
901 San Antonio Road
Palo Alto, CA 94303-4900 USA
650 960-1300 Fax 650 969-9131

Sun™ Management Center 2.1

Developer Environment

Reference Manual

Part No. 806-3167-11
December 1999, Revision A

Sun Microsystems, Inc.

Send documentation comments about this document to: docfeedback@sun.com

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 USA. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of
this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers, including Halcyon Inc. and Raima Corporation.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and
other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook, NFS, Sun Enterprise, Solstice Enterprise Agents, Sun Management Center, Java, Solstice SyMON,
Solstice Enterprise Agent, and Solaris are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries.
Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-
exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and
otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-
19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-3(a).

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 1999 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 Etats-Unis. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l’autorisation
préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de
caractères, est protégé par un copyright et licencié par des fournisseurs de Sun, dont Halcyon Inc. et Raima Corporation.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook, NFS, Sun Enterprise, Solstice Enterprise Agents, Sun Management Center, Java, Solstice SyMON,
Solstice Enterprise Agent, et Solaris sont des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-
Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC
International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les
efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie de
l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les licenciés
de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE "EN L’ETAT" ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S’APPLIQUERAIT
PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

NOTICE: USE OF THIS SUN (TM) MANAGEMENT CENTER 2.1 DEVELOPER ENVIRONMENT REFERENCE MANUAL AND ALL OTHER
RELATED DOCUMENTATION AND SOFTWARE UTILITIES REQUIRES THAT THE USER OBTAIN A SUN MANAGEMENT CENTER 2.1
DEVELOPER ENVIRONMENT RIGHT TO USE LICENSE FROM SUN MICROSYSTEMS, INC. THE STANDARD BINARY CODE LICENSE FOR
USE OF THE SUN (TM) MANAGEMENT CENTER 2.1 SOFTWARE IN A PRODUCTION ENVIRONMENT PROVIDES NO RIGHTS TO USE THESE
MATERIALS FOR DEVELOPMENT PURPOSES.

Contents

Preface xxxix

Audience xxxix

Contents in this Manual xxxix

Access to Up-to-date Information on the Developer Environment xl

Using UNIX Commands xl

Shell Prompts xl

Typographic Conventions xli

Sun Documentation on the Web xli

Related Documentation xlii

Sun Welcomes Your Comments xlii

Part I. Introduction to Developer Environment

1. Sun Management Center and the Developer Environment 3

Sun Management Center Framework 3

Sun Management Center Console 5

Sun Management Center Server 5

Sun Management Center Agent 5

Sun Management Center Developer Environment 6
Contents iii

2. Sun Management Center Developer Environment Installation 7

Uninstalling Previous Versions of Sun Management Center Software 7

Sun Management Center Developer Environment Licensing 8

Installing the Sun Management Center Developer Environment From CD 9

Code Examples and Client API 10

3. Introduction to the Reference Manual 11

The Different Parts of this Manual 11

Accessing Information in this Manual 12

Building Modules 13

▼ Name Module Definition Files 14

▼ Specify Module Parameters 14

▼ Create a Data Model 14

▼ Realize the Data Model 15

▼ Add Alarm Checks 15

▼ Install Module Files 16

▼ Load a Module 16

▼ Log Data and To Activate Debug Mode 16

▼ Write a Module from an existing SNMP MIB 18

▼ Publish an SNMP Interface 18

Building Consoles 19

▼ Build Your Own Console 19

Using Client API 20

▼ Use the Client API 20

Conforming to Internationalization and GUI Guidelines 20

▼ Work With a Java Application 20

▼ Internationalize a Module 21

Integrating Applications 22
iv Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

4. Introduction to Modules 23

Modules Definition 23

How to Load Modules 24

Basic Module Building Concepts 24

Types of Modules 24

Module Naming 25

Module Names and Subspecs 25

SNMP & Modules 26

5. Building a Simple Module 27

Required Components 27

File Naming Conventions 27

Standard Extensions 28

Parameters Specification 28

▼ Creating a Parameter File 29

Mandatory Parameters 29

Example Parameter File 32

Internationalizing Modules 33

Mandatory Parameters for Internationalization in the Parameters File 33

Properties File 34

Example Properties File 35

Referencing Internationalized Text 36

Data Model Specifications 36

▼ Creating a Data Model 36

Identifying Components and Properties of Managed Entity 37

Solaris Example—Components and Properties 37

Defining the Data Model Structure 39

Node Definition and Trees 39
Contents v

Structural Primitives 39

Example Data Model File 42

Adding Data Types 48

Available Data Types 48

Adding Node Descriptions 49

Node Type Based on Operational Behavior 49

Simple Data Model Realization 50

Steps Involved in Data Model Realization 51

Mandatory Contents of Every Data Model Realization File 51

Implementing Data Acquisition Mechanisms 52

UNIX Programs and Shell Scripts 52

Integrating Data Acquisition 52

Loading the DAQ Services 53

Bourne Shell Services 53

Node Type Based on Operational Behavior 54

Active Nodes 54

Mandatory RefreshQualifiers for Active Nodes 55

refreshService 55

refreshCommand 55

refreshInterval 56

Example of a Simple Module 57

6. Advanced Data Model Realization Techniques 61

What are Filters 61

Standard Extensions for File Name 62

Examples of Filters 62

CPU Data Filter 62

User Data Filter 63
vi Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Load Data Filter 63

File System Data Filter 64

Adding Filters to Data Model Realization 65

Example Data Model File 65

Example Data Model Realization File Using Tcl Filters 70

Loading the DAQ Services 73

Tcl Filters 73

RefreshQualifier for Filters 73

refreshFilter 73

Solaris Example—Loading the Filter File 73

Advanced Data Acquisition Mechanisms 74

Tcl/TOE Code 74

C Code Libraries and Tcl/TOE Command Extensions 74

Other Node Types based on their Operational Behavior 75

Passive Nodes 75

Derived Nodes 75

refreshQualifiers & Other Qualifiers 76

timeoutInterval 76

refreshTrigger 76

Specifying Node Name 77

Specifying RefreshTriggers from a Node in Another Module 78

refreshParams 78

refreshMode Qualifier 78

async 78

sync 79

initInterval 79

initHoldoff 79

Check Qualifiers 80
Contents vii

updateFilter 81

refreshService 81

SNMP Service 82

Internal Service 82

Superior Service 82

MIB Node Service 83

Data Model Realization Specifications with Tcl procedures as DAQ 84

Example Data Model File 84

Standard Extension for File Name 88

Loading the DAQ Services 88

Tcl Procedures 89

Node Type Based on Operational Behavior 89

Refresh Qualifiers 89

Data Model Realization Specifications with C libraries and Tcl/TOE Command
Extensions as DAQ 89

Solaris Example Data Model Realization File 89

Steps Involved 93

Writing a C Library 94

Writing a Tcl Extension 95

Package Naming 95

Init Function 95

Package Registration 95

Command Registration 96

Returning Data into Tcl 96

Loading the DAQ Services 97

Tcl Command Extension Packages 97

Node Type Based on Operational Behavior 97

Refresh Qualifiers 97
viii Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Another DAQ Service 97

Tcl Shell Service 97

Solaris Example—Tcl Shell 98

Performance Considerations 99

7. Alarm Management 101

What are Alarms 101

Modules and Alarms 101

Built-In rCompare Rule 102

Writing Custom Rules 102

Alarm Management using rCompare Rule 102

Example Alarm File (solaris-example-d.def) 102

▼ Managing Alarms using rCompare 105

Using the rCompare Rule in the Models File 105

Example—Intermediate Data Model 105

How to specify Alarms in the Data Model File 107

Alarm Types 107

Data and Alarm Type Primitive Examples 108

Required Content in the Model Realization File 108

Creating the Alarm File 108

File Name 109

Contents 109

Specifying the Alarm Criteria 110

Specifying Alarm Checks 110

Alarm Checks 110

Specifying Alarm Limits 111

Alarm Severities 114

Alarm Window 115
Contents ix

Specifying Status Actions 116

Solaris Example—CPU Status Action 117

8. Rules 119

Rules Agent Infrastructure 120

Rules and Derived Objects 120

Rule Naming 120

Rule Assignment 120

Rule Files 121

Module-Specific Rules 121

General Rules or Base Rules 122

Rules Created By Clients 123

Rule Placement in Hierarchy 123

A Node Can Require More Than One Rule 124

Rule Can Have No Natural Node to be Attached to 124

Node Can Have a Rule but No Data 124

Rules Attributes 124

Rule Data Storage 124

Rule State Transitions 127

Rule Invocation Procedure (ruleFire) 128

Rule Event Status 129

Rule Functions 129

Third Party Rule Engine Interface Functions 131

Rule Loading 131

Rule Assignment 132

Key TOE Functions 133

How to Write A Tcl Rule 134

Tcl Rule Example 135
x Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Tcl Rules File Format 136

Tcl Rule Template 137

Attaching a Rule to the Module Configuration Files 142

Assigning Initial Values to Rule Parameters 144

Specifying Rule Text Messages 144

More Examples Of Rules 147

Config Reader Rule 148

Log Rule 148

9. Additional Specifications for a Module 149

Additional Parameter Specifications 149

Example: Solaris m.x File 150

Additional Parameters 151

Predefined Additional Qualifiers 153

Creating Multiple Instances of a Module 156

Instance Specification 156

Organizing Module Parameters 158

Making a Module Not Loadable 159

Alternate Way of Specifying a Module Location 159

Enterprise Module Parameter 160

Referencing Parameters 161

Improving Performance using Server Override Properties File 161

Server Override Properties File 161

Example Server Override Properties File 162

Additional Data Model Specifications 162

Specifying Hidden Managed Properties 162

Data Logging Support 162

Automatic Data Logging 162
Contents xi

Logging To Internal Cache 163

Logging To File 163

▼ To Log Data to a Typical Flat File 164

▼ To Log Data to a Circular Log File 164

Logging Data of a Scalar Node to an Internal Cache 165

Logging Two Rows of a Table Managed Property 165

Specifying Module Availability 165

Specifying the Availability Property in the Agent File 166

Making a Module a Core Module 167

Core Modules 167

Persistence 167

Specifying Adhoc Commands 168

Command Specification 168

Row-Specific Commands 169

Probe Commands 169

▼ To Specify a Probe Command 169

Row Dependent Probe Queries 170

Find Files Example 171

Probe Command Security 172

▼ To Limit Top Probe Command 172

10. Modules and SNMP 173

Adding Support for SNMP Table Management 173

ROWSTATUS Primitive 174

Instance Node 174

Required Values 174

Data Formats 175

Example—Filesize 175
xii Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Adding Support for Global Table or Row Actions 176

Adding Node Icons 177

Adding SNMP Table Management 178

User-defined Actions 179

Activate Actions 179

SNMP Set Actions 180

Prevalidate Actions 181

postrow Actions 181

Postvalidate Actions 182

setrow Actions 183

Set Actions 184

Rollback Actions 185

Global Actions 186

Adding SNMP Security 186

Logical Users, Groups, and Community Names 187

Security Levels 188

Default ACLs 189

Examples—Specifying ACLs 189

Using SNMP Table Management Commands 190

▼ To Add a Row 191

▼ To Remove a Row 191

▼ To Edit a Row 191

▼ To Disable a Row 192

▼ To Enable a Row 192

▼ To Load a Module Instance 192

Example: Adhoc SNMP Table Management 193

Example: Additional Objects to the Solaris Example File 195
Contents xiii

Sending Traps from the Agent 196

Example: Agent File 197

Using the mib2x Tool 198

mib2x Syntax 198

Examples of mib2x 200

11. Agent Interactive Mode 201

Working in the Agent Interactive Mode 201

▼ To Work Within the Agent Interactive Mode 202

▼ To Exit the Environment 202

Tcl/TOE Commands 202

Object Creation 202

Object Relationship 203

Object Interaction 204

Dictionary Operations 205

Object/Dictionary I/O 208

Interactive Object Tree Navigation 208

Class Definition 209

Class/Package Loading 210

Agent Interactive Mode Usage Examples 211

▼ To Define a Module 212

▼ To Find the Attribute Value of a Certain Object 213

▼ To View the Result of an Operation on a Certain Object 215

▼ To Import and Export a Set of Object Attributes 216

▼ To Generate SNMP MIB From a Module 219

12. Developer Environment Tools 221

snmpset 221

Name 221
xiv Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Synopsis 221

Description 222

Options 222

Exit Status 223

Examples of snmpset 224

snmpget 225

Name 225

Synopsis 225

Description 225

Options 225

Exit Status 226

Examples of snmpget 227

snmpnext 228

Name 228

Synopsis 228

Description 228

Options 229

Exit Status 229

Examples of snmpnext 230

snmptrap 231

 Name 231

Synopsis 231

Options 231

Exit Status 233

Trap Type Information 233

Examples of snmptrap 233

snmpwalk 234
Contents xv

Name 234

Synopsis 234

Description 234

Options 234

Exit Status 235

Examples of snmpwalk 235

snmpwalktable 236

Name 236

Synopsis 236

Description 236

Exit Status 237

Examples of snmpwalktable 238

Part II. Programmer’s Reference to Console Integration and Client API

13. Console Integration 241

Extending the Console 241

Integration Levels 242

Configuration Files 243

Syntax for Entries in the console-tools.cfg File 243

Syntax for Entries in the console-host-apps.cfg File 245

Update Utilities 246

 Integrating Sun Management Center Software With Other Management Tools
246

▼ To Invoke the HostDetailsBean 247

Field Summary 248

Constructor Summary 248

Method Summary 248

Field Detail 250
xvi Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Constructor Detail 251

Method Detail 251

Compilation and makefile Guidelines 255

14. Client API 257

Introduction to Client API Classes 257

API Usage for System Management 258

Sun Management Center Architecture 258

Sun Management Center Three-Tier Architecture 258

Client API Class Usage 260

Client API Definition 261

Java Language Object Class Examples 262

Login API 263

Example: SMLoginTest 263

Request Status API 265

Example: SMRequestStatus 265

Raw Data API 265

Example: SMRawDataRequest 265

Example: getURLValue Method 266

Example: setURLValue Method 267

Example: createURL Method 267

Example: getUserId Method 268

Example: SMProbeTest 269

Example: SMRawDataTest 273

Example: SMRawDataAsyncTest 275

Alarm API 278

Example: SMAlarmObjectRequest Class 278

Example: SMAlarmAsyncTest 279
Contents xvii

Example: SMAlarmSyncTest 282

Managed Entity API 286

Example: SMManagedEntityTest 286

Module API 292

Example: SMModuleTest 292

Log Viewer API 298

Example: SMLogViewerTest 298

Resource Access API 301

Example: SMResourceAccessTest 301

Topology Agent API 304

Example: SMTopologyTest 304

Exception Classes API 308

Part III. Additional Material

15. Internationalization Guidelines 311

Internationalization 311

Terminology 311

Constraints 312

Assumptions and Dependencies 312

Software Guidelines 312

Properties Files 312

ResourceBundle Class Instances 313

Obtaining Resource Bundles/Properties Files 313

Independent Client/Bean Usage 314

UcInternationalizer Class 314

Direct ResourceBundle Management 315

Formatted Messages 316

Handling Non-ASCII Input 318
xviii Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Data Only Stored in Agents 318

Data Stored in and Manipulated By Agents 319

Agent Internationalization 319

Objects/Classes/Properties 319

Modules 320

Attribute Editing 323

Dynamic Tables (RFC1903) 325

Rules 325

Installation/Setup Script Internationalization 326

16. Graphical User Interface Guidelines 329

Consistency 330

Information Sources 331

Main Console 332

Server Object Representation and Object Management 333

Guidelines for Modifying Topology Views 335

Layout View 337

Object Layouts 338

Status line 339

Status Messages 339

User Input 341

Mouse Actions 341

Selection Highlighting 342

Selecting Objects 342

De-selecting Objects 342

Keyboard Navigation Shortcuts 343

Table Appearance and Behavior 344

Table Contents 345
Contents xix

Color 346

Table Position 347

Cell, Row, and Column Selection 347

Colors 347

Fonts 348

Graphing 348

Property Setting Dialog 350

Optional buttons 352

Time Setting 352

Alarms 353

Alarm System 353

Details Window 355

17. Sun Management Center 2.1 Developer Environment Packaging 357

Packaging Helloworld_01 357

Makefile 358

Prototype Entries 358

Sun Management Center Software Packaging Practices 359

Package Naming 359

Package Versioning 359

Component Naming 360

Package Dependencies 360

Prototype File 360

Sun Management Center Module Name Practices 360

18. Troubleshooting 361

Module 361

Console Messages 362

Agent Log File Messages 362
xx Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Interactive Agent Mode Messages 363

Console 363

A. Modules Appendix 365

Module Building Environment 365

Agent Development 365

Tcl Environment 366

TOE Environment 366

TOE Objects 367

Object Relationships 367

Combining Ancestral and Structural Relationships 368

Object Property Dictionaries 369

Dictionary Keys 369

Importing and Exporting Dictionaries (Module Configuration Files)

370

Dictionary Entry (Property) Representation 371

Multi-object Dictionary Representation 371

Action Specifications 372

TOE Object Classes 373

Agent Framework 374

Shell Service 374

Shell Service Result Handling 375

Shell Protocol 376

Ping Service 376

Master Event Loop (MEL) Service 376

Default I/O Service 377

Data Logging Registry Service 377

File Scanning Service 378

Subscribing for Patterns 378
Contents xxi

Unsubscribing Patterns 378

Module Management 379

MIB Subtrees 379

Default SNMP Context 379

Non-default SNMP Contexts 380

Private Enterprises 381

Module Subtrees 382

Module Loading 383

Module Parameters 384

base-modules-d.dat 385

MIB Manager 386

URL/OID Finder 387

▼ To Convert an OID URL to an Actual OID 387

▼ To Access the fulldes Shadow Attribute of the Same MIB Property 388

▼ To Convert the Shadow OID URL to a Valid OID 388

▼ To Access a Table Property in a Module 389

▼ To Convert the OID URL to an OID 389

Module Loader 390

Module Checker 390

Browser Root 391

Module Registry 391

Module Tables 391

Additional Base MIB Branches 392

System and Agent Information 392

System Information 392

Agent Information 393

Module Information 393

Trap Information 393
xxii Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Trap Forward 394

Control Functions 394

Action Object 395

Cache Object 395

Useful Tcl Commands and Filters 395

valueOf <node name> 395

getValue <index> 395

getValues 396

getRowData [<rowname>] 396

getTableDepth 396

setValue <index> <value> 396

locate <node name> 396

toe_send <toeid> <command> 396

transposeFilter 397

rateFilter<node name> 397

rateFilter64 <node name> 397

tableRateFilter<node name> 397

tableRateFilter64 <node name> 397

pctFilter<node1><node2> 397

linearFit<value> 397

digitalFilter<value> 398

Alarm Status Strings 398

Solaris Example of Status Strings—CPU Managed Object 399

Module Testing Tips 401

File Naming Conventions 401

Standard Extensions 402

Solaris Example Module Filenames 403

Mandatory and Optional Module Files 403
Contents xxiii

Location of Module Files 404

Data Management 405

Information Model 406

General Concepts 406

Managed Entity Modeling 407

Management Model Primitives 407

Alarm Representation 409

Operational Model 411

Operation Sequence 411

Data Acquisition Scenarios 412

Cascade Scenarios 412

Active Scalar 413

Active Vector 413

Compound Scalar 414

Compound Vector 415

Complex Vector 415

Nested Heterogeneous 416

Derived Nodes 417

Alarm Rule Checks 417

Alarm Actions 418

Management Information Base (MIB) 422

Modules 422

Shadow MIB 423

Ad-hoc SNMP Operations 423

Ad-hoc Probe Operations 424

Probe Server 424

Data Logging 426

Internal History Buffer 426
xxiv Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Logging Data to a File 426

Data Log Format 426

Data Logging Destinations 427

Logged Data Retrieval 428

Data Logging Registry 428

B. Time Expression Specifications 429

Notation 429

Time Expression Specification 430

Absolute Time Expression Specification 430

Cyclic Time Specification 431

Comparison Time Specification 432

Cron Time Specification 435

Variable Substitution Specification 436

C. Module Building Tutorial 437

Module Example 437

Steps to Create a Module 437

filesize Module Version 1—Simple Prototype 438

Naming the Module 438

Creating a Data Model 439

Realizing the Model 440

Specifying Alarm Management Information 441

filesize Module Version 2—Improving DAQ Mechanism 442

filesize Module Version 3—Adding Parameters to File Name Specification

444

filesize Module Version 4—Adding SNMP Table Management Capabilities

446

Module Name 446

Modifying the Model 447
Contents xxv

Realize the Modified Model 449

Alarm Management 452

D. SNMP Proxy Monitoring Modules 453

Proxy Monitoring 453

Module Parameter File 453

Module Models File 456

Legacy MIB OIDs Mapping File 458

Module Realization File 459

Loading the Legacy MIB OIDs Mapping File 459

Data Acquisition 460

SNMP Sets 464

SNMP Set Example 465

Module Trap Action Definition File 465

Naming Conventions 466

Sample Specification 466

Valid Parameters 467

Example: Trap Action File for HP JetDirect 469

Example: Qualifiers for Loading the HP JetDirect Module Trap Actions

File 470

Example: Qualifiers for Loading Both the OIDs and Trap Actions Files

for the HP JetDirect Module 470

E. URL Specifications 471

Uniform Resource Locator (URL) 471

SNMP URLs 472

SNMP URL Format 472

SNMP URL Types 473

Numeric 473

Symbolic 473
xxvi Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Module 474

Shadow Operations 475

SNMP URL Examples 475

Managed Property Value (scalar) 475

Managed Property Value (vector) 476

Managed Property Qualifier (Scalar Property, Scalar Qualifier) 477

Managed Property Qualifier (Vector Property, Scalar Qualifier) 477

Managed Property Qualifier (Vector Property, Vector Qualifier) 478

Managed Object Qualifier (Scalar Qualifier) 479

Managed Object Qualifier (Vector Qualifier) 479

Condensed URL specifications 480

Interface URLs 481

clog 481

desc 482

file 482

inet 483

pipe 484

syslog 484

UNIX 485

Intraface Options 486

Parameter Insertion and Extraction (PIE) 486

Authentication, Compression, Encryption (ACE) 487

Transport 487

F. Status Propagation 489

Example Topology Hierarchy 489

Event 1: Node in Module E on Host C Goes into Error (Red) 490

Event 2: Node in Module G on Host D Goes into Warning (Amber) 491

Event 3: Node in Module F on Host C Goes into Warning (Amber) 492
Contents xxvii

Event 4: Another Node in Module E on Host C Goes into Warning (Amber)

492

Missed SNMP Traps 492

G. SNMP Trap Subscription 493

Sun Management Center Agent Components and Trap Subscription 493

Subscribing for Traps 494

Trap Subscription Examples 496

SNMP SET Command 497

Adding Jobs 498

Removing Jobs 498

Sun Management Center Enterprise Specific Traps 499

SNMP Trap Subscription Support 502

Glossary 505

Index 513
xxviii Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Figures

FIGURE 1-1 Sun Management Center Components 4

FIGURE 5-1 Simple Managed Object 45

FIGURE 5-2 Performance Managed Object 46

FIGURE 5-3 Managed Object with Tabular Properties 47

FIGURE 14-1 Client API Request Classes in Relationship With the Console and Server 259

FIGURE 14-2 The Client API and the Sun Management Center Architecture 260

FIGURE 16-1 Main Console 332

FIGURE 16-2 Main Console Window with Hierarchy and Topology Views 334

FIGURE 16-3 Domain Manager 336

FIGURE 16-4 Main Console Window with Hierarchy and Topology Views 337

FIGURE 16-5 Topology View 338

FIGURE 16-6 Status Message Location 340

FIGURE 16-7 Table Details Window 345

FIGURE 16-8 Graphing Window 348

FIGURE 16-9 Graph Header Title Editing Dialog 349

FIGURE 16-10 History Tab of Attribute Editor on a Data Variable 351

FIGURE 16-11 Browser Details Window 355

FIGURE A-1 TOE Object 367

FIGURE A-2 Simple Parent/Child Object Relationship 368
xxix

FIGURE A-3 Multiparent/Child Object Relationships 368

FIGURE A-4 Superior and Inferior Object Relationship 368

FIGURE A-5 Object Relationships of Filesystem Example 369

FIGURE A-6 .x file Syntax for Filesystem Example 373

FIGURE A-7 TOE Object Tree Structure of Agent 374

FIGURE A-8 Shell Service Data Flow 375

FIGURE A-9 Default Context—ISO subtree 380

FIGURE A-10 Nondefault SNMP Contexts—Contexts Subtree 381

FIGURE A-11 Private Enterprise Subtree 382

FIGURE A-12 Modules Subtree 383

FIGURE A-13 MIB Manager Branch 386

FIGURE A-14 .iso*base Subtree 392

FIGURE A-15 info Branch 392

FIGURE A-16 Management Model Primitive Classes 409

FIGURE A-17 Active Scalar Cascade 413

FIGURE A-18 Active Vector Cascade 414

FIGURE A-19 Compound Scalar Cascade 414

FIGURE A-20 Compound Vector Cascade 415

FIGURE A-21 Complex Cascade 415

FIGURE A-22 Nested Heterogeneous Cascade 416

FIGURE A-23 Derived Heterogeneous Cascade 417

FIGURE A-24 Objects in MIB Tree 419

FIGURE F-1 Example Topology Hierarchy 490
xxx Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Tables

TABLE P-1 Shell Prompts xl

TABLE P-2 Typographic Conventions xli

TABLE P-3 Related Documentation xlii

TABLE 2-1 Related Installation Documents 9

TABLE 5-1 Standard Descriptors for Module Definition Files 28

TABLE 5-2 Standard Extensions for Module Definition Files 28

TABLE 7-1 Alarm Severities 114

TABLE 8-1 Rule Variables 125

TABLE 8-2 Rule Message Key 126

TABLE 8-3 Rule Designer Access to Internal Data 126

TABLE 8-4 Rule State Transistions and Events 127

TABLE 8-5 Rule Event Status 129

TABLE 8-6 Rule Functions 129

TABLE 8-7 Key TOE Functions 133

TABLE 8-8 Datatypes Allowed 138

TABLE 9-1 Predefined Additional Qualifiers 153

TABLE 10-1 Allowable rowstatus States 182

TABLE 10-2 mib2x Syntax and Options 199

TABLE 12-1 Trap Type and What it Signifies 233

TABLE 14-1 Category of Classes and Examples 262
xxxi

TABLE 14-2 getURLValue Method 266

TABLE 18-1 Example Error Messages that Display on the Console 362

TABLE 18-2 Example Error Messages That Are Found in the Agent Log File 362

TABLE 18-3 Example Error Messages Provided by the Interactive Agent 363

TABLE A-1 Dictionary Example 369

TABLE A-2 Alarm Level 400

TABLE A-3 Mandatory Module Files 403

TABLE A-4 Optional Module Files 403

TABLE A-5 Binary Extension Files 404

TABLE A-6 Managed Model Primitives 408

TABLE A-7 Special Command Line Arguments 421
xxxii Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Procedures and Examples

▼ Name Module Definition Files 14

▼ Specify Module Parameters 14

▼ Create a Data Model 14

▼ Realize the Data Model 15

▼ Add Alarm Checks 15

▼ Install Module Files 16

▼ Load a Module 16

▼ Log Data and To Activate Debug Mode 16

▼ Write a Module from an existing SNMP MIB 18

▼ Publish an SNMP Interface 18

▼ Build Your Own Console 19

▼ Use the Client API 20

▼ Work With a Java Application 20

▼ Internationalize a Module 21

▼ Creating a Parameter File 29

▼ Creating a Data Model 36

Code: Solaris Example—Model File 42

Code: Module Configuration File Format 45

Code: Performance Data Model Structure 46
Procedures and Examples xxxiii

Code: File System Data Model Structure Code 47

Code: Solaris Example Model Realization File 57

Code: The solaris-example-console-user-d.sh File 59

Code: The solaris-example-models-d.x File 65

Code: The solaris-example.properties File 69

Code: Solaris Example Model Realization File 70

Code: The solaris-example-primary-user-d.sh File 72

Code: Loading the Filter File 74

Code: Solaris Example Model File 84

Code: Solaris Example Model Realization File 84

Code: The solaris-example-system.prc File 87

Code: The solaris-example-average-d.flt File 88

Code: Agent File Modifications 89

Code: Code Fragments From ssi Package File 91

Code: DAQ C code 92

Code: Code Fragment Used to Retrieve System Load Average 94

Code: Alarm File 103

▼ Managing Alarms using rCompare 105

Code: Solaris Example—Intermediate Data Model 106

Code: Tcl Rule Example 135

Code: Tcl rules File Format 136

Code: Template 140

Code: Module Model File 142

Code: Module Agent File 143

Code: Simple Rule 147

Code: Log Rule 148

▼ To Log Data to a Typical Flat File 164
xxxiv Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

▼ To Log Data to a Circular Log File 164

Code: Specifying Availability Property 166

▼ To Specify a Probe Command 169

Code: Find Files 171

Code: Entry in the Solaris Example Properties File 171

▼ To Limit Top Probe Command 172

Code: Model file For the Filesize Module 175

Code: Set Actions 185

Code: Default Memberships to Logical Users, Groups and Communities 188

Code: Default ACL settings for All Nodes 189

Code: Specifying Authenticated/Encrypted SNMP get and set Requests 190

Code: Specifying Requests without SNMP set operations for UNIX User 190

Code: Permitting admin/operator to Perform SNMP get and set 190

▼ To Add a Row 191

▼ To Remove a Row 191

▼ To Edit a Row 191

▼ To Disable a Row 192

▼ To Enable a Row 192

▼ To Load a Module Instance 192

Code: Adhoc SNMP Table Management Commands 193

Code: Additional Objects to the Solaris Example Model d.x File 195

Code: Example of the Agent File 197

▼ To Work Within the Agent Interactive Mode 202

▼ To Exit the Environment 202

▼ To Define a Module 212

▼ To Find the Attribute Value of a Certain Object 213

▼ To View the Result of an Operation on a Certain Object 215
Procedures and Examples xxxv

▼ To Import and Export a Set of Object Attributes 216

▼ To Generate SNMP MIB From a Module 219

▼ To Invoke the HostDetailsBean 247

Code: SMLoginTest 263

Code: setURLValue Method 267

Code: createURL Method 268

Code: getUserId Method 268

Code: SMProbeTest 269

Code: SMRawDataTest 273

Code: SMRawDataAsyncTest 275

Code: SMAlarmAsyncTest 279

Code: SMAlarmSyncTest 282

Code: SMManagedEntityTest 286

Code: SMModuleTest 292

Code: SMLogViewerTest 298

Code: SMResrouceAccessTest 301

Code: SMTopologyTest 304

Code: base-modules-d.dat 386

▼ To Convert an OID URL to an Actual OID 387

▼ To Access the fulldes Shadow Attribute of the Same MIB Property 388

▼ To Convert the Shadow OID URL to a Valid OID 388

▼ To Access a Table Property in a Module 389

▼ To Convert the OID URL to an OID 389

Code: Absolute Time Expression Specification 430

Code: Syntax for Cyclic Specification 431

Code: Syntax for Comparison Specification 432

Code: Example Parameter File (filesize-m.x) 438
xxxvi Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Code: Example Model File (filesize-models-d.x) 439

Code: Example Properties File (filesize.properties) 440

Code: Example Agent File (filesize-d.x) 440

Code: Example Alarm File (filesize-d.def) 441

Code: Example Parameter File (filesize-m.x) 442

Code: Example Agent File (filesize-d.x) 443

Code: Example Parameter File (filesize-m.x) 444

Code: Example Agent File (filesize-d.x) 445

Code: Example Properties File (filesize.properties) 446

Code: Example Parameter File (filesize-table-m.x) 447

Code: Example Model File (filesize-table-models-d.x) 448

Code: Example Agent File (filesize-table-d.x) 449

Code: Example: Procedure File (filesize-table-d.prc) 451

Code: Properties File (filesize-table.properties) 452

Code: Example Alarm File (filesize-table-d.def) 452

Code: Example: mib2-proxy-v2-m.x 454

Code: Example: mib2-proxy-models-d.x 456

Code: Example: mib2-proxy-d.x 460

Code: Module Realization: MIB2 Proxy Module 462

Code: Example: hp-jetdirect-trapspd.x 469

Code: Sun Management Center Enterprise Specific Traps 499
Procedures and Examples xxxvii

xxxviii Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Preface

The Sun Management Center 2.1 Developer Environment Reference Manual provides

instructions on how to use the Sun Management Center™ development

environment. These instructions are designed for programmers with knowledge of

object-oriented programming languages.

Audience

The audience of this document are programmers who already have a knowledge of

object-oriented language and Java. This document does not explain object-oriented

fundamentals. Moreover, this document does not explain some concepts in great

detail since the assumption is that the document is for programmers already familiar

with them.

The audience is one who is exposed to the Sun Management Center product. Hence,

many terms and concepts applicable to the product are not explained here. For more

information on those, refer to the Sun Management Center 2.1 User’s Guide. Third-

party clients, such as application programmers and system administrators, should

note that the code examples in this document are mainly presented here for

reference.

