
XML Toolkit User’s Guide

Release 5.0.5 for Schema Run-time 
Environment (SRE)



Copyright © 2005, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and 
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not 
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any 
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for 
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, 
please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the 
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. 
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal 
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and 
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent 
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software 
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or 
intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you 
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, 
redundancy, and other measures to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. 
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and 
are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open 
Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third 
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to 
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or 
damages incurred due to your access to or use of third-party content, products, or services.

Version July 19, 2010 12:35 pm.

XML Toolkit User’s Guide 2



Contents
Contents

List of Figures 8

List of Tables 10

Chapter 1

Introduction 11
Document Purpose and Scope 11

Intended Audience 11

Organization of Information 12

Writing Conventions 13

Supported Operating Systems 14

System Requirements 14

External System Requirements 14
XML Schema Standards 14

Chapter 2

XML Toolkit Overview 16
Introduction to XML 16

DTD Overview 16
XML Schema Overview 17

XML Toolkit Versions 17

Windows Installation 18
Pre-installation 18
Installation Procedure 18

Chapter 3

Java XML Toolkit Overview 20
Java XML Toolkit Description 20

DTD Builder 20
XML Toolkit User’s Guide 3



Contents
XML Schema Builder 20

Java Mapping 21
Identifier Mapping 21
Property Mapping 21

Chapter 4

Java DTD Builder 23
Using the DTD Builder 23

DTD Builder Data Mapping 27
Mapping of Element Declarations 27
Mapping of Attribute Types 28

Builder Capabilities 28
Supported Features 28

Namespaces 28
Limitations 29

Parent Nodes 29
Root Nodes 30
Ignoring Empty Strings in PCDATA Elements 30
Empty Element Tags 30

Chapter 5

Java XML Schema Builder 31
Using the XML Schema Builder 31

XML Schema Versions: Java 34

XML Schema Builder Data Mapping 34
Generated Classes 35
Java Packages 35
Mapping of complexType Data Types 35
Mapping of simpleType Data Types (W3C 2001 Specifications) 36

Standard Java Mapping 36
Additional Java Mapping 38
Mapping of simpleType Data Types (W3C 2000 Specifications) 41
Standard Java Classes 41
Additional Java Mapping 42

Mapping of Elements 45

Builder Capabilities 45
Supported Features 45
Unsupported Features 45
XML Toolkit User’s Guide 4



Contents
Chapter 6

Java Conversion Examples 47
DTD Examples 47

Book Sample 47
DTD File Before Using the Builder 47
Converted File in the ETD Editor Window 48

Personnel Record Sample 48
DTD File Before Using the Builder 48
Converted File in the ETD Editor Window 50

Namespace Sample 50
DTD File Before Using the Builder 50
Converted File in the ETD Editor Window 51

Mixed Sample 51
DTD File Before Using the Builder 51
Converted File in the ETD Editor Window 52

Document Sample 52
DTD File Before Using the Builder 52
Converted File in the ETD Editor Window 54

XML Schema Example 54
XML Schema File Before Using the Builder 55
Converted File in the ETD Editor Window 56

Chapter 7

Registry API for XML Schema Metadata 57
Registry API for XML Schemas: Overview 57

Package Contents, Setup, and APIs 58
Contents 58
System Preparation 58
System Setup 59
Using the APIs 59

connect() 60
listEgateSchemas() 60
listEgateEventTypes() 61
listXMLSchemaFiles() 61
close() 62
getXMLSchemaData() 62
getXMLSchemaFileName() 63

Sample Implementations 63
SchemaListRetrieve.java 64
EventsRetrieve.java 64
GetXMLSchemaFile.java 65
XML Toolkit User’s Guide 5



Contents
Chapter 8

Monk DTD Converter 67
Monk XML Toolkit: Introduction 67

Using the Monk DTD Converter 67
Operational Overview 69

Feature Summary 69

Implementation 70
Using the XML DTD Converter 70
Command-line Arguments 72
Understanding the ETD Structure 73

XML Element without Sub-elements 75
XML Element with Sub-elements 76
XML Attribute 76

Using the ETD Editor 77
Mapping 78

Mapping for Elements 78
Mapping for Sub-elements 79
Mapping for Attributes 79
Mapping for Occurrence 80

Sample Conversion 80

Chapter 9

Monk XML Schema Converter 86
XML Schemas and Monk: Introduction 86

XML Schema Versions: Monk 86

How Monk XML Schema Converter Works 87

Feature Summary 88

Implementation 89
Using XML Schema 89
Command-line Arguments 90
Understanding the ETD Structure 91

XML Element without Sub-elements 92
XML Element with Sub-elements 93
XML Attribute 94

Using the ETD Editor 94
XML Schema Implementation Examples 95

Explanation 96

Chapter 10

XSLT Collaboration Service 98
Introduction 98
XML Toolkit User’s Guide 6



Contents
Requirements 98
Architecture 98

Creating XSLT Collaboration Rules 99
Committing .xsl Files to the Registry 99
Creating a Collaboration Rule 101

Implementing the XSLT Collaboration Service 104

Sample Conversion 104

Chapter 11

Monk DTD Generator 107
Introduction 107

Implementation 108
Using the XML DTD Generator 108
Creating DTDs Using the Monk DTD Generator 108

Chapter 12

$event->xml Monk Function 111
Introduction 111

How the $event->xml Monk Function Works 111
$event->xml 113

$event->xml Example 114

Chapter 13

Monk Capabilities and Troubleshooting 117
Capabilities 117

Monk DTD Converter 117
Monk DTD Generator 117

Monk DTD Converter Troubleshooting 118

Index 121
XML Toolkit User’s Guide 7



List of Figures

XML Toolkit User’s Guide 8

List of Figures

Figure 1 DTD Wizard — Introduction 24

Figure 2 DTD Wizard — Step 1 25

Figure 3 DTD Wizard — Step 2 26

Figure 4 XSD Wizard — Introduction 32

Figure 5 XSD Wizard — Step 1 32

Figure 6 XSD Wizard — Step 2 33

Figure 7 Book DTD in ETD Editor Window 48

Figure 8 Personnel Record DTD in ETD Editor Window 50

Figure 9 Namespace DTD in ETD Editor Window 51

Figure 10 Mixed DTD in ETD Editor Window 52

Figure 11 Document DTD in ETD Editor Window 54

Figure 12 XML Schema Purchase Order File in ETD Editor Window 56

Figure 13 DTD-to-ETD Conversion Process 68

Figure 14 XML Toolkit Components in Sample Configuration 69

Figure 15 Build an Event Type Definition Dialog Box — 1 71

Figure 16 Build an Event Type Definition Dialog Box — 2 72

Figure 17 XML Example 75

Figure 18 XML Element without Sub-elements 75

Figure 19 XML Element with Sub-elements 76

Figure 20 XML Attribute 76

Figure 21 Node Properties Dialog Box 77

Figure 22 Monk XML Schema Conversion Process 87

Figure 23 Build an Event Type Definition Dialog Box — 3 89

Figure 24 Build an Event Type Definition Dialog Box — 4 90

Figure 25 XML Sample 92

Figure 26 XML Element without Sub-elements 93

Figure 27 XML Element with Sub-elements 93

Figure 28 XML Attribute 94



List of Figures

XML Toolkit User’s Guide 9

Figure 29 Node Properties Dialog Box 95

Figure 30 Select Local file To Commit 100

Figure 31 Commit to Sandbox Dialog Box 100

Figure 32 File Committed 101

Figure 33 Select File to Promote to Run Time Dialog Box 101

Figure 34 File Promoted 101

Figure 35 Schema Designer: Creating New Collaboration Rules 102

Figure 36 New Collaboration Rules Dialog Box 102

Figure 37 Collaboration Rules Properties 103

Figure 38 File Selection 104

Figure 39 Open Event Type Definition Dialog Box 109

Figure 40 ETD Editor Window 109

Figure 41 Save as DTD Dialog Box 110

Figure 42 DTD Export Dialog Box 110

Figure 43 Operation of $event->xml 112



List of Tables

XML Toolkit User’s Guide 10

List of Tables

Table 1 Files for This Package 58

Table 2 Parameter Names in Examples 63

Table 3 Monk DTD Converter Feature Summary 69

Table 4 Facilitator Nodes in the ETD 74

Table 5 DTD Element Mapping Pattern 78

Table 6 Mapping for Attributes 79

Table 7 Symbol Mapping 80

Table 8 Monk XML Schema Converter Feature Summary 88

Table 9 Facilitator Nodes in the ETD 91

Table 10 Initialization String Parameters 103

Table 11 Tools To Promote Files from Sandbox 108



XML Toolkit User’s Guide 11

Chapter 1

Introduction

This chapter introduces you to this guide, its general purpose and scope, and its 
organization. It also provides sources of related documentation and information.

1.1 Document Purpose and Scope
This guide explains how to use the XML Toolkit with the e*GateTM Integrator system. 
This explanation includes:

Product overviews for both the Java and Monk programming language XML 
Toolkit versions

Installation

Using the Document Type Definition (DTD) and Extensible Markup Language 
(XML) Schema Builders (including the Monk Converter versions)

XML-to-Java and XML-to-Monk data mapping

Implementation and examples

Important: Any operation explanations given here are generic, for reference purposes only, and 
do not necessarily address the specifics of setting up and/or operating individual 
e*Gate systems.

1.2 Intended Audience
The reader of this document is presumed to be a developer or system administrator 
with the following prerequisites and/or skill sets:

Familiarity with the e*Gate system and its associated Java and Monk Event Type 
Definition (ETD) Editors

Thorough knowledge of Windows operations and administration

Familiarity with Windows-style graphical user interface (GUI) operations

Familiarity with XML, DTD, and XML Schema concepts and functions

Familiarity with Java and/or Monk programming



Chapter 1 Section 1.3
Introduction Organization of Information

XML Toolkit User’s Guide 12

1.3 Organization of Information
This document is organized topically as follows:

Chapter 1 “Introduction” gives a general preview of this document, its purpose, 
scope, and organization.

Chapter 2 “XML Toolkit Overview” provides a brief introduction to XML, DTDs, 
XML Schemas, and the XML Toolkit product; also shows a list of system and 
product requirements.

Chapter 3 “Java XML Toolkit Overview” provides a brief description of the Java 
XML Toolkit; also gives some common Java mapping characteristics.

Chapter 4 “Java DTD Builder” explains how to use the DTD Builder, including 
how to use the Builder, XML-to-Java data mapping, XML namespaces, and product 
capabilities.

Chapter 5 “Java XML Schema Builder” explains how to use the XML Schema 
Builder, including how to do the conversion, World Wide Web Consortium (W3C) 
XML-to-Java data mapping, and a description of the results.

Chapter 6 “Java Conversion Examples” provides before-and-after Java conversion 
examples of DTDs and XML Schemas, with comments.

Chapter 7 “Registry API for XML Schema Metadata” explains how to use the 
e*Gate Registry application programming interface (API) for Java XML Schema 
metadata.

Chapter 8 “Monk DTD Converter” explains how the DTD Converter creates ETD 
(.ssc) files from existing DTD files and how to use the Builder.

Chapter 9 “Monk XML Schema Converter” discusses the XML Schema Converter, 
another tool in the XML Toolkit, which enables users to convert W3C XML Schema 
files (.xsd) to ETD files.

Chapter 10 “XSLT Collaboration Service” describes how to create and use the 
XSLT Collaboration Service (XSLT stands for Extensible Stylesheet Language 
Transformations) and how to create its associated Collaboration Rules.

Chapter 11 “Monk DTD Generator”  provides a service that enables users to 
convert ETD files to XML files with a .dtd extension. This chapter explains how this 
functionality works with e*Gate Integrator.

Chapter 12 “$event->xml Monk Function” provides the ability to transform 
non-XML messages into XML messages dynamically by taking a parsed 
representation of the non-XML event and generating an XML message; chapter 
explains how to use this function.

Chapter 13 “Monk Capabilities and Troubleshooting” explains the basic 
capabilities of some Monk XML Toolkit features and how to troubleshoot them.



Chapter 1 Section 1.4
Introduction Writing Conventions

XML Toolkit User’s Guide 13

1.4 Writing Conventions
The writing conventions listed in this section are observed throughout this document.

Hypertext Links

When you are using this guide online, cross-references are also hypertext links and 
appear in blue text as shown below. Click the blue text to jump to the section.

For information on these and related topics, see “Parameter, Function, and 
Command Names” on page 14.

Command Line

Text to be typed at the command line is displayed in a special font as shown below.

java -jar ValidationBuilder.jar

Variables within a command line are set in the same font and bold italic as shown 
below.

stcregutil -rh host-name -rs schema-name -un user-name
-up password -ef output-directory

Code and Samples

Computer code and samples (including printouts) on a separate line or lines are set in 
Courier as shown below.

Configuration for BOB_Promotion

However, when these elements (or portions of them) or variables representing several 
possible elements appear within ordinary text, they are set in italics as shown below.

path and file-name are the path and file name specified as arguments to -fr in the 
stcregutil command line.

Notes and Cautions

Points of particular interest or significance to the reader are introduced with Note, 
Caution, or Important, and the text is displayed in italics, for example:

Note: The Actions menu is only available when a Properties window is displayed.

User Input

The names of items in the user interface such as icons or buttons that you click or select 
appear in bold as shown below.

Click Apply to save, or OK to save and close.

File Names and Paths

When names of files are given in the text, they appear in bold as shown below.

Use a text editor to open the ValidationBuilder.properties file.

When file paths and drive designations are used, with or without the file name, they 
appear in bold as shown below.

In the Open field, type D:\setup\setup.exe where D: is your CD-ROM drive.



Chapter 1 Section 1.5
Introduction Supported Operating Systems

XML Toolkit User’s Guide 14

Parameter, Function, and Command Names

When names of parameters, functions, and commands are given in the body of the text, 
they appear in bold as follows:

The default parameter localhost is normally only used for testing.

The Monk function iq-put places an Event into an IQ.

You can use the stccb utility to start the Control Broker.

1.5 Supported Operating Systems
The CPU and RAM requirements for the XML Toolkit are the same as those for core 
e*Gate, including all Java-related requirements. For information about supported 
operating systems and requirements, see the readme.txt file provided on the 
installation CD.

1.6 System Requirements
To use the XML Toolkit, you need the following:

An e*Gate Participating Host, version 5.0.5 SRE or later

A TCP/IP network connection

1.5 MB of disk space

1.7 External System Requirements

XML Schema Standards

Java Standards

The World Wide Web Consortium (W3C) XML Schema standards used by this Java 
XML Toolkit version are:

October 2000

May 2001

For more information, see:

“XML Schema Versions: Java” on page 34

Monk Standards

The W3C XML Schema standards used by this Monk XML Toolkit version are:

April 2000



Chapter 1 Section 1.7
Introduction External System Requirements

XML Toolkit User’s Guide 15

For more information, see:

“XML Schema Versions: Monk” on page 86



XML Toolkit User’s Guide 16

Chapter 2

XML Toolkit Overview

This chapter provides an overview of the Extensible Markup Language (XML), 
Document Type Definitions (DTDs), and XML Schemas, including a general 
description of the e*Gate XML Toolkit and its components. It also gives system 
requirements and installation instructions for the XML Toolkit product.

2.1 Introduction to XML
XML was developed by a working group of the World Wide Web Consortium (W3C). 
The result is an international standard for electronic document exchange, a markup-
design language that can be used to create other markup languages. Most applications 
of XML are:

Documents

Data exchange

Database connectivity

Using XML to create documents is similar to creating HTML documents. Where HTML 
is a fixed, standard markup language, XML is more robust and flexible, and is far more 
extensible. XML users can design their own markup languages to suit individual 
requirements and continue to add additional features as desired. Of course, the derived 
markup languages and additional features must conform to XML rules.

For additional information, refer to any standard XML reference and/or user guide, 
including those available on the Internet.

Note: For more information on W3C XML and DTD specifications, point your Web 
browser to:
http://www.w3.org/TR/REC-xml

2.1.1 DTD Overview
The purpose of DTDs is to validate XML documents. DTDs contain specifications for 
the valid XML syntax, structure, and format set up by the user-defined markup 
elements. In other words, XML is a piece of structured data and DTD defines the 
structure. The markup language’s DTD specifications are necessary to interpret data in 
this type of structured format.

http://www.w3.org/tr/REC-xml


Chapter 2 Section 2.2
XML Toolkit Overview XML Toolkit Versions

XML Toolkit User’s Guide 17

A DTD is the blueprint of an XML document. It can be used to help with constructing 
and interpreting XML documents in the desired way. You can also use DTDs when 
constructing/parsing XML documents.

2.1.2 XML Schema Overview
The concept of the XML Schema is basically the same as that of the DTD. Developed 
later than the DTD, the XML Schema serves the same purpose, except that it has more 
flexibility, complexity, and a greater variety of different formats used to define data.

2.2 XML Toolkit Versions
In conjunction with e*Gate, the XML Toolkit creates e*Gate Event Type Definition 
(ETD) files from existing DTD (.dtd) and XML Schema (.xsd) files. You can create these 
files in either the Java or Monk programming language. These files can then be used to 
parse XML documents and are fully compatible with the e*Gate system.

The XML Toolkit is an add-on feature separate from core e*Gate. It creates the following 
types of ETD files:

Java Version

With the extension .xsc.

Monk Version

With the extension .ssc.



Chapter 2 Section 2.3
XML Toolkit Overview Windows Installation

XML Toolkit User’s Guide 18

2.3 Windows Installation
This section explains how to install the XML Toolkit on a Windows system. For more 
information, including installation procedures and total e*Gate system/disk space 
requirements, see the e*Gate Integrator Installation Guide.

2.3.1 Pre-installation
1 Exit all Windows programs before running the setup program, including any anti-

virus applications.

2 You must have Administrator privileges for both the workstation and the Registry 
Host to install the XML Toolkit.

2.3.2 Installation Procedure
To install the XML DTD Converter on a Windows system

1 Log in as an Administrator on the workstation on which you want to install the 
XML Toolkit.

2 Insert the e*Gate installation CD-ROM containing the XML Toolkit into the 
CD-ROM drive.

Note: For information on how to tell which disk has the XML Toolkit, see the e*Gate 
Integrator Installation Guide.

3 If you are installing this add-on in the eBI Suite using the master install wizard, the 
installation for the add-on applications will launch automatically. Otherwise, do the 
following steps:

On the e*Gate CD-ROM, navigate to the \Setup\addons folder.

Double-click the Setup icon.

4 Follow the online prompts in the “InstallShield Wizard” to navigate though the 
introductory windows and to accept the license agreement.

5 When the User Information dialog box appears, type your name and company 
name.

6 Select the destination directory.

Note: Be sure to install the XML Toolkit files in the suggested \client installation 
directory. The installation utility detects and suggests the appropriate installation 
directory. Unless you are directed to do so by Oracle support personnel, do 
not change the suggested “installation directory” setting.

7 Select the component that you want to install, in this case, the ETD Builders, then 
click Change.

8 Select the XML Toolkit and click Continue, then Next.



Chapter 2 Section 2.3
XML Toolkit Overview Windows Installation

XML Toolkit User’s Guide 19

9 Follow the on-screen prompts to select a program folder and confirm your selection.

10 You are prompted for the Registry Host to which this add-on is to be installed. Enter 
the Registry Host’s name (if installing to a distributed Registry system, enter the 
primary Registry Host’s name) and click Next.

11 You will be prompted for the Administrator name and your password. Enter the 
requested information and click Next.

12 Select the platform that the selected Registry Host(s) support and click Next.

The installation utility installs add-on files and commits them to the e*Gate 
Registry. This process generally takes no more than a few minutes. On a Windows 
system, the installation program may open a series of DOS windows. If these 
windows open, close them, and the installation program proceeds normally.

13 Follow the on-screen prompts to complete the installation.

14 After the installation is complete, exit the install utility.



XML Toolkit User’s Guide 20

Chapter 3

Java XML Toolkit Overview

This chapter provides an overview of the e*Gate Java XML Toolkit, its components, and 
Java mapping.

3.1 Java XML Toolkit Description
The Java XML Toolkit components are briefly described in this section. The Java version 
offers the utility and advantages of the Java programming language. Detailed 
information on each of the components can be found in their respective chapters in this 
guide.

3.1.1 DTD Builder
In conjunction with e*Gate, the DTD Builder creates Java Event Type Definition (ETD), 
files from existing DTD (.dtd) files. The resulting ETD file has the extension .xsc, is fully 
compatible with the e*Gate system, and can then be used to parse XML documents.

Access the DTD Builder via the Java ETD Editor in the e*Gate Schema Designer 
graphical user interface (GUI). This ETD Editor provides a convenient Wizard GUI to 
facilitate the conversion of the original DTD to Java. The DTD Builder maps the 
individual XML data elements in the original file from XML to corresponding Java 
elements in the new ETD file.

3.1.2 XML Schema Builder
The XML Schema Builder creates Java Event Type Definition (ETD), files from existing 
XML Schema (.xsd) files. The resulting e*Gate-compatible ETD file also has the 
extension .xsc and can then be used with XML documents, in the same way as files 
created by the DTD Builder.

Access and use the XML Schema Builder in the Schema Designer in same way as you 
do the DTD Builder. The XML Schema Builder also maps XML data from the original 
file to Java in the resulting file.

Note: If there are any changes required to a DTD or XML Schema file, a new, 
corresponding ETD file must be re-generated to match the changes in the XML 
input.



Chapter 3 Section 3.2
Java XML Toolkit Overview Java Mapping

XML Toolkit User’s Guide 21

3.2 Java Mapping
When the DTD and XML Schema Builders convert XML .dtd and .xsd files to Java .xsc 
ETD files, they must map XML data types to Java data types. This section explains the 
following types of mapping common to both Builders:

Identifier mapping

Property mapping

For a detailed explanation of how each Builder maps additional data, see the respective 
chapter for that Builder.

