

适用于 Sun Blade[™] X6440 服务器模块的 Sun[™] Integrated Lights Out Manager 补充说明

Sun Microsystems, Inc. www.sun.com

文件号码 820-5333-10,版本 A 2008 年 7 月

请将有关本文档的意见和建议提交至: http://www.sun.com/hwdocs/feedback

版权所有 © 2008 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. 保留所有权利。

对于本文档中介绍的产品,Sun Microsystems,Inc.对其所涉及的技术拥有相关的知识产权。需特别指出的是(但不局限于此),这些知识 产权可能包含在 http://www.sun.com/patents 中列出的一项或多项美国专利,以及在美国和其他国家/地区申请的一项或多项其他专利 或待批专利。

本产品的某些部分可能是从 Berkeley BSD 系统衍生出来的,并获得了加利福尼亚大学的许可。UNIX 是 X/Open Company, Ltd. 在美国和其他国家/地区独家许可的注册商标。

Sun、Sun Microsystems、Sun 徽标、Java、Solaris、Sun Blade、docs.sun.com、Sun Fire 以及 Solaris 徽标是 Sun Microsystems, Inc. 在美国和其他国家/地区的商标或注册商标。

Microsoft 是 Microsoft Corporation 或其子公司在美国和其他国家/地区的商标或注册商标。Windows 是 Microsoft Corporation 或其子公司在美国和其他国家/地区的商标或注册商标。Adobe 徽标是 Adobe Systems, Incorporated 的注册商标。

对任何 CPU 备件或更换件的使用仅限于对遵照美国出口法律出口的产品中的 CPU 进行修复或一对一更换。除非经过美国政府授权,否则, 严禁将 CPU 用于产品升级。

本文档按 "原样"提供,对于所有明示或默示的条件、陈述和担保,包括对适销性、适用性或非侵权性的默示保证,均不承担任何责任,除非 此免责声明的适用范围在法律上无效。

目录

前言 vii 硬件安装文档 vii 相关文档 viii

1. 适用于 Sun Blade X6440 服务器模块的 ILOM 补充说明 1

Sun Blade 模块化系统硬件 1

使用 ILOM 管理 Sun Blade 服务器模块 2

服务处理器 2

机箱监视模块 2

服务器模块 SP 和 CMM 上的 ILOM 2

连接到 ILOM 3

- ▼ 通过机箱以太网端口连接到 ILOM (选项1) 4
 - ▼ 查找 ILOM 的 IP 地址 5
 - ▼ 连接到 ILOM CLI 6
 - ▼ 连接到 ILOM Web 界面 6
- ▼ 通过机箱串行连接器连接到 ILOM (选项 2) 6
- ▼ 通过硬件锁电缆连接到 ILOM (选项3) 9

复位服务处理器和 BIOS 口令 10

温度、电压和风扇传感器 10

传感器列表 11

传感器详细信息 12 sys/power 12 locate 13 service 13 ok2rm 13 sys/slotid 14 sys/hostpower 14 cmm/prsnt 14 nemn/prsnt 14 主板温度传感器 15 mb/t_ambn 15 主板电压传感器 15 mb/v_bat 15 $mb/v_+3v3aux$ 15 mb/v_+3v3 15 $mb/v_{+}5v_{15}$ mb/v_{+12v} 15 $mb/v_+2v5 = 16$ mb/v_+1v5 16 $mb/v_+1v2 = 16$ 电源传感器 17 psn/prsnt 17 psn/acn_err 18 ps*n*/pwrok*n* 18 风扇传感器 18 fmn/fann/speed 19 fmn/err 19

前言

《适用于 Sun Blade X6440 服务器模块的 Sun ILOM 补充说明》提供有关配合 Sun Blade X6440 服务器模块使用 Sun Integrated Lights Out Manager (ILOM) 的信息。

ILOM 文档

ILOM 文档分为两类:

- 常规 ILOM 信息,包含在《Sun Integrated Lights Out Manager 2.0 用户指南》 (820-2700) 和《Addendum to the Sun Integrated Lights Out Manager 2.0 User's Guide》(820-4198) 中。
- 适用于 Sun Blade X6440 服务器模块的特定信息包含在本 ILOM 补充说明中。

