
e*Xchange Partner Manager
Implementation Guide

Release 5.0.5 for Schema Run-time
Environment (SRE)

Copyright © 2005, 2010, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and
are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not
use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this is software or related software documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent
applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you
use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. UNIX is a registered trademark licensed through X/Open
Company, Ltd.

This software or hardware and documentation may provide access to or information on content, products, and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Version 20100608210911.
e*Xchange Partner Manager Implementation Guide 2

Contents
Contents

Contents 3

Chapter 1

Introduction 13
Document Purpose and Scope 13

Intended Audience 13

Writing Conventions 14

Supporting Documents 15

Chapter 2

Business-to-Business Integration 16
An eBI Example 16

How Is eBI different from EAI? 18
Traditional EAI 18
The Emerging eBI Model 18

Meeting the Challenges of eBI 19
Meeting the EAI Challenge 19
Meeting the Trading-Partner Challenge 19
Meeting the Challenge of Using Public Domains 20

The Benefits of eBI 20
Increased Efficiency 20
Tracking Complete Business Transactions 20
Business Model Analysis 20

Chapter 3

e*Xchange Schema Components 21
e*Gate Schema for e*Xchange Components Overview 21

e*Xchange Schema Component Relationships Diagram 24

e*Xchange Partner Manager Components 26
e*Xchange Partner Manager—Internal Components 26
e*Xchange Partner Manager—External Components 26

eX_ePM e*Way 26
e*Xchange Partner Manager Implementation Guide 3

Contents
Configuring the e*Xchange Database Connectivity e*Ways 27
Journal file 28
Using a Java Translation with the eX_ePM e*Way 28
Large Message Support 29
eX_to_ePM Collaboration 29
eX_from_ePM Collaboration 30

eX_ePM_Ack_Monitor e*Way 31
X12, AS2, NCPDP and UN/EDIFACT Acknowledgment Handling 31
RosettaNet and CIDX Acknowledgment Handling 32
Configuring the eX_ePM_Ack_Monitor e*Way 32
eX_Poll_Ack_Mon Collaboration 32

eX_ePM_Batch e*Way 33
Configuring the eX_ePM_Batch e*Way 34
Large Message Support 35
Scaling of eX_ePM _Batch e*Way 35
eX_ePM_Batching Collaboration 35

eX_ePM_Trans_Poll e*Way 36
Configuring the eX_ePM_Trans_Poll e*Way 36
eX_ePM_Transaction_Poll Collaboration 36

eX_Batch_to_Trading_Partner e*Way 37
Configuring the eX_Batch_to_Trading_Partner e*Way 37
eX_Batch_to_Trading_Partner Collaboration 38
eX_from_Batch_to_Trading_Partner Collaboration 38

eX_Https_to_Trading_Partner e*Way 38
Configuring the eX_Https_to_Trading_Partner e*Way 39
eX_Https_to_Trading_Partner Collaboration 40
eX_Https_to_ePM Collaboration 40

eX_Poll_Receive_FTP e*Way 40
Configuring the eX_Poll_Receive_FTP e*Way 41
eX_Poll_Receive_FTP Collaboration 41

eX_Batch_from_Trading_Partner e*Way 41
Configuring the eX_Batch_from_Trading_Partner e*Way 41
eX_Sent_Batch_from_Trading_Partner Collaboration 42
eX_Batch_from_Trading_Partner Collaboration 42

eX_Mux_from_Trading_Partner e*Way 43
Configuring the eX_Mux_from_Trading_Partner e*Way 43
eX_Mux_from_Trading_Partner Collaboration 45
cgi_Request_Ack_Collab Collaboration 46

eX_POP3_from_Trading_Partner e*Way 46
Configuring the eX_POP3_from_Trading_Partner e*Way 46
eX_POP3_from_Trading_Partner Collaboration 47

eX_SMTP_to_Trading_Partner e*Way 47
Configuring the eX_SMTP_to_Trading_Partner e*Way 47
eX_SMTP_to_Trading_Partner Collaboration 47

Send_to_ePM e*Way 48
Configuring the Send_to_ePM e*Way 49
Send_to_ePM Collaboration 49
Converting Business Application Data to e*Xchange Format 49
e*Xchange-required Tracking Nodes 50

Receive_from_ePM e*Way 50
Configuring the Receive_from_ePM e*Way 50
Receive_from_ePM Collaboration 50

ewHipaaValidation e*Way 51
eX_from_Trading_Partner e*Way 51
e*Xchange Partner Manager Implementation Guide 4

Contents
Configuring the eX_from_Trading_Partner e*Way 52
eX_from_Trading_Partner Collaboration 52

Chapter 4

Using the Monk e*Xchange ETD 53
ETD Structure 53

XML Element with Sub-elements 54
XML Element without Sub-elements 54
XML Attribute 55

Element Overview 55
Example: XML Element with Sub-elements 56
Example: XML Element with Attributes 57

Using the ETD in e*Xchange 58
TP_EVENT 58

Sending Data to e*Xchange 62
Put the Data into the Required Format 62
Convert the Event to Base 64 Encoding 62
Populate the Required e*Xchange Nodes 63

Chapter 5

Using the Java e*Xchange ETD 65
Understanding the Java e*Xchange ETD 65

Element Overview 65
Using the ETD with e*Xchange 66

TP_EVENT 66

Sending a Message to e*Xchange 69
Populate the Required e*Xchange Nodes 70

Chapter 6

Implementation Overview 72
Basic Information 72

Types of e*Xchange Implementations 72

Implementation Road Map 72
Step 1: Determine the Scope of the Project 73
Step 2: Create Trading Partner Profiles 74
Step 3: Copy the eXSchema 74
Step 4: Configure the e*Gate Components 75
Step 5: Test and Tune the System 75
e*Xchange Partner Manager Implementation Guide 5

Contents
Chapter 7

e*Xchange Implementation—X12 76
Overview 76

Case Study: Sending an X12 850 Purchase Order 76

Using the Implementation Sample 79

Create Necessary Validation Collaborations 80
Create the SEF File 80
Create the Validation Collaboration with the VRB 80

Create the Trading Partner Profiles 82
Trading Partner Information Hierarchy 82

The Savvy Toy Company Trading Partner 82
Step 1: Create the Company 83
Step 2: Create the Trading Partner 83
Step 3: Set Up the B2B Protocol Information 84
Step 4: Create the Message Profile 85

Clone the eXSchema 86

Configure the e*Way to Send the Message to e*Xchange 86
The e*Xchange Send_to_ePM e*Way 87

Configuring the Send_to_ePM_Java e*Way 87
Step 1: Edit the Send_to_ePM_Java e*Way Configuration File 87
Step 2: Create the Send_to_ePM_Java ETDs 87
Step 3: Create the Send_to_ePM_Java Collaboration Rule and Collaboration Rule Script 88
Step 4: Create the Send_to_ePM_Java Collaboration 89

Configuring the Send_to_ePM_Monk e*Way 90
Step 1: Edit the Send_to_ePM_Monk e*Way Configuration File 90
Step 2: Create the Send_to_ePM_Monk ETDs 91
Step 3: Create the Send_to_ePM_Monk Collaboration Rules Script 91
Step 4: Create the Send_to_ePM_Monk Collaboration Rule 91
Step 5: Create the Send_to_ePM_Monk Collaboration 92

Configure the eX_ePM e*Way 93

Configure Any Other e*Gate Components 94

Run and Test the e*Xchange Scenario 94
Viewing the Results in Message Tracking 95

Editing the Data File 95

Chapter 8

e*Xchange Implementation—UN/EDIFACT 96
Overview 96

Case Study: Sending an UN/EDIFACT Purchase Order 96

Using the Implementation Sample 99

Create the Trading Partner Profiles 100
e*Xchange Partner Manager Implementation Guide 6

Contents
Trading Partner Information Hierarchy 100
The Car Interiors Trading Partner 100

Step 1: Create the Company 101
Step 2: Create the Trading Partner 102
Step 3: Set up the Inbound B2B Protocol Information 102
Step 4: Create the Inbound Message Profiles 103
Step 5: Set up outbound B2B Protocol Information 105
Step 6: Create the Outbound Message Profiles 105
Step 7: Configure Return Messages for Inbound 108

Clone the eXSchema 108

Configure the TP_Order_Feeder e*Way 108
The e*Xchange TP_Order_Feeder e*Way 109

Step 1: Create and configure the TP_Order_Feeder e*Way 109
Step 2: Create the TP_Order_Feeder ETDs 110
Step 3: Create the TP_Order_Feeder Collaboration 110

Convert the Event to Base 64 Encoding 110
Populate the Required e*Xchange Nodes 110
The e*Xchange TP_Order_Feeder CRS 111
TP_Order_Feeder Collaboration Properties Setup 112

Configure the Internal_Order_Eater e*Way 114
The e*Xchange Internal_Order_Eater e*Way 114

Step 1: Create and Configure the Internal_Order_Eater e*Way 114
Step 2: Create the Internal_Order_Eater Collaboration 115

The e*Xchange Internal_Order_Eater CRS 115
Internal_Order_Eater Collaboration Properties Setup 116

Configure the eX_ePM e*Way 117

Editing the Data Files 118

Running the Scenario 119
Viewing the Results in Message Tracking 119

Sending the Response 121

Configure the Internal_OrderResponse_Feeder e*Way 123
The e*Xchange Internal_OrderResponse_Feeder e*Way 123

Step 1: Create and Configure the Internal_OrderResponse_Feeder e*Way 123
Step 2: Create the Internal_OrderResponse_Feeder Collaboration 124

The e*Xchange Internal_OrderResponse_Feeder CRS 124
Internal_OrderResponse_Feeder Collaboration Properties Setup 125

Sending and Viewing the Response Message 126
Viewing the Results in Message Tracking 127

Receiving a Control Message from the Trading Partner 128
Editing the Data File 128
Preparing the Data File 128
Copying the Response Control Numbers 128
Incrementing the UNB/UNZ Control Numbers 129
Sending and Viewing the Control Message 130
e*Xchange Partner Manager Implementation Guide 7

Contents
Chapter 9

e*Xchange Implementation—RosettaNet 132
Overview 132

Case Study: Sending a RosettaNet Purchase Order 132

Using the Implementation Sample 136

Create the Trading Partner Profiles 137
Trading Partner Information Hierarchy 137

The Retailer Company 137
Step 1: Create the Wholesaler Company 138
Step 2: Create the Wholesaler Trading Partner 139
Step 3: Set Up Inbound B2B Protocol Information (Wholesaler TP) 139
Step 4: Create the Inbound Message Profiles (Wholesaler TP) 140
Step 5: Set Up Outbound B2B Protocol Information (Wholesaler TP) 142
Step 6: Create the Outbound Message Profiles (Wholesaler TP) 142
Step 7: Configure Return Messages for Inbound (Wholesaler TP) 144

The Wholesaler 145
Step 1: Create the Retailer Company 146
Step 2: Create the Retailer Trading Partner 146
Step 3: Set Up Inbound B2B Protocol Information (Retailer TP) 146
Step 4: Create the Inbound Message Profiles (Retailer TP) 147
Step 5: Set Up the Outbound B2B Protocol Information (Retailer TP) 149
Step 6: Set Up the Outbound Message Profiles (Retailer TP) 150
Step 7: Configure Return Messages for Inbound (Retailer TP) 152

Clone the eXSchema 152

Configure the Internal_Order_Feeder e*Way 152
The e*Xchange Internal_Order_Feeder e*Way 153

Step 1: Create and configure the Internal_Order_Feeder e*Way 153
Step 2: Create the Internal_Order_Feeder ETDs 154
Step 3: Create the Internal_Order_Feeder Collaboration 154

Convert the Event to Base 64 Encoding 154
Populate the Required e*Xchange Nodes 154
The e*Xchange Internal_Order_Feeder CRS 155
Internal_Order_Feeder Collaboration Properties Setup 156

Configure the TP_Order_Eater e*Way 158
The e*Xchange TP_Order_Eater e*Way 158

Step 1: Create and configure the TP_Order_Eater e*Way 158
Step 2: Create the TP_Order_Eater Collaboration 159

The e*Xchange TP_Order_Eater CRS 159
TP_Order_Eater Collaboration Properties Setup 160

Configure the TP_Order_Feeder e*Way 161
The e*Xchange TP_Order_Feeder e*Way 161

Step 1: Create and configure the TP_Order_Feeder e*Way 162
Step 2: Create the TP_Order_Feeder Collaboration 162

Convert the Event to Base 64 Encoding 162
Populate the Required e*Xchange Nodes 163
The e*Xchange TP_Order_Feeder CRS 163
TP_Order_Feeder Collaboration Properties Setup 163
e*Xchange Partner Manager Implementation Guide 8

Contents
Configure the Internal_Eater e*Way 165
The e*Xchange Internal_Eater e*Way 165

Step 1: Create and configure the Internal_Eater e*Way 165
Step 2: Create the Internal_Eater Collaboration 166

Internal_Eater Collaboration Properties Setup 166

Configure the Internal_Response_Feeder e*Way 167
The e*Xchange Internal_Response_Feeder e*Way 167

Step 1: Create and configure the Internal_Response_Feeder e*Way 168
Step 2: Create the Internal_Response_Feeder Collaboration 168

Convert the Event to Base 64 Encoding 169
Populate the Required e*Xchange Nodes 169
The e*Xchange Internal_Response_Feeder CRS 169
Internal_Response_Feeder Collaboration Properties Setup 170

Configure the TP_Response_Eater e*Way 172
The e*Xchange TP_Response_Eater e*Way 172

Step 1: Create and configure the TP_Response_Eater e*Way 172
Step 2: Create the TP_Response_Eater Collaboration 173

The e*Xchange TP_Response_Eater CRS 173
TP_Response_Eater Collaboration Properties Setup 174

Configure the TP_Response_Feeder e*Way 175
The e*Xchange TP_Response_Feeder e*Way 175

Step 1: Create and Configure the TP_Response_Feeder e*Way 176
Step 2: Create the TP_Response_Feeder Collaboration 176

Convert the Event to Base 64 Encoding 176
Populate the Required e*Xchange Nodes 177
The e*Xchange TP_Response_Feeder CRS 177
TP_Response_Feeder Collaboration Properties Setup 177

Configure the eX_ePM e*Way 179

Running the Scenario 180
Viewing the Results in Message Tracking 182

Sending the Response 184
Viewing the Results in Message Tracking 184

Editing the Data Files 186

Chapter 10

e*Xchange Implementation—CIDX 188
Overview 188

CIDX Inbound 189
e*Xchange Profiles for CIDX Inbound 189
B2B Protocol settings for CIDX Inbound 189

General 190
Transport Component 190
Message Security 190

Message Profile settings for CIDX Inbound 191
General 191
Preamble 192
e*Xchange Partner Manager Implementation Guide 9

Contents
Service Header 192
Return Messages 194
CIDX Inbound Required Values 194
Processing CIDX Inbound within e*Xchange 195
e*Ways for e*Xchange Inbound messages 199

CIDX Outbound 199
e*Xchange Profiles for CIDX Outbound 199
B2B Protocol settings for CIDX Outbound 200

General 200
Transport Component 200
Message Security 201

Message Profile settings for CIDX Outbound 201
General 201
Preamble 202
Service Header 203
Return Messages 205

CIDX Outbound Required Values 205
Processing CIDX Outbound within e*Xchange 206
e*Ways for e*Xchange Outbound messages 215
CIDX Ack Monitor 215

CIDX Sample 215

Using the Implementation Sample 215

Running the Scenario 216
Viewing the Results in Message Tracking 217

Chapter 11

e*Xchange Implementation—AS2 219
Overview 219

Using the Implementation Sample 220
Running the Scenario 220

Viewing the Results in Message Tracking 221

Chapter 12

e*Xchange Implementation—NCPDP 222
Overview 222

Using the Implementation Sample 222
Running the Scenario 223

Viewing the Results in Message Tracking 224
e*Xchange Partner Manager Implementation Guide 10

Contents
Chapter 13

Advanced Configuration 225
Manually Creating a Validation Rules Collaboration 225

Creating a Validation Rules Collaboration for X12 or UN/EDIFACT 225
Creating the Validation ETD 225
Creating the Validation Collaboration 226

Creating a Validation Rules Collaboration for RosettaNet 228
Using the util-add-to-error function 229
Predefined Validation Scripts 230

Adding a Custom Protocol 230
Adding a Custom Protocol for X12 or UN/EDIFACT 230

Step 1: Add a Comm Protocol to the Code Table 231
Step 2: Add an Event Type for the Protocol 231
Step 3: Update eX_from_ePM Collaboration Rule 231
Step 4: Update eX_from_ePM Collaboration 231
Step 5: Update eX_ePM_Send_To_External.monk 232
Step 6: Update eX_from_ePM.tsc 232

Adding a Customer Protocol for RosettaNet 1.1 233
Step 1: Add a Comm Protocol to the Code Table 233
Step 2: Add an Event Type for the Protocol 234
Step 3: Update eX_from_ePM Collaboration Rule 234
Step 4: Update eX_from_ePM Collaboration 234
Step 5: Update eX_ROS_main.dsc 235
Step 6: Update eX_from_ePM.tsc 235
Step 7: Modify ack_mon.dsc 236

Adding a Customer Protocol for RosettaNet 2.0 236
Step 1: Add a Comm Protocol to the Code Table 236
Step 2: Add an Event Type for the Protocol 237
Step 3: Update eX_from_ePM Collaboration Rule 237
Step 4: Update eX_from_ePM Collaboration 237
Step 5: Update eX_ROS_Send_To_Egate.monk 238
Step 6: Update eX_from_ePM.tsc 239

Chapter 14

e*Xchange Partner Manager Functions 240
e*Xchange Helper Monk Functions 241

e*Xchange Functions 248
ux-ack-handler 248
ux-upd-mtrk-ext-data 349
ux-find-if-bat-msgs 357
ux-ret-batch-pro-ids 357
ux-get-req-mtrk-attrib 357
ux-get-msg 358
ux-set-fb-overdue 359
ux-get-reg-info 359
ux-mdn-inb-ack 360
e*Xchange Partner Manager Implementation Guide 11

Contents
Monk Functions Used by the Validation Rules Builder 363
compare-equal 363

e*Xchange MIME Functions 373
util-mime-get-header-value 373

e*Xchange RosettaNet 2.0 Functions 380
eX-ROS20-Generic-To-String 380

e*Xchange Security Functions 418
Operational Groups 418

AS2 Security Functions 433
ePM e*Way for AS2 message resends 448

NCPDP Functions 449
ux-del-ncpdp-batch-rec 449

Chapter 15

Java Helper Methods 457
NameValuePair Class 458

Payload Class 466

TPAttribute Class 478

TP_EVENT Class 490

Appendix A

XML Structure for the e*Xchange Event 555
XML Structure 555

Glossary 557

Index 561
e*Xchange Partner Manager Implementation Guide 12

Chapter 1

Introduction

This guide provides comprehensive information on implementing eBusiness solutions
using the e*Xchange Partner Manager portion of the Oracle eBusiness Integration Suite.
It discusses the essentials of implementing e*Xchange, Business-to-Business
Integration, and the components used in a complete e*Xchange implementation.

This guide also provides detailed information on the e*Xchange architecture and its
core components, as well as the e*Gate schema components that make up an e*Xchange
implementation. Finally, it discusses how e*Xchange and e*Gate work together to
provide a comprehensive toolset for designing, creating, and maintaining a fully
functional eApplication.

1.1 Document Purpose and Scope
This guide explains how to use the e*Xchange Partner Manager, including:

Understanding the e*Xchange schema components.

Functions and methods available to the user

This guide gives you the necessary background and methodology for getting an
e*Xchange system up and running in a real-world situation. To do this, it provides
detailed information on the e*Gate schema that e*Xchange uses as its back end and
explains the various areas requiring configuration. This guide also contains several
detailed case studies showing how to implement various features built into e*Xchange,
such as how to send secure transactions.

1.2 Intended Audience
The reader of this guide is presumed to be a developer or system administrator with
responsibility for developing or maintaining the e*Xchange system. You should have
experience of Windows and UNIX operations and administration, and should be
thoroughly familiar with Windows-style GUI operations.

Since most of the work in an e*Xchange implementation involves setting up the e*Gate
components that send data into and out of the e*Xchange system, you should also have
experience implementing e*Gate.
e*Xchange Partner Manager Implementation Guide 13

Chapter 1 Section 1.3
Introduction Writing Conventions
Note: Please refer to the e*Gate Integrator User’s Guide or the e*Gate Integrator
System Administrator’s Guide for specific information about e*Gate
configuration and administration information.

1.3 Writing Conventions
The writing conventions listed in this section are observed throughout this document.

Hypertext Links

When you are using this guide online, cross-references are also hypertext links and
appear in blue text as shown below. Click the blue text to jump to the section.

For information on these and related topics, see “Supporting Documents” on
page 15.

Command Line

Text to be typed at the command line is displayed in a special font as shown below.

java -jar ValidationBuilder.jar

Variables within a command line are set in the same font and bold italic as shown
below.

stcregutil -rh host-name -un user-name -up password -sf

Code and Samples

Computer code and samples (including printouts) on a separate line or lines are set in
the command-line font as shown below.

Configuration for BOB_Promotion

However, when these elements (or portions of them) or variables representing several
possible elements appear within ordinary text, they are set in italics as shown below.

path and file-name are the path and file name specified as arguments to -fr in the
stcregutil command line.

Notes and Cautions

Points of particular interest or significance to the reader are introduced with Note,
Caution, or Important, and the text is displayed in italics, for example:

Note: The Actions menu is only available when a Properties window is displayed.

User Input

The names of items in the user interface such as icons or buttons that you click or select
appear in bold as shown below.

Click Apply to save, or OK to save and close.
e*Xchange Partner Manager Implementation Guide 14

Chapter 1 Section 1.4
Introduction Supporting Documents
File Names and Paths

When names of files are given in the text, they appear in bold as shown below.

Use a text editor to open the ValidationBuilder.properties file.

When file paths and drive designations are used, with or without the file name, they
appear in bold as shown below.

In the Open field, type D:\setup\setup.exe where D: is your CD-ROM drive.

Parameter, Function, and Command Names

When names of parameters, functions, and commands are given in the body of the text,
they appear in bold as follows:

The default parameter localhost is normally only used for testing.

The Monk function iq-put places an Event into an IQ.

After you extract the schema files from the CD-ROM, you must import them to an
e*Gate schema using the stcregutil utility.

1.4 Supporting Documents
The following documents provide additional information about e*Xchange and e*Gate:

Oracle eBusiness Integration Suite Deployment Guide

Oracle eBusiness Integration Suite Primer

e*Xchange Partner Manager User’s Guide

e*Xchange Partner Manager Installation Guide

e*Gate Integrator Alert Agent User’s Guide

e*Gate Integrator Alert and Log File Reference Guide

e*Gate Integrator Collaboration Services Reference Guide

e*Gate Integrator Intelligent Queue Services Reference Guide

e*Gate Integrator System Administration and Operations Guide

e*Gate Integrator User’s Guide

Monk Developer’s Reference

Standard e*Way Intelligent Adapters User’s Guide
e*Xchange Partner Manager Implementation Guide 15

Chapter 2

Business-to-Business Integration

Electronic Business-to-Business Integration, or eBusiness Integration (eBI), does more
than allow one business to send electronic documents to another. eBI automates and
integrates the entire business supply chain so that a business process that uses external
trading partners can be managed as a single process. In moving from intra-business to
inter-business, the integrator must overcome several challenges, most of which stem
from the need to use infrastructure that is outside one’s control. Once these challenges
are overcome, the enterprise can manage the entire end-to-end business process and
extend the proven planning and cost savings abilities of Enterprise Application
Integration (EAI) to the larger world of eBI.

2.1 An eBI Example
The need to integrate a number of trading partners is an essential requirement in the
realm of internet retailing. For example, consider a Web retailer that sells sports
equipment online. This retailer sets up an electronic storefront that allows a customer to
browse an online catalog of items and place orders for them. After securing payment
via credit card, the items are shipped to the customer, along with the status of the order.
Figure 1, on the next page, shows a flow chart of the Web retailer’s business process
outlining the steps involved in a typical transaction.
e*Xchange Partner Manager Implementation Guide 16

Chapter 2 Section 2.1
Business-to-Business Integration An eBI Example
Figure 1 Web Retailer Business Process

Three out of the five steps in this business process (checking credit, stock availability,
and shipping to the customer) are outside the Web retailer’s enterprise. However, from
the customer’s point of view, the entire transaction is handled by the online retailer. The
Web retailer’s business model depends on the efficient use of trading partners to fulfill
parts of the business transaction that he does not handle directly. Figure 2 shows the
interrelationships between the retailer and the trading partners.

Figure 2 Trading Partner Relationships

Yes

Ship Order

Credit OK?

In Stock?

Receive Order

Send Order
Status

No

No

Yes

End-to-End Supply Chain

Partner A
(Credit Card
Company)

Partner B
(Supplier)

Partner C
(Shipper)

Customer Web
Retailer

Order

Order
Status

Credit
Check

Response

Purchase
Order

Invoice

Product Delivered

Product
Shipped

Carrier Invoice
e*Xchange Partner Manager Implementation Guide 17

Chapter 2 Section 2.2
Business-to-Business Integration How Is eBI different from EAI?
The goal of eBI is to successfully integrate the trading partner relationships into the
overall business process in order to create a composite eApplication.

2.2 How Is eBI different from EAI?
The necessity to coordinate the information systems of multiple trading partners
outside one’s own control is the main difference between eBusiness Integration and
traditional EAI.

2.2.1 Traditional EAI
Traditional Enterprise Application Integration focused on getting a company’s in-house
business management software applications to work together, and on improving
business process efficiency by sharing data. Data sharing also made possible timely
planning and analysis, which made businesses more efficient.

EAI became necessary because the specialized nature of the various tasks involved in
running a business gave rise to a compartmentalized approach to handling them.
Consequently, businesses often divided up the work load into departments, with each
department in charge of accomplishing a specific business task. For example, the sales
department took orders, the finance department received payments, the warehouse
stored goods and prepared the orders, and the shipping department delivered the
goods to the customer.

Each department in turn had its own computer system for keeping track of the data for
which it was responsible, and periodically prepared reports to be used by the people
entrusted with planning for the business as a whole. These stand-alone departmental
systems usually could not communicate well with each other, because each had unique
requirements for how they handled data. This inability to share data limited
inter-departmental planning or business level planning, and any suggestions for
business improvement had to wait for each department’s reports to be produced,
combined together, and reconciled.

EAI solutions improved business integration dramatically. By allowing the
departmental applications to share data, EAI solutions made it possible to model the
entire process of a business from order taking to order fulfillment, and provided the
glue to hold all the pieces of the process together. Moreover, business planners could
now do real-time analysis of how a business was doing across all its departments and
divisions, in whatever detail was required.

2.2.2 The Emerging eBI Model
eBI essentially performs the same kind of integration as EAI, but at a higher level.
Instead of integrating departments, it integrates trading partners. Because these trading
partners are autonomous businesses, the integration itself must be more flexible and
based on cooperation. Moreover, this integration needs to use the public electronic
infrastructure such as the Internet and Value Added Networks (VANs), and established
business protocols such as X12, UN/EDIFACT, RosettaNet, and CIDX, that any
e*Xchange Partner Manager Implementation Guide 18

Chapter 2 Section 2.3
Business-to-Business Integration Meeting the Challenges of eBI
business can utilize. The challenge for businesses implementing an eBI model of
integration is to find ways to achieve the same level of business process tracking and
planning that are gained with EAI, within this looser structure.

2.3 Meeting the Challenges of eBI
As the logical next step in business integration, eBI faces all the challenges faced by
traditional EAI, with two other important additions:

It must support autonomous trading partners

It must be able to use the public electronic infrastructure

2.3.1 Meeting the EAI Challenge
Given the vast range of ways to exchange electronic information, so many data formats,
transmission protocols, and different types of software, simply making the connection
between these disparate systems is a significant technological challenge. Once these
disparate components are connected, companies face a further challenge to manage and
monitor the entire system. e*Xchange addresses these issues by using e*Gate, the most
powerful suite of tools for Enterprise Application Integration.

e*Gate’s reliable, flexible, scalable, and distributed architecture, combined with data
transformations, enables you to manipulate data whenever, wherever, and however
you wish. This solid base, combined with the wide range of e*Way communication
adapters that can exchange data between almost any software and hardware, means
that much of the work of integration and implementation has already been done for
you.

2.3.2 Meeting the Trading-Partner Challenge
In a traditional EAI project, even though you must integrate different computer
systems, you always enjoy the security of knowing that ultimately you have control of
the entire composite system. Unfortunately, you do not enjoy this same sense of control
within an eBI configuration; there are autonomous entities outside your enterprise—
and outside your control.

Fortunately, there are standards that provide “rules of engagement” between entities in
an eBI chain: the well established eBusiness protocols such as X12, UN/EDIFACT,
RosettaNet, and CIDX, which any business can use to exchange electronic business
documents. By supporting these standards, e*Xchange gives you a powerful way to
integrate beyond your enterprise. e*Xchange includes built-in support for the standard
versions of X12, UN/EDIFACT, RosettaNet, and CIDX, and includes a tool for building
customized versions of some of these standards for your particular industry.
e*Xchange Partner Manager Implementation Guide 19

Chapter 2 Section 2.4
Business-to-Business Integration The Benefits of eBI
2.3.3 Meeting the Challenge of Using Public Domains
The implementation of a traditional EAI project occurs behind the safety of a
company’s firewall. This type of isolated integration environment is unavailable in an
eBI implementation. Just as every business must use the existing public transportation
infrastructure to move its physical goods to market, so too must an eBusiness use the
public Internet and Value Added Networks open to every business.

Public networks provide opportunities for unauthorized users to access your sensitive
data. e*Xchange uses safe and secure ways to carry on electronic commerce, and
includes support for sending encrypted messages over secure channels. By using a
combination of the proven public-key approach for sending secure messages over
unsecured channels, and support for the HTTPS protocol for securely connecting two
computers, e*Xchange has features that make eBusiness safe and secure.

2.4 The Benefits of eBI
Despite its challenges, eBI has definite benefits:

Increased efficiency

The ability to track an individual business transaction through the entire supply
chain

The ability to analyze your business model

2.4.1 Increased Efficiency
Sharing data electronically vastly increases efficiency. Every paper-based transfer of
information brings with it the risk of introducing error and inefficiency. Every time
business data is re-entered into another system by hand, the cost of doing so is added to
the transaction, as is the cost of correcting the errors that this type of transfer inevitably
creates.

There is also a latency problem in getting the data to its intended destination; even with
“overnight delivery,” the time it takes a paper transaction to be delivered physically is
significantly longer than the time it takes to deliver it electronically.

2.4.2 Tracking Complete Business Transactions
By tying all the trading partners that handle steps in your business process into a single
end-to-end configuration, you can track the entire business transaction from beginning
to end.

2.4.3 Business Model Analysis
Because you can track the entire business process from end to end, you can analyze,
over time, how your model is performing. You can identify bottlenecks and make
intelligent decisions about how to improve your process.
e*Xchange Partner Manager Implementation Guide 20

Chapter 3

e*Xchange Schema Components

The purpose of this chapter is to describe the e*Gate components provided with the
eXSchema, as well as those that are added in the implementation process, and discuss
how each fits into and supports a working e*Xchange implementation.

The e*Gate schema for e*Xchange is the e*Gate schema that implements a particular
e*Xchange installation. The starting point is the eXSchema created when you install the
e*Gate schema for e*Xchange from the installation CD. This schema contains a number
of pre-configured and partially pre-configured e*Gate components used by e*Xchange.

In addition to the components that are provided on the CD, a complete e*Xchange
implementation requires several other e*Gate components that are added to the
e*Xchange schema during the implementation process.

The pre-configured components that are used, as well as the additional e*Gate
components that are added to make up the final working e*Xchange schema, depends
entirely on the specifics of the implementation.

For each component there is a detailed drawing showing the other components with
which it interacts as well as the publication and subscription information for its
Collaborations. In addition, for each component we discuss: the type of component it is,
its function in e*Xchange, any configuration you must perform, the Collaborations it
uses, and what is contained in the Events it processes.

3.1 e*Gate Schema for e*Xchange Components Overview
Table 1 lists all of the component types used by e*Xchange. It lists the components that
are provided as part of the e*Gate schema for e*Xchange (eXSchema) installation, and
also the components that the user adds in the implementation process. The meaning of
the column headings is as follows.

Component—The e*Gate logical name for the component. Italics indicates that the
name varies by association or is user-defined.

Description—A brief description of what the component does in e*Xchange.

In Default eXSchema—Whether or not this component is provided as part of the
e*Gate Schema for e*Xchange.

Configuration Required—Most of the components in the default eXSchema require
little configuration on your part. Table 1 uses the following terms to describe the
level of configuration required:
e*Xchange Partner Manager Implementation Guide 21

Chapter 3 Section 3.1
e*Xchange Schema Components e*Gate Schema for e*Xchange Components Overview
No—The component does not require any configuration or programming on
your part.

Minor—You must add the e*Xchange database connection information to the
configuration file.

Some—You must make additional changes to the configuration file beyond
providing the e*Xchange database connection information.

Yes—The component is mostly or entirely user-defined and must be configured
and programmed by you.

More Information—A cross reference to the section that describes this component
in detail.
e*Xchange Partner Manager Implementation Guide 22

Chapter 3 Section 3.1
e*Xchange Schema Components e*Gate Schema for e*Xchange Components Overview
Table 1 e*Xchange Component Types

Component Description In Default
eXSchema?

Configuration
Required?

More
Information

eX_ePM e*Way Handles the tracking, validating, security, and
enveloping of Events sent to and from
trading partners.

Yes Minor 3.2.1 on
page 26

eX_ePM_Ack_Monitor
e*Way

Handles the process of resending to trading
partner Events, when no acknowledgment
has been received. For AS2, NCPDP, X12 and
UN/EDIFACT, this e*Way sends the message
to a staging area.RosettaNet and CIDX
send the message out to the queue.

Yes Minor 3.2.2 on
page 31

eX_ePM_Batch
e*Way

Handles the process of bundling together
transactions to be sent out as a group to a
single trading partner.

Yes Minor 3.2.3 on
page 33

eX_ePM_Trans_Poll
e*Way

For NCPDP, AS2, X12 and UN/EDIFACT,
handles the process of sending out
interactive Events that require
acknowledgments. This is also used for
resend messages from the Web Interface.

Yes Minor 3.2.4 on
page 36

eX_Batch_to_Trading_
Partner e*Way

Sends out Events to trading partners in batch
(FTP) mode.

Yes No 3.2.5 on
page 37

eX_Https_to_
Trading_ Partner e*Way

Sends out Events to trading partners using a
secure HTTPS (encrypted) or insecure HTTP
(not encrypted) communication protocol.

Yes No 3.2.6 on
page 38

eX_Poll_Receive_FTP Polls the e*Xchange database for
information on trading partners in batch
(FTP) mode. This information is passed
to the eX_Batch_From_Trading_Partner
e*Way.

Yes Minor 3.2.7 on
page 40

eX_Batch_From_Trad
ing_Partner e*Way

Receives Events from trading partners in
batch (FTP) mode.

Yes Minor 3.2.8 on
page 41

eX_Mux_from_
Trading_Partner e*Way

Sends and receives Events from trading
partners using a Web server.

Yes No 3.2.9 on
page 43

eX_POP3_from_
Trading_ Partner e*Way

Receives events via email. Yes No 3.2.10 on
page 46

eX_SMTP_to_
Trading_ Partner e*Way

Sends out Events to trading partners via
email.

Yes No 3.2.11 on
page 47

Send_to_ePM e*Way Prepares Events coming from a business
application for processing by e*Xchange.

Yes Yes 3.2.12 on
page 48

Receive_from_ePM
e*Way

Prepares Events coming from e*Xchange for
use by a business application.

Yes Yes 3.2.13 on
page 50

ewHipaaValidation
e*Way

Serves as a placeholder for the HIPAA
Java Collaboration Rules.

No Yes 3.2.14 on
page 51

eX_from_Trading
_Partner e*Way

Prepares Events coming from trading
partners for processing by e*Xchange.

No Yes 3.2.15 on
page 51
e*Xchange Partner Manager Implementation Guide 23

Chapter 3 Section 3.1
e*Xchange Schema Components e*Gate Schema for e*Xchange Components Overview
3.1.1 e*Xchange Schema Component Relationships Diagram
Figure 4 on the next page illustrates the relationships among the e*Xchange schema
components. Figure 3 provides a legend for Figure 4. Not every e*Xchange
implementation uses all of these components.

Some of the components shown are not provided as part of the e*Gate schema for
e*Xchange installation from the CD. These components are shown in light blue and
must be added to the base e*Xchange schema, as needed.

Figure 3 e*Xchange Overview Legend

Database

GUI

BOB

e*Way

Intelligent
Queue

Component connection
with arrow indicating
direction of data flow

External
to eX system

Medium
Gray

Light Blue Not in default
eXSchema

Multiple components
of a similar type
e*Xchange Partner Manager Implementation Guide 24

Chapter 3 Section 3.1
e*Xchange Schema Components e*Gate Schema for e*Xchange Components Overview
Figure 4 e*Xchange Components

eX_ePM_
Ack_Monitor

e*Way

eX_ePM
e*Way

eX_Batch_to_
Trading_Partner

e*Way

Send_
to_ePM
e*Way

Receive_
from_ePM

e*Way

eX_ePM_
Batch
e*Way

e*Xchange
GUIs

eX_ePM_
Trans_Poll

e*Way

Trading Partner

Business
Application

Trading
Partner

eX_eBPM IQ

e*Xchange
Database

eX_Trading_Port_Queue IQ

eX_Batch_from_
Trading_Partner

e*Way

eX_Https_to_
Trading_Partner

e*Way

eX_Dead_Letter_Queue IQ

eX_POP3_from_
Trading_Partner

e*Way

eX_SMTP_to_
Trading_Partner

e*Way

eX_from_
Trading_Partner

e*Way

eX_Mux_from_
Trading_Partner

e*Way

eX_Poll_
Receive_FTP

e*Way

eX_Dyn_Inb_ftp_Queue
 IQ
e*Xchange Partner Manager Implementation Guide 25

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
3.2 e*Xchange Partner Manager Components
e*Xchange contains the e*Gate components that handle the sending, receiving, and
tracking of messages to and from trading partners. The e*Xchange group is divided into
components that interact internally or with the e*Xchange database and those that
interact with external systems and trading partners.

e*Xchange Partner Manager—Internal Components

eX_ePM e*Way

eX_ePM_Ack_Monitor e*Way

eX_ePM_Batch e*Way

eX_ePM_Trans_Poll e*Way

eX_Poll_Receive_FTP e*Way

All of these components are provided when the e*Gate schema for e*Xchange is
installed. They require only minimal configuration on the part of the user. The
components only require that you provide e*Xchange database logon information in
their configuration files.

e*Xchange Partner Manager—External Components

The e*Xchange—External component contains e*Ways that send data to and receive
data from trading partners and business applications.

eX_Batch_from_Trading_Partner e*Way

eX_Batch_to_Trading_Partner e*Way

eX_HTTPS_to_Trading Partner e*Way

eX_Mux_from_Trading_Partner e*Way

eX_POP3_from_Trading_Partner e*Way

eX_SMTP_to_Trading Partner e*Way

Send_to_ePM e*Way

Receive_from_ePM e*Way

ewHipaaValidation e*Way

eX_from_Trading_Partner e*Way (this is a user-defined component)

3.2.1 eX_ePM e*Way
The e*Xchange e*Way is the main workhorse in the back-end portion of the e*Xchange
Partner Manager. The e*Xchange e*Way:

validates protocol-specific data from trading partners

writes Event data to the database
e*Xchange Partner Manager Implementation Guide 26

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
retrieves trading partner profile information from the database

envelopes the data as required by the destination trading partner

The eX_ePM e*Way is a bidirectional e*Way that communicates with both the
eX_eBPM IQ and the eX_Trading_Port_Queue IQ, as well as the e*Xchange database. It
forms a bridge between the e*Insight side of the e*Xchange system and the e*Xchange
side, receiving Event information both from activity e*Ways and the e*Ways that
communicate directly with trading partners.

The e*Xchange engine prepares outbound Events coming from e*Insight activity e*Ways
to be forwarded to the appropriate trading partner. Conversely, the e*Xchange engine
takes Inbound Events coming into e*Xchange from trading partners and prepares them
to be forwarded to internal systems.

The following diagram illustrates the eX_ePM e*Way.

Figure 5 eX_ePM e*Way Detail

Configuring the e*Xchange Database Connectivity e*Ways

All of the e*Xchange components that communicate with the e*Xchange database are
database connectivity e*Ways. You must edit the configuration files for these e*Ways
and provide the logon information about the e*Xchange database to which they
connect. Table 2 provides information about the required parameters that must be filled
in.

Table 2 Parameter Settings for the e*Xchange Database Connectivity e*Ways

Screen Parameter Setting

General
Settings

(All) (Default)

Communication
Setup

(All) (Default)

eX_to_ePM

eX_External_Evt

eX_External_Evt

eX_ePM
e*Way

eX_from_ePM
Collaboration

eX_to_eBPM

eX_BATCH

e*Xchange
Database

eX_from_Trading_Partner

eX_Trading_
Port_Queue IQ

eX_eBPM
IQ

eX_to_ePM
Collaboration

eX_HTTPS
eX_HTTP

eX_Dead_Letter
_Queue IQ

eX_Error

eX_SMTP
eX_to_MUX
eX_TCPIP
e*Xchange Partner Manager Implementation Guide 27

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
Journal file

In the e*Way configuration settings, you may define an absolute path for the journal file
for the eX_ePM e*Way. The correct format for the path is:

d:\egate\logs\eX_ePM.journal

e*Gate may allow you to enter the path another way and still create the file. However,
e*Xchange will not recognize it and will not write errors to the file. If you notice that
errors are not being written to your journal file, you may want to check the format of
the path.

Using a Java Translation with the eX_ePM e*Way

When using a Java Translation with the eX_ePM e*Way, you must download the files to
the participating host.

1 Create a Java e*Way.

See your e*Gate User’s Manual for instruction on creating an e*Way.

Monk
Configuration

(All) (Default)

Database Setup Database Type Select one of the following:
ODBC for a SQL Server 7, SQL Server 2000 or UDB
Oracle 8 and 8i for an Oracle 8.x database.
Oracle 9i for an Oracle 9.x database.
Microsoft SQL Server 7 and 2000
UDB 7.1 and 7.2

Database
Name

The Database Name is the name the e*Way uses to
connect to the e*Xchange database.

User name This is the database user name, used by the e*Way to
access the e*Xchange database.

Encrypted
Password

This is the password associated with the database
user name the e*Way uses to access the e*Xchange
database. The default password used by e*Xchange
database creation scripts is ex_admin.

Java VM
Configuration

(All) (Default)

Native Stack
Size

Specifies the maximum stack size in bytes for native
threads. The default is 128KB.

Java Stack Size Specifies the maximum stack size in bytes for any
JVM thread. The default is 400KB.

Min. Heap Size Specifies the initial heap size in bytes for the virtual
machine. The default is 1024 KB.

Max. Heap Size Specifies the maximum heap size in bytes for the
virtual machine. The default is 16384KB.

Table 2 Parameter Settings for the e*Xchange Database Connectivity e*Ways

Screen Parameter Setting
e*Xchange Partner Manager Implementation Guide 28

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
2 Create a Collaboration for the Java Translation.

3 Add the Java Translation or Collaboration Rule to the e*Way.

The Java Translation can only have one input and one output.

4 When executing the eX_ePM e*Way, start the Java e*Way containing the
Collaboration Rule.

This can be done from the e*Gate monitor or you can set the Java e*Way to auto-
start.

Large Message Support

Certain HIPAA transactions consist of very large messages, which can cause processing
errors unless the large message feature is in use. e*Xchange provides the ability to
process large HIPAA X12 835 outbound messages in an interactive manner through the
eX_ePM and eX_Batch_to_External e*Ways within the e*Xchange Schema. Large
messages are processed by breaking the messages up into smaller, more manageable
pieces during processing.

You can use large message processing for any size message, however there are a few
considerations:

You cannot view large messages using the Message Tracking feature.

Large message processing uses additional disk space.

Large message processing may slow down processing speed due to the additional
validations performed.

Note: See the HIPAA Implementation Guide for more information on Large Message
support.

eX_to_ePM Collaboration

The eX_to_ePM Collaboration is not user-configurable.

The eX_to_ePM Collaboration retrieves Events to be processed by the e*Xchange
engine from either e*Xchange IQ (eX_eBPM or eX_Trading_Port_Queue), and passes
the information to the database script that writes the data from the Events to the
e*Xchange database.

Events subscribed to by the eX_to_ePM Collaboration must have values populating the
e*Xchange-required nodes in the eX_Standard_Event.ssc ETD used by these Event
Types. These required values include:

Message ID (a unique identifier for the message), if the direction is outbound and
the message does not have a validation check.

Direction (“I” = inbound, “O” = outbound)

Partner Name (must correspond exactly to the Logical Name used in the B2B
Protocol section of the trading partner profile)

These nodes are explained in more detail in “Using the ETD in e*Xchange” on page 58
and in the e*Xchange Partner Manager User’s Guide.
e*Xchange Partner Manager Implementation Guide 29

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
Subscribed Event Types:

eX_from_Trading_Partner—This Event is published by the user-defined e*Ways
that handle the inbound Event traffic from trading partners. The Event’s data must
already be in the XML format required by e*Xchange.

eX_to_ePM—These Events are published either by a Send_to_ePM e*Way (or one
with similar function) or one of the activity e*Ways associated with the e*Insight
business process. The Event’s data must already be in the XML format required by
e*Xchange.

Published Event Type: eX_External_Evt

This Event carries the data to the database script that writes the information to the
e*Xchange database.

eX_from_ePM Collaboration

The eX_from_ePM Collaboration is not user-configurable.

The eX_from_ePM Collaboration retrieves Events prepared by the e*Xchange engine
from the database and publishes them to the appropriate IQ. Events forwarded to
trading partners are published to the eX_Trading_Port_Queue IQ. Events sent to
e*Gate are published to the eX_eBPM IQ.

Subscribed Event Type: eX_External_Evt

This Event carries information retrieved from the e*Xchange database after the data has
been prepared by the e*Xchange engine.

Published Event Types

eX_to_eBPM—This Event contains information from a trading partner to be sent to
e*Xchange. This would be the case, for example, if an activity e*Way required an
acknowledgment from a trading partner before returning the “Done” Event for that
activity.

eX_to_Trading_Partner—This Event contains information that has been prepared
by the e*Xchange engine to be sent to a trading partner.

eX_to_ePM—This Event contains information that has been prepared for
e*Xchange.

eX_HTTPS—This Event contains the enveloped Event along with destination
information.

eX_HTTP—This Event contains the enveloped Event along with destination
information.

eX_Error—This Event contains error information.

Important: You must create an e*Way or BOB that subscribes to eX_Error, otherwise the
eX_ePM e*Way is unable to publish this Event Type.

eX_to_MUX—This Event contains the enveloped Event along with destination
information.
e*Xchange Partner Manager Implementation Guide 30

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
eX_TCPIP—This Event contains the enveloped Event along with destination
information.

eX_SMTP—This Event contains the enveloped Event along with destination
information.

eX_BATCH—This Event contains the enveloped Event along with destination
information.

3.2.2 eX_ePM_Ack_Monitor e*Way
The eX_ePM_Ack_Monitor e*Way is a database connectivity e*Way that monitors the
e*Xchange database for Event acknowledgments that are overdue from trading
partners.

Figure 6 illustrates the eX_ePM_Ack_Monitor e*Way.

Figure 6 eX_ePM_Ack_Monitor e*Way Detail

An acknowledgment is considered overdue if the specified amount of time to wait for
an acknowledgment has passed. This “timeout” is configurable and can be set in the
e*Xchange GUI. The acknowledgment handling is slightly different for each supported
protocol.

X12, AS2, NCPDP and UN/EDIFACT Acknowledgment Handling

When an acknowledgment is overdue, the eX_ePM_Ack_Monitor e*Way determines if
the retry limit (the number of times to retry sending the Event) has been reached. If it
has not, the e*Way places the Event in a “staging area” within the database to be picked
up by the eX_ePM_Trans_Poll e*Way and resent to the trading partner. If the retry limit
has been reached, the e*Way logs information about the transaction and corresponding
error information in the database, and sends an eX_Error Event back to the
eX_Dead_Letter_Queue IQ with “Hit Re-send Limit” in the eX_Standard_Event.

eX_ePM_Ack_Monitor
e*Way

eX_Poll_Ack_Mon
Collaboration

eX_Poll_Ack

eX_External_Evt

eX_SMTP

eX_to_ePM
eX_to_eBPM

e*Xchange
Database

eX_eBPM
IQ

eX_Trading_
Port_Queue IQeX_HTTP

eX_HTTPS

eX_Dead_Letter_
Queue IQ

eX_Error
e*Xchange Partner Manager Implementation Guide 31

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
RosettaNet and CIDX Acknowledgment Handling

The eX_ePM_Ack_Monitor e*Way polls the e*Xchange database for overdue
acknowledgments. If an acknowledgment is overdue and the retry limit for that
message has not been reached, then the original message is resent to the trading
partner. If an acknowledgment is overdue and the retry limit has been exceeded, a
failure notification is sent to both the trading partner and the internal application that
generated the original message.

Resends

eX_ePM_Ack_Monitor retrieves the original message from the e*Xchange database,
increments the retry counter, resigns the message, and then publishes the message to
the eX_Trading_Port_Queue. The message is then picked up and forwarded to the
trading partner.

Failures

eX_ePM_Ack_Monitor e*Way publishes this failure notification using two different
Event Types: eX_to_ePM and eX_to_eBPM. The e*Xchange engine picks up the
eX_to_ePM failure notification, processes it, and then sends it out to the trading partner
via the eX_Trading_Port_Queue IQ. The e*Insight engine picks up the eX_to_eBPM
failure notification and sends it to the internal application.

Configuring the eX_ePM_Ack_Monitor e*Way

The eX_ePM_Ack_Monitor e*Way requires only minor changes to the e*Way’s
configuration file. You must edit this file and provide the information required in the
Database Setup section as shown in Table 2 on page 27.

eX_Poll_Ack_Mon Collaboration

Subscribed Event Type: ex_Poll_Ack

This Event type does not carry any information, since no data is actually extracted from
the database by the database script associated with the eX_ePM_Ack_Monitor e*Way.

Published Event Types:

eX_to_ePM—This Event Type carries the RosettaNet failure notification sent to the
trading partner when the retry message limit has been exceeded.

eX_to_eBPM—This Event Type carries the RosettaNet failure notification sent to
the internal application when the retry message limit has been exceeded.

eX_to_HTTP—This Event Type carries the RosettaNet message that is resent when
an acknowledgment is overdue.

eX_to_HTTPS—This Event Type carries the RosettaNet message that is resent
when an acknowledgment is overdue.

eX_to_SMTP—This Event Type carries the RosettaNet message that is resent when
an acknowledgment is overdue.

eX_Poll_Ack—This Event Type is used by the eX_ePM_Ack_Monitor to
communicate with the e*Xchange database.
e*Xchange Partner Manager Implementation Guide 32

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
eX_Error—This Event contains error information.

Important: You must create an e*Way or BOB that subscribes to eX_Error, otherwise the
eX_ePM_Ack_Monitor e*Way is unable to publish this Event Type.

3.2.3 eX_ePM_Batch e*Way
The eX_ePM_Batch e*Way polls the e*Xchange database for Events being sent to
trading partners using Fast Batch transfer mode or Batch transfer mode (rather than an
Interactive) and prepares them to be sent to the appropriate trading partner. When
multiple Events need to be sent to the same trading partner, the e*Way bundles these
Events together, according to a user-definable bundling scheme, before enveloping
them and publishing them to the eX_Trading_Port_Queue IQ.

Note: This e*Way only acts on Events using X12 or UN/EDIFACT enveloping protocols.
Events using RosettaNet cannot be transmitted in batch mode.

The following diagram illustrates the eX_ePM_Batch e*Way.

Figure 7 eX_ePM_Batch e*Way Detail

Batch Bundling Schemes

There are 3 types of bundling schemes used by the eX_ePM_Batch e*Way:

Fast batch—A set number of Events, all of the same transaction type, are bundled
together and sent to a trading partner.

Per schedule batch—At a set time all the Events destined for a single trading
partner. The Events can be of differing transaction types.

Per interval batch—The e*Way waits a set interval then bundle all the Events
destined for a single trading partner. The Events can be of differing transaction
types.

Whether a particular Event uses batch transfer mode and what type of bundling
scheme is used for a particular batched Event, is set in the message profile. See the
e*Xchange Partner Manager User’s Guide for information on setting up the message
profile to use batch transfer mode.

e*Xchange Event Requirements for Fast Batch

The e*Xchange Event that contains a transaction to be sent to a trading partner using
Fast Batch transfer mode, must have the following name and value pairs configured in
the standard event:

eX_ePM_Batch e*Way

eX_ePM_Batching
CollaborationeX_External_Evt eX_SMTP

e*Xchange
Database

eX_Trading_
Port_Queue IQ

eX_BATCH
eX_HTTP

eX_HTTPS
e*Xchange Partner Manager Implementation Guide 33

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
FB_UNIQUE_ID — this name and value pair sets the fast batch unique ID. All
messages with the same identifier are batched together for processing.

FB_COUNT — this name and the value pair sets the total number of fast batch
records. When e*Xchange receives a fast batch record count equal to or greater than
the value specified in FB_COUNT, or if the fast batch records have exceeded the
timeout period, then the eX_ePM_Batch e*Way sends the batch records to the
trading partner.

Two functions are required for each name and value pair; the first sets the name of the
pair (for example, FB_UNIQUE_ID), and the second sets the value.

The example below shows how to configure both name and value pairs for a single
event that contains multiple messages in the FB_Feeder.Payload node. The unique ID is
the same for every message in the event, and the count is set by counting the number of
messages contained in the event (that is, the number of occurrences of the
FB_Feeder.Payload node). The method that you use to populate the Value nodes
depends on your implementation.

// to set the value in the Name node for the unique ID
(copy-strip "FB_UNIQUE_ID"
~output%eX_Event.DS.eX_Event.CT.DSN.DS.TP_EVENT.CT.DSN.DS.TPAttribute
.CT.DSN.DS.NameValuePair[0].CT.DSN.DS.Name.CT.DSN.DS.Data "")

// to set the actual fast batch unique id value in Value node
(uniqueid
~output%eX_Event.DS.eX_Event.CT.DSN.DS.TP_EVENT.CT.DSN.DS.TPAttribute
.CT.DSN.DS.NameValuePair[0].CT.DSN.DS.Value.CT.DSN.DS.Data)

// to set the value in the Name node for the count
(copy-strip "FB_COUNT"
~output%eX_Event.DS.eX_Event.CT.DSN.DS.TP_EVENT.CT.DSN.DS.TPAttribute
.CT.DSN.DS.NameValuePair[1].CT.DSN.DS.Name.CT.DSN.DS.Data "")

// to set the actual total fast batch record count in the Value Node
(copy-strip (count-rep ~input%FB_Feeder.Payload)
~output%eX_Event.DS.eX_Event.CT.DSN.DS.TP_EVENT.CT.DSN.DS.TPAttribute
.CT.DSN.DS.NameValuePair[1].CT.DSN.DS.Value.CT.DSN.DS.Data "")

Configuring the eX_ePM_Batch e*Way

The eX_ePM_Batch e*Way requires only minor changes to the e*Way’s configuration
file. You must edit this file and provide the information required in the Database Setup
section as shown in Table 2 on page 27.

You can also specify the protocol type of the messages to be batched, if required. The
eBusiness Type is specified in the eBusiness Type Settings section. The available
parameters are:

ALL—All protocol types are retrieved. This is the default setting.

NCPDP—Only NCPDP messages are retrieved.

UN/EDIFACT—Only UN/EDIFACT messages are retrieved.

X12—Only X12 messages are retrieved.
e*Xchange Partner Manager Implementation Guide 34

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
Large Message Support

Certain HIPAA transactions consist of very large messages, which can cause processing
errors unless the large message feature is in use. e*Xchange provides the ability to
process large HIPAA X12 835 outbound messages in an interactive manner through the
eX_ePM and eX_Batch_to_External e*Ways within the e*Xchange Schema. Large
messages are processed by breaking the messages up into smaller, more manageable
pieces during processing.

You can use large message processing for any size message, however there are a few
considerations:

You cannot view large messages using the Message Tracking feature.

Large message processing uses additional disk space.

Large message processing may slow down processing speed due to the additional
validations performed.

Note: See the HIPAA Implementation Guide for more information on Large Message
support.

Scaling of eX_ePM _Batch e*Way

You can create multiple eX_ePM_Batch e*Ways to improve performance. To use
multiple e*Ways you need to modify the configuration. For example, if you want three
eX_ePM_Batch e*Ways you need to create and configure them as follows:

Copy the eX_ePM_Batch e*Way.

Create separate configuration files for each eX_ePM_Batch e*Way.

Open the configuration file for each new e*Way and save with a different name.
Ensure that the e*Way refers to this configuration file, not the original one.

Modify the configuration files, as shown in the Table 3.

Table 3 Configuration File Parameters

The functionality used by each e*Way is a modulo. Therefore, if three e*Ways are used,
any one e*Way picks up every third record.

Important: Do not use this if message sequencing is desired.

eX_ePM_Batching Collaboration

This Collaboration is not user configurable.

e*Way
Number of Batch
eWays Parameter

Batch eWay Instance
Number Parameter

eX_ePM_Batch 3 1

eX_ePM_Batch_0 3 2

eX_ePM_Batch_1 3 3
e*Xchange Partner Manager Implementation Guide 35

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
Subscribed Event Type: eX_External_Evt

The eX_ePM_Batch e*Way uses this Event Type to communicate with the e*Xchange
database.

Published Event Type: eX_To_Trading_Partner, eX_SMTP, eX_HTTP, eX_BATCH, eX_HTTPS

This Event carries the multiple X12 transactions that have been bundled together and
enveloped by the eX_ePM_Batch e*Way.

3.2.4 eX_ePM_Trans_Poll e*Way
The eX_ePM_Trans_Poll e*Way monitors a “staging area” in the database for outbound
Events pending interactive transfer. It uses a database access script (tran_poll.dsc)
called by the Exchange Data With External Function parameter in the e*Way’s
configuration file to retrieve these Events from the e*Xchange database. The
eX_Transaction_Poll Collaboration then publishes the Events to the
eX_Trading_Port_Queue IQ under eX_HTTP, eX_BATCH, eX_SMTP, eX_HTTPS,
eX_to_Mux or eX_to_Trading_Partner Event Type.

Figure 8 illustrates the eX_ePM_Trans_Poll e*Way.

Figure 8 eX_ePM_Trans_Poll e*Way

Configuring the eX_ePM_Trans_Poll e*Way

The eX_ePM_Trans_Poll e*Way requires only minor changes to the e*Way’s
configuration file. You must edit this file and provide the information required in the
Database Setup section as shown in Table 2 on page 27.

eX_ePM_Transaction_Poll Collaboration

This is a Collaboration that does two things:

1 Changes the name of the Event from eX_Transaction_Poll to one of the following:

eX_BATCH

eX_HTTPS

eX_HTTP

eX_ePM_Trans_Poll
e*Way

eX_ePM_
Transaction_Poll

CollaborationeX_Transaction_Poll One of the following:
- eX_HTTP
- eX_BATCH
- eX_SMTP
- eX_HTTPS
- eX_to_Trading_Partner
- eX_to_Mux

e*Xchange
Database

eX_Trading_
Port_Queue IQ
e*Xchange Partner Manager Implementation Guide 36

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
eX_SMTP

eX_to_Mux

eX_to_Trading_Partner

2 Publishes it to the eX_Trading_Port_Queue IQ.

Subscribed Event Type: eX_Transaction_Poll

This Event Type is used by the eX_ePM_Trans_Poll e*Way to retrieve the enveloped
Events from the e*Xchange database.

Published Event Types: eX_BATCH, eX_HTTP, eX_HTTPS, eX_SMTP, eX_to_Mux,
eX_to_Trading_Partner

This Event Type carries enveloped Events intended for a trading partner.

3.2.5 eX_Batch_to_Trading_Partner e*Way
The eX_Batch_to_Trading_Partner e*Way sends enveloped eBusiness messages
designated for batch transmission to trading partners using FTP.

Figure 10 illustrates the eX_Batch_to_Trading_Partner e*Way.

Figure 9 eX_Batch_to_Trading_Partner e*Way Detail

The destination file location for each Event is carried as part of the e*Xchange Event
data passed to the eX_Batch_to_Trading_Partner e*Way. The file location is maintained
in the e*Xchange database and applied to the Event at the same time that the Event is
enveloped for a specific trading partner. When the eX_Batch_to_Trading_Partner
e*Way receives an Event, they send the data to the file location specified within the
Event itself.

Configuring the eX_Batch_to_Trading_Partner e*Way

No configuration is required.

eX_External_Evt

eX_Batch_to_Trading
_Partner e*Way

eX_Batch_to_
Trading_Partner

Collaboration

Trading
Partner

eX_BATCHeX_Trading_
Port_Queue IQ

eX_from_Batch_to
_Trading_Partner

Collaboration

eX_External_Evt
eX_BATCH
e*Xchange Partner Manager Implementation Guide 37

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
eX_Batch_to_Trading_Partner Collaboration

This is a Pass Through Collaboration used to publish the Event outside of e*Gate. The
communication portion of the eX_Batch_to_Trading_Partner e*Way then takes the
Event and sends via FTP to the appropriate trading partner.

Subscribed Event Type: eX_BATCH

This Event carries the enveloped Event along with the destination information (URL)
used by the eX_Batch_to_Trading_Partner e*Way for transmission to the trading
partners.

Published: eX_External_Evt

This Event carries the eBusiness message to the communications half of the e*Way
where it is forwarded to the trading partner.

eX_from_Batch_to_Trading_Partner Collaboration

This Collaboration is used when the e*Way failed to connect to an external host. The
user has three options:

Resend—Re-publishes the message to the eX_Batch_to_Trading_Partner e*Way
through the queue.

Rollback—Retries the message within the eX_Batch_to_Trading_Partner e*Way the
number of times specified in the configuration for the
eX_Batch_to_Trading_Partner e*Way, in the General settings, Max Resends Per
Message. If the resend count is reached without success, the e*Way shuts down.

Skip—Skips the message. Resends the number of times specified in the trading
partner profile in the user interface.

3.2.6 eX_Https_to_Trading_Partner e*Way
The eX_Https_to_Trading_Partner e*Way is an HTTPS e*Way that sends eBusiness
messages enveloped by the e*Xchange Partner Manager to trading partners over a
secure (HTTPS) or insecure (HTTP) communication link. The secure link encrypts the
data, the insecure link does not.

Figure 10 illustrates the eX_Https_to_Trading_Partner e*Way.
e*Xchange Partner Manager Implementation Guide 38

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
Figure 10 eX_Https_to_Trading_Partner e*Way Detail

The destination URL for each Event is carried as part of the e*Xchange Event passed to
the eX_Https_to_Trading_Partner e*Way. The URL is maintained in the trading partner
database and applied to the Event at the same time that the Event is enveloped for a
specific trading partner. When the eX_Https_to_Trading_Partner e*Way receives an
Event, it sends the data to the URL specified within the Event itself.

Whether or not the Event is sent over a secure channel (encrypted) using HTTPS or
over an insecure channel (not encrypted) using HTTP protocol is also determined by
the presence of “https” in the URL string. For example, a URL sting such as http://
tradingpartner.com indicates the use of the insecure mode, whereas a string such as
https://tradingpartner.com indicates the use of the secure mode.

Note: When using the secure mode, the eSecurityManager components (both the GUI and
the back end) must be installed and the appropriate security key fields populated in
the trading partner profile. See the e*Xchange Partner Manager User’s Guide for
information on setting up e*Xchange to use the eSM features of e*Xchange.

Configuring the eX_Https_to_Trading_Partner e*Way

No configuration is required if the HTTP protocol is used.

If the HTTPS protocol is used, you must ensure that the configuration for the TrustStore
is correct. The trust store file contains information about Web servers that accept
messages from your system. The file
<egate>\client\pkicerts\truststore\trustcacertsjks is created when e*Gate is installed
and this default file can be used with e*Xchange. However, if you have not installed
e*Gate on your C drive, or you want to use a different file or location, you need to
update the configuration file for the eX_ePM_Https_eWay_Con e*Way connection. The
file name for the trust store file is defined in the SSL section, TrustStore parameter.

For more information about the TrustStore, see HTTPS e*Way Intelligent Adapter User’s
Guide.

eX_External_Evt

eX_HTTPS_to_
Trading_Partner

e*Way
eX_HTTPS_to_
Trading_Partner

Collaboration

Trading
Partner

eX_HTTPSeX_Trading_
Port_Queue IQ

eX_HTTPS_to_
ePM

 Collaboration

eX_HTTP

eX_External_EvteX_to_ePM
e*Xchange Partner Manager Implementation Guide 39

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
eX_Https_to_Trading_Partner Collaboration

This is a Java Collaboration used to publish the Event outside of e*Gate. The
communication portion of the eX_Https_to_Trading_Partner e*Way then takes the
Event and sends it to the appropriate trading partner.

Subscribed Event Type: eX_HTTPS

This Event carries the data and destination information (URL) used by the
eX_Https_to_Trading_Partner e*Way for sending the message to the trading partner.

Published: eX_External_Evt

This Event carries the eBusiness message to the trading partner.

eX_Https_to_ePM Collaboration

This is a Pass Through Collaboration used to receive a response from the trading
partner.

Subscribed Event Type: eX_External_Evt

This Event carries the response from the trading partner.

Published: eX_to_ePM

This Event forwards the response to e*Xchange.

3.2.7 eX_Poll_Receive_FTP e*Way
The eX_Poll_Receive_FTP e*Way polls the e*Xchange database for information on
trading partners that have data to be retrieved via FTP. This information is provided in
the Trading Partner profile. The information about each Trading Partner is then passed
to the eX_Batch_From_Trading_Partner e*Way.

Figure 12 illustrates the eX_Poll_Receive_FTP e*Way.

Figure 11 eX_Poll_Receive_FTP e*Way Detail

The Event is sent to eX_Batch_from_Trading_Partner.

The eX_Dyn_Inb_ftp_Queue IQ is configured to use a Subscriber Pool. This ensures
that when multiple eX_Batch_from_Trading_Partner e*Ways are used, the information
about each Trading Partner is passed to every e*Way in turn.

eX_External_Evt

eX_Poll_Receive_FTP
e*Way

eX_Poll_Receive_
FTP Collaboration

eX_Batch_from_DB_Event e*Xchange
Database

eX_Dyn_Inb_ftp
_Queue IQ
e*Xchange Partner Manager Implementation Guide 40

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
Configuring the eX_Poll_Receive_FTP e*Way

The eX_Poll_Receive_FTP e*Way requires only minor changes to the e*Way’s
configuration file. You must edit this file and provide the information required in the
Database Setup section as shown in Table 2 on page 27.

eX_Poll_Receive_FTP Collaboration

This is a Pass Through Collaboration used to take the Event received from the
eX_Poll_Receive_FTP e*Way and send it to the eX_Trading_Port_Queue.

Subscribed Event Type: eX_External

This Event carries information about the trading partners that have files to be retrieved
by FTP.

Published: eX_Batch_from_DB_Event

This Event carries the trading partner configuration information to the
eX_Trading_Port_Queue. It is then retrieved by the eX_Batch_from_Trading_Partner
e*Way.

3.2.8 eX_Batch_from_Trading_Partner e*Way
The eX_Batch_from_Trading_Partner e*Way sends enveloped eBusiness messages to
e*Xchange.

Figure 12 illustrates the eX_Batch_from_Trading_Partner e*Way.

Figure 12 eX_Batch_from_Trading_Partner e*Way Detail

The Event is sent to e*Xchange.

Configuring the eX_Batch_from_Trading_Partner e*Way

The eX_Batch_from_Trading_Partner e*Way supports minor changes regarding the
naming and location of files after the transfer has successfully completed and the

Trading
Partner

Trading
Partner

eX_External_Evt

eX_Batch_from_
Trading_Partner

e*Way
eX_Batch_from_
Trading_Partner

Collaboration
Trading
Partner

eX_from_Trading_PartnereX_Trading_
Port_Queue IQ

eX_Sent_Batch_
from_Trading_

Partner
Collaboration

eX_Batch_from_DB_Event

eX-batch-dynamic-
proc-out

eX_External_Evt
e*Xchange Partner Manager Implementation Guide 41

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
messages have been published to the eX_Trading_Port_Queue IQ. By default, the
remote files are renamed and local files are deleted.

The parameters that determine what happens to these files are set in the Subscribe to
External section.

eX_Sent_Batch_from_Trading_Partner Collaboration

This is a Pass Through Collaboration used to take the Event received from the
eX_Poll_Receive_FTP e*Way and send it to the external. The communication portion of
the eX_Sent_Batch_from_Trading_Partner e*Way then takes the Event and uses the
trading partner configuration information to issue the relevant FTP command to the
appropriate trading partner.

Subscribed Event Type: eX_Batch_from_DB_Event

This Event carries information about the trading partners that have files to be retrieved
by FTP.

Published: eX_External_Evt

This Event carries the trading partner configuration information to the communications
half of the e*Way where it is used to format the FTP command sent to the trading
partner.

eX_Batch_from_Trading_Partner Collaboration

This is a Monk Collaboration used to take the Event received from the Trading Partner
and send to e*Gate.

Subscribed Event Type: eX_External_evt

This Event carries the Event retrieved from the trading partners.

Published: eX_from_Trading_Partner

This Event carries the Event retrieved from the trading partners and forwards it to
e*Gate.

Table 4 Subscribe to External Parameters

Parameter Setting Description

Remote Command after
Transfer

archive The file is moved from the <path> defined in
the trading partner profile to <path>\ARCHIVE
Important: This directory must be created
manually.
Note: UNIX is case-sensitive.

delete The file is deleted.

none This is not supported with this e*Way.

rename The file is renamed to <filename>.backup. The
location remains the same.
e*Xchange Partner Manager Implementation Guide 42

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
3.2.9 eX_Mux_from_Trading_Partner e*Way
The eX_Mux_from_Trading_Partner e*Way is a CGI Web Server e*Way that
communicates with a CGI e*Way client running on a Web server. This allows
information sent to the Web server by a trading partner to be picked up and processed
by e*Xchange.

Figure 10 illustrates the eX_Mux_from_Trading_Partner e*Way.

Figure 13 eX_Mux_from_Trading_Partner e*Way Detail

How the CGI Web Server e*Way Works

1 The trading partner posts eBusiness data to the Web server.

2 The CGI e*Way client program adds tracking information and forwards the
eBusiness message to the eX_Mux_from_Trading_Partner e*Way.

3 The eX_Mux_from_Trading_Partner Collaboration extracts the trading partner
name from the tracking information provided by the CGI e*Way client and
publishes the eBusiness message data as a standard e*Xchange Event
(eX_from_Trading_Partner) to the eX_Trading_Port_Queue IQ. In addition, the
Collaboration creates an acknowledgment Event (cgi_Request_Ack) with the same
Mux tracking number as the original post and publishes it to the
eX_Trading_Port_Queue IQ.

4 The cgi_Request_Ack_Collab Collaboration picks up the acknowledgment Event
and forwards it to the CGI client on the Web server.

5 The CGI client matches up the acknowledgment with the original post.

6 The trading partner receives a response from the Web server indicating that the
data has been sent successfully to e*Xchange.

Configuring the eX_Mux_from_Trading_Partner e*Way

Configuring the eX_Mux_from_Trading_Partner e*Way is a two step process.

1 Set up the CGI e*Way client on the Web server.

eX_Mux_from_Trading
_Partner e*Way

cgi_Request
_Ack_Collab
Collaboration

eX_Trading_
Port_Queue IQ

eX_Mux_from_
Trading_Partner

Collaboration

cgi_Web_Request
eX_from_Trading_Partner

cgi_Request_Ack

cgi_Request_Ack cgi_Request_Ack

Trading
Partner CGI

e*Way
Client

Web
Server 2

4

1

3

5

6

e*Xchange Partner Manager Implementation Guide 43

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
2 Specify the port over which the CGI e*Way server listens for connections from the
CGI e*Way client.

Setting up the CGI client

The following is a brief discussion of setting up the CGI e*Way client. For more
information about setting up client software used by the CGI e*Way, see the CGI Web
Server e*Way User’s Guide.

1 Install the CGI e*Way client files on the Web server.

The files stc_common.dll, stc_ewipmpclnt.dll, and stcewcgi.exe, provided as part
of the CGI e*Way add-on installation, should be placed at the document root
location on the Web server host machine.

2 Modify the configuration file for the Web server.

You must add the following environment variables to the virtual host setup for the
port over which the trading partners send data to the Web server. These variables
are used by the CGI e*Way Client.

STC_EW_SERVER_NAME—The host name or IP address of the machine
running the CGI Web server e*Way. If the parameter is not supplied, the default
is localhost.

STC_EW_SERVER_PORT—The port number on which the CGI Web server
e*Way is listening. If the parameter is not supplied, or a value of zero (0) is
supplied, the default port number is used.

STC_EW_SECONDS_TO_EXPIRE—The number of seconds the message is
active in the e*Gate system. host name or IP address of the machine running the
CGI Web server e*Way. If the parameter is not supplied, the default is zero (0),
indicating that the message remains active indefinitely.

STC_EW_MILLISECONDS_TO_WAIT—The number of milliseconds the CGI
e*Way Client waits for the response from the CGI e*Way Server. The CGI e*Way
Client displays an error message if the CGI e*Way Server fails to respond in the
given time period. If the parameter is not supplied, a value of ten thousand
(10,000) is the default.

DocumentRoot—The location on the Web server taken as the starting point for
relative paths to files for this virtual host setup. For example, if the
DocumentRoot for port 690 is opt/web/htdocs/exchange and a request is made
to the following URL http://www.stc.com:690/4.1.2/stcewcgi.exe, the file is
found at the location opt/web/htdocs/exchange/4.1.2/stcewcgi.exe on the Web
server.

The virtual host setup containing all the above environment variables can be kept in
a separate file and called using the include command from within the Web server’s
configuration file.

Specifying the Request Reply IP Port

You must edit the eX_Mux_from_Trading_Partner e*Way’s configuration file and enter
the appropriate port number. This port should be the same as the port specified by the
STC_EW_SERVER_PORT environment variable used by the CGI e*Way client.
e*Xchange Partner Manager Implementation Guide 44

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
Configure the MUX e*Way Port

The MUX e*Way picks up the messages that the HTTP server posts. To use the MUX
e*Way, you need to configure the following items.

Files needed on the HTTP server:

ewcgi.cfg

stc_common.dll

stc_ewipmpclnt.dll

stcewcgi.exe, which is renamed to stcewcgi.cgi

The format of stcewcgi.cfg:

abc|10.1.191.135|8887|600|1000000|r

Set the values for:

The IP address of the machine where the MUX e*Way resides.

The e*Gate port used by the ePM e*Way configuration file.

eX_Mux_from_Trading_Partner Collaboration

This Collaboration takes the information in the cgi_Web_Request Event and uses it to
construct a standard e*Xchange Event (eX_from_Trading_Partner) to be processed by
e*Xchange. In addition, it creates an acknowledgment Event (cgi_Request_Ack) to be
sent back to the trading partner telling it that the information has been successfully
placed into e*Xchange for processing.

The Collaboration creates the trading partner name used by e*Xchange by
concatenating the values of SERVER_NAME and SCRIPT_NAME. Add
SERVER_PORT if the port is set to a value other than the default (80). Use the
following format:

https://<SERVER_NAME><SCRIPT_NAME>

https://<SERVER_NAME>:<SERVER_PORT><SCRIPT_NAME>

Subscribed Event Type: cgi_Web_Request

This is the Event is provided by the CGI client. It contains the 24 byte Mux header used
to match up the request with the reply, URL tracking information, and the data
contained in the Web server post.

Published Event Types:

eX_from_Trading_Partner—This is the e*Xchange Event created from the Web
server post and contains the post information along with the required e*Xchange
tracking information.

cgi_Request_Ack—This Event contains the 24-byte Mux header.
e*Xchange Partner Manager Implementation Guide 45

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
cgi_Request_Ack_Collab Collaboration

This is a Pass Through Collaboration that picks up the cgi_Request_Ack Event and
publishes it outside of e*Gate where it is picked up by the CGI e*Way client running on
the Web server.

Subscribed Event Type: cgi_Request_Ack

This Event contains the 24 byte Mux header.

Published Event Types: cgi_Request_Ack

This Event contains the 24 byte Mux header. For AS2 asynchronous mode and
RosettaNet 1.1:

cgi_Request_Ack = 24 byte Mux header "Status: 200 (OK)\n\n"

For RosettaNet 2.0 asynchronous mode:

cgi_Request_Ack = 24 byte Mux header "Status: 202 (Accepted)\n\n"

or, if error occurs:

cgi_Request_Ack = 24 byte Mux header "Status: 400 (Bad Request)\n\n"

3.2.10 eX_POP3_from_Trading_Partner e*Way
The eX_POP3_from_Trading_Partner e*Way sends enveloped eBusiness messages to
e*Xchange.

Figure 14 illustrates the eX_POP3_from_Trading_Partner e*Way.

Figure 14 eX_POP3_from_Trading_Partner e*Way Detail

The Event is sent to e*Xchange.

Configuring the eX_POP3_from_Trading_Partner e*Way

Specify the following values in the configuration section:

E-mail username

E-mail password

InboundServer: POP3 server

InboundPort: POP3 server port number

eX_External_Evt

eX_POP3_from_
Trading_Partner

e*Way
eX_POP3_from_
Trading_Partner

Collaboration

Trading
Partner

eX_from_Trading_PartnereX_Trading_
Port_Queue IQ
e*Xchange Partner Manager Implementation Guide 46

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
eX_POP3_from_Trading_Partner Collaboration

This is a Pass Through Collaboration used to send the Event to e*Gate. The
communication portion of the eX_POP3_from_Trading_Partner e*Way receives the
Event via POP 3 and sends into e*Gate.

Subscribed Event Type: eX_External_Evt

This Event carries the content and header information used by the
eX_POP3_from_Trading_Partner e*Way for transmission from the trading partners.

Published: eX_from_Trading_Partner

This Event carries the eBusiness message to the communications half of the e*Way
where it is forwarded to the trading partner.

3.2.11 eX_SMTP_to_Trading_Partner e*Way
The eX_SMTP_to_Trading_Partner e*Way sends enveloped eBusiness messages
designated for batch transmission to trading partners using email.

Figure 15 illustrates the eX_SMTP_to_Trading_Partner e*Way.

Figure 15 eX_SMTP_to_Trading_Partner e*Way Detail

The destination information for each Event is carried as part of the e*Xchange Event
data passed to the eX_SMTP_to_Trading_Partner e*Way. The information is
maintained in the e*Xchange database and applied to the Event at the same time that
the Event is enveloped for a specific trading partner.

Configuring the eX_SMTP_to_Trading_Partner e*Way

No configuration is required.

eX_SMTP_to_Trading_Partner Collaboration

This is a Pass Through Collaboration used to publish the Event outside of e*Gate. The
communication portion of the eX_SMTP_to_Trading_Partner e*Way then takes the
Event and sends via FTP to the appropriate trading partner.

eX_External_Evt

eX_SMTP_to_
Trading_Partner

e*Way
eX_SMTP_to_

Trading_Partner
Collaboration

Trading
Partner

eX_SMTPeX_Trading_
Port_Queue IQ
e*Xchange Partner Manager Implementation Guide 47

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
Subscribed Event Type: eX_SMTP

This Event carries the enveloped Event along with the SMTP mail host information
used by the eX_SMTP_to_Trading_Partner e*Way for transmission to the trading
partners.

Published: eX_External_Evt

This Event carries the eBusiness message to the communications half of the e*Way
where it is forwarded to the trading partner.

3.2.12 Send_to_ePM e*Way
In an e*Xchange implementation, e*Xchange requires one or more e*Gate components
to feed data into and take data from e*Xchange. Typically, these components are e*Ways
that connect to the business application providing the eBusiness data that is sent to
trading partners via e*Xchange.

These e*Ways are user defined, and the type of e*Way used depends on the source for
the eBusiness data. For example, if the source is a business application the e*Gate
e*Way that connects to that business application (such as Siebel) is used. If the source of
the data is already available in e*Gate, you can use a BOB instead of an e*Way.

The eXSchema installed as the e*Xchange backend includes two placeholder e*Ways,
Send_to_ePM and Receive_from_ePM that can be used as the starting point for this
functionality.

These e*Ways have all the Collaborations and routing defined, but the e*Way
executable must be selected and the configuration file must be created.

The following diagram illustrates these e*Ways.

Figure 16 Send_to_ePM and Receive_from_ePM e*Ways Detail

eX_External_Evt

Send_to_ePM
e*Way

Send_to_ePM
Collaboration

Business
Application Receive_from_ePM

e*Way

Receive_from_ePM
Collaboration

eX_to_ePM

eX_External_Evt eX_to_eBPM

eX_eBPM
IQ
e*Xchange Partner Manager Implementation Guide 48

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
The Send_to_ePM e*Way initiates the process of sending data to e*Xchange. This
e*Way is user-defined, and its type is dependent upon the communication protocol
and/or application-specific requirements of the customer. The Collaboration within the
e*Way is also user-defined. It converts the external, proprietary data format supplied by
the application to the Standard Event, an internal XML format required by e*Xchange.

Configuring the Send_to_ePM e*Way

The configuration details for this eWay depend on the type of external system to which
it connects. In general you must

Choose the e*Way executable

Create the configuration file

Edit the Collaboration Rules Script used by the Send_to_ePM Collaboration

See the e*Way User’s Guide for the e*Way type you wish to use for this e*Way for more
detailed configuration information.

Send_to_ePM Collaboration

The Send_to_ePM Collaboration must use the data it receives from the business
application to create the Event sent to the e*Xchange engine. Specifically it must do the
following:

convert the data to an XML-compatible format and put it in the e*Xchange payload
node of the e*Xchange standard Event

populate the e*Xchange-required tracking nodes in the e*Xchange standard Event

Subscribed Event Type: eX_External_Evt

This Event Type corresponds to the inbound data provided by the external application.

Published Event Type: eX_to_PM

This Event carries the e*Xchange formatted data to the e*Xchange engine.

Converting Business Application Data to e*Xchange Format

You must copy the eBusiness message data to the payload node
(TP_EVENT.CT.DSN.DS.Payload.CT.DSN.Data) of the eX_Standard_Event.ssc ETD
for the Event that is sent to e*Xchange.

Data placed in the payload of the e*Xchange standard Event must be in base64
encoding prior to being copied. You can convert the data in the START_BP
Collaboration by using the Monk function raw->base64.

Note: Make sure that the stc_monkutils.dll that contains the function raw->base64 is
loaded before using raw->base64 in a Collaboration Rules Script. For example, you
may use the command: load-extension “stc_monkutils.dll” in the CRS itself or
you may put path to a file that loads in the initialization file box in the
Collaboration Rule that uses the CRS. See “Convert the Event to Base 64
Encoding” on page 62 for an example.
e*Xchange Partner Manager Implementation Guide 49

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
e*Xchange-required Tracking Nodes

The following three nodes in the eX_Standard_Event.ssc ETD must be populated in the
Event sent to the e*Xchange engine:

TP_EVENT.CT.DSN.DS.MessageID.CT.DSN.Data node must be filled with a
unique ID for the Event, if the message is X12 or NCPDP and is outbound with no
validation checking.

TP_EVENT.CT.DSN.DS.Direction.CT.DSN.Data node must be filled with the
string “I” to designate it as an inbound to e*Xchange Event or an “O” to indicate
outbound.

TP_EVENT.CT.DSN.DS.PartnerName.CT.DSN.Data node must be filled with the
logical name of the trading partner to which the EDI message is being sent. This
name corresponds to the case sensitive text found in the Logical Name box in the
B2B Protocol properties, General section, Trading Partner.

3.2.13 Receive_from_ePM e*Way
The Receive_from_ePM e*Way takes eBusiness data received from trading partners
and processed by e*Xchange and formats it for use by the destination business
application that requires it. This e*Way is user-defined, and the type chosen depends
upon the communication protocol and/or application-specific requirements of the
business application or other external to e*Gate destination to which it connects. The
Collaboration within the e*Way is also user-defined. It must convert the eBusiness data
from the e*Xchange XML format back into the format required by the destination
system.

