path
names should use
escaped backslashes

/home/egate/client (UNIX)
\\home\\egate\\client (Windows)
Generic Multi-Mode e*Way Extension Kit User’s Guide 262

Appendix A Section A.3
Extending the .def File Defining a New Section
Figure 62 A parameter requiring a single value

The parameter is defined using a parameter keyword, as listed in Table 19 on page 262.

Example

To create a parameter that accepts a single integer as input, and to specify “3” as the
default and configuration-default value, enter the following:

(int
 (name "Parameter requiring a single integer")
 (value 3)
 (config-default 3)
 (description "

 This parameter requires a single integer as input.
")
 (user-comment
 (value "")
 (config-default "")
)
) ; end of parameter definition

If you want to limit the values that the user may enter, you may include the optional
(range) keyword; see “Specifying Ranges” on page 266 for more information.

Parameters Accepting a Single Value From a Set

Adding the suffix -set to the basic parameter keyword (int-set, string-set, path-set, and
so on) defines a parameter that accepts one of a given list of values.

Figure 63 A parameter requiring one of a set of values

Sets require modifications to the basic parameter syntax (shown in “Parameter Syntax”
on page 261):

An additional required keyword, (set), defines the elements of the set.

Within the (set) keyword, (value) and (config-default) require arguments within
parenthesis-bound lists, as in the following:

(value (1 2 3))
(config-default (1 2 3))

To prevent a user from adding or removing choices from the list you provide, add
the const keyword to the “value” declaration:

(value const (1 2 3))
(config-default (1 2 3))
Generic Multi-Mode e*Way Extension Kit User’s Guide 263

Appendix A Section A.3
Extending the .def File Defining a New Section
To specify an empty set, enter the keyword none, as follows:

(value none)
(config-default none)

Note: “-set-multi” keywords use a different syntax to define an empty set; see
“Parameters Accepting Multiple Values From a Set” for more information.

Other important considerations:

The value specified as the initial (value) for the parameter must match at least one
of the values specified for (config-default) within the (set) keyword.

The initial value within the (set) keyword’s (config-default) list must be within the
(set) keyword’s (value) list. However, we strongly recommend that you make the
two lists identical.

Example

To create a parameter that accepts one of a fixed set of integers (like the one shown in
Figure 63), enter the following:

(int-set
 (name "Single-choice set (int-set)")
 (value 1)
 (config-default 1)
 (set
 (value const (1 2 3))
 (config-default (1 2 3))
)
 (description "Provides a single choice from a list of integers.”)
 (user-comment
 (value "")
 (config-default "")
)
) ; end of int-set

Note: The values specified by the (set) keyword must be within any values specified by the
(range) keyword. See “Specifying Ranges” on page 266 for more information.

Parameters Accepting Multiple Values From a Set

Adding the suffix -set-multi to the basic parameter keyword (int-set-multi, string-set-
multi, path-set-multi, and so on) defines a parameter that accepts one or more options
from a given list of values.
Generic Multi-Mode e*Way Extension Kit User’s Guide 264

Appendix A Section A.3
Extending the .def File Defining a New Section
Figure 64 A parameter requiring one of a set of values

Sets require modifications to the basic parameter syntax (shown in “Section Syntax” on
page 260):

An additional required keyword, (set), defines the elements of the set.

Within the (set) keyword, (value) and (config-default) require arguments within
parentheses-bound lists, as in the following:

(value (1 2 3))
(config-default (1 2 3))

To prevent a user from adding or removing choices from the list you provide, add
the const keyword to the “value” declaration:

(value const (1 2 3))
(config-default (1 2 3))

To specify an empty set, enter an empty pair of parentheses “()”, as follows:

(value ())
(config-default ())

Note: “-set” keywords use a different syntax to define an empty set; see “Parameters
Accepting a Single Value From a Set” on page 263 for more information.

Other important considerations:

The value specified as the initial (value) for the parameter must match at least one
of the values specified for (config-default) within the (set) keyword.

The initial value within the (set) keyword’s (config-default) list must be within the
(set) keyword’s (value) list. However, we strongly recommend that you make the
two lists identical.
Generic Multi-Mode e*Way Extension Kit User’s Guide 265

Appendix A Section A.3
Extending the .def File Defining a New Section
Example

To create a parameter that accepts one of a fixed set of integers (like the one shown in
Figure 64), enter the following:

(int-set-multi
 (name "Multiple-choice set (int-set-multi)")
 (value (1 3))
 (config-default (1 3))
 (set
 (value (1 2 3 4 5))
 (config-default (1 2 3 4 5))
)
 (description "Integer with a modifiable multiple-option set")
 (user-comment
 (value "")
 (config-default "")
)
) ; end of int-set-multi

Note: The order in which keywords appear is very important. See “Order of Keywords”
on page 261 for more information.

A.3.3 Specifying Ranges
The (range) keyword enables you to limit the range of options that the user may input
as a parameter value for int and char parameters. You may specify a fixed range, or
allow the user to modify the upper limit, the lower limit, or both limits. Range limits are
inclusive. The values you specify as limits indicate the lowest or highest acceptable
value.

The syntax of (range) is as follows:

(range
 (value ([const] lower-limit [const] upper-limit))
 (config-default (lower-limit upper-limit))
)

The optional const keyword specifies that the limit is fixed; if the keyword is omitted,
the limit modified by the user. The const keyword must precede each limit if both limits
are to be fixed.
Generic Multi-Mode e*Way Extension Kit User’s Guide 266

Appendix A Section A.3
Extending the .def File Defining a New Section
Example

This example illustrates how to define a parameter that accepts an integer as input and
limits the range of legal values from zero to ten.

(int
 (name "Single integer with fixed range")
 (value 5)
 (config-default 5)
 (range
 (value (const 0 const 10))
 (config-default (0 10))
)
 (description "Accepts a single integer, limited to a fixed
range.")
 (user-comment
 (value "")
 (config-default "")
)
) ; end of int parameter

You may also use (range) to specify a character range. For example, a range of “A to Z”
would limit input to uppercase letters, and a range of “! to ~” limits input to the
standard printable ASCII character set (excluding space).

Note: You may also specify ranges for -set and -set-multi parameters (int-set, char-set,
and so on).

A.3.4 Specifying Units
The (units) keyword enables int parameters to accept input and display the list of
available options in different units, provided that each unit is an integer multiple of a
base unit.

Figure 65 A parameter that performs unit conversion

Acceptable groups of units include:

Seconds, minutes, hours, days

Bytes, kilobytes, megabytes

Note: Unit conversions that require floating-point arithmetic are not supported.

The syntax of the (units) keyword is

(units
 ("base-unit":1 "first-unit":a "second-unit":b ... "nth-unit":n)

 (value "default-unit")
 (config-default "default-unit")
)

Units selector
Generic Multi-Mode e*Way Extension Kit User’s Guide 267

Appendix A Section A.3
Extending the .def File Defining a New Section
where a, b, and n are the numbers by which the base unit size should be multiplied to
perform the conversion to the respective units. The base unit should normally have a
value of 1, as shown above. Although the e*Way Connection Editor will permit other
values, it is highly unlikely that an application would require any other number. The
units themselves have no meaning to the e*Way Connection Editor other than the
relationships you define—in other words, the Editor does not identify or process
“seconds” or other common units as such.

Example

To specify a set of time units (seconds, minutes, hours, and days), enter the following:

(units
 ("Seconds":1 "Minutes":60 "Hours":3600 "Days":86400)

 (value "Seconds")
 (config-default "Seconds")
)

Units, default values, and ranges

Any time you use the (units) keyword within a parameter, be sure that the default
values are expressed as integer values of each unit. Observing this principle prevents
end users from receiving error messages when changing e*Way Connection Editor
values in a specific order. For example, if you specified the time units in the example
above, but assigned the parameter a default value of “65 seconds,” any user who selects
the minutes unit without changing the default value receives an error message, because the
e*Way Connection Editor cannot convert 65 seconds to an integral number of minutes.
Ranges are rounded to the nearest integer.

Note: Regardless of what default value you specify, a user will always see an error message
if an inconvertible value is entered and the unit selector is changed. We recommend
that you design your parameters so that error messages are not displayed when
default values are entered.
Generic Multi-Mode e*Way Extension Kit User’s Guide 268

Appendix A Section A.3
Extending the .def File Defining a New Section
Example

To define a time parameter that displays values in seconds or minutes, with a default of
120 seconds and a fixed range of 60 to 3600 seconds (1 minute to 60 minutes), enter the
following:

(int
 (name "Single integer with fixed range")
 (value 120)
 (config-default 120)
 (range
 (value (const 60 const 3600))
 (config-default (60 3600))
)
 (units
 ("Seconds":1 "Minutes":60)
 (value "Seconds")
 (config-default "Seconds")
)
 (description "Accepts a value between 1 and 60 minutes, with

a default units value in seconds.")
 (user-comment
 (value "")
 (config-default "")
)
) ; end parameter

Note: The order in which keywords appear is very important. See “Order of Keywords”
on page 261 for more information.

A.3.5 Displaying Options in ASCII, Octal, Hexadecimal, or Decimal
The (show-as) keyword enables you to create int or char parameters that a user can
display in ASCII, octal, hexadecimal, or decimal formats.

The syntax of the (show-as) keyword is

(show-as
 (format-keyword1 [format-keyword2 ... format-keywordn])
 (value format-keyword)
 (config-default format-keyword)
)

where format-keyword is one of the following:

ascii

octal

hex

decimal

Format keywords are case-insensitive, and may be used in any combination and in any
order.

Be sure that any default values you specify for a parameter that uses (show-as) are
represented in each of the (show-as) formats. For example, if you are using (show-as) to
show an integer parameter in both decimal and hexadecimal formats, the default value
must be non-negative.
Generic Multi-Mode e*Way Extension Kit User’s Guide 269

Appendix A Section A.3
Extending the .def File Defining a New Section
Example

To create a parameter that accepts a single character in the character-code range from
32 through 127, and can display the character value in ASCII, hexadecimal, or octal,
enter the following:

(char
 (name "A single ASCII character")
 (value '\o100')
 (config-default '\o100')
 (range
 (value (const '\o040' const '\o177'))
 (config-default ('\o040' '\o177'))
)
 (show-as
 (Ascii Octal Hex)
 (value Octal)
 (config-default Octal)
)
 (description "Accepts one character from ASCII 32 to ASCII 127.")
 (user-comment
 (value "")
 (config-default "")
)
) ; end char parameter

Note: The order in which keywords appear is very important. See “Order of Keywords”
on page 261 for more information.

Factor

The (factor) keyword enables users to enter an arithmetic operator (+, –, *, or /) as part
of an int parameter. For example, to indicate that a value should increase by five units,
the user enters the number 5 for single value (int) and the operator + for factor.

The syntax of the (factor) keyword is

(factor
('operator1' ['operator2'... 'operatorN'])
(value 'operator'
(config-default 'operator')

)

where operator is one of the four arithmetic operators +, –, *, or / (forward slash).

Example

To define a parameter that accepts an integer between 1 and 5 with a factor of + or –,
enter the following:

(int
(name "Integer with factor")
(value 1)
(config-default 1)
(range

(value (const 1 const 5))
(config-default (1 5))

)
(factor

('+' '-')
(value '+')
Generic Multi-Mode e*Way Extension Kit User’s Guide 270

Appendix A Section A.3
Extending the .def File Defining a New Section
(config-default '+')
)
(description "Enter an integer from 1 to 5 and a factor: + or -.")
(user-comment

(value "")
(config-default "")

)
) ; end int parameter

Note: The (factor) keyword must be the final keyword before the (description) keyword.
See “Order of Keywords” on page 261 for more information.

The result seen by the end user would be as in Figure 66.

Figure 66 A parameter using (factor)

Encrypting Strings

Encrypted strings (such as for passwords) are stored in string parameters. To specify
encryption, use the encrypt keyword, as in the following:

(string encrypt
...additional keywords follow...

The e*Way Connection Editor uses the parameter that immediately precedes the
encrypted parameter as its encryption key; therefore, be sure that the parameter that
prompts for the encrypted data is not the first parameter in a section. The easiest way to
accomplish this is to define a “username” parameter that immediately precedes the
encrypted “password” parameter. If you need to specify an encryption key other than
the user name, you must define a separate parameter for this purpose.

Text entered into an encrypted-string parameter is displayed as asterisks (***).

Example

To create a password parameter, enter the following immediately following the parameter
definition for the corresponding user name (not shown):

(string encrypt
 (name "Password")
 (value "")
 (config-default "")
 (description "The e*Way Connection Editor encrypts this value.")
 (user-comment
 (value "")
 (config-default "")
)
)
Generic Multi-Mode e*Way Extension Kit User’s Guide 271

Appendix A Section A.4
Extending the .def File Configuration Keyword Reference
Note: The encrypt keyword can only follow the string keyword. The only parameter type
that is encrypted is string. The integer, character, path, time, date, or schedule
parameters cannot be encrypted.

A.4 Configuration Keyword Reference
Table 20 lists the keywords that may appear in the .def file.

Table 20 .def-file keywords

Keyword Purpose
For more information,

see this section

app-protocol Reserved; do not change from the default “<ANY>”.

cfg-icon Reserved; do not change from the default “” (null string).

char Declares a character parameter. “Parameter Types” on
page 262

char-set Declares a set of characters, one of which
must be selected (via radio button).

“Parameters Accepting a
Single Value From a Set” on
page 263

char-set-multi Declares a set of characters, any of which
may be selected (via check boxes).

“Parameters Accepting
Multiple Values From a Set”
on page 264

config-default Specifies the values that will be restored
when the user clicks the e*Way Connection

Editor’s button.

“Parameter Syntax” on
page 261

const Specifies a value that cannot be changed by
the user.

“Specifying Ranges” on
page 266

creation Records the creation date or other
information.

“Header Information” on
page 259

date Declares a date parameter. “Parameter Types” on
page 262

date-set Declares a set of dates, one of which must
be selected (through a radio button).

“Parameters Accepting a
Single Value From a Set” on
page 263

date-set-multi Declares a set of dates, any of which may be
selected (through check boxes).

“Parameters Accepting
Multiple Values From a Set”
on page 264

delim1 Defines the line-separator delimiter used
within .cfg files. It is recommended that you
do not modify this value.
Generic Multi-Mode e*Way Extension Kit User’s Guide 272

Appendix A Section A.4
Extending the .def File Configuration Keyword Reference
delim2 Defines the parameter-name delimiter used
within .cfg files. It is recommended that you
do not modify this value.

delim3 Defines the value-separating delimiter used
within .cfg files. It is recommended that you
do not modify this value.

delim4 Defines the list-item-separating delimiter
used within .cfg files. It is recommended
that you do not modify this value.

description A description for the entry displayed using

the e*Way Connection Editor’s button.