服务器模块文档

本节介绍适用于 Sun Blade X6440 服务器模块的文档和更新。

硬件安装文档

有关安装硬件、布线和打开系统电源的说明,参阅《Sun Blade X6440 服务器模块安装 指南》 (820-5308)。

相关文档

有关 Sun Blade X6440 服务器模块文档集的说明,参见服务器模块附带的《从何处可以找到文档》表。另外,您也可在产品的文档站点上找到该表。访问以下 URL,然后 浏览至 Sun Blade X6440 产品文档 Web 站点:

http://docs.sun.com

这些文档中的某些文档已发行翻译版本,分别以法文、简体中文、繁体中文、韩文、 日文等语言在上述 Web 站点提供。英文版文档的修订较为频繁,因而其内容可能比 其他语言版本的文档更新。

使用 UNIX 命令

本文档不会介绍基本的 UNIX™ 命令和操作过程,如关闭系统、引导系统和配置设备等。欲获知此类信息,请参阅以下文档:

- 系统附带的软件文档
- SolarisTM 操作系统文档,其 URL 如下: http://docs.sun.com

印刷约定

字体	含义	示例
AaBbCc123	命令、文件和目录的名称;计算 机屏幕输出	编辑 .login 文件。 使用 ls -a 列出所有文件。 % You have mail.
AaBbCc123	用户键入的内容,与计算机屏幕 输出的显示不同	% su Password:
AaBbCc123	保留未译的新词或术语以及要强 调的词。要使用实名或值替换的 命令行变量。	这些称为 class 选项。 要删除文件,请键入 rm filename。
新词术语强	新词或术语以及要强调的词。	您必须成为超级用户才能执行此操作。
《书名》	书名	阅读《用户指南》的第6章。

注 – 字符显示视具体浏览器设置而有所不同。如果字符未能正确显示,请将浏览器的 字符编码改为 Unicode UTF-8。

Sun 欢迎您提出意见

Sun 致力于提高其文档的质量,并十分乐意收到您的意见和建议。您可以通过以下网址 提交您的意见和建议:

http://www.sun.com/hwdocs/feedback

请在您的反馈信息中包含文档的书名和文件号码:

《适用于 Sun Blade X6440 服务器模块的 ILOM 补充说明》 (820-5333-10)。

适用于 Sun Blade X6440 服务器模块的 ILOM 补充说明

本补充说明包含有关配合 Sun Blade™ X6440 服务器模块 (也称为"服务器模块") 使用 Integrated Lights Out Manager (ILOM) 的信息。

本文档提供有关以下主题的信息:

- 第 1 页的 "Sun Blade 模块化系统硬件"
- 第 10 页的"复位服务处理器和 BIOS 口令"
- 第 10 页的"温度、电压和风扇传感器"

Sun Blade 模块化系统硬件

可安装于 Sun Blade 6000 或 Sun Blade 6048 模块化系统的服务器模块有多种类型, Sun Blade X6440 服务器模块仅是其中一种。模块化系统由机箱构成,内含风扇、 电源、网络硬件以及可容纳多达十二个服务器模块的空间。服务器模块安装在模块化 系统机箱中。

服务器定位器指示灯 (也称为定位 LED 指示灯按钮)是小型指示灯,打开后可帮助您 在数据中心的众多服务器中识别特定服务器。服务器定位器指示灯位于服务器前面的左 上角位置。

使用 ILOM 管理 Sun Blade 服务器模块

Sun Integrated Lights Out Manager (ILOM) 是系统管理固件,可用于监视、管理和配置 Sun Blade 服务器模块。ILOM 固件预装在每个 Sun Blade 服务器模块的服务处理器 (service processor, SP) 上,并在接通系统电源时进行初始化。您可以通过多种界面访问 ILOM,如 Web 浏览器、命令行界面 (command-line interface, CLI)、简单网络管理协议 (Simple Network Management Protocol, SNMP) 界面和智能平台管理界面 (Intelligent Platform Management Interface, IPMI)。无论主机操作系统状态如何, ILOM 都将保持运行,使之成为"无人职守"的管理系统。

有关配置和使用 ILOM 的信息,参阅《Sun Integrated Lights Out Manager 2.0 用户 指南》 (820-2700)。还可从以下网址下载此文档:

http://docs.sun.com

服务处理器

服务处理器 (service processor,SP) 是 ILOM 固件。它有自己的互联网协议 (Internet Protocol, IP) 地址和介质访问控制 (media access control, MAC) 地址,无论其他系统 硬件的状态如何,都能够正常运行。在 Sun Blade 服务器模块中,无论服务器模块是完 全正常运行、电源关闭还是处于待机模式, SP 都可以运行。