Configuring the Receive_from_ePM e*Way

The Receive_from_ePM e*Way must be configured by the user. You must select the
type of e*Way create the configuration file, and then edit the Collaboration Rules Script
used by the Receive_from_ePM Collaboration.

See the e*Way User’s Guide for the e*Way type you wish to use as the
Receive_from_ePM e*Way for more detailed configuration information.

Receive_from_ePM Collaboration

This Collaboration takes data from a trading partner, processed by e*Xchange, and
formats it for use by the business application to which the Receive_from_ePM e*Way
connects. You must edit the placeholder Collaboration (Receive_from_ePM) provided
with the default Receive_from_ePM e*Way so that it performs this translation.

Subscribed: eX_to_eBPM

This Event carries the de-enveloped trading partner data to the eX_eBPM IQ where it is
picked up by the Receive_from_ePM Collaboration.

Published: eX_External_Evt

This Event carries the properly formatted data received from a trading partner to the
business application.
e*Xchange Partner Manager Implementation Guide 50

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
3.2.14 ewHipaaValidation e*Way
e*Xchange provides an e*Way within the e*Xchange Schema, ewHipaaValidation, that
serves as a placeholder for the HIPAA Java Collaboration Rules. This e*Way is not
designed to publish or subscribe to any data, but it does need to be started in order for
HIPAA transactions to be processed using the Collaboration Rules.

Each Collaboration Rule in the HIPAA e*Way corresponds with a specific X12
transaction type, and so also corresponds with a specific ETD provided in the HIPAA
ETD Library. Using the HIPAA e*Way Collaboration Rules in addition to the HIPAA
ETDs provides more comprehensive validation of your HIPAA X12 transactions.

To use the Collaboration Rules of the HIPAA e*Way, you must specify “HIPAA” as the
Validation Collaboration Type in the Message Profile, and you must specify the name of
the Collaboration (not the Collaboration Rule file name) as the Validation
Collaboration.

Note: For additional information, see the HIPAA Implementation Guide.

3.2.15 eX_from_Trading_Partner e*Way
The eX_from_Trading_Partner e*Way is not included as part of the default eXSchema
installation. Because of the wide variety of methods used by trading partners to
transmit eBusiness data, it is impossible to predict in advance the type of e*Way needed
(Batch, HTTP, TCP/IP, and so on) or the type of data translation required to bring the
data into e*Xchange for a particular trading partner. Therefore, this e*Way must be
added to the e*Xchange schema and configured for a trading partner on a per entity
basis. Typically, there are several e*Ways of this type that need to be added to a large
e*Xchange implementation.

The following discussion focuses on the requirements for the e*Xchange Event that this
e*Way type must create and send to e*Xchange. The eX_from_Trading_Partner e*Way
must ensure that the data coming into the e*Xchange system is in the proper XML
format, and that the nodes in the e*Xchange standard Event, required for processing by
e*Xchange, are populated.

The following diagram illustrates an example of an inbound e*Way.

Figure 17 eX_from_Trading_Partner e*Way Detail

eX_External_Evt

eX_from_Trading
_Partner e*Way

eX_from_
Trading_Partner

Collaboration

Trading
Partner

eX_Trading_
Port_Queue IQ

eX_from_Trading_Partner
e*Xchange Partner Manager Implementation Guide 51

Chapter 3 Section 3.2
e*Xchange Schema Components e*Xchange Partner Manager Components
Configuring the eX_from_Trading_Partner e*Way

The configuration for the eX_from_Trading_Partner e*Way depends on the type of
e*Way it is, Batch, HTTP, TCP/IP, or another type of e*Way, and the amount required to
get the data into standard e*Xchange format. See the e*Way User’s Guide for the e*Way
type selected for more detailed information on configuration.

eX_from_Trading_Partner Collaboration

This user-defined Collaboration must put the data coming in from the external trading
partner into the e*Xchange standard format. In addition it must ensure that the
required tracking information is included in the Event sent to the e*Xchange engine.
Specifically, this includes:

The Message ID (a unique identifier for the message)

If this is an acknowledgment to a previously sent out eBusiness message, it should
use the same identifier as the original Event.

The Direction of the Event (“I” = inbound to e*Xchange)

The Partner Name

This must correspond exactly to the Logical Name used in the B2B Protocol section
of the trading partner profile.

Message Type (“RAW”, “PROCESSED”, or “ENCRYPTED”)

These nodes are explained in more detail in and in the e*Xchange Partner Manager
User’s Guide. Also, see Populate the Required e*Xchange Nodes on page 63 for an
example of a Monk Collaboration that does this, or see Populate the Required
e*Xchange Nodes on page 70 for an example of a Java Collaboration that does this.

Subscribed Event Type: eX_External_Evt

This Event carries the data that comes from the trading partner. Depending on the
amount of pre-processing the data has received, this Event may or may not be in the
XML format, with the required nodes populated as needed by the e*Xchange system.

Published Event Type: eX_from_Trading_Partner

This Event carries e*Xchange formatted data to the e*Xchange engine. All inbound
e*Xchange e*Ways publish data from the trading partner using this Event Type.
e*Xchange Partner Manager Implementation Guide 52

Chapter 4

Using the Monk e*Xchange ETD

e*Xchange uses a single Event Type Definition (ETD) named eX_Standard_Event.ssc to
define Events as they move from one component to another in the e*Xchange system.
The ETD is an XML DTD in a proprietary messaging format. For a description of the
XML DTD see Appendix A.

All data going into and coming out of the e*Xchange components is parsed according to
the e*Xchange ETD. Understanding this ETD is the key to creating the Collaboration
Rules scripts necessary to process the data according to the rules determined by the
business process.

Note: The BP_EVENT location in the eX_Standard_Event.ssc contains information for
e*Insight Business Process Manager. You can ignore this section if your
implementation does not use e*Insight Business Process Manager. For more
information on the BP_EVENT location, refer to the e*Insight Business Process
Manager Implementation Guide.

4.1 ETD Structure
The first step in using the ETD is understanding the structure of the nodes in the
context of the XML message being created. Each level is structured in the same way.

The ETD contains a number of nodes that do not explicitly correlate to the XML DTD
but are required by the Monk engine to parse the XML data correctly. Table 5 lists these
facilitator nodes.

Table 5 Facilitator Nodes in the ETD

Name Description

CT A container node for an XML element. This node allows the
short and long forms of XML tags to coexist in the structure.

DSN Identifies a data section within an XML element. This is the
long form of the XML tag.

DS Identifies a data set within an XML element. The sub-elements
within a data set can occur in any order.

Empty The short form of the corresponding DSN node XML tag.

CM XML comment.
e*Xchange Partner Manager Implementation Guide 53

Chapter 4 Section 4.1
Using the Monk e*Xchange ETD ETD Structure
The facilitator nodes always occur in a set order and define the structure of the XML
message. In the e*Xchange ETD, the facilitator nodes define three types of branches:

XML element with sub-elements

XML element without sub-elements

XML attribute

4.1.1 XML Element with Sub-elements
The following diagram illustrates the ETD structure for an XML element that has sub-
elements.

Figure 18 XML Element with Sub-elements

Each XML element contains one child node, CT. CT identifies the parent node as an
XML element. The CT node contains two child nodes: DSN and Empty. DSN is the
long form of the XML tag (</tag>) and Empty is the short form (</>).

The DSN and DS nodes always occur as parent-child pairs. In this type of branch, DS
is the parent node for two types of child nodes:

CM, which holds XML comments for the element

<sub-element>, the name of a sub-element of the parent element

The DS node always contains a CM child node to hold XML comments. Each <sub-
element> node contains an ETD structure of its own, with the <sub-element> node as
the parent node for the branch.

4.1.2 XML Element without Sub-elements
The following diagram illustrates the ETD structure for an XML element that does not
have sub-elements.

Data Holds the data for the element.

AS Identifies an XML attribute set within an XML element.

EQ The equals sign (“=”) within an XML attribute.

Value Holds the value for the XML attribute.

Table 5 Facilitator Nodes in the ETD

Name Description

<XML Element> CT

DSN

Empty

DS

CM

<Sub-element>

<Sub-element>
e*Xchange Partner Manager Implementation Guide 54

Chapter 4 Section 4.2
Using the Monk e*Xchange ETD Element Overview
Figure 19 XML Element without sub-elements

Notice that the only difference between this diagram and the previous diagram is a
Data child node in place of the <sub-element> child nodes above. The Data node
contains the actual data for the XML element that is defined. When creating
Collaboration Rules scripts, you must map the XML element data to the Data nodes at
the terminal end of the element’s branch.

4.1.3 XML Attribute
The following diagram illustrates the ETD structure for an XML attribute.

Figure 20 XML Attribute

In this case, the XML element contains one child node, AS, which identifies the branch
as XML attributes of the parent element. The AS node contains the <XML Attribute>
nodes as child nodes. Each <XML Attribute> node has two child nodes: EQ to
represent the equal sign (=) in the attribute and Value which holds the actual value for
the attribute. When creating Collaboration Rules scripts, you must map the XML
attribute value to the Value nodes at the terminal end of the attribute’s branch.

4.2 Element Overview
The following diagram illustrates the entire e*Xchange ETD tree. This is only a
representation of the tree, since the actual tree conforms to the node structure described
in “ETD Structure” on page 53.

<XML Element> CT

DSN

Empty

DS

CM

Data

<XML Element> AS

<XML Attribute>

<XML Attribute>

EQ

Value

EQ

Value
e*Xchange Partner Manager Implementation Guide 55

Chapter 4 Section 4.2
Using the Monk e*Xchange ETD Element Overview
Figure 21 The e*Xchange ETD

All data pertinent to e*Xchange is contained in the XML element eX_Event. eX_Event
contains two distinct “trees”: BP_EVENT and TP_EVENT. BP_EVENT contains all of
the information pertaining to e*Insight. TP_EVENT contains all of the information
pertaining to e*Xchange. Both BP_EVENT and TP_EVENT are optional nodes in the
ETD. So if you use e*Insight to track business process activities but do not use
e*Xchange to send data to and from trading partners, you do not need to populate the
TP_EVENT element. Conversely, if you use e*Xchange to send data to and from
trading partners but do not track business process activities in e*Insight, you do not
need to populate the BP_EVENT element in your Collaboration Rules scripts.

Example: XML Element with Sub-elements

eX_Event is an example of a top-level XML element.

In this example, the CT, DSN, DS, Empty, and CM facilitator nodes describe the top-
level XML element eX_Event. Figure 22 shows the ETD structure for this element.

Figure 22 XML Element eX_Event

The eX_Event parent node contains one child node, CT. CT identifies eX_Event as an
XML element. The CT node contains two child nodes: DSN and Empty. DSN is the
long form of the XML tag (</eX_Event>) and Empty is the short form (</>).

The DSN and DS nodes always occur as parent-child pairs. DS is the parent node for
three child nodes:

A CM node to hold XML comments for the element.

BP_EVENT, a sub-element of eX_Event.

TP_EVENT, a sub-element of eX_Event.

The DS node always contains a CM child node to hold XML comments. In this
example, the eX_Event element does not hold data directly, but contains two sub-
e*Xchange Partner Manager Implementation Guide 56

Chapter 4 Section 4.2
Using the Monk e*Xchange ETD Element Overview
elements—BP_EVENT and TP_EVENT—which have similar facilitator node branches
associated with them.

The following example explains the structure of XML attributes.

Example: XML Element with Attributes

In this example, the AS and EQ facilitator nodes describe the XML attributes TYPE and
LOCATION. Both are XML attributes of the Payload element. Figure 23 shows the ETD
structure for these attributes.

Figure 23 XML Attribute Type
e*Xchange Partner Manager Implementation Guide 57

Chapter 4 Section 4.3
Using the Monk e*Xchange ETD Using the ETD in e*Xchange
4.3 Using the ETD in e*Xchange
The e*Xchange engine uses the e*Xchange ETD to carry out enveloping and de-
enveloping the EDI messages it sends to and receives from trading partners. The
TP_EVENT location in the e*Xchange ETD contains data the e*Xchange engine uses to
track the EDI Event. TP_EVENT also contains the actual EDI message stored in the
Payload node.

TP_EVENT

All data relevant to e*Xchange processing is contained in the parent node TP_EVENT.
TP_EVENT contains fifteen elements as shown in Figure 24.

Figure 24 TP_EVENT

Because each of the categories is implemented as an XML element in the e*Xchange
ETD structure, the value for the element goes in the Data node at the end node
structure, as shown in Figure 25.
e*Xchange Partner Manager Implementation Guide 58

Chapter 4 Section 4.3
Using the Monk e*Xchange ETD Using the ETD in e*Xchange
Figure 25 Location of Element Value

PartnerName

The value for this element must match the Logical Name in the B2B Protocol of the
trading partner profile.

InternalName

The name of the internal system sending the original data.

Direction

Direction of the transaction. Possible values are “O” for outbound Events going to the
trading partner or ”I” for inbound Events coming from the trading partner.

MessageID

A unique ID for each Event originating from a particular internal system. This tag
correlates data moving to and from a trading partner, with the original request sent
from the internal system.

OrigEventClass

The original Event classification. This tag is used to classify Events, not necessarily
originating from the same system, according to functional group. For example, a
request for price and availability could originate from one of many systems, but the
classification of the Events (QPA) would be the same.

UsageIndicator

Determines whether the Events being sent to the trading partner are for testing
purposes only or are part of a production environment. Possible values are “T“ for test
or “P“ for production.

Payload

This is the node structure in which you place the EDI message to be processed by
e*Xchange. The inbound and outbound data for this node must be in base 64 format.

Unlike the other TP_EVENT elements, the Payload element has XML attributes
associated with it. These attributes qualify the value contained in the terminal Data
node. Figure 26 shows the Payload element’s node structure in the e*Xchange ETD.

Element value
goes here
e*Xchange Partner Manager Implementation Guide 59

Chapter 4 Section 4.3
Using the Monk e*Xchange ETD Using the ETD in e*Xchange
Figure 26 Payload Node

You must supply values for the element, Payload, as well as the attributes for the
element, LOCATION and TYPE.

The following table lists acceptable values for LOCATION.

Figure 27 Element Value Locations

The following table lists acceptable values for TYPE.

Figure 28 Data Type

Value Purpose

“FILE” Indicates that the value for the element can be found in the
file at the location specified in the Data node.

“DB” Indicates that the value for the element can be found in the
e*Xchange database at the location specified in the Data
node.

“URL” Indicates that the value for the element can be found at the
URL location specified in the Data node.

“EMBEDDED” Indicates that the value for the element is contained in the
current e*Xchange Event in the Data node. This is the
default value.

“AUTO” Reserved for future use.

Value Purpose

“RAW” Indicates that the data in the Data node is in ASCII format,
but not XML data that has been converted to ASCII using
base 64 or some other conversion. The data must not
contain any characters that would conflict with the XML
nature of the e*Xchange ETD (for example, EDI delimiters
that are the same as XML control characters).

“PROCESSED” Indicates that the data in the Data node is XML data that has
been encoded using the scheme described in the
ENCODING node. Currently only base 64 encoding is
supported.
e*Xchange Partner Manager Implementation Guide 60

Chapter 4 Section 4.3
Using the Monk e*Xchange ETD Using the ETD in e*Xchange
The value for Payload, the EDI message to be processed by e*Xchange, must be placed
in the Data node at the end of the Payload element’s node structure.

CommProt

The communication protocol used by the trading partner. Possible values are BATCH,
SMTP, HTTP, HTTPS, or TCPIP.

Url

The destination URL for the trading partner. The data is sent according to the value in
this field.

SSLClientKeyFileName

This node contains HTTPS security information.

SSLClientKeyFileType

This node contains HTTPS security information.

SSLClientCertFileName

This node contains HTTPS security information.

SSLClientCertFileType

This node contains HTTPS security information.

MessageIndex

This node contains information used by the “Fast Batch” feature of e*Xchange. Using
this feature a number of transactions of the same type can be bundled together and sent
out as a single batch transaction to a trading partner. Transactions using fast batch must
populate this node in the Event that is sent to e*Xchange using the following format:

<transaction number in bundle>|<total number of transactions to bundle together>

For example, if the Event sent to e*Xchange contains the 4th transaction of 20 that are
sent out together, this field must contain “4|20”. This is analogous to the “page X of
total pages” page numbering format used by some documents. When e*Xchange
receives the last transaction in the bundle, labeled 20|20, it sends all 20 transaction out
together.

TPAttribute

This is a repeating node containing a name/value pair that is used to add future
functionality to e*Xchange without having to change the structure of the eX ETD.

“ENCRYPTED” Indicates that the data in the Data node has been
encrypted, and must be decrypted before it can be
processed by e*Xchange.

Value Purpose
e*Xchange Partner Manager Implementation Guide 61

Chapter 4 Section 4.4
Using the Monk e*Xchange ETD Sending Data to e*Xchange
4.4 Sending Data to e*Xchange
You must create a Collaboration Rules Script that prepares the data coming into the
e*Xchange system. How complicated this task is depends on the state of the data before
the Collaboration processes it.

The Collaboration Rules Script must do the following:

put the data into the appropriate format

convert the data to base 64 encoding

populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Put the Data into the Required Format

This step is only necessary if the data is not already in the appropriate format required
by the trading partner. This would be the case where data was coming from SAP in
IDoc format and was not preprocessed into the correct format by another Collaboration.
In such a case, the Collaboration Rules Script must translate the data into the required
format before sending to e*Xchange.

This involves creating an ETD corresponding to the initial state of the data and an ETD
corresponding to the required EDI format. Most of these standard ETDs are already
pre-created and made available in the e*Xchange suite of tools. Next you build a
Collaboration that maps one format to the other. This mapping translation could be
called as a sub-translation from the main Collaboration prior to converting the entire
message to base 64.

Convert the Event to Base 64 Encoding

The Collaboration Rules Script must ensure that the data going into e*Xchange does not
include any characters that cause problems for the XML structure of the standard
e*Xchange Event (for example, characters that are the same as the XML control
characters). This is done by converting the entire EDI message to base 64 encoding
using the Monk function raw->base64, before copying it to the payload node of the
eX_Standard_Event ETD.

Important: To use the Monk function raw->base64, you must make sure the file containing
this function has been loaded. You can do this by adding the following command to
the Initialization file box in the Collaboration Rules dialog box for the
Collaboration that uses this function:

monk_scripts\common\load_ext

This is shown in Figure 29.
e*Xchange Partner Manager Implementation Guide 62

Chapter 4 Section 4.4
Using the Monk e*Xchange ETD Sending Data to e*Xchange
Figure 29 Send_to_ePM Collaboration Rules Properties Dialog Box

Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the message.

e*Xchange Tracking Information

e*Xchange needs to know certain things about an message before it can apply the
proper enveloping and send it out to the trading partner. The Collaboration Rules
Script must supply this information by populating certain required nodes in the Event
that is sent to e*Xchange. At a minimum you must tell e*Xchange:

Direction (inbound or outbound)

Partner Name (logical name from the B2B Protocol in the e*Xchange)

All of these requirements can be met by copying the appropriate information to the
corresponding nodes in the TP section of the e*Xchange ETD (eX_Standard_Event.ssc).

The TP_EVENT.CT.DSN.DS.Direction.CT.DSN.DS.Data node must contain the
direction of the Event: “O” for outbound to the trading partner or “I” for inbound from
a trading partner.

The TP_EVENT.CT.DSN.DS.PartnerName.CT.DSN.DS.Data node must contain the
name (case-sensitive) of the trading partner from the Logical Name box in the General
section of Trading Partner in the B2B Protocol properties for this message.

The e*Xchange Payload

In addition to the tracking information, the
TP_EVENT.CT.DSN.DS.Payload.CT.DSN.DS.Data node must be filled with the entire
base 64 encoded message.

Figure 30 shows a Collaboration Rules Script with the necessary code to populate
eX_Standard_Event.ssc with the required values.

This command
loads the Monk
file where
raw->base64 is
defined
e*Xchange Partner Manager Implementation Guide 63

Chapter 4 Section 4.4
Using the Monk e*Xchange ETD Sending Data to e*Xchange
Figure 30 Example Monk Collaboration Rules Script
e*Xchange Partner Manager Implementation Guide 64

Chapter 5

Using the Java e*Xchange ETD

e*Xchange generally uses the Monk service for collaborations. However, the Java
collaboration service can be used to transform an event from or to another format when
sending the Event into e*Gate.

5.1 Understanding the Java e*Xchange ETD
e*Xchange uses a Java Event Type Definition (ETD) named eX_StandardEvent.xsc to
define Events as they move from one component to another in the e*Xchange system.
The ETD is an XML DTD in a proprietary messaging format. For a description of the
XML DTD see Appendix A.

All data going into and coming out of the e*Xchange components is parsed according to
the e*Xchange ETD. Understanding this ETD is the key to creating the Collaboration
Rules scripts necessary to process the data according to the rules determined by the
business process.

Note: When you install the e*Gate e*Xchange Schema, eIX_StandardEvent.xsc is also
created. This ETD has a BP_EVENT location that is used for e*Insight Business
Process Manager. You should use this ETD if your implementation requires both
e*Insight and e*Xchange. For more information on the BP_EVENT location, refer to
the e*Insight Business Process Manager Implementation Guide.

5.2 Element Overview
Figure 31 illustrates the entire e*Xchange ETD tree.
e*Xchange Partner Manager Implementation Guide 65

Chapter 5 Section 5.2
Using the Java e*Xchange ETD Element Overview
Figure 31 The e*Xchange ETD

5.2.1 Using the ETD with e*Xchange
The e*Xchange engine uses the e*Xchange ETD to carry out enveloping and de-
enveloping messages it sends to and receives from trading partners. The TP_EVENT
location in the e*Xchange ETD contains data the e*Xchange engine uses to track the
Event. TP_EVENT also contains the actual EDI message stored in the Payload node.

TP_EVENT

All data relevant to e*Xchange processing is contained in the parent node TP_EVENT.
TP_EVENT contains fifteen elements as shown in Figure 32.

Figure 32 TP_EVENT

PartnerName

The value for this element must match the Logical Name in the B2B Protocol section of
the trading partner profile.

InternalName

The name of the internal system sending the original data.
e*Xchange Partner Manager Implementation Guide 66

Chapter 5 Section 5.2
Using the Java e*Xchange ETD Element Overview
Direction

Direction of the transaction. Possible values are “O” for outbound Events going to the
trading partner or ”I” for inbound Events coming from the trading partner.

MessageID

A unique ID for each Event originating from a particular internal system. This tag
correlates data moving to and from a trading partner, with the original request sent
from the internal system.

OrigEventClass

The original Event classification. This tag is used to classify Events, not necessarily
originating from the same system, according to functional group. For example, a
request for price and availability could originate from one of many systems, but the
classification of the Events (QPA) would be the same.

UsageIndicator

Determines whether the Events being sent to the trading partner are for testing
purposes only or are part of a production environment. Possible values are “T“ for test
or “P“ for production.

Payload

This is the node structure in which you place the EDI message to be processed by
e*Xchange. The inbound and outbound data for this node must be in base 64 format.

Unlike the other TP_EVENT elements, the Payload element has XML attributes
associated with it. These attributes qualify the value contained in the $text node. Figure
33 shows the Payload element’s node structure in the e*Xchange ETD.

Figure 33 Payload Node

You must supply values for the element, $text, as well as the attributes for the element,
LOCATION and TYPE.

The following table lists acceptable values for LOCATION.

Figure 34 Element Locations

Value Purpose

“FILE” Indicates that the value for the element can be found in the
file at the location specified in the Data node.

“DB” Indicates that the value for the element can be found in the
e*Xchange database at the location specified in the Data
node.

“URL” Indicates that the value for the element can be found at the
URL location specified in the Data node.
e*Xchange Partner Manager Implementation Guide 67

Chapter 5 Section 5.2
Using the Java e*Xchange ETD Element Overview
The following table lists acceptable values for TYPE.

Figure 35 Data Type

The value for Payload, the EDI message to be processed by e*Xchange, must be placed
in the Data node at the end of the Payload element’s node structure.

CommProt

The communication protocol used by the trading partner. Possible values are BATCH,
SMTP, HTTP, HTTPS, or TCP/IP.

Url

The destination URL for the trading partner. The data is sent according to the value in
this field.

SSLClientKeyFileName

This node contains HTTPS security information.

SSLClientKeyFileType

This node contains HTTPS security information.

SSLClientCertFileName

This node contains HTTPS security information.

SSLClientCertFileType

This node contains HTTPS security information.

“EMBEDDED” Indicates that the value for the element is contained in the
current e*Xchange Event in the Data node. This is the
default value.

“AUTO” Reserved for future use.

Value Purpose

“RAW” Indicates that the data in the Data node is in ASCII format,
but not XML data that has been converted to ASCII using
base 64 or some other conversion. The data must not
contain any characters that would conflict with the XML
nature of the e*Xchange ETD (for example, EDI delimiters
that are the same as XML control characters).

“PROCESSED” Indicates that the data in the Data node is XML data that has
been encoded using the scheme described in the
ENCODING node. Currently only base 64 encoding is
supported.

“ENCRYPTED” Indicates that the data in the Data node has been
encrypted, and must be decrypted before it can be
processed by e*Xchange.

Value Purpose
e*Xchange Partner Manager Implementation Guide 68

Chapter 5 Section 5.3
Using the Java e*Xchange ETD Sending a Message to e*Xchange
MessageIndex

This node contains information used by the “Fast Batch” feature of e*Xchange. Using
this feature a number of transactions of the same type can be bundled together and sent
out as a single batch transaction to a trading partner. Transactions using fast batch must
populate this node in the Event that is sent to e*Xchange using the following format:

<transaction number in bundle>|<total number of transactions to bundle together>

For example, if the Event sent to e*Xchange contains the 4th transaction of 20 to be sent
out together, this field must contain “4|20”. This is analogous to the “page X of total
pages” page numbering format used by some documents. When e*Xchange receives
the last transaction in the bundle, labeled 20|20, it sends all 20 transaction out together.

TPAttribute

This is a repeating node containing a name/value pair that is used to add future
functionality to e*Xchange without having to change the structure of the ETD.

5.3 Sending a Message to e*Xchange
The Collaboration Rules Script that sends data to e*Xchange must do the following:

put the data into the appropriate format

convert the data to base 64 encoding

populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Put the Data into EDI Format

This step is only necessary if the data is not already in the appropriate format required
by the trading partner. This would be the case where data was coming from SAP in
IDoc format and was not preprocessed into the required format by another
Collaboration. In such a case, the e*Way must translate the data into the required
format before sending to e*Xchange.

This involves creating an ETD corresponding to the initial state of the data and an ETD
corresponding to the required format. Most of these standard ETDs are already pre-
created and made available in the e*Xchange suite of tools. Next you build a
Collaboration that maps one format to the other. This mapping translation could be
called as a sub-translation from the main Collaboration prior to converting the entire
message to base 64.

Convert the Event to Base 64 Encoding

The Collaboration must ensure that the data going into e*Xchange doesn’t include any
characters that will cause problems for the XML structure of the standard e*Xchange
Event (for example, characters that are the same as the XML control characters). This is
done by converting the entire EDI message to base 64 encoding using the method
string2base64, before copying it to the payload node of the eX_StandardEvent ETD.

For example:
e*Xchange Partner Manager Implementation Guide 69

Chapter 5 Section 5.3
Using the Java e*Xchange ETD Sending a Message to e*Xchange
getOut().getTP_EVENT().getPayload().set$Text(Base64.string2base64(get
In().getData()))

This converts the contents of getIn().getData() to base 64 encoding before copying to
the $text node.

Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the message.

e*Xchange Tracking Information

e*Xchange needs to know certain things about a message before it can apply the proper
enveloping and send it out to the trading partner. The Collaboration Rules Script must
supply this information by populating certain required nodes in the Event that is sent
to e*Xchange. At a minimum you must tell e*Xchange:

Direction (inbound or outbound)

Partner Name (logical name from the B2B Protocol section in e*Xchange)

All of these requirements can be met by copying the appropriate information to the
corresponding nodes in the e*Xchange ETD (eX_StandardEvent.xsc).

The TP_EVENT.Direction node must contain the direction of the Event: “O” for
outbound to the trading partner or “I” for inbound from a trading partner.

The TP_EVENT.PartnerName node must contain the name (case-sensitive) of the
trading partner from the Logical Name box on the General page of the B2B Protocol for
this message.

The e*Xchange Payload

In addition to the tracking information, the payload data must be provided. The
TP_EVENT.Payload.$text node must be filled with the entire base 64 encoded EDI
message.

Figure 36 shows a Collaboration Rules Script with the necessary code to populate
eX_StandardEvent.xsc with the required values.
e*Xchange Partner Manager Implementation Guide 70

Chapter 5 Section 5.3
Using the Java e*Xchange ETD Sending a Message to e*Xchange
Figure 36 Example Java Collaboration Rules Script
e*Xchange Partner Manager Implementation Guide 71

Chapter 6

Implementation Overview

This chapter provides a high-level overview of the steps involved in an e*Xchange
implementation, and by doing so provides background information for the case study
chapters that follow it.

6.1 Basic Information
Implementing an e*Xchange system is the process of translating the vision of the
business analyst into a functioning system. Once the analyst has determined that a
certain business task must be accomplished with e*Xchange, it is your job to make it a
reality.

You implement e*Xchange by using the e*Xchange GUIs to enter the relevant data into
the e*Xchange database. Then you combine the e*Xchange e*Gate components with
other e*Gate components you add to create a complete e*Xchange schema. The
e*Xchange components are mostly pre-configured and do not require any (or very
slight) modification by you. The components that you add are completely user-defined.
However, the e*Xchange GUIs and this guide provide a framework for integrating
these user-defined components into a working e*Xchange system.

6.1.1 Types of e*Xchange Implementations
The e*Xchange system is designed for the large-scale integration of information
systems, both inside and outside of an enterprise, in order to run and monitor business
processes. The details of the business processes themselves depend on the nature of the
business.

Not every business process takes advantage of every feature built into the e*Xchange
suite. Because of this, some e*Xchange implementations can use a simplified eXSchema.

6.2 Implementation Road Map
Clearly, each type of implementation involves a different approach. However, at a high
level, there are certain similarities.
e*Xchange Partner Manager Implementation Guide 72

Chapter 6 Section 6.2
Implementation Overview Implementation Road Map
In general, the work of implementing an end-to-end scenario with e*Xchange involves
taking what is created in e*Xchange and integrating it into a working e*Gate schema.
e*Gate powers every e*Xchange scenario, and a successful e*Xchange implementation
is dependent on a successful e*Gate implementation.

To give you an overview of the complete process, the following implementation road
map contains high-level steps for a full e*Xchange implementation. The road map is
further refined and given more detail in the case study chapters that immediately
follow this one.

Figure 37 illustrates the major steps in the integration process for an e*Xchange
implementation.

Figure 37 Integration Road Map

Step 1: Determine the Scope of the Project

Determine the type of implementation

The tasks involved in implementing e*Xchange differ depending on the type of
implementation.

Step 1

Create Trading
Partner Profiles

Determine the
Scope of the

Project

GUI

Step 2

Configure
the e*Gate

Components
Step 4

Step 5 Test the System

Step 3 Copy the
eXSchema
e*Xchange Partner Manager Implementation Guide 73

Chapter 6 Section 6.2
Implementation Overview Implementation Road Map
Analyze the business process

The business analyst must perform the standard tasks of analysis to develop a clear
representation of the business process. It is a good idea to have diagrams of the process
and a list of the data that must be tracked within the business process.

Step 2: Create Trading Partner Profiles

1 Create the custom validation Collaborations you need. For X12 or UN/EDIFACT
protocol implementations, use the Validation Rules Builder tool to help create these
validation Collaborations.

2 Enter the trading partner information into the e*Xchange database.

For information on entering Trading Partner information, see the e*Xchange Partner
Manager User’s Guide.

Step 3: Copy the eXSchema

When beginning an integration project, make a copy of the e*Xchange schema,
eXSchema, that is installed from the CD. Don’t make any modifications to eXSchema
itself; keep it as a template. Make changes to the copy of the eXSchema that you create.
Use this copy as your starting point in e*Gate for supporting e*Xchange.

Use the following procedure to create a copy of the eXSchema:

1 Open the eXSchema in the e*Gate Schema Designer GUI.

A Start the e*Gate Schema Designer.

B Log in to eXSchema.

2 Export the eXSchema to a file <eGate>\client\<eXSchema backup file name>,
where <eGate> is the directory where e*Gate is installed, for example, C:\eGate.

A Select Export Schema Definitions to File ... from the File pull-down menu.

B In the Select archive File dialog box enter <eXSchema backup file name> in the
File name text box, then click Save.

3 Create a new schema using the eXSchema export file as a template.

A Select New Schema from the File pull-down menu.

B Enter <new e*Xchange schema name> in the text box.

C Mark the Create from export check box.

D Click Find and browse for the <eXSchema backup file name> file created in step 2
above.

E Click Open.

The Schema Designer creates a copy of the eXSchema with the schema name
entered in step 3B above.
e*Xchange Partner Manager Implementation Guide 74

Chapter 6 Section 6.2
Implementation Overview Implementation Road Map
Step 4: Configure the e*Gate Components

Configuring the e*Gate components forms the majority of the integration work done. In
this step, you will:

add and configure the e*Ways that send data into and out of the e*Xchange system

make all user-configurable associations in the e*Gate GUI

Step 5: Test and Tune the System

It is a good idea to test the system in stages. For example, make sure that one activity
works properly before you try to run the entire business process. One good approach is
to start with the “upstream” activities at the beginning of the business process, and
work your way down to the last activity.

Once you have the entire system working, make adjustments as necessary to improve
performance.
e*Xchange Partner Manager Implementation Guide 75

Chapter 7

e*Xchange Implementation—X12

This chapter discusses the steps involved to create an e*Xchange implementation that
transfers X12 data.

The components for this implementation are provided on your installation CD. For
instructions on installing and using the implementation components, see “Using the
Implementation Sample” on page 79.

7.1 Overview
An e*Xchange implementation makes use of the features designed to add and remove
the EDI enveloping information for messages exchanged between trading partners.

In an e*Xchange implementation, use the e*Xchange Partner Manager Web interface to
set up the trading partner information, and the e*Gate Schema Designer GUI to add
user-defined e*Gate components to provide connectivity to the business application or
trading partner. Once this is done, the pre-configured e*Xchange e*Gate schema
components handle enveloping and de-enveloping Events as they travel through the
e*Xchange system.

The major steps for an e*Xchange implementation are as follows:

1 Create any needed validation Collaborations.

2 Create the Trading Partner profiles.

3 Configure the user-defined e*Ways that will connect the business application to
e*Xchange.

4 Configure the e*Xchange e*Way.

5 Run and test the scenario.

7.1.1 Case Study: Sending an X12 850 Purchase Order
The case study discussed in this chapter illustrates one possible implementation of
sending out a purchase order to a trading partner.

In this example, an X12 Version 4010 850 purchase order is sent out from a (simulated)
internal application to an external trading partner using a Batch e*Way. The X12
enveloping is automatically added to the message by e*Xchange based on trading
e*Xchange Partner Manager Implementation Guide 76

Chapter 7 Section 7.1
e*Xchange Implementation—X12 Overview
partner information retrieved from the e*Xchange database, before it is sent to the
outbound Batch e*Way.

Typically, the purchase order information would be provided by a business application
and may or may not be in X12 format. A user-defined e*Way must be created to connect
to a business application in order to receive the data and put it into the proper X12
format. The schema contains an e*Way named Send_to_ePM that you can use as a
starting point. In order to simplify this example, the purchase order information is
provided in the form of a text file that is already in X12 850 format.

This example provides instructions for creating e*Ways that use both the Java and
Monk Collaboration Services to create the event that is sent to e*Xchange.

Note: This example does not use a return acknowledgment. Therefore, the step covering
configuration of the e*Ways used to receive data back from a trading partner is not
covered in this chapter.
e*Xchange Partner Manager Implementation Guide 77

Chapter 7 Section 7.1
e*Xchange Implementation—X12 Overview
Figure 38 e*Xchange Scenario Data Flow

Figure 38 data flow description

The Send_to_ePM_Java or Send_to_ePM_Monk e*Way picks up the text file
containing the 850 Purchase order, puts the data into standard e*Xchange format,
adds the tracking information required by e*Xchange, and then publishes it to the
eX_eBPM IQ in e*Gate.

The eX_ePM e*Way picks up the e*Xchange Event from the eX_eBPM IQ, retrieves
the trading partner information from the e*Xchange database, and then uses the
retrieved trading partner information to add the X12 enveloping to the Event, and
then places it in the eX_Trading_Port_Queue IQ using the eX_BATCH Event Type.

The eX_Batch_to_Trading_Partner e*Way picks up the eX_BATCH Event from the
eX_Trading_Port_Queue IQ, and then sends the message via FTP to the trading
partner.

1

3

Order

e*Xchange
Database

Send_to_ePM
e*Way eX_ePM

Engine

Order

eX_eBPM
IQ

eX_Trading_
Port_Queue IQ

eX_Batch_to_
Trading_

Partner e*Way

2

1

2

3

e*Xchange Partner Manager Implementation Guide 78

Chapter 7 Section 7.2
e*Xchange Implementation—X12 Using the Implementation Sample
7.2 Using the Implementation Sample
The components for this implementation are provided on your installation CD, and are
located in \setup\ex\sample\X12_Implementation_Sample.zip. Follow these steps
to install the components:

1 Unzip the file to a local directory.

2 Install the e*Gate schema using one of the following commands. The instructions
refer to the schema name X12, however, this is user-defined.

Note: The default registry port number is 23001.

A For UNIX

sh install_po.sh <egate_registry_host_name> <schema_name>
<user_name> <password> <egate_registry_port_num>

B For Windows

install_po.bat <egate_registry_host_name> <schema_name>
<user_name> <password> <egate_registry_port_num>

3 Use the e*Xchange Import function in the e*Xchange Repository Manager to import
Savvy_Toy_Company.exp into e*Xchange Partner Manager.

4 Copy eXchange_PO.~in to <egate>\client\data\eXchange.

5 Refer to “Step 3: Set Up the B2B Protocol Information” on page 84 and ensure that
the directory referred to in the File Name parameter matches the location of the file
eXchange_PO.~in, as set up in step 4 above. If it does not, change the File Name
parameter value.

6 Refer to either Table 12 on page 87 (Java) or Table 15 on page 90 (Monk) and ensure
that the directory referred to in the PollDirectory parameter exists. If it does not,
either create the directory or change the PollDirectory parameter value.

7 Configure the eX_ePM e*Way as described in “Configure the eX_ePM e*Way” on
page 93.

The steps on the following pages describe how the components for this implementation
were created. See “Run and Test the e*Xchange Scenario” on page 94 for instructions
to run the implementation.
e*Xchange Partner Manager Implementation Guide 79

Chapter 7 Section 7.3
e*Xchange Implementation—X12 Create Necessary Validation Collaborations
7.3 Create Necessary Validation Collaborations
Creating an X12 validation Collaboration is a two-step process:

1 Create the Standard Exchange Format (SEF) file.

2 Use the Validation Rules Builder (VRB) tool to create the validation Collaborations
based on the SEF file.

7.3.1 Create the SEF File
e*Xchange includes many generic X12 validation Collaborations that you can use to
verify the format of X12 EDI messages. You can use these as supplied, or modify them
to fit your particular needs. In addition, the e*Xchange suite includes a tool, the VRB,
for building customized validation Collaborations directly from a SEF file. You create
the SEF file with a third-party Implementation Guide editor using the EDI
Implementation Guide for your industry.

Figure 39 shows a portion of the SEF file created for the e*Xchange example, using
Foresight’s EDISIM software.

Figure 39 e*Xchange SEF File

7.3.2 Create the Validation Collaboration with the VRB
To create the validation Collaboration using the VRB, you must edit the VRB properties
file, and then run the VRB tool against the SEF file. This process generates the
corresponding CRS (.tsc) and ETD (.ssc) files needed by e*Xchange.

Figure 40 shows the edited ValidationBuilder.properties file used to create the
validation Collaboration used in this example.
e*Xchange Partner Manager Implementation Guide 80

Chapter 7 Section 7.3
e*Xchange Implementation—X12 Create Necessary Validation Collaborations
Figure 40 Edited VRB Properties File

Once the VRB file has been edited and saved you must run the VRB tool.

From a command prompt within the ValidationRulesBuilder directory, enter the
following command:

java -jar <eGate>\client\classes\ValidationBuilder.jar

where <eGate> is the directory where e*Gate is installed, for example, C:\eGate.

The VRB tool creates the following two files and places them in the
ValidationRulesBuilder directory:

X12_850PurcOrde_4010.ssc

X12_850PurcOrde_4010.tsc

The VRB also commits these two files to the e*Gate Registry under the eXSchema.

See “Using the Validation Rules Builder” in the e*Xchange Partner Manager User’s Guide
for more information on how to create validation Collaborations using this tool.
e*Xchange Partner Manager Implementation Guide 81

Chapter 7 Section 7.4
e*Xchange Implementation—X12 Create the Trading Partner Profiles
7.4 Create the Trading Partner Profiles
The trading partner profiles in e*Xchange Partner Manager act as the repositories for
the information necessary to send EDI messages back and forth between the entities.
They contain all of the information to properly envelope an Event and forward it to its
correct destination.

When creating trading partner profiles, check your values carefully before saving or
leaving a section/screen, because many values cannot be changed once they are
committed to the database due to auditing restrictions. You can inactivate erroneous
information and add the correct information under a different company, B2B Protocol,
and so on.

Refer to the e*Xchange Partner Manager User’s Guide for detailed assistance with the
process of creating trading partner profiles.

Trading Partner Information Hierarchy

e*Xchange stores trading partner information at various levels. The process of creating
a trading partner profile proceeds from the most general inclusive level, that of a
company with which you do business, to the most specific information regarding an
message that you wish to send (the message profile).

7.4.1 The Savvy Toy Company Trading Partner
The Savvy Toy Company (Savvy) is a manufacturer of high quality toys that uses the
X12 format to exchange business data with its customers. In our example we send a
purchase order to Savvy for one of their products, “the Millennium Pet Rock.”

The following procedure and accompanying tables were used to create the Savvy
trading partner for this example.

Figure 41 shows an overview of the components that you need to create for this
example, including,

Company

Trading Partner

B2B Protocol Information

Message Profiles
e*Xchange Partner Manager Implementation Guide 82

Chapter 7 Section 7.4
e*Xchange Implementation—X12 Create the Trading Partner Profiles
Figure 41 The Savvy Toy Company Overview

To configure the Savvy Toy Company Trading Partner Profile you must follow the steps
listed below:

Step 1: Create the Company on page 83

Step 2: Create the Trading Partner on page 83

Step 3: Set Up the B2B Protocol Information on page 84

Step 4: Create the Message Profile on page 85

Step 1: Create the Company

1 Log in to the e*Xchange Web interface.

2 From the Main page, click Profile Management.

3 From the Company page, click New.

4 In the Company - Adding page, enter the Company name, “Savvy Toy Company”.

5 Click Next.

This saves your changes and returns to the Company page.

Note: The security information is automatically configured for the current user.

Step 2: Create the Trading Partner

1 From the Company page, ensure that “Savvy Toy Company” is selected, and click
Continue: Trading Partner.

e*Xchange

Savvy Toy Company
Outbound

Message Profile
Purchase Order

B2B Protocol Information

Savvy Toy Company
e*Xchange Partner Manager Implementation Guide 83

Chapter 7 Section 7.4
e*Xchange Implementation—X12 Create the Trading Partner Profiles
2 From the Trading Partner page, click New to access the Trading Partner - adding
page.

3 Enter the Trading Partner Name, “Savvy Toy Company”.

4 Click Next.

This saves your changes and returns to the Trading Partner page.

The required security information defaults from the company level.

Step 3: Set Up the B2B Protocol Information

1 From the Trading Partner page, ensure that the “Savvy Toy Company” is selected,
and click Continue: B2B Protocol.

2 From the B2B Protocol page, click New to access the B2B Protocol - Adding page.

3 Enter the information listed in Table 6.

In an actual implementation, your local administrator can provide you with the B2B
Protocol information. For an explanation of the B2B Protocol parameters, see the
e*Xchange Partner Manager User’s Guide.

4 Click Next to save your changes and access the General section.

5 Enter the information listed in Table 7.

6 Click Next to save your changes and access the Transport Component section.

7 In the File Name window, enter <drive>\SavvyOut\Savvy850_Out_%d_%3#.dat.

Note: You must create the directory <drive>\SavvyOut before running the Schema.

8 Click Next to accept the values and access the Message Security page.

9 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Table 6 B2B Protocol Information

Parameter Value

eBusiness Protocol X12

Version 4010

Direction Outbound

Table 7 B2B Protocol Information, General Page

Parameter Value

Logical Name Savvy

Status Active

Communication Protocol FTP (BATCH)
e*Xchange Partner Manager Implementation Guide 84

Chapter 7 Section 7.4
e*Xchange Implementation—X12 Create the Trading Partner Profiles
Step 4: Create the Message Profile

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 Enter the information listed in Table 8.

Note: This table only lists the attributes required to make this scenario work.

Table 8 General (X12_850PurcOrde_4010)

4 Click Next to access the Interchange Control Envelope section. Enter the
information listed in Table 9.

Table 9 Interchange Control Envelope (X12_850PurcOrde_4010)

Note: The IC Control Number must be 9 digits in length.

5 Click Next to access the Functional Group Envelope section. Enter the information
listed in Table 10.

Note: This table only lists the attributes required to make this scenario work.

Table 10 Functional Group Envelope (X12_850PurcOrde_4010)

6 Click Next to access the Transaction Set Envelope section. Enter the information
listed in Table 11.

Name Value

Name Savvy 850 Outbound PO

Transfer Mode Interactive

Validation Collaboration X12_850PurcOrde_4010

Name Value

ISA06 Interchange Sender Identifier eBiz01

ISA08 Interchange Receiver Identifier Savvy01

ISA13 IC Control Number 000000002

Name Value

GS01 Functional Identification Code PO

GS02 Application Sender Code eBiz01

GS03 Application Receiver Code Savvy01

GS06 Group Control Number 2
e*Xchange Partner Manager Implementation Guide 85

Chapter 7 Section 7.5
e*Xchange Implementation—X12 Clone the eXSchema
Note: This table only lists the attributes required to make this scenario work.

7 Click Next to access the Return Messages section.

8 No changes are required. Click Finish to save the information and return to the
Message Profile page.

7.5 Clone the eXSchema
The supplied schema named eXSchema contains the components required to run
e*Xchange. Make a copy of this schema and then configure the copy for this
implementation.

To make a copy of eXSchema

1 Open eXSchema in the e*Gate Schema Designer GUI.

2 Export eXSchema.

3 Create a new schema named X12 using the exported file.

7.6 Configure the e*Way to Send the Message to
e*Xchange

The component (e*Way or BOB) that feeds data into e*Xchange must put the data into
the appropriate business protocol format. It must also populate the required fields in
the e*Xchange Event that is processed by e*Xchange.

This component is entirely user-defined and must be added to the eXSchema. The type
of component to use depends on whether a connection to a system outside e*Gate must
be made, and if so, what type of system. Typically, this component is an e*Way that
connects to a business application such as SAP that sends out electronic messages.
These messages may or may not be in the format required by the trading partner to
which they are being sent. If the data is not in the correct format, the e*Way must
translate the data into the required format before it is sent to the e*Xchange system for
enveloping and forwarding to the trading partner.

Table 11 Transaction Set Envelope (X12_850PurcOrde_4010)

Name Value

ST01 Transaction Set Identification Code 850

ST02 TS Control Number 1
e*Xchange Partner Manager Implementation Guide 86

Chapter 7 Section 7.6
e*Xchange Implementation—X12 Configure the e*Way to Send the Message to e*Xchange
The e*Xchange Send_to_ePM e*Way

This example simulates the publication of an electronic purchase order from an internal
(to the company, but not to e*Gate) accounting application to a shared location on the
network file system. This file, which is already in X12 850 format, is then picked up by a
file e*Way and moved into e*Xchange.

This example shows the configuration steps for creating the e*Way using the Java
Collaboration Service (see “Configuring the Send_to_ePM_Java e*Way”) and the
Monk Collaboration Service (see “Configuring the Send_to_ePM_Monk e*Way” on
page 90).

7.6.1 Configuring the Send_to_ePM_Java e*Way
Follow these steps to configure Send_to_ePM_Java e*Way.

1 Create the configuration file.

2 Create the ETDs.

3 Create the Collaboration Rule and Collaboration Rules Script.

4 Create the Collaboration.

Step 1: Edit the Send_to_ePM_Java e*Way Configuration File

1 In the Configuration file area of the General tab, in the e*Way Properties dialog
box, click Clear, and then click New.

2 Configure the Send_to_ePM_Java e*Way parameters using Table 12.

3 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

4 Click OK to close the e*Way Properties dialog box.

Step 2: Create the Send_to_ePM_Java ETDs

In the case where the Send_to_ePM_Java e*Way connects to a business application,
you must create an ETD that corresponds to the business application. For example, an
SAP system sends out EDI messages in IDoc (SAP proprietary) format. In order to work
with these messages you must create an ETD that corresponds to the IDoc.

Table 12 Send_to_ePM_Java e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\client\data\eXchange

(All others) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 87

Chapter 7 Section 7.6
e*Xchange Implementation—X12 Configure the e*Way to Send the Message to e*Xchange
In the present example, since the data is already in standard X12 850 format for a
purchase order, you can bring in the Event without parsing it. To do this, all that is
required is an ETD with a root node.

Step 3: Create the Send_to_ePM_Java Collaboration Rule and
Collaboration Rule Script

The Send_to_ePM_Java.xpr CRS used in the present example is shown in Figure 42. It
does the following:

Converts the X12 850 message to base 64 encoding, and copies it to the Payload
node of the TP_EVENT section of the e*Xchange standard Event.

Sets the Payload type and location.

Copies “O” for outbound to the direction node of the TP_EVENT section.

Copies the trading partner logical name “Savvy” to the PartnerName node of the
TP_EVENT section.

To create and configure the Send_to_ePM_Java Collaboration Rule and Collaboration Rule
Script

1 Create a new Collaboration Rule named Send_to_ePM_Java.

2 From Send_to_ePM_Java Collaboration Rule properties, select the General tab.
Select Java as the Service.

3 Select the Collaboration Mapping tab. Create two instances, and configure as
shown in Table 13.

Table 13 Send_to_ePM_Java CR configuration - Collaboration Mapping Tab

4 Select the General tab, and then click New.

The Collaboration Editor opens.

5 Add the rules shown in Figure 42.

Instance Name ETD Mode Manual Publish

In Root.xsc In N/A

Out eX_StandardEvent.xsc Out
e*Xchange Partner Manager Implementation Guide 88

Chapter 7 Section 7.6
e*Xchange Implementation—X12 Configure the e*Way to Send the Message to e*Xchange
Figure 42 Send_to_ePM_Java.xpr

Step 4: Create the Send_to_ePM_Java Collaboration

Once the CRS has been created, you must set up the Collaboration Properties for the
Send_to_ePM_Java Component in the Schema Designer GUI.

To create and configure the Send_to_ePM_Java Collaboration

1 Select the Send_to_ePM_Java e*Way.

2 Create a new Collaboration named Send_to_ePM_Java.

3 Configure the Send_to_ePM_Java Collaboration properties using Table 14.

Table 14 Send_to_ePM_Java Collaboration configuration

Section Value

Collaboration Rule Send_to_ePM_Java

Subscriptions Instance: In
Event Type: eX_External_Evt
Source: <EXTERNAL>

Publication Instance: Out
Event Type: eX_to_ePM
Destination: eX_eBPM
e*Xchange Partner Manager Implementation Guide 89

Chapter 7 Section 7.6
e*Xchange Implementation—X12 Configure the e*Way to Send the Message to e*Xchange
Verify the information in the Collaboration Properties dialog box as shown in Figure
43.

Figure 43 Send_to_ePM_Java Collaboration Properties

7.6.2 Configuring the Send_to_ePM_Monk e*Way
Follow these steps to configure Send_to_ePM_Monk e*Way.

1 Create the configuration file.

2 Create the ETDs.

3 Create the Collaboration Rule and Collaboration Rules Script.

4 Create the Collaboration.

Step 1: Edit the Send_to_ePM_Monk e*Way Configuration File

1 In the Configuration file area of the General tab, in the e*Way Properties dialog
box, click Clear, and then click New.

2 Configure the Send_to_ePM_Monk e*Way parameters using Table 15.

Table 15 Send_to_ePM_Monk e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\client\data\eXchange

(All others) (Default)
e*Xchange Partner Manager Implementation Guide 90

Chapter 7 Section 7.6
e*Xchange Implementation—X12 Configure the e*Way to Send the Message to e*Xchange
3 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

4 Click OK to close the e*Way Properties dialog box.

Step 2: Create the Send_to_ePM_Monk ETDs

In the present example, since the data is already in standard X12 850 format for a
purchase order, you can bring in the Event without parsing it. To do this, all that is
required is an ETD with a root node.

Step 3: Create the Send_to_ePM_Monk Collaboration Rules Script

The Send_to_ePM_Monk.tsc CRS used in this example is shown in Figure 44. It does
the following:

Converts the X12 850 message to base 64 encoding, and copies it to the Payload
node of the TP_EVENT section of the e*Xchange standard Event.

Copies “O” for outbound to the direction node of the TP_EVENT section.

Copies the trading partner logical name “Savvy” to the PartnerName node of the
TP_EVENT section.

Figure 44 shows the CRS used in this example.

Figure 44 Send_to_ePM_Monk.tsc

Step 4: Create the Send_to_ePM_Monk Collaboration Rule

To create and configure the Send_to_ePM_Monk Collaboration Rule

1 Create a new Collaboration Rule named Send_to_ePM_Monk.

2 From the Send_to_ePM_Monk Collaboration Rule properties, select the General
tab. Configure as shown in Table 16.

Performance Testing (All) (Default)

Table 15 Send_to_ePM_Monk e*Way Parameters

Screen Parameter Setting
e*Xchange Partner Manager Implementation Guide 91

Chapter 7 Section 7.6
e*Xchange Implementation—X12 Configure the e*Way to Send the Message to e*Xchange
Table 16 Send_to_ePM_Monk CR configuration - General Tab

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_to_ePM and move it to the right pane.

Step 5: Create the Send_to_ePM_Monk Collaboration

Once the CRS has been created, you must set up the Collaboration Properties for the
Send_to_ePM_Monk Component in the Schema Designer GUI.

To create and configure the Send_to_ePM_Monk Collaboration

1 Select the Send_to_ePM_Monk e*Way.

2 Create a new Collaboration named Send_to_ePM_Monk.

3 Configure the Send_to_ePM_Monk Collaboration properties using Table 17.

Table 17 Send_to_ePM_Monk Collaboration Configuration

Section Value

Service Monk

Collaboration Rule Send_to_ePM_Monk

Initialization File monk_scripts\common\load_ext

Section Value

Collaboration Rule Send_to_ePM_Monk

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_to_ePM
Destination: eX_eBPM
e*Xchange Partner Manager Implementation Guide 92

Chapter 7 Section 7.7
e*Xchange Implementation—X12 Configure the eX_ePM e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
45.

Figure 45 Send_to_ePM_Monk Collaboration Properties

7.7 Configure the eX_ePM e*Way
The eX_ePM e*Way requires only minimal configuration. You must give it the logon
information for the e*Xchange database.

To configure the eX_ePM configuration file

1 In the eX_ePM e*Way properties, select the General tab.

2 In the Configuration File area, click Edit.

3 Configure the parameters as shown in Table 18.
.

Table 18 eX_ePM e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Communication Setup (All) (Default)

Monk Configuration (All) (Default)
e*Xchange Partner Manager Implementation Guide 93

Chapter 7 Section 7.8
e*Xchange Implementation—X12 Configure Any Other e*Gate Components
7.8 Configure Any Other e*Gate Components
The remaining component in the e*Xchange schema is the
eX_Batch_to_Trading_Partner e*Way. This component works without any user
configuration.

The Batch e*Way uses the information in the trading partner profile to FTP the message
to the trading partner. In this example this is simulated by making a local copy of the
file.

7.9 Run and Test the e*Xchange Scenario
Once the schema has been set up in e*Gate you can run and test the scenario.

1 Make a final check of the e*Gate schema. Also, make sure the eX_ePM, and
eX_Batch_to_Trading_Partner, and either Send_to_ePM_Java or
Send_to_ePM_Monk, components are set to auto-start.

Important: Verify that any other components in the schema that are not being used are not set to
auto-start or are moved to an unused host.

2 At the command line, start the schema:

stccb.exe -rh localhost -rs <schema name> -ln localhost_cb -un
Administrator -up STC

3 Start the Schema Manager and check the status of all the components. Any
components used in the e*Xchange scenario that are red, indicating they are not
running, should be investigated before feeding data into the system.

4 Using Windows Explorer (or the equivalent) navigate to the location for the input
data file, eXchange_PO.~in (<eGate>\client\data\eXchange).

5 Change the extension to “.fin”. Watch as the data file name changes to “.~in”
indicating that the data file has been picked up.

6 Navigate to the location to which you are sending the output file by FTP. If
everything is working correctly, an output file should appear in the directory
indicating successful completion of the EDI exchange.

Database Setup Database Name) (Service name of the
e*Xchange database)

User name ex_admin

Password ex_admin

(All others) (Default)

Table 18 eX_ePM e*Way Parameters

Screen Parameter Setting
e*Xchange Partner Manager Implementation Guide 94

Chapter 7 Section 7.10
e*Xchange Implementation—X12 Editing the Data File
Note: The enveloping information is added to the information contained in the input file
by e*Xchange.

Viewing the Results in Message Tracking

You can view the results of the message processing by using the Message Tracking
feature of e*Xchange.

To view the outbound message in Message Tracking

1 From e*Xchange Web Interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Savvy Toy Company.

3 In the Trading Partner Profile field, select Savvy Toy Company.

4 In the eBusiness Protocol field, select X12.

5 In the Direction field, select Outbound.

6 Click the Message Profile Selection.

7 Select the Savvy 850 Outbound PO message.

8 Click the Message Details link to view the resulting list.

7.10 Editing the Data File
If you want to send the data again, you need to edit the data to ensure that it is unique.
Open <eGate>\client\data\eXchange\eXchange_PO.~in and change the field shown
in bold in to a unique value.

Figure 46 Sample data file
e*Xchange Partner Manager Implementation Guide 95

Chapter 8

e*Xchange Implementation—UN/EDIFACT

This chapter discusses the steps involved to create an e*Xchange implementation that
transfers UN/EDIFACT data.

The components for this implementation are provided on your installation CD. For
instructions on installing and using the implementation components, see “Using the
Implementation Sample” on page 99.

8.1 Overview
An e*Xchange implementation makes use of the features designed to add and remove
the EDI enveloping information for messages exchanged between trading partners.

In an e*Xchange implementation, use the e*Xchange Web Interface to set up trading
partner information, and the e*Gate Schema Designer GUI to add user-defined e*Gate
components to provide connectivity to the business application or trading partner.
Once this is done, the pre-configured e*Xchange e*Gate schema components handle
enveloping and de-enveloping Events as they travel through the e*Xchange system.

The major steps for an e*Xchange implementation are as follows:

1 Create any needed validation Collaborations.

2 Add the new validation Collaborations and configure envelope profiles in the
e*Xchange GUI.

3 Create the trading partner profiles.

4 Configure the user-defined e*Ways that connect the business application to
e*Xchange and exchange messages with the trading partner.

5 Configure the e*Xchange e*Way.

6 Run and test the scenario.

8.1.1 Case Study: Sending an UN/EDIFACT Purchase Order
The case study discussed in this chapter illustrates one possible implementation of
receiving a purchase order from a trading partner.

In this example, a UN/EDIFACT purchase order is received from an external trading
partner. The UN/EDIFACT enveloping is automatically removed from the message by
e*Xchange based on trading partner information retrieved from the e*Xchange
e*Xchange Partner Manager Implementation Guide 96

Chapter 8 Section 8.1
e*Xchange Implementation—UN/EDIFACT Overview
database, and then it is sent to an internal system. A control message is immediately
returned to the Trading Partner. Then the purchase order response is sent to the Trading
Partner, and the Trading Partner returns a control message to complete the cycle. Figure
47 shows the message flow.

Figure 47 UN/EDIFACT Message Flow

Typically, the purchase order information would be provided by a business application
and may or may not be in UN/EDIFACT format. A user-defined e*Way must be created
to connect to a business application in order to receive the data and put it into the
proper UN/EDIFACT format. In order to simplify this example, the purchase order
information is provided in the form of a text file that is already in UN/EDIFACT
format.

CarSupplies
Europe TP

Purchase Order Message

Purchase Order Response Message

Control

Control

e*XchangeCarSupplies
Europe
e*Xchange Partner Manager Implementation Guide 97

Chapter 8 Section 8.1
e*Xchange Implementation—UN/EDIFACT Overview
Figure 48 e*Xchange Scenario Data Flow

Figure 48 data flow description

The TP_Order_Feeder e*Way picks up the order message and publishes it to the
eX_trading_Port_Queue IQ.

e*Xchange engine picks it up from the IQ, validates it, saves it to the database, and
publishes two messages:

Control message to the eX_Trading_Port_Queue IQ

Order message to the eX_eBPM IQ.

eX_Batch_to_Trading_Partner e*Way sends out the control message to the trading
partner.

Internal_Order_Eater e*Way picks up the message from the eX_eBPM IQ and sends
it to the internal system.

1

3

4 Order

e*Xchange
Database

Internal_Order
_Eater e*Way eX_ePM

Engine

Order

eX_eBPM
IQ

eX_Trading_
Port_Queue IQ

TP_Order
_Feeder e*Way

eX_Batch_to_
Trading_

Partner e*Way

Ctrl

2

e*Xchange

1

2

3

4

e*Xchange Partner Manager Implementation Guide 98

Chapter 8 Section 8.2
e*Xchange Implementation—UN/EDIFACT Using the Implementation Sample
8.2 Using the Implementation Sample
The components for this implementation are provided on your installation CD, and are
located in \setup\eXchange\sample\EDIFACT_SAMPLE_IMPLEMENTATION.zip.
Follow these steps to install the components:

1 Unzip the file to a local directory.

2 Install the e*Gate schema using one of the following commands. The schema name
is user defined.

Note: The default registry port number is 23001.

A For UNIX

sh install_edifact_po.sh <egate_registry_host_name> <schema_name>
<user_name> <password> <egate_registry_port_num>

B For Windows

install_edifact_po.bat <egate_registry_host_name> <schema_name>
<user_name> <password> <egate_registry_port_num>

3 Use the e*Xchange Import function to import EDIFACT.exp into e*Xchange Partner
Manager.

4 Copy the data folder to the <egate> directory.

5 If e*Gate is not installed on your C drive, update the Transport Component file
location as described in “Step 5: Set up outbound B2B Protocol Information” on
page 105.

6 Configure the eX_ePM e*Way as described in “Configure the eX_ePM e*Way” on
page 117.

The steps on the following pages describe how the components for this implementation
were created. See “Running the Scenario” on page 119 for instructions to run the
implementation.
e*Xchange Partner Manager Implementation Guide 99

Chapter 8 Section 8.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
8.3 Create the Trading Partner Profiles
Trading partner profiles in e*Xchange act as repositories for the information necessary
to send EDI messages back and forth between entities. They contain all of the
information needed to properly envelope an Event and forward it to its correct
destination.

When creating trading partner profiles, check your values carefully before saving or
leaving a section/screen, because many values cannot be changed once they are
committed to the database due to auditing restrictions. You can inactivate erroneous
information and add the correct information under a different company, B2B Protocol,
and so on.

Refer to the e*Xchange Partner Manager User’s Guide for detailed assistance with the
process of creating trading partner profiles.

Trading Partner Information Hierarchy

e*Xchange stores trading partner information at various levels. The process of creating
a trading partner profile proceeds from the most general inclusive level, that of a
company with which you do business, to the most specific information regarding an
message that you wish to send (the message profile).

8.3.1 The Car Interiors Trading Partner
Car Interiors is a manufacturer of high quality car interiors that uses the UN/EDIFACT
format to exchange business data with its customers. In our example we send a
purchase order to Car Interiors.

The following procedure and accompanying tables were used to create the Car Interiors
trading partner for this example.

Figure 49 shows an overview of the components that you need to create for this
example, including:

Company

Trading Partner

B2B Protocol Information

Message Profiles
e*Xchange Partner Manager Implementation Guide 100

Chapter 8 Section 8.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
Figure 49 Car Interiors Overview

To configure the CarSupplies Europe trading partner profile you must follow the steps
listed below:

Step 1: Create the Company on page 101

Step 2: Create the Trading Partner on page 102

Step 3: Set up the Inbound B2B Protocol Information on page 102

Step 4: Create the Inbound Message Profiles on page 103

Step 5: Set up outbound B2B Protocol Information on page 105

Step 6: Create the Outbound Message Profiles on page 105

Step 7: Configure Return Messages for Inbound on page 108

Step 1: Create the Company

1 Log in to the e*Xchange Web interface.

2 From the Main page, click Profile Management.

3 From the Company page, click New.

4 In the Company - adding page, enter the Company name, “Car Interiors”.

5 Click Next.

This saves your changes and returns to the Company page.

Note: The security information is automatically configured for the current user.

e*Xchange

CarSupplies Europe TP

B2B Protocol Information
Inbound (Receive from CarSupplies Europe)

Message Profiles
Purchase Order Message
Control

Outbound (Send to CarSupplies Europe)

Message Profiles
Purchase Order Response Message
Control

B2B Protocol Information

Car Interiors Company
e*Xchange Partner Manager Implementation Guide 101

Chapter 8 Section 8.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
Step 2: Create the Trading Partner

1 From the Company page, ensure that “Car Interiors” is selected, and click
Continue: Trading Partner.

2 From the Trading Partner page, click New to access the Trading Partner - adding
page.

3 Enter the Trading Partner Name, “CarSupplies Europe”.

4 Click Next.

This saves your changes and returns to the Trading Partner page.

The required security information defaults from the company level.

Step 3: Set up the Inbound B2B Protocol Information

To set up the inbound B2B Protocol Information

1 From the Trading Partner page, ensure that the “CarSupplies Europe” is selected,
and click Continue: B2B Protocol.

2 From the B2B Protocol page, click New to access the B2B Protocol - adding page.

3 Enter the information listed in Table 19.

In an actual implementation, your local administrator can provide you with the B2B
Protocol information. For an explanation of the B2B Protocol parameters, see the
e*Xchange Partner Manager User’s Guide.

4 Click Next, to save your changes and access the General section.

5 Enter the information listed in Table 20.

6 Click Next, to save your changes and access the Transport Component section.

7 No changes are required. Click Next to access the Message Security section.

8 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Table 19 B2B Protocol Information

Parameter Value

eBusiness Protocol UN/EDIFACT

Version 4B

Direction Inbound

Table 20 B2B Protocol Information, General Page

Parameter Value

Logical Name TP_001

Status Active

Communication Protocol FTP(BATCH)
e*Xchange Partner Manager Implementation Guide 102

Chapter 8 Section 8.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
Step 4: Create the Inbound Message Profiles

For the purposes of this scenario, you must set up the following inbound message
profiles:

Purchase Order Message (EDF_ORDERSPurcOrdeMess_D99B)

Control (EDF_CONTROL)

To set up the EDF_ORDERSPurcOrdeMess_D99B Order inbound message profile

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 Enter the information listed in Table 21.

Note: This table only lists the attributes required to make this scenario work.

Table 21 General (EDF_ORDERSPurcOrdeMess_D99B)

4 Click Next to access the Interchange Control Envelope section. Enter the
information listed in Table 22.

Table 22 Interchange Control Envelope (EDF_ORDERSPurcOrdeMess_D99B)

5 Click Next to access the Functional Group Envelope section. Enter the information
listed in Table 23.

Note: This table only lists the attributes required to make this scenario work.

Table 23 Functional Group Envelope (EDF_ORDERSPurcOrdeMess_D99B)

6 Click Next to access the Message Envelope section.

Name Value

Name EDF_ORDERSPurcOrdeMess_D99B

Transfer Mode Interactive

Validation Collaboration EDF_ORDERSPurcOrdeMess_D99B

Name Value

Interchange Recipient Identifier 987654321

Interchange Recipient Identification
Qualifier

1

Interchange Sender Identifier 123456789

Interchange Sender Identification
Qualifier

1

Name Value

Application Receiver Identification Code 987654321

Application Sender Identification Code 123456789
e*Xchange Partner Manager Implementation Guide 103

Chapter 8 Section 8.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
7 In the Message Type Identifier window, type ORDERS.

8 Click Next to access the Return Messages section.

9 No changes are required. Click Finish to save the information and return to the
Message Profile page.

To set up the EDF_CONTROL inbound message profile

1 From the Message Profile page, click the New button to access the Message Profile
- adding page.

2 Enter the information listed in Table 24.

Note: This table only lists the attributes required to make this scenario work.

Table 24 General (EDF_CONTROL)

3 Click Next to access the Interchange Control Envelope section. Enter the
information listed in Table 25.

Table 25 Interchange Control Envelope (EDF_CONTROL)

4 Click Next to access the Functional Group Envelope section. Enter the information
listed in Table 26.

Note: This table only lists the attributes required to make this scenario work.

Table 26 Functional Group Envelope (EDF_CONTROL)

5 Click Next to access the Message Envelope section.

6 In the Message Type Identifier window, type CONTRL.

7 Click Next to access the Return Messages section.

Name Value

Name EDF_CONTROL

Transfer Mode Interactive

Validation Collaboration EDF_CONTROL

Name Value

Interchange Recipient Identifier 987654321

Interchange Recipient Identification
Qualifier

1

Interchange Sender Identifier 123456789

Interchange Sender Identification
Qualifier

1

Name Value

Application Receiver Identification Code 987654321

Application Sender Identification Code 123456789
e*Xchange Partner Manager Implementation Guide 104

Chapter 8 Section 8.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
8 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Step 5: Set up outbound B2B Protocol Information

To set up the outbound B2B Protocol Information

As a shortcut, you can copy the Inbound B2B Protocol Information as a model for the
Inbound B2B Protocol Information.

1 On the B2B Protocol page, select the UN/EDIFACT-4B-Inbound protocol that you
created in “To set up the inbound B2B Protocol Information” on page 102.

2 Click Copy.

The Copy Type page appears.

3 Clear the Include Sub-components check box and then click OK.

The B2B Protocol - copying page appears.

4 In the Direction field, ensure that Outbound is selected.

5 Click Next.

The B2B Protocol - copying, General page appears.

6 No changes are needed: click Next to accept the values and access the Transport
Component page.

7 In the File Name window, enter
<egate>\data\TP\eater\order_response_%d_%3#.dat.

8 Click Next to accept the values and access the Message Security page.

9 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Step 6: Create the Outbound Message Profiles

For the purposes of this scenario, you must set up the following outbound message
profiles:

Purchase Order Response Message (EDF_ORDRSPPurcOrdeRespMess_D99B)

Control (EDF_CONTROL)

To set up the EDF_ORDRSPPurcOrdeRespMess_D99B Order inbound message profile

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 Enter the information listed in Table 27.

Note: This table only lists the attributes required to make this scenario work.
e*Xchange Partner Manager Implementation Guide 105

Chapter 8 Section 8.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
Table 27 General (EDF_ORDRSPPurcOrdeRespMess_D99B)

4 Click Next to access the Interchange Control Envelope section. Enter the
information listed in Table 28.

Table 28 Interchange Control Envelope (EDF_ORDRSPPurcOrdeRespMess_D99B)

5 Click Next to access the Functional Group Envelope section. Enter the information
listed in Table 29.

Note: This table only lists the attributes required to make this scenario work.

Table 29 Functional Group Envelope (EDF_ORDRSPPurcOrdeRespMess_D99B)

6 Click Next to access the Message Envelope section.

7 In the Message Type Identifier window, type ORDRSP.

8 Click Next to access the Return Messages section.

9 Select the return message (select the Include check box), and enter the values, as
shown in Table 30.

10 Click Finish to save the information and return to the Message Profile page.

To set up the EDF_CONTROL inbound message profile

1 From the Message Profile page, click the New button to access the Message Profile
- adding page.

Name Value

Name EDF_ORDRSPPurcOrdeRespMess_D99B

Transfer Mode Interactive

Validation Collaboration EDF_ORDRSPPurcOrdeRespMess_D99B

Name Value

Interchange Recipient Identifier 123456789

Interchange Recipient Identification
Qualifier

1

Interchange Sender Identifier 987654321

Interchange Sender Identification
Qualifier

1

Name Value

Application Receiver Identification Code 123456789

Application Sender Identification Code 987654321

Table 30 Return Message Values: Outbound

Name Response Time Period # Retries

EDF_CONTROL 2 Minutes 2
e*Xchange Partner Manager Implementation Guide 106

Chapter 8 Section 8.3
e*Xchange Implementation—UN/EDIFACT Create the Trading Partner Profiles
2 Enter the information listed in Table 31.

Note: This table only lists the attributes required to make this scenario work.

Table 31 General (EDF_CONTROL)

3 Click Next to access the Interchange Control Envelope section. Enter the
information listed in Table 32.

Table 32 Interchange Control Envelope (EDF_CONTROL)

4 Click Next to access the Functional Group Envelope section. Enter the information
listed in Table 33.

Note: This table only lists the attributes required to make this scenario work.

Table 33 Functional Group Envelope (EDF_CONTROL)

5 Click Next to access the Message Envelope section.

6 In the Message Type Identifier window, type CONTRL.

7 Click Next to access the Return Messages section.

8 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Name Value

Name EDF_CONTROL

Transfer Mode Interactive

Validation Collaboration EDF_CONTROL

Name Value

Interchange Recipient Identifier 123456789

Interchange Recipient Identification
Qualifier

1

Interchange Sender Identifier 987654321

Interchange Sender Identification
Qualifier

1

Name Value

Application Receiver Identification Code 123456789

Application Sender Identification Code 987654321
e*Xchange Partner Manager Implementation Guide 107

Chapter 8 Section 8.4
e*Xchange Implementation—UN/EDIFACT Clone the eXSchema
Step 7: Configure Return Messages for Inbound

To set up the Return Message Profile values for Inbound

Once you have set up inbound and outbound message profiles, you can specify return
messages.

1 From the B2B Protocol page, select UN/EDIFACT-4B-Inbound.

2 Click Continue: Message Profile.

3 From the Message Profile page, select EDF_ORDERSPurcOdeMess_D99B from
the drop-down list.

4 Click the Return Messages link to access the Return Messages section.

5 Click Edit.

6 Select the return messages (select the check boxes), and enter the values, as shown
in Table 34.

7 Click Apply to save the information and return to the Message Profile page.

8 Click OK.

8.4 Clone the eXSchema
The supplied schema named eXSchema contains the components required to run
e*Xchange. Make a copy of this schema and then configure the copy for this
implementation.

To make a copy of eXSchema

1 Open eXSchema in the e*Gate Schema Designer GUI.

2 Export eXSchema.

3 Create a new schema named EDIFACT using the exported file.

8.5 Configure the TP_Order_Feeder e*Way
The component (e*Way or BOB) that feeds data into e*Xchange must put the data into
the appropriate business protocol format. It must also populate the required fields in
the e*Xchange Event that is processed by e*Xchange.

Table 34 Return Message Values: Inbound

Name Response Time Period # Retries

EDF_ORDRSPPurcOrdeRespMess_D99B 1 Day 0

EDF_CONTROL 2 Minutes 0
e*Xchange Partner Manager Implementation Guide 108

Chapter 8 Section 8.5
e*Xchange Implementation—UN/EDIFACT Configure the TP_Order_Feeder e*Way
This component is entirely user-defined and must be added to the EDIFACT schema.
The type of component to use depends on whether a connection to a system outside
e*Gate must be made, and if so, what type of system. Typically, this component is an
e*Way that connects to a business application such as SAP that sends out electronic
messages. These messages may or may not be in the format required by the trading
partner to which they are being sent. If the data is not in the correct format, the e*Way
must translate the data into the required format before it is sent to the e*Xchange
system for enveloping and forwarding to the trading partner.

The e*Xchange TP_Order_Feeder e*Way

The e*Xchange example simulates the publication of an electronic purchase order from
a trading partner. This file, which is already in UN/EDIFACT format, is picked up by a
file e*Way and moved into the e*Xchange system.

Configuration Steps

Follow these steps to configure the TP_Order_Feeder e*Way.

1 Create and configure the e*Way.

2 Create the ETDs.

3 Create the Collaboration.

8.5.1 Step 1: Create and configure the TP_Order_Feeder e*Way
1 Create an e*Way called TP_Order_Feeder.

2 In the e*Way Properties dialog box, in the Executable file area of the General tab,
browse for stcewfile.exe.

3 In the e*Way Properties dialog box, in the Configuration file area of the General
tab, click New.

4 Configure the TP_Order_Feeder e*Way parameters using Table 35.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

Table 35 TP_Order_Feeder e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\Data\TP\feeder

MultipleRecordsPerFile NO

(All others) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 109

Chapter 8 Section 8.5
e*Xchange Implementation—UN/EDIFACT Configure the TP_Order_Feeder e*Way
8.5.2 Step 2: Create the TP_Order_Feeder ETDs
In the present example, since the data is already in standard UN/EDIFACT format for a
purchase order, you can bring in the Event without parsing it. To do this, all that is
required is an ETD with a root node.

To create the root ETD

1 Create a new ETD called root.ssc. In the Type box, select Delimited, and select
Other from the drop-down list.

2 Add a single node to the structure. The ETD is shown in Figure 50.

Figure 50 root.ssc Event Type Definition

3 Save the ETD.

8.5.3 Step 3: Create the TP_Order_Feeder Collaboration
The TP_Order_Feeder Collaboration must prepare the data coming into the e*Xchange
system. How complicated this task is depends on the state of the data before the
TP_Order_Feeder Collaboration processes it.

The TP_Order_Feeder Collaboration must do the following:

convert the data to base 64 encoding

populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Convert the Event to Base 64 Encoding

The TP_Order_Feeder Collaboration must ensure that the data going into e*Xchange
doesn’t include any characters that will cause problems for the XML structure of the
standard e*Xchange Event (for example, characters that are the same as the XML
control characters). This is done by converting the entire EDI message to base 64
encoding using the Monk function raw->base64, before copying it to the payload node
of the eX_Standard_Event ETD.

Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the EDI message.

e*Xchange Tracking Information

e*Xchange needs to know certain things about an EDI message before it can process it.
The TP_Order_Feeder Collaboration must supply this information by populating
e*Xchange Partner Manager Implementation Guide 110

Chapter 8 Section 8.5
e*Xchange Implementation—UN/EDIFACT Configure the TP_Order_Feeder e*Way
certain required nodes in the Event that is sent to e*Xchange. At a minimum you must
tell e*Xchange:

Direction (inbound or outbound)

Partner Name (logical name from the B2B Protocol section in e*Xchange)

All of these requirements can be met by copying the appropriate information to the
corresponding nodes in the TP section of the e*Xchange ETD (eX_Standard_Event.ssc).

The TP_EVENT.CT.DSN.DS.Direction.CT.DSN.DS.Data node must contain the
direction of the Event: “O” for outbound to the trading partner or “I” for inbound from
a trading partner.

The TP_EVENT.CT.DSN.DS.PartnerName.CT.DSN.DS.Data node must contain the
logical name (case-sensitive) of the trading partner defined in the B2B Protocol,
General page.

The e*Xchange Payload

In addition to the tracking information, the
TP_EVENT.CT.DSN.DS.Payload.CT.DSN.DS.Data node must be filled with the entire
base 64 encoded EDI message.

The e*Xchange TP_Order_Feeder CRS

The TP_Order_Feeder.tsc CRS does the following:

Converts the UN/EDIFACT message to base 64 encoding, and copies it to the
Payload node of the TP_EVENT section of the e*Xchange standard Event.

Copies “I” for outbound to the direction node of the TP_EVENT section.

Copies the trading partner logical name “TP_001” to the PartnerName node of the
TP_EVENT section.

To create and configure the TP_Order_Feeder Collaboration Rule Script

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named TP_Order_Feeder.tsc. The Source
Event Type Definition is root.ssc. The Destination Event Type Definition is
eX_Standard_Event.ssc.

3 Add the rules shown in Figure 51.
e*Xchange Partner Manager Implementation Guide 111

Chapter 8 Section 8.5
e*Xchange Implementation—UN/EDIFACT Configure the TP_Order_Feeder e*Way
Figure 51 TP_Order_Feeder.tsc

TP_Order_Feeder Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the TP_Order_Feeder Component in the Schema Designer GUI.

To create and configure the TP_Order_Feeder Collaboration Rule

1 Create a new Collaboration Rule named TP_Order_Feeder.

2 From TP_Order_Feeder Collaboration Rule properties, select the General tab.
Configure as shown in Table 36.

Table 36 TP_Order_Feeder CR configuration - General Tab

Section Value

Service Monk

Collaboration Rule TP_Order_Feeder

Initialization File monk_scripts\common\load_ext
e*Xchange Partner Manager Implementation Guide 112

Chapter 8 Section 8.5
e*Xchange Implementation—UN/EDIFACT Configure the TP_Order_Feeder e*Way
Important: To use the Monk function raw->base64, you must make sure the file containing
this function has been loaded.

Figure 52 TP_Order_Feeder Collaboration Rules Properties Dialog Box

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_from_Trading_Partner and move it to the
right pane.

To create and configure the TP_Order_Feeder Collaboration

1 Select the TP_Order_Feeder e*Way.

2 Create a new Collaboration named TP_Order_Feeder.

3 Configure the TP_Order_Feeder Collaboration properties using Table 37.

Table 37 TP_Order_Feeder Collaboration configuration

Section Value

Collaboration Rules TP_Order_Feeder

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_from_Trading_Partner
Destination: eX_Trading_Port_Queue

This command
loads the Monk
file where
raw->base64 is
defined
e*Xchange Partner Manager Implementation Guide 113

Chapter 8 Section 8.6
e*Xchange Implementation—UN/EDIFACT Configure the Internal_Order_Eater e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
53.

Figure 53 TP_Order_Feeder Collaboration Properties

8.6 Configure the Internal_Order_Eater e*Way
The component (e*Way or BOB) sends the message to the internal system.

The e*Xchange Internal_Order_Eater e*Way

The e*Xchange example simulates the publication of the message to the internal system.

Configuration Steps

Follow these steps to configure the Internal_Order_Eater e*Way.

1 Create the configuration file.

2 Create the ETDs.

3 Create the Collaboration.

8.6.1 Step 1: Create and Configure the Internal_Order_Eater e*Way
1 Create an e*Way called Internal_Order_Eater.

2 In the e*Way Properties dialog box General tab, in the Executable file area browse
for stcewfile.exe.
e*Xchange Partner Manager Implementation Guide 114

Chapter 8 Section 8.6
e*Xchange Implementation—UN/EDIFACT Configure the Internal_Order_Eater e*Way
3 In the e*Way Properties dialog box General tab, in the Configuration file area click
New.

4 Configure the Internal_Order_Eater e*Way parameters using Table 38.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

8.6.2 Step 2: Create the Internal_Order_Eater Collaboration
The Internal_Order_Eater Collaboration must prepare the data leaving the e*Xchange
system. How complicated this task is depends on the state of the data before the
Internal_Order_Eater Collaboration processes it.

The Internal_Order_Eater Collaboration must do the following:

put the data into the appropriate EDI format

convert the data to raw data

The e*Xchange Internal_Order_Eater CRS

The Internal_Order_Eater.tsc CRS is used to convert the UN/EDIFACT message to raw
data, and copies it from the Payload node of the TP_EVENT section of the e*Xchange
standard Event to the output ETD.

To create and configure the Internal_Order_Eater Collaboration Rule Script

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named Internal_Order_Eater.tsc. The
Source Event Type Definition is eX_Standard_Event.ssc. The Destination Event
Type Definition is root.ssc.

3 Add the rule shown in Figure 54.

Table 38 Internal_Order_Eater e*Way Parameters

Screen Parameter Setting

General Settings AllowIncoming NO

AllowOutgoing YES

Outbound (send) settings OutputDirectory <eGate>\data\internal\eater

OutputFileName output_order%d.dat

(All others) (Default)

Poller (inbound) settings (All) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 115

Chapter 8 Section 8.6
e*Xchange Implementation—UN/EDIFACT Configure the Internal_Order_Eater e*Way
Figure 54 Internal_Order_Eater.tsc

Internal_Order_Eater Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the Internal_Order_Eater Component in the Schema Designer
GUI.