3.2.1 Identifier Mapping
XML element tags and attribute names are mapped to Java identifiers. Since XML 
element tags and attribute names can contain characters that are not legal in Java 
identifiers or are in conflict with Java keywords, a mapping rule is necessary to resolve 
these cases.

This rule operates as follows:

Any sequence of the characters “:”, or “-“, or “_” in the input are omitted.

The next character following such a sequence, if any, is converted to uppercase.

If the resulting identifier conflicts with a Java keyword, an underscore is appended.

3.2.2 Property Mapping
XML DTD element declarations that contain attribute declarations or content model 
particles other than simple (#PCDATA) are mapped to Java classes. Attribute 
declarations, and embedded content model particles are mapped to “properties” of the 
generated Java class.

These “properties” are an extension of the Java “bean” properties defined in the Java 
Beans standard as follows:

Assuming a property named “x” with a type “T”, if the property “x” is mandatory, 
the following getter/setter methods are generated:

T getX();
void setX(T value);

If the property “x” is optional, the following additional methods are generated to 
test for the existence of and control the presence of “x”:

boolean hasX();
void omitX();

If the property “x” is repeating, the following methods are generated:

T[] getX();

Returns all of the “x” elements as an array.

void setX(T[] values);



Chapter 3 Section 3.2
Java XML Toolkit Overview Java Mapping

XML Toolkit User’s Guide 22

Replaces the current “x” elements with values.

int countX();

Returns the current number of “x” elements.

T getX(int index);

Returns the “x” element at index.

void setX(int index, T value);

Replaces the “x” element at index with value.

void removeX(int index);

Removes the “x” element at index, moving all succeeding elements down.

void addX(T val);

Adds an “x” element at the end.

void addX(int index, T val);

Inserts an “x” element at the specified index, moving all succeeding elements.

void clearX();

Removes all “x” elements.



XML Toolkit User’s Guide 23

Chapter 4

Java DTD Builder

This chapter explains the Java DTD Builder, including how to use it, a description of 
data mapping to Java, XML namespaces, and the Builder’s capabilities

4.1 Using the DTD Builder
Access the Java DTD Builder using the Java Event Type Definition (ETD) Editor of the 
e*Gate Schema Designer graphical user interface (GUI).

Note: For more information on how to use the Schema Designer, see the e*Gate 
Integrator User’s Guide. 

To access the DTD Builder

1 Run the Schema Designer, log in, and select the desired schema.

The Schema Designer’s Main window opens.

2 Be sure that the Java editors are selected as your default editors. To check this 
default, click on the Options menu and choose the Default Editor command.

3 To open the ETD Editor GUI, click the ETD Editor button on the Toolbar.

The ETD Editor Main window opens.

4 Click the New button on the Toolbar or click the File menu and choose the New 
command.

The New Event Type Definition dialog box opens.

5 Click the DTD Wizard icon then click OK.

These actions open the DTD Wizard’s first window and begin the DTD Builder’s 
operation.



Chapter 4 Section 4.1
Java DTD Builder Using the DTD Builder

XML Toolkit User’s Guide 24

To run the DTD Builder

1 Read the instructions in the DTD Wizard — Introduction (see Figure 1).

Figure 1   DTD Wizard — Introduction

Note: Be sure to read all the Wizard’s instructions carefully and follow the prompts that it 
gives you, for best results.

2 Click Next.

The DTD Wizard — Step 1 appears (see Figure 2).



Chapter 4 Section 4.1
Java DTD Builder Using the DTD Builder

XML Toolkit User’s Guide 25

Figure 2   DTD Wizard — Step 1

3 Enter the following information:

Caution: When you are prompted for a package name or root name, be sure to supply a string 
composed of single-byte characters only. A compile error occurs if you try to compile 
an ETD whose root name contains Japanese, Korean, Chinese, or other multibyte 
characters. If the wizard picks up a double-byte string from the input source file and 
uses it for a root node name, you will need to alter the source and re-run the wizard.

Java Package Name: Type in the name you want to give the Java package, for 
example, com.tes. This name must conform to Java package name requirements. 
See the appropriate Java documentation for details.

DTD File Name: Type in the name of the DTD file you want to convert. Click 
Browse to access an Open (file selection) dialog box, allowing you to choose the 
desired file.

Root Node Name: This text box is a pull-down menu. Select the desired root 
node name from the menu. For more information on root nodes and ETDs, see 
the e*Gate Integrator User’s Guide.

Allow whitespace in EMPTY segments: Check the box to allow any whitespace 
characters (such as space, tab, or new line) in elements defined as EMPTY. For 
example, if this box is checked, the following elements are allowed:

<chapter> </chapter>

Normally, no whitespace characters would be allowed in EMPTY elements.

Ignore #FIXED attributes: Check the box to strip all #FIXED attributes from the 
DTD.

Ignore all attributes: Check the box to strip all attributes from the DTD.



Chapter 4 Section 4.1
Java DTD Builder Using the DTD Builder

XML Toolkit User’s Guide 26

Include DOCType Reference: Check the box to specify a DOCType Reference. 
For example, a DOCType Reference of PUBLIC "file_name.dtd" will generate 
the following value in the XML output:

<!DOCTYPE Result PUBLIC "file_name.dtd">

4 When you are finished, click Next.

The DTD Wizard — Step 2 appears (see Figure 3).

Figure 3   DTD Wizard — Step 2

5 Review the information you have entered in the Wizard. If it is correct, click Finish 
to generate a Java ETD ( .xsc file) from the original DTD file.

The Wizard closes, and the new ETD appears in the ETD Editor Main window. See 
the e*Gate Integrator User’s Guide for details on how to use this editor, including an 
explanation of the information it shows.

6 To save the new ETD, click the Save button on the Toolbar or click the File menu 
and choose the Save command.

A Save dialog box appears.

7 Select the desired directory location, give the new ETD your desired name, and 
click Save.

The ETD Editor saves the new Java ETD.

8 You can continue to use the ETD Editor or click the File menu and choose the Close 
command to exit the GUI.

Note: The ETD nodes created using the DTD Builder appear shaded in the ETD Editor, 
indicating that you cannot edit an ETD created by the Builder.



Chapter 4 Section 4.2
Java DTD Builder DTD Builder Data Mapping

XML Toolkit User’s Guide 27

4.2 DTD Builder Data Mapping
As described earlier, when the DTD Builder converts XML .dtd files to Java .xsc ETD 
files, the Builder must map XML data to Java data. This process uses the following 
types of mapping:

Identifier mapping

Property mapping

Mapping of element declarations

Mapping of attribute types

See “Java Mapping” on page 21 for an explanation of how the DTD Builder maps 
identifiers and properties. This section explains how the DTD Builder maps each of the 
rest of the categories.

4.2.1 Mapping of Element Declarations
For each element declaration in the input DTD, a Java class with the same name is 
created. This process takes into account the identifier-mapping rule explained under 
“Identifier Mapping” on page 21.

The content of the class depends on the structure of the element declaration as follows:

If the element contains a content model, the top-level particles of the content model 
are mapped as properties of the generated class.

Each of the element’s attribute declarations is mapped to a property in the 
generated class.

The following conditions also apply:

If an element has a content model that is only character data (#PCDATA) and 
contains no attribute declarations, no class is generated. Instead, references to such 
an element in Java treat it as an instance of java.lang.String.

If an element can only contain character data, but does have one or more attributes, 
a class is generated to represent it, and a special property called $text is generated 
to hold the element’s character data.

If an element’s content model contains parenthesized sub expressions, each sub 
expression is mapped to a static inner class named $<index> where <index> is the 
0-based index of the sub expression counting from the left of the element’s content 
model, for example:

<!ELEMENT a  (b,(c,d)?)> 



Chapter 4 Section 4.3
Java DTD Builder Builder Capabilities

XML Toolkit User’s Guide 28

The previous sub expression would produce the following (simplified) Java class 
definition:

public class a {
public b getB() {…}
public void setB(b value) {…}
static public class $1 {

public c getC() {…}
public void setC(c value) {…}
public d getD() {…}
public void setD(d value) {…}

}
public $1 get$1() {…}
public void set$1($1 value) {…}
public boolean has$1() {…}
public void omit$1() {…}

}

4.2.2 Mapping of Attribute Types
XML attributes of type CDATA, ID, IDREF, NMTOKEN, IDREFS, and NMTOKENS, 
including enumerated types, are mapped to the Java type java.lang.String.

4.3 Builder Capabilities
This section describes the supported and unsupported DTD features of the DTD 
Builder.

4.3.1 Supported Features
Basically, the DTD Builder supports every DTD feature specified in the XML 1.0 
standard found at the Web site given under “Introduction to XML” on page 16.

Namespaces

In addition, the DTD Builder supports namespaces even though namespace processing 
is not a part of a DTD itself.

The DTD Builder handles namespaces in the following ways:

By processing instructions. For example:

<?xml:namespace ns="http://www.stc.com/ns1" prefix="stc"?>
<!ELEMENT stc:Book (stc:Chapter)+>
<!ELEMENT stc:Chapter (#PCDATA)>
<!ATTLIST stc:Chapter chapNo CDATA #REQUIRED>

The namespace processing instruction is the line starting with <?xml:namespace. A 
sample XML document is:

<sbyn:Book xmlns:sbyn="http://www.stc.com/ns1">
  <sbyn:Chapter chapNo="1">This is chapter 1</sbyn:Chapter>
</sbyn:Book>



Chapter 4 Section 4.3
Java DTD Builder Builder Capabilities

XML Toolkit User’s Guide 29

Note: The namespace is identified by its unique uniform resource identifier (URI) http://
www/stc.com/ns1. Notice that, in the actual XML document, the original stc 
prefix in the DTD is replaced by sbyn. This is correct.

By special attributes beginning with xmlns. For example:

<!ELEMENT Book (Chapter)+> 
<!ATTLIST Book xmlns CDATA #FIXED "http://www.stc.com/namespace">
<!ELEMENT Chapter (#PCDATA)>
<!ATTLIST Chapter chapNo CDATA #REQUIRED>

This example states that the URI for the default namespace (no prefix) is http://
www.stc.com/namespace. The document instances must contain the default 
namespace specification. For example:

<Book xmlns="http://www.stc.com/namespace">
  <Chapter chapNo="1">This is chapter 1</Chapter>
</Book>

If your document is:

<Book>
  <Chapter chapNo="1">This is chapter 1</Chapter>
</Book>

You get an error because the Builder is expecting a namespace declaration.

Note: You are not allowed to specify/override the reserved namespace prefix xml in the 
DTD.

4.3.2 Limitations
This section explains the limitations of the DTD Builder.

Parent Nodes

The DTD Builder assumes that a DTD has at least one ELEMENT to generate a parent 
node in the resulting ETD, which has either child nodes or an attribute list. If the DTD 
contains no ELEMENT to generate child nodes or attribute lists, the .xsc (as well as .jar) 
files are not created.

For example, see the following DTD:

<!ELEMENT a (#PCDATA)>
<!ELEMENT b (#PCDATA)>

The DTD in the previous example cannot generate an .xsc file because a and b map to 
simple strings (java.lang.String), and no Java classes are generated for them. If you add 
another element that includes a and/or b, you have the following structure:

<!ELEMENT c (a,b)>

 In this case, the DTD Builder can generate a Java ETD ( .xsc) file.

Note: For more information on node structures in Java ETDs, see the e*Gate Integrator 
User’s Guide.



Chapter 4 Section 4.3
Java DTD Builder Builder Capabilities

XML Toolkit User’s Guide 30

Root Nodes

The DTD Builder only generates one ETD ( .xsc file) from an input DTD, so there can 
only be one root ELEMENT in the DTD. ETDs can only have one root node. As a result, 
ELEMENT items in the DTD that are not referenced in the root ELEMENT tree are 
discarded. See the following example:

<!ELEMENT el1 (a,b)>
<!ELEMENT el2 (b+,c)>
<!ELEMENT a (#PCDATA)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT c (a|d)>
<!ELEMENT d (#PCDATA)>

In the previous example, if you select el1 as the root ELEMENT, el2, c and d are 
discarded and do not show up in the resulting ETD, because el1 only references a and b. 
However, if el2 is selected as the root ELEMENT, el1 and b are discarded. Because el2 
references b and c, and c references a and d, so el2, b, c, a, and d are all included in the 
resulting ETD.

Ignoring Empty Strings in PCDATA Elements

By default, the DTD Compiler does not ignore empty strings in PCDATA elements. To 
allow this behavior, you must set the dtd.allowEmpty value in your .jcsrc file to true.

To configure the .jcsrc file

1 Navigate to your C:\Documents and Settings\<user> directory, where <user> is 
the user name you will use while compiling the DTDs.

2 Open the .jcsrc file with a text editor (or create one if one does not already exist).

3 Add the following entry to the file:

dtd.allowEmpty=true

4 Save the file.

Empty Element Tags

Although not necessarily a limitation with the DTD Builder, the XML parser does not 
currently support empty element tags. Elements using the shorthand notation with 
only an end tag cannot be parsed correctly.

For example, instead of using an empty element tag to show a city name:

</City>

The XML parser expects to see the element shown with a start and an end tag:

<City>data</City>



XML Toolkit User’s Guide 31

Chapter 5

Java XML Schema Builder

This chapter explains the e*Gate Java XML Schema Builder, including how to use it, a 
description of data mapping to Java, XML namespaces, and the Builder’s capabilities

5.1 Using the XML Schema Builder
The Java Event Type Definition (ETD) Editor’s XML Schema Builder allows you to 
create an ETD file (with the extension .xsc) based on an input XML Schema file (.xsd 
file). The Builder’s XSD Wizard allows you to build the ETD automatically. Access the 
XML Schema Builder using this ETD Editor in the e*Gate Schema Designer graphical 
user interface (GUI).

Note: For more information on how to use the Schema Designer, see the e*Gate 
Integrator User’s Guide.

To access the XML Schema Builder

1 Run the Schema Designer, log in, and select the desired schema.

The Schema Designer’s Main window opens.

2 Be sure that the Java editors are selected as your default editors. To check this 
default, click Options and then select Default Editor.

3 To open the ETD Editor GUI, click ETD Editor on the Toolbar.

4 Click the New button on the Toolbar or click the File menu and choose the New 
command.

The New Event Type Definition dialog box opens.

5 Click the XSD Wizard icon then click OK.

These actions open the XSD Wizard’s first window and begin the XML Schema 
Builder’s operation.



Chapter 5 Section 5.1
Java XML Schema Builder Using the XML Schema Builder

XML Toolkit User’s Guide 32

To run the XML Schema Builder

1 Read the instructions in the XSD Wizard — Introduction (see Figure 4).

Figure 4   XSD Wizard — Introduction

Note: Be sure to read all the Wizard’s instructions carefully and follow the prompts that it 
gives you for best results.

2 Click Next.

The XSD Wizard — Step 1 appears (see Figure 5).

Figure 5   XSD Wizard — Step 1



Chapter 5 Section 5.1
Java XML Schema Builder Using the XML Schema Builder

XML Toolkit User’s Guide 33

Enter the following information:

Java Package Name: Enter a name for the Java package for the generated ETD 
files; for example, com.tes. This name must conform to Java package name 
requirements. See the appropriate Java documentation for details.

XSD File Name: Browse to and select the .xsd file you want to convert, or enter 
the fully qualified path and file name.

Root Node Name: Select the name of the root node for the XSD file. This list is 
populated from the XSD file you selected above.

3 When you are finished, click Next.

The XSD Wizard — Step 2 appears (see Figure 6).

Figure 6   XSD Wizard — Step 2

4 Review the information you entered in the Wizard. If it is correct, click Finish to 
generate a Java ETD ( .xsc file) from the original XML Schema file. The following 
processes happen:

The wizard parses the input XML Schema and places its contents into the new 
ETD.

The Wizard closes, and the new ETD appears in the ETD Editor Main window. 
See the e*Gate Integrator User’s Guide for details on how to use this editor, 
including an explanation of the information it shows.

5 To save the new ETD, click the Save button on the Toolbar or click the File menu 
and choose the Save command.

A Save dialog box appears.



Chapter 5 Section 5.2
Java XML Schema Builder XML Schema Versions: Java

XML Toolkit User’s Guide 34

6 Select a directory and enter a name for the new ETD, and click Save.

The ETD Editor saves the new Java ETD.

7 You can continue to use the ETD Editor or click the File menu and choose the Close 
command to exit the GUI.

Note: The ETD nodes created using the XML Schema Builder appear shaded in the 
ETD Editor, indicating that you cannot edit an ETD created by the Builder.

After you name and save the ETD, you can then use it as the basis for new or existing 
e*Gate Event Types in this schema. The original XML Schema (.xsd file) is saved in the 
Java archive (as a .jar file) corresponding to the Event Type’s ETD (.xsc file).

5.2 XML Schema Versions: Java
The Java XML Toolkit supports the World Wide Web Consortium (W3C) October 2000 
and May 2001 XML Schema standards.

The following URLs authoritatively identify (via XML namespaces) the two versions of 
XML Schema that supported in the Java XML Toolkit:

http://www.w3.org/2000/10/XMLSchema

http://www.w3.org/2001/XMLSchema

Note: These identifiers are XML namespace identifiers and do not identify actual Web 
sites.

The XML Schema Builder checks and enforces that the input schemas conform to one of 
the two W3C versions listed previously. The latter (2001/5) identifier corresponds to 
the approved W3C recommendations defined by the following documents:

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502

http://www.w3.org/TR/2001/REC-xmlschema-2-20010502

The former identifier (2000/10) corresponds to a widely used draft version that the 
Builder also supports (due to that wide use), which is defined by the following 
documents:

http://www.w3.org/TR/2000/CR-xmlschema-1-20001024

http://www.w3.org/TR/2000/CR-xmlschema-2-20001024

5.3 XML Schema Builder Data Mapping
As described earlier, when the XML Schema Builder converts XML .xsd files to Java .xsc 
ETD files, the Builder must map XML Schema data types to Java classes. This process 
uses the following types of mapping:

http://www.w3.org/TR/2001/REC-xmlschema-1-20010502
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502
http://www.w3.org/TR/2000/CR-xmlschema-1-20001024
http://www.w3.org/TR/2000/CR-xmlschema-2-20001024


Chapter 5 Section 5.3
Java XML Schema Builder XML Schema Builder Data Mapping

XML Toolkit User’s Guide 35

Identifier mapping

Property mapping

Generated classes

Java packages

Extended Java Bean properties

Mapping of complexType data types

Mapping of simpleType data types (W3C 10/2000 and 2001 specifications)

Mapping of elements

See “Java Mapping” on page 21 for an explanation of how the XML Schema Builder 
maps identifiers and properties. This section explains how the Builder maps each of the 
rest of the types.

5.3.1 Generated Classes
The XML Schema Builder maps top-level elements that have complex types and top-
level complexType classes to Java classes that contain extended Java Bean properties. 
This process allows the Builder to access Java Bean attributes and element content. In 
addition, the Builder generates marshalling and unmarshalling code to serialize and 
deserialize instances of the generated element classes to or from XML documents.

5.3.2 Java Packages
When you run the XML Schema Builder, you must select a target Java package to 
contain the generated classes. Since elements and complexType classes may have the 
same names, the generated classes are created in two sub packages of the target 
package, that is, elements and types respectively.

5.3.3 Mapping of complexType Data Types
For each top-level complexType data type defined in the input schema a corresponding 
Java class is created under the types package. For each attribute defined in the 
complexType data type, an extended Java bean property is generated. 

If the complexType data type contains an optional or repeating content model group 
(sequence, choice, all) a static inner class is generated to represent the model group. 
Inner classes that represent content model groups are named $<index> where <index> 
is a 1-based integer index corresponding to the occurrence of the content model group, 
counting from top to bottom.

Examples

<complexType name = "SomeType">
<sequence minOccurs="0" maxOccurs="unbounded"> $1

<element name="a" type= "string">
<choice> $2

<element name="b" type="string">
<element name="c" type="string">

</choice>



Chapter 5 Section 5.3
Java XML Schema Builder XML Schema Builder Data Mapping

XML Toolkit User’s Guide 36

<element name="d" type="string">
<sequence minOccurs="1" maxOccurs="unbounded"> $3

<element name="e" type="string">
<element name="f" type="string">

</sequence>
</sequence>

</complexType>

This convention corresponds to that used in the Perl and JavaScript programming 
languages for back-references to parenthesized sub expressions of a corresponding 
regular expression, as in the previous example:

(a(b|c)d(ef)+)*

The following conditions apply:

If the content model particle is mandatory, no inner class is generated, and the 
particles contained in the <all>, <choice>, or <sequence> are generated as 
immediate members of the complexType data type.

For each element or model group particle contained in the complexType data type 
content model, an extended Java Bean property is generated to access that particle.

The complexType data types that extend or restrict other complexType data types 
are mapped to Java classes that extend the base complexType class. The 
complexType data types that extend simpleType data types are mapped to Java 
classes that contain a member named “base” that holds the character data of the 
base simpleType class.

5.3.4 Mapping of simpleType Data Types (W3C 2001 Specifications)
This section explains the mapping of XML Schema simpleType data types, which 
describe the syntax and semantics of attribute values and character data content in 
XML documents.

The standard Java mapping in this section is defined by the W3C year 2001 
specifications for XML Schemas (see “XML Schema Versions: Java” on page 34).

Note: An alternative mapping is also supported for the October 2000 version of 
XML Schemas. The differences in that mapping compared to these specifications are 
explained under “Mapping of simpleType Data Types (W3C 2001 
Specifications)” on page 36.

Standard Java Mapping

A list explaining how the simpleType data types are mapped to Java classes, according 
to the W3C year 2001 specifications for XML Schemas, follows:

Any SimpleType

A completely unconstrained simpleType is mapped to the Java type java.lang.String.