机箱监视模块

Sun Blade 模块化系统或机箱有自己的服务处理器,叫做机箱监视模块 (chassis monitoring module, CMM)。 CMM ILOM 是为 SP 预装的改进版 ILOM 固件。

服务器模块 SP 和 CMM 上的 ILOM

ILOM 支持两种系统管理方式:使用 CMM 或直接使用服务器模块的 SP。

- 使用 CMM SP 通过管理 CMM 中的系统,您能够设置并管理整个机箱系统中的 组件,还可管理单个服务器模块 SP。
- 使用服务器模块 SP 通过管理 Sun Blade 服务器模块上的 SP,您能够管理单个服务器模块上的各种操作。在对特定服务处理器进行故障排除、控制对特定服务器模块的访问,或在特定服务器模块上安装操作系统软件时,这种方法可能会很有用。

连接到 ILOM

您可以通过本地或远程控制台与 ILOM 服务器模块 SP 建立通信。

- 本地控制台。将串行控制台连接到服务器模块或机箱监视模块 (Chassis Monitoring Module, CMM) 上的本地串行管理端口。或者
- 远程控制台。将局域以太网电缆连接到 CMM 上的网络管理端口。

有关连接本地串行控制台或连接以太网电缆的说明,参阅《Sun Blade X6440 服务器 模块安装指南》(820-5308)。

您建立的 ILOM 连接类型决定了可以执行的系统管理任务类型。例如,要远程访问 ILOM 中的所有系统管理功能,您需要有 CMM 以太网连接以及为 CMM 和服务器 模块 SP 分配的 IP。

您可以使用以下其中一种方法连接到服务器模块上的 ILOM:

选项1-将服务器模块装入机箱后,该模块将自动连接到与CMM ILOM 相同的 子网。这样您就可以通过以太网连接到 Web GUI 和命令行界面 (command-line interface, CLI)。

注 – 机箱中的 CMM ILOM 有以太网交换机,支持与服务器模块及其 ILOM 的连接。 要使用此连接,您必须连接到与 ILOM 相同的子网,且必须知道服务器模块 ILOM 的 以太网地址。

- 选项 2 使用机箱上的串行连接器连接到机箱的 CMM ILOM。然后用 CMM ILOM 浏览至服务器模块。此连接仅支持 CLI 访问。
- 选项 3 使用硬件锁电缆建立与服务器模块的直接串行连接。此连接仅支持 CLI 访问。

以下小节会逐一介绍这些方法。图 1 显示了各种连接。

图 1 ILOM 连接选项

▼ 通过机箱以太网端口连接到 ILOM (选项 1)

通常,您会通过以太网连接到 ILOM。将服务器模块装入机箱后,其 ILOM 将自动连接到与 CMM ILOM 相同的子网以供访问。

如果您不知道 ILOM 的 IP 地址,请按第 5 页的"查找 ILOM 的 IP 地址"中介绍的方法查找。

您可以通过安全 Shell (Secure Shell, SSH) 连接到命令行界面 (command line interface, CLI), 或通过浏览器连接到 Web 界面,进而连接到 ILOM。

- 要连接到 CLI,参见第 6 页的"连接到 ILOM CLI"。
- 要连接到 Web 界面,参见第 6 页的"连接到 ILOM Web 界面"。

▼ 查找 ILOM 的 IP 地址

要查找 ILOM 的 IP 地址:

1. 登录 CMM。

有关详细信息,参见《Sun Integrated Lights Out Manager 2.0 用户指南》 (820-2700)。

2. 键人命令:

```
show /CH/BLn/SP/network
```

其中 n 是 0 到 9 的数字,分别对应服务器模块 0 到 9。

3. CLI 将显示有关服务器模块的信息,包括其 IP 地址。

例如:

```
-> show /CH/BL0/SP/network
/CH/BLn/SP/network
    Targets:
    Properties:
        type = Network Configuration
        commitpending = (Cannot show property)
        ipaddress = IPaddress
        ipdiscovery = dhcp
        ipgateway = IPgateway
        ipnetmask = 255.255.252.0
        macaddress = Macaddress
        pendingipaddress = Ipaddress
        pendingipdiscovery = dhcp
        pendingipgateway = IPgateway
        pendingipnetmask = 255.255.252.0
    Commands:
        cd
        set
        show
- >
```