“Notes” on page 260

direction Reserved; do not change from the default “<ANY>”.

encrypt Encrypts a string, such as for passwords.
Valid only after the string keyword.

“Encrypting Strings” on
page 271

factor Defines an arithmetic operator to be
associated with an integer parameter

“Factor” on page 270

general-info Defines the “general information” division
of the .def file.

“Header Information” on
page 259

generated-cfg-path Specifies the path in which the .cfg file will
be stored. It is recommended that you do
not modify this field.

int Declares an integer parameter. “Parameter Types” on
page 262

int-set Declares a set of integers, one of which must
be selected (through a radio button).

“Parameters Accepting a
Single Value From a Set” on
page 263

int-set-multi Declares a set of integers, any of which may
be selected (through check boxes).

“Parameters Accepting
Multiple Values From a Set”
on page 264

modified Records the modification date or other
information.

“Header Information” on
page 259

name Specifies the name of a parameter or a
section.

“Parameter Syntax” on
page 261

network-protocol Reserved; do not change from the default “<ANY>”.

os-platform Reserved; do not change from the default “<ANY>”.

path Declares a path parameter. “Parameter Types” on
page 262

Table 20 .def-file keywords

Keyword Purpose
For more information,

see this section
Generic Multi-Mode e*Way Extension Kit User’s Guide 273

Appendix A Section A.4
Extending the .def File Configuration Keyword Reference
path-set Declares a set of paths, one of which must
be selected (through a radio button).

“Parameters Accepting a
Single Value From a Set” on
page 263

path-set-multi Declares a set of paths, any of which may be
selected (through check boxes).

“Parameters Accepting
Multiple Values From a Set”
on page 264

protocol-api-
version

Reserved; do not change from the default “<ANY>”.

range Specifies a range of values that represent the
upper and lower limits of acceptable user
input.

“Specifying Ranges” on
page 266

revision Records revision numbering or other
information (entered manually by the
developer).

“Header Information” on
page 259

section Defines a “section” of the .def file. See “Section Syntax” on
page 260

set Defines the elements in a set. “Parameters Accepting a
Single Value From a Set” on
page 263 and “Parameters
Accepting Multiple Values
From a Set” on page 264

show-as Selects the format in which character or
integer parameters will be displayed.

“Displaying Options in
ASCII, Octal, Hexadecimal,
or Decimal” on page 269

string Declares a string parameter. “Parameter Types” on
page 262

string-set Declares a set of strings, one of which must
be selected (through a radio button).

“Parameters Accepting a
Single Value From a Set” on
page 263

string-set-multi Declares a set of strings, any of which may
be selected (through check boxes).

“Parameters Accepting
Multiple Values From a Set”
on page 264

super-client-type Reserved; do not change from the default “<ANY>”.

time Declares a time parameter. “Parameter Types” on
page 262

time-set Declares a set of times, one of which must
be selected (through a radio button).

“Parameters Accepting a
Single Value From a Set” on
page 263

Table 20 .def-file keywords

Keyword Purpose
For more information,

see this section
Generic Multi-Mode e*Way Extension Kit User’s Guide 274

Appendix A Section A.5
Extending the .def File Configuration Parameters and the Configuration Files
A.5 Configuration Parameters and the Configuration Files
Parameters defined within the .def file are stored within two “configuration” files (.cfg
and .sc), which are generated by the e*Way Connection Editor’s “Save” command. The
following rules apply to both .cfg and .sc files:

Keywords are not case sensitive, as they are converted to uppercase internally
before matching.

Comments begin with the “#” character, and they must appear in column one. See
the example in “.cfg File: conSampleETD.cfg” on page 276.

Unlike the .def file, the .cfg and .sc files are sensitive to white space. White space
consists of single space characters, tabs, and newlines. Be careful not to insert extra
white space around delimiters or equal signs. For example: “|value=3|” is legal,
but “|value = 3|” and “| value=3 |“ are illegal.

The following rule applies only to the .cfg file:

Each line and each element in the .cfg file is separated using delimiters (see delim1,
delim2, delim3, and delim4 starting in Table 20 on page 272). We strongly
recommend that you do not modify any of the default delimiters.

Note: The e*Way Connection Editor creates a .cfg and .sc file automatically when you
save your configuration changes in the e*Way Connection Editor. You should not
modify either file manually unless directed to do so by Oracle support personnel.

Although e*Ways are shipped with default .def files, no configuration files are

time-set-multi Declares a set of times, one of which must
be selected (through a radio button).

“Parameters Accepting
Multiple Values From a Set”
on page 264

units Determines in which units a parameter will
be displayed.

“Specifying Units” on
page 267

user Records the name of the user who last
edited the file (entered manually by the
developer).

“Header Information” on
page 259

user-comment Records a general comment to be applied to
the file (accessible through the e*Way
Connection Editor).

“Notes” on page 260

value Defines the initial value for a parameter. “Parameter Syntax” on
page 261

version Records the name of the product version. “Header Information” on
page 259

Table 20 .def-file keywords

Keyword Purpose
For more information,

see this section
Generic Multi-Mode e*Way Extension Kit User’s Guide 275

Appendix A Section A.5
Extending the .def File Configuration Parameters and the Configuration Files
provided, because there is no “standard” configuration for any given e*Way. Users
must manually create a configuration profile using the e*Way Connection Editor for
every e*Way component.

Examples

.cfg File: conSampleETD.cfg

This example is excerpted from the “General Settings” section of a .cfg file that is
generated by the default sampleETD.def file.

--
Delimiters To Use
--
#
File/CFG/Version:0.0/Delim1:\o012/Delim2:\o174/Delim3:\o075/
Delim4:\o054
#
#
--
General Info
--
#
version:eGate
revision:$Revision: 1.1.2.1 $
user :$Author: jdeveloper $
modified:$Date: 2002/05/07 02:35:23 $
creation:initial
#
#
--
e*Way Type
--
#
network-protocol:<ANY>
os-platform:<ANY>
protocol-api-version:<ANY>
app-protocol:<ANY>
direction:<ANY>
#
#
--
Section:Connector
--
#
connector|type|value=SampleETD|set=SampleETD
connector|class|value=sample.SampleETDConnector|set=sample.SampleETDC
onnector
connector|Connection Establishment
Mode|value=Automatic|set=Automatic,Manual,OnDemand
connector|Connection Inactivity Timeout|value=|set=
connector|Connection Verification Interval|value=|set=
#
--
Section:External Configuration
--
#
External
Configuration|Filename|value=Output.properties|set=Output.properties
External Configuration|Directory|value=\OutData|set=\OutData
External Configuration|Username|value=admin|set=admin
External Configuration|Password|value=03EB8C38
Generic Multi-Mode e*Way Extension Kit User’s Guide 276

Appendix A Section A.5
Extending the .def File Configuration Parameters and the Configuration Files
.sc File: conSampleETD.sc

This example is excerpted from the connector section of an .sc file that is generated by
the default sampleETD.def file. Notice the amount of additional information as
compared to the .cfg file example in “.cfg File: conSampleETD.cfg” on page 276.

; --
; General Info
; --
(general-info
 (version "eGate")
 (revision "$Revision: 1.1.2.1 $")
 (user "$Author: jdeveloper $")
 (modified "$Date: 2002/05/07 02:35:23 $")
 (creation "initial")
 (description "Sample e*Way:

High level functionality:

This is a sample configuration definition template for an
e*Way connection.

 ")
 (user-comment "")
 (generated-cfg-path "configs/sampleETD/conSampleETD.cfg")
 (delim1 '\n')
 (delim2 '|')
 (delim3 '=')
 (delim4 ',')
 (cfg-icon "")
)
; --
; e*Way Type
; --
(super-client-type
 (network-protocol "<ANY>")
 (os-platform "<ANY>")
 (protocol-api-version "<ANY>")
 (app-protocol "<ANY>")
 (direction "<ANY>")
)
; --
; Section:"Connector"
; --
(section
 (name "connector")
 (string-set
 (name "type")
 (value "SampleETD")
 (config-default "sampleETD")
 (set
 (value ("SampleETD"))
 (config-default ("sampleETD"))
)
 (description "Connector type :
 The value is always defaulted to sampleETD for sampleETD connection
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (string-set
Generic Multi-Mode e*Way Extension Kit User’s Guide 277

Appendix A Section A.5
Extending the .def File Configuration Parameters and the Configuration Files
 (name "class")
 (value "sample.SampleETDConnector")
 (config-default "sampleETD.SampleETDConnector")
 (set
 (value ("sample.SampleETDConnector"))
 (config-default ("sampleETD.SampleETDConnector"))
)
 (description "Connector class:
 This parameter specifies the class name of the ETD connector object.
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (string-set
 (name "Connection Establishment Mode")
 (value "Automatic")
 (config-default "Automatic")
 (set
 (value const ("Automatic" "Manual" "OnDemand"))
 (config-default ("Automatic" "Manual" "OnDemand"))
)
 (description "Connection Establishment Mode:

 This parameter specifies how connection with the external
 system is established and closed. Automatic indicates that
 the connection is automatically established when the
 collaboration is started, and it keeps the connection alive
 as needed. OnDemand indicates that the connection will be
 established on demand, as business rules requiring a
 connection to the external system are performed. The
 connection will be closed after the methods are completed.
 Manual indicates that the user will explicitly call the
 connection connect and disconnect methods in their
 collaboration as business rules.

 Default is Automatic.

 If running 4.5.1 or earlier version of e*Gate core, this
 option is ignored.
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (string-set
 (name "Connection Inactivity Timeout")
 (value none)
 (config-default none)
 (set
 (value ())
 (config-default ())
)
 (description "Connection Inactivity Timeout:

 This value is used to specify timeout (in milliseconds) for
 the Automatic connection establishment mode. If this is
 not set or if it is set to 0, the connection will not be
 brought down due to inactivity. The connection is always
 kept alive; if it goes down, re-establishing connection
 will automatically be attempted. If a non-zero value is
 specified, the connection manager will try to monitor for
Generic Multi-Mode e*Way Extension Kit User’s Guide 278

Appendix A Section A.5
Extending the .def File Configuration Parameters and the Configuration Files
 inactivity so the connection is brought down if the value
 specified is reached.

 If running 4.5.1 or earlier version of e*Gate core, this
 option is ignored.
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (string-set
 (name "Connection Verification Interval")
 (value none)
 (config-default none)
 (set
 (value ())
 (config-default ())
)
 (description "Connection Verification Interval:

 This value is used to specify the minimum period of time
 (milliseconds) between checks for connection status to
 the database server. If the connection to the server is
 detected to be down during verification, the user
 collaboration's onConnectionDown method is called. If
 the connection comes from a previous connection error,
 the user collaboration's onConnectionUp method is called.
 If no value is specified, 60000 ms is used.

 If running 4.5.1 or earlier version of e*Gate core, this
 option is ignored.
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (description "Connector:

 This section contains a set of top level parameters:

 o type
 o class
 o Connection Establishment Mode
 o Connection Inactivity Timeout
 o Connection Verification Interval
")
 (user-comment
 (value "")
 (config-default "")
)
)
; --
; Section:"External Configuration"
; --
(section
 (name "External Configuration")
 (string-set
 (name "Filename")
 (value "Output.properties")
 (config-default none)
 (set
 (value ("Output.properties"))
Generic Multi-Mode e*Way Extension Kit User’s Guide 279

Appendix A Section A.5
Extending the .def File Configuration Parameters and the Configuration Files
 (config-default ())
)
 (description "Filename:

 Mandatory.
 This is the filename ...
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (string-set
 (name "Directory")
 (value "\OutData")
 (config-default none)
 (set
 (value ("\OutData"))
 (config-default ())
)
 (description "Directory:

 Mandatory.
 This is the directory ...
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (string-set
 (name "Username")
 (value "admin")
 (config-default none)
 (set
 (value ("admin"))
 (config-default ())
)
 (description "Username:

 Mandatory.
 This is a sample for a config variable for specifying the username
for connecting to an external server.
")
 (user-comment
 (value "")
 (config-default "")
)
)
 (string encrypt
 (name "Password")
 (value "03EB8C38")
 (config-default "")
 (description "Password:

 Mandatory.
 This is a sample for a config variable for specifying the password
for connecting to an external server.
")
 (user-comment
 (value "")
 (config-default "")
)
)
Generic Multi-Mode e*Way Extension Kit User’s Guide 280

Appendix A Section A.6
Extending the .def File Testing and Debugging the .def File
 (description "Connection:

 This section contains information for connecting to Portal Infranet:

 o Filename
 o Directory
 o Username
 o Password
")
 (user-comment
 (value "")
 (config-default "")
)
)

A.6 Testing and Debugging the .def File
To test the .def file, open it with the e*Way Connection Editor. If the syntax of all
parameters is correct, the e*Way Connection Editor will launch, and you can confirm
that your sections, parameters, ranges, and options are as you intended.

There are two types of errors that you may encounter:

Logical errors: The e*Way Connection Editor loads the .def file and displays no
error message, but the parameters are not defined as desired (for example, default
options are omitted, or a range was not properly defined). These errors are
corrected by replacing the incorrect values with the correct ones.

Syntax errors: These “mechanical” errors involve missing parentheses, invalid
keywords and similar problems. These errors cause the e*Way Connection Editor to
display an error message and exit. This section primarily addresses errors of this
type.

Note: You may also encounter syntax errors if you try to edit an existing configuration
profile that contains a corrupted .sc file. You should not attempt to modify .sc
or .cfg files outside of the e*Way Connection Editor unless specifically instructed to
do so by Oracle personnel.

The e*Way Connection Editor component that interprets the .def file provides only
elementary error messages when it encounters an error. This section describes the most
common errors you may encounter, and the steps you should take to debug a .def file
under development.

By far, the most common errors are:

Missing parentheses. Proper indentation will help you catch most of these, and
some editors have features that find matching parentheses (such as the vi editor’s
SHIFT+% function).

Missing quotation marks. Be sure that characters are delimited by single quotes and
strings (including path names) by double quotes.
Generic Multi-Mode e*Way Extension Kit User’s Guide 281

Appendix A Section A.6
Extending the .def File Testing and Debugging the .def File
Quotation marks that should be escaped but are not. This usually occurs in the
argument to the (description) keyword; double-check that all quotations within
descriptions use \"escaped\" quotation marks.

Missing parameters. Refer to the examples in this chapter, or to the sample .def file
for the required parameters for each keyword.

Keywords out of order. See “Order of Keywords” on page 261.

Note: Using the templates provided in the sample .def file will help prevent many errors
before they occur; see “Sample .def File” on page 283 for more information.

A.6.1 Common Error Messages
The following section contains common error messages and their most common causes.
Each error message will contain the string L<nnn>, which indicates a line number (for
example, L<124> signifies “line 124”).