Boolean

The Boolean data type is mapped to the Java primitive type boolean.



Chapter 5 Section 5.3
Java XML Schema Builder XML Schema Builder Data Mapping

XML Toolkit User’s Guide 37

Base64Binary and hexBinary

These data types represent binary data. They are mapped to the Java type byte[].

Float

The float data type is mapped to the Java primitive type float.

Double

The double data type is mapped to the Java primitive type double.

AnyURI 

The anyURI data type is mapped to the Java type java.lang.String.

QName

The QName data type is mapped to the Java type java.lang.String.

NOTATION

The NOTATION data type is mapped to the Java type java.lang.String.

String

The string data type and all types derived from it, namely token, language, Name, 
NMTOKEN, NCName, ID, IDREF, and ENTITY are mapped to the Java type 
java.lang.String.

Union

All instances of the Union data-type constructor are mapped to the Java type 
java.lang.String.

List

All instances of the list data-type constructor are mapped to a repeating Java Bean 
property with its itemType facet mapped according to the rules given under “Mapping 
of simpleType Data Types (W3C 2001 Specifications)” on page 36.

Numeric Types

The XML Schema numeric data types are mapped to one of the following Java numeric 
types: byte, short, int, long, java.math.BigInteger, or java.math.BigDecimal. The Java 
type is selected according to the facets of the XML Schema type. The mapping chooses 
the smallest Java numeric type that can represent the XML Schema type according to its 
facets.

The following list shows the mapping for unconstrained built-in XML Schema numeric 
data types:

decimal is mapped to the Java type java.math.BigDecimal.

integer, nonNegativeInteger, nonPositiveInteger, negativeInteger, positiveInteger, 
and unsignedLong are mapped to the Java type java.math.BigInteger.

long and unsignedInt are mapped to the Java type Long.

int and unsignedShort are mapped to the Java type Int.

short and unsignedByte data types are mapped to the Java type Short.

byte is mapped to the Java type Byte.



Chapter 5 Section 5.3
Java XML Schema Builder XML Schema Builder Data Mapping

XML Toolkit User’s Guide 38

Additional Java Mapping

The following list explains additional Java mapping the Builder generates:

Duration is mapped to a custom class com.stc.jcsre.xml.xsd.datatypes.Duration. 
Accessor functions for this class are:

package com.stc.jcsre.xml.xsd.datatypes;
public class Duration {
    public Duration();
    public Duration(Duration copy);
    public void setYears(int years);
    public void setMonths(int months);
    public void setDays(int days);
    public void setHours(int hours);
    public void setMinutes(int minutes);
    public void setSeconds(int seconds);
    public void setMilliseconds(int millis);
    public int getYears();
    public int getMonths();
    public int getDays();
    public int getHours();
    public int getMinutes();
    public int getSeconds();
    public int getMilliseconds();
    public boolean isNegative();
    public void setNegative(boolean value);
    public String toString();
    public static Duration parse(String value);
}

dateTime is mapped to a custom Java class com.stc.jcsre.xml. 
xsd.datatypes.DateTime. Accessor functions for this class are:

package com.stc.jcsre.xml.xsd.datatypes;

public class DateTime {
    public DateTime() {
    public DateTime(java.util.GregorianCalendar cal)
    public DateTime(int year, int month, int day)
    public DateTime(int year,

    int month,
    int day,
    int hour,
    int minute,
    int second,
    int millisecond);

    public boolean after(DateTime other);
    public boolean before(DateTime other);
    public void setCalendar(GregorianCalendar cal);
    void roll(Duration dur);
    void add(Duration dur);
    void subtract(Duration dur);
    public GregorianCalendar toCalendar();
    public int getYear();
    public int getMonth();
    public int getDay();
    public int getHours(int hours);
    public int getMinutes();
    public int getSeconds();
    public int getMilliseconds();
    public void setYear(int year);
    public void setMonth(int month); 



Chapter 5 Section 5.3
Java XML Schema Builder XML Schema Builder Data Mapping

XML Toolkit User’s Guide 39

    public void setDay(int day);
    public void setHours(int hours);
    public void setMinutes(int minutes);
    public void setSeconds(int seconds);
    public void setMilliseconds(int millis);
    public void rollYear(int years);
    public void rollMonth(int months);
    public void rollDay(int days);
    public void rollHours(int hours);
    public void rollMinutes(int minutes);
    public void rollSeconds(int seconds);
    public void rollMilliseconds(int millis);
    public void addYear(int years);
    public void addMonth(int months);
    public void addDay(int days);
    public void addHours(int hours); 
    public void addMinutes(int minutes);
    public void addSeconds(int seconds);
    public void addMilliseconds(int millis);
    public String toString();
    public static DateTime parse(char[] value);
    public static DateTime parse(String value)
}

time is mapped to a custom Java class com.stc.jcsre.xml.xsd.datatypes.Time. 
Accessor functions for this class are:

package com.stc.jcsre.xml.xsd.datatypes;
public class Time {
    public Time() ;
    public Time(int hours, int minutes,

int seconds, int milliseconds, java.util.TimeZone tz);
    public int getHours();
    public int getMinutes();
    public int getSeconds();
    public int getMilliseconds();
    public void setHours(int hours);
    public void setMinutes(int minutes);
    public void setSeconds(int seconds);
    public void setMilliseconds(int millis);
    public TimeZone getTimeZone();
    public void setTimeZone(java.util.TimeZone tz);
    public String toString();
    static public Time parse(String value);
}

date is mapped to a custom Java class com.stc.jcsre.xml.xsd.datatypes.Date. 
Accessor functions for this class are:

package com.stc.jcsre.xml.xsd.datatypes;
public class Date {
    public Date();
    public Date(int year, int month, int day, java.util.TimeZone tz);
    public int getYear();
    public void setYear(int value);
    public int getMonth(); // January == 1
    public void setMonth(int value);
    public int getDay();
    public void setDay(int value);
    public java.util.TimeZone getTimeZone();
    public void setTimeZone(java.util.TimeZone tz);
    public String toString();
    static public Date parse(String value);
}



Chapter 5 Section 5.3
Java XML Schema Builder XML Schema Builder Data Mapping

XML Toolkit User’s Guide 40

gYearMonth is mapped to a custom Java class 
com.stc.jcsre.xml.xsd.datatypes.gYearMonth. Accessor functions for this class are:

package com.stc.jcsre.xml.xsd.datatypes;
public class GYearMonth {
    public GYearMonth();
    public GYearMonth(int year, int month, java.util.TimeZone tz);
    public int getYear();
    public void setYear(int value);
    public int getMonth(); // January == 1
    public void setMonth(int value);
    public java.util.TimeZone getTimeZone();
    public void setTimeZone(java.util.TimeZone tz);
    public String toString();
    public static GYearMonth parse(String value);
}

gYear is mapped to a custom Java class com.stc.jcsre.xml.xsd.datatypes.GYear. 
Accessor functions for this class are:

package com.stc.jcsre.xml.xsd.datatypes;
public class GYear {
    public GYear();
    public GYear(int year, java.util.TimeZone tz);
    public int getYear();
    public void setYear(int value); 
    public java.util.TimeZone getTimeZone();
    public void setTimeZone(java.util.TimeZone tz);
    public String toString();
    public static GYear parse(String value);
}

gMonthDay is mapped to a custom Java class 
com.stc.jcsre.xml.xsd.datatypes.gMonthDay. Accessor functions for this class are:

package com.stc.jcsre.xml.xsd.datatypes;
public class GMonthDay {
    public GMonthDay();
    public GMonthDay(int month, int day, TimeZone tz);
    public int getMonth() { // January == 1
    public void setMonth(int value);
    public int getDay();
    public void setDay(int value);
    public TimeZone getTimeZone();
    public void setTimeZone(java.util.TimeZone tz);
    public String toString();
    public static GMonthDay parse(String value);
}

gDay is mapped to a custom Java class com.stc.jcsre.xml.xsd.datatypes.gDay. 
Accessor functions for this class are:

package com.stc.jcsre.xml.xsd.datatypes;
public class GDay {
    public GDay();
    public GDay(int day, TimeZone tz);
    public int getDay();
    public void setDay(int value);
    public java.util.TimeZone getTimeZone();
    public void setTimeZone(java.util.TimeZone tz);
    public String toString(); 
    public static GDay parse(String value);
}



Chapter 5 Section 5.3
Java XML Schema Builder XML Schema Builder Data Mapping

XML Toolkit User’s Guide 41

gMonth is mapped to a custom Java class com.stc.jcsre.xml.xsd.datatypes.gMonth. 
Accessor functions for this class are:

package com.stc.jcsre.xml.xsd.datatypes;
public class GMonth {
    public GMonth();
    public GMonth(int month, TimeZone tz);
    public int getMonth();
    public void setMonth(int value); // 1 == January
    public java.util.TimeZone getTimeZone();
    public void setTimeZone(java.util.TimeZone tz);
    public String toString();
    public static GMonth parse(String value);
}

Mapping of simpleType Data Types (W3C 2000 Specifications)

This section explains the mapping of XML Schema simpleType data types. The 
mapping in this section is defined by the W3C October 2000 specifications for 
XML Schemas. For more details on these specifications, point your Web browser to:

http://www.w3.org/TR/2000/CR-xmlschema-2-20001024

Standard Java Classes

A list explaining how the simpleType data types are mapped to Java (W3C, 10/2000) 
follows:

Any SimpleType

A completely unconstrained simpleType is mapped to the Java type java.lang.String.

Boolean

The boolean data type is mapped to the Java primitive type boolean.

Binary

The binary data type represents binary data and is mapped to the Java type byte[].

Float

The float data type is mapped to the Java primitive type float.

Double

The double data type is mapped to the Java primitive type double.

uriReference

The uriReference data type is mapped to the Java type java.lang.String.

QName

The QName data type is mapped to the Java type java.lang.String.

NOTATION

The NOTATION data type is mapped to the Java type java.lang.String.

CDATA

The CDATA data type is mapped to the Java type java.lang.String.

http://www.w3.org/TR/2000/CR-xmlschema-2-20001024


Chapter 5 Section 5.3
Java XML Schema Builder XML Schema Builder Data Mapping

XML Toolkit User’s Guide 42

String

The string data type and all types derived from it, namely token, language, Name, 
NMTOKEN, NCName, ID, IDREF, and ENTITY are mapped to the Java type 
java.lang.String.

Union

All instances of the Union data-type constructor are mapped to the Java type 
java.lang.String.

List

All instances of the list data-type constructor are mapped to a repeating Java Bean 
property with its itemType facet mapped according to the rules given under “Mapping 
of simpleType Data Types (W3C 2001 Specifications)” on page 36.

Numeric Types

The XML Schema numeric data types are mapped to one of the following Java numeric 
types: byte, short, int, long, java.math.BigInteger, and java.math.BigDecimal. The Java 
type is selected according to the facets of the XML Schema type. The mapping chooses 
the smallest Java numeric type that can represent the XML Schema type according to its 
facets.

The following list shows the mapping for unconstrained built-in XML Schema numeric 
data types:

decimal is mapped to the Java type java.math.BigDecimal.

integer, nonNegativeInteger, nonPositiveInteger, negativeInteger, positiveInteger, 
and unsignedLong are mapped to the Java type java.math.BigInteger.

long and unsignedInt are mapped to the Java type long.

int and unsignedShort are mapped to the Java type int.

short and unsignedByte are mapped to the Java type short.

byte is mapped to the Java type byte.

Additional Java Mapping

The following list explains additional Java mapping the Builder generates:

recurringDuration is mapped to a custom class 
com.stc.jcsre.xml.xsd.datatypes.RecurringDuration. Accessor functions for this 
class are:

   package com.stc.jcsre.xml.xsd.datatypes;
public class RecurringDuration

public RecurringDuration();
public RecurringDuration(TimeDuration duration, TimeDuration

period);
public RecurringDuration(char[] duration, char[] period);

    public void setPeriod(TimeDuration period);
    public void setPeriod(char[] period);
    public void setDuration(TimeDuration duration);
    public void setDuration(char[] duration);
    public void setCentury(int century);
    public void setYear(int year);



Chapter 5 Section 5.3
Java XML Schema Builder XML Schema Builder Data Mapping

XML Toolkit User’s Guide 43

    public void setMonth(int month);
    public void setDay(int day);
    public boolean isLeap();
    public void setHour(int hour);
    public void setMinute(int minute);
    public void setSecond(int second, int millsecond, int

millidigits);
    public void setZone(int hour, int minute);
    public void setNegative();
    public void setZoneNegative();
    public void setUTC();
    public TimeDuration getPeriod();
    public TimeDuration getDuration();
    public int getCentury();
    public int getYear();
    public int getMonth();
    public int getDay();
    public int getHour();
    public int getMinute();
    public int getSeconds();
    public int getMilli();
    public int getMilliDigits();
    public int getZoneHour();
    public int getZoneMinute();
    public boolean isUTC(); 
    public boolean isNegative();
    public boolean isZoneNegative();
    public static RecurringDuration parse(char[] chars);
    public String toString()
    public TimePeriod()
    public TimePeriod(char[] duration)
    public static TimePeriod parseTimePeriod(char[] value)
}

century is mapped to a custom class com.stc.jcsre.xml.xsd.datatypes.Century. 
Accessor functions for this class are:

   package com.stc.jcsre.xml.xsd.datatypes;
public class Century extends TimePeriod {
    public Century();
    public static Century parseCentury(char[] value)
    public String toString();
}

date is mapped to a custom class com.stc.jcsre.xml.xsd.datatypes.Date. Accessor 
functions for this class are:

   package com.stc.jcsre.xml.xsd.datatypes;
public class Date extends RecurringDuration {
    public Date() 
    public static Date parseDate(char[] value)
    public String toString();
}

month is mapped to a custom class com.stc.jcsre.xml.xsd.datatypes.Month. 
Accessor functions for this class are:

   package com.stc.jcsre.xml.xsd.datatypes;
public class Month extends TimePeriod {
    public Month();
    public static Month parseMonth(char[] value);
    public String toString();
}



Chapter 5 Section 5.3
Java XML Schema Builder XML Schema Builder Data Mapping

XML Toolkit User’s Guide 44

recurringDate is mapped to a custom class 
com.stc.jcsre.xml.xsd.datatypes.RecurringDate. Accessor functions for this class 
are:

   package com.stc.jcsre.xml.xsd.datatypes;
public class RecurringDate extends RecurringDuration {
    public RecurringDate();
    public String toString();
    public static RecurringDate parseRecurringDate(char[] value);
}

recurringDay is mapped to a custom class 
com.stc.jcsre.xml.xsd.datatypes.RecurringDay. Accessor functions for this class are:

   package com.stc.jcsre.xml.xsd.datatypes;
public class RecurringDay extends RecurringDuration {
    public RecurringDay();
    public String toString();
    public static RecurringDay parseRecurringDay(char[] value);
}

time is mapped to a custom class com.stc.jcsre.xml.xsd.datatypes.Time. Accessor 
functions for this class are:

   package com.stc.jcsre.xml.xsd.datatypes;
public class Time extends RecurringDuration {
    public Time();
    public String toString();
    public static Time parseTime(char[] chars);
}

timeDuration is mapped to a custom class 
com.stc.jcsre.xml.xsd.datatypes.TimeDuration. Accessor functions for this class are:

   package com.stc.jcsre.xml.xsd.datatypes;
public class TimeDuration {
    public TimeDuration();
    public void setYear(int year);
    public void setMonth(int month);
    public void setDay(int day);
    public void setHour(int hour);
    public void setMinute(int minute);
    public void setSeconds(int second, int millisecond, int

millidigits);
    public void setNegative();
    public void setValue(int year, int month, int day,
                         int hour, int minute, int second, int

millisecond, int millidigits);
    public int getYear();
    public int getMonth();
    public int getDay();
    public int getHour();
    public int getMinute();
    public int getSeconds();
    public int getMilliseconds();
    public int getMilliDigits();
    public boolean isNegative();
    public String toString();
    public static TimeDuration parse(char[] str);
}

timeInstant is mapped to a custom class 
com.stc.jcsre.xml.xsd.datatypes.TimeInstant. Accessor functions for this class are:

   package com.stc.jcsre.xml.xsd.datatypes;



Chapter 5 Section 5.4
Java XML Schema Builder Builder Capabilities

XML Toolkit User’s Guide 45

public class TimeInstant extends RecurringDuration {
    public TimeInstant();
    public static TimeInstant parseTimeInstant(char[] value);
}

year is mapped to a custom class com.stc.jcsre.xml.xsd.datatypes.Year. Accessor 
functions for this class are:

   package com.stc.jcsre.xml.xsd.datatypes;
public class Year extends TimePeriod {
    public Year();
    public static Year parseYear(char[] value);
    public String toString();
}

5.3.5 Mapping of Elements
Elements that have complex content are mapped to Java classes. If the element’s type 
attribute refers to a top-level complexType, the generated class extends the class 
generated for the referenced complexType. If the element contains an in-line 
complexType, the element class body is generated according to the same rules given 
above for complexType and no separate class is generated to represent its type.

Java classes are not generated for elements that have simple content. Instead 
complexType classes that reference such elements contain a Java Bean property to 
access the element and code to marshal/unmarshal the element as part of the enclosing 
class.

5.4 Builder Capabilities
This section describes the supported and unsupported XML Schema features of the 
XML Schema Builder.

5.4.1 Supported Features
The XML Schema Builder supports the following features:

Namespaces: This release of the XML Schema Builder fully supports XML 
namespaces.

Xsi:type: This release of the XML Schema Builder supports the xsi:type feature for 
dynamic type selection among complexType extensions and restrictions.

5.4.2 Unsupported Features
The XML Schema Builder does not support the following features:

Validation: This release of the XML Schema Builder is not a full-fledged 
XML Schema validator. It does basic syntax checking of input schemas but does not 
rigorously enforce semantic constraints. Furthermore, the generated Java classes do 



Chapter 5 Section 5.4
Java XML Schema Builder Builder Capabilities

XML Toolkit User’s Guide 46

not enforce XML Schema data type constraints beyond those required to map 
character data to the corresponding Java data types.

Wildcards: This release of the XML Schema Builder does not support the <any> or 
<anyAttribute> constructs of XML Schemas.

Mixed content: This release of the XML Schema Builder does not support mixed 
content.

Substitution groups: This release of the XML Schema Builder does not support 
substitution groups.

Xsi:null: This release of the XML Schema Builder does not support xsi:null.



XML Toolkit User’s Guide 47

Chapter 6

Java Conversion Examples

This chapter provides before-and-after Java conversion examples of DTDs and 
XML Schemas, with explanations.

6.1 DTD Examples
This section provides examples of DTDs converted by the e*Gate Java DTD Builder. 
The first examples show the XML/DTD content before the conversion, and the second 
shows how the DTD looks after using the e*Gate DTD Builder, in the Event Type 
Definition (ETD) Editor’s Main window. This window shows the node structure of the 
generated Java ETD (.xsc) file.

6.1.1 Book Sample
This section provides examples of a DTD book before and after conversion.

DTD File Before Using the Builder

The following example shows the XML contents of a DTD book file:

<!ELEMENT Book (Title, Chapter+)>
<!ATTLIST Book Author CDATA #REQUIRED>
<!ELEMENT Title (#PCDATA)>
<!ELEMENT Chapter (#PCDATA)>
<!ATTLIST Chapter id ID #REQUIRED>



Chapter 6 Section 6.1
Java Conversion Examples DTD Examples

XML Toolkit User’s Guide 48

Converted File in the ETD Editor Window

The following example shows the DTD book file after using the Builder, as it appears in 
the ETD Editor window.

Figure 7   Book DTD in ETD Editor Window

Note: The Event Type Definition pane in the ETD Editor’s Main window shows the node 
structure of the generated ETD. The operation of this pane is similar to that of the 
Microsoft Explorer window. Click on the + mark (if present) in front of a node icon 
to see the child node structure under that parent node. A - mark means there are no 
child nodes under that node. For details on this pane’s operation, see the e*Gate 
Integrator User’s Guide.

6.1.2 Personnel Record Sample
This section provides examples of a DTD personnel record before and after conversion.

DTD File Before Using the Builder

The following example shows the XML contents of a DTD personnel record file:



Chapter 6 Section 6.1
Java Conversion Examples DTD Examples

XML Toolkit User’s Guide 49

<?xml encoding="UTF-8"?>
<!ELEMENT personnel (person+)>

<!ELEMENT person (name,email*,url*,link?)>
<!ATTLIST person id ID #REQUIRED>
<!ATTLIST person note CDATA #IMPLIED>
<!ATTLIST person contr (true|false) 'false'>
<!ATTLIST person salary CDATA #IMPLIED>

<!ELEMENT name ((family,given)|(given,family))>

<!ELEMENT family (#PCDATA)>

<!ELEMENT given (#PCDATA)>

<!ELEMENT email (#PCDATA)>

<!ELEMENT url EMPTY>
<!ATTLIST url href CDATA 'http://'>

<!ELEMENT link EMPTY>
<!ATTLIST link manager IDREF #IMPLIED>
<!ATTLIST link subordinates IDREFS #IMPLIED>

<!NOTATION gif PUBLIC '-//APP/Photoshop/4.0' 'photoshop.exe'>



Chapter 6 Section 6.1
Java Conversion Examples DTD Examples

XML Toolkit User’s Guide 50

Converted File in the ETD Editor Window

The following example shows the DTD personnel record file after using the Builder, as 
it appears in the ETD Editor window.