Contents in this Manual

Refer to Chapter 3, which provides a quick preview of the contents and information

contained in this document.
xxxix

Access to Up-to-date Information on the

Developer Environment

Once the product image is installed, refer to:

/opt/SUNWsymon/sdk/docs/index.html file

for the most up-to-date information on where the following files reside:

■ Developer Environment code examples

■ Client API classes in the Javadocs

Using UNIX Commands

This document does not contain information on basic UNIX® commands and

procedures, such as shutting down the system, booting the system, and configuring

devices. See one or more of the following for this information:

■ Solaris Handbook for Sun Peripherals

■ AnswerBook™ online documentation for the Solaris™ software environment

■ Other software documentation that you received with your system

Shell Prompts

TABLE P-1 Shell Prompts

Shell Prompt

C shell machine_name%

C shell superuser machine_name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #
xl Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Typographic Conventions

Sun Documentation on the Web
The docs.sun.com sm web site enables you to access Sun technical documentation

on the web. You can browse the docs.sun.com archive or search for a specific book

title or subject at:

TABLE P-2 Typographic Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,

and directories; on-screen

computer output

Edit your .login file.

Use ls -a to list all files.

% You have mail .

AaBbCc123 What you type, when

contrasted with on-screen

computer output

% su
Password:

<abc> or
<abc>

These are both acceptable

formats that define variables.

They are only pertinent to this

document and do not denote

Sun’s standard usage.

<abc>
<abc>

AaBbCc123 Book titles, new words or terms,

words to be emphasized

Command-line variable; replace

with a real name or value

Read Chapter 6 in the User’s Guide.

These are called class options.

You must be superuser to do this.

To delete a file, type rm filename.

http://docs.sun.com
xli

Related Documentation

Sun Welcomes Your Comments

We are interested in improving our documentation and welcome your comments

and suggestions. You can email your comments to us at:

docfeedback@sun.com

Please include the part number of your document in the subject line of your email.

TABLE P-3 Related Documentation

Product Family Title Part Number

Enterprise

Servers

The following are related documents for Enterprise Servers:

1. Sun Management Center 2.1 Software User’s Guide
2. Sun Management Center 2.1 Software Release Notes
3. Sun Management Center 2.1 Software CD Installation Guide
4. Sun Management Center 2.1 Developer Environment Release Notes

Respective Part #s:

1. 806-3166-10

2. 806-3168-10

3. 804-6849-10

4. 806-3169-10

Midrange

Servers

Sun Management Center Supplement for Sun Enterprise Midrange
Servers

806-0649

Workgroup

Servers

Sun Management Center Supplement for Workgroup Servers 806-1183

Workstations Sun Management Center Supplement for Workstations 806-1184

Microsoft

Documentation

Windows Interface Guidelines for Software Design Check with

Microsoft, Inc.

Third-Party

Documentation

Tcl and the Tk Toolkit by John K. Ousterhout Addison-Wesley,

1994
xlii Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

PART I Introduction to Developer Environment

This volume includes the following sections:

■ “Sun Management Center and the Developer Environment” on page 3

■ “Sun Management Center Developer Environment Installation” on page 7

■ “Introduction to the Reference Manual” on page 11

■ “Introduction to Modules” on page 23

■ “Basic Module Building Concepts” on page 23

■ “Building a Simple Module” on page 27

■ “Advanced Data Model Realization Techniques” on page 61

■ “Alarm Management” on page 101

■ “Rules” on page 119

■ “Modules and SNMP” on page 173

■ “Agent Interactive Mode” on page 201

■ “Developer Environment Tools” on page 221

CHAPTER 1

Sun Management Center and the
Developer Environment

This chapter covers the following topics:

■ Sun Management Center Framework—page 3

■ Sun Management Center Developer Environment—page 6

Note – This document also contains a lot of examples. The examples provided in

this document are purely for reference. After you install the Sun Management Center

Developer Environment, you can find key examples in the following directory:

/opt/SUNWsymon/sdk/examples/doc_samples .

Sun Management Center Framework

Sun Management Center is an open, extensible, and standards-based server

management solution that facilitates enterprise-wide management of Sun server

products and their subsystems or components.

The Sun Management Center framework is comprised of the console layer, the

server layer, and the agent layer. The major functionality of each layer is described in

the following sections:

■ Sun Management Center Console

■ Sun Management Center Server

■ Sun Management Center Agent
3

The components that comprise the Sun Management Center product are shown in

the following illustration:

FIGURE 1-1 Sun Management Center Components

The above figure and its components are described in the following sections.

Center
server

SNMP

Database
event

system

SNMP

RMI RMI

Center
Probe

Center
Agent

SNMP

Center
Clients

Center
topology

agent

Center
configuration

agent

Center
ClientsCenter

clients

Center
ClientsCenter

clients
Center
clients

layer

layer
Center server

Center agent
layer

Trap
Handler

Center
Agent

Sun Management Sun Management Sun Management

Sun Management

Sun Management

SunManagement

Sun Management

Sun Management

Sun Management

Sun ManagementSun ManagementSun Management

TCP

TCP

management

Center console
4 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Sun Management Center Console

The console and its associated Graphical User Interface (GUI) clients are the

principle means for the user to interact with the Sun Management Center software

product and to accomplish management tasks. The console interacts with the Sun

Management Center server to get the data, configuration and image files necessary

to present the views of the managed system(s).

Sun Management Center Server

The Sun Management Center Java server acts as a request broker between the agent

and the console. The Sun Management Center server layer consists of a Java server

and Sun Management Center server helper agents that handle specialized tasks like

topology management, event management, configuration management, and trap

handling. For more information on the Sun Management Center server, refer to the

Sun Management Center 2.1 Software User’s Guide.

Sun Management Center Agent

The Sun Management Center agent consists of a set of building blocks for system

management that are called modules. Sun Management Center agents are

dynamically configurable, intelligent, and autonomous. Sun Management Center

agents in the Sun Management Center agent layer run on managed nodes to monitor

and manage entities, such as hardware and operating systems, applications, other

Sun Management Center agents, and legacy SNMP agents. Sun Management Center

agents also support ad-hoc probe requests from other Sun Management Center

components.

Sun Management Center agents can dynamically load and unload modules. They

can also disable the monitoring functions of a loaded module when not required.

You can perform these functions using the Sun Management Center console. Each

module is capable of modeling and managing a specific set of data items.

When the Sun Management Center agent is installed, it loads a default set of

modules (for example, MIB-II, standard host system monitoring, and such). You can

load additional modules from the Sun Management Center console once the agent is

running. Modules are automatically reloaded whenever the agent is restarted. You

can also unload and disable modules from the console.
Chapter 1 Sun Management Center and the Developer Environment 5

Sun Management Center Developer
Environment

Sun Management Center Developer Reference Manual is the software development

kit that provides Application Programming Interfaces (APIs) and tools to help users

and third party developers, such as ISVs, plan, design, develop, and integrate third-

party applications, tools, and customized solutions based on the framework

provided by the Sun Management Center product.

Using the information in this document, you can perform the following functions:

■ Install the Sun Management Center Developer Environment.

■ Build modules.

■ Build consoles.

■ Write rules.

■ Use the Client API.

■ Conform to internationalization and GUI guidelines.

■ Package your product.

Note – To access commands, procedures and information on the above tasks, refer

to the section, “Introduction to the Reference Manual” on page 11.
6 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 2

Sun Management Center Developer
Environment Installation

This chapter covers the following topics:

■ Uninstalling Previous Versions of Sun Management Center Software—page 7

■ Sun Management Center Developer Environment Licensing—page 8

■ Installing the Sun Management Center Developer Environment From CD—page 9

■ Code Examples and Client API—page 10

Note – We recommend that you run the Sun Management Center 2.1 Developer

Environment and Sun Management Center 2.1 Production Environment on separate

servers.

Uninstalling Previous Versions of Sun
Management Center Software

If you have Sun Enterprise SyMON™ 2.x component layers already installed on

your system, the install script allows you to uninstall the previously installed

packages. You can either:

■ Uninstall immediately and proceed with a fresh installation, or

■ Quit the current session and uninstall the necessary packages automatically by

using the es-uninst command, and then proceed with the installation.

If you have Sun Management Center 2.1 component layers already installed on your

system, the install script prompts you to manually uninstall the previously installed

packages.

Refer to the Sun Management Center 2.1 Software User’s Guide for more details.
7

Caution – Be aware that when you answer y to the uninstall prompt, your current

Sun Enterprise SyMON 2.x or Sun Management Center 2.1 packages will be

uninstalled. However, the administrative domain information, custom alarm

settings, and so on are retained in the /var/opt/SUNWsymon directory and may be

used by the new installation.

Sun Management Center Developer
Environment Licensing

You must already have a valid license for the Sun Management Center Developer

Environment prior to installation. For information on purchasing a license, refer to

the following web site:

http://www.sun.com/sunmanagementcenter

Note – The Sun Management Center Developer Environment right-to-use license

requirement is based upon the number of users per environment, whereas the

license requirement for the Sun Management Center Production Environment is

based upon managing or monitoring more than one object.
8 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Installing the Sun Management Center
Developer Environment From CD

For complete instructions on how to install the Sun Management Center Developer

Environment from CD-ROM, refer to the Sun Management Center 2.1 Software CD
Installation Guide. You should also review the documents listed in TABLE 2-1 before

you begin the installation process.

The Sun Management Center Developer Environment can be installed in any

location on your system where the minimum required disk space is available. The

default location for package installation is /opt .

TABLE 2-1 Related Installation Documents

Document Description

INSTALL.README An overview of both the developer

environment and production

enviroment installation steps, located

in the following directory:

/cdrom/cdrom0/INSTALL.README

Sun Management Center 2.1 Developer
Environment Release Notes

Installation issues related to the Sun

Management Center developer

environment.

Sun Management Center Software Release Notes Installation issues related to the Sun

Management Center production

environment.

Sun Management Center 2.1 Software User’s
Guide

Pre-installation requirements, details

on online help installation, and

options for starting the software.

http://www.sun.com/
sunmanagementcenter

Any late-breaking news about Sun

Management Center developer

environment installation.
Chapter 2 Sun Management Center Developer Environment Installation 9

Code Examples and Client API

Once the product image is installed, the most up-to-date information on where the

following files reside:

■ Developer Environment code examples

■ Client API in the javadocs

will be detailed in the following HTML file:

/opt/SUNWsymon/sdk/docs/index.html
10 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 3

Introduction to the Reference Manual

This chapter covers the following topics:

■ The Different Parts of this Manual—page 11

■ Accessing Information in this Manual—page 12

■ Building Modules—page 13

■ Building Consoles—page 19

■ Using Client API—page 20

■ Conforming to Internationalization and GUI Guidelines—page 20

■ Integrating Applications—page 22

The Different Parts of this Manual

The Sun Management Center Developer Environment documentation provides

information on the following general topics, divided into three parts:

■ Introduction to Developer Environment—page 1

This part provides information on module development for the Sun Management

Center agents.

■ Programmer’s Reference to Console Integration and Client API—page 239

This part presents information on console bean integration with the Sun

Management Center console. It also provides the Client API reference material.

■ Additional Material—page 309

This part presents tools and utilities for module developers, bean developers, and

others. It also includes troubleshooting and a set of appendices with related

information.

A Glossary and an Index are included.
11

This document also contains a lot of examples. The examples provided in this

document are provided purely for reference. The client API examples will be placed

in a directory from which you can copy and run them for your purposes. The

location of the examples directory will be provided in the following file:

The procedures described in the following sections allow you to work within the

broad areas covered in this document. They also introduce scenarios to help you

understand the usage of the Developer Environment from a functional perspective.

Two main types of information are included:

■ Scenarios that include tasks that are commonly attempted by most users.

■ Procedures that help step through some of the major functionality of the product.

Accessing Information in this Manual

To access the information you need, you can refer to the “Contents” on page iii or

the “Index” on page 513. However, you can also review the major topics identified

below and proceed to specific sections and chapters. This section includes pointers

for the following major functionality:

1. Installing Sun Management Center Developer Environment

See the following chapter:

■ Chapter 2

2. Building Modules

See the following chapters:

■ Chapter 4

■ Chapter 5

■ Chapter 6

■ Chapter 7

■ Chapter 8

■ Chapter 9

3. Writing Rules

See the following chapter:

■ Chapter 8

opt/SUNWsymon/sdk/docs/index.html
12 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

4. Building Consoles

See the following chapter:

■ Chapter 13

5. Using Client API

See the following chapter:

■ Chapter 14

6. Conforming to Internationalization & GUI Guidelines

See the following chapters:

■ Chapter 15

■ Chapter 16

7. Packaging Your Product

See the following chapter:

■ Chapter 17

8. Working within the Agent Interactive Mode

See the following chapter:

■ Chapter 11

Note – This document also includes a troubleshooting section and several

appendices.

Building Modules

This section describes the steps to build a simple module:

1. Name Module Definition Files.

2. Specify Module Parameters.

3. Create a Data Model.

4. Realize the Data Model.

5. Add Alarm Checks.

6. Install Module Files.

7. Load a Module.

8. Log Data and To Activate Debug Mode.
Chapter 3 Introduction to the Reference Manual 13

9. Write a Module from an existing SNMP MIB.

10. Publish an SNMP Interface.

▼ Name Module Definition Files

● Select a unique name for the module that must be used in naming module
definition files.

▼ Specify Module Parameters

1. Decide on the module requirements.

2. Specify the standard or mandatory set of parameters.

3. Specify any optional parameters that are required for the module.

4. Specify any parameters for internationalization.

When done, all the parameters go into the following file:

<module ><-subspec>-m.x

▼ Create a Data Model

1. Identify the components and properties that must belong to the module.

2. Define the data model structure.

Create the hierarchical structure of the managed object classes and properties. For

each of the nodes in the MIB tree for the module:

i. Add the structural primitive.

ii. Assign data and alarm and rule type primitives to properties.

iii. Add the node description and units.

iv. Add the qualifiers for internationalization.

When done, place the contents into the following file:

<module>-models-d.x
14 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

▼ Realize the Data Model

1. Determine the data acquisition method to use:

■ UNIX programs and shell scripts: <module >-d.flt, < module >-d.sh

■ Tcl/TOE Code: <module >-d.prc

■ C-code libraries and Tcl/TOE command extensions:

pkg< module >.so, lib< module >.so

■ Binary extensions and packages.

2. Incorporate the data model into the module framework.

3. Add data acquisition services.

4. Add operational types to the node.

5. Add refresh parameters.

When done, all the parameters go into the following file:

<module >-d.x

▼ Add Alarm Checks

1. If a property has a threshold type alarm check, define thresholds in the file:
<module>-d.def . Do the following:

a. Specify the alarm criteria.

b. Specify alarm severity.

c. Specify alarm actions.

2. If the property has rules:

a. Determine if the rules need to have any editable threshold parameters.

b. Define all the rule initialization parameters in the file:
<module >-ruleinit-d.x .

The error messages required for the rules must be defined in the file:

<module >-ruletext-d.x.

c. Create the rules. The <module >-d.rul file contains the rule logic.

d. Assign the appropriate rule to the property in the <module >-d.x file using the
alarmRule qualifier.
Chapter 3 Introduction to the Reference Manual 15

▼ Install Module Files

● Make sure that each of the following directories contains the respective module
files listed under its directory listing:

■ /opt/SUNWsymon/modules/cfg

■ <module>-m.x
■ <module >-models-d.x
■ <module >-d.x
■ <module >-d.def
■ <module >-d.flt
■ <module >-d.prc
■ <module >-d.rul
■ <module >-ruleinit-d.x
■ <module >-ruletext-d.x
■ <module >-j.x

■ /opt/SUNWsymon/modules/sbin

■ <module >.sh

■ /opt/SUNWsymon/base/lib/sparc-sun-solaris2.(x)

■ lib< module >.so
■ pkg< module >.so

▼ Load a Module

1. Start all Sun Management Center components.

Preferably start the agent interactively. This also enables you to debug the module.

For more information on starting the agent interactively, see the Chapter 11.

2. In the Sun Management Center console, highlight the host you want to monitor
with your new module loaded.

3. Bring up the Load Module Window. Select the module you want to load.

Refer to the Sun Management Center 2.1 Software User’s Guide for more information on

module loading.

▼ Log Data and To Activate Debug Mode
Currently, all debug information is logged in circular log files in

/var/opt/SUNWsymon/log directory. For more troubleshooting information, such

as this, refer to the Chapter 18.
16 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

● To see the contents of these files, use the following commands:

■ /opt/SUNWsymon/util/bin/sparc-sun-solaris<2.x>/ccat

This is similar to the cat command in UNIX.

■ /opt/SUNWsymon/util/bin/sparc-sun-solaris<2.x>/ctail

This is similar to the tail command in UNIX.

● To enable a specific level of debug message to be logged:

a. Go to the following directory:

b. Edit the domain-config.x file.

For example, to enable logging for agent add the following lines to the agent

section:

This enables you to log debug, info, error, status, and history debug messages into

the following file:

/var/opt/SUNWsymon/log/ESAgent.log

The log file wraps around after every 10,000 lines of entry.

● To enable specific debugging when an agent is started interactively:

a. Start the agent interactively:

b. Close any existing debug level currently set:

For example, to turn off the channel open for information level messages, use the

following command:

cd /var/opt/SUNWsymon/cfg

activeChannels = debug info error status history
defaultOutput = "clog://localhost/../log ESAgent.log;lines=10000"

/opt/SUNWsymon/sbin/es-start -ai

ddl close info
Chapter 3 Introduction to the Reference Manual 17

c. Open a new debug channel, for example:

This command activates the info level debugging, and sends all the info level

messages to stderr . You can also send these messages to stdout or to a file.

d. To enable the corresponding debug level:

▼ Write a Module from an existing SNMP MIB

If you want to write a module for an SNMP MIB, do the following:

1. Use MIB2x to generate the module configuration files.

2. Update the module configuration files to implement data acquisition.

3. Write the data acquisition code, with one or more of the following:

■ Tcl procedures

■ Shell scripts

■ Shared object libraries

4. Write the rules on the data properties, if required.

Note – This procedure is optional and, for example, is used if you want to define

alarm limits on these properties.

5. Install the module configuration files and other libraries/scripts/procedure files.

6. Load the module into the agent.

▼ Publish an SNMP Interface

If you have some data to be modeled and monitored using Sun Management Center

and want to publish an SNMP interface for this data:

1. Prepare the data model with the following information:

■ Data items

■ Types of each of these data items

ddl open info desc:stderr

ddl enable info
18 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ Groupings and the hierarchy of these data files

2. Write a models file for the data model.

3. Write the data acquisition code.

4. Write the rules on the data properties if required.

Note – This procedure is optional and, for example, is used if you want to want to

define alarm limits on these properties.

5. Install the module configuration files and other libraries/scripts/
procedure files.

6. Start the agent in interactive mode.

7. Load the module into the agent.

8. Use mibExport to export the SNMP MIB for the module.

Building Consoles

▼ Build Your Own Console

To build your own console to use in place of or in addition to the Sun Management

Center console, do the following:

1. Design the graphical user interface (GUI) using the Java programming language.

Refer to the Chapter 16 for information on how to design your GUI to be consistent

with the Sun Management Center.

2. Obtain information from Sun MC programmatically through the Client API.

Refer to Chapter 14 and the online Javadoc files for information on the client API.

3. Invoke the Host Details bean to incorporate all the functionality provided in the
console Host Details window.

Refer to the description of the Host Details bean in the section, “To Invoke the

HostDetailsBean” in the Chapter 13.

Note – For detailed information on building consoles, refer to the Chapter 13.
Chapter 3 Introduction to the Reference Manual 19

Using Client API

▼ Use the Client API

1. Log in to the session.

2. Get the SMRawDataRequest handle from the SMClientRMIImpl Class.

3. Use it in the constructor of other API class categories.

4. Start using the classes documented in the Client API section.

The section incudes categories of classes and each category has examples that you

use for reference purposes only. You may work with the examples that are part of

the code directory.

Note – For more information on building consoles, refer to Chapter 14.

Conforming to Internationalization and
GUI Guidelines

▼ Work With a Java Application

1. Create a .properties file for all text to be internationalized.

If you need more information on this, refer to the Java documentation.

2. Import the UcInternationalizer class into your objects:

import com.sun.symon.base.utility.UcInternationalizer;
20 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

3. Wherever you display text that needs to be internationalized, enter
UcInternationalizer.translateKey("<path to your resource is bundle>:<key> ").

For example, to display a label that uses a string defined by the key:

▼ Internationalize a Module

1. Internationalize the module loader window:

a. In the module parameter file (*-m.x), add two lines for each item to be
internationalized. The two lines are:

For example, to internationalize the Fscan module name, add the following lines

to fscan-m.x :

b. Add the internationalized parameters to the list of parameters to be displayed
in the module load window. For each internationalized string, add
i18n< parameter> to the ConsoleHint:moduleParms(param) list.

For example, the Fscan module parameter list would be:

c. Create a property file. The name of the file is <module>.properties .

"myKey", do
 String s;
 s =
UcInternationalizer.translateKey("myPath.myResourceBundle:myKey");
 new JLabel(s);

?param:i18n<parameter>?i18n = yes
 param:i18n<parameter> = base.modules.<module>:<key>

?param:i18nModuleName?i18n = yes
 param:i18nModuleName = base.modules.fscan:moduleName

consoleHint:moduleParams(param) = module i18nModuleName version
location enterprise i18nModuleType instance instanceName
filename scanmode
Chapter 3 Introduction to the Reference Manual 21

d. Add an entry in the properties file for each internationalized string. The entry
is of the form: <key>=<string> .

For example, for the Fscan module name, add the following entry:

2. Internationalize the text within the module.

a. In the module models file, add the following line for each node:

For example, to internationalize the fileid node in the Fscan module use:

b. In the properties file created in Step c above, add the key/value for each
internationalized string. This entry is the same as in Step 1 d:

c. For example, key/value pair for the fileid node for the Fscan module is:

Note – For more information on building consoles, refer to the Chapter 15 and the

Chapter 16.

Integrating Applications

User applications can be integrated into the console. There are primarily two places

in the console where user applications can be added; one is in the Tools menu of the

console main window and the other is in the Applications tab in the host details

window. Refer to the Chapter 13 for more information.

moduleName=File Scanning

consoleHint:mediumDesc = base.modules.<module>:<key>

 consoleHint:mediumDesc = base.modules.fscan:fscanstats.fileid

<key>=<string>

fscanstats.fileid=File Id
22 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 4

Introduction to Modules

This chapter covers the following topics:

■ Modules Definition—page 23

■ How to Load Modules—page 24

■ Basic Module Building Concepts—page 24

■ Types of Modules—page 24

■ Module Naming—page 25

As discussed before the Sun Management Center agents use SNMP to communicate

with the server program. The agent provides a managed set of data for the user to

view in the console. The data in the agent is maintained in terms of data sets called

modules. The following sections define and explain how you can load and unload

modules in Sun Management Center.

Modules Definition

A module is an encapsulated set of monitoring functions that focus on a particular

aspect of system or application health and performance. Typical examples include

database modules as Oracle® or Sybase, operating system modules as Solaris or

SunOS environments, or device modules as Hewlett-Packard printer.

Sun Management Center agents can dynamically load and unload modules. The

monitoring functions of a loaded module can also be disabled when not required.

These functions are performed by an end user through the Sun Management Center

console.

Implementation of modules are discussed in the chapters that follow this one.
23

How to Load Modules

When the Sun Management Center agent is installed on a system, it is configured to

load some default modules. Using the Sun Management Center console application,

the user can load additional modules into the agent or unload existing modules from

the agent. The agent is shipped with various modules that manage data that is

diverse in nature. For the list of the modules shipped with agent, see the Sun
Management Center 2.1 User’s Guide.

Once the agent is installed, it is configured to load a default set of modules, for

example, MIB-II, standard host system monitoring, and so forth. Additional modules

can be loaded from the Sun Management Center console once the agent is running.

By convention, modules loaded from the console are made persistent so that the

modules are automatically reloaded should the agent be restarted. Modules can also

be unloaded and disabled from the console.

Basic Module Building Concepts

Since Sun Management Center agents are based on TOE technology, many of the

module definition files are in module configuration file format. Module configuration

files can be thought of as ASCII configuration files. TOE and module configuration

file concepts are discussed in depth in the “Agent Development” on page 365 and

“TOE Objects” on page 367 sections in the Appendix A.

Types of Modules

Modules are classified into the following types:

■ Hardware modules manage hardware for the host on which the agent is running,

for example, boards, SIMMs.

■ Operating system modules manage operating system entities for the host on

which the agent is running, for example, swap, CPU usage.

■ Local application modules manage entities associated with the host on which the

agent is running, but which do not fall into the Hardware or Operating System

module categories, for example, file scanning, process monitoring.

■ Remote modules are capable of managing entities on remote hosts, for example,

Sybase, Oracle, Topology, remote devices.
24 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Module Naming

Module naming is the process of selecting a unique name for the module. This name

distinguishes the module from other modules and is used in naming the module

definition files.

Module Names and Subspecs

Each module must be assigned a module name and can have an optional subspec.

The module name and subspec, if specified, must uniquely identify the module.

The subspec qualifier is optional. When specified, its purpose is to group together

related modules.

For example, consider the Solaris operating environment management module.

Solaris monitoring can be implemented as a single module. In that case, the module

can be named simply solaris (with no subspec). Alternatively, Solaris monitoring

might be implemented as a group of separate modules (one for network monitoring,

one for resource loading, one for filesy stems, and so forth). Such modules can be

named with subspecs. For example:

The simplified version of the Solaris module, which is used as an example in this

document, is assigned the name solaris-example. The subspec example differentiates

this module from the standard Solaris module.

There are no performance or processing considerations when deciding whether to

use a subspec as part of the module name. The subspec is largely a convenience tool

to assist in keeping module files organized.

Agents that contain the modules communicate to the server using SNMP.

SNMP, MIB, OID are discussed in “Parameters Specification” on page 28 in

Chapter 5.

solaris-network
solaris-filesystems
solaris-loading
Chapter 4 Introduction to Modules 25

SNMP & Modules

SNMP (Simple Network Management Protocol) is the defacto standard for network

based management. SNMP is simple, low bandwidth and elegant way of managing

across networked entities. SNMP uses UDP (User Datagram Protocol) for

communication. SNMP uses the MIB (management information base) for data

modeling. The MIB defines the data organization. The data items are addressed by

OID (Object IDentifier) within the MIB.

Since the Sun Management Center agent uses SNMP to communicate with the

external entities like Sun Management Center server, the data items in the modules

have corresponding OIDs. However, you can ignore this relation of data items and

OIDS, if SNMP is not of primary interest to you. If you are a module developer and

are interested in SNMP modeling of your module data, refer to the section, “Using

the mib2x Tool” on page 198, in Chapter 10, and section, “To Generate SNMP MIB

From a Module” on page 219, in Chapter 11.
26 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 5

Building a Simple Module

This chapter describes how to build a simple module. It covers the following topics:

■ Required Components—page 27

■ File Naming Conventions—page 27

■ Parameters Specification—page 28

■ Internationalizing Modules—page 33

■ Data Model Specifications—page 36

■ Simple Data Model Realization—page 49

Required Components
■ Module Parameters Specification—Specifying the parameters required by the

module. Every module must specify a standard set of parameters and may specify

additional parameters, depending on the requirements of the module..

■ Data Model Creation—Identifying the components and properties required to

model the managed entity. These components and properties are represented

using managed object classes and managed properties, respectively, and are

organized in tree hierarchy to reflect the hierarchical nature of managed entities.

■ Data Model Realization—To realize the data model produced in the previous step,

data acquisition mechanisms are integrated with the data models and the models

are incorporated into the module framework so that it may be loaded into a Sun

Management Center agent.

File Naming Conventions

Module definition files adhere to the following naming conventions:
27

<module><-subspec> - <descriptor> . <extension>

where

<module> is the module name.

<subspec> is an optional qualifier for the module name.

<descriptor> is one of a set of standard descriptors indicating the purpose of the

file.

<extension> is one of a set of standard file extensions indicating the file type.

By convention, the <module> and <subspec> portions of the filename are common for

all files associated with a specific module. This allows related module files to be

easily grouped together while eliminating the chances of filename contention with

the definition files of other modules.

TABLE 5-1 Standard Descriptors for Module Definition Files

Standard Extensions

TABLE 5-2 Standard Extensions for Module Definition Files

Parameters Specification

Module parameters used by Sun Management Center agents are specified in a

parameter file. The parameter file specifies the parameters that are required by the

module when it is loaded. The contents of this file are also used to provide a form to

prompt the user for any required parameters.

The format is:

-d Daemon file (Model Realization File)

-m Parameter file

-models-d Model file

.x File in module configuration file format
28 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Format: <module> <-subspec>-m.x

Example: solaris-example-m.x

▼ Creating a Parameter File

To create a parameter file, do the following:

1. Specify the mandatory parameters in the parameter file.

Mandatory parameters are listed in the section, “Mandatory Parameters” on page 29.

2. Identify any additional parameters required by the module and add the
appropriate entries to the parameter file.

Additional required parameters are discussed in the section, ““Additional

Parameters” on page 151,” in Chapter 9.

This section describes the format and the possible contents of parameter files. A

Solaris example parameter file is also provided in the chapter.

Mandatory Parameters

The parameter file must always include the following lines:

where:

The line [load default-m.x] loads the descriptions and edit access

specifications for all mandatory module parameters. Any parameter definitions

that are identical for all modules are placed in the default-m.x file, so that they

[load default-m.x]
consoleHint:moduleParams(param) = module i18nModuleName
i18nModuleDesc version enterprise i18nModuleType
param:module = <agent filename>
param:moduleName = <name of module>
param:version = < version number >
param:console = <console filename >
param:moduleType = <module type>
param:enterprise = <module enterprise>
param:location = <symbolic oid>
param:oid = <numeric oid>
param:desc = <module description>
Chapter 5 Building a Simple Module 29

do not have to be specified redundantly in each module parameter file

individually. This makes it easy to add new common parameter definitions to all

modules in the future, if required.

consoleHint:moduleParams(param) lists the parameters that are displayed to

Sun Management Center console users when the module is to be loaded.

Additional parameters can be added to this list as required.

<agent filename> must be the filename of the associated module Agent file

(<module><-subspec>-d.x) without the “-d.x ” suffix. If the proper naming

conventions are being followed, this is <module><-subspec> in all cases.

<name of module> is a short string naming the module. This parameter can be used

internally by the agent.

<version number> is the version number of the module and is used internally by

the agent. This must be the same as the version used as part of the module name

(<module><-subspec>).

<console filename> must be the same as <agent filename>.

This field exists for historical reasons, and is not actively used in the Sun

Management Center implementation.

<moduleType> identifies the module category. This value determines where the

module is placed in the Sun Management Center console when it is loaded.

The <moduleType> field must be set to one of the following values:

hardware

operatingSystem

localApplication

remoteSystem

serverSupport
30 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Note – serverSupport modules are not visible in the standard hierarchy view of the

agent in the Sun Management Center console. More importantly, modules of this

type do not contribute to the overall status of the agent. This module type must be

used only for modules that are used internally by the agent. As a result, user must

not be a able to load these modules (see the section entitled “Making a Module Not

Loadable” for more information).

<module enterprise> specifies the SNMP enterprise under which this module is

loaded. This value must correspond to the enterprise specified in the <location>
module parameter.

<location> specifies the full symbolic OID (from .iso) where the module is to be

loaded. The location string must not contain any “-” characters as indicated by

RFC 1903.

<oid> specifies the numeric OID described by the <location> parameter.

<module description> is a verbose description of the module functionality. This

parameter is used when exporting the module MIB during the creation of the

module MIB text file.

Note – The il8n parameters relate to internationalization and are explained in the

section, “Internationalizing Modules” on page 33.
Chapter 5 Building a Simple Module 31

Example Parameter File

The Solaris example module does not require any additional parameters. The

Parameter file for the Solaris Example module, solaris-example-m.x , is shown

below.

#
Parameter file for Solaris Example module
#
[load default-m.x]

#
Mandatory Parameters
#
consoleHint:moduleParams(param) = module i18nModuleName\
i18nModuleDesc version enterprise i18nModuleType

param:module = solaris-example
param:moduleName = Solaris Example
param:version = 1.0
param:console = solaris-example
param:moduleType = operatingSystem
param:enterprise = halcyon
param:location =
.iso.org.dod.internet.private.enterprises.halcyon.
primealert.modules.solaris.example
param:oid = 1.3.6.1.4.1.1242.1.2.90.1
param:desc = This is an example module monitoring cpu, load,
and filesystem statistics.

param:i18nModuleName = base.modules.solaris-example:moduleName
param:i18nModuleType = base.modules.solaris-example:moduleType
param:i18nModuleDesc = base.modules.solaris-example:moduleDesc
?param:i18nModuleName?format = i18n
?param:i18nModuleType?format = i18n
?param:i18nModuleDesc?format = i18n
32 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Internationalizing Modules

Internationalization, or l18n (an abbreviation for the term “internationalization” that

also denotes the existence of 18 characters between “l” and “n”), is the process of

enabling your code so that the programs can display localized text, such as text in

French, Chinese, and other languages instead of displaying the English text for

labels, errors, headings, titles and so forth.

If no localized text is available, then the default English text is used. I18n of a

program consists of defining the I18n keys and I18n text, and using the I18n key

instead of a plain text while displaying the text. In Sun Management Center

modules, there are some mandatory module parameters that should be

internationalized. These are discussed in this section. For more details on this, refer

to the Chapter 15.

Mandatory Parameters for Internationalization in

the Parameters File

You can specify the I18n (international) keys for the module parameters in the

parameters file. When displaying the module parameters in the console, the

localized strings corresponding to the I18n key are used.