SCparse : parse error, expecting `LP_keyword-name'
The keyword keyword-name was expected but not found. The keyword could be
missing or out of order, the keyword’s initial parenthesis could be missing, or the
previous keyword could have been terminated prematurely (for example, by an out-of-
place parenthesis or quote-parenthesis combination) or misspelled.

SCparse : parse error, expecting `RIGHT_PAREN'
The right parenthesis is missing, a close-quote is missing, as in (user-comment "), or
there is an extra or unescaped close-quote within a (description) keyword argument.

SCparse : parse error, expecting `LEFT_PAREN'
This error appears under a very wide range of conditions. A keyword could be
misspelled, there could be extraneous or unbalanced quotes or parentheses, a keyword
could be missing a left parenthesis, or extraneous material may have been found
between parameter declarations. Sometimes this error appears in conjunction with
expecting `LP_keyword-name'.

Param-Type<keyword>: Value is not within the allowed range.
An argument to a keyword has exceeded the limits defined by its accompanying
(range) keyword. Change either the (value) argument or the (range) limit.

param-typeTypeSet<keyword> : "n" is not in this Set.
A default value for a parameter has been specified that does not appear within the
default value of the (set) keyword.

SCparse : parse error, expecting `arg-type'
One type of argument was expected, but another has been found (for example, an
integer where as string was expected). Errors expecting LITERAL_STRING are
commonly caused by missing quotation marks. Errors expecting TIME_VAL,
DATE_VAL, or SCHEDULE_VAL can also be due to invalid data (such as a time of
12:00:99), or missing/extra delimiters.
Generic Multi-Mode e*Way Extension Kit User’s Guide 282

Appendix A Section A.7
Extending the .def File Sample .def File
CharVal : "\sequence" is not legal character.
There is an error in an escape sequence.

SCparse : parse error
This “general” error is caused by a number of problems, such as misspelled arguments
within keywords.

A.7 Sample .def File
A .def file containing commented samples for sample parameter definitions is available
on the e*Gate Integrator Installation CD-ROM. When you extracted it from gmeek.taz,
it was installed to:

gmeek\installETD\SampleETD\sampleETD.def

You can use this sampleETD.def file as a template from which to build your own
extensions to a .def file that you create. Open the file with a text editor, select the
desired parameter-definition template, and then copy and paste the template into your
own .def file, where you can modify it as needed.

When you finish editing the .def file, you must then commit it to the Registry. For
instructions on committing the .def file to the Registry, see “Installing the Sample Files
to e*Gate” on page 179.

To open the sample.def file in the e*Way Connection Editor

1 Use the installETD scripts to install the sampleETD files to a schema. For more
information, see “Running the installETD Script” on page 75.

2 Create or select an e*Way Connection, and then display its properties.

3 From the drop-down menu, select SampleETD.

4 Under Configuration file, click New.

The e*Way Connection Editor displays several sections of sample parameters—
“type,” “class,” and so on—as shown in Figure 67.
Generic Multi-Mode e*Way Extension Kit User’s Guide 283

Appendix A Section A.7
Extending the .def File Sample .def File
Figure 67 The sampleETD.def file in the e*Way Connection Editor

After identifying the parameter you wish to copy, open sampleETD.def in a text editor
and search for the parameter name. Then, copy the parameter and change the sample
values to the values you want to use. See Figure 68.

Figure 68 The sampleETD.def File in Text Editor

Copy the
code
between
the
comments

Change
the
values as
desired
Generic Multi-Mode e*Way Extension Kit User’s Guide 284

Appendix A Section A.8
Extending the .def File Accessing Configuration Parameters Within the APIs
A.8 Accessing Configuration Parameters Within the APIs
The e*Way Connection automatically loads configuration parameters stored in the .cfg
file into variables within the APIs.

A.8.1 Format for Variable Names
We recommend that you name variables using the format

SECTION-NAME_PARAM-NAME

where SECTION-NAME is the name of the section and PARAM-NAME is the name of
the parameter. The value of the parameter is referenced as the value of the variable.

Convention

Variable names should be in all upper case. The section and parameter names should be
joined by an underscore, and any spaces contained within section or parameter names
should also be converted into underscores.

We recommend using this variable name as a property name to consistently access the
value of the .cfg parameter throughout your ETD code. See “Getting Variable Values”
on page 286.

Examples

The value of the parameter named “Directory” within the section “External
Configuration” should be declared as the variable
“EXTERNAL_CONFIGURATION_DIRECTORY” (all upper case).

The value of the parameter named “Gateway ID” within the section “External
Configuration” should be declared as the variable
“EXTERNAL_CONFIGURATION_GATEWAY_ID”.

A.8.2 Referencing the Parameter
If you have a space between the section name and the parameter name, you must
replace this space with an underscore. As a result, this allows you to reference the
parameter correctly.

To distinguish between the section name and the parameter, use a period “.”, as shown
in the following example.

Examples

”External_Configuration.Directory”

where

External_Configuration

is the section name, and

Directory

is the parameter name.
Generic Multi-Mode e*Way Extension Kit User’s Guide 285

Appendix A Section A.8
Extending the .def File Accessing Configuration Parameters Within the APIs
A.8.3 Getting Variable Values
Variable values are read using the helper function getProperty().

The getProperty() method retrieves the configuration parameters that the e*Way
extracted form the corresponding configuration file.

Examples

public static final String
EXTERNAL_CONFIGURATION_DIRECTORY=”External_Configuration.Directory”;
this.cfgProps = myETDConnector.getProperties();

String propsDirectory =
cfgProps.getProperty(EXTERNAL_CONFIGURATION_DIRECTORY);
Generic Multi-Mode e*Way Extension Kit User’s Guide 286

Appendix B

The XSC Format

This appendix provides detailed information on the following aspects of the XSC
format:

Entities on page 289

Table of XSC Entities and Their Attributes on page 300

Method Signature Syntax on page 304

Identifier Characters on page 305

JCS Properties on page 305

This is a prescriptive guide to the recommended usage of the XSC format. It is not
intended to be exhaustive; in other words, there are additional supported entities,
attributes, and constructions that are permitted but not recommended (for example, to
provide backward compatibility with XSC 0.4 and XSC 0.3).

The XSC 0.6 format was introduced at e*Gate version 4.5.2 (superseding the XSC 0.4
format of e*Gate version 4.5.1), and XSC 0.6 is recommended. However, you can rely on
this information even if you are developing XSC 0.4 files for use in e*Gate version 4.5.1,
as all usages that are incompatible with XSC 0.4 are flagged as such throughout this
appendix.

B.1 Overview
All .xsc files, regardless of the XSC format version level, consist of a single <etd> entity
and the entities it contains (which must include exactly one <javaProps> entity and at
least one <node> or <class> entity).

For an .xsc file to be viewed in the e*Gate GUIs, every entity must have a uid attribute,
and no two uid attributes in the same file can have the same value.

Every entity can have an optional comment attribute, a string of up to 1024 characters
that is used for documentation purposes.
Generic Multi-Mode e*Way Extension Kit User’s Guide 287

Appendix B Section B.1
The XSC Format Overview
Example of Required Entities

Syntax

Note: Curly braces {...} indicate a possibly repeating sequence (zero or more times).
Square brackets [...] indicate an optional sequence (exactly zero times or once).
Parentheses (...) indicate a sequence that is grouped to make it more legible.

<etd [name=root-name]
xscVersion=”0.6” type=etd-type
[editable=boolean] [derived=boolean]
[sscEncoding=string] [dataEncoding=string]
uid=text [comment=string]>

<javaProps package=text [class=text]
[codeAvailable=boolean] [jarFile=filepath]
[source=filepath]
uid=text [comment=string]>

[<jar file=filepath uid=text [comment=string]>]
{<interface fqClass=text uid=text [comment=string]>

<method ...> {<method ...>} } }

[<delimiters uid=text [comment=string]>
<delim [endOfRec=boolean] [separator=boolean]

[required=boolean] [array=boolean]
[anchored=boolean]

[beginAnchored=boolean] [endAnchored=boolean]
uid=text [comment=string]>

<delimGroup>
<beginDelim>
<endDelim>

{<delim ...> }]

<node type=“CLASS”
name=text [javaName=text]
[javaType=datatype]
[public=boolean]
[... other optional attributes ...]
uid=text [comment=string]>

<node type=(“CLASS” | “FIELD” | ”ENUMERATION” | ”REFERENCE”)
name=text [javaName=text]
[readOnly=boolean]
[minOccurs=numZPU] [maxOccurs=numUZPU] [optional=boolean]
[(fixedValue=string |

defaultValue=string [defaultBytes=string
[defaultEncoding=name]])

[inputMatch=boolean [avoidMatch=boolean]]
[exact=boolean]
[group=boolean]
[(length=“DECIMAL” lengthFrom=numZP lengthSize= numP |

length=numNZPU
[lengthFrom=”undefined”] [lengthSize=”undefined”])]

[offset=numZPU]
[... other optional attributes specific to delimiters...]
[structure=(“delim” | “fixed” | “array” | “set”)]
[order=(“sequence” | “any” | “choice”)]
[childMin=numZPU] [childMax=numUPU]]
uid=text [comment=string]>

{<node type=(“CLASS” | “FIELD” | ”ENUMERATION” | ”REFERENCE”) ...>
{<delim ...>
{<method name=text [signature=text] returnType=datatype >
Generic Multi-Mode e*Way Extension Kit User’s Guide 288

Appendix B Section B.2
The XSC Format Entities
uid=text [comment=string]>
{<param name=text paramType=datatype

uid=text [comment=string]> }
{<throws> excepType=datatype uid=text [comment=string]> } }

{<node ...>
{<delim> ...} {<method> ...} {<node> ... } }

{<node ...>
{<delim> ...} {<method> ...} {<node> ... } }

B.2 Entities
Every .xsc file you create must be a valid XML string composed of a valid combination
of the following types of entities.

Required entities

<etd>

<javaProps> (This is required in XSC 0.6, and highly recommended in XSC 0.4.)

<node> (or <class>)

Optional entities for non-.ssc-based ETDs

<jar>

<interface>

<method>

<param>

.ssc-specific entities

<delimiters>

<delim>

<delimGroup>

<beginDelim> and <endDelim>

B.2.1 The <etd> Entity
The <etd> entity is the top-level entity in an .xsc file. It represents a complete ETD (or
a self-contained part thereof, such as a reusable template). This entity is required and
non-repeating; in other words, every .xsc file must contain exactly one <etd> entity.

Syntax
<etd [name=root-name]

xscVersion=”0.6” type=etd-type
[editable=boolean] [derived=boolean]
[sscEncoding=string [dataEncoding=string]]
uid=text [comment=string]>
Generic Multi-Mode e*Way Extension Kit User’s Guide 289

Appendix B Section B.2
The XSC Format Entities
<javaProps ...>

[<delimiters ...>]

<node name=root-name ...>
{<node ...>}

</etd>

Required Attributes for <etd>

name=root-name (required for type=”SSC” only)

In XSC 0.6, the name attribute is required when type=”SSC” but optional for other ETD
types; see “Optional Attributes for <etd>”.

xscVersion=”0.6”

Default value: (not applicable; in XSC 0.6, this must be set to “0.6”)

Identifies the XSC syntax version. This attributes serves as a way to provide backward
compatibility in later XSC versions, so that a reader can identify and process XSC input
depending on the version.

type=etd-type

Default value: (undefined)

Identifies the message type and, therefore what kind of parser and rendering function
will be used to convert between external and internal representations of the message.

Examples of etd-type include:

“DB”—generated by the database builder from an SQL-accessible relational
database schema

“DTD”—XML description, generated from a DTD

“IDOC”—IDOC document description in SAP’s IDOC meta-language

“SEF”—Standard Exchange Format (Foresight Corporation)

“SSC”—converted from Monk SSC or written from scratch using the ETD editor

“X12”—from the EDI format

“XSD”—XML description, written in the XML Schema notation

Optional Attributes for <etd>

name=root-name

Default value: (undefined)

The name attribute of the <etd> entity, if specified, must match the name attribute of
one of the <node> entities contained immediately below the <etd> entity. This
identifies that <node> entity as the top node to show in the GUI.

Note: For type=“SSC”, the name attribute is mandatory.
Generic Multi-Mode e*Way Extension Kit User’s Guide 290

Appendix B Section B.2
The XSC Format Entities
editable=boolean

Default value: “false”

Indicates whether the ETD Editor is used to modify the contents. You should set this to
“true” only if the ETD can invoke a back-end to produce code based solely on the ETD
contents. I

In e*Gate version 4.5.2, this can occur only when type=“SSC” or when derived=“true”.

derived=boolean

Default value: “false”

When set to “true”, the XSC represents a derived ETD.

comment=string

Default value: (undefined)

An arbitrary string for documentation purposes. Attribute values must be in normal-
safe form, which protects them against alteration by attribute normalization.

sscEncoding=string

Note: This attribute of the <etd> entity is valid only when type=”SSC”

Default value: “US-ASCII”

Indicates the preferred encoding of the output .ssc file. Supported values in XSC 0.6 are:

“US-ASCII” (corresponds to “ASCII” in Monk)

“UTF-8” (corresponds to “UTF8” in Monk)

“SJIS” (a common Japanese character encoding)

“MS949” (corresponds to “UHC” in Monk)

dataEncoding=string

Note: This attribute of the <etd> entity is valid only when type=”SSC”

Default value: (the value of the sscEncoding attribute)

Contains the “assumed input encoding” to be passed to the Monk Event parser at run
time. The parser, which is otherwise oriented towards byte-stream-processing, uses the
assumed input encoding to avoid inappropriate delimiter matching (misidentifying the
second or further byte of a multi-byte sequence encoding a single input character with
the first byte of a delimiter).

In Monk, the assumed input encoding is derived implicitly from the encoding of the
metadata itself in the .ssc file. Because the output SSC in e*Gate is normally rewritten to
UTF-8, the original input encoding information is preserved in the dataEncoding
attribute. In e*Gate version 4.5.2, for example, the SSC Builder can handle .ssc files
coded in ASCII, ISO-8859-1, UTF-8, Shift-JIS (Japanese), UHC (Korean), and Big5
(Traditional Chinese).
Generic Multi-Mode e*Way Extension Kit User’s Guide 291

Appendix B Section B.2
The XSC Format Entities
Entities Directly Contained by <etd>

The optional <delimiters> entity occurs only in <etd> entities for which type=”SSC”.
The required <javaProps> entity contains data on the Java implementation of the XSC.
The required <class> and/or <node> entity or entities set up the structure of the data
described in the XSC.