To create and configure the Internal_Order_Eater Collaboration Rule

1 Create a new Collaboration Rule named Internal_Order_Eater.

2 From Internal_Order_Eater Collaboration Rule properties, select the General tab.
Configure as shown in Table 39.

Table 39 Internal_Order_Eater CR configuration - General Tab

Important: To use the Monk function base64->raw, you must make sure the file containing
this function has been loaded.

3 Select the Subscriptions tab. Select eX_to_eBPM and move to the right pane.

4 Select the Publications tab. Select eX_External_Evt and move to the right pane.

To create and configure the Internal_Order_Eater Collaboration

1 Select the Internal_Order_Eater e*Way.

2 Create a new Collaboration named Internal_Order_Eater.

3 Configure the Internal_Order_Eater Collaboration properties using Table 40.

Table 40 Internal_Order_Eater Collaboration configuration

Section Value

Service Monk

Collaboration Rule Internal_Order_Eater

Initialization File monk_scripts\common\load_ext

Section Value

Collaboration Rule Internal_Order_Eater
e*Xchange Partner Manager Implementation Guide 116

Chapter 8 Section 8.7
e*Xchange Implementation—UN/EDIFACT Configure the eX_ePM e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
55.

Figure 55 Internal_Order_Eater Collaboration Properties

8.7 Configure the eX_ePM e*Way
The eX_ePM e*Way requires only minimal configuration. You must give it the logon
information for the e*Xchange database.

To configure the eX_ePM configuration file

1 In the eX_ePM e*Way properties, select the General tab.

2 In the Configuration File area, click Edit.

3 Configure the parameters as shown in Table 41.
.

Subscriptions Event Type: eX_to_eBPM
Source: eX_from_ePM

Publications Event Type: eX_External_Evt
Destination: <EXTERNAL>

Table 41 eX_ePM e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Section Value
e*Xchange Partner Manager Implementation Guide 117

Chapter 8 Section 8.8
e*Xchange Implementation—UN/EDIFACT Editing the Data Files
8.8 Editing the Data Files
Before running the scenario, you must make sure that the unique ID in the input file
matches that in the output file, and that both files have the expected filename and
extension.

Knowing how to set these values also gives you the capability to reset the unique ID to
an appropriate new value so that you can run the scenario multiple times.

To ensure the unique ID in both files matches

1 Open up the file ORDERS.~in (in the <egate>\data\TP\feeder folder) in a text
editor such as Notepad or Wordpad.

2 Search for the following string, which is the unique ID in the files provided:

ORDERS_000000008

3 Replace that string with the following string:

ORDERS_000000001

4 Save and close.

5 Open up the file order_response.~in (in the <egate>\data\internal\feeder folder)
in a text editor such as Notepad or Wordpad.

6 Repeat steps 2 through 4 for this file.

Note: The last nine digits of the unique ID indicate that this is the first instance for this
date. For a second and subsequent running of this scenario, increment the last three
digits: 000000002, 000000003, and so forth. In each case, make sure that the value is
the same in both files.

To set the file names correctly

1 In <egate>\data\TP\feeder, change the name of the orders.~in file to orders.fin.

2 In <egate>\data\internal\feeder, change the name of the order_response.~in file
to order_response.fin.

That completes the data setup. The next step is to run the scenario.

Communication Setup (All) (Default)

Monk Configuration (All) (Default)

Database Setup Database Name (service name of the
e*Xchange database)

User name ex_admin

Password ex_admin

(All others) (Default)

Table 41 eX_ePM e*Way Parameters

Screen Parameter Setting
e*Xchange Partner Manager Implementation Guide 118

Chapter 8 Section 8.9
e*Xchange Implementation—UN/EDIFACT Running the Scenario
Conditional—to reset the file names

Once you have your schema running, you can run the file again by performing the
following steps, in sequence:

1 Increment the last nine digits of the control number by 1. For example, if the control
number is ORDERS_000000001, change it to ORDERS_000000002. Make sure that
both files match.

2 Change the extension from .~in to .fin in both files.

8.9 Running the Scenario
There are two parts to running the scenario:

1 Processing the purchase order message received from the trading partner

2 Sending the response message back to the trading partner

To process the purchase order message

1 Start the Control Broker. At the command line, enter:

stccb.exe -rh localhost -rs <schema_name> -ln localhost_cb -un
Administrator -up STC

2 Open the Schema Manager. Select the UN/EDIFACT schema.

Note: If you have imported the sample schema then all the e*Ways are set to start
automatically.

3 Start the TP_Order_Feeder e*Way

This e*Way retrieves the incoming message and sends it to e*Xchange.

4 Rename <eGate>\data\TP\Feeder\ORDERS.~in to ORDERS.fin.

5 Look in the <egate>\data\TP\feeder folder. The file name changes from orders.fin
to orders.~in as the file is picked up.

6 Start the eX_Batch_to_Trading_Partner e*Way

This e*Way sends the control message back to the trading partner.

7 Start the Internal_Order_Eater e*Way

This e*Way sends the message to the internal system.

That completes the first part of the exercise. You can view the results in Message
Tracking, in e*Xchange Partner Manager.

Viewing the Results in Message Tracking

You can view the results of the message processing by using the Message Tracking
feature of e*Xchange.
e*Xchange Partner Manager Implementation Guide 119

Chapter 8 Section 8.9
e*Xchange Implementation—UN/EDIFACT Running the Scenario
Message Tracking shows two entries for the incoming message. This is because a
control message is sent out immediately, and a response message will be sent out later.
These two responses to the trading partner are tracked separately.

To view the inbound message in Message Tracking

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Car Interiors.

3 In the Trading Partner Profile field, select CarSupplies Europe.

4 In the eBusiness Protocol field, select UN/EDIFACT.

5 In the Direction field, select Inbound.

6 Click the Message Profile Selection.

7 Select the EDF_ORDERSPurcOrdeMess_D99B message.

8 Click the Message Details link to view the resulting list.

The results are shown in Figure 56.

Figure 56 Message Tracking: Inbound

As shown in Figure 56, e*Xchange records two entries for the message. The top entry is
for the original message, for which a response message will be sent. The second entry is
for the control message.

For one entry, the Ack Message column has a link to the message information. Click it
to view the acknowledgment message.
e*Xchange Partner Manager Implementation Guide 120

Chapter 8 Section 8.10
e*Xchange Implementation—UN/EDIFACT Sending the Response
Figure 57 Control Message viewed in Message Tracking

Later, when the response message is sent out, you will be able to view it in Message
Tracking. For the moment, the Ack Message column is not showing a link for the other
message, since the response has not been sent out yet.

If you look in the <egate>\data\TP\eater folder, you see the following output file:

output1.dat—control message sent in response to the original message.

8.10 Sending the Response
This section builds on the UN/EDIFACT implementation example. You are now
simulating sending a response message to the Trading Partner and e*Xchange receiving
a control message back from the Trading Partner after you send out the response
message.
e*Xchange Partner Manager Implementation Guide 121

Chapter 8 Section 8.10
e*Xchange Implementation—UN/EDIFACT Sending the Response
Figure 58 e*Xchange Scenario Data Flow

Figure 48 data flow description

The TP_Order_Feeder e*Way picks up the order message and publishes it to the
eX_trading_Port_Queue IQ.

e*Xchange engine picks up from the IQ, validates it, saves it to the database, and
publishes two messages:

Control message to the eX_Trading_Port_Queue IQ

Order message to the eX_eBPM IQ.

eX_Batch_to_Trading_Partner e*Way sends out the control message to the trading
partner.

Internal_Order_Eater e*Way picks up the message from the eX_eBPM IQ and sends
it to the internal system.

Internal_OrderReponse_Feeder e*Way picks up the response message and
publishes it to the eX_eBPM IQ.

e*Xchange engine picks up the message from the eX_eBPM IQ, validates it,
envelopes it, and saves it to the database, and publishes it to the
eX_Trading_Port_Queue IQ.

eX_Batch_to_Trading_Partner e*Way picks up the message from the
eX_Trading_Port_Queue IQ and sends it to the trading partner.

1

3

4

5

6

7

Order

e*Xchange
Database

Internal_Order
_Eater e*Way eX_ePM

Engine

Order

eX_eBPM
IQ

eX_Trading_
Port_Queue IQ

Order
Resp

Internal_Order
Response

_Feeder e*Way

TP_Order
_Feeder e*Way

eX_Batch_to_
Trading_

Partner e*Way

Ctrl Order
Resp

2

e*Xchange

Ctrl

1

2

3

4

5

6

7

e*Xchange Partner Manager Implementation Guide 122

Chapter 8 Section 8.11
e*Xchange Implementation—UN/EDIFACT Configure the Internal_OrderResponse_Feeder e*Way
8.11 Configure the Internal_OrderResponse_Feeder e*Way
The component (e*Way or BOB) that feeds data into e*Xchange must put the data into
the appropriate business protocol format. It must also populate the required fields in
the e*Xchange Event that is processed by e*Xchange.

This component is entirely user-defined and must be added to the eXSchema. The type
of component to use depends on whether a connection to a system outside e*Gate must
be made, and if so, what type of system. Typically, this component is an e*Way that
connects to a business application such as SAP that sends out electronic messages.
These messages may or may not be in the format required by the trading partner to
which they are being sent. If the data is not in the correct format, the e*Way must
translate the data into the required format before it is sent to the e*Xchange system for
enveloping and forwarding to the trading partner.

The e*Xchange Internal_OrderResponse_Feeder e*Way

The e*Xchange example simulates sending the response message from the internal
system.

Configuration Steps

Follow these steps to configure Internal_OrderResponse_Feeder e*Way.

1 Create the configuration file.

2 Create the ETDs.

3 Create the Collaboration.

8.11.1 Step 1: Create and Configure the
Internal_OrderResponse_Feeder e*Way

1 Create a new e*Way named Internal_OrderResponse_Feeder.

2 In the Executable file area of the General tab, in the e*Way Properties dialog box,
browse for stcewfile.exe.

3 In the Configuration file area of the General tab, in the e*Way Properties dialog
box click New.

4 Configure the Internal_OrderResponse_Feeder e*Way parameters using Table 42.

Table 42 Internal_OrderResponse_Feeder e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\data\internal\feeder

MultipleRecordsPerFile NO

(All others) (Default)
e*Xchange Partner Manager Implementation Guide 123

Chapter 8 Section 8.11
e*Xchange Implementation—UN/EDIFACT Configure the Internal_OrderResponse_Feeder e*Way
5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

8.11.2 Step 2: Create the Internal_OrderResponse_Feeder
Collaboration

The Internal_OrderResponse_Feeder Collaboration must prepare the data coming into
the e*Xchange system. How complicated this task is depends on the state of the data
before the Internal_OrderResponse_Feeder Collaboration processes it.

The Internal_OrderResponse_Feeder Collaboration must do the following:

put the data into the appropriate EDI format

convert the data to base 64 encoding

populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

The e*Xchange Internal_OrderResponse_Feeder CRS

The Internal_OrderResponse_Feeder.tsc CRS does the following:

Converts the UN/EDIFACT message to base 64 encoding, and copies it to the
Payload node of the TP_EVENT section of the e*Xchange standard Event.

Copies “O” for outbound to the direction node of the TP_EVENT section.

Copies the trading partner logical name “TP_001” to the PartnerName node of the
TP_EVENT section.

To create and configure the Internal_OrderResponse_Feeder Collaboration Rule Script

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named
Internal_OrderResponse_Feeder.tsc. The Source Event Type Definition is root.ssc.
The Destination Event Type Definition is eX_Standard_Event.ssc.

3 Add the rules shown in Figure 59.

Performance Testing (All) (Default)

Table 42 Internal_OrderResponse_Feeder e*Way Parameters

Screen Parameter Setting
e*Xchange Partner Manager Implementation Guide 124

Chapter 8 Section 8.11
e*Xchange Implementation—UN/EDIFACT Configure the Internal_OrderResponse_Feeder e*Way
Figure 59 Internal_OrderResponse_Feeder.tsc

Internal_OrderResponse_Feeder Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the Internal_OrderResponse_Feeder Component in the Schema
Designer GUI.

To create and configure the Internal_OrderResponse_Feeder Collaboration Rule

1 Create a new Collaboration Rule named Internal_OrderResponse_Feeder.

2 From Internal_OrderResponse_Feeder Collaboration Rule properties, select the
General tab. Configure as shown in Table 43.

Table 43 Internal_OrderResponse_Feeder CR configuration - General Tab

Important: To use the Monk function raw->base64, you must make sure the file containing
this function has been loaded.

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_to_ePM and move it to the right pane.

To create and configure the Internal_OrderResponse_Feeder Collaboration

1 Select the Internal_OrderResponse_Feeder e*Way.

2 Create a new Collaboration named Internal_OrderResponse_Feeder.

3 Configure the Internal_OrderResponse_Feeder Collaboration properties using
Table 44.

Section Value

Service Monk

Collaboration Rule Internal_OrderResponse_Feeder

Initialization File monk_scripts\common\load_ext
e*Xchange Partner Manager Implementation Guide 125

Chapter 8 Section 8.11
e*Xchange Implementation—UN/EDIFACT Configure the Internal_OrderResponse_Feeder e*Way
Table 44 Internal_OrderResponse_Feeder Collaboration configuration

Verify the information in the Collaboration Properties dialog box as shown in Figure
60.

Figure 60 Internal_OrderResponse_Feeder Collaboration Properties

8.11.3 Sending and Viewing the Response Message
The next step is to send the response message.

The input file for the response message is the
<egate>\data\internal\feeder\order_response.~in file. Instructions for preparing
this file for running the first time were given in “Editing the Data Files” on page 118.

To send the response message:

1 In the Schema Manager, start the Internal_OrderResponse_Feeder e*Way.

2 Look in the <egate>\data\internal\feeder folder. The file name changes from
order_response.fin to order_response.~in as the file is picked up.

3 Look in the <egate>\data\TP\eater folder. The following output file has been
created:

order_response#.dat—message sent out for the response.

Section Value

Collaboration Rule Internal_OrderResponse_Feeder

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_to_ePM
Destination: eX_eBPM
e*Xchange Partner Manager Implementation Guide 126

Chapter 8 Section 8.11
e*Xchange Implementation—UN/EDIFACT Configure the Internal_OrderResponse_Feeder e*Way
That completes the second part of the exercise. You can view the results in Message
Tracking.

Viewing the Results in Message Tracking

You can view the results of the message processing in Message Tracking.

To view the association of the response message to the original inbound message in
Message Tracking

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Car Interiors.

3 In the Trading Partner Profile field, select CarSupplies Europe.

4 In the eBusiness Protocol field, select UN/EDIFACT.

5 In the Direction field, select Inbound.

6 Click the Message Profile Selection.

7 Select the EDF_ORDERSPurcOrdeMess_D99B message.

8 Click the Message Details link to view the resulting list.

Notice that both entries now have responses available for viewing: one is the
control message, the other is the full response message.

The results are shown in Figure 61.

Figure 61 Message Tracking: Inbound with response
e*Xchange Partner Manager Implementation Guide 127

Chapter 8 Section 8.12
e*Xchange Implementation—UN/EDIFACT Receiving a Control Message from the Trading Partner
8.12 Receiving a Control Message from the Trading Partner

8.12.1 Editing the Data File
Before running the scenario, you must make some changes to your message files.

Since the control numbers in the message that comes in must match the control
numbers in the message you sent out to your trading partner, you must manually
update the control numbers.

There are three control numbers, one in each of three segments:

Interchange response (UCI) segment

Group response (UCF) segment

Message/package response (UCM) segment

For the purposes of this scenario, the same number is used for each of these. Because of
this, you can copy one number from the UNB (interchange header) segment of the
outgoing response message and paste it in three places in the file that will serve for the
incoming control message.

However, you must first have the outgoing response message available. Run the first
two parts of the previous scenario again so that e*Xchange sends out the response
message to the trading partner.

8.12.2 Preparing the Data File
The next step is to prepare your data file for running this scenario. The steps are:

Copy the control numbers from the outgoing response message to the UCF, UCI
and UCM segments of the incoming control message.

Update the unique control numbers in the UNB and UNZ segments of the incoming
control message.

8.12.3 Copying the Response Control Numbers
Next, you must copy the control number from the response message that e*Xchange
sends out.

To copy the control number:

1 Go to <egate>\data\TP\eater.

2 Locate the output file that represents the response message that was just sent out. It
looks similar to the file shown in Figure 62.

Note: The response message has a larger file size than the control message. Also, since the
control message is normally sent first, the response message is likely to be
output2.dat. However, this depends on what files were already there.
e*Xchange Partner Manager Implementation Guide 128

Chapter 8 Section 8.12
e*Xchange Implementation—UN/EDIFACT Receiving a Control Message from the Trading Partner
3 Copy the Interchange Control Reference.

It is the fifth element of the UNB segment, as shown in Figure 62.

Figure 62 Response Message

4 Close the message file.

5 Open up the file <egate>\data\TP\feeder\INB_CONTROL.~in.

This is the inbound control message.

6 Search for UCI.

7 Change the next element (between + signs) to the string that you copied, as shown
in Figure 63.

This updates the interchange response control number.

Figure 63 Inbound Control Message

8 Search for UCF.

9 Change the next element (between + signs) to the string that you copied.

This updates the functional group response control number.

10 Search for UCM.

11 Change the next element (between + signs) to the string that you copied.

This updates the message/package response control number.

12 Save the changes, but leave the file open.

8.12.4 Incrementing the UNB/UNZ Control Numbers
You must also increment the UNB and UNZ control numbers in the incoming control
message to ensure they are unique. Make sure both control numbers are set to the same
value.

To increment the UNB/UNZ control numbers:

1 In <egate>\data\TP\feeder\inb_control.~in, search for UNB.
e*Xchange Partner Manager Implementation Guide 129

Chapter 8 Section 8.12
e*Xchange Implementation—UN/EDIFACT Receiving a Control Message from the Trading Partner
2 Go to the fifth element of the UNB segment (see Figure 64) and increment it.

Figure 64 Control Message: Incrementing the UNB Control Number

3 Go to the last segment (after UNZ) and increment it so that it matches the value for
the UNB segment.

Figure 65 Control Message: Incrementing the UNZ Control Number

4 Save your change and close the file.

8.12.5 Sending and Viewing the Control Message
The final step is to send the control message.

The input file for the response message is the
<egate>\data\TP\feeder\INB_CONTROL.~in file. Instructions for preparing this file
for running were given in “Editing the Data File” on page 128.

To send the control message

1 Rename INB_CONTROL.~in to INB_CONTROL.fin.

2 Look in the <egate>\data\TP\feeder folder. The file name changes from
INB_CONTROL.fin to INB_CONTROL.~in as the file is picked up.

That completes the final part of the exercise. You can view the results in Message
Tracking.

To view the association of the control message to the original outbound response message
in Message Tracking

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Car Interiors.

3 In the Trading Partner Profile field, select CarSupplies Europe.

4 In the eBusiness Protocol field, select UN/EDIFACT.

5 In the Direction field, select Outbound.

6 Click the Message Profile Selection.
e*Xchange Partner Manager Implementation Guide 130

Chapter 8 Section 8.12
e*Xchange Implementation—UN/EDIFACT Receiving a Control Message from the Trading Partner
7 Select the EDF_ORDRSPPurcOrdeRespMess_D99B message.

8 Click the Message Details link to view the resulting list.

Notice that response message now has an acknowledgment available for viewing:
this is the control message.

The results are shown in Figure 66.

Figure 66 Message Tracking: Outbound
e*Xchange Partner Manager Implementation Guide 131

Chapter 9

e*Xchange Implementation—RosettaNet

This chapter discusses the steps involved to create an e*Xchange implementation that
transfers RosettaNet data.

The components for this implementation are provided on your installation CD. For
instructions on installing and using the implementation components, see “Using the
Implementation Sample” on page 136.

9.1 Overview
An e*Xchange implementation makes use of the features designed to add and remove
enveloping information for messages exchanged between trading partners.

In an e*Xchange implementation, use the e*Xchange Web interface to set up trading
partner information, and the e*Gate Schema Designer GUI to add user-defined e*Gate
components to provide connectivity to the business application or trading partner.
Once this is done, the pre-configured e*Xchange Schema components handle
enveloping and de-enveloping Events as they travel through the e*Xchange system.

The major steps for the implementation are as follows:

1 Create the trading partner profiles.

2 Configure the user-defined e*Ways that connect the business application to
e*Xchange and exchange messages with the trading partner.

3 Configure the e*Xchange e*Way.

4 Run and test the scenario.

9.1.1 Case Study: Sending a RosettaNet Purchase Order
The case study discussed in this chapter illustrates one possible implementation of
sending a purchase order to a trading partner.

In this example, a RosettaNet purchase order is sent to an external trading partner and
the response is sent back. This is achieved by configuring a “loopback” using two
trading partners. The flow of messages between the two trading partners is shown in
Figure 67.
e*Xchange Partner Manager Implementation Guide 132

Chapter 9 Section 9.1
e*Xchange Implementation—RosettaNet Overview
Figure 67 RosettaNet Implementation - Message Flow

Typically the two trading partners would be located on separate machines and
transport the messages using a communication protocol such as HTTP. However, for
this example you can define both trading partners on the same machine and use local
files to transfer the messages between systems.

The RosettaNet enveloping is automatically added to the message by e*Xchange based
on trading partner information retrieved from the e*Xchange database, and then it is
sent to an external system.

Typically, the purchase order information would be provided by a business application
and may or may not be in RosettaNet format. A user-defined e*Way must be created to
connect to a business application in order to receive the data and put it into the proper
RosettaNet format. In order to simplify this example, the purchase order information is
provided in the form of a text file that is already in RosettaNet format.

e*Xchange e*Xchange
Retailer TPWholesaler

TP

Purchase Order Request

Purchase Order Response

Purchase Order Response
Acknowledgment

Purchase Order Request
Acknowledgment

WholesalerRetailer
e*Xchange Partner Manager Implementation Guide 133

Chapter 9 Section 9.1
e*Xchange Implementation—RosettaNet Overview
Figure 68 e*Xchange Scenario Data Flow

9

6Order

e*Xchange
Database

Internal_Eater
e*Way

eX_ePM
Engine

Order

eX_eBPM
IQ

eX_Trading_
Port_Queue IQ

TP_Order
_Feeder e*Way

TP_Response
_Eater e*Way

Ack

5

Wholesaler

1

3

4

Order

e*Xchange
Database

Internal_Order
_Feeder e*Way

eX_ePM
Engine

eX_eBPM
IQ

eX_Trading_
Port_Queue IQ

TP_Order
_Eater e*Way

2

Retailer

Order
Resp

TP_Response
_Feeder e*Way

11 Order
Resp

Internal_Response_
Feeder e*Way

Order
Resp

7

8

10

12

13

14

15

16

Ack

18

17

19
e*Xchange Partner Manager Implementation Guide 134

Chapter 9 Section 9.1
e*Xchange Implementation—RosettaNet Overview
Figure 68 data flow description

1 The Internal_Order_Feeder e*Way picks up the purchase order message and
publishes it to the Buyer eX_eBPM IQ.

2 The Retailer e*Xchange engine picks the purchase order message up from the IQ,
validates it, saves it to the database, and publishes the purchase order message to
the Retailer eX_Trading_Port_Queue IQ.

3 The TP_Order_Eater e*Way sends out the purchase order message to the
Wholesaler trading partner by writing the purchase order message to file.

4 The TP_Order_Feeder e*Way picks up the message from the file and publishes it to
the Wholesaler eX_Trading_Port_Queue IQ.

5 The Wholesaler e*Xchange engine picks the purchase order message up from the
IQ, validates it, saves it to the database, and publishes the purchase order message
to the Wholesaler eX_eBPM IQ.

6 The Internal_Eater e*Way sends out the purchase order message to the internal
system by writing the purchase order message to file.

7 The Wholesaler e*Xchange engine publishes a purchase order acknowledgment
message to the Wholesaler eX_Trading_Port_Queue IQ.

8 The TP_Response_Eater e*Way sends out the purchase order acknowledgment
message to the Retailer trading partner by writing the purchase order
acknowledgment message to file.

9 The TP_Response_Feeder e*Way picks up the purchase order acknowledgment
message from the file and publishes it to the Retailer eX_Trading_Port_Queue IQ.

10 The Retailer e*Xchange engine picks the purchase order acknowledgment message
up from the IQ, validates it, saves it to the database.

11 The Internal_Response_Feeder e*Way picks up the purchase order response
message and publishes it to the Wholesaler eX_eBPM IQ.

12 The Wholesaler e*Xchange engine picks the purchase order response message up
from the IQ, validates it, saves it to the database, and publishes the purchase order
response message to the Wholesaler eX_Trading_Port_Queue IQ.

13 The TP_Response_Eater e*Way sends out the purchase order response message to
the Retailer trading partner by writing the purchase order response message to file.

14 The TP_Response_Feeder e*Way picks up the purchase order response message
from the file and publishes it to the Retailer eX_Trading_Port_Queue IQ.

15 The Retailer e*Xchange engine picks the purchase order response message up from
the IQ, validates it, saves it to the database, and publishes the purchase order
response message to the Retailer eX_eBPM IQ. The Retailer e*Xchange engine also
publishes the purchase order response acknowledgment message to the Retailer
eX_Trading_Port_Queue IQ.

16 The Internal_Eater e*Way sends out the purchase order response message to the
internal system by writing the purchase order response message to file.

17 The TP_Order_Eater e*Way sends out the purchase order response message to the
Wholesaler trading partner by writing the purchase order response message to file.
e*Xchange Partner Manager Implementation Guide 135

Chapter 9 Section 9.2
e*Xchange Implementation—RosettaNet Using the Implementation Sample
18 The TP_Order_Feeder e*Way picks up the message from the file and publishes it to
the Wholesaler eX_Trading_Port_Queue IQ.

19 The Wholesaler e*Xchange engine picks the purchase order response message up
from the IQ, validates it and updates database.

9.2 Using the Implementation Sample
The components for this implementation are provided on your installation CD, and are
located in
\setup\eXchange\sample\ROSETTANET_SAMPLE_IMPLEMENTATION.zip.

To install the components

1 Unzip the file to a local directory.

2 Install the e*Gate schema using one of the following commands. The schema name
is user defined.

Note: The default registry port number is 23001.

A For UNIX:

sh install_rosettanet_po.sh <egate_registry_host_name>
<schema_name> <user_name> <password> <egate_registry_port_num>

B For Windows:

install_rosettanet_po.bat <egate_registry_host_name> <schema_name>
<user_name> <password> <egate_registry_port_num>

3 Use the e*Xchange Import function to import ROSETTANET.exp into e*Xchange
Partner Manager.

4 Copy the demos folder to the <egate> directory.

5 Configure the eX_ePM e*Way as described in “Configure the eX_ePM e*Way” on
page 179.

The steps on the following pages describe how the components for this implementation
were created. See “Running the Scenario” on page 180 for instructions to run the
implementation.
e*Xchange Partner Manager Implementation Guide 136

Chapter 9 Section 9.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
9.3 Create the Trading Partner Profiles
The trading partner profiles in e*Xchange act as the repositories for the information
necessary to send messages back and forth between the entities. They contain all of the
information to properly envelope an Event and forward it to its correct destination.

When creating trading partner profiles, check your values carefully before saving or
leaving a section/screen, because many values cannot be changed once they are
committed to the database due to auditing restrictions. You can inactivate erroneous
information and add the correct information under a different company, B2B Protocol
section, and so on.

Refer to the e*Xchange Partner Manager User’s Guide for detailed assistance with the
process of creating trading partner profiles.

Trading Partner Information Hierarchy

e*Xchange stores trading partner information at various levels. The process of creating
a trading partner profile proceeds from the most general inclusive level, that of a
company with which you do business, to the most specific information regarding an
message that you wish to send (the message profile).

9.3.1 The Retailer Company
The Retailer Company uses the RosettaNet format to exchange business data with its
customers. In our example we send a purchase order from the Retailer Company to the
Wholesaler Company.

On the Retailer, you configure the trading partner profile for the Wholesaler company.
Figure 69 shows an overview of the components that you need to create for this
example, including:

Company

Trading Partner

B2B Protocol Information

Message Profiles
e*Xchange Partner Manager Implementation Guide 137

Chapter 9 Section 9.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
Figure 69 Wholesaler Trading Partner Configuration on the Retailer Company

To configure the Wholesaler trading partner profile follow the steps listed below:

Step 1: Create the Wholesaler Company on page 138

Step 2: Create the Wholesaler Trading Partner on page 139

Step 3: Set Up Inbound B2B Protocol Information (Wholesaler TP) on page 139

Step 4: Create the Inbound Message Profiles (Wholesaler TP) on page 140

Step 5: Set Up Outbound B2B Protocol Information (Wholesaler TP) on page 142

Step 6: Create the Outbound Message Profiles (Wholesaler TP) on page 142

Step 7: Configure Return Messages for Inbound (Wholesaler TP) on page 144

The following procedure and accompanying tables were used to create the Wholesaler
Company trading partner for this example.

Step 1: Create the Wholesaler Company

1 Log in to the e*Xchange Web interface.

2 From the Main page, click Profile Management.

3 From the Company page, click New.

4 In the Company - adding page, enter the Company name, “Wholesaler Company”.

5 Click Next.

Retailer

Wholesaler TP

B2B Protocol Information
Inbound (Receive from Wholesaler)

Message Profiles
Business Signal Acknowledgment
Purchase Order Response

Outbound (Send to Wholesaler)

Message Profiles
Purchase Order Request
Business Signal Acknowledgment

B2B Protocol Information

Wholesaler Company
e*Xchange Partner Manager Implementation Guide 138

Chapter 9 Section 9.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
This saves your changes and returns to the Company page.

Note: The security information is automatically configured for the current user.

Step 2: Create the Wholesaler Trading Partner

1 From the Company page, ensure that the “Wholesaler Company” is selected, and
click Continue: Trading Partner.

2 From the Trading Partner page, click New to access the Trading Partner - adding
page.

3 Enter the Trading Partner Name, “Wholesaler TP”.

4 Click Next.

This saves your changes and returns to the Trading Partner page.

The required security information defaults from the company level.

Step 3: Set Up Inbound B2B Protocol Information (Wholesaler TP)

To set up the inbound B2B Protocol Information

1 From the Trading Partner page, ensure that the “Wholesaler TP” is selected, and
click Continue: B2B Protocol.

2 From the B2B Protocol page, click New to access the B2B Protocol - adding page.

3 Enter the information listed in Table 45.

In an actual implementation, your local administrator can provide you with the B2B
Protocol information. For an explanation of the B2B Protocol parameters, see the
e*Xchange Partner Manager User’s Guide.

4 Click Next to save your changes and access the General section.

5 Enter the information listed in Table 46.

Table 45 B2B Protocol Information

Parameter Value

eBusiness Protocol RosettaNet

Version 2.0

Direction Inbound

Table 46 B2B Protocol Information, General Page

Parameter Value

Logical Name Wholesaler

Status Active

Communication Protocol HTTP
e*Xchange Partner Manager Implementation Guide 139

Chapter 9 Section 9.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
6 Click Next to save your changes and access the Transport Component section.

7 No changes are required. Click Next to access the Message Security section.

8 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Step 4: Create the Inbound Message Profiles (Wholesaler TP)

For the purposes of this scenario, you must set up the following inbound message
profiles:

Purchase Order Response Message (3A4 Response - Manage Purchase Order)

Control (Business Signal - Receipt Acknowledge)

To set up the 3A4 Response - Manage Purchase Order inbound message profile

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 In the Name window, type 3A4 Response - Manage Purchase Order, and leave all
other parameters with their default values.

4 Click Next to access the Delivery Header section. Enter the information listed in
Table 47.

Table 47 Delivery Header (3A4 Response - Manage Purchase Order)

5 Click Next to access the Service Header section. Enter the information listed in
Table 48.

Note: This table only lists the attributes required to make this scenario work.

Table 48 Service Header (3A4 Response - Manage Purchase Order)

Name Value

From Global Partner Business
Identification

6264712002

To Global Partner Business Identification 6264716002

Name Value

Activity Identifier 1

From Global Partner Role Classification Seller

From Global Business Service Code Seller Service

Global Business Action/Signal Code Purchase Order Acceptance Action

Global Business Action/Signal Version
Identifier

01.02

Global Process Code (PIP) 3A4

PIP Version Identifier 01.02

To Global Partner Role Classification Buyer
e*Xchange Partner Manager Implementation Guide 140

Chapter 9 Section 9.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
6 Click Next to access the Return Messages section.

7 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Note: Setup of the return messages is done later, after the Outbound message profiles have
been set up.

To set up the Business Signal - Receipt Acknowledge inbound message profile

1 From the Message Profile page, click the New button to access the Message Profile
- adding page.

2 In the Name window, type Business Signal - Receipt Acknowledge, and leave all
other parameters with their default values.

3 Click Next to access the Delivery Header section. The information should appear as
listed in Table 49.

Table 49 Delivery Header (Business Signal - Receipt Acknowledge)

4 Click Next to access the Service Header section. Enter the information listed in
Table 50.

Note: This table only lists the attributes required to make this scenario work.

Table 50 Service Header (Business Signal - Receipt Acknowledge)

5 Click Next to access the Return Messages section.

To Global Business Service Code Buyer Service

Usage Code Test

Name Value

From Global Partner Business
Identification

6264712002

To Global Partner Business Identification 6264716002

Name Value

Activity Identifier 1

From Global Partner Role Classification Seller

From Global Business Service Code Seller Service

Global Business Action/signal Code Receipt Acknowledge

Global Business Action/Signal Version
Identifier

01.02

To Global Partner Role Classification Buyer

To Global Business Service Code Buyer Service

Usage Code Test

Name Value
e*Xchange Partner Manager Implementation Guide 141

Chapter 9 Section 9.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
6 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Step 5: Set Up Outbound B2B Protocol Information (Wholesaler TP)

To set up the outbound B2B Protocol Information

As a shortcut, you can copy the Inbound B2B protocol information as a model for the
Outbound B2B protocol information.

1 On the B2B Protocol page, select the RosettaNet-2.0-Inbound protocol that you
created in “To set up the inbound B2B Protocol Information” on page 139.

2 Click Copy.

The B2B Protocol - copying page appears.

3 In the Direction field, ensure that Outbound is selected.

4 Click Next.

The B2B Protocol - copying, General page appears.

5 No changes are needed: click Next to accept the values and access the Transport
Component page.

6 No changes are needed: click Next to accept the values and access the Message
Security page.

7 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Step 6: Create the Outbound Message Profiles (Wholesaler TP)

For the purposes of this scenario, you must set up the following outbound message
profiles:

Purchase Order Message (3A4 Request - Manage Purchase Order)

Control (Business Signal - Receipt Acknowledge)

To set up the 3A4 Request - Manage Purchase Order outbound message profile

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 In the Name window, type 3A4 Request - Manage Purchase Order. Leave all other
parameters with their default values.

4 Click Next to access the Delivery Header section. Enter the information listed in
Table 51.

Table 51 Delivery Header (3A4 Request - Manage Purchase Order)

Name Value

From Global Partner Business
Identification

6264716002
e*Xchange Partner Manager Implementation Guide 142

Chapter 9 Section 9.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
5 Click Next to access the Service Header section. Enter the information listed in
Table 52.

6 Click Next to access the Return Messages section.

7 Select the return message (select the check box), and enter the values, as shown in
Table 53.

8 Click Finish to save the information and return to the Message Profile page.

To set up the Business Signal - Receipt Acknowledge outbound message profile

1 From the Message Profile page, click the New button to access the Message Profile
- adding page.

2 In the Name window, type Business Signal - Receipt Acknowledge, leave all other
parameters with their default values.

3 Click Next to access the Delivery Header section. The information should appear as
listed in Table 54.

To Global Partner Business Identification 6264712002

Table 52 Service Header (3A4 Request - Manage Purchase Order)

Name Value

Activity Identifier 1

From Global Partner Role
Classification

Buyer

From Global Business Service Code Buyer Service

Global Business Action/signal Code Purchase Order Request Action

Global Business Action/Signal
Version Identifier

01.02

Global Process Code(PIP) 3A4

PIP Version Identifier 01.02

To Global Partner Role Classification Seller

To Global Business Service Code Seller Service

Usage Code Test

Table 53 Return Message Values: Outbound

Name Response Time Period # Retries

Business Signal - Receipt Acknowledge 2 Minutes 1

3A4 Response - Manage Purchase Order 5 Minutes 1

Name Value
e*Xchange Partner Manager Implementation Guide 143

Chapter 9 Section 9.3
e*Xchange Implementation—RosettaNet Create the Trading Partner Profiles
Table 54 Delivery Header (Business Signal - Receipt Acknowledge)

4 Click Next to access the Service Header section. Enter the information listed in
Table 55.

Note: This table only lists the attributes required to make this scenario work.

Table 55 Service Header (Business Signal - Receipt Acknowledge)

5 Click Next to access the Return Messages section.

6 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Step 7: Configure Return Messages for Inbound (Wholesaler TP)

To set up the Return Messages for Inbound

Once you have set up inbound and outbound message profiles, you can specify return
messages.

1 From the B2B Protocol page, select RosettaNet-2.0-Inbound.

2 Click Continue: Message Profile.

3 From the Message Profile page, select 3A4 Response - Manage Purchase Order
from the drop-down list.

4 Click the Return Messages link to access the Return Messages section.

5 Click Edit.

6 Select the return messages (select the check boxes), and enter the values, as shown
in Table 56.

Name Value

From Global Partner Business
Identification

6264716002

To Global Partner Business Identification 6264712002

Name Value

Activity Identifier 1

From Global Partner Role Classification Buyer

From Global Business Service Code Buyer Service

Global Business Action/Signal Code Receipt Acknowledge

Global Business Action/Signal Version
Identifier

01.02

To Global Partner Role Classification Seller

To Global Business Service Code Seller Service

Usage Code Test
e*Xchange Partner Manager Implementation Guide 144

Chapter 9 Section 9.4
e*Xchange Implementation—RosettaNet The Wholesaler
7 Click Apply to save the information and return to the Message Profile page.

9.4 The Wholesaler
The Wholesaler is the supplier that uses the RosettaNet format to exchange business
data with its customers. In our example the Wholesalers receive a purchase order from
the Retailer and sends a purchase order response back.

On the Wholesaler, you configure the Trading Partner Profile for the Retailer company.
Figure 70 shows an overview of the components that you need to create for this
example, including:

Company

Trading Partner

B2B Protocol Information

Message Profiles

Figure 70 Retailer Trading Partner Configuration on the Wholesaler Company

Table 56 Return Message Values: Inbound

Name Response Time Period # Retries

Business Signal - Receipt Acknowledge 10 Minutes 0

Purchase Order Request

Wholesaler

B2B Protocol Information
Inbound (Receive from Retailer)

Message Profiles

Business Signal Acknowledgment

Outbound (Send to Retailer)

Message Profiles

Purchase Order Response
Business Signal Acknowledgment

B2B Protocol Information

Retailer TP
Retailer Company

Purchase Order Request
e*Xchange Partner Manager Implementation Guide 145

Chapter 9 Section 9.4
e*Xchange Implementation—RosettaNet The Wholesaler
To configure the Retailer Trading Partner Profile you must follow the steps listed below:

Step 1: Create the Retailer Company on page 146

Step 2: Create the Retailer Trading Partner on page 146

Step 3: Set Up Inbound B2B Protocol Information (Retailer TP) on page 146

Step 4: Create the Inbound Message Profiles (Retailer TP) on page 147

Step 5: Set Up the Outbound B2B Protocol Information (Retailer TP) on page 149

Step 6: Set Up the Outbound Message Profiles (Retailer TP) on page 150

Step 7: Configure Return Messages for Inbound (Retailer TP) on page 152

The following procedure and accompanying tables were used to create the Retailer
Company trading partner for this example.

Step 1: Create the Retailer Company

1 Log in to the e*Xchange Web Interface.

2 From the Main page, click Profile Management.

3 From the Company page, click New.

4 In the Company - adding page, enter the Company name, “Retailer Company”.

5 Click Next.

This saves your changes and returns to the Company page.

Note: The security information is automatically configured for the current user.

Step 2: Create the Retailer Trading Partner

1 From the Company page, ensure that the “Retailer Company” is selected, and then
click Continue: Trading Partner.

2 From the Trading Partner page, click New to access the Trading Partner - adding
page.

3 Enter the Trading Partner Name, “Retailer TP”.

4 Click Next.

This saves your changes and returns to the Trading Partner page.

The required security information defaults from the company level.

Step 3: Set Up Inbound B2B Protocol Information (Retailer TP)

To set up the inbound B2B Protocol Information

1 From the Trading Partner page, ensure that the “Retailer TP” is selected, and click
Continue: B2B Protocol.

2 From the B2B Protocol page, click New to access the B2B Protocol - adding page.

3 Enter the information listed in Table 57.
e*Xchange Partner Manager Implementation Guide 146

Chapter 9 Section 9.4
e*Xchange Implementation—RosettaNet The Wholesaler
In an actual implementation, your local administrator can provide you with the B2B
Protocol information. For an explanation of the B2B Protocol parameters, see the
e*Xchange Partner Manager User’s Guide.

4 Click Next to save your changes and access the General section.

5 Enter the information listed in Table 58.

6 Click Next to save your changes and access the Transport Component section.

7 No changes are required. Click Next to access the Message Security section.

8 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Step 4: Create the Inbound Message Profiles (Retailer TP)

For the purposes of this scenario, you must set up the following inbound message
profiles:

Purchase Order Message (3A4 Request - Manage Purchase Order)

Control (Business Signal - Receipt Acknowledge)

To set up the 3A4 Request - Manage Purchase Order inbound message profile

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 In the Name window, type 3A4 Request - Manage Purchase Order, and leave all
other parameters with their default values.

4 Click Next to access the Delivery Header section. Enter the information listed in
Table 59.

Table 57 B2B Protocol Information

Parameter Value

eBusiness Protocol RosettaNet

Version 2.0

Direction Inbound

Table 58 B2B Protocol Information, General Page

Parameter Value

Logical Name Retailer

Status Active

Communication Protocol HTTP
e*Xchange Partner Manager Implementation Guide 147

Chapter 9 Section 9.4
e*Xchange Implementation—RosettaNet The Wholesaler
Table 59 Delivery Header (3A4 Request - Manage Purchase Order)

5 Click Next to access the Service Header section. Enter the information listed in
Table 60.

Table 60 Service Header (3A4 Request - Manage Purchase Order)

6 Click Next to access the Return Messages section.

7 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Note: Setup of the return messages is done later, after the Outbound message profiles have
been set up.

To set up the Business Signal - Receipt Acknowledge inbound message profile

1 From the Message Profile page, click the New button to access the Message Profile
- adding page.

2 In the Name window, type Business Signal - Receipt Acknowledge, and leave all
other parameters with their default values.

3 Click Next to access the Delivery Header section. The information should appear as
listed in Table 61.

Table 61 Delivery Header (Business Signal - Receipt Acknowledge)

Name Value

From Global Partner Business
Identification

6264716002

To Global Partner Business Identification 6264712002

Name Value

Activity Identifier 1

From Global Partner Role Classification Buyer

From Global Business Service Code Buyer Service

Global Business Action/signal Code Purchase Order Request Action

Global Business Action/Signal Version
Identifier

01.02

Global Process Code(PIP) 3A4

PIP Version Identifier 01.02

To Global Partner Role Classification Seller

To Global Business Service Code Seller Service

Usage Code Test

Name Value

From Global Partner Business
Identification

6264716002

To Global Partner Business Identification 6264712002
e*Xchange Partner Manager Implementation Guide 148

Chapter 9 Section 9.4
e*Xchange Implementation—RosettaNet The Wholesaler
4 Click Next to access the Service Header section. Enter the information listed in
Table 62.

Note: This table only lists the attributes required to make this scenario work.

Table 62 Service Header (Business Signal - Receipt Acknowledge)

5 Click Next to access the Return Messages section.

6 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Step 5: Set Up the Outbound B2B Protocol Information (Retailer TP)

To set up the outbound B2B Protocol information

As a shortcut, you can copy the inbound B2B Protocol information as a model for the
Inbound B2B Protocol information.

1 On the B2B Protocol page, select the RosettaNet-2.0-Inbound protocol that you
created in “To set up the inbound B2B Protocol Information” on page 146. Click
Copy.

The Copy Type page appears.

2 Clear the Include Sub-components check box and then click OK.

The Copy Type page appears.

3 Clear the Include Sub-components check box and then click OK.

The B2B Protocol - Copying page appears.

4 In the Direction field, ensure that Outbound is selected.

5 Click Next.

The B2B Protocol - copying, General page appears.

6 No changes are needed: click Next to accept the values and access the Transport
Component page.

7 No changes are needed: click Next to accept the values and access the Message
Security page.

Name Value

Activity Identifier 1

From Global Partner Role Classification Buyer

From Global Business Service Code Buyer Service

Global Business Action/signal Code Receipt Acknowledge

Global Business Action/Signal Version
Identifier

01.02

To Global Partner Role Classification Seller

To Global Business Service Code Seller Service

Usage Code Test
e*Xchange Partner Manager Implementation Guide 149

Chapter 9 Section 9.4
e*Xchange Implementation—RosettaNet The Wholesaler
8 No changes are required. Click Finish to save the information and return to the B2B
Protocol page.

Step 6: Set Up the Outbound Message Profiles (Retailer TP)

To set up the 3A4 Response - Manage Purchase Order outbound Message Profile

1 From the B2B Protocol page, click Continue: Message Profile.

2 From the Message Profile page, click the New button to access the Message Profile
- adding page.

3 In the Name window, type 3A4 Response - Manage Purchase Order, and leave all
other parameters with their default values.

4 Click Next to access the Delivery Header section. Enter the information listed in
Table 63.

Table 63 Delivery Header (3A4 Response - Manage Purchase Order)

5 Click Next to access the Service Header section. Enter the information listed in
Table 64.

Note: This table only lists the extended attributes required to make this scenario work.

6 Click Next to access the Return Messages section.

Name Value

From Global Partner Business
Identification

6264712002

To Global Partner Business Identification 6264716002

Table 64 Service Header (3A4 Response - Manage Purchase Order)

Name Value

Activity Identifier 1

From Global Partner Role
Classification

Seller

From Global Business Service Code Seller Service

Global Business Action/signal Code Purchase Order Acceptance Action

Global Business Action/Signal
Version Identifier

01.02

Global Process Code(PIP) 3A4

PIP Version Identifier 01.02

To Global Partner Role Classification Buyer

To Global Business Service Code Buyer Service

Usage Code Test
e*Xchange Partner Manager Implementation Guide 150

Chapter 9 Section 9.4
e*Xchange Implementation—RosettaNet The Wholesaler
7 Select the return message (select the check box), and enter the values, as shown in
Table 65.

8 Click Finish to save the information and return to the Message Profile page.

To set up the Business Signal - Receipt Acknowledge outbound message profile

1 From the Message Profile page, click the New button to access the Message Profile
- adding page.

2 In the Name window, type Business Signal - Receipt Acknowledge, and leave all
other parameters with their default values.

3 Click Next to access the Delivery Header section. The information should appear as
listed in Table 66.

Table 66 Delivery Header (Business Signal - Receipt Acknowledge)

4 Click Next to access the Service Header section. Enter the information listed in
Table 67.

Note: This table only lists the extended attributes required to make this scenario work.

Table 67 Service Header (Business Signal - Receipt Acknowledge)

5 Click Next to access the Return Messages section.

6 No changes are required. Click Finish to save the information and return to the
Message Profile page.

Table 65 Return Message Values: Outbound

Name Response Time Period # Retries

Business Signal - Receipt Acknowledge 2 Minutes 1

Name Value

From Global Partner Business
Identification

6264712002

To Global Partner Business Identification 6264716002

Name Value

Activity Identifier 1

From Global Partner Role Classification Seller

From Global Business Service Code Seller Service

Global Business Action/signal Code Receipt Acknowledge

Global Business Action/Signal Version
Identifier

01.02

To Global Partner Role Classification Buyer

To Global Business Service Code Buyer Service

Usage Code Test
e*Xchange Partner Manager Implementation Guide 151

Chapter 9 Section 9.5
e*Xchange Implementation—RosettaNet Clone the eXSchema
Step 7: Configure Return Messages for Inbound (Retailer TP)

To set up the return messages for Inbound

Once you have set up inbound and outbound message profiles, you can specify return
messages.

1 From the B2B Profile page, select RosettaNet-2.0-Inbound.

2 Click Continue: Message Profile.

3 From the Message Profile page, select 3A4 Request - Manage Purchase Order from
the drop-down list.

4 Click the Return Messages link to access the Return Messages section.

5 Click Edit.

6 Select the return messages (select the check boxes), and enter the values, as shown
in Table 68.

7 Click Apply to save the information and return to the Message Profile page.

9.5 Clone the eXSchema
The supplied schema named eXSchema contains the components required to run
e*Xchange. Make a copy of this schema and then configure the copy for this
implementation.

To make a copy of eXSchema

1 Open eXSchema in the e*Gate Schema Designer GUI.

2 Export eXSchema.

3 Create a new schema named RosettaNet using the exported file.

9.6 Configure the Internal_Order_Feeder e*Way
The component (e*Way or BOB) that feeds data into e*Xchange must put the data into
the appropriate business protocol format. It must also populate the required fields in
the e*Xchange Event that is processed by e*Xchange.

This component is entirely user-defined and must be added to the RosettaNet schema.
The type of component to use depends on whether a connection to a system outside

Table 68 Return Message Values: Inbound

Name Response Time Period # Retries

3A4 Response - Manage Purchase Order 10 Minutes 0

Business Signal - Receipt Acknowledge 5 Minutes 0
e*Xchange Partner Manager Implementation Guide 152

Chapter 9 Section 9.6
e*Xchange Implementation—RosettaNet Configure the Internal_Order_Feeder e*Way
e*Gate must be made, and if so, what type of system. Typically, this component is an
e*Way that connects to a business application such as SAP that sends out electronic
messages. These messages may or may not be in the format required by the trading
partner to which they are being sent. If the data is not in the correct format, the e*Way
must translate the data into the required format before it is sent to the e*Xchange
system for enveloping and forwarding to the trading partner.

The e*Xchange Internal_Order_Feeder e*Way

This example simulates the publication of an electronic purchase order from a trading
partner. This file, which is already in RosettaNet format, is picked up by a file e*Way
and moved into the e*Xchange system.

Configuration Steps

Follow these steps to configure the Internal_Order_Feeder e*Way.

1 Create and configure the e*Way.

2 Create the ETDs.

3 Create the Collaboration.

9.6.1 Step 1: Create and configure the Internal_Order_Feeder
e*Way

1 Create an e*Way called Internal_Order_Feeder.

2 In the e*Way Properties dialog box, in the Executable file area of the General tab,
browse for stcewfile.exe.

3 In the e*Way Properties dialog box, in the Configuration file area of the General
tab, click New.

4 Use the following table to set the e*Way parameters for the Internal_Order_Feeder
e*Way:

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

Table 69 Internal_Order_Feeder e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\Demos\RosettaNet\inp
ut\order

MultipleRecordsPerFile NO

(All others) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 153

Chapter 9 Section 9.6
e*Xchange Implementation—RosettaNet Configure the Internal_Order_Feeder e*Way
9.6.2 Step 2: Create the Internal_Order_Feeder ETDs
In the present example, since the data is already in standard RosettaNet format for a
purchase order, you can bring in the Event without parsing it. To do this, all that is
required is an ETD with a root node.

Note: If root.ssc already exists, you do not need to create the ETD.

To create the root ETD

1 Create a new ETD called root.ssc. In the Type box, select Delimited, and select
Other from the drop-down list.

2 Add a single node to the structure. The ETD is shown in Figure 71.

Figure 71 root.ssc Event Type Definition

3 Save the ETD.

9.6.3 Step 3: Create the Internal_Order_Feeder Collaboration
The Internal_Order_Feeder Collaboration must prepare the data coming into the
e*Xchange system. How complicated this task is depends on the state of the data before
the Internal_Order_Feeder Collaboration processes it.

The Internal_Order_Feeder Collaboration must do the following:

convert the data to base 64 encoding

populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Convert the Event to Base 64 Encoding

The Internal_Order_Feeder Collaboration must ensure that the data going into
e*Xchange doesn’t include any characters that cause problems for the XML structure of
the standard e*Xchange Event (for example, characters that are the same as the XML
control characters). This is done by converting the entire message to base 64 encoding
using the Monk function raw->base64, and then copying it to the payload node of the
eX_Standard_Event ETD.

Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the message.
e*Xchange Partner Manager Implementation Guide 154

Chapter 9 Section 9.6
e*Xchange Implementation—RosettaNet Configure the Internal_Order_Feeder e*Way
e*Xchange Tracking Information

e*Xchange needs to know certain things about an message before processing. The
Internal_Order_Feeder Collaboration must supply this information by populating
certain required nodes in the Event that is sent to e*Xchange. At a minimum you must
tell e*Xchange:

Direction (inbound or outbound)

Partner Name (logical name from the B2B Protocol section in e*Xchange)

All of these requirements can be met by copying the appropriate information to the
corresponding nodes in the TP section of the e*Xchange ETD (eX_Standard_Event.ssc).

The TP_EVENT.CT.DSN.DS.Direction.CT.DSN.DS.Data node must contain the
direction of the Event: “O” for outbound to the trading partner or “I” for inbound from
a trading partner.

The TP_EVENT.CT.DSN.DS.PartnerName.CT.DSN.DS.Data node must contain the
name (case-sensitive) of the trading partner as defined in the B2B Protocol
Information, General page.

The e*Xchange Payload

In addition to the tracking information, the
TP_EVENT.CT.DSN.DS.Payload.CT.DSN.DS.Data node must be filled with the entire
base 64 encoded message.

The e*Xchange Internal_Order_Feeder CRS

The CRS, Internal_Order_Feeder.tsc, used in the present example is shown in Figure
72. It does the following:

Converts the RosettaNet message to base 64 encoding, and copies it to the Payload
node of the TP_EVENT section of the e*Xchange standard Event.

Copies “O” for outbound to the direction node of the TP_EVENT section.

Copies the trading partner logical name “Wholesaler” to the PartnerName node of
the TP_EVENT section.

To create and configure the Internal_Order_Feeder Collaboration Rule

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named Internal_Order_Feeder.tsc. The
Source Event Type Definition is root.ssc. The Destination Event Type Definition is
eX_Standard_Event.ssc.

3 Add the rules shown in Figure 72.
e*Xchange Partner Manager Implementation Guide 155

Chapter 9 Section 9.6
e*Xchange Implementation—RosettaNet Configure the Internal_Order_Feeder e*Way
Figure 72 Internal_Order_Feeder.tsc

Internal_Order_Feeder Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the Internal_Order_Feeder Component in the Schema Designer
GUI.

To create and configure the Internal_Order_Feeder Collaboration Rule

1 Create a new Collaboration Rule named Internal_Order_Feeder.

2 From Internal_Order_Feeder Collaboration Rule properties, select the General tab.
Configure as shown in Table 70.

Table 70 Internal_Order_Feeder CR configuration - General Tab

Section Value

Service Monk

Collaboration Rule Internal_Order_Feeder

Initialization File monk_scripts\common\load_ext
e*Xchange Partner Manager Implementation Guide 156

Chapter 9 Section 9.6
e*Xchange Implementation—RosettaNet Configure the Internal_Order_Feeder e*Way
Important: To use the Monk function raw->base64, you must make sure the file containing
this function has been loaded.

Figure 73 Internal_Order_Feeder Collaboration Rules Properties Dialog Box

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_to_ePM and move it to the right pane.

To create and configure the Internal_Order_Feeder Collaboration

1 Select the Internal_Order_Feeder e*Way.

2 Create a new Collaboration named Internal_Order_Feeder.

3 Configure the Internal_Order_Feeder Collaboration properties using Table 71.

Table 71 Internal_Order_Feeder Collaboration configuration

Section Value

Collaboration Rules Internal_Order_Feeder

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_to_ePM
Destination: eX_eBPM

This command
loads the Monk
file where
raw->base64 is
defined
e*Xchange Partner Manager Implementation Guide 157

Chapter 9 Section 9.7
e*Xchange Implementation—RosettaNet Configure the TP_Order_Eater e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
74.

Figure 74 Internal_Order_Feeder Collaboration Properties

9.7 Configure the TP_Order_Eater e*Way
The component (e*Way or BOB) sends the message to the external system.

The e*Xchange TP_Order_Eater e*Way

The e*Xchange example simulates the publication of the message to the external
system.

Configuration Steps

Follow these steps to configure the TP_Order_Eater e*Way.

1 Create the configuration file.

2 Create the ETDs.

3 Create the Collaboration.

9.7.1 Step 1: Create and configure the TP_Order_Eater e*Way
1 Create an e*Way called TP_Order_Eater.

2 In the e*Way Properties dialog box General tab, in the Executable file area browse
for stcewfile.exe.
e*Xchange Partner Manager Implementation Guide 158

Chapter 9 Section 9.7
e*Xchange Implementation—RosettaNet Configure the TP_Order_Eater e*Way
3 In the e*Way Properties dialog box General tab, in the Configuration file area,
click New.

4 Use Table 72 to set the e*Way parameters for the TP_Order_Eater e*Way.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

9.7.2 Step 2: Create the TP_Order_Eater Collaboration
The TP_Order_Eater Collaboration must prepare the data leaving the e*Xchange
system. How complicated this task is depends on the state of the data before the
TP_Order_Eater Collaboration processes it.

The TP_Order_Eater Collaboration must do the following:

put the data into the appropriate format

convert the data to raw data

The e*Xchange TP_Order_Eater CRS

The CRS, TP_Order_Eater.tsc, checks that the message is for the Wholesaler Trading
Partner (Wholesaler). If it is, it converts the RosettaNet message to raw data, and then
copies it from the Payload node of the TP_EVENT section of the e*Xchange standard
Event to the output ETD.

To create and configure the TP_Order_Eater Collaboration Rule

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named TP_Order_Eater.tsc. The Source
Event Type Definition is eX_Standard_Event.ssc. The Destination Event Type
Definition is root.ssc.

3 Add the rule shown in Figure 75.

Table 72 TP_Order_Eater e*Way Parameters

Screen Parameter Setting

General Settings AllowIncoming NO

AllowOutgoing YES

Outbound (send) settings OutputDirectory <eGate>\Demos\RosettaNet\out
put\Order_Out\TP

OutputFileName order%d.dat

MultipleRecordsPerFile NO

(All others) (Default)

Poller (inbound) settings (All) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 159

Chapter 9 Section 9.7
e*Xchange Implementation—RosettaNet Configure the TP_Order_Eater e*Way
Figure 75 TP_Order_Eater.tsc

TP_Order_Eater Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the TP_Order_Eater Component in the Schema Designer GUI.

To create and configure the TP_Order_Eater Collaboration Rule

1 Create a new Collaboration Rule named TP_Order_Eater.

2 From the Internal_Order_Eater Collaboration Rule properties, select the General
tab. Configure as shown in Table 73.

Table 73 TP_Order_Eater CR Configuration - General Tab

Important: To use the Monk function base64->raw, you must make sure the file containing
this function has been loaded.

3 Select the Subscriptions tab. Select eX_HTTP and move to the right pane.

4 Select the Publications tab. Select eX_External_Evt and move to the right pane.

To create and configure the TP_Order_Eater Collaboration

1 Select the TP_Order_Eater e*Way.

2 Create a new Collaboration named TP_Order_Eater.

3 Configure the Internal_Order_Eater Collaboration properties using Table 74.

Table 74 TP_Order_Eater Collaboration configuration

Section Value

Service Monk

Collaboration Rule TP_Order_Eater

Initialization File monk_scripts\common\load_ext

Section Value

Collaboration Rule TP_Order_Eater
e*Xchange Partner Manager Implementation Guide 160

Chapter 9 Section 9.8
e*Xchange Implementation—RosettaNet Configure the TP_Order_Feeder e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
76.

Figure 76 TP_Order_Eater Collaboration Properties

9.8 Configure the TP_Order_Feeder e*Way
This component feeds the data that was sent to the Wholesaler Trading Partner into
e*Xchange.

The e*Xchange TP_Order_Feeder e*Way

The e*Xchange example simulates the publication of an electronic purchase order from
a trading partner. This file, which is already in RosettaNet format, is picked up by a file
e*Way and moved into the e*Xchange system.

Configuration Steps

Follow these steps to configure the Internal_Order_Feeder e*Way.

1 Create and configure the e*Way.

2 Create the Collaboration.

Subscriptions Event Type: eX_HTTP
Source: eX_from_ePM

Publications Event Type: eX_External_Evt
Destination: <EXTERNAL>

Section Value
e*Xchange Partner Manager Implementation Guide 161

Chapter 9 Section 9.8
e*Xchange Implementation—RosettaNet Configure the TP_Order_Feeder e*Way
9.8.1 Step 1: Create and configure the TP_Order_Feeder e*Way
1 Create an e*Way called TP_Order_Feeder.

2 In the e*Way Properties dialog box, in the Executable file area of the General tab,
browse for stcewfile.exe.

3 In the e*Way Properties dialog box, in the Configuration file area of the General
tab, click New.

4 Use Table 75 to set the e*Way parameters for the TP_Order_Feeder e*Way.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

9.8.2 Step 2: Create the TP_Order_Feeder Collaboration
The TP_Order_Feeder Collaboration must prepare the data coming into the e*Xchange
system. How complicated this task is depends on the state of the data before the
TP_Order_Feeder Collaboration processes it.

The TP_Order_Feeder Collaboration must do the following:

convert the data to base 64 encoding

populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Convert the Event to Base 64 Encoding

The TP_Order_Feeder Collaboration must ensure that the data going into e*Xchange
doesn’t include any characters that cause problems for the XML structure of the
standard e*Xchange Event (for example, characters that are the same as the XML
control characters). This is done by converting the entire message to base 64 encoding
using the Monk function raw->base64, before copying it to the payload node of the
eX_Standard_Event ETD.

Table 75 TP_Order_Feeder e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\Demos\RosettaNet\out
put\order_out\TP

MultipleRecordsPerFile NO

(All others) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 162

Chapter 9 Section 9.8
e*Xchange Implementation—RosettaNet Configure the TP_Order_Feeder e*Way
Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the message.

The e*Xchange TP_Order_Feeder CRS

The CRS, TP_Order_Feeder.tsc does the following:

Converts the RosettaNet message to base 64 encoding, and copies it to the Payload
node of the TP_EVENT section of the e*Xchange standard Event.

Copies “I” for outbound to the direction node of the TP_EVENT section.

Copies the trading partner logical name “Retailer” to the PartnerName node of the
TP_EVENT section.

To create and configure the TP_Order_Feeder Collaboration Rule

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named TP_Order_Feeder.tsc. The Source
Event Type Definition is root.ssc. The Destination Event Type Definition is
eX_Standard_Event.ssc.

3 Add the rules shown in Figure 77.

Figure 77 TP_Order_Feeder.tsc

TP_Order_Feeder Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the TP_Order_Feeder Component in the Schema Designer GUI.

To create and configure the TP_Order_Feeder Collaboration Rule

1 Create a new Collaboration Rule named TP_Order_Feeder.

2 From TP_Order_Feeder Collaboration Rule properties, select the General tab.
Configure as shown in Table 76.
e*Xchange Partner Manager Implementation Guide 163

Chapter 9 Section 9.8
e*Xchange Implementation—RosettaNet Configure the TP_Order_Feeder e*Way
Table 76 TP_Order_Feeder CR Configuration - General Tab

Important: To use the Monk function raw->base64, you must make sure the file containing
this function has been loaded.

Figure 78 TP_Order_Feeder Collaboration Rules Properties Dialog Box

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_to_ePM and move it to the right pane.

To create and configure the TP_Order_Feeder Collaboration

1 Select the TP_Order_Feeder e*Way.

2 Create a new Collaboration named TP_Order_Feeder.

3 Configure the TP_Order_Feeder Collaboration properties as shown in Table 77.

Table 77 TP_Order_Feeder Collaboration Configuration

Section Value

Service Monk

Collaboration Rule TP_Order_Feeder

Initialization File monk_scripts\common\load_ext

Section Value

Collaboration Rules TP_Order_Feeder

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_to_ePM
Destination: eX_eBPM

This command
loads the Monk
file where
raw->base64 is
defined
e*Xchange Partner Manager Implementation Guide 164

Chapter 9 Section 9.9
e*Xchange Implementation—RosettaNet Configure the Internal_Eater e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
79.

Figure 79 TP_Order_Feeder Collaboration Properties

9.9 Configure the Internal_Eater e*Way
This component eats messages sent to the internal system. It is used for both purchase
orders and purchase order responses.

The e*Xchange Internal_Eater e*Way

The e*Xchange example simulates the publication of the message to the internal system.

Configuration Steps

Follow these steps to configure the Internal_Eater e*Way.

1 Create the configuration file.

2 Create the ETDs.

3 Create the Collaboration.

9.9.1 Step 1: Create and configure the Internal_Eater e*Way
1 Create an e*Way called Internal_Eater.

2 In the e*Way Properties dialog box General tab, in the Executable file area browse
for stcewfile.exe.
e*Xchange Partner Manager Implementation Guide 165

Chapter 9 Section 9.9
e*Xchange Implementation—RosettaNet Configure the Internal_Eater e*Way
3 In the e*Way Properties dialog box, General tab, in the Configuration file area,
click New.

4 Use the following table to set the e*Way parameters for the Internal_Eater e*Way.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

9.9.2 Step 2: Create the Internal_Eater Collaboration
The Internal_Eater Collaboration routes the data without changing its format.

Internal_Eater Collaboration Properties Setup

You must set up the Collaboration and Collaboration Rules Properties for the
Internal_Eater Component in the Schema Designer GUI.

To create and configure the Internal_Eater Collaboration Rule

1 Create a new Collaboration Rule named Internal_Eater.

2 From Internal_Eater Collaboration Rule properties, select the General tab.
Configure as shown in Table 79.

Table 79 Internal_Order_Eater CR configuration - General Tab

3 Select the Subscriptions tab. Select eX_to_eBPM and move to the right pane.

4 Select the Publications tab. Select eX_External_Evt and move to the right pane.

To create and configure the Internal_Order_Eater Collaboration

1 Select the Internal_Eater e*Way.

Table 78 Internal_Eater e*Way Parameters

Screen Parameter Setting

General Settings AllowIncoming NO

AllowOutgoing YES

Outbound (send) settings OutputDirectory <eGate>\Demos\RosettaNet\out
put\Order_Out

OutputFileName order%d.dat

MultipleRecordsPerFile NO

(All others) (Default)

Poller (inbound) settings (All) (Default)

Performance Testing (All) (Default)

Section Value

Service PassThrough
e*Xchange Partner Manager Implementation Guide 166

Chapter 9 Section 9.10
e*Xchange Implementation—RosettaNet Configure the Internal_Response_Feeder e*Way
2 Create a new Collaboration named Internal_Eater.

3 Configure the Internal_Eater Collaboration properties using Table 80.

Table 80 Internal_Eater Collaboration configuration

Verify the information in the Collaboration Properties dialog box as shown in Figure
80.

Figure 80 Internal_Eater Collaboration Properties

9.10 Configure the Internal_Response_Feeder e*Way
This component feeds the purchase order response to e*Xchange to be sent to the
Retailer Trading Partner.

The e*Xchange Internal_Response_Feeder e*Way

The e*Xchange example simulates the publication of an electronic purchase order
response to a trading partner. This file, which is already in RosettaNet format, is picked
up by a file e*Way and moved into the e*Xchange system.

Section Value

Collaboration Rule Internal_Eater

Subscriptions Event Type: eX_to_eBPM
Source: eX_from_ePM

Publications Event Type: eX_External_Evt
Destination: <EXTERNAL>
e*Xchange Partner Manager Implementation Guide 167

Chapter 9 Section 9.10
e*Xchange Implementation—RosettaNet Configure the Internal_Response_Feeder e*Way
Configuration Steps

Follow these steps to configure the Internal_Response_Feeder e*Way.

1 Create and configure the e*Way.

2 Create the Collaboration.

9.10.1 Step 1: Create and configure the Internal_Response_Feeder
e*Way

1 Create an e*Way called Internal_Response_Feeder.

2 In the e*Way Properties dialog box, in the Executable file area of the General tab,
browse for stcewfile.exe.

3 In the e*Way Properties dialog box, in the Configuration file area of the General
tab, click New.

4 Configure the Internal_Response_Feeder e*Way parameters using Table 81.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

9.10.2 Step 2: Create the Internal_Response_Feeder Collaboration
The Internal_Response_Feeder Collaboration must prepare the data coming into
e*Xchange. How complicated this task is depends on the state of the data before the
Internal_Response_Feeder Collaboration processes it.

The Internal_Response_Feeder Collaboration must do the following:

convert the data to base 64 encoding

populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Table 81 Internal_Response_Feeder e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\Demos\RosettaNet\inp
ut\response

MultipleRecordsPerFile NO

(All others) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 168

Chapter 9 Section 9.10
e*Xchange Implementation—RosettaNet Configure the Internal_Response_Feeder e*Way
Convert the Event to Base 64 Encoding

The Internal_Response_Feeder Collaboration must ensure that the data going into
e*Xchange doesn’t include any characters that cause problems for the XML structure of
the standard e*Xchange Event (for example, characters that are the same as the XML
control characters). This is done by converting the entire message to base 64 encoding
using the Monk function raw->base64, before copying it to the payload node of the
eX_Standard_Event ETD.

Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the message.

The e*Xchange Internal_Response_Feeder CRS

The Internal_Response_Feeder.tsc CRS does the following:

Converts the RosettaNet message to base 64 encoding, and copies it to the Payload
node of the TP_EVENT section of the e*Xchange standard Event.

Copies “O” for outbound to the direction node of the TP_EVENT section.

Copies the trading partner logical name “Retailer” to the PartnerName node of the
TP_EVENT section.

To create and configure the Internal_Response_Feeder Collaboration Rule Script

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named Internal_Response_Feeder.tsc. The
Source Event Type Definition is root.ssc. The Destination Event Type Definition is
eX_Standard_Event.ssc.

3 Add the rules shown in Figure 81.
e*Xchange Partner Manager Implementation Guide 169

Chapter 9 Section 9.10
e*Xchange Implementation—RosettaNet Configure the Internal_Response_Feeder e*Way
Figure 81 Internal_Response_Feeder.tsc

Internal_Response_Feeder Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the Internal_Response_Feeder Component in the Schema
Designer GUI.

To create and configure the Internal_Response_Feeder Collaboration Rule

1 Create a new Collaboration Rule named Internal_Response_Feeder.

2 From Internal_Response_Feeder Collaboration Rule properties, select the General
tab. Configure as shown in Table 82.

Table 82 Internal_Response_Feeder CR Configuration - General Tab

Section Value

Service Monk

Collaboration Rule Internal_Response_Feeder

Initialization File monk_scripts\common\load_ext
e*Xchange Partner Manager Implementation Guide 170

Chapter 9 Section 9.10
e*Xchange Implementation—RosettaNet Configure the Internal_Response_Feeder e*Way
Important: To use the Monk function raw->base64, you must make sure the file containing
this function has been loaded.

Figure 82 Internal_Response_Feeder Collaboration Rules Properties Dialog Box

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_to_ePM and move it to the right pane.

To create and configure the Internal_Response_Feeder Collaboration

1 Select the Internal_Response_Feeder e*Way.

2 Create a new Collaboration named Internal_Response_Feeder.

3 Configure the Internal_Response_Feeder Collaboration properties using Table 83.

Table 83 Internal_Response_Feeder Collaboration Configuration

Section Value

Collaboration Rules Internal_Response_Feeder

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_to_ePM
Destination: eX_eBPM

This command
loads the Monk
file where
raw->base64 is
defined
e*Xchange Partner Manager Implementation Guide 171

Chapter 9 Section 9.11
e*Xchange Implementation—RosettaNet Configure the TP_Response_Eater e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
83.

Figure 83 Internal_Response_Feeder Collaboration Properties

9.11 Configure the TP_Response_Eater e*Way
The component (e*Way or BOB) sends the message to the external system.

The e*Xchange TP_Response_Eater e*Way

This example simulates the publication of the message to the external system.

Configuration Steps

Follow these steps to configure the TP_Response_Eater e*Way.

1 Create the configuration file.

2 Create the Collaboration.

9.11.1 Step 1: Create and configure the TP_Response_Eater e*Way
1 Create an e*Way called TP_Response_Eater.

2 In the e*Way Properties dialog box, General tab, in the Executable file area, browse
for stcewfile.exe.

3 In the e*Way Properties dialog box, General tab, in the Configuration file area,
click New.
e*Xchange Partner Manager Implementation Guide 172

Chapter 9 Section 9.11
e*Xchange Implementation—RosettaNet Configure the TP_Response_Eater e*Way
4 Configure the TP_Response_Eater e*Way parameters using Table 84.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

9.11.2 Step 2: Create the TP_Response_Eater Collaboration
The TP_Response_Eater Collaboration must prepare the data leaving the e*Xchange
system. How complicated this task is depends on the state of the data before the
TP_Response_Eater Collaboration processes it.

The TP_Response_Eater Collaboration must do the following:

put the data into the appropriate format

convert the data to raw data

The e*Xchange TP_Response_Eater CRS

The CRS, TP_Response_Eater.tsc checks that the message is for the Wholesaler Trading
Partner (Retailer). If it is, it converts the RosettaNet message to raw data, and copies it
from the Payload node of the TP_EVENT section of the e*Xchange standard Event to
the output ETD.

To create and configure the TP_Response_Eater Collaboration Rule Script

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named TP_Response_Eater.tsc. The Source
Event Type Definition is eX_Standard_Event.ssc. The Destination Event Type
Definition is root.ssc.

3 Add the rule shown in Figure 84.

Table 84 TP_Response_Eater e*Way Parameters

Screen Parameter Setting

General Settings AllowIncoming NO

AllowOutgoing YES

Outbound (send) settings OutputDirectory <eGate>\Demos\RosettaNet\out
put\Response_Out\TP

OutputFileName order%d.dat

MultipleRecordsPerFile NO

(All others) (Default)

Poller (inbound) settings (All) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 173

Chapter 9 Section 9.11
e*Xchange Implementation—RosettaNet Configure the TP_Response_Eater e*Way
Figure 84 TP_Response_Eater.tsc

TP_Response_Eater Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the TP_Response_Eater Component in the Schema Designer GUI.

To create and configure the TP_Response_Eater Collaboration Rule

1 Create a new Collaboration Rule named TP_Response_Eater.

2 From Internal_Order_Eater Collaboration Rule properties, select the General tab.
Configure as shown in Table 85.

Table 85 TP_Response_Eater CR configuration - General Tab

Important: To use the Monk function base64->raw, you must make sure the file containing
this function has been loaded.

3 Select the Subscriptions tab. Select eX_HTTP and move to the right pane.

4 Select the Publications tab. Select eX_External_Evt and move to the right pane.

To create and configure the TP_Response_Eater Collaboration

1 Select the TP_Response_Eater e*Way.

2 Create a new Collaboration named TP_Response_Eater.

3 Configure the TP_Response_Eater Collaboration properties using Table 86.

Table 86 TP_Response_Eater Collaboration configuration

Section Value

Service Monk

Collaboration Rule TP_Response_Eater

Initialization File monk_scripts\common\load_ext

Section Value

Collaboration Rules TP_Response_Eater
e*Xchange Partner Manager Implementation Guide 174

Chapter 9 Section 9.12
e*Xchange Implementation—RosettaNet Configure the TP_Response_Feeder e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
85.

Figure 85 TP_Response_Eater Collaboration Properties

9.12 Configure the TP_Response_Feeder e*Way
This component feeds the data that was sent to the Retailer Trading Partner into
e*Xchange.

The e*Xchange TP_Response_Feeder e*Way

The e*Xchange example simulates the publication of an electronic purchase order from
a trading partner. This file, which is already in RosettaNet format, is picked up by a file
e*Way and moved into the e*Xchange system.

Configuration Steps

Follow these steps to configure the TP_Response_Feeder e*Way.

1 Create and configure the e*Way.

2 Create the Collaboration.

Subscriptions Event Type: eX_HTTP
Source: eX_from_ePM

Publications Event Type: eX_External_Evt
Destination: <EXTERNAL>

Section Value
e*Xchange Partner Manager Implementation Guide 175

Chapter 9 Section 9.12
e*Xchange Implementation—RosettaNet Configure the TP_Response_Feeder e*Way
9.12.1 Step 1: Create and Configure the TP_Response_Feeder e*Way
1 Create an e*Way called TP_Response_Feeder.

2 In the e*Way Properties dialog box, in the Executable file area of the General tab,
browse for stcewfile.exe.

3 In the e*Way Properties dialog box, in the Configuration file area of the General
tab, click New.

4 Configure the TP_Response_Feeder e*Way parameter using Table 87.

5 When finished editing the e*Way configuration file, save your work and close the
e*Way editor.

6 Click OK to close the e*Way Properties dialog box.

9.12.2 Step 2: Create the TP_Response_Feeder Collaboration
The TP_Response_Feeder Collaboration must prepare the data coming into e*Xchange.
How complicated this task is depends on the state of the data before the
TP_Response_Feeder Collaboration processes it.

The TP_Response_Feeder Collaboration must do the following:

convert the data to base 64 encoding

populate the required nodes in the e*Xchange Event sent to e*Xchange for
processing

Convert the Event to Base 64 Encoding

The TP_Response_Feeder Collaboration must ensure that the data going into
e*Xchange doesn’t include any characters that cause problems for the XML structure of
the standard e*Xchange Event (for example, characters that are the same as the XML
control characters). This is done by converting the entire message to base 64 encoding
using the Monk function raw->base64, before copying it to the payload node of the
eX_Standard_Event ETD.

Table 87 TP_Response_Feeder e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Outbound (send) settings (All) (Default)

Poller (inbound) settings PollDirectory <eGate>\Demos\RosettaNet\Out
put\Response_Out\TP

InputFileMask *.dat

MultipleRecordsPerFile NO

(All others) (Default)

Performance Testing (All) (Default)
e*Xchange Partner Manager Implementation Guide 176

Chapter 9 Section 9.12
e*Xchange Implementation—RosettaNet Configure the TP_Response_Feeder e*Way
Populate the Required e*Xchange Nodes

In addition to copying the base 64 encoded message to the payload node of the
TP_EVENT portion of the e*Xchange standard Event, you must provide e*Xchange
with tracking information about the message.

The e*Xchange TP_Response_Feeder CRS

The TP_Response_Feeder.tsc CRS does the following:

Converts the RosettaNet message to base 64 encoding, and copies it to the Payload
node of the TP_EVENT section of the e*Xchange standard Event.

Copies “I” for outbound to the direction node of the TP_EVENT section.

Copies the trading partner logical name “Wholesaler” to the PartnerName node of
the TP_EVENT section.

To create and configure the TP_Response_Feeder Collaboration Rule Script

1 Open the Collaboration Editor.

2 Create a new Collaboration Rules script named TP_Response_Feeder.tsc. The
Source Event Type Definition is root.ssc. The Destination Event Type Definition is
eX_Standard_Event.ssc.

3 Add the rules shown in Figure 86.

Figure 86 TP_Response_Feeder.tsc

TP_Response_Feeder Collaboration Properties Setup

Once the CRS has been created, you must set up the Collaboration and Collaboration
Rules Properties for the TP_Response_Feeder Component in the Schema Designer
GUI.

To create and configure the TP_Response_Feeder Collaboration Rule

1 Create a new Collaboration Rule named TP_Response_Feeder.
e*Xchange Partner Manager Implementation Guide 177

Chapter 9 Section 9.12
e*Xchange Implementation—RosettaNet Configure the TP_Response_Feeder e*Way
2 From TP_Response_Feeder Collaboration Rule properties, select the General tab.
Configure as shown in Table 88.

Table 88 TP_Response_Feeder CR configuration - General Tab

Important: To use the Monk function raw->base64, you must make sure the file containing this
function has been loaded.

Figure 87 TP_Response_Feeder Collaboration Rules Properties Dialog Box

3 Select the Subscriptions tab. Select eX_External_Evt and move it to the right pane.

4 Select the Publications tab. Select eX_to_ePM and move it to the right pane.

To create and configure the Internal_Order_Feeder Collaboration

1 Select the TP_Response_Feeder e*Way.

2 Create a new Collaboration named TP_Response_Feeder.

3 Configure the TP_Response_Feeder Collaboration properties using Table 89.

Table 89 TP_Response_Feeder Collaboration configuration

Section Value

Service Monk

Collaboration Rule TP_Response_Feeder

Initialization File monk_scripts\common\load_ext

Section Value

Collaboration Rules TP_Response_Feeder

Subscriptions Event Type: eX_External_Evt
Source: <EXTERNAL>

Publications Event Type: eX_to_ePM
Destination: eX_eBPM

This command
loads the Monk
file where
raw->base64 is
defined
e*Xchange Partner Manager Implementation Guide 178

Chapter 9 Section 9.13
e*Xchange Implementation—RosettaNet Configure the eX_ePM e*Way
Verify the information in the Collaboration Properties dialog box as shown in Figure
88.

Figure 88 TP_Response_Feeder Collaboration Properties

9.13 Configure the eX_ePM e*Way
The eX_ePM e*Way requires only minimal configuration. You must give it the logon
information for the e*Xchange database.

To configure the eX_ePM configuration file

1 In the eX_ePM e*Way properties, select the General tab.

2 In the Configuration File area, click Edit.

3 Configure the parameters as shown in Table 90.
.

Table 90 eX_ePM e*Way Parameters

Screen Parameter Setting

General Settings (All) (Default)

Communication Setup (All) (Default)

Monk Configuration (All) (Default)
e*Xchange Partner Manager Implementation Guide 179

Chapter 9 Section 9.14
e*Xchange Implementation—RosettaNet Running the Scenario
To set the file names correctly

1 In <egate>\Demos\RosettaNet\input\order, change the name of the orders.~in
file to orders.fin.

2 In <egate>\Demos\RosettaNet\input\order_response, change the name of the
order_response.~in file to order_response.fin.

That completes the data setup. The next step is to run the scenario.

9.14 Running the Scenario
There are five parts to running the scenario:

A The Retailer trading partner sends the purchase order to the Wholesaler trading
partner.

B The Wholesaler trading partner processes the purchase order message received
from the Retailer trading partner

C The Wholesaler trading partner sends the acknowledgment back to the Retailer
trading partner

D The Wholesaler trading partner sends the response message back to the Retailer
trading partner

E The Retailer trading partner sends the acknowledgment back to the Wholesaler
trading partner

Parts A, B, and C are performed in “To process the purchase order message”. Parts D
and E are performed in “To send the response message” on page 184.

To process the purchase order message

1 Rename the file <egate>\Demos\RosettaNet\input\Orders.~in to Orders.fin.

Once your data file is in place, start the following e*Gate components:

2 Start the Control Broker. At the command line, enter:

stccb.exe -rh localhost -rs RosettaNet -ln localhost_cb -un
Administrator -up STC

3 Open the Schema Manager and select the RosettaNet schema.

Database Setup Database Name (service name of the
e*Xchange database)

User name ex_admin

Password ex_admin

(All others) (Default)

Table 90 eX_ePM e*Way Parameters

Screen Parameter Setting
e*Xchange Partner Manager Implementation Guide 180

Chapter 9 Section 9.14
e*Xchange Implementation—RosettaNet Running the Scenario
4 Start the eX_ePM e*Way

This starts the e*Xchange engine.

5 Start the Internal_Order_Feeder e*Way

This e*Way retrieves the purchase order from the internal system and sends it to the
e*Xchange Partner Manager.

6 Look in the <egate>\Demos\RosettaNet\Input\Order folder. The file name
changes from Order.fin to Order.~in as the file is picked up.

7 Start the TP_Order_Eater e*Way.

This e*Way sends the purchase order to a file which is then retrieved and sent to the
Wholesaler trading partner.

8 Look in the <egate>\Demos\RosettaNet\Output\Order_Out\TP folder. The file
Order1.dat is created.

9 Start the TP_Order_Feeder e*Way.

This e*Way sends the message to the Wholesaler trading partner.

10 Look in the <egate>\Demos\RosettaNet\Output\Order_Out\TP folder. The file
name changes from Order1.dat to Order1.~in as the file is picked up.

11 Start the Internal_Eater e*Way.

This e*Way sends the message to a file (simulating sending to an internal system).

12 Look in the <egate>\Demos\RosettaNet\Output\Order_Out folder. The file
Order1.dat is created.

13 Start the TP_Response_Eater e*Way.

This e*Way sends the purchase order acknowledgment to a file which is then
retrieved and sent to the Retailer trading partner.

14 Look in the <egate>\Demos\RosettaNet\Output\Response_Out\TP folder. The
file Order1.dat is created.

15 Start the TP_Response_Feeder e*Way

This e*Way sends the purchase order acknowledgment to the Retailer trading
partner.