The parameter file must also include the following lines:

param:i18nModuleName = base.modules. <module><-subspec> :moduleName
param:i18nModuleType = base.modules. <module><-subspec> :moduleType
param:i18nModuleDesc = base.modules. <module><-subspec> :moduleDesc

?param:i18nModuleName?i18n = yes
?param:i18nModuleType?i18n = yes
?param:i18nModuleDesc?i18n = yes
Chapter 5 Building a Simple Module 33

The mandatory lines are required to internationalize the default values of the

moduleName, moduleType , and desc parameters. For user-defined parameters, refer

to Chapter 6. These are the values that are displayed in the Sun Management Center

console when a module is loaded. The following corresponding entries are required

in the module properties file:

where <internationalized text> is the internationalized values for the module

parameters. The properties file is discussed in the next section.

Properties File

Each module that requires internationalization must have a properties file. The name

of this file must be:

where

<module> is the name of the module.

<subspec> is an optional subspec for the module.

<lang> is the locale representing the language of the internationalized text

contained in this file. Not specifying the <lang> parameter in the file name

indicates that the contents of the this file are to be used as the default when the

current locale is not supported.

The properties file contains key/value pairs for each part of the module to be

internationalized. The format of the properties file is:

where

<key> is of the form <spec>[.<spec>....]. All <key>s in this file must be unique.

<value> is the internationalized text.

moduleName=< internationalized text>
moduleType=< internationalized text>
moduleDesc=< internationalized text>

<module><-subspec> [_ <lang>].properties

<key> =<value>
34 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The corresponding properties file for the Solaris Example, for the English locale,

would contain following internationalized text:

Example Properties File

For example, a fragment of the English Properties file for the Solaris Example

module (solaris-example.properties) is:

The specification of a long <key> separated by dots (.) is for organizational purposes.

moduleName=Solaris Example
moduleType=Operating System
moduleDesc=This is an example module monitoring cpu, load, and
filesystem statistics.

#
filesystem
#
filesystem=Filesystem Usage

#
fileTable
#
filesystem.fileTable=Filesystem Usage Table

#
fileEntry
#
filesystem.fileTable.fileEntry=Filesystem

filesystem.fileTable.fileEntry.mount=Mount Point
filesystem.fileTable.fileEntry.size=Total Size (KB)
filesystem.fileTable.fileEntry.avail=Available Space(KB)
filesystem.fileTable.fileEntry.pctUsed=Space Used (%)
filesystem.fileTable.fileEntry.pctRate=Rate (%/sec)
Chapter 5 Building a Simple Module 35

Referencing Internationalized Text

To reference internationalized text in the module, the following specification is used

in the module definition files:

where:

■ <type> is the type of qualifier. This is typically consoleHint .

■ <qualifier> is the part of the module that requires internationalization.

■ <module> is the module name.

■ <subspec> is the subspec of the module, which is optional.

■ <key> is the same <key> that is used in the Properties File.

For example, the internationalized text for the description of the mount point node

in the Solaris Example module can be accessed using:

Data Model Specifications

Data model creation defines the hierarchical structure of the managed object classes

and managed properties required to model the entity to be managed.

▼ Creating a Data Model

The steps involved in creating a data model are:

1. Identify the components that comprise the entity to be managed.

Refer to the section, ““Identifying Components and Properties of Managed Entity”

on page 36,” that identifies the properties that describe each of the components.

<type> : <qualifier> = base.module. <module><-subspec> : <key>

consoleHint:mediumDesc =
base.modules.solaris-example:filesytemtable.fileTable.
fileEntry.mount
36 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

2. Define the data model.

Refer to the section, ““Defining the Data Model Structure” on page 38,” that

describes how to assign the structural primitive classes to the identified components

and properties and organize them in a tree hierarchy to support status

summarization.

3. Add node descriptions.

Refer to the section, ““Adding Node Descriptions” on page 48,” that describes how

to add descriptions to the managed object classes and managed properties.

Identifying Components and Properties of

Managed Entity

In the data model, the physical and logical components are represented by managed

object classes. The properties of the components are represented by managed

properties.

This action involves identifying each of the physical and logical components and

properties of the managed entity that are to be included in the data model.

Note – The data model need not include every component and property of the

managed entity. At the very least, it should contain the information that is pertinent

to the determination of the status of the entity. Additional information about the

entity can be included at the discretion of the module designer.

Solaris Example—Components and Properties

For the Solaris Example module, the following logical components comprise the

Solaris operating environment:

■ CPU

■ System

■ File System

Note – The Solaris operating system contains many other logical components like

swap, networking, processes, and so forth. However, to simplify the example, the

components included in the model are limited to those listed above.
Chapter 5 Building a Simple Module 37

The CPU component encompasses aspects related to CPU usage. The system

component covers aspects related to the operating system in general. The file system

component includes aspects related to mounted file systems.

The next action is to determine what properties are required to describe each of the

components. These properties are used to derive the health of each component, and

collectively, summarize the health of the managed entity.

CPU

The CPU component can be characterized by the following properties:

■ Percentage of time the CPU is idle

■ Percentage of time the CPU is busy

■ Percentage of CPU time spent on user processes

■ Percentage of CPU time spent on system processes

■ Average percentage of time the CPU is busy

System

The system component can be characterized by information about users logged into

the system and the system load.

User properties can include such things as:

■ Current console user

■ Number of users

■ Number of sessions

■ Primary user

The system load can be described by the 1, 5, and 15 minute load averages.

File System

The file system component is composed of one or more mounted file systems. Each

mounted file system is characterized by:

■ Mount point

■ Total size

■ Available disk space

■ Percentage of disk space used
38 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Defining the Data Model Structure

The following sections describe how to define the data module structure. All

examples are included at the end of this section.

Node Definition and Trees

Because of the hierarchical nature of components of systems, the managed object

classes and managed properties are organized in a tree hierarchy referred to as the

data model structure. Managed object classes and managed properties are

represented by branches and leaves, respectively. Branches and leaves in the tree

structure are referred to as nodes.

Note that the data model structure is an intermediate representation of the data

model as it only contains the skeletal framework of the data model. The structural

primitives and the basic object tree configurations are described in the following

sections.

Structural Primitives

Structural primitives specify characteristics required by nodes to define their place

in the object tree hierarchy.

Nodes can inherit from one of the following structural primitives:

■ MANAGED-OBJECT

■ MANAGED-PROPERTY

■ MANAGED-PROPERTY-CLASS

■ MANAGED-OBJECT-TABLE

■ MANAGED-OBJECT-TABLE-ENTRY

In module configuration file notation, nodes inherit from a primitive using the

following syntax:

where

<node> is the node name. This name must be unique amongst its peer nodes.

<PRIMITIVE> is a defined primitive that the node is inheriting from.

<body> are entries for the node in module configuration file format

<node > = { [use <PRIMITIVE1> <PRIMITIVE2>] <body> }
Chapter 5 Building a Simple Module 39

MANAGED-OBJECT

This primitive is used to identify managed object nodes that are branch nodes in the

object tree. Branch nodes do not store data, instead they contain other branch or leaf

nodes.

MANAGED-PROPERTY

This primitive identifies managed property nodes that are leaf nodes in the object

tree. These nodes store data associated with the property.

MANAGED-PROPERTY-CLASS

This primitive is used to group related managed properties of a managed object

together. Nodes that inherit from this primitive are branch nodes.

Managed property classes are functionally identical to managed obhects. The

managed property class primitive has been created for convenience, to indicate more

clearly that it is the properties that are being grouped.

MANAGED-OBJECT-TABLE

This branch primitive is used in conjunction with the MANAGED-OBJECT-TABLE-ENTRY

primitive when constructing a table of managed properties. Each managed property

in the table can store a vector of data instead of simple scalars. The object that uses

this primitive must have a child who uses the MANAGED-OBJECT-TABLE-ENTRY

primitive. The MANAGED-OBJECT-TABLEand MANAGED-OBJECT-TABLE-ENTRYnodes are

included to support the SNMP MIB representation of tabular data.

<node> = { [use MANAGED-OBJECT] <body> }

<node> = { [use MANAGED-PROPERTY] <body> }

<node> = { [use MANAGED-PROPERTY-CLASS] < managed properties > }

<node> = { [use MANAGED-OBJECT-CLASS] < body > }
40 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Note – The Sun Management Center console retrieves data stored in a table using a

single SNMP get request (maximum SNMP packet size is 64k is — this is due to the

fact that SNMP uses UDP, which has such a limitation). If the table contains a large

number of managed properties or a large number of rows, all the data cannot be

retrieved by the Sun Management Center console in a single get request and the

console reports an error. In such instances, the table must be made smaller or split

into multiple tables for display in the Sun Management Center console.

MANAGED-OBJECT-TABLE-ENTRY

This branch primitive is used in conjunction with the MANAGED-OBJECT-TABLE

primitive when constructing a managed object with a table of managed properties.

This primitive must be used by an object that is the child of a MANAGED-OBJECT-

TABLE object. This object must contain one or more managed property objects that

forms the columns of the table.

To allow specific rows of the table to be referenced through SNMP, this object must

specify an index qualifier that corresponds to one or more of its child managed

properties that uniquely identify the row. This is the value that is used as part of the

status messages. For example, if index is set to the table node containing mount

point information and the /var file system is greater than 90% full, the status

message is:

If more than one child node is specified as part of the index , the string used in the

status message is a comma separated list of the indexes. For example, if index is set

to the mount point and disk name nodes, the status string reads:

<node> = { [use MANAGED-OBJECT-TABLE-ENTRY]
index = <managed property name>

descColumn = <managed property name>
<managed properties>
}

/var > 90%

/var,/dev/dsk/c0t0d0s5 > 90%
Chapter 5 Building a Simple Module 41

Optionally, this object can also specify descColumn to specify a child property value

as a descriptive row name to be displayed on the Sun Management Center console

for row status messages. If descColumn is specified to be a node containing the disk

name, the status message is as follows regardless of the index setting:

Example Data Model File

This section contains the following examples:

■ Solaris Example—Model File

■ Solaris Example—CPU Data Model Structure

■ Solaris Example—Performance Data Model Structure

■ Solaris Example—filesystems Data Model Structure

Solaris Example—Model File

The following code example lists the Solaris Example Model file, named solaris-
examples-models-d.x . This example has two independent managed objects: CPU,

and system .

/dev/dsk/c0t0d0s5 > 90%

CODE EXAMPLE 5-1 Solaris Example—Model File

#

Solaris Managed Object and Property Models

#

type = reference

#

Cpu Managed Object

#

cpu = { [use MANAGED-OBJECT]

 mediumDesc = CPU Properties

 consoleHint:mediumDesc = base.modules.solaris-example:cpu

 idle = { [use PERCENT MANAGED-PROPERTY]

 shortDesc = Idle

 mediumDesc = CPU Idle Time

 fullDesc = Percentage of time the CPU is in the idle state

 units = %
42 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 }

 busy = { [use PERCENT MANAGED-PROPERTY]

 shortDesc = Busy

 mediumDesc = CPU Busy Time

 fullDesc = Percentage of time the CPU is in the busy state

 units = %

 }

}

#

System Managed Object

#

system = { [use MANAGED-OBJECT]

 mediumDesc = System Information

 consoleHint:mediumDesc = base.modules.solaris-example:system

 userstats = { [use MANAGED-PROPERTY-CLASS]

 mediumDesc = User Statistics

 consoleHint:mediumDesc = base.modules.solaris-example:system.userstats

 consoleUser = { [use STRING MANAGED-PROPERTY]

 shortDesc = User

 mediumDesc = Console User

 fullDesc = User currently logged in on the console

 consoleHint:mediumDesc = base.modules.\
solaris-example:system.userstats.consoleUser

 }

 numUsers = { [use INT MANAGED-PROPERTY]

 shortDesc = #Users

 mediumDesc = Number of Users

 fullDesc = Number of unique users currently logged in

 consoleHint:mediumDesc = base.modules.\
solaris-example:system.userstats.numUsers

 }

 }

CODE EXAMPLE 5-1 Solaris Example—Model File (Continued)
Chapter 5 Building a Simple Module 43

 load = { [use MANAGED-PROPERTY-CLASS]

 mediumDesc = Load Average

 consoleHint:mediumDesc = base.modules.solaris-example:system.load

 one = { [use FLOAT MANAGED-PROPERTY]

 shortDesc = 1min

 mediumDesc = 1 Min Load Avg

 fullDesc = The one minute load average

consoleHint:mediumDesc = base.modules.solaris-example:system.load.one

 }

 five = { [use FLOAT MANAGED-PROPERTY]

 shortDesc = 5min

 mediumDesc = 5 Min Load Avg

 fullDesc = The five minute load average

 consoleHint:mediumDesc = base.modules.\
solaris-example:system.load.five

 }

 }

}

The solaris-example.properties file is shown below. This file also contains
the module parameter internationalization key and strings.

#

Module Parameters

#

moduleName=Solaris Example

moduleType=operatingSystem

moduleDesc=This is an example module monitoring cpu, load, and filesystem
statistics.

#

Node Descriptions

#

cpu=CPU Properties

system=System Information

system.userstats=User Statistics

CODE EXAMPLE 5-1 Solaris Example—Model File (Continued)
44 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Solaris Example—CPU Data Model Structure

The managed properties of the managed object, CPU, are idle time, busy time,

system time, user time, and busy average.

FIGURE 5-1 Simple Managed Object

The data model structure of the CPU is shown in module configuration file format:

system.userstats.consoleUser=Console User

system.userstats.numUsers=Number of Users

system.load=Load Average

system.load.one=1 Min Load Avg

system.load.five=5 Min Load Avg

CODE EXAMPLE 5-2 Module Configuration File Format

cpu = { [use MANAGED-OBJECT]

 idle = { [use MANAGED-PROPERTY] }

 busy = { [use MANAGED-PROPERTY] }

 system = { [use MANAGED-PROPERTY] }

 user = { [use MANAGED-PROPERTY] }

 average = { [use MANAGED-PROPERTY] }

}

CODE EXAMPLE 5-1 Solaris Example—Model File (Continued)

idle
time

busy
time

system
time

user
time

busy
average

CPU [MANAGED OBJECT]

[MANAGED PROPERTY]
Chapter 5 Building a Simple Module 45

Solaris Example—Performance Data Model Structure

The performance managed object contains a managed property, console user, plus

the nested managed objects: CPU and load average, each of which contain their own

managed properties.

FIGURE 5-2 Performance Managed Object

The following is a code example for the performance data model structure:

Note – CPU and loadavg can also be MANAGED-PROPERTY CLASS.

CODE EXAMPLE 5-3 Performance Data Model Structure

performance = {[use MANAGED-OBJECT]

 consoleUser = {[use MANAGED-PROPERTY]}

 cpu = {[use MANAGED-OBJECT]

 idle = {[use MANAGED-PROPERTY]}

 busy = {[use MANAGED-PROPERTY]}

 system = {[use MANAGED-PROPERTY]}

 user = {[use MANAGED-PROPERTY]}

 average = {[use MANAGED-PROPERTY]}

 }

 loadavg = {[use MANAGED-OBJECT]

 one = {[use MANAGED-PROPERTY]}

 five = {[use MANAGED-PROPERTY]}

 fifteen = {[use MANAGED-PROPERTY]}

 }

}

average

load average

1 5 15

CPU

console
user

user

idle busy
system

[MANAGED OBJECT]

[MANAGED OBJECT]

[MANAGED
PROPERTIES]

performance
46 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Solaris Example—filesystems Data Model Structure

In this example, the managed object is the file system component. The managed

properties are the mount point, total size, KB available, and percent space used.

The mount property is designated to be the index . This allows each file system to be

referenced by their mount point names.

FIGURE 5-3 Managed Object with Tabular Properties

The data model structure of the file system component is shown in module

configuration file notation:

CODE EXAMPLE 5-4 File System Data Model Structure Code

filesystems = {[use MANAGED-OBJECT]

 fileTable = {[use MANAGED-OBJECT-TABLE]

 fileEntry = {[use MANAGED-OBJECT-TABLE-ENTRY]

 index = mount

 mount = {[use MANAGED-PROPERTY]}

 size = {[use MANAGED-PROPERTY]}

 avail = {[use MANAGED-PROPERTY]}

 pctUsed = {[use MANAGED-PROPERTY]}

 }

 }

}

fileTable

filesystems

fileEntry

mount size avail pctUsed

[MANAGED OBJECT]

[MANAGED OBJECT TABLE]

[MANAGED OBJECT TABLE ENTRY]

[MANAGED PROPERTIES]
(percent used)
Chapter 5 Building a Simple Module 47

Adding Data Types

After creating the data model structure, data types must be assigned to the managed

property nodes. Data primitives classes can be used to characterize the data and

alarm types of the manage property nodes. These primitives are assigned to the

managed property nodes using the same syntax as before.

All managed properties must use a data type primitive. These primitives define the

type of data stored in the property. Data type primitives can be optionally combined

with an alarm type that characterizes the alarm checks performed on the property’s

data value.

These data and alarm primitives have the following form:

where

<data type> represents the type of data stored in the primitive

<alarm type> optionally specifies the type of alarm checks to perform

Note – Alarm types are optional and are discussed in the chapter on Chapter 7.

Available Data Types

Data type primitives can be one of the following:

■ STRING—general string type

■ INT —asn.1 integer type

■ FLOAT—floating point value

■ PERCENT—percentage

■ COUNTER—asn.1 counter type

■ GAUGE—asn.1 gauge type

■ OID—asn.1 OID type

■ TIMETICKS—asn.1 time tick type

■ OCTETSTRING—asn.1 octet string type

<node> = { [use < primitive> MANAGED-PROPERTY] <body> }

<data type>[< alarm type>]
48 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ IPADDRESS—asn.1 IP address type

■ UINT—asn.1 unsigned integer type

■ PHYSADDRESS—asn.1 physical address type

■ TESTANDINCR—asn.1 test and increment type

The TESTANDINCRis a primitive that has a special behavior. SNMP sets nodes using

this primitive causing the agent to check the value that is being set against the

current node value. If the values are the same, the current value is incremented by

one. If the values do not match, the set will fail.

Adding Node Descriptions

One action in the creation of the data model is to add descriptions to the nodes.

Three levels of description qualifiers can be defined for each node:

■ shortDesc (optional)—typically a one word description of the node

■ mediumDesc (mandatory)—a descriptive string about the node that must be

unique within the scope of the module, less than 20 characters.

■ fullDesc (optional)—a complete description of the node

The mediumDesc value is used as part of the status message displayed on the

console.

A managed property can also have a unit qualifier. This qualifier specifies the units

(if any) of the data value stored in that property and is used for display purposes

only. Together, the mediumDesc and unit qualifiers are used as part of a template

when generating status messages of the managed property that is displayed on the

Sun Management Center console. The unit qualifier is also used to automatically

specify the units for the vertical axis when graphing data values, for example,

units = sec .

Node Type Based on Operational Behavior

Each node must be assigned a type that defines its operational behavior:

One of the node types is reference .

type = < node type>
Chapter 5 Building a Simple Module 49

Reference nodes are objects that are loaded for use as a template in the model file. A

node is specified as a reference node as follows:

The entry, type = reference , indicates that the managed object classes defined in

this file are to be used only as a reference. These reference objects are typically

loaded into a template area from which the active object tree, which will perform the

management functions can inherit the model structure. The load into the template

area is done through the agent file (<module><-subspec>-d.x) when the model is

realized.

The other node types are discussed in section, “Node Type Based on Operational

Behavior.”

Simple Data Model Realization
Creating a data model defines the layout of the data in your module. After doing

this, you have to specify the methods by which the agent will acquire the values for

this data layout. This process of specifying the methods is referred to as data

acquisition (DAQ) or data model realization in the following sections and

subsequent chapters.

Data model realization is defined in the agent file. Additional files that can be

created to support the agent file include filter file, procedure file, shell scripts, C

libraries, and Tcl extension packages.

The agent file <module><-subspec>-d.x is mandatory for a module:

Example:

Note – The data model realization file (*-d.x) is sometimes interchangeably called

the agent file.

type = reference

<module><- subspec>-d.x

solaris-example-d.x
50 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Steps Involved in Data Model Realization

The following sections describe the model realization process:

■ Implementing Data Acquisition Mechanisms describes how to devise the means

by which you can acquire the data values of the managed properties in the data

model.

■ Integrating Data Acquisition describes how to create the agent file that loads and

inherits from the data models.

■ Loading the DAQ Services describes how to add the DAQ mechanisms to the

agent file so that the acquired data can be disseminated to the appropriate nodes.

Mandatory Contents of Every Data Model

Realization File

The agent file is in module configuration file format, and must contain the following

standard entries:

The line [use MANAGED-MODULE]mandates the inheritance of the MANAGED-
MODULEprimitive at the root of the module. This primitive provides managed

properties at the root of the module that reflect the status and availability of the

entire module.

The line [load < module><- subspec>-m.x] loads the parameter file entries into the

root of the module. The entries can be referenced by other objects in the module.

The line [requires template <module><- subspec>-models-d] loads the

model file into the template area for use by the agent. Multiple entries can be

specified if more than one model file is required.

The line <managed object classes > represents the main body of the agent file.

It consists of the managed object classes that use the data models loaded in the

template area. The exact contents of this section will vary with each module.

[use MANAGED-MODULE]
[load <module><-subspec> -m.x]
[requires template <module><-subspec> -models-d]

<managed object classes>
Chapter 5 Building a Simple Module 51

Implementing Data Acquisition Mechanisms

The underlying logic to perform the data acquisition can be implemented in a

number of different ways, including:

■ UNIX programs and shell scripts

■ Tcl/TOE code discussed in the Modules Appendix.

■ C-code libraries and Tcl/TOE command extensions discussed in the Modules

Appendix

For more information about the Tcl programming language, refer to the Tcl and TK
Toolkit manual.

UNIX Programs and Shell Scripts

Much system data can be acquired using UNIX system commands like vmstat,
swap, iostat, netstat, ps , and so forth. Existing custom programs and

scripts can also be employed to gather data.

Shell scripts can be employed to parse the raw results of the UNIX programs using

such tools as sed, grep, awk , and so forth. When returning data to the agent

from UNIX programs or scripts, each data element must be separated by newlines.

The standard extension for the shell scripts is .sh , for example, filename.sh .

Integrating Data Acquisition

This action involves integrating DAQ capabilities with the intermediate agent file

created previously. The objective of this step is to facilitate the refresh operation. The

refresh operation consists of performing DAQ and disseminating the acquired data

into the appropriate managed property nodes.

The dissemination of a buffer of data into a tree of managed objects and managed

properties is known as the data cascade. There are strict rules that govern the manner

in which data can be cascaded in the tree. Data can be acquired one piece at a time

and placed into managed properties, or larger amounts of information can be

acquired in a single data acquisition operation and cascaded into several managed

properties.

The DAQ capabilities are integrated into the agent file by doing the following:

■ Loading the DAQ services

■ Specifying node types

■ Specifying refresh parameters
52 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Loading the DAQ Services

Typically, DAQ functionality and/or support services must be loaded or created by

the agent to enable the DAQ mechanisms in the Sun Management Center agent. The

possible types of DAQ services that can be loaded or created are listed below out of

which only Bourne shell script is discussed here. The actual DAQ services that must

be loaded or created depends on the DAQ mechanisms being employed.

■ Bourne shell service

■ Tcl shell service

■ Tcl filters

■ Tcl procedures

■ Tcl command extension package

For more information on Tcl shell service, filters, and procedures, refer to Chapter 6.

Bourne Shell Services

If the DAQ was implemented using UNIX commands or shell scripts, the agent must

create a Bourne shell service object to execute these commands. The Bourne shell

service is essentially an object maintaining a pipe to one or more shell processes to

which commands can be directed and the results returned asynchronously.

The module configuration file specification for a Bourne shell service object is:

where:

<max shells> specifies the maximum number of shell subprocesses to spawn. This

is typically set to 2. This value indicates the number of refresh commands that use

the Bourne shell service that can be executed co-currently.

For example, if <max shells> is set to 1, refresh commands can be queued waiting

for previous commands to finish. Setting this value to a larger number increases

the number of captive shells and resources used by the agent. object
_services.sh can then be used by other objects for Bourne shell DAQ services.

_services = { [use SERVICE]
 sh = {
 command = "pipe://localhost//bin/sh;transport=shell "
 max = <max shells>
 }
 }
Chapter 5 Building a Simple Module 53

Node Type Based on Operational Behavior

The following section discusses node types based on the operational behavior to be

used in Model Realization File.

Each node must be assigned a type that defines its operational behavior:

The possible node types are active, passive, derived, or reference.

Passive and drived nodes are discussed in Chapter 6.

Reference nodes are already discussed in this chapter. They are only used in the

models file.

Active Nodes

A node is specified to be active using the following specification:

All data acquisition operations are initiated by an active node. An active node is a

managed object or managed property that has refresh information associated with it.

In general, active nodes specify a refresh service, refresh command, and a refresh

interval. To acquire data, the refresh command is executed in the context of the

refresh service at every refresh interval.

Additional refresh parameters are available for filtering the data, specifying

initialization behavior, and setting up internal refresh triggers.

All active nodes must specify the following qualifiers:

Other qualifiers that can be specified by active nodes are discussed in the next

chapter.

type = < node type>

type = active

refreshService = < service object>
refreshCommand = < command to run in the context of refreshService>
refreshInterval = < timex specification defining when to run the command>
54 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Mandatory RefreshQualifiers for Active Nodes

refreshService

A refresh service is an object within the agent that can be used for data acquisition.

A refresh service must be specified for active and derived nodes.

Invoking a refresh command in the context of a refresh service activates typical refresh

operations A refresh command is a service-dependent command that defines the

specific operation to perform. A refresh command is sent to the refresh service each

time a refresh is triggered.

Refresh services can be any object that supports the service interface. Typical, refresh

services are objects that maintain pipes to shells (like Bourne shell or perl process).

Other refresh services that can be specified by active nodes are discussed in the next

chapter.

The refreshService qualifier specifies the context in which the refreshCommand
runs.

Bourne Shell Service

Use this service when the refresh command is a UNIX command or shell script. To

use this service, a Bourne shell service object (like_services.sh) must have been

created at the root of this module as described in the Loading the DAQ Services

section.

refreshCommand

The refresh command must be specified for active and derived nodes.

The refresh command is a service-dependent command that defines the specific

operation to perform. Conceptually, the refresh command is sent to the refresh

service each time a refresh is triggered.

refreshService = _services.sh

refreshCommand = < command>
Chapter 5 Building a Simple Module 55

The refresh command must be appropriate for the specified refresh service.

Depending on the refresh service specified, the refresh command can be such things

as the following will be discussed in a later chapter:

■ UNIX commands and scripts

■ Tcl commands and procedures

All module parameters and parameters defined in the value slice can be referenced

by the refreshCommand . This information can be referenced using %<parameter>
as part of the refreshCommand . For example refreshCommand = myCommand
%moduleNamewill pass in the moduleName module parameter to the command

myCommand.

The exit status of UNIX commands and scripts are not used by the agent. Instead the

agent interprets any data return on stderr as a data acquisition error. If this

happens, the active node automatically goes into an indeterminate alarm state,

indicating that the node failed to update. In addition, no data cascades into the agent

regardless if any data was returned on stdout .

The number of elements and the type of data returned by the refresh command is

dictated by the number and type of nodes into which the data is cascaded.

Generally, data cascade is the dissemination of data collected by an active node into

passive nodes. The exception is when a leaf node is active and collects data for itself.

If the refresh command returns less than the required number of elements for a

complete data cascade, an error message is generated by the agent. However, the

data cascade still occurs. All available data is used by the nodes at the beginning of

the cascade. Nodes towards the end of the data cascade will not receive any data. If

the refresh command returns more than the required number of elements, the

additional data elements are ignored.

A DAQ error can also be encountered if there is a mismatch between the type of data

being cascaded into a node and the node’s data type. Again, the data cascade

continues until the node where the data type mismatch occurs. Note that empty

strings are valid data values for nodes whose data type is STRING.

refreshInterval

The refresh interval specifies the time specification that the refresh command is

executed.

refreshInterval = < timex specification>
56 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The refresh interval must be specified for active and optionally for derived nodes.

If no refreshInterval is specified for an active node, it is treated by the agent as an

on-demand refresh node, that is, the data values are refreshed whenever the data is

requested as opposed to being computed periodically or on initialization only.

Note – Alarm rules or checks are not supported for on-demand nodes. If an on-

demand node is detected to have an alarm rule or check during module load, the

agent aborts immediately.

If the refresh interval is not specified, the refresh command is executed whenever the

data is requested through SNMP.

If the refresh interval is set to 0, the refresh command is executed only on

initialization. The refresh command is not executed when the data is requested

through SNMP. Refer to the Appendix, “Time Expression Specifications,” for more

information. For more information on refreshQualifiers, refer to Chapter 6.

Example of a Simple Module

Refer to the examples, helloworld01 through helloworld03 in the Sun

Management Center Developer Environment installed on your system. The online

versions of these examples are in the following location once you install the

developer environment:

This section contains the following examples:

■ Example Data Model Realization File

■ The solaris-example-console-user-d.sh File

Example Data Model Realization File

The following code example lists the Solaris Example Model Realization File.

/opt/SUNWsymon/sdk/examples/modules

CODE EXAMPLE 5-5 Solaris Example Model Realization File

[use MANAGED-MODULE]

[requires template solaris-example-models-d]

#

Load Module Parameters
Chapter 5 Building a Simple Module 57

#

[load solaris-example-m.x]

#

Define services required by this module

#

_services = { [use SERVICE]

 #

 # Standard Bourne Shell

 #

 sh = {

 command = "pipe://localhost//bin/sh;transport=shell"

 max = 2

 }

}

#

Cpu Information

#

cpu = { [use templates.solaris-example-models-d.cpu]

 idle = {

 type = active

 refreshService = _services

 refreshCommand = echo 10

 refreshInterval = 60

 }

 busy = {

 type = active

 refreshService = _services

 refreshCommand = echo 20

 refreshInterval = 60

 }

}

#

System User and Load Information

#

system = { [use templates.solaris-example-models-d.system]

 userstats = {

 consoleUser = {

 type = active

CODE EXAMPLE 5-5 Solaris Example Model Realization File (Continued)
58 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The solaris-example-console-user-d.sh File

The solaris-example-console-user-d.sh file is shown below:

 refreshService = _services.sh

 refreshCommand = solaris-example-console-user-d.sh

 refreshInterval = 60

 }

 numUsers = {

 type = active

 refreshService = _services.sh

 refreshCommand = echo 10

 refreshInterval = 60

 }

 }

 load = {

one = {

 type = active

 refreshService = _services.sh

 refreshCommand = echo 10.2

 refreshInterval = 60

}

five = {

 type = active

 refreshService = _services.sh

 refreshCommand = echo 10.2

 refreshInterval = 60

 }

 }

}

CODE EXAMPLE 5-6 The solaris-example-console-user-d.sh File

#!/bin/sh

echo "I am a console user (from Sh)"

CODE EXAMPLE 5-5 Solaris Example Model Realization File (Continued)
Chapter 5 Building a Simple Module 59

60 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 6

Advanced Data Model Realization
Techniques

This chapter includes the following sections:

■ What are Filters—page 61

■ Adding Filters to Data Model Realization—page 65

■ Advanced Data Acquisition Mechanisms—page 74

■ Other Node Types based on their Operational Behavior—page 75

■ refreshQualifiers & Other Qualifiers—page 76

■ Data Model Realization Specifications with Tcl procedures as DAQ—page 84

■ Data Model Realization Specifications with C libraries and Tcl/TOE Command

Extensions as DAQ—page 89

■ Another DAQ Service—page 97

■ Performance Considerations—page 99

What are Filters

The filter file defines data filters implemented using Tcl/TOE procedures. These

filters are used to extract the pertinent information from the raw results of data

acquisition commands. This enables the agent to use raw extensions or system

commands (such as df for Solaris software) to acquire data, with the processing/

parsing of the output being performed within the agent, not through external

utilities such as awk or sed .

Note – For more information on Tcl/TOE, refer to the Appendix A.
61

Standard Extensions for File Name

This file is optional for a module, and only exists if the module is using filter

functions. Only Tcl/TOE procedures can be defined in this file.

Examples of Filters

CPU Data Filter

The UNIX command vmstat 10 2 returns four lines of data in the format:

This data is passed as the datalist argument in the cpuFilter procedure. The

procedure parses the percent idle, system and user fields from the fourth line of

data, computes the percent busy, and returns the results. The code is written in Tcl.

<module><-subspec> -d.flt

procs memory page disk faults cpu
r b w swap free re mf pi po fr de sr f0 s0 s1 s2 in sy cs us sy id
0 0 0 24120 7040 0 63 6 2 4 0 1 0 4 2 1 215 347 167 5 11 83
0 0 0 280020 1172 0 1 0 8 18 0 2 0 1 0 0 39 52 46 1 1 98

proc cpuFilter { datalist } {
 set line [lindex $datalist 3]
 set user [string range $line 69 71]
 set system [string range $line 72 74]
 set idle [string range $line 75 77]
 set busy [expr 100 - $idle]
 return “$idle $busy $system $user”
}

62 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

User Data Filter

The UNIX command who returns data in the following format:

This data is passed to the userFilter procedure as the datalist argument. The

procedure loops through each line to determine the console user and count the

number of unique users and sessions.