Figure 8   Personnel Record DTD in ETD Editor Window

6.1.3 Namespace Sample
This section provides examples of a DTD document before and after conversion.

DTD File Before Using the Builder

The following example shows the XML contents of a DTD namespace file:

<?xml:namespace ns="http://ns.name.org" prefix="name"?>
<?xml:namespace ns="http://ns.any.org" prefix="any"?>
<!ELEMENT name:foo (name:bar+)>
<!ATTLIST name:foo xml:lang NMTOKEN #REQUIRED>
<!ATTLIST name:foo any:foo NMTOKEN #REQUIRED>
<!ELEMENT name:bar (#PCDATA)>



Chapter 6 Section 6.1
Java Conversion Examples DTD Examples

XML Toolkit User’s Guide 51

Converted File in the ETD Editor Window

The following example shows the DTD namespace file after using the Builder, as it 
appears in the ETD Editor window.

Figure 9   Namespace DTD in ETD Editor Window

6.1.4 Mixed Sample
This section provides examples of a mixed DTD before and after conversion.

DTD File Before Using the Builder

The following example shows the XML contents of a mixed DTD file:

<!ELEMENT foo (#PCDATA|bar)*>
<!ATTLIST foo text CDATA #IMPLIED>
<!ELEMENT bar (a,b)>
<!ELEMENT a (#PCDATA)>
<!ELEMENT b (#PCDATA)>
<!ELEMENT any ANY>



Chapter 6 Section 6.1
Java Conversion Examples DTD Examples

XML Toolkit User’s Guide 52

Converted File in the ETD Editor Window

The following example shows the mixed DTD file after using the Builder, as it appears 
in the ETD Editor window.

Figure 10   Mixed DTD in ETD Editor Window

6.1.5 Document Sample
This section provides examples of a DTD document before and after conversion.

DTD File Before Using the Builder

The following example shows the XML contents of a DTD document file:

<!ELEMENT doc      (title, (para|listing|indexterm)+)>

<!ELEMENT para     
(#PCDATA|emphasis|cite|xref|footnote|indexterm)*>

<!ELEMENT emphasis (#PCDATA|footnote)*>
<!ELEMENT cite     (#PCDATA)>
<!ATTLIST cite

type(book|article|other)"book"



Chapter 6 Section 6.1
Java Conversion Examples DTD Examples

XML Toolkit User’s Guide 53

>

<!ELEMENT footnote (#PCDATA|para)*> 

<!ELEMENT title    (#PCDATA|emphasis)*>

<!ELEMENT listing  (#PCDATA)>
<!ATTLIST listing

id ID #IMPLIED
colwidthCDATA"80"

>

<!-- startref points to rangestart -->
<!ELEMENT indexterm (prim?, sec?)>
<!ATTLIST indexterm

id ID #IMPLIED
type (rangestart|rangeend|singular) "singular"
startrefIDREF#IMPLIED 

>

<!ELEMENT prim     (#PCDATA)>
<!ELEMENT sec      (#PCDATA)>

<!ELEMENT xref     EMPTY>
<!ATTLIST xref

linkend IDREF#REQUIRED
>

<!ENTITY ldquo"&#x201C;">
<!ENTITY rdquo"&#x201D;">



Chapter 6 Section 6.2
Java Conversion Examples XML Schema Example

XML Toolkit User’s Guide 54

Converted File in the ETD Editor Window

The following example shows the DTD document file after using the Builder, as it 
appears in the ETD Editor window.

Figure 11   Document DTD in ETD Editor Window

6.2 XML Schema Example
This section provides examples of XML Schemas converted by the e*Gate Java XML 
Schema Builder. The first examples show the XML Schema content before the 
conversion, and the second shows how the XML Schema looks after using the e*Gate 
XML Schema Builder, in the Event Type Definition (ETD) Editor’s Main window. This 
window shows the node structure of the generated Java ETD (.xsc) file.

This section provides examples of an XML Schema purchase order file before and after 
conversion.



Chapter 6 Section 6.2
Java Conversion Examples XML Schema Example

XML Toolkit User’s Guide 55

6.2.1 XML Schema File Before Using the Builder
The following example shows the contents of an XML Schema purchase order file:

<?xml version="1.0" encoding="UTF-8"?>
<schema targetNamespace="http://www.purchase_order/sample" 
xmlns:ipo="http://wwww.purchase_order/sample/schema"

<annotation>
<documentation>

   Sample Purchase Order schema
</documentation>

</annotation>
<!-- include address constructs -->
<include schemaLocation="address.xsd"/>
<element name="purchaseOrder" type="ipo:PurchaseOrderType"/>
<element name="comment" type="string"/>
<complexType name="PurchaseOrderType">

<sequence>
<element name="shipTo" type="ipo:Address"/>
<element name="billTo" type="ipo:Address"/>
<element ref="ipo:comment" minOccurs="0"/>
<element name="Items" type="ipo:Items"/>

</sequence>
<attribute name="orderDate" type="date"/>

</complexType>
<complexType name="Items">

<sequence>
<element name="item" minOccurs="0" 

maxOccurs="unbounded">
<complexType>

<sequence>
<element name="productName" 

type="string"/>
<element name="quantity">

<simpleType>
<restriction 

base="positiveInteger">
<maxExclusive value="100"/>

</restriction>
</simpleType>

</element>
<element name="price" type="decimal"/>
<element ref="ipo:comment" minOccurs="0"/

>
<element name="shipDate" type="date" 

minOccurs="0"/>
</sequence>
<attribute name="partNum" type="ipo:Sku"/>

</complexType>
</element>

</sequence>
</complexType>
<simpleType name="Sku">

<restriction base="string">
<pattern value="\d{3}-[A-Z]{2}"/>

</restriction>
</simpleType>

</schema>



Chapter 6 Section 6.2
Java Conversion Examples XML Schema Example

XML Toolkit User’s Guide 56

6.2.2 Converted File in the ETD Editor Window
The following example shows the XML Schema purchase order file after using the 
Builder, as it appears in the ETD Editor window.

Figure 12   XML Schema Purchase Order File in ETD Editor Window



XML Toolkit User’s Guide 57

Chapter 7

Registry API for XML Schema Metadata

This chapter explains how to use the e*Gate Registry Application Programming 
Interface (API) for Java XML Schema Metadata.

7.1 Registry API for XML Schemas: Overview
The Registry API for XML Schema Metadata allows you to do the following tasks:

List the names of all e*Gate schemas in a given Registry

List the names of all Event Types in a given e*Gate schema

List the names of all XML Schema files (.xsd files) in the .jar file associated with a 
given Event Type

Retrieve the schema data contained in a given .xsd file

Note: When querying a Registry, the API preferentially returns content in the Sandbox of 
the current user. It returns Run-time content only when there is no un-promoted 
Sandbox content for the current user.

This chapter includes:

Overview of the package and brief description of each API method

Sample code implementations

Platforms and Prerequisites

The e*Gate Registry API for XML Schema Metadata is supported on all platforms 
supported by the current version of e*Gate. The package is installed on top of an 
existing installation of e*Gate, but it runs outside of e*Gate and makes no use of the 
e*Gate graphical user interfaces (GUIs).

Note: You can use the API to list and retrieve information on any connected host, not just 
the host where you install this package.

XML Schema Builder

For a complete explanation of how to use the e*Gate ETD Editor XML Schema Builder, 
see “Using the XML Schema Builder” on page 31.



Chapter 7 Section 7.2
Registry API for XML Schema Metadata Package Contents, Setup, and APIs

XML Toolkit User’s Guide 58

7.2 Package Contents, Setup, and APIs
This section includes the following information:

Lists the files comprising the package for e*Gate Registry API for XML Schema 
Metadata

Provides instructions for system preparation and setup

Explains how to use the APIs

7.2.1 Contents
The package for e*Gate Registry API for XML Schema Metadata consists of three .jar 
files (see Table 1).

7.2.2 System Preparation
Before using this package, you must have already installed e*Gate. Before installing this 
package, back up your existing stcjcs.jar and jcscomp.jar files. For example:

cd \eGate\client\classes
rename stcjcs.jar stcjcs.jar.bak 
cd \eGate\Server\registry\repository\default\classes
rename stcjcs.jar stcjcs.jar.bak 
cd \eGate\client\bin\java
rename jcscomp.jar jcscomp.jar.bak 
cd \eGate\Server\registry\repository\default\bin\java
rename jcscomp.jar jcscomp.jar.bak 

Table 1   Files for This Package

File Name Comments

stcjcs.jar Replacement for the stcjcs.jar file 
shipped with core e*Gate

jcscomp.jar Replacement for the jcscomp.jar file 
shipped with core e*Gate

EgateXMLSchemaRegistry.jar New file for this package



Chapter 7 Section 7.2
Registry API for XML Schema Metadata Package Contents, Setup, and APIs

XML Toolkit User’s Guide 59

7.2.3 System Setup
Use the following steps to install the package and set up your environment:

1 Copy the three .jar files to your client classes and default repository classes 
directories. For example, if your CD-ROM drive is F and if e*Gate is installed on 
your C drive in the \eGate directory, enter the following commands:

cd \eGate\client\classes
copy F:stcjcs.jar .
copy F:EgateXMLSchemaRegistry.jar .
cd \eGate\Server\registry\repository\default\classes
copy F:stcjcs.jar .
copy F:EgateXMLSchemaRegistry.jar .
cd \eGate\client\bin\java
copy F:jcscomp.jar .
cd \eGate\Server\registry\repository\default\bin\java
copy F:jcscomp.jar .

2 Be sure your classpath (%classpath% on Windows, or $CLASSPATH on UNIX) 
includes the following .jar files:

C:\eGate\client\classes\stcjcs.jar
C:\eGate\client\classes\egate.jar
C:\eGate\client\classes\swingall.jar
C:\eGate\client\classes\EgateXMLSchemaRegistry.jar

If your e*Gate installation is located in a path other than C:\eGate\ , such as
/home/user-name/eGate/ on UNIX, make the appropriate substitution.

3 Verify that your path (%path% on Windows, or $PATH on UNIX) includes the JDK 
bin directory. For example:

C:\jdk1.6.0\bin

Note: If you run an API in this package and encounter classnotfound errors, add your 
current directory to your classpath.

7.2.4 Using the APIs
This section lists and describes the APIs in the package for e*Gate Registry API for 
XML Schema Metadata.

The API consists of two classes that include a total of seven methods. All class files are 
packaged inside the EgateXMLSchemaRegistry.jar file.

For the class EgateXMLSchemaRegistry, there are the following APIs:

connect() on page 60

listEgateSchemas() on page 60

listEgateEventTypes() on page 61

listXMLSchemaFiles() on page 61

close() on page 62

For the class XMLSchemaFileReader, there are the following APIs:



Chapter 7 Section 7.2
Registry API for XML Schema Metadata Package Contents, Setup, and APIs

XML Toolkit User’s Guide 60

getXMLSchemaData() on page 62

getXMLSchemaFileName() on page 63

connect()

Syntax

static EgateXMLSchemaRegistry connect(String host, long port, 
String username, String password)

Description

connect() connects to the Registry using the given argument values.

Parameters

Return Values

Returns an instance of the EgateXMLSchemaRegistry object.

Throws

None.

listEgateSchemas()

Syntax

public Iterator listEgateSchemas()

Description

listEgateSchemas() queries all available e*Gate schemas in the currently connected 
Registry.

Parameters

None.

Return Values

Returns a list of their names (such as MySchema) in Iterator.

Throws

java.lang.Exception

Name Type Description

host String Host name (for example, localhost) 

port long Port number (for example, 23001)

username String User name (for example, Administrator)

password String Password for this username (for example, STC)



Chapter 7 Section 7.2
Registry API for XML Schema Metadata Package Contents, Setup, and APIs

XML Toolkit User’s Guide 61

listEgateEventTypes()

Syntax

public Iterator listEgateEventTypes(String egateSchemaName)

Description

listEgateEventTypes() lists all available Event Types for a given e*Gate schema name.

Parameters

Return Values

Returns the names of the Event Types.

Throws

java.lang.Exception

Example

A typical output resembles the following example:

00000000
GenericIn
GenericOut
Notification

Note: The Iterator does not include the path or the file extension.

listXMLSchemaFiles()

Syntax

public Iterator listXMLSchemaFiles(String egateEventName)

Description

listXMLSchemaFiles(), after listEgateEventTypes() has been called, lists all the 
available XML Schemas (.xsd files) in the .jar file associated with the given Event Type.

Note: Do not call the listXMLSchemaFiles() method until after you have first called the 
listEgateEventTypes() method.

Parameter

Name Type Description

egateSchemaName String Name of an e*Gate schema (for example, MySchema)

Name Type Description

egateEventName String Name of an e*Gate Event Type (for example, adm)



Chapter 7 Section 7.2
Registry API for XML Schema Metadata Package Contents, Setup, and APIs

XML Toolkit User’s Guide 62

Return Values

Returns the names of the XML Schemas in the .jar file.

Throws

None.

Example

For example, for an Event Type named adm, you would set egateEventName to adm and 
this method would return a list of the XMLSchemaFileReader objects corresponding to 
the .xsd files in the .jar file associated with the adm Event Type.

close()

Syntax

public void close()

Description

close() closes the socket connection to the Registry and releases all resources 
appropriately.

Parameters

None.

Return Values

None.

Throws

None.

getXMLSchemaData()

Syntax

public byte[] getXMLSchemaData()

Description

getXMLSchemaData() queries the contents of the XML Schema (.xsd) file.

Parameters

None.

Return Values

Returns the contents of the file as a byte array.

Throws

None.



Chapter 7 Section 7.3
Registry API for XML Schema Metadata Sample Implementations

XML Toolkit User’s Guide 63

getXMLSchemaFileName()

Syntax

public String getXMLSchemaFileName()

Description

Queries the file name of the XML Schema (the .xsd file, including extension).

Parameters

None.

Return Values

Returns the file name.

Throws

None.

7.3 Sample Implementations
This section provides listings of sample programs that show the source code for several 
examples, including retrieving:

Names of e*Gate schemas on a given Registry Host

Names of Events in a given e*Gate schema

File names and contents of the XML Schema associated with a given Event

The following table shows the parameter names used throughout the three sample 
programs provided in this section:

Table 2   Parameter Names in Examples

Name Type Value

host String “localhost” (all three implementations)

port Long com.stc.common.registry.Registry.DEFAULT_PORT 
(all three implementations)

username String “Administrator” (all three implementations)

password String “STC” (all three implementations)

egateSchemaName String “RegInsAPITest” (EventsRetrieve and GetXMLSchemaFile)

egateEventName String “adm” (GetXMLSchemaFile only)



Chapter 7 Section 7.3
Registry API for XML Schema Metadata Sample Implementations

XML Toolkit User’s Guide 64

7.3.1 SchemaListRetrieve.java
The SchemaListRetrieve.java program opens a connection to a given Registry, retrieves 
the names of all schemas in the Registry, and closes the socket. The following example 
shows a use of this program:

import com.stc.eGateRegistryAPI.*;
import java.util.*;
import java.io.*;
public class SchemaListRetrieve
{
  public static void main(String arg[])
  {
    // this is the place you put your own information
    String host = "localhost";
    String schema = "RegInsAPITest";
    String username = "Administrator";
    String password = "STC";
    long port = com.stc.common.registry.Registry.DEFAULT_PORT;
    try
    {
      // get EgateXMLSchemaRegistry Object
      // by calling static method connect 
      EgateXMLSchemaRegistry eGateXML=
      EgateXMLSchemaRegistry.connect(host,port,username,password);
      //************ Show available Schemas **********
      System.out.println("****** All Schemas *********");
      Iterator sIter = eGateXML.listEgateSchemas();
      
      while (sIter.hasNext())
      {
        String schema_name = (String)sIter.next();
        System.out.println("schema-> " + schema_name);
      }
    eGateXML.close(); 
    }
    catch(Exception e)
    {
    }
  }
}

7.3.2 EventsRetrieve.java
The EventsRetrieve.java program opens a connection to a given Registry, prints out a 
list of all Events in a given schema, and closes the socket. The following example shows 
a use of this program:

import com.stc.eGateRegistryAPI.*;
import java.util.*;
import java.io.*;
public class EventsRetrieve
{
  public static void main(String arg[])
  {
    // this is the place you put your own information
    String host = "localhost";
    String schema = "RegInsAPITest";
    String username = "Administrator";
    String password = "STC";
    long port = com.stc.common.registry.Registry.DEFAULT_PORT;



Chapter 7 Section 7.3
Registry API for XML Schema Metadata Sample Implementations

XML Toolkit User’s Guide 65

    try
    {
      // get EgateXMLSchemaRegistry Object
      // by calling static method connect 
      EgateXMLSchemaRegistry eGateXML=
      EgateXMLSchemaRegistry.connect(host,port,username,password);
      
      //************* Show Egate Events ****************
      System.out.println("**** Egate Events ****");
      Iterator iter=eGateXML.listEgateEventTypes(schema);
      
      while (iter.hasNext())
      {
        String event = (String)iter.next();
        System.out.println("event is " + event);
      }
      // ************************************************
    // call close to close the connection to registry
    eGateXML.close();
    }
    catch(Exception e)
    {
    }
  }
}

7.3.3 GetXMLSchemaFile.java
The GetXMLSchemaFile.java program opens a connection to a given Registry, 
retrieves the names of all XML Schema (.xsd) files associated with a given Event Type 
in a given schema, and closes the socket. The following example shows a use of this 
program:

import com.stc.eGateRegistryAPI.*;
import java.util.*;
import java.io.*;
 
public class GetXMLSchemaFile
{
  public static void main(String arg[])
  {
    // this is the place you put your own information
    String host = "localhost";
    String schema = "RegInsAPITest";
    String username = "Administrator";
    String password = "STC";
    long port = com.stc.common.registry.Registry.DEFAULT_PORT;
    
    try
    {
      
      // get EgateXMLSchemaRegistry Object 
      // by calling static method connect 
      EgateXMLSchemaRegistry eGateXML=
      EgateXMLSchemaRegistry.connect(host,port,username,password);
    
      //************* Show Egate Events ****************
      System.out.println("**** Egate Events ****");
       
      Iterator iter=eGateXML.listEgateEventTypes(schema);
      
      while (iter.hasNext())



Chapter 7 Section 7.3
Registry API for XML Schema Metadata Sample Implementations

XML Toolkit User’s Guide 66

      {
        String event = (String)iter.next();
        //System.out.println("event is " + event);
      }
      // Returns iterator to traverse  xmlSchemaReaders  
      /**
       * You will need to put some xsd file in 
       * your eventName.jar on the server side
       * The size you see should be the size of your xsd file
       */
      
      // change the Event Type to one from your own schemas
      Iterator iter2 =eGateXML.listXMLSchemaFiles("adm");

      while(iter2.hasNext())
      {
        XMLSchemaFileReader reader = 
          (XMLSchemaFileReader)iter2.next();
        byte b[] = reader.getXMLSchemaData();
        String outputName = reader.getXMLSchemaFileName();
        File output= new File("c:\\testdir\\"+outputName);
        System.out.println("creating-> " + output.getName());
        output.createNewFile();
        FileOutputStream fout = new FileOutputStream(output);
        fout.write(b);
        System.out.println("in reader-> schema data 
          size is " + b.length);
      }
    
      
      // call close to close the connection to registry
      eGateXML.close();
    
    }
    catch(Exception e)
    {
    }
  }
}



XML Toolkit User’s Guide 67

Chapter 8

Monk DTD Converter

This chapter provides an overview of the Monk DTD Converter’s functionality and 
how it works with e*Gate Integrator. It also includes descriptions of the terms used 
throughout this chapter and provides sample files.

8.1 Monk XML Toolkit: Introduction
The Monk DTD Converter is a plug-in to the Event Type Definition (ETD) Editor in the 
Schema Designer. This section explains the feature’s basic operation.

8.1.1 Using the Monk DTD Converter
The Monk ETD Editor is where the .dtd file is selected, which is then converted into an 
e*Gate ETD file with an .ssc extension. The resulting .ssc file follows the rules in the 
given DTD file and can map the input XML data file into its nodes. The mapped data 
can then be processed through the e*Gate system via the Collaboration process.

Figure 13 on page 68 shows how the Monk DTD Converter is used to convert a DTD 
file into a Monk ETD (.ssc file).



Chapter 8 Section 8.1
Monk DTD Converter Monk XML Toolkit: Introduction

XML Toolkit User’s Guide 68

Figure 13   DTD-to-ETD Conversion Process

In general, this conversion process happens as follows:

1 The user opens the XML DTD Converter and directs it to read a DTD file as input.

2 The Converter creates an ETD file.

3 At runtime, data in XML format is sent into the e*Gate system.

4 The ETD created in Step 2 above is used to parse the data within a Collaboration.

5 The parsed Event data is then published for use by another external system or other 
e*Gate components. 

The DTD file is converted into an ETD file only once when the e*Gate configuration is 
initially established. The generated ETD file successfully parses all data that complies 
with its source DTD file. If there are any changes required to the DTD file, the ETD file 
must be re-generated to match the changes in the XML input.

1.

XML DTD
Converter

Outbound
Event

Inbound
Event

(.xml file)
Collaboration Process

Outbound
ETD

(.ssc file)

Data
Transformation
or Translation

(.tsc file)

To external
system or

other e*Gate
components

2.

3. 4. 5.

Data Type
Definition
(.dtd file)

Inbound ETD
(.ssc file)



Chapter 8 Section 8.2
Monk DTD Converter Feature Summary

XML Toolkit User’s Guide 69

8.1.2 Operational Overview
The following diagram illustrates an example of the XML Toolkit components in the 
e*Gate Integrator environment.

Figure 14   XML Toolkit Components in Sample Configuration

8.2 Feature Summary
The following table provides a summary of the Monk DTD Converter features.

Table 3   Monk DTD Converter Feature Summary

Feature Explanation

Support for DOCTYPE/
SYSTEM/DTD in the 
output

Any document generated by the XML Toolkit must set the DOCTYPE 
parameter to point to the originating DTD or XML Schema.