Compatibility Notes for <etd>

Attributes

Prior to XSC 0.5, the name attribute was mandatory for all ETD types. The lowercase
variants of the type attribute values were deprecated but accepted in XSC 0.2; they were
dropped in XSC 0.3 onwards. The xscVersion attribute was introduced in XSC 0.4 (with
a value of “0.4”). The sscEncoding and dataEncoding attributes were introduced in
XSC 0.4. The derived attribute was introduced in XSC 0.6.

Entities directly contained

XSC 0.3 and 0.4 permitted an <extra> entity for extension purposes, but it was never
used.

B.2.2 The <javaProps> Entity
The <javaProps> entity contains information regarding the generated Java code for the
ETD, and can only occur directly below the <etd> entity. It is mandatory in XSC 0.6 and
highly recommended in XSC 0.4. It is not repeatable.

Syntax
<javaProps package=text class=text

[codeAvailable=boolean] [jarFile=path] [source=path]
uid=text [comment=string]>

[<jar>]
{<interface>}

</javaProps>

Required Attributes for <javaProps>

package=text

Default value: (undefined)

class=text

Default value: (ETD name)

Together, the package and class attributes specify the fully qualified Java class name of
the Java class that implements the root node of the XSC. The Java file name and location
are inferred from the class name and package name. For example, if class=”Z” and
package=”x.y”, the file name is “x/y/Z.java”. The (unqualified) class name defaults to
the ETD name; this is analogous to the javaName attribute for <class> and <node>
entities.
Generic Multi-Mode e*Way Extension Kit User’s Guide 292

Appendix B Section B.2
The XSC Format Entities
The full package name consists of zero or more dot-separated components, where each
component is both a directory name (below the e*Gate Java package root directory) and
a valid Java ID. In order to support platforms such as Windows, on which directory
names must differ by more than just case, the components must all be:

case-insensitive

portable directory names: The POSIX portable character set comprises ASCII letters,
digits, hyphen (-), underscore (_), dot (.), tilde (~), and hash (#).

valid Java identifiers (see section B.5)

Omitting uppercase characters (to preserve case-insensitivity and Java package name
convention), and omitting characters not valid in a Java ID, the component syntax is a
non-empty sequence of letters, digits and underscores, not starting with a digit, and
(for legibility) prohibiting consecutive underscores, as shown in the following
examples:

package=“abc.xyz._123” (three components)

package=“my.company-name.com.~user-id.#01_A001” (five components)

This enforces a one-to-one correspondence between Java package names and directory
paths and removes the need for managing distinct entities in parallel. For convenience,
to avoid allowing tools do the conversion themselves, the explicit directory path is a
derived string.

Optional Attributes for <javaProps>

codeAvailable=boolean

Default value: “false”

Indicates whether the associated code has been successfully produced and compiled.
If codeAvailable is unspecified or set to “false”, then the jarFile attribute is optional.

jarFile=path

Default value: (undefined)

Defines the path (relative to the e*Gate home directory) to the .jar file. This attribute is
required if codeAvailable=”true”, but is otherwise optional.

source=path (valid for derived ETDs only)

Default value: (undefined)

Specifies the path (relative to the e*Gate home) to the associated Java source file with
the wrapper code. This attribute is only valid in a <javaProps> entity in a derived ETD.
(A derived ETD is an <etd> entity for which derived=”true”.)

Entities Directly Contained by <javaProps>

The optional <jar> entities are valid only for derived ETDs. The optional <interface>
entities are valid for any ETD.
Generic Multi-Mode e*Way Extension Kit User’s Guide 293

Appendix B Section B.2
The XSC Format Entities
Compatibility Notes for <javaProps>

The <interface> entity was introduced at XSC 0.3. The <jar> entity was introduced at
XSC 0.6.

B.2.3 The <jar> Entity
The <jar> entity can only occur directly below a <javaProps> entity in a derived ETD. It
is optional and, for XSC 0.6 and earlier, not repeatable. It specifies the .jar file that
implements the parent ETD’s root class.

At run time, the Collaboration Editor checks to be sure that the .jar file mentioned in
each <jar> entity is available and in the run-time classpath.

Syntax
<jar file=path uid=text [comment=string]>
</jar>

B.2.4 The <interface> Entity
The <interface> entity can only occur directly below a <javaProps> entity. It is optional
and repeatable. In e*Gate, any Collaboration that uses the XSC as an ETD includes the
declaration that its class implements the given interface or interfaces.

Note: At XSC 0.6, the <interface> entity does not support interface elements besides
methods. For example, static final variables are not supported.

Syntax
<interface fqClass=text uid=text [comment=string]>

{<method>}
</interface>

Required Attribute for <interface>

fqClass=text

Each fqClass value must be unique within the ETD, and must be a fully qualified Java
interface name.

Entities Directly Contained by <interface>

The <interface> entity can optionally contain one or more <method> entities. In
XSC 0.6, it cannot contain any other types of entities.

Compatibility Notes for <interface>

This entity was introduced at XSC 0.3. Its uid attribute was introduced at XSC 0.5.
Generic Multi-Mode e*Way Extension Kit User’s Guide 294

Appendix B Section B.2
The XSC Format Entities
B.2.5 Delimiter-Related Entities (SSC only)
The following describes four delimiter-related entities:

The <delimiters> entity is optional and not repeatable. It can only occur directly
below the <etd> entity in an SSC-based ETD. (An SSC-based ETD is an <etd> entity
for which type=”SSC”.) It corresponds to the Global Delimiters list in an .ssc file,
and like the .ssc file it contains a sequence of zero or more delimiters in descending
order of application.

The <delim> entity is optional and repeatable. It can only occur directly below the
<delimiters> entity. Each instance of a <delim> entity specifies the next lower level
of global delimiters, either by specifying a pair of strings in its beginDelim and
endDelim attributes, or via a <delimGroup> entity that specifies a set of candidate
begin-delimiter strings and a paired set of candidate end-delimiter strings.

The <delimGroup> entity is optional and repeatable. It can only occur directly
below the <delim> entity, which specifies the level for which this group applies.
Each instance of a <delimGroup> entity specifies a set of candidate begin-delimiter
strings and a paired set of candidate end-delimiter strings for the current level.

The <beginDelim> (and <endDelim>) entities are optional and repeatable. They
can only occur directly below the <delimGroup> entity. Each such entity specifies a
set of candidate delimiter characters or strings, any one of which is to be recognized
as a begin-delimiter (or end-delimiter) for that level.

Syntax for <delimiters> entity

<delimiters uid=text [comment=string]>
{<delim>}

</delimiters>

Syntax for <delim> entity

<delim [beginDelim=string] [endDelim=string] [value=string]
endOfRec=boolean separator=boolean required=boolean
array=boolean anchored=boolean
beginAnchored=boolean endAnchored=boolean
uid=text [comment=string]>

</delim>

Syntax for <delimGroup> entity

<delimGroup {<beginDelim>} {<endDelim>}
uid=text [comment=string]>

</delimGroup>

Syntax for <beginDelim> entity

<beginDelim (string-delim | encoded-delim)
uid=text [comment=string]>

</beginDelim>

Syntax for <endDelim> entity

<endDelim (string-delim | encoded-delim)
uid=text [comment=string]>

</endDelim>
Generic Multi-Mode e*Way Extension Kit User’s Guide 295

Appendix B Section B.2
The XSC Format Entities
Required Attributes for <delim>

endOfRec=boolean

Default value: “false”

separator=boolean

Default value: “false”

required=boolean

Default value: “false”

array=boolean

Default value: “false”

anchored=boolean

Default value: “false”

beginAnchored=boolean

Default value: “false”

endAnchored=boolean

Default value: “false”

Optional Attributes for <delim>

beginDelim=string

Default value: (undefined)

Specifies the value for the begin-delimiter at this level.

endDelim=string

Default value: (undefined)

Specifies the value for the end-delimiter at this level.

Entities Directly Contained by <delim>

One or more optional <delimGroup> entities occur only in <delim> entities that lack
beginDelim and endDelim attributes.

Required and Optional Attributes for <delimGroup>

Other than the required uid attribute and the optional comment attribute, the
<delimGroup> entity takes no attributes.

Entities Directly Contained by <delimGroup>

One or more optional <beginDelim> and <endDelim> entities are specified within each
<delimGroup> entity.
Generic Multi-Mode e*Way Extension Kit User’s Guide 296

Appendix B Section B.2
The XSC Format Entities
Attributes for <beginDelim> and <endDelim>

Each <beginDelim> and <endDelim> entity must have exactly one string-delim set of
attributes or else exactly one encoded-delim set of attribute.

B.2.6 The <node> and <class> Entities

Note: The <node> and <class> entities are synonyms. The current SSC Builder uses
<class> for template roots and <node> for nested entities, but this is only a
convention. We recommend that you use <node> exclusively.

A <node> entity describes a single node in the ETD—in other words, a simple data
field or a delineated group of data fields. It can occur optionally or repeatedly in actual
instances of the Event.

Syntax
<node type=(“CLASS” | “FIELD” | ”ENUMERATION” | ”REFERENCE”)

name=text [javaName=text]
[readOnly=boolean]
[minOccurs=numZPU] [maxOccurs=numUZPU] [optional=boolean]
[(fixedValue=string |

defaultValue=string [defaultBytes=string
[defaultEncoding=name]])

[inputMatch=boolean [avoidMatch=boolean]]
[exact=boolean]
[group=boolean]
[(length=“DECIMAL” lengthFrom=numZP lengthSize= numP |

length=numNZPU
[lengthFrom=”undefined”] [lengthSize=”undefined”])]

[offset=numZPU]
[... other optional attributes specific to delimiters...]
[structure=(“delim” | “fixed” | “array” | “set”)]
[order=(“sequence” | “any” | “choice”)]
[childMin=numZPU] [childMax=numUPU]]
uid=text [comment=string]>

{<node ...>}
{<method ...>}

</node>

Syntax for <node> Entities of type=”CLASS”

<node type=“CLASS”
name=text [javaName=text]
[javaType=datatype]
[public=boolean]
[... other optional attributes ...]
uid=text [comment=string]>

{<node ...>}
{<method ...>}

</node>
Generic Multi-Mode e*Way Extension Kit User’s Guide 297

Appendix B Section B.2
The XSC Format Entities
Required Attributes for <node>

name=text

Default value: (undefined)

type

Each node must be of one of the following types:

A template node has type=”CLASS” and can have a public=boolean attribute. It is
characterized by being a top-level node. The parent of a template node is the <etd>
entity. The sequence of <node> entities immediately inside the <etd> entity is
known as its local template list. Each local template must have a name that is unique
in the list (no two top-level nodes may have the same name). If the <etd> entity has
a name attribute, its value must match the name attribute of a template node.

A composite node also has type=”CLASS”, but lacks a public attribute. A node that
is a parent element (as opposed to a leaf) is composite if it is not a template.

For both composite nodes and template nodes, the javaType attribute value
defaults to the fully qualified Java class name formed by the <javaProps> package
value, followed by all ancestor node names and the name of the node itself,
separated by ".". Node names in this case are the <node> javaName values if
present, and name values otherwise.

A simple node has type=”FIELD”. Simple nodes describe data fields that are not
further subdivided or described elsewhere in the ETD. The javaType attribute value
defaults to “java.lang.String”. In this case, the encoding attribute can specify the
character encoding name used to convert between raw input/output byte data and
internal string values.

An enumeration node has type=”ENUMERATION”, and is also a leaf node. Nodes
of this type require a list of zero or more members that represent enumeration
elements. Enumeration elements are <member> entities with allowable attributes
name and value. If any of the members of an enumeration has the value attribute,
then all its member must have it. In this case, all values should be distinct strings.

A reference node has type=”REFERENCE”, and is a surrogate for an ETD part that is
defined either within the same .xsc file (in which case the node is called an internal
reference to a local template), or else to a global template defined in another .xsc file
(in which case the node is called an external template). The distinction is signaled by
the reference attribute. When reference=filepath is defined, filepath is the relative
path and filename of the external .xsc file being referenced.

B.2.7 The <method> Entity
A <method> entity describes an explicit public method associated with a particular
generated class (if the parent of the <method> is a <node> entity) or implemented
interface (if the parent is an <interface> entity) in the ETD.
Generic Multi-Mode e*Way Extension Kit User’s Guide 298

Appendix B Section B.2
The XSC Format Entities
Implicit methods, on the other hand, are generated automatically for each node
depending on its attributes. Thus, you need not create Bean-style getter/setter
methods for each node unless you want to override them. Examples include:

get<nodeName>() is always generated.

set<nodeName>() is generated for writable nodes—in other words, nodes for which
readOnly=”false”.

has<nodeName>() is generated for nodes that might not receive data— in other
words, nodes for which minOccurs=”0”.

count<nodeName>() is generated for repeating nodes— in other words, nodes for
which maxOccurs is greater than ”1” or is equal to “unbounded”.

Syntax
<method name=text [type=”METHOD”

signature=text retunType=javatype
uid=text [comment=string]>

{<param name=text [type=”PARAM”] paramType=javatype ...>}
{<throws excepType=javatype ...>}

</method>

Required Attributes for <method>

There are zero or more <method> entities in every <node> or <interface> entity.
A <method> entity can contain zero or more <param> entities. As of this release, it
cannot contain any other entities, but provisions have been made for a future <throws>
entity. The parent of a <method> entity must be a <node> or <interface> entity.

The <method ...> tag has four required attributes: name, signature, returnType, and
uid. (The signature attribute is syntactically optional, but highly recommended.)

returnType. The value of the returnType attribute is required to specify the data
type of the method. Examples:

returnType=”void”

returnType=”java.lang.String”

Array types are denoted by a trailing pair of brackets: returnType=datatype[]

signature. The presence of a valid signature attribute allows the e*Gate system to
load the ETD more quickly, since it need not parse every method entity on the fly.
For complete details on the signature attribute of the <method> entity, see “Method
Signature Syntax” on page 304.

Optional Attributes for <method>

The type attribute is now unnecessary, but continues to be supported to maintain
compatibility with XSC 0.2.
Generic Multi-Mode e*Way Extension Kit User’s Guide 299

Appendix B Section B.3
The XSC Format Table of XSC Entities and Their Attributes
B.2.8 The <param> Entity
The <param> entity is a child of a <method> entity that specifies a particular parameter
name and datatype in the argument list for the method.

Syntax
<param name=text [type=”PARAM”] paramType=javatype

uid=text [comment=string]>
</param>

Required Attributes for <param>

name

The value of the name attribute must be a valid Java identifier. For details, see
“Identifier Characters” on page 305.

paramType

Specifies the data type of the parameter. Array types are denoted by a trailing pair
of brackets: paramType=datatype[]

Optional Attributes for <param>

The type attribute is now unnecessary, but continues to be supported to maintain
compatibility with XSC 0.2.