▼ 连接到 ILOM CLI

- 1. 启动 SSH 客户机。
- 2. 要登录 ILOM, 键人:
 - \$ ssh root@ipaddress

其中, ipaddress 代表服务器 SP 的地址。

3. 出现提示时键入您的口令。

缺省口令为 changeme。 屏幕上显示 CLI 命令提示符。

▼ 连接到 ILOM Web 界面

1. 在 Web 浏览器中键人服务器 SP 的 IP 地址。

此时将出现 Web 界面 "Login" 屏幕。

2. 键人您的用户名和口令。

首次尝试访问 Web 界面时,系统会提示您键入缺省用户名和口令。缺省用户名和口令是:

- 缺省用户名: root
- 缺省口令: changeme

缺省用户名和口令采用小写字母字符格式。

3. 单击 "Log In"。

此时将出现 ILOM Web 界面。

要从 Web 界面注销,单击 "Log Out" 按钮。
 此时将出现 "Log Out" 屏幕。
 请勿使用 Web 浏览器中的 "Log Out" 按钮从 Web 界面中注销。

▼ 通过机箱串行连接器连接到 ILOM (选项 2)

机箱串行连接器连接到机箱 CMM ILOM。CMM ILOM 提供命令以连接到服务器模块 ILOM。

1. 将串行电缆从机箱的串行端口连接到终端设备。

终端设备可以是实际终端、运行终端仿真器的笔记本电脑或终端服务器,必须按照 以下要求进行设置:

■ 8N1: 八个数据位、无奇偶校验、一个停止位

- 9600 波特 (缺省值,可以设置为任何标准速率,最高为 57600)
- 禁用软件流控制 (XON/XOFF)
- 禁用硬件流控制 (CTS/RTS) 电缆要求以下引脚分配。

表 1	串行管理端口引脚分配
1 ()	

引脚	信号描述	
1	请求发送 (RTS)	
2	数据终端就绪 (DTR)	
3	传输数据 (TXD)	
4	接地	
5	接地	
6	接收数据 (RXD)	
7	数据载波检测 (DCD)	
8	清除发送 (CTS)	

2. 在终端设备上按 Enter 键。

这样将在终端设备与 CMM ILOM 之间建立连接。 屏幕上显示 CMM ILOM 登录提示符。 SUNCMMnnnnnnnn login:

提示符中的第一个字符串是缺省主机名称。该名称由前缀 SUNCMM 和 CMM ILOM 的 MAC 地址组成。

3. 登录 CMM ILOM。

缺省用户名是 root, 缺省口令是 changeme。

一旦登录成功, CMM ILOM 便会显示 ILOM 缺省命令提示符: ->

4. 浏览至 /CH/BLn/SP/cli。

其中 n 是 0 到 9 的数字,分别对应服务器模块 0 到 9。

5. 输入命令 start

屏幕上显示提示符。

6. 输入 y 继续, 或输入 n 取消。

如果输入y,服务器模块 ILOM 将提示您输入口令。

注 – CMM ILOM 使用 /CH/BLn/SP/cli/user (其中 n 是服务器模块编号)中的用 户名登录服务器模块 ILOM。缺省用户名为 root。

7. 输入 ILOM 口令。

此时将显示服务器模块的 ILOM CLI。您现在已连接到服务器模块 ILOM。

8. 完成后键人 exit。

服务器模块 ILOM 退出,屏幕上显示 CMM ILOM CLI 提示符。

下图显示了此过程的示例。

```
-> cd /CH/BL2/SP/cli
/CH/BL2/SP/cli
-> start
Are you sure you want to start /CH/BL2/SP/cli (y/n)?y
Password: Type the password to the CMM ILOM.
Sun(TM) Integrated Lights Out Manager
Version 2.0.3.9
Copyright 2008 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
Warning: password is set to factory default.
-> exit Type this command to exit the server module ILOM and return to the
CMM ILOM.
Connection to 10.6.153.33 closed.
```

▼ 通过硬件锁电缆连接到 ILOM (选项 3)