Internal/external 
parameter entity

This refers to support entities, which are analogous to macros in 
C programming.

e*Gate Integrator Environment

IQ IQ
XML

HTTP
e*Way

.sscXSLT

X12 Internet
XSLT

Collaboration
Service

DTDETD DTD

.ssc

Monk Function
(Event -> XML)

XML

ERP IQ
Collaboration

using
Event  -> XML

CORBA

XML

ETD Editor

DTD
Converter

ETD Editor

DTD
Generator

X12
e*Way

e*Way CORBA
e*Way



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 70

8.3 Implementation
This section describes how to implement the XML DTD Converter in the ETD (Event 
Type Definition) Editor. Additional command line arguments are defined and node 
mapping is explained. Sample files and a sample conversion are included.

8.3.1 Using the XML DTD Converter
The Converter is accessed in the ETD Editor.

Element occurrence 
indicators

The ssc generated by the Converter allows the Monk parser to recognize 
optional and repeating content for nodes based on indicators in the DTD 
or XML Schema. For example:
<ELEMENT alchoholic_drink (#PCDATA)
<ELEMENT vegetable (#PCDATA)>
<ELEMENT meat (#PCDATA)>
<ELEMENT starch (#PCDATA)>
<ELEMENT appetizer (#PCDATA)>
<ELEMENT dessert (#PCDATA)>
<ELEMENT dinner (alchoholic_drink+ |(appetizer?, meat, starch+, 
vegetable*, dessert*))>
This example shows the three significant occurrence indicators in a DTD:
+ - one or more of
? - zero or one of
* - zero or more of
XML Schemas use a different notation that the three above qualifiers 
equate to supporting the minOccurs and maxOccurs qualifiers. These are 
similarly supported by the XML Toolkit.

Element choice The “or” operator is supported. In XML DTDs, this is encoded with the “|” 
character. In XML Schemas, this is accomplished using the “choice” 
qualifier. The previous example demonstrates this feature, allowing a 
dinner to be either one or more “alchoholic_drinks” or the sequence of 
appetizers, meats, etc.

Element sequence The sequence operator is supported as shown in the “dinner” element of 
the previous example. XML DTDs encode this with the comma operator. 
XML Schemas encode this with the “sequence” qualifier.

Default attributes this supports the XML Schema capacity for setting default values in 
documents. This is documented in Sec. 2.2 “Complex Type Definitions, 
Element & Attribute Declaration” of the XML Schema Specification.

General entity This refers to support entities. General entities apply to XML documents 
themselves (as opposed to parameter entities, which apply to DTDs). 

Prefixed tag names The Converter allows for other name space qualifier in the tag names.

Enumerated attributes This refers to supported restricted values, which are defined in the XML 
Schema using the “restriction” key word.

Table 3   Monk DTD Converter Feature Summary (Continued)

Feature Explanation



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 71

To access the XML DTD Converter using the Build tool

1 From the e*Gate Schema Designer screen, click the ETD Editor menu button  
to launch the Event Type Definition Editor.

2 On the ETD Editor’s Toolbar, click Build.

The Build an Event Type Definition dialog box appears (see the following figure).

Figure 15   Build an Event Type Definition Dialog Box — 1

3 In the File Name box, type the name of the output file you wish to build. Do not 
specify any file extension. The Editor supplies the .ssc extension for you.



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 72

4 Click Next. Another Build an Event Type Definition dialog box appears (see the 
following figure),

Figure 16   Build an Event Type Definition Dialog Box — 2

5 In the Input file box, type the name of the DTD input file.

6 Under Build From, select Library Converter.

7 Under Select a Library Converter, select XML Converter.

8 In the Additional Command Line Arguments box, specify the command line 
argument. Refer to the following section for a description of these command line 
arguments.

9 Click Finish.

Note: The nodes are now generated in a collapsed GUI format by default. To generate them 
in an expanded format, use the Additional command-line argument -expanded.

8.3.2 Command-line Arguments
The following switches allow you to control how the XML Converter generates the .ssc 
files:

abb
The XML DTD Converter uses abbreviated names when generating fixed message 
structure nodes.



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 73

depth <depth_level>
This is the maximum depth (of the tree) that the XML DTD Converter will generate in a 
message structure. This is useful for self-referential documents, i.e., rewind.

expanded
The default is not expanded. The message structure editor will not display all the nodes 
after the conversion. This speeds up the loading of the converted .ssc file.

noattlist
This tells the XML DTD Converter not to generate a message structure to handle the 
attribute list in XML. If you are sure your input XML files won’t contain useful data in 
the attribute list, you can turn this on to speed up the parsing process of your input 
files.

nocdata (default)
The Converter will not generate the CDATA and SDATA nodes under the Data node. 
CDATA node is a node for mapping the CDATA section in XML. SDATA node is a node 
for mapping the data between the begin tag and the end tag, and is not CDATA section 
data.

root <root_element_name>
Specify the root directly as the XML DTD Converter may not be able to find the root 
element in the DTD file if the root element is not declared as the first element in the file. 

treedepth <tree_depth_level>
Forces the Converter to stop generating the specified level. When running the XML 
DTD Converter, using the ‘treedepth n’ parameter restricts the depth of the generated 
ETD. You may need to experiment with different values for ‘n’ to find the optimal ETD 
size.

For example, the full ETD for a complicated DTD or XML Schema may be too large and 
take too long to generate to be practical. It may be necessary to restrict the size and 
complexity of the ETD, striking a balance between having enough nodes to do your 
MonkID or MonkCollaboration, but not having too many nodes to make the size of 
the .ssc file (and its memory requirements) too large.

xcomment
Extra nodes that map comments between sequence elements. 

8.3.3 Understanding the ETD Structure
The first step to using the ETD is to understand the structure of the nodes in the context 
of the XML message being created. Each level is structured in the same way, so once 
you understand how the structure works you will be able to find the nodes you need to 
populate in your Collaboration Rules files.

The ETD contains a number of nodes that do not explicitly correlate to the XML DTD 
but are required by the Monk engine to parse the XML data correctly. These facilitator 
nodes are listed in Table 4 on page 74.



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 74

The facilitator nodes always occur in a set order and define the structure of the XML 
message. In the e*Xchange ETD, the facilitator nodes define the following types of 
branches:

XML element without sub-elements

XML element with sub-elements

XML attribute

Figure 17 on page 75 illustrates the ETD structure for a basic XML sample:

Table 4   Facilitator Nodes in the ETD

Name Abbreviation Description

Container CT A container node for an XML element. This node allows the 
short and long forms of XML tags to coexist in the structure.

Data Section DSN Identifies a data section within an XML element. This is the long 
form of the XML tag.

Data Set DS Identifies a data set within an XML element. The subelements 
within a data set can occur in any order.

Empty Empty This is the short form of the corresponding DSN node XML tag.

Comment CM XML comment.

Data Data This node holds the data for the element.

Attribute Set AS Identifies an XML attribute set within an XML element.

Equal Sign EQ The equal sign (“=”) within an XML attribute.

Value Value This node holds the value for the XML attribute.

CDATA CDATA This node holds the CDATA Sections. (Used by system.)

SDATA SDATA This node holds the non-CDATA Sections. (Used by system.)



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 75

Figure 17   XML Example

XML Element without Sub-elements

Figure 18 illustrates the ETD structure for an XML element that does not have sub-
elements. Each XML element contains one child node, CT. CT identifies the parent 
node as an XML element. The CT node contains two child nodes: DSN and Empty. 
DSN maps the long form of the XML tag (</tag>) and Empty maps the short 
form (</>).

The DSN and DS nodes always occur as parent-child pairs. In this type of branch, DS 
is the parent node for two types of child nodes:

CM, which holds XML comments for the element

Data, which holds the data for the element

Figure 18   XML Element without Sub-elements

<XML Element> CT

DSN

Empty

DS

CM

Data



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 76

The Data node contains the actual data for the XML element that is defined. When you 
are creating your Collaboration Rules scripts, you must map your XML element data to 
the Data nodes at the terminal end of the element’s branch.

XML Element with Sub-elements

The following figure illustrates the ETD structure for an XML element that has sub-
elements.

Figure 19   XML Element with Sub-elements

Notice that the only difference between this diagram and the previous diagram are the 
<Sub-element> child nodes in place of the Data child node shown in Figure 1. The DSN 
and DS nodes always occur as parent-child pairs. In this type of branch, DS is the 
parent node for two types of child nodes:

CM, which holds XML comments for the element

<Sub-element>, the name of a sub-element of the parent element

The DS node will always contain a CM child node to hold XML comments. Each <Sub-
element> node will then contain an ETD structure of its own, with the <Sub-element> 
node as the parent node for the branch.

XML Attribute

The following figure illustrates the ETD structure for an XML attribute.

Figure 20   XML Attribute

In this case, the XML element contains one child node, AS, which identifies the branch 
as XML attributes of the parent element. The AS node contains the <XML Attribute> 
nodes as child nodes.

Each <XML Attribute> node has two child nodes: EQ to represent the equal sign (=) in 
the attribute and Value which holds the actual value for the attribute. When you are 

<XML Element> CT

DSN

Empty

DS

CM

<Sub-element>

<Sub-element>

<XML Element> AS

<XML Attribute>

<XML Attribute>

EQ

Value

EQ

Value



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 77

creating your Collaboration Rules scripts, you must map your XML attribute value to 
the Value nodes at the terminal end of the attribute’s branch.

8.3.4 Using the ETD Editor
This section describes an additional feature that has been added to the ETD Editor 
window to provide support for XML.

Node Properties Dialog Box

The Node Properties dialog box is now reorganized into the following four tabs:

General covers the general features, for example, file name and path (see Figure 21).

Content covers tag characters, default characters, and scavenger data.

Repetition allows you to enter order, group repetition, and matching 
characteristics, including the N of N attribute.

Delimiters allows you to enter an expanded array of delimiter attributes, including 
a begin delimiter for a fixed-ETD node.

The following figure shows an example of the Node Properties dialog box.

Figure 21   Node Properties Dialog Box



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 78

8.3.5 Mapping
This section explains how the Converter handles the XML-to-Monk data mapping.

Mapping for Elements

The generated ETD file is based on the elements defined in a DTD file. Each element is 
generated in the same pattern as shown in the following table.

Table 5   DTD Element Mapping Pattern

Line No. Description

Line1 Comment of the ETD file showing the start of the element to be generated.

Line2 This line starts the block of ETD structure for handling the element.

Line3 "CT" (Container) is used for splitting the long form and short form of the XML 
element. The NofN (1 1) is used here to match exactly minimum 1 and maximum 1 
case only (XOR logic).

Line4 "DSN" (DataSection) is used to map the data between begin tag and end tag for the 
XML long form.  This node uses a begin delimiter and an end delimiter to match 
whatever is between those tags.

Line5 "DS" (DataSet) is used to map several kinds of information between a begin tag and 
an end tag such as #PCDATA, sub-elements and comments.

Line6 "CM" is used to map the XML comments.

Line7 "Data" is used to map the data portion of this element. In compliance with the XML 
specification, a regular expression is used here to stop the mapping whenever a "<" 
character is detected.

Line8 "CDATA" is used only when the data contains any "<" characters, and to map the 
CDATA Section data.
Syntax: <![CDATA[Your data contains < character puts here]]>.
This node won't be generated if optional argument -nocdata is specified.  (For 
system use.) 

Line9 "SDATA" is used to map non-CDATA Section data. This node won't be generated if 
optional argument -nocdata is specified.  (For system use)

Line10 The right parenthesis for line 7.

Line11 The right parenthesis for line 5.

Line12 The right parenthesis for line 4.

Line13 "Empty" is used to map the short form of XML element. 
Example: <A /> (no end tag or data included)

Line14 The right parenthesis for line 3.

Line15 The right parenthesis for line 2.



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 79

The following example illustrates the pattern listed in the previous table:

1  ;: <=========== Name Begin Tag ===========>
2  (((ScN "\n \t\r") (Bd "<Name") required)
    Name OF 1 1 und und und und
3    (((NofN (1 1))) CT OF 1 1 und und und 0
4      (((ScN " \n\t\r") (">" "</Name>") beginanchored required )
        DSN ON 0 1 und und und 0
5        ((Gr) DS AS 1 1 und und und und
6          (((Sc "\n \t\r") ("<!--" "-->") beginanchored required )
            CM ON 0 INF und und und 0 )

7          ((Gr) Data AS 0 INF und und und 0
8            (( ("<![CDATA[" "]]>") beginanchored required )
              CDATA ON 0 INF und und und 0 )
9            (((ScN "\n \t\r")) SDATA OF 0 INF "\[^<\]\*" und und 0)
10          )
11        )       ;: End Data Set
12      ) ;: End Data Section
13     (((ScN " \n\t\r")(Ed "/>") endanchored required )
        Empty ON 0 1 und und und und)
14    )   ;: End Container
15  ) ;:= {0:Y}   ;: End Begin Tag Name

Mapping for Sub-elements

The child elements will be generated as in the “Mapping for Elements”, the generated 
code will be inserted between Line10 and Line11 in “Mapping for Elements”.

Mapping for Attributes

The section is generated between Line2 and Line3 in “Mapping for Elements” only if 
there is/are attribute definition(s) for the element (see the following table).

Table 6   Mapping for Attributes

Line No. Description

Line1 This node called “AttSet” is for holding all the attributes for the element.

Line2 This node called “LastName” is used to map the name of the attribute 
“LastName” from the input XML data.

Line3 This node called “EQUAL_SIGN” is used to map the “=” character right after 
the attribute “LastName”. The Sc “\n \t\r” node property is used to bypass the 
White Space from the input before the “=” from input.

Line4 This is the most important node called “Value” which maps whatever 
information between two double quotes (attribute value).

Line5 This is another definition of attribute “First Name”, similar to Line2.

Line6 Same function as in Line3.

Line7 Same function as in Line4.

Line8 The right parenthesis for node “AttSet” which is the end of generation of the 
attribute section for a particular element.



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 80

The following example illustrates the pattern listed in the previous table:

1 ( AttSet AS 0 1 und und und und
2   (((Sc "\n \t\r") ( Bd "LastName" ) beginanchored ) LastName OF 
1 1 und und und und
3     (((Sc "\n \t\r") ( Ed "=" ) endanchored required ) EQUAL_SIGN 
ON 1 1 und und und und)
4     (((Sc "\n \t\r") ("\"" "\"" ) anchored required ) Value ON 1 
1 und und und und))
5   (((Sc "\n \t\r") ( Bd "FirstName" ) beginanchored ) FirstName OF 
1 1 und und und und
6     (((Sc "\n \t\r") ( Ed "=" ) endanchored required ) EQUAL_SIGN 
ON 1 1 und und und und)
7     (((Sc "\n \t\r") ("\"" "\"" ) anchored required ) Value ON 1 
1 und und und und))
8 )   ;: AttSet

Mapping for Occurrence

The following table shows how XML symbols are mapped in the converted ETDs.

8.3.6 Sample Conversion
Here is an example of a DTD file that has been converted to an .ssc file (Event Type 
Definition).

Given DTD Example

<!ELEMENT bookstore (book)*> 
<!ELEMENT book (title,author*,price)>
<!ATTLIST book genre CDATA #REQUIRED>
<!ATTLIST book used CDATA #REQUIRED>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (name | (first-name,last-name))>
<!ELEMENT price (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT first-name (#PCDATA)>
<!ELEMENT last-name (#PCDATA)>

Converted ETD from Example

;:- STC MsgStruct Version 3.1
;:- MsgStructure Header
;:- MsgStructure "bookstore"
;:- UserComment "  "
;:- Version "DataGate Version 3.1"
;:- FormatOption DELIMITED
;:- RepSeparator "Special Delimiter " ""
;:- Escape "Escape Character Delimiter " ""
;:- DefaultDelimiters "OTHER"

Table 7   Symbol Mapping

Symbols in XML Mapping in ETD

Nothing after an sub-element definition. 1 Required

“?” after an sub-element definition. 0 or 1 occurrence

“*”after an sub-element definition. 0 or Infinite occurrence

“+”after an sub-element definition. 1 or Infinite occurrence



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 81

;:- Build 4.1.2.2502
;:- End MsgStructure Header

;:- Delimiter Structure
(define bookstore-delm '(
))

;:- Global Template Reference
;:- End Global Template Reference

;:- Local Template Definition
;:- End Local Template Definition

;:- MsgStructure Definition
(define bookstore-struct (message-convert (quote

((Ex) bookstore OF 1 1 und und und 0
( DS AS 1 1 und und und 0

  (((Sc "\n \t\r") ("<?" "?>") beginanchored required )
    PI ON 0 INF und und und 0
    (((Bd "xml") beginanchored ) XML_TAG OF 0 1 und und und 0
      (XML_DECL OF 0 1 und "" und und)
    )
  )

  (((Sc "\n \t\r") ("<!DOCTYPE" ">") anchored required )
    DOCTYPE ON 0 1 und " bookstore SYSTEM \"file:///d:/egate/client/
books.dtd\" " und und)

  (((Sc "\n \t\r") ("<!--" "-->") beginanchored required )
    CM ON 0 INF und und und 0 )

  ;: <=========== bookstore Begin Tag ===========>
  (((ScN "\n \t\r") (Bd "<bookstore") required)
    bookstore OF 1 1 und und und und
    (((NofN (1 1))) CT OF 1 1 und und und 0
      (((ScN " \n\t\r") (">" "</bookstore>") beginanchored required )
        DSN ON 0 1 und und und 0
        ((Gr) DS AS 0 1 und und und und
          (((Sc "\n \t\r") ("<!--" "-->") beginanchored required )
            CM ON 0 INF und und und 0 )

          ;: <=========== book Begin Tag ===========>
          (((Sc "\n \t\r") (Bd "<book") beginanchored)
            book OF 0 INF und und und und

            ( AS AS 1 1 und und und und
              (((Sc "\n \t\r") ( Bd "used" ) beginanchored ) used OF 1 
1 und und und und
                (((ScN "\n \t\r") ( Ed "=" ) endanchored required ) EQ 
ON 1 1 und und und und)
                (((ScN "\n \t\r") ("\"" "\"" ) anchored required ) 
Value ON 1 1 und und und und))
              (((Sc "\n \t\r") ( Bd "genre" ) beginanchored ) genre OF 
1 1 und und und und
                (((ScN "\n \t\r") ( Ed "=" ) endanchored required ) EQ 
ON 1 1 und und und und)
                (((ScN "\n \t\r") ("\"" "\"" ) anchored required ) 
Value ON 1 1 und und und und))
            );: AS
            (((NofN (1 1))) CT OF 1 1 und und und 0



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 82

              (((ScN " \n\t\r") (">" "</book>") beginanchored required 
)
                DSN ON 0 1 und und und 0

                (DS OS 1 1 und und und und
                  (((Sc "\n \t\r") ("<!--" "-->") beginanchored 
required )
                    CM ON 0 INF und und und 0 )

                  ;: <=========== title Begin Tag ===========>
                  (((Sc "\n \t\r") (Bd "<title") beginanchored)
                    title OF 1 1 und und und und
                    (((NofN (1 1))) CT OF 1 1 und und und 0
                      (((ScN " \n\t\r") (">" "</title>") beginanchored 
required )
                        DSN ON 0 1 und und und 0
                        ((Gr) DS AS 1 1 und und und und
                          (((Sc "\n \t\r") ("<!--" "-->") beginanchored 
required )
                            CM ON 0 INF und und und 0 )

                          ((Gr) Data AS 0 INF und und und 0
                            (( ("<![CDATA[" "]]>") beginanchored 
required )
                              CDATA ON 0 INF und und und 0 )
                            (((ScN "\n \t\r")) SDATA OF 0 INF "\[^<\]\*" 
und und 0)
                          )
                        );: End Data Set
                      );: End Data Section
                      (((ScN " \n\t\r")(Ed "/>") endanchored required )
                        Empty ON 0 1 und und und und)
                    );: End Container
                  ) ;:= {0:Y};: End Begin Tag title

                  ;: <=========== author Begin Tag ===========>
                  (((Sc "\n \t\r") (Bd "<author") beginanchored)
                    author OF 0 INF und und und und
                    (((NofN (1 1))) CT OF 1 1 und und und 0
                      (((ScN " \n\t\r") (">" "</author>") beginanchored 
required )
                        DSN ON 0 1 und und und 0

                        ((Gr) DS AS 1 1 und und und und
                          (((Sc "\n \t\r") ("<!--" "-->") beginanchored 
required )
                            CM ON 0 INF und und und 0 )

                          ;: <=========== name Begin Tag ===========>
                          (((Sc "\n \t\r") (Bd "<name") beginanchored)
                            name OF 0 1 und und und und
                            (((NofN (1 1))) CT OF 1 1 und und und 0
                              (((ScN " \n\t\r") (">" "</name>") 
beginanchored required )
                                DSN ON 0 1 und und und 0
                                ((Gr) DS AS 1 1 und und und und
                                  (((Sc "\n \t\r") ("<!--" "-->") 
beginanchored required )
                                    CM ON 0 INF und und und 0 )

                                  ((Gr) Data AS 0 INF und und und 0
                                    (( ("<![CDATA[" "]]>") beginanchored 
required )
                                      CDATA ON 0 INF und und und 0 )



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 83

                                    (((ScN "\n \t\r")) SDATA OF 0 INF 
"\[^<\]\*" und und 0)
                                  )
                                );: End Data Set
                              );: End Data Section
                              (((ScN " \n\t\r")(Ed "/>") endanchored 
required )
                                Empty ON 0 1 und und und und)
                            );: End Container
                          ) ;:= {0:Y};: End Begin Tag name