Load Data Filter

The UNIX command uptime returns data in the following format:

tom console Oct 2 09:54
tom pts/1 Oct 4 23:43 (superior)
tom pts/0 Oct 2 09:55
tom pts/2 Oct 2 09:55
tom pts/5 Oct 2 09:55
tom pts/4 Oct 3 09:29
tom pts/3 Oct 2 09:55

proc userFilter { datalist } {
 set console none
 set ucount 0
 set scount 0
 foreach line $datalist {
 set name [lindex $line 0]
 set source [lrange $line 5 end]

if { [lindex $line 1] == “console” } { set console $name }
 if { [catch { set users($name) }] } {
 set users($name) ““
 incr ucount
 }
 if { [catch { set sessions($name:$source) }] } {
 set session($name:$source) ““
 incr scount
 }
 }
 return [list $console $ucount $scount]
}

 11:45pm up 4 day(s), 16:29, 2 users, load average: 0.00, 0.00, 0.01
Chapter 6 Advanced Data Model Realization Techniques 63

This data is passed to the loadFilter procedure where the 1-, 5-, and 15-minute load

averages are picked out using a regular expression pattern.

File System Data Filter

The UNIX command df -kF ufs returns data in the following format:

This data is passed to the fileFilter procedure where the desired data fields are

picked out from each line.

proc loadFilter { datalist } {
 regexp {^.*up *(.*), +[0-9]+ +users*,.+: *([^,]+), *([^,]+), *([^,]+)}
 [lindex $datalist 0] dummy a b c d
 return [list $b $c $d $a]
}

Filesystem kbytes used avail capacity Mounted on
/dev/dsk/c0t0d0s0 22847 11912 8655 58% /
/dev/dsk/c0t0d0s6 246167 185193 36364 84% /usr
/dev/dsk/c0t0d0s3 105943 3183 92170 4% /var
/dev/dsk/c0t0d0s7 793382 9 714043 1% /export1
/dev/dsk/c0t0d0s5 288855 43131 216844 17% /opt

proc fileFilter { datalist } {
 #
 # pick out appropriate fields for each line
 #
 set result ""
 set continuation ""
 foreach line [lrange $datalist 1 end] {
 set line $continuation$line
 if { [llength $line] < 6 } {
 set continuation "$line "
 continue
 } else {
 set continuation ""
 }
 regsub {%} $line "" line

lextract $line 1 kbytes 3 avail 4 capacity 5 mount
 lappend result $mount $kbytes $avail $capacity
 }
 return $result
}

64 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Adding Filters to Data Model
Realization

Example Data Model File

The following code example lists the Solaris Example Model file,

solaris-example-models-d.x . It has three independent manged objects; CPU,

system, and file system.

CODE EXAMPLE 6-1 The solaris-example-models-d.x File

#

Solaris Managed Object and Property Models

#

type = reference

#

Cpu Managed Object

#

cpu = { [use MANAGED-OBJECT]

 mediumDesc = CPU Properties

 consoleHint:mediumDesc = base.modules.solaris-example:cpu

 idle = { [use PERCENT MANAGED-PROPERTY]

 shortDesc = Idle

 mediumDesc = CPU Idle Time

 fullDesc = Percentage of time the CPU is in the
 idle state

 units = %

 }

 busy = { [use PERCENT MANAGED-PROPERTY]

 shortDesc = Busy

 mediumDesc = CPU Busy Time

 fullDesc = Percentage of time the CPU is in the
 busy state

 units = %
Chapter 6 Advanced Data Model Realization Techniques 65

 }

 system = { [use PERCENT MANAGED-PROPERTY]

 shortDesc = System

 mediumDesc = CPU System Time

 fullDesc = Percentage of time the CPU is running
 in system mode

 units = %

 }

 user = { [use PERCENT MANAGED-PROPERTY]

 shortDesc = User

 mediumDesc = CPU User Time

 fullDesc = Percentage of time the CPU is running
 in user mode

 units = %

 }

}

#

System Managed Object

#

system = { [use MANAGED-OBJECT]

 mediumDesc = System Information

 consoleHint:mediumDesc = base.modules.solaris-example:system

 userstats = { [use MANAGED-PROPERTY-CLASS]

 mediumDesc = User Statistics

 consoleHint:mediumDesc = \
 base.modules.solaris-example:system.userstats

 consoleUser = { [use STRING MANAGED-PROPERTY]

 shortDesc = User

 mediumDesc = Console User

fullDesc = User currently logged in on the console

 consoleHint:mediumDesc = \
base.modules.solaris-example:system.userstats.consoleUser

 }

CODE EXAMPLE 6-1 The solaris-example-models-d.x File (Continued)
66 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 numUsers = { [use INT MANAGED-PROPERTY]

 shortDesc = #Users

 mediumDesc = Number of Users

 fullDesc = Number of unique users currently
 logged in

 consoleHint:mediumDesc = \
base.modules.solaris-example:system.userstats.numUsers

 }

 numSessions = { [use INT MANAGED-PROPERTY]

 shortDesc = Sessions

 mediumDesc = Number of User Sessions

 fullDesc = Number of currently active user
 sessions

 }

 primaryUser = { [use STRING MANAGED-PROPERTY]

 shortDesc = User

 mediumDesc = Primary System User

 fullDesc = The login name of the primary user

 }

 }

 load = { [use MANAGED-PROPERTY-CLASS]

 mediumDesc = Load Average

 consoleHint:mediumDesc = \
 base.modules.solaris-example:system.load

 one = { [use FLOAT MANAGED-PROPERTY]

 shortDesc = 1min

 mediumDesc = 1 Min Load Avg

 fullDesc = The one minute load average

 consoleHint:mediumDesc = \
 base.modules.solaris-example:system.load.one

 }

CODE EXAMPLE 6-1 The solaris-example-models-d.x File (Continued)
Chapter 6 Advanced Data Model Realization Techniques 67

 five = { [use FLOAT MANAGED-PROPERTY]

 shortDesc = 5min

 mediumDesc = 5 Min Load Avg

 fullDesc = The five minute load average

 consoleHint:mediumDesc = \
 base.modules.solaris-example:system.load.five

 }

 }

}

#

Filesystem Table

#

filesystems = { [use MANAGED-OBJECT]

 mediumDesc = Filesystems

 fileTable = { [use MANAGED-OBJECT-TABLE]

 mediumDesc = Filesystem Property Table

 fileEntry = { [use MANAGED-OBJECT-TABLE-ENTRY]

 mediumDesc = Filesystem

 index = mount

 mount = { [use STRING MANAGED-PROPERTY]

 shortDesc = Mount Pt

 mediumDesc = Filesys Mount Point

fullDesc = The mount point for the filesystem

 }

 size = { [use INT MANAGED-PROPERTY]

 shortDesc = Filesys Sz

 mediumDesc = Filesystem Size

 fullDesc = Total filesystem size in KBytes

 units = KB

 }

 avail = { [use INT MANAGED-PROPERTY]

 shortDesc = FilesysAvl

CODE EXAMPLE 6-1 The solaris-example-models-d.x File (Continued)
68 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The solaris-example.properties file is shown below. This file also contains the

module parameter internationalization key and strings:

 mediumDesc = Filesystem Space

fullDesc = Available filesys diskspace in KB

 units = KB

 }

 pctUsed = { [use PERCENT MANAGED-PROPERTY]

 shortDesc = Disk Used

 mediumDesc = Filesystem Capacity

 fullDesc = Percentage of Disk Space Used

 units = %

 }

 }

 }

}

CODE EXAMPLE 6-2 The solaris-example.properties File

#

Module Parameters

#

moduleName=Solaris Example

moduleType=operatingSystem

moduleDesc=This is an example module monitoring cpu, load,
and filesystem statistics.

#

Node Descriptions

#

cpu=CPU Properties

system=System Information

system.userstats=User Statistics

system.userstats.consoleUser=Console User

system.userstats.numUsers=Number of Users

system.load=Load Average

system.load.one=1 Min Load Avg

CODE EXAMPLE 6-1 The solaris-example-models-d.x File (Continued)
Chapter 6 Advanced Data Model Realization Techniques 69

Example Data Model Realization File Using Tcl

Filters

The following code example lists the Solaris example model realization file using Tcl

filters developed in the section, ““Examples of Filters” on page 62.”

system.load.five=5 Min Load Avg

CODE EXAMPLE 6-3 Solaris Example Model Realization File

[use MANAGED-MODULE]

[requires template solaris-example-models-d]

#

Load Module Parameters

#

[load solaris-example-m.x]

#

Define services required by this module

#

_services = { [use SERVICE]

 #

 # Standard Bourne Shell

 #

 sh = {

 command = "pipe://localhost//bin/sh;transport=shell"

 max = 2

 }

}

#

Load filters required by this module

#

_filters = { [use PROC]

 [source solaris-example-d.flt]

}

#

CODE EXAMPLE 6-2 The solaris-example.properties File (Continued)
70 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Cpu Information uses the cpuFilter which is already discussed

in the previous section

#

cpu = { [use templates.solaris-example-models-d.cpu _filters]

 type = active

 refreshService = _services.sh

 refreshCommand = vmstat 10 2

 refreshFilter = cpuFilter

 refreshInterval = 60

}

#

System User and Load Information uses the userFilter

which is already discussed

in the previous section

#

system = { [use templates.solaris-example-models-d.system]

 userstats = { [use _filters]

 type = active

 refreshService = _services.sh

 refreshCommand = who

 refreshFilter = userFilter

 refreshInterval = 120

 primaryUser = {

 type = active

 refreshService = _services.sh

 refreshCommand = solaris-example-primary-user-d.sh

 refreshInterval = 86400

 }

 }

 load = {

 one = {

 type = active

 refreshService = _services.sh

 refreshCommand = echo 10.2

 refreshInterval = 60

 }

 five = {

 type = active

 refreshService = _services.sh

 refreshCommand = echo 10.2

CODE EXAMPLE 6-3 Solaris Example Model Realization File (Continued)
Chapter 6 Advanced Data Model Realization Techniques 71

The solaris-example-primary-user-d.sh file is shown below:

Note – All the filters used, for example, CPUfilter, and so on, in the example above,

are defined in the file solaris-example-d.flt .

 refreshInterval = 60

 }

 }

}

#

Filesystem Information uses the fileFilter

which is already discussed

in the previous section

#

filesystems = { [use templates.solaris-example-models-
d.filesystems

 _filters]

 type = active

 refreshService = _services.sh

 refreshCommand = df -kF ufs

 refreshFilter = fileFilter

 refreshInterval = 120

}

CODE EXAMPLE 6-4 The solaris-example-primary-user-d.sh File

#!/bin/sh

echo "I am a primary user (from Sh)"

CODE EXAMPLE 6-3 Solaris Example Model Realization File (Continued)
72 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Loading the DAQ Services

Tcl Filters

If the DAQ was implemented using Tcl filters, the Filters file must be loaded into a

container object. Nodes that want to call a procedure defined in the Filters file must

inherit this object.

The _services. <shell> object can then be used by other objects for Tcl shell DAQ

services.

RefreshQualifier for Filters

refreshFilter

Refresh filters can be specified in active and derived nodes:

The refreshFilter qualifier specifies a Tcl command or procedure that is used to

process the data acquired by the refresh command. The Tcl procedure must take a

single argument that is the result returned by the refresh command. The result of the

refresh filter is cascaded into the managed properties. Recall that if the refresh

command is implemented as a UNIX command or shell script, any data returned on

stderr constitutes a data acquisition error. As a result, no data is passed to the

refresh filter, regardless if data was returned on stdout too.

Solaris Example—Loading the Filter File

In the following example, the Solaris Example Filter file is loaded into the filters
object. This object can be inherited by other objects that want to use the procedures

defined in the Filter file. One such object is the CPU managed object.

refreshFilter = <Tcl command or procedure>
Chapter 6 Advanced Data Model Realization Techniques 73

The following is a code example of loading the filter file:

Advanced Data Acquisition Mechanisms

These are other techniques and are discussed in detail later on in this chapter.

Tcl/TOE Code

Standard Tcl/TOE commands, such as file to get file statistics, can be used to

acquire data. In addition, Tcl procedures can be written to filter raw results returned

by UNIX programs. Tcl provides many useful commands for parsing strings

(regexp, regsub, and so forth.).

In general, Tcl procedures are preferred over using shell scripts when filtering data

as they are typically easier to implement and more efficient. When returning data to

the agent from Tcl procedures or commands, the data elements must be elements in

a Tcl list.

C Code Libraries and Tcl/TOE Command Extensions

C-code libraries and Tcl/TOE command extensions can also be written to perform

DAQ. This is accomplished by packaging the DAQ functions as shared object

libraries that can be dynamically loaded by the Sun Management Center agent.

When returning more than one item of data from Tcl commands, the data elements

must be elements in a Tcl list.

The next few sections introduce concepts necessary to understand advanced data

model realization techniques.

CODE EXAMPLE 6-5 Loading the Filter File

_filters = { [use PROC]

 [source solaris-example-d.flt]

}

cpu = { [use templates.solaris-example-models-d.cpu _filters]
... }
74 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Other Node Types based on their
Operational Behavior

Passive Nodes

Nodes that do not actively collect data but instead have data cascaded into them are

known as passive nodes. By default, all nodes are passive, unless otherwise specified

using the type qualifier.

A node can be explicitly specified to be passive using the following specification:
type = passive

Passive managed property nodes can specify an update filter to process that data

being cascade into it.
updateFilter = <Tcl procedure or command>

If no update filter or other qualifier is required, it is unnecessary to explicitly declare

a passive node in the agent file at all. For such nodes, it is sufficient to model them

in the model file only. For more details on updateFilter , refer to the section,

“updateFilter” on page 81 .

Derived Nodes

A node is specified to be a derived node using the following specification:

Derived nodes establish dependency relationships with the nodes on which they rely

through the use of the refresh triggers specification. Nodes can be triggered by the

change in value or status of another node, and refresh automatically when such an

event occurs. Derived nodes can also refresh at an interval, although this is usually

unnecessary if the triggers are specified properly.

A derived node can use other MIB nodes as the service(s) for its refresh. In other

words, its value is often a function of the values or qualifiers of one or more other

managed properties. Through the use of derived variables, it is possible to create

nodes whose value represents averages, rates of change, specific digital filters (for

example: high pass, low pass, or band pass or other useful calculated information).

type = derived
Chapter 6 Advanced Data Model Realization Techniques 75

All derived nodes must specify the following refresh parameters:

The refreshCommand could also be Tcl commands and procedures.

Note – The refresh interval is optional for a derived node. Derived nodes may be

forced to update at periodic intervals, although this is usually unnecessary if the

refresh triggers are speficied properly. For more information on refreshTrigger, refer

to the next section.

refreshQualifiers & Other Qualifiers

The following refreshQualifiers can also be specified in active and derived nodes.

timeoutInterval

The timeout interval can be specified for active and derived nodes.

timeoutInterval = < timex specification >

If the refresh command does not complete within the specified timeoutInterval ,

the command is aborted. In that case, the alarm state of the node is marked

indeterminate (unknown value). The default is no timeout. This can be used in

conjunction with refreshMode = sync (described later) to ensure that the agent

does not hang while collecting data.

refreshTrigger

Refresh triggers must be specified in derived nodes.

refreshTrigger = <node name>[:<event>] [<node name>[:<event>] ...]

Derived nodes establish dependency relationships with one or more nodes on which

they rely through the use of the refresh triggers specification. Nodes can be triggered

off the change in value or status of another node, and refreshes automatically when

such an event occurs.

refreshService = <service object>
refreshCommand = <command to run in the context of refreshService>
refreshTrigger = <node name>[:<event>] [<node name>[:<event>] ...]
76 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The refreshTrigger specifies the name of the node that the derived node depends

on. The possible events are:

status —event generated upon status change of the node

refresh —event generated when an active node is to refresh its value

update —event generated in managed properties when the data values are

updated

set —event generated in the node when a SNMP set is made

If no event is specified, the occurrence of any of the above events in the specified

node will trigger the execution of the refresh operation. If an event is specified, only

the occurrence of the specified event on the specified node triggers the execution of

the refresh operation.

Specifying Node Name

<node name> can be specified two ways. If the triggering node is a direct child of the

current node, or is the direct child of a superior of the current node, the object name

can be used directly. For example, in the Solaris Example Module, the CPUmanaged

object has several child managed properties, including: idle , user , system , busy ,

and average (derived). Any of these refresh triggers are valid for the derived

average node:

refreshTrigger = busy:update

refreshTrigger = idle:refresh

refreshTrigger = system:status

If the triggering node does not meet the above criteria, the full name of the

triggering node must be specified. Wildcards are allowed. It is important to take care

that the name is uniquely specified. Otherwise, the first node matching the name

becomes the trigger.

The average node could trigger off the 15 minutes load average as follows:

Wildcards can be used as placeholders only for full node names.You cannot use

wildcards to partially specify a node name. For example, the following is not valid,

because the node name solaris is not fully specified:

refreshTrigger = *solaris*load.fifteen

refreshTrigger = *sol*load.fifteen
Chapter 6 Advanced Data Model Realization Techniques 77

Specifying RefreshTriggers from a Node in Another Module

The triggering node must not reside in a different module from the current node.

Otherwise, if the other module is unloaded, the triggering relationship is lost, and

both modules must be reloaded to restore the relationship.

Note – This cannot be used for active nodes.

refreshParams

Refresh params can be specified in active and derived nodes:

The refreshParams qualifier is used to specify arguments to be passed to the

refresh command. If the refresh mode is set to multi , multilist , or multiecm ,

and the refresh params specifies a space separated list of arguments, the refresh

command is executed once for each argument. The next section describes

refreshMode .

refreshMode Qualifier

The refresh mode can be specified in active and derived nodes:

The refreshMode qualifier specifies the execution mode of the refresh command.

async

By default, active nodes have a refresh mode of async . This specification implies

that the refresh operation is asynchronous. That is, the agent is allowed to process

other events during the execution of the refresh command.

refreshParams = <params>

refreshMode = async | sync
78 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

sync

If the refresh command must return immediately with the result, setting the

refreshMode to sync reduces the overhead associated with an asynchronous

command.

initInterval

The initialization interval can be specified in active and derived nodes.
initInterval = < timex specification >

The initInterval specifies, the time window within which the node must run the

refreshCommand for the first time after the module initializes.

Note – initInterval does not specify an exact time at which the node will first

issue its refresh command. Rather, this interval specifies a time range. Sometime

within that time range, the first refresh command is issued. The exact time is

randomized by the agent to spread out load.

If initInterval is specified as –1, the first execution of the refreshCommand is

executed as specified by the refreshInterval .

The initialization interval enables module designers to control the rate at which the

module nodes begin their data acquisition operations. This might be done to

prioritize the order in which nodes initialize, or to avoid large spikes in data

acquisition activity during module start up.

initHoldoff

The initialization holdoff can be specified in active and derived nodes:

The initHoldoff qualifier specifies the time, in Timex specification, to wait before

running the refresh command the first time.

The initialization holdoff is typically used to delay the execution of a specific node

that depends on the value of another node that must execute first. Effectively, the

initHoldoff time is added to the initInterval time, thereby delaying

initialization. initHoldoff must never be set to less than 2 seconds.

initHoldoff = < timex specification >
Chapter 6 Advanced Data Model Realization Techniques 79

Here are some examples of how initHoldoff and initInterval interact:

The node will initialize sometime between 2 and 12 seconds.

The node will initialize sometime between 30 and 40 seconds.

Check Qualifiers

checkCommand, checkService and checkInterval

The checkCommand, checkService, and checkInterval can be specified for active and

derived nodes to perform check operations.

checkService = <service specification>

checkCommand = <command to execute in service context>

checkInterval = <timex specification>

The check operation provides a mechanism for triggering refresh operations based

on some criteria tested by the check operation. Typically, the check operation is a

lighter weight operation and is performed at a higher frequency relative to the

refresh operation. This mechanism enables managed objects to be monitored in a

more timely fashion without the performance penalty of executing the refresh

operation at a higher frequency.

The check operation triggers the execution of the refresh operation only when the

value returned by the check command differs from the value from the previous

check.

For example, when monitoring the contents of a file, the refresh operation can

involve reading the contents of the file at every refresh interval. To monitor the file

more effectively, the last modification date of the file can be checked at a higher

frequency to determine if the file has changed. If the check detects that the file has

changed, the refresh operation is triggered. Hence, the check mechanism provides an

efficient way to monitor the file since checking the last modification date of a file

(using stat system call) is much more lightweight than having to open, read, and

close the file.

initInterval = 10
initHoldoff = 2

initInterval = 10
initHoldoff = 30
80 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

checkService specifies the service used to run the checkCommand. If this

qualifier is not specified, the checkCommand shall use the refreshService
service.

checkInterval specifies the interval, in timex specification, at which to run the

checkCommand. This checkInterval must be specified if the checkCommand is

specified.

checkInterval and refreshInterval operate completely independently of

each other. refreshInterval specifies the interval at which refreshes will

definitely occur. checkInterval specifies the interval at which refreshes can
occur, depending on the result of the check condition.

For example:

This means that every 10 seconds checkCommand is executed. If the check passes,

the refresh command is invoked. But regardless of those checks, every 5 minutes the

refresh command is invoked.

updateFilter

Passive managed property nodes can specify an update filter to process the data

being cascaded into it.

updateFilter = <Tcl command or procedure>

The update filter specifies a Tcl command or procedure to process the data being

cascaded into the passive node. Like the refreshFilter , the Tcl procedure

specified by the updateFilter takes a single argument that is the data that is

cascaded into the passive node.

To execute a user-defined Tcl procedure, the procedure must be available in the

current node’s context. To execute a user-defined Tcl command extension, the

appropriate Tcl package must be loaded as described in the earlier section Loading
the DAQ Services.

refreshService

Besides the refreshService command discussed in the previous chapter, the other

refresh services are:

■ SNMP stack (for doing data acquisition from other agents)

checkInterval = 10
refreshInterval = 300
Chapter 6 Advanced Data Model Realization Techniques 81

■ Internal service that enables access to built-in or dynamically-loaded extensions

to the agent process

■ Another node in the MIB tree (from which you can acquire data)

SNMP Service

refreshService = .services.snmp

Specify the SNMP service when the refresh command is an SNMP get request for

acquiring data from another SNMP agent. The SNMP service object is created by all

Sun Management Center agents for general SNMP communications.

Internal Service

refreshService = _internal

Specify the internal service when the refresh command is a Tcl/TOE command or

procedure to be executed in the current node’s context.

To execute user-defined Tcl procedures, the procedures must be available in the

current node’s context.

To execute user-defined Tcl command extensions, the appropriate Tcl package must

be loaded as described in the earlier section“Loading the DAQ Services” on page 73.

Superior Service

refreshService = _superior

Specify the superior service when the refresh command is a Tcl/TOE command or

procedure to be executed in the context of the current node’s superior in the tree

hierarchy.

For example, in the Solaris Example module, the CPU managed object node contains

a managed property node called “busy .” In that example, the CPU node is the

superior of the busy node.

To execute user-defined Tcl procedures, the procedures must be available in the

superior’s context.

To execute user-defined Tcl command extensions, the appropriate Tcl package must

be loaded as described in the earlier section Loading the DAQ Services.
82 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

MIB Node Service

Use this type of service when the refresh command is to be executed in the context

of another MIB node. The refresh command specified must be available in the

context of the specified MIB node.

This specification is often used for derived nodes that specify the MIB node whose

value the derived node depends on.

For example, in the Solaris Example Module, the CPUmanaged object has several

child managed properties, including: idle , user , system , busy , and average
(derived). So, the refresh service for the derived average node is set to one of these

other children, such as:

For information on what are valid <node name> specifications, refer to the

description of refreshTrigger in the section on “refreshTrigger” on page 76.

Note – The specified node could reside in an entirely different module. However,

this type of interdependency between modules is not suggested, since the modules

can be loaded or unloaded independently.

refreshService = <node name>

refreshService = busy
Chapter 6 Advanced Data Model Realization Techniques 83

Data Model Realization Specifications
with Tcl procedures as DAQ

Example Data Model File

The following code example lists the additional specifications needed in the Solaris

Example Model file:

The following is an example of the Data Model Realization file using Tcl procedures

as DAQ:

CODE EXAMPLE 6-6 Solaris Example Model File

Additional managed property average needs to be managed and

is to be added to the managed object cpu

in the models file of solaris-example from the previous section o

on the Example Data Model File.

cpu = { [use MANAGED-OBJECT]

 average = { [use PERCENTHI MANAGED-PROPERTY]

 shortDesc = AvgCPU

 mediumDesc = Average CPU Usage

 fullDesc = Average percentage of time CPU is busy

 units = %

 }

}

CODE EXAMPLE 6-7 Solaris Example Model Realization File

[use MANAGED-MODULE]

[requires template solaris-example-models-d]

#

Load Module Parameters

#

[load solaris-example-m.x]
84 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

#

Define services required by this module

#

_services = { [use SERVICE]

 #

 # Standard Bourne Shell

 #

 sh = {

 command = "pipe://localhost//bin/sh;transport=shell"

 max = 2

 }

}

#

Load filters required by this module

#

_filters = { [use PROC]

 [source solaris-example-d.flt]

}

_procedures = {

 [use PROC]

 [source solaris-example-system.prc]

 [source solars-example-average-d.prc]

}

#

Cpu Information

#

cpu = { [use templates.solaris-example-models-d.cpu _filters]

 type = active

 refreshService = _services.sh

 refreshCommand = vmstat 10 2

 refreshFilter = cpuFilter

 refreshInterval = 60

 average = { [use _procedures]

 type = derived

 refreshService = _internal

 refreshTrigger = busy:update

 refreshCommand = getAverage

CODE EXAMPLE 6-7 Solaris Example Model Realization File (Continued)
Chapter 6 Advanced Data Model Realization Techniques 85

 }

}

#

System User and Load Information

#

system = { [use templates.solaris-example-models-d.system }

 userstats = { [use _filters]

 type = active

 refreshService = _services.sh

 refreshCommand = who

 refreshFilter = userFilter

 refreshInterval = 120

 numUsers{ [use _procedures]

 refreshService = _internal

 updateFilter = numUsersFilter

 primaryUser = { [use _procedures]

 type = active

 refreshService = _internal

 refreshCommand = getPrimaryUser

 initInterval = 10

 refreshInterval = 86400

 }

 }

 load = {

 one = {

 type = active

 refreshService = _services.sh

 refreshMode = sync

 refreshCommand = echo 10.2

 initInterval = 20

 refreshInterval = 60

 }

 five = { [use _procedures]

 type = active

 refreshService = _services.sh

 refreshCommand = echo 10.2

CODE EXAMPLE 6-7 Solaris Example Model Realization File (Continued)
86 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The following is an example of the corresponding solaris-example-system.prc
File:

 initInterval = 60

 refreshInterval = 60

 checkService = _internal

 checkCommand = testFive

 checkInterval = 10

 }

 }

}

#

Filesystem Information

#

filesystems = { [use templates.solaris-example-models\
d.filesystems _filters]

 type = active

 refreshService = _services.sh

 refreshCommand = df -kF ufs

 refreshFilter = fileFilter

 refreshInterval = 120

}

CODE EXAMPLE 6-8 The solaris-example-system.prc File

This is called by the primaryUser node

proc getPrimaryUser{}{

 set primaryUser "Hello"

 return $primaryUser

}

This is the updateFilter for numUsers

proc numUsersFilter{ index value } {

 if { $value > 0 } {

 return $value

 } else {

 return 1

 }

}

CODE EXAMPLE 6-7 Solaris Example Model Realization File (Continued)
Chapter 6 Advanced Data Model Realization Techniques 87

The following is an example of the corresponding solaris-example-average-
d.flt File:

Standard Extension for File Name

Objects in the MIB tree can perform special data acquisition functions or alarm

status actions. These specialized functions can be specified as Tcl procedures and

placed in a module-specific procedures file. This provides a simple mechanism to

override or extend the functionality of the core MIB object primitives.

This file is optional for a module, and only exists if the module is using procedures.

Only Tcl/TOE procedures can be defined in this file.

Loading the DAQ Services

The following section describes the Tcl procedures and node types based on the

operational behavior to be used and refresh qualifiers.

This is the checkCommand

proc testFive{}{

 set result 10.2

 return $result

}

CODE EXAMPLE 6-9 The solaris-example-average-d.flt File

The corresponding solaris-example-average-d.flt file

finds the value of the other nodes and finds their average.

proc getAverage{} {

 set busy [toe_send [locate busy] getValue]

 set idle [toe_send [locate idle] getValue]

 set user [toe_send [locate user] getValue]

 set system [toe_send [locate system] getValue]

 set average [expr ($busy + $idle + $user + $system)/4]

}

<module><-subspec> -d.prc

CODE EXAMPLE 6-8 The solaris-example-system.prc File (Continued)
88 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Tcl Procedures

If the DAQ was implemented using Tcl procedures, the Procedures file must be

loaded into a container object. Nodes that need to call a procedure defined in the

Procedure file must then inherit this object.

Node Type Based on Operational Behavior

Node types can be active, derived or passive.

Refresh Qualifiers

All the refresh qualifiers discussed earlier are applicable. Also, the refreshService

will be _internal .

Data Model Realization Specifications
with C libraries and Tcl/TOE Command
Extensions as DAQ

Solaris Example Data Model Realization File

This is an example of the migration of DAQ functionality to Tcl command

extensions. The discussion of this example follows in the next few sections.

_procedures = { [use PROC]
 [source < modules ><-subspec> -d.prc]
}
<node > = { [use < PRIMITIVE > _procedures] ... }

CODE EXAMPLE 6-10 Agent File Modifications

[requires package ssi]
[requires template solaris-example-models-d]
[use MANAGED-MODULE]
Chapter 6 Advanced Data Model Realization Techniques 89

[load solaris-example-m.x]

_services = { [use SERVICE]
 sh = {
 command = "pipe://localhost//bin/sh;transport=shell "
 max = 2
 }
}
#
default the refresh service for the entire module
#
refreshService = _internal

cpu = { [use templates.solaris-example-models-d.cpu]
 type = active

 refreshMode = sync
 refreshCommand = ssinfo cpu
 refreshInterval = 60

 average = {
 type = derived
 refreshTrigger = busy:update
 refreshCommand = digitalFilter [valueOf busy.0]

refreshParams = 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
 }
}
system = { [use templates.solaris-example-models-d.system]
 userstats = { [use _filters]
 type = active
 refreshCommand = ssinfo user
 refreshInterval = 120

 primaryUser = {
 type = active
 refreshService = _services.sh
 refreshCommand = solaris-example-primary-user-d.sh
 initInterval = 10
 refreshInterval = 86400
 }
 }
 load = { [use _filters]
 type = active
 refreshCommand = ssinfo load
 refreshInterval = 120
 }
}

CODE EXAMPLE 6-10 Agent File Modifications (Continued)
90 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Shown below are code fragments from the ssi package files.

filesystems = { [use templates.solaris-example-models-
d.filesystem]
 type = active
 refreshMode = sync
 refreshCommand = ssinfo file
 refreshInterval = 120
}

[load solaris-example-d.def]

CODE EXAMPLE 6-11 Code Fragments From ssi Package File

packages.h
.
.
.
#define PKG_SSI "ssi"
extern int Ssi_Init();
.
.
.
pkgssi.c
.
.
.
int
Ssi_Init(interp)
 Tcl_Interp *interp;
{
 int code;

 code = Tcl_PkgProvide(interp, PKG_SSI, "1.0");
 if (code != Tcl_OK) {
 return code;
 }
 /* --- create “ssinfo” command --- */
 Tcl_CreateCommand(interp, “ssinfo”, cmdSsinfo, (ClientData)
“ssinfo”,
 (Tcl_CmdDeleteProc *) NULL);
 return(Tcl_OK);
}

int
cmdSsinfo(dummy, interp, argc, argv)
 ClientData dummy; /* Not used. */

CODE EXAMPLE 6-10 Agent File Modifications (Continued)
Chapter 6 Advanced Data Model Realization Techniques 91

Shown below are code fragments of the DAQ C library code:

Tcl_Interp *interp; /* Current interpreter. */
int argc; /* Number of arguments. */

 char **argv; /* Argument strings. */
{
.
.
.
switch(*argv[1]) {
 case "l":
 case "L":
 if(!strcasecmp(argv[1], "load")) {
 float one, five, fifteen;

 code = ssiGetLoadAverage(&one,&five,&fifteen);
 if (code == 0) {

 sprintf(buf, "%3.2f %3.2f %3.2f", one, five, fifteen);
 Tcl_AppendResult(interp, buf, (char *)NULL);
 }
 else {
 ssi_error = 1;
 }
 found_option = 1;
 }
 break;
.
.
.
 return(status);
}

CODE EXAMPLE 6-12 DAQ C code

siSolaris.c
A code fragment from the ssi code is shown below.
.
.
.
int ssiGetLoadAverage(float *pfOneMin, float *pfFiveMin, float
*pfFifteenMin)
{
 long laAveNRun[3];
 int iSize;

 if (!bSSIInit)
 {
 return (ssiAPI_not_init);

CODE EXAMPLE 6-11 Code Fragments From ssi Package File (Continued)
92 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Steps Involved

The migration of functionality from scripts to C involves the following steps:

■ Writing a C library to perform the functions performed by the scripts

■ Writing a Tcl extension to integrate the library functions

■ Modifying the agent definition file to make use of the new Tcl extensions

 }

 if (!(NlistArray[X_AVENRUN].n_value))
 {
 int iEntry = X_AVENRUN;
 if (initKvmEntries (&iEntry , 1) != 0)
 {
 return (ssiAPI_kvm_nlist_failed);
 }
 }

 iSize = sizeof (laAveNRun);
 if (kvm_read(pKD, NlistArray[X_AVENRUN].n_value,
 (char *)(laAveNRun), iSize) != iSize)
 {
 return (ssiAPI_loadavg_failed);
 }

 *pfOneMin = (float)loaddouble (laAveNRun[0]);
 *pfFiveMin = (float)loaddouble (laAveNRun[1]);
 *pfFifteenMin = (float)loaddouble (laAveNRun[2]);

 return (0);
} /* end ssiGetLoadAverage () */
.
.
.
Solaris Example - Tcl command extension

CODE EXAMPLE 6-12 DAQ C code (Continued)
Chapter 6 Advanced Data Model Realization Techniques 93

Writing a C Library

Although the C-code data acquisition functions can be put directly in the Tcl

extension, placing the functions in a generic library enables other C programs to use

the same functions, which improves code coverage and increases the reliability of

the code. For example, the following is a C subroutine used to retrieve the system

load average:

This function can then be combined with other functions that determine system

information to create a library of functions that access the kernel and determine

system specific information.