使用硬件锁电缆,您可以将终端直接连接到 ILOM。图 2显示了连接到服务器模块的硬件锁电缆。

- 1. 将硬件锁电缆直接连接到服务器模块。
- 2. 将终端或终端仿真器连接到硬件锁电缆上的 RJ-45 连接器。 在图 2 中, RJ-45 连接器标示为 "1"。

屏幕上显示 CLI 登录提示符。

- 3. 出现提示时输入用户名和口令。 缺省用户名是 root,缺省口令是 changeme。 屏幕上显示 CLI 提示符。
- 图 2 显示了硬件锁电缆。

图 2 硬件锁电缆

连接器为:

- 1. 10/100 Mb 以太网。用此连接器连接到 ILOM。
- 2. 双 USB 连接器 (键盘/鼠标)
- 3. VGA 视频连接器

复位服务处理器和 BIOS 口令

《Sun Blade X6440 Server Module Service Manual》(820-3964) 中有介绍如何复位服务 处理器和 BIOS 口令的过程。

- 管理 (超级用户)口令变成 changeme。
- BIOS 口令被清除,因此当您尝试访问 BIOS Setup 实用程序时,系统不会再提示您 输入口令。

温度、电压和风扇传感器

服务器模块包括多个传感器,当传感器超出阈值时,它们将在系统事件日志 (system event log, SEL) 中生成条目。这些读数有很多可用于调节风扇速度和执行其他操作,如闪烁 LED 指示灯和关闭机箱电源。

注 – 风扇和电源传感器代表机箱而不是服务器模块上的风扇和电源。

还可以配置传感器以生成 IPMI PET 陷阱,具体描述如《Sun Integrated Lights Out Manager 2.0 用户指南》 (820-2700) 中所述。

本节介绍各种传感器并提供相关操作的详细信息。

注意 – 请勿使用除 ILOM CLI 或 Web 界面以外的任何界面来更改任何传感器或 LED 指示灯的状态或配置。这样做会使担保失效。

第 11 页的"传感器列表"列出了各种传感器。第 12 页的"传感器详细信息"提供了 有关各传感器的详细信息。

传感器列表

板载传感器

- sys/power
- locate
- service
- ok2rm
- sys/slotid
- sys/hostpower
- cmm/prsnt
- nemn/prsnt

主板温度传感器

■ mb/t_ambn

主板电压传感器

- mb/v_bat
- $mb/v_+3v3aux$
- mb/v_+3v3
- mb/v_+5v
- mb/v_+12v
- mb/v_+2v5
- mb/v_+1v5
- mb/v_+1v2

电源传感器

- psn/prsnt
- psn/acn_err
- psn/pwrokn

风扇传感器

- fmn/fn/speed
- fmn/err

CPU n 传感器

■ pn/prsnt

CPU n 风扇控制温度传感器

- pn/v_vdd
- pn/t_core

CPU n 电压传感器

- pn/v_vtt
- pn/v_vddio

服务器模块存在

■ bl*n*/prsnt

传感器详细信息

以下部分提供有关传感器的详细信息。

sys/power

此 LED 指示灯传感器显示机箱前面板上系统电源 LED 指示灯的即时状态。它不会生成任何事件。

表 2 sys/power 状态

读数	状态	事件	描述
0x0001	取消确认状态	否	此状态表示 sys/power.led LED 指示灯为 "STANDBY"(待机)。
0x0002	确认状态	否	此状态表示 sys/power.led LED 指示灯为 "ON" (开)。

locate

此 LED 指示灯传感器显示机箱前面板上定位 LED 指示灯的即时状态。它不会生成任何事件。

表 3 locate 传感器

状态	事件	描述
取消确认状态	否	此状态表示 sys/locate.led LED 指示灯为 "OFF" (关)。
确认状态	否	此状态表示 sys/locate.led LED 指示灯为 "FAST BLINKING" (快速闪烁)。
	状态 取消确认状态 确认状态	状态 事件 取消确认状态 否 确认状态 否

service

此 LED 指示灯传感器显示机箱前面板上维护 LED 指示灯的即时状态。它不会生成任何事件。

· · · · · · · · · · · · · · · · · · ·

读数	状态	事件	描述
0x0001	取消确认状态	否	此状态表示报警 LED 指示灯为 "OFF" (关)。
0x0002	确认状态	否	此状态表示报警 LED 指示灯为 "ON" (开)或 "BLINKING" (闪烁)。