                          (DS_1 OS 0 INF und und und und
                            (((Sc "\n \t\r") ("<!--" "-->") 
beginanchored required )
                              CM ON 0 INF und und und 0 )

                            ;: <=========== first-name Begin Tag 
===========>
                            (((Sc "\n \t\r") (Bd "<first-name") 
beginanchored)
                              first-name OF 1 1 und und und und
                              (((NofN (1 1))) CT OF 1 1 und und und 0
                                (((ScN " \n\t\r") (">" "</first-name>") 
beginanchored required )
                                  DSN ON 0 1 und und und 0
                                  ((Gr) DS AS 1 1 und und und und
                                    (((Sc "\n \t\r") ("<!--" "-->") 
beginanchored required )
                                      CM ON 0 INF und und und 0 )

                                    ((Gr) Data AS 0 INF und und und 0
                                      (( ("<![CDATA[" "]]>") 
beginanchored required )
                                        CDATA ON 0 INF und und und 0 )
                                      (((ScN "\n \t\r")) SDATA OF 0 INF 
"\[^<\]\*" und und 0)
                                    )
                                  );: End Data Set
                                );: End Data Section
                                (((ScN " \n\t\r")(Ed "/>") endanchored 
required )
                                  Empty ON 0 1 und und und und)
                              );: End Container
                            ) ;:= {0:Y};: End Begin Tag first-name

                            ;: <=========== last-name Begin Tag 
===========>
                            (((Sc "\n \t\r") (Bd "<last-name") 
beginanchored)
                              last-name OF 1 1 und und und und
                              (((NofN (1 1))) CT OF 1 1 und und und 0
                                (((ScN " \n\t\r") (">" "</last-name>") 
beginanchored required )
                                  DSN ON 0 1 und und und 0
                                  ((Gr) DS AS 1 1 und und und und
                                    (((Sc "\n \t\r") ("<!--" "-->") 
beginanchored required )
                                      CM ON 0 INF und und und 0 )

                                    ((Gr) Data AS 0 INF und und und 0
                                      (( ("<![CDATA[" "]]>") 
beginanchored required )
                                        CDATA ON 0 INF und und und 0 )



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 84

                                      (((ScN "\n \t\r")) SDATA OF 0 INF 
"\[^<\]\*" und und 0)
                                    )
                                  );: End Data Set
                                );: End Data Section
                                (((ScN " \n\t\r")(Ed "/>") endanchored 
required )
                                  Empty ON 0 1 und und und und)
                              );: End Container
                            ) ;:= {0:Y};: End Begin Tag last-name
                          );: End Sequence DataSet
                        );: End Non-Sequence DataSet
                      );: End Data Section
                      (((ScN " \n\t\r")(Ed "/>") endanchored required )
                        Empty ON 0 1 und und und und)
                    );: End Container
                  ) ;:= {0:Y};: End Begin Tag author

                  ;: <=========== price Begin Tag ===========>
                  (((Sc "\n \t\r") (Bd "<price") beginanchored)
                    price OF 1 1 und und und und
                    (((NofN (1 1))) CT OF 1 1 und und und 0
                      (((ScN " \n\t\r") (">" "</price>") beginanchored 
required )
                        DSN ON 0 1 und und und 0
                        ((Gr) DS AS 1 1 und und und und
                          (((Sc "\n \t\r") ("<!--" "-->") beginanchored 
required )
                            CM ON 0 INF und und und 0 )

                          ((Gr) Data AS 0 INF und und und 0
                            (( ("<![CDATA[" "]]>") beginanchored 
required )
                              CDATA ON 0 INF und und und 0 )
                            (((ScN "\n \t\r")) SDATA OF 0 INF "\[^<\]\*" 
und und 0)
                          )
                        );: End Data Set
                      );: End Data Section
                      (((ScN " \n\t\r")(Ed "/>") endanchored required )
                        Empty ON 0 1 und und und und)
                    );: End Container
                  ) ;:= {0:Y};: End Begin Tag price
                );: End Sequence DataSet
              );: End Data Section
              (((ScN " \n\t\r")(Ed "/>") endanchored required )
                Empty ON 0 1 und und und und)
            );: End Container
          ) ;:= {0:Y};: End Begin Tag book
        );: End Data Set
      );: End Data Section
      (((ScN " \n\t\r")(Ed "/>") endanchored required )
        Empty ON 0 1 und und und und)
    );: End Container
  ) ;:= {0:Y};: End Begin Tag bookstore
)) ;: End Root Nodebookstore
)))
;:- End MsgStructure Definition

Sample Input XML File
<?xml version='1.0' encoding="ASCII" ?>
<?kill me?>
<!DOCTYPE bookstore SYSTEM "abcde" >
<bookstore>



Chapter 8 Section 8.3
Monk DTD Converter Implementation

XML Toolkit User’s Guide 85

<book genre = "ISBN1234567" used="T" >
<author>

<name>
STC Document Department
</name>

</author>
<title>
Monk Programmer's Reference Guide
</title>
<price>
$200.00
</price>

</book>
<book used="F" genre="ISBN7654321">

<author>
<first-name>
Stc
</first-name>
<last-name>
Writer #1
</last-name>

</author>
<price>
$100.00
</price>
<title>
Editor User's Guide
</title>

</book>
</bookstore>



XML Toolkit User’s Guide 86

Chapter 9

Monk XML Schema Converter

The Monk XML Schema Converter enables you to convert XML Schema files (.xsd) to 
Event Type Definition (ETD) files with an .ssc extension. This chapter explains how this 
functionality works with e*Gate Integrator.

9.1 XML Schemas and Monk: Introduction
e*Gate users have the ability to convert .xsd files to .ssc files using the Monk XML 
Schema Converter. This Converter converts an XML Schema file (.xsd) to an ETD file 
(.ssc).

Note: The XML Data Reduction format (.xdr) is not yet supported in this version.

9.2 XML Schema Versions: Monk
This release of the Monk XML Schema Builder supports the World Wide Web 
Consortium (W3C) XML Schema standard as of the 2000-04-07 W3C Recommendation. 
Documentation for this standard can be found at:

http://www.w3.org/XML/Schema

Any newer version of XML Schema may not be processed properly.

The XML Schema defines the rules of how the XML document looks. It is similar to the 
data type definition (DTD) file in that it defines the relationships of elements that 
appear in the target document.

The XML Schema is actually a collection of element types and attribute types. The 
element types define the skeleton of the XML document under the parent/children 
relationship paradigm. The attribute types only define attributes for element types and 
do not have any relationships to other attribute types.

http://www.w3.org/XML/Schema


Chapter 9 Section 9.3
Monk XML Schema Converter How Monk XML Schema Converter Works

XML Toolkit User’s Guide 87

9.3 How Monk XML Schema Converter Works
The Monk XML Schema Converter is a plug-in to the ETD Editor in the e*Gate Schema 
Designer. The Editor is where the .xsd file is selected, which is then converted into an 
e*Gate Event Type Definition file with an .ssc extension.

The resulting .ssc file follows the rules in the given XML Schema file and can map the 
input XML data file into its nodes. The mapped data can then be processed through the 
e*Gate system via the Collaboration process.

The following figure shows how the Monk XML Schema Converter converts an 
XML Schema (.xsd file) into an ETD (.ssc file). 

Figure 22   Monk XML Schema Conversion Process

In general, this conversion process happens as follows:

1 The user opens the XML Schema Converter and directs it to read a .xsd file as input.

2 The Converter creates an ETD file.

3 At runtime, data in XML format is sent in the e*Gate system.

4 The ETD created in Step 2 above is used to parse the data within a Collaboration.

5 The parsed Event data is then published for use by another external system or other 
e*Gate components.

The .xsd file is converted into an ETD file only once when the e*Gate configuration is 
initially established. The generated ETD file successfully parses all data that complies 
with its source .xsd file. If there are any changes required to the .xsd file, the ETD file 
must be re-generated to match the changes in the XML input.

1.

XML
Schema

Outbound
Event

Inbound
Event

(.xml file)
Collaboration Process

Outbound
ETD

(.ssc file)

Data
Transformation
or Translation

(.tsc file)

To external
system or

other e*Gate
components

2.

3. 4. 5.

Schema
File

(.xsd file)

Inbound ETD
(.ssc file)



Chapter 9 Section 9.4
Monk XML Schema Converter Feature Summary

XML Toolkit User’s Guide 88

9.4 Feature Summary
The following table provides a feature summary for the Monk XML Schema Converter.

Table 8   Monk XML Schema Converter Feature Summary

Feature Explanation

Support for DOCTYPE/
SYSTEM/DTD in the 
output

Any document generated by the XML Toolkit must set the DOCTYPE 
parameter to point to the originating DTD or XML Schema.

Internal/external 
parameter entity

This refers to support entities, which are analogous to macros in 
C programming.

Element occurrence 
indicators

The ssc generated by the Converter allows the Monk parser to recognize 
optional and repeating content for nodes based on indicators in the DTD 
or XML Schema. For example:
<ELEMENT alchoholic_drink (#PCDATA)
<ELEMENT vegetable (#PCDATA)>
<ELEMENT meat (#PCDATA)>
<ELEMENT starch (#PCDATA)>
<ELEMENT appetizer (#PCDATA)>
<ELEMENT dessert (#PCDATA)>
<ELEMENT dinner (alchoholic_drink+ |(appetizer?, meat, starch+, 
vegetable*, dessert*))>
This example shows the three significant occurrence indicators in a DTD:
+ - one or more of
? - zero or one of
* - zero or more of
XML Schemas use a different notation that the three above qualifiers equate to 
supporting the minOccurs and maxOccurs qualifiers. These are similarly 
supported by the XML Toolkit.

Element choice The “or” operator is supported. In XML DTDs, this is encoded with the “|” 
character. In XML Schemas, this is accomplished using the “choice” 
qualifier. The previous example demonstrates this feature, allowing a 
dinner to be either one or more “alchoholic_drinks” or the sequence of 
appetizers, meats, etc.

Element sequence The sequence operator is supported as shown in the “dinner” element of 
the previous example. XML DTDs encode this with the comma operator. 
XML Schemas encode this with the “sequence” qualifier.

Default attributes this supports the XML Schema capacity for setting default values in 
documents. This is documented in Sec. 2.2 “Complex Type Definitions, 
Element & Attribute Declaration” of the XML Schema Specification.

General entity This refers to support entities. General entities apply to XML documents 
themselves (as opposed to parameter entities, which apply to DTDs). 



Chapter 9 Section 9.5
Monk XML Schema Converter Implementation

XML Toolkit User’s Guide 89

9.5 Implementation
This section explains how to implement XML Schema in the ETD Editor. Additional 
command-line arguments are defined and node mapping is explained. Sample files and 
a sample conversion are included.

9.5.1 Using XML Schema 
XML Schema is accessed in the ETD (Event Type Definition) Editor.

To access XML Schema using the Build tool

1 From the e*Gate Schema Designer window, click the ETD Editor Toolbar button 

 to launch the ETD Editor.

2 On the ETD Editor’s Toolbar, click Build.

The Build an Event Type Definition dialog box appears (see Figure 24 on page 90).

Figure 23   Build an Event Type Definition Dialog Box — 3

3 In the File Name box, type the name of the output file you wish to build. Do not 
specify any file extension—the Editor will supply an "ssc" extension for you.



Chapter 9 Section 9.5
Monk XML Schema Converter Implementation

XML Toolkit User’s Guide 90

4 Click Next. Another Build an Event Type Definition dialog box appears (see the 
following figure).

Figure 24   Build an Event Type Definition Dialog Box — 4

5 In the Input file box, type the path location and name of the .xsd input file you 
want to use. 

6 Under Build From, select Library Converter.

7 Under Select a Library Converter, select XML Schema Converter.

8 In the Additional Command Line Arguments box, specify the command line 
argument -root <root element name>. Refer to the following section for a 
description of these command line arguments.

9 Click Finish.

Note: The nodes are now generated in a collapsed GUI format by default. To generate them 
in an expanded format, use the Additional Command Line argument "-expanded".

9.5.2 Command-line Arguments
The following switches allow you to control how XML Schema generates the .ssc files:

abb
XML Schema uses abbreviated names when generating fixed message structure nodes.

depth <num>
This is the maximum depth (of the tree) that XML Schema will generate for element 
loops.



Chapter 9 Section 9.5
Monk XML Schema Converter Implementation

XML Toolkit User’s Guide 91

expanded
All nodes will be expanded in the GUI.

noattlist
This tells XML Schema not to generate a message structure to handle the attribute list in 
XML. If you are sure your input XML files won’t contain useful data in the attribute list, 
you can turn this on to speed up the parsing process of your input files.

nsattr
This generates the extra structure for each element to map the “xmins” attributes for the 
namespace. You need to specify the -root every time, the other parameters are the same.

root <name>
Specify the root directly, as XML Schema may not be able to find the root element in the 
DTD file if the root element is not declared as the first element in the file. 

9.5.3 Understanding the ETD Structure
The first step to using the ETD is to understand the structure of the nodes in the context 
of the XML message being created. Each level is structured in the same way, so once 
you understand how the structure works you will be able to find the nodes you need to 
populate in your Collaboration Rules files.

The ETD contains a number of nodes that do not explicitly correlate to the XML Schema 
file but are required by the Monk engine to parse the XML data correctly. These 
facilitator nodes are listed in Table 9 on page 91.

The facilitator nodes always occur in a set order and define the structure of the XML 
message. In the e*Xchange ETD, the facilitator nodes define three types of branches:

Table 9   Facilitator Nodes in the ETD

Name Abbreviation Description

Container CT A container node for an XML element. This node allows the short 
and long forms of XML tags to coexist in the structure.

Data Section DSN Identifies a data section within an XML element. This is the long 
form of the XML tag.

Data Set DS Identifies a data set within an XML element. The subelements 
within a data set can occur in any order.

Empty Empty This is the short form of the corresponding DSN node XML tag.

Comment CM XML comment.

Data Data This node holds the data for the element.

Attribute Set AS Identifies an XML attribute set within an XML element.

Equal Sign EQ The equal sign (“=”) within an XML attribute.

Value Value This node holds the value for the XML attribute.

CDATA CDATA This node holds the CDATA Sections. (Used by system.)

SDATA SDATA This node holds the non-CDATA Sections. (Used by system.)



Chapter 9 Section 9.5
Monk XML Schema Converter Implementation

XML Toolkit User’s Guide 92

XML element without sub-elements

XML element with sub-elements

XML attribute

Figure 25 on page 92 illustrates the ETD structure for a basic XML sample:

Figure 25   XML Sample 

XML Element without Sub-elements

Figure 26 on page 93 illustrates the ETD structure for an XML element that does not 
have sub-elements. Each XML element contains one child node, CT. CT identifies the 
parent node as an XML element. The CT node contains two child nodes: DSN and 
Empty. DSN maps the long form of the XML tag (</tag>) and Empty maps the short 
form (</>).

The DSN and DS nodes always occur as parent-child pairs. In this type of branch, DS 
is the parent node for two types of child nodes:

CM, which holds XML comments for the element

Data, which holds the data for the element



Chapter 9 Section 9.5
Monk XML Schema Converter Implementation

XML Toolkit User’s Guide 93

Figure 26   XML Element without Sub-elements

The Data node contains the actual data for the XML element that is defined. When you 
are creating your Collaboration Rules scripts, you must map your XML element data to 
the Data nodes at the terminal end of the element’s branch.

XML Element with Sub-elements

The following figure illustrates the ETD structure for an XML element that has sub-
elements.

Figure 27   XML Element with Sub-elements

Notice that the only difference between this diagram and the previous diagram are the 
<Sub-element> child nodes in place of the Data child node shown in Figure 1. The DSN 
and DS nodes always occur as parent-child pairs. In this type of branch, DS is the 
parent node for two types of child nodes:

CM, which holds XML comments for the element

<Sub-element>, the name of a sub-element of the parent element

The DS node will always contain a CM child node to hold XML comments. Each <Sub-
element> node will then contain an ETD structure of its own, with the <Sub-element> 
node as the parent node for the branch.

<XML Element> CT

DSN

Empty

DS

CM

Data

<XML Element> CT

DSN

Empty

DS

CM

<Sub-element>

<Sub-element>



Chapter 9 Section 9.5
Monk XML Schema Converter Implementation

XML Toolkit User’s Guide 94

XML Attribute

The following figure illustrates the ETD structure for an XML attribute.

Figure 28   XML Attribute

In this case, the XML element contains one child node, AS, which identifies the branch 
as XML attributes of the parent element. The AS node contains the <XML Attribute> 
nodes as child nodes.

Each <XML Attribute> node has two child nodes: EQ to represent the equal sign (=) in 
the attribute and Value which holds the actual value for the attribute. When you are 
creating your Collaboration Rules scripts, you must map your XML attribute value to 
the Value nodes at the terminal end of the attribute’s branch.

9.5.4 Using the ETD Editor
This section describes an additional feature that has been added to the ETD Editor 
window to provide support for XML.

Node Properties Dialog Box

The Node Properties dialog box is now reorganized into the following tabs:

General covers the general features, for example, file name and path (see Figure 29 
on page 95).

Content covers tag characters, default characters, and scavenger data.

Repetition allows you to enter order, group repetition, and matching 
characteristics, including the N of N attribute.

Delimiters allows you to enter an expanded array of delimiter attributes, including 
a begin delimiter for a fixed-ETD node.

Figure 29 on page 95 shows an example of the Node Properties dialog box.

<XML Element> AS

<XML Attribute>

<XML Attribute>

EQ

Value

EQ

Value



Chapter 9 Section 9.5
Monk XML Schema Converter Implementation

XML Toolkit User’s Guide 95

Figure 29   Node Properties Dialog Box

9.5.5 XML Schema Implementation Examples
The following XML Schema example shows how to define element types and attribute 
types.

Bookstore.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema">

        <xsd:element name="bookstore">
                <xsd:complexType content="elementOnly">
                        <xsd:sequence minOccurs="0" 
maxOccurs="unbounded">
                                <xsd:element name="book" 
type="bookType"/>
                        </xsd:sequence>
                </xsd:complexType>
        </xsd:element>

        <xsd:complexType name="authorType" content="elementOnly">
                <xsd:choice>
                        <xsd:element name="name" type="xsd:string"/>
                        <xsd:sequence>
                                <xsd:element name="first-name" 
type="xsd:string"
/>
                                <xsd:element name="last-name" 
type="xsd:string"/
>
                        </xsd:sequence>
                </xsd:choice>



Chapter 9 Section 9.5
Monk XML Schema Converter Implementation

XML Toolkit User’s Guide 96

        </xsd:complexType>

        <xsd:complexType name="bookType" content="elementOnly">
                <xsd:sequence>
                        <xsd:element name="title" type="xsd:string"/>
                        <xsd:element name="author" type="authorType" 
minOccurs="
0" maxOccurs="unbounded"/>
                        <xsd:element name="price" type="xsd:string"/>
                </xsd:sequence>
                <xsd:attribute name="genre" type="xsd:string" 
use="required"/>
                <xsd:attribute name="used" type="xsd:string" 
use="required"/>
        </xsd:complexType>

</xsd:schema>

Explanation

In the previous XML Schema, the element type bookstore is the root element. It 
contains a sequence of the element type book and occurrences from zero to infinite. The 
book’s attribute type is set to point to bookType, which means it is referring to another 
definition. As you can see, the bookType definition near the end of the example could 
be used with other elements as well.

The reason that bookType is not defined as an element type is because it does not 
appear on the target XML document. In the bookType complex type definition, these 
attributes are defined: name, genre, and used. These attributes belong to bookType 
and automatically belong to the element type book, as well.

In the previous example, you can see many uses of the text string xsd: because it is the 
prefix for the XML namespace defined at the top of the schema as:

http://www.w3.org/1999/XMLSchema

Do not try to resolve this URL. Actually, it is in the URI format. The purpose of the XML 
namespace is to make sure that each element’s name is unique.

When designing an XML document, it is important to identify every piece of content to 
send and receive. Once all the single pieces of information are identified, the relation 
between them becomes obvious. The next step is to create the XML Schema to describe 
the content of each piece of information and their relationships.

Generally, reusing a definition is recommended because it saves time, and consistency 
is not an issue. The following example illustrates how to reuse an element type defined 
from another schema:

Purchaseorder.xsd

<schema xmlns="http://www.w3.org/1999/XMLSchema">

<include schemaLocation=”Address.xsd” />

< element name="purchaseOrder" type="PurchaseOrderType"/>

<complexType name="PurchaseOrderType">
  <element name="shipTo" type="Address"/>
<element name="items"/>
<attribute name="orderDate" type="date"/>



Chapter 9 Section 9.5
Monk XML Schema Converter Implementation

XML Toolkit User’s Guide 97

 </complexType>

</schema>

Address.xsd

<schema xmlns="http://www.w3.org/1999/XMLSchema">

 <xsd:complexType name="Address">
  <xsd:element name="name"   type="xsd:string"/>
  <xsd:element name="street" type="xsd:string"/>
  <xsd:element name="city"   type="xsd:string"/>
  <xsd:element name="state"  type="xsd:string"/>
  <xsd:element name="zip"    type="xsd:decimal"/>
  <xsd:attribute name="country" type="xsd:NMTOKEN"
           use="fixed" value="US"/>
 </xsd:complexType>
</schema>

The address itself is from another schema and is being used in PurchaseOrder.xsd.

Supported Components and Features

Element declarations

Attribute group definitions 

Attribute declarations 

Complex type definitions

Simple type definitions 

Group declarations

All, choice, sequence declarations

Annotations

Type derivation

Anonymous types

Nested element declaration

Include

Import



XML Toolkit User’s Guide 98

Chapter 10

XSLT Collaboration Service

This chapter explains how to use the Monk XSLT Collaboration Service (XSLT stands 
for Extensible Stylesheet Language Transformations) and how to create its associated 
Collaboration Rules.