CODE EXAMPLE 6-13 Code Fragment Used to Retrieve System Load Average

int ssiGetLoadAverage(float *pfOneMin, float *pfFiveMin, float *pfFifteenMin)
{
 long laAveNRun[3];
 int iSize;

 if (!bSSIInit)
 {
 return (ssiAPI_not_init);
 }

 if (!(NlistArray[X_AVENRUN].n_value))
 {
 int iEntry = X_AVENRUN;
 if (initKvmEntries (&iEntry , 1) != 0)
 {
 return (ssiAPI_kvm_nlist_failed);
 }
 }
iSize = sizeof (laAveNRun);
 if (kvm_read(pKD, NlistArray[X_AVENRUN].n_value,
 (char *)(laAveNRun), iSize) != iSize)
 {
 return (ssiAPI_loadavg_failed);
 }

 *pfOneMin = (float)loaddouble (laAveNRun[0]);
 *pfFiveMin = (float)loaddouble (laAveNRun[1]);
 *pfFifteenMin = (float)loaddouble (laAveNRun[2]);
 return (0);
} /* end ssiGetLoadAverage () */
94 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Writing a Tcl Extension

To use C library functions in Tcl, Tcl extension files, referred to as packages , must

be created. These packages define an initialization procedure that enables Tcl

commands to run C code. When creating packages, consider the following issues:

■ Package naming

■ Writing the initialization procedure

■ Returning data to Tcl

These topics are described in the following sections. Refer to the Tcl documentation

for information about Tcl functions (Tcl_ *).

Package Naming

To enable a single Tcl application to incorporate many different packages without

experiencing naming conflicts, a naming convention must be followed. This

convention specifies a short, unique prefix for each package. For example, a package

that uses the system- specific C library functions may use a prefix of ’ssi’ (system

specific interface). This prefix is then used to name the initialization function

(described in the next section) and the package shared object file (pkgssi.so).

Init Function

Each package must include an initialization function. This function is called when

the package is loaded. The name of the initialization procedure must contain the

package prefix with the first letter capitalized followed by _Init . For example the

initialization function for the ssi package would be named Ssi_Init .

Package Registration

The initialization function is used for package and command registration.

Package registration ensures that no other versions of the same package is being

used currently or will be loaded later. Package registration is done using the

Tcl_PkgProvide command. For example, the registration of the ssi package

version 1.0 is:

code = Tcl_PkgProvide(interp, "ssi", "1.0");
if (code != Tcl_OK) {
 return code;
}

Chapter 6 Advanced Data Model Realization Techniques 95

Command Registration

Commands provided by the package are registered in the Tcl interpreter using the

Tcl_CreateCommand function. There must be one call to Tcl_CreateCommand for

each Tcl command created. For example:

In this example, a single Tcl command (ssinfo) is created to access all the ssi library

functions. The Tcl_CreateCommand function creates a link between the Tcl ssinfo
command and the C cmdSsinfo function. From the cmdSsinfo function, the

appropriate ssi function is called based on the ssinfo command arguments. In this

example, a design decision was made to create a single Tcl command to access all the

ssi library functions. The other possibility is to create a Tcl command for each

possible ssi library function. It is up to the developer to decide which is better.

Returning Data into Tcl

After the C library function has been called to acquire data, the data must be

returned to Tcl interpreter. This is done by using the following Tcl commands:

■ Tcl_AppendElement

■ Tcl_AppendResult

For example to return the data from the ssiGetLoadAverage function call, the

function Tcl_AppendResult is used:

Note – Data must be returned to the Tcl interpreter as a string.

Tcl_CreateCommand(interp, "ssinfo", cmdSsinfo, (ClientData)
"ssinfo",
 (Tcl_CmdDeleteProc *) NULL);

code = ssiGetLoadAverage(&one,&five,&fifteen);
if (code == 0) {
 sprintf(buf, "%3.2f %3.2f %3.2f", one, five, fifteen);
 Tcl_AppendResult(interp, buf, (char *)NULL);
}

96 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Loading the DAQ Services

Tcl Command Extension Packages

If DAQ is implement using a Tcl command extension package, the package shared

object must be loaded using the following directive:

This loads the package so that the Tcl commands provided by the package is

available in the agent context. For example, to load a package named pkgssi.so ,

the command is:

Node Type Based on Operational Behavior

These can be active, derived or passive.

Refresh Qualifiers

To use the Tcl commands from the package, the refreshCommand must be modified

to call the appropriate package function. In addition, the refreshService must be

set to _internal to denote that the refreshCommand is to be run in the agent

context. Finally, the refreshMode can be set to sync to optimize the function call.

Other refreshQualifiers will remain the same.

Another DAQ Service

Tcl Shell Service
To enable the agent to execute Tcl command extensions in a separate subshell

process:

[requires packages < package name >]

[requires packages ssi]
Chapter 6 Advanced Data Model Realization Techniques 97

1. Create binary extensions in the form of a Tcl package.

This is described in the “C Code Libraries and Tcl/TOE Command Extensions” on

page 74.

2. Create a simple Tcl wrapper script to load the packages required by the subshell.

By convention, Tcl wrapper scripts are named with a .Tcl extension and use the

pkgload command to load the required Tcl packages.

3. Add a Tcl shell service object in the agent file.

The Tcl shell service object is an object maintaining a pipe to one or more Tcl

subshell processes where commands can be directed and the results returned

asynchronously.

The module configuration file specification for a Tcl shell service object is:

where:

<shell> is the name of the Tcl shell.

<Tcl shell name> is the name of the Tcl script containing the pkgload commands.

<max shells> specifies the maximum number of shell subprocess to spawn. This is

typically set to 1 or 2.

The _services.solarisShell object can be used by other objects for Tcl shell

DAQ services.

Solaris Example—Tcl Shell

The _services.solarisShell can be used to collect data asynchronously in a

separate sub-shell.

 _services = { [use SERVICE]
<shell> = {

command = "pipe://localhost// <Tcl shell name>; transport=shell "
 max = <max shells>
 }
 }
98 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Performance Considerations

Some data acquisition mechanisms are more efficient than others. In general, C-code

libraries and Tcl command extensions are much more efficient than UNIX commands

and shell scripts.

For example, CPU usage statistics can be computed using a shell script that executes

the UNIX command (vmstat) and parses the result using (awk). Similarly, these

CPU statistics can also be computed by running vmsta t directly and parsing the

results using a Tcl procedure. Using a Tcl procedure to parse data is slightly more

efficient than using UNIX filter commands like sed and awk.

Alternatively, this information can be much more efficiently computed using a Tcl

command extension and C system calls that do not include the overhead of creating

processes and parsing data in a shell script or in Tcl.

Note – Because the Sun Management Center agent is single threaded when running

Tcl commands, it is assumed that all Tcl commands return their results with little

delay. If it is expected that the Tcl command will take a significant amount of time to

return its result, a Tcl shell that loads the appropriate Tcl package can be spawned as

a subprocess of the agent. The Tcl command can then be directed to the subprocess

and the result can be returned asynchronously to ensure that the agent is not

blocked by the execution of the command.
Chapter 6 Advanced Data Model Realization Techniques 99

100 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 7

Alarm Management

This chapter covers the following topics:

■ What are Alarms—page 101

■ Modules and Alarms—page 101

■ Alarm Management using rCompare Rule—page 102

What are Alarms

The Sun Management Center software monitors your hardware and software.

When abnormal conditions occur, the Sun Management Center notifies you, through

alarms. These alarms are triggered by conditions falling outside of predetermined

ranges, or by Sun Management Center rules. Default alarm conditions and rules are

included in the modules. In addition, you may also set up your own alarm

thresholds.

Modules and Alarms

In Sun Management Center, an alarm rule performs one or more alarm checks. Each

alarm check evaluates alarm criteria to determine if the managed property is in a

corresponding alarm state. Actions can also be triggered by the alarm states; these

actions are known as status actions.

Thus, each alarm rule is associated with a number of alarm criteria, alarm states, and

optional status actions. If none of the alarm criteria are satisfied, the node is

considered to be in the ok state, and hence nodes without an alarm rule are always

considered okay.
101

Typically, the alarm rule is evaluated after completing the refresh operation (the

refresh request and the subsequent data cascade). For some alarm rules, the rule may

be triggered whenever a particular error message appears in a log file. These are

referred to as log rules.

Built-In rCompare Rule

Each managed property can be assigned a single associated alarm rule. This

assignment is done in the model file. A generic rule, called rCompare , is provided.

This rule performs numeric comparisons, regular expression checks, or string

comparisons. The exact checks that are to be performed are controlled by alarm check
and alarm limit parameters (as described later in this chapter).

Each managed property is assigned a single associated alarm rule. This assignment

is done in the model file. For standard alarm types (HI , LO, etc.), the rule rCompare
is used by default. If a managed property is not assigned an alarm rule, then no

alarm checking is performed on that managed property.

Writing Custom Rules

Custom rules can employ a wide variety of alarm criteria. They can examine the

value of the node to which the rule is attached, or the value or status of a different

node. A special category of rules, referred to as log rules, can be triggered to fire

whenever a message matching a specified regular expression appears in a log file.

For more information, refer to the Chapter 8.

Alarm Management using rCompare
Rule

Example Alarm File (solaris-example-d.def)

The alarm file for the Solaris example is shown below. Note that the tree structure

specified in the agent file is used in this file when specifying alarm information for

the managed properties.
102 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Alarm severities are specified to reflect the relative significance of the various

managed properties. Alarm limits are also specified when appropriate.

Alarm limits are specified for a number of file systems typically found on many

systems.

CODE EXAMPLE 7-1 Alarm File

cpu = {
 idle = {
 alarmSeverity = 3
 alarmlimit:error-lt = 10
 alarmlimit:warning-lt = 15
 alarmlimit:info-lt =
 }

 busy = {
 alarmSeverity = 3
 alarmlimit:error-gt = 95
 alarmlimit:warning-gt = 90
 alarmlimit:info-gt =
 }

 system = {
 alarmSeverity = 3
 alarmlimit:error-gt = 95
 alarmlimit:warning-gt = 90
 alarmlimit:info-gt =
 }

 user = {
 alarmSeverity = 3
 alarmlimit:error-gt = 95
 alarmlimit:warning-gt = 90
 alarmlimit:info-gt =
 }

 average = {
 alarmSeverity = 7
 alarmlimit:error-gt = 95
 alarmlimit:warning-gt = 90
 alarmlimit:info-gt =
 }
}

user = {
 numUsers = {
 alarmSeverity = 5
 alarmlimit:error-gt = 10
Chapter 7 Alarm Management 103

 alarmlimit:warning-gt = 5
 alarmlimit:info-gt =
}
 numSessions = {
 alarmSeverity = 5
 alarmlimit:error-gt = 30
 alarmlimit:warning-gt = 25
 alarmlimit:info-gt =
 }
}

filesystems = {
 fileTable = {
 fileEntry = {
 avail = {
 alarmlimit:error-lt() = 5000
 alarmlimit:warning-lt() = 10000
 alarmlimit:info-lt() =
 alarmlimit:error-lt(/) = 5000
 alarmlimit:warning-lt(/) = 10000
 alarmlimit:info-lt(/) =
 alarmlimit:error-lt(/usr) = 5000
 alarmlimit:warning-lt(/usr) = 10000
 alarmlimit:info-lt(/usr) =
 alarmlimit:error-lt(/var) = 10000
 alarmlimit:warning-lt(/var) = 20000
 alarmlimit:info-lt(/var) =
 alarmlimit:error-lt(/tmp) = 10000
 alarmlimit:warning-lt(/tmp) = 20000
 alarmlimit:info-lt(/tmp) =
 alarmlimit:error-lt(/opt) = 5000
 alarmlimit:warning-lt(/opt) = 10000
 alarmlimit:info-lt(/opt) =
 alarmlimit:error-lt(/usr/openwin) = 1000
 alarmlimit:warning-lt(/usr/openwin) = 2000
 alarmlimit:info-lt(/usr/openwin) =
 }
pctUsed = {
 alarmlimit:error-gt() = 98
 alarmlimit:warning-gt() = 90
 alarmlimit:info-gt() =
 alarmlimit:error-gt(/) = 95
 alarmlimit:warning-gt(/) = 90
 alarmlimit:info-gt(/) =
 alarmlimit:error-gt(/usr) = 98
 alarmlimit:warning-gt(/usr) = 95
 alarmlimit:info-gt(/usr) =

CODE EXAMPLE 7-1 Alarm File (Continued)
104 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

▼ Managing Alarms using rCompare

1. Create the rule in the models file.

These are explained in the section on “Using the rCompare Rule in the Models File.”

2. Create the alarm definition file.

These are explained in the section on “Creating the Alarm File.”

3. Speficy alarm limits and other alarm criteria.

These are explained in the section on “Specifying the Alarm Criteria.”

4. Specify actions to be performed based on the alarm state.

These are explained in the section on “Specifying Status Actions.”

Using the rCompare Rule in the Models File

Example—Intermediate Data Model

In this action, data and alarm type primitives are added to the managed properties

defined in the data model structure created previously. For instance, the CPU

managed properties like idle, busy, system, user, and average can be represented by

the PERCENTdata type.

 alarmlimit:error-gt(/var) = 90
 alarmlimit:warning-gt(/var) = 80
 alarmlimit:info-gt(/var) =
 alarmlimit:error-gt(/tmp) = 90
 alarmlimit:warning-gt(/tmp) = 80
 alarmlimit:info-gt(/tmp) =
 alarmlimit:error-gt(/opt) = 98
 alarmlimit:warning-gt(/opt) = 95
 alarmlimit:info-gt(/opt) =
 alarmlimit:error-gt(/usr/openwin) =
 alarmlimit:warning-gt(/usr/openwin) = 100
 alarmlimit:info-gt(/usr/openwin) =
 }
 }
 }
}

CODE EXAMPLE 7-1 Alarm File (Continued)
Chapter 7 Alarm Management 105

For the properties that represent CPU usage levels (busy, system, user, and average),

it is also prudent to perform a high alarm check to detect instances when these

properties exceed specified limits. Thus, these properties must use the PERCENTHI
primitive. Conversely, the idle property reflects the percent of time the CPU is not in

use; as a result, a PERCENTLOprimitive can be used to detect times of low CPU

usage.

Similar reasoning is exercised when assigning data and alarm type primitives to the

other managed properties. Also, to illustrate the use of rules, the rUsrChk rule

(defined in the solaris-example-d.rul file) is attached to the consoleUser
object.

The resulting data model structure with data and alarm type primitives is:

CODE EXAMPLE 7-2 Solaris Example—Intermediate Data Model

cpu = { [use MANAGED-OBJECT]
 idle = { [use PERCENTLO MANAGED-PROPERTY] }
 busy = { [use PERCENTHI MANAGED-PROPERTY] }
 system = { [use PERCENTHI MANAGED-PROPERTY] }
 user = { [use PERCENTHI MANAGED-PROPERTY] }
 average = { [use PERCENTHI MANAGED-PROPERTY] }
}
system = { [use MANAGED-OBJECT]
 userstats = { [use MANAGED-PROPERTY-CLASS]
 numUsers = { [use INTHI MANAGED-PROPERTY] }
 numSessions = { [use INTHI MANAGED-PROPERTY] }
 primaryUser = { [use STRING MANAGED-PROPERTY] }
 }
 load = { [use MANAGED-PROPERTY-CLASS]
 one = { [use FLOATHI MANAGED-PROPERTY] }

 five = { [use FLOATHI MANAGED-PROPERTY] }

 fifteen = { [use FLOATHI MANAGED-PROPERTY] }

 }
}
filesystems = { [use MANAGED-OBJECT]
 fileTable = { [use MANAGED-OBJECT-TABLE]
 fileEntry = { [use MANAGED-OBJECT-TABLE-ENTRY]
 index = mount
 mount = { [use STRING MANAGED-PROPERTY] }
 size = { [use INT MANAGED-PROPERTY] }
 avail = { [use INTLO MANAGED-PROPERTY] }
 pctUsed = { [use PERCENTHI MANAGED-PROPERTY] }
106 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

How to specify Alarms in the Data Model File

Data type primitives can be optionally combined with an alarm type that

characterizes the alarm checks performed on the property’s data value.

These data and alarm primitives have the following form:

where

<data type> represents the type of data stored in the primitive

<alarm type> optionally specifies the type of alarm checks to perform

Alarm Types

The alarm type specification is optional and must be combined with a valid data

type. The alarm type defines the alarm check to perform on the data value. The

alarm check criteria is specified in the Chapter 8. If the alarm type is not specified,

no alarm checks are performed on the affected managed property.

The possible values for the alarm type are:

■ HI —checks if data value is greater than the specified alarm limits. This alarm

type can only be combined with the INT , FLOAT, PERCENT, and COUNTERdata

types. It cannot be used in combination with the STRING data type.

■ LO—checks if data value is less than the specified alarm limits. This alarm type

can only be combined with the INT , FLOAT, PERCENT, and COUNTERdata types. It

cannot be used in combination with the STRING data type.

■ HILO—checks if data value is less than or greater than the specified alarm limits.

This alarm type can only be combined with the INT , FLOAT, PERCENT, and

COUNTERdata types. It cannot be used in combination with the STRING data type.

■ EQ—checks if data value is equal to the specified alarm criteria. This alarm type

can only be combined with the INT , FLOAT, PERCENT, COUNTERand STRING data

types.

 }
 }
}

<data type>[< alarm type>]

CODE EXAMPLE 7-2 Solaris Example—Intermediate Data Model (Continued)
Chapter 7 Alarm Management 107

■ NE—checks if data value is not equal to the specified alarm criteria. This alarm

type can only be combined with the INT , FLOAT, PERCENT, COUNTERand STRING
data types.

■ REGEXP—checks if data value matches the regular expression alarm criteria. This

alarm type can only be used in combination with the STRING data type.

■ RULE- executes a rule check procedure. This alarm type can be used in

conjunction with any data type, or, optionally, the data type can be left blank if

the node exists only to support a rule and has no associated data, discussed in the

Rules chapter.

Data and Alarm Type Primitive Examples

Examples of data and alarm type primitives are:

■ INT —general integer type with no alarm checking

■ FLOATHI—a floating point value that will check to see if the data value is greater

than the specified alarm limits

■ STRINGREGEXP—specifies a string type with alarm checks using regular

expression patterns

■ INTRULE—an integer value to which a rule check is applied

■ RULE—contains no value (empty string), but a rule is to be executed for the node

Required Content in the Model Realization File

The required content in the model realization file to load the alarma file is:

[load <modules><-subspec>-d.def]

Creating the Alarm File

The alarm file defines information used by alarm checks performed on managed

properties. This file is loaded by the agent file with the following line:

The contents of the alarm file are overlaid on top of the MIB object tree defined in

the agent file.

[load <module><-subspec> -d.def]
108 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

In general, alarm management information is likely to be modified by site

administrators, whereas the object hierarchies and DAQ mechanisms specified in the

agent file are not typically modified. Therefore, alarm management information is

defined in a separate file from the agent file to facilitate the specification of site-

specific alarm information defaults.

File Name

The file name format is:

For example:

Note – The alarm file (*.def) is sometimes interchageably called the default file.

Contents

The alarm file, which is in the module configuration file format mimics the same tree

structure specified in its corresponding agent file and contains entries only for those

nodes with alarm specifications.

If alarm file is left empty, the refresh operations are still executed and managed

property data is aquired, but the managed properties never goes into alarm.

The alarm file can specify the following alarm management related qualifiers for any

of the managed property nodes in the agent file tree structure:

<module><-subspec> -d.def

 solaris-example-d.def

alarmChecks = <alarm check1> < alarm check2)
alarmlimit:< alarm check > = <alarm limit>
alarmSeverity = <integer [0-9]>
alarmWindow = <Alarm window timex specification >

statusActions(<alarm event>) = <action1> <action2> ...
statusService(< action1 >) = < service >
statusCommand(< action1 >) = < command>
statusService(< action2 >) = < service >
statusCommand(< action2 >) = < command>
Chapter 7 Alarm Management 109

where:

<alarm check> is a specification of an alarm check that has the following format

<alarm state>-<alarm test>. The sections, “Alarm Checks” and “Specifying Alarm

Limits,” describe this specification.

<alarm limit> specifies the threshold criterion for this check. The sections “Alarm

Checks” and “Specifying Alarm Limits” describe this specification.

<actionN> specifies a logical name of an action to be executed.

<service> specifies an execution context for the command to be run.

<command> specifies a command to execute.

Specifying the Alarm Criteria

Specifying Alarm Checks

The actual alarm checks that are performed when using the rCompare (using the

standard alarm types) rule are specified by the alarmChecks qualifier. The

alarmChecks qualifier does not typically have to be specified in the alarm file since

every alarm type already defines an appropriate set of default alarm checks.

In general, the alarm checks specified by the alarm type primitives, which are used

by managed properties, are adequate. However, if a different set of alarm checks

must be specified for a managed property, the alarmChecks qualifier can be used to

override the default alarm checks specification.

where

<alarm check> is an alarm check specification of the form: <alarm state>-<alarm
test>

Possible alarm states are info , warning , or error .

The following sections describe the possible alarm tests and alarm checks.

Alarm Checks

The standard alarm types and their default alarm checks are:

alarmChecks = <alarm check> [<alarm check2> ...]
110 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

HI—alarmChecks = error-gt warning-gt info-gt

LO—alarmChecks = error-lt warning-lt info-lt

HILO—alarmChecks = error-gt error-lt warning-gt warning-lt info-gt info-lt

EQ—alarmChecks = error-eq warning-eq info-eq

NE—alarmChecks = error-ne warning-ne info-ne

REGEXP—alarmChecks = error-rx warning-rx info-rx

Alarm checks are performed in the order they are listed. Thus, alarm checks should

be listed from highest to lowest alarm severity.

For example, the HI alarm type primitive defines the following alarm checks:

alarmChecks = error-gt warning-gt info-gt

This indicates that three alarm checks may be performed. The first check, error-gt ,

tests whether the data value is greater than the corresponding alarm limit. If the test

is positive, the managed property is given the error alarm state and no more alarm

checks are performed.

If the first check is negative, the second check, warning-gt , tests whether the data

value is greater than the corresponding alarm limit. If the test is positive, the

managed property is given the warning alarm state and no further alarm checks are

performed.

If the second check is negative, the last check, info-gt , tests whether the data value

is greater than the corresponding alarm limit. If the test is positive, the managed

property is given the info alarm state. Otherwise, the managed property is given

the ok state.

Specifying Alarm Limits

An alarm limit can be specified for each alarm check defined for the managed

property. Alarm limits can be specified for managed properties whose data values

are either scalars or vectors.

If no alarm limits are specified for a managed property, then the alarm checks are

not performed for that managed property.
Chapter 7 Alarm Management 111

Scalars

Alarm limits are specified for scalars as follows:

where:

<alarm check> is an alarm check specification of the form: <alarm state>-<alarm
test>.

Solaris Example—Scalar Alarm Limit

The cpu.busy managed property is assigned the FLOATHI data and alarm type.

Since it does not override the alarm checks, it uses the default alarm checks specified

in the FLOATHI primitive.

Vectors

Alarm limits can also be specified for a table of managed properties whose data

values are vectors. An alarm limit can be specified for each vector element by

qualifying the alarm limit with the rowname. The rowname is used as an index to

identify rows in the table. The managed property designated to be the rowname is

specified in the Model file using the index qualifier.

In addition, default alarm limits can be specified for vector elements that do not

have explicitly defined alarm limits.

Alarm limits are specified for vectors as follows:

where:

alarmlimit:< alarm check > = <alarm limit or criteria>

cpu = {
 busy = {
 alarmlimit:error-gt = 95
 alarmlimit:warning-gt = 90
 alarmlimit:info-gt =
 }
}

alarmlimit:< alarm check >() = <default alarm limit>
alarmlimit:< alarm check >(<rowname>) = <alarm limit for row element>
112 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

<alarm check> is an alarm check specification of the form: <alarm state>-<alarm
test>.

<rowname> is the data value used to identify the row in the table. The column is

specified by the index qualifier.

Solaris Example—Vector Alarm Limit

The following example demonstrates the specification of alarm limits for the avail
managed property in the filesystems table of the Solaris Example module. The

avail managed property is the amount of available disk space.

Default error, warning , and info alarm limits for the amount of available disk

space in a file system are specified by the alarm limit entries qualified by() . These

default alarm limits are applied to filesystems that do not have explicitly set alarm

limits.

The mount managed property was designated as index ; hence, its values are used

as the rowname. Thus, the mount name of file systems is used to reference specific

rows.

Alarm limits for the amount of available disk space for the /usr filesystem are

specified by the alarm limits entries qualified by (/usr) .

filesystems = {
 fileTable = {
 fileEntry = {
 avail = {
 alarmlimit:error-lt() = 7000
 alarmlimit:warning-lt() = 12000
 alarmlimit:info-lt() =
 alarmlimit:error-lt(/usr) = 5000
 alarmlimit:warning-lt(/usr) = 10000
 alarmlimit:info-lt(/usr) =
 }
 }
 }
}

Chapter 7 Alarm Management 113

Alarm Severities

The alarm severity provides additional granularity for the ranking of alarms within

each alarm state. You can prioritize alarms associated with specific managed

properties relative to the alarms of other managed properties within the same alarm

state by setting the alarmSeverity qualifier.

The alarmSeverity can be set to an integer value ranging from 0 to 9. The greater

the number, the higher the alarm rank. TABLE 7-1 lists the default alarm severities.

Solaris Example—CPU Alarm Severity

The cpu average managed property is assigned a higher alarm severity than the

cpu busy managed property since the average CPU is of greater significance than

instantaneous CPU measurements.

Thus, if both the busy and average managed properties go into the error state, the

average alarm would be ranked higher.

If the busy goes into error while the average property goes into warning , the

busy alarm would be ranked higher.

alarmSeverity = < integer >

TABLE 7-1 Alarm Severities

Alarm State State Value Default Severity

OK 0 0

OFF 0 1

DIS 0 1

INF 0 5

WRN 1 5

ERR 2 5

IRR 2 7

DWN 2 9
114 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The cpu busy and average alarm information with the specification of their

relative severities are:

Alarm Window

Alarm checking can be set to be active only at particular times for a managed

property by specifying the alarmWindow qualifier.

Scalars:
alarmWindow = < time specification >

Vectors:
alaraWindow() = < time specification>
alarmWindow(< rowname>) = < time specification>

where

<rowname> is the data value used to identify the row in the table. The column is

specified by the index qualifier.

The alarmWindow can be set to any valid time specification window, and specifies

the time window during which alarm checking is performed. At times outside the

window, the alarm checks are not executed at all. If no alarm window is specified,

alarms checks are by default always done.

cpu = {
 busy = {
 alarmSeverity = 3
 alarmlimit:error-lt = 95
 alarmlimit:warning-lt = 90
 alarmlimit:info-lt =
 }

 average = {
 alarmSeverity = 7
 alarmlimit:error-gt = 95
 alarmlimit:warning-gt = 90
 alarmlimit:info-gt =
 }
}

Chapter 7 Alarm Management 115

Solaris Example—CPU Alarm Window

In the following example, the cpu busy time alarm window is set so that alarms

can only be generated between 1:00 in the afternoon and midnight. At other times,

alarm checks are not performed.

Specifying Status Actions

When the alarm state of a managed property changes, an alarm event is generated.

These alarm events can be used to trigger actions to perform pro-active or remedial

actions based on the detected alarm condition. These actions are referred to as status
actions and can be specified in the alarm file:

where:

<actionN> specifies a logical name of an action to be executed.

<service> specifies an execution context for the command to be run.

<command> specifies a command to execute.

An event is generated for a managed property whenever the alarm state of the

managed property changes. Possible <alarm event> values include:

init —when tree is initialized

change —on any alarm state change

ok —when alarm state goes to the ok state

cpu = {
 busy = {

alarmWindow = time>13:00
 alarmlimit:error-lt = 95
 alarmlimit:warning-lt = 90
 alarmlimit:info-lt =
 }
}

statusActions(<a21larm event>) = <action1> <action2> ...
statusService(< action1 >) = < service >
statusCommand(< action1 >) = < command>
statusService(< action2 >) = < service >
statusCommand(< action2 >) = < command>
116 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

irr —when alarm state goes to irrational state, this is typically caused by a data

acquisition error

down-eq —when an entire module changes to the down state (such as a database

being unavailable)

off -eq—when an entire module turns off as scheduled (through the module

active time window qualifier)

disabled-eq —when an entire module is disabled manually by a an end-user at

the console

info -<alarm test>—when the info alarm check is satisfied

warning -<alarm test>—when warning alarm check is satisfied

error -<alarm test>—when error alarm check is satisfied

The <alarm test> can be lt , gt , eq , ne , or rx , depending on the alarm type primitive

used by the managed property.

Solaris Example—CPU Status Action

In the following example, the ’help’ message is sent to the console when the cpu
busy time goes into the error state.

cpu = {
 busy = {

 statusActions(error-lt) = sayhello
 statusService(sayhello) = _services.sh
 statusCommand(sayhello) = echo "hello"> /dev/console
 alarmlimit:error-lt = 95
 alarmlimit:warning-lt =
 alarmlimit:info-lt =
 }
}

Chapter 7 Alarm Management 117

118 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 8

Rules

This chapter covers the following topics:

■ Rules Agent Infrastructure—page 120

■ Rule Files—page 121

■ Rule Placement in Hierarchy—page 123

■ Rules Attributes—page 124

■ Rule Functions—page 129

■ Third Party Rule Engine Interface Functions—page 131

■ How to Write A Tcl Rule—page 134

Detection of alarm conditions and subsequent triggering of actions is the basic

function of the Sun Management Center 2.1 framework program. Alarm conditions

are determined by:

■ Simple alarm checking (for example, threshold checks and regular expression

matching)

■ Rule evaluation

Both mechanisms achieve the same purpose. To provide comprehensive alarm

capabilities, Sun Management Center 2.1 supports both mechanisms. However, this

chapter focuses only on the Rule evaluation.

Rules can be considered an arbitrarily complex type of alarm check, which normally

depends on other objects (that is, a rule is usually associated with a derived object.)

In the version 2.1 agent rules are implemented through an extension of alarm

checking of derived objects. Thus, rules can be treated as another alarm check

mechanism.

Currently no industry standard exists for rule syntax; thus, rules must be introduced

into the agent based on how they are written. However, there is a consistent

convention for specifying which rule is to be fired in the agent configuration file

(module configuration file format). Storage of any state or persistent data required

by a rule is provided in the object that invokes the rule.
119

Rules Agent Infrastructure

This section covers the rules agent infrastructure.

Rules and Derived Objects

Rules and derived objects are inherently related. For the Sun Management Center

framework, a rule is implemented in a derived object; consequently, there is a one-

to-one relationship between a rule and a derived object.

Rule Naming

Each rule must be named as:

For example: r231 represents rule 231.

Module designers can create custom rules that use a wide variety of alarm criteria.

These custom rules can examine the value of the node to which the rule is attached,

or the value or status of a different node. A special category of rules, referred to as

log rules, can be triggered to fire whenever a message matching a specified regular

expression appears in a log file.

Rules usually use parameters that are stored in separate files where they can be

customized on a per-machine basis by site administrators. Certain rule parameters

can be declared editable by end users through the Sun Management Center console.

Rule Assignment

Because a rule is considered a complex alarm check, it is natural to extend the

existing agent alarm checking mechanism to encompass rules. A qualifier,

<alarmRules>, specifies a particular rule for a given node. This variable is normally

assigned to a node in the module Model file.

r<n>

alarmRules = r231
120 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Whenrever a rule is used, no other alarm check is allowed. If the agent detects both

an alarmChecks and a valid rule in the <alarmRules> variable for a given node, only

<alarmRules> is used in status determination; the alarmChecks are ignored.

When an agent encounters alarmRules balarmRules, it invokes the rule directly using a

ruleFire procedure, which is described later in this section.

Note – A log rule, described later in this chapter, can also be invoked by the file

scan service through ruleFire , after the rule has been subscribed to that service

(see the “Rules Attributes” on page 124” for a description of ruleFire).

If the node is a vector (that is, it can have more than one row), there is no change in

the preceding discussion. However, internally, the rule specified in <alarmRules> is

available to each row in the vector node and any data stored in slices is distinct for

each rowName.

Rule Files

The program provides module specific rules, general rules or base rules, and rules

created by clients.

Module-Specific Rules

Tcl rules associated with a particular module are placed within the file:

Parameter definitions and message text definitions for such rules go in the

associated files:

<module><- subspec >-d.rul

<module><-subspec> -ruleinit-d.x
<module><-subspec> -ruletext-d.x
Chapter 8 Rules 121

Any custom module rule must be made available within the context of the node that

requires it. Here is an example of what you enter into the model file to achieve this:

In this example, the rUsrChk rule is associated with the consoleUser node. This

rule determines the state of the consoleUser node.