B.3 Table of XSC Entities and Their Attributes

B.3.1 Default Values
Most attributes have a default value. When an attribute has its default value, it should
not normally be present in the XSC file. This avoids clutter and saves space. As a rule,
all attributes of type “string” and “normal-safe” default to an empty string, all
attributes of type “boolean” default to “false”, and all numeric types default to “1”. In
Table 21 on page 301, only fields that do not conform to these default values have been
noted.

B.3.2 Types
The types used are as follows:

string = simple XML string (no escapes)

normal-safe = a string escaped with \uxxxx escapes to protect against attribute
normalization

boolean = “true” | ”false” value
Generic Multi-Mode e*Way Extension Kit User’s Guide 300

Appendix B Section B.3
The XSC Format Table of XSC Entities and Their Attributes
u-number = non-negative integer or “undefined”

u/u-number = like u-number, but also “unbounded” (with alias “-1”)

precedence = “parent” | ”child” value.

Table 21 Attributes and Entities

attribute name
data

type [1]
default value Notes (for numbered notes, see end of table)

attributes for the <etd> entity:

comment string: ns Provides documentation to help the end user
understand the ETD’s purpose and function
and/or to provide warnings and tips.

dataEncoding string = sscEncoding Not applicable. (For SSC-based .xsc files only.)

derived boolean “false” Not supported in XSC 0.4 or earlier.

editable boolean “false” Indicates whether the ETD Editor is used to
modify the contents of the ETD.

name string: ns none Contains the root name. Must match the value
of the name attribute of exactly one of the
<class> or <node> entities in the .xsc file.

sscEncoding string “US-ASCII” Not applicable. (For SSC-based .xsc files only.)

type string none Identifies the kind of message the ETD expects
to parse/render/convert/transport/transform
(such as DB, DTD, IDOC, SEF, SSC, X12, XSD)

uid string Must be unique to the values of all other uid
attributes in the .xsc file.

xscVersion string none In 0.6-compliant .xsc files, set xscVersion=“0.6”
to avoid unnecessary compatibility checking.

attributes for the <javaProps> entity:

class string

codeAvailable boolean

comment string: ns

jarFile string: ns

package string none

source string: ns none

uid string Must be unique to the values of all other uid
attributes in the .xsc file.

attributes for the <jar> entity:

comment string: ns

file string: ns none

uid string Must be unique to the values of all other uid
attributes in the .xsc file.
Generic Multi-Mode e*Way Extension Kit User’s Guide 301

Appendix B Section B.3
The XSC Format Table of XSC Entities and Their Attributes
attributes for the <interface> entity:

comment string: ns

fqClass string none

name string none

uid string Must be unique to the values of all other uid
attributes in the .xsc file.

attributes for the <method> entity:

comment string: ns

name string none

resultType string none

signature string none

type string “METHOD”

uid string Must be unique to the values of all other uid
attributes in the .xsc file.

attributes for the <param> entity:

comment string: ns

name string none

paramType string none

type string “PARAM”

uid string Must be unique to the values of all other uid
attributes in the .xsc file.

attributes for the <throws> entity:

comment string: ns none

excepType string none

uid string Must be unique to the values of all other uid
attributes in the .xsc file.

attributes for the <class> and <node> entities:

anchored boolean “false”

array boolean “false”

avoidMatch boolean Not supported in XSC 0.4 or earlier.

beginAnchored boolean “false” Not applicable. (For SSC-based .xsc files only.)

beginDelim string: ns “false” Not applicable. (For SSC-based .xsc files only.)

childMax “undefined” Not supported in XSC 0.4 or earlier.

childMin “undefined” Not supported in XSC 0.4 or earlier.

comment string: ns (not defined)

defaultBytes string: ns = defaultValue Not supported in XSC 0.4 or earlier.

Table 21 Attributes and Entities (Continued)

attribute name
data

type [1]
default value Notes (for numbered notes, see end of table)
Generic Multi-Mode e*Way Extension Kit User’s Guide 302

Appendix B Section B.3
The XSC Format Table of XSC Entities and Their Attributes
defaultEncoding string = etd.sscEncoding Not supported in XSC 0.4 or earlier.

defaultValue string: ns

encoding string Not supported in XSC 0.4 or earlier.

endAnchored boolean “false” Not applicable. (For SSC-based .xsc files only.)

endDelim string: ns Not applicable. (For SSC-based .xsc files only.)

endOfRec boolean “false”

exact boolean “false” Introduced in XSC 0.6.

fixedValue string: ns

format string: ns Not supported in XSC 0.4 or earlier.

group boolean “false” Introduced in XSC 0.6.

inputMatch string: ns

javaName string = name

javaType string “java.lang.String” Not supported in XSC 0.4 or earlier.

length “undefined”

lengthFrom “undefined” Not supported in XSC 0.4 or earlier.

lengthSize “undefined” Not supported in XSC 0.4 or earlier.

maxOccurs “1”

member string: ns Not supported in XSC 0.4 or earlier.

minOccurs “1”

name string: ns none

nickName string: ns none Not supported in XSC 0.4 or earlier.

offset “undefined”

optional boolean “false”

order string “sequence”

precedence (string) “child” Value must be either “child” or “parent”.
Not supported in XSC 0.4 or earlier.

public Not supported in XSC 0.4 or earlier.

readOnly boolean

reference string: ns

required boolean “false”

scavOutput boolean Not supported in XSC 0.4 or earlier.

scavenger string: ns Not supported in XSC 0.4 or earlier.

separator boolean “false”

structure string none

Table 21 Attributes and Entities (Continued)

attribute name
data

type [1]
default value Notes (for numbered notes, see end of table)
Generic Multi-Mode e*Way Extension Kit User’s Guide 303

Appendix B Section B.4
The XSC Format Method Signature Syntax
B.4 Method Signature Syntax
The Java specification defines the signature attribute of the <method> entity and is
included in this section. The low-level syntax is:

signature ::= name "(" { array-type } ")" result-type
result-type ::= array-type | "V"
array-type ::= { "[" } basic-type
basic-type ::= primitive | class
primitive ::= "Z" | "C" | "B" | "S" | "I" | "J" | "F" | "D"
class ::= "L" package name ";"
package ::= { name "/" }

The signature consists of a method name, followed by the parenthesized list of method
parameter types, followed by the result type. Types are either one of the built-in
primitive Java types like int (encoded as a single letter), or a fully qualified class, where
the package components of the class qualification are separated by / (slash) instead
of . (dot). The encoding of the primitive types is shown in Table 22.

type string none Some values legal in XSC 0.4, such as template
name or Java type, are unsupported in XSC 0.6
and are not recommended.

uid string Must be unique to the values of all other uid
attributes in the .xsc file.

Notes

[1] Data types:
boolean—either “true” or “false”
int|und—either a nonnegative integer or “undefined”
int|und|unb—one of the following:

a nonnegative integer
“unbounded” (“-1” is used as an alias)
“undefined”

string—a simple XML string (no escapes)
string: ns—Normal Safe string (escapes use "\u" to protect against attribute normalization)

Table 22 Signature Key Letters for Java Primitive Types

Key Letter Java Type

V void

Z boolean

C char

B byte

S short

Table 21 Attributes and Entities (Continued)

attribute name
data

type [1]
default value Notes (for numbered notes, see end of table)
Generic Multi-Mode e*Way Extension Kit User’s Guide 304

Appendix B Section B.5
The XSC Format Identifier Characters
So, for example, a method declared like this in Java:

public void myNewMethod(byte[] ba, String str)

should be given the following signature attribute in the <method ...> tag:

signature="myNewMethod([[BLjava/lang/String;)V"

B.5 Identifier Characters
In general, Java identifiers consist of a start character followed by zero or more further
characters.

The first character must be a “Java letter”—that is, it must belong to the set of
characters for which the method isJavaIdentifierStart() in class java.lang.Character
returns true. This set includes alphabetic characters, currency symbols like "$"
(dollar), and several separation characters like "_" (underscore).

The remaining characters must be all be “Java letter-or-digit” characters—that is,
they must be in the set of characters for which the method isJavaIdentifierPart()
returns true. This set includes the alphanumeric characters, currency symbols, the
underscore, and ignorable control characters.

For complete details, refer to the documentation for Java 2 SDK Standard Edition.

As of the current work’s publication date, section 3.8 “Identifiers” is found at:

http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#40625

B.6 JCS Properties
The class com.stc.jcs.JCSProperties provides a mechanism for setting global, per-user
configuration flags for Java code. This is because environment variables, the method of
choice in C, do not work well in Java. In effect, the static method getProperty(String
name) checks the system properties for the given name (in other words, the -D option
values); if not found there, it looks (cached) in the .jcsrc file in the user's home as given

I int

J long

F float

D double

Table 22 Signature Key Letters for Java Primitive Types (Continued)

Key Letter Java Type
Generic Multi-Mode e*Way Extension Kit User’s Guide 305

http://java.sun.com/docs/books/jls/second_edition/html/lexical.doc.html#40625

Appendix B Section B.6
The XSC Format JCS Properties
by the user.home system property; if not found there, it looks in a short list of
predefined properties.

To get the list of currently predefined properties and properties define in the .jcsrc file,
run the following command in the development environment:

java -classpath "<...>/ReleaseJava" com.stc.jcsre.JCSProperties -p -j

Table 23 lists properties currently used in the classes of the com.stc.jcs.ssc package.

Important: These properties are intended for internal use, and are subject to change.

String getProperty(String key, boolean now)

Get property from system; if not defined, try to load the .jcsrc file (unless
previously cached and now=“false”) and read the property from it. When reading
the .jcsrc file, cache it for future reference. In other words, the now parameter
determines whether to use the current .jcsrc file contents or any old cached
contents.

String getProperty(String key)

Like the previous method, but with now=”false”—in other words, cached.

boolean getFlag (String key, boolean deft)

Like cached getProperty(), but translate the property value to a boolean value;
if property not found, return the value of deft.

Acceptable values for false are: "0", "F", "f", "false", "N", "n", "no".

Acceptable values for true are: "1", "T", "t", "true", "Y", "y", "yes".

If the property uses another string value, this method will throw a run-time
exception.

Table 23 JCS Properties

Property Name Type Default Meaning

Builder.jpure boolean true Forces use of pure-Java conversion (no stctrans).

Emit.dent int 4 Default indentation size for output (Java, XML).

Emit.tabs int 8 Default assumed size of tab-stop for indentation.

GenSsc.utf8 boolean true Emits output-SSC in UTF-8 encoding, regardless of
XSC's sscEncoding attribute value.

JGen.antlrLess boolean true If not set, generates ANTLR-based unmarshaling
code; otherwise, generates unmarshaling without
ANTLR grammar/parser (faster).

JGen.bing boolean false Byte-array interface not generated (no marshal/
unmarshal) if set. Not currently implemented.
Generic Multi-Mode e*Way Extension Kit User’s Guide 306

Appendix C

The RMI Server

This appendix describes the use of an RMI server to simulate a generic external system.
The RMI server is not part of the kit and is only provided to illustrate what you need to
do to create a connector class and use the builder API. The discussion in this appendix
focuses exclusively on the role played by the RMI server for the sample e*Way in
Chapter 9.

Experimenting with Other Simulations of External Systems

A sample RMI server is provided for use as an external system for testing purposes.
The sample illustrates the relationship between the methods and metadata in the
“external system” being simulated by the RMI Server and the corresponding
modifications to your e*Way and ETD builder that are required.

Note: If developing a new e*Way using the e*Gate API Kit, use your own system to
simulate an external system for testing purposes.

C.1 Overview
The ETD and this sample schema require the sample RMI server provided in the SDK.
An RMI application consists of the following four layers:

Application layer

Stubs or Skeletons layers

Remote Reference layer

Transport layer

The RMI client talks to its stub, which then sends the message to the remote reference
layer. The remote reference layer then passes the message through the transport layer to
the RMI server.

From the RMI server, the message is then passed from the transport layer to the remote
reference layer. The message is retranslated to the skeleton and then to the server’s
object implementation.

Figure 69 shows the architecture of the sample RMI server system.
Generic Multi-Mode e*Way Extension Kit User’s Guide 307

Appendix C Section C.1
The RMI Server Overview
Figure 69 Sample RMI System Architecture

The sample RMI server has the following properties:

The sample also has a stand-alone RMI client to validate and populate data in the
server. In the sample RMI server, the data is saved to a file.

If you set up the sample and run it without any modification, you will have an RMI
server named RmiDemoSvr, that receives calls from an RMI client, named
RmiDemoClient. See Figure 69.

The RMI server allows you to create, delete, retrieve, or update an account object.

The account object is a java.util.HashMap object with one key, “ACCOUNT_ID”.

The server serializes the account object to a file, account.data, and responds to the
client’s request in one of the following ways:

For createAccount(), the server appends the client’s data to the file.

For deleteAccount(), the server searches the file for a matching ACCOUNT_ID and
deletes the data from the file.

For retrieveAccount(), the server searches the file for a matching ACCOUNT_ID
and returns the marshaled (parsed) java.util.HashMap to the calling RMI client.

For updateAccount(), the server searches the file for a matching ACCOUNT_ID
and replaces its data with the data supplied by the client.

registered server name RmiDemoSvr

package name com.stc.eways.samples.gmeek.builder.rmiDemoSvr

Sample RMI System

Stubs Skeletons

TransportTransport

Remote
Reference

Layer

Remote
Reference

Layer

Java RMI
Client

“RmiDemoClient”

Java RMI
Server

“RmiDemoSvr”
Generic Multi-Mode e*Way Extension Kit User’s Guide 308

Appendix C Section C.2
The RMI Server Sample Code for RMI
Experimenting with Other APIs for the Provided “External System”

The sample ETD and RMI server were designed to be extremely flexible. For example:

The RMI source code is provided, so you can see the effect of adding or deleting
your own APIs and the corresponding methods in the ETD.

Because the account object defined by the ETD is a simple java.util.HashMap
object, you can experiment by adding or deleting fields and nodes. You can use any
kind of key/value pair in the java.util.HashMap object, provided that the top level
has the required key “ACCOUNT_ID” and all values are serializable.

You can use the supplied compile scripts to recompile source code changes and
rebuild the RmiDemoSvr.jar file. This allows you to easily test any changes you
make to the RMI server and/or client.

C.2 Sample Code for RMI
This section describes the source code files for the RMI server used in “Developing an
e*Way Using the Builder API” on page 119.

RmiDemoSvrIntf.java on page 310: Sample program that defines methods for the
accounting system simulated by the RMI server.

RmiDemoClient.java on page 310: Sample program that tests the RMI server by
acting as a sample client.

RmiDemoSvrImpl.java on page 312: Sample program demonstrating the use of
java.util.HashMap saved to a file.

RmiDemoSvr.java on page 317: Sample program showing how to start an RMI
server.