10.1 Introduction
The Monk XSLT Collaboration Service enables the development of external 
Collaboration Rules that extracts selected information from a well-formed XML 
document, transform the information, and output it in another well-formed XML 
document. It also enables users to transform an XML document into another XML 
document with a different set (or subset) of data or tags.

10.1.1 Requirements
The XSLT Collaboration Service runs on Windows and requires:

e*Gate version 4.1 or later

MSXML3 Parser Technology Preview Release from Microsoft. The latest release can 
be found at:

http://msdn.microsoft.com/downloads/c-frame.htm?/downloads/
webtechnology/xml/msxml.asp

Note: XMLINST.EXE, the utility program that comes with MSXML and is installed in 
the \WINDOWS\SYSTEM32\directory, must be executed. This causes MSXML 
to be set as the default XML module rather than an older MSXML.dll.

10.1.2 Architecture
This interface prescribes that the XSLT translate file (.xsl) must be written in a well-
formed XML document using the Extensible Stylesheet Language (XSL). The 
implementation will accept a well-formed XML document as input and will return a 
well-formed XML document as output. 

http://msdn.microsoft.com/downloads/c-frame.htm?/downloads/webtechnology/xml/msxml.asp


Chapter 10 Section 10.2
XSLT Collaboration Service Creating XSLT Collaboration Rules

XML Toolkit User’s Guide 99

10.2 Creating XSLT Collaboration Rules
Collaboration Rules must be created for the XSLT Collaboration Service. The procedure 
given in this section describes how to commit an .xsl file to the Sandbox and create a 
Collaboration Rule.

Files can be committed to the Registry using one of two ways. This document describes 
the stcregutil.exe command line utility, implementing the -fr and -fc commands. 
Another option is to use the Schema Designer’s Commit to Sandbox (the command is 
located on the File menu) method, followed by the Promote to Run Time option. 

10.2.1 Committing .xsl Files to the Registry
To use the stcregutil Command Line Utility

Run the stcregutil utility by typing the following text at the command line:

stcregutil –rh registry –rs schema –un user-name 
   –up password -fc monk_scripts/common file.xsl

Note: For more information about the stcregutil.exe command-line utility, see the 
e*Gate Integrator System Administration and Operations Guide. The 
example is printed on more than one line for clarity, but must be issued as a single 
command line.

To use the Commit to Sandbox and Promoting to Run Time Method

1 Launch the e*Gate Schema Designer.

2 From the File menu, select Commit to Sandbox.

3 Select and open the local .xsl file to be made available to the XSLT Collaboration 
Service (see Figure 30 on page 100).



Chapter 10 Section 10.2
XSLT Collaboration Service Creating XSLT Collaboration Rules

XML Toolkit User’s Guide 100

Figure 30   Select Local file To Commit

4 Select the \monk_scripts\common directory to make the committed .xsl file 
available to the XSLT Collaboration Service (see the following figure).

Figure 31   Commit to Sandbox Dialog Box

Note: The .xsl file being used must reside in the \monk_scripts\common directory. If 
the .xsl file resides elsewhere, the XSLT Collaboration Service is not able to locate it.

A message appears, confirming that the file is committed to the Sandbox (see 
Figure 32 on page 101).



Chapter 10 Section 10.2
XSLT Collaboration Service Creating XSLT Collaboration Rules

XML Toolkit User’s Guide 101

Figure 32   File Committed 

5 Click OK and return to the main Schema Designer window.

6 From the File menu, select Promote to Run Time. The Select File to Promote to Run 
Time dialog box appears (see the following figure).

Figure 33   Select File to Promote to Run Time Dialog Box

7 Select the .xsl file to be promoted and click Promote. The File Promoted message 
box appears.

Figure 34   File Promoted

8 Click OK and return to the main Schema Designer screen.

10.2.2 Creating a Collaboration Rule
To create a Collaboration Rule

1 From the left side of the e*Gate Schema Designer Main window, select 
Collaboration Rules.

The list of Collaboration Rules appears on the right pane of the window.

2 Select the Create New Collaboration Rules icon in the middle of the window as 
shown in Figure 35 on page 102.



Chapter 10 Section 10.2
XSLT Collaboration Service Creating XSLT Collaboration Rules

XML Toolkit User’s Guide 102

Figure 35   Schema Designer: Creating New Collaboration Rules

3 The New Collaboration Rules Component dialog box appears. Enter any name for 
the new rule (see the following figure) and select OK.

Figure 36   New Collaboration Rules Dialog Box

The newly created Collaboration Rule appears in the right pane of the Schema 
Designer window.

4 Double-click on the new Collaboration Rule. The Collaboration Rules Properties 
dialog box appears.

5 Under the General tab and under Service, select XSLT (see Figure 37 on page 103).



Chapter 10 Section 10.2
XSLT Collaboration Service Creating XSLT Collaboration Rules

XML Toolkit User’s Guide 103

Figure 37   Collaboration Rules Properties

6 Input the Initialization string as follows: 

-v true -r true -s false

The meaning of these parameters is shown in the following table.

7 Under Collaboration Rules, select the previously committed .xsl file (see Figure 38 
on page 104).

Table 10   Initialization String Parameters

Parameter Value Description

-v True or false. The default is true. Validate on parse.

-r True or false. The default is true. Resolve externals references.

-s True or false. The default is false. Preserve white space.



Chapter 10 Section 10.3
XSLT Collaboration Service Implementing the XSLT Collaboration Service

XML Toolkit User’s Guide 104

Figure 38   File Selection

8 Configure the Subscriptions and Publications tab as you would for any other 
Collaboration Rule. See the e*Gate Integrator User’s Guide for details.

10.3 Implementing the XSLT Collaboration Service
To implement the XSLT Collaboration Service

1 Define the Event Types which the XSLT Collaboration will subscribe to and publish.

2 Create the Collaboration Rules that use the XSLT Collaboration Service. 

3 Configure a BOB or e*Way to execute this Collaboration. 

4 Configure any other e*Gate components as necessary to create a working schema.

5 Test the schema, making any corrections as necessary to the e*Gate configuration or 
to any Collaboration Rules.

10.4 Sample Conversion
Here is an example consisting of three files:

XML Stylesheet - Input File

- <MyCompanyPO> 
<POHeader Purpose="00" Type="NE" Number="00120033" 
CreationDate="2000-06-22" /> 
<CarrierDetail Name="UPS" TransportType="G" Routing="ROUTING 
INFORMATION" TransitTime="2330" /> 
- <BillTo> 
<Address Name="Sam, Inc." Address1="1284 Main St." Address2="Bldg 
111" City="Los Angeles" State="FL" PostalCode="91213" Country="USA" /
> 
<ContactInfo ContactType="AM" ContactName="John Doe" 
ContactNumber="33485" /> 



Chapter 10 Section 10.4
XSLT Collaboration Service Sample Conversion

XML Toolkit User’s Guide 105

</BillTo> 
- <ShipTo> 
<Address Name="Sam, Inc." Address1="1284 Main St." Address2="Bldg 
111" City="Los Angeles" State="CA" PostalCode="91213" Country="USA" /
> 
<ContactInfo ContactType="BY" ContactName="Ken Smith" 
ContactNumber="33485" /> 
</ShipTo> 
- <Item> 
<ItemHeader LineNumber="1" Quantity="5" Price="399.99" 
UnitOfMeasure="EA" BuyerPart="1001428" VendorPart="AE3348" 
UPC="145421" /> 
<ItemDescription Type="F" Description="TV" /> 
</Item> 
- <Item> 
<ItemHeader LineNumber="2" Quantity="1" Price="33.66" 
UnitOfMeasure="EA" BuyerPart="1001563" VendorPart="AE3342" 
UPC="134684" /> 
<ItemDescription Type="F" Description="Antenna" /> 
</Item> 
</MyCompanyPO>

XSL File - Translation File

- <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" 
xmlns:msxsl="urn:schemas-microsoft-com:xslt" xmlns:var="urn:var" 
xmlns:user="urn:user" version="1.0"> 
<xsl:output method="xml" indent="yes" omit-xml-declaration="yes" /> 
- <xsl:template match="/"> 
<xsl:apply-templates select="MyCompanyPO" /> 
</xsl:template> 
- <xsl:template match="MyCompanyPO"> 
- <MyCompanyPO> 
- <xsl:for-each select="Item"> 
- <Item> 
- <xsl:for-each select="ancestor::*[1]/BillTo"> 
- <xsl:for-each select="Address"> 
- <Address> 
- <!-- 
 Connection from Source Node "Name" to Destination Node "Name" 
--> 
- <xsl:attribute name="Name"> 
<xsl:value-of select="@Name" /> 
</xsl:attribute> 
</Address> 
</xsl:for-each> 
</xsl:for-each> 
- <xsl:for-each select="ItemHeader"> 
- <ItemHeader> 
- <!-- 
 Connection from Source Node "Price" to Destination Node "Price" 
--> 
- <xsl:attribute name="Price"> 
<xsl:value-of select="@Price" /> 
</xsl:attribute> 
</ItemHeader> 
</xsl:for-each> 
</Item> 
</xsl:for-each> 
</MyCompanyPO> 
</xsl:template> 
</xsl:stylesheet>



Chapter 10 Section 10.4
XSLT Collaboration Service Sample Conversion

XML Toolkit User’s Guide 106

Output File

<MyCompanyPO>
<Item>
<ItemHeader VendorPart="AE3348" Price="399.99" />
<ItemHeader VendorPart="AE3342" Price="33.66" />
</Item>
</MyCompanyPO>



XML Toolkit User’s Guide 107

Chapter 11

Monk DTD Generator

The Monk DTD Generator converts Event Type Definition (ETD) files to XML files with 
a .dtd extension. This chapter explains how this functionality works with the e*Gate 
Integrator.

11.1 Introduction
Due to the popularity of XML, e*Gate users want to have the ability to convert Monk 
ETDs (.ssc files) to XML files with a .dtd extension. The Monk DTD Generator provides 
this capability.

How the Monk DTD Generator Works

The Monk XML DTD Generator is accessed from the Export to DTD option from the 
File Menu of the Monk ETD Editor in the Schema Designer. This Editor is where you 
can select an existing e*Gate ETD file with an .ssc extension. The resulting .dtd file 
exactly maps to the XML structure, and can then be saved and opened using any 
external editor (for example, Notepad). 

This following steps explain briefly how the XML DTD Generator is used to convert an 
ETD file with a .ssc extension into a XML file with a .dtd extension.

1 An existing ETD file, with the .ssc extension, which was committed to the runtime 
schema, is opened from the Export to DTD option from the File Menu of the Monk 
ETD Editor.

2 The Generator converts the .ssc file to an XML file with a .dtd extension.

3 The newly created DTD file maps exactly to the XML structure.



Chapter 11 Section 11.2
Monk DTD Generator Implementation

XML Toolkit User’s Guide 108

11.2 Implementation
This section explains how to implement the DTD Generator and including how to 
access the feature in the graphical user interface (GUI).

11.2.1 Using the XML DTD Generator
To promote files to the run-time environment

To use the Monk XML DTD Generator, you must start with an .ssc file that has been 
promoted to the runtime environment.

Note: See the e*Gate Integrator User’s Guide for information on committing files to the 
Sandbox and promoting files to the Registry.

You can use any of the following tools to promote files from the Sandbox to the run-
time environment (see the following table).

The first time you open an existing file in an e*Gate editor, e*Gate copies the file to your 
Sandbox. Once you save the file, it remains in your Sandbox until you either promote it 
to the run-time schema or manually remove it from your Sandbox. 

When you open an existing file (in this case, an .ssc file) in an e*Gate editor, the file you 
request simply appears on screen (assuming no advisory locks are placed on that file by 
another user).

11.2.2 Creating DTDs Using the Monk DTD Generator
The Monk DTD Generator is accessed from the File Menu, Export to DTD option in the 
ETD Editor.

To access the XML DTD Generator

1 From the e*Gate Schema Designer, click ETD Editor  to launch the ETD Editor.

2 From the ETD Editor’s Toolbar, select Open.

Table 11   Tools To Promote Files from Sandbox

Tool to promote files from the 
Sandbox to run-time

Where to find more information

Monk ETD Editor ETD Editor’s online Help system and e*Gate User’s Guide

e*Gate Schema Designer e*Gate Schema Designer’s online Help system and e*Gate 
User’s Guide

stcregutil.exe
(command-line utility)

e*Gate Integrator System Administration and Operations 
Guide



Chapter 11 Section 11.2
Monk DTD Generator Implementation

XML Toolkit User’s Guide 109

The Open Event Type Definition dialog box appears (see the following figure).

Figure 39   Open Event Type Definition Dialog Box

3 In the File name box, type or select the name of the .ssc file you want to use to 
generate the XML file with a .dtd extension. Look in the following location for your 
committed .ssc files:

d:egate\client\monk_scripts\common

This is where the Schema Designer commits your files.

Note: Do not specify any file extension. The ETD Editor supplies an .ssc extension for 
you.

4 Click Open.

5 The selected .ssc file opens in the ETD Editor (see the following figure).

Figure 40   ETD Editor Window

6 From the File Menu, select the Export to DTD option.



Chapter 11 Section 11.2
Monk DTD Generator Implementation

XML Toolkit User’s Guide 110

7 The Save as DTD dialog box appears (see the following figure).

Figure 41   Save as DTD Dialog Box

8 In the Selection box, type the name of the ETD input file to use to create the DTD 
file.

9 Click OK.

10 The DTD Exported dialog box appears to confirm that the XML DTD Generator 
successfully created the XML file with the .dtd extension (see the following figure).

Figure 42   DTD Export Dialog Box

11 Click OK to close the dialog box.

12 From the File menu of the ETD Editor, select the Save and Edit Using any External 
Editor option.

The original .ssc file is opened in the default editor.



XML Toolkit User’s Guide 111

Chapter 12

$event->xml Monk Function

This chapter explains the $event->xml Monk function that allows the easy generation 
of XML messages.

12.1 Introduction
Because of the wide availability of object-oriented tools that support XML, the 
$event->xml Monk function gives the user the ability to create an XML message 
dynamically in the course of a Collaboration.

In defining the business logic, it may happen that a sales order processed by e*Gate 
requires business logic that is encoded in a separate application. Often this interaction 
is accomplished synchronously, with object-oriented methods such as DCOM, CORBA, 
or Enterprise Java Beans. While those standards provide for invocation of the methods, 
the parameter or document exchange is increasingly based on XML. 

The $event->xml Monk function facilitates transforming from non-XML to XML 
structures quickly and easily at run time. This is the simplest way of delivering parsed 
data to any XML-enabled application that can accept a DTD.

12.2 How the $event->xml Monk Function Works
It takes a parsed representation of a non-XML event and generates an XML message as 
illustrated in the following diagram. 

Note: The $event->xml Monk function must be used in conjunction with the DTD 
Generator so that the XML-enabled application has a DTD that matches the result 
of this function.



Chapter 12 Section 12.2
$event->xml Monk Function How the $event->xml Monk Function Works

XML Toolkit User’s Guide 112

The following figure illustrates how the $event->xml Monk function operates.

Figure 43   Operation of $event->xml

The two steps shown in the previous figure operate as follows:

1 In the first step, an external .ssc file generates a DTD using the DTD Generator.

2 In the second step, the DTD is given to the XML-enabled application.

The following page explains the basic properties of the $event->xml Monk function. 
After this explanation, a section that contains an example follows.

e*GateExternal
Non-XML

XML-Enabled
Application

Step 1 Step 2



Chapter 12 Section 12.2
$event->xml Monk Function How the $event->xml Monk Function Works

XML Toolkit User’s Guide 113

$event->xml

Syntax

($event->xml anEvent)

Description

$event->xml transforms some Event from a parsed e*Gate ETD structure into serialized 
XML data. 

Parameters

Return Values

String
Returns the XML message.

Throws

None.

Additional Information

This function must be used in conjunction with the DTD Generator.

Name Type Description

anEvent message path The Event to be transformed into an 
XML message.



Chapter 12 Section 12.3
$event->xml Monk Function $event->xml Example

XML Toolkit User’s Guide 114

12.3 $event->xml Example
This section contains an example of the use of this Monk function.

test.monk

This is the Monk program that is used to demonstrate the sample.

(load "test.ssc")
(load "event-xml.monk")

(define (TestSSCToXML)
  (let ( (input ($make-event-map Purchase_Order-delm Purchase_Order-
struct))
       (output ""))

    (display "\n\n\nThe following shows how data mapped to event type 
definition:\n")

    ($event-parse input
"PO1234*John Doe*3/1/00*2%/10 Net 30*
I234~Apple~12~.3~
I456~Orange~24~.4~")

    (newline)
    (display-event-dump input)

    (display "\n\nThe following shows the output of the $event->xml 
function:\n\n")
    (define outputtest ($event->xml ~input%0))

    (display outputtest) 
    
   ); end of let
) ; end of TestSSCToXML

(TestSSCToXML)

mysscmsg.ssc

This is the ETD structure that maps the data.

;:- STC MsgStruct Version 3.1

;:- MsgStructure Header
;:- MsgStructure "Purchase_Order"
;:- UserComment "   "
;:- Version "e*Gate 4.1.1"
;:- FormatOption DELIMITED
;:- RepSeparator "Repetition Delimiter  " " "
;:- Escape "Escape Character Delimiter  " ""
;:- DefaultDelimiters "X12"
;:- End MsgStructure Header

;:- Delimiter Structure
(define Purchase_Order-delm '(
 ("~" separator)
 ("*" separator)
 (">" separator)
 ))

;:- Global Template Reference
;:- End Global Template Reference



Chapter 12 Section 12.3
$event->xml Monk Function $event->xml Example

XML Toolkit User’s Guide 115

;:- Local Template Definition
;:- End Local Template Definition

;:- MsgStructure Definition
(define Purchase_Order-struct ($resolve-event-definition (quote
  (Purchase_Order ON 1 1 und und und -1
    (((Ed "*") ) Purchase_Order_Num ON 1 1 und und und -1);:= {0.0:N}
    (((Ed "*") ) Purchaser ON 1 1 und und und -1);:= {0.1:N}
    (((Ed "*") ) Date ON 1 1 und und und -1);:= {0.2:N}
    (((Ed "*") ) Terms ON 1 1 und und und -1);:= {0.3:N}
    (Items OS 1 INF und und und -1
      (((Sc " \t\r\n")) Item_Num ON 1 1 und und und -1);:= {0.4.0:N}
      (Descr ON 1 1 und und und -1);:= {0.4.1:N}
      (Quantity ON 1 1 und und und -1);:= {0.4.2:N}
      (Price ON 1 1 und und und -1);:= {0.4.3:N}
    );:= {0.4:N}
  ) ;:= {0:N}
)))
;:- End MsgStructure Definition

log.txt

This is the output of the example. The actual output of the function can be seen at the 
end of this log.

stctrans (Information): *** Trace Mask Changed From 0x00000000-
0x00000000 To 0x80000000-0x00000002 - log file is off ***

The following shows how data mapped to event type definition:

((Modifiers):Name:Type:MinRep:MaxRep:Tag:Def:Offset:(Length|Encoding)
:Delim:BitFlags)
                (():Purchase_Order:ON:1:1:::-1:(-1)::Su,Dc)
(Depth:Length:Children:FLAGS(Rep,Data,Arrayified,Constant,ChildData,S
ibData))
(0:73:1:DACB):PO1234*John Doe*3/1/00*2%/10 N
                 (():Purchase_Order:ON:1:1:::-1:(-1)::Su,Dc)
(1:73:5:RDACB) :PO1234*John Doe*3/1/00*2%/10 N
                  (():Purchase_Order_Num:ON:1:1:::-1:(-1):"*":RNu,Loc)
(2:6:1:DACB)  :PO1234
                   (():Purchase_Order_Num:ON:1:1:::-1:(-
1):"*":RNu,Loc)
(3:6:0:RDAC)   :PO1234
                  (():Purchaser:ON:1:1:::-1:(-1):"*":RNu,Loc)
(2:8:1:DACB)  :John Doe
                   (():Purchaser:ON:1:1:::-1:(-1):"*":RNu,Loc)
(3:8:0:RDAC)   :John Doe
                  (():Date:ON:1:1:::-1:(-1):"*":RNu,Loc)
(2:6:1:DACB)  :3/1/00
                   (():Date:ON:1:1:::-1:(-1):"*":RNu,Loc)
(3:6:0:RDAC)   :3/1/00
                  (():Terms:ON:1:1:::-1:(-1):"*":RNu,Loc)
(2:12:1:DACB)  :2%/10 Net 30
                   (():Terms:ON:1:1:::-1:(-1):"*":RNu,Loc)
(3:12:0:RDAC)   :2%/10 Net 30
                  (():Items:OS:1:4294967295:::-1:(-1):"~":Su,Dc)
(2:37:2:ACB)  :
I234~Apple~12~.3~
I456~Orange
                   (():Items:OS:1:4294967295:::-1:(-1):"~":Su,Dc)
(3:18:4:RACB)   :



Chapter 12 Section 12.3
$event->xml Monk Function $event->xml Example

XML Toolkit User’s Guide 116

I234~Apple~12~.3~
                    (((Sc " 

")):Item_Num:ON:1:1:::-1:(-1):"~":RNu)
(4:4:1:ACB)    :I234
                     (((Sc " 

")):Item_Num:ON:1:1:::-1:(-1):"~":RNu)
(5:4:0:RDAC)     :I234
                    (():Descr:ON:1:1:::-1:(-1):"~":RNu)
(4:5:1:DACB)    :Apple
                     (():Descr:ON:1:1:::-1:(-1):"~":RNu)
(5:5:0:RDAC)     :Apple
                    (():Quantity:ON:1:1:::-1:(-1):"~":RNu)
(4:2:1:DACB)    :12
                     (():Quantity:ON:1:1:::-1:(-1):"~":RNu)
(5:2:0:RDAC)     :12
                    (():Price:ON:1:1:::-1:(-1):"~":RNu)
(4:2:1:DACB)    :.3
                     (():Price:ON:1:1:::-1:(-1):"~":RNu)
(5:2:0:RDAC)     :.3
                   (():Items:OS:1:4294967295:::-1:(-1):"~":Su,Dc)
(3:19:4:RACB)   :
I456~Orange~24~.4~
                    (((Sc " 

")):Item_Num:ON:1:1:::-1:(-1):"~":RNu)
(4:4:1:ACB)    :I456
                     (((Sc " 

")):Item_Num:ON:1:1:::-1:(-1):"~":RNu)
(5:4:0:RDAC)     :I456
                    (():Descr:ON:1:1:::-1:(-1):"~":RNu)
(4:6:1:DACB)    :Orange
                     (():Descr:ON:1:1:::-1:(-1):"~":RNu)
(5:6:0:RDAC)     :Orange
                    (():Quantity:ON:1:1:::-1:(-1):"~":RNu)
(4:2:1:DACB)    :24
                     (():Quantity:ON:1:1:::-1:(-1):"~":RNu)
(5:2:0:RDAC)     :24
                    (():Price:ON:1:1:::-1:(-1):"~":RNu)
(4:2:1:DACB)    :.4
                     (():Price:ON:1:1:::-1:(-1):"~":RNu)
(5:2:0:RDAC)     :.4

The following shows the output of the $event->xml function:

<?xml version="1.0"?><Purchase_Order><Purchase_Order_Num>PO1234</
Purchase_Order_Num><Purchaser>John Doe</Purchaser><Date>3/1/00</
Date><Terms>2%/10 Net 30</Terms><Items><Item_Num>I234</
Item_Num><Descr>Apple</Descr><Quantity>12</Quantity><Price>.3</
Price></Items><Items><Item_Num>I456</Item_Num><Descr>Orange</
Descr><Quantity>24</Quantity><Price>.4</Price></Items></
Purchase_Order>



XML Toolkit User’s Guide 117

Chapter 13

Monk Capabilities and Troubleshooting

Capabilities of the Monk XML Toolkit are discussed in this chapter, along with some 
troubleshooting tips.