General Rules or Base Rules

Rules that are more general in nature, and that can be used in many different

modules, should be placed in the base-rules.rul file. To reduce overhead, only

those rules that must be globally accessible should be made base rules.

Parameter definitions and message text definitions for such rules go in the

associated base-ruleinit-d.x and base-ruletext-d.x files. Rules placed

in these files are automatically available within the context of all nodes and do not

have to be sourced explicitly.

An example of how to attach a rule that is defined base-rules.rul is:

Note – Base text messages are not loaded into a _rules node ; these messages are

added directly to the appropriate file.

_rules = { [use PROC]
 [source solaris-example-d.rul]
}

system = { [use MANAGED-OBJECT]
 consoleUser = { [use STRINGRULE MANAGED-PROPERTY _rules]
 alarmRules = rUsrChk
 }
}

system = { [use MANAGED-OBJECT]
 consoleUser = { [use STRINGRULE MANAGED-PROPERTY]
 alarmRules = rGenRule
 }
}

122 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Rules Created By Clients

In the future, clients may wish to create their own custom rules. Such rules should

be placed in the file:

Parameter definitions and message text definitions for such rules go in the

associated files:

Placing client rules in these separate files, allows the client rules to be saved readily

across new code releases.

Note – The purpose of these files is to segregate possible client customizations from

the base distributed code. The wider issues of code management, configuration, and

distribution are outside the scope of this document.

As in the case of base-rules.rul , rules placed in user-rules.rul are

automatically available within the context of all nodes and do not have to be

explicitly sourced. They are globally accessible.

Rule Placement in Hierarchy

Because a rule is connected to a node through the <alarmRules> variable, it is obvious

that a rule must be associated with a node. However, some special circumstances

require attention:

■ A node can require more than one rule.

■ A rule can have no natural node to which to be attached.

■ A node can have a rule but no data.

Each of these cases is described in the following sections.

user-rules.rul

user-ruleinit-d.x
user-ruletext-d.x
Chapter 8 Rules 123

A Node Can Require More Than One Rule

An example of this multiple rule requirement can be taken from the rules. Rules

rcr4u209 , rcr4u212 , and rcr4u300 all apply to memory SIMMs. In this case, if a

module hierarchy has a node for a particular SIMM, for example, J3201, which has a

leaf node for its status, these three rules cannot be associated with the leaf nodes

<alarmRules> variable because only one rule is allowed.

The solution is to create three more leaf nodes as inferiors of J3201, with one rule per

node. By doing so, hierarchical summarization of status up to the SIMM node is

handled by the existing agent status propagation mechanism.

Alternatively, if possible, the three rules can be redesigned and collapsed into a

single rule.

Rule Can Have No Natural Node to be Attached to

Several existing rules (for example, rules rknrd105 ,) do not drive any alarms (that

is, they do not affect the alarm status of any node). Instead, they simply generate

events. Normally, a rule is attached to the node that it alarms. In this case, a node

must be created specifically for hosting the rule.

It would be wise to collect all such orphan nodes together into a single rules-only

module.

Node Can Have a Rule but No Data

In the preceding sections, nodes have been introduced to host a rule. Such nodes

have no real data associated with them. To identify such nodes, a new primitive,

RULE, must be introduced.

Rules Attributes

Rule Data Storage

This section describes the Tcl and C/C++ compiled rules.
124 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Note – Wherever method names are mentioned, the method should be implemented

in two forms: as a Tcl/TOE method and as a C/C++ function).

Rules have four types of variables (also referred to as attributes or parameters in

this description):

■ Temporary: These variables are local (known only to the rule procedure proper);

an example would be a loop counter like loopCnt . The rule procedure has read/

write access to such variables. The values of the variables are strictly temporary

and are not retained across invocations of the rule.

■ Dynamic: These variables are local (known only to the rule procedure proper).

The rule procedure has read/write access to such variables, and the variable

values are retained across subsequent invocations of the rule. The rule can use

such parameters to save information that is needed between one execution of the

rule and the next.

■ Static: These variables are read only. They are initialized in the ruleinit file. An

example would be the rule group that a rule designer assigns to indicate that a

rule is part of a larger group, like hardware or capacity planning. The rule

procedure can read, but not modify, these variables.

■ Editable: These variables are read-only to the rule procedure. An example of an

editable parameter would be swap_thresh , which represents a threshold that a

user can choose to tune. Global default values for such variables are defined in

the ruleinit file, and those global defaults cannot be modified directly by end

users. However, end users can specify local override values on an individual

node/row basis. An end user makes such changes through the Sun Management

Center console, and the modified values are stored in a <module><-subspec>.dat
override file for the module, so that the overrides are saved across restarts of the

agent. The rule procedure can read, but not modify, the editable parameters.

Except for the first case of temporary variables, all other variables must be stored in

a TOE slice, and accessed through the getRuleParm / setRuleParm (see “Rules
Functions” for the Tcl/TOE implementation). Each node must have its own copy of

whatever slices it requires whenever node-specific data is created:

TABLE 8-1 Rule Variables

Variable
Type Scope Initialization Persist Across Slice Read Access Write Access

temporary local rule proc - - Tcl ${name} Tcl set

dynamic local rule proc rule

invocations

rule-dyn getRuleParm setRuleParm

static global ruleint file Agent restarts rule getRuleParm -

editable global ruleint file Agent restarts alarmlimit getRuleParm local overrides

via shadowmap
Chapter 8 Rules 125

Another slice, rulemsg , must be created once for each loaded module, under the

node _rules . This slice must contain a key-value pair for every text message.

Note – The rulemsg key name does NOT require a <ruleId> prefix, and normally

should NOT have a prefix, since messages can apply to multiple rules.

Sun Management Center 2.1 has no restriction on what data or how much data is

saved by a rule between invocations. The name and usage of such data is strictly

rule-specific (that is, up to the rule designer), and is accessed through the

getRuleParm /setRuleParm methods (see “Rule Functions” on page 129 for the Tcl/

TOE implementation).

Note – The internal data is always available for every rule. It is maintained

transparently by the underlying rule implementation). This data must never be
modified by a rule designer. The rule designer has read-only access to certain internal

data as shown in the next table.

TABLE 8-2 Rule Message Key

rulemsg key Usage

<msgId> Contains a string defining the specified message (for example,

ir209msg)

TABLE 8-3 Rule Designer Access to Internal Data

Slice Key Description Equivalent Rule Read Access

rule-state $rule[($row)] Last rule state (for example, 0=init,

1=open, 2=continue and 3=close)

ACTIVE ruleActive

rule-cond $rule[($row)] ast value of rule event status (blank

for ok, info, warning or error

n/a n/a

rule-count $rule[($row)] Number of consecutive iterations

of the rule, counting from the last

time it transitioned to open; (for

example, a value of 3 means the

rule has detected a true

CONDITIONfor the last 3

iterations).

COUNT getRuleCount

rule-
statetime

- Time of the last transition in rule-

state.

n/a n/a

rule-
starttime

- Time the rule CONDITION last

transitioned from false to true.

START_TIME getRuleStartTime
126 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Rule State Transitions

To generate alarms, a rule defines a CONDITION (in Tcl rules this is the Tcl script in

the condition case) that is evaluated every time the rule is executed. If the condition

is true, this is an active event.

An event is an alarm generated by a rule. An inactive event is equivalent to saying

that there is no alarm generated for a particular rule. Events can transition through

various states; the underlying rule determines these transitions. TABLE 8-4 lists the

allowed event states and transitions.

The ruleFire procedure determines these states. The preceding section describes

the state variables that persist between rule invocations.

Of these are two special operations that can be performed on an active (that is, open

or continue state) event; these operations are ack and fix . Presently, neither

operation causes an event state transition; thus, if a rule detects either operation in

effect, it executes the corresponding Tcl script specified in the rule, and returns with

an empty string ("").

rule-fs - Present for log rules only. Contains

a list of File Scan service

subscriptions made by the rule.

n/a n/a

rule-match - List of pattern matches from File

Scan service, saved for subsequent

log rule invocation.

n/a Passed to rule as

parameter to

“open” or

“continue” action

rule $rule-editparm Present only if editable parameters

have been identified by a rule;

contains a list of the editable

parameters.

n/a n/a

TABLE 8-4 Rule State Transistions and Events

State Meaning May Transition To

init Rule is initialized, ready to detect event transitions; event

is inactive.

open

open Rule condition has just transitioned from false to true;

event is now active.

continue, close

continue Rule condition was true in the last invocation, and is still

true in the current invocation; event is still active.

continue, close

close Rule condition was true in the last invocation, and is now

false in the current invocation; event is now inactive.

open

TABLE 8-3 Rule Designer Access to Internal Data (Continued)
Chapter 8 Rules 127

The ack operation signifies a user action to acknowledge an event; the event remains

active.

The fix operation signifies a user action to manually repair a hardware-related event;

whether this affects the event state isto be determined.

Rule Invocation Procedure (ruleFire)

All rules must be coded as Tcl procedures (or C/C++ functions) that are invoked by

the agent through the ruleFire procedure. This procedure must do the following:

1. Invoke the specified rule procedure, specifying an init action if initialization is

required, otherwise, perform the steps that follow. Init is read the first time the

rule is read. The rule remains in the Init state for as long as the rule condition

evaluates to false.

2. Invoke the specified rule procedure to determine whether the event condition is

true or false (as determined by the CONDITION script of the rule, described later

in this document).

3. Determine the current rule/event state (for example, open, continue, close), based

on the evaluated condition.

4. The following state transitions can occur based on evaluating the condition and

the current rule state:

■ If condition is false, and if event is inactive, no new event is generated and the

rule continues to be in init state.

■ If condition is true, and if event is inactive, the event transitions to the open

state (which means that the event is now active). This could result in an info,

warning, or error event status.

■ If condition is true, and if event is already active, the event transitions to the

continue state (which means that the event is still active and continues to have

an info, warning, or error status).

■ If condition is false, and if event is active, the event transitions to a close state

(which means that the event is now inactive).

5. Invoke the specified rule procedure, whenever an end-user performs an ack or

fix action on a currently active alarm.

6. Perform internal processing to maintain the state of the rule and related events.
128 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Rule Event Status

A rule must return a string value that corresponds to a valid event status. This string

must then be used by the agent. TABLE 8-5 lists the allowed return strings:

Note – The mandatory portion of the return string (ok , info , warning , and

error) must be used by the console to determine the icon.

The optional <qualifier> allows additional descriptive text to be appended. The

qualifier can be used to differentiate events (for example, error-temp, error-
parity). The qualifier is a maximum of eight characters.

Examples of valid return strings:

Rule Functions

This section lists the methods that Tcl rules can call.

TABLE 8-6 summarizes all methods that rules can call directly.

TABLE 8-5 Rule Event Status

Event Status Meaning

ok Inactive event

info[-<qualifier>] Informational event

warning[-<qualifier>] Warning event

error[-<qualifier>] Error event

info
warning-rx

TABLE 8-6 Rule Functions

Tcl Rule Method Arguments Description

closeEvent ruleId,

rowName,

estatus

Closes an event (see also logEvent).
Chapter 8 Rules 129

externalTableOK ruleid,

nodeId,

[default]

Return a 1 if specified table has an active alarm;

0 if no active alarm; default if alarm status of

specified table cannot be acquired.

getExternalRowStatus ruleId,

nodeId,

rowName,

[default]

Get status of specified vector row of specified

node.

getExternalRowValue ruleId,

nodeId,

rowName,

[default]

Get value of specified vector row of specified

node.

getExternalStatus ruleId,

nodeId

[default]

Get status of specified node.

getExternalValue ruleId,

nodeId

[default]

Get value of specified node.

getGRuleParm parm,

[default_parm]

Get global rule parameter.

getMyStatus ruleId,

rowName,

[default_value]

Get current node status (that is, error-gt);

default value returned if status cannot be

acquired.

getMyValue ruleId,

rowName,

[default_value]

Get current node value; default value returned

if data cannot be acquired.

getRuleCount ruleId,

rowName

Get number of consecutive iterations of the rule,

counting from the last time it transitioned to

open (for example, a value of 3 means the rule

has detected a true CONDITION for the last 3

iterations).

getRuleMsg msgId,

[default]

Get specified message.

getNodeName level Get portion of superior node name (level 0

means current node, level 1 means immediate

superior, and so forth)

getRuleParm type,

ruleId,

rowName,

parm,

[default_parm]

Get rule parameter. <type> is one of:

DYN (dynamic parameter)

STATIC (static parameter)

EDIT (editable parameter)

getRuleStartTime ruleid,

rowname

Get the time (# of seconds since epoch) that rule

last transitioned to open.

getTime Get current time as seconds since the epoch.

TABLE 8-6 Rule Functions (Continued)
130 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Third Party Rule Engine Interface
Functions

Rule Loading

Rules are usually implemented in the form of Tcl procedures. If necessary, for

performance reasons, rules can also be created as C or C++ code.

logEvent ruleId,

rowName,

estatus

Logs an event. Event is logged as opening and

immediately closing, but the node does not go

into the open alarm state.

logSubscribe ruleId,

file,

pattern,

rowName,

callback

option

Log rule subscription to File Scan service. The

pattern shall be enclosed in double quotes, and

the callback shall be identical to the ruleId.

Escape ([)_and (]) with backslashes (\).

ruleActive ruleId,

rowName

Return a 1 if rule is current active (OPEN or

CONTINUE state)

setGRuleParm parm,

newval

Set global rule parameter.

setRuleParm type,

ruleId,

rowName,

parm,

newval

Set rule parameter. Valid only for

<type> = DYN (dynamic)

setRuleText ruleid,

rowname,

estatus,

shortmsg,

longmsg

Set text message for indicated state for

underlying node/row. longmsg is obsolete.

TABLE 8-6 Rule Functions (Continued)
Chapter 8 Rules 131

As an example, an agent configuration file in module configuration file format loads

Tcl procedures from file pfrules-d.prc :

Any rules written in C or C++ must be loaded as packages.

As an example, an agent configuration file in module configuration file format loads

package pkgrules.so :

The rules that actually are loaded into the agent must return a string indicating the

detected rule state.

Rule Assignment

The actual rule to be invoked for a derived object must be assigned through the

specification of the following refresh variables:

The effect of the refreshCommand is to invoke the specified rule, which has already

been loaded either as a Tcl procedure or a C/C++ package (see “Rule Syntax &

Loading”).

#
Load pfrules procedures

#
_procedures = { [use PROC]

[source pfrules-d.prc]
}

#
Load rules package
#
[requires package rules]

refreshTrigger = <node>[:<event>]
refreshCommand = r<n>
refreshService = _internal
132 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

S

Key TOE Functions

Function prototypes,typeddefs and so forth required to interface with TOE must be

available in header file, sdk/include/toeInt.h . The convention for describing

each function is to consider the first argument as arg1, the second argument as arg2,

and so forth. The following TOE functions are listed to provide an indication of how

a rule can access agent object data:

TABLE 8-7 Key TOE Functions

TOE Function Description

ToePtr toeGetCurrentObject
(Tcl_Interp*, int)

Returns pointer to current TOE object (for example, the

object from which the rule has fired), or NULL if error.

arg1 - pointer to interpreter handle

arg2 - literal value of TOE_DICTIONARY, to access the

object data (as opposed to the commands).

ToeVal toeDefine
(ToePtr,
char*,char*,DataType*,void*)

Defines value in specified object’s slice.

Returns pointer to allocated value or NULL if error.

arg1 - pointer to TOE object

arg2 - pointer to slice

arg3 - pointer to slice entry

arg4 - pointer to data type of value

Header file converters.h defines dataGetType to get

a data type:

DataType * dataGetType(char * name);
You can use these data type names in program: int,
uint, long, longlong, ulong, ulonglong,
short, double, float, char, boolean,
string, pointer .

arg5 - pointer to value

int toeUndefine
(ToePtr,char*,char*)

Removes entry from specified object’s slice.

Returns 0 on success, -1 on failure.

arg1 - pointer to TOE object

arg2 - pointer to slice

arg3 - pointer to slice entry

ToeVal toeLookup
(ToePtr,int,char*,char*)

Returns pointer to value from specified object’s slice,

entry, or NULL if error.

arg1 - pointer to TOE object

arg2 - tree search scope (TOE_SCOPE_INSTANCE,
TOE_SCOPE_PARENTS,TOE_SCOPE_SUPERIORS,TOE_
COPE_ALL)
arg3 - pointer to slice

arg4 - pointer to slice entry

DataType *toeValGetDataType
(ToeVal)

Returns pointer to data type structure for specified

pointer to value, or NULL on error.

arg1 - pointer to object slice,entry
Chapter 8 Rules 133

How to Write A Tcl Rule

In Sun Management Center 2.1, rules are implemented as Tcl procedures, which

provide the following advantages:

■ Rules can be introduced to an agent directly, without parsing.

■ Rules can be invoked directly through the ruleFire procedure.

■ Rule syntax becomes more rigorous, since it must conform to the Tcl language.

This section provides a guide to writing a Tcl rule by describing the following:

■ An example of a Tcl rule and rule file

■ Guidelines for writing a Tcl rule, including a template of a rule procedure

■ Other rule support issues (sourcing a rule file, specifying initialization data and

rule messages, specifying editable parameters)

The examples in this section all pertain to the ConfigReader example introduced

earlier. A rule designer can customize the example code to create the files needed to

add new rules.

The principles in this section apply to C/C++ compiled rules as well, since the basic

structure of a rule is simply a procedure with a switch statement to allow the

appropriate code to be invoked to handle each case. A natural way to proceed is to

port the Tcl methods introduced in this section to C/C++; these methods constitute

the interface between a C/C++ rule and the agent. The C/C++ rules would be made

available to the agent by creating Tcl packages.

void *toeValGetType
(ToeVal,DataType*)

Returns pointer to data, or NULL on error.

Programer cannot free the pointer, because the memory is

maintained by TOE.

arg1 - pointer to object slice, entry

arg2 - pointer to type to return (NULL if string)

int toeValSetType
(ToeVal,DataType*,void*)

Sets specified value into specified object’s slice, entry.

Returns CVT_OK on success, CVT_ERROR on failure.

arg1 - pointer to object slice, entry

arg2 - pointer to data type structure for arg1; normally set

to arg1’s type member (for example, arg1->type)

arg3 - pointer to value

TABLE 8-7 Key TOE Functions (Continued)

TOE Function Description
134 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Tcl Rule Example

Methods referenced in the example (for example, getRuleParm) are described in

“Rule Functions” on page 129.

CODE EXAMPLE 8-1 Tcl Rule Example

Rule: rcr4u209
Purpose:
Log a message for SIMM errors with corrected ECC Data Bit
Arguments:
action – one of
{condition|init|open|continue|ack|fix|close}
ruleId – rule identifier
rowName – name of vector row (only valid for vector nodes);
defaults to ““
rowIndex – index of vector row (only valid for vector
nodes); defaults to 0
matchList – set to matched substrings if this is a
log rule and the File Scan service is
notifying the rule about matches found;
defaults to ““
This rule is attached to the ConfigReader...memory.SIMM
hierarchy.
#
 proc rcr4u209 { action ruleId { rowName ““ } { rowIndex 0} \
{ matchList ““ } } {
 set estatus “error”

 # Fire state transition actions
switch $action {
 init {

Get names of board node & boardrefno node (e.g. SIMM(0), J3201)
set node_logword1 [getNodeName 2]
set node_logword2 [getNodeName 1]

Derive values of logword1, logword2 from node names (e.g. 0, J3201)
regexp {([0-9+])} $node_logword1 logword1
regexp {([0-9+])} $node_logword2 logword2

logSubscribe $ruleId /var/adm/messages “ECC \[Mm\]emory \ \[Ee\]rror.*SIMM\
Board ($logword1) ($logword2).*ECC Data Bit (\[0-9\]+) was corrected” $rowName\
$ruleId

return “”
 }
 open
 set boardno [lindex $matchList 0]
 set boardrefno [lindex $matchList 1]
Chapter 8 Rules 135

Tcl Rules File Format

All Tcl rule files must have an extension of ‘rul’ (for example, config-reader-
d.rul). A portion of a rule file for the running example in this section would look

like this:

 set bitno [lindex $matchList 2]
 set nodeName [getNodeName 0]
Note that reference to $target is here only to mimic the SyMON 1.x
rule r209; global parameters that have to be available to all rules
in a module should be set through get/setRuleGParm
 set msg [format[getRuleMsg ir209msg]"$target"

 "$nodeName" "$bitno"]
setRuleText $ruleId $rowName $estatus $msg

Note that logEvent is called here to mimic the SyMON 1.x
behaviour of log rules (i.e. an event is opened and then
closed immediately); however, it is possible and advisable to
not call logEvent at all, and to instead return $estatus instead
of returning "ok". That will cause the event to remain open until # closed
(e.g. by a Fix action);

 logEvent $ruleId $rowName $estatus
return ok
}
fix {

Any special “fix” actions would go here
return
}

 }
}

CODE EXAMPLE 8-2 Tcl rules File Format

File: config-reader-d.rul
#
configReader rules
#

proc rcr4u209 {action ruleId {rowName ""} {rowIndex 0} \
{matchList ""}} {

body of procedure goes here ...
}

proc rcr4u212 {action ruleId {rowName ""} {rowIndex 0} \
{matchList ““}} {

body of procedure goes here ...
}

CODE EXAMPLE 8-1 Tcl Rule Example (Continued)
136 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Tcl Rule Template

The template in this section shows the minimum elements that must exist in every

Tcl rule. Examples of all required files, based on the running example of

ConfigReader rule rcr4u209), follow.

The major steps required to create a rule are listed in the section below.

Guidelines

1. Determine the name for the rule (for example, rcr4u209). The name must be

unique across all rules.

2. Determine the initial values for any static (for example, group), or editable

parameters required by the rule that will be stored in a slice. Create initial values

for any of these parameters by adding them to a rule parameter initialization file

named after the module that the rules belong to (for example, config-reader-
ruleinit-d.x). The load of this file must be done at the bottom of the Model file.

If any of the preceding parameters must be editable, a special static parameter,

editparm , must be initialized in the <module><-subspec>-ruleinit-d.x file to

contain a list of all parameters that are to be editable. For example, if parameters

alarmThresh and deadband were to be editable in some rule r XXX, editparm
would be initialized by

where XXXcan be any name with or without numbers.

Note – The listed editable parameters do not have the rule identifier as a prefix.

proc rcr4u300 {action ruleId {rowName ""} {rowIndex 0} \
{matchList ““}} {

body of procedure goes here ...
}

_rule = {
 rule:rXXX-editparm = alarmThresh deadband
}

CODE EXAMPLE 8-2 Tcl rules File Format
Chapter 8 Rules 137

For the console, the displayed text describing the editable parameter must be

internationalized. To internationalize, a special static parameter, keypath , is used

to specify the path to the module’s Properties file. Normally, the properties file

must be in the Sun Management Center software proto tree under classes:

For example, to internationalize the text for the editable parameters, include the

following in the <module><-subspec>-ruleinit-d.x file:

The module properties file must contain entries for the internationalized text for

the module’s editable parameters like these:

You can also define datatypes for any of the editable parameters. The data types

would then be enforced whenever an end-user modifies the parameters. Set an

editable parameter datatype by including a line like the following in the

<module><-subspec>-ruleinit-d.x file:

If no datatype is specified, the default is string. TABLE 8-8 lists the allowed

datatypes:

Note – The rule datatype definitions are same as the datatype definitions for the

underlying OS.

/com/sun/symon/base/modules/ <module><-subspec> .properties

rule:rXXX -keypath = "base.modules .<module>"

editAtt.rXXX.alarmThresh= <internationalized text for threshold>
editAtt.rXXX.deadband= <internationalized text for deadband>

ruledatatype:rXXX -alarmThresh = "float "

TABLE 8-8 Datatypes Allowed

Datatype Description

int integer

uint unsigned integer

float floating point number

string character string (this is the default)
138 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

3. Define a description of the rule and its parameters; this description is displayed in

the Attribute Editor. The descriptions (like the preceding example of editable

parameters) must be internationalized. The descriptions are specified in the same

module Properties file as for the editable parameters. Typical entries would look

like this:

4. Determine any text messages (for example, . rcr4u209msg) that belong with the

rule, and add them to a message file for the module (for example, config-
reader-ruletext-d.x). The load of this file must be done in the module’s

Model file (for example, config-reader-models-d.x).

5. Design the Tcl code for all possible states/actions; the rule is basically a switch

statement, with a case for each state/action (for example, init , condition ,
open , continue , ack , fix , close). The case can be empty, or left out

entirely, if there is no code to execute for a particular state.

Note – The code for the condition case is used to determine if the underlying event

is active; therefore, the last statement in the condition case shall evaluate to 0 or 1;

this is returned to the caller (ruleFire).

6. For log rules, use logSubscribe in the init case; specify the regular expressions in

parentheses in the pattern argument to logSubscribe ; ensure that the regular

expressions are specific to the particular instance of the rule (for example, see

logword1 , logword2 in the rcr4u209 example). Note that to specify a left or

right square bracket (that is, “[” or “]”) in the regular expression, the bracket must

be preceded with a backslash (\).

The option argument is an optional argument. If option is specifiedas -m, it

indicates that the pattern being subscribed for is to be applied across multiple

lines. If option is not specified or is set to any value but

-m, the corresponding pattern is applied to individual lines.

7. Only use getRuleParm / setRuleParm to read/write parameters that are saved

between rule invocations (that is, in TOE slices). Do not use direct lookups with

TOE methods.

8. Source the rules in the module configuration file through a special node, _rules

(see config-reader-models-d.x).

9. Attach the rule to the appropriate node(s) in the module models configuration file

(for example, config-reader-models-d.x).

editAtt.rXXX.desc= <internationalized text for rule description>
editAtt.rXXX.paramsdesc= <internationalized text for rule parameters description>
Chapter 8 Rules 139

The following code example includes a template.

CODE EXAMPLE 8-3 Template

Rule: <ruleId>
Purpose:
Arguments:
action – one of
{condition|init|open|continue|ack|fix|close}
ruleId – rule identifier
rowName – name of vector row (only valid for vector nodes); default=““
rowIndex – index of vector row (only valid for vector nodes); default=0
matchList – set to matched substrings if this is a log rule and the
File Scan service is notifying the rule about matches found; default=““
#
Notes:
The Tcl code for the various states may be empty, or the case left out
entirely, if there are no actions to be taken.
#

proc <ruleId> {action ruleId {rowName ““} {rowIndex 0} {matchList ““}} {
Set state transition actions
For a log rule, condition should always be true, since
the log rule executes only when triggered by callback from
the File Scan service upon matching the subscribed pattern
 switch $action {

condition {
Make sure that the last statement in the condition Tcl script
evaluates to 0 for false, 1 for true; this is used to
determine if the underlying event is active (i.e true) or not.

 < code to evaluate the condition >
 return {0 | 1}

 }
 init {

Call logSubscribe $ruleId <log file> <rowName> <pattern>
<callback function> if this is a log rule
 < code for init >
 return
 }
 open {
Call setRuleText <ruleId> <rowName> <pattern> <statusmsg>
#
<callback> <option> if this is a log rule, there are two choices now:
(a) Call logEvent to log the event, and return "ok"
(b) Return a state-qualifier ("error-gt", for example). Do not call
logEvent. The event will be logged through the normal open event
mechanism. The event will remain open in this case.
140 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 < code for open >
 return <event status >
 }
 continue {

If the event status is to remain unchanged on continuation, simply
return the previous event status, or return "".
#
If the event status is to change (for example, perhaps the event is
being escalating to "error" from "warning"), then:
#
(a) call setRuleText to set the message text for the new state
(b) return the new state.
#
If there is a previous open event, and you return a new event state,
the previous event will close automatically.
#
Do not call setRuleText unless you are returning a new event state also.
#
Note that if this is a log rule, and you let a previous file match
remain in the open state, subsequent file matches will be sent
as "continue" rather than open. In such cases, call "logEvent"
to log the new event (if desired). You can call "closeEvent" to
explicitly close the previous open event (if desired).

< code for continue >
return <event status>

}
ack {

< code for ack >
return
 }

fix {
< code for fix >
return
 }

close {
< code for close >

 return
 }
}

}

CODE EXAMPLE 8-3 Template (Continued)
Chapter 8 Rules 141

Attaching a Rule to the Module Configuration Files

When a module requires a rule, the appropriate rule file (for example, config-
reader-d.rul) is sourced. Rule files must be located in the same directory as their

corresponding module configuration files. The source command must be put in a

container node (typically called _rules) in the module’s Model file. The _rules
node must be inherited by any node requiring access to the rules.

CODE EXAMPLE 8-4 Module Model File

File: config-reader-models-d.x
#
Node _rules will contain the TOE slices for the ConfigReader
rule initialization data and text messages.

_rules = { [source config-reader-d.rul] }
availability = {

mediumDesc = Available
}

simm = { [use MANAGED-OBJECT]

r209 = { [use RULE _rules MANAGED-PROPERTY]
 mediumDesc = Rule 209
 alarmRules = rcr4u209

}

r212 = { [use RULE _rules MANAGED-PROPERTY]
 mediumDesc = Rule 212
 alarmRules = rcr4u212

}

r300 = { [use RULE _rules MANAGED-PROPERTY]
 mediumDesc = Rule 300
 alarmRules = rcr4u300

}
}

disk = {

}

cpu = {

}

142 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The Module Agent File

The ConfigReader module agent file, config-reader-d.x , might then look like

this:

[load config-reader-ruleinit-d.x]
[load config-reader-ruletext-d.x]

CODE EXAMPLE 8-5 Module Agent File

File: config-reader-d.x
#
ConfigReader module configuration file
#

[use MANAGED-MODULE]
[load config-reader-m.x]
[requires template config-reader-models-d]

availability = {
refreshInterval = ...
refreshService = ...
refreshCommand = ...

}

memory = {
SIMM(0) = { [use templates.config-reader-models-d.simm]
}

...

SIMM(31) = { [use templates.config-reader-models-d.simm]
}
}

loading alarmlimit defaults now.
config-reader-ruleinit-d.x and config-reader-ruletext-d.x
loaded in models file

[load config-reader-d.def]

CODE EXAMPLE 8-4 Module Model File (Continued)
Chapter 8 Rules 143

Assigning Initial Values to Rule Parameters

The initial values for static and editable parameters are assigned in the

<module><-subspec>-ruleinit-d.x file. Note that editable parameters are placed in

the alarmlimit slice; all others go in the rule slice.

When this file is loaded into an Agent, the initialized parameters are available to be

read by any rule attached to any node. If an end user modifies an editable parameter,

a local slice shall be created for the affected node to contain the customized value;

other nodes will not be affected.

The datatype for an editable parameter can be specified in the <module><-subspec>-

ruleinit-d.x file (see the example below). The default datatype is string.

Dynamic parameters are not initialized in the <module><-subspec>-ruleinit-d.x
file . Such parameters are set directly within the rule logic, either as needed, or in

the init action section. Dynamic parameters are stored in a local slice for the affected

nodes; their values are not available to other nodes (even other nodes running the

same rule).

A portion of the initialization file for the running example might be:

Specifying Rule Text Messages

Rules can use various text messages to convey status; these messages can be

collected into a file for a particular module in order to centralize the messages. Note

that messages can apply to more than one rule, so there need not be any rule

identifier in the message name. Messages shall be assigned to the rulemsg slice.

The text messages shall be associated with node _rules .

File: config-reader-ruleinit-d.x
#

_rules = {
rule:rcr4u209-group = hardware
rule:rcr4u209-version = 0.1

rule:rXXX-group = example
rule:rXXX-version = 0.1
rule:rXXX-editparm = ”sample_thresh”
alarmlimit:rXXX-sample_thresh = 0.10

 ruledatatype:rXXX-sample_thresh = “float”
 rule:rXXX-keypath = “base.modules.configReader”
}

144 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

A portion of the initialization file for the running example can be as follows:

For every event that occurs, a rule can create two different descriptive messages:

■ English Status Message

■ Internationalized Status Message

English Status Message

The English status message appears in the Sun Management Center hierarchy and

are also in the short message that appears in the Alarm Manager console for the

event. The English status message is automatically prepended with host, module

name, rowname, and medium description, so the rule designer should not include

these in the message.

For example, if the rule specifies a status message such as the following:

the actual message in the Alarm Manager console or the hierarchy is:

where:

host = muskoka

module = Solaris

rowname = /export1

mediumDesc = Filesystem

The message is set in within the rule logic in the open action as follows. If it is not

set, it defaults to something like:

File: config-reader-ruletext-d.x
#
_rules = {

rulemsg:rcr4u209msg = “%s: %s: Error. ECC Data bit %s was
corrected”
 rulemsg:lowmsg = “has less than %s percent free space”
}

has less than 2 percent free space

muskoka Solaris /export1 Filesystem has less than 2 percent free space

muskoka Solaris /export1 Filesystem rcr4u209 error
Chapter 8 Rules 145

Internationalized Status Message

It is anticipated that the English status message will be supplemented in the future

with an internationalized version of the status message. This internationalized status

message will consist of a series of keywords that will be translated appropriately by

the displaying console.

The internationalized messages supplement, not replace, the English status

messages. That is, both types of messages will have to be created explicitly by each

rule. In the much longer term, the English status messages may eventually be

phased out entirely, in favor of the internationalized message.