Figure 70 on page 310 shows the process of creating an RMI application which includes
an RMI server and RMI client.
Generic Multi-Mode e*Way Extension Kit User’s Guide 309

Appendix C Section C.2
The RMI Server Sample Code for RMI
Figure 70 Creating an RMI Application

RmiDemoSvrIntf.java

RmiDemoSvrIntf.java is a short sample program that defines the methods provided by
the server for the sample discussed in “Developing an e*Way Using the Builder API”
on page 119.

(1) package com.stc.eways.samples.gmeek.builder.rmiDemoSvr;
(2) import java.rmi.*;
(3) /** Remote interface specifying methods that must be provided by the
(4) * server.
(5) *
(6) * @version $Revision: 1.1.2.1 $
(7) */
(8) public interface RmiDemoSvrIntf extends java.rmi.Remote
(9) {
(10) public String sayEcho(String myName) throws RemoteException;
(11) public boolean createAccount(java.util.Map data) throws
(12) RemoteException;
(13) public boolean deleteAccount(java.util.Map criteria) throws
(14) RemoteException;
(15) public boolean updateAccount(java.util.Map criteria) throws
(16) RemoteException;
(17) public java.util.HashMap retrieveAccount(java.util.HashMap criteria)
(18) throws RemoteException;
(19) public java.util.List retrieveAllAccountId() throws RemoteException;
(20) }

RmiDemoClient.java

RmiDemoClient.java is a sample client program that runs stand-alone. This program is
used to populate the initial set of data for the RMI server.

Stub
RmiDemoSvrImpl_Stub

Skeleton
RmiDemoSvrImpl_Skel

RmiDemoclient or
DemoRmiConnector

Object Implementation
RmiDemoSvrImpl

U
se

s
an

d
st

ar
ts

rm
ic

 (c
om

pi
le

r)

Interface Definition
RmiDemoSvrImpl

RmiDemoSvr
Code/Write

Automatically
generated
Generic Multi-Mode e*Way Extension Kit User’s Guide 310

Appendix C Section C.2
The RMI Server Sample Code for RMI
(1) package com.stc.eways.samples.gmeek.builder.rmiDemoSvr;
(2) import java.io.*;
(3) import java.rmi.Naming;
(4) /** Client for the RMI server RmiDemoSvr
(5) *
(6) * @version $Revision: 1.1.2.1 $
(7) */
(8) public class RmiDemoClient
(9) {
(10) /** Creates new RmiDemoClient
(11) */
(12) public RmiDemoClient()
(13) {
(14) }
(15)
(16) public static void usage()
(17) {
(18) System.err.println("Usage: ");
(19) System.err.println(" java RmiDemoClient <server name> <port> <var>

or");
(20) System.err.println(" or");
(21) System.err.println(" java RmiDemoClient <server name> <var>");
(22) }
(23)
(24) public static void main(String args[])
(25) throws Exception
(26) {
(27) String url;
(28)
(29) if (args.length == 3)
(30) {
(31) url = new String("//"+args[0]+":"+args[1]+"/RmiDemoSvr");
(32) }
(33) else if (args.length == 2)
(34) {
(35) url = new String("//"+args[0]+"/RmiDemoSvr");
(36) }
(37) else
(38) {
(39) RmiDemoClient.usage();
(40) return;
(41) }
(42) // RMI registry lookup
(43) //
(44) RmiDemoSvrIntf echoRef = (RmiDemoSvrIntf)Naming.lookup(url);
(45) // Call echo method on server
(46) //
(47) System.out.println(echoRef.sayEcho(args[args.length-1]));
(48) // Retrive accounts from server
(49) //
(50) java.util.List alllist = echoRef.retrieveAllAccountId();
(51) System.out.println("total number of accounts: "+alllist.size());
(52) for (int i = 0; i < alllist.size(); i++)
(53) {
(54) System.out.println("ACCOUNT_ID: "+(String)alllist.get(i));
(55) }
(56) // Retrieve a particular account then update it or
(57) // create it if it does not exist.
(58) //
(59) java.util.HashMap accnt = new java.util.HashMap();
(60) accnt.put("ACCOUNT_ID", "1000");
(61) java.util.HashMap accnt1= echoRef.retrieveAccount(accnt);
(62) if(accnt1 != null)
(63) {
Generic Multi-Mode e*Way Extension Kit User’s Guide 311

Appendix C Section C.2
The RMI Server Sample Code for RMI
(64) System.out.println(accnt1.toString());
(65) accnt1.put("ACCOUNT_TYPE","Checking");
(66) accnt1.put("ADDRESS","102 Main St.");
(67) accnt1.put("CITY","Monrovia");
(68) accnt1.put("STATE","CA");
(69) accnt1.put("ZIP","91006");
(70) echoRef.updateAccount(accnt1);
(71) System.out.println("update account: " +accnt1.toString());
(72) }
(73) else
(74) {
(75) accnt.put("ACCOUNT_TYPE","saving");
(76) accnt.put("ADDRESS","103 Main St.");
(77) accnt.put("CITY","Monrovia");
(78) accnt.put("STATE","CA");
(79) accnt.put("ZIP","91006");
(80) echoRef.createAccount(accnt);
(81) System.out.println("create account: " +accnt.toString());
(82) }
(83) }
(84) }

RmiDemoSvrImpl.java

RmiDemoSvrImpl.java is a sample program that implements the RMI remote
interface.

(1) package com.stc.eways.samples.gmeek.builder.rmiDemoSvr;
(2) import java.rmi.*;
(3) import java.rmi.server.*;
(4) import java.rmi.registry.*;
(5) import java.net.MalformedURLException;
(6) import java.io.*;
(7)
(8) /** Unicast remote object implementing RmiGmeek2Test interface.
(9) *
(10) * @version $Revision: 1.1.2.2 $
(11) */
(12) public class RmiDemoSvrImpl extends java.rmi.server.UnicastRemoteObject

implements RmiDemoSvrIntf
(13) {
(14) File theFile = null;
(15) /** Constructs RmiDemoSvrImpl object and exports it on default port.
(16) */
(17) public RmiDemoSvrImpl() throws RemoteException
(18) {
(19) super();
(20) theFile = new File("account.data");
(21) try
(22) {
(23) if (!theFile.exists())
(24) {
(25) theFile.createNewFile();
(26) }
(27) }
(28) catch (IOException ex)
(29) {
(30) ex.printStackTrace();
(31) }
(32) }
(33)
(34) /** Constructs RmiDemoSvrImpl object and exports it on specified

port.
Generic Multi-Mode e*Way Extension Kit User’s Guide 312

Appendix C Section C.2
The RMI Server Sample Code for RMI
(35) * @param port The port for exporting
(36) */
(37) public RmiDemoSvrImpl(int port) throws RemoteException
(38) {
(39) super(port);
(40) }
(41)
(42) /** Register RmiDemoSvrImpl object with the RMI registry.
(43) *
(44) * @param name name identifying the service in the RMI registry
(45) * @param create create local registry if necessary
(46) *
(47) * @throw RemoteException if cannot be exported or bound to RMI

registry
(48) * @throw MalformedURLException if name cannot be used to construct

a valid
(49) * URL
(50) * @throw IllegalArgumentException if null passed as name
(51) */
(52) public static void registerToRegistry(String name, Remote obj,
(53) boolean create) throws RemoteException, MalformedURLException
(54) {
(55) if (name == null)
(56) {
(57) throw new IllegalArgumentException(
(58) "registration name can not be null");
(59) }
(60)
(61) try
(62) {
(63) Naming.rebind(name, obj);
(64) }
(65) catch (RemoteException ex)
(66) {
(67) if (create)
(68) {
(69) Registry r = LocateRegistry.
(70) createRegistry(Registry.REGISTRY_PORT);
(71) r.rebind(name, obj);
(72) }
(73) else
(74) {
(75) throw ex;
(76) }
(77) }
(78) }
(79)
(80) /** return a string saying hello back to the client
(81) *
(82) */
(83) public String sayEcho(String myName) throws RemoteException
(84) {
(85) return "\nHello "+ myName + "!!\n";
(86) }
(87)
(88) /** Create an account object in the output file and add it to the

list
(89) * of accounts
(90) *
(91) * @param data map of accounts
(92) */
(93) public boolean createAccount(java.util.Map data) throws

RemoteException
(94) {
Generic Multi-Mode e*Way Extension Kit User’s Guide 313

Appendix C Section C.2
The RMI Server Sample Code for RMI
(95) try
(96) {
(97) java.util.Vector allAccounts = new java.util.Vector();
(98) {
(99) FileInputStream fileinstrm = new

FileInputStream(theFile);
(100) if (fileinstrm.available() > 0)
(101) {
(102) ObjectInputStream pin = new

ObjectInputStream(fileinstrm);
(103) allAccounts = (java.util.Vector)pin.readObject();
(104) pin.close();
(105) }
(106) };
(107)
(108) allAccounts.add(data);
(109) {
(110) FileOutputStream fileonstrm = new

FileOutputStream(theFile);
(111) ObjectOutputStream pout = new

ObjectOutputStream(fileonstrm);
(112) pout.writeObject(allAccounts);
(113) pout.flush();
(114) pout.close();
(115) }
(116) }
(117) catch (Exception ex)
(118) {
(119) ex.printStackTrace();
(120) return false;
(121) }
(122) return true;
(123) }
(124)
(125) /** Delete an account object from the output file and remove it from
(126) * the list of accounts
(127) *
(128) * @param data map of accounts
(129) */
(130) public boolean deleteAccount(java.util.Map criteria) throws

RemoteException
(131) {
(132) try
(133) {
(134) FileInputStream fileinstrm = new FileInputStream(theFile);
(135) java.util.Vector allAccounts = new java.util.Vector();
(136)
(137) if (fileinstrm.available() > 0)
(138) {
(139) ObjectInputStream pin = new

ObjectInputStream(fileinstrm);
(140) allAccounts = (java.util.Vector)pin.readObject();
(141) pin.close();
(142) }
(143) else
(144) return false;
(145)
(146) for(int i =0; i< allAccounts.size();i++)
(147) {
(148) java.util.HashMap account =
(149) (java.util.HashMap)allAccounts.get(i);
(150) String queryAccountID =

(String)criteria.get("ACCOUNT_ID");
(151) if (queryAccountID.compareToIgnoreCase(
Generic Multi-Mode e*Way Extension Kit User’s Guide 314

Appendix C Section C.2
The RMI Server Sample Code for RMI
(152) (String)account.get("ACCOUNT_ID")) == 0)
(153) {
(154) allAccounts.remove(i);
(155) return true;
(156) }
(157) }
(158) {
(159) FileOutputStream fileonstrm = new

FileOutputStream(theFile);
(160) ObjectOutputStream pout = new

ObjectOutputStream(fileonstrm);
(161) pout.writeObject(allAccounts);
(162) pout.flush();
(163) pout.close();
(164) }
(165) }
(166) catch (Exception ex)
(167) {
(168) ex.printStackTrace();
(169) }
(170) return false;
(171) }
(172)
(173) /** Update an account object with the matching account id
(174) *
(175) * @param data map of accounts
(176) */
(177) public boolean updateAccount(java.util.Map criteria) throws

RemoteException
(178) {
(179) boolean updated = false;
(180) try
(181) {
(182) FileInputStream fileinstrm = new FileInputStream(theFile);
(183) java.util.Vector allAccounts = new java.util.Vector();
(184)
(185) if (fileinstrm.available() > 0)
(186) {
(187) ObjectInputStream pin = new

ObjectInputStream(fileinstrm);
(188) allAccounts = (java.util.Vector)pin.readObject();
(189) pin.close();
(190) }
(191) else
(192) return false;
(193)
(194) for(int i =0; i< allAccounts.size();i++)
(195) {
(196) java.util.HashMap account =
(197) (java.util.HashMap)allAccounts.get(i);
(198) String queryAccountID =

(String)criteria.get("ACCOUNT_ID");
(199) if (queryAccountID.compareToIgnoreCase(
(200) (String)account.get("ACCOUNT_ID")) == 0)
(201) {
(202) allAccounts.remove(i);
(203) allAccounts.add(criteria);
(204) updated = true;
(205) }
(206) }
(207)
(208) if(updated)
(209) {
Generic Multi-Mode e*Way Extension Kit User’s Guide 315

Appendix C Section C.2
The RMI Server Sample Code for RMI
(210) FileOutputStream fileonstrm = new
FileOutputStream(theFile);

(211) ObjectOutputStream pout = new
ObjectOutputStream(fileonstrm);

(212) pout.writeObject(allAccounts);
(213) pout.flush();
(214) pout.close();
(215) }
(216)
(217) }
(218) catch (Exception ex)
(219) {
(220) ex.printStackTrace();
(221) }
(222) return updated;
(223) }
(224)
(225) /** Return an account object with the matching account id
(226) *
(227) * @param data map of accounts
(228) */
(229) public java.util.HashMap retrieveAccount(java.util.HashMap

criteria)
(230) throws RemoteException
(231) {
(232) try
(233) {
(234) FileInputStream fileinstrm = new FileInputStream(theFile);
(235) java.util.Vector allAccounts = new java.util.Vector();
(236) if (fileinstrm.available() > 0)
(237) {
(238) ObjectInputStream pin = new

ObjectInputStream(fileinstrm);
(239) allAccounts = (java.util.Vector)pin.readObject();
(240) pin.close();
(241) }
(242)
(243) for (int i =0; i< allAccounts.size();i++)
(244) {
(245) java.util.HashMap account =
(246) (java.util.HashMap)allAccounts.get(i);
(247) String queryAccountID =

(String)criteria.get("ACCOUNT_ID");
(248) if (queryAccountID.compareToIgnoreCase(
(249) (String)account.get("ACCOUNT_ID")) == 0)
(250) {
(251) return account;
(252) }
(253) }
(254) }
(255) catch (Exception ex)
(256) {
(257) ex.printStackTrace();
(258) }
(259) return null;
(260) }
(261)
(262) /** Retrieve all accounts in the list
(263) *
(264) * @param data map of accounts
(265) */
(266) public java.util.List retrieveAllAccountId() throws RemoteException
(267) {
(268) java.util.ArrayList theList = new java.util.ArrayList();
Generic Multi-Mode e*Way Extension Kit User’s Guide 316

Appendix C Section C.2
The RMI Server Sample Code for RMI
(269) try
(270) {
(271) FileInputStream fileinstrm = new FileInputStream(theFile);
(272) java.util.Vector allAccounts = new java.util.Vector();
(273)
(274) if (fileinstrm.available() > 0)
(275) {
(276) ObjectInputStream pin = new

ObjectInputStream(fileinstrm);
(277) allAccounts = (java.util.Vector)pin.readObject();
(278) pin.close();
(279) }
(280)
(281) for (int i =0; i< allAccounts.size();i++)
(282) {
(283) java.util.HashMap account =
(284) (java.util.HashMap)allAccounts.get(i);
(285) String queryAccountID =

(String)account.get("ACCOUNT_ID");
(286) theList.add(queryAccountID);
(287) }
(288) }
(289) catch (Exception ex)
(290) {
(291) ex.printStackTrace();
(292) }
(293) return theList;
(294) }
(295) }

RmiDemoSvr.java

RmiDemoSvr.java is a sample program that starts the server and registers the server
with the RMI registry using the name “RmiDemoSvr.”