13.1 Capabilities
This section discusses the capabilities of the e*Gate Monk XML Toolkit components, the 
Monk DTD Converter and Generator.

13.1.1 Monk DTD Converter
The known limitations of the Monk DTD Converter are:

Only ASCII-encoded XML messages are currently supported.

The Converter cannot handle self-describing XML events. 

XML events are self-describing. The XML DTD Converter requires a DTD in order 
to generate an Event Type Definition that can be used in the Event Type Definition 
Editor and the Collaboration Editor. The ability to dynamically parse and read XML 
events is not the function of this Converter.

The Converter no longer defaults the first element in the DTD file as the root 
element.

The Convertor searches the file structure to see if any other root elements are 
present. If more than one element is present, it validates the first occurrence.

13.1.2 Monk DTD Generator
The Monk DTD Generator tool can only be used with ETDs (.ssc) files in which 
every node and subnode name in the tree is unique.

The node and subnode names of the .ssc file must follow the XML naming 
conventions.



Chapter 13 Section 13.2
Monk Capabilities and Troubleshooting Monk DTD Converter Troubleshooting

XML Toolkit User’s Guide 118

13.2 Monk DTD Converter Troubleshooting
This section explains troubleshooting techniques available for the Monk DTD 
Converter.

Troubleshooting Question:

I ran the XML DTD Converter on a sample DTD file and failed to get the whole 
structure even though I specified the depth. Instead, the following error message 
appeared:

file:///d:/xmlconverter/sam/Web_Order.dtd: 23, 33: Element, 
"ST_trans_set_header 
", refers to undeclared element, "trans_set_id_code", in content 
model

Answer:
An element was not declared in the DTD file called trans_set_id_code. To correct this 
problem, a line was added to define this element as #PCDATA.

Additional Troubleshooting

Before you can test the DTD Converter, you need to create the following Monk file:

(load "d:/egate/client/monk_scripts/common/books.ssc" )
(define input ($make-event-map bookstore-delm bookstore-struct))
($event-parse input input-string1)

Note: Please note that the path may change if the drive varies.

You can use any editor to create this text file. In this case, it’s named books.monk.

If you want to test your own file, you need to change the following lines accordingly:

"d:/egate/client/monk_scripts/common/books.ssc"
"bookstore-delm (from the .ssc file)"
"bookstore-struct (from the .ssc file)"

After you have created the monk file, you can test the .ssc file by typing the following 
command from the Windows DOS prompt:

D:\eGate\client\monk_scripts\common>stctrans -d -md 
-ims D:\XMLConverter\books\books.xml books.monk > log.txt

The output will be saved into a file called log.txt.

Here is the log for the example:

MAPPED:XML_DECL[0]:OF:0:1::"":-1:(0)-> " version='1.0' 
encoding="ASCII" ".
MAPPED:XML_TAG[0]:OF:0:1:::-1:(0):"xml"--> " version='1.0' 
encoding="ASCII" ".
MAPPED:PI[0]:ON:0:-1:::-1:(0):"<?"-"?>"-> "xml version='1.0' 
encoding="ASCII" ".
MAPPED:PI[1]:ON:0:-1:::-1:(0):"<?"-"?>"-> "kill me".
MAPPED:DOCTYPE[0]:ON:0:1::" bookstore SYSTEM "file:///d:/
XMLConverter/books/books.dtd" ":-1:(0):"<!DOCTYPE"-">"-> " 
bookstore SYSTEM "abcde" ".
MAPPED:EQUAL_SIGN[0]:ON:1:1:::-1:(0):"="-> " ".
MAPPED:Value[0]:ON:1:1:::-1:(0):"""-"""-> "ISBN1234567".



Chapter 13 Section 13.2
Monk Capabilities and Troubleshooting Monk DTD Converter Troubleshooting

XML Toolkit User’s Guide 119

MAPPED:genre[0]:OF:1:1:::-1:(0):"genre"--> " = "ISBN1234567"".
MAPPED:EQUAL_SIGN[0]:ON:1:1:::-1:(0):"="-> "".
MAPPED:Value[0]:ON:1:1:::-1:(0):"""-"""-> "T".
MAPPED:used[0]:OF:1:1:::-1:(0):"used"--> "="T"".
MAPPED:AttSet[0]:AS:0:1:::-1:(0)-> " genre = "ISBN1234567" 
used="T"".
MAPPED:Data[0]:OF:0:-1:"\[^<\]\*"::-1:(0)-> "STC Document 
Department
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "
MAPPED:DataSection[0]:ON:0:1:::-1:(0):">"-"</name>"-> "
MAPPED:Container[0]:OF:1:1:::-1:(0)-> ">
MAPPED:name[0]:OF:0:1:::-1:(0):"<name"--> ">
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "".
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "".
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "
MAPPED:DataSection[0]:ON:0:1:::-1:(0):">"-"</author>"-> "
MAPPED:Container[0]:OF:1:1:::-1:(0)-> ">
MAPPED:author[0]:OF:0:-1:::-1:(0):"<author"--> ">
MAPPED:Data[0]:OF:0:-1:"\[^<\]\*"::-1:(0)-> "Monk Programmer's 
Reference Guide
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "
MAPPED:DataSection[0]:ON:0:1:::-1:(0):">"-"</title>"-> "
MAPPED:Container[0]:OF:1:1:::-1:(0)-> ">
MAPPED:title[0]:OF:0:1:::-1:(0):"<title"--> ">
MAPPED:Data[0]:OF:0:-1:"\[^<\]\*"::-1:(0)-> "$200.00
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "
MAPPED:DataSection[0]:ON:0:1:::-1:(0):">"-"</price>"-> "
MAPPED:Container[0]:OF:1:1:::-1:(0)-> ">
MAPPED:price[0]:OF:0:1:::-1:(0):"<price"--> ">
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "
MAPPED:DataSection[0]:ON:0:1:::-1:(0):">"-"</book>"-> "
MAPPED:Container[0]:OF:1:1:::-1:(0)-> " >
MAPPED:book[0]:OF:0:-1:::-1:(0):"<book"--> " genre = "ISBN1234567" 
used="T" >
MAPPED:EQUAL_SIGN[0]:ON:1:1:::-1:(0):"="-> "".
MAPPED:Value[0]:ON:1:1:::-1:(0):"""-"""-> "F".
MAPPED:used[0]:OF:1:1:::-1:(0):"used"--> "="F"".
MAPPED:EQUAL_SIGN[0]:ON:1:1:::-1:(0):"="-> "".
MAPPED:Value[0]:ON:1:1:::-1:(0):"""-"""-> "ISBN7654321".
MAPPED:genre[0]:OF:1:1:::-1:(0):"genre"--> "="ISBN7654321"".
MAPPED:AttSet[0]:AS:0:1:::-1:(0)-> " used="F" 
genre="ISBN7654321"".
MAPPED:Data[0]:OF:0:-1:"\[^<\]\*"::-1:(0)-> "Stc
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "
MAPPED:DataSection[0]:ON:0:1:::-1:(0):">"-"</first-name>"-> "
MAPPED:Container[0]:OF:1:1:::-1:(0)-> ">
MAPPED:first-name[0]:OF:0:-1:::-1:(0):"<first-name"--> ">
MAPPED:Data[0]:OF:0:-1:"\[^<\]\*"::-1:(0)-> "Writer #1
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "
MAPPED:DataSection[0]:ON:0:1:::-1:(0):">"-"</last-name>"-> "
MAPPED:Container[0]:OF:1:1:::-1:(0)-> ">
MAPPED:last-name[0]:OF:0:-1:::-1:(0):"<last-name"--> ">
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "
MAPPED:DataSection[0]:ON:0:1:::-1:(0):">"-"</author>"-> "
MAPPED:Container[0]:OF:1:1:::-1:(0)-> ">
MAPPED:author[0]:OF:0:-1:::-1:(0):"<author"--> ">
MAPPED:Data[0]:OF:0:-1:"\[^<\]\*"::-1:(0)-> "$100.00
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "
MAPPED:DataSection[0]:ON:0:1:::-1:(0):">"-"</price>"-> "
MAPPED:Container[0]:OF:1:1:::-1:(0)-> ">
MAPPED:price[0]:OF:0:1:::-1:(0):"<price"--> ">
MAPPED:Data[0]:OF:0:-1:"\[^<\]\*"::-1:(0)-> "Editor User's Guide
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "



Chapter 13 Section 13.2
Monk Capabilities and Troubleshooting Monk DTD Converter Troubleshooting

XML Toolkit User’s Guide 120

MAPPED:DataSection[0]:ON:0:1:::-1:(0):">"-"</title>"-> "
MAPPED:Container[0]:OF:1:1:::-1:(0)-> ">
MAPPED:title[0]:OF:0:1:::-1:(0):"<title"--> ">
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "
MAPPED:DataSection[0]:ON:0:1:::-1:(0):">"-"</book>"-> "
MAPPED:Container[0]:OF:1:1:::-1:(0)-> ">
MAPPED:book[1]:OF:0:-1:::-1:(0):"<book"--> " used="F" 
genre="ISBN7654321">
MAPPED:DataSet[0]:AS:0:1:::-1:(0)-> "
MAPPED:DataSection[0]:ON:0:1:::-1:(0):">"-"</bookstore>"-> "
MAPPED:Container[0]:OF:1:1:::-1:(0)-> ">
MAPPED:bookstore[0]:OF:1:1:::-1:(0):"<bookstore"--> ">
MAPPED:DataSet[0]:AS:1:1:::-1:(0)-> "<?xml version='1.0' 
encoding="ASCII" ?>
MAPPED:bookstore[0]:OF:1:1:::-1:(0):-> "<?xml version='1.0' 
encoding="ASCII" ?>



Index

XML Toolkit User’s Guide 121

Index

Symbols
$event->xml 111
$event->xml Sample 114
.dtd

Document Type Definition file 17, 20
.ssc

Event Type Definition file (Monk) 17
.xdr 86
.xsc

Event Type Definition file (Java) 17, 20
.xsd 12, 86

XML Schema file 17
XML schema file 20

A
abb 72, 90
access XML Schema 89
accessing the DTD Builder 23
accessing the XML Schema Builder 31
Additional Command Line Arguments 90
Attribute 76, 94
Attribute Set 74, 91
attribute types mapping, DTD 28

B
basic functions

event-send-to-egate 113
Build an Event Type Definition 71, 89, 109
Build tool 71, 89, 108

C
CDATA 74, 91
Command Line Arguments 72, 90
Comment 74, 91
Committing the .xsl File 99
Considerations 117
Container 74, 91
Content 77, 94
conventions, writing in document 13
Converting ETDs to DTDs 12, 86, 107
Creating an XML message dynamically 111

Creating DTD’s 108
Creating XSLT Collaboration Rules 99

D
Data 74, 91
Data Section 74, 91
Data Set 74, 91
Delimiters 77, 94
depth 73, 90, 90
document purpose and scope 11
Document Type Definition (DTD) 16
DTD Builder, description 20
DTD examples 47
DTD overview 16

E
element declarations mapping, DTD 27
Element with Sub-elements 76, 93
Element without Sub-elements 75, 92
Empty 74, 91
Equal Sign 74, 91
ETD Structure 73, 91
ETD structure 92
event-send-to-egate 113
expanded 73, 91
Extensible Markup Language (XML) 16
Extensible Stylesheet Language 98

F
facilitator nodes 73, 91
Frequently Asked Questions 118
functions

event-send-to-egate 113

G
General 77, 94
generated classes, XML schema 35

H
HTML 16

I
identifier mapping, DTD 21
Implementing the XSLT Collaboration Service 104
installation

Windows 18
Installation Procedure 18



Index

XML Toolkit User’s Guide 122

installation procedure
Windows 18

intended audience, document 11
Introduction 16, 20

J
Java 20
Java mapping

DTD Builder 21, 27
XML Schema Builder 34

Java packages, XML schema 35

L
Library Converter 72, 90
log.txt 115

M
Mapping 78
Mapping for Attributes 79
Mapping for Elements 78
Mapping for Occurrence 80
Mapping for Sub-elements 79
mapping of complexType data types, XML schema 
35
mapping of elements, XML schema 45
mapping of simpleType data types, XML schema 
(W3C 2000 specifications)

additional Java mapping 42
standard Java mapping 41

mapping of simpleType data types, XML schema 
(W3C 2001 specifications)

additional Java mapping 38
standard Java mapping 36

Monk function
$event->xml 111

MSXML3 Parser Technology Preview Release 98
mysscmsg.ssc 114

N
noattlist 73, 91
nocdata 73
node

child 92
parent 92

Node Property Sheet 77, 94
nsattr 91

O
Object-oriented tools 111
organization of information, document 12

P
Pre-installation 18
property mapping, DTD 21

R
Registry APIs for XML Schema Metadata

overview 57
package contents and setup 58
sample implementations 63
using the APIs 59

Repetition 77, 94
root 73, 91
running the DTD Builder 24
running the XML Schema Builder 32

S
Sample Conversion 80
SDATA 74, 91
stcregutil 99, 108
stcregutil.exe 99
supported features

XML Schema Builder 45
system requirements 14

T
test.monk 114
trans_set_id_code 118
Transforming XML documents 98
treedepth 73
Troubleshooting 118

U
Understanding the ETD Structure 73, 91
unsupported features

XML Schema Builder 45
using the DTD Builder

accessing 23
running 24

Using the ETD Editor 77, 94
Using the XML DTD Converter 70, 89, 108
using the XML Schema Builder

accessing 31
running 32



Index

XML Toolkit User’s Guide 123

V
Value 74, 91

W
Windows 11, 18, 19, 98, 118
World Wide Web Consortium (W3C) 12, 14, 16, 34, 
35, 36, 41, 86

X
xcomment 73
XML 16
XML Data Reduction format 86
XML DTD Converter 67
XML DTD Generator 107

Implementation 108
XML overview 16
XML Schema 16, 86
XML Schema Builder, description 20
XML Schema Converter 90
XML schema examples 54
XML schema overview 17
XML Toolkit (Java) overview 20
XML Toolkit, general description 17
XMLINST.EXE 98
XSLT Collaboration Service 98

Architecture 98
implementing 104
Initialization string 103
Requirements 98


	XML Toolkit User’s Guide
	Contents
	List of Figures
	List of Tables
	Introduction
	1.1 Document Purpose and Scope
	1.2 Intended Audience
	1.3 Organization of Information
	1.4 Writing Conventions
	1.5 Supported Operating Systems
	1.6 System Requirements
	1.7 External System Requirements
	XML Schema Standards


	XML Toolkit Overview
	2.1 Introduction to XML
	2.1.1 DTD Overview
	2.1.2 XML Schema Overview

	2.2 XML Toolkit Versions
	2.3 Windows Installation
	2.3.1 Pre-installation
	2.3.2 Installation Procedure


	Java XML Toolkit Overview
	3.1 Java XML Toolkit Description
	3.1.1 DTD Builder
	3.1.2 XML Schema Builder

	3.2 Java Mapping
	3.2.1 Identifier Mapping
	3.2.2 Property Mapping


	Java DTD Builder
	4.1 Using the DTD Builder
	4.2 DTD Builder Data Mapping
	4.2.1 Mapping of Element Declarations
	4.2.2 Mapping of Attribute Types

	4.3 Builder Capabilities
	4.3.1 Supported Features
	Namespaces

	4.3.2 Limitations
	Parent Nodes
	Root Nodes
	Ignoring Empty Strings in PCDATA Elements
	Empty Element Tags



	Java XML Schema Builder
	5.1 Using the XML Schema Builder
	5.2 XML Schema Versions: Java
	5.3 XML Schema Builder Data Mapping
	5.3.1 Generated Classes
	5.3.2 Java Packages
	5.3.3 Mapping of complexType Data Types
	5.3.4 Mapping of simpleType Data Types (W3C 2001 Specifications)
	Standard Java Mapping
	Additional Java Mapping
	Mapping of simpleType Data Types (W3C 2000 Specifications)
	Standard Java Classes
	Additional Java Mapping

	5.3.5 Mapping of Elements

	5.4 Builder Capabilities
	5.4.1 Supported Features
	5.4.2 Unsupported Features


	Java Conversion Examples
	6.1 DTD Examples
	6.1.1 Book Sample
	DTD File Before Using the Builder
	Converted File in the ETD Editor Window

	6.1.2 Personnel Record Sample
	DTD File Before Using the Builder
	Converted File in the ETD Editor Window

	6.1.3 Namespace Sample
	DTD File Before Using the Builder
	Converted File in the ETD Editor Window

	6.1.4 Mixed Sample
	DTD File Before Using the Builder
	Converted File in the ETD Editor Window

	6.1.5 Document Sample
	DTD File Before Using the Builder
	Converted File in the ETD Editor Window


	6.2 XML Schema Example
	6.2.1 XML Schema File Before Using the Builder
	6.2.2 Converted File in the ETD Editor Window


	Registry API for XML Schema Metadata
	7.1 Registry API for XML Schemas: Overview
	7.2 Package Contents, Setup, and APIs
	7.2.1 Contents
	7.2.2 System Preparation
	7.2.3 System Setup
	7.2.4 Using the APIs
	connect()
	listEgateSchemas()
	listEgateEventTypes()
	listXMLSchemaFiles()
	close()
	getXMLSchemaData()
	getXMLSchemaFileName()


	7.3 Sample Implementations
	7.3.1 SchemaListRetrieve.java
	7.3.2 EventsRetrieve.java
	7.3.3 GetXMLSchemaFile.java


	Monk DTD Converter
	8.1 Monk XML Toolkit: Introduction
	8.1.1 Using the Monk DTD Converter
	8.1.2 Operational Overview

	8.2 Feature Summary
	8.3 Implementation
	8.3.1 Using the XML DTD Converter
	8.3.2 Command-line Arguments
	8.3.3 Understanding the ETD Structure
	XML Element without Sub-elements
	XML Element with Sub-elements
	XML Attribute

	8.3.4 Using the ETD Editor
	8.3.5 Mapping
	Mapping for Elements
	Mapping for Sub-elements
	Mapping for Attributes
	Mapping for Occurrence

	8.3.6 Sample Conversion


	Monk XML Schema Converter
	9.1 XML Schemas and Monk: Introduction
	9.2 XML Schema Versions: Monk
	9.3 How Monk XML Schema Converter Works
	9.4 Feature Summary
	9.5 Implementation
	9.5.1 Using XML Schema
	9.5.2 Command-line Arguments
	9.5.3 Understanding the ETD Structure
	XML Element without Sub-elements
	XML Element with Sub-elements
	XML Attribute

	9.5.4 Using the ETD Editor
	9.5.5 XML Schema Implementation Examples
	Explanation



	XSLT Collaboration Service
	10.1 Introduction
	10.1.1 Requirements
	10.1.2 Architecture

	10.2 Creating XSLT Collaboration Rules
	10.2.1 Committing .xsl Files to the Registry
	10.2.2 Creating a Collaboration Rule

	10.3 Implementing the XSLT Collaboration Service
	10.4 Sample Conversion

	Monk DTD Generator
	11.1 Introduction
	11.2 Implementation
	11.2.1 Using the XML DTD Generator
	11.2.2 Creating DTDs Using the Monk DTD Generator


	$event->xml Monk Function
	12.1 Introduction
	12.2 How the $event->xml Monk Function Works
	$event->xml

	12.3 $event->xml Example

	Monk Capabilities and Troubleshooting
	13.1 Capabilities
	13.1.1 Monk DTD Converter
	13.1.2 Monk DTD Generator

	13.2 Monk DTD Converter Troubleshooting

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X