ok2rm

此 LED 指示灯传感器显示机箱前面板上拆除就绪 LED 指示灯的即时状态。它不会生成 任何事件。

表 5 ok2rm 传感器

读数	状态	事件	描述
0x0001	取消确认状态	否	此状态表示 sys/ok2rm.led LED 指示灯为 "OFF" (关)。
0x0002	确认状态	否	此状态表示 sys/ok2rm.led LED 指示灯为 "ON" (开)。

sys/slotid

此传感器指示服务器模块安装在哪个插槽中。值的范围为0到9。

sys/hostpower

此传感器指示是否存在主机电源。

表 6 sys/hostpower

读数	状态	事件	描述	操作
0x0001	取消确认状态	否	主机电源为 "OFF" (关)。	无
0x0002	确认状态	否	主机电源为 "ON" (开)。	无

cmm/prsnt

此传感器指示是否存在 CMM ILOM。

表 7	cmm/	prsnt
-----	------	-------

读数	状态	事件	描述	操作
0x0001	设备不存在	是	CMM ILOM 不存在。	无
0x0002	设备存在	是	CMM ILOM 存在。	无

nem*n*/prsnt

这两个存在传感器指示是否存在对应的网络 Express 模块 (network express module, NEM)。

表 8 nem n/ prsnt 住	专感:	器
--------------------	-----	---

读数	状态	事件	描述	操作
0x0001	设备不存在	是	NEM 不存在。	无
0x0002	设备存在	是	NEM 存在。	无

主板温度传感器

这些温度传感器受到监视,但不用作风扇控制算法的输入,也不用于在不可恢复状态下 关闭系统电源。不会为这些传感器读数生成事件。

mb/t_amb*n*

主板上有三个温度传感器,用于监视来自主板 LM75/ADM1024 芯片中内部温度传感器的环境温度。

主板电压传感器

所有主板电压传感器都配置为生成相同的事件,处理故障的方法也相同。

mb/v_bat

此传感器监视主板上的 3V RTC 电池。

mb/v_+3v3aux

此传感器监视为服务处理器和其他待机设备供电的 3.3V 辅助电源输入。

mb/v_+3v3

此传感器监视当电源打开时处于活动状态的 3.3V 主电源输入。主机电源关闭时则不监视。

mb/v_+5v

此传感器监视当电源打开时处于活动状态的 5V 主电源输入。主机电源关闭时则不监视。

mb/v_+12v

此传感器监视当电源打开时处于活动状态的 12V 主电源输入。主机电源关闭时则不监视。

mb/v_+2v5

此传感器监视当电源打开时处于活动状态的 2.5V 内核电源输入。主机电源关闭时则不监视。

mb/v_+1v5

此传感器监视当电源打开时处于活动状态的 1.5V 内核电源输入。主机电源关闭时则不监视。

mb/v_+1v2

此传感器监视当电源打开时处于活动状态的 1.2V 内核电源输入。主机电源关闭时则不监视。

表 9 mb/v_+1v2

阈值	指示	事件	描述	操作
非临界下限	确认	是	电压已低于非临界阈值下限。	系统报警 LED 指 示灯为 "SLOW" (慢速)
非临界下限	取消确认	是	电压已从非临界下限恢复到正常。	系统报警 LED 指 示灯为 "OFF" (关)
临界下限	确认	是	电压已低于临界阈值下限。	系统报警 LED 指 示灯为 "SLOW" (慢速)
临界下限	取消确认	是	电压已从临界下限恢复到非临界 下限。	系统报警 LED 指 示灯为 "SLOW" (慢速)
不可恢复下限	确认	是	电压己低于不可恢复阈值下限。	系统报警 LED 指 示灯为 "SLOW" (慢速)
不可恢复下限	取消确认	是	电压已从不可恢复下限恢复到临界 下限。	系统报警 LED 指 示灯为 "SLOW" (慢速)
非临界上限	确认	是	电压已超过非临界阈值上限。	系统报警 LED 指 示灯为 "SLOW" (慢速)
非临界上限	取消确认	是	电压已从非临界上限恢复到正常。	系统报警 LED 指 示灯为 "OFF" (关)