Currently, rule designers should not attempt to format internationalized status

strings.
146 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

More Examples Of Rules

CODE EXAMPLE 8-6 Simple Rule

#Rule: rknrd402
#Purpose:
#Checks if available swap space drops below 10% for two hours.
#Storage of the last time CPU load was below 6 is maintained
#between rule invocations. This parameter is initialized to
#some date in the year 2001.
#Note:
#This rule should be attached to KernelReader.mem
#
proc rknrd402 { action ruleId {rowName ““} {rowIndex 0} {matchList ““} } {

 set estatus info
Fire state transition actions

switch $action {
 condition {

 set value [getExternalValue {
 $ruleId KernelReader.mem.swap_avail “”

 }]
set swapb [getExternalValue {

$ruleId KernelReader.mem.swap_total “”
 }]

 set cur [getTime]
 if { ($value/$swapb} > [getRuleParm $ruleId swap_thresh 0.10] } {

 setRuleParm DYN $ruleId $rowName user_timestamp $cur
}

 set 1st [getRuleParm DYN $ruleId $rowName user_timestamp 999999999]
 return [expr { ($cur-$1st)>14400 }]
 }

open {
 set msg [getRuleMsg rknrd402msg]

 setRuleText $ruleId $rowName $estatus $msg
 add_cpa SWAP $cur
 trim_cpa
 return $estatus

 }
}

Chapter 8 Rules 147

Config Reader Rule

See coding of (log) rule rcr4u209 in this document.

Log Rule

In addition to the rule rcr4u209 example, here is another:

CODE EXAMPLE 8-7 Log Rule

 Rule: rknrd106
Purpose:
Check for no swap space left.
#
#
 proc r106 { action ruleId {rowName ““} {rowIndex 0} {matchList ““} } {

 set estatus warning

 # Fire state transition actions

 switch $action {

init {
logSubscribe $ruleId /var/adm/messages “no swap space.*pid (\[0-9\]+)}”\

$rowName $ruleId

 return
}

open {
 set pid [lindex $matchList 0]

 set rmsg [getRuleMsg rknrd106msg]
 set msg [format “$rmsg” “$pid”]

 setRuleText $ruleId $rowName $estatus $msg
 logEvent $ruleId $rowName $estatus

 return $estatus
}

}

148 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 9

Additional Specifications for a
Module

This chapter covers the following sections:

■ Additional Parameter Specifications—page 149

■ Creating Multiple Instances of a Module—page 156

■ Organizing Module Parameters—page 158

■ Making a Module Not Loadable—page 159

■ Alternate Way of Specifying a Module Location—page 159

■ Improving Performance using Server Override Properties File—page 161

■ Additional Data Model Specifications—page 162

■ Specifying Adhoc Commands—page 168

Additional Parameter Specifications

The following is an example of a Solaris m.x file.
149

Example: Solaris m.x File

#
Parameter file for Solaris Example module
#
[load default-m.x]

#
Create multiple groups
#
consoleHint:moduleParamGroups = param misc
?misc:?description = base.modules.solaris-example:misc
#
Specify which parameters belong to which group
#
consoleHint:moduleParams(param) = module i18nModuleName
i18nModuleDesc version enterprise i18nModuleType
consoleHint:moduleParams(misc) = instance instanceName line
rootPassword favouriteFood foodGroup
#
Mandatory Parameters
#
param:module = solaris-example
param:moduleName = Solaris Example
param:version = 1.0
param:console = solaris-example
param:moduleType = operatingSystem
param:enterprise = halcyon
param:location =
.iso.org.dod.internet.private.enterprises.halcyon.
primealert.modules.solaris.example
param:oid = 1.3.6.1.4.1.1242.1.2.90.1
param:desc = This is an example module monitoring cpu, load,
and filesystem statistics.
param:i18nModuleName = base.modules.solaris-example:moduleName
param:i18nModuleType = base.modules.solaris-example:moduleType
param:i18nModuleDesc = base.modules.solaris-example:moduleDesc
?param:i18nModuleName?format = i18n
?param:i18nModuleType?format = i18n
?param:i18nModuleDesc?format = i18n
#
Additional Parameters
#
param:instance =
param:instanceName =
param:rootPassword =
150 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Additional Parameters

Additional parameters may be specified for the module, and are used to prompt the

user for additional information when the module is loaded. For each additional

parameter, this file must contain the following lines:

where:

<parameter> is an identifying name for the parameter. The name must be a single

string with no whitespace.

param:favouriteFood = base.modules.solaris\
-example:favouriteFoodValue

param:foodGroup = vegetable
?param:favouriteFood?i18n = yes

?param:instance?description = base.modules.default:instance
?param:instance?reqd = yes
?param:instance?format = instance

?param:instanceName?description =
base.modules.default:description
?param:instanceName?reqd = yes
 ?param:line?format = separator

?param:rootPassword?format = password
?param:rootPassword?description = base.modules.\
solaris-example:rootPassword

?param:favouriteFood?description = base.modules.\
solaris-example:favouriteFood

?param:foodGroup?description = base.modules.\
solaris-example:foodGroup
?param:foodGroup?format = list:meat,base.modules.\
solaris-example:meat|
vegetable,base.modules.solaris-example:vegetable|\
fruit,base.modules.solaris-example:fruit

param:< parameter > = <default value>
?param:< parameter >?description = \
base.modules.<module><-subspec>:<key>
Chapter 9 Additional Specifications for a Module 151

<default value> is the default initial value for the parameter.

<module> is the module name.

<subspec> is the optional module subspec.

<key> is a key used to look up the internationalized string in the properties file.

This key must be unique in the module. When a user loads a module, this string

is displayed to the user (along with the default initial value for the parameter).

For every additional parameter there must be an additional entry in the properties

file for that module. This entry is the internationalized description

(?param: <parameter> ?description) for the parameter and has the following

format:

where

<key> is the same key used in the Parameter file for the parameter

<internationalized text> is the internationalized string describing the parameter

If you want to internationalize the <default value> of the parameter, then you must

replace <default value> with base.modules. <module><-subspec>:<key>.

The corresponding line in the module properties file must also be added:

If the internationalized default value is to be editable by the user when the module

is loaded, then the following is also required:

If this value is to be read-only, then ?param: <parameter> ?i18n = yes can be

replaced with:

<key> =<internationalized text>

param: <parameter> = base.modules. <module> <-subspec>:<key>

<key> =<internationalized text>

?param: <parameter> ?i18n = yes

?param: <parameter> ?format = i18n
152 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

or

The i18ncomment indicates that the value is a multiline entry. In this case, the

<internationalized text> would have \n to indicate new line separations.

To be able to view additional parameters in the console, each optional parameter

that is specified must also be added to the space separated list of the

consoleHints:moduleParams(param) specification. The order in which the

parameters are displayed in the Sun Management Center console is defined by the

order in which the parameters are listed.

Predefined Additional Qualifiers

Any of the following optional qualifiers can be specified for any parameter:

?param: <parameter> ?format = i18ncomment

consoleHint:moduleParams(param) = module i18nModuleName
i18nModuleDesc version enterprise i18nModuleType <parameter>

TABLE 9-1 Predefined Additional Qualifiers

Parameter Values Description

?param: <parameter> ?access = ro|rw Specifies if the parameter is read-only

(ro) or read-write (rw) access. A

parameter with rw access can be edited

by the end user when the module is

loaded. This does not need to be

specified when using ?i18n = yes .

Default is rw.

?param: <parameter> ?editaccess = ro|rw Specifies if the parameter can be edited

after the module has been loaded (there

is an “Edit Module Parameters” function

available to the end user from the

console). Default is rw.

?param: <parameter> ?reqd = yes|no yes specifies that the parameter is

required. This means that the value must

not be left blank when the module is

loaded. Default is no .
Chapter 9 Additional Specifications for a Module 153

?param: <parameter> ?format = separator Specifies a dummy parameter that is

displayed as a solid line. This is used for

console formatting purposes.

?param: <parameter> ?format = blank This dummy parameter is displayed as a

blank line. It is to be used for console

formatting purposes.

?param: <parameter> ?format = header The description and value of this

parameter is displayed as read-only in

bold and larger font.

?param: <parameter> ?format = comment The value of this parameter is displayed

as read-only in a multiline text format.

?param: <parameter> ?format = boolean This parameter is displayed as a yes/no

check box.

?param: <parameter> ?format = list: <a>| | <c> Specifies that the parameter can take a

list of values. The possible values are

specified as “|” separated entries. Each

value in the list may include white

space. The available options are

displayed in a picklist. To

internationalize list elements, the

elements must be replaced with

<a> ,base.modules. <module><-
subspec> : <keya> . The

internationalized text for <keya> is

displayed in the console. However, the

value <a> is set in the agent. The

corresponding <keya> must be added to

the module properties file. An example

is given at the end of this Chapter.

?param: <parameter> ?format = password Any value entered for this parameter is

displayed as *. Also, values of such

parameters are returned as a string of

asterisks in response to an SNMP get

request. This qualifier must be set for

parameters such as database

administration passwords, which must

not be accessible through SNMP get.

TABLE 9-1 Predefined Additional Qualifiers (Continued)

Parameter Values Description
154 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Note – The mandatory parameter param:location cannot be used for a module

that can be loaded more than once.

?param: <parameter> ?format = timex The value for this parameter must

conform to the agent time specification

(refer to the Appendix B for more

information). An Advanced button is

added to facilitate entering the correct

time specification.

?param: <parameter> ?format = timewindow Same as timex but only comparison

time specifications are allowed. This is

used for module active time windows.

?param: <parameter> ?format = multi-line The value of this parameter is displayed

as multiline writable text.

?param: <parameter> ?format = width= <pixels> The input field for this parameter

remains at the specified fixed pixel size.

?param: <parameter> ?format = nodisplay If no default value for this parameter is

set, the parameter will not be displayed.

?param: <parameter> ?format = unicode Allow non-ASCII text to be entered as

the value.

?param: <parameter> ?format = instance Specifies that the value must contain at

least one alpha character, no whitespace,

and no special characters such as \, $, ;,

&, and *. This setting must be used for

‘instance’ parameters.

?param: <parameter> ?i18n = yes The default value for this parameter can

be edited as multi byte text.

?param: <parameter> ?type = int Restricts the value entered for this

parameter to be an integer.

?param: <parameter> ?type = float Restricts the value entered for this

parameter to be a floating point value.

?param: <parameter> ?type = nospace Does not allow any spaces in the value

entered for this parameter.

TABLE 9-1 Predefined Additional Qualifiers (Continued)

Parameter Values Description
Chapter 9 Additional Specifications for a Module 155

Creating Multiple Instances of a Module

Instance Specification

For some types of modules, multiple instances of the module can be run

simultaneously on a single host. For example, consider a module designed to

monitor the health of a single printer. For a system with several printers, the printer

monitoring module would be loaded multiple times, once for each printer. In that

scenario, there would be several separate instances of the printer module running

simultaneously.

For such modules, it is necessary to distinguish the different instances that are

loaded and running (this step is optional). This is done by specifying two additional

parameters in the parameter file: instance and instanceName.

The instance parameter identifies the module instance uniquely and is used

internally by the agent. This is used with the <location> module parameter to
determine the location where the module is to be loaded. The instanceName
parameter is a description of the instance and is combined with the display name for

the module (moduleName) for display purposes on the Sun Management Center

console and in status messages.

The end user is prompted to enter values for both parameters when the module is

loaded. Here is an example of some values a user might enter to distinguish two

printers. The user would load the module twice, specifying different values each

time.

First Printer:
instance = p1
instanceName = 4th floor

Second Printer:
 instance = p2
 instanceName = 3rd floor
156 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

If the module name was printer monitoring, then the display names used on the

console for the two printers would be a combination of the instance name and the

module name:

To include instance and instance name parameters in a module, the following lines

must be included in the parameter file:

Both the instance and the instanceName parameters must be marked as required

(?reqd=yes).

The instance parameter must be qualified with ?format=instance. This forces the

value entered for instance to begin with an alpha character and contain no

whitespace or special characters such as /, &, or $. The instanceName value entered

by the end user may contain spaces.

Note – If the module can be loaded multiple times, the following specification is

required in the agent file:

consoleHint:mediumDesc = base.modules.<modules><-subspec>:moduleDetail

The corresponding entry in the properties file woul be:

moduleDetail = <internationalized module name>[{O}]
[{O}] allows the Sun Management Center console to display the internationalized

module name with instance and it is required.

printer monitoring [4th floor]
printer monitoring [3rd floor]

param:instance =
param:instanceName =
?param:instance?description = <display label for instance entry>
?param:instance?reqd = yes
?param:instance?format = instance

?param:instanceName?description = <display label for instanceName
entry>
?param:instanceName?reqd = yes
Chapter 9 Additional Specifications for a Module 157

Organizing Module Parameters

Each additional parameter added to the consoleHint:moduleParams(param)
specification is added to the list of parameters shown to a user when loading the

module. For organizational purposes (optional step), the parameter list may be split

and shown on separate console views. To specify the number of parameter groups to

be displayed, add the following to the parameter file:

where

<group> is the name given to each grouping of parameters.

<module> is the module name.

<subspec> is the optional module subspec.

<key> is the key used to identify the internationalized text describing the

parameter group.

To internationalize the group name, the following line must be added to the module

properties file:

where

<key> is the same key used in the Parameter file

<internationalized text> is the string that is displayed to identify the group of

parameters

The preceding specification indicates that the module parameters is grouped into

multiple views. The param group, by default, will contain the mandatory module

parameters. Parameters can be added to additional groups using:

where

consoleHint:moduleParamGroups = param <group> [<group> <group>
...]
?<group> :?description = base.modules. <module><-subspec> : <key>

<key> =<internationalized text>

consoleHint:moduleParams(<group>) = <param> [<param> <param> ...]
158 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

<group> is the name of the group to which the parameters are to be added.

<param> is the parameter name to be added to this group.

An example is provided in this chapter.

Making a Module Not Loadable

There can be a need to make a particular module not loadable in an agent. (This is

optional step). For example, modules that are of serverSupport module type are not

loadable. The serverSupport modules are not visible in the standard hierarchy view

of the agent in the console. More importantly, modules of this type do not contribute

to the overall status of the agent. This module type should only be used for modules

that are used internally by the agent.

The specification agentHint:loadable = false in the module parameters file

can be used to restrict the loading of a module from the Sun Management Center

console. The agentHint:loadable specification overrides the

consoleHint:loadable.

In addition, the ability to prevent older agents from loading a module that is

designed for newer agents can be specified using:

The agentHint:requiresVersion is only used if agentHint:loadable is

explicitly set to true . If the version of the agent is greater than or equal to <version>,

then the module is loadable, otherwise, the module is not loadable. For example, if

<version> is 2.1, and the agent version is 2.0.1, then the module will not be able to be

loaded.

Alternate Way of Specifying a Module
Location

This section contains information on the enterprise module parameter.

agentHint:loadable = true
agentHint:requiresVersion = <version>
Chapter 9 Additional Specifications for a Module 159

Enterprise Module Parameter

The enterprise module parameter is used to specify the OIDs file in which the

location of the module is defined. Modules defined to use the sun or halcyon
enterprise must define the location of where the module is to be loaded in the base-
oids-sun-d.dat or base-oid-halcyon-d.dat file respectively. The contents of

the OIDs file is:

where

<symbolic OID> is a ‘/’ delimited symbolic OID value for the module. This OID

must also contain the appropriate enterprise and moduleType values.

<numeric OID> is the numeric sub id for this branch.

For example, the <enterprise> and <moduleType> specifications for the Solaris

Example module are:

Based on the above specifications, the corresponding lines in the

base-oids-halcyon-d.dat file could be:

Note – Since there exists a Solaris Standard module (more complete than the Solaris

Example module), the example node is given the numeric sub id of 2.

Using the above specifications, the Solaris Example module is loaded under the

following MIB location:

<symbolic OID> = <numeric OID>

param:enterprise = halcyon
param:moduleType = operatingSystem

/iso/org/dod/internet/private/enterprises/halcyon/primealert/
modules/operatingSystem/solaris = 5
/iso/org/dod/internet/private/enterprises/halcyon/primealert/
modules/operatingSystem/solaris/example = 2

.iso.org.dod.internet.private.enterprises.halcyon.primealert.hal
cyon.operatingSystem.solaris.example
160 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

If an enterprise other than Sun and Halcyon is specified, a new file base-oids-
<enterprise>-d.dat must be created and released. This file needs to contain the

symbolic to number OID mapping of the location where the module for that

enterprise is to be loaded.

Referencing Parameters

Module parameters may be referenced from the Agent file using the following

syntax:

For example, to reference the moduleName parameter use:

Improving Performance using Server
Override Properties File

Server Override Properties File

The Server Overrides properties file contains a list of internationalized module

names which the Sun Management Center server consults before reading the module

properties files for module names when filling in the Load Module pick list window.

Specifying the module name in this file will remove the need in the server to read

the entire properties file for the module name. Not having the module name in this

file will increase the time require to fill in the Load Module window.

To specify the module name in the Server Overrides properties file use:

where:

% <parameter name >

% moduleName

com.sun.symon.base.modules. <properties file> .moduleName= <value>
Chapter 9 Additional Specifications for a Module 161

<properties file> is the name of the module properties file without the suffix

(.properties). If standard module naming convention is being followed this will be

<module><-subspec>.

<value> is the internationalized module name.

Example Server Override Properties File

Additional Data Model Specifications

Specifying Hidden Managed Properties

By default all managed properties and their data are visible in the Sun Management

Center console. To make a managed property and its data invisible in the Sun

Management Center console, specify the following in the managed property:

Typically, this specification is used in managed properties that store data that would

be meaningless to end users but are required for the module.

Data Logging Support

Automatic Data Logging

Sun Management Center agents support the logging of data to a file or to an internal

cache. Logging to a file can be used for long term data storage, while data logged to

the internal cache is used by the Sun Management Center console graphing.

com.sun.symon.base.modules.solaris-example.moduleName=Solaris
Example

consoleHint:hidden = true
162 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Typically, data logging is turned on or off manually using the Sun Management

Center console. However, a module can turn on data logging automatically when it

is first loaded.

To do this, the following must be specified in the managed property whose data

values are to be logged in the data file (note that the following files go into the agent

file):

where:

<time specification> is the interval at which the data is logged. This value is

independent of the interval at which new data is collected.

<type> is either cache or file . cache specifies that the values is logged to an

internal cache, and file specifies that the data values is logged to a file.

<rowname> specifies the name of the row (for a table managed property) whose

value is to be logged. Multiple rows can be logged by specifying a space

separated list of row names. If the node is a scalar node, <rowname> must be set to

{} .

Based on the <type> of data logging to be done, additional qualifiers are required.

Logging To Internal Cache

To log data to the internal cache, the following additional qualifier is required:

where:

<rowname> is the name of the row (for a table managed property) whose data

values are to be logged. If the node is a scalar, <rowname> must be empty.

<num> is the number of data points to be stored internally. The maximum value

can be set to 1500.

Logging To File

Data can be logged to two different file types:

■ Typical flat file

historyInterval = <time specification>
historyTargets(<type>) = <rowname> [<rowname> ...]

historyLength(<rowname>) = <num>
Chapter 9 Additional Specifications for a Module 163

■ Circular log file

Note – Use caution when automatically turning on data logging to a flat file. Since

there are no restrictions to the maximum size of the file, the file can get very large.

The circular log file format maintains a fixed file size. However, the disadvantage of

this is that log file eventually wraps and old data is lost.

▼ To Log Data to a Typical Flat File

● Specify the following qualifiers:

where:

<rowname> is the name of the row (for a table managed property) whose data

values are to be logged. If the node is a scalar, <rowname> must be empty.

<filename> is the name of the file where the data is logged. This file is located in

/var/opt/SUNWsymon/log .

▼ To Log Data to a Circular Log File

● Specify the following qualifiers:

These qualifers log data to the file /var/opt/SUNWsymon/log/history.log . No

other circular log file can be specified.

historyFileType(<rowname>) = text
historyChannel(<rowname>) = "file://localhost/../log
<filename> ;flags=rw+;mode=644"

historyFileType(<rowname>) = circular
historyChannel(<rownam) = history
164 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Logging Data of a Scalar Node to an Internal Cache

The following example automatically logs data of a scalar node to an internal cache.

Logging Two Rows of a Table Managed Property

The following example automatically logs two rows of a table managed property.

One row is logged to a flat file, the other a circular log file.

Specifying Module Availability

For MANAGED-MODULES, an availability managed property can be used by the

module developer to flag if the entire module becomes unavailable. An example of a

module becoming unavailable would be a database like Oracle that is down.

Use of the availability property is entirely optional. It does not make sense for all

modules. The most common use is for database modules.

When the availability property indicates that the module is unavailable, all

periodic data updates for the underlying objects within the module cease. The

module enters a DOWNstate, and the LEDs for the module turn black. The associated

status message is <module> Is Not Accessible .

myscalarnode = {
 historyInterval = 120
 historyTargets(cache) = "{}"
 historyLength() = 100
}

myvectornode = {
 historyInterval = 120
 historyTargets(file) = row1 row2

 historyFileType(row1) = text
 historyChannel(row1) = "file://localhost/../log\
/myfile.txt;flags=rw+;mode=644"

 historyFileType(row2) = circular
 historyChannel(row2) = history
}

Chapter 9 Additional Specifications for a Module 165

Specifying the Availability Property in the Agent File

CODE EXAMPLE 9-1 shows how to specify the availability property in the agent file:

The initInterval and initHoldoff values must be set so that the availability

check runs before any of the other refresh command within the module so that when

the module is first started, the availability check is performed first and has a chance

to turn off all other refresh operations if the module is not available. The values

shown in the preceding example are appropriate in most cases.

Note – initHoldoff must be at least 2.

Within the <module><-subspec>-d.prc file is a function named

moduleAvailability that returns AVAILABLE or UNAVAILABLE. An example of

such a function is:

CODE EXAMPLE 9-1 Specifying Availability Property

[use MANAGED-MODULE]
[load <module><-subspec> -m.x]
[requires template <module><-subspec> -models-d]

_procedures = { [use PROC]
[source < modules ><- subspec >-d.prc]

}
#
Module Availability
#
availability = { [use _procedures]
 refreshCommand = moduleAvailability
 refreshInterval = 60
 initInterval = 0
 initHoldoff = 2
}

proc moduleAvailability {} {
 if { [<some type of test>] == true } {
 set return_code AVAILABLE
 } else {
 set return_code UNAVAILABLE
 }
 return $return_code

}

166 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The data acquisition for the availability object can be performed in any of the

ways discussed in the previous sections. However, the only limitation is that the

availability object must return the string AVAILABLE if the module is to be available.

Returning any other string puts the module in a unavailable state.

Making a Module a Core Module

Core Modules

Certain modules known as core modules must always be loaded for Sun

Management Center to work correctly. As a result, these modules cannot be

unloaded by users using the Sun Management Center console. To make a module a

core module, include the following in the agent file:

Persistence

A persistentSlices qualifier can be specified in the agent file. This qualifier is a

space separated list of slices that are to be saved to a file whenever a change in the

slice value occurs. Slices represent internal data storage used by the agent, and are

used to store, among other things, values that can be set by an end-user from the

console (like alarm limits). The persistence functionality is required to ensure that

such settings are written to a disk file, so that their values are preserved across

restarts of the agent.

By default this qualifier is set to:

All changes to the value and alarmlimit slices are saved to a file. The name of the file

defaults to <module><-subspec>-d.dat , and is read by the agent on restarts.

consoleHint:family = core-modules

persistentSlices = <slice1>[:<file2>] [<slice2>[:<file2>]]
persistWhenUnloaded = true

persistentSlices = value alarmlimit
Chapter 9 Additional Specifications for a Module 167

Note – Currently, persistence is only supported for value and alarmlimit slices.

Note – By default, unloading the module deletes the persistence file. To retain the

file, even if the module is unloaded, set the persistWhenUnloaded qualifier to

true (default is false).

Specifying Adhoc Commands

Ad hoc commands provide the ability to execute certain commands in the Sun

Management Center agent using the Sun Management Center console. Currently,

two types of ad hoc commands are supported. They are probe commands and SNMP

table management commands. SNMP table management commands are discussed in

the “Using SNMP Table Management Commands” on page 190.

Command Specification

To specify an ad hoc command for a managed object, the following is required in the

agent file:

The consoleHint:commands qualifier specifies a space separated list of logical

names for commands. Each logical command name must have the following

additional qualifiers in the agent file:

The consoleHint:commandLabel(<command>) specifies the internationalization

key for the text that appears in the Sun Management Center console for the

command. Remember a corresponding entry in the module properties file is

required. This entry has the following form:

consoleHint:commands = <command1> [<command2> ...]

consoleHint:commandLabel(<command>) = base.modules. <module><-subspec> : <key>
consoleHint:commandSpec(<command>) = <adhoc command>

<key> =<internationalized text>
168 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The consoleHint:commandSpec(<command>) specifies the action command that

runs in the agent. This command varies depending on the type of command

required.

Row-Specific Commands

Adhoc commands can also be specified for vector data. As such, the commands can

be differentiated based on the row of the table data on which it is executed. To do so,

the consoleHint:commands qualifier must be replaced with

consoleHint:tableCommands .

To specify commands that are only available at the table header use

consoleHint:tableHeaderCommands . The usage is the same as the

consoleHint:commands specification.

Probe Commands

Many data acquisition functions need not be performed on a periodic basis. Also,

some queries (such as screen grabs) are not well suited for SNMP transport. To deal

with these cases, a probe system is used that enables secure ad hoc commands and

queries to be performed to remote hosts. Any module-specific functions that are not

well suited to implementation within the MIB tree of the agent can be placed in the

probe config file for that module.

▼ To Specify a Probe Command

The consoleHint:commandSpec for a probe command must be specified as:

The consoleHint:commandSpec(<command>) launches a new window to display

the results of the command that is executed in the agent. The <path to node> is a “/”

delimited path to the node in the agent that specifies the command to execute. The

command that is executed is specified using:

consoleHint:commandSpec(<command>) = probeview %windowID snmp://
%targetHost:%targetPort/mod/ <module><-subspec> /\
<path to node> ?runadhoccommand. <command>

adhocCommand(<command>) = probeserver -c <unix command>
Chapter 9 Additional Specifications for a Module 169

where <unix command> can be any UNIX command with arguments. Tcl and TOE

commands can also be used to specify arguments. In this case, <unix command> can

include \[<Tcl/Toe command> \] . The Tcl or TOE command is evaluated before

calling the Unix command. For example, probeserver -c df -k \[myFunction
\] would use the return value from myFunction as an argument to the UNIX

command df .

To specify a probe command that runs top for the load object in the Solaris example

module, the following is required in the agent file:

The corresponding entry in the properties file would be:

Row Dependent Probe Queries

To differentiate the rows on which the query is executed, %targetFragment can be

added to the consoleHint:commandSpec qualifier and %fragment to the

adhocCommand qualifier. When used, both values are set to the value of that row in

the column referenced by the index qualifier as shown in the following example.

load = { [use _filters]
 type = active
 refreshService = _services.sh
 refreshCommand = uptime
 refreshFilter = loadFilter
 refreshInterval = 120

 consoleHint:commands = top

 consoleHint:commandLabel(top) = base.modules.solaris-example:top
 consoleHint:commandSpec(top) = probeview %windowID snmp://
%targetHost:%targetPort/mod/solaris-example/system\
/load?runadhoccommand.top

adhocCommand(top) = probeserver -c /common/local/bin/top
}

#
Probe Queries
#
top=Top
170 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Find Files Example

In this example, a Probe command is added to the filesystems node to allow users

to search for files that are greater than 2 Mbytes.

In this example, the first argument to the find command will be the value stored in

the mount column for the row on which this Probe command is executed. The

corresponding entry in the Solaris Example Properties File would be:

CODE EXAMPLE 9-2 Find Files

#
Filesystem Information
#
filesystems = { [use templates.solaris-example-models-d.filesystems _filters]
 type = active
 refreshService = _services.sh
 refreshCommand = df -kF ufs
 refreshFilter = fileFilter
 refreshInterval = 120

 adhocCommand(findallgt2m) = probeserver -c find %fragment -local -mount \
(-type b -o -type c) -prune -o (-size +4096) -ls

fileTable = {
 fileEntry = {
 index = mount
 consoleHint:tableCommands = findallgt2m
 consoleHint:commandLabel(findallgt2m) = base.modules.\
solaris-example:findallgt2m

consoleHint:commandSpec(findallgt2m) = probeview %windowID snmp:\
//%targetHost:%targetPort/mod/solaris-example/
filesystem?runadhoccommand.findallgt2m %targetFragment
 }
 }
}

CODE EXAMPLE 9-3 Entry in the Solaris Example Properties File

#
Probe Queries
#
top=Top
findallgt2m=Find All Files > 2M
Chapter 9 Additional Specifications for a Module 171

Note – In this example, the consoleHint qualifiers are specified under the

fileEntry node. These are required at this level for all tables. However, the

adhocCommand is specified at the filesystems node level. The adhocCommand can

be specified at any level as long as the <path to node> specification describes the

proper path to the command.

Probe Command Security

Execution of probe commands are done through the agent’s shadow MIB. As such,

security access of probe commands is controlled by shadow ACLs specifications.

Specifically, the runadhoccommand shadow MIB attribute is used to run Probe

commands.

By default, all probe commands are executable by all users who have read access. To

limit access to specific Probe commands, the security access for the

runadhoccommand shadow attribute needs to be overridden in the node where the

probe command is defined.

▼ To Limit Top Probe Command

To limit access to the top probe command to users who have write access based on

the standard MIB ACLs, specify the following in the load node:

This only allows users who have write access to the load node to be able to run any

Probe commands for the load node only (this does not affect the subtree below this

node).

load = { [use _filters]
 ...
 shadowMIBAccessMode(runadhoccommand) = useMIBAccess
}

172 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 10

Modules and SNMP

This section covers the following topics:

■ Adding Support for SNMP Table Management—page 173

■ Adding Support for Global Table or Row Actions—page 176

■ Adding Node Icons—page 177

■ Adding SNMP Table Management—page 178

■ Adding SNMP Security—page 186

■ Using SNMP Table Management Commands—page 190

■ Using the mib2x Tool—page 198

Adding Support for SNMP Table
Management

RFC 1903 defines the RowStatus textual convention to manage the creation and

deletion of conceptual rows using SNMP. To provide support for management of

SNMP tables in a module, the table must:

■ Contain a managed property that inherits from the ROWSTATUSprimitive

■ Specify an instance node to distinguish rows in the table

■ Indicate which managed properties must have their values specified by the user

when creating a new row

■ Indicate any data format restrictions for the user set values
173

ROWSTATUS Primitive

To support SNMP management of a table, a managed property that stores the state

of each row is required. This managed property must inherit from the ROWSTATUS
primitive and is typically hidden from the end-user. Nodes that inherit from

ROWSTATUSprimitive do not need to inherit from any data or alarm types. These

values are set automatically by the ROWSTATUSprimitive.

Instance Node

To be able to distinguish rows in the table, an instance node in the table is required.

The index qualifier for the table refers to this node. The instance node must also

specify a instance data format. Typically, the specific instance value for each row is

specified by the user when adding a row.

Required Values

Managed properties whose values must be specified by a user when a row is added

in the table must specify the following qualifier:

<node> = { [use ROWSTATUS MANAGED-PROPERTY]
 ...
 consoleHint:hidden = true
}

<table entry node> = { [use MANAGED-OBJECT-TABLE-ENTRY]
 index = <instance node>
 ...

<instance node> = { [use STRING MANAGED-PROPERTY]
 dataFormat = instance
 }
 ...
}

required = true
174 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Data Formats

Managed properties whose values must conform to certain data formats or need to

be display in a special manner can use the following specification:

dataFormat = { instance | nospace | unicode | boolean |
list: <a>| |... | timex}

where:

instance indicates that the value entered cannot contain any white space or

special characters such as \ & * $. This is required for the instance node.

nospace indicates that the value entered cannot contain any spaces.

unicode indicates that the value entered does not need to be restricted to ASCII

characters.

boolean indicates that parameter iw displayed as a yes/no check box when

adding a row. The value that is set to the agent is a 1 or 0, respectively.

list: <a>| ... specifies “|” separated list that is displayed as a picklist when

adding a row. To internationalize the values, the list elements can be replaced

with <a>,base.modules. <module><-subspec> : <keya> . <keya> is the key in the

Properties file corresponding to the internationalized text used for display

purposes. <a> is the value set in the agent if that option is selected.

timex indicates that the value entered must conform to the required time

specification. Using this value also places an Advanced... button in the row adder

window to facilitate the entry of the time specification.

Example—Filesize

Shown below are fragments of the model file for the Filesize table module from

the Appendix C.

CODE EXAMPLE 10-1 Model file For the Filesize Module

type = reference

file = { [use MANAGED-OBJECT]

 ...

 fileTable = { [use MANAGED-OBJECT-TABLE]

 ...

 fileEntry = { [use MANAGED-OBJECT-TABLE-ENTRY]

 ...

index = instance
Chapter 10 Modules and SNMP 175

Adding Support for Global Table or Row
Actions

Support is provided for actions operating on the entire table or an individual row in

the table. These global actions are initiated after the completion of an SNMP set of

one or more rows in the table. Global set actions are executed only once for a entire

row or table, as opposed to individual actions performed for every column in which

a SNMP set is done, for example, a table with N columns whose values must be

written to a file.

If a new row is created, the new data could be written to the file in one of two ways:

■ A set action can be specified for each column that writes the data to a file after the

set. Thus N writes are required for the N columns.

■ A global action to write the entire row to the file once all the values have been set.