16 Look in the <egate>\Demos\RosettaNet\Output\Response_Out\TP folder. The
file name changes from Order1.dat to Order1.~in as the file is picked up.

The message is processed by Internal_Eater e*Way. This e*Way sends the message
to a file (simulating sending to an internal system).

Note: Look in the <egate>\Demos\RosettaNet\Output\Order_Out folder. The file
Order1.dat is created.

That completes sending the purchase order. You can view the results in Message
Tracking, in e*Xchange Web interface.
e*Xchange Partner Manager Implementation Guide 181

Chapter 9 Section 9.14
e*Xchange Implementation—RosettaNet Running the Scenario
Viewing the Results in Message Tracking

You can view the results of the message processing by using the Message Tracking
feature of the e*Xchange Partner Manager.

Message Tracking shows two entries for the incoming message. This is because a
control message is sent out immediately, and a response message is sent out later. These
two responses to the trading partner are tracked separately.

To view the outbound message in Message Tracking for the Wholesaler Trading Partner

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Wholesaler Company.

3 In the Trading Partner Profile field, select Wholesaler TP.

4 In the eBusiness Protocol field, select RosettaNet.

5 In the Direction field, select Outbound.

6 Click the Message Profile Selection.

7 Select the 3A4 Request - Manage Purchase Order message.

8 Click the Message Details link to view the resulting list.

The results are shown in Figure 89.

Figure 89 Message Tracking: Outbound

As shown in Figure 89, e*Xchange records two entries for the message. One entry is for
the original message, for which a response message is sent. The other entry is for the
acknowledgment message.
e*Xchange Partner Manager Implementation Guide 182

Chapter 9 Section 9.14
e*Xchange Implementation—RosettaNet Running the Scenario
For one entry, the Ack Message column has a link to the message information. Click it
to view the acknowledgment message.

Later, when the response message is sent out, you are able to view it in Message
Tracking. For the moment, the Ack Message column is not showing a link for the other
message, since the response has not been sent out yet.

To view the inbound message in Message Tracking for the Retailer Trading Partner

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Retailer Company.

3 In the Trading Partner Profile field, select Retailer TP.

4 In the eBusiness Protocol field, select RosettaNet.

5 In the Direction field, select Inbound.

6 Click the Message Profile Selection.

7 Select the 3A4 Request - Manage Purchase Order message.

8 Click the Message Details link to view the resulting list.

The results are shown in Figure 90.

Figure 90 Message Tracking: Inbound

As shown in Figure 90, e*Xchange records two entries for the message. One entry is for
the original message, for which a response message is sent later. The other entry is for
the acknowledgment message.
e*Xchange Partner Manager Implementation Guide 183

Chapter 9 Section 9.15
e*Xchange Implementation—RosettaNet Sending the Response
9.15 Sending the Response
The next step is to send the response message.

To send the response message

1 Rename the file
<egate>\Demos\RosettaNet\Input\Order_Response\order_response.~in to
order_response.fin.

2 In the Schema Manager, start the Internal_Response_Feeder e*Way.

3 Look in the <egate>\Demos\RosettaNet\input\order_response folder. The file
name changes from order_response.fin to order_response.~in as the file is picked
up.

The message is processed by TP_Response_Eater e*Way. This e*Way sends the
purchase order response to a file which is then retrieved and sent to the Retailer
trading partner.

4 Look in the <egate>\Demos\RosettaNet\Output\Response_Out\TP folder. The
file Order2.dat is created. This is immediately renamed in the following step.

The message is processed by TP_Response_Feeder e*Way. This e*Way sends the
purchase order response to the Retailer trading partner.

5 Look in the <egate>\Demos\RosettaNet\Output\Response_Out\TP folder. The
file name changes from Order2.dat to Order2.~in as the file is picked up.

The message is process by Internal_Eater e*Way. This e*Way sends the message to a
file (simulating sending to an internal system).

6 Look in the <egate>\Demos\RosettaNet\Output\Order_Out folder. The file
Order2.dat is created.

The message is processed by TP_Order_Eater e*Way. This e*Way sends the
purchase order response acknowledgment to a file which is then retrieved and sent
to the Wholesaler trading partner.

7 Look in the <egate>\Demos\RosettaNet\Output\Order_Out\TP folder. The file
Order2.dat is created.

The message is processed by TP_Order_Feeder e*Way. This e*Way sends the
purchase order response acknowledgment to the Wholesaler trading partner.

8 Look in the <egate>\Demos\RosettaNet\Output\Order_Out\TP folder. The file
name changes from Order2.dat to Order2.~in as the file is picked up.

That completes the second part of the exercise. You can view the results in Message
Tracking.

Viewing the Results in Message Tracking

You can view the results of the message processing in Message Tracking.
e*Xchange Partner Manager Implementation Guide 184

Chapter 9 Section 9.15
e*Xchange Implementation—RosettaNet Sending the Response
To view the association of the response message to the original outbound message in
Message Tracking for the Retailer Trading Partner

1 From e*Xchange Web Interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Retailer Company.

3 In the Trading Partner Profile field, select Retailer TP.

4 In the eBusiness Protocol field, select RosettaNet.

5 In the Direction field, select Inbound.

6 Click the Message Profile Selection.

7 Select the 3A4 Request - Manage Purchase Order message.

8 Click the Message Details link to view the resulting list.

The results are shown in Figure 91.

Figure 91 Message Tracking: Outbound Completed

Notice that both entries now have responses available for viewing: one is the
acknowledgment message, the other is the full response message.

To view the association of the response message to the original inbound message in
Message Tracking for the Retailer trading partner

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Retailer Company.

3 In the Trading Partner Profile field, select Retailer TP.
e*Xchange Partner Manager Implementation Guide 185

Chapter 9 Section 9.16
e*Xchange Implementation—RosettaNet Editing the Data Files
4 In the eBusiness Protocol field, select RosettaNet.

5 In the Direction field, select Inbound.

6 Click the Message Profile Selection.

7 Select the 3A4 Request - Manage Purchase Order message.

8 Click the Message Details link to view the resulting list.

The results are shown in Figure 92.

Figure 92 Message Tracking: Inbound Completed

Notice that both entries now have responses associated with them: one is the
acknowledgment message, the other is the full response message.

9.16 Editing the Data Files
Before rerunning the scenario, you must make sure that the unique ID in the order file
matches that in the response file, and that both files have the expected filename and
extension.

Knowing how to set these values also gives you the capability to reset the unique ID to
an appropriate new value so that you can run the scenario multiple times.

To ensure the unique ID in both files matches

1 Open up the file order.~in (in the <egate>\Demos\RosettaNet\input\order
folder) in a text editor such as Notepad or Wordpad.

2 Search for the following string, which is the unique ID in the files provided:

20_3251_062501_001

3 Replace that string with the following string:
e*Xchange Partner Manager Implementation Guide 186

Chapter 9 Section 9.16
e*Xchange Implementation—RosettaNet Editing the Data Files
20_3251_062501_002

4 Save and close.

5 Open up the file order_response.~in (in the
<egate>\Demos\RosettaNet\input\order_response folder) in a text editor such
as Notepad or Wordpad.

6 Repeat steps 2 through 4 for this file. Make sure that the string is updated
throughout the file.

Note: The last three digits of the unique ID indicate that this is the first instance for this
date. For a second and subsequent running of this scenario, increment the last three
digits: 002, 003, and so forth. In each case, make sure that the value is the same in
both files.
e*Xchange Partner Manager Implementation Guide 187

Chapter 10

e*Xchange Implementation—CIDX

This chapter discusses the steps involved to create an e*Xchange implementation that
transfers CIDX data.

The components for this implementation are provided on your installation CD. For
instructions on installing and using the implementation components, see “Using the
Implementation Sample” on page 215.

10.1 Overview
An e*Xchange implementation makes use of the features designed to add and remove
the EDI enveloping information for messages exchanged between trading partners.

In an e*Xchange implementation, use the e*Xchange Partner Manager Web interface to
set up the trading partner information, and the e*Gate Schema Designer GUI to add
user-defined e*Gate components to provide connectivity to the business application or
trading partner. Once this is done, the pre-configured e*Xchange e*Gate schema
components handle enveloping and de-enveloping Events as they travel through the
e*Xchange system.

The major steps for an e*Xchange implementation are as follows:

1 Create any needed validation Collaborations.

2 Create the Trading Partner profiles.

3 Configure the user-defined e*Ways that will connect the business application to
e*Xchange.

4 Configure the e*Xchange e*Way.

5 Run and test the scenario.

e*Xchange Partner Manager supports the Chemical Industry Data Exchange (CIDX)
format. CIDX is an XML-based data interchange based on RosettaNet version 1.1. CIDX
uses the RosettaNet 1.1 Preamble and Service Headers with a few minor changes. CIDX
provides its own Service Contents for CIDX specific business process flows. All signals
and the Failure Notification Action are used by CIDX just as they are used for
RosettaNet 1.1.

This chapter describes the requirements within e*Xchange to support CIDX. CIDX
profiles are set up using the e*Xchange Web Interface. These profiles include the
e*Xchange Partner Manager Implementation Guide 188

Chapter 10 Section 10.2
e*Xchange Implementation—CIDX CIDX Inbound
relationship of response messages and possible failure or exception transactions that
may be received or sent out. Hence, it is important that all messages that could flow to
or from e*Xchange be included in the e*Xchange profiles.

For example, the profile could contain an Order Create that is sent outbound, and a
Receipt Acknowledge and Order Response are expected in response inbound. The
profiles must include these three message types, and also any failure messages that
may flow, such as a Failure Notification or Receipt Acknowledgment Exception.

10.2 CIDX Inbound
All CIDX data flowing inbound to e*Xchange is from the trading partner. e*Xchange
receives the CIDX Inbound message encoded in base64 within the payload of the
Standard Event XML format.

10.2.1 e*Xchange Profiles for CIDX Inbound
All e*Xchange Profiles are set up by a user through the e*Xchange Web Interface. CIDX
Inbound profiles represent what e*Xchange expects to receive from a Trading Partner. It
is important to include all the possible transactions, both signals and actions that can be
sent by the Trading Partner to e*Xchange. For example, a Receipt Acknowledge,
Receipt Acknowledgement Exception, or Notification of Failure can be sent by the
Trading Partner for CIDX, so all these transactions should be included as inbound
message profiles.

A return message association page is within the e*Xchange Web Interface message
profile section. This page is used to specify which outbound messages should be
associated as responses for the inbound transactions. This association is used to
determine which messages are expected as responses from e*Xchange and the internal
system for the Trading Partner. The association can only take place once all the expected
responses are included within the message profile section for the outbound direction.

10.2.2 B2B Protocol settings for CIDX Inbound
The B2B Protocol has three sections: General, Transport Component, and Message
Security. For CIDX Inbound the values in the three sections should match the
following.

Note: Assume to use the default for any components in a section that are not mentioned
below.
e*Xchange Partner Manager Implementation Guide 189

Chapter 10 Section 10.2
e*Xchange Implementation—CIDX CIDX Inbound
General

Transport Component

Message Security

Table 91 General Settings

Name Description Value Location

eBusiness Protocol
Type

CIDX es_tpic.tran_
type

eBusiness Protocol
Version

e*Xchange is implemented
for this version.

2.0.1 es_tpic.versi
on

Direction Inbound es_tpic.direc
tion

Logical Name A unique name used for
both Inbound and
Outbound CIDX with same
Trading Partner

es_tpic.logic
al_name

Communication
Protocol

HTTP or
HTTPS

es_tpic.com
m_port

Table 92 Transport Component

Name Description Value Location

URL URL for where the Trading
Partner POSTs the data for
e*Xchange

es_tpic.file_
name

UserName Only needed if the URL
specified requires a
username

es_tpic.user_
name

Password Only needed if the URL
specified requires a
password

es_tpic.pass
word

Table 93

Name Description Value Location

Signature
Verification
Certificate Name

Certificate name if signature
is expected

es_tpic.sec_
key_type
includes "V"
and the cert
is stored in
es_security_
key
e*Xchange Partner Manager Implementation Guide 190

Chapter 10 Section 10.2
e*Xchange Implementation—CIDX CIDX Inbound
10.2.3 Message Profile settings for CIDX Inbound
The Message Profile has four sections: General, Preamble, Service Header, and Return
Messages. For CIDX Inbound the values in the four sections should match the
following.

Note: Use the default for any components in a section that are not mentioned below.

General

Table 94 Message Profile — General

Name Description Value Location

Name A name that represents the
message type, such as Order
Create E41

es_tpts.name

Digital Signature
Required

Y if expect digital signature,
otherwise N

es_ext_data.ext_da
ta_value
corresponding to
SIGNATURE_REQU
IRED

Non-Repudiation Y if want non-repudiation
turned on, otherwise N.

es_ext_data.ext_da
ta_value
corresponding to
NON_REPUD

Translation
Collaboration

Name of Translation
collaboration (not including
.tsc). Only needed if the data
going out of e*Xchange to
Internal needs to be
transformed into a custom
format.

es_tpts.db_collab

Event Type Name of Event to send to
e*Gate for Internal. Optional
value. If not included then
this defaults to eX_to_eBPM

es_tpts.alt_id

Validation
Collaboration

Name of Validation
collaboration (not including
.tsc) to use to validate the
service content. Not
required

es_tpts.bus_collab

Store Raw Message Y if want to store message
that results after translation
(if Translation Collaboration
is included). Otherwise, N is
set, which is the default.

es_ext_data.ext_da
ta_value
corresponding to
STORE_RAW

Transfer Mode Interactive I es_tpts.tran_mode
e*Xchange Partner Manager Implementation Guide 191

Chapter 10 Section 10.2
e*Xchange Implementation—CIDX CIDX Inbound
Preamble

Service Header

Table 95 Message Profile — Preamble

Name Description Value Location

Global
Administering
Authority Code

CIDX es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_ADMIN_
AUTH_CODE

Global Usage Code Test or Production es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_USAGE_
CODE

CIDX Version
Identifier

1.1 es_ext_data.ext_da
ta_value
corresponding to
CIDX_VERSION_I
D

Table 96 Message Profile — Service Header

Name Description Value Location

Global From
Business Identifier

Identifier for Sender -
Trading Partner

es_ext_data.ext_da
ta_value
corresponding to
FROM_GLOBAL_B
US_ID

Global To Business
Identifier

Identifier for Receiver -
Internal System

es_ext_data.ext_da
ta_value
corresponding to
TO_GLOBAL_BUS_
ID

From Global
Business Service
Code

Value from list for Trading
Partner

es_ext_data.ext_da
ta_value
corresponding to
FROM_GLOBAL_B
US_SVC_CODE

From Global
Partner
Classification Code

Value from list for Trading
Partner

es_ext_data.ext_da
ta_value
corresponding to
FROM_GLOBAL_P
ART_CLASS_CODE
e*Xchange Partner Manager Implementation Guide 192

Chapter 10 Section 10.2
e*Xchange Implementation—CIDX CIDX Inbound
From Global
Partner Role
Classification Code

Value from list for Trading
Partner

es_ext_data.ext_da
ta_value
corresponding to
FROM_GLOBAL_P
ART_ROLE_CLASS_
CODE

Global Business
Action/Signal Code

Value from list es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_BUS_ACT
_SIG_CODE

Global Document
Function Code

Value from list es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_DOC_FU
NC_CODE

Global Process
Code

Value from list es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_PROC_C
ODE

Global Process Ind.
Code

Value from list es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_PROC_IN
D_CODE

Global Tran Code Value from list es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_TRAN_C
ODE

To Global Business
Service Code

Value from list for Internal
System

es_ext_data.ext_da
ta_value
corresponding to
TO_GLOBAL_BUS_
SVC_CODE

To Global Partner
Classification Code

Value from list for Internal
System

es_ext_data.ext_da
ta_value
corresponding to
TO_GLOBAL_PART
_CLASS_CODE

To Global Partner
Role Classification
Code

Value from list for Internal
System

es_ext_data.ext_da
ta_value
corresponding to
TO_GLOBAL_PART
_ROLE_CLASS_CO
DE

Table 96 Message Profile — Service Header

Name Description Value Location
e*Xchange Partner Manager Implementation Guide 193

Chapter 10 Section 10.2
e*Xchange Implementation—CIDX CIDX Inbound
10.2.4 Return Messages
Set the following for each expected response -

Include = Yes

Response Time & Period = <amount of time expected for this response specified by the
CIDX business process>

of Retries = <maximum number of resends for the Inbound request that this
Outbound response is associated with as specified by the CIDX business process>

10.2.5 CIDX Inbound Required Values
Inbound messages sent to e*Xchange from the Trading Partner must include certain
values within the ServiceHeader and/or Standard Event attribute section to allow for
proper retrieval of e*Xchange database profile information. All Inbound messages are
expected in CIDX Object format matching the CIDX specifications. There are three
types of messages that can flow through e*Xchange Inbound. These three types are
listed below including which message components are required, in order to
successfully process the transaction.

1 Request action message must have

A eX_Event.TP_EVENT.Direction

B eX_Event.TP_EVENT.CommProt

C eX_Event.TP_EVENT.Url

Following values in ServiceHeader:

D initiatingPartner.GlobalBusinessIdentifier

E GlobalProcessIndicatorCode

F ProcessIdentity.InstanceIdentifier

G TransactionIdentity.GlobalTransactionCode

H TransactionIdentity.InstanceIdentifier

I GlobalBusinessActionCode

J ActionIdentity.InstanceIdentifier

2 Response action message must have

A eX_Event.TP_EVENT.Direction

Business Action/
Signal Version
Identifier

version of service content
most likely 2.0.1

es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_BUS_SIG
ACT_VER_ID

Table 96 Message Profile — Service Header

Name Description Value Location
e*Xchange Partner Manager Implementation Guide 194

Chapter 10 Section 10.2
e*Xchange Implementation—CIDX CIDX Inbound
B eX_Event.TP_EVENT.CommProt

C eX_Event.TP_EVENT.Url

Following values in ServiceHeader:

D initiatingPartner.GlobalBusinessIdentifier

E GlobalProcessIndicatorCode

F ProcessIdentity.InstanceIdentifier

G TransactionIdentity.GlobalTransactionCode

H TransactionIdentity.InstanceIdentifier

I GlobalBusinessActionCode

J ActionIdentity.InstanceIdentifier

K ActionControl.inResponseTo.ActionIdentity.GlobalBusinessActionCode

L ActionControl.inResponseTo.ActionIdentity.InstanceIdentifier

3 Response signal message must have

A eX_Event.TP_EVENT.Direction

B eX_Event.TP_EVENT.CommProt

C eX_Event.TP_EVENT.Url

Following values in ServiceHeader:

D initiatingPartner.GlobalBusinessIdentifier

E GlobalProcessIndicatorCode

F ProcessIdentity.InstanceIdentifier

G TransactionIdentity.GlobalTransactionCode

H TransactionIdentity.InstanceIdentifier

I GlobalBusinessSignalCode

J SignalControl.InstanceIdentifier

K SignalControl.inResponseTo.ActionIdentity.GlobalBusinessActionCode

L SignalControl.inResponseTo.ActionIdentity.InstanceIdentifier

10.2.6 Processing CIDX Inbound within e*Xchange
Messages inbound through e*Xchange originate within the trading partner. When an
inbound message comes into e*Xchange from the MUX e*Way communicating with the
trading partner, the message's B2B protocol information is loaded from the e*Xchange
database.

Attributes used for loading B2B protocol information for a profile:

eX_Event.TP_EVENT.Direction

eX_Event.TP_EVENT.CommProt
e*Xchange Partner Manager Implementation Guide 195

Chapter 10 Section 10.2
e*Xchange Implementation—CIDX CIDX Inbound
eX_Event.TP_EVENT.Url

The only attribute required is Direction (I for Inbound), however both URL and the
communication protocol (CommProt) are also filled in based on the environment
information received by the MUX e*Way from the trading partner HTTP post.

Once the B2B protocol is retrieved, then the appropriate Monk script is loaded based on
the direction and tran_type. Hence, eX_CIDX_Inb_main.dsc is run for CIDX Inbound
transactions. All inbound transactions must be in CIDX Object format (described in
“Processing CIDX Outbound within e*Xchange” on page 206). e*Xchange converts
the CIDX Object format into a Content-Signature format, such that the binary values are
removed from the message, and the content (Preamble Header, Service Header, and
Service Content) and digital signature are separated by a readable boundary. The
Message Profile is retrieved from the e*Xchange database based on the type of inbound
message received. For more information on types, see “CIDX Inbound Required
Values” on page 194).

Once the message profile is loaded, many attributes are loaded from that profile
including its B2B protocol. The attributes loaded are

Logical_name

CIDX_VERSION_ID

GLOBAL_ADMIN_AUTH_CODE

GLOBAL_USAGE_CODE

VERSION_ID

GLOBAL_PROC_CODE

GLOBAL_TRAN_CODE

INTERNAL_FORMAT

STORE_RAW

FROM_GLOBAL_BUS_ID

TO_GLOBAL_BUS_ID

FROM_GLOBAL_PART_ROLE_CLASS_CODE

TO_GLOBAL_PART_ROLE_CLASS_CODE

FROM_GLOBAL_PART_CLASS_CODE

TO_GLOBAL_PART_CLASS_CODE

FROM_GLOBAL_BUS_SVC_CODE

TO_GLOBAL_BUS_SVC_CODE

GLOBAL_DOC_FUNC_CODE

SIGNATURE_REQUIRED

NUM_RETRY

RESP_TM

RTN_TS_ID
e*Xchange Partner Manager Implementation Guide 196

Chapter 10 Section 10.2
e*Xchange Implementation—CIDX CIDX Inbound
If SIGNATURE_REQUIRED is set to Y, then the digital signature in the message is
verified. If the digital signature and content do not match, or the signature is expected
and it is missing, then the message generates an error. Otherwise, processing continues.
If an Event Type was not specified in the Message Profile — General section, then it
defaults to eX_to_eBPM. If RTN_TS_ID contains some values (meaning there are
response messages that are expected for this transaction), then the response times and
retry maximum values are retrieved for each of the expected responses. The possible
responses are Performance, such as Order Response for Order Create, Receipt
Acknowledge, and Acceptance Acknowledge.

Once the signature is verified, the PerformanceControlRequest times are extracted
from the Service Header (if they are included). These times are optional, so if they are
not included in the message, then they are retrieved from the database. The times are
only included for each expected response.

Times extracted from:

ServiceHeader. ProcessControl. TransactionControl. ActionControl.
PerformanceControlRequest.timeToAcknowledgeReceipt.TimeDuration

ServiceHeader. ProcessControl. TransactionControl. ActionControl.
PerformanceControlRequest.timeToAcknowledgeAcceptance.TimeDuration

ServiceHeader. ProcessControl. TransactionControl. ActionControl.
PerformanceControlRequest.timeToPerform.TimeDuration

Next, the transaction goes through some validation steps. First, the Preamble Header is
validated based on the values in the Message Profile. Then, the Service Header goes
through validation based on the Message Profile values and lookup files. If the
Validation Collaboration is specified in the Message Profile, then the Service Content
also goes through validation based on the specified script. If any values fail the
validations, then an error is captured that will be stored with the data in the database.

If the Translation Collaboration is specified in the Message Profile, then the data is
transformed using the specified collaboration. The resulting message is considered the
Raw message, which eventually gets passed on to the Internal System through e*Gate.

After the translation, a duplicate check is performed based on the direction set to I, level
T, and unique_id (g_cidx_init_partner_id | g_cidx_proc_id | g_cidx_sigact_id |%).
Each of the components of the unique_id are based on the following values in the
Service Header.

g_cidx_init_partner_id = initiatingPartner.GlobalBusinessIdentifier

g_cidx_proc_id = ProcessIdentity.InstanceIdentifier

g_cidx_sigact_id = SignalControl.InstanceIdentifier for signal

or

ActionControl.ActionIdentity.InstanceIdentifier for action

% = PRF or REC

A transaction is a duplicate if a message tracking row in es_mtrk_inb has the same
unique_id and level. If the message is found to be a duplicate, then it is stored in the
duplicate log file, client/logs/duplicate.log, and not processed any further.
e*Xchange Partner Manager Implementation Guide 197

Chapter 10 Section 10.2
e*Xchange Implementation—CIDX CIDX Inbound
If the transaction is not a duplicate, then the transaction is stored in the database with
its associated attributes. The message tracking attributes that are stored with the
message are based off of values in the CIDX Service Header. The values are:

PROC_ID based off of g_cidx_proc_id

TRAN_ID based off of g_cidx_trans_id (described earlier)

ACT_SIG_ID based off of g_cidx_sigact_id (described earlier)

BP_EVENT_TYPE (optional) based on eX_Event.BP_EVENT.TYPE

BP_EVENT_ID (optional) based on eX_Event.BP_EVENT.ID

BP_EVENT_BPI_ID (optional) based on eX_Event.BP_EVENT.BPI_ID

BP_EVENT_NAME (optional) based on eX_Event.BP_EVENT.NAME

BP_EVENT_ACT_ID (optional) based on eX_Event.BP_EVENT.ACTIVITY.ID

BP_EVENT_STATUS (optional) based on eX_EVENT.BP_EVENT.STATUS

BP_EVENT_ACT_NAME (optional) based on
eX_EVENT.BP_EVENT.ACTIVITY.NAME

If the processing of the message encountered errors, then these errors are also stored in
the database (es_mtrk_error). If STORE_RAW is Y, and the message was translated by
the Message Profile Translation Collaboration, then the resulting translated message is
also stored with the inbound message in the database.

If the inbound transaction is a signal, then it is stored as an original message in
es_mtrk_inb, and then associated with the original request using ux-ack-handler. If the
signal received is an exception, then a failure message is also sent to e*Gate.

If the inbound transaction is an action, then it is stored as an original message in
es_mtrk_inb, and a row is created in es_mtrk_inb to represent each response expected.
Hence, the unique_id ends in the code representing the expected response, such as
PRF, REC, or ACC. If the action expects a Receipt Acknowledge in return, then the row
in the es_mtrk_inb table will contain a unique_id with a trailing |REC. Later in the
processing, e*Xchange creates a Receipt Acknowledge if expected by the trading
partner in response to the message just received. Also, e*Xchange creates an Acceptance
Acknowledge if expected by the trading partner in response to the message just
received. e*Xchange does create a performance acknowledge transaction, but instead it
is the internal system's responsibility to develop that message. If the inbound action is a
response, then ux-ack-handler is called to associate this response with the original
request.

Once the message has been stored in the database and associated with its request, if it is
a response, then certain transactions are created and forwarded on by e*Xchange to
either the internal system or trading partner. If a Receipt Acknowledge or Acceptance
Acknowledge are expected by the trading partner, then they are created by e*Xchange
and forwarded onto e*Gate for the trading partner as long as the processing was
successful. If the processing was not successful, and a response is expected, then either
a Receipt Acknowledge Exception, Acceptance Acknowledge Exception, Failure
Notification, or General Exception is created by e*Xchange and sent to the Trading
partner.
e*Xchange Partner Manager Implementation Guide 198

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
Also, on successful processing, the inbound transaction is also forwarded onto the
internal system. The inbound transaction is sent to the internal based on the
Translation Collaboration and INTERNAL_FORMAT settings. If the Translation
Collaboration is specified, then the Raw message is sent to e*Gate for the internal
system. Otherwise, the INTERNAL_FORMAT is considered, such that if it is set to
GEN, then the data is forwarded in CIDX Generic format. And if the
INTERNAL_FORMAT is set to CIDXO, then the data is kept in the format sent by the
trading partner, and forwarded on to the internal system.

10.2.7 e*Ways for e*Xchange Inbound messages
Trading Partners communicate with e*Gate via HTTP(S) as required by CIDX. The
MUX e*Way receives HTTP(S) posts from the Trading Partner. If the CIDX transaction is
xml-encoded, then the MUX Collaboration xml-decodes the data. The CIDX data is
converted to base64, and placed in the payload of the Standard Event. The direction is
set to I in the Standard Event, and the communication protocol is set to HTTP or
HTTPS depending upon how the HTTPS environment setting is set.

SERVER_NAME, SERVER_PORT (optional), and SCRIPT_NAME environment
settings are used together to create the URL, which is placed in the Standard Event to
help retrieve the correct trading partner profile in e*Xchange. Then the Standard Event
forwards to e*Xchange for processing. The MUX e*Way returns Status: 200 (OK) to the
web server on success. If SCRIPT_NAME or SERVER_NAME are missing, then
Status: 400 (Bad Request) returns to the Web server, and the message is not forwarded
to e*Gate for e*Xchange.

10.3 CIDX Outbound
All CIDX transactions flowing outbound from e*Xchange are either from the Internal
System or created by e*Xchange itself. e*Xchange receives the CIDX Outbound message
encoded in base64 within the payload of the Standard Event XML format.

10.3.1 e*Xchange Profiles for CIDX Outbound
CIDX Outbound profiles are set up by a user through the e*Xchange Web Interface.
CIDX Outbound profiles represent what e*Xchange expects to receive from a Internal
System or creates itself. It is important to include all the possible transactions, both
signals and actions that can be sent by the internal system or created by e*Xchange. For
example, a Receipt Acknowledge, Receipt Acknowledgement Exception, or
Notification of Failure can be created by e*Xchange in response to a CIDX inbound
message sent by a Trading Partner. Hence, all these transactions should be included as
outbound message profiles.

A return message association page is within the e*Xchange Web Interface message
profile section. This page is very important for specifying which inbound messages
should be associated as responses for the outbound transactions. This association is
used by the e*Xchange backend to determine which messages are expected as
e*Xchange Partner Manager Implementation Guide 199

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
responses from the trading partner. The association can only take place once all the
expected responses are included within the message profile section for the inbound
direction.

10.3.2 B2B Protocol settings for CIDX Outbound
The B2B Protocol has three sections: General, Transport Component, and Message
Security. For CIDX outbound the values in the three sections should match the
following.

Note: Use the default value for any components in a section that are not mentioned below.

General

Transport Component

Table 97 B2B Protocol — General

Name Description Value Location

eBusiness Protocol
Type

CIDX es_tpic.tran_type

eBusiness Protocol
Version

e*Xchange is implemented
for this version.

2.0.1 es_tpic.version

Direction Outbound es_tpic.direction

Logical Name Unique name used for both
Inbound and Outbound
CIDX with same Trading
Partner

es_tpic.logical_na
me

Communication
Protocol

HTTP or
HTTPS

es_tpic.comm_port

Table 98 B2B Protocol — Transport Component

Name Description Value Location

URL URL for where to POST data
for Trading Partner

es_tpic.file_name

UserName Only needed if the URL
specified requires a
username

es_tpic.user_name

Password Only needed if the URL
specified requires a
password

es_tpic.password
e*Xchange Partner Manager Implementation Guide 200

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
Message Security

10.3.3 Message Profile settings for CIDX Outbound
The Message Profile has four sections: General, Preamble, Service Header, and Return
Messages. For CIDX outbound the values in the four sections should match the
following.

Note: Use the default value for any components in a section that are not mentioned below.

General

Table 99

Name Description Value Location

Signature Key
Name

key name if digital signature
is to be included

es_tpic.sec_key_ty
pe includes "S"
and the key is
stored in
es_security_key

Signature
Algorithm

Select the algorithm from
the drop-down list.

es_tpic.sec_key_ty
pe includes "A"
and the algorithm
name is stored in
es_security_key

Signature Key
Password

Password for key, if
required.

es_tpic.sec_key_ty
pe includes "I" and
the password is
stored encrypted
in es_security_key

Table 100 Message Profile — General (Outbound)

Name Description Value Location

Name A name that represents the
message type, such as Order
Create E41.

es_tpts.name

Digital Signature
Required

Y if must include a digital
signature, otherwise N.

es_ext_data.ext_da
ta_value
corresponding to
SIGNATURE_REQU
IRED

Non-Repudiation Y if want non-repudiation
turned on, otherwise N.

es_ext_data.ext_da
ta_value
corresponding to
NON_REPUD
e*Xchange Partner Manager Implementation Guide 201

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
Preamble

Translation
Collaboration

name of Translation
collaboration (not including
.tsc). Only needed if the data
coming into e*Xchange from
the Internal system needs to
be transformed from a
custom format into CIDX
Generic or Object format.

es_tpts.db_collab

Message Alt ID ID used to retrieve the
Translation Collaboration
from the database when a
translation is required
before e*Xchange can
process the message from
the Internal. ID must be
unique within the
e*Xchange database. If
translation is not needed,
then this value is empty.

es_tpts.alt_id

Validation
Collaboration

Name of Validation
collaboration (not
including .tsc) to use to
validate the service
content. Not required.

es_tpts.bus_collab

Store Raw
Message

Y if want to store message
that comes in before
translation (if Translation
Collaboration is included.
Otherwise, N is set, which
is the default.

es_ext_data.ext_d
ata_value
corresponding to
STORE_RAW

Transfer Mode Must be interactive. I es_tpts.tran_mod
e

Table 101 Message Profile — Preamble (Outbound)

Name Description Value Location

Global
Administering
Authority Code

CIDX es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_ADMIN_
AUTH_CODE

Table 100 Message Profile — General (Outbound)

Name Description Value Location
e*Xchange Partner Manager Implementation Guide 202

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
Service Header

Global Usage Code Test or Production es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_USAGE_
CODE

CIDX Version
Identifier

1.1 es_ext_data.ext_da
ta_value
corresponding to
CIDX_VERSION_I
D

Table 102

Name Description Value Location

Global From
Business Identifier

Identifier for Sender -
Internal System

es_ext_data.ext_da
ta_value
corresponding to
FROM_GLOBAL_B
US_ID

Global To Business
Identifier

Identifier for Receiver -
Trading Partner

es_ext_data.ext_da
ta_value
corresponding to
TO_GLOBAL_BUS_
ID

From Global
Business Service
Code

Value from list for Internal
System

es_ext_data.ext_da
ta_value
corresponding to
FROM_GLOBAL_B
US_SVC_CODE

From Global
Partner
Classification Code

Value from list for Internal
System

es_ext_data.ext_da
ta_value
corresponding to
FROM_GLOBAL_P
ART_CLASS_CODE

From Global
Partner Role
Classification Code

Value from list for Internal
System

es_ext_data.ext_da
ta_value
corresponding to
FROM_GLOBAL_P
ART_ROLE_CLASS_
CODE

Table 101 Message Profile — Preamble (Outbound)

Name Description Value Location
e*Xchange Partner Manager Implementation Guide 203

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
Global Business
Action/Signal Code

Value from list es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_BUS_ACT
_SIG_CODE

Global Document
Function Code

Value from list es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_DOC_FU
NC_CODE

Global Process
Code

Value from list es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_PROC_C
ODE

Global Process Ind
Code

Value from list es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_PROC_IN
D_CODE

Global Tran Code Value from list es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_TRAN_C
ODE

To Global Business
Service Code

Value from list for Trading
Partner

es_ext_data.ext_da
ta_value
corresponding to
TO_GLOBAL_BUS_
SVC_CODE

To Global Partner
Classification Code

Value from list for Trading
Partner

es_ext_data.ext_da
ta_value
corresponding to
TO_GLOBAL_PART
_CLASS_CODE

To Global Partner
Role Classification
Code

Value from list for Trading
Partner

es_ext_data.ext_da
ta_value
corresponding to
TO_GLOBAL_PART
_ROLE_CLASS_CO
DE

Business Action/
Signal Version
Identifier

Version of service content
(most likely 2.0.1)

es_ext_data.ext_da
ta_value
corresponding to
GLOBAL_BUS_SIG
ACT_VER_ID

Table 102

Name Description Value Location
e*Xchange Partner Manager Implementation Guide 204

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
Return Messages

Set the following for each expected response:

Include = Yes

Response Time & Period = <amount of time expected for this response specified by the
CIDX business process>

of Retries = <maximum number of resends for the Outbound request that this
Inbound response is associated with as specified by the CIDX business process>

10.3.4 CIDX Outbound Required Values
Outbound messages sent to e*Xchange from the internal system must include certain
values within the Service Header and/or Standard Event attribute section to allow for
proper retrieval of e*Xchange database profile information. There are six types of
messages that can flow through e*Xchange outbound. These six types are listed below
including which message components are required, in order to successfully process the
transaction.

1 Request message in GEN or CIDXO format must have:

A eX_Event.TP_EVENT.Direction

B eX_Event.TP_EVENT.PartnerName (Logical Name in profile)

C GlobalBusinessActionCode in ServiceHeader

D GlobalProcessIndicatorCode in ServiceHeader

E (Optional) ServiceHeader.ProcessControl.ProcessIdentity.InstanceIdentifier (If
this value is not included, the e*Xchange will generate it as a timestamp
including milliseconds.)

2 Request message in custom (raw) format must have:

A eX_Event.TP_EVENT.Direction

B eX_Event.TP_EVENT.PartnerName (Logical Name in profile)

C eX_Event.TP_EVENT.TPAttribute.NameValuePair."MSG_ALT_ID" (event type
in profile)

D Can have eX_Event.TP_EVENT.TPAttribute.NameValuePair."PROC_ID",
however if this value is not included, the e*Xchange will generate it as a
timestamp including milliseconds.

3 Response action message in GEN or CIDXO format must have:

A eX_Event.TP_EVENT.Direction

B eX_Event.TP_EVENT.PartnerName (Logical Name in profile)

C ServiceHeader.ProcessControl.ProcessIdentity.InstanceIdentifier that matches
with original Request

D GlobalBusinessActionCode in ServiceHeader

E GlobalProcessIndicatorCode in ServiceHeader
e*Xchange Partner Manager Implementation Guide 205

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
F InResponseTo.GlobalBusinessActionCode in ServiceHeader

4 Response action message in custom (raw) format must have:

A eX_Event.TP_EVENT.Direction

B eX_Event.TP_EVENT.PartnerName (Logical Name in profile)

C eX_Event.TP_EVENT.TPAttribute.NameValuePair."MSG_ALT_ID" (event type
in profile)

D eX_Event.TP_EVENT.TPAttribute.NameValuePair."PROC_ID" that matches
with original Request

E InResponseTo.GlobalBusinessActionCode must be placed in ServiceHeader
through the translation into CIDX Generic format.

5 Response signal message in GEN or CIDXO format must have:

A eX_Event.TP_EVENT.Direction

B eX_Event.TP_EVENT.PartnerName (Logical Name in profile)

C ServiceHeader.ProcessControl.ProcessIdentity.InstanceIdentifier that matches
with original Request

D GlobalBusinessActionCode in ServiceHeader

E InResponseTo.GlobalBusinessActionCode in ServiceHeader

6 Response signal message in custom (raw) format must have:

A eX_Event.TP_EVENT.Direction

B eX_Event.TP_EVENT.PartnerName (Logical Name in profile)

C eX_Event.TP_EVENT.TPAttribute.NameValuePair."MSG_ALT_ID" (event type
in profile)

D eX_Event.TP_EVENT.TPAttribute.NameValuePair."PROC_ID" that matches
with original Request

E InResponseTo.GlobalBusinessActionCode must be placed in ServiceHeader
through the translation into CIDX Generic format.

10.3.5 Processing CIDX Outbound within e*Xchange
Messages outbound through e*Xchange either originate within the Internal System or
e*Xchange itself. When a outbound message comes into e*Xchange from the Internal
System, the message's B2B protocol information is loaded from the e*Xchange database.

Attributes used for loading B2B protocol information for a profile:

eX_Event.TP_EVENT.Direction

eX_Event.TP_EVENT.CommProt

eX_Event.TP_EVENT.PartnerName (Logical Name in profile)

eX_Event.TP_EVENT.Url
e*Xchange Partner Manager Implementation Guide 206

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
The only attribute required is Direction (O for Outbound), however it is highly
recommended that PartnerName also be included to be sure the correct profile is
loaded for that direction.

Once the B2B protocol is loaded, then appropriate Monk script is loaded based on the
direction and tran_type. Hence, eX_CIDX_Outb_main.dsc is loaded and run for CIDX
Outbound transactions. These transactions can come into e*Xchange in either:

CIDX Generic format (GEN = Preamble Header, Service Header, and Service
Content, but no leading binary characters and no digital signature)

CIDX Object format (CIDXO = Same as CIDX Generic, but has 8 leading binary
characters and four trailing binary nulls)

A custom format.

If a custom format is to be passed into e*Xchange, then MSG_ALT_ID in the
TPAttribute section of the eX_Event.TP_EVENT must contain a value matching the
Event Type specified in the message profile section. MSG_ALT_ID is used to retrieve
the message profile, which in turn allows the script to retrieve a translation
collaboration name. The translation collaboration is then loaded and used to translate
the custom format to CIDX Generic format. Not only is the translation collaboration
name retrieved from the message profile, but also the
GLOBAL_BUS_ACT_SIG_CODE and the GLOBAL_PROC_IND_CODE. Therefore,
a translated message does not have to contain these attributes since they are retrieved
from the e*Xchange profile database.

If MSG_ALT_ID is not specified, then the transaction is assumed to be in either GEN
or CIDXO format. The Internal Format attribute specified within the B2B Protocol is
used to determine which format the message should be in. If Internal Format is not
specified or is not set to GEN, then no translation of the data is required. If Internal
Format is set to CIDXO, then the CIDXO format is converted to GEN format, so
e*Xchange can continue to process the data.

Once the data is in GEN format, then the following values are retrieved from the
ServiceHeader section. These values are required to be within the ServiceHeader
unless the data was translated from a custom format as already explained above.

Signals

ServiceHeader.ProcessControl.TransactionControl.SignalControl.
SignalIdentity.GlobalBusinessSignalCode

(stored as GLOBAL_BUS_ACT_SIG_CODE in e*Xchange database)

This value (GLOBAL_BUS_ACT_SIG_CODE) along with the B2B protocol information
previously loaded are used to load the proper message profile for the signal.

Actions

ServiceHeader. ProcessControl.TransactionControl.
ActionControl.ActionIdentity.GlobalBusinessActionCode

(stored as GLOBAL_BUS_ACT_SIG_CODE in e*Xchange database)

ServiceHeader. ProcessControl.ProcessIdentity.GlobalProcessIndicatorCode

(stored as GLOBAL_PROC_IND_CODE in e*Xchange database)
e*Xchange Partner Manager Implementation Guide 207

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
These values (GLOBAL_BUS_ACT_SIG_CODE and GLOBAL_PROC_IND_CODE)
along with the B2B protocol information previously loaded are used to load the proper
message profile for the action.

Once the message profile is loaded, many attributes are loaded from that profile. The
attributes loaded are

VERSION_ID

GLOBAL_PROC_CODE

GLOBAL_TRAN_CODE

FROM_GLOBAL_PART_ROLE_CLASS_CODE

TO_GLOBAL_PART_ROLE_CLASS_CODE

FROM_GLOBAL_PART_CLASS_CODE

TO_GLOBAL_PART_CLASS_CODE

FROM_GLOBAL_BUS_SVC_CODE

TO_GLOBAL_BUS_SVC_CODE

GLOBAL_DOC_FUNC_CODE

NUM_RETRY

RESP_TM

RTN_TS_ID

msg_compressed

ts_version

STORE_RAW

SIGNATURE_REQUIRED

After loading the attributes, then the message profile is checked to see if a validation
collaboration is specified. If the validation collaboration is included, then it is loaded
and run on the Service Content. If the Service Content fails the validation, then the
message is logged in the database with an error, logged in a journal file with an error,
and a failure message is sent back to e*Gate for the internal system.

If the message has passed the validation collaboration or there is not a validation
collaboration specified, then the PerformanceControlRequest times are extracted from
the Service Header if they are included. These times are optional, so if they are not
included in the message, then they are retrieved from the database. And these times are
only included for each expected response.

The times are extracted from the following:

ServiceHeader. ProcessControl. TransactionControl. ActionControl.
PerformanceControlRequest.timeToAcknowledgeReceipt.TimeDuration

ServiceHeader. ProcessControl. TransactionControl. ActionControl.
PerformanceControlRequest.timeToAcknowledgeAcceptance.TimeDuration
e*Xchange Partner Manager Implementation Guide 208

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
ServiceHeader. ProcessControl. TransactionControl. ActionControl.
PerformanceControlRequest.timeToPerform.TimeDuration

A trailing code is added to the unique_id for the responses expected, which are based
on the values from the ServiceHeader and/or e*Xchange database profile. For
example, if a Receipt Acknowledge is expected, then a row in the es_mtrk_outb table
would have a unique_id ending in |REC. If a performance acknowledge, such as a
Order Response for a Order Create, is expected, then the trailing characters in the
unique_id would be |PRF.

If the following values are not in the ServiceHeader of the received message (including
a message that has been translated from raw format), then they are created by using a
timestamp including milliseconds.

ServiceHeader.ProcessControl.ProcessIdentity.InstanceIdentifier or

eX_Event.TP_EVENT.TPAttribute.NameValuePair."PROC_ID" stored in
g_cidx_proc_id. This value is stored as PROC_ID in the message tracking.

ServiceHeader. ProcessControl.TransactionControl.ActionControl.
ActionIdentity.InstanceIdentifier for Action messages, and stored in
g_cidx_sigact_id. This value is stored as ACT_SIG_ID in the message tracking.

ServiceHeader.ProcessControl.TransactionControl.SignalControl.

InstanceIdentifier for Signal messages, and stored in g_cidx_sigact_id. This value is
stored as ACT_SIG_ID in the message tracking.

ServiceHeader.ProcessControl.TransactionControl.TransactionIdentity.

InstanceIdentifier, and stored in g_cidx_trans_id. This value is stored as TRAN_ID
in the message tracking.

Some of the above values along with the initiating partner ID (g_cidx_init_partner_id)
are used to compose the unique_id for storing the transaction in the e*Xchange
database. If the outbound message received is a request, then the initiating partner ID is
set to the FROM_GLOBAL_BUS_ID value in the message profile. Otherwise, the
initiating partner ID is set to the TO_GLOBAL_BUS_ID since the message is a
response.

The unique_id format is:

g_cidx_init_partner_id|g_cidx_proc_id|g_cidx_sigact_id|NNN

where NNN = PRF, REC, or ACC.

If a message received is a Response (GLOBAL_DOC_FUNC_CODE in database and
g_cidx_doc_function_code in e*Xchange monk scripts), then the profile for the original
Request is loaded based on the following values.

Direction is set to I

Tran_type is CIDX (same as the Response tran_type)

Set TO_GLOBAL_BUS_ID to be the value in FROM_GLOBAL_BUS_ID from the
Response profile.

Set FROM_GLOBAL_BUS_ID to be the value in TO_GLOBAL_BUS_ID from the
Response profile.
e*Xchange Partner Manager Implementation Guide 209

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
Set GLOBAL_BUS_ACT_SIG_CODE to be the GlobalBusinessActionCode from the
InResponseTo section of the Response message.

Note: The GlobalDocumentFunctionCode is not extracted from the ServiceHeader
(ServiceHeader.ProcessControl.TransactionControl.ActionControl.

GlobalDocumentFunctionCode) for outbound messages. Instead, this value is used
from the B2B protocol section of the e*Xchange database profile. The value is populated
in the message going out of e*Xchange. Therefore, if the value is not there or incorrect, it
will be overwritten with the correct value.

After retrieving the Request database profiles, then the message tracking attributes are
retrieved based on the following unique_id.

g_cidx_init_partner_id|g_cidx_proc_id|%|PRF

The % takes the place of the Action Instance Identifier for the Request since it is not
known, and is going to be retrieved.

ACT_SIG_ID (Action Instance Identifier for the Request) and TRAN_ID (Transaction
Control Instance Identifier for the Request) are retrieved for the Request. ACT_SIG_ID
gets stored as g_cidx_inrespto_id and TRAN_ID is stored as g_cidx_trans_id in the
e*Xchange monk scripts.

Note: TransactionControl.TransactionIdentity.InstanceIdentifier is not required in the
message. If the message is a Response, then the Request TRAN_ID is used instead, if
it exists. If the TRAN_ID is missing, then the value is extracted from the
ServiceHeader. If the ServiceHeader is missing the value, then the value is generated
based on a timestamp including milliseconds.

Now that the profile values have been retrieved from the database, the Outbound
Preamble and Service Headers are created. The following values are populated in each
of the headers.

Preamble Header

Preamble.VersionIdentifier based on the CIDX_VERSION_ID from the message
profile.

Preamble.DateTimeStamp set to current Greenwich Mean Time

Preamble.GlobalAdministeringAuthorityCode based on the
GLOBAL_ADMIN_AUTH_CODE from the message profile.

Preamble.GlobalUsageCode based on the GLOBAL_USAGE_CODE from the
message profile.

Note: If the Outbound message contained any of these values in the Preamble when
e*Xchange received it, the values are overwritten as explained above.

Service Header

ServiceHeader.ProcessControl.ProcessIdentity.GlobalProcessCode based on the
GLOBAL_PROC_CODE in the B2B protocol.
e*Xchange Partner Manager Implementation Guide 210

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
ServiceHeader.ProcessControl.ProcessIdentity.InstanceIdentifier is based on
eX_Event.TP_EVENT.TPAttribute.NameValuePair."PROC_ID". If that is missing,
then would keep the value already in the ServiceHeader. If the value is missing in
the ServiceHeader, then would place a generated value based on a timestamp
including milliseconds.

Note: If both PROC_ID in the TP_EVENT and the ServiceHeader id are included, then
the PROC_ID in the TP_EVENT takes precedence, and overwrites the
ServiceHeader value.

ServiceHeader.ProcessControl.TransactionControl.TransactionIdentity.InstanceIdent
ifier based on the TRAN_ID stored in message tracking for request if message is
response. If TRAN_ID does not exist in the database, then keeps the value already
in the ServiceHeader. If the value is missing in the ServiceHeader, then would place
a generated value based on a timestamp including milliseconds.

ServiceHeader.ProcessControl.TransactionControl.TransactionIdentity.GlobalTransa
ctionCode based on the GLOBAL_TRAN_CODE in the B2B protocol.

ServiceHeader.ProcessControl.TransactionControl.AttemptCount is set to 1

ServiceHeader.ProcessControl.ProcessIdentity.VersionIdentifier based on the
VERSION_ID in the B2B protocol.

ServiceHeader.ProcessControl.TransactionControl.PartnerRoleRoute.fromRole.Partn
erRoleDescription.GlobalPartnerRoleClassificationCode based on the
FROM_GLOBAL_PART_ROLE_CLASS_CODE in the B2B protocol.

ServiceHeader.ProcessControl.TransactionControl.PartnerRoleRoute.toRole.Partner
RoleDescription.GlobalPartnerRoleClassificationCode based on the
TO_GLOBAL_PART_ROLE_CLASS_CODE in the B2B protocol.

ServiceHeader.ProcessControl.ServiceRoute.fromService.BusinessServiceDescriptio
n.GlobalBusinessServiceCode based on the FROM_GLOBAL_BUS_SVC_CODE in
the B2B protocol.

ServiceHeader.ProcessControl.ServiceRoute.toService.BusinessServiceDescription.G
lobalBusinessServiceCode based on theTO_GLOBAL_BUS_SVC_CODE in the B2B
protocol.

ServiceHeader.ProcessControl.ProcessIdentity.initiatingPartner.GlobalBusinessIdent
ifier based on the FROM_GLOBAL_BUS_ID in the message profile if this message is
a Request (GLOBAL_DOC_FUNC_CODE = Request). Otherwise, based on
TO_GLOBAL_BUS_ID in the message profile since this message is a Response
(GLOBAL_DOC_FUNC_CODE = Request).

ServiceHeader.ProcessControl.TransactionControl.ActionControl.GlobalDocumentF
unctionCode based on the GLOBAL_DOC_FUNC_CODE in the B2B Protocol.

ServiceHeader.ProcessControl.TransactionControl.ActionControl.PerformanceContr
olRequest.timeToAcknowledgeAcceptance.TimeDuration is set to the value that is
already there in the ServiceHeader. If the value is missing, then would place the
response time set in the e*Xchange database if a Acceptance Acknowledge is
expected for the message. If not expected, then the time would be left blank (not
set).
e*Xchange Partner Manager Implementation Guide 211

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
ServiceHeader.ProcessControl.TransactionControl.ActionControl.PerformanceContr
olRequest.timeToAcknowledgeReceipt.TimeDuration is set to the value that is
already there in the ServiceHeader. If the value is missing, then would place the
response time set in the e*Xchange database if a Receipt Acknowledge is expected
for the message. If not expected, then the time would be left blank (not set).

ServiceHeader.ProcessControl.TransactionControl.ActionControl.PerformanceContr
olRequest.timeToPerform.TimeDuration is set to the value that is already there in
the ServiceHeader. If the value is missing, then would place the response time set in
the e*Xchange database if a performance response is expected for the message. If
not expected, then the time would be left blank (not set).

If a signal then:

ServiceHeader.ProcessControl.TransactionControl.SignalControl.SignalIdentity.Glob
alBusinessSignalCode based on GLOBAL_BUS_ACT_SIG_CODE in the B2B
Protocol if provided MSG_ALT_ID to load the profile. Otherwise, keeps the value
that is already in the ServiceHeader.

ServiceHeader.ProcessControl.TransactionControl.SignalControl.InstanceIdentifier
is set to the value that is already there in the ServiceHeader. If the value is missing,
then would place a generated value based on a timestamp including milliseconds.

ServiceHeader.ProcessControl.TransactionControl.SignalControl.inResponseTo.Acti
onIdentity.GlobalBusinessActionCode is set to the value that is already there in the
ServiceHeader.

ServiceHeader.ProcessControl.TransactionControl.SignalControl.inResponseTo.Acti
onIdentity.InstanceIdentifier based on the ACT_SIG_ID stored in message tracking
for Request if message is Response.

ServiceHeader.ProcessControl.TransactionControl.SignalControl.PartnerRoute.from
Partner.PartnerDescription.BusinessDescription.GlobalBusinessIdentifier based on
the FROM_GLOBAL_BUS_ID in the message profile.

ServiceHeader.ProcessControl.TransactionControl.SignalControl.
PartnerRoute.toPartner.PartnerDescription.BusinessDescription.GlobalBusinessIde
ntifier based on the TO_GLOBAL_BUS_ID in the message profile.

ServiceHeader.ProcessControl.TransactionControl.SignalControl.PartnerRoute.from
Partner.PartnerDescription.GlobalPartnerClassificationCode based on the
FROM_GLOBAL_PART_CLASS_CODE in the B2B protocol.

ServiceHeader.ProcessControl.TransactionControl.SignalControl.PartnerRoute.toPar
tner.PartnerDescription.GlobalPartnerClassificationCode based on the
TO_GLOBAL_PART_CLASS_CODE in the B2B protocol.

ServiceHeader.ProcessControl.TransactionControl.SignalControl.SignalIdentity.Vers
ionIdentifier based on the VERSION_ID in the B2B protocol.

Else (an action)

ServiceHeader.ProcessControl.TransactionControl.ActionControl.ActionIdentity.Glo
balBusinessActionCode based on GLOBAL_BUS_ACT_SIG_CODE in the B2B
Protocol if provided MSG_ALT_ID to load the profile. Otherwise, keeps the value
that is already in the ServiceHeader.
e*Xchange Partner Manager Implementation Guide 212

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
ServiceHeader.ProcessControl.TransactionControl.ActionControl.ActionIdentity.Inst
anceIdentifier is set to the value that is already there in the ServiceHeader. If the
value is missing, then would place a generated value based on a timestamp
including milliseconds.

ServiceHeader.ProcessControl.TransactionControl.ActionControl.inResponseTo.Acti
onIdentity.GlobalBusinessActionCode is set to the value that is already there in the
ServiceHeader, which could be empty if this action is a Request not a Response.

ServiceHeader.ProcessControl.TransactionControl.ActionControl.inResponseTo.Acti
onIdentity.InstanceIdentifier based on the ACT_SIG_ID stored in message tracking
for Request if message is Response.

ServiceHeader.ProcessControl.TransactionControl.ActionControl.PartnerRoute.from
Partner.PartnerDescription.BusinessDescription.GlobalBusinessIdentifier based on
the FROM_GLOBAL_BUS_ID in the message profile.

ServiceHeader.ProcessControl.TransactionControl.ActionControl.PartnerRoute.toPa
rtner.PartnerDescription.BusinessDescription.GlobalBusinessIdentifier based on
the TO_GLOBAL_BUS_ID in the message profile.

ServiceHeader.ProcessControl.TransactionControl.ActionControl.PartnerRoute.from
Partner.PartnerDescription.GlobalPartnerClassificationCode based on the
FROM_GLOBAL_PART_CLASS_CODE in the B2B protocol.

ServiceHeader.ProcessControl.TransactionControl.ActionControl.PartnerRoute.toPa
rtner.PartnerDescription.GlobalPartnerClassificationCode based on the
TO_GLOBAL_PART_CLASS_CODE in the B2B protocol.

ServiceHeader.ProcessControl.TransactionControl.ActionControl.ActionIdentity.Ver
sionIdentifier based on the VERSION_ID in the B2B protocol.

A duplicate check is performed based on the unique_id (documented earlier in this
section), direction set to "O", and message tracking level set to "T". A transaction is a
duplicate if a message tracking row in es_mtrk_outb has the same unique_id and
level. If the message is found to be a duplicate, then it is stored in the duplicate log file,
client/logs/duplicate.log, and not processed any further.

If the e*Xchange profile has SIGNATURE_REQUIRED set to "Y", then a digital
signature is created based on the outgoing content, which includes Preamble Header,
Service Header, and Service Content. The signature-key, signature algorithm, and
signature-key passphrase (optional) is retrieved from the e*Xchange profile, and used
to create the digital signature.

The outgoing message is then reformatted in CIDX Object format.

The CIDX Object format

4 byte binary value representing the version, CIDX_VERSION_ID in the B2B Protocol

4 byte binary value representing the length of the content

content includes Preamble Header, Service Header, and Service Content

4 byte binary value representing the length of the signature (4 nulls if no signature)

digital signature in PKCS #7 binary format
e*Xchange Partner Manager Implementation Guide 213

Chapter 10 Section 10.3
e*Xchange Implementation—CIDX CIDX Outbound
Once the message is in CIDX Object format, then it is stored in the es_mtrk_outb table
with its associated extended attributes in the es_mtrk_outb_data table. If there are
errors in processing the data, then those errors are stored in es_mtrk_error.

The message tracking attributes that are stored with the message are based off of values
in the Standard Event, CIDX Service Header, and possibly the response's request
message tracking attributes already stored in the database. The values are

PROC_ID based off of g_cidx_proc_id (described earlier)

TRAN_ID based off of g_cidx_trans_id (described earlier)

ACT_SIG_ID based off of g_cidx_sigact_id (described earlier)

BP_EVENT_TYPE (optional) based on eX_Event.BP_EVENT.TYPE

BP_EVENT_ID (optional) based on eX_Event.BP_EVENT.ID

BP_EVENT_BPI_ID (optional) based on eX_Event.BP_EVENT.BPI_ID

BP_EVENT_NAME (optional) based on eX_Event.BP_EVENT.NAME

BP_EVENT_ACT_ID (optional) based on eX_Event.BP_EVENT.ACTIVITY.ID

BP_EVENT_STATUS (optional) based on eX_EVENT.BP_EVENT.STATUS

BP_EVENT_ACT_NAME (optional) based on
eX_EVENT.BP_EVENT.ACTIVITY.NAME

If the message is a response, then ux-ack-handler is called to associate this response
with the appropriate request already stored in the database. The association is based on
the request unique_id and TRAN_ID. The request unique_id is

g_cidx_init_partner_id|g_cidx_proc_id|g_cidx_inrespto_id|%

where g_cidx_inrespto_id is the InstanceIdentifier from the inResponseTo section of
the message, and % is a wildcard used to match PRF, REC, or ACC.

The association places the response in the es_mtrk_inb.ack_msg_id and removes any
es_waiting_ack rows in the database that are configured for that response.

If the message is a request, then ux-wait-for-ack is called for each response expected. It
is important to be sure the Message Profile for a request in the e*Xchange database has
only the expected positive responses configured in the Return Messages section. The
Return Messages section represents a positive business cycle. Hence, do not include
possible negative or failure responses in the return messages for the request since those
are not expected as part of a positive business process flow. If no responses are
expected, then the request never has a value in es_mtrk_outb.ack_msg_id, and the Ack
Monitor does not monitor responses expected for the request.

Finally, the CIDX Object encoded in base64 and stuffed within the payload of a
Standard Event is sent out of e*Xchange to e*Gate. e*Gate forwards the Standard Event
to the HTTP(S) Java e*Way. The only supported protocols for CIDX are HTTP and
HTTPS.
e*Xchange Partner Manager Implementation Guide 214

Chapter 10 Section 10.4
e*Xchange Implementation—CIDX CIDX Sample
10.3.6 e*Ways for e*Xchange Outbound messages
An internal system communicating with e*Gate provides the Outbound messages for
e*Xchange that are to be sent to a Trading Partner. e*Gate communicates with a trading
partner via HTTP(S) as required by CIDX. All outbound messages go out of e*Gate
through the HTTP(S) Java e*Way. The HTTP(S) Java e*Way sets the Content-Type
header to "application/x-rosettanet-agent". Since the mode for CIDX is asynchronous,
no Response messages, other than a status code, are expected in return from the POST
of an outbound message. All inbound response messages go through the MUX e*Way
since that e*Way is used to receive HTTP(S) posts from the trading partner.

10.3.7 CIDX Ack Monitor
The CIDX Acknowledgment Monitor (Ack Monitor) tracks responses that are expected
for outbound messages. If an outbound message expects a response, then a row is
created in the es_waiting_ack table containing the retry maximum and when the
outbound message should be resent if a response is not received. The Ack Monitor will
check the es_waiting_ack table every 10 seconds (based on the configuration setting) to
see which responses are overdue. If a response is overdue, and the retry max has not
been exceeded, then the original Outbound message is retrieved from the database and
sent out to the trading partner. If the retry maximum has been exceeded, then the
original Outbound message is marked with the error = Response Overdue (error code
9100), the row representing this expected response is removed from es_waiting_ack,
and a Failure Notification is created, stored in the database, and sent out to the trading
partner.

10.4 CIDX Sample
The major steps for this implementation are as follows:

1 Create the trading partner profiles.

2 Configure the user-defined e*Ways that connect the business application to
e*Xchange and exchange messages with the trading partner.

3 Configure the e*Xchange e*Way.

4 Run and test the scenario.

10.5 Using the Implementation Sample
The components for this implementation are provided on your installation CD, and are
located in \setup\eXchange\sample\CIDX_SAMPLE_IMPLEMENTATION.zip.

To install the components

1 Unzip the file to a local directory.
e*Xchange Partner Manager Implementation Guide 215

Chapter 10 Section 10.6
e*Xchange Implementation—CIDX Running the Scenario
2 Install the e*Gate schema using one of the following commands. The schema name
is user defined.

Note: The default registry port number is 23001.

A For UNIX:

sh install_cidx_oc.sh <egate_registry_host_name> <schema_name>
<user_name> <password> <egate_registry_port_num>

B For Windows:

install_cidx_oc.bat <egate_registry_host_name> <schema_name>
<user_name> <password> <egate_registry_port_num>

3 Use the e*Xchange Import function to import CIDX.exp into e*Xchange Partner
Manager.

4 Copy the demos folder to the <egate> directory.

5 Configure the eX_ePM e*Way.

The steps on the following pages describe how the components for this implementation
were created. See the next section for instructions to run the implementation.

10.6 Running the Scenario
There are five parts to running the scenario:

A The Retailer trading partner sends the order create to the Wholesaler trading
partner.

B The Wholesaler trading partner processes the order create message received
from the Retailer trading partner.

C The Wholesaler trading partner sends the acknowledgment back to the Retailer
trading partner.

Parts A, B, and C are performed in “To process the purchase order message”.

To process the purchase order message

1 Rename the file <egate>\Demos\CIDX\input\Orders.~in to Orders.fin.

Once your data file is in place, start the following e*Gate components:

2 Start the Control Broker. At the command line, enter:

stccb.exe -rh localhost -rs CIDX -ln localhost_cb -un Administrator -
up STC

3 Open the Schema Manager and select the CIDX schema.

4 Start the eX_ePM e*Way

This starts the e*Xchange engine.
e*Xchange Partner Manager Implementation Guide 216

Chapter 10 Section 10.6
e*Xchange Implementation—CIDX Running the Scenario
5 Start the Internal_Order_Feeder e*Way

This e*Way retrieves the purchase order from the internal system and sends it to the
e*Xchange Partner Manager.

6 Look in the <egate>\Demos\CIDX\Input\Order folder. The file name changes
from Order.fin to Order.~in as the file is picked up.

7 Start the TP_Order_Eater e*Way.

This e*Way sends the purchase order to a file which is then retrieved and sent to the
Wholesaler trading partner.

8 Look in the <egate>\Demos\CIDX\Output\Order_Out\TP folder. The file
Order1.dat is created.

9 Start the TP_Order_Feeder e*Way.

This e*Way sends the message to the Wholesaler trading partner.

10 Look in the <egate>\Demos\CIDX\Output\Order_Out\TP folder. The file name
changes from Order1.dat to Order1.~in as the file is picked up.

11 Start the Internal_Eater e*Way.

This e*Way sends the message to a file (simulating sending to an internal system).

12 Look in the <egate>\Demos\CIDX\Output\Order_Out folder. The file
Order1.dat is created.

13 Start the TP_Response_Eater e*Way.

This e*Way sends the purchase order acknowledgment to a file which is then
retrieved and sent to the Retailer trading partner.

14 Look in the <egate>\Demos\CIDX\Output\Response_Out\TP folder. The file
Order1.dat is created.

15 Start the TP_Response_Feeder e*Way

This e*Way sends the purchase order acknowledgment to the Retailer trading
partner.

16 Look in the <egate>\Demos\CIDX\Output\Response_Out\TP folder. The file
name changes from Order1.dat to Order1.~in as the file is picked up.

The message is processed by Internal_Eater e*Way. This e*Way sends the message
to a file (simulating sending to an internal system).

Note: Look in the <egate>\Demos\CIDX\Output\Order_Out folder. The file
Order1.dat is created.

That completes sending the purchase order. You can view the results in Message
Tracking, in e*Xchange Web interface.

Viewing the Results in Message Tracking

You can view the results of the message processing by using the Message Tracking
feature of the e*Xchange Partner Manager.
e*Xchange Partner Manager Implementation Guide 217

Chapter 10 Section 10.6
e*Xchange Implementation—CIDX Running the Scenario
To view the outbound message in Message Tracking for the Wholesaler Trading Partner

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Wholesaler Company.

3 In the Trading Partner Profile field, select Wholesaler TP.

4 In the eBusiness Protocol field, select CIDX.

5 In the Direction field, select Outbound.

6 Click the Message Profile Selection.

7 Select the Order Create message.

8 Click the Message Details link to view the resulting list.

e*Xchange records two entries for the message. One entry is for the original message,
for which a response message is sent. The other entry is for the acknowledgment
message.

For one entry, the Ack Message column has a link to the message information. Click it
to view the acknowledgment message.

Later, when the response message is sent out, you are able to view it in Message
Tracking. For the moment, the Ack Message column is not showing a link for the other
message, since the response has not been sent out yet.

To view the inbound message in Message Tracking

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select Retailer Company.

3 In the Trading Partner Profile field, select Retailer TP.

4 In the eBusiness Protocol field, select CIDX.

5 In the Direction field, select Inbound.

6 Click the Message Profile Selection.

7 Select the Order Create message.

8 Click the Message Details link to view the resulting list.

e*Xchange records two entries for the message. One entry is for the original message,
for which a response message is sent later. The other entry is for the acknowledgment
message.
e*Xchange Partner Manager Implementation Guide 218

Chapter 11

e*Xchange Implementation—AS2

This chapter discusses the steps involved to create an e*Xchange implementation that
transfers data using AS2 security.

The components for this implementation are provided on your installation CD. For
instructions on installing and using the implementation components, see “Using the
Implementation Sample” on page 220.

11.1 Overview
An e*Xchange implementation makes use of the features designed to add and remove
the information for messages exchanged between trading partners.

In an e*Xchange implementation, use the e*Xchange Web Interface to set up trading
partner information, and the e*Gate Schema Designer GUI to add user-defined e*Gate
components to provide connectivity to the business application or trading partner.
Once this is done, the pre-configured e*Xchange e*Gate schema components handle
enveloping and de-enveloping Events as they travel through the e*Xchange system.

The major steps for an e*Xchange implementation are as follows:

1 Create the trading partner profiles.

2 Install the e*Gate schema.

3 Configure the user-defined e*Ways that connect the business application to
e*Xchange.

4 Configure the Transport Component for trading partner profiles.
5 Configure the e*Gate schema components.

6 Run and test the scenario.
e*Xchange Partner Manager Implementation Guide 219

Chapter 11 Section 11.2
e*Xchange Implementation—AS2 Using the Implementation Sample
11.2 Using the Implementation Sample
The components for this implementation are provided on your installation CD, and are
located in \setup\eXchange\sample\X12_AS2_SAMPLE_IMPLEMENTATION.zip.
Follow these steps to install the components:

1 Unzip the file to a local directory.

2 Install the e*Gate schema using one of the following commands. The schema name
is user-defined.

Note: The default registry port number is 23001.

A For UNIX

sh install_sample_x12_as2.sh <egate_registry_host_name>
<schema_name> <user_name> <password> <egate_registry_port_num>

B For Windows

install_sample_x12_as2.bat <egate_registry_host_name>
<schema_name> <user_name> <password> <egate_registry_port_num>

3 Set up the HTTP server for the Java HTTP e*Way.

Refer to the HTTP(S) e*Way Intelligent Adapter User’s Guide (Java version).

4 Import trading partner profiles into the database using the e*Xchange Repository
Manager.

5 Configure the HTTP settings for two companies in both directions (inbound and
outbound).

6 Copy the data folder to the <egate> directory.

7 If e*Gate is not installed on your C drive, update the Transport Component file
location.

8 Configure the eX_ePM e*Way.

9 Configure eX_Mux_from_Trading_Partner e*Way and set the port number for the
HTTP e*Way.

11.2.1 Running the Scenario
The steps on the following pages describe how to run the implementation.

1 Start the Control Broker. At the command line, enter:

stccb.exe -rh localhost -rs <schema_name> -ln localhost_cb -un
Administrator -up STC

2 Open the Schema Manager. Select the AS2 schema.

3 Verify that the following components started:

eX_ePM e*Way

send_to_ePM_x12 e*Way
e*Xchange Partner Manager Implementation Guide 220

Chapter 11 Section 11.2
e*Xchange Implementation—AS2 Using the Implementation Sample
ewHipaaValidation

eXHttps_to_Trading_Partner

eX_Mux_from_Trading_partner

4 Rename the request data file to *.fin.

The asterisk represents your data request file name.

5 View the results in Message Tracking, in e*Xchange Partner Manager.

Viewing the Results in Message Tracking

You can view the results of the message processing by using the Message Tracking
feature of e*Xchange.

Message Tracking shows two entries for the incoming message. This is because a
control message is sent out immediately, and a response message will be sent out later.
These two responses to the trading partner are tracked separately.

To view the inbound message in Message Tracking

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select your company profile name.

3 In the Trading Partner Profile field, select your Trading Partner Profile.

4 In the eBusiness Protocol field, select X12.

5 Click B2B Protocol/Message Profile, select Message Profile.
6 In the Direction field, select Inbound.

7 Select the message name.

8 Click the Message Details link to view the resulting list.
e*Xchange Partner Manager Implementation Guide 221

Chapter 12

e*Xchange Implementation—NCPDP

This chapter discusses the steps involved to create an e*Xchange implementation that
transfers data using the NCPDP protocol. e*Xchange supports HIPAA NCPDP
transactions.

Note: For more information on HIPAA NCPDP transactions, please refer to the HIPAA
Implementation Guide.

The components for this implementation are provided on your installation CD in the
sample directory.

12.1 Overview
This e*Xchange implementation uses the e*Xchange Web Interface to set up trading
partner information. The e*Gate Schema Designer GUI adds user-defined e*Gate
components and provides connectivity to the business application or trading partner.

The major steps for this e*Xchange implementation are as follows:

1 Create the trading partner profiles.

2 Install the e*Gate schema.

3 Configure the user-defined e*Ways that send data to e*Xchange.

4 Configure the e*Xchange e*Way.

5 Run and test the scenario.

12.2 Using the Implementation Sample
The components for this implementation are provided on your installation CD, and are
located in:

\setup\eXchange\sample\NCPDP_Implementation_Sample.zip.

Follow these steps to install the components:

1 Extract the contents of the NCPDP_Implementation_Sample.zip file to a
temporary location.
e*Xchange Partner Manager Implementation Guide 222

Chapter 12 Section 12.2
e*Xchange Implementation—NCPDP Using the Implementation Sample
2 Start e*Gate Schema Designer.

3 Click New and enter a schema name (for example, ncpdp_sample).

4 Select Create from Export.

5 Click Find and select NCPDP_Implementation_Sample.exp from the temporary
directory in step 1.

6 Import trading partner profiles into the database using the e*Xchange Repository
Manager.

7 Use the NCPDP.exp file located in the export directory, to import the schema.

8 Configure the feeder_ncpdp_request and feeder_ncpdp_response e*Ways to get
data from the user-defined directories.

9 In the schema, the NCPDP request data file is located in

data\request\PR_I_B3_REQ_ib.~in

10 The NCPDP response data file is located in

data\response\PR_I_B3_RSP_ob.~in

11 Configure the eX_ePM e*Way with the database type and name.

12.2.1 Running the Scenario
1 Start the Control Broker. At the command line, enter:

stccb.exe -rh localhost -rs <schema_name> -ln localhost_cb -un
Administrator -up STC

2 Open the Schema Manager. Select the NCPDP sample schema.

3 Verify that the following components started:

eX_ePM e*Way

feeder_ncpdp_request e*Way

feeder_ncpdp_response e*Way

4 Rename the request data file to :

PR_I_B3_REQ_ib.fin.

5 View the results in Message Tracking in e*Xchange Partner Manager.

6 Rename the response data file to:

PR_I_B3_RSP_ob.fin.

7 View the results in Message Tracking in e*Xchange Partner Manager.

To rerun the scenario, change the value in the D2 segment of the sample data. The value
in the D2 segment of the request and the response must match in order to make the
association.
e*Xchange Partner Manager Implementation Guide 223

Chapter 12 Section 12.2
e*Xchange Implementation—NCPDP Using the Implementation Sample
Viewing the Results in Message Tracking

You can view the results of the message processing by using the Message Tracking
feature of e*Xchange.

To view the inbound message in Message Tracking

1 From the e*Xchange Web interface, Main page, select Message Tracking.

The TP Profile Selection page appears.

2 In the Company Profile field, select your company profile name (NCPDP-Sample).

3 In the Trading Partner Profile field, select your Trading Partner Profile (Int-
Processor).

4 In the eBusiness Protocol field, select NCPDP.

5 In the Direction field, select Inbound.

6 Click Message Profile Selection.

7 Select the message name.

8 Click the Message Details link to view the resulting list after sending the request
message.

9 On the same page, click Refresh after sending the response message.

You have completed the NCPDP sample implementation.
e*Xchange Partner Manager Implementation Guide 224

Chapter 13

Advanced Configuration

This chapter provides a information on manually creating a Validation Collaboration
and adding a custom communication protocol.

13.1 Manually Creating a Validation Rules Collaboration
Validation Collaborations can be created for X12 and UN/EDIFACT using the
Validation Collaborations Rules Builder. However, it is possible to build the Validation
Collaboration manually.

Validation Collaborations for RosettaNet must be created manually.

13.1.1 Creating a Validation Rules Collaboration for X12 or UN/
EDIFACT

The steps required to create the Validation Collaboration are as follows:

1 Create the validation ETD.

2 Create the validation collaboration rules script.

Creating the Validation ETD

The Event Type Definition used for the Validation Collaboration is based on the ETD
for the message type. For example, if you were working with X12 4010, then base your
validation ETD on X12_4010_100.ssc.

To create a validation ETD

1 Open the generic ETD (for example, X12_4010_100.ssc).

2 Save as a new ETD with a different name (for example, X12_4010_valid_100.ssc).

3 The nodes required for this ETD are those between ST and SE (ST and SE are
required in the structure) for X12 and between UNH and UNT (UNH and UNT are
required in the structure) for UN/EDIFACT. Other nodes should be deleted.

4 Add a node above ST or UNH called Delimiter.

5 From the File menu, select Default Delimiters. Set the following:
e*Xchange Partner Manager Implementation Guide 225

Chapter 13 Section 13.1
Advanced Configuration Manually Creating a Validation Rules Collaboration
Table 103 X12 below Version 4020

Table 104 X12 Version 4020 and above

Table 105 UN/EDIFACT

6 Save the ETD.

Creating the Validation Collaboration

The validation collaboration rule script is used to validate the incoming or outgoing
message. The minimum requirement for this script is to create a unique identifier.
Additional functionality that can be used as required, for example, to add user defined
tests on the data and to send a 997 response.

There is a variable named error that is used to determine whether the message has been
validated. The default value of error is #f, and this value should be set to #t if an error
has occurred and the message should not be processed.

To create the Validation Collaboration

1 Create a new Collaboration Rule Script using the structure created in “To create a
validation ETD” on page 225 as the source ETD. Leave the destination ETD blank.

2 Add a line of code to create a unique identifier for the message. For example:

(define unique_id (strftime “%Y%m%d%H$M%S” (time)))

Creating a unique identifier for the message is the minimum requirement for the
Validation Collaboration.

To reject the message

Set the error variable value to #t if an error has occurred and the message should not be
processed using the following line of code.

Level Delimiter

1 [2]

2 [0]

3 [1]

Level Delimiter

1 [3]

2 [0]

3 [2]

4 [1]

Level Delimiter

1 [3]

2 [0]

3 [2]

4 [1]
e*Xchange Partner Manager Implementation Guide 226

Chapter 13 Section 13.1
Advanced Configuration Manually Creating a Validation Rules Collaboration
(set! error #t)

To send a 997 response

Add the following line of code if you want to send a 997 response, or if you want to
reject the message:

(define add_997 (ux-track-997-error (list “AK2” (get <ST01 path>) (get <ST02 path>)))

where

<ST01 path> is the path to the ST01 node

<ST02 path> is the path to the ST02 node

To send a 997 response for an error

When the message is not successfully validated the 997 response can contain AK3 and
AK4 information. AK3 contains information about the segment and AK4 contains
information about the element in the segment that caused a problem.

To set AK3 information

Add the following line of code:

(define add_997 (ux-track-997-error (list “AK3” <SegIDCode> <SegPos> <LoopID>
<SegmentErrorCode>)))

where

<SegIdCode> is the segment ID code, for example “BGN”.

<SegPos> is the segment position. For example, the first segment has position “1”.

<LoopID> is the loop identifier.

<SegmentErrorCode> is a user defined error identifier.

To set AK4 information

Add the following line of code:

(define add_997 (ux-track-997-error (list “AK4” <PosInSegment> <DataElementRefNumber>
<DataElementErrorCode> <CopyOfDataElement>)))

where

<PosInSegment> is the element position within the segment.

<DataElementRefNumber> is the data element reference number as defined for
X12.

<DataElementErrorCode> is a user defined error identifier.

<CopyOfDataElement> is an optional parameter allowing you to send the data
from the element with the error message.

To send information about multiple errors

Error information can be defined in a variable named error_data. This needs to be in the
format “num^description”, using the ^ character as a delimiter. To send information
about multiple errors each number/description pair needs to be delimited by the ~
character. For example:

“1^description1~2^description2~3^description3”
e*Xchange Partner Manager Implementation Guide 227

Chapter 13 Section 13.1
Advanced Configuration Manually Creating a Validation Rules Collaboration
13.1.2 Creating a Validation Rules Collaboration for RosettaNet
The inbound event for a RosettaNet validation collaboration must represent the format
of the Service Content. The Monk ETD files for each RosettaNet PIP Service Content are
found in the monk_scripts/templates directory, once you have installed them from the
add-on section of the installation CD.

The validation Collaboration Rules Script can be given any name, however it is
recommended that it represents what is being validated. For example,
eX_ROS_Validate_3A4Request_11_SC.tsc is a RosettaNet 1.1 validation script that
checks the 3A4 Request service content. The extension for the validation script must be
"tsc", and the script must be located in monk_scripts/common/ROS/etc.

To create the Validation Collaboration

1 Create a new Collaboration Rule Script using the required RosettaNet structure as
the source ETD. Leave the destination ETD blank.

2 Add the required lines of code.

To reject the message

When creating a validation collaboration, the variable string, error_data, should be
used to capture all the errors. This variable is defined globally by the calling script,
(eX_ROS_main.dsc for RosettaNet 1.1, eX-ROS20-Outb-Main.dsc for RosettaNet 2.0
outbound messages, and eX-ROS20-Inb-Main.dsc for RosettaNet 2.0 inbound
messages), so set! function should be used each time error_data is reset.

Setting the error_data variable to a value other than an empty string causes the message
to be rejected. For example:

(set! error_data “5101^Missing City Name”)

If the variable error_data contains some error information, then the processing takes
place with the assumption that there is at least one invalid entry in the Service Content
and then the RosettaNet message is rejected. For RosettaNet 1.1, an Inbound message is
rejected by sending out a negative Receipt Acknowledgment, and an Outbound
message is rejected by sending out an internal failure.

For RosettaNet 2.0 Inbound messages, the validation collaboration should have the
following set, in addition to error_data, if an invalid entry is found in the service
content:

(set! error_code “UNP.SCON.VALERR”)
(set! error_comp “ServiceContent”)

If an invalid entry is found for a RosettaNet 2.0 Inbound message, then a Receipt
Acknowledgment Exception is sent out if a Receipt Acknowledgment is expected. Also,
the invalid message is stored in the e*Xchange database with the associated errors.

For RosettaNet 2.0 Outbound messages, the validation collaboration should set the
error_data variable to contain any errors for invalid entries found in the service content.
The invalid message is stored in the e*Xchange database with the associated errors. An
internal failure message is sent out to the internal application.
e*Xchange Partner Manager Implementation Guide 228

Chapter 13 Section 13.1
Advanced Configuration Manually Creating a Validation Rules Collaboration
To send information about multiple errors

A new error string should be appended to error_data if error_data already contains
some errors. Each error must be separated by ~, and within each error, the code and
description are separated by ^. For example, error_data may contain "5101^Missing
City Name", and then another error is encountered, such as "5118^Invalid Revision
Number". A string-append including a ~ separator should be used to be sure both
errors are included in error_data. The resulting error_data string would then be

"5101^Missing City Name~5118^Invalid Revision Number"

Using the util-add-to-error function

The util-add-to-error function can be used to generate the error string. This function is
described below.

Syntax

(util-add-to-error existing_error_str new_error_component)

Description

util-add-to-error appends the new error component to the existing error string and
returns the new error string.

Parameters

Return Values

string
Returns the new error string.

Example

The following example first test whether the city name is missing, and then tests if the
revision number is invalid. This code assumes that two user defined functions (city-
name-missing? and revision-number-invalid?) have been created to test the data.

(if (city-name-missing?)
(set! error_data "5101^Missing City Name")

)
(if (revision-number-invalid?)

(util-add-to-error (error_data "5118^Invalid Revision Number"))
)

=> sets error_data to "5101^Missing City Name~5118^Invalid Revision Number"
if both errors are found

Name Type Description

existing_error_str string The existing error string.

new_error_component string The new error component to be
appended to the error string.
e*Xchange Partner Manager Implementation Guide 229

Chapter 13 Section 13.2
Advanced Configuration Adding a Custom Protocol
Predefined Validation Scripts

There are some validation scripts included in the installation of e*Gate Schema for
e*Xchange scripts. The validation scripts located in monk_scripts/common/ROS/etc
for RosettaNet 1.1 are:

eX_ROS_Validate_3A4Accept_11_SC.tsc

eX_ROS_Validate_3A4Cancel_11_SC.tsc

eX_ROS_Validate_3A4Change_11_SC.tsc

eX_ROS_Validate_3A4Request_11_SC.tsc

eX_ROS_Validate_PriceAndAvailabilityQuery.tsc

eX_ROS_Validate_PriceAndAvailabilityResponse.tsc

These validation scripts refer to code files stored in the same location. The file, eX-
validation-codes.monk, located in monk_library/eXchange contains reference variables
to all the code files used. An example of a variable defined in this file is
GLOBAL_COUNTRY_CODES_FILE, which corresponds to the codes file
monk_scripts/common/ROS/etc/Global_Country_Codes. Additional code file
references can be added to eX-validation-codes.monk, if necessary, for new validation
script references. This Monk file gets loaded on startup of e*Xchange.