表 9 1	mb/v_+1v2	(续)		
阈值	指示	事件	描述	操作
临界上限	确认	是	电压已超过临界阈值上限。	系统报警 LED 指 示灯为 "SLOW" (慢速)
临界上限	取消确认	是	电压已从临界上限恢复到非临界 上限。	系统报警 LED 指 示灯为 "SLOW" (慢速)
不可恢复上限	! 确认	是	电压已超过不可恢复阈值上限。	系统报警 LED 指 示灯为 "SLOW" (慢速)
不可恢复上限	2 取消确认	是	电压已从不可恢复上限恢复到临界 上限。	系统报警 LED 指 示灯为 "SLOW" (慢速)

电源传感器

Sun Blade 6000 和 Sun Blade 6048 模块化系统中有两个电源。

psn/prsnt

这些传感器指示是否存在对应电源。Sun Blade 6000 和 Sun Blade 6048 模块化系统附 带有两个电源。如果任一电源被拆除,则没有电源冗余。

psn/prsnt 表 10

读数	状态	事件	描述	操作
0x0001	设备不存在	是	电源不存在。	无
0x0002	设备存在	是	电源存在。	无

psn/acn_err

每个电源模块都有两条交流输入线路。这些传感器指示每个电源的输入线路状态。

表 11 ps*n*/ac*n*_err

读数	状态	事件	描述	操作
0x0001	取消确认状态	是	电源已从交流电源断开。	系统报警 LED 指 示灯为 "SLOW" (慢速)
0x0002	确认状态	是	电源已连接到交流电源。	系统报警 LED 指示 灯为 "OFF" (关)

psn/pwrokn

对于每个电源模块,两条交流输入会生成两个独立的12 伏直流输出。这些传感器指示 直流输出是否打开。

表 12	psn/	′ pwrok <i>n</i>
	P 0.1.7	

读数	状态	事件	描述	
0x0001	取消确认状态	是	直流输出为 "OFF" (关)。	无
0x0002	确认状态	是	直流输出为 " ON " (开)。	无

风扇传感器

服务器模块包含六个标记为 fmn 的风扇模块。每个模块有两个风扇。

fmn/fann/speed

所有可从顶部认读的风扇速度传感器均配置为生成相同的事件,处理故障的方法也相同。主机电源关闭时则不监视。

表 13 fmn/fann/speed

阈值	指示	事件	描述
不可恢复下限	确认	是	风扇速度已低于不可恢复阈值下限。 这表示风扇有故障或已被拆除。
不可恢复下限	取消确认	是	风扇速度已从不可恢复下限恢复到正常。 这表示风扇已恢复正常或已更换。

fm*n*/err

这是指示风扇模块故障状态的 GPIO 信号。

表	14	fm <i>n</i> /err
12	17	mn/l/cm

读数	状态	事件	描述
0x0001	取消确认故障预警	否	此状态指示风扇模块没有故障。
0x0002	确认故障预警	是	此状态指示风扇模块发生故障。

CPU n 传感器

每个服务器模块有四个 CPU。

pn/prsnt

这些传感器监视 CPU 是否存在。

表 15 pn/prsnt

读数	状态	事件	描述
0x0001	设备不存在	否	此状态指示 CPU 不存在。
0x0002	设备存在	否	此状态指示 CPU 存在。

CPU n 风扇控制温度传感器

此类温度传感器可用作风扇控制算法的输入,并用于在不可恢复状态下关闭系统电源。 其状态也会影响前面板上 LED 指示灯的状态。

pn/v_vdd

每个服务器模块都有四个 CPU 插槽。

这些传感器监视相应 CPU 的 CPU T_Control 温度。主机电源关闭时则不监视。

词仿	也于	重件	描述	揭 化
非临界上限	确认	争 日 否	CPU T_Control 温度 已超过非临界阈值。	TF CPU 故障 LED 指示灯为 "OFF" (关)。 系统报警 LED 指示灯为 "OFF" (关)。
非临界上限	取消确认	否	CPU T_Control 温度已从非临界 恢复到正常。	CPU 故障 LED 指示灯为 "OFF" (关)。 系统报警 LED 指示灯为 "OFF" (关)。
临界上限	确认	是	CPU T_Control 温度 已超过临界阈值。	CPU 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。