(1) package com.stc.eways.samples.gmeek.builder.rmiDemoSvr;
(2) import java.rmi.Naming;
(3) /** RMI server which instantiates RmiGmeek2TestServerImpl
(4) *
(5) * @version $Revision: 1.1.2.1 $
(6) */
(7) public class RmiDemoSvr
(8) {
(9) /** Creates new RmiGmeek2TestServer
(10) */
(11) public RmiDemoSvr()
(12) {
(13) }
(14)
(15) /** Usage banner
(16) */
(17) public static void usage()
(18) {
(19) System.err.println("Usage:");
(20) System.err.println(" java

com.stc.eways.samples.gmeek.builder.RmiDemoSvr.RmiDemoSvr
(21) <rmi registry port>");
(22) System.err.println(" or");
(23) System.err.println(" java
(24) com.stc.eways.samples.gmeek.builder.RmiDemoSvr.RmiDemoSvr");
(25) }
(26)
(27) public static void main(String args[]) throws Exception
Generic Multi-Mode e*Way Extension Kit User’s Guide 317

Appendix C Section C.2
The RMI Server Sample Code for RMI
(28) {
(29) String url = "//localhost/RmiDemoSvr";
(30) RmiDemoSvrImpl echoRef = null;
(31) if (args.length > 1)
(32) {
(33) RmiDemoSvr.usage();
(34) }
(35) else if (args.length == 1)
(36) {
(37) echoRef = new RmiDemoSvrImpl();
(38) url = new String("//localhost:"+args[0]+"/RmiDemoSvr");
(39) }
(40) else if (args.length == 0)
(41) {
(42) echoRef = new RmiDemoSvrImpl();
(43) }
(44) else
(45) {
(46) RmiDemoSvr.usage();
(47) }
(48)
(49) // register this server
(50) //
(51) Naming.rebind(url,echoRef);
(52)
(53) System.out.println("RmiDemoSvr object ready and bound to the name:

"+url);
(54) }
(55) }
Generic Multi-Mode e*Way Extension Kit User’s Guide 318

Index
Index

 as publication destination
not used by Multi-Mode e*Ways 32

 as subscription source
not used by Multi-Mode e*Ways 32

Symbols
 88, 258, 259
) characters

in .def files 258
.cfg and .def

relationships between file types 39, 275
.cfg file listing 276
.cfg files, rules for 275
.class,.ctl,.jar,.xsc

relationships between file types 36
.ctl files 74
.def files 74
.jar files

creating 175, 215, 233
.sc file listing 277
.sc files 275
.xsc files 75, 177

A
accessing parameter values APIs 285
Alert notifications 247
Alerter (Java class) 248
APIs, summarized 53
ASCII codes, displaying in different formats 269
attribute nodes and private member variables 80

B
backslash (\) character

in .def files 258
backslash (\) characters

in .def files 262
Bean-style getter/setter methods 80, 84
Best 241
branch qualifier 232

C
.cfg file listing 276
.cfg files 275
chained exceptions 244
(char) keyword 262
classpaths

based on .cfg file 74
based on dynamic class loader 74

close() method 68, 195
CollabConnException 53
CollabDataException 53
Collaboration 31, 34
Collaboration Rule 30
CollabResendException 53
command line 75, 99, 129
comments

in .def files 258
within the configuration file 275

commit() method 73, 225, 231
composite (type of node) 83
configuration 275

illustrated 39
configuration files 275

for e*Ways 30
configuration parameters

accessing within APIs 285
connect() method 65, 66, 197
connectionpoint.ini

basis for .cfg file content 80
double-checking 236
updated by installETD script 78

connectionpoint.ini file
location of 40
purpose 40

connectionpoint.ini,described 78
connector class

diagrammed 52
instantiating 59, 161
relationship to ETD class 51
samples 52

const keyword 266
conventions, writing in document 18
count___() methods 84
createConnector() method 43, 161
createConnectorExt() method 55, 195

D
(date) keyword 262
debug flags 246
debug levels 246
debugging 244–251

debug flags 246
Generic Multi-Mode e*Way Extension Kit User’s Guide 319

Index
debug levels 246
debugging the .def file 281
delegate object

as container of resource object 226
creating 193
for XAFile 232
instantiating 195
purpose 58

delim keywords 272, 275
delimiting path names

in entities 82
in .def files 258

description keyword 260
design considerations

for e*Ways 47–50, ??–51
metadata 48

directories
created by installation 25

disconnect() method 65, 66, 197
displaying ASCII codes 269
dynamic class loader 74

E
e*Gate Event

defined 247
e*Gate Java Debugger 250
e*Way Connection 21
e*Way Connection Editor

purpose 40
e*Way Connection ETD class

purpose 58
e*Way Connections

configuring 39
used with Multi-Mode e*Ways 31

e*Way operation
functional components 30
overview 30

e*Ways
design considerations 47–50, ??–51

EBobConnectionException 53
EBobConnector 53
EBobConnectorExt 53
EBobConnectorExtFactory 53
EBobConnectorFactory 53
ELS 55
encrypting string parameters 271
end() method 73, 231
enumeration (type of node) 83
environment variables, storing configuration
parameters 285
error messages in .def file parsing 282
escape character, using 258
ETD

defined 79
described 35

ETD Builders 35
illustrated 36

ETD class
diagrammed 52
purpose 58
relationship to connector class 51
samples of 53

ETD interface 53
Event

defined 247
Event masks 245, 246
Event Type 21
Event Type, defined 79
Event, defined 79
Events

logged properties 246
eventSend() method 247
EwayConnectionETDImpl (Java class) 232
exceptions, handling 244
executable files, e*Way 30
executeBusinessRules() method 38, 55
external system 21
external systems

and Multi-Mode e*Ways 31

F
(factor) keyword 270
field (leaf node), defined 79
file types

relationship between 36, 39, 275
files

created by installation 25
files, e*Way 30
forget() method 231
format identifier 231
formats, displaying parameters in varying 269
function definitions, e*Way 31

G
get___() methods 80, 84, 195
getConnectionManager() method 230
getConnector() method 55
getProperties() method 44, 59, 161
getProperty() method 306
getTransactionTimeout() method 231
getXAResource() method 72, 230
global identifier 232
gmeek.taz file

contents 159
extracting 78
Generic Multi-Mode e*Way Extension Kit User’s Guide 320

Index
H
handling exceptions 244
has___() methods 84
host system requirements 22

I
identifiers

branch 232
format 231
global 232

initialize() method 43, 57, 67, 71, 161, 193
inner classes 243
installation

directories created by 25
files created by 25
Windows NT or 2000 23

installETD script
general information 75
on UNIX 76
on Windows 76

(int) keyword 262
Intelligent Queue (IQ) 21, 32
intended reader 16
isConnected() method 65, 66, 197
isOpen() method 59, 68, 195
isSameRM() method 231
isXA() method 232

J
Java Collaboration Service (JCS)

role within e*Gate 37
Java Debug Interface (JDI) 250
Java Methods 254
Java Native Interface (JNI) 251
Java Platform Debugger Architecture (JPDA) 250
Javadoc

where to find 18
JCollabController 53
JCollaboration (Java class)

in package com.stc.jcsre 247
JConnectionManager 53
JConnectionNotifier 53
JCSProperties (Java class) 305
JMS 69, 79, 160, 252

message selectors 50
messaging models 49

JMS e*Way Connection 55
jta.jar installed by default in 4.5.2 233
JTransactionAdapter 54
JXAResourceAdapter 54

K
keywords in .def file

reference 272–275

L
leaf node, defined 79
library files, e*Way 31
limiting ranges 266
log files

overview 245
Logging and Exception Handling

Adding Trace Logging 245
Logging Levels

(table) 246

M
manage() method 68
marshal() method 58, 232
marshaling, defined 79
message, defined 79
messageable ETDs 58, 232
messageable ETDs, defined 79
metadata

defined 48
facilities for collecting 48

method nodes and exposed attributes 80
methods

close() 68, 195
commit() 73, 225, 231
connect() 65, 66, 197
count___() 84
createConnector() 43, 161
createConnectorExt() 55, 195
disconnect() 65, 66, 197
end() 73, 231
eventSend() 247
executeBusinessRules() 38, 55
forget() 231
get___() 80, 84, 195
getConnectionManager() 230
getConnector() 55
getProperties() 44, 59, 161
getProperty() 306
getTransactionTimeout() 231
getXAResource() 72, 230
has___() 84
initialize() 43, 57, 67, 71, 161, 193
isConnected() 65, 66, 197
isOpen() 59, 68, 195
isSameRM() 231
isXA() 232
Generic Multi-Mode e*Way Extension Kit User’s Guide 321

Index
manage() 68
marshal() 58, 232
onCommit() 73
onConnectionDown() 66, 68, 71
onConnectionUp() 66, 68, 71
onPrepare() 73
onTerminate() 45
open() 68, 195
postExecuteBizRule() 68
preExecuteBizRule() 68
prepare() 73, 231
recover() 73, 231
register() 230
registerConnector() 230
registerTransactionAdapter() 72
reset() 44, 57, 73, 162, 196
rollback() 73, 225, 231
send() 55
set___() 80, 84, 195
setConnector() 55
setLastActivityTime() 65
setTransactionTimeout() 231
start() 73, 231
terminate() 45, 55, 57, 162, 195, 197
traceln() 245
translate() 68
unmarshal() 58, 232
userInitialize() 38
userTerminate() 38
xaClose() 73
xaCommit() 73
xaEnd() 73
xaOpen() 73
xaPrepare() 73
xaStart() 72

monitoring Events, role of 247
Monk 31
Multi-Mode e*Ways

as stand-alone bridge between externals 33
characteristics 31
defined and described 31
executable file for 21
execution 43–44
role within e*Gate 32
run-time behavior 17, 41
shutdown/reload 45

N
node types

composite 83
enumeration 83
reference 83
simple 83

template 83
node, defined 79
non-messageable ETDs, defined 80
notification Events 247

O
onCommit() method 73
onConnectionDown() method 66, 68, 71
onConnectionUp() method 66, 68, 71
onPrepare() method 73
onTerminate() method 45
open() method 68, 195

P
packaging and distribution 77
parameter ranges 266
parameter sets 263, 264
parameter syntax, .def file 257
parameter types 262
parentheses

in .def files 281
parse errors 282
password parameters, defining 271
(path) keyword 262
point-to-point (p2p) messaging model 50
postExecuteBizRule() method 68
preExecuteBizRule() method 68
pre-installation

UNIX 24
Windows NT 23

prepare() method 73, 231
prerequisites 22
publish 31
publish-and-subscribe messaging model 49, 50

Q
quotation marks

in .def files 281, 282
quotation marks in .def files, escaping 258

R
(range) keyword 266
ranges

defining 266
fixing upper or lower limits 266
units and default values 268

recover() method 73, 231
reference (type of node) 83
register() method 230
Generic Multi-Mode e*Way Extension Kit User’s Guide 322

Index
registerConnector() method 230
registerTransactionAdapter() method 72
request-reply messaging 50
requirements

host system 22
reset() method 44, 57, 73, 162, 196
RMI Server 307–318
RmiAccountTester

source listing 118
RmiGmeek2Test.java

source listing 310
RmiGmeek2TestClient.java

source listing 312
RmiGmeek2TestImpl.java

source listing 317
RmiGmeek2TestServer.java

source listing 317–318
rollback() method 73, 225, 231
Root Collaboration Rules 54
root node, defined 79
running (activating) the host 75, 99, 129

S
sample .def file 283
.sc file listing 277
.sc files 275
(schedule) keyword 262
SCparse error messages 282
semicolon (258
send() method 55
-set keyword suffix 263
(set) keyword, example 264, 266
set___() methods 80, 84, 195
setConnector() method 55
setLastActivityTime() methods 65
-set-multi keyword suffix 264
setTransactionTimeout() method 231
(show-as) keyword 269
simple (type of node) 83
Source listings

RmiAccountTester.java 118
RmiGmeek2Test.java 310
RmiGmeek2TestClient.java 312
RmiGmeek2TestImpl.java 317
RmiGmeek2TestServer.java 317–318

special characters
escaping 88, 258, 259

start() method 73, 231
stceway.exe 21
stcinstd command 75, 99, 129
(string) keyword 262
string parameters, encrypting 271
Subcollaboration Rules 54–55

characteristics of 54
subscribe 31
System Requirements 22

T
template (type of node) 83
terminate() method 45, 55, 57, 162, 195, 197
third-party .jar files

including (via .ctl files) 233
installing 235

third-party APIs 50
and delegate objects 58, 243
and method nodes 80
wrapped using JNI 251

(time) keyword 262
"Tips" button, text displayed 260
topic, defined 79
Trace Events

(table) 246
trace logging 245

using the traceln() method 245
TRACE_EVENT_DEBUG 246
TRACE_EVENT_LOGERROR 246
TRACE_EVENT_TRACE 246
traceln() method 245

logging levels and Event masks 246
output 245

translate() method 68
troubleshooting 244–251

debug flags 246
debug levels 246

type attribute of ETD
necessity of matching .ctl filename 82

types
of ETDs 82
of nodes 83

U
(units) keyword 267
UNIX

pre-installation 24
unmarshal() method 58, 232
unmarshaling, defined 79
user-comment keyword 259, 260
userInitialize() method 38
userTerminate() method 38

V
value ranges, specifying 266
variables within API environment, storing
Generic Multi-Mode e*Way Extension Kit User’s Guide 323

Index
configuration parameters 285

W
Windows NT 4.0

pre-installation 23
wrapper classes 80

X
xaClose() method 73
xaCommit() method 73
xaEnd() method 73
XAFile (Java class) 232
XAFileETD.ctl

(file listing) 233
purpose 233

XAFileETD.xsc
(file listing) 234

XAFileETDConnector (Java class) 232
xaOpen() method 73
xaPrepare() method 73
xaStart() method 72
XidValue (Java class) 231
.xsc files 75, 177
XSC format 81–82, 287–306
Generic Multi-Mode e*Way Extension Kit User’s Guide 324

	Generic Multi-Mode e*Way Extension Kit User’s Guide
	Contents
	List of Figures
	List of Tables
	Preface
	P.1 Intended Reader
	P.2 Organization
	P.3 Writing Conventions