There are no validation scripts provided for RosettaNet 2.0.

13.2 Adding a Custom Protocol
This section describes how you can define additional protocols to use with e*Xchange.

13.2.1 Adding a Custom Protocol for X12 or UN/EDIFACT
The steps required to create an additional protocol are as follows:

1 Add a Comm Protocol to the Code Table.

2 Add an Event Type for the protocol.

3 Update eX_from_ePM Collaboration Rule to publish the new Event Type.

4 Update eX_from_ePM Collaboration to publish the new Event Type to the
eX_Trading_Port_Queue IQ.

5 Edit monk_library\eXchange\eX_ePM_Send_To_External.monk to set the output
event.

6 Update eX_from_ePM.tsc to perform an iq-put with the new Event Type, if the new
output event is received.
e*Xchange Partner Manager Implementation Guide 230

Chapter 13 Section 13.2
Advanced Configuration Adding a Custom Protocol
Step 1: Add a Comm Protocol to the Code Table

The UN/EDIFACT and X12 Comm Protocol in the Code table list the protocols that are
currently available. Add an additional protocol and assign a name and description.

Figure 93 shows a protocol named USER.

Figure 93 Example Code Table for UN/EDIFACT

Step 2: Add an Event Type for the Protocol

Use the e*Gate Schema Designer GUI to create a new Event Type in eXSchema. For
example, eX_User.

Step 3: Update eX_from_ePM Collaboration Rule

Update the eX_from_ePM Collaboration Rule to publish the Event Type created in Step
2.

Step 4: Update eX_from_ePM Collaboration

Update eX_from_ePM Collaboration to publish the new Event Type to the
eX_Trading_Port_Queue IQ.

Figure 94 shows an example configuration using eX_User.
e*Xchange Partner Manager Implementation Guide 231

Chapter 13 Section 13.2
Advanced Configuration Adding a Custom Protocol
Figure 94 Example eX_from_ePM using eX_User

Step 5: Update eX_ePM_Send_To_External.monk

Edit monk_libray\eXchange\eX_ePM_Send_To_External.monk to set the output event.
Add the following code within the case statement:

((<Comm Protocol>)
(set! out_event "<Comm Protocol Ref>")

)

where

<Comm Protocol> defines the name given in the code table

<Comm Protocol Ref> is a used defined name with exactly five characters

Example code for the USER protocol:

((USER)
(set! out_event "USERD")

)

Step 6: Update eX_from_ePM.tsc

Update eX_from_ePM.tsc to perform an iq-put with the new Event Type, if the new
output event is received. This should be added within the case statement that checks for
the comm protocol.

Figure 95 shows an example script.
e*Xchange Partner Manager Implementation Guide 232

Chapter 13 Section 13.2
Advanced Configuration Adding a Custom Protocol
Figure 95 Example eX_from_ePM.tsc

13.2.2 Adding a Customer Protocol for RosettaNet 1.1
The steps required to create an additional protocol are as follows:

1 Add a Comm Protocol to the Code Table.

2 Add an Event Type for the protocol.

3 Update eX_from_ePM Collaboration Rule to publish the new Event Type.

4 Update eX_from_ePM Collaboration to publish the new Event Type to the
eX_Trading_Port_Queue IQ.

5 Edit monk_scripts\common\ROS\eX_ROS_main.dsc to set the output event.

6 Update eX_from_ePM.tsc to perform an iq-put with the new Event Type, if the new
output event is received.

7 (Optional, for use with Ack Monitor) Update ack_mon.dsc to support resends for
RosettaNet.

Step 1: Add a Comm Protocol to the Code Table

The ROS 1.1 Comm Protocol in the Code table lists the protocols that are currently
available. Add an addition protocol and assign a name and description.

Figure 96 shows a protocol named USER.
e*Xchange Partner Manager Implementation Guide 233

Chapter 13 Section 13.2
Advanced Configuration Adding a Custom Protocol
Figure 96 Example Code Table for RosettaNet 1.1

Step 2: Add an Event Type for the Protocol

Use the e*Gate Schema Designer GUI to create a new Event Type in eXSchema. For
example, eX_User.

Step 3: Update eX_from_ePM Collaboration Rule

Update the eX_from_ePM Collaboration Rule to publish the Event Type created in Step
2.

Step 4: Update eX_from_ePM Collaboration

Update eX_from_ePM Collaboration to publish the new Event Type to the
eX_Trading_Port_Queue IQ.

Figure 97 shows an example configuration using eX_User.
e*Xchange Partner Manager Implementation Guide 234

Chapter 13 Section 13.2
Advanced Configuration Adding a Custom Protocol
Figure 97 Example eX_from_ePM using eX_User

Step 5: Update eX_ROS_main.dsc

Modify monk_scripts/common/ROS/eX_ROS_main.dsc. Search for lines that specify
"HTTPS". Replace all incidences of HTTPS with g_commport, so the new
communication protocol just added is included in the outgoing message, and does not
default to HTTPS.

It is necessary to ensure that g_commport has exactly 5 characters. If the new protocol
name is not exactly five characters then reset g_commport to a five character string in
this script. For example, reset g_commport from “USER” to “USERD”.

Step 6: Update eX_from_ePM.tsc

Update eX_from_ePM.tsc to perform an iq-put with the new Event Type, if the new
output event is received. This should be added within the case statement that checks for
the comm protocol.

Figure 98 shows an example script.

Figure 98 Example eX_from_ePM.tsc
e*Xchange Partner Manager Implementation Guide 235

Chapter 13 Section 13.2
Advanced Configuration Adding a Custom Protocol
Step 7: Modify ack_mon.dsc

Modify the event-send-to-egate function in ack_mon.dsc to support RosettaNet resends
from Ack Monitor. You need to add support for the new comm protocol since the
default is HTTPS in the file.

Find the following section in the code:

(event-send-to-egate (string-append “R|O|HTTPS” (get ~output%eX_Event)))

Replace HTTPS with g_commport, so the new communication protocol just added is
included in the outgoing message, and does not default to HTTPS.

It is necessary to ensure that g_commport has exactly 5 characters. If the protocol name
is not exactly five characters then reset g_commport to a five character string in this
script. For example, reset g_commport from “USER” to “USERD”, or from “HTTP” to
“HTTPS”.

13.2.3 Adding a Customer Protocol for RosettaNet 2.0
The steps required to create an additional protocol are as follows:

1 Add a Comm Protocol to the Code Table.

2 Add an Event Type for the protocol.

3 Update eX_from_ePM Collaboration Rule to publish the new Event Type.

4 Update eX_from_ePM Collaboration to publish the new Event Type to the
eX_Trading_Port_Queue IQ.

5 Edit monk_scripts/common/ROS/eX-ROS20-Send-To-Egate.monk to set the
output event.

6 Update eX_from_ePM.tsc to perform an iq-put with the new Event Type, if the new
output event is received.

Step 1: Add a Comm Protocol to the Code Table

The Comm Protocol in the Code table lists the protocols that are currently available.
Add an addition protocol and assign a name and description.

Figure 99 shows a protocol named USER.
e*Xchange Partner Manager Implementation Guide 236

Chapter 13 Section 13.2
Advanced Configuration Adding a Custom Protocol
Figure 99 Example Code Table for RosettaNet 2.0

Step 2: Add an Event Type for the Protocol

Use the e*Gate Schema Designer GUI to create a new Event Type in eXSchema. For
example, eX_User.

Step 3: Update eX_from_ePM Collaboration Rule

Update the eX_from_ePM Collaboration Rule to publish the Event Type created in Step
2.

Step 4: Update eX_from_ePM Collaboration

Update eX_from_ePM Collaboration to publish the new Event Type to the
eX_Trading_Port_Queue IQ.

Figure 100 shows an example configuration using eX_User.
e*Xchange Partner Manager Implementation Guide 237

Chapter 13 Section 13.2
Advanced Configuration Adding a Custom Protocol
Figure 100 Example eX_from_ePM using eX_User

Step 5: Update eX_ROS_Send_To_Egate.monk

Edit monk_scripts/common/ROS/eX_ROS20_Send_To_Egate.monk to set the output
event. This step also enables Ack Monitor to handle the new protocol. Find eX-ROS20-
Forward-To-TP function and add the following if statement:

(if (string-ci=? comm_port "<Comm Protocol>")
 (begin
 (set! comm_port "<Comm Protocol Ref>")
)
 (begin
)
)

where

<Comm Protocol> defines the name given in the code table

<Comm Protocol Ref> is a used defined name with exactly five characters

Example code for the USER protocol:

(if (string-ci=? comm_port "USER")
 (begin
 (set! comm_port "USERD")
)
 (begin
)
)

In addition to setting the comm_port, rules for copying and setting values in the
outgoing message should be added within the if statement for this new protocol.
e*Xchange Partner Manager Implementation Guide 238

Chapter 13 Section 13.2
Advanced Configuration Adding a Custom Protocol
Step 6: Update eX_from_ePM.tsc

Update eX_from_ePM.tsc to perform an iq-put with the new Event Type, if the new
output event is received. This should be added within the case statement that checks for
the comm protocol.

Figure 101 shows an example script.

Figure 101 Example eX_from_ePM.tsc
e*Xchange Partner Manager Implementation Guide 239

Chapter 14

e*Xchange Partner Manager Functions

This chapter provides information on the e*Xchange APIs. These APIs are divided into
three groups based on their use within e*Xchange. These groups are:

e*Xchange helper functions (used when working with the e*Xchange ETD) see
“e*Xchange Helper Monk Functions” on page 241

e*Xchange Partner Manager functions (used by the e*Xchange) see “e*Xchange
Functions” on page 248

Validation Rules Builder functions (used by the validation Collaborations created
by the VRB) see “Monk Functions Used by the Validation Rules Builder” on
page 363

Mime functions, see “e*Xchange MIME Functions” on page 373

RosettaNet 2.0 functions, see “e*Xchange RosettaNet 2.0 Functions” on page 380

Security functions, see “e*Xchange Security Functions” on page 418 and “AS2
Security Functions” on page 433.

e*Xchange NCPDP supported functions, see “NCPDP Functions” on page 449.
e*Xchange Partner Manager Implementation Guide 240

Chapter 14 Section 14.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
14.1 e*Xchange Helper Monk Functions
A number of Monk functions have been added to make it easier to set information in
the e*Xchange Event (eX_Standard_Event.ssc ETD) and to get information from it.
These functions are contained in two files:

eX-ePM-utils.monk

Important: Make sure that the Monk file eX-ePM-utils.monk, containing the e*Xchange
helper functions, are loaded before calling them in a Collaboration Rules Script. You
can do this in several ways, by putting them in the root of the monk_library
directory, loading them explicitly in your CRS, or using the eX-init-eXchange
bootstrap file to load them via the Collaboration Rule. See “Convert the Event to
Base 64 Encoding” on page 62 for an example of how to use the eX-init-
eXchange bootstrap file in a Collaboration Rule.
e*Xchange Partner Manager Implementation Guide 241

Chapter 14 Section 14.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
eX-set-TP_EVENT

Syntax

(eX-set-TP_EVENT root-path event-type value)

Description

eX-set-TP_EVENT sets the value of the specified event type.

Parameters

Return Values

Boolean
Returns #t (true) except when an invalid parameter is passed, then #f (false) is returned.

Throws

None.

Example

(eX-set-TP_EVENT ~input%eX_Event "PARTNERNAME" "Acme Inc.")

=> sets the trading partner name to "Acme Inc."

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

event-type string Either PARTNERNAME, MESSAGEID,
ORIGEVENTCLASS,
USAGEINDICATOR, COMMPROT,
URL, INTERNALNAME, or DIRECTION

value string The value to which you want to set the
event type. For event-type
"DIRECTION" value must be I or O.
For event-type "USAGEINDICATOR"
value must be P or T.
e*Xchange Partner Manager Implementation Guide 242

Chapter 14 Section 14.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
eX-get-TP_EVENT

Syntax

(eX-get-TP_EVENT root-path event-type)

Description

eX-get-TP_EVENT finds the path to the value of the specified event type in the
e*Xchange Event named in the root-path.

Parameters

Return Values

Returns one of the following values:

Boolean
Returns #f (false) if the value for TP_EVENT is not found.

Returns #f (false) if the attribute is not found.

path
Returns the path to the value found at the TP_EVENT node location. Use get to return
the actual value.

Throws

None.

Example

For an Event with a partner name of "Acme Inc.":

(get (eX-get-TP_EVENT ~input%eX_Event "PARTNERNAME"))

=> Acme Inc.

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

event-type string Either PARTNERNAME, MESSAGEID,
ORIGEVENTCLASS,
USAGEINDICATOR, COMMPROT,
URL, INTERNALNAME, DIRECTION, or
PAYLOAD
e*Xchange Partner Manager Implementation Guide 243

Chapter 14 Section 14.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
eX-set-Payload

Syntax

(eX-set-Payload root-path encrypt-type value)

Description

eX-set-Payload sets the value of the payload.

Parameters

Return Values

Returns one of the following values:

Boolean

Returns #t (true) except when an invalid parameter is passed, then #f (false) is returned.

Throws

None.

Example

(eX-set-Payload ~input%eX_Event "RAW" "Have a nice day!")

=> sets the payload to "Have a nice day!"

Name Type Description

root-path path Either ~input%eX_Event or
~output%eX_Event

encrypt-type string RAW, PROCESSED, ENCRYPTED.

value string The value to which you want to set the
payload.
e*Xchange Partner Manager Implementation Guide 244

Chapter 14 Section 14.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
eX-count-TP-attribute

Syntax

(eX-count-TP-attribute root-node)

Description

eX-count-TP-attribute searches the e*Xchange Event for the number of trading partner
attributes using the name/value pair format stored in the repeating TPAttribute node
in the TP_EVENT portion of the e*Xchange Event.

Parameters

Return Values

Returns the following:

integer
Number of TPAttribute name/value pairs.

Throws

None.

Example

For a e*Xchange Event that has 3 TPAttributes:

(eX-count-TP-attribute ~input%eX_Event)

=> 3

Name Type Description

root-node path Either ~input%eX_Event or
~output%eX_Event
e*Xchange Partner Manager Implementation Guide 245

Chapter 14 Section 14.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
eX-get-TP-attribute

Syntax

(eX-get-TP-attribute root-node name)

Description

eX-get-TP-attribute finds the attribute value in the e*Xchange Event named in the
root-node.

Parameters

Return Values

Returns the following:

string
Returns the value associated with the TPAttribute name.

Throws

None.

Example

(eX-get-TP-attribute ~input%eX_Event "COMM_PROT")

=> "X12"

Name Type Description

root-node path Either ~input%eX_Event or
~output%eX_Event

name string Name of the trading partner attribute
you want to get.
e*Xchange Partner Manager Implementation Guide 246

Chapter 14 Section 14.1
e*Xchange Partner Manager Functions e*Xchange Helper Monk Functions
eX-set-TP-attribute

Syntax

(eX-set-TP-attribute root-node name value)

Description

eX-set-TP-attribute creates an entry in the e*Xchange Event under the TPAttribute
repeating node for the specified name/value pair.

Parameters

Return Values

None.

Throws

None.

Example

(eX-set-TP-attribute ~output%eX_Event "COMM_PROT" "X12")

=> creates an entry in the e*Xchange Event under TPAttribute for the
name/value pair COMM_PROT/X12.

Name Type Description

root-node path Either ~input%eX_Event or
~output%eX_Event

name string The name of the TP attribute whose
value you want to set.

attribute string The value to which you want to set the
TP attribute.
e*Xchange Partner Manager Implementation Guide 247

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
14.2 e*Xchange Functions
The specialized e*Xchange Monk functions used by e*Xchange are:

ux-ack-handler

Syntax

(ux-ack-handler connection-handle ack-stat)

Description

ux-ack-handler performs message association for an inbound or outbound business
message.

Note: If the acknowledgment is to be stored in the database, then ux-store-msg should be
called before ux-ack-handler to store the ack.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

ack-stat list:
ack_tm
ack_type
level
mtrk_id
unique_id
error_data
direction
out_queue
resp_id
sub-list

Required. Information about the
acknowledgment.

All list arguments must be strings,
except for the sub-lists which are lists
containing strings.

All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
ack_type, level, unique_id and
direction, which return an error if no
value is provided. The first sub-list is
required.
e*Xchange Partner Manager Implementation Guide 248

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

String
Returns mtrk_id, if found and the row is updated.

Boolean
Returns #t (true) if the acknowledgment processed successfully; otherwise, returns #f
(false). Use the ux-get-error-str API to retrieve the corresponding error message.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

ack-stat List member Description

ack_tm The date and time (yyyymmddhhmmss
format).

ack_type Identifies the kind of acknowledgment
(positive or negative):
P—Positive acknowledgment
N—Negative acknowledgment

level Required. Specifies the level of the
original message:
I—B2B Protocol level information
T—Message Profile level information

mtrk_id Optional—future versions may use
this value to store messages.

unique_id The unique identifier for the original
message.

error_data Error information—
code^description~code^description
(^ separates the values for an error
and ~ separates the errors).

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

out_queue Indicates whether the message is
placed in es_out_queue:
Y—Yes
N—No

resp_id Optional—tpts_id for Message Profile
or tpic_id for B2B Protocol

This needed when the message
received by e*Xchange is not known
to be an original message or response.

Name Type Description
e*Xchange Partner Manager Implementation Guide 249

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Additional Information

ux-ack-handler updates es_mtrk_outb or es_mtrk_inb, es_waiting_ack, and
es_mtrk_error database tables based on the global transact info associated with the
acknowledgment just received.

ux-ack-handler does the following:

Receives a database connection handle and a list of information about the
acknowledgment from the calling process.

Updates es_mtrk_inb.ack_que_tm and es_mtrk_inb.ack_msg_id if direction is "I".
For direction = "O", updates es_mtrk_outb.ack_tm and es_mtrk_outb.ack_msg_id,
and deletes a row from es_waiting_ack table corresponding to the original
mtrk_outb_id.

If the acknowledgment tran_set_id does not match the expected tran_set_id and the
ack_type = "P", then the acknowledgment is ignored.

Returns a value to the calling process that indicates whether or not it was
successful.

Based on values of mtrk_id and resp_id in ack-stat, ux-ack-handler performs the
following:

If mtrk_id is provided, but resp_id is not provided, then ux-ack-handler uses
mtrk_id to update the correct mtrk row in the database

If resp_id is provided, but mtrk_id is not provided, then ux-ack-handler tries to
find the corresponding request_ids (es_ids) by looking to see if the resp_id is part of
RTN_TS_ID values. Then it uses any found request_ids (es_ids), unique_id, and
extended list after ID part to find mtrk_id. If no corresponding request_ids (es_ids)
are found or no mtrk_id is found, then the resp_id is treated as a request_id (es_id).

If mtrk_id is provided and resp_id is provided, then ux-ack-handler ignores
resp_id and uses only mtrk_id to update the correct row in the mtrk table.

If mtrk_id is not provided and resp_id is not provided, then ux-ack-handler uses
the given criteria (unique_id, global structures, and extended data) to find the
correct mtrk row to update.

Example

The following Monk script example calls ux-ack-handler. This script makes two
assumptions:

That ux-init-trans was executed successfully for the given acknowledgment.

That a connection to the database, conn-handle, has been established before ux-ack-
handler is called.

ux-ack-handler uses the unique_id "TESTVAL129" to find the appropriate row to
update in es_mtrk_outb.

If successful, then ack-msg is placed in es_mtrk_outb.ack_msg_id in the same row as
the original message. Ack-code "Negative" and ack-tm set as the current time are also
stored in es_mtrk_outb.

If ux-ack-handler fails, then the error, ux-get-error-str, is displayed.
e*Xchange Partner Manager Implementation Guide 250

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
(define ack-stat (list "" ; ack_tm
 "N" ; ack_type
 "T"; level
 "" ; mtrk_id
 "TESTVAL129" ; unique_id
 "12345^Bad dept code~56789^Invalid bed" ; error_data
 "O" ; direction
 "N" ; out_queue
 "" ; resp_id
 ""
))

(if (not (ux-ack-handler connection-handle ack-stat))
(begin
 (display "Ack Handler failed!\n")
 (display (ux-get-error-str))
 (newline)
)
 (display "Ack Handler succeeded!\n")
)
e*Xchange Partner Manager Implementation Guide 251

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-ack-monitor

Syntax

(ux-ack-monitor connection-handle wa-id)

Description

ux-ack-monitor processes messages that have overdue acknowledgments.

Parameters

ux-ack-monitor processes messages as described below:

Return Values

Returns one of the following values:

Boolean

Returns #t (true) if the API is successful and no records exceeded the retry max;
otherwise, returns #f (false) if an error occurs and the API is not successful. Use ux-get-
error-str to retrieve the corresponding error message.

Vector

Returns a vector of mtrk_outb_ids and associated original msgs for all mtrk_outb_ids
associated with the waiting_ack_id that achieved the retry max.

This vector should not contain duplicate msgs. Therefore it is possible that one
mtrk_outb_id represents all the mtrk_outb_ids that have the same orig_msg_id.

This vector takes the following form: (mtrk_outb_id1 msg1 mtrk_outb_id2 msg2 ...)

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Additional Information

ux-ack-monitor receives, as a parameter, the record ID of a record in the es_waiting_ack
table that has an expired acknowledgment time. This occurs when e*Xchange Partner
Manager did not receive an acknowledgment message within the time allotted by the
trading partner profile. The API determines the transaction type (X12 or RosettaNet),
the transfer mode (Interactive or Batch), and the message send count as compared to
the maximum resend count allowed.

For interactive messages:

If the passed in waiting_ack_id has not hit the maximum allowable retries then the
following occurs:

1 The next send time is updated for this waiting_ack_id and all es_waiting_ack rows
that refer to the same original message (es_mtrk_outb.orig_msg_id).

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

wa-id string Required. The ID of an es_waiting_ack
record.
e*Xchange Partner Manager Implementation Guide 252

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
2 ux-ack-monitor increments send count for this row all rows with same
es_mtrk_outb.orig_msg_id.

3 The send count is updated in the es_waiting_ack and es_mtrk_outb tables, and an
entry is inserted into the es_out_queue so that the message is resent to the trading
partner by the e*Xchange Transaction Polling e*Way.

If the waiting_ack_id that was passed in has exceeded the maximum allowable retries
then:

1 ux-ack-monitor stores an error for each es_mtrk_outb row that has the same
es_mtrk_outb.env_msg_id as the waiting_ack_id, and the
es_mtrk_outb.ack_msg_id is NULL (have not received an ack).

2 All rows in es_waiting_ack that have the same es_mtrk_outb.orig_msg_id as the
passed in waiting_ack_id are deleted.

For batch messages:

If the passed in waiting_ack_id has not hit the maximum allowable retries then:

1 X12 (TS level) - Removes all env_msg_id rows associated with passed in
waiting_ack_id and nulls out control numbers, so batch process resends.

X12 (IC level) - All TS records that are subsets of IC es_mtrk_outb record referred to
by waiting_ack_id passed in, and those records that have rtn_rcpt set to 'N' have all
similar env_msg_id rows removed, IC_CONTROL_NUM is set to the value held in
IC_BATCH, and FGI_CONTROL_NUM is set to the value held in FGI_BATCH.
This allows the batch process to perform a resend. ux-ack-monitor stores an error
for the IC level es_mtrk_outb record that it has timed out.

EDF - Removes all env_msg_id rows associated with passed in waiting_ack_id,
IC_CONTROL_REF is set to the value held in IC_BATCH, and
FGI_CONTROL_REF is set to the value held in FGI_BATCH, so batch process
resends.

2 all rows in es_waiting_ack that have the same es_mtrk_outb.orig_msg_id as the
passed in waiting_ack_id are deleted.

If the passed in waiting_ack_id has exceeded the maximum allowable retries then:

1 ux-ack-monitor stores an error for each es_mtrk_outb row that has the same
es_mtrk_outb.env_msg_id as the waiting_ack_id, and the
es_mtrk_outb.ack_msg_id is NULL (have not received an ack).

2 all rows in es_waiting_ack that have the same es_mtrk_outb.orig_msg_id as the
passed in waiting_ack_id are deleted.
e*Xchange Partner Manager Implementation Guide 253

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Example

The following example passes a record ID of 75 from the es_waiting_ack table. The
function assumes that the record has already been identified as having timed out. If a
vector is returned then information about each mtrk_outb_id is written to the log and
the database changes made are committed. If the function returns #t (true), the database
changes made are committed. If #f (false) is returned (indicating an error) a rollback is
committed to roll back any database changes that may have occurred before the error
was encountered.

(define mtrk_outb_id_msgs (ux-ack-monitor connection-handle "75"))
(cond ((not (boolean? mtrk_outb_id_msgs))
 (do ((i 0 (+ i 1)) (value-count (vector-length mtrk_outb_id_msgs)))
 ((= i value-count))
 (display "mtrk_outb_id <")
 (display i)
 (display "> = ")
 (display (vector-ref mtrk_outb_id_msgs i))
 (newline)
 (set! i (+ i 1))
 (display "msg = ")
 (display (vector-ref mtrk_outb_id_msgs i))
 (newline)
)
 (db-commit connection-handle)
)
 (else
 (begin
 (if (eq? #t mtrk_outb_id_msgs)
 (begin
 (display "ux-ack-monitor succeeded - no mtrk_outb_ids hit
retry max")
 (db-commit connection-handle)
)
 (begin
 (display (ux-get-error-str))
 (db-rollback connection-handle)
)
)
)
)
)

e*Xchange Partner Manager Implementation Guide 254

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-check-shutdown-uid

Syntax

(ux-check-shutdown-uid connection-handle id level unique_id)

Description

ux-check-shutdown-uid compares unique_id provided with ones in es_sd_data. If
there is a match, then it returns a full unique_id and deletes the row from es_sd_data
table.

Parameters

Return Values

Returns one of the following values:

string
Returns a string containing the unique_id from es_sd_data table if the combination of
tpts_id, or tpic_id, level, and unique_id is found.

Boolean
Returns #t (true) if the combination of tpts_id, or tpic_id, level, and unique_id is not
found in the es_sd_data table.

Returns #f (false) if a problem occurs.

Throws

None.

Example

(define unique_id "AAAAA")
(define orig_tpts_id "1")
(define check-result (ux-check-shutdown-uid connection-handle

orig_tpts_id "T" unique_id)
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

id string Required. Either tpic_id or tpts_id.

level string Required. The level of the control
number. Valid values:
I—Indicates ID is tpic_id
T—Indicates ID is tpts_id

unique_id string Required. The string that uniquely
identifies the transaction.
e*Xchange Partner Manager Implementation Guide 255

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-control-check

Syntax

(ux-control-check control-num level type)

Description

ux-control-check determines whether the control number provided in an inbound
Message Profile or B2B Protocol is valid.

 It does the following:

Checks the es_ext_detail and es_ext_data tables for the control numbers.

Determines whether the control number in the message is valid; that is, whether
message control num is greater than database control num.

Parameters

Return Values

Returns one of the following values:

String
Returns "Y" if the control number is valid; otherwise returns "N" if the control number
is not valid.

Boolean
Returns #f (false) if the API fails. Use ux-get-error-str to retrieve the corresponding
error message.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Additional Information

ux-control-check compares the control numbers that are found to the values in the
global structures, which represent the values in the database. The values should be as
follows:

Name Type Description

control-num string Required. The control number to
validate.

level string Required. The level of the control
number. Valid values:
I—Interchange control number
G—Functional group control number
T—Transaction set control number

type string O—Original
A—Ack

Level Global Structure Control Number

T g_ts->ext_data.col_value and g_ts->ext_data.col_name = "T_CONTROL_NUM"
e*Xchange Partner Manager Implementation Guide 256

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
The message’s control number is valid if either of the following two conditions is true:

The message’s control number is greater than the database control number, or

The message’s control number is 1 or 0 and the database control number is the
maximum (9999999999).

If the database control number is at the maximum, the next time it is incremented it
starts over.

The control number must contain only numeric characters, and it must be greater than
the number stored in the database/global structures. The control number can have
leading zeros.

Example

The following Monk script example calls ux-control-check with the assumption that
ux-init-trans was executed successfully for the given message. ux-control-check
compares the given control-num "1005" and level "G" with the g_control_num stored in
the database, g_ic->ext_data.col_value where g_ic->ext_data.col_name =
"G_CONTROL_NUM". If "1005" is greater than g_ic->ext_data.col_value where g_ic-
>ext_data.col_name = "G_CONTROL_NUM", then con-res = "Y", otherwise con-res =
"N". If an error occurs, then #f is returned and the error string is printed using the
display of ux-get-error-str.

(define control-num "1005")
(define level "G")
(define type "O")

 (define con-res (ux-control-check control-num level type))
 (cond ((not (boolean? con-res))
 (cond ((string-ci=? "Y" con-res)
 (display "Control Number is valid\n")
)
 (else
 (display "Control Number is NOT valid\n")
)
)
)
 (else
 (display (ux-get-error-str))
 (newline)
)
)

G g_ic->ext_data.col_value and g_ic->ext_data.col_name = "G_CONTROL_NUM"

I g_ic->ext_data.col_value and g_ic->ext_data.col_name = "I_CONTROL_NUM"

Level Global Structure Control Number
e*Xchange Partner Manager Implementation Guide 257

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-dbproc-ros-inb

Syntax

(ux-dbproc-ros-inb connection-handle msg list_of_rn_pars)

Description

ux-dbproc-ros-inb handles message tracking and acknowledgment for an inbound
RosettaNet message that e*Xchange receives from a trading partner.

Parameters

Name Type Description

connection-handle connection-handle
Required.

The previously established connection to
the database.

msg String The raw message received from the trading
partner.

List_of_rn_pars list:
global_proc_ind_code
global_proc_id
global_trans_code
global_trans_id
global_sigact_code
global_sigact_id
inrespto_sigact_code
inrespto_sigact_id
rec_ack_time
acc_ack_time
perform_time
ext_data_col_name
ext_data_col_value
…

Required. RosettaNet transaction
information.

All list arguments must be strings.

Any number of ext_data_col_name---
ext_data_col_value pairs can be specified as
long as they are specified in pairs.

All elements are required, but can be empty
strings ("").

List member Description

global_proc_ind_code The RosettaNet global process indicator
code.

global_proc_id The RosettaNet global process ID.

global_trans_code The RosettaNet global transaction code.

global_trans_id The RosettaNet global transaction ID.

global_sigact_code The RosettaNet global action code or signal
code. This depends on whether the message
is a RosettaNet business action or business
signal.

global_sigact_id The RosettaNet global action code or signal
ID. This depends on whether the message is
a RosettaNet business action or business
signal.
e*Xchange Partner Manager Implementation Guide 258

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

String
Returns a string indicating what action to take, when the function executes successfully.

Boolean
Returns #f (false) when the function fails to complete successfully.

inrespto_sigact_code If the message is a RosettaNet business
signal or an action that is a response to
another action, this field is the global action
code for the original action.

inrespto_sigact_id If the message is a RosettaNet business
signal or an action that is a response to
another action, this field is the global action
ID for the original action.

rec_ack_time Time allowed to acknowledge the receipt of
the message.

acc_ack_time Time allowed to acknowledge the
acceptance of the message.

perform_time Time to carry out the action specified in the
message and provide a response.

ext_data_col_name Optional. Field name for any external data to
be saved with the message.

ext_data_col_value Optional, but must appear in pair with
ext_data_col_value. This value is assigned to
the external data field with the
corresponding ext_data_col_name as the
column name. Any external data, if specified,
are saved with the message.

… More ext_data_col_name ---
ext_data_col_value pairs.

Return String Action to Take

SEND_BPFAILURE_TO_EGATE Send a standard event to the eX_eBPM queue
indicating failure of the process.

SEND_REC_ACK_TO_TP Send a receipt acknowledgment to the
eX_Trading_Port_Queue.

SEND_ACC_ACK_TO_TP Send an acceptance acknowledgment to the
eX_Trading_Port_Queue.

SEND_MSG_TO_EGATE Send the original message to the eX_eBPM queue.

SEND_MSG_TO_TP Send the original message to the
eX_Trading_Port_Queue.

Name Type Description
e*Xchange Partner Manager Implementation Guide 259

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Note: Before sending an acknowledgment to the eX_Trading_Port_Queue, it is the caller’s
responsibility to save the acknowledgment message using ux_store_msg and to
register it as a response message to the original message using ux_ack_handler.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Additional Information

ux-dbproc-ros-inb does the following:

Receives a database connection handle and a list of information about the
RosettaNet message from the calling process.

Store the original message with any external data using ux-store-msg.

If the message is a General Exception in response to an original message, handles all
expected acknowledgments and responses for the original message as if a negative
ack was received for each. Adds the command "SEND_BPFAILURE_TO_EGATE" to
the returned list.

If the message is a Receipt acknowledgment, handles the expected receipt
acknowledgment using ux_ack_handler. If it is a Receipt Acknowledge Exception,
adds the command "SEND_BPFAILURE_TO_EGATE" to the returned list.

If the message is an Acceptance acknowledgment, handles any expected Receipt
acknowledgment as if positive ack were received, then handles the expected
Acceptance acknowledgment. If it is a Acceptance Acknowledge Exception, adds
the command "SEND_BPFAILURE_TO_EGATE" to the returned list.

If the message is a business action in response to an original action, handle the
expected response for the original action message using ux-ack-handler.

For any business action message, sets up message tracking for each response
expected by the message.

If a Receipt acknowledgment is expected by this message, handles the
acknowledgment as if a positive ack was received from e*Gate and adds the
command "SEND_REC_ACK_TO_TP" to the command list to be returned.

If a Acceptance acknowledgment is expected by this message, handles the
acknowledgment as if a positive ack was received from e*Gate and adds the
command "SEND_ACC_ACK_TO_TP" to the command list to be returned.

For a business action message, adds the command "SEND_MSG_TO_EGATE" to the
command list to be returned.

Commits or rolls back the database depending on the result of the process. Returns
to the caller.

Examples

The following Monk script example calls ux-dbproc-ros-inb. This script makes three
assumptions:

That ux-init-trans was executed successfully for the given message.
e*Xchange Partner Manager Implementation Guide 260

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
That a connection to the database, conn-handle, has been established before
ux-dbproc-ros-inb is called.

All variables in the first two statements below have been properly defined with
values either from the message itself or from the trading partner profile in the
database.

If ux-dbproc-ros-inb fails, then a user defined function SendFailureNotification is
called.

(set! dbproc_info
(list g_ros_proc_ind_code g_ros_proc_id g_ros_trans_code

g_ros_trans_id g_ros_sigact_code g_ros_sigact_id
g_ros_inrespto_code g_ros_inrespto_id g_ros_rec_ack_time
g_ros_acc_ack_time g_ros_perform_time error_data))

(set! dbproc_info
(append dbproc_info

(list "ACTIVITY_TYPE" activity_type "ACT_INST_ID" event_id)))
(set! dbproc_info

(ux-dbproc-ros-inb g_connection_handle
(get ~input%RosettaNetGeneric) dbproc_info))

(if (boolean? dbproc_info)
(begin

(SendFailureNotification g_direction)
(throw Exception-Monk-Usage

(string-append "ux-dbproc-ros-inb() failed: <"
(ux-get-error-str)
">\n")))

(begin)
)
(do ((i 0 (+ 1 i)))

((>= i (vector-length dbproc_info)))
(let ((element (vector-ref dbproc_info i)))
(if (string=? element "SEND_BPFAILURE_TO_EGATE")

(begin
…

)
(begin)

)
(if (string=? element "SEND_MSG_TO_EGATE")

(begin
…

)
(begin)

)
… ;Take action for other commands.
)

e*Xchange Partner Manager Implementation Guide 261

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-dbproc-ros-outb

Syntax

(ux-dbproc-ros-outb connection-handle msg list_of_rn_pars)

Description

ux-dbproc-ros-outb handles message tracking and acknowledgment for an outbound
RosettaNet message that the e*Xchange receives from e*Gate.

Parameters

Name Type Description

connection-handle connection-handle
Required.

The previously established
connection to the database.

msg String The raw message received from e*Gate

List_of_rn_pars list:
global_proc_ind_code
global_proc_id
global_trans_code
global_trans_id
global_sigact_code
global_sigact_id
inrespto_sigact_code
inrespto_sigact_id
rec_ack_time
acc_ack_time
perform_time
ext_data_col_name
ext_data_col_value
…

Required. RosettaNet transaction
information.

All list arguments must be strings.

Any number of ext_data_col_name---
ext_data_col_value pairs can be specified as
long as they are specified in pairs.

All elements are required, but can be empty
strings ("").

List member Description

global_proc_ind_code The RosettaNet global process indicator
code.

global_proc_id The RosettaNet global process ID.

global_trans_code The RosettaNet global transaction code.

global_trans_id The RosettaNet global transaction ID.

global_sigact_code The RosettaNet global action code or signal
code, depend on if the message is a
RosettaNet business action or business
signal.

global_sigact_id The RosettaNet global action code or signal
ID, depend on if the message is a RosettaNet
business action or business signal.
e*Xchange Partner Manager Implementation Guide 262

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

String
Returns a string indicating what action to take when the function executes successfully.

Boolean
Returns #f (false) when the function fails to complete successfully.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Additional Information

ux-dbproc-ros-outb does the following:

Receives a database connection handle and a list of information about the
RosettaNet message from the calling process.

inrespto_sigact_code If the message is a RosettaNet business
signal or an action that is a response to
another action, this field is the global action
code for the original action.

inrespto_sigact_id If the message is a RosettaNet business
signal or an action that is a response to
another action, this field is the global action
ID for the original action.

rec_ack_time Time to acknowledge the receipt of the
message.

acc_ack_time Time to acknowledge the acceptance of the
message.

perform_time Time to carry out the action specified in the
message and provide a response.

ext_data_col_name Optional. Field name for any external data to
be saved with the message.

ext_data_col_value Optional, but must appear in pair with
ext_data_col_value. This value is assigned to
the external data field with the
corresponding ext_data_col_name as the
column name. Any external data, if specified,
are saved with the message.

… More ext_data_col_name ---
ext_data_col_value pairs.

Return String Action to Take

SEND_MSG_TO_TP end the original message to the
eX_Trading_Port_Queue.

Name Type Description
e*Xchange Partner Manager Implementation Guide 263

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Stores the original message with any external data using ux-store-msg.

If the message is a General Exception, handles all expected acknowledgments and
responses for the original message as if a negative ack were received for each.

If the message is a business action in response to an original action, handles the
expected response for the original action message using ux-ack-handler.

For any business action message, sets up message tracking for each response
expected by this message.

Adds the command "SEND_MSG_TO_TP" to the command list to be returned.

Commits or rolls back the database depending on the result of the process, then
returns to the caller.
e*Xchange Partner Manager Implementation Guide 264

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Examples

The following Monk script example calls ux-dbproc-ros-outb. This script makes three
assumptions:

That ux-init-trans was executed successfully for the given message.

That a connection to the database, conn-handle, has been established before
ux-dbproc-ros-outb is called.

All variables in the first two statements below have been properly defined with
values either from the message itself or from the partner profile in the database.

If ux-dbproc-ros-outb fails, then the error, a user defined function
SendFailureNotification is called.

(set! dbproc_info (list g_ros_proc_ind_code g_ros_proc_id
g_ros_trans_code g_ros_trans_id
g_ros_sigact_code g_ros_sigact_id
g_ros_inrespto_code g_ros_inrespto_id
g_ros_rec_ack_time g_ros_acc_ack_time
g_ros_perform_time error_data))

(set! dbproc_info
(append dbproc_info

(list "ACTIVITY_TYPE" activity_type "ACT_INST_ID" event_id)))
(set! dbproc_info

(ux-dbproc-ros-outb g_connection_handle
(get ~input%RosettaNetGeneric)
dbproc_info))

(if (boolean? dbproc_info)
(begin

(SendFailureNotification g_direction)
(throw Exception-Monk-Usage

(string-append "ux-dbproc-ros-outb() failed: <"
(ux-get-error-str) ">\n")))

(begin)
)
(do ((i 0 (+ 1 i))) ((>= i (vector-length dbproc_info)))
(let ((element (vector-ref dbproc_info i)))

(if (string=? element "SEND_BPFAILURE_TO_EGATE")
(begin
…
)
(begin)

)
(if (string=? element "SEND_MSG_TO_EGATE")

(begin
…
)
(begin)

)
… ;Take action for other commands.
)

e*Xchange Partner Manager Implementation Guide 265

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-dequeue

Syntax

(ux-dequeue connection-handle)

Description

ux-dequeue retrieves enveloped, outbound messages that are ready to be routed to a
trading partner.

Parameters

Return Values

Returns one of the following values:

Vector
If an outbound message was found and no errors were encountered, the mtrk_outb_id
and message is returned as string elements in a vector mtrk_outb_id is the first element
of the vector and the message is the second element.

Boolean
Returns #t (true) if an outbound message was not found and no errors were
encountered; otherwise returns #f (false) if the process was unsuccessful. Use
ux-get-error-str to retrieve the corresponding error message.

Throws

Exception-InvalidArg.

Additional Information

ux-dequeue is called by the e*Xchange Transaction Polling e*Way.

It does the following:

Receives a database connection handle from the e*Xchange Transaction Polling
e*Way.

Searches the Transaction Queue for the identity of the oldest record in the Stored
Message table that needs to be sent to a trading partner.

Decompresses the message before adding it to the Stored Message table.

Deletes the corresponding identifier in the Transaction Queue.

Returns a value to the e*Xchange Transaction Polling e*Way to indicate whether or
not the process was successful and whether or not an outbound message was
found. If successful, and if a message was found, the message is returned as a string
to the e*Xchange Transaction Polling e*Way.

Internally within the API, a call is made to ux-init-trans to load the trading partner
information into global memory. This is useful so that the e*Xchange Transaction

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.
e*Xchange Partner Manager Implementation Guide 266

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Polling e*Way Collaboration has the information available to determine whether any
encryption or digital signatures are required on the message before it is sent to the
trading partner.

Example

The following sample Monk script illustrates how the e*Xchange Transaction Polling
e*Way:

1 Creates an outbound message structure named tran_poll.

2 Calls ux-dequeue, which returns a value stored in the parameter named result.

3 Determines whether the value of the result parameter is a Boolean value or a string,
and then performs one of the following actions:

If the value is a string, then the message contained in the result parameter is
inserted into the output message structure, and then forwarded to the server.

If the value is Boolean #f (false), ux-get-error-str is called to display the error
message that was encountered.

If the value is Boolean #t (true), a message is displayed indicating that no
message was returned from the database.

(define input-message-format-file-name "")
 (define output-message-format-file-name "tran_poll.ssc")
 (load "tran_poll.ssc")
 (define result (ux-dequeue connection-handle))
 (if (boolean? result)
 (begin
 (if (eq? result #f)
 (begin
 (display (ux-get-error-str))
 (newline)
)
 (begin
 (display "There are no more msgs to retrieve
 from DB\n")
)
)
)
e*Xchange Partner Manager Implementation Guide 267

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-duplicate-check

Syntax

(ux-duplicate-check connection-handle unique_id level direction)

Description

ux-duplicate-check checks whether the current Message Profile or B2B Protocol is a
duplicate.

Parameters

Return Values

Returns one of the following values:

String
Returns "Y" if the message is a duplicate; otherwise returns "N" if the message is not a
duplicate.

Boolean
Returns #f (false) if the API fails and the message cannot be verified as unique or
duplicated. Use ux-get-error-str to retrieve the error message.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

unique_id string Required. The string that uniquely
identifies the transaction.
For an incoming message, this is the
unique ID created by the Validation
Rules Builder tool.
For an outgoing message, it is the
message ID taken from the message
XML.

level string Required. The envelope level from
which to obtain header segment data
to check whether the current message
is a duplicate. Valid values:
I—Interchange
T—Transaction

direction string Required. Indicates the direction of
the message:
I—Inbound
O—Outbound
e*Xchange Partner Manager Implementation Guide 268

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Additional Information

You can call ux-duplicate-check from a Monk script that handles inbound or outbound
messages.

The Inbound Message Tracking table (es_mtrk_inb) contains one row of information for
each inbound message and acknowledgment that has been processed and stored in the
Message Storage table. The Outbound Message Tracking table (es_mtrk_outb) contains
one row of information for each outbound message and acknowledgment that has been
processed and stored.

Each row of the Inbound and Outbound Message Tracking tables contains a unique
identifier for each message or acknowledgment. This identifier may consist of any
combination of the following:

Interchange control, functional group, or (depending on the messaging protocol
used) message control numbers. X12 uses control numbers, RosettaNet does not.

Message identifier code

Version code

Sending application or company name; for example, SAP or Sears

ux-duplicate-check looks at the es_mtrk_outb or es_mtrk_inb table to determine if the
data just received is a duplicate. It takes a unique_id, direction ("I" or "O"), and level
("T" or "I"), and determines whether the combination of the unique_id, es_id (tpts_id if
level = "T" or tpic_id if level = "I"), and es_opt ("TS" if level = "T" or "IC" if level = "I")
already exist in the es_mtrk_outb (if direction "O"). If that combination already exists,
then the data just received is considered a duplicate.

Example

(define unique_id "LA LA LA LA FA")
(define direction "O")
(define level "T")
(display "calling ux-duplicate-check\n")
(define res (ux-duplicate-check connection-handle unique_id level
direction))
(cond ((not (boolean? res))
 (cond ((string-ci=? "Y" res)
(display "It is a duplicate\n")
)
 (else
(display "It is not a duplicate\n")
)
)
)
 (else
 (display (ux-get-error-str))
 (newline)
)
)
e*Xchange Partner Manager Implementation Guide 269

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-func-ack-handler

Syntax

(ux-func-ack-handler connection-handle ext-list mtrk-ext-list
error_data)

Description

ux-func-ack-handler associates an inbound functional acknowledgment such as an X12
TA1 or 997 or a UN/EDIFACT CNTRL message with the appropriate outbound
message or messages. If there are errors, it adds the error data to the database.

Parameters

The valid combination of values for mtrk-ext-list are listed below:

Possible combinations for X12

T_CONTROL_NUM, G_CONTROL_NUM, RESP_ID

T_CONTROL_NUM, G_CONTROL_NUM

G_CONTROL_NUM, RESP_ID

G_CONTROL_NUM

I_CONTROL_NUM

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

ext-list list of sub-lists Required if the global Message Profile
structure has not been previously loaded by
ux-init-trans or ux-init-ts. Otherwise, this can
be an empty list. Each sub-list being a pair of
es_ext_detail.col_name and
es_ext_data.ext_data_value.
An example of each is given below:

(list)
(list (list "FUNC_ID_CODE" "FA"))

mtrk-ext-list list of sub-lists Required. Cannot be an empty list. Each sub-
list is a pair of es_mtrk_ext_det.col_name and
es_mtrk_ext_data.mtrk_data_value.
Example:

(list (list "I_CONTROL_NUM" "000000009"))

error_data string Required. Two possible formats:
If there is error information—
code^description~code^description
(^ separates the values for an error and ~
separates the errors).
If there is no error information—empty
string ("").
e*Xchange Partner Manager Implementation Guide 270

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Possible combinations for UN/EDIFACT

IC_CONTROL_REF, TS_CONTROL_REF, RESP_ID

IC_CONTROL_REF, TS_CONTROL_REF

IC_CONTROL_REF, FG_CONTROL_REF, TS_CONTROL_REF, RESP_ID

IC_CONTROL_REF, FG_CONTROL_REF, TS_CONTROL_REF

IC_CONTROL_REF, FG_CONTROL_REF

IC_CONTROL_REF

Return values

returns one of the following values:

Vector

Vector of mtrk_outb_ids (which are strings). For example:

 #("8440" "8725")

Boolean
 Returns #t (true) if nothing is retrieved; otherwise, returns #f (false) if an error is
encountered.

Throws

None.

Additional information

ux-func-ack-handler updates the es_mtrk_outb, es_waiting_ack, and es_mtrk_error (if
error data is included) database tables based on the message storage info associated
with the acknowledgment just received.

The B2B Protocol global structure must be loaded, however the Message Profile global
structure is not required. If only the B2B Protocol global structure is loaded, e*Xchange
finds the appropriate tpts_ids in the es_tpts table using the ext-list.

ux-func-ack-handler updates es_mtrk_outb.ack_msg_id with the global message
storage ID for the rows associated with the mtrk-ext-list, unique_id, and tpts_ids. It
deletes any rows in the es_waiting_ack table associated with the
es_mtrk_outb.mtrk_outb_id that has been updated with the global message storage ID.

It returns #t if no es_mtrk_outb.mtrk_outb_ids were updated. Otherwise it returns a
vector of es_mtrk_outb.mtrk_outb_ids that were updated (using distinct
es_mtrk_outb.orig_msg_ids).

If there is error data, ux-func-ack-handler inserts the data into the es_mtrk_error table.

Examples

In the following example, 8440 and 8725 are returned from the es_mtrk_outb table. 8440
and 8551 have the same orig_msg_id so only one of those is returned.

mtrk_outb_id orig_msg_id
8440 10
8551 10
8725 11
e*Xchange Partner Manager Implementation Guide 271

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
In the following example, the return value of ux-func-ack-handler is assigned to a
variable named var, which is then displayed.

(define var (ux-func-ack-handler connection-handle (list) (list
(list "I_CONTROL_NUM" "000000011")) "23^Twenty Three Desc~54^Fifty
Four Desc"))

(display var)
e*Xchange Partner Manager Implementation Guide 272

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-env-msg-id

Syntax

(ux-get-env-msg-id connection-handle unique_id direction es_id
es_opt)

Description

ux-get-env-msg-id retrieves the env_msg_id from a message tracking table using the
unique_id, direction, es_id, and es_opt.

Parameters

Return Values

String
Returns the env_msg_id if a matching record is found in the e*Xchange database.

Boolean

Returns #f (false)—if an error was encountered; otherwise returns #t (true)—if no
env_msg_id is found for supplied criteria, or the env_msg_id is null or an empty string.

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

unique_id string Required. The unique identifier in the
message tracking table.

direction string Required. Indicates the direction of the
message:

I—Inbound
O—Outbound

es_id string Required. Two possible values:
tpts_id if stored at the Message Profile level.
tpic_id if stored at the B2B Protocol level.

es_opt string Required. Two possible values:
“TS” if stored at the Message Profile level.
“IC” if stored at the B2B Protocol level
e*Xchange Partner Manager Implementation Guide 273

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-error-str

Syntax

(ux-get-error-str)

Description

ux-get-error-str is used when a function fails. It returns the last error message that was
encountered.

Parameters

ux-get-error-str requires no parameters.

Return Values

String
Returns the last error message encountered by an e*Xchange API.

Throws

Exception-InvalidArg.

Additional Information

ux-get-error-str can be used for inbound or outbound messages. It does the following:

Retrieves the message associated with the last error encountered by another
e*Xchange API.

Returns the error message to the calling API.

If ux-get-error-str is included in a display, the error shows in the log file.

When an e*Xchange API encounters a problem and cannot process a message as
expected, an error message is stored in the memory buffer. ux-get-error-str retrieves
this error message from the buffer.

Example

The following sample Monk script calls ux-get-error-str to retrieve the message
associated with the last error encountered. In this example, the error message is
displayed, followed by a new line.

(display (ux-get-error-str))
 (newline)
e*Xchange Partner Manager Implementation Guide 274

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-fb-count

Syntax

(ux-get-fb-count connection-handle FB_UNIQUE_ID)

Description

ux-get-fb-count returns the total record count from es_mtrk_outb table with the same
fast batch unique_id.

Parameters

None.

Return values

Returns one of the following values:

Number
 Returns the total record count.

Throws

None.

Examples

(define fb_unique_id "AAAAA")
(define total_fb_cnt

(ux-get-fb-count connection-handle fb_unique_id)
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

FB_UNIQUE_ID string Required. The fast batch unique ID.
e*Xchange Partner Manager Implementation Guide 275

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-header

Syntax

(ux-get-header level type)

Description

ux-get-header returns values that are stored in the global structures (g_ic, and g_ts).
The global structures contain data from the Trading Partner Profile. The B2B Protocol
structure contains information about the protocol, version, direction, external trading
partner, and communication protocol. The Message Profile structure contains
information about the specific message, validation collaboration, transfer mode, and
response messages. The structures are populated by calling ux-init-trans (ux-init-ic or
ux-init-ts). Therefore, ux-init-trans must be called, and have successful execution,
before ux-get-header is called. Otherwise, ux-get-header returns null values (empty
strings).

Specifically, ux-get-header does the following:

Returns a list of values retrieved from the global structures or a value that indicates
that the API did not process successfully.

Parameters

Name Type Description

level string Required. The level from which to
obtain TP Profile information. Valid
values:
I—B2B Protocol level information
T—Message Profile level information
A—Both levels

type string Required.
O—Original message
e*Xchange Partner Manager Implementation Guide 276

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

Vector
Returns one of three vectors containing header data depending on the value of the level
argument.

Level
Argument

Vector
Element
Number

Data
Type

Description

I 1 string tpic_id

2 string tph_id

3 string tran_type

4 string version

5 string direction

6 string rtn_rcpt

7 string test_ind

8 string sec_key_type

9 string comm_port

10 string logical_name

11 string file_name

12 string user_name

13 string password

14 string host

15 string port

16 list (of
strings)

(ext_data_col_name, ext_data_col_value) These repeat
for as may entries as there are in es_ext_data/
ex_ext_detail for this level I. There is an internal limit
of 50 col_name/col_value pairs.
e*Xchange Partner Manager Implementation Guide 277

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
T 1 string tpts_id

2 string tpic_id

3 string alt_id

4 string version

5 string tran_mode

6 string bus_collab

7 string db_collab

8 string msg_compress

9 string rtn_ts_id

10 string rtn_rcpt

11 list (of
strings)

(ext_data_col_name, ext_data_col_value) These repeat
for as may entries as there are in es_ext_data/
ex_ext_detail for this level T. There is an internal limit
of 50 col_name/col_value pairs.

Level
Argument

Vector
Element
Number

Data
Type

Description
e*Xchange Partner Manager Implementation Guide 278

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Boolean
Returns #f (false) if the API did not process successfully. Use ux-get-error-str to retrieve
the corresponding error message.

A 1 string tpic_id

2 string tph_id

3 string tran_type

4 string version

5 string direction

6 string rtn_rcpt

7 string test_ind

8 string sec_key_type

9 string comm_port

10 string logical_name

11 string file_name

12 string user_name

13 string password

14 string host

15 string port

16 list (of
strings)

(ext_data_col_name, ext_data_col_value) These repeat
for as may entries as there are in es_ext_data/
ex_ext_detail for this level I. There is an internal limit
of 50 col_name/col_value pairs.

17 string tpts_id

18 string tpic_id

19 string alt_id

20 string version

21 string tran_mode

22 string bus_collab

23 string db_collab

24 string msg_compress

25 string rtn_ts_id

26 string rtn_rcpt

27 list (of
strings)

(ext_data_col_name, ext_data_col_value) These repeat
for as may entries as there are in es_ext_data/
ex_ext_detail for this level T. There is an internal limit
of 50 col_name/col_value pairs.

Level
Argument

Vector
Element
Number

Data
Type

Description
e*Xchange Partner Manager Implementation Guide 279

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Throws

Exception-InvalidArg.

Additional Information

You can call ux-get-header from a Monk script that handles inbound or outbound TP
Profiles. The ePM Batching e*Way calls this API to retrieve the enveloping information
needed to process outbound batch messages.

A global TP Profile structure is a structure in memory that stores information for
validating or assembling the message as required by its eBusiness Protocol during the
processing of the message. The global structures are populated with information
retrieved from trading partner profiles in the database with the ux-init-trans, ux-init-ic,
or ux-init-ts APIs.

Example

The following sample Monk script calls the ux-get-header API with the assumption
that the ux-init-trans processed successfully for the current original message. The ux-
get-header API returns a list that contains data for the current message B2B Protocol
level. The sample DO loop displays each string in the data list. If an error occurs, then
#f is returned. The error can be identified by calling the ux-get-error-str API.

(define type "o")
 (define level "i")
 (define header-values (ux-get-header level type))
 (cond ((not (boolean? header-values))
 (do ((i 0 (+ i 1)) (value-count (vector-length
 header-values)))
 ((= i value-count))
 (display "header value <")
 (display i)
 (display "> = ")
 (display (vector-ref header-values i))
 (newline)
)
)
 (else
 (display (ux-get-error-str))
 (newline)
)
)
e*Xchange Partner Manager Implementation Guide 280

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-key-cert

Syntax

(ux-get-key-cert connection-handle key-type [tpic-id])

Description

ux-get-key-cert retrieves security keys from the database. Use the ux-get-key-cert API
for inbound or outbound messages.

Parameters

Return Value

Returns one of the following:

Boolean

Returns #f (false)—if an error was encountered; otherwise returns #t (true)—if no
security certificate was found for supplied criteria.

Name Type Description

connection-
handle

connection-
handle

Required. The previously established connection to the
database.

key-type string The type of security key, certificate, or algorithm retrieved.
Use the value obtained using sec_key_type in es_tpic. Only
one key-type single character can be passed in. If
sec_key_type contains more than one security trait, then
these traits are separated by a vertical bar "|" and must be
parsed into single characters before passing the value to ux-
get-key-cert.
Possible values are:
E—Encryption certificate name
S—Signature key name
I — Signature Key Passphrase
D—Decryption key name
B—Decryption key passphrase
V—Signature verification certificate name
F—SSL Keystore Name
G—SSL Keystore Type
H—SSL Keystore Passphrase
K—SSL Client Key Name
T—SSL Client Key Type (only key name returned)
C—SSL Client Certificate Name
P—SSL Client Certificate Type (only key name returned)
Y—Encryption algorithm (only key name returned)
A—Signature algorithm (only key name returned)
N—None

tpic-id string (Optional) The ID of the B2B Protocol for the trading partner
profile. If you do not provide this parameter, then the value
of tpic-id from the main global B2B Protocol structure
stored in memory is used.
e*Xchange Partner Manager Implementation Guide 281

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
vector
Returns a vector containing the following three elements if a security certificate was
found:

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Example 1

This example passes in key-type of "K" and tpic_id of "161" and expects back a key-
values vector containing three elements: SSL Client Key name in the first position,
security key length in the second position, and SSL Client Key value in the last position.

(define key-type "K")
(define tpic-id "161")
(define key-values

(ux-get-key-cert connection-handle key-type tpic-id))
(cond

((not (boolean? key-values))
(do ((i 0 (+ i 1)) (value-count (vector-length key-values)))

((= i value-count))
(display "key value <")
(display i)
(display "> = ")
(display (vector-ref key-values i))
(newline)))
; retrieve key-values

(else
(cond

(key-values (display "No security key found\n"))
(else (display (ux-get-error-str))

(newline)))))

Element
Number

Type Description

1 string Security key name.

2 integer Length of security key. This element is zero if there is no
security key.

3 string Security key. This element is empty if there is no
security key associated with the security key name
stored in the database.
e*Xchange Partner Manager Implementation Guide 282

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Example 2

Using a key-type of "A", this example relies on the global structure in memory, loaded
from either ux-init-trans or ux-init-ic, to obtain tpic_id. It expects back only one useful
value: the Signature Algorithm in the first position of the key-values vector, the second
position contains 0, and the third position is empty.

(define key-type "A")
(define key-values (ux-get-key-cert connection-handle key-type))
(cond

((not (boolean? key-values))
(do ((i 0 (+ i 1)) (value-count (vector-length key-values)))

((= i value-count))
(display "key value <")
(display i)
(display "> = ")
(display (vector-ref key-values i))
(newline))

; retrieve key-values
)
(else

(cond
(key-values (display "No security key found\n"))
(else

(display (ux-get-error-str))
(newline)))))

(define key-values
(ux-get-key-cert conn-handle "E" "ENCRYPT_CERT_NAME"))

(cond
((not (boolean? key-values))

(define sec-key-len (vector-ref key-values 0))
(define sec-key (vector-ref key-values 1)))

(else
(if key-values

(display "No security was found for supplied criteria\n")
(begin

(display (ux-get-error-str))
(newline)))))

(display "Testing ux-get-key-cert\n")
(define key-vec (ux-get-key-cert connection-handle "V" "STC SIG"))
(if (eq? key-vec #f)

(begin
(display (ux-get-error-str))
(newline))

(begin
(if (= 0 (string->number (vector-ref key-vec 0)))

(begin
(comment "No keys retrieved from the DB"))

(begin
(display "Size of Key is = <")
(display (vector-ref key-vec 0))
(display ">\n\n")))))
e*Xchange Partner Manager Implementation Guide 283

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-lock-ext-attrib-db

Syntax

(ux-get-lock-ext-attrib-db connection-handle column-name level)

Description

ux-get-lock-ext-attrib-db performs an insignificant update to the table first. This blocks
if an external update is occurring to the record and also locks the record for the current
process. Once the update has been performed, the specified attribute is retrieved from
the DB and updated in the global structures and returned.

Parameters

Return Value

string
Returns a string containing the column value if found and successfully retrieved.

Boolean

Returns #t (true) if no values could be found for retrieval; otherwise returns #f (false)—
if an error was encountered.

Throws

None.

Example

(define col-value (ux-get-lock-ext-attrib-db connection-handle
"IC_CONTROL_REF" "I"))

(if (!boolean col-value)
(display (string-append "Column value: <"col-value">\n"))
(if (eq? col-value #t)

(display "No column value could be found in the DB\n")
(display (string-append "Encountered error: <"(ux-get-

error-str)">\n"))
)

)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

column-name string Required. The name of the attribute to
be retrieved.

level string Required. Indicates the level the value
should be retrieved from.
I - B2B Protocol level
T - Message Profile level
e*Xchange Partner Manager Implementation Guide 284

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-mtrk-attrib

Syntax

(ux-get-mtrk-attrib connection-handle list)

Description

ux-get-mtrk-attrib retrieves extended attributes for messages (B2B Protocol or Message
Profile) stored in either the es_mtrk_inb or es_mtrk_outb tables. Uses of this include
retrieving the Response ID or e*Insight Activity ID from an outbound message. This
API is very useful when sending response messages back to e*Insight and associating
the responses with a specific process and activity.

Use the ux-get-mtrk-attrib API for inbound or outbound messages.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

list list:
direction
unique_id
level
mtrk_id
sub-list

Required. Information about the
message.
All list arguments must be strings,
except for the sub-lists which are lists
containing strings.
All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
direction and level, which return an
error if no value is provided.

List member Description

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

unique_id Optional only if mtrk_id is provided.
The unique identifier for the original
message.

level Optional only if mtrk_id is provided.
Valid values:

I—B2BProtocol level
T—Message Profile level

mtrk_id Optional. Message tracking ID. If there
is a list of extended attributes (sub-
list), then mtrk_id or an empty string
"" must be included.

sub-list Optional and repeating. The sub-list
format is:
"Column_Name" "Column_Value");
may contain some of the extended
attributes if already known.
e*Xchange Partner Manager Implementation Guide 285

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Value

Boolean

Returns #f (false)—if an error was encountered; otherwise returns #t (true)—no
extended attributes could be found for the given input data.

vector
Returns a vector containing the following 2N elements (where N is the number of
extended attributes) if a extended attributes are found for the message:

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Example

(define unique_id "ACME ELIG1000000134")
(define mtrk-info (list "O" ; direction

unique_id ; unique-id
"T" ; level
"" ; represents mtrk_id needed

; because of the following sub-lists
(list "I_CONTROL_NUM" "000000002")))

(display "calling ux-get-mtrk-attrib\n")
(define ext-values (ux-get-mtrk-attrib connection-handle mtrk-info))
(display ext-values)
(newline)
(cond ((not (boolean? ext-values))

(do ((i 0 (+ i 1)) (value-count (vector-length ext-values)))
 ((= i value-count))

 (display "mtrk ext value <")
 (display i)
 (display "> = ")

 (display (vector-ref ext-values i))
 (newline)
)
)
 (else

(display (ux-get-error-str))
(newline)

)
)
(display "done calling ux-get-mtrk-attrib\n")

Element
Number

Type Description

1 string Column 1 name.

2 string Column 1 value.

3 string Column 2 name.

4 string Column 2 value.

2N-1 string Column N name.

2N string Column N value.
e*Xchange Partner Manager Implementation Guide 286

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-mtrk-attrib-value

Syntax

(ux-get-mtrk-attrib-value connection-handle list)

Description

ux-get-mtrk-attrib-value returns the message tracking extended attribute value
corresponding to the column name, message tracking ID, and direction.

Parameters

Return Value

String
Returns a string containing the column value if found and successfully retrieved.

Boolean

Returns #f (false)—if an error was encountered; otherwise returns #t (true)—no
extended attributes could be found for the given input data.

Example

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

mtrk_id string Required. Message tracking ID.

direction string Required. Indicates the direction of
the message:

I—Inbound
O—Outbound

col_name string Required. Name of the extended
attribute column.
e*Xchange Partner Manager Implementation Guide 287

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-seq-value

Syntax

(ux-get-seq-value connection-handle table_name)

Description

ux-get-seq-value retrieves the current sequence value for the specified table and
returns the value in the seq_value parameter. To handle concurrency with multiple
e*Ways accessing the same table sequence value simultaneously, this function catches
locking or deadlocking errors up to 10 times and retry until sequence value is returned.
If retrieval fails after the 10th time, an error indication is returned.

Parameters

Return Values

Returns one of the following values:

String
Returns a string containing the incremented sequence value.

Boolean
Returns #f (false) if a problem occurs.

Throws

None.

Example

(define seq_value (ux-get-seq-value connection-handle "es_sd_msg"))

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

table_name string Required. The table name for the
sequence value.
e*Xchange Partner Manager Implementation Guide 288

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-incr-control-num

Syntax

(ux-incr-control-num connection-handle level type)

Description

ux-incr-control-num increments the specified control number of an outbound Message
Profile or B2B Protocol stored in the database and global structure.

Use the ux-incr-control-num API for outbound messages.

Parameters

Return Values

Returns one of the following values:

String
string (incremented control number)—if the appropriate control number was
successfully incremented.

Boolean
Returns #f (false)—if a problem occurred and the control number could not be
duplicated. Use the ux-get-error-str API to retrieve the error message.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Additional Information

ux-incr-control-num does the following:

Receives a connection handle to the database and an indicator that specifies the
type of control number to increment for the current message (interchange,
functional group, or transaction set control number).

If used at the transaction level, ux-incr-control-num increments, by one digit, the
control number for the transaction stored in the database and in the global structure
(the functional group and interchange control numbers are not changed).

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

level string Required. The level of the control
number to increment for the current
message. Valid values:
I—Interchange control number
G—Functional group control number
T—Transaction set control number

type string Required. Indicates which cached
profile to update.
Valid value:
O—original structure
e*Xchange Partner Manager Implementation Guide 289

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Returns either the incremented control number or a value indicating that the API
did not process successfully.

You can call the ux-incr-control-num API from a Monk script that handles outbound
TP Profiles. The ePM Batching e*Way calls this API to obtain the control number
needed to process an outbound batch message.

All control numbers are stored in the es_ext_data/es_ext_detail tables, which
correspond to the global structures.

The control number rolls over to 0 when it reaches 9999999999.

Example

The following sample Monk script calls the ux-incr-control-num API with the
assumption that the ux-init-trans API processed successfully for the current B2B
Protocol or Message Profile level. The ux-incr-control-num returns a string that
contains the incremented functional group control number. If an error occurs, then #f
(false) is returned. The error can be identified by calling the ux-get-error-str API.

(define type "O")
(define level "G")
(define control-number(ux-incr-control-num connection-
 handle level type))

 (cond ((not (boolean? control-number))
 (display "incremented control-number = <")
 (display control-number)
 (display ">\n")
)
 (else
 (display (ux-get-error-str))
 (newline)
)
)
e*Xchange Partner Manager Implementation Guide 290

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-init-exdb

Syntax

(ux-init-exdb connection-handle max_msg_size max_eWay_cnt
eWay_instance_num)

Description

ux-init-exdb performs database and global variable initialization and binds for SQL
statements and their parameters, and returns system default data stored in sb_defaults
table.

Use the ux-init-exdb API on connection to the database.

Parameters

Return Value

list
Returns a list containing sub lists of names and values as stored in system defaults, the
sb_defaults table.

Boolean

Returns #f (false) if something fails. Use ux-get-error-str to see the error.

Throws

Exception-InvalidArg.

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

max_msg_size string The maximum size of message that can
be stored in one blob. If a message is
larger, it is broken into multiple pieces
when stored.

max_eWay_cnt string The maximum number of ePM
Batching e*Ways. This value is
populated from the e*Way
configuration setting and is set to the
total number of ePM Batching e*Ways
in the schema.

For all other e*Way types the value
should be set to “1”.

eWay_instance_num string The e*Way instance for this particular
ePM Batching e*Way. This value is
populated from the e*Way
configuration setting.

For all other e*Way types the value
should be set to “1”.
e*Xchange Partner Manager Implementation Guide 291

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Additional Information

It is important that ux-init-exdb be called every time a connection is made, after login
and the connection-handle is created.

Example

(if (db-login connection-handle HOSTNAME USERNAME PASSWORD)
(begin

 (display "Logged in\n")
 (define sys-def (ux-init-exdb connection-handle 500000 5 3))

 (display sys-def)
(cond ((not (boolean? sys-def))

(do ((i 0 (+ i 1)) (value-count (vector-length sys-def)))
 ((= i value-count))

 (display "system default value <")
 (display i)
 (display "> = ")

 (display (vector-ref sys-def i))
 (newline)
)

(else
(display (ux-get-error-str))
(newline)

)
)

)

e*Xchange Partner Manager Implementation Guide 292

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-init-ic

Syntax

(ux-init-ic connection-handle transact-info)

Description

ux-init-ic retrieves the trading partner profile, based on the items included in the
transact-info list. The retrieved information is only for the B2B Protocol level and is
stored in global structures. ux-get-header with level "I" can be used to extract the data
from the global structures.

If the trading partner profile information has previously been loaded into the global
structures, the function returns an indicator showing in which global structure the data
is located. It does not make a query to the database.

Use the ux-init-ic API for inbound or outbound messages.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

transact-info list:
alt_id
company_name
tran_type
tpic_version
tpts_version
direction
tran_mode
tpic_id
tpts_id
rtn_ts_id
comm_port
logical_name
file_name
sub-list:

(0->many) (optional)

Required. A set of identifying
information contained within the
current message. This information is
matched against corresponding
information in the e*Xchange
database so that the correct trading
partner profile can be retrieved.

All list arguments must be strings,
except for the sub-lists which are lists
containing strings.

All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
direction which returns an error if no
value is provided.

List member Description

alt_id The identification number of the
trading partner, assigned by an
external application (1–20 characters).

company_name The name of the company to which
the message relates. If the trading
partner is a subdivision of a larger
company, this is the name of the
company (1–35 characters).
e*Xchange Partner Manager Implementation Guide 293

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
tran_type The code representing the name of
the eBusiness Protocol used to format
the message: possible values include
X12, EDF and ROS. EDF represents UN/
EDIFACT and ROS represents
RosettaNet.

tpic_version The version of the protocol being used
by the trading partner. This is the
human-readable version, as used in
the es_tpic table, not the code for the
version taken directly from the B2B
Protocol level.

Example: 4040 for X12 version 4040, or
1.1 for RosettaNet version 1.1.

tpts_version The version of the protocol being used
by the trading partner. This is the
human-readable version, as used in
the es_tpts table, not the code for the
version taken directly from the
Message Profile level.

Since ux-init-ic is only applicable to
B2B Protocol levels, any value supplied
for this parameter is ignored.
However, a placeholder ("") must be
supplied.

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

tran_mode The way in which messages are
exchanged with the trading partner:
I (interactive)—The message is sent to
or from the trading partner
individually to facilitate a "question
and answer" type of B2B Protocol.
B (batch)—The message is
accumulated with other messages,
which are then transmitted to or from
the trading partner as a group.
FB (fast batch)—A group of messages
that are to be batched together in one
interchange and identified by an
associating unique ID.

tpic_id The record ID of the es_tpic table.

Name Type Description
e*Xchange Partner Manager Implementation Guide 294

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

string
Returns "O" if the trading partner profile information was successfully loaded into the
global structure.

Boolean
Returns #f (false)—if a corresponding trading partner profile was not found, or a
problem occurred and the global structures were not initialized successfully. Use the
ux-get-error-str API to retrieve the error message.

Note: A failure generally means that the information passed into the function does not
match any of the TP Profiles set up. Review this data and verify that it is correct.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Additional Information

ux-init-trans, ux-init-ic, and ux-init-ts only retrieve for active trading partners. From
the e*Xchange Web Interface, verify the status of the intended TP Profile.

tpts_id The record ID for the es_tpts table.

Since ux-init-ic is only applicable to
B2B Protocol levels, any value supplied
for this parameter is ignored.
However, a placeholder ("") must be
supplied.

rtn_ts_id The record ID of the return Message
Profile set.

Since ux-init-ic is only applicable to
the B2B Protocol level, any value
supplied for this parameter is ignored.
However, a placeholder ("") must be
supplied.

comm_port The communications protocol used in
the message; for example, HTTP.

logical_name The name of the trading partner, as set
up in the Logical Name field in the
General section of the B2B Protocol
properties.

file_name The path and file name of the FTP file
containing the message.

(sub-list) (0->many) Optional. The sub-list format is:
level = "I" or "T" col_name col_value

Name Type Description
e*Xchange Partner Manager Implementation Guide 295

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-init-ic does the following:

Receives a set of identifying values contained within the current message and a
connection handle to the database from the calling process.

Retrieves information from the database for the trading partner profile that matches
the set of identifying values.

Populates the B2B Protocol global structure with information from the trading
partner profile.

Returns a value to the calling process that indicates whether or not the global
structures were initialized successfully.

Trading partner profiles, which include information required by trading partners, are
defined by users and are stored in the following e*Xchange tables: es_company, es_tph,
es_tpcat, es_tpic, es_tpts, es_ext_data, and es_ext_detail. The ux-init-trans and
associated APIs retrieve the information that is stored in these tables and load it into the
global structures.

A global structure stores B2B Protocol data in memory, while e*Xchange processes the
message. Other APIs access the information stored in the global structure to facilitate in
processing the messages.

ux-init-ic includes sec_key_type as part of the global structure.

Example

The following sample Monk script calls the ux-init-ic API to populate the global
structures. In this sample, the global structures can only be initialized if the following
values match the values defined for a trading partner profile in the database:

The alternate identification of the trading partner must be ACMEDIV1

The name of the trading partner must be ACME Division ONE

The sender identification number must be sender_id and the receiver identification
number must be the ID number published by the receiver (this varies depending on
the industry, but could be the DUNS number or some equivalent).

The functional identification code of the message must be HB

The EDI standard used to format the message must be X12

The version number of the EDI standard used to format the message must be 4010

The Message Profile identification number for the message must be 271

The message must be an outbound B2B Protocol level.

If a trading partner profile in the e*Xchange database matches the information specified
above, then data is retrieved from the trading partner profile and placed into the global
structures. #t (true) is returned to indicate that the structures were successfully
initialized.

If there is not a match, or if an error occurs, then #f (false) is returned. The error can be
identified by calling the ux-get-error-str API.
e*Xchange Partner Manager Implementation Guide 296

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
(define transact-info (list "ACMEDIV1" ; alt_id
"ACME Division ONE" ; name
"X12" ; tran_type
"4010" ; in es_tpic
"4010" ; tpts_version in es_tpts
"I" ; direction
"B" ; tran_mode
"" ; tpic_id
"" ; tpts_id
"" ; rtn_ts_id
"" ; comm_port
"" ; logical_name
"" ; file_name
(list "I" "SENDER_ID" "sender_id")
(list "I" "RCVR_ID" "hliu")
(list "T" "FUNC_ID_CODE" "HB")
(list "T" "TRAN_SET_ID" "271")
(list "I" "VERSION" "00401") ; version to

match data
))
if (struc (ux-init-ic connection-handle transact-info)
 (display "ux-init-ic was successful\n")
 (begin
 (display "ux-init-ic was not successful\n")
 (display ux-get-error-str)
 (newline)
)
)

e*Xchange Partner Manager Implementation Guide 297

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-init-trans

Syntax

(ux-init-trans connection-handle transact-info)

Description

ux-init-trans retrieves the trading partner profile based on the items included in the
transact-info list. ux-init-trans can retrieve information for both the B2B Protocol and
Message Profile levels.

The information is stored in global structures. ux-get-header can be used to extract the
data from the global structures.

Use the ux-init-trans API for inbound or outbound messages.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

transact-info list:
alt_id
company_name
tran_type
tpic_version
tpts_version
direction
tran_mode
tpic_id
tpts_id
rtn_ts_id
comm_port
logical_name
file_name
sub-list:

(0->many) (optional)

A set of identifying information
contained within the current message.
This information is matched against
corresponding information in the
e*Xchange database so that the
correct trading partner profile can be
retrieved.

All list arguments must be strings,
except for the sub-lists which are lists
containing strings.

All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
direction which returns an error if no
value is provided.
e*Xchange Partner Manager Implementation Guide 298

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
List member Description

alt_id The identification number of the
trading partner, assigned by an
external application (1–20 characters).

company_name The name of the company to which
the message relates. If the trading
partner is a subdivision of a larger
company, this is the name of the
company (1–35 characters).

tran_type The code representing the name of
the eBusiness Protocol used to format
the message: possible values include
X12, EDF and ROS. EDF represents UN/
EDIFACT and ROS represents
RosettaNet.

tpic_version The version of the protocol being used
by the trading partner. This is the
human-readable version, as used in
the es_tpic table, not the code for the
version taken directly from the B2B
Protocol level.

Example: 4040 for X12 version 4040, or
1.1 for RosettaNet version 1.1.

tpts_version The version of the protocol being used
by the trading partner. This is the
human-readable version, as used in
the es_tpic table, not the code for the
version taken directly from the
Message Profile level.

Example: 4040 for X12 version 4040, or
1.1 for RosettaNet version 1.1.

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

Name Type Description
e*Xchange Partner Manager Implementation Guide 299

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

string
Returns "O" if the trading partner profile information was successfully loaded into the
global structure.

Boolean
Returns #f (false)—if a corresponding trading partner profile was not found, or a
problem occurred and the global structures were not initialized successfully. Use the
ux-get-error-str API to retrieve the error message.

Note: A failure generally means that the information passed into the function does not
match any of the TP Profiles set up. Review this data and verify that it is correct.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

tran_mode The way in which messages are
exchanged with the trading partner:
I (interactive)—The message is sent to
or from the trading partner
individually to facilitate a "question
and answer" type of B2B Protocol
level.
B (batch)—The message is
accumulated with other messages,
which are then transmitted to or from
the trading partner as a group.
FB (fast batch)—A group of messages
that are to be batched together in one
interchange and identified by an
associating unique ID.

tpic_id The record ID of the es_tpic table.

tpts_id The record ID for the es_tpts table.

rtn_ts_id The record ID of the return Message
Profile set.

comm_port The communications protocol used in
the message; for example, HTTP.

logical_name The name of the trading partner, as set
up in the B2B Protocol General
Section, Logical Name field.

file_name The path and file name of the FTP file
containing the message.

(sub-list) (0->many) Optional. The sub-list format is:
level = "I" or "T" col_name col_value

Name Type Description
e*Xchange Partner Manager Implementation Guide 300

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Additional Information

ux-init-trans, ux-init-ic, and ux-init-ts only retrieve for active trading partners. From
the ePM Web Interface verify the status of the intended TP Profile.

ux-init-trans does the following:

Receives a set of identifying values contained within the current message and a
connection handle to the database from the calling process.

Retrieves information from the database for the trading partner profile that matches
the set of identifying values.

Populates the global structure with information from the trading partner profile.

Returns a value to the calling process that indicates whether or not the global
structures were initialized successfully.

Trading partner profiles, which include information required by trading partners, are
defined by users and are stored in the following e*Xchange tables:

es_company

es_tph,es_tpcat

es_tpic,es_tpts

es_ext_data

es_ext_detail

ux-init-trans retrieves the information that is stored in these tables and loads it into the
global structures.

Global structures store TP Profile data in memory while e*Xchange processes the
message. Other APIs access the information stored in the global structures to facilitate
in processing the messages.
e*Xchange Partner Manager Implementation Guide 301

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Example

(define transact-info (list "ACMEDIV1" ; alt_id
"ACME Division ONE" ; name
"X12" ; tran_type
"4010" ; in es_tpic
"4010" ; in es_tpts
"I" ; direction
"B" ; tran_mode
"" ; tpic_id
"" ; tpts_id
"" ; rtn_ts_id
"" ; comm_port
"" ; logical_name
"" ; file_name
(list "I" "SENDER_ID" "sender_id")
(list "I" "RCVR_ID" "hliu")
(list "T" "FUNC_ID_CODE" "HB")
(list "T" "TRAN_SET_ID" "271")
(list "I" "VERSION" "00401") ; version to

match data
))
(if (ux-init-trans connection-handle transact-info)
 (display "ux-init-trans was successful\n")
 (begin
 (display "ux-init-trans was not successful\n")
 (display ux-get-error-str)
 (newline)
)
)

e*Xchange Partner Manager Implementation Guide 302

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-init-ts

Syntax

(ux-init-ts connection-handle transact-info)

Description

ux-init-ts retrieves the trading partner profile from the e*Xchange database based on
the items included in the transact-info list. The retrieved information is only used by
the Message Profile level and is stored in global structures. ux-get-header with level "T"
can be used to extract the data from the global structures.

Use the ux-init-ts API for inbound or outbound messages.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

transact-info list:
alt_id
company_name
tran_type
tpic_version
tpts_version
direction
tran_mode
tpic_id
tpts_id
rtn_ts_id
comm_port
logical_name
file_name
sub-list:

(0->many) (optional)

Required. A set of identifying
information contained within the
current message. This information is
matched against corresponding
information in the e*Xchange
database so that the correct trading
partner profile can be retrieved.

All list arguments must be strings,
except for the sub-lists which are lists
containing strings.

All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
direction which returns an error if no
value is provided.

List member Description

alt_id The identification number of the
trading partner, assigned by an
external application (1–20 characters).

company_name The name of the company to which
the message relates. If the trading
partner is a subdivision of a larger
company, this is the name of the
company (1–35 characters).

tran_type The code representing the name of
the eBusiness Protocol used to format
the message: possible values include
X12, EDF and ROS. EDF represents UN/
EDIFACT and ROS represents
RosettaNet.
e*Xchange Partner Manager Implementation Guide 303

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
tpic_version The version of the protocol being used
by the trading partner. This is the
human-readable version, as used in
the es_tpic table.

Since ux-init-ts is only applicable to
Message Profiles, any value supplied
for this parameter is ignored.
However, a placeholder ("") must be
supplied.

tpts_version The version of the protocol being used
by the trading partner. This is the
human-readable version, as used in
the es_tpts table.

Example: 4040 for X12 version 4040, or
1.1 for RosettaNet version 1.1.

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

tran_mode The way in which messages are
exchanged with the trading partner:
I (interactive)—The message is sent to
or from the trading partner
individually to facilitate a "question
and answer" type of B2B Protocol
level.
B (batch)—The message is
accumulated with other messages,
which are then transmitted to or from
the trading partner as a group.
FB (fast batch)—A group of messages
that are to be batched together in one
interchange and identified by an
associating unique ID.

tpic_id The record ID of the es_tpic table.

tpts_id The record ID for the es_tpts table.

rtn_ts_id The record ID of the return message
set.

comm_port The communications protocol used in
the message; for example, HTTP.

Name Type Description
e*Xchange Partner Manager Implementation Guide 304

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

string
Returns "O" if the trading partner profile information is successfully loaded into the
global structure.

Boolean
Returns #f (false)—if a corresponding trading partner profile was not found, or a
problem occurred and the global B2B Protocol structures were not initialized
successfully. Use the ux-get-error-str API to retrieve the error message.

Note: A failure generally means that the information passed into the function does not
match any of the TP Profiles set up. Review this data and verify that it is correct.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Additional Information

ux-init-trans, ux-init-ic, and ux-init-ts only retrieve for active trading partners. From
the e*Xchange Web Interface verify the status of the intended TP Profile.

ux-init-ts does the following:

Receives a set of identifying values contained within the current message and a
connection handle to the database from the calling process.

Retrieves information from the database for the trading partner profile that matches
the set of identifying values.

Populates the Message Profile global structures with information from the trading
partner profile.

Returns a value to the calling process that indicates whether or not the global
structures were initialized successfully.

Trading partner profiles, which include the information required by trading partners,
are defined by users and are stored in the following e*Xchange tables: es_company,
es_tph, es_tpcat, es_tpic, es_tpts, es_ext_data, and es_ext_detail. The ux-init-trans and
associated APIs retrieve the information that is stored in these tables and loads it into
the global structures.

logical_name The name of the trading partner, as set
up in the Logical Name field in the
General tab of the B2B Protocol
window.

file_name The path and file name of the FTP file
containing the message.