Only one write would be required for the entire table or each row that is set.

 rowstatus = { [use ROWSTATUS MANAGED-PROPERTY]

 ...

 consoleHint:hidden = true

 }

 instance = { [use STRING MANAGED-PROPERTY]

 ...

 dataFormat = instance

 }

 name = { [use STRING MANAGED-PROPERTY]

 ...

 required = true

 }

 size = { [use INTHI MANAGED-PROPERTY]

 ...

 }

 }

 }

}

CODE EXAMPLE 10-1 Model file For the Filesize Module (Continued)
176 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

To provide support for global actions, each node whose value must be set before the

global action is executed must inherit from one of two primitives:

■ GLOBTABLENODEto support global table actions

■ GLOBROWNODEto supports global row actions

where:

<node> is the name of the node whose value must be set before the global action

is executed.

<globprimitive> is either GLOBTABLENODEor GLOBROWNODE.

<data/alarm type> is the data and/or alarm type primitive.

If multiple nodes in a table inherit from the global primitives, they must all use the

same primitive. In this case, the global actions are only executed after an SNMP set

to all nodes inheriting from the global primitive is complete.

The difference between the two primitives is that the GLOBROWNODEexecutes the

global actions for each row that has been set. The GLOBTABLENODEexecutes the

global actions once only, regardless of the number of rows that were set. For

example, if a table containing nodes that inherit the GLOBTABLENODEprimitive, has 2

rows added using a single SNMP set, the global actions are only executed once.

However, if the table nodes inherited from the GLOBTABLEROWprimitive, the global

actions are executed twice. Once for each row that was set.

Adding Node Icons

A managed object (cannot be used for managed properties) can be assigned an icon

to display in the Sun Management Center console. To do so, the following must be

specified in the node:

By convention, the larger icon (32x32) is used only in the topology view in the Sun

Management Center console. In all other instances, the smaller icon (16x16) is used

in the Sun Management Center console.

<node> = { [use <globprimitive> <data/alarm type> MANAGED-PROPERTY] {
 ...

consoleHint:smallIcon(DFT) = stdimages/<name>16x16-j.gif
consoleHint:largeIcon(DFT) = topoimages/<name>32x32-j.gif
Chapter 10 Modules and SNMP 177

Adding SNMP Table Management

When adding support for SNMP table management, the table must specify which of

its managed properties must have its values set in order to create a new row. The

value of the remaining managed properties of the table is set to a predefined default

value when a new row is created.

To indicate which managed properties must have their values set to create a new

row, the managed property must be made externally SNMP-writable. To specify that

a managed property is writable, use the following construct in the data model

realization file:

By default, all nodes are set to read only (ro) so access only needs to be specified for

those managed properties that must have their values set to create a row. If the value

of any writable managed property is not specified in an SNMP set, the set fails and

the row is not created.

Note – Inherits from the ROWSTATUSprimitive automatically have access set to rw.

When using the Sun Management Centerconsole to add a new row, the values for

all writable managed properties can be specified by the user. If you wish to have a

managed property that is SNMP writable, but not have its value specified using the

Sun Management Center console, use:

By default, all nodes have consoleHint:editAccess set to rw. As indicated above,

all non-writable managed properties of table must specify a default value. The

managed property is initialized to this value when a new row is created. If non-

writable node does not specify a default value, the set to create a new row fails. To

specify a default value, use:

access = rw

access = rw
consoleHint:editAccess = ro

defaultvalue = <value>
178 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The default value can also be specified for SNMP writable nodes. In this case, the

default value is presented to the user in the Sun Management Center console when

creating a new row.

User-defined Actions

The Sun Management Center agent supports the ability to execute user-defined

actions that are triggered when a managed property is created or when values are

set into the managed property. The specification for user actions is:

where:

<type> is the type of event used to trigger the execution of the actions. The

available <type> of actions are described in the following sections.

<qualifier> is optional and dependent on the <type> of actions to execute.

<action> is a space separated list of logical names of the actions to be executed in

the order that they are listed.

Each action name must be associated with a corresponding service and command

that is used to execute the action.

where:

<service> is the service used to run the command. Conceptually, the <command> is

sent to the service to be run.

<command> is the command that is run.

The specific actions of <type>s are described in the following sections.

Activate Actions

User-defined actions can be executed before or immediately after a MIB node has

been created.

<type> Actions[(<qualifier>)] = <action> [<action> <action> ...]

<type> Service(<action>) = <service>

<type> Command(<action>) = <command>
Chapter 10 Modules and SNMP 179

● To specify actions to be executed before the node is created, use:

● To specify actions to be executed after the node is created, use:

A service and command must be defined for each <action> specified:

For example, to set a default value (0) for a scalar node use:

SNMP Set Actions

The Sun Management Center agent MIB supports the specification of actions to be

executed when the value of MIB objects are set. Managed property values can be set

by the data cascade from a refresh command or from external SNMP sets. For a node

to allow sets by external SNMP sets, the node must be made to be SNMP-writable.

This is done using:

At several points during the set value process, user-defined actions can be triggered.

The set value process consists of:

1. Prevalidate the set.

2. Set the value (no actions can be defined at this stage).

3. Post-set check for ROWSTATUSnodes only.

4. Post-validate the set.

activateActions(pre) = <action> [<action> ...]

activateActions(post) = <action> [<action> ...]

activateService(<action>) = <service>
activateCommand(<action>) = <command>

activateActions(post) = setdefaultvalue
activateService(setdefaultvalue) = _internal
activateCommand(setdefaultvalue) = setValue 0 0

access = rw
180 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

5. Row set actions for ROWSTATUSnodes only.

6. Set actions.

If any of these actions (after the prevalidate step) fails, the value automatically rolls

back to its preset value. User-defined rollback actions can also be specified. Each of

these actions is described in the next section.

Prevalidate Actions

Prevalidate actions can be specified to execute before a value is set into a managed

property. The purpose of prevalidate actions is to ensure that the value can be set

into the node. Nodes that inherit from the ROWSTATUSand TESTANDINCRprimitives

have predefined prevalidate actions. User-defined pre-validate actions can be

defined using:

The service and commands for each <action> must be defined using:

The parameter %value is available to the <command> for reference. The <command>
must return a 0 if the validation was not successful. Returning a zero value

generates an inconsitentValue SNMP error and the value is not set.

postrow Actions

Nodes that inherit from the ROWSTATUSprimitive (see “Adding Support for SNMP
Table Management” in the previous chapter), have predefined postrow actions. Users

can also specify postrow actions. These actions are triggered to execute after the set

but before the postvalidate actions. These actions can be specified using:

where:

validateActions(pre) = <action> [<action> ...]

validateService(<action>) = <service>
validateCommand(<action>) = <command>

postrowActions(<rowstatus state>) = <action> [<action> ...]
Chapter 10 Modules and SNMP 181

<rowstatus state> is the state of the ROWSTATUSnode corresponding to the value

that is set into it. TABLE 10-1 lists the allowable states.

For each <action> specified, a service and command must be defined.:

The value and row index parameters are available to the <command> using %value
and %index respectively. <command> must return a 0 if the action was not successful.

Returninga zero value generates an inconsitentValue SNMP error and the object

returns to its pre-set value. A zero return code also triggers any user-defined

rollback actions.

Postvalidate Actions

Post-validate actions can be specified to validate the set value. Nodes that inherit

from the ROWSTATUS, GLOBROWNODE, and GLOBTABLENODEprimitives have predefined

postvalidate actions. User-defined postvalidate actions can be defined using:

The service and commands for each <action> must be defined using:

TABLE 10-1 Allowable rowstatus States

SNMP Set Value State

0 doesNotExist

1 active

2 notInService

3 notReady

4 createAndGo

5 createAndWait

6 destroy

postrowService(<action>) = <service>
postrowCommand(<action>) = <command>

validateActions(post) = <action> [<action> ...]

validateService(<action>) = <service>
validateCommand(<action>) = <command>
182 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The parameter %value is available to the <command> for reference. The <command>
must return a 0 if the validation was not successful. Returning a zero value

generates an inconsitentValue SNMP error and returns the object to its preset

value. A zero return code also triggers any user-defined rollback actions.

If validateActions(post) actions are specified for a node that inherits from either

the GLOBROWNODEor GLOBTABLENODEprimitives the actions list must include

incrglob . For example:

The incrglob service and command are predefined and need not be stated again.

setrow Actions

Nodes that inherit from the ROWSTATUSprimitive have predefined setrow actions.

Users can also specify setrow actions. These actions are triggered to execute after

the post-validate check but before the set actions. These actions can be specified

using:

where:

<rowstatus state> is the state of the ROWSTATUSnode corresponding to the value

that is set into it. The allowable states are described in TABLE 10-1.

For each <action> specified a service and command must be defined:

The value and row index parameters are available to <command> using %value
and %index respectively. <command> must return a 0 if the action was not successful.

Returning a zero value generates an inconsitentValue SNMP error and returns

the object to its preset value. A zero return code also triggers any user-defined

rollback actions.

validateActions(post) = myaction incrglob

setrowActions(<rowstatus state>) = <action> [<action> ...]

setrowService(<action>) = <service>
setrowCommand(<action>) = <command>
Chapter 10 Modules and SNMP 183

Set Actions

Set actions are triggered after all validation checks have passed and the value has

been set. All nodes that have an <alarm type> specified as well as nodes that inherit

from the ROWSTATUS, GLOBROWNODEand GLOBTABLENODEprimitives have

predefined set actions. User-defined set actions can be specified using:

If no setActions are specified, the value of the object is set to the value specified

in the set.

An asterisk (*) can be prepended to a single action to indicate that the value returned

by the corresponding setCommand must be the value set into the object at the end of

the execution of the setActions . If more than one action has a (*) prepended to it,

the return value from the last action with the (*) is used. If no action has an (*)

prepended, the value remains as it was set.

Each set action must specify a service and a command:

The value that was set as well as the row name and corresponding index for tables

can be referenced by the <command> using %value , %rowname, and %index
respectively.

If the setService is a shell service and if the setCommand script returns any data on

stderr , the set action fails. Any data returned, from stdout for a script or Tcl

return value can be used as the new value for the object.

If setActions actions are specified for a node that inherits from either the

GLOBROWNODEor GLOBTABLENODEprimitives the actions list must include

decrglob , for example:

setActions = <action> [<action> ...]

setService(<action>) = <service>
setCommand(<action>) = <command>

setActions =+ myaction decrglob
184 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The decrglob service and command are predefined and need not be stated again.

Rollback Actions

Rollback actions are triggered if the set, postrow, postvalidate or setrow
actions fail. Nodes that inherit from GLOBROWNODEand GLOBROWTABLEprimitives

have predefined rollback actions. The purpose of rollback actions is to restore the

state of the object after the failed set. Rollback actions can be specified using:

Each <action> specified must have a service and command defined.

If rollbackActions actions are specified for a node that inherits from either the

GLOBROWNODEor GLOBTABLENODEprimitives the actions list must include

clearglob , for example:

The clearglob service and command are predefined and need not be stated again.

CODE EXAMPLE 10-2 Set Actions

setObjectNode = {

 access = wo

 setActions = *run_script run_tcl_proc decrglob

 setService(run_script) = _services.sh

 setCommand(run_script) = script.sh %value

 setService(run_tcl_proc) = otherObject

 setCommand(run_tcl_proc) = tcl_proc %value

}

rollbackActions = <action> [<action> ...]

rollbackService(<action>) = <service>
rollbackCommand(<action>) = <command>

rollbackActions = myaction clearglob
Chapter 10 Modules and SNMP 185

Global Actions

Tables that support global table or row actions can specify global actions using:

Each <action> specified must also define a service and command to execute.

The value that was set plus the row name and corresponding index for tables can be

referenced by the <command> using %value , %rowname, and %index respectively.

These global action qualifiers must be specified in the table node that inherits from

the MANAGED-OBECT-TABLE-ENTRYprimitive.

Adding SNMP Security

The Sun Management Center agent MIB supports the specification of multiple levels

of SNMP read or write access controls. These access control (ACL) specifications

define the minimum security level required of users and/or groups to perform

SNMP read or write operations on objects in the MIB.

ACLs for the module can be specified in any node. If the ACL is specified in a

branch, the ACL applies to the entire subtree (unless it is overridden by another

ACL specification in an inferior node). ACLs specified in a leaf apply to the leaf

node only.

ACLs are specified using the following format:

where:

<userName> can be a UNIX user name or a logical user or community name.

Logical user and community names are defined below.

<groupName> can be a UNIX group or a logical group name. Logical group names

are defined below.

globActions = <action> [<action> ..]

globService(<action>) = <service>
globCommand(<action>) = <command>

userAccess(<userName> , <accessType>) = <securityLevel>
groupAccess(<groupName> , <accessType>) = <securityLevel>
186 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

<accessType> can be read or write and is the SNMP operation that is to be

controlled.

<securityLevel> can be none, priv, auth or noauth and defines the minimum level

of security required for this type of access.

In general, if the default ACLs are insufficient, module designers must specify their

own ACLs at the root node of the module. Where applicable, additional ACLs can be

specified for specific subtrees and nodes within the module.

Note – As a design rule, UNIX users and groups must not be hard-coded for

<userName> and <groupName> respectively. Doing so assumes that such users and

groups always exist. Instead, the use of logical users and groups is encouraged.

Logical Users, Groups, and Community Names

Logical users, groups, and community names are used to enable module designers

to grant access to the MIB based on a space separated list of UNIX users, UNIX

groups, and community names that is modifiable at run-time. The list of UNIX users

and groups must be defined in the UNIX domain of the Sun Management Center

server layer and are logically OR’ed together to determine membership.

Three levels of logical users, groups, and community names are defined:

admin —users, groups, and communities belonging to this category are able to

perform all operations

operator —users, groups, and communities in this category are allowed to

perform selected operations.

general —users, groups, and communities in this category have read access only

To specify logical users in the ACL specifications use %adminUsers ,

%operatorUsers , or %generalUsers for the three different levels of logical

users.

To specify logical groups in the ACL specifications use %adminGroups ,

%operatorGroups , or %generalGroups for the three different levels of logical

users.

To specify logical communities in the ACL specification use

%adminCommunities , %operatorCommunities , and %generalCommunities .
Chapter 10 Modules and SNMP 187

The default memberships to the logical users, groups, and communities are defined

in the file agent-acls-d.dat and are specified as:

These default values can be overridden by copying this file to /var/opt/
SUNWsymon/cfg and modifying it. The esadm and esops UNIX groups are created

during installation. The keyword ANYGROUPis not a true UNIX group, but rather is a

special keyword that means that any user that was allowed to log into Sun

Management Center.

Note – The UNIX groups esadm and esops are only required to be defined in the

UNIX domain where the Sun Management Center server layer is running. That is,

the Sun Management Center server layer resolves all logical user and group lists.

Security Levels

The possible security levels that can be specified for <securityLevel> in the ACL

specification are:

■ noauth —non-authenticated, authenticated, and encrypted requests are permitted.

■ auth —authenticated and encrypted requests are permitted.

■ priv —only encrypted requests are permitted.

■ none —no access, regardless of security level of the request.

CODE EXAMPLE 10-3 Default Memberships to Logical Users, Groups and Communities

%adminUsers =

%operatorUsers =

%generalUsers =

%adminGroups = esadm

%operatorGroups = esops

%generalGroups = ANYGROUP

%adminCommunities =

%operatorCommunities =

%generalCommunities = public
188 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Default ACLs

These specifications define the following behavior:

■ admin/operator/general users and groups have read access using SNMP requests

with at least an authenticated security level.

■ admin/operator/general communities have read access using SNMP requests

with an unauthenticated security level.

■ admin/operator users and groups have write access using authenticated SNMP

requests.

■ admin/operator communities have write access using unauthenticated SNMP

requests.

■ general user, groups, and communities have no write access.

Examples—Specifying ACLs

The following examples demonstrate how ACLs can be specified and what impact

they will have.

CODE EXAMPLE 10-4 Default ACL settings for All Nodes

userAccess(%adminUsers,read) = auth

userAccess(%operatorUsers,read) = auth

userAccess(%generalUsers,read) = auth

userAccess(%adminUsers,write) = auth

userAccess(%operatorUsers,write) = auth

userAccess(%generalUsers,write) = none

groupAccess(%adminGroups,read) = auth

groupAccess(%operatorGroups,read) = auth

groupAccess(%generalGroups,read) = auth

groupAccess(%adminGroups,write) = auth

groupAccess(%operatorGroups,write) = auth

groupAccess(%generalGroups,write) = none

userAccess(%adminCommunities,read) = noauth

userAccess(%operatorCommunities,read) = noauth

userAccess(%generalCommunities,read) = noauth

userAccess(%adminCommunities,write) = noauth

userAccess(%operatorCommunities,write) = noauth

userAccess(%generalCommunities,write) = none
Chapter 10 Modules and SNMP 189

■ To permit the UNIX user fly to perform SNMP get and set operations with

authenticated and encrypted requests:

■ To permit the UNIX user fly to perform SNMP get operations with

authenticated and encrypted requests but do not allow SNMP set operations for

the UNIX user fly :

■ To permit the admin and operator logical users and groups, defined by Sun

Management Center site administrators, to perform SNMP get and set
operations with authenticated and encrypted requests:

Using SNMP Table Management
Commands

For modules that support SNMP management of tables, ad hoc commands can be

added to manage table rows from the Sun Management Center console. These

commands can be used to add, remove, edit, disable and enable rows.

CODE EXAMPLE 10-5 Specifying Authenticated/Encrypted SNMP get and set Requests

userAccess(fly, read) = auth
userAccess(fly, write = auth

CODE EXAMPLE 10-6 Specifying Requests without SNMP set operations for UNIX User

userAccess(fly, read) = auth read) = auth
userAccess(fly, write) = auth write) = none

CODE EXAMPLE 10-7 Permitting admin/operator to Perform SNMP get and set

userAccess(%adminUsersread) = auth
userAccess(%adminUserswrite) = auth
userAccess(%operatorUsersread) = auth
userAccess(%operatorUserswrite) = auth

groupAccess(%adminGroupssread) = auth
groupAccess(%adminGroupsswrite) = auth
groupAccess(%operatorGroupsread) = auth
groupAccess(%operatorGroupswrite) = auth
190 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

▼ To Add a Row

The commandSpec to add a row to a table is:

where:

<path to table entry> is a slash (/) delimited path to the table node that inherits from

the MANAGED-OBJECT-TABLE-ENTRYprimitive.

▼ To Remove a Row

The commandSpec to remove a row from a table is:

where <path to rowstatus node> is a slash (/) delimited path to the table node that

inherits from the ROWSTATUSprimitive. This action sets the state of the rowstatus

node for this row to destroy .

▼ To Edit a Row

The commandSpec to edit an existing row in a table is:

where <path to table entry> is a “/” delimited path to the table node that inherits

from the MANAGED-OBJECT-TABLE-ENTRYprimitive.

consoleHint:commandSpec(<command>) = launchUniqDialog
%windowID .templates.tools.rowadder objectUrl=snmp://
%targetHost:%targetPort/mod/ <path to table entry> #%targetFragment

consoleHint:commandSpec(<command>) = requestTableRowOperation
%windowID snmp://
%targetHost:%targetPort/mod/ <path to rowstatus \
node> #%targetFragment unload

consoleHint:commandSpec(<command>) = launchUniqDialog
%windowID .templates.tools.roweditor objectUrl=snmp://
%targetHost:
%targetPort/mod/ <path to table entry> #%targetFragment
Chapter 10 Modules and SNMP 191

▼ To Disable a Row

The commandSpec to disable a row in a table is:

where:

<path to rowstatus node> is a slash (/) delimited path to the table node that inherits

from the ROWSTATUSprimitive. This action sets the state of the rowstatus node for

this row to notInService .

▼ To Enable a Row

The commandSpec to enable a row in a table is:

where:

<path to rowstatus node> is a slash /) delimited path to the table node that inherits

from the ROWSTATUSprimitive. This action sets the state of the rowstatus node for

this row to active .

▼ To Load a Module Instance

For modules that can be loaded multiple times, the consoleHint:commandSpec
qualifier requires the %targetInstance specification.

For example, if the Solaris example module can be loaded multiple times, then the

consoleHint:commandSpec for the top probe query is:

consoleHint:commandSpec(<command>) = requestTableRowOperation
%windowID snmp://%targetHost:%targetPort/mod/ <path to rowstatus \
node> #
%targetFragment disable

consoleHint:commandSpec(<command>) = requestTableRowOperation
%windowID snmp://
%targetHost:%targetPort/mod/ <path to rowstatus node> #
%targetFragment enable

consoleHint:commandSpec(top) = probeview
%windowID snmp://
%targetHost:
%targetPort/mod/solaris-example +
%targetInstance/system load?runadhoccommand.top
192 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Example: Adhoc SNMP Table Management

CODE EXAMPLE 10-8 Adhoc SNMP Table Management Commands

Examle for using adhoc snmp table management commands

Additional data model realization specifics pertaining to the

mySystems object in the solaris-example-d.x file.

mySystems{ [use templates......]

 myTable = {

 myEntry = {

consoleHint:tableCommands = enable disable unload addrow editrow

 consoleHint:commandLabel(enable) = enable

 consoleHint:commandSpec(enable) = requestTableRowOperation
%windowID snmp://%targetHost:%targetPort/mod/fscan+%targetInstance/fscanstats\
/myTable/myEntry/rowstatus#%targetFragment enable

 consoleHint:commandLabel(disable) = disable

 consoleHint:commandSpec(disable) = requestTableRowOperation
%windowID snmp://%targetHost:%targetPort/mod/fscan+%targetInstance/fscanstats\

/myTable/myEntry/rowstatus#%targetFragment disable

 consoleHint:commandLabel(unload) = unload

 consoleHint:commandSpec(unload) = requestTableRowOperation
%windowID snmp://%targetHost:%targetPort/mod/fscan+%targetInstance/fscanstats\

/myTable/myEntry/rowstatus#%targetFragment unload

 consoleHint:commandLabel(addrow) = addrow

 consoleHint:commandSpec(addrow) = launchUniqueDialog
%windowID .templates.tools.rowadder objectUrl=snmp://%targetHost:%targetPort\
/mod/fscan+%targetInstance/fscanstats/myTable/myEntry#%targetFragment

 consoleHint:commandSpec(addrow) = \ launchUniqueDialog
%windowID .templates.tools.rowadder objectUrl=snmp://%targetHost:%targetPort\
/mod/fscan+%targetInstance/fscanstats/myTable/myEntry#%targetFragment

 consoleHint:commandLabel(editrow) = editrow

consoleHint:commandSpec(editrow) = launchUniqueDialog %windowID
.templates.tools.roweditor objectUrl=snmp://%targetHost:%targetPort/mod/\
fscan+%targetInstance/fscanstats/myTable/myEntry#%targetFragment

 consoleHint:tableHeaderCommands = addrow

 rowstatus = { [use _procedures]

 setrowService() = fscanstats

 setrowActions(active) = on

 setrowCommand(on) = activatePattern %index %rowname

 setrowActions(notInService) = off
Chapter 10 Modules and SNMP 193

 setrowCommand(off) = deactivatePattern %index %rowname

 setrowActions(createAndGo) = add

 setrowActions(createAndWait) = add

 setrowCommand(add) = addPattern %index %rowname %newvalue

 setrowActions(destroy) = remove

 setrowCommand(remove) = removePattern %index %rowname

 }

 }

 }

}

CODE EXAMPLE 10-8 Adhoc SNMP Table Management Commands
194 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Example: Additional Objects to the Solaris

Example File

CODE EXAMPLE 10-9 Additional Objects to the Solaris Example Model d.x File

#Additional object to the solaris-example-model-d.x file

mySystems = { [use MANAGED-OBJECT]

 mediumDesc = example

 myTable = { [use MANAGED-OBJECT-TABLE]

 mediumDesc = myTable

 consoleHint:mediumDesc = myTable

 myEntry = { [use MANAGED-OBJECT-TABLE-ENTRY]

 mediumDesc = my Entry

 index = idnum

 consoleHint:mediumDesc = my Entry

rowstatus = { [use GLOBROWNODE ROWSTATUS MANAGED-PROPERTY]

 shortDesc = row status

 mediumDesc = Row Status

 fullDesc = The row status

 consoleHint:hidden = true

 consoleHint:mediumDesc = Row Status

 }

 idnum = { [use INT MANAGED-PROPERTY]

 shortDesc = number

 mediumDesc = ID Number

 fullDesc = ID number

 consoleHint:mediumDesc = ID Number

 }

 name = { [use STRING MANAGED-PROPERTY]

 shortDesc = name

 mediumDesc = Users Name

 fullDesc = Users Name

 required = true

 consoleHint:mediumDesc = Users Name

 }

 hobby = { [use STRING MANAGED-PROPERTY]

 shortDesc = hobby

 mediumDesc = Users Hobby

 fullDesc = Users hobby

 consoleHint:mediumDesc = Users Hobby

 }
Chapter 10 Modules and SNMP 195

Sending Traps from the Agent

When the value of one or more managed properties changes in the module, the

agent can notify the console immediately of the changes by sending a refresh trap.

The refresh trap command should be executed in the context of the managed

property (that is, the MIB node) that is being refreshed. These commands can be

included either in the .prc file or the .flt files.

The following are the different ways of sending refresh traps:

● refreshValueAndTrap

When this command is executed in the context of a MIB node, it refreshes the value

of the node by running the appropriate refreshCommand, sends a trap to the server,

thus notifying the console of the changes in that node, and the console updates the

GUI with the new values.

● setTrapInfo refreshOID

When this command is executed in the context of a MIB node, it sends a trap to the

server indicating that the values of that node has been refreshed. The console upon

receiving the refreshed values updates the GUI.

 }

 }

}

CODE EXAMPLE 10-9 Additional Objects to the Solaris Example Model d.x File
196 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Example: Agent File

CODE EXAMPLE 10-10 Example of the Agent File

Example: Agent File

..

..

..

createNode = { [use _procedures]

 type = passive

 access = rw

 setActions = cmd

 setService(cmd) = _internal

 setCommand(cmd) = runShellCmd %value %rowname

}

AnotherNode = { ..

..

 type = active

 initInterval = 2

 refreshService = _services.sh

 refreshCommand = get-data.sh

 refreshInterval = 300

}

..

..

The corresponding procedure file

..

..

..

proc runShellCmd{ val rowname} {

Do some processing

..

..

set file [open /tmp/$rowname w]

 puts $file “Refresh in progress”

 close $file

toe_send [locate anotherNode] setValue 0 $val

toe_send [locate anotherNode] setTrapInfo refreshOID

set file [open /tmp/$rowname w]

puts $file “Refresh Successful”

close $file
Chapter 10 Modules and SNMP 197

Using the mib2x Tool

The mib2x tool allows you to:

■ Generate a <module>-models-d.x file from an SNMP MIB.

■ Generate a <module>-oids.dat file from an SNMP MIB.

The <module>-models-d.x file defines the data model of the corresponding

module. It also define the OIDs corresponding to the data modeled.

Using this tool, you can generate the data model file of an SNMP MIB with ease, and

you can plug in additional qualifiers for the data as required by your module. This

speeds up the data model creation part of the module development, when you are

developing the module from an already existing SNMP MIB.

mib2x Syntax

The mib2x syntax is:

..

..

}

/opt/SUNWsymon/sbin/es-run mib2x -f <filename> [-r [<prefix>:]<root>] \
[-m <mode>]
 [-b <base mibs directory>] [-i <index directory>]
 [-a <additional mib files to import>]

CODE EXAMPLE 10-10 Example of the Agent File
198 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The following table describes the syntax and its options.

TABLE 10-2 mib2x Syntax and Options

Syntax Description Req’d Default

-f <filename> The absolute path to the ASN.1 MIB file

read by mib2x (specify the file’s

directory name along with the file name)

Yes None

-r [<prefix>:]<root> Specifies the starting node of the output

of mib2x . mib2x only prints out

information on the mib tree under this

node. If the optional <prefix> is

specified, node names are prefixed with

the path from <prefix> to <root>.

For example, if iso:sun is specified, then

the output is:

iso = 1
iso/org = 1.3
iso/org/dod = 1.3.6
iso/org/dod/internet/private =
1.3.6.1.4
iso/org/dod/internet/private/
enterprises = 1.3.6.1.4.1
iso/org/dod/internet/private/
enterprises/sun =
1.3.6.1.4.1.42
<the entire tree under sun>

No iso

-m <mode> The output format of mib2x.
<mode> can be: syntax|oid|module :

• syntax prints out variable name to

syntax mapping

• oid prints out variable name to OID

mapping

• module converts ASN.1 MIB text files

to agent module definition file. Must

specify the -r option

No oid
Chapter 10 Modules and SNMP 199

The output of mib2x is always written to the standard output. You can redirect this

output to an appropriate file.

Examples of mib2x

● To generate the models file for the MIB file mymib.txt and to store the output in
mymib-models-d.x , enter the following command:

● To generate the OIDs for the MIB file mymib.txt and to store the output in
mymib-oids.dat , enter the following command:

Note – When using the mib2x utility, you may sometimes see messages, such as:

mib2x: unknown macro NOTIFICATION-TYPE Using branch.
mib2x: unknown macro MODULE-COMPLIANCE. Using branch.
mib2x: unknown macro OBJECT-GROUP. Using branch.

These messages are harmless. The mib2x utility models the nodes using the above

macros as branches in the module.

-b \
<base mibs directory>

The directory that contains the basic

MIB file required by mib2x.

No <Install_Dir_of_Sun
Management
Center>/util/cfg

-i <index directory> The directory that contains the machine

dependent directory with frozen images

of the MIB files.

No /tmp

-a \
<list of mib files>

The list of mibs files is used to resolve

import clauses in <filename> . For

example: -a "file1 file2 file3 "

No -

/opt/SUNWsymon/sbin/es-run mib2x -f /<directory>/mymib.txt -m \
module -r <root_of_module> >mymib-models-d.x

/opt/SUNWsymon/sbin/es-run mib2x -f /<directory>/mymib.txt > \
mymib-oids.dat

TABLE 10-2 mib2x Syntax and Options (Continued)

Syntax Description Req’d Default
200 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 11

Agent Interactive Mode

This section covers the following topics:

■ Working in the Agent Interactive Mode—page 201

■ Tcl/TOE Commands—page 202

■ Agent Interactive Mode Usage Examples—page 211

Sun Management Center software users can run the agent in the interactive mode. In

this environment, they can communicate with the agent using Tcl/TOE commands.

Any commands available in the agent can be executed in interactive mode

dependent on the context in which they are executed.

Running the agent in the interactive mode allows users to debug their agents at

runtime, which allows the users to perform the following tasks:

■ Navigate the object tree interactively.

■ Create or destroy objects.

■ Define, lookup, or display certain object attributes.

■ Invoke an operation in a particular object context.

■ Set a group of object attributes from a file or export the object information to a

file.

■ Generate SNMP MIB from a module.

Working in the Agent Interactive Mode

This chapter includes examples with relation to working within the agent interactive

mode.
201

▼ To Work Within the Agent Interactive Mode

● Start the agent in the interactive mode:

▼ To Exit the Environment

Tcl/TOE Commands

This section describes a set of commands available to all nodes. These commands

allow users to create or destroy objects in the agents, apply object interaction, apply

dictionary operation, navigate object tree, import data from a file to the agent, export

agent to an file and load classes or packages at runtime.

Object Creation

The following commands can be used to create a new TOE object and destroy an

existing TOE object.

Creates a new TOE object. An optional list of the parent object can be specified to

define the objects inheritance tree. The optional superior object can be used to specify

the object’s superior in the sense of an object tree. This permits trees of objects to be

created where the objects’ ancestry is independent from the organizational tree

structure.

Destroys the specified OBJECT(s).

shell% sbin/es-start -ia

agent> exit

toe_create [PARENT ...][-superior SUPERIOR]

toe_destroy OBJECT ...
202 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Object Relationship

These commands allow users to trace or establish the relationship among objects.

With no arguments, this command lists the parents of the current TOE object. If any

parent objects are specified, then the parent list of the object is changed to the new

object list. This is useful for adding or removing class relationships dynamically, but

should be used with extreme caution.

With no argument, this command returns the superior object of the current TOE

object. If SUPERIOR is specified as the argument, the superior object of the current

object is set to SUPERIOR. As with toe_parents , users must use caution when

changing the superior state of an object after it has been fully constructed.

Establishes OBJECT as inferior of the current TOE object. This essentially does three

things:

■ Sets OBJECT’s name to NAME.

■ Sets OBJECT to be a subobject of the current object.

■ Sets the superior of OBJECT to be the current object.

This is the primary means of establishing tree relationships.

Locates an object in the object tree by name and returns its TOE identification. If

-noscope is specified, the search does not traverse up the object tree. If PARENTS
are specified using the -create option, the object are created if it does not already

exist, and its parents are set accordingly.

Adds the specified OBJECT(s) to the parent list of the current TOE object. This is

similar to toe_parents , except the inherit command is implicitly safer as it cannot

remove parents.

toe_parents [PARENT PARENT ...]

toe_superior [SUPERIOR]

toe_child NAME OBJECT

locate NAME [-noscope] [-create PARENTS]

inherit OBJECT ...
Chapter 11 Agent Interactive Mode 203

Object Interaction

The following commands allow operation apply to a certain object context instead of

the current one:

Sets the current TOE object context to OBJECT. The interpreter maintains a stack of

object contexts, and this pushes the specified object onto the context stack. The

current object is the base for all command and data references.

Pops the current object off the context stack and reestablishes the previous context.

Returns the TOE identification of the current TOE