	Introduction
	1.1 Overview
	1.2 Supported Operating Systems
	1.3 System Requirements
	1.3.1 Host System Requirements
	GUI Host Requirements

	1.4 Prerequisites for Installing and Using the Kit

	Installation
	2.1 Installing the Generic Multi-Mode e*Way Extension Kit on Windows
	2.1.1 Pre-installation
	2.1.2 Installation Procedure

	2.2 Installing the Generic Multi-Mode e*Way Extension Kit on UNIX
	2.2.1 Pre-installation
	2.2.2 Installation Procedure

	2.3 Files/Directories Created by the Installation

	Architectural Overview
	3.1 Overview of e*Way Operation
	3.1.1 Component Parts

	3.2 Multi-Mode e*Ways
	3.2.1 Multi-Mode e*Way Characteristics

	3.3 Collaborations and Event Type Definitions
	3.3.1 Java Collaboration Service

	3.4 e*Way Connections
	3.4.1 Configuring e*Way Connections

	Functional Flow
	4.1 Overview of Run-Time Operation
	4.2 Step 1: Initialize
	4.2.1 1A: Environment Phase
	About .ctl files

	4.2.2 1B: Startup Phase

	4.3 Step 2: Execute
	4.3.1 ETD Initialization Flow
	4.3.2 Automatic Connection and Connection Management
	4.3.3 ETD Reset Flow

	4.4 Step 3: Shutdown/Reload
	4.4.1 Shutdown/Reload Flow

	e*Way Development Methodology
	5.1 e*Way Development Considerations
	5.2 e*Way Design Planning
	5.3 e*Way Design Considerations
	5.3.1 Establishing Connectivity Protocols and Defining Event Types
	5.3.2 Facilities for Collecting Metadata
	5.3.3 Communication Modes and Integration Interfaces
	5.3.4 APIs for Third-Party Systems

	e*Way Development Workflow
	6.1 Java Classes Used in e*Way Connection ETDs
	6.1.1 Class Relationships
	6.1.2 Application Programming Interfaces (APIs)

	6.2 Subcollaboration Rules
	6.2.1 Caveats
	6.2.2 Implications for e*Way Development

	6.3 Implementing Your Design
	6.3.1 Creating .java Files
	Class Development and Configuration
	e*Way Connections with Connection Management
	Classes and Interactions for Connection Management
	Developing an e*Way with Connection Management Support
	e*Way Connections with Transaction Processing and XA
	Classes and Interactions for Transaction Processing
	Sequence of Interactions

	6.3.2 Compiling .java Files
	How Classpaths Are Determined

	6.3.3 Creating .ctl Files
	6.3.4 Creating .def Files
	6.3.5 Creating the .xsc File

	6.4 Building and Testing Your Components
	6.4.1 Running the installETD Script
	Windows: installETD.bat
	UNIX: installETD.sh

	6.4.2 Validating the Results

	6.5 Packaging and Distribution
	About the Packaging of the Samples in the Kit
	6.5.1 Scripts

	Event Type Definitions
	7.1 Events and ETDs
	ETDs and e*Gate
	7.1.1 ETD Nodes

	7.2 Overview of the XSC Format
	7.2.1 General Rules for Entities
	7.2.2 General Rules for Attributes
	Using Entities and Attributes

	7.2.3 Sketching an Outline: Entities and Their Hierarchy
	7.2.4 Fundamental Entity Relationships and Attributes

	7.3 Designing Your Entities
	7.3.1 Sample File XAFileETD.xsc

	7.4 Notes, Tips, and Caveats
	Metadata Representation
	Character Sets and Encodings

	Developing an e*Way Using ETD Builder Components
	8.1 Overview
	8.2 ETD Builder Development Process Overview
	8.2.1 ETD Builder Components
	8.2.2 ETD Builder Architecture
	8.2.3 What the ETD Builder Does for End Users
	8.2.4 How an ETD Builder Operates

	8.3 The e*Way Run-Time Environment
	8.4 e*Gate Deployment Scripts
	8.5 Back-end Converter for the ETD Builder
	8.5.1 Understanding the Builder API
	8.5.2 Creating and Deploying an ETD by Command-Line Interface
	stcinstd

	8.6 Front-end Wizards for the ETD Builder
	8.6.1 Overview of ETD Builder Wizards
	8.6.2 Using Heavyweight or Lightweight Visual Basic to Create an ETD Builder Wizard
	Using Heavyweight Visual Basic to Create an ETD Builder Wizard
	Using Lightweight Visual Basic to Create an ETD Builder Wizard

	8.6.3 Wizard Icons
	8.6.4 Deploying and Validating an ETD Builder Wizard

	8.7 Sample Code for the Builder API
	RmiDemoSvr
	RmiDemoSvrIntf.java
	GmeekDemoBuilder.java

	Developing an e*Way Using the Builder API
	9.1 Overview
	9.1.1 Using the Sample e*Ways
	Tasks for Completing the Sample e*Ways

	9.2 Task 1: One-Time Setup Steps
	9.2.1 Pre-installation
	9.2.2 One-Time Setup Steps
	9.2.3 One-Time Setup Steps for the RMI Server

	9.3 Task 2: Creating the Back-end for the ETD Builder
	9.4 Task 3: Building the e*Way and e*Way Connection
	To set up the e*Gate files associated with the e*Way and e*Way connection
	To build the e*Way and e*Way connection
	To register the e*Way and e*Way Connection with e*Gate
	To validate the new e*Way Connection within e*Gate

	9.5 Task 4: Creating and Deploying an ETD Builder Wizard
	9.5.1 Using Heavyweight Visual Basic to Create an ETD Builder Wizard
	9.5.2 Using Lightweight Visual Basic to Create an ETD Builder Wizard
	Creating the Java Wizard

	9.5.3 Deploying the ETD wizard in e*Gate
	Modifying stcewgmeekdemoeway.ctl
	Modifying ETDWizards.ini
	Deploying the ETD Wizard in e*Gate

	9.6 Task 5: Testing the Wizard with a Stand-alone Visual Basic Tester
	9.7 Task 6: Creating and Registering the ETD Using the Command Line
	9.8 Task 7: Testing Outside of the e*Gate Environment
	Running the runRmitest Script for the Rmi Server
	RmiDemoClient.java
	Running the runrmiclient Script for the Rmi Server
	9.8.1 Rerunning the installEWAY Script

	9.9 Task 8: Understanding the Sample Implemented in a Schema
	9.9.1 Importing the GmeekDemoEwaySample.zip Schema
	9.9.2 Sample Data INDATA

	Developing the Automatic e*Way Connection
	10.1 Overview
	10.2 Classes and Interactions for the Automatic Connection Sample
	10.2.1 ETD Class
	10.2.2 Connector Class

	10.3 Overview of the Automatic Connection Sample
	10.4 Installing the Sample
	10.5 Setting Up the Automatic Connection Sample Files
	10.5.1 Editing/Viewing the .java Files
	SampleETD.java
	SampleETDConnector.java
	SampleETDDefs.java
	SampleETDExternalClass.java
	SampleETDExternalException.java
	SampleETDTester.java

	10.5.2 Customizing the Compile Script
	10.5.3 Compiling the .java Files and Creating the .jar File
	10.5.4 Editing/Viewing the .ctl Files
	10.5.5 Editing/Viewing the .def Files
	10.5.6 Editing/Viewing the .xsc File

	10.6 Installing the Sample Files to e*Gate
	10.6.1 Customizing the install.ctl File
	10.6.2 Testing Outside of e*Gate
	SampleETDTester.java
	Running the runTester File

	10.6.3 Running the installETD Script
	10.6.4 Validating the Sample Files Within e*Gate

	10.7 Understanding the SampleETD Implemented in a Schema
	10.7.1 Importing the MySchema.zip Schema
	10.7.2 Sample Data INDATA

	Developing an e*Way Connection With Connection Management
	11.1 Overview
	11.2 Classes and Interactions for the Connection Management Sample
	11.2.1 ETD Class
	11.2.2 Connector Class

	11.3 Overview of the Connection Management Sample
	11.4 Installing the Sample
	11.5 Setting Up the Connection Management Sample Files
	11.5.1 Editing/Viewing the .java Files
	11.5.2 TCPClient
	TCPClientETD.java
	TCPClientETDConnector.java
	TCPClientDefs.java
	TCPClient.java
	TCPClientException.java

	11.5.3 TCPServer
	TCPServer.java
	RunServer.bat

	11.5.4 Customizing the Compile Script
	11.5.5 Compiling the .java Files and Creating the .jar File
	11.5.6 Editing/Viewing the .ctl Files
	11.5.7 Editing/Viewing the .def Files
	11.5.8 Editing/Viewing the .xsc File

	11.6 Installing the Sample Files to e*Gate
	11.6.1 Customizing the install.ctl File
	11.6.2 Testing Outside of e*Gate
	Running the runServer Script for TcpEchoServer
	TcpClient.java
	Running the runTester Script for TcpEchoServer

	11.6.3 Running the installETD Script
	11.6.4 Validating the Sample Files Within e*Gate

	11.7 Understanding the TcpClientETD Implemented in a Schema
	11.7.1 Importing the TcpEcho.zip Schema
	11.7.2 Sample Data INDATA

	Developing a Transactional e*Way Connection
	12.1 Overview
	12.1.1 Transactional Interfaces for e*Way Connection ETDs
	12.1.2 Architecture of the Sample Transactional e*Way Connection

	12.2 Classes and Interactions for the Transactional Sample
	12.2.1 ETD Class

	12.3 Overview of the Transactional Sample
	12.4 Installing the Sample
	12.5 Setting Up the Transactional Sample Files
	12.5.1 Editing/Viewing the .java Files
	XAFileETD.java
	XAFileETDDefs.java
	Resource.java
	XidValue.java
	XAFile.java
	XAFileETDConnector.java
	EwayConnectionETDImpl.java

	12.5.2 Customizing the Compile Script
	12.5.3 Compiling the .java Files and Creating the .jar File
	12.5.4 Editing/Viewing the XAFileETD.ctl File
	12.5.5 Editing/Viewing the XAFile.def File
	12.5.6 Editing/Viewing the XAFileETD.xsc File

	12.6 Installing the Sample Files to e*Gate
	12.6.1 Customizing the install.ctl File
	12.6.2 Creating a Schema for the New ETD
	12.6.3 Running the installETD Script
	12.6.4 Validating the Sample Files Within e*Gate

	12.7 Understanding the ETD Implemented in a Schema
	12.7.1 Importing XAFile.zip Into e*Gate
	12.7.2 Sample INDATA

	Best Practices
	13.1 Designing e*Way ETD Classes
	13.1.1 General
	13.1.2 Using Abstract Class EwayConnectionETDImpl
	13.1.3 Using Abstract Class EwayConnETDConnectorExtImpl
	13.1.4 Do’s and Don’ts for the Connector Class
	13.1.5 Using a Delegate Class
	13.1.6 Using Inner Classes

	13.2 Handling Messageable ETDs
	13.3 Handling Exceptions
	Exception Handling Within ETD Entities

	13.4 Troubleshooting and Debugging
	13.4.1 Log Files
	13.4.2 Adding Trace Logging
	13.4.3 Debug Levels and Flags
	13.4.4 Alert Notifications
	13.4.5 Using the eventSend() Method to Send Alert Notifications
	13.4.6 Debugging
	13.4.7 Using Internal Templates
	13.4.8 Wrapping Third-Party APIs Using JNI

	13.5 Oracle SeeBeyond JMS
	13.6 Working With the Back-end Builder
	Incremental Testing
	Designing the Front-End GUI

	e*Way Classes and Methods
	14.1 Viewing Javadocs

	Extending the .def File
	A.1 Introduction
	A.1.1 Layout

	A.2 .def file Keywords: General Information
	A.2.1 White Space
	A.2.2 Integer Parameters
	A.2.3 Floating-point Parameters
	A.2.4 String and Character Parameters
	A.2.5 Path Parameters
	A.2.6 Comments
	A.2.7 Header Information

	A.3 Defining a New Section
	A.3.1 Section Syntax
	A.3.2 Parameter Syntax
	Order of Keywords
	Parameter Types
	Parameters Requiring Single Values
	Parameters Accepting a Single Value From a Set
	Parameters Accepting Multiple Values From a Set

	A.3.3 Specifying Ranges
	A.3.4 Specifying Units
	A.3.5 Displaying Options in ASCII, Octal, Hexadecimal, or Decimal
	Factor
	Encrypting Strings

	A.4 Configuration Keyword Reference
	A.5 Configuration Parameters and the Configuration Files
	Examples

	A.6 Testing and Debugging the .def File
	A.6.1 Common Error Messages

	A.7 Sample .def File
	A.8 Accessing Configuration Parameters Within the APIs
	A.8.1 Format for Variable Names
	A.8.2 Referencing the Parameter
	A.8.3 Getting Variable Values

	The XSC Format
	B.1 Overview
	Example of Required Entities

	B.2 Entities
	B.2.1 The <etd> Entity
	Syntax
	Required Attributes for <etd>
	Optional Attributes for <etd>
	Entities Directly Contained by <etd>
	Compatibility Notes for <etd>

	B.2.2 The <javaProps> Entity
	Syntax
	Required Attributes for <javaProps>
	Optional Attributes for <javaProps>
	Entities Directly Contained by <javaProps>
	Compatibility Notes for <javaProps>

	B.2.3 The <jar> Entity
	Syntax

	B.2.4 The <interface> Entity
	Syntax
	Required Attribute for <interface>
	Entities Directly Contained by <interface>
	Compatibility Notes for <interface>

	B.2.5 Delimiter-Related Entities (SSC only)
	Required Attributes for <delim>
	Optional Attributes for <delim>
	Entities Directly Contained by <delim>
	Required and Optional Attributes for <delimGroup>
	Entities Directly Contained by <delimGroup>
	Attributes for <beginDelim> and <endDelim>

	B.2.6 The <node> and <class> Entities
	Syntax
	Required Attributes for <node>

	B.2.7 The <method> Entity
	Syntax
	Required Attributes for <method>
	Optional Attributes for <method>

	B.2.8 The <param> Entity
	Syntax
	Required Attributes for <param>
	Optional Attributes for <param>

	B.3 Table of XSC Entities and Their Attributes
	B.3.1 Default Values
	B.3.2 Types

	B.4 Method Signature Syntax
	B.5 Identifier Characters
	B.6 JCS Properties

	The RMI Server
	Experimenting with Other Simulations of External Systems
	C.1 Overview
	Experimenting with Other APIs for the Provided “External System”

	C.2 Sample Code for RMI
	RmiDemoSvrIntf.java
	RmiDemoClient.java
	RmiDemoSvrImpl.java
	RmiDemoSvr.java

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