(sub-list) (0->many) Optional. The sub-list format is:
level = "I" or "T" col_name col_value

Name Type Description
e*Xchange Partner Manager Implementation Guide 305

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
A global structure stores data for TP Profile in memory while e*Xchange processes the
message. Other APIs access the information stored in the global structures to facilitate
in processing the messages.

Example

(define transact-info (list "ACMEDIV1" ; alt_id
"ACME Division ONE" ; name
"X12" ; tran_type
"4010" ; tpic_version in es_tpic
"4010" ; tpts_version in es_tpts
"I" ; direction
"B" ; tran_mode
"" ; tpic_id
"" ; tpts_id
"" ; rtn_ts_id
"" ; comm_port
"" ; logical_name
"" ; file_name
(list "I" "SENDER_ID" "sender_id")
(list "I" "RCVR_ID" "hliu")
(list "T" "FUNC_ID_CODE" "HB")
(list "T" "TRAN_SET_ID" "271")
(list "I" "VERSION" "00401") ; version to match data

))
(if (ux-init-ts connection-handle transact-info)
 (display "ux-init-ts was successful\n")
 (begin
 (display "ux-init-ts was not successful\n")
 (display ux-get-error-str)
 (newline)
)
)

e*Xchange Partner Manager Implementation Guide 306

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-mdn-outb-ack

Syntax

(ux-mdn-outb-ack connection-handle ack-stat)

Description

ux-mdn-outb-ack performs the acknowledgment handling for AS2 MDNs created in
eXchange and sent in the outbound direction. This function is unique from the other
ack handlers in that the ack msg is stored first. Thus, the global store_message_id can
not be used to store in es_mtrk_inb.ack_msg_id. The ack-stat structure was modified to
add room to pass in the ack-msg-id of the stored MDN when performing the
association.
e*Xchange Partner Manager Implementation Guide 307

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

ack-stat list:
ack-tm
ack-type
level
mtrk-id
unique-id
error-data
direction
out-queue
resp-id
ack-msg-id

Required. A set of identifying
information contained within the
current message. This information is
matched against corresponding
information in the e*Xchange
database so that the correct trading
partner profile can be retrieved.

All list arguments must be strings.

List member Description

ack-tm Optional. The acknowledgment time
in the format yyyymmddhhmmss.

ack-type Required.The acknowledgment type.
Allowed values include:

P
N

level Required. Allowed values include:
I for B2B Protocol level
T for Message Profile level

mtrk-id Optional. The es_mtrk_inb record to
be updated.
Note: Although mtrk-id and unique-id
are optional, one of these values must
be provided.

unique-id Optional. The unique-id to be used to
find the record to be updated.
Note: Although mtrk-id and unique-id
are optional, one of these values must
be provided.

error-data Error information in the format
(code1^desc1~code2^desc2...).

direction Required. Allowed values include:
I for inbound
O for outbound

out-queue Required. Must be “N”.

resp-id Trading Partner Profile ID of the
acknowledgment message being
associated.

ack-msg-id Value to be updated in
es_mtrk_inb.ack_msg_id.
e*Xchange Partner Manager Implementation Guide 308

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

String
Returns the mtrk_id if the es_ctrk_inb record to be updated is found.

Boolean

Returns #t (true) if there are no records to update; otherwise returns #f (false) if the
request did not process successfully. Use the ux-get-error-str API to retrieve the
corresponding error message.

Throws

None.

Example

(define eX-ePM-Update-MDN-ID-Inb-Msg
 (lambda (mdn-mtrk-id mdn-object-id)
 (let
 (
 (error #f)
 (error_desc "")
 (mdn-outb-ack "")
 (ack_info_list (list "" "P" "T" mdn-mtrk-id "" "" "I" "N" "" mdn-
object-id))
)
 (set! mdn-outb-ack (ux-mdn-outb-ack connection-handle
ack_info_list))
 (if (not mdn-outb-ack)
 (begin
 (set! error #t)
 (set! error_desc (ux-get-error-str))
)
)
 (vector error error_desc)
)
)
e*Xchange Partner Manager Implementation Guide 309

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-mdn-inb-ack

Syntax

(ux-mdn-inb-ack connection-handle mtrk-list error-data)

Description

ux-mdn-inb-ack Handles functional acknowledgments for inbound AS2 MDNs. If no
error data involved, should pass MESSAGEID and RESPONSE_ID in mtrk_list. If error
data is involved, then only expect MESSAGEID.

Parameters

Return Values

Returns one of the following values:

Vector
Returns a vector containing the mtrk_ids found to be updated.

Boolean

Returns #t (true) if there are no records to update; otherwise returns #f (false) if the
request did not process successfully. Use the ux-get-error-str API to retrieve the
corresponding error message.

Throws

None.

Example

(set! tran_info_list (list alt_id name tran_type "" "" "O" "" "" "" ""
communication logical_name ""))
(set! ic-ret (ux-init-ic connection-handle tran_info_list))
(if ic-ret
 (begin
 (set! mdn-ext-list (append mdn-ext-list (list (list "MESSAGEID"
orig_msg_id))))
 (set! mdn-ack-ret (ux-mdn-inb-ack connection-handle mdn-ext-list
mdn_err_descr)
)
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

mtrk-list list Required. A name value pair list that
holds values stored in the message
tracking extended attributes.

All list arguments must be strings.

error-data string Error information in the format
(code1^desc1~code2^desc2...).
e*Xchange Partner Manager Implementation Guide 310

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-md5-digest

Syntax

(ux-md5-digest message)

Description

ux-md5-digest returns the MD5 digest of the input message.

Parameters

Return Values

Returns one of the following values:

String
Returns the digested message, if the message is digested successfully.

Boolean

Returns #f (false) if the request did not process successfully. Use the ux-get-error-str
API to retrieve the corresponding error message.

Throws

None.

Example

(define msg "AAAAAAAAAAAAAAAAAAAAAAAAAA")
(define dig-msg (ux-md5-digest msg))

Name Type Description

message string Required. The message to digest.
e*Xchange Partner Manager Implementation Guide 311

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions

ux-ret-edf-batch-ts-msgs

Syntax

(ux-ret-edf-batch-ts-msgs connection-handle file_size)

Description

ux-ret-edf-batch-ts-msgs returns batch UN/EDIFACT messages to batch out.

Parameters

Return Values

Returns one of the following values:

vector
Returns a vector that contains three elements. The first element indicates the
progressive size of the assembled batch message. If the file size exceeds 90% of the size
specified in system defaults, this value is reset to “-1”. The second element contains the
size of the messages returned in this function call. The third element is a vector with as
many elements as there are messages found. Each element of this vector is itself a
vector. Each sub-vector has a message as its first element and sub-vectors as its
subsequent elements. This contains the associated es_mtrk_outb and es_mtrk_ext_data
record IDs.

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

file-size string Contains the current size of batched
messages. This value is updated and
returned.

Element
Number

Type Description

(all) vector:
total file size
total message length
vector

A vector containing a file size, message length and
sub-vector.

(all) vector:
sub-vector 1
sub-vector 2
...
sub-vector N

A sub-vector containing a message and its associated
tracking IDs as its elements.
e*Xchange Partner Manager Implementation Guide 312

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Boolean

Returns #t when there are no messages to retrieve and no errors are encountered;
otherwise returns #f (false) if the request did not process successfully. Use the ux-get-
error-str API to retrieve the corresponding error message.

Throws

None.

Example

(define send-file-size "0")
(define mtrks-msgs (ux-ret-edf-batch-ts-msgs connection-handle send-file-
size))
 (cond
 ((> (vector-length mtrks-msgs) 0)
 (define send-immediate (vector-ref mtrks-msgs 0))
 (comment "If send-immediate is -1, the size of retrieved msgs exceeds
Maximum Batch File Size value in System Defaults" "")
 (display "\nSend Immediate : ")
 (display send-immediate)
 (newline)
 (define msg-size (vector-ref mtrks-msgs 1))
 (display "\ntotal_msg_size : ")
 (display msg-size)
 (newline)
 (define msgs-vec (vector-ref mtrks-msgs 2))
 (do ((I 0 (+ I 1)) (value-count (vector-length msgs-vec))) ((= I value-
count))
 (display "\nmtrks-msgs <")
 (display (+ I 1))
 (display "> = ")
 (display (vector-ref (vector-ref msgs-vec I) 0))
 (do ((j 1 (+ j 1)) (sub-val-count (vector-length (vector-ref msgs-vec I))))
((= j sub-val-count))
 (display "\nMtrk Outb Id: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 0))
 (display "\nMtrk Ext Data Id <FG_CONTROL_REF>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 1))
 (display "\nMtrk Ext Data Id <IC_CONTROL_REF>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 2))
)
)
)
 (else
 (if (eq? mtrks-msgs #t)
 (display "Nothing to retrieve\n")
 (display (string-append "Encountered error: <" (ux-get-error-str) ">\n"))
)
)
)

Sub-vector element Type Description

message string A stored message to be sent using Batch
transfer mode.

vector:
mtrk_outb_id
fg_control_ref_mtrk_ext_data_id
ic_control_ref_mtrk_ext_data_id

vector A tracking number associated with the
message.

Element
Number

Type Description
e*Xchange Partner Manager Implementation Guide 313

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions

ux-ret-edf-fb-ts-msgs

Syntax

(ux-ret-edf-fb-ts-msgs connection-handle file_size)

Description

ux-ret-edf-fb-ts-msgs returns fast batch UN/EDIFACT messages to batch out.

Parameters

Return Values

Returns one of the following values:

vector
Returns a vector that contains three elements. The first element indicates the
progressive size of the assembled batch message. The second element contains the size
of the messages returned in this function call. The third element is a vector with as
many elements as there are messages found. Each element of this vector is itself a
vector. Each sub-vector has a message as its first element and sub-vectors as its
subsequent elements. This contains the associated es_mtrk_outb and es_mtrk_ext_data
record IDs.

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

file_size string Contains the current size of batched
messages. This value is updated and
returned.

Element
Number

Type Description

(all) vector:
total file size
total message length
vector

A vector containing a file size, message length and
sub-vector.

(all) vector:
fb_unique_id
sub-vector 1
sub-vector 2
...
sub-vector N

A sub-vector containing a message and its associated
tracking IDs as its elements.
e*Xchange Partner Manager Implementation Guide 314

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Boolean

Returns #t when there are no messages to retrieve and no errors are encountered;
otherwise returns #f (false)—if the request did not process successfully. Use the ux-get-
error-str API to retrieve the corresponding error message.

Throws

None.

Example

(define mtrks-msgs (ux-ret-edf-fb-ts-msgs connection-handle "0"))
 (cond
 ((not (boolean? mtrks-msgs))
 (define msg-size (vector-ref mtrks-msgs 1))
 (display "\ntotal_msg_size : ")
 (display msg-size)
 (newline)
 (define msgs-vec (vector-ref mtrks-msgs 2))
 (display "Fast Batch Unique ID : ")
 (display (vector-ref msgs-vec 0))
 (newline)
 (do ((i 1 (+ i 1)) (value-count (vector-length msgs-vec))) ((= i value-
count))
 (display "\nmtrks-msgs <")
 (display (+ i 1))
 (display "> = ")
 (display (vector-ref (vector-ref msgs-vec i) 0))
 (do ((j 1 (+ j 1)) (sub-val-count (vector-length (vector-ref msgs-vec i))))
((= j sub-val-count))
 (display "\nMtrk Outb Id: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 0))
 (display "\nMtrk Ext Data Id <FG_CONTROL_REF>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 1))
 (display "\nMtrk Ext Data Id <IC_CONTROL_REF>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 2))
)
)
)
 (else
 (if (eq? mtrks-msgs #t)
 (display "Nothing to retrieve\n")
 (display (string-append "Encountered error: <" (ux-get-error-str) ">\n"))
)
)
)

Sub-vector element Type Description

message string A stored message to be sent using Batch
transfer mode.

vector:
mtrk_outb_id
fg_control_ref_mtrk_ext_data_id
ic_control_ref_mtrk_ext_data_id

vector A tracking number associated with the
message.

Element
Number

Type Description
e*Xchange Partner Manager Implementation Guide 315

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions

d
ux-ret-X12-batch-ts-msgs

Syntax

(ux-ret-X12-batch-ts-msgs connection-handle file_size)

Description

ux-ret-edf-batch-ts-msgs returns batch X12 messages to batch out.

Parameters

Return Values

Returns one of the following values:

vector
Returns a vector that contains three elements. The first element indicates the
progressive size of the assembled batch message. If the file size exceeds 90% of the size
specified in system defaults, this value is reset to “-1”. The second element contains the
size of the messages returned in this function call. The third element is a vector with as
many elements as there are messages found. Each element of this vector is itself a
vector. Each sub-vector has a message as its first element and sub-vectors as its
subsequent elements. This contains the associated es_mtrk_outb and es_mtrk_ext_data
record IDs.

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

file_size string Contains the current size of batched
messages. This value is updated and
returned.

Element
Number

Type Description

(all) vector:
total file size
total message length
vector

A vector containing a file size, message length, and
sub-vector.

(all) vector:
sub-vector 1
sub-vector 2
...
sub-vector N

A sub-vector containing a message and its associate
tracking IDs as its elements.
e*Xchange Partner Manager Implementation Guide 316

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Boolean

Returns #t when there are no messages to retrieve and no errors are encountered;
otherwise returns #f (false)—if the request did not process successfully. Use the ux-get-
error-str API to retrieve the corresponding error message.

Throws

None.

Example

(define send-file-size "0")
(define mtrks-msgs (ux-ret-x12-batch-ts-msgs connection-handle send-file-
size))
(cond
 ((> (vector-length mtrks-msgs) 0)
 (define send-immediate (vector-ref mtrks-msgs 0))
 (comment "If send-immediate is -1, the size of retrieved msgs exceeds
Maximum Batch File Size value in System Defaults" "")
 (display "\nSend Immediate : ")
 (display send-immediate)
 (newline)
 (define msg-size (vector-ref mtrks-msgs 1))
 (display "\ntotal_msg_size : ")
 (display msg-size)
 (newline)
 (define msgs-vec (vector-ref mtrks-msgs 2))
 (do ((I 0 (+ I 1)) (value-count (vector-length msgs-vec))) ((= I value-
count))
 (display "\nmtrks-msgs <")
 (display (+ I 1))
 (display "> = ")
 (display (vector-ref (vector-ref msgs-vec I) 0))
 (do ((j 1 (+ j 1)) (sub-val-count (vector-length (vector-ref msgs-vec I))))
((= j sub-val-count))
 (display "\nMtrk Outb Id: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 0))
 (display "\nMtrk Ext Data Id <T_CONTROL_NUM>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 1))
 (display "\nMtrk Ext Data Id <G_CONTROL_NUM>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 2))
 (display "\nMtrk Ext Data Id <I_CONTROL_NUM>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec I) j) 3))
)
)
)
 (else
 (if (eq? mtrks-msgs #t)
 (display "Nothing to retrieve\n")
 (display (string-append "Encountered error: <" (ux-get-error-str) ">\n"))
)))

Sub-vector element Type Description

message string A stored message to be sent using Batch
transfer mode.

vector:
mtrk_outb_id
ts_control_num_mtrk_ext_data_id
fg_control_num_mtrk_data_id
ic_control_num_mtrk_ext_data_id

vector A tracking number associated with the
message.

Element
Number

Type Description
e*Xchange Partner Manager Implementation Guide 317

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions

d
ux-ret-X12-fb-ts-msgs

Syntax

(ux-ret-X12-fb-ts-msgs connection-handle file_size)

Description

ux-ret-edf-fb-ts-msgs returns fast batch X12 messages to batch out.

Parameters

Return Values

Returns one of the following values:

Vector
Returns a vector that contains three elements. The first element indicates the
progressive size of the assembled batch message. The second element contains the size
of the messages returned in this function call. The third element is a vector with as
many elements as there are messages found. Each element of this vector is itself a
vector. Each sub-vector has a message as its first element and sub-vectors as its
subsequent elements. This contains the associated es_mtrk_outb and es_mtrk_ext_data
record IDs.

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

file_size string Contains the current size of batched
messages. This value is updated and
returned.

Element
Number

Type Description

(all) vector:
total file size
total message length
vector

A vector containing a file size, message length, and
sub-vector.

(all) vector:
fb_unique_id
sub-vector 1
sub-vector 2
...
sub-vector N

A sub-vector containing a message and its associate
tracking IDs as its elements.
e*Xchange Partner Manager Implementation Guide 318

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Boolean

Returns #t when there are no messages to retrieve and no errors are encountered;
otherwise returns #f (false)—if the request did not process successfully. Use the ux-get-
error-str API to retrieve the corresponding error message.

Throws

None.

Example

(define mtrks-msgs (ux-ret-x12-fb-ts-msgs connection-handle "0"))
(cond
 ((not (boolean? mtrks-msgs))
 (define msg-size (vector-ref mtrks-msgs 1))
 (display "\ntotal_msg_size : ")
 (display msg-size)
 (newline)
 (define msgs-vec (vector-ref mtrks-msgs 2))
 (display "Fast Batch Unique ID : ")
 (display (vector-ref msgs-vec 0))
 (newline)
 (do ((i 1 (+ i 1)) (value-count (vector-length msgs-vec))) ((= i value-
count))
 (display "\nmtrks-msgs <")
 (display (+ i 1))
 (display "> = ")
 (display (vector-ref (vector-ref msgs-vec i) 0))
 (do ((j 1 (+ j 1)) (sub-val-count (vector-length (vector-ref msgs-vec i))))
((= j sub-val-count))
 (display "\nMtrk Outb Id: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 0))
 (display "\nMtrk Ext Data Id <T_CONTROL_NUM>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 1))
 (display "\nMtrk Ext Data Id <G_CONTROL_NUM>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 2))
 (display "\nMtrk Ext Data Id <I_CONTROL_NUM>: ")
 (display (vector-ref (vector-ref (vector-ref msgs-vec i) j) 3))
)
)
)
 (else
 (if (eq? mtrks-msgs #t)
 (display "Nothing to retrieve\n")
 (display (string-append "Encountered error: <" (ux-get-error-str) ">\n"))
)
)
)

Sub-vector element Type Description

message string A stored message to be sent using Batch
transfer mode.

vector:
mtrk_outb_id
ts_control_num_mtrk_ext_data_id
fg_control_num_mtrk_data_id
ic_control_num_mtrk_ext_data_id

vector A tracking number associated with the
message.

Element
Number

Type Description
e*Xchange Partner Manager Implementation Guide 319

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-retrieve-997-error

Syntax

(ux-retrieve-997-error)

Description

ux-retrieve-997-error retrieves information from a 997 functional acknowledgment. It
retrieves a vector containing 997 segment (AK2, AK3, AK4, or AK5) elements,
originally stored by calling ux-track-997-errors. Segments are returned in the order
stored. ux-retrieve-997-error returns a vector of segment elements from the head of the
error linked-list and deletes that segment from the list. Hence, the head of the list is
shifted to the next segment.

Use the ux-retrieve-997-error API for inbound messages.

Parameters

None.

Return Values

Returns one of the following values:

vector
Returns one of four types of vectors containing 997 segment information, if there are
segments to retrieve.

Vector
Type

Element
Number

Type Description

AK2 1 string "AK2"

2 string tran_set_id

3 string ts_control_num

AK3 1 string "AK3"

2 string seg_id_code

3 string seg_position

4 string loop_id_code

5 string syntax_error_code

AK4 1 string "AK4"

2 string position_in_segment

3 string data_element_ref_no

4 string syntax_error_code

5 string bad_data
e*Xchange Partner Manager Implementation Guide 320

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Note: Each segment and element is returned in the order stored by ux-track-997-errors.

Boolean

Returns #t (true)—if there are no more segments to retrieve; otherwise returns #f
(false)—if the request did not process successfully. Use the ux-get-error-str API to
retrieve the corresponding error message.

Throws

Exception-InvalidArg.

Example

The following Monk script example calls ux-retrieve-997-error with the assumption
that ux-track-997-errors was executed successfully for at least one 997 segment. ux-
retrieve-997-error returns a vector containing 997 segment elements. Segment
seg_ak2345 contains the vector of returned values, and the internal DO loop displays
each string in the vector. The external DO loop keeps calling ux-retrieve-997-error to
retrieve each of the 997 segments until either #t (true) or #f (false) is encountered. When
there are no more segments to retrieve, then #t (true) is returned. If an error occurs, then
#f (false) is returned and the error string is printed by the display of ux-get-error-str.

(do ((i 0 (+ i 1)) (seg_ak2345 ""))
 ((boolean? seg_ak2345))

 (set! seg_ak2345 (ux-retrieve-997-error))

 (cond ((not (boolean? seg_ak2345))
 (do ((i 0 (+ i 1)) (value-count (vector-length
 seg_ak2345)))
 ((= i value-count))
 (display "AK2345 element <")
 (display i)
 (display "> = ")
 (display (vector-ref seg_ak2345 i))
 (newline)
)
 ; retrieve ak2345 values
)
 (else
 (if seg_ak2345
 (display "No more to retrieve\n")
 (begin
 (display (ux-get-error-str))

AK5 1 string "AK5"

2 string ts_ack_code

3 string ts_syntax_error_code_1

4 string ts_syntax_error_code_2

5 string ts_syntax_error_code_3

6 string ts_syntax_error_code_4

7 string ts_syntax_error_code_5

Vector
Type

Element
Number

Type Description
e*Xchange Partner Manager Implementation Guide 321

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
 (newline)
)
)
);else
);cond
);do
e*Xchange Partner Manager Implementation Guide 322

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-retrieve-997-error-tail

Syntax

(ux-retrieve-997-error-tail)

Description

ux-retrieve-997-error-tail retrieves the 997 segment (AK2, AK3, AK4, or AK5) that is at
the end of the list. Once a vector of segment elements is returned, this API also deletes
that segment from the list.

Use the ux-retrieve-997-error-tail API for inbound messages.

Parameters

None.

Return Values

Returns one of the following values:

Vector
Returns one of four types of vectors containing 997 segment information, if there is a
segment to retrieve.

Vector
Type

Element
Number

Type Description

AK2 1 string "AK2"

2 string tran_set_id

3 string ts_control_num

AK3 1 string "AK3"

2 string seg_id_code

3 string seg_position

4 string loop_id_code

5 string syntax_error_code

AK4 1 string "AK4"

2 string position_in_segment

3 string data_element_ref_no

4 string syntax_error_code

5 string bad_data

AK5 1 string "AK5"

2 string ts_ack_code

3 string ts_syntax_error_code_1

4 string ts_syntax_error_code_2

5 string ts_syntax_error_code_3

6 string ts_syntax_error_code_4

7 string ts_syntax_error_code_5
e*Xchange Partner Manager Implementation Guide 323

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Boolean

Returns #t—if there are no more segments to retrieve; otherwise returns #f (false)—if
the request did not process successfully. Use the ux-get-error-str API to retrieve the
corresponding error message.

Throws

Exception-InvalidArg.

Example

The following Monk script example calls ux-retrieve-997-error-tail with the
assumption that ux-track-997-errors was executed successfully for at least one 997
segment. ux-retrieve-997-error-tail returns a vector containing 997 segment elements.
Segment seg_ak2345 contains the vector of returned values, and the internal DO loop
displays each string in the vector. The external DO loop keeps calling ux-retrieve-997-
error-tail to retrieve each of the 997 segments until either #t or #f is encountered. When
there are no more segments to retrieve, then #t is returned. If an error occurs, then #f is
returned and the error string is printed by the display of ux-get-error-str.

(do ((i 0 (+ i 1)) (seg_ak2345 ""))
 ((boolean? seg_ak2345))

 (set! seg_ak2345 (ux-retrieve-997-error-tail))

 (cond ((not (boolean? seg_ak2345))
 (do ((i 0 (+ i 1)) (value-count (vector-length seg_ak2345)))
 ((= i value-count))
 (display "AK2345 element <")
 (display i)
 (display "> = ")
 (display (vector-ref seg_ak2345 i))
 (newline)
 (sleep 5)
)
 ; retrieve ak2345 values
)
 (else
 (if seg_ak2345
 (display "No more to retrieve\n")
 (begin
 (display (ux-get-error-str))
 (newline)
)
)
)
) ; cond
); do
e*Xchange Partner Manager Implementation Guide 324

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-retrieve-message

Syntax

(ux-retrieve-message connection-handle msg-id)

Description

ux-retrieve-message retrieves a message from the es_msg_ascii table or the
es_msg_binary table, depending on whether the message is compressed or not. Msg-id
is used to identify the message.

Parameters

Return Values

Returns one of the following values:

string
Returns a Monk string representing the found message, when the function executes
successfully.

Boolean
Returns #f (false) when the function fails to complete successfully.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Additional Information

ux-retrieve-message retrieves the entire message, even though it may be saved in the
database in multiple rows.

Name Type Description

connection-handle connection-handle
Required.

The previously established
connection to the database.

msg-id String The message id as saved in the
es_msg_storage table.
e*Xchange Partner Manager Implementation Guide 325

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Examples

The following Monk script example calls ux-retrieve-message. This script makes three
assumptions:

That ux-init-trans was executed successfully for the given message.

That a connection to the database, conn-handle, has been established before
ux-retrieve-message is called.

That all variables in the first two statements below have been properly defined with
values either from the message itself or from the partner profile in the database.

If ux-retrieve-message fails, then the error, a user defined function
SendFailureNotification, is called.

(set! msg_content (ux-retrieve-message connection-handle msg_id))
(if msg_content

(begin
(display (string-append "Got msg_content=<"

msg_content ">\n"))
(newline)
(try ($event-parse input msg_content)

(catch (always (set! success #f)))))
(begin (set! success #f))

)

e*Xchange Partner Manager Implementation Guide 326

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-return-receipt

Syntax

(ux-return-receipt level type)

Description

ux-return-receipt determines whether a return receipt (response) for an event is
expected at the specified level. Use the ux-return-receipt API for inbound or outbound
messages.

Parameters

Return Values

Returns one of the following values:

string
Returns "Y" if a return receipt is expected; otherwise returns "N" if a return receipt is not
expected.

Boolean

Returns #f (false)—if the request did not process successfully. Use the ux-get-error-str
API to retrieve the corresponding error message.

Throws

Exception-InvalidArg.

Name Type Description

level string Required. The return receipt level.
Acceptable values:
I—B2B Protocol level information
T—Message Profile level information

type string Required.
O— original structure
e*Xchange Partner Manager Implementation Guide 327

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Example

The following Monk script example calls ux-return-receipt with the assumption that
ux-init-trans was executed successfully for the given transaction. ux-return-receipt sets
result to equal "Y" if a return receipt is expected for the B2B Protocol level. Otherwise,
result equals "N", which means a return receipt is not expected for the B2B Protocol
level. If an error occurs, then #f (false) is returned and the error string is printed by the
display of ux-get-error-str.

(define level "I")
 (define res (ux-return-receipt level type))
 (cond ((not (boolean? res))
 (cond ((string-ci=? "Y" res)
 (display "Return receipt expected\n")
)
 (else
 (display "Return receipt not expected\n")
)
)
)
 (else
 (display (ux-get-error-str))
 (newline)
)
)
e*Xchange Partner Manager Implementation Guide 328

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-set-fb-overdue

Syntax

(ux-set-fb-overdue connection-handle)

Description

ux-set-fb-overdue checks the database for fast batch settings. If it finds records that
match the specified criteria, it sets the BATCH_SEND_IMM flag to Y. This value
represents any fast batch record that has exceeded its time-out used for fast batch
transactions.

ux-set-fb-overdue checks for the following values:

BATCH_SEND_IMM = "N"

es_mtrk_outb.es_id = g_ts.tpts_id

es_mtrk_outb.es_opt = "TS"

es_mtrk_outb.created_time <= current - fb_timeout in sb_defaults

If a record matches the above criteria, then BATCH_SEND_IMM is set to "Y". This
criteria represents any (fast) batch record that has exceeded its time-out. The ePM
Batching e*Way then picks up the timed out records to send out.

Use the ux-set-fb-overdue API for outbound messages.

Parameters

Return Values

Boolean
Returns #t (true)—if no errors are encountered.

Returns #f (false)—if errors are encountered.

Throws

Exception-InvalidArg

Additional Information

ux-init-trans or ux-init-ts must be called before this API is executed.

Example

(if (eq? #t (ux-set-fb-overdue connection-handle))
(display "ux-set-fb-overdue was successful! \n")
(display (string-append "ux-set-fb-overdue failed with error: <"(ux-
get-error-str) ">\n"))
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.
e*Xchange Partner Manager Implementation Guide 329

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-sha1-digest

Syntax

(ux-sha1-digest message)

Description

ux-sha1-digest returns the SHA1 digest of the input message.

Parameters

Return Values

String

Returns the digested message (unsigned character string of length 20), if the message is
digested successfully.

Boolean
Returns #f (false) if errors are encountered.

Example

Name Type Description

message string Required. The message used to create
the SHA1 digest.
e*Xchange Partner Manager Implementation Guide 330

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-store-msg

Syntax

(ux-store-msg connection-handle msg store-info raw_msg env_msg)

Description

ux-store-msg stores a message (Message Profile or B2B Protocol level) in the e*Xchange
database, inserting entries in multiple tables in the process. If the message is
compressed before it is stored, it is stored in es_msg_binary. If it is not compressed, it is
stored in es_msg_ascii. In either case, a record is inserted into es_msg_storage that has a
column, "compressed", indicating the table in which the message is stored.

Depending on whether the message is inbound or outbound, ux-store-msg makes an
additional entry in either the es_mtrk_inb or es_mtrk_outb table. This table indicates
send or receive time, send count, transaction count, and so on. If there is information
specific to the transaction type (RosettaNet or X12) to store in the message, this data is
stored in es_mtrk_ext_data and associated to specific records in es_mtrk_ext_det.

Use the ux-store-msg API for inbound or outbound messages.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

msg string Required. The processed message to
be stored.

The processed message must be
provided for an inbound message.

For an outbound message, the
processed message does not need to
be stored if the raw message is stored.
If you do not want to store the
processed message, then use an
empty string ("")
Note: If both the raw and processed
messages are empty strings then ux-
store-msg fails.

Storage location:
Inbound—es_mtrk_inb
Outbound—es_mtrk_outb
e*Xchange Partner Manager Implementation Guide 331

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
store-info list:
direction
unique_id
type
error_data
level
tp_loc
msg_being_sent
compressed
mtrk_id
sub-list:

Optional: (0->many)

Required. List of items regarding the
Message Profile.

All list arguments must be strings,
except for the sub-lists which are lists
containing strings.

All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
direction, unique_id, type, and level,
which return an error if no value is
provided.

List member Description

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

unique_id Required. The unique identifier for the
original message.

type Required. The kind of message being
stored. The following are valid values:
"O"—Original (only the original
message is stored)
"W"—Wrapped (the original message
is stored in one location and the
wrapped message is stored in another
location)
"C"—Combined (the wrapped
message and the original message are
stored in one location)

error_data Error information. Optional—
code^description~code^description
(^ separates the values for an error
and ~ separates the errors).

level Required. The storage level. Valid
values:
"I"—B2B Protocol
"T"—Message Profile

msg_being_sent Required for original and wrapped:
"Y"—Message is being sent to e*Gate
"N"—Message is not being sent to
e*Gate

compressed Indicates whether the message is to be
compressed before the msg is stored
in the database:
"Y"—Yes
"N"—No

Name Type Description
e*Xchange Partner Manager Implementation Guide 332

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

String
Returns string that contains the mtrk_id (mtrk_outb_id for outbound or mtrk_inb_id
for inbound)—if the message is successfully stored.

Boolean
Returns #f (false)—if the message is not successfully stored. Use the ux-get-error-str
API to retrieve the corresponding error message.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

mtrk_id Message tracking ID. Can be used for
storage type “W” to locate the correct
row to update env_msg_id. Should
contain an empty string (““) if the
message tracking ID is not entered.

sub-list Optional. The sub-list format is:
col_name col_value
Each sub-list containing attribute
name and value are stored in the
message tracking extended attribute
tables.
Note: If the col_name is
“TRAN_MODE” then the value
specified for this attribute overrides
the Message Profile setting. Also, this
pair is stored in the
es_mtrk_outb.tran_mode column
rather than the message tracking
extended attribute tables.

tp_loc location of trading partner. Valid
value:
"O" —original

raw_msg string Optional. The raw transaction to be
stored in the database.

Note: This must contain at least an
empty string (““) is an env_msg is
passed in.

env_msg string Optional. A string containing the
message to store in env_msg_id. If
env_msg is passed in, the ID for this
message overwrites any value already
in the env_msg_id column for this
row, even if storage_type is set to “C”.

Name Type Description
e*Xchange Partner Manager Implementation Guide 333

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Additional Information

If the length of the message is greater than the max size specified by the ux-init-exdb
API, the message is broken up and stored in multiple rows in es_msg_binary (if
compressed), es_msg_ascii (if not compressed), or es_msg_security (if encrypted or
contains a digital signature).

All messages, whether or not they are created by e*Xchange, are stored in the Stored
Messages table (es_msg_storage).

Example

The example below shows how to create the store information list.

(define store-info (list "O"; direction
 "TESTVAL119"; unique_id

 "W"; type
 "123^Not feeling so good~345^Pain in toe"; error_data
 "T"; level
 "O"; original
 "Y"; msg_being_sent
 "Y" ; compressed
 "" ; mtrk_id
 (list "I_CONTROL_NUM" "556")
 (list "G_CONTROL_NUM" "776")
 (list "T_CONTROL_NUM" "886")

)
)

The example below shows how to call the API.

(define raw_msg "")
(define msg "abcdefghijklmnopqrstuvwxyz1234567890")
(define mtrk-id (ux-store-msg connection-handle msg store-info

raw_msg))
(if (not (boolean? mtrk-id))
 (begin
 (display "Storing of message succeeded!\n")
 (display "returned mtrk_id = <")
 (display mtrk-id)
 (display ">\n")
)
 (begin
 (display "Storing of message failed!\n")
 (display (ux-get-error-str))
 (newline)
)
)

e*Xchange Partner Manager Implementation Guide 334

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-store-msg-errors

Syntax

(ux-store-msg-errors connection-handle mtrk_id direction errorlist)

Description

Stores errors in the e*Xchange database that are associated with a message that is
already stored in the database.

Parameters

Return Values

Boolean
Returns #t (true)—if the errors are stored successfully; otherwise returns #f (false)—if
the errors do not store properly. Use ux-get-error-str to see the error.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Example

(if (ux-store-msg-errors conn-handle "12" "O" "45^Invalid Country
Code~56^Invalid Zipcode")
(display "Stored errors successfully\n")
(display "Failed to store errors\n")

)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

mtrk_id string Required. Message tracking ID that
errors are associated with.

direction string Required. Direction of message. Either
O—Outbound
I—Inbound

errorlist string Required. Use the following format:
code1^desc1~code2^desc2

~code3^desc3...
Code is the numeric identifier for the
error. Desc explains the error. The
code and description are separated by
a "^", and each code/desc pair is
separated by a "~".
e*Xchange Partner Manager Implementation Guide 335

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-store-msg-ext

Syntax

(ux-store-msg-ext connection-handle msg store-info store-mode
msg_storage_id raw_msg env_msg env_msg_id)

Description

This API is similar to ux-store-msg except for the addition of two arguments
store-mode and msg_storage_id. ux-store-msg-ext stores a message (Message Profile or
B2B Protocol) in the e*Xchange database, inserting entries in multiple tables in the
process. If the message is compressed before it is stored, it is stored in es_msg_binary. If
it is not compressed, it is stored in es_msg_ascii. In either case, a record is inserted into
es_msg_storage that has a column, "compressed", indicating the table in which the
message is stored.

Depending on whether the message is inbound or outbound, ux-store-msg-ext makes
an additional entry in either the es_mtrk_inb or es_mtrk_outb table. This table indicates
send or receive time, send count, transaction count, and so on. If there is information
specific to the transaction type (RosettaNet or X12) to store in the message, this data is
stored in es_mtrk_ext_data and associated to specific records in es_mtrk_ext_det.

Use the ux-store-msg-ext API for inbound or outbound messages.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

msg string Required. The transaction to be
stored. Storage location:

Inbound—es_mtrk_inb
Outbound—es_mtrk_outb

store-info list:
direction
unique_id
type
error_data
level
tp_loc
msg_being_sent
compressed
mtrk_id
sub-list:

Optional: (0->many)

Required. List of items regarding the
Message Profile.

All list arguments must be strings,
except for the sub-lists which are lists
containing strings.

All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
direction, unique_id, type, and level,
which return an error if no value is
provided.
e*Xchange Partner Manager Implementation Guide 336

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
List member Description

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

unique_id Required. The unique identifier for the
original message.

type Required. The kind of Message Profile
being stored. The following are valid
values:
"O"—Original (only the original
message is stored)
"W"—Wrapped (the original message
is stored in one location and the
wrapped message is stored in another
location)
"C"—Combined (the wrapped
message and the original message are
stored in one location)

error_data Error information. Optional—
code^description~code^description
(^ separates the values for an error
and ~ separates the errors).

level Required. The storage level the
control number represents. Valid
values:
"I"—B2B Protocol level information
"T"—Message Profile level
information

tp_loc location of trading partner
"O" original or "A" ack (response
structure)

msg_being_sent Required for original and wrapped:
"Y"—Message is being sent to e*Gate
"N"—Message is not being sent to
e*Gate

compressed Indicates whether the message is to be
compressed before the msg is stored
in the database:
"Y"—Yes
"N"—No

mtrk_id Message tracking ID. Can be used for
storage type “W” to locate the correct
row to update env_msg_id. Should
contain an empty string (““) if the
message tracking ID is not entered.

sub-list Optional. The sub-list format is:
level = "I" or "T" col_name col_value

Name Type Description
e*Xchange Partner Manager Implementation Guide 337

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Returns one of the following values:

vector
Returns a vector containing the following elements if a security certificate was found:

Boolean
Returns #f (false)—if the message is not successfully stored. Use the ux-get-error-str
API to retrieve the corresponding error message.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

store-mode string 0—Saves the message and updates the
message tracking table.
1—Saves the message only (no update
to the message tracking table).
2—Updates the message tracking table
only (the message is not saved)

msg_storage_id string Required for store-mode 2.

raw_msg string Optional. The raw transaction to be
stored in the database.

Note: This must contain at least an
empty string (““) is an env_msg is
passed in.

env_msg string Optional. A string containing the
message to store in env_msg_id. If
env_msg is passed in, the ID for this
message overwrites any value already
in the env_msg_id column for this
row, even if storage_type is set to “C”.

env_msg_id string Optional. The storage ID for an
enveloped message already stored in
the e*Xchange database. It is used to
populate the env_msg_id column for
modes 0 and 2. It is ignored for mode
1.

Element
Number

Type Description

1 string mtrk_id (message tracking ID)

2 string msg_storage_id

3 string env_msg_id (optional — only returned if env_msg or
env_msg_id was passed in)

Name Type Description
e*Xchange Partner Manager Implementation Guide 338

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Additional Information

If the length of the message is greater than the max size specified by the ux-init-exdb
API, the message is broken up and stored in multiple rows in es_msg_binary (if
compressed), or es_msg_security (if encrypted or contains a digital signature).

All messages, whether or not they are created by e*Xchange, are stored in the Stored
Messages table (es_msg_storage).

Special Notes

If there is the need to store an enveloped message that is different then the original then
it should be passed in as a string as the last parameter for ux-store-msg-ext. If the
enveloped message is not different then the original, there is no enveloped message to
be stored, or env_msg_id is not specified, then don't pass anything after the raw_msg
parameter.

If you do include the env_msg or env_msg_id, then you must include at least empty
strings for the parameters that precede them. For example, if env_msg is being passed
in, then there must be at least an empty string for raw_msg. If passing in env_msg_id,
then there must be at least an empty string for raw_msg and env_msg. Also, if both
env_msg and env_msg_id have values, then env_msg will override all other env_msg_id
values unless the mode is 2. And env_msg or env_msg_id will override storage_type = "C"
unless the mode is 2. For mode set to 2, then only env_msg_id would override that
storage type.

Since the last three parameters are optional, then ux-store-msg-ext can be called in four
different ways:

(ux-store-msg-ext hdbc processed_msg store-info mode msg_storage_id)

OR

(ux-store-msg-ext hdbc processed_msg store-info mode msg_storage_id raw_msg)

OR

(ux-store-msg-ext hdbc processed_msg store-info mode msg_storage_id raw_msg env_msg)

OR

(ux-store-msg-ext hdbc processed_msg store-info mode msg_storage_id raw_msg env_msg
env_msg_id)

Example

(define raw_msg "")
(define store_mode 0)
(define store_rtn_vec (ux-store-msg-ext connection-handle

output_data store_orig_info store_mode
msg_storage_id raw_msg))

(if (boolean? store_rtn_vec)
(begin

(eX-ePM-log "ux-store-msg-ext failed\n"))
(begin

(set! msg_storage_id (vector-ref store_rtn_vec 1))
(set! mtrk-id (vector-ref store_rtn_vec 0))
(set! store_mode 2)))
e*Xchange Partner Manager Implementation Guide 339

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-store-shutdown-uid

Syntax

(ux-store-shutdown-uid connection-handle list)

Description

ux-store-shutdown-uid inserts a row into the es_sd_data table with es_id, es_opt and
unique_id when an eX_ePM shutdown occurs.

Parameters

Return Values

Boolean
Returns #t (true)—if the errors are stored successfully; otherwise returns #f (false)—if
the errors do not store properly. Use ux-get-error-str to see the error.

Throws

None.

Example

(define store_result (ux-store-shutdown-uid connection-handle
(list (list "1" "T" "AAAA")

(list "1" "T" "BBBBB")
)

)
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

list list Required. Contains any number of lists
containing es_id, es_opt, and
unique_id.

List member Description

es_id Required. This contains the tpts_id if
es_opt is “T”; otherwise, this contains
the tpic_id if es_opt is “I”.

es_opt Required. The message level.Valid
values:
"I"—B2B Protocol level information
"T"—Message Profile level
information

unique_id Required. A string that uniquely
identifies the transaction.
e*Xchange Partner Manager Implementation Guide 340

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-track-997-errors

Syntax

(ux-track-997-errors list of AK2, AK3, AK4, or AK5 elements)

Description

ux-track-997-errors stores the error information for a 997 in a linked-list, so errors can
be tracked as they are encountered in a validation. The error information is used to
create a 997 functional acknowledgment.

Use the ux-track-997-errors API for inbound messages.

The head of the linked-list must be an AK2 segment.

Parameters

Name Type Description

List of AK2, AK3, AK4, or
AK5 elements

list

Lists vary based on type
provided.

All list elements must be strings. Each
list must begin with a segment_code,
such as "AK2", "AK3", "AK4", or
"AK5". The first segment to store
must be an AK2 before an AK3, AK4,
or AK5 are accepted. Each segment is
stored in the order that ux-track-997-
errors is called.

List Type Description

AK2:
tran_set_id
ts_control_num

The transaction set (Message Profile)
response header.

AK3:
seg_id_code
seg_position
loop_id_code
syntax_error_code

A data segment note.

loop_id_code and syntax_error_code
are optional; however, "" must be in
place if no value is to be stored.

AK4:
position_in_segment
data_element_ref_no
syntax_error_code
bad_data

A data element note.

data_element_ref_no and bad_data
are optional; however, "" must be in
place if no value is to be stored.

AK5:
ts_ack_code
ts_syntax_code_error_1
ts_syntax_code_error_2
ts_syntax_code_error_3
ts_syntax_code_error_4
ts_syntax_code_error_5

The transaction set response trailer.
e*Xchange Partner Manager Implementation Guide 341

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Values

Boolean

Returns #t (true)—if the strings are successfully stored; otherwise returns #f (false)—if
the storage attempt is unsuccessful. Use the ux-get-error-str API to retrieve the
corresponding error message.

Throws

Exception-InvalidArg, Exception-Mapping.

Example

The following Monk script example calls ux-track-997-errors with the assumption that
ux-track-997-errors was executed successfully for an "AK2" and "AK3" previously. ux-
track-997-errors first validates that the given segment_code "AK4" is valid. If valid,
then a node is added to the end of the linked-list of 997 segments containing the
provided AK4 information. If successful, then ux-track-997-errors returns #t and
displays "Tracking 997 errors succeeded!". If an error occurs, then #f is returned,
displays "Tracking 997 errors failed!" and prints the error string by the display of ux-
get-error-str.

(define ak2345_data (list "AK4" ; segment_code
 "567" ; postion_in_segment
 "" ; data_element_ref_no
 "67" ; syntax_error_code
 "Weshington, DC" ; bad data
)
)
 (if (ux-track-997-errors ak2345_data)
 (display "Tracking 997 errors succeeded!\n")
 (begin
 (display "Tracking 997 errors failed!\n")
 (display (ux-get-error-str))
 (newline)
)
)
e*Xchange Partner Manager Implementation Guide 342

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-update-batch-imm

Syntax

(ux-update-batch-imm connection-handle update-value type)

Description

ux-update-batch-imm updates the value in the e*Xchange database that is used to
determine whether a transaction is ready to sent out using batch transfer mode. This
corresponds to the value for SEND BATCH IMMEDIATE displayed on the Extended
tab of the Message Profile for a transaction.

Parameters

Return Values

Boolean
Returns #t (true)—if the transaction is updated successfully with the update-value;
otherwise returns #f (false)—if the transaction fails to update. Use ux-get-error-str to
see the error.

Throws

Exception-InvalidArg, Exception-Mapping, Exception-Catastrophic (can’t be caught).

Example

(if (ux-update-batch-imm connection-handle "N" message_type)
(begin)
(begin

(eX-ePM-log "ux-update-batch-imm failed")))

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

update-value string Required.
Y—Yes
N—No

type string O—Original
A—Acknowledgment/Response
e*Xchange Partner Manager Implementation Guide 343

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-update-control-num

Syntax

(ux-update-control-num connection-handle level type control-num)

Description

ux-update-control-num replaces the specified control number in the database and
global structure with the one provided. If the control number provided contains
leading zeros, they are stripped off before replacing the number.

ux-update-control-num updates the control number provided for the given transaction
level (I = i_control_num, G = g_control_num, T = ts_control_num). If the given control
number is invalid (contains characters other than digits) then ux-update-control-num
returns an error.

Use the ux-update-control-num API for outbound messages.

Parameters

Return Values

Boolean

Returns #t (true)—if the control number is successfully updated; otherwise returns #f
(false)—if the control number is not successfully updated. Use the ux-get-error-str API
to retrieve the corresponding error message.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Example

The following Monk script example calls ux-update-control-num with the assumption
that ux-init-trans was executed successfully for the given Message Profile. ux-update-
control-num first checks to be sure that the control-num contains all digits.

An update of the database sets es_ext_data.ext_data_value = 55 where es_id = tpid_id
in the global structure and es_ext_detail.col_name = "G_CONTROL_NUMBER". A

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

level string Required. The level the control
number represents. Valid values:
I—Interchange control number
G—Functional group control number
T—Transaction set control number

type string Required. Indicates which global
structure to query. Acceptable value:
O— original structure.

control-num string Required. The new control number
value which replaces the existing
control number in the database.
e*Xchange Partner Manager Implementation Guide 344

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
commit immediately follows the update. Also, the control number in the global
structure gets updated to 55. If successful, then ux-update-control-num returns #t and
"Update of control-num succeeded!" is displayed. If an error occurs, then #f is returned
and the error string is printed by the display of ux-get-error-str.

(define type "O")
(define level "G")
(define control-num "55")
 (if (ux-update-control-num connection-handle level
 control-num)
 (display "Update of control-num succeeded!\n")
 (begin
 (display "Update of control-num failed!\n")
 (display (ux-get-error-str))
 (newline)
)
e*Xchange Partner Manager Implementation Guide 345

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-update-last-batch-send-time

Syntax

(ux-update-last-batch-send-time connection-handle send_time type)

Description

ux-update-last-batch-send-time updates the batch last send time using input time.

Parameters

Return Values

Boolean

Returns #t (true)—if the batch last send time is successfully updated; otherwise returns
#f (false)—if the batch last send time is not successfully updated. Use the ux-get-error-
str API to retrieve the corresponding error message.

Throws

None.

Example

(define upd-result (ux-update-last-batch-send-time
 connection-handle
 "01/01/2001 12:00:00"
 "O"

)
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

send_time string Required. The time used for updating.

type string Required. Indicates which cached
profile to update. Acceptable value:
O— original structure.
e*Xchange Partner Manager Implementation Guide 346

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-upd-mtrk-data-item

Syntax

(ux-upd-mtrk-data-item connection-handle id data_value)

Description

ux-upd-mtrk-data-item updates the es_mtrk_ext_data.mtrk_data_value for the
specified primary key record id.

Parameters

Return Values

Boolean

Returns #t (true)—if the value is successfully updated; otherwise returns #f (false)—if
the value is not successfully updated. Use the ux-get-error-str API to retrieve the
corresponding error message.

Throws

None.

Example

(define ic_ref_id "1000")
(define ic_control_num "000000111")
(define upd-result (ux-upd-mtrk-data-item

connection-handle
ic_ref_id
ic_control_num

)
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

id string Required. The
es_mtrk_ext_data.mtrk_data_id.

data_value string Required. The value to update the
table with.
e*Xchange Partner Manager Implementation Guide 347

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-upd-mtrk-element

Syntax

(ux-upd-mtrk-element connection-handle col_name1 col_value1 col_name2
col_value2)

Description

ux-upd-mtrk-element updates the specified column value in the extended msg
tracking data elements for the given column name and an additional col name/value
pair. This updates across mtrk_id values. The additional name/value pair should be
some unique identifier that does not update non-related records.

Parameters

Return Values

Boolean

Returns #t (true)—if the element is successfully updated; otherwise returns #f (false)—
if the element is not successfully updated. Use the ux-get-error-str API to retrieve the
corresponding error message.

Throws

None.

Example

(define fb_unique_id "AAAAA11111")
(define upd_element (ux-upd-mtrk-element

connection-handle
"BATCH_UNIQUE_ID"
fb_unique_id
"BATCH_SEND_IMM"
"Y"

)
)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

col_name1 string Required. The message tracking
extended column name used as a
unique identifier.

col_value1 string Required. The value used as a unique
identifier.

col_name2 string Required. The message tracking
extended column name.

col_value2 string Required. The value used to update
column.
e*Xchange Partner Manager Implementation Guide 348

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-upd-mtrk-ext-data

Syntax

(ux-upd-mtrk-ext-data conn-handle mtrk_id dir col_name col_value es_opt)

Description

ux-upd-mtrk-element updates the specified column value in the extended msg
tracking data elements for the given column name, direction and message tracking id.

Parameters

Return Values

Boolean

Returns #t (true)—if the control number is successfully updated; otherwise returns #f
(false)—if the control number is not successfully updated. Use the ux-get-error-str API
to retrieve the corresponding error message.

Throws

None.

Example

(define upd-result (ux-upd-mtrk-ext-data
 connection-handle
 "1"
 "T_CONTROL_NUM"

"0004"
)

)

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

mtrk_id string Required. Either mtrk_outb_id, or
mtrk_inb_id.

direction string Required. Indicates the direction of
the message:
I—Inbound (mtrk_id is mtrk_inb_id)
O—Outbound (mtrk_id is
mtrk_outb_id)

col_name string Required. The message tracking
extended column name.

col_value string Required. The value used to update
column.

es_opt string Optional. Level "TS" or "IC". If not
included, then defaults to "TS
e*Xchange Partner Manager Implementation Guide 349

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-wait-for-ack

Syntax

(ux-wait-for-ack connection-handle tp-loc resp_tm retry_max
[mtrk-outb-id])

Description

ux-wait-for-ack creates a row in the es_waiting_ack database table for the given
Message Profile. The row contains information tied to the wrapped Message Profile
already stored in es_mtrk_outb using mtrk_outb_id, if provided. Otherwise uses
g_mtrk_id and provides information to the Ack Monitor about the acknowledgment
expected.

Use the ux-wait-for-ack API for outbound Message Profiles.

Parameters

Return Values

Boolean

Returns #t (true)—if a row was successfully created in the es_waiting_ack table;
otherwise returns #f (false)—if a row was not successfully created in the es_waiting_ack
table. Use the ux-get-error-str API to retrieve the corresponding error message.

Throws

Exception-InvalidArg, Exception-Catastrophic (can’t be caught).

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

tp-loc string Required. Indicates which global
structure to query. Acceptable value:
O— original structure

resp_tm string How long in seconds e*Xchange
should wait for an acknowledgment. If
resp_tm is NULL or 0, then a row is not
put in es_waiting_ack.

retry_max string The maximum number of times to
resend the data. If retry_max is NULL,
then a 0 is put in es_waiting_ack for
retry_max.

mtrk-outb-id string Optional. ID that corresponds to
Message Profile in es_mtrk_outb.
If this parameter is not provided, the
system uses the g_mtrk_id, which
corresponds to the row in
es_mtrk_outb where the information
for this acknowledgment was stored.
e*Xchange Partner Manager Implementation Guide 350

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Example

The following Monk script Example call ux-wait-for-ack with the assumption that ux-
init-trans was executed successfully for the given Message Profile. ux-wait-for-ack first
checks to see if an mtrk_outb_id has been provided. The first example has a value of
"75" for mtrk_outb_id, which is used for the insertion into es_waiting_ack. If this ID
already exists in es_mtrk_outb and there is not already a row containing this
mtrk_outb_id in es_waiting_ack, then a row should be inserted into es_waiting_ack
and a #t is returned. In this case, "Wait for Ack succeeded!" is displayed. If an error
occurs, then #f is returned and the error string is printed by the display of ux-get-error-
str. The second example does not provide an mtrk_outb_id, so g_mtrk_id is used. If
g_mtrk_id is invalid or a row already exists in es_waiting_ack with that value in
mtrk_outb_id, then the insertion fails and an error string is displayed. Otherwise, on
success "Wait for Ack succeeded!" is displayed.

(define type "A")
(define mtrk-outb-id "75")
(if (ux-wait-for-ack connection-handle type "20" "" mtrk-outb-id)
 (display "Wait for Ack succeeded!\n")
 (begin
 (display "Wait for Ack failed!\n")
 (display (ux-get-error-str))
 (newline)
)
)

 (if (ux-wait-for-ack connection-handle)
 (display "Wait for Ack succeeded!\n")
 (begin
 (display "Wait for Ack failed!\n")
 (display (ux-get-error-str))
 (newline)
)
)
e*Xchange Partner Manager Implementation Guide 351

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-env-msg-id

Syntax

(ux-get-env-msg-id hdbc unique_id direction es_id es_opt)

Description

ux-get-env-msg-id retrieves the env_msg_id from a message tracking table using the
unique_id, direction, es_id, and es_opt

Parameters

Return Value

String

Env_msg_id is returned if matching criteria is found in the e*Xchange database

Boolean

#t is returned if no errors were encountered, and the env_msg_id is not found, NULL,
or an empty string.

#f if encountered errors.

Name Type Description

hdbc string Handle for connection to the ePM
database

unique_id string Unique_id in message tracking table

direction string “I” for Inbound or “O” for Outbound

es_id string tpts_id if stored at message profile
level. tpic_id if stored at b2b protocol
level

es_opt string “IC” for b2b protocol level, or “TS” for
message profile level.

hdbc string Handle for connection to the ePM
database
e*Xchange Partner Manager Implementation Guide 352

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-get-mtrk-attrib-value

Syntax

(ux-get-mtrk-attrib-value hdbc mtrk_id direction col_name)

Description

ux-get-mtrk-attrib-value returns the message tracking extended attribute value
corresponding to the column name, message tracking id, and direction.

Parameters

Return Value

string

Returns a string containing the column value if found and successfully retrieved.

Boolean

Returns #f (false), if an error was encountered; otherwise returns #t (true), if no
extended attribute was found corresponding to the provided criteria.

Name Type Description

hdbc connection handle Handle for connection to the ePM database

mtrk_id string Message tracking id

direction string “O” for outbound or “I” for inbound

col_name string Name of extended attribute column
e*Xchange Partner Manager Implementation Guide 353

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-store-msg

Syntax

(ux-store-msg hdbc processed_msg store_info raw_msg env_msg)

Description

This function stores messages and associated attributes in the ePM database. (See the
more descriptive paragraphs in exchange Implementation Guide).

Parameters

Name Type Description

hdbc connection handle Handle for connection to the ePM database

processed_msg string Required for inbound. Can be empty string
for outbound. Message stored in orig_msg_id
column when storage type = “O”. Message
stored in both orig_msg_id and env_msg_id
columns when storage type = “C”, direction =
“O”, and env_msg is missing or an empty
string. Stored in env_msg_id column when
storage_type = “W”, direction = “O”, and
env_msg is missing or an empty string.
e*Xchange Partner Manager Implementation Guide 354

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
store_info (list direction
unique_id
storage_type
error_data
storage_level
tp_location
msg_being_sent
compress_option
mtrk_id optional
sub-lists (list
col_name col value))

List of attributes for message being stored. All
elements are strings, except that the sub-lists
are lists of strings. Direction = “O” for
outbound or “I” for inbound Unique_id =
unique_id that is stored with msg
Storage_type = “O” for original, “C” for
combined, and “W” for wrapped. NOTE: “O”
is the only valid type for Inbound Error_data =
optional, (must be at least an empty string), if
present, then must be in the following format:
error code1^error desc1~error code2^error
desc2... where ^ separates code and
description, and ~ separates each pair.
Storage_level = “T” for transaction, or
message profile level. “I” for interface the b2b
protocol level Tp_location = Must be at least
an empty string, however no longer used. Just
kept for backwards compatibility.
Msg_being_sent = “Y” if sent already (updates
send_cnt and last_send_tm). “N” if not sent
already. Only for outbound messages.
Inbound messages should have empty string
here. Compress_option = “Y” if want data
stored in compressed format. “N” if don’t
want data compressed. Mtrk_id = Message
tracking id. Can be used for storage type “W”
to help find the right row to update
env_msg_id. Optional, however must be at
least an empty string. optional sub-lists: <col
name> <col value>> - Each sub-list containing
attribute name and value are stored in the
message tracking extended attribute tables.
NOTE: if the <col name> = "TRAN_MODE",
then the value specified for this attribute
overrides the message profile setting. Also,
this pair is NOT stored in the message
tracking extended attribute tables, but instead
in the es_mtrk_outb.tran_mode column

raw_msg string Optional - String containing message to store
in raw_msg_id column. Must be at least an
empty string if env_msg is passed in.

env_msg string Optional - String containing message to store
in env_msg_id. If env_msg is passed in, then
the id for this message will overwrite any
value already in env_msg_id column for this
row. This includes if storage_type “C” (for
combined) is set.
e*Xchange Partner Manager Implementation Guide 355

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Value

String

Message tracking id (mtrk_inb_id for Inbound or mtrk_outb_id for Outbound) if
successfully stores message(s) and creates message tracking row.

Boolean

#f is returned if an error is encountered.

Additional Information

Since the last two parameters are optional, then ux-store-msg can be called in three
different ways:

(ux-store-msg hdbc processed_msg store_info)

OR

(ux-store-msg hdbc processed_msg store_info raw_msg)

OR

(ux-store-msg hdbc processed_msg store_info raw_msg env_msg)

For Outbound, it is required that at least one message (processed, raw, or enveloped) is
passed into ux-store-msg. If all are empty strings, then ux-store-msg will return failure
with the following error:

"UX_X_store_msg: No message (processed, enveloped, or raw) to store/
track. Can't continue"

For Inbound, processed_msg must be included because the orig_msg_id column in
es_mtrk_inb is NOT NULL.

Processed (original), raw, or enveloped messages are treated the same, in terms of
fragmentation and storage. All messages will be stored either in es_msg_security (if
Non-Repudation is "Y", or for AS2 either ENCRYPT_REQ = "Y" or SIG_REQ = "Y") or
es_msg_binary. Messages will no longer be stored in es_msg_ascii.

If non_repud = Y or (for AS2 - SIG_REQ = Y or ENCRYPT_REQ = Y) then
If compressed = Y then

store in es_msg_security with SY
 else

store in es_msg_security with SN
else

if compressed = Y then
store in es_msg_binary with compressed = Y

else
store in es_msg_binary with compressed = B

The SEC_ID message tracking extended attribute is populated with the
es_security_key.sec_ids for that profile.

if tran_type and version = RosettaNet 2.0
and (SIGNATURE_REQUIRED = 'Y' or ENCRYPTION_TYPE != 0)

or
if tran_type+version is not (RosettaNet 2.0 or CIDX)
and (NON_REPUD = 'Y' or SIG_REQ = Y (AS2) or ENCRYPT_REQ = Y

(AS2))
or

if tran_type is CIDX and SIGNATURE_REQUIRED = 'Y'
e*Xchange Partner Manager Implementation Guide 356

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-find-if-bat-msgs

Syntax

(ux-find-if-bat-msgs <conn-handle>) <conn-handle> - connection to database

Returns

"Y" if there are messages to be batched

"N" if there are no messages to be batched

#f if errors were encountered.

ux-ret-batch-pro-ids

Syntax

(ux-ret-batch-pro-ids <conn-handle> <tran_type> <tran_mode>) <conn-handle> -
connection to database <tran_type> - type of batch profiles to retrieve ("X12" or "EDF")
<tran_mode> - type of transport ("B" or "FB")

Returns

Vector containing results of query

#(bat_count #(#(tpic_id1 tpts_id1)
#(tpic_id2 tpts_id2)
#(tpic_idN tpts_idN)
)
)

UX_TRUE - if no profiles fit query
UX_FALSE - if error encountered

ux-get-req-mtrk-attrib

Syntax

(ux-get-req-mtrk-attrib hdbc list)

Description

Obtains extended attribute values for a request message, given input for that message,
and that the message profile is loaded with the response information.
e*Xchange Partner Manager Implementation Guide 357

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Parameters

ux-get-msg

Syntax

(ux-get-msg hdbc msg_storage_id)

Description

Given a msg_storage_id, ux-get-msg returns the message length and message itself.

Parameters

Name Type Description

connection-handle connection-handle Required. The previously established
connection to the database.

list list:
direction
unique_id
level
mtrk_id
sub-list

Required. Information about the
message.
All list arguments must be strings,
except for the sub-lists which are lists
containing strings.
All elements before the sub-list
section are required, but can be empty
strings (""), with the exception of
direction and level, which return an
error if no value is provided.

List member Description

direction Required. Indicates the direction of
the message:
I—Inbound
O—Outbound

unique_id Optional only if mtrk_id is provided.
The unique identifier for the original
message.

level Optional only if mtrk_id is provided.
Valid values:

I—B2BProtocol level
T—Message Profile level

mtrk_id Optional. Message tracking ID. If there
is a list of extended attributes (sub-
list), then mtrk_id or an empty string
"" must be included.

sub-list Optional and repeating. The sub-list
format is:
"Column_Name" "Column_Value");
may contain some of the extended
attributes if already known.

Name Type Description
e*Xchange Partner Manager Implementation Guide 358

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Return Value

Vector

Returns a vector containing message length (a string) and message on success.

Boolean

#f is returned if an error is encountered.

ux-set-fb-overdue

Syntax

(ux-set-fb-overdue hdbc)

Description

Sets all overdue fastbatch messages to be sent immediately.

Parameters

Return Value

Boolean

#t on success. #f is returned if an error is encountered.

ux-get-reg-info

Syntax

(ux-get-reg-info)

Description

Obtains username, password, schema name, hostname, and registry port from the
e*Gate registry.

Parameters

None.

Return Value

Vector

If successful, returns a vector containing five strings:

username

password

hdbc connection handle Handle for connection to the ePM database

msg_storage_id string Id for a message in es_msg_storage table

Name Type Description

hdbc connection handle Handle for connection to the ePM database.
e*Xchange Partner Manager Implementation Guide 359

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
registry hostname

schema name

registry port

Boolean

#f is returned if an error is encountered.

ux-mdn-inb-ack

Description
To associate inbound MDN (Message Disposition Notifications) message with
outbound AS2 messages.

Parameters

Return Values

One of the following:

Vector of mtrk_outb_id

Boolean: #t (true) if nothing is retrieved. #f (false) if an error is encountered during
the update.

Example

(define mdn-ext-list (list (list "MESSAGEID" “98M6790202”))
(define mdn_err_descr “”)
(define mdn-ack-ret (ux-mdn-inb-ack
connection-handle
mdn-ext-list
mdn_err_descr
)
)

Name Type Description

conn-handle connection handle SQL connection handle

mtrk_list string List of es_mtrk_ext_data.col_name,
es_mtrk_outb_data.mtrk_data_value pairs (list
(list 'MESSAGEID', 'ABC') (...))

error_data string Error Data information
(code1^desc1~code2^desc2...)
e*Xchange Partner Manager Implementation Guide 360

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
ux-mdn-outb-ack

Description

This function performs the acknowledgment handling for AS2 MDNs (Message
Disposition Notifications) created in e*Xchange and sent in the outbound direction.
This function is unique from the other ack handlers in that the ack msg is stored first.
Thus, the global store_message_id can not be used to store in es_mtrk_inb.ack_msg_id.
The ack-stat structure was modified to add room to pass in the ack-msg-id of the stored
MDN when performing the association.

Parameters

Return Values

mtrk_outb_id if found.

Boolean

#t (true) if nothing is retrieved. #f (false) if an error is encountered during the update.

Name Type Description

conn-handle connection handle SQL connection handle

ack_status string List of es_mtrk_ext_data.col_name,
es_mtrk_outb_data.mtrk_data_value pairs (list
(list 'MESSAGEID', 'ABC') (...))

ack_tm (optional) the date and time
(yyyymmddhhmmss format)

ack_type (optional) type of ack - P = positive or N =
negative

level (required) (I = interchange, G = group, T =
transaction)

mtrk_id (optional) id of record in es_mtrk_inb to
update

unique_id Unique ID to find rec in es_mtrk_inb to
update. Required if mtrk_id is not provided\

direction (required) direction of original message

out_queue place ack in out_queue if 'Y'

resp_id TP Profile id of acknowledgement msg

ack_msg_id value to store in es_mtrk_inb.ack_msg_id. If
not provided, will use value stored in the
global msg_storage_id

error_data string Error information associated with ack. If
provided, then must be in the format
code1^detail1~code2^detail2... There must be
a code and detail for each error provided.
e*Xchange Partner Manager Implementation Guide 361

Chapter 14 Section 14.2
e*Xchange Partner Manager Functions e*Xchange Functions
Example

(define ack_info_list (list "" "P" "T" mdn-mtrk-id "" "" "I" "N" ""
mdn-object-id))
(define mdn-outb-ack (ux-mdn-outb-ack connection-handle
ack_info_list))
(if (not mdn-outb-ack)
(begin
(define error #t)
(define error_desc (ux-get-error-str))
)
)

e*Xchange Partner Manager Implementation Guide 362

Chapter 14 Section 14.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
14.3 Monk Functions Used by the Validation Rules Builder
A set of monk functions has been provided for the Validation Rules Builder. These
functions are used within the validation Collaborations created by the VRB. These
Collaborations are used by e*Xchange to validate the EDI data it receives from e*Gate.

The validations are based on the implementation guidelines specified in the SEF file
that is converted to e*Gate ETD and Collaboration files.

compare-equal

Syntax

(compare=? string1 string2)

Description

compare-equal determines whether the two strings contained in the parameters are
equal. If the string values are numeric, it converts the strings to numbers before making
the comparison so that a valid numeric comparison is made.

Parameters

Return Values

Boolean
Returns #t (true) if the two strings are equal; otherwise returns #f (false) if they are not
equal.

Throws

None.

Example

(if (compare=? "A0B" "A1B")
 (display "A0B = A1B\n")
 (display "A0B != A1B\n")
)

=> A0B != A1B

Name Type Description

string1 string The first of the string values to be
compared.

string2 string The second of the string values to be
compared.
e*Xchange Partner Manager Implementation Guide 363

Chapter 14 Section 14.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
compare-ge

Syntax

(compare>=? string1 string2)

Description

compare-ge determines whether string1 is greater than or equal to string2. If the string
values are numeric, it converts the strings to numbers before making the comparison so
that a valid numeric comparison is made.

Parameters

Return Values

Boolean
Returns #t (true) if string1 is greater than or equal to string2; otherwise #f (false) if
string1 is less than string2.

Throws

None.

Example

(if (compare>=? "A3B" "A1B")
 (display "A3B >= A1B\n")
 (display "A3B < A1B\n")
)

=> A3B >= A1B

Name Type Description

string1 string The first of the string values to be
compared.

string2 string The second of the string values to be
compared.
e*Xchange Partner Manager Implementation Guide 364

Chapter 14 Section 14.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
compare-gt

Syntax

(compare>? string1 string2)

Description

compare-gt determines whether string1 is greater than string2. If the string values are
numeric, it converts the strings to numbers before making the comparison so that a
valid numeric comparison is made.

Parameters

Return Values

Boolean
Returns #t (true) if string1 is greater than string2; otherwise #f (false) if string1 is less
than or equal to string2.

Throws

None.

Example

(if (compare>? "A3B" "A1B")
 (display "A3B > A1B\n")
 (display "A3B <= A1B\n")
)

=> A3B > A1B

Name Type Description

string1 string The first of the string values to be
compared.

string2 string The second of the string values to be
compared.
e*Xchange Partner Manager Implementation Guide 365

Chapter 14 Section 14.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
compare-le

Syntax

(compare<=? string1 string2)

Description

compare-le determines whether string1 is less than or equal to string2. If the string
values are numeric, it converts the strings to numbers before making the comparison so
that a valid numeric comparison is made.

Parameters

Return Values

Boolean
Returns #t (true) if string1 is less than or equal to string2; otherwise #f (false) if string1 is
greater than string2.

Throws

None.

Example

(if (compare<=? "A3B" "A1B")
 (display "A3B <= A1B\n")
 (display "A3B > A1B\n")
)

=> A3B > A1B

Name Type Description

string1 string The first of the string values to be
compared.

string2 string The second of the string values to be
compared.
e*Xchange Partner Manager Implementation Guide 366

Chapter 14 Section 14.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
compare-lt

Syntax

(compare<? string1 string2)

Description

compare-lt determines whether string1 is less than string2. If the string values are
numeric, it converts the strings to numbers before making the comparison so that a
valid numeric comparison is made.

Parameters

Return Values

Boolean
Returns #t (true) if string1 is less than string2; #f (false) if string1 is greater than or equal
to string2.

Throws

None.

Example

(if (compare<? "A3B" "A1B")
 (display "A3B < A1B\n")
 (display "A3B >= A1B\n")
)

=> A3B >= A1B

Name Type Description

string1 string The first of the string values to be
compared.

string2 string The second of the string values to be
compared.
e*Xchange Partner Manager Implementation Guide 367

Chapter 14 Section 14.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
string-alpha

Syntax

(string-alpha? string)

Description

string-alpha determines whether the string parameter contains only alphabetic
characters.

Parameters

Return Values

Boolean
Returns #t (true) if string contains only alphabetic characters; otherwise #f (false) if
string contains at least one character that is not alphabetic.

Throws

None.

Example

(if (string-alpha? "AbC")
 (display "AbC is alphabetic\n")
 (display "AbC is NOT alphabetic\n")
)

=> AbC is alphabetic

Name Type Description

string string The string to be evaluated.
e*Xchange Partner Manager Implementation Guide 368

Chapter 14 Section 14.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
string-alphanumeric

Syntax

(string-alphanumeric? string)

Description

string-alphanumeric determines whether string contains only alphabetic and/or
numeric characters.

Parameters

Return Values

Boolean
Returns #t (true) if the string contains only alphabetic and/or numeric characters;
otherwise #f (false) if the string contains at least one character that is not alphabetic or
numeric.

Throws

None.

Example

(if (string-alphanumeric? "AbC")
(display "AbC is alphanumeric\n")
(display "AbC is NOT alphanumeric\n")
)

=> AbC is alphanumeric

Name Type Description

string string The string to be evaluated.
e*Xchange Partner Manager Implementation Guide 369

Chapter 14 Section 14.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
string-numeric

Syntax

(string-numeric? string)

Description

string-numeric determines whether the string parameter contains only numeric
characters.

Parameters

Return Values

Boolean
Returns #t (true) if the string contains only numeric characters; otherwise #f (false) if
the string contains at least one character that is not numeric.

Throws

None.

Example

(if (string-numeric? "145a3")
 (display "145a3 is numeric\n")
 (display "145a3 is NOT numeric\n")
)

=> 145a3 is NOT numeric

Name Type Description

string string The string to be evaluated.
e*Xchange Partner Manager Implementation Guide 370

Chapter 14 Section 14.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
valid-date-yyyy

Syntax

(valid-date-yyyy? YYYYMMDD or YYMMDD)

Description

valid-date-yyyy determines whether the date value YYYYMMDD or YYMMDD is a
valid date.

Parameters

Return Values

Boolean
Returns #t (true) if the string is a valid date; otherwise #f (false) if it is not a valid date.

Throws

None.

Example

(if (valid-date-yyyy? "20000229")
 (display "20000229 is a valid date\n")
 (display "20000229 is NOT a valid date\n")
)

=> 20000229 is a valid date

Name Type Description

YYYYMMDD
or YYMMDD

string Date is composed of year, month and
day:

YYYY—4-digit year; for example,
2000
YY—2-digit year; for example, 99 for
1999
MM—2-digit month; for example, 05
for May
DD—2-digit day; for example, 03 or
29
e*Xchange Partner Manager Implementation Guide 371

Chapter 14 Section 14.3
e*Xchange Partner Manager Functions Monk Functions Used by the Validation Rules Builder
valid-time

Syntax

(valid-time? timestamp)

Description

valid-time determines whether the timestamp is a valid time.

Parameters

Return Values

Boolean
Returns #t (true) if the timestamp is a valid time; otherwise #f (false) if it is not a valid
time.

Throws

None.

Example

(if (valid-time? "0000117a")
 (display "\n0000117a is a valid time\n")
 (display "\n0000117a is NOT a valid time\n")
)

=> 0000117a is NOT a valid time

Name Type Description

timestamp string Date and time stamp, in one of the
following formats:

HHMM
HHMMSS
HHMMSSD
HHMMSSDD

where the time stamp is composed of
the following values:

HH = 00—23 (hours)
MM = 00—59 (minutes)
SS = 00—59 (seconds)
D = 0—9 (sub-second single digit)
DD = 00—99 (sub-second double
digit)
e*Xchange Partner Manager Implementation Guide 372

Chapter 14 Section 14.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
14.4 e*Xchange MIME Functions
These functions use MIMEsimple.ssc, a simple message structure, to parse and
compose MIME messages.

util-mime-get-header-value

Syntax

(util-mime-get-header-value node-path mime_field_name)

Description

util-mime-get-header-value retrieves the value of the specified field in a mime
message pointed to by the given path.

Parameters

Return Values

string

Returns the value of the specified field if one exists; otherwise, returns a null string if
the header doesn't exist or a failure occurred.

Throws

None.

Example

If ~input%MIMEsimple is mapped to the following MIME component:

Content-Type: multipart/related;

boundary="RN-boundary";

Content-Description: This is the content description;

This is the message body...

then,

(util-mime-get-header-value ~input%MIMEsimple "Content-Type")

=> "multipart/related\r\n boundary=\"RN-boundary\""

Name Type Description

node-path path The node path to the MIME structure
or substructure.

mime_field_name string The name of the field in the MIME
header.
e*Xchange Partner Manager Implementation Guide 373

Chapter 14 Section 14.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
util-mime-get-par-value

Syntax

(util-mime-get-par-value node-path mime_field_name mime_par_name)

Description

util-mime-get-par-value retrieves the value of the specified parameter in the specified
field in a mime message pointed to by the given path.

Parameters

Return Values

string

Returns the value of the specified parameter if it exists; otherwise, returns a null string
if the header or parameter doesn't exist or failure occurred.

Throws

None.

Example

If ~input%MIMEsimple is mapped to the following MIME component:

Content-Type: multipart/related;

boundary="RN-boundary";

Content-Description: This is the content description;

This is the message body...

then,

(util-mime-get-par-value ~input%MIMEsimple "Content-Type" "boundary")

=> "RN-boundary"

Name Type Description

node-path path The node path to the MIME structure
or substructure.

mime_field_name string The name of the field in the MIME
header.

mime_par_name string The name of the parameter under the
MIME field.
e*Xchange Partner Manager Implementation Guide 374

Chapter 14 Section 14.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
util-mime-make-mime-message

Syntax

(util-mime-make-mime-message node-path)

Description

util-mime-make-mime-message composes and returns a MIME message string from
the specified node.

Note that ($event->string) does not work properly due to the way the MIMEsimple
structure is composed. Instead, use (util-mime-make-mime-message) to compose a
MIME message from a node.

Parameters

Return Values

string

Returns a MIME message string.

Throws

None.

Example

If ~input%root.MIMEsimple is mapped to the following MIME component:

Content-Type: multipart/related;

boundary="RN-boundary";

Content-Description: This is the content description;

This is the message body...

then,

(util-mime-make-mime-message ~input%root.MIMEsimple)

returns the original message string:

Content-Type: multipart/related;

boundary="RN-boundary";

Content-Description: This is the content description;

This is the message body...

Name Type Description

node-path path The node path to the MIME structure
or substructure
e*Xchange Partner Manager Implementation Guide 375

Chapter 14 Section 14.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
util-mime-map-event

Syntax

(util-mime-map-event mime_event_map mime_message_string)

Description

util-mime-map-event populates the given mime_event_map with the given mime
message string.

Parameters

Return Values

Undefined.

Throws

eXception-Mapping.

Example

If ~input%root.MIMEsimple is a MIME structure and mime-string is the following
string:

Content-Type: multipart/related;

boundary="RN-boundary";

Content-Description: This is the content description;

This is the message body...

then,

(util-mime-map-event ~input%root.MIMEsimple mime-string) parses the message
string "mime-string" with the MIME structure "~input%root.MIMEsimple".

Name Type Description

mime_event_map path The node path to the MIME structure
or substructure

mime_message_string string The MIME message string
e*Xchange Partner Manager Implementation Guide 376

Chapter 14 Section 14.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
util-mime-pack-encrypted-msg

Syntax

(util-mime-pack-encrypted-msg filename base64_pkcs7_msg)

Description

util-mime-pack-encrypted-msg composes and returns an encrypted MIME message.

Parameters

Return Values

String

Returns the encrypted message in MIME format.

Throws

None.

Example

If base64_pkcs7_msg is a base64 encoded encrypted message, then

(util-mime-pack-encrypted-msg "" base64_pkcs7_msg)

=> the encrypted message (base64_pkcs7_msg) in MIME format.

Name Type Description

filename value The value of this parameter is ignored
by the function.

base64_pkcs7_msg string The base64 encoded encrypted
message
e*Xchange Partner Manager Implementation Guide 377

Chapter 14 Section 14.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
util-mime-pack-signed-msg

Syntax

(util-mime-pack-signed-msg protocol micalg content signature)

Description

util-mime-pack-signed-msg composes and returns a signed MIME message.

Parameters

Return Values

string

Returns the signed message in MIME format.

Throws

None.

Example

For "content" and "signature" are the content and signature of a message string,
respectively, then

(util-mime-pack-signed-msg "application/pkcs7-signature" "sha1"
content signature)

=> the message string with its signature in MIME format, where the
protocol field in the MIME header is set to "application/pkcs7-
signature" and the micalg field in the MIME header is set to "sha1".

Name Type Description

protocol value The value assigned to the ‘protocol’
parameter Content-Type field of the
MIME message.

micalg value The value assigned to the ‘micalg’
parameter Content-Type field of the
MIME message.

content string The message string.

signature string The result of signing the content with
the "micalg" algorithm.
e*Xchange Partner Manager Implementation Guide 378

Chapter 14 Section 14.4
e*Xchange Partner Manager Functions e*Xchange MIME Functions
util-mime-unpack-signed-message

Syntax

(util-mime-unpack-signed-message mime_message_string)

Description

util-mime-unpack-signed-message unpacks the given message string and returns a
vector of strings: (protocol micalg content signature). protocol and micalg are the
values of the protocol and micalg parameters in the Content-Type field of the input
message, respectively. content and signature are the content and signature of the
signed message, respectively.

Parameters

Return Values

Boolean

Returns #t (true) if the input message is not signed; otherwise, returns #f (false) if the
input message is signed but the function fails to get signature, content, micalg, or
protocol.

Throws

Exception-Mapping and Exception-Generic.

Example

If msg is a MIME message string as follows:

Content-Type: multipart/signed;

boundary="RN-sign";

protocol="application/pkcs7-signature";

micalg=sha1

--RN-sign

this is the content...

--RN-sign

this is the MIME header for the signature component

this is the signature...

--RN-sign--

then,

(util-mime-unpack-signed-message msg)

=> #("application/pkcs7-signature", "sha1" "this is the content...",
"this is the signature...")

Name Type Description

mime_message_string string The MIME message string.
e*Xchange Partner Manager Implementation Guide 379

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
14.5 e*Xchange RosettaNet 2.0 Functions
The RosettaNet 2.0 functions in e*Xchange use ROS20Generic.ssc, a message structure
for the RNGM. It maps the preamble, delivery header, and service header parts of the
RNBM. The service content of the RNBM is mapped to an end node. Any attachments
of an RNBM are mapped to a repetitive node that uses the MIMEsimple structure as a
template.

eX-ROS20-Generic-To-String

Syntax

(eX-ROS20-Generic-To-String input)

Description

eX-ROS20-Generic-To-String retrieves an RNGM message string from the input
ROS20Generic event map. This function should be used instead of ($event->string)
when converting an RNGM event map to a Monk string.

Parameters

Return Values

string

Returns an RNGM message string.

Throws

Exception-Mapping and Exception-Generic.

Example

If input is a event map that represents a RNGM message, then

(eX-ROS20-Generic-To-String input)

=> Monk string that represents the same RNGM message.

Name Type Description

input event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 380

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Parse-Generic

Syntax

(eX-RSO20-Parse-Generic input vector_of_strings)

Description

eX-RSO20-Parse-Generic parses the various string components in the specified vector
using the given RNGM event map.

Parameters

Return Values

Boolean

Returns #t (true) on success.

Throws

Exception-Mapping and Exception-Generic.

Example

If input is a RNGM event map and vec is a vector containing the preamble, delivery
header, service header, service content, and attachments of a RNBM, then:

(eX-ROS20-Parse-Generic input vec)

returns #t and after the call "input" contains the RNGM message.

Name Type Description

input event The variable name of the event
structure that contains the ROS20
Generic message.

vector_of_strings string The vector elements: preamble,
delivery header, service header,
service content, attachments
(repeating)
e*Xchange Partner Manager Implementation Guide 381

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Pack-RNBM

Syntax

(eX-ROS20-Pack-RNBM db_connection_handle input_rngm encryption_flag
sec_keys tpic_id)

Description

eX-ROS20-Pack-RNBM composes and returns an RNBM from the given RNGM event
map (input).

Parameters

Return Values

string

Returns the RNBM.

Throws

Exception-Mapping and Exception-Generic.

Example

If input_rngm is an event map containing a RNGM, then,

(eX-ROS20-Pack-RNBM db_connection_handle input_rngm encryption_flag
sec_keys tpic_id)

returns the corresponding RNBM, in which the message is encrypted and/
or signed with the security information in the database as specified
by tpic_id, sec_keys, and encryption_flag.

Name Type Description

db_connection_handle database connection
handle

A connection handle to the database
that contains the security information.

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.

encryption_flag string The encryption required. The
following values are available:

0 if no encryption required.
1 if only service content and.
attachments need to be encrypted
2 if service header, service content
and attachments need to be
encrypted.

sec_keys string The security keys to be used when
signing/encrypting the message.

tpic_id string The index to the trading partner
profile.
e*Xchange Partner Manager Implementation Guide 382

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Unpack-RNBM

Syntax

(eX-ROS20-Unpack-RNBM db_connection_handle message_string
security_keys tpic_id)

Description

eX-ROS20-Unpack-RNBM parses an RNBM and returns a vector of strings (preamble,
delivery header, service header, service content, attachments, and so on.)

Parameters

Return Values

vector

Returns a vector of strings (preamble, delivery header, service header, service content,
attachments, and so on).

On failure, the global variable error_data is appended to include the failure reason.

Elements of the global variable vector 'g_output' are set as the various body parts
(preamble, deliver header, service header, and service content) and are unpacked.

Throws

Exception-Mapping and Exception-Generic.

Example

If message_string is a Monk string representing a RNBM, and security_keys and tpic_id
specifies the correction security information in the database, then

(eX-ROS20-Unpack-RNBM db_connection_handle message_string
security_keys tpic_id)

returns a vector containing the preamble, delivery header, service
header, service content, and attachments (if any) of the RosettaNet
Business Message (RNBM).

Name Type Description

db_connection_handle database connection
handle

The connection handle to the
database that contains the security
information.

message_string string The input RNBM

security_keys string The security keys to be used when
signing/encrypting the message.

tpic_id string The index to the trading partner
profile.
e*Xchange Partner Manager Implementation Guide 383

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Validate-Preamble

Syntax

(eX-ROS20-Validate-Preamble)

Description

eX-ROS20-Validate-Preamble validates the preamble. It uses parameters passed in to a
global Monk variable g_input, which is of type vector. The elements of g_input are
described in the following table in the order they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

Boolean

Returns #t (true) if preamble is valid; otherwise, returns #f (false). Also error_data is
appended to reflect the error, if any.

Throws

Exception-Mapping and Exception-Generic.

Example

(set! input_rngm (eX-ROS20-Parse-RNGM...)) ;; parse the input RNGM

(set! prf_attrib (ux-get-header "A" transaction_info)) ;; set the partner profile attributes

...

(set! g_input (vector input_rngm prf_attrib)) ;; set the global variable g_input

(eX-ROS20-Validate-Preamble) => #t/#f depending on whether the preamble contained
in input_rngm is valid.eX-ROS20-Validate-ServiceHeader

Syntax

(eX-ROS20-Validate-ServiceHeader)

Description

Name Type Description

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.

prf_attrib string The vector of partner profile attributes
as returned by the (ux-get-header)
Monk function.
e*Xchange Partner Manager Implementation Guide 384

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Validate-ServiceHeader

Validates the service header. It uses parameters passed in to a global Monk variable
g_input, which is of type vector. The elements of g_input are described in the following
table in the order they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

Boolean

Returns #t (true) if service header is valid; otherwise, returns #f (false). Also error_data
is appended to reflect the error, if any.

Throws

Exception-Mapping and Exception-Generic.

Example

(set! input_rngm (eX-ROS20-Parse-RNGM...)) ;; parse the input RNGM

(set! prf_attrib (ux-get-header "A" transaction_info)) ;; set the partner profile attributes

...

(set! g_input (vector input_rngm prf_attrib)) ;; set the global variable g_input

(eX-ROS20-Validate-ServiceHeader) => #t/#f depending on whether the service header
contained in input_rngm is valid.

Name Type Description

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.

prf_attrib string The vector of partner profile attributes
as returned by the (ux-get-header)
Monk function.
e*Xchange Partner Manager Implementation Guide 385

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Validate-DeliveryHeader

Syntax

(eX-ROS20-Validate-DeliveryHeader)

Description

eX-ROS20-Validate-DeliveryHeader validates the delivery header.It uses parameters
passed in to a global Monk variable g_input, which is of type vector. The elements of
g_input are described in the following table in the order they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

Boolean

Returns #t (true) if delivery header is valid; otherwise, returns #f (false). Also
error_data is appended to reflect the error, if any.

Throws

Exception-Mapping and Exception-Generic.

Example

(set! input_rngm (eX-ROS20-Parse-RNGM...)) ;; parse the input RNGM

(set! prf_attrib (ux-get-header "A" transaction_info)) ;; set the partner profile attributes

...

(set! g_input (vector input_rngm prf_attrib)) ;; set the global variable g_input

(eX-ROS20-Validate-DeliveryHeader) => #t/#f depending on whether the delivery
header contained in input_rngm is valid.

Name Type Description

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.

prf_attrib string The vector of partner profile attributes
as returned by the (ux-get-header)
Monk function.
e*Xchange Partner Manager Implementation Guide 386

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Populate-Preamble

Syntax

(eX-ROS20-Populate-Preamble)

Description

eX-ROS20-Populate-Preamble populates the preamble header with the extended
attributes from the database. It uses parameters passed in a global Monk variable
g_input, which is of type vector. The elements of g_input are described in the following
table in the order they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

Boolean

Returns #t (true) on success; otherwise, returns #f (false).

Throws

Exception-Mapping and Exception-Generic.

Example

(set! input_rngm (eX-ROS20-Parse-RNGM...)) ;; parse the partial input RNGM

(set! prf_attrib (ux-get-header "A" transaction_info)) ;; set the partner profile attributes

...

(set! g_input (vector input_rngm prf_attrib)) ;; set the global variable g_input

(eX-ROS20-Populate-Preamble)

Name Type Description

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.
The preamble part of this event map is
partially filled before the call to eX-
ROS20-Populate-Preamble and is fully
populated after the call.

prf_attrib string A vector of partner profile attributes as
returned by the (ux-get-header) Monk
function.
e*Xchange Partner Manager Implementation Guide 387

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Populate-ServiceHeader

Syntax

(eX-ROS20-Populate-ServiceHeader)

Description

eX-ROS20-Populate-ServiceHeader populates the service header with the extended
attributes. It uses parameters passed in a global Monk variable g_input, which is of
type vector. The elements of g_input are described in the following table in the order
they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

Boolean

Returns #t (true) on success; otherwise, returns #f (false).

Throws

Exception-Mapping and Exception-Generic.

Example

(set! input_rngm (eX-ROS20-Parse-RNGM...)) ;; parse the partial input RNGM

(set! prf_attrib (ux-get-header "A" transaction_info)) ;; set the partner profile attributes

...

(set! g_input (vector input_rngm prf_attrib)) ;; set the global variable g_input

(eX-ROS20-Populate-ServiceHeader)

Name Type Description

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.
The preamble part of this event map is
partially filled before the call to eX-
ROS20-Populate-Preamble and is fully
populated after the call.

prf_attrib string A vector of partner profile attributes as
returned by the (ux-get-header) Monk
function.
e*Xchange Partner Manager Implementation Guide 388

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Populate-DeliveryHeader

Syntax

(eX-ROS20-Populate-DeliveryHeader)

Description

eX-ROS20-Populate-DeliveryHeader populates the delivery header with the extended
attributes.It uses parameters passed in a global Monk variable g_input, which is of type
vector. The elements of g_input are described in the following table in the order they
appear.

Global Parameters used in g_input

Parameters

None.

Return Values

Boolean

Returns #t (true) on success; otherwise, returns #f (false).

Throws

Exception-Mapping and Exception-Generic.

Example

(set! input_rngm (eX-ROS20-Parse-RNGM...)) ;; parse the partial input RNGM

(set! prf_attrib (ux-get-header "A" transaction_info)) ;; set the partner profile attributes

...

(set! g_input (vector input_rngm prf_attrib)) ;; set the global variable g_input

(eX-ROS20-Populate-DeliveryHeader)

Name Type Description

input_rngm event The variable name of the event
structure that contains the ROS20
Generic message.
The preamble part of this event map is
partially filled before the call to eX-
ROS20-Populate-Preamble and is fully
populated after the call.

prf_attrib string A vector of partner profile attributes as
returned by the (ux-get-header) Monk
function.
e*Xchange Partner Manager Implementation Guide 389

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Unique-ID

Syntax

(eX-ROS20-Unique-ID rngm)

Description

eX-ROS20-Unique-ID retrieves the unique id for this ROS20 message.

Parameters

Return Values

string

Returns the unique id for the message if this is a valid response message; otherwise,
returns a null string if this message is not a response message or the input rngm does
not contain enough information to compose a request ID.

Throws

Exception-Mapping and Exception-Generic.

Example

If rngm contains the following fields:

Initiating_partner_ID = "1234"

PIP_code = "3A4"

PIP_Instance_ID = "567"

Activity_ID = "Create Order"

signal_code = "Order Request Action"

(eX-ROS20-Unique-ID rngm)

=> "1234|3A4|567|Create Order|OrderRequest Action"

Name Type Description

rngm event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 390

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Request-ID

Syntax

(eX-ROS20-Request-ID RNGM)

Description

eX-ROS20-Request-ID retrieves the unique id of the original request message if this
message is a response.

Parameters

Return Values

string

Returns the unique id of the original request message if this message is a valid
response; otherwise, returns a null string if this message is not a response message or
input rngm doesn't contain enough information to compose a request ID.

Throws

Exception-Mapping and Exception-Generic.

Example

If rngm contains the following fields:

Initiating_partner_ID = "1234"

PIP_code = "3A4"

PIP_Instance_ID = "567"

Activity_ID = "Create Order"

signal_code = "Order Request Action"

(eX-ROS20-Request-ID rngm)

=> "1234|3A4|567|Create Order|OrderRequest Action"

Name Type Description

RNGM event The RNGM
e*Xchange Partner Manager Implementation Guide 391

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Ack-Type

Syntax

(eX-ROS20-Ack-Type rngm)

Description

eX-ROS20-Ack-Type returns "P" if this message is a positive response; "N" if negative
response; "" if not a response.

Parameters

Return Values

string

Returns one of the following values:

Throws

Exception-Mapping and Exception-Generic.

Example

If rngm contains a Receipt acknowledgement exception, then

(eX-ROS20-Ack-Type rngm) => "N"

Name Type Description

rngm event The variable name of the event
structure that contains the ROS20
Generic message.

"P" if this message is a positive response

"N" if this message is a negative response

null string if this message is not a valid response
e*Xchange Partner Manager Implementation Guide 392

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-IsResponse?

Syntax

(eX-ROS20-IsResponse? rngm)

Description

eX-ROS20-IsResponse? checks whether a message is a response message.

Parameters

Return Values

Boolean

Returns #t (true) if this message is a response message; otherwise, returns #f (false).

Throws

Exception-Mapping and Exception-Generic.

Example

if rngm contains a 3A4 request message,

(eX-ROS20-IsResposne? rngm)=> #f

Name Type Description

rngm event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 393

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-IsSignal?

Syntax

(eX-ROS20-IsSignal? rngm)

Description

eX-ROS20-IsSignal? checks whether the message is a business signal.

Parameters

Return Values

Boolean

Returns #t (true) if this message is a business signal; otherwise, returns #f (false).

Throws

Exception-Mapping and Exception-Generic.

Example

if rngm is a 3A4 request message, then

(eX-ROS20-IsSignal? rngm) => #f

if rngm is a Receipt Acknowledgement signal message, then

(eX-ROS20-IsSignal? rngm) => #t

Name Type Description

rngm event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 394

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-PipCode

Syntax

(eX-ROS20-Get-PipCode RNGM)

Description

eX-ROS20-Get-PipCode returns the PIP code in the rngm.

Parameters

Return Values

Returns the PIP code in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-PipCode rngm)

=> "3A4"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 395

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-PipCode

Syntax

(eX-ROS20-Set-PipCode RNGM value)

Description

eX-ROS20-Set-PipCode sets the PIP code in the rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-PIPCode rngm "3A4")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The Pip Code.
e*Xchange Partner Manager Implementation Guide 396

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-SigActCode

Syntax

(eX-ROS20-Get-SigActCode RNGM)

Description

eX-ROS20-Get-SigActCode returns the signal code for a business signal or the action
code for an action message.

Parameters

Return Values

string

Returns the signal code for a business signal or the action code for an action message;
otherwise, returns a null string if this message is not a response message or input rngm
doesn't contain enough information to compose a request ID.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-SigAckCode rngm)

=> "Purchase Order Request Action"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 397

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-SigActCode

Syntax

(eX-ROS20-Set-SigActCode RNGM value)

Description

eX-ROS20-Set-SigActCode sets the signal code for a business signal or the action code
for an action message.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-SigAckCode rngm "Purchase Order Request Action")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The signal or action code.
e*Xchange Partner Manager Implementation Guide 398

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-SigActVerId

Syntax

(eX-ROS20-Get-SigActVerId RNGM)

Description

eX-ROS20-Get-SigActVerId retrieves the signal version ID for an business signal or the
action version ID for an action message.

Parameters

Return Values

string

Returns the signal version ID for an business signal or the action version ID for an
action message.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-SigAckVerID rngm)

=> "2.0"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 399

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-SigActVerId

Syntax

(eX-ROS20-Set-SigActVerId RNGM value)

Description

eX-ROS20-Set-SigActVerId sets the signal version ID for an business signal or the
action version ID for an action message.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-SigAckVerId rngm "2.0")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The signal or action version ID.
e*Xchange Partner Manager Implementation Guide 400

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-PipVerId

Syntax

(eX-ROS20-Get-PipVerId RNGM)

Description

eX-ROS20-Get-PipVerId retrieves the PIPVersion.VersionIdentifier in the rngm.

Parameters

Return Values

string

Returns the PIPVersion.VersionIdentifier in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-PipVerId rngm)

=> "2.0"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 401

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-PipVerId

Syntax

(eX-ROS20-Set-PipVerId RNGM value)

Description

eX-ROS20-Set-PipVerId sets the PIPVersion.VersionIdentifier in the rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-PipVerId rngm "2.0")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The PIP Version.VersionIdentifier.
e*Xchange Partner Manager Implementation Guide 402

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-PipId

Syntax

(eX-ROS20-Get-PipId RNGM)

Description

eX-ROS20-Get-PipId retrieves the PIPInstanceId.InstanceIdentifier in the rngm.

Parameters

Return Values

string

Returns the PIPInstanceId.InstanceIdentifier in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-PipId rngm)

=> "12345"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 403

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-PipId

Syntax

(eX-ROS20-Set-PipId RNGM value)

Description

eX-ROS20-Set-PipId sets the PIPInstanceId.InstanceIdentifier in the rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-PipId rngm "12345")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The PIPInstanceId.InstanceIdentifier.
e*Xchange Partner Manager Implementation Guide 404

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-ActId

Syntax

(eX-ROS20-Get-ActId RNGM)

Description

eX-ROS20-Get-ActId returns the activity ID in the rngm.

Parameters

Return Values

string

Returns the activity ID in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-ActId rngm)

=> "Purchase Order Request"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 405

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-ActId

Syntax

(eX-ROS20-Set-ActId RNGM value)

Description

eX-ROS20-Set-ActId sets the activity ID in the rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-AckId rngm "Purchase Order Request")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The activity ID.
e*Xchange Partner Manager Implementation Guide 406

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-InReplyTo-MsgId

Syntax

(eX-ROS20-Get-InReplyTo-MsgId RNGM)

Description

eX-ROS20-Get-InReplyTo-MsgId retrieves
InReplyTo.MessageInstanceID.InstanceIdentifier in the rngm.

Parameters

Return Values

string

Returns InReplyTo.MessageInstanceID.InstanceIdentifier in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-InReplyTo-MsgId rngm)

=> "1234"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 407

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-InReplyTo-MsgId

Syntax

(eX-ROS20-Set-InReplyTo-MsgId RNGM value)

Description

eX-ROS20-Set-InReplyTo-MsgId sets InReplyTo.MessageInstanceID.InstanceIdentifier
in the rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-InReplyTo-MsgId rngm "1234")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The
InReplyTo.MessageInstanceID.Instanc
eIdentifier.
e*Xchange Partner Manager Implementation Guide 408

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-InReplyTo-ActCode

Syntax

(eX-ROS20-Get-InReplyTo-ActCode RNGM)

Description

eX-ROS20-Get-InReplyTo-ActCode returns
InReplyTo.ActionIdentity.GlobalBusinessActionCode in the rngm.

Parameters

Return Values

string

Returns InReplyTo.ActionIdentity.GlobalBusinessActionCode in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-InReplyTo-ActCode rngm)

=> "Purchase Order Request Action"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 409

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-InReplyTo-ActCode

Syntax

(eX-ROS20-Set-InReplyTo-ActCode RNGM value)

Description

eX-ROS20-Set-InReplyTo-ActCode sets
InReplyTo.ActionIdentity.GlobalBusinessActionCode in the rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-InReplyTo-ActCode rngm "Purchase Order Request Action")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The
InReplyTo.ActionIdentity.GlobalBusin
essActionCode.
e*Xchange Partner Manager Implementation Guide 410

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Get-InitPartnerId

Syntax

(eX-ROS20-Get-InitPartnerId RNGM)

Description

eX-ROS20-Get-InitPartnerId returns the Initiating Partner Global Business Identifier
in the rngm.

Parameters

Return Values

string

Returns the Initiating Partner Global Business Identifier in the rngm.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Get-InitPartnerId rngm)

=> "1234567"

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.
e*Xchange Partner Manager Implementation Guide 411

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Set-InitPartnerId

Syntax

(eX-ROS20-Set-InitPartnerId RNGM value)

Description

eX-ROS20-Set-InitPartnerId sets the Initiating Partner Global Business Identifier in the
rngm.

Parameters

Return Values

Undefined.

Throws

Exception-Mapping and Exception-Generic.

Example

(eX-ROS20-Set-InitPartnerId rngm "1234567")

=> undefined

Name Type Description

RNGM event The variable name of the event
structure that contains the ROS20
Generic message.

value string The Initiating Partner Global Business
Identifier.
e*Xchange Partner Manager Implementation Guide 412

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Create-0A1Notification

Syntax

(eX-ROS20-Create-0A1Notification)

Description

eX-ROS20-Create-0A1Notification creates an 0A1 Notification message and populates
the reply RNGM. It uses parameters passed in to a global Monk variable g_input,
which is of type vector. The elements of g_input are described in the following table in
the order they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

string

Returns a null string.

Throws

Exception-Mapping and Exception-Generic.

Example

If prf_attrib contains the Message Profile attributes associated with an action message,
unique_id is the unique ID of the same action message, error_text contains a text
description of the reason for creating the 0A1 notification, and reply_rngm is an event
map to the RNGM structure, then after the following statements

(set! g_input (vector prf_attrib, reply_rngm, error_text, unique_id)

(eX-ROS20-Create-0A1Notification)

"reply_rngm" contains the 0A1 notification message created in response to the original
action message identified by unique_id.

Name Type Description

prf_attrib vector The trading partner profile attributes
(Message Profile) as returned by the
Monk function (ux-get-header).

reply_rngm event The variable name of the event
structure that contains the 0A1
Notification message on return.

error_detail string The error text.

unique_id string The unique id.
e*Xchange Partner Manager Implementation Guide 413

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Create-ReceiptAck

Syntax

(eX-ROS20-Create-ReceiptAck)

Description

eX-ROS20-Create-ReceiptAck creates a Receipt Acknowledgement message and
populates the reply RNGM, based on the original RNGM. It uses parameters passed in
to a global Monk variable g_input, which is of type vector. The elements of g_input are
described in the following table in the order they appear.

Global Parameters used in g_input

Parameters

None.

Return Values

string

Returns a null string.

Throws

Exception-Mapping and Exception-Generic.

Example

If original_rngm is the an event map containing the original ROS20 message,
original_rnbm is a Monk string containing the same original ROS20 message, and
reply_rngm is an empty event mapped to the RNGM structure, then, after the following
statements:

(set! g_input (vector original_rngm original_rnbm reply_rngm))

(eX-ROS20-Create-ReceiptAck)

reply_rngm contains the newly created Receipt Acknowledgement in response to the
original ROS20 message.

Name Type Description

original_rngm event The original ROS20 message in RNGM
format.

original_rnbm string The original ROS20 message in RNBM
format.

reply_rngm event The newly created Receipt
Acknowledgement message in RNGM
format.
e*Xchange Partner Manager Implementation Guide 414

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
eX-ROS20-Create-Except

Syntax

(eX-ROS20-Create-Except)

Description

eX-ROS20-Create-Except creates an Exception message and populates the reply
RNGM, based on the original RNGM. It uses parameters passed in to a global Monk
variable g_input, which is of type vector. The elements of g_input are described in the
following table in the order they appear.

Global Parameters used in g_input

Name Type Description

original_rngm event The original ROS20 message in RNGM
format.

reply_rngm event The newly created Receipt
Acknowledgement message in RNGM
format.
e*Xchange Partner Manager Implementation Guide 415

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
error_code string The error code. Possible values are:
UNP.MESG.SIGNERR: Error during
unpackaging – Verifying the
signature of the RosettaNet Business
Message
UNP.PRMB.READERR: Error during
unpackaging – Reading the
Preamble
UNP.PRMB.VALERR: Error during
unpackaging – Validating the
Preamble
UNP.DHDR.READERR: Error during
unpackaging – Reading the Delivery
Header
UNP.DHDR.VALERR: Error during
unpackaging – Validating the
Delivery Header
UNP.SHDR.READERR: Error during
unpackaging – Reading the Service
Header
UNP.SHDR.VALERR: Error during
unpackaging – Validating the Service
Header
UNP.SHDR.MNFSTERR: Error during
unpackaging – Verifying Manifest
against the actual attachment body
parts
UNP.MESG.SEQERR: Error during
unpackaging – Validating the
message sequence
UNP.MESG.RESPTYPERR:
Unexpected Response type in the
HTTP header
UNP.MESG.DCRYPTERR: Error
Decrypting the message
UNP.SCON.READERR: Error during
unpackaging – Reading the Service
Content
UNP.SCON.VALERR: Error during
unpackaging – Validating the Service
Content
PKG.MESG.GENERR: Error during
packaging – General error
PRF.ACTN.GENERR: Error during
action performance – General Error
PRF.DICT.VALERR: Error during
action performance – Validating the
Service Content against a PIP-
specified dictionary
UNP.MESG.GENERR: Error during
unpackaging – General error

Name Type Description
e*Xchange Partner Manager Implementation Guide 416

Chapter 14 Section 14.5
e*Xchange Partner Manager Functions e*Xchange RosettaNet 2.0 Functions
Parameters

None.

Return Values

string

Returns a null string.

Throws

Exception-Mapping and Exception-Generic.

Example

If original_rngm is the an event map containing the original ROS20 message, and
reply_rngm is an empty event mapped to the RNGM structure, then, after the following
statements:

(set! g_input (vector original_rngm reply_rngm "UNP.MESG.SIGNERR" "sign error"
"ServiceContent" "Receipt Acknowledgement Exception"))

(eX-ROS20-Create-Exception)

reply_rngm contains the newly created Receipt Acknowledgement Exception in
response to the original ROS20 message.

error_detail string The description of the error.

error_component string The message component where the
error occurred. Possible values
include:

Preamble
DeliveryHeader
ServiceHeader
ServiceContent
Attachment

except_type string The type of exception to be created.
Possible values include General
Exception and Receipt
Acknowledgement exception.

Name Type Description
e*Xchange Partner Manager Implementation Guide 417

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
14.6 e*Xchange Security Functions
This section provides detailed information on e*Xchange Security functions, divided
into two groups. The first group contains generic functions that can be used with any
data format. It includes the following functions:

util-security-decrypt-msg.monk

util-security-encrypt-msg.monk

util-security-sign-msg.monk

util-security-verify-sig.monk

The second group is specifically for working with the e*Xchange APIs and database. It
includes the following functions:

eX-security-get-keys-certs.monk

eX-ROS20-decrypt-msg.monk

eX-ROS20-encrypt-msg.monk

eX-ROS20-sign-msg.monk

eX-ROS20-verify-sig.monk

eX-ROS20-get-ssl-keys.monk

14.6.1 Operational Groups
The e*Xchange security functions can also be divided into two operational groups. The
first group contains the following functions:

util-security-decrypt-msg.monk

util-security-encrypt-msg.monk

util-security-sign-msg.monk

util-security-verify-sig.monk

eX-security-get-keys-certs.monk

eX-ROS20-decrypt-msg.monk

eX-ROS20-encrypt-msg.monk

eX-ROS20-sign-msg.monk

eX-ROS20-verify-sig.monk

These functions are used within e*Xchange RosettaNet 2.0 scripts, as described below.

A Initialization – (eX-init.monk)

Load stc_monksmime.dll successfully and define SMIMEH.
e*Xchange Partner Manager Implementation Guide 418

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
B Inbound

Verify digital signature.

Extract content from RosettaNet Business Message.

Extract signature from RosettaNet Business Message.

Note: The signature should already be in base64 format, so no conversion is necessary.

Obtain sec_key_type values and tpic_id using ux-get-header.

Call eX-ROS20-verify-sig passing in content, signature, algorithm, sec_key_type
values and tpic_id.

If eX-ROS20-verify-sig returns true (#t) then continue with normal processing.

If eX-ROS20-verify-sig returns false (#f) then go to error processing.

C Decrypt message

Extract encrypted portion of RosettaNet Business Message.

Note: The encrypted portion should already be in base64 format, so no conversion is
necessary.)

Obtain sec_key_type values and tpic_id using ux-get-header.

Call eX-ROS20-decrypt-msg passing in encrypted message, sec_key_type
values and tpic_id.

If eX-ROS20-decrypt-msg returns data (not #f) then continue with normal
processing using decrypted message.

If eX-ROS20-decrypt-msg returns false (#f) then go to error processing.

D Outbound

 Add Digital Signature

Extract content from RosettaNet Business Message.

Obtain sec_key_type values and tpic_id using ux-get-header.

Call eX-ROS20-sign-msg passing in content, sec_key_type values and tpic_id.

If eX-ROS20-sign-msg returns a vector containing signature algorithm and
base64 encoded signature (not #f) then continue with normal processing using
digital signature.

If eX-ROS20-sign-msg returns false (#f) then go to error processing.

E Encrypt message

Extract portion from RosettaNet Business Message to be encrypted.

Obtain sec_key_type values and tpic_id using ux-get-header.

Call eX-ROS20-encrypt-msg passing in content, sec_key_type values and
tpic_id.
e*Xchange Partner Manager Implementation Guide 419

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
If eX-ROS20-encrypt-msg returns a base64 encoded message (not #f) then
continue with normal processing using encrypted message.

If eX-ROS20-encrypt-msg returns false (#f) then go to error processing

The second operational group contains the following function:

eX-ROS20-get-ssl-keys

This function is used in e*Xchange RosettaNet 2.0 scripts as described below.

A Outbound

Find out if communicating via HTTPS with Trading Partner profile.

If protocol = HTTPS then retrieve SSL information by calling eX-ROS20-get-ssl-
keys.

Take return vector and place the values in the standard event for the output.

element 0 = SSLClientKeyFileName under TP_EVENT

element 1 = SSLClientKeyFileType under TP_EVENT

element 2 = SSLClientCertFileName under TP_EVENT

element 3 = SSLClientCertFileType under TP_EVENT

A Note Regarding Security Function Examples

Note: It is assumed that db-login, creation of connection-handle, and creation of SME
handle (SMIMEH) were already executed successfully before each example. Also,
the util functions assume error_data has previously been defined.
e*Xchange Partner Manager Implementation Guide 420

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
util-security-decrypt-msg

Syntax

(util-security-decrypt-msg msg key_name key_value)

Description

util-security-decrypt-msg processes decryption of a given message. Calls Secure
Message Extension functions to decrypt a message using decryption key and value.

Parameters

Return Values

string

Returns decrypted msg in raw readable format.

Boolean

Returns #f (false) if an error is encountered. error_data contains error string(s).

Throws

None.

Example

(define FILE (open-input-file "d:/temp/xi_encrypted_ROS20_msg"))
(define msg (read FILE 65536))
(close-input-port FILE)
(define FILE (open-input-file "c:/temp/certs/stc-ssl-client-test-1.p12"))
(define key_value (read FILE 65536))
(close-input-port FILE)
(define key_name "STC SSL Client Test #1")
(define decrypted_msg (util-security-decrypt-msg msg key_name key_value))
(if (boolean? decrypted_msg)

(begin
(display (string-append "Decryption failed with error: " error_data

"\n"))
)

(begin
(display "Decryption succeeded - Decrypted msg placed in d:/temp/

decrypted_msg\n")
(define FILE (open-output-file "d:/temp/decrypted_msg"))
(display decrypted_msg FILE)
(close-port FILE)

)
)

Name Type Description

msg string The encrypted msg in base64 format.

key_name string The decryption key name.

key_value string The decryption key value.
e*Xchange Partner Manager Implementation Guide 421

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
util-security-encrypt-msg

Syntax

(util-security-encrypt-msg msg cert_name cert_value algorithm)

Description

util-security-encrypt-msg processes encryption of a given message. Calls Secure
Message Extension functions to encrypt message using encryption certificate name and
value, and encryption algorithm.

Parameters

Return Values

string

Returns encrypted msg in base64 format (S/MIME headers have been stripped off).

Boolean

Returns #f (false) if an error is encountered. error_data contains error string(s).

Throws

None.

Example

(define FILE (open-input-file "d:/stc/egate/client/data/data2/con3A4.dat"))
(define msg (read FILE 65536))
(close-input-port FILE)
(define FILE (open-input-file "c:/temp/certs/stc-ssl-client-test-1.pk7"))
(define cert_value (read FILE 65536))
(close-input-port FILE)
(define cert_name "STC SSL Client Test #1")
(define alg "RC2_128")
(define encrypted_msg (util-security-encrypt-msg msg cert_name cert_value
alg))
(if (boolean? encrypted_msg)

(begin
(display (string-append "Encryption failed with error: "error_data

"\n"))
)

(begin
(display "Encryption succeeded - Encrypted msg placed in d:/temp/

encrypted_msg\n")
(define FILE (open-output-file "d:/temp/encrypted_msg"))
(display encrypted_msg FILE)
(close-port FILE)

)
)

Name Type Description

msg string The message (in raw readable format)
to be encrypted.

cert_name string The encryption cert name.

cert_value string The encryption cert value.

algorithm string The encryption algorithm.
e*Xchange Partner Manager Implementation Guide 422

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
util-security-sign-msg

Syntax

(util-security-sign-msg msg key_name key_value algorithm)

Description

util-security-sign-msg creates a digital signature for a given message. Calls Secure
Message Extension functions to create a digital signature for the given message using
signature key name and value, and signature algorithm. Removes S/MIME headers
and raw content before returning base64 encoded digital signature.

Parameters

Return Values

string

Returns digital signature in base64 format (S/MIME headers and content have been
stripped off)

Boolean

Returns #f (false) if an error is encountered. error_data contains error strings.

Throws

None.

Example

(define FILE (open-input-file "d:/stc/egate/client/data/con3A4.dat"))
(define msg (read FILE 65536))
(close-input-port FILE)
(define FILE (open-input-file "c:/temp/certs/stc-ssl-client-test-1.p12"))
(define key_value (read FILE 65536))
(close-input-port FILE)
(define key_name "STC SSL Client Test #1")
(define alg "RSA_MD5")
(define signed_msg (util-security-sign-msg msg key_name key_value alg))
(if (boolean? signed_msg)

(begin
(display (string-append "Signing failed with error: "error_data "\n"))

)
(begin
(display "Signing succeeded-Signed msg placed in d:/temp/signed_msg\n")
(define FILE (open-output-file "d:/temp/signed_msg"))
(display signed_msg FILE)
(close-port FILE)

)
)

Name Type Description

msg string The message (in raw readable format)
to use for creating digital signature.

key_name string The signature key name.

key_value string The signature key value.

algorithm string The signature algorithm.
e*Xchange Partner Manager Implementation Guide 423

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
util-security-verify-sig

Syntax

(util-security-verify-sig content signature algorithm cert_name
cert_value)

Description

util-security-verify-sig performs verification of a digital signature for a given message.
Calls Secure Message Extension functions to verify if the digital signature is valid for a
given message using the certificate.

Parameters

Return Values

Boolean

Returns #t (true) if verification succeeded, that is the content and digital signature
match; otherwise returns #f (false) if content and digital signature do not match or an
error was encountered. error_data contains error string(s).

Throws

None.

Example

(define FILE (open-input-file "d:/stc/egate/client/data/con3A4.dat"))
(define content (read FILE 65536))
(close-input-port FILE)
(define FILE (open-input-file "d:/temp/signed_msg"))
(define sig (read FILE 65536))
(close-input-port FILE)
(define FILE (open-input-file "c:/temp/certs/stc-ssl-client-test-

1.pk7"))
(define cert_value (read FILE 65536))
(close-input-port FILE)
(define cert_name "STC SSL Client Test #1")
(define alg "MD5")
(if (util-security-verify-sig content sig alg cert_name cert_value)

(display "Verification succeeded!\n")
(display (string-append "Verification failed with error: "

error_data "\n"))
)

Name Type Description

content string The content (in raw readable format)
portion of data.

signature string The digital signature (in base64
format).

algorithm string The signature algorithm, such as MD5
or SHA1.

cert_name string The verification certificate name.

cert_value string The verification certificate value.
e*Xchange Partner Manager Implementation Guide 424

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
eX-security-get-keys-certs

Syntax

(eX-security-get-keys-certs connection-handle tpic_id key)

Description

eX-security-get-keys-certs retrieves the key name, key value length and key value for a
particular trading partner and key type.

Parameters

Return Values

vector

Returns a 3 element vector containing key name, key value length, and key value.

Boolean

Returns #t (true) if there is no key name or value to retrieve; otherwise returns #f (false)
if an error occurred. error_data contains error string(s)

Throws

None.

Example

(let ((ret_vec "")
(tpic_id "12")
(key "A"))

(set! ret_vec (eX-security-get-keys-certs connection-handle tpic_id key))
(if (vector? ret_vec)

(begin
(display "key name = <")
(display (vector-ref ret_vec 0))
(display ">\n")
(display "length of key value = <")
(display (vector-ref ret_vec 1))
(display ">\n")
(display "key value = <")
(display (vector-ref ret_vec 2))
(display ">\n")

)
(begin

(if (eq? #t ret_vec)
(display "No key/value to retrieve\n")
(display "eX-security-get-keys-certs failed to retrieve key/value.")

)
)
)
)

Name Type Description

connection-handle string The database connection handle.

tpic_id string The id for the trading partner profile.

key string The key type in es_security_key. Valid
key types: E, S, D, V, K, T, C, P, Y, A.
e*Xchange Partner Manager Implementation Guide 425

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
eX-ROS20-decrypt-msg

Syntax

(eX-ROS20-decrypt-msg connection-handle msg keys tpic_id)

Description

eX-ROS20-decrypt-msg processes decryption of a given message. Calls eX-security-
get-keys-certs to obtain decryption key and value. Calls util-security-decrypt-msg to
perform decryption of given message using decryption key and value.

Parameters

Return Values

string

Returns encrypted msg in raw readable format.

Boolean

Returns #f (false) if an error is encountered. error_data contains error string(s).

Throws

None.

Example

(let ((dec_msg "")
(tpic_id "13")
(keys "D"))

(define FILE (open-input-file "d:/temp/encrypted_mime1.txt"))
(define msg (read FILE 65536))
(close-input-port FILE)
(set! dec_msg (eX-ROS20-decrypt-msg connection-handle msg keys tpic_id))
(if (boolean? dec_msg)

(begin
(display "eX-ROS20-decrypt-msg failed!\n")

)
(begin
(define FILE (open-output-file "d:/temp/decrypted_ROS20_msg"))
(display dec_msg FILE)
(close-port FILE)

)
)
)

Name Type Description

connection-handle string The database connection handle.

msg string Encrypted msg in base64 format.

keys string The key types for trading partner
profile (obtained from
es_tpic.sec_key_type). Must contain
key type D.

tpic_id string The id for the trading partner profile.
e*Xchange Partner Manager Implementation Guide 426

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
eX-ROS20-encrypt-msg

Syntax

(eX-ROS20-encrypt-msg connection-handle msg keys tpic_id)

Description

eX-ROS20-encrypt-msg processes encryption of a given message. Calls eX-security-
get-keys-certs to obtain encryption certificate name and value, and encryption
algorithm. Calls util-security-encrypt-msg to perform encryption of given message
using certificate and algorithm.

Parameters

Return Values

string

Returns encrypted msg in base64 format.

Boolean

Returns #f (false) if an error is encountered. error_data contains error string(s).

Throws

None.

Example

(let ((enc_msg "")
(tpic_id "14")
(keys "D|Y|E"))

(define FILE (open-input-file "d:/temp/mime1.txt"))
(define msg (read FILE 65536))
(close-input-port FILE)
(set! enc_msg (eX-ROS20-encrypt-msg connection-handle msg keys tpic_id))
(if (boolean? enc_msg)

(begin
(display "eX-ROS20-encrypt-msg failed!\n")

)
(begin
(define FILE (open-output-file "d:/temp/encrypted_ROS20_msg"))
(display enc_msg FILE)
(close-port FILE)

)
)
)

Name Type Description

connection-handle string The database connection handle.

msg string The message in raw readable format,
to encrypt.

keys string The key types for trading partner
profile (obtained from
es_tpic.sec_key_type). Must contain
key types E and Y.

tpic_id string The id for the trading partner profile.
e*Xchange Partner Manager Implementation Guide 427

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
eX-ROS20-sign-msg

Syntax

(eX-ROS20-sign-msg connection-handle msg keys tpic_id)

Description

eX-ROS20-sign-msg creates a digital signature for a given message. Calls eX-security-
get-keys-certs to obtain signature key name and value, and signature algorithm. Calls
util-security-sign-msg to create a digital signature for a given message using key and
algorithm.

Parameters

Return Values

vector

Returns a 2 element vector containing algorithm and signature in base64 format.

Boolean

Returns #f (false) if an error is encountered. error_data contains error string(s).

Throws

None.

Example

(let ((sign_msg_vec "")
(tpic_id "14")
(keys "S|A"))

(define FILE (open-input-file "d:/temp/encrypted_ROS20_msg"))
(define msg (read FILE 65536))
(close-input-port FILE)
(set! sign_msg_vec (eX-ROS20-sign-msg connection-handle msg keys tpic_id))
(if (boolean? sign_msg_vec)

(begin
(display "eX-ROS20-sign-msg failed!\n")

)
(begin
(display (string-append "Algorithm = "

(vector-ref sign_msg_vec 0) "\n"))
(define FILE (open-output-file "d:/temp/signed_ROS20_msg"))
(display (vector-ref sign_msg_vec 1) FILE)
(close-port FILE)

)
)
)

Name Type Description

connection-handle string The database connection handle.

msg string The message in raw readable format,
for which to create a digital signature.

keys string The key types for trading partner
profile (obtained from
es_tpic.sec_key_type). Must contain
key types S and A.

tpic_id string The id for the trading partner profile.
e*Xchange Partner Manager Implementation Guide 428

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
eX-ROS20-verify-sig

Syntax

(eX-ROS20-verify-sig connection-handle content signature algorithm
keys tpic_id)

Description

eX-ROS20-verify-sig performs verification of a digital signature for a given message.
Calls eX-security-get-keys-certs to obtain verification certificate name and value. Calls
util-security-verify-sig to verify if the digital signature is valid for a given message
using the certificate.

Parameters

Return Values

Boolean

Returns #t (true) if verification succeeded, that is the content and digital signature
match; otherwise returns #f (false) if the content and digital signature do not match or
an error was encountered. error_data contains error string(s).

Throws

None.

Example

(let ((sig_msg "")
(tpic_id "13")
(alg "MD5")
(keys "V"))

(define FILE (open-input-file "d:/temp/encrypted_ROS20_msg"))
(define content (read FILE 65536))
(close-input-port FILE)
(define FILE (open-input-file "d:/temp/signed_ROS20_msg"))
(define sig (read FILE 65536))
(close-input-port FILE)
(if (eq? #t (eX-ROS20-verify-sig connection-handle content sig

alg keys tpic_id))
(begin

(display "eX-ROS20-verify-sig succeeded!\n")

Name Type Description

connection-handle string The database connection handle.

content string The content (in raw readable format)
portion of data.

signature string The digital signature (in base64
format).

algorithm string The signature algorithm, such as MD5
or SHA1.

keys string The key types for trading partner
profile (obtained from
es_tpic.sec_key_type). Must contain
key type V.

tpic_id string The id for the trading partner profile.
e*Xchange Partner Manager Implementation Guide 429

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
)
(begin

(display "eX-ROS20-verify-sig failed!\n")
)
)
)

e*Xchange Partner Manager Implementation Guide 430

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
eX-ROS20-get-ssl-keys

Syntax

(eX-ROS20-get-ssl-keys connection-handle keys tpic_id)

Description

eX-ROS20-get-ssl-keys retrieves the SSL Client key and certificate for a certain trading
partner profile. Calls eX-security-get-keys-certs to obtain the key and certificate values,
and the file types.

Parameters

Return Values

vector

Returns a 4 element vector containing the key, certificate, and file types

#(ssl_key_value in base64 format

 ssl key file type (either PEM or ASN.1)

 ssl certificate value in base64 format

 ssl certificate file type (either PEM or ASN.1)

)

Boolean

Returns #f (false) if an error is encountered. error_data contains error string(s).

Throws

None.

Example

(let ((out_vec "")
(tpic_id "12")
(keys "K|C|T|P"))

(set! out_vec (eX-ROS20-get-ssl-keys connection-handle keys tpic_id))
(if (eq? #f out_vec)

(begin
(display "eX-ROS20-get-ssl-keys failed!\n")

)
(begin
(define FILE (open-output-file "d:/temp/ssl_key_base64"))
(display (vector-ref out_vec 0) FILE)
(close-port FILE)
(display "SSL Key File Type = ")

Name Type Description

connection-handle string The database connection handle.

keys string The key types for trading partner
profile (obtained from
es_tpic.sec_key_type). Must contain
key types K, T, C, and P.

tpic_id string The id for the trading partner profile.
e*Xchange Partner Manager Implementation Guide 431

Chapter 14 Section 14.6
e*Xchange Partner Manager Functions e*Xchange Security Functions
(display (vector-ref out_vec 1))
(newline)
(define FILE (open-output-file "d:/temp/ssl_cert_base64"))
(display (vector-ref out_vec 2) FILE)
(close-port FILE)
(display "SSL Cert File Type = ")
(display (vector-ref out_vec 3))
(newline)
(display "eX-ROS20-get-ssl-keys succeeded!\n")

)
)
)

e*Xchange Partner Manager Implementation Guide 432

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
14.7 AS2 Security Functions
This section includes the details for the security functions that to support AS2 in
e*Xchange. e*Xchange also uses the security functions described in “e*Xchange
Security Functions” on page 418 to support AS2. e*Xchange uses eSM (SME Monk) to
perform security tasks, such as encryption, decryption, signature creation, or signature
verification. S/MIME-C version 2.0 is the toolkit provided by RSA Security that eSM
uses to perform these security methods.

S/MIME-C version 2.0 expects each message to be fully S/MIME v2 compliant (RFC
2311). If a message is not compliant or the content has been modified to no longer
match the signature (for example, it is missing a blank line that was there when the
signature was created), then the toolkit either returns SMT_E_CORRUPT or crashes. In
order to avoid encountering these errors, it is important that each message abide by the
following guidelines:

All lines must end in CRLF (carriage return line feed).The lines must not end in
CRCRLF. The only exception to this rule is the content part of the message.

There must be a CRLF (blank line) between the headers and the first boundary.
Also, there must be a blank line (CRLF) between headers and signature.

The signature portion must contain the Content-Transfer-Encoding header since the
signature is either binary or base64.

If the boundary contains spaces, then the declaration must be enclosed in double
quotes.

Be sure each boundary, except the final one, begins with -- (two dashes)

Be sure the final boundary exists, and begins and ends with -- (two dashes)

The first header section of the S/MIME message must contain the Content-Type
header.

The content section of the S/MIME message must match exactly to the content that
was used to create the signature, including any blank lines.

e*Xchange utilizes the following new functions to properly perform the security steps
necessary for processing AS2 messages. All the functions that begin with util reside in
monk_library/eXchange, and all the functions that begin with eX-AS2 reside in
monk_scripts/eXchange/AS2.
e*Xchange Partner Manager Implementation Guide 433

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
util-security-decrypt-raw-msg

Syntax

(util-security-decrypt-msg msg key_name key_value key_pass)

Description

util-security-decrypt-raw-msg decrypts a given binary (PKCS #7) message. It uses
Secure Message Extension functions to decrypt message using decryption key and
value.

Parameters

Return Value

String

This function returns the decrypted message in raw readable format.

Boolean

If the decryption fails or an error was encountered, then #f is returned

Name Type Description

msg string Encrypted message in binary (PKCS #7)
format not containing signature.

key_name string Decryption key name.

key_value string Decryption key (PKCS #12).

key_pass string Encrypted password (optional - can be
empty string).
e*Xchange Partner Manager Implementation Guide 434

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
util-security-decrypt-verify-base64

Syntax

(util-security-decrypt-verify-base64 msg key_name key_pass key_value cert_name
cert_value)

Description

util-security-decrypt-verify-base64 decrypts and verifies a given base64-encoded
encrypted S/MIME v2 message including signature. It uses Secure Message Extension
functions to decrypt the message and verify the signature message using decryption
key and value, and the signature certificate and value.

Parameters

Return Value

String

Returns the content part of the S/MIME message that the signature was created from.
Therefore, the string does not include the signature or any extra headers or boundaries.

Boolean

If the decryption and/or verification fails or an error was encountered, then #f is
returned.

Name Type Description

msg string Encrypted S/MIME v2 message in
base64 format and containing
signature.

key_name string Decryption key name.

key_value string Decryption key (PKCS #12).

key_pass string Encrypted password (optional - can be
empty string).

cert_name string Signature Verification certificate
name.

cert_value string Signature Verification certificate
(PKCS #7).
e*Xchange Partner Manager Implementation Guide 435

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
util-security-decrypt-verify-raw

Syntax

(util-security-decrypt-verify-raw msg key_name key_pass key_value cert_name
cert_value)

Description

util-security-decrypt-verify-raw decrypts and verifies a given binary (raw PKCS #7
format) encrypted S/MIME v2 message including signature. It uses Secure Message
Extension functions to decrypt the message and verify the signature message using
decryption key and value, and the signature certificate and value.

Parameters

Return Value

String

Returns the content part of the S/MIME message that the signature was created from.
Therefore, the string does not include the signature or any extra headers or boundaries.

Boolean

If the decryption and/or verification fails or an error was encountered, then #f is
returned

Name Type Description

msg string Encrypted S/MIME v2 message in
binary (PKCS #7) format and
containing signature.

key_name string Decryption key name.

key_value string Decryption key (PKCS #12).

key_pass string Encrypted password (optional - can be
empty string).

cert_name string Signature Verification certificate
name.

cert_value string Signature Verification certificate
(PKCS #7).
e*Xchange Partner Manager Implementation Guide 436

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
util-security-encrypt-raw-msg

Syntax

(util-security-encrypt-raw-msg msg cert_name cert_value algorithm)

Description

util-security-encrypt-raw-msg processes encryption of a given message. It uses Secure
Message Extension functions to encrypt message using encryption certificate name and
value, and encryption algorithm. Returns encrypted message in raw PKCS #7 (binary)
format.

Parameters

Return Value

String

This function returns the encrypted message in raw PKCS #7 (binary) format.

Boolean

If the encryption fails or an error was encountered, then #f is returned

Name Type Description

msg string Message to be encrypted.

cert_name string Signature Verification certificate
name.

cert_value string Signature Verification certificate
(PKCS #7).

algorithm string Encryption algorithm. Possible values
include:

"RC2_128"
"DES_EDE3_CBC"
"DES_CBC"
"RC2_40"
e*Xchange Partner Manager Implementation Guide 437

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
util-security-sign-raw-msg

Syntax

(util-security-sign-raw-msg msg key_name key_value algorithm key_pass)

Description

util-security-sign-raw-msg creates a digital signature for a given message (content). It
uses Secure Message Extension functions to create a digital signature for the given
message using signature key name and value, and signature algorithm. Returns digital
signature in raw (PKCS #7) binary format.

Parameters

Return Value

String

This function returns the digital signature in raw PKCS #7 (binary) format.

Boolean

If the signature creation fails or an error was encountered, then #f is returned

Name Type Description

msg string This content string is used to create
the digital signature.

key_name string Signature key name.

key_value string Signature key (PKCS #12 format).

algorithm string Signature algorithm - can be
"RSA_MD5" or "RSA_SHA1".

key_pass string Encrypted password (optional - can be
empty string).
e*Xchange Partner Manager Implementation Guide 438

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
util-security-verify-raw-sig

Syntax

(util-security-verify-raw-sig content signature algorithm cert_name cert_value)

Description

util-security-verify-raw-sig performs verification of a digital signature in raw PKCS #7
(binary) format for a given message. It uses Secure Message Extension functions to
verify if the digital signature is valid for a given content using the certificate.

Parameters

Return Value

Boolean

Returns #t if verification succeeded, such that content and signature match; otherwise
returns #f if content and digital signature don't match or an error was encountered.

Name Type Description

content string This content string is used to create
the digital signature.

signature string Digital signature in PKCS #7 (binary)
format.

algorithm string Algorithm used to create digital
signature

cert_name string Verification certificate name.

cert_value string Verification certificate (PKCS #7
format).
e*Xchange Partner Manager Implementation Guide 439

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
util-security-verify-smime

Syntax

(util-security-verify-smime smime_msg cert_name cert_value)

Description

util-security-verify-smime performs verification of a digital signature for a given S/
MIME v2 message. Calls Secure Message Extension functions to verify if the digital
signature is valid for a given content using the certificate. Message must be in
appropriate S/MIME v2 format (compliant with RFC 2311).

Parameters

Return Value

String

Returns the content part of the S/MIME message that the signature was created from.
Therefore, the string does not include the signature or any extra headers or boundaries.

Boolean

Returns #f if the verification fails (content and digital signature don't match) or an error
was encountered.

Name Type Description

smime_msg string S/MIME v2 compliant message
including signature.

cert_name string Verification certificate name.

cert_value string Verification certificate (PKCS #7
format).
e*Xchange Partner Manager Implementation Guide 440

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
eX-AS2-decrypt-msg

Syntax

(eX-AS2-decrypt-msg hdbc msg keys tpic_id encode)

Description

eX-AS2-decrypt-msg decrypts an encrypted AS2 message. It uses util-security-decrypt-
msg if encode is base64; otherwise, it uses util-security-decrypt-raw-msg to decrypt
message.

Parameters

Return Value

String

Returns the decrypted message in raw readable format.

Boolean

Returns #f if the decryption fails or an error was encountered.

Name Type Description

hdbc Connection handle Handle for connection to the
e*Xchange database.

msg string Encrypted message.

keys string Security key types from e*Xchange
profile (es_tpic.sec_key_type). Each
key type is separated by a '|'. Must
include at least the key type 'D'.

tpic_id string B2B protocol profile id for es_tpic.

encode string Tells if encrypted message is base64
encoded ("base64") or in binary
("raw") format. Defaults to "raw" if
empty string.
e*Xchange Partner Manager Implementation Guide 441

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
eX-AS2-decrypt-verify-msg

Syntax

(eX-AS2-decrypt-verify-msg hdbc msg keys tpic_id encode)

Description

eX-AS2-decrypt-verify-msg decrypts and verifies the signature for an encrypted AS2
S/MIME v2 message. It uses util-security-decrypt-verify-base64 if encode is base64.
Otherwise, it uses util-security-decrypt-verify-raw to decrypt message.

Parameters

Return Value

String

Returns the content part of the S/MIME message that the signature was created from.
Therefore, the string does not include the signature or any extra headers or boundaries.

Boolean

Returns #f if the decryption and/or verification fails or an error was encountered.

Name Type Description

hdbc Connection handle Handle for connection to the
e*Xchange database.

msg string Encrypted S/MIME v2 compliant AS2
message including signature.

keys string Security key types from e*Xchange
profile (es_tpic.sec_key_type). Each
key type is separated by a '|'. Must
include at least the key type 'D' and
'V'.

tpic_id string B2B protocol profile id for es_tpic.

encode string Tells if encrypted message is base64
encoded ("base64") or in binary
("raw") format. Defaults to "raw" if
empty string.
e*Xchange Partner Manager Implementation Guide 442

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
eX-AS2-encrypt-msg

Syntax

(eX-AS2-encrypt-msg hdbc msg keys tpic_id encode)

Description

eX-AS2-encrypt-msg processes encryption of a given message. It uses util-security-
encrypt-msg if encode is base64. Otherwise, it uses util-security-encrypt-raw-msg to
encrypt the given message.

Parameters

Return Value

String

Returns the encrypted message in raw PKCS #7 (binary) format when encode is "raw".
Returns encrypted message in base64 format when encode is base64.

Boolean

Returns #f if the encryption fails or an error was encountered.

Name Type Description

hdbc Connection handle Handle for connection to the
e*Xchange database.

msg string Encrypted S/MIME v2 compliant AS2
message including signature.

keys string Security key types from e*Xchange
profile (es_tpic.sec_key_type). Each
key type is separated by a '|'. Must
include at least the key type 'E' and 'Y'.

tpic_id string B2B protocol profile id for es_tpic.

encode string Tells if encrypted message is base64
encoded ("base64") or in binary
("raw") format. Defaults to "raw" if
empty string.
e*Xchange Partner Manager Implementation Guide 443

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
eX-AS2-sign-msg

Syntax

(eX-AS2-sign-msg hdbc msg keys tpic_id encode algorithm)

Description

eX-AS2-sign-msg creates a digital signature of a given message (content). It uses util-
security-sign-msg if encode is base64. Otherwise, it uses util-security-sign-raw-msg to
create a base64 encoded digital signature for the given message.

Parameters

Return Value

Vector

A two-element vector is returned on success. The first element is a string representing
the signature algorithm used, such as "SHA1", "MD5", or "MD2". The second algorithm
is a string representing the digital signature, which is either in base64 or binary format
depending upon the encode setting.

Boolean

Returns #f if signature creation fails or an error was encountered.

Name Type Description

hdbc Connection handle Handle for connection to the
e*Xchange database.

msg string Encrypted S/MIME v2 compliant AS2
message including signature.

keys string Security key types from e*Xchange
profile (es_tpic.sec_key_type). Each
key type is separated by a '|'. Must
include at least the key type 'S' and 'A'.

tpic_id string B2B protocol profile id for es_tpic.

encode string Tells if encrypted message is base64
encoded ("base64") or in binary
("raw") format. Defaults to "raw" if
empty string.

algorithm string If set, then overrides signature
algorithm setting in the e*Xchange
profile. (Optional - can be an empty
string)
e*Xchange Partner Manager Implementation Guide 444

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
eX-AS2-verify-sig

Syntax

(eX-AS2-verify-sig hdbc content sig alg keys tpic_id encode)

Description

eX-AS2-verify-sig verifies a digital signature given the content. It uses util-security-
verify-sig if encode is base64. Otherwise, it uses util-security-verify-raw-sig to verify
the digital signature.

Parameters

Return Value

Boolean

Returns #t if verification succeeded, such that content and signature match; otherwise
returns #f if content and digital signature don't match or an error was encountered.

Name Type Description

hdbc Connection handle Handle for connection to the
e*Xchange database.

msg string Encrypted S/MIME v2 compliant AS2
message including signature.

sig string Digital signature.

alg string Signature algorithm — “SHA1” or
“MD5”.

keys string Security key types from e*Xchange
profile (es_tpic.sec_key_type). Each
key type is separated by a '|'. Must
include at least the key type 'V'.

tpic_id string B2B protocol profile id for es_tpic.

encode string Tells if encrypted message is base64
encoded ("base64") or in binary
("raw") format. Defaults to "raw" if
empty string.
e*Xchange Partner Manager Implementation Guide 445

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
eX-AS2-verify-smime

Syntax

(eX-AS2-verify-smime hdbc smime_msg keys tpic_id)

Description

eX-AS2-verify-smime verifies a S/MIME v2 AS2 message, which includes a signature
(binary or base64). It uses util-security-verify-smime when retrieving the verification
certificate from the e*Xchange database.

Parameters

Return Value

String

Returns the content part of the S/MIME AS2 message that the signature was created
from. Therefore, the string does not include the signature or any extra headers or
boundaries.

Boolean

Returns #f if the verification fails (content and digital signature don't match) or an error
was encountered.

Name Type Description

hdbc Connection handle Handle for connection to the
e*Xchange database.

msg string Encrypted S/MIME v2 compliant AS2
message including signature.

keys string Security key types from e*Xchange
profile (es_tpic.sec_key_type). Each
key type is separated by a '|'. Must
include at least the key type 'V'.

tpic_id string B2B protocol profile id for es_tpic.
e*Xchange Partner Manager Implementation Guide 446

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
ux-ack-monitor-as2

Syntax

(ux-ack-monitor-as2 hdbc comm_resend_cnt comm_resend_max comm_resend_tm
mtrk_outb_id env_msg_id)

Description

ux-ack-monitor-as2 steps through the AS2 communication resend process. If
comm_resend_cnt > comm_resend_max then es_waiting_ack.comm_resend_cnt is reset
to 0, es_waiting_ack.comm._send_status, and es_waiting_ack.next_send_tm is set to
the future based on es_waiting_ack.ack_rsp_tm_s for all rows with the same
es_mtrk_outb.env_msg_id as the env_msg_id provided.

Otherwise, comm_resend_cnt <= comm_resend_max then
es_waiting_ack.comm._resend_cnt is incremented by 1, es_waiting_ack.next_send_tm
is set to the future based on comm_resend_tm, a row is inserted into es_out_queue for
env_msg_id and mtrk_outb_id, and es_mtrk_outb.last_send_tm is set to the current
datetime.

Parameters

Return Value

Boolean

Returns #t if no errors were encountered, and the processing was successful; otherwise
returns #f.

Special Notes

The ux-ack-monitor-as2 does not include commit or rollback calls. Therefore, a db-
commit should be called when ux-ack-monitor-as2 returns #t, and a db-rollback should
be called on return of #f.

The ack_mon.dsc has a new if-else statement within the processing for non-CIDX and
non-ROS messages. The if part is for checking if the comm_send_status is 'F'. If the
processing goes into the if part, then ux-ack-monitor-as2 is called. Otherwise, the

Name Type Description

hdbc Connection handle Handle for connection to the
e*Xchange database.

comm_resend_cnt integer Number of communication resends
performed for the specified message.

comm_resend_max integer Communication resend maximum
value from sb_defaults.

comm_resend_tm string Communication resend time value in
seconds from sb_defaults.

mtrk_outb_id string Message tracking id for outbound
message.

env_msg_id string Message Id for enveloped or batched
up messages.
e*Xchange Partner Manager Implementation Guide 447

Chapter 14 Section 14.7
e*Xchange Partner Manager Functions AS2 Security Functions
processing goes into the else, which is the normal Ack Monitor processing for X12, EDF,
and NCPDP.

14.7.1 ePM e*Way for AS2 message resends
ePM controls the resends of AS2 messages that fail to be posted through Http. A new
script, eX_AS2_Inb_stat.monk, has been created to process the Http status codes that
get passed back to ePM from the Http(s) e*Way. If a profile has AS2 set to "Y", then there
is a check to see if HTTP_POSTSTAT was included in the Inbound standard event.

When HTTP_POSTSTAT is included in the Inbound standard event, then
eX_AS2_Inb_stat is called with input parameters: connection-handle, MESSAGE_ID
from the Inbound standard event, and the HTTP_POSTSTAT status code.
eX_AS2_Inb_stat goes through the following steps to process the status message:

1 eX_X12_Inb_main.dsc, eX_EDF_Inb_main.dsc, and eX_NCPDP_Inb_main.dsc are
the scripts that each contain a call to eX_AS2_Inb_stat.

2 eX_AS2_Inb_stat assumes that the B2B protocol has been successfully loaded, and
that tpic_id, tran_type, and ic_ver_num have been populated with profile values.

However, the profile loaded is for Inbound. Therefore, the script will load the
corresponding Outbound profile at the beginning of processing, and then reload the
Inbound profile before returning back to the caller.

3 All Mtrk_outb_ids and their associated es_id and es_opt values are retrieves using
the passed in MESSAGE_ID value, direction set to "O", tran_type, and ic_ver_num,

4 All mtrk_outb_ids that have the es_id in the right profile (the one currently loaded)
are kept, and the others that don't match are ignored for further processing.

5 Each mtrk_outb_id HTTP_POSTSTAT extended attribute is updated with the
passed in status code.

6 Each mtrk_outb_id's extended attributes is then searched to see if RESPONSE_ID is
populated. If this attribute does have a value, then that outgoing message expects a
response.

7 If the Http status code does not begin with 2, then the status code is considered an
error. Therefore, all mtrk_outb_ids have the es_waiting_ack. comm_send_status set
to "F". And the mtrk_outb_ids that do expect a response also have
es_waiting_ack.next_send_tm to be reset to the next sending time.

8 If the Http status code does begin with 2, then the status code means there was a
successful POST. All mtrk_outb_ids not expecting responses have their row in
es_waiting_ack deleted.

Given the above steps, it is important that all AS2 Outbound messages have the
following attributes or rows stored along with them in the message tracking:

1 HTTP_POSTSTAT is initialized to an empty string since an update, not an insert, is
performed when the status code comes back.

2 RESPONSE_ID is populated for all messages that expect a response.

3 MESSAGEID is populated with the MESSAGE_ID value that will be in the standard
event containing the HTTP_POSTSTAT.
e*Xchange Partner Manager Implementation Guide 448

Chapter 14 Section 14.8
e*Xchange Partner Manager Functions NCPDP Functions
4 A row in es_waiting_ack is created for each outbound message with
comm._send_status either NULL or an empty string, and comm._resend_cnt is
either NULL or 0.

14.8 NCPDP Functions
This section includes the details for the functions that to support NCPDP in e*Xchange.

Note: NCPDP E1 Eligibility Verification messages—because of a limitation in NCPDP,
the Request and Response messages are not associated in Message Tracking (unless
you perform customization to circumvent this problem). Because of this
limitation, you might see timeout errors on outbound Request messages when the
responses have already been received.

ux-del-ncpdp-batch-rec

Syntax:

(ux-del-ncpdp-batch-rec connection-handle batch_id)

Description:

ux-del-ncpdp-batch-rec deletes a record in es_mtrk_ncpdp_batch for a given batch ID.

Parameters:

Return values:

Boolean

Returns #t (true) - record deleted successfully

Returns #f (false) - Error occurred

Example:

(if (ux-del-ncpdp-batch-rec connection-handle batch_id)
 (db-commit connection-handle)
 (db-rollback connection-handle)

Name Type Description

connection-handle Connection handle Required. The previously established
connection to the database.

batch_id string Required. ID in es_mtrk_ncpdp_batch
table in order to delete that row.
e*Xchange Partner Manager Implementation Guide 449

Chapter 14 Section 14.8
e*Xchange Partner Manager Functions NCPDP Functions
ux-get-ncpdp-batch-ids

Syntax:

(ux-get-ncpdp-batch-ids connection-handle)

Description:

ux-get-ncpdp-batch-ids is called to return a vector of vectors of batch-id, outb_resp_id,
and outb_cnt that meet a specific criteria for batching. The criteria is that the outb_cnt
is greater or equal to total_cnt for the batch-id OR outb_ts time + sb-defaults time-out
value is greater than the current time.

Parameters:

Return values:

Boolean

Returns #t (true) - No batch ID data sets returned.

Returns #f (false) - Error occurred

Vector

a vector of sub-vectors

< <Sub-Vector batch-id1 outb-resp-ids1 outb-cnt1>

 <Sub-Vector batch-id2 outb-resp-ids2 outb-cnt2>

 ...

>

Example:

(set! ncpdp_resp_id_vec (ux-get-ncpdp-batch-ids connection-handle))
(if (vector? ncpdp_resp_id_vec)
 (begin
 (set! ncpdp_resp_id_len (vector-length ncpdp_resp_id_vec))
 (if (> ncpdp_resp_id_len 0)
 (begin
 (do ((i 0 (+ i 1))) ((= i ncpdp_resp_id_len))
 (set! ncpdp_resp_item (vector-ref ncpdp_resp_id_vec i))
 (set! batch_id (vector-ref ncpdp_resp_item 0))
 (set! resp_id_vec (vector-ref ncpdp_resp_item 1))
 (set! resp-outb-cnt (vector-ref ncpdp_resp_item 2))
)))))

Name Type Description

connection-handle Connection handle Handle for connection to the
e*Xchange database.
e*Xchange Partner Manager Implementation Guide 450

Chapter 14 Section 14.8
e*Xchange Partner Manager Functions NCPDP Functions
ux-get-ncpdp-batch-rec

Syntax:

(ux-get-ncpdp-batch-rec connection-handle batch_id)

Description:

ux-get-ncpdp-batch-rec retrieves a record from es_mtrk_ncpdp_batch for a batch ID.

Parameters:

Return values:

Boolean

Returns #t (true) - No record retrieved for the batch-id

Returns #f (false) - Error occurred

Vector

<outb-resp-ids outb-cnt total-cnt> where outb-resp-ids have the format of IDs
separated by a pipe like "outb-resp-id1|outb-resp-id2|outb-resp-id3"

Example:

(set! rtv_ncpdp_batch (ux-get-ncpdp-batch-rec connection-handle
batch_id))
(if (vector? rtv_ncpdp_batch)
 (set! resp-outb-cnt (vector-ref rtv_ncpdp_batch 2))
)

Name Type Description

connection-handle Connection handle Required. The previously established
connection to the database.

batch_id string Required. ID in order to get
information for the record.
e*Xchange Partner Manager Implementation Guide 451

Chapter 14 Section 14.8
e*Xchange Partner Manager Functions NCPDP Functions
ux-ins-ncpdp-batch-rec

Syntax:

(ux-ins-ncpdp-batch-rec, conn-handle, batch-id, outb-resp-ids, outb-cnt, total-cnt)

Description:

ux-ins-ncpdp-batch-rec inserts a row in es_mtrk_ncpdp_batch.

Parameters:

Return values:

Boolean.

Returns #t (true) - record inserted correctly;

otherwise returns #f (false) - Error occurred

Example:

(set! ins_batch_rec (ux-ins-ncpdp-batch-rec connection-handle
batch_id
 mtrk_outb_resp_ids_list (number->string mtrk_outb_cnt_number)
 (number->string mtrk_total_cnt_number)))
(if ins_batch_rec
 (begin
 (display "Inserted Batch Record Successfully")
)
 (begin
 (display "Error Inserting Batch Record")
)
)

Name Type Description

connection-handle Connection handle Required. The previously established
connection to the database.

batch_id string Required. Unique identifier of the
inbound NCPDP batch outb-resp-ids.

total-cnt string Required. Total number of messages
in batch identified by batch-id.
e*Xchange Partner Manager Implementation Guide 452

Chapter 14 Section 14.8
e*Xchange Partner Manager Functions NCPDP Functions
ux-upd-ncpdp-batch-rec

Syntax:

(ux-upd-ncpdp-batch-rec conn-handle batch-id outb-cnt)

Description:

ux-upd-ncpdp-batch-rec updates the outbound count and timestamp for a row in
es_mtrk_ncpdp_batch identified by batch-id.

Parameters:

Return values:

Boolean

Returns #t (true) - record updated successfully;

otherwise returns #f (false) - Error occurred

Example:

(set! upd_batch_rec (ux-upd-ncpdp-batch-rec connection-handle
batch_id resp-outb-cnt))
(if upd_batch_rec
 (begin
 (display "Updated Batch Record Successfully")
)
 (begin
 (display "Error Updating Batch Record")
)
)

Name Type Description

conn-handle Connection handle Required. The previously established
connection to the database.

batch_id string Required. Unique identifier of inbound
NCPDP batch outb-cnt.

total-cnt string Required. Total number of messages
in batch identified by batch-id.
e*Xchange Partner Manager Implementation Guide 453

Chapter 14 Section 14.8
e*Xchange Partner Manager Functions NCPDP Functions
ux-ncpdp-inb-dup-check

Syntax:

(ux-ncpdp-inb-dup-check connection-handle temp_unique_id "T")

Description:

ux-ncpdp-inb-dup-check checks for duplicate NCPDP inbound transactions.

Parameters:

Return values:

Boolean

Returns #f (false) - Error occurred

String

"Y" - Yes, it is a duplicate and there is no ack_msg_id

"ACK_MSG_ID" - duplicate found and it had an ack msg id

"N" - No, there was no duplicate found

Example:

(set! dupdata (ux-ncpdp-inb-dup-check connection-handle
temp_unique_id "T"))
(if (boolean? dupdata)
 (begin
 (display "ux-check-shutdown-uid failed\n")
)
 (begin
 (if (not (string=? dupdata "N"))
 (begin
 (if (string=? dupdata "Y")
 (begin
 (display "Duplicate exists, but no ack msg id found\n")
)
 (begin
 (display "Duplicate exists, but ack msg id found: ")
 (display dupdata)
)
)
)
)

Name Type Description

connection-handle Connection handle Required. The previously established
connection to the database.

unique-id string Required. Unique identifier to
represent the transaction.

level string Required. The level of the check (I = IC,
T = TS).
e*Xchange Partner Manager Implementation Guide 454

Chapter 14 Section 14.8
e*Xchange Partner Manager Functions NCPDP Functions
ux-ret-ncpdp-batch-ts-msgs

Syntax:

(ux-ret-ncpdp-batch-ts-msgs connection-handle file_size

 batch_id upd_ind batch_num trans_ref_num)

Description:

ux-ret-ncpdp-batch-ts-msgs obtains contents of NCPDP batch transaction

set messages that are ready to be sent out.

Parameters:

Return values:

Boolean

Returns #f (false) - Error occurred

Vector

If success, returns a vector of vectors containing message and associated record IDs.
file_size is updated as messages are retrieved from the database. file_size resets to -1 if
it exceeds the maximum value of 5000000.

If no values to return then returns an empty vector.

#(file_size tot_msg_size batch_num

Name Type Description

connection-handle Connection handle Required. The previously established
connection to the database.

file_size string Required. Current size of batch
messages.

batch_id string Required. ID in
es_mtrk_ncpdp_batch table.

upd_ind string Required. "Y" (Yes) or "N" (No)
Indicator to update or select using
batch_id and trans_ref_num. If the
upd_ind value is "N", messages with
the batch_id will be retrieved. If the
upd_ind value is "Y", the batch_id
value will be used to update retrieved
msgs.

batch_num string Required. Batch number that will only
be used to update mtrk_ext_data value
if the upd_ind is "Y".

trans_ref_num string Required but may be an empty string.
Transaction reference number. If
upd_ind value is "Y", the value is used
as the starting transaction reference
number and increment the value.
e*Xchange Partner Manager Implementation Guide 455

Chapter 14 Section 14.8
e*Xchange Partner Manager Functions NCPDP Functions
 #(msg_a trans_ref_num
 #(mtrk_id_a1 mtrk_ext_d_id1
 mtrk_ext_d_id2
mtrk_ext_d_id3)
 #(mtrk_id_a2
mtrk_ext_d_id1
 mtrk_ext_d_id2
mtrk_ext_d_id3))
 #(msg_b trans_ref_num
 #(mtrk_id_b1 mtrk_ext_d_id1
 mtrk_ext_d_id2
mtrk_ext_d_id3)
 #(mtrk_id_b2
mtrk_ext_d_id1
 mtrk_ext_d_id2
mtrk_ext_d_id3)))

Example:

(set! ret-batch-msgs (ux-ret-ncpdp-batch-ts-msgs connection-handle
file_size batch_id "N" batch_num "")
(if (boolean? ret-batch-msgs)
 (begin
 (display "ux-ret-ncpdp-batch-ts-msgs failed.")
)
 (begin
 (set! reach_limit (vector-ref ret-batch-msgs 0))
 (set! file_size (vector-ref ret-batch-msgs 1))
)
)

e*Xchange Partner Manager Implementation Guide 456

Chapter 15

Java Helper Methods

A number of Java methods have been added to make it easier to set information in the
e*Xchange Event (eX_StandardEvent.xsc ETD) and to get information from it. These
methods are contained in classes:

NameValuePair Class on page 458

Payload Class on page 466

TPAttribute Class on page 478

TP_EVENT Class on page 490
e*Xchange Partner Manager Implementation Guide 457

Chapter 15 Section 15.1
Java Helper Methods NameValuePair Class
15.1 NameValuePair Class
public class NameValuePair

extends com.stc.jcsre.XMLETDImpl

implements com.stc.jcsre.ETD

A class to represent the NameValuePair object of an e*Xchange (Business Process
Management) XML ETD. It is defined in the following DTD:

<!ELEMENT TPAttribute (NameValuePair*)>
<!ELEMENT NameValuePair (Name, Value)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Value (#PCDATA)>

These methods are described in detail on the following pages:

getNAME on page 459

getVALUE on page 460

marshal on page 461

setNAME on page 462

setVALUE on page 463

toString on page 464

unmarshal on page 465
e*Xchange Partner Manager Implementation Guide 458

Chapter 15 Section 15.1
Java Helper Methods NameValuePair Class
getNAME

Syntax

java.lang.String getNAME()

Description

getNAME retrieves the name portion of this object.

Parameters

None.

Return Values

java.lang.String
Returns the name of this object.

Throws

None.

Example

getNAME();

=> "COMM_PROT"
e*Xchange Partner Manager Implementation Guide 459

Chapter 15 Section 15.1
Java Helper Methods NameValuePair Class
getVALUE

Syntax

java.lang.String getVALUE()

Description

getVALUE retrieves the value portion of this object.

Parameters

None.

Return Values

java.lang.String
Returns the value of the object.

Throws

None.

Example

getVALUE();

=> "X12"
e*Xchange Partner Manager Implementation Guide 460

Chapter 15 Section 15.1
Java Helper Methods NameValuePair Class
marshal

Syntax

void marshal(org.xml.sax.ContentHandler handler,
org.xml.sax.ErrorHandler errorHandler)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Return Values

None.

Throws

None.

Name Type Description

handler org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler org.xml.sax.ErrorHandle
r

The handler to address errors during
conversion.
e*Xchange Partner Manager Implementation Guide 461

Chapter 15 Section 15.1
Java Helper Methods NameValuePair Class
setNAME

Syntax

void setNAME(java.lang.String val)

Description

setNAME sets the name portion of this object.

Parameters

Return Values

None.

Throws

None.

Example

setNAME("COMM_PROT");

Name Type Description

val string The case-sensitive name of this Partner
Manager Attribute.
e*Xchange Partner Manager Implementation Guide 462

Chapter 15 Section 15.1
Java Helper Methods NameValuePair Class
setVALUE

Syntax

void setVALUE(java.lang.String val)

Description

setVALUE sets the value portion of this object.

Parameters

Return Values

None.

Throws

None.

Example

setVALUE("X12");

Name Type Description

val java.lang.String The value of the Attribute.
e*Xchange Partner Manager Implementation Guide 463

Chapter 15 Section 15.1
Java Helper Methods NameValuePair Class
toString

Syntax

java.lang.String toString()

Description

toString converts this ETD object to a printable String form.

Parameters

None.

Return Values

java.lang.String
Returns the XML message represent by this ETD object.

Throws

None.

Example

toString();
e*Xchange Partner Manager Implementation Guide 464

Chapter 15 Section 15.1
Java Helper Methods NameValuePair Class
unmarshal
Syntax

void unmarshal(org.xml.sax.InputSource inputSource,
com.stc.jcsre.sml.SAXLexer lexer)

Description

unmarshal takes a serialized (marshalled) form of the ACTIVITY XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters

Return Values

None.

Throws

org.xml.sax.SAXException - thrown when the data cannot be parsed

com.stc.jcsre.UnmarshalException - throw when the data cannot be unmarshalled

Name Type Description

inputSource org.xml.sax.InputSource The input source for the serialized
data.

lexer com.stc.jcsre.sml.SAXLe
xer

The SAX lexer (parser) to distribute the
data.
e*Xchange Partner Manager Implementation Guide 465

Chapter 15 Section 15.2
Java Helper Methods Payload Class
15.2 Payload Class
public class Payload

extends com.stc.jcsre.XMLETDImpl

implements com.stc.jcsre.ETD

A class to represent the Payload object of an e*Xchange (Partner Manager) XML ETD. It
is defined in the following DTD:

<!--Payload to carry EDI message-->
<!ELEMENT Payload (#PCDATA)>
<!ATTLIST Payload

TYPE (RAW | PROCESSED | ENCRYPTED) #REQUIRED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #IMPLIED

>

These methods are described on the following pages:

get$Text on page 467

getLOCATION on page 468

getTYPE on page 469

hasLOCATION on page 470

marshal on page 471

omitLOCATION on page 472

set$Text on page 473

setLOCATION on page 474

setTYPE on page 475

toString on page 476

unmarshal on page 477
e*Xchange Partner Manager Implementation Guide 466

Chapter 15 Section 15.2
Java Helper Methods Payload Class
get$Text

Syntax

java.lang.String get$Text()

Description

get$Text retrieves the Payload data.

Parameters

None.

Return Values

java.lang.String

Returns the Payload data.

Throws

None.
e*Xchange Partner Manager Implementation Guide 467

Chapter 15 Section 15.2
Java Helper Methods Payload Class
getLOCATION

Syntax

java.lang.String getLOCATION()

Description

getLOCATION retrieves the location type of where the data for Payload is actually
stored. In cases where the data is too long to be stored in standard database column, it
can be stored in another table where the column can be defined as a "LONG RAW" for
example, or it may be stored in a file on some file system. In such cases, a reference to
the actual data location is stored as the data for Payload.

Parameters

None.

Return Values

java.lang.String

Returns the location type for the Payload data. This is one of the following values:

Throws

None.

Example

getLOCATION();

=> "EMBEDDED"

"FILE" The Payload data contains the name of a file
where actual data is stored.

"DB" The Payload data contains a reference such as
"ROWID" to a row in a table.

"URL" The Payload data contains a URL to where the
actual data is stored.

"EMBEDDED" The Payload data contains the actual data (this
is the default).

"AUTO" The Payload data contains the actual data
storage location is automatically determined
by the e*Xchange engine.
e*Xchange Partner Manager Implementation Guide 468

Chapter 15 Section 15.2
Java Helper Methods Payload Class
getTYPE

Syntax

java.lang.String getTYPE()

Description

getTYPE retrieves the type of data stored in the Payload object.

Parameters

None.

Return Values

java.lang.String
Returns the type of data stored as one of the following values:

Throws

None.

Example

getTYPE();

=> "STRING"

“RAW” Indicates that the data in the Data node is in
ASCII format, but not XML data that has been
converted to ASCII using base 64 or some
other conversion. The data must not contain
any characters that would conflict with the
XML nature of the e*Xchange ETD (for
example, EDI delimiters that are the same as
XML control characters).

“PROCESSED” Indicates that the data in the Data node is XML
data that has been encoded using the scheme
described in the ENCODING node. Currently
only base 64 encoding is supported.

“ENCRYPTED” Indicates that the data in the Data node has
been encrypted, and must be decrypted before
it can be processed by e*Xchange.
e*Xchange Partner Manager Implementation Guide 469

Chapter 15 Section 15.2
Java Helper Methods Payload Class
hasLOCATION

Syntax

boolean hasLOCATION()

Description

hasLOCATION checks if the location is defined for this Payload object.

Parameters

None.

Return Values

Boolean
Returns true if location exists, otherwise returns false.

Throws

None.

Example

hasLOCATION();

=> true
e*Xchange Partner Manager Implementation Guide 470

Chapter 15 Section 15.2
Java Helper Methods Payload Class
marshal

Syntax

void marshal(org.xml.sax.ContentHandler handler,
org.xml.sax.ErrorHandler errorHandler)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Return Values

None.

Throws

com.stc.jcsre.MarshalException

org.xml.sax.SAXException

Name Type Description

handler org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler or.xml.sax.ErrorHandler The handler to address errors during
conversion.
e*Xchange Partner Manager Implementation Guide 471

Chapter 15 Section 15.2
Java Helper Methods Payload Class
omitLOCATION

Syntax

void omitLOCATION()

Description

omitLOCATION removes the location definition for this Payload object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitLOCATION();
e*Xchange Partner Manager Implementation Guide 472

Chapter 15 Section 15.2
Java Helper Methods Payload Class
set$Text

Syntax

void set$Text(java.lang.String val)

Description

set$Text sets the Payload data.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The Payload data.
e*Xchange Partner Manager Implementation Guide 473

Chapter 15 Section 15.2
Java Helper Methods Payload Class
setLOCATION

Syntax

void setLOCATION(java.lang.String val)

Description

setLOCATION sets the location type of where the data for a Payload is actually stored.
In cases where the data is too long to be stored in standard database column, it can be
stored in another table where the column can be defined as a "LONG RAW" for
example, or it may be stored in a file on some file system.

Parameters

Return Values

None.

Throws

None.

Example

setLOCATION("FILE");

Name Type Description

val java.lang.String The location type for the Payload data.
This can have one the following
values:

"FILE" - Attribute data is the name of
a file where actual data is stored.
"DB" - Attribute data is a reference
such as "ROWID" to a row in a table.
"URL" - Attribute data is the URL to
where the actual data is stored.
"EMBEDDED" - Attribute data is the
actual data (this is the default).
"AUTO" - The actual data storage
location is automatically determined
by the e*Xchange engine.
e*Xchange Partner Manager Implementation Guide 474

Chapter 15 Section 15.2
Java Helper Methods Payload Class
setTYPE

Syntax

void setTYPE(java.lang.String val)

Description

setTYPE sets the type of data stored in Payload.

Parameters

Return Values

None.

Throws

None.

Example

setTYPE("STRING");

Name Type Description

val java.lang.String The type of data stored. This can take
one of the following values:

"RAW" - Indicates that the data in
the Data node is in ASCII format, but
not XML data that has been
converted to ASCII using base 64 or
some other conversion. The data
must not contain any characters that
would conflict with the XML nature
of the e*Xchange ETD (for example,
EDI delimiters that are the same as
XML control characters).
"PROCESSED" - Indicates that the
data in the Data node is XML data
that has been encoded using the
scheme described in the
ENCODING node. Currently only
base 64 encoding is supported.
"ENCRYPTED"- Indicates that the
data in the Data node has been
encrypted, and must be decrypted
before it can be processed by
e*Xchange.
e*Xchange Partner Manager Implementation Guide 475

Chapter 15 Section 15.2
Java Helper Methods Payload Class
toString

Syntax

java.lang.String toString()

Description

toString Converts this ETD object to a printable String form.

Parameters

None.

Return Values

java.lang.String
Returns the XML message represent by this ETD object.

Throws

None.

Example

toString();
e*Xchange Partner Manager Implementation Guide 476

Chapter 15 Section 15.2
Java Helper Methods Payload Class
unmarshal
Syntax

void unmarshal(org.xml.sax.InputSource inputSource,
com.stc.jcsre.sml.SAXLexer lexer)

Description

unmarshal takes a serialized (marshalled) form of the e*Insight XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters

Return Values

None.

Throws

org.xml.sax.SAXException, when the data cannot be parsed.

com.stc.jcsre.UnmarshalException, when the data cannot be unmarshalled.

Name Type Description

inputSource org.xml.sax.InputSource The input source for the serialized
data.

lexer com.stc.jcsre.xml.SAXLe
xer

The SAX Lexer (parser) to distribute
the data.
e*Xchange Partner Manager Implementation Guide 477

Chapter 15 Section 15.3
Java Helper Methods TPAttribute Class
15.3 TPAttribute Class
public class TPAttribute

extends com.stc.jcsre.XMLETDImpl

implements com.stc.jcsre.ETD

The TPAttribute class represents the e*Xchange section of the Oracle eBI Standard XML
ETD which is used to communicate with the e*Xchange engine. The DTD is:

<!--TP Attribute will contain optional repeating name value pair for
storing of TP-->
<!ELEMENT TPAttribute (NameValuePair*)>

These methods are described in detail on the following pages:

addNameValuePair on page 479

clearNameValuePair on page 480

countNameValuePair on page 481

getNameValuePair_Value on page 482

getNameValuePair on page 483

hasNameValuePair on page 484

marshal on page 485

removeNameValuePair on page 486

setNameValuePair on page 487

toString on page 488

unmarshal on page 489
e*Xchange Partner Manager Implementation Guide 478

Chapter 15 Section 15.3
Java Helper Methods TPAttribute Class
addNameValuePair

Syntax

void addNameValuePair(int index, NameValuePair value)

Description

addNameValuePair inserts a new NameValuePair into this Trading Partner object.

Parameters

Return Values

None.

Throws

None.

Name Type Description

index integer (Optional) Zero-base index to
where the NameValuePair object is
to be inserted.

value com.stc.eBIpkg.ATTRIBUTE The NameValuePair object.
e*Xchange Partner Manager Implementation Guide 479

Chapter 15 Section 15.3
Java Helper Methods TPAttribute Class
clearNameValuePair

Syntax

void clearNameValuePair()

Description

clearNameValuePair removes all the NameValuePairs from this TPAttribute object.

Parameters

None.

Return Values

None.

Throws

None.

Example

clearNameValuePair();
e*Xchange Partner Manager Implementation Guide 480

Chapter 15 Section 15.3
Java Helper Methods TPAttribute Class
countNameValuePair

Syntax

int countNameValuePair()

Description

countNameValuePair retrieves the number of NameValuePair objects this TPAttribute
object.

Parameters

None.

Return Values

integer

Returns the number of NameValuePair objects as an integer.

Throws

None

Example
countNameValuePair();
=>3
e*Xchange Partner Manager Implementation Guide 481

Chapter 15 Section 15.3
Java Helper Methods TPAttribute Class
getNameValuePair_Value

Syntax

java.lang.String getNameValuePair_Value(java.lang.String name)

Description

getNameValuePair_Value retrieves the value of a specific NameValuePair by name.

Parameters

Return Values

java.lang.String
Returns the value of the NameValuePair object. Can be null if the Attribute of that name
does not exist.

Throws

None.

Name Type Description

name java.lang.String The name of the NameValuePair
object.
e*Xchange Partner Manager Implementation Guide 482

Chapter 15 Section 15.3
Java Helper Methods TPAttribute Class
getNameValuePair

Syntax

NameValuePair[] getNameValuePair()
NameValuePair getNameValuePair(int i)
NameValuePair getNameValuePair(java.lang.String name)

Description

getNameValuePair retrieves all the NameValuePair objects in the TPAttribute object, or
can be used to retrieve a specific NameValuePair by name or index.

Parameters

Return Values

Returns one of the following values:

NameValuePair[]
Returns an array of NameValuePair objects if no name or offset were specified.

NameValuePair
Returns the NameValuePair object if the name or offset were specified.

Throws

None.

Name Type Description

i integer (Optional) The offset to the list where
the NameValuePair appears.

name java.lang.String The NameValuePair name.
e*Xchange Partner Manager Implementation Guide 483

Chapter 15 Section 15.3
Java Helper Methods TPAttribute Class
hasNameValuePair

Syntax

boolean hasNameValuePair(java.lang.String name)

Description

hasNameValuePair checks whether a specific TP Attribute contains a NameValuePair.

Parameters

Return Values

Boolean
Returns true if the NameValuePair is defined; otherwise returns false.

Throws

None.

Example

hasNameValuePair();
=>true

Name Type Description

name java.lang.String The name of the Trading Partner
Attribute (TPAttribute) that you want
to retrieve.
e*Xchange Partner Manager Implementation Guide 484

Chapter 15 Section 15.3
Java Helper Methods TPAttribute Class
marshal

Syntax

void marshal(org.xml.sax.ContentHandler handler,
org.xml.sax.ErrorHandler errorHandler)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Return Values

None.

Throws

com.stc.jcsre.MarshalException

org.xml.sax.SAXException

Name Type Description

handler org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler or.xml.sax.ErrorHandler The handler to address errors during
conversion.
e*Xchange Partner Manager Implementation Guide 485

Chapter 15 Section 15.3
Java Helper Methods TPAttribute Class
removeNameValuePair

Syntax

void removeNameValuePair(java.lang.String name)
void removeNameValuePair(int index)

Description

removeNameValuePair removes a specific NameValuePair object from this TPAttribute
object by name or index.

Parameters

Return Values

None.

Throws

None.

Name Type Description

name java.lang.String The name of the NameValuePair.

index int The index to the list of global
attributes (zero-based).
e*Xchange Partner Manager Implementation Guide 486

Chapter 15 Section 15.3
Java Helper Methods TPAttribute Class
setNameValuePair

Syntax

void setNameValuePair(NameValuePair[] val)
void setNameValuePair(int i, NameValuePair val)
void setNameValuePair(java.lang.String name java.lang.String value)

Description

setNameValuePair sets a NameValuePair object in the TPAttribute object.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val NameValuePair[] The NameValuePair object.

i int The list index of the NameValuePair to
be retrieved (zero-based).

name java.lang.String The name of the NameValuePair.

value java.lang.String The value of the NameValuePair.
e*Xchange Partner Manager Implementation Guide 487

Chapter 15 Section 15.3
Java Helper Methods TPAttribute Class
toString

Syntax

java.lang.String toString()

Description

toString converts this ETD object to a printable String form.

Parameters

None.

Return Values

java.lang.String
Returns the XML message to represent by this ETD object.

Throws

None.

Example

toString();
e*Xchange Partner Manager Implementation Guide 488

Chapter 15 Section 15.3
Java Helper Methods TPAttribute Class
unmarshal
Syntax

void unmarshal(org.xml.sax.InputSource inputSource,
com.stc.jcsre.sml.SAXLexer lexer)

Description

unmarshal takes a serialized (marshalled) form of the e*Insight XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters

Return Values

None.

Throws

org.xml.sax.SAXException, when the data cannot be parsed.

com.stc.jcsre.UnmarshalException, when the data cannot be unmarshalled.

Name Type Description

inputSource org.xml.sax.InputSource The input source for the serialized
data.

lexer com.stc.jcsre.xml.SAXLe
xer

The SAX Lexer (parser) to distribute
the data.
e*Xchange Partner Manager Implementation Guide 489

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
15.4 TP_EVENT Class
public class TP_EVENT

extends com.stc.jcsre.SMLETDImpl

implements com.eBIpkg.TPEventETD

TP_EVENT class represents the e*Xchange section of the Oracle eBI Standard XML ETD
which is used to communicate with the e*Xchange engine. The DTD is:

<!--ePartner Manager Input/Output Event section-->
<!ELEMENT TP_EVENT (PartnerName?, InternalName?, Direction?,

MessageID?, OrigEventC
<!--External Partner Name-->
<!ELEMENT PartnerName (#PCDATA)>
<!--Internal Sending ERP (ex.SAP)-->
<!ELEMENT InternalName (#PCDATA)>
<!--Direction of Transaction to/from Trading Partner (ex.Outbound=O

Inbound=I)-->
<!ELEMENT Direction (#PCDATA)>
<!--Original request ID from Internal Sending ERP-->
<!ELEMENT MessageID (#PCDATA)>
<!--Original Event Classification (ex.QAP for Query Price and

Availability)-->
<!ELEMENT OrigEventClass (#PCDATA)>
<!--Usage Indicator of EDI message by Trading Partner (Production=P

Test=T)-->
<!ELEMENT UsageIndicator (#PCDATA)>
<!--Payload to carry EDI message-->
<!ELEMENT Payload (#PCDATA)>
<!ATTLIST Payload

TYPE (RAW | PROCESSED | ENCRYPTED) #REQUIRED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #IMPLIED

>
<!--RAW=Need translation PROCESSED=Already X12 or RN ENCRYPTED=from

Trading Partner>
<!--Communication Protocol (ex. BATCH, HTTP) for sending to Trading

Partner-->
<!ELEMENT CommProt (#PCDATA)>
<!--URL for EDI message to be exchanged with Trading Partner-->
<!ELEMENT Url (#PCDATA)>
<!--SSL information-->
<!ELEMENT SSLClientKeyFileName (#PCDATA)>
<!ELEMENT SSLClientKeyFileType (#PCDATA)>
<!ELEMENT SSLClientCertFileName (#PCDATA)>
<!ELEMENT SSLClientCertFileType (#PCDATA)>
<!--Message Index for Batched delivery, ex. 1|20 means 1 of 20-->
<!ELEMENT MessageIndex (#PCDATA)>
<!--TP Attribute will contain optional repeating name value pair for
storing of TP-->
<!ELEMENT TPAttribute (NameValuePair*)>
<!ELEMENT NameValuePair (Name, Value)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Value (#PCDATA)>

These methods are described in detail on the following pages:

getCommProt on page 492 omitDirection on page 524

getDirection on page 493 omitInternalName on page 525
e*Xchange Partner Manager Implementation Guide 490

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getInternalName on page 494 omitMessageID on page 526

getMessageID on page 495 omitMessageIndex on page 527

getMessageIndex on page 496 omitOrigEventClass on page 528

getOrigEventClass on page 497 omitPartnerName on page 529

getPartnerName on page 498 omitPayload on page 530

getPayload on page 499 omitSSLClientCertFileName on
page 531

getSSLClientCertFileName on page 500 omitSSLClientCertFileType on page 532

getSSLClientCertFileType on page 501 omitSSLClientKeyFileName on page 533

getSSLClientKeyFileName on page 502 omitSSLClientKeyFileType on page 534

getSSLClientKeyFileType on page 503 omitTPAttribute on page 535

getTPAttribute on page 504 omitUrl on page 536

getURL on page 505 omitUsageIndicator on page 537

getUsageIndicator on page 506 setCommProt on page 538

hasCommProt on page 507 setDirection on page 539

hasDirection on page 508 setInternalName on page 540

hasInternalName on page 509 setMessageID on page 541

hasMessageID on page 510 setMessageIndex on page 542

hasMessageIndex on page 511 setOrigEventClass on page 543

hasOrigEventClass on page 512 setPartnerName on page 544

hasPartnerName on page 513 setPayload on page 545

hasPayload on page 514 setSSLClientCertFileName on page 546

hasSSLClientCertFileName on page 515 setSSLClientCertFileType on page 547

hasSSLClientCertFileType on page 516 setSSLClientKeyFileName on page 548

hasSSLClientKeyFileName on page 517 setSSLClientKeyFileType on page 549

hasSSLClientKeyFileType on page 518 setTPAttribute on page 550

hasTPAttribute on page 519 setUrl on page 551

hasUrl on page 520 setUsageIndicator on page 552

hasUsageIndicator on page 521 toString on page 553

marshal on page 522 unmarshal on page 554

omitCommProt on page 523
e*Xchange Partner Manager Implementation Guide 491

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getCommProt

Syntax

java.lang.String getCommProt()

Description

getCommProt retrieves the communication protocol used.

Parameters

None.

Return Values

java.lang.String
Returns the communication protocol. Possible values include “BATCH”, “HTTP” and
“HTTPS”.

Throws

None.

Example

getCommProt();
=>"BATCH"
e*Xchange Partner Manager Implementation Guide 492

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getDirection

Syntax

java.lang.String getDirection()

Description

getDirection retrieves the direction of transaction relative to e*Xchange.

Parameters

None.

Return Values

java.lang.String
Returns the direction. Possible values include; “O” representing Outbound, or “I”
representing Inbound.

Throws

None.

Example

getDirection();
=>"I"
e*Xchange Partner Manager Implementation Guide 493

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getInternalName

Syntax

java.lang.String getInternalName()

Description

getInternalName retrieves the internal name of the Trading Partner as known by the
sending ERP.

Parameters

None.

Return Values

java.lang.String
Returns the Internal Name of the Trading Partner per sending ERP.

Throws

None.
e*Xchange Partner Manager Implementation Guide 494

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getMessageID

Syntax

java.lang.String getMessageID()

Description

getMessageID retrieves the original request ID from the sending ERP system.

Parameters

None.

Return Values

java.lang.String
Returns the message ID.

Throws

None.
e*Xchange Partner Manager Implementation Guide 495

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getMessageIndex

Syntax

java.lang.String getMessageIndex()

Description

getMessageIndex retrieves the message index for batched delivery. For example, 5/7
indicates the fifth message in a batch of seven.

Parameters

None.

Return Values

java.lang.String
Returns the message index.

Throws

None.
e*Xchange Partner Manager Implementation Guide 496

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getOrigEventClass

Syntax

java.lang.String getOrigEventClass()

Description

getOrigEventClass retrieves the original event classification from the sending ERP
system.

Parameters

None.

Return Values

java.lang.String
Returns the original event classification.

Throws

None.
e*Xchange Partner Manager Implementation Guide 497

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getPartnerName

Syntax

java.lang.String getPartnerName()

Description

getPartnerName retrieves the name of the Trading Partner.

Parameters

None.

Return Values

java.lang.String
Returns the Trading Partner Name.

Throws

None.

Example

getPartnerName();
=>"The Savvy Toy Company"
e*Xchange Partner Manager Implementation Guide 498

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getPayload

Syntax

java.lang.String getPayload()

Description

getPayload retrieves the Payload object.

Parameters

None.

Return Values

Payload
Returns the Payload object.

Throws

None.
e*Xchange Partner Manager Implementation Guide 499

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getSSLClientCertFileName

Syntax

java.lang.String SSLClientCertFileName()

Description

SSLClientCertFileName retrieves the name of the file that contains the SSL Client
Certificate.

Parameters

None.

Return Values

java.lang.String
Returns the name of the file that contains the SSL Client Certificate.

Throws

None.
e*Xchange Partner Manager Implementation Guide 500

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getSSLClientCertFileType

Syntax

java.lang.String getSSLClientCertFileType()

Description

SSLClientCertFileType retrieves the SSL Client Certificate file type.

Parameters

None.

Return Values

java.lang.String
Returns the SSL Client Certificate file type. Possible values include “ASN.1” and
“PEM”.

Throws

None.

Example

getSSLClientCertFileType();
=>"PEM"
e*Xchange Partner Manager Implementation Guide 501

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getSSLClientKeyFileName

Syntax

java.lang.String SSLClientKeyFileName()

Description

SSLClientKeyFileName retrieves the name of the file that contains the SSL Client Key.

Parameters

None.

Return Values

java.lang.String
Returns the SSL Client Key file name.

Throws

None.
e*Xchange Partner Manager Implementation Guide 502

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getSSLClientKeyFileType

Syntax

java.lang.String SSLClientKeyFileType()

Description

SSLClientKeyFileType retrieves the SSL Client Key file type.

Parameters

None.

Return Values

java.lang.String
Returns the SSL Client Key file type. Possible values include “ASN.1” and “PEM”.

Throws

None.

Example

getSSLClientKeyFileType();
=>"PEM"
e*Xchange Partner Manager Implementation Guide 503

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getTPAttribute

Syntax

TPAttribute getTPAttribute()

Description

getTPAttribute retrieves the TPAttribute object.

Parameters

None.

Return Values

TPAttribute
Returns the TPAttribute object.

Throws

None.
e*Xchange Partner Manager Implementation Guide 504

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getURL

Syntax

java.lang.String getURL()

Description

getURL retrieves the URL used for an EDI message exchanged with a Trading Partner.

Parameters

None.

Return Values

java.lang.String
Returns the URL.

Throws

None.
e*Xchange Partner Manager Implementation Guide 505

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
getUsageIndicator

Syntax

java.lang.String getUsageIndicator()

Description

getUsageIndicator retrieves the usage indicator for a Trading Partner object.

Parameters

None.

Return Values

java.lang.String
Returns the usage indicator. Possible values include “P” representing Production and
“T” representing Testing.

Throws

None.

Example

getUsageIndicator();
=>"P"
e*Xchange Partner Manager Implementation Guide 506

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasCommProt

Syntax

boolean hasCommProt()

Description

hasCommProt checks whether the communication protocol has been defined in this
Trading Partner object.

Parameters

None.

Return Values

Boolean
Returns true if the communication protocol exists.

Throws

None.

Example

hasCommProt();
=>true
e*Xchange Partner Manager Implementation Guide 507

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasDirection

Syntax

boolean hasDirection()

Description

hasDirection checks whether the direction has been defined in this Trading Partner
object.

Parameters

None.

Return Values

Boolean
Returns true if the direction exists.

Throws

None.

Example

hasDirection();
=>true
e*Xchange Partner Manager Implementation Guide 508

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasInternalName

Syntax

boolean hasInternalName()

Description

hasInternalName checks whether the internal name of the Trading Partner, as known
by the sending ERP, has been defined for this Trading Partner.

Parameters

None.

Return Values

Boolean
Returns true if the internal name exists.

Throws

None.

Example

hasInternalName();
=>true
e*Xchange Partner Manager Implementation Guide 509

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasMessageID

Syntax

boolean hasMessageID()

Description

hasMessageID checks whether the original request ID from the internal sending ERP is
defined for this Trading Partner object.

Parameters

None.

Return Values

Boolean
Returns true if the request id exists.

Throws

None.

Example

hasMessageID();
=>true
e*Xchange Partner Manager Implementation Guide 510

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasMessageIndex

Syntax

boolean hasMessageIndex()

Description

hasMessageIndex checks whether the message index for batched delivery has been
defined for this Trading Partner.

Parameters

None.

Return Values

Boolean
Returns true if the message index exists.

Throws

None.

Example

hasMessageIndex();
=>true
e*Xchange Partner Manager Implementation Guide 511

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasOrigEventClass

Syntax

boolean hasOrigEventClass()

Description

hasOrigEventClass checks whether the original Event classification has been defined
for this Trading Partner.

Parameters

None.

Return Values

Boolean
Returns true if the original Event classification exists.

Throws

None.

Example

hasOrigEventClass();
=>true
e*Xchange Partner Manager Implementation Guide 512

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasPartnerName

Syntax

boolean hasPartnerName()

Description

hasPartnerName checks whether the Trading Partner name has been defined for this
Trading Partner object.

Parameters

None.

Return Values

Boolean
Returns true if the Partner name exists.

Throws

None.

Example

hasPartnerName();
=>true
e*Xchange Partner Manager Implementation Guide 513

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasPayload

Syntax

boolean hasPayload()

Description

hasPayload checks whether the Payload has been defined for this Trading Partner
object.

Parameters

None.

Return Values

Boolean
Returns true if the Payload exists.

Throws

None.

Example

hasPayload();
=>true
e*Xchange Partner Manager Implementation Guide 514

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasSSLClientCertFileName

Syntax

boolean hasSSLClientCertFileName()

Description

hasSSLClientCertFileName checks whether the file name for the SSL Client Certificate
has been defined for this Trading Partner object.

Parameters

None.

Return Values

Boolean
Returns true if the file name exists.

Throws

None.

Example

hasSSLClientCertFileName();
=>true
e*Xchange Partner Manager Implementation Guide 515

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasSSLClientCertFileType

Syntax

boolean hasSSLClientCertFileType()

Description

hasSSLClientCertFileType checks whether the SSL Client Certificate file type has been
defined for this Trading Partner object.

Parameters

None.

Return Values

Boolean
Returns true if the file type exists.

Throws

None.

Example

hasSSLClientCertFileType();
=>true
e*Xchange Partner Manager Implementation Guide 516

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasSSLClientKeyFileName

Syntax

boolean hasSSLClientKeyFileName()

Description

hasSSLClientKeyFileName checks whether the file name for the SSL Client Key has
been defined for this Trading Partner object.

Parameters

None.

Return Values

Boolean
Returns true if the file name exists.

Throws

None.

Example

hasSSLClientKeyFileName();
=>true
e*Xchange Partner Manager Implementation Guide 517

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasSSLClientKeyFileType

Syntax

boolean hasSSLClientKeyFileType()

Description

hasSSLClientKeyFileType checks whether the SSL Client Key file type has been
defined for this Trading Partner object.

Parameters

None.

Return Values

Boolean
Returns true if the file type exists.

Throws

None.

Example

hasSSLClientKeyFileType();
=>true
e*Xchange Partner Manager Implementation Guide 518

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasTPAttribute

Syntax

boolean hasTPAttribute()

Description

hasTPAttribute checks whether the TPAttribute has been defined for this Trading
Partner object.

Parameters

None.

Return Values

Boolean
Returns true if the TPAttribute exists.

Throws

None.

Example

hasTPAttribute();
=>true
e*Xchange Partner Manager Implementation Guide 519

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasUrl

Syntax

boolean hasUrl()

Description

hasUrl checks whether the URL for an EDI message has been defined for this Trading
Partner object.

Parameters

None.

Return Values

Boolean
Returns true if the URL exists.

Throws

None.

Example

hasURL();
=>true
e*Xchange Partner Manager Implementation Guide 520

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
hasUsageIndicator

Syntax

boolean hasUsageIndicator()

Description

hasUsageIndicator checks whether the usage indicator has been defined for this
Trading Partner object.

Parameters

None.

Return Values

Boolean
Returns true if the usage indicator exists.

Throws

None.

Example

hasUsageIndicator();
=>true
e*Xchange Partner Manager Implementation Guide 521

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
marshal

Syntax

void marshal(org.xml.sax.ContentHandler handler,
org.xml.sax.ErrorHandler errorHandler)

Description

marshal gathers the data contained within this ETD object and formulates it back into a
serialized XML message.

Parameters

Return Values

None.

Throws

com.stc.jcsre.MarshalException

org.xml.sax.SAXException

Name Type Description

handler org.xml.sax.ContentHan
dler

The handler that converts content
within to XML.

errorHandler org.xml.sax.ErrorHandle
r

The handler to address errors during
conversion.
e*Xchange Partner Manager Implementation Guide 522

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitCommProt

Syntax

void omitCommProt()

Description

omitCommProt removes the communication protocol from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitCommProt();
e*Xchange Partner Manager Implementation Guide 523

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitDirection

Syntax

void omitDirection()

Description

omitDirection removes the direction from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitDirection();
e*Xchange Partner Manager Implementation Guide 524

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitInternalName

Syntax

void omitInternalName()

Description

omitInternalName removes the definition of the Internal Name of the Trading Partner
as known by the sending ERP System from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitInternalName();
e*Xchange Partner Manager Implementation Guide 525

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitMessageID

Syntax

void omitMessageID()

Description

omitMessageID removes the original request ID from the internal sending ERP from
this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitMessageID();
e*Xchange Partner Manager Implementation Guide 526

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitMessageIndex

Syntax

void omitMessageIndex()

Description

omitMessageIndex removes the message index for batched delivery from this Trading
Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitMessageIndex();
e*Xchange Partner Manager Implementation Guide 527

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitOrigEventClass

Syntax

void omitOrigEventClass()

Description

omitOrigEventClass removes the original Event classification from this Trading
Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitOrigEventClass();
e*Xchange Partner Manager Implementation Guide 528

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitPartnerName

Syntax

void omitPartnerName()

Description

omitPartnerName removes the Trading Partner name definition from this Trading
Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitPartnerName();
e*Xchange Partner Manager Implementation Guide 529

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitPayload

Syntax

void omitPayload()

Description

omitPayload removes the Payload definition from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitPayload();
e*Xchange Partner Manager Implementation Guide 530

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitSSLClientCertFileName

Syntax

void omitSSLClientCertFileName()

Description

omitSSLClientCertFileName removes the file name for the SSL Client Certificate from
this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitSSLClientCertFileName();
e*Xchange Partner Manager Implementation Guide 531

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitSSLClientCertFileType

Syntax

void omitSSLClientCertFileType()

Description

omitSSLClientCertFileType removes the SSL Client Certificate file type from this
Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitSSLClientCertFileType();
e*Xchange Partner Manager Implementation Guide 532

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitSSLClientKeyFileName

Syntax

void omitSSLClientKeyFileName()

Description

omitSSLClientKeyFileName removes the file name for the SSL Client Key from this
Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitSSLClientKeyFileName();
e*Xchange Partner Manager Implementation Guide 533

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitSSLClientKeyFileType

Syntax

void omitSSLClientKeyFileType()

Description

omitSSLClientKeyFileType removes the SSL Client Key file type from this Trading
Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitSSLClientKeyFileType();
e*Xchange Partner Manager Implementation Guide 534

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitTPAttribute

Syntax

void omitTPAttribute()

Description

omitTPAttribute removes the TPAttribute from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitTPAttribute();
e*Xchange Partner Manager Implementation Guide 535

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitUrl

Syntax

void omitUrl()

Description

omitUrl removes the URL for EDI messages from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitURL();
e*Xchange Partner Manager Implementation Guide 536

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
omitUsageIndicator

Syntax

void omitUsageIndicator()

Description

omitUsageIndicator removes the usage indicator from this Trading Partner object.

Parameters

None.

Return Values

None.

Throws

None.

Example

omitUsageIndicator();
e*Xchange Partner Manager Implementation Guide 537

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setCommProt

Syntax

void setCommProt(java.lang.String val)

Description

setCommProt sets the communication protocol.

Parameters

Return Values

None.

Throws

None.

Example

setCommProt("BATCH");

Name Type Description

val java.lang.String The communication protocol. Possible
values include:
"BATCH"
"HTTP"
"HTTPS"
e*Xchange Partner Manager Implementation Guide 538

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setDirection

Syntax

void setDirection(java.lang.String val)

Description

setDirection sets the direction of the transaction to or from the trading partner.

Parameters

Return Values

None.

Throws

None.

Example

setDirection("O");

Name Type Description

val java.lang.String The direction. Possible values include:
“O” - Outbound
“I” - Inbound
e*Xchange Partner Manager Implementation Guide 539

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setInternalName

Syntax

void setInternalName(java.lang.String val)

Description

setInternalName sets the Internal Name of the Trading Partner as known by the
sending ERP System.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The internal sending ERP name.
e*Xchange Partner Manager Implementation Guide 540

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setMessageID

Syntax

void setMessageID(java.lang.String val)

Description

setMessageID sets the original request ID from the internal sending ERP.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The original request ID from the
internal sending ERP.
e*Xchange Partner Manager Implementation Guide 541

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setMessageIndex

Syntax

void setMessageIndex(java.lang.String val)

Description

setMessageIndex sets the message index for batched delivery. For example, 5/7
indicates the fifth message in a batch of seven.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The message index for batched
delivery.
e*Xchange Partner Manager Implementation Guide 542

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setOrigEventClass

Syntax

void setOrigEventClass(java.lang.String val)

Description

setOrigEventClass sets the original Event classification for the Trading Partner object.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The original Event classification.
e*Xchange Partner Manager Implementation Guide 543

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setPartnerName

Syntax

void setPartnerName(java.lang.String val)

Description

setPartnerName sets the Trading Partner name for the Trading Partner object.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The Trading Partner name.
e*Xchange Partner Manager Implementation Guide 544

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setPayload

Syntax

void setPayload(Payload val)

Description

setPayload sets the Payload for the Trading Partner object.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The Payload object.
e*Xchange Partner Manager Implementation Guide 545

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setSSLClientCertFileName

Syntax

void setSSLClientCertFileName(java.lang.String val)

Description

setSSLClientCertFileName sets the file name for the SSL Client Certificate.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The file name.
e*Xchange Partner Manager Implementation Guide 546

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setSSLClientCertFileType

Syntax

void setSSLClientCertFileType(java.lang.String val)

Description

setSSLClientCertFileType sets the SSL Client Certificate file type.

Parameters

Return Values

None.

Throws

None.

Example

setSSLClientCertFileType("PEM");

Name Type Description

val java.lang.String The file type. Possible values include
“ASN.1” and “PEM”.
e*Xchange Partner Manager Implementation Guide 547

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setSSLClientKeyFileName

Syntax

void setSSLClientKeyFileName(java.lang.String val)

Description

setSSLClientKeyFileName sets the file name for the SSL Client Key.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The file name.
e*Xchange Partner Manager Implementation Guide 548

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setSSLClientKeyFileType

Syntax

void setSSLClientKeyFileType(java.lang.String val)

Description

setSSLClientKeyFileType sets the SSL Client Key file type.

Parameters

Return Values

None.

Throws

None.

Example

setSSLClientKeyFileType("PEM");

Name Type Description

val java.lang.String The file type. Possible values include
“ASN.1” and “PEM”.
e*Xchange Partner Manager Implementation Guide 549

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setTPAttribute

Syntax

void setTPAttribute(TPAttribute val)

Description

setTPAttribute sets the TPAttribute for the Trading Partner object.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val TPAttribute The TPAttribute object.
e*Xchange Partner Manager Implementation Guide 550

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setUrl

Syntax

void setUrl(java.lang.String val)

Description

setUrl sets the URL for an EDI message to be exchanged with a Trading Partner.

Parameters

Return Values

None.

Throws

None.

Name Type Description

val java.lang.String The URL.
e*Xchange Partner Manager Implementation Guide 551

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
setUsageIndicator

Syntax

void setUsageIndicator(java.lang.String val)

Description

setUsageIndicator sets the usage indicator of an EDI message.

Parameters

Return Values

None.

Throws

None.

Example

setUsageIndicator("P");

Name Type Description

val java.lang.String The usage indicator of an EDI
message. Possible values include:

“P” - Production
“T” - Test
e*Xchange Partner Manager Implementation Guide 552

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
toString

Syntax

java.lang.String toString()

Description

toString converts this ETD object to a printable String form.

Parameters

None.

Return Values

java.lang.String
Returns the XML message to represent by this ETD object.

Throws

None.

Example

toString();
e*Xchange Partner Manager Implementation Guide 553

Chapter 15 Section 15.4
Java Helper Methods TP_EVENT Class
unmarshal
Syntax

void unmarshal(org.xml.sax.InputSource inputSource,
com.stc.jcsre.sml.SAXLexer lexer)

Description

unmarshal takes a serialized (marshalled) form of the e*Insight XML Event and
distributes (unmarshals) the data into this ETD object.

Parameters

Return Values

None.

Throws

org.xml.sax.SAXException, when the data cannot be parsed.

com.stc.jcsre.UnmarshalException, when the data cannot be unmarshalled.

Name Type Description

inputSource org.xml.sax.InputSource The input source for the serialized
data.

lexer com.stc.jcsre.xml.SAXLe
xer

The SAX Lexer (parser) to distribute
the data.
e*Xchange Partner Manager Implementation Guide 554

Appendix A

XML Structure for the e*Xchange Event

This appendix shows the XML structure for the e*Xchange Event Type Definitions
(eX_Standard_Event.ssc and eX_StandardEvent.xsc). If your data conforms to this
structure, you do not need to convert it upon entry to the e*Xchange system.

A.1 XML Structure
<<!-- edited with XML Spy v3.0 NT (http://www.xmlspy.com) by STC (STC)
-->
<!--DTD for eX_Standard_Event.ssc $Id: eX_event.dtd,v 1.1.2.10
2000/09/07 04:43:14 galbers Exp $-->
<!--ePartner Manager Input/Output Event section-->
<!ELEMENT TP_EVENT (PartnerName?, InternalName?, Direction?,

MessageID?, OrigEventC
<!--External Partner Name-->
<!ELEMENT PartnerName (#PCDATA)>
<!--Internal Sending ERP (ex.SAP)-->
<!ELEMENT InternalName (#PCDATA)>
<!--Direction of Transaction to/from Trading Partner (ex.Outbound=O

Inbound=I)-->
<!ELEMENT Direction (#PCDATA)>
<!--Original request ID from Internal Sending ERP-->
<!ELEMENT MessageID (#PCDATA)>
<!--Original Event Classification (ex.QAP for Query Price and

Availability)-->
<!ELEMENT OrigEventClass (#PCDATA)>
<!--Usage Indicator of EDI message by Trading Partner (Production=P

Test=T)-->
<!ELEMENT UsageIndicator (#PCDATA)>
<!--Payload to carry EDI message-->
<!ELEMENT Payload (#PCDATA)>
<!ATTLIST Payload

TYPE (RAW | PROCESSED | ENCRYPTED) #REQUIRED
LOCATION (FILE | DB | URL | EMBEDDED | AUTO) #IMPLIED

>
<!--RAW=Need translation PROCESSED=Already X12 or RN ENCRYPTED=from

Trading Partner>
<!--Communication Protocol (ex. BATCH, HTTP) for sending to Trading

Partner-->
<!ELEMENT CommProt (#PCDATA)>
<!--URL for EDI message to be exchanged with Trading Partner-->
<!ELEMENT Url (#PCDATA)>
<!--SSL information-->
<!ELEMENT SSLClientKeyFileName (#PCDATA)>
<!ELEMENT SSLClientKeyFileType (#PCDATA)>
<!ELEMENT SSLClientCertFileName (#PCDATA)>
<!ELEMENT SSLClientCertFileType (#PCDATA)>
e*Xchange Partner Manager Implementation Guide 555

Appendix A Section A.1
XML Structure for the e*Xchange Event XML Structure
<!--Message Index for Batched delivery, ex. 1|20 means 1 of 20-->
<!ELEMENT MessageIndex (#PCDATA)>
<!--TP Attribute will contain optional repeating name value pair for
storing of TP-->
<!ELEMENT TPAttribute (NameValuePair*)>
<!ELEMENT NameValuePair (Name, Value)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Value (#PCDATA)>
e*Xchange Partner Manager Implementation Guide 556

Glossary
Glossary

attribute (e*Insight)
Attributes pass user-defined control information (programming arguments) to and
from the e*Insight Business Process Manager and its activities.

activity
An activity is an organizational unit for performing a specific function.

API
An acronym for Application Program Interface, which is a set of protocols, routines,
and tools for building software applications. The e*Xchange API consists of a set of
Monk functions that can be called from custom validation Collaborations to interface
with the database.

business process
A business process is a collection of actions and messages, revolving around a specific
business practice, that flow in a specific pattern to produce an end result.

business process instance (BPI)
A unique instantiation of a business process.

Collaboration
A component of an e*Way or BOB that receives and processes Events and forwards the
output to other e*Gate components. Collaborations perform three functions: they
subscribe to Events of a known type, they apply business rules to Event data, and they
publish output Events to a specified recipient. Collaborations use Monk translation
script files with the extension “.tsc” to do the actual data manipulation.

Company (e*Xchange)
An organization with which you conduct electronic business (eBusiness). A company
can consist of one or more trading partners. See also Trading partner.

compensating transaction

A transaction that when executed undoes the effects of the transaction for which it is
compensating. When a transaction and the compensating transaction are both
executed, there should be no net change in the state of affairs. For example, a $100 debit
is the compensating transaction for a $100 credit.

e*Insight Business Process Manager (e*Insight)
The component within the Oracle eBI Product Suite that facilitates the automation of
the business process flow of eBusiness activities.
e*Xchange Partner Manager Implementation Guide 557

Glossary
eBusiness protocol
Generally accepted standards for formatting and exchanging electronic messages
between trading partners. ANSI X12, RosettaNet, and BizTalk are examples of
eBusiness protocols.

e*Xchange Partner Manager (e*Xchange)
An application within the Oracle eBI Product Suite that you use to set up and maintain
trading partner profiles and view processed messages. The e*Xchange also processes
inbound and outbound messages according to certain eBusiness protocols and your
validation Collaborations.

eSecurity Manager (eSM)
An application within the Oracle eBI Product Suite that secures transmission of
business-to-business exchanges over public domains such as the Internet.

Event (Message)
Data to be exchanged, either within e*Xchange or between e*Xchange and external
systems, which has a defined data structure; for example, a known number of fields,
with known characteristics and delimiters. Events are classified by type using Event
Type Definitions.

Event Type Definition (ETD)
An Event Type template, defining Event fields, field sequences, and delimiters. Event
Type Definitions enable e*Xchange systems to identify and transform Event Types.
They are Monk script files with an extension of “.ssc,” short for message structure script
file.

general attributes
Basic information that identifies companies and trading partners. For inner and B2B
Protocol, this includes the information you enter for a trading partner profile that is
necessary for the exchange of messages but is not specific to a particular eBusiness
protocol. The direction of a transmission or the password needed to send messages to
an FTP site are examples of general attributes. Contrast with Extended attributes.

implementation guide (eBusiness Protocol)
A document, published for a particular electronic message standard by an industry
subcommittee, that describes the structure and content of a specific transaction. You can
use the Validation Rules Builder to convert electronic versions of ANSI X12
implementation guides to validation Collaborations used by e*Xchange.

message tracking attributes
A set of attributes you can define to identify messages stored in the e*Xchange
database. Special message tracking extended attributes can be set up and associated
with a specific message type (protocol, version, and direction). Examples of attributes
that are set up at the message tracking attribute level are Process Instance ID and
Activity Instance ID for RosettaNet and FG and TS control numbers for X12.

B2B Protocol
The trading partner profile component that you use to enter technical information
about the exchange of messages between you and your trading partner. The type of
e*Xchange Partner Manager Implementation Guide 558

Glossary
eBusiness protocol you agree to use, such as ANSI X12, RosettaNet, or BizTalk, is an
example of an B2B Protocol characteristic.

Partner Manager Envelope Profile
A partner manager envelope profile is a set of default extended attribute values that
you define for a trading partner profile component (company, trading partner, B2B
Protocol, or message profile).

schema
Files and associated stores created by e*Gate that contain the parameters of all the
components that control, route, and transform data as it moves through e*Gate.

Standard Exchange Format (SEF)
The Standard Exchange Format (SEF) is a flat file representation of an EDI
implementation guideline. It is a standard that defines how data segments and data
elements should be structured so that the message can be understood between trading
partners. It also includes validation rules, for example what are the valid values for a
data element, or conditions such as if Field A is present then Field B is required.

The purpose of SEF is to put the EDI implementation guidelines in a file in machine
readable format so that translators can directly import the file and use the
implementation guidelines to translate or map the EDI file. The file can also be used as
a means to exchange the implementation guidelines between trading partners, and can
be posted on a public bulletin board or on the company's Web site in the Internet to
convey to the public the implementation guidelines used by the company.

The SEF format was developed by Foresight Corporation and is now in the public
domain. Programs that can directly import SEF files can save users considerable time in
developing new translations or maps.

trading partner component
The trading partner profile component that you use to enter business information about
your trading partner. The name of the trading partner, which could be a subdivision of
a company, and the people you want to contact are examples of information you enter
for a trading partner component.

transaction definition
A set of parameters and other information you enter about each electronic transaction
you process with e*Xchange. This definition also associates the validation
Collaborations that are needed to validate each kind of transaction.

transaction set
In X12, each business grouping of data is called a transaction set. For example, a group
of benefit enrollments sent from a sponsor to a payer is considered a transaction set.
Each transaction set contains groups of logically related data in units called segments.
For example, the N4 segment conveys the city, state, ZIP code, and other geographic
information.

A transaction set contains multiple segments, so the addresses of the different parties,
for example, can be conveyed from one computer to the other. An analogy would be
e*Xchange Partner Manager Implementation Guide 559

Glossary
that the transaction set is like a freight train; the segments are like the train’s cars, and
each segment can contain several data elements in the same way that a train car can
hold multiple crates.

Specifically, in X12, the transaction set is comprised of segments ST through SE.

transaction type
The kind of eBusiness protocol you agree to use to exchange data and information with
a particular trading partner. For example, ANSI X12 and RosettaNet are two different
transaction types.

user group
User groups allow you to grant access permissions to a set of users with similar
processing needs without having to specify individual privileges for each user. For
example, the User Administrator can set up a group for users who need full access to a
specific trading partner profile, but who should not be able to view information about
any other profile. The User Administrator assigns each user that meets this criterion to
a particular user group. Then, your Administrator (or another user who has been
granted appropriate privileges) grants access privileges to this user group so that all
members of the group can view and modify the desired information.

validation Collaboration
A Collaboration that you create to define the syntax and validate the content of
electronic business-to-business (B2B) messages. One validation Collaboration is
required for each type of electronic transaction to be processed by e*Xchange. You can
use the Validation Rules Builder to automatically generate a validation Collaboration
for a specific kind of X12 transaction, according to specific implementation guidelines.

Validation Rules Builder
An e*Xchange Partner Manager tool for converting electronic EDI implementation
guides into files that are compatible for use with e*Xchange. This conversion tool
accepts Standard Exchange Format (SEF) version 1.4 or 1.5 files and converts then into
e*Gate Integrator Event Type Definition (ETD) and Collaboration Rules files.

XML
Extensible Markup Language. XML is a language that is used in Events or messages in
e*Insight Business Process Manager, containing structured information. XML is
different from String in that XML messages can contain both content, and information
about the content.
e*Xchange Partner Manager Implementation Guide 560

Index
Index

A
acknowledgment handling

for RosettaNet 32
for X12 31

addNameValuePair 479
APIs

compare-equal 363
compare-ge 364
compare-gt 365
compare-le 366
compare-lt 367
eX-count-TP-attribute 245
eX-get-TP_EVENT 243
eX-get-TP-attribute 246
eX-ROS20-Ack-Type 392
eX-ROS20-Create-0A1Notification.dsc 413
eX-ROS20-Create-Except.dsc 415
eX-ROS20-Create-ReceiptAck.dsc 414
eX-ROS20-decrypt-msg 426
eX-ROS20-encrypt-msg 427
eX-ROS20-Generic-To-String 380
eX-ROS20-Get-ActId 405
eX-ROS20-Get-InitPartnerId 411
eX-ROS20-Get-InReplyTo-ActCode 409
eX-ROS20-Get-InReplyTo-MsgId 407
eX-ROS20-Get-PipCode 395
eX-ROS20-Get-PipId 403
eX-ROS20-Get-PipVerId 401
eX-ROS20-Get-SigActCode 397
eX-ROS20-Get-SigActVerId 399
eX-ROS20-get-ssl-keys 431
eX-ROS20-IsResponse? 393
eX-ROS20-IsSignal? 394
eX-ROS20-Pack-RNBM 382
eX-ROS20-Populate-Preamble 387
eX-ROS20-Populate-ServiceHeader 388, 389
eX-ROS20-Request-ID 391
eX-ROS20-Set-ActId 406
eX-ROS20-Set-InitPartnerId 412
eX-ROS20-Set-InReplyTo-ActCode 410
eX-ROS20-Set-InReplyTo-MsgId 408
eX-ROS20-Set-PipCode 396
eX-ROS20-Set-PipId 404
eX-ROS20-Set-PipVerId 402

eX-ROS20-Set-SigActCode 398
eX-ROS20-Set-SigActVerId 400
eX-ROS20-sign-msg 428
eX-ROS20-Unique-ID 390
eX-ROS20-Unpack-RNBM 383
eX-ROS20-Validate-DeliveryHeader 386
eX-ROS20-Validate-Preamble 384
eX-ROS20-Validate-ServiceHeader 385
eX-ROS20-verify-sig 429
eX-RSO20-Parse-Generic 381
eX-security-get-keys-certs 425
eX-set-Activity 459
eX-set-all-BP_EVENT 462
eX-set-Payload 244
eX-set-TP_EVENT 242
eX-set-TP-attribute 247
string-alpha 368
string-alphanumeric 369
string-numeric 370
util-mime-get-header-value 373
util-mime-get-par-value 374
util-mime-make-mime-message 375
util-mime-map-event 376
util-mime-pack-encrypted-msg 377
util-mime-pack-signed-msg 378
util-mime-unpack-signed-message 379
util-security-decrypt-msg 421
util-security-encrypt-msg 422
util-security-sign-msg 423
util-security-verify-sig 424
ux-ack-handler 248
ux-ack-monitor 252
ux-check-shutdown-uid 255
ux-control-check 256
ux-dbproc-ros-inb 258
ux-dbproc-ros-outb 262
ux-dequeue 266
ux-duplicate-check 268
ux-func-ack-handler 270
ux-get-env-msg-id 273
ux-get-error-str 274
ux-get-fb-count 275
ux-get-header 276
ux-get-key-cert 281
ux-get-mtrk-attrib 284, 285, 287
ux-get-seq-value 288
ux-incr-control-num 289
ux-init-exdb 291
ux-init-ic 293
ux-init-trans 298
ux-init-ts 303
ux-md5-digest 311
ux-mdn-inb-ack 310
ux-mdn-outb-ack 307
e*Xchange Partner Manager Implementation Guide 561

Index
ux-ret-edf-batch-ts-msgs 312
ux-ret-edf-fb-ts-msgs 314
ux-retrieve-997-error 320
ux-retrieve-997-error-tail 323
ux-retrieve-message 325
ux-return-receipt 327
ux-ret-X12-fb-ts-msgs 316, 318
ux-set-fb-overdue 329
ux-sha1-digest 330
ux-store-msg 331
ux-store-msg-errors 335
ux-store-msg-ext 336
ux-store-shutdown-uid 340
ux-track-997-errors 341
ux-update-batch-imm 343
ux-update-control-num 344
ux-update-last-batch-send-time 346
ux-upd-mtrk-element 347, 348, 349
ux-wait-for-ack 350
valid-date-yyyy 371
valid-time 372

B
Batching in X12 33

C
CGI Web Server e*Way, how it works 43
cgi_Request_Ack_Collab Collaboration 46
clearNameValuePair 480
Collaborations

cgi_Request_Ack_Collab 46
eX_Batch_to_Trading_Partner 38, 42
eX_ePM_Batching 35
eX_ePM_Transaction_Poll 36
eX_from_Batch_to_Trading_Partner 38
ex_from_ePM 30
eX_from_Trading_Partner 52
eX_Https_to_ePM 40
eX_Https_to_Trading_Partner 40
eX_Mux_from_Trading_Partner 45
eX_Poll_Ack_Mon 32
eX_Poll_Receive_FTP 41
eX_POP3_from_Trading_Partner 47
eX_Sent_Batch_to_Trading_Partner 42
eX_SMTP_to_Trading_Partner 47
eX_to_ePM 29
Receive_from_ePM 50
Send_to_ePM 49

company, creating 83, 101, 138, 146
compare-equal 363
compare-ge 364
compare-gt 365

compare-le 366
compare-lt 367
components

e*Xchange Partner Manager
external 26
internal 26

for e*Xchange Partner Manager 26
configuring

e*Xchange database connectivity e*Ways 27
envelope profiles 100, 137
eX_Batch_to_Trading_Partner e*Way 37, 41
eX_ePM e*Way 93
eX_ePM_Ack_Monitor e*Way 32
eX_ePM_Batch e*Way 34
eX_ePM_Trans_Poll e*Way 36
eX_Mux_from_Trading_Partner e*Way 43
eX_Poll_Receive_FTPr e*Way 41
eX_POP3_from_Trading_Partner e*Way 46
eX_SMTP_to_Trading_Partner e*Way 47

conventions, writing in document 14
converting business application data to e*Xchange
format 49
converting the Event to Base 64 encoding 62, 69
countNameValuePair 481
creating the Send_to_ePM ETDs 87, 91

E
e*Ways

configuring the e*Xchange database connectivity
e*Ways 27

eX_Batch_from_Trading_Partner 41
eX_Batch_to_Trading_Partner 37
eX_Batch_to_Trading_Partner e*Way 37, 41
eX_ePM 26
eX_ePM_Ack_Monitor 31
eX_ePM_Batch 33
eX_ePM_Batch (configuring) 34
eX_ePM_Trans_Poll 36
eX_from_Trading_Partner 51
eX_Https_to_Trading_Partner 38
eX_Mux_from_Trading_Partner 43
eX_Poll_Receive_FTP 40
eX_Poll_Receive_FTP e*Way 41
eX_POP3_from_Trading_Partner 46
eX_POP3_from_Trading_Partner e*Way 46
eX_SMTP_to_Trading_Partner 47
eX_SMTP_to_Trading_Partner e*Way 47
Receive_from_ePM 50
Send_to_ePM 48

e*Xchange
back end components overview 21
schema components 21

e*Xchange ETD, understanding 53–61, 65–69
e*Xchange Partner Manager Implementation Guide 562

Index
e*Xchange functions 248–351
e*Xchange Partner Manager

components 26
using the ETD in e*Xchange 58, 66

e*Xchange-only Send_to_ePM e*Way 87
e*Xchange-required tracking nodes 50
EAI 18
eBI 16
eBusiness Integration 16
editing the Send_to_ePM e*Way configuration file
87, 90, 109
envelope profiles, configuring 100, 137
ePM Event requirements for Fast Batch 33
ePM tracking information 63, 70
ePM-only Send_to_ePM e*Way 109, 123
ETD

structure 53
using, in e*Xchange 58, 66

eX 384
eX_Batch_to_Trading_Partner Collaboration 38, 42
eX_Batch_to_Trading_Partner e*Way 37, 94
eX_Batch_to_Trading_Partner e*Way, configuring
37, 41
eX_ePM e*Way, configuring 93
eX_ePM_Ack_Monitor e*Way 31
eX_ePM_Ack_Monitor e*Way, configuring 32
eX_ePM_Batch e*Way 33
eX_ePM_Batching Collaboration 35
eX_ePM_Trans_Poll e*Way 36
eX_ePM_Trans_Poll e*Way, configuring 36
eX_ePM_Transaction_Poll Collaboration 36
eX_from_Batch_to_Trading_Partner Collaboration
38
eX_from_Trading_Partner Collaboration 52
eX_from_Trading_Partner e*Way 51
eX_Https_to_ePM Collaboration 40
eX_Https_to_Trading_Partner Collaboration 40
eX_Https_to_Trading_Partner e*Way 38
eX_Mux_from_Trading_Partner Collaboration 45
eX_Mux_from_Trading_Partner e*Way 43
eX_Mux_from_Trading_Partner e*Way,
configuring 43
eX_Poll_Ack_Mon Collaboration 32
eX_Poll_Receive_FFTP Collaboration 41
eX_Poll_Receive_FTP e*Way 40
eX_Poll_Receive_FTP e*Way, configuring 41
eX_POP3_from_Trading Partner e*Way,
configuring 46
eX_POP3_from_Trading_Partner Collaboration 47
eX_Sent_Batch_to_Trading_Partner Collaboration
42
eX_SMTP_to_Trading_Partner Collaboration 47
eX_SMTP_to_Trading_Partner e*Way, configuring
47

eX-count-TP-attribute 245
eX-get-TP_EVENT 243
eX-get-TP-attribute 246
eX-ROS20-Ack-Type 392
eX-ROS20-Create-0A1Notification.dsc 413
eX-ROS20-Create-Except.dsc 415
eX-ROS20-Create-ReceiptAck.dsc 414
eX-ROS20-decrypt-msg 426
eX-ROS20-encrypt-msg 427
eX-ROS20-Generic-To-String 380
eX-ROS20-Get-ActId 405
eX-ROS20-Get-InitPartnerId 411
eX-ROS20-Get-InReplyTo-ActCode 409
eX-ROS20-Get-InReplyTo-MsgId 407
eX-ROS20-Get-PipCode 395
eX-ROS20-Get-PipId 403
eX-ROS20-Get-PipVerId 401
eX-ROS20-Get-SigActCode 397
eX-ROS20-Get-SigActVerId 399
eX-ROS20-get-ssl-keys 431
eX-ROS20-IsResponse? 393
eX-ROS20-IsSignal? 394
eX-ROS20-Pack-RNBM 382
eX-ROS20-Populate-Preamble 387
eX-ROS20-Populate-ServiceHeader 388, 389
eX-ROS20-Request-ID 391
eX-ROS20-Set-ActId 406
eX-ROS20-Set-InitPartnerId 412
eX-ROS20-Set-InReplyTo-ActCode 410
eX-ROS20-Set-InReplyTo-MsgId 408
eX-ROS20-Set-PipCode 396
eX-ROS20-Set-PipId 404
eX-ROS20-Set-PipVerId 402
eX-ROS20-Set-SigActCode 398
eX-ROS20-Set-SigActVerId 400
eX-ROS20-sign-msg 428
eX-ROS20-Unique-ID 390
eX-ROS20-Unpack-RNBM 383
eX-ROS20-Validate-DeliveryHeader 386
eX-ROS20-Validate-Preamble 384
eX-ROS20-Validate-ServiceHeader 385
eX-ROS20-verify-sig 429
eX-RSO20-Parse-Generic 381
eXSchema 21
eXSchema, copying 74
eX-security-get-keys-certs 425
eX-set-Activity 459
eX-set-all-BP_EVENT 462
eX-set-Payload 244
eX-set-TP_EVENT 242
eX-set-TP-attribute 247
e*Xchange Partner Manager Implementation Guide 563

Index
F
Fast Batch, Event requirements for 33
functions

e*Xchange 248–351
Validation Rules Builder 363

G
getCommProt 492
getDirection 493
getInternalName 494
getMessageID 495
getMessageIndex 496
getNameValuePair 482, 483
getOrigEventClass 497
getPartnerName 498
getPayload 499
getSSLClientCertFileName 500
getTPAttribute 504
getURL 505
getUsageIndicator 506
glossary 557–560

H
hasCommProt 507
hasDirection 508
hasInternalName 509
hasMessageID 510
hasMessageIndex 511
hasOrigEventClass 512
hasPartnerName 513
hasPayload 514
hasSSLClientCertFileName 515
hasSSLClientCertFileType 516
hasSSLClientKeyFileName 517
hasSSLClientKeyFileType 518
hasTPAttribute 519
hasUrl 520
hasUsageIndicator 521

I
implementation

basic information 72
configuring the e*Gate components 75
copying the eXSchema 74
creating a business process 74
creating trading partner profiles 74
determining the scope of the project 73
overview 72–75
road map 72
testing and tuning the system 75

types of e*Xchange implementations 72

J
Java Helper Methods 457–554

M
marshal 522
Monk functions see functions

N
nodes

populating 63, 70
required by e*Xchange 50

O
omitCommProt 523
omitDirection 524
omitInternalName 525
omitMessageID 526
omitMessageIndex 527
omitOrigEventClass 528
omitPartnerName 529
omitPayload 530
omitSSLClientCertFileName 531
omitSSLClientCertFileType 532
omitSSLClientKeyFileName 533
omitSSLClientKeyFileType 534
omitTPAttribute 535
omitUrl 536
omitUsageIndicator 537

P
payload, in e*Xchange 63, 70
payload, in ePM 155
populating the required e*Xchange nodes 63, 70
public domain 20

R
Receive_from_ePM Collaboration 50
Receive_from_ePM e*Way 50
RosettaNet

sending a purchase order (case study) 132
RosettaNet acknowledgment handling 32
running and testing the e*Xchange-only scenario 94
e*Xchange Partner Manager Implementation Guide 564

Index
S
schema, copying 74
SEF file, creating 80
Send_to_ePM Collaboration 49
Send_to_ePM e*Way 48

for e*Xchange only 87
for ePM only 109, 123

setCommProt 538
setDirection 539
setInternalName 540
setMessageID 541
setMessageIndex 542
setNameValuePair 487
setOrigEventClass 543
setPartnerName 544
setPayload 545
setSSLClientCertFileName 546
setSSLClientCertFileType 547
setSSLClientKeyFileName 548
setSSLClientKeyFileType 549
setTPAttribute 550
setUrl 551
setUsageIndicator 552
string-alpha 368
string-alphanumeric 369
string-numeric 370
supporting documents 15

T
TP 490
trading partner profiles, creating 82
trading partner, creating 83, 102, 139, 146

U
UN/EDIFACT

sending a purchase order (case study) 96
understanding the e*Xchange ETD 53–61, 65–69
Using Java with e*Xchange 65, 457–554
using the ETD in e*Xchange 58, 66
util-mime-get-header-value 373
util-mime-get-par-value 374
util-mime-make-mime-message 375
util-mime-map-event 376
util-mime-pack-encrypted-msg 377
util-mime-pack-signed-msg 378
util-mime-unpack-signed-message 379
util-security-decrypt-msg 421
util-security-encrypt-msg 422
util-security-sign-msg 423
util-security-verify-sig 424
ux-ack-handler 248

ux-ack-monitor 252
ux-check-shutdown-uid 255
ux-control-check 256
ux-dbproc-ros-inb 258
ux-dbproc-ros-outb 262
ux-dequeue 266
ux-duplicate-check 268
ux-func-ack-handler 270
ux-get-env-msg-id 273
ux-get-error-str 274
ux-get-fb-count 275
ux-get-header 276
ux-get-key-cert 281
ux-get-mtrk-attrib 284, 285, 287
ux-get-seq-value 288
ux-incr-control-num 289
ux-init-exdb 291
ux-init-ic 293
ux-init-trans 298
ux-init-ts 303
ux-md5-digest 311
ux-mdn-inb-ack 310
ux-mdn-outb-ack 307
ux-ret-edf-batch-ts-msgs 312
ux-ret-edf-fb-ts-msgs 314
ux-retrieve-997-error 320
ux-retrieve-997-error-tail 323
ux-retrieve-message 325
ux-return-receipt 327
ux-ret-X12-fb-ts-msgs 316, 318
ux-set-fb-overdue 329
ux-sha1-digest 330
ux-store-msg 331
ux-store-msg-errors 335
ux-store-msg-ext 336
ux-store-shutdown-uid 340
ux-track-997-errors 341
ux-update-batch-imm 343
ux-update-control-num 344
ux-update-last-batch-send-time 346
ux-upd-mtrk-element 347, 348, 349
ux-wait-for-ack 350

V
validation Collaboration, creating 80
Validation Rules Builder APIs

compare-equal 363
compare-ge 364
compare-gt 365
compare-le 366
compare-lt 367
string-alpha 368
string-alphanumeric 369
e*Xchange Partner Manager Implementation Guide 565

Index
string-numeric 370
valid-date-yyyy 371
valid-time 372

Validation Rules Builder Monk functions 363
Validation Rules Builder, creating Collaboration
with 80
valid-date-yyyy 371
valid-time 372
Value Added Network 20
VAN 20

X
X12

acknowledgment handling 31
batching in 33
sending an X12 purchase order (case study) 76

XML
element with sub-elements 54
element without sub-elements 54
ETD structure for an XML attribute 55
structure for the e*Xchange Event 555–556
e*Xchange Partner Manager Implementation Guide 566

	e*Xchange Partner Manager Implementation Guide
	Contents
	Introduction
	1.1 Document Purpose and Scope
	1.2 Intended Audience
	1.3 Writing Conventions
	1.4 Supporting Documents

	Business-to-Business Integration
	2.1 An eBI Example
	2.2 How Is eBI different from EAI?
	2.2.1 Traditional EAI
	2.2.2 The Emerging eBI Model

	2.3 Meeting the Challenges of eBI
	2.3.1 Meeting the EAI Challenge
	2.3.2 Meeting the Trading-Partner Challenge
	2.3.3 Meeting the Challenge of Using Public Domains

	2.4 The Benefits of eBI
	2.4.1 Increased Efficiency
	2.4.2 Tracking Complete Business Transactions
	2.4.3 Business Model Analysis

	e*Xchange Schema Components
	3.1 e*Gate Schema for e*Xchange Components Overview
	3.1.1 e*Xchange Schema Component Relationships Diagram

	3.2 e*Xchange Partner Manager Components
	e*Xchange Partner Manager-Internal Components
	e*Xchange Partner Manager-External Components
	3.2.1 eX_ePM e*Way
	Configuring the e*Xchange Database Connectivity e*Ways
	Journal file
	Using a Java Translation with the eX_ePM e*Way
	Large Message Support
	eX_to_ePM Collaboration
	eX_from_ePM Collaboration

	3.2.2 eX_ePM_Ack_Monitor e*Way
	X12, AS2, NCPDP and UN/EDIFACT Acknowledgment Handling
	RosettaNet and CIDX Acknowledgment Handling
	Configuring the eX_ePM_Ack_Monitor e*Way
	eX_Poll_Ack_Mon Collaboration

	3.2.3 eX_ePM_Batch e*Way
	Configuring the eX_ePM_Batch e*Way
	Large Message Support
	Scaling of eX_ePM _Batch e*Way
	eX_ePM_Batching Collaboration

	3.2.4 eX_ePM_Trans_Poll e*Way
	Configuring the eX_ePM_Trans_Poll e*Way
	eX_ePM_Transaction_Poll Collaboration

	3.2.5 eX_Batch_to_Trading_Partner e*Way
	Configuring the eX_Batch_to_Trading_Partner e*Way
	eX_Batch_to_Trading_Partner Collaboration
	eX_from_Batch_to_Trading_Partner Collaboration

	3.2.6 eX_Https_to_Trading_Partner e*Way
	Configuring the eX_Https_to_Trading_Partner e*Way
	eX_Https_to_Trading_Partner Collaboration
	eX_Https_to_ePM Collaboration

	3.2.7 eX_Poll_Receive_FTP e*Way
	Configuring the eX_Poll_Receive_FTP e*Way
	eX_Poll_Receive_FTP Collaboration

	3.2.8 eX_Batch_from_Trading_Partner e*Way
	Configuring the eX_Batch_from_Trading_Partner e*Way
	eX_Sent_Batch_from_Trading_Partner Collaboration
	eX_Batch_from_Trading_Partner Collaboration

	3.2.9 eX_Mux_from_Trading_Partner e*Way
	Configuring the eX_Mux_from_Trading_Partner e*Way
	eX_Mux_from_Trading_Partner Collaboration
	cgi_Request_Ack_Collab Collaboration

	3.2.10 eX_POP3_from_Trading_Partner e*Way
	Configuring the eX_POP3_from_Trading_Partner e*Way
	eX_POP3_from_Trading_Partner Collaboration

	3.2.11 eX_SMTP_to_Trading_Partner e*Way
	Configuring the eX_SMTP_to_Trading_Partner e*Way
	eX_SMTP_to_Trading_Partner Collaboration

	3.2.12 Send_to_ePM e*Way
	Configuring the Send_to_ePM e*Way
	Send_to_ePM Collaboration
	Converting Business Application Data to e*Xchange Format
	e*Xchange-required Tracking Nodes

	3.2.13 Receive_from_ePM e*Way
	Configuring the Receive_from_ePM e*Way
	Receive_from_ePM Collaboration

	3.2.14 ewHipaaValidation e*Way
	3.2.15 eX_from_Trading_Partner e*Way
	Configuring the eX_from_Trading_Partner e*Way
	eX_from_Trading_Partner Collaboration

	Using the Monk e*Xchange ETD
	4.1 ETD Structure
	4.1.1 XML Element with Sub-elements
	4.1.2 XML Element without Sub-elements
	4.1.3 XML Attribute

	4.2 Element Overview
	Example: XML Element with Sub-elements
	Example: XML Element with Attributes

	4.3 Using the ETD in e*Xchange
	TP_EVENT

	4.4 Sending Data to e*Xchange
	Put the Data into the Required Format
	Convert the Event to Base 64 Encoding
	Populate the Required e*Xchange Nodes

	Using the Java e*Xchange ETD
	5.1 Understanding the Java e*Xchange ETD
	5.2 Element Overview
	5.2.1 Using the ETD with e*Xchange
	TP_EVENT

	5.3 Sending a Message to e*Xchange
	Populate the Required e*Xchange Nodes

	Implementation Overview
	6.1 Basic Information
	6.1.1 Types of e*Xchange Implementations

	6.2 Implementation Road Map
	Step 1: Determine the Scope of the Project
	Step 2: Create Trading Partner Profiles
	Step 3: Copy the eXSchema
	Step 4: Configure the e*Gate Components
	Step 5: Test and Tune the System

	e*Xchange Implementation-X12
	7.1 Overview
	7.1.1 Case Study: Sending an X12 850 Purchase Order

	7.2 Using the Implementation Sample
	7.3 Create Necessary Validation Collaborations
	7.3.1 Create the SEF File
	7.3.2 Create the Validation Collaboration with the VRB

	7.4 Create the Trading Partner Profiles
	Trading Partner Information Hierarchy
	7.4.1 The Savvy Toy Company Trading Partner
	Step 1: Create the Company
	Step 2: Create the Trading Partner
	Step 3: Set Up the B2B Protocol Information
	Step 4: Create the Message Profile

	7.5 Clone the eXSchema
	7.6 Configure the e*Way to Send the Message to e*Xchange
	The e*Xchange Send_to_ePM e*Way
	7.6.1 Configuring the Send_to_ePM_Java e*Way
	Step 1: Edit the Send_to_ePM_Java e*Way Configuration File
	Step 2: Create the Send_to_ePM_Java ETDs
	Step 3: Create the Send_to_ePM_Java Collaboration Rule and Collaboration Rule Script
	Step 4: Create the Send_to_ePM_Java Collaboration

	7.6.2 Configuring the Send_to_ePM_Monk e*Way
	Step 1: Edit the Send_to_ePM_Monk e*Way Configuration File
	Step 2: Create the Send_to_ePM_Monk ETDs
	Step 3: Create the Send_to_ePM_Monk Collaboration Rules Script
	Step 4: Create the Send_to_ePM_Monk Collaboration Rule
	Step 5: Create the Send_to_ePM_Monk Collaboration

	7.7 Configure the eX_ePM e*Way
	7.8 Configure Any Other e*Gate Components
	7.9 Run and Test the e*Xchange Scenario
	Viewing the Results in Message Tracking

	7.10 Editing the Data File

	e*Xchange Implementation-UN/EDIFACT
	8.1 Overview
	8.1.1 Case Study: Sending an UN/EDIFACT Purchase Order

	8.2 Using the Implementation Sample
	8.3 Create the Trading Partner Profiles
	Trading Partner Information Hierarchy
	8.3.1 The Car Interiors Trading Partner
	Step 1: Create the Company
	Step 2: Create the Trading Partner
	Step 3: Set up the Inbound B2B Protocol Information
	Step 4: Create the Inbound Message Profiles
	Step 5: Set up outbound B2B Protocol Information
	Step 6: Create the Outbound Message Profiles
	Step 7: Configure Return Messages for Inbound

	8.4 Clone the eXSchema
	8.5 Configure the TP_Order_Feeder e*Way
	The e*Xchange TP_Order_Feeder e*Way
	8.5.1 Step 1: Create and configure the TP_Order_Feeder e*Way
	8.5.2 Step 2: Create the TP_Order_Feeder ETDs
	8.5.3 Step 3: Create the TP_Order_Feeder Collaboration
	Convert the Event to Base 64 Encoding
	Populate the Required e*Xchange Nodes
	The e*Xchange TP_Order_Feeder CRS
	TP_Order_Feeder Collaboration Properties Setup

	8.6 Configure the Internal_Order_Eater e*Way
	The e*Xchange Internal_Order_Eater e*Way
	8.6.1 Step 1: Create and Configure the Internal_Order_Eater e*Way
	8.6.2 Step 2: Create the Internal_Order_Eater Collaboration
	The e*Xchange Internal_Order_Eater CRS
	Internal_Order_Eater Collaboration Properties Setup

	8.7 Configure the eX_ePM e*Way
	8.8 Editing the Data Files
	8.9 Running the Scenario
	Viewing the Results in Message Tracking

	8.10 Sending the Response
	8.11 Configure the Internal_OrderResponse_Feeder e*Way
	The e*Xchange Internal_OrderResponse_Feeder e*Way
	8.11.1 Step 1: Create and Configure the Internal_OrderResponse_Feeder e*Way
	8.11.2 Step 2: Create the Internal_OrderResponse_Feeder Collaboration
	The e*Xchange Internal_OrderResponse_Feeder CRS
	Internal_OrderResponse_Feeder Collaboration Properties Setup

	8.11.3 Sending and Viewing the Response Message
	Viewing the Results in Message Tracking

	8.12 Receiving a Control Message from the Trading Partner
	8.12.1 Editing the Data File
	8.12.2 Preparing the Data File
	8.12.3 Copying the Response Control Numbers
	8.12.4 Incrementing the UNB/UNZ Control Numbers
	8.12.5 Sending and Viewing the Control Message

	e*Xchange Implementation-RosettaNet
	9.1 Overview
	9.1.1 Case Study: Sending a RosettaNet Purchase Order

	9.2 Using the Implementation Sample
	9.3 Create the Trading Partner Profiles
	Trading Partner Information Hierarchy
	9.3.1 The Retailer Company
	Step 1: Create the Wholesaler Company
	Step 2: Create the Wholesaler Trading Partner
	Step 3: Set Up Inbound B2B Protocol Information (Wholesaler TP)
	Step 4: Create the Inbound Message Profiles (Wholesaler TP)
	Step 5: Set Up Outbound B2B Protocol Information (Wholesaler TP)
	Step 6: Create the Outbound Message Profiles (Wholesaler TP)
	Step 7: Configure Return Messages for Inbound (Wholesaler TP)

	9.4 The Wholesaler
	Step 1: Create the Retailer Company
	Step 2: Create the Retailer Trading Partner
	Step 3: Set Up Inbound B2B Protocol Information (Retailer TP)
	Step 4: Create the Inbound Message Profiles (Retailer TP)
	Step 5: Set Up the Outbound B2B Protocol Information (Retailer TP)
	Step 6: Set Up the Outbound Message Profiles (Retailer TP)
	Step 7: Configure Return Messages for Inbound (Retailer TP)

	9.5 Clone the eXSchema
	9.6 Configure the Internal_Order_Feeder e*Way
	The e*Xchange Internal_Order_Feeder e*Way
	9.6.1 Step 1: Create and configure the Internal_Order_Feeder e*Way
	9.6.2 Step 2: Create the Internal_Order_Feeder ETDs
	9.6.3 Step 3: Create the Internal_Order_Feeder Collaboration
	Convert the Event to Base 64 Encoding
	Populate the Required e*Xchange Nodes
	The e*Xchange Internal_Order_Feeder CRS
	Internal_Order_Feeder Collaboration Properties Setup

	9.7 Configure the TP_Order_Eater e*Way
	The e*Xchange TP_Order_Eater e*Way
	9.7.1 Step 1: Create and configure the TP_Order_Eater e*Way
	9.7.2 Step 2: Create the TP_Order_Eater Collaboration
	The e*Xchange TP_Order_Eater CRS
	TP_Order_Eater Collaboration Properties Setup

	9.8 Configure the TP_Order_Feeder e*Way
	The e*Xchange TP_Order_Feeder e*Way
	9.8.1 Step 1: Create and configure the TP_Order_Feeder e*Way
	9.8.2 Step 2: Create the TP_Order_Feeder Collaboration
	Convert the Event to Base 64 Encoding
	Populate the Required e*Xchange Nodes
	The e*Xchange TP_Order_Feeder CRS
	TP_Order_Feeder Collaboration Properties Setup

	9.9 Configure the Internal_Eater e*Way
	The e*Xchange Internal_Eater e*Way
	9.9.1 Step 1: Create and configure the Internal_Eater e*Way
	9.9.2 Step 2: Create the Internal_Eater Collaboration
	Internal_Eater Collaboration Properties Setup

	9.10 Configure the Internal_Response_Feeder e*Way
	The e*Xchange Internal_Response_Feeder e*Way
	9.10.1 Step 1: Create and configure the Internal_Response_Feeder e*Way
	9.10.2 Step 2: Create the Internal_Response_Feeder Collaboration
	Convert the Event to Base 64 Encoding
	Populate the Required e*Xchange Nodes
	The e*Xchange Internal_Response_Feeder CRS
	Internal_Response_Feeder Collaboration Properties Setup

	9.11 Configure the TP_Response_Eater e*Way
	The e*Xchange TP_Response_Eater e*Way
	9.11.1 Step 1: Create and configure the TP_Response_Eater e*Way
	9.11.2 Step 2: Create the TP_Response_Eater Collaboration
	The e*Xchange TP_Response_Eater CRS
	TP_Response_Eater Collaboration Properties Setup

	9.12 Configure the TP_Response_Feeder e*Way
	The e*Xchange TP_Response_Feeder e*Way
	9.12.1 Step 1: Create and Configure the TP_Response_Feeder e*Way
	9.12.2 Step 2: Create the TP_Response_Feeder Collaboration
	Convert the Event to Base 64 Encoding
	Populate the Required e*Xchange Nodes
	The e*Xchange TP_Response_Feeder CRS
	TP_Response_Feeder Collaboration Properties Setup

	9.13 Configure the eX_ePM e*Way
	9.14 Running the Scenario
	Viewing the Results in Message Tracking

	9.15 Sending the Response
	Viewing the Results in Message Tracking

	9.16 Editing the Data Files

	e*Xchange Implementation-CIDX
	10.1 Overview
	10.2 CIDX Inbound
	10.2.1 e*Xchange Profiles for CIDX Inbound
	10.2.2 B2B Protocol settings for CIDX Inbound
	General
	Transport Component
	Message Security

	10.2.3 Message Profile settings for CIDX Inbound
	General
	Preamble
	Service Header

	10.2.4 Return Messages
	10.2.5 CIDX Inbound Required Values
	10.2.6 Processing CIDX Inbound within e*Xchange
	10.2.7 e*Ways for e*Xchange Inbound messages

	10.3 CIDX Outbound
	10.3.1 e*Xchange Profiles for CIDX Outbound
	10.3.2 B2B Protocol settings for CIDX Outbound
	General
	Transport Component
	Message Security

	10.3.3 Message Profile settings for CIDX Outbound
	General
	Preamble
	Service Header
	Return Messages

	10.3.4 CIDX Outbound Required Values
	10.3.5 Processing CIDX Outbound within e*Xchange
	10.3.6 e*Ways for e*Xchange Outbound messages
	10.3.7 CIDX Ack Monitor

	10.4 CIDX Sample
	10.5 Using the Implementation Sample
	10.6 Running the Scenario
	Viewing the Results in Message Tracking

	e*Xchange Implementation-AS2
	11.1 Overview
	11.2 Using the Implementation Sample
	11.2.1 Running the Scenario
	Viewing the Results in Message Tracking

	e*Xchange Implementation-NCPDP
	12.1 Overview
	12.2 Using the Implementation Sample
	12.2.1 Running the Scenario
	Viewing the Results in Message Tracking

	Advanced Configuration
	13.1 Manually Creating a Validation Rules Collaboration
	13.1.1 Creating a Validation Rules Collaboration for X12 or UN/ EDIFACT
	Creating the Validation ETD
	Creating the Validation Collaboration

	13.1.2 Creating a Validation Rules Collaboration for RosettaNet
	Using the util-add-to-error function
	Predefined Validation Scripts

	13.2 Adding a Custom Protocol
	13.2.1 Adding a Custom Protocol for X12 or UN/EDIFACT
	Step 1: Add a Comm Protocol to the Code Table
	Step 2: Add an Event Type for the Protocol
	Step 3: Update eX_from_ePM Collaboration Rule
	Step 4: Update eX_from_ePM Collaboration
	Step 5: Update eX_ePM_Send_To_External.monk
	Step 6: Update eX_from_ePM.tsc

	13.2.2 Adding a Customer Protocol for RosettaNet 1.1
	Step 1: Add a Comm Protocol to the Code Table
	Step 2: Add an Event Type for the Protocol
	Step 3: Update eX_from_ePM Collaboration Rule
	Step 4: Update eX_from_ePM Collaboration
	Step 5: Update eX_ROS_main.dsc
	Step 6: Update eX_from_ePM.tsc
	Step 7: Modify ack_mon.dsc

	13.2.3 Adding a Customer Protocol for RosettaNet 2.0
	Step 1: Add a Comm Protocol to the Code Table
	Step 2: Add an Event Type for the Protocol
	Step 3: Update eX_from_ePM Collaboration Rule
	Step 4: Update eX_from_ePM Collaboration
	Step 5: Update eX_ROS_Send_To_Egate.monk
	Step 6: Update eX_from_ePM.tsc

	e*Xchange Partner Manager Functions
	14.1 e*Xchange Helper Monk Functions
	14.2 e*Xchange Functions
	ux-ack-handler
	ux-upd-mtrk-ext-data
	ux-find-if-bat-msgs
	ux-ret-batch-pro-ids
	ux-get-req-mtrk-attrib
	ux-get-msg
	ux-set-fb-overdue
	ux-get-reg-info
	ux-mdn-inb-ack

	14.3 Monk Functions Used by the Validation Rules Builder
	compare-equal

	14.4 e*Xchange MIME Functions
	util-mime-get-header-value

	14.5 e*Xchange RosettaNet 2.0 Functions
	eX-ROS20-Generic-To-String

	14.6 e*Xchange Security Functions
	14.6.1 Operational Groups

	14.7 AS2 Security Functions
	14.7.1 ePM e*Way for AS2 message resends

	14.8 NCPDP Functions
	ux-del-ncpdp-batch-rec

	Java Helper Methods
	15.1 NameValuePair Class
	15.2 Payload Class
	15.3 TPAttribute Class
	15.4 TP_EVENT Class

	XML Structure for the e*Xchange Event
	A.1 XML Structure

	Glossary
	Index
	A
	acknowledgment handling
	addNameValuePair 479
	APIs

	B
	Batching in X12 33

	C
	CGI Web Server e*Way, how it works 43
	cgi_Request_Ack_Collab Collaboration 46
	clearNameValuePair 480
	Collaborations
	company, creating 83, 101, 138, 146
	compare-equal 363
	compare-ge 364
	compare-gt 365
	compare-le 366
	compare-lt 367
	components
	configuring
	conventions, writing in document 14
	converting business application data to e*Xchange format 49
	converting the Event to Base 64 encoding 62, 69
	countNameValuePair 481
	creating the Send_to_ePM ETDs 87, 91

	E
	e*Ways
	e*Xchange
	e*Xchange ETD, understanding 53-61, 65-69
	e*Xchange functions 248-351
	e*Xchange Partner Manager
	e*Xchange-only Send_to_ePM e*Way 87
	e*Xchange-required tracking nodes 50
	EAI 18
	eBI 16
	eBusiness Integration 16
	editing the Send_to_ePM e*Way configuration file 87, 90, 109
	envelope profiles, configuring 100, 137
	ePM Event requirements for Fast Batch 33
	ePM tracking information 63, 70
	ePM-only Send_to_ePM e*Way 109, 123
	ETD
	eX 384
	eX_Batch_to_Trading_Partner Collaboration 38, 42
	eX_Batch_to_Trading_Partner e*Way 37, 94
	eX_Batch_to_Trading_Partner e*Way, configuring 37, 41
	eX_ePM e*Way, configuring 93
	eX_ePM_Ack_Monitor e*Way 31
	eX_ePM_Ack_Monitor e*Way, configuring 32
	eX_ePM_Batch e*Way 33
	eX_ePM_Batching Collaboration 35
	eX_ePM_Trans_Poll e*Way 36
	eX_ePM_Trans_Poll e*Way, configuring 36
	eX_ePM_Transaction_Poll Collaboration 36
	eX_from_Batch_to_Trading_Partner Collaboration 38
	eX_from_Trading_Partner Collaboration 52
	eX_from_Trading_Partner e*Way 51
	eX_Https_to_ePM Collaboration 40
	eX_Https_to_Trading_Partner Collaboration 40
	eX_Https_to_Trading_Partner e*Way 38
	eX_Mux_from_Trading_Partner Collaboration 45
	eX_Mux_from_Trading_Partner e*Way 43
	eX_Mux_from_Trading_Partner e*Way, configuring 43
	eX_Poll_Ack_Mon Collaboration 32
	eX_Poll_Receive_FFTP Collaboration 41
	eX_Poll_Receive_FTP e*Way 40
	eX_Poll_Receive_FTP e*Way, configuring 41
	eX_POP3_from_Trading Partner e*Way, configuring 46
	eX_POP3_from_Trading_Partner Collaboration 47
	eX_Sent_Batch_to_Trading_Partner Collaboration 42
	eX_SMTP_to_Trading_Partner Collaboration 47
	eX_SMTP_to_Trading_Partner e*Way, configuring 47
	eX-count-TP-attribute 245
	eX-get-TP_EVENT 243
	eX-get-TP-attribute 246
	eX-ROS20-Ack-Type 392
	eX-ROS20-Create-0A1Notification.dsc 413
	eX-ROS20-Create-Except.dsc 415
	eX-ROS20-Create-ReceiptAck.dsc 414
	eX-ROS20-decrypt-msg 426
	eX-ROS20-encrypt-msg 427
	eX-ROS20-Generic-To-String 380
	eX-ROS20-Get-ActId 405
	eX-ROS20-Get-InitPartnerId 411
	eX-ROS20-Get-InReplyTo-ActCode 409
	eX-ROS20-Get-InReplyTo-MsgId 407
	eX-ROS20-Get-PipCode 395
	eX-ROS20-Get-PipId 403
	eX-ROS20-Get-PipVerId 401
	eX-ROS20-Get-SigActCode 397
	eX-ROS20-Get-SigActVerId 399
	eX-ROS20-get-ssl-keys 431
	eX-ROS20-IsResponse? 393
	eX-ROS20-IsSignal? 394
	eX-ROS20-Pack-RNBM 382
	eX-ROS20-Populate-Preamble 387
	eX-ROS20-Populate-ServiceHeader 388, 389
	eX-ROS20-Request-ID 391
	eX-ROS20-Set-ActId 406
	eX-ROS20-Set-InitPartnerId 412
	eX-ROS20-Set-InReplyTo-ActCode 410
	eX-ROS20-Set-InReplyTo-MsgId 408
	eX-ROS20-Set-PipCode 396
	eX-ROS20-Set-PipId 404
	eX-ROS20-Set-PipVerId 402
	eX-ROS20-Set-SigActCode 398
	eX-ROS20-Set-SigActVerId 400
	eX-ROS20-sign-msg 428
	eX-ROS20-Unique-ID 390
	eX-ROS20-Unpack-RNBM 383
	eX-ROS20-Validate-DeliveryHeader 386
	eX-ROS20-Validate-Preamble 384
	eX-ROS20-Validate-ServiceHeader 385
	eX-ROS20-verify-sig 429
	eX-RSO20-Parse-Generic 381
	eXSchema 21
	eXSchema, copying 74
	eX-security-get-keys-certs 425
	eX-set-Activity 459
	eX-set-all-BP_EVENT 462
	eX-set-Payload 244
	eX-set-TP_EVENT 242
	eX-set-TP-attribute 247

	F
	Fast Batch, Event requirements for 33
	functions

	G
	getCommProt 492
	getDirection 493
	getInternalName 494
	getMessageID 495
	getMessageIndex 496
	getNameValuePair 482, 483
	getOrigEventClass 497
	getPartnerName 498
	getPayload 499
	getSSLClientCertFileName 500
	getTPAttribute 504
	getURL 505
	getUsageIndicator 506
	glossary 557-560

	H
	hasCommProt 507
	hasDirection 508
	hasInternalName 509
	hasMessageID 510
	hasMessageIndex 511
	hasOrigEventClass 512
	hasPartnerName 513
	hasPayload 514
	hasSSLClientCertFileName 515
	hasSSLClientCertFileType 516
	hasSSLClientKeyFileName 517
	hasSSLClientKeyFileType 518
	hasTPAttribute 519
	hasUrl 520
	hasUsageIndicator 521

	I
	implementation

	J
	Java Helper Methods 457-554

	M
	marshal 522
	Monk functions see functions

	N
	nodes

	O
	omitCommProt 523
	omitDirection 524
	omitInternalName 525
	omitMessageID 526
	omitMessageIndex 527
	omitOrigEventClass 528
	omitPartnerName 529
	omitPayload 530
	omitSSLClientCertFileName 531
	omitSSLClientCertFileType 532
	omitSSLClientKeyFileName 533
	omitSSLClientKeyFileType 534
	omitTPAttribute 535
	omitUrl 536
	omitUsageIndicator 537

	P
	payload, in e*Xchange 63, 70
	payload, in ePM 155
	populating the required e*Xchange nodes 63, 70
	public domain 20

	R
	Receive_from_ePM Collaboration 50
	Receive_from_ePM e*Way 50
	RosettaNet
	RosettaNet acknowledgment handling 32
	running and testing the e*Xchange-only scenario 94

	S
	schema, copying 74
	SEF file, creating 80
	Send_to_ePM Collaboration 49
	Send_to_ePM e*Way 48
	setCommProt 538
	setDirection 539
	setInternalName 540
	setMessageID 541
	setMessageIndex 542
	setNameValuePair 487
	setOrigEventClass 543
	setPartnerName 544
	setPayload 545
	setSSLClientCertFileName 546
	setSSLClientCertFileType 547
	setSSLClientKeyFileName 548
	setSSLClientKeyFileType 549
	setTPAttribute 550
	setUrl 551
	setUsageIndicator 552
	string-alpha 368
	string-alphanumeric 369
	string-numeric 370
	supporting documents 15

	T
	TP 490
	trading partner profiles, creating 82
	trading partner, creating 83, 102, 139, 146

	U
	UN/EDIFACT
	understanding the e*Xchange ETD 53-61, 65-69
	Using Java with e*Xchange 65, 457-554
	using the ETD in e*Xchange 58, 66
	util-mime-get-header-value 373
	util-mime-get-par-value 374
	util-mime-make-mime-message 375
	util-mime-map-event 376
	util-mime-pack-encrypted-msg 377
	util-mime-pack-signed-msg 378
	util-mime-unpack-signed-message 379
	util-security-decrypt-msg 421
	util-security-encrypt-msg 422
	util-security-sign-msg 423
	util-security-verify-sig 424
	ux-ack-handler 248
	ux-ack-monitor 252
	ux-check-shutdown-uid 255
	ux-control-check 256
	ux-dbproc-ros-inb 258
	ux-dbproc-ros-outb 262
	ux-dequeue 266
	ux-duplicate-check 268
	ux-func-ack-handler 270
	ux-get-env-msg-id 273
	ux-get-error-str 274
	ux-get-fb-count 275
	ux-get-header 276
	ux-get-key-cert 281
	ux-get-mtrk-attrib 284, 285, 287
	ux-get-seq-value 288
	ux-incr-control-num 289
	ux-init-exdb 291
	ux-init-ic 293
	ux-init-trans 298
	ux-init-ts 303
	ux-md5-digest 311
	ux-mdn-inb-ack 310
	ux-mdn-outb-ack 307
	ux-ret-edf-batch-ts-msgs 312
	ux-ret-edf-fb-ts-msgs 314
	ux-retrieve-997-error 320
	ux-retrieve-997-error-tail 323
	ux-retrieve-message 325
	ux-return-receipt 327
	ux-ret-X12-fb-ts-msgs 316, 318
	ux-set-fb-overdue 329
	ux-sha1-digest 330
	ux-store-msg 331
	ux-store-msg-errors 335
	ux-store-msg-ext 336
	ux-store-shutdown-uid 340
	ux-track-997-errors 341
	ux-update-batch-imm 343
	ux-update-control-num 344
	ux-update-last-batch-send-time 346
	ux-upd-mtrk-element 347, 348, 349
	ux-wait-for-ack 350

	V
	validation Collaboration, creating 80
	Validation Rules Builder APIs
	Validation Rules Builder Monk functions 363
	Validation Rules Builder, creating Collaboration with 80
	valid-date-yyyy 371
	valid-time 372
	Value Added Network 20
	VAN 20

	X
	X12
	XML