表 16 pn/v_vdd

表 16 pn/v_vdd

阈值	指示	事件	描述	操作
临界上限	取消确认	是	CPU T_Control 温 度已从临界恢复到 非临界。	CPU 故障 LED 指示灯为 "OFF" (关)。 系统报警 LED 指示灯为 "OFF" (关)。
不可恢复上限	确认	是	CPU T_Control 温 度已超过不可恢复 阈值。	CPU 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW"(慢速)。 系统电源为 "OFF"(关)。
不可恢复上限	取消确认	是	CPU T_Control 温度 已从不可恢复恢复到 临界。	CPU 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。

p*n*/t_core

每个服务器模块都有四个 CPU 插槽。

这些传感器报告 CPU T_Control 的温度。主机电源关闭时则不监视。

表 17 pn/t_core 事件

阈值	指示	事件	描述	操作
非临界上限	确认	否	CPU T_Control 温度 已超过非临界阈值。	CPU 故障 LED 指示灯为 "OFF" (关)。 系统报警 LED 指示灯为 "OFF" (关)。
非临界上限	取消确认	否	CPU T_Control 温度已从非临界 恢复到正常。	CPU 故障 LED 指示灯为 "OFF" (关)。 系统报警 LED 指示灯为 "OFF" (关)。
临界上限	确认	是	CPU T_Control 温度 已超过临界阈值。	CPU 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。

表 17 pn/t_core 事件

阈值	指示	事件	描述	操作
临界上限	取消确认	是	CPU T_Control 温度已从临界恢 复到非临界。	CPU 故障 LED 指示灯为 "OFF" (关)。 系统报警 LED 指示灯为 "OFF" (关)。
不可恢复上限	确认	是	CPU T_Control 温度已超过不可 恢复阈值。	CPU 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW"(慢速)。 系统电源为 "OFF"(关)。
不可恢复上限	取消确认	是	CPU T_Control 温度 已从不可恢复恢复到 临界。	CPU 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。

CPU n 电压传感器

每个服务器模块都有四个 CPU 插槽。

所有 CPU 电压传感器都配置为生成相同的事件,处理故障的方法也相同。

pn/v_vtt

这些传感器监视 CPU X vtt 电压输入。主机电源关闭时则不监视。

pn/v_vddio

这些传感器监视 CPU vddio 电压输入。主机电源关闭时则不监视。

表 18 pn/v_vddio

阈值	指示	事件	描述	操作
非临界下限	确认	是	CPU X 电压己低于非 临界阈值下限。	CPU X 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。
非临界下限	取消确认	是	CPUX电压已从非临 界下限恢复到正常。	CPU X 故障 LED 指示灯为 "OFF" (关)。 系统报警 LED 指示灯为 "OFF" (关)。
临界下限	确认	是	CPUX电压已低于临 界阈值下限。	CPU X 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。
临界下限	取消确认	是	CPUX电压已从临 界下限恢复到非临界 下限。	CPU X 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。
不可恢复下限	确认	是	CPU X 电压己低于不 可恢复阈值下限。	CPU X 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。
不可恢复下限	取消确认	是	CPUX电压已从不可恢复下限恢复到临界下限。	CPU X 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。
非临界上限	确认	是	CPUX电压已超过非临界阈值上限。	CPU X 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。
非临界上限	取消确认	是	CPU X 电压已从非临 界上限恢复到正常。	CPU X 故障 LED 指示灯为 "OFF" (关)。 系统报警 LED 指示灯为 "OFF" (关)。
临界上限	确认	是	CPUX电压已超过临 界阈值上限。	CPU X 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。

表 18 pn/v_vddio (续)

阈值	指示	事件	描述	操作
临界上限	取消确认	是	CPUX电压已从临 界上限恢复到非临 界上限。	CPU X 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。
不可恢复上限	确认	是	CPU X 电压已超过不可恢复阈值上限。	CPU X 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。
不可恢复上限	取消确认	是	CPUX电压已从不可恢复上限恢复到临界上限。	CPU X 故障 LED 指示灯为 "ON" (开)。 系统报警 LED 指示灯为 "SLOW" (慢速)。

服务器模块存在

bl*n*/prsnt

这些传感器检测服务器模块是否分别存在于编号为0到9的插槽中。

表 19 服务器模块存在状态

读数	状态	事件	描述
0x0001	取消确认状态	否	此状态指示服务器模块不存在。
0x0002	确认状态	否	此状态指示服务器模块存在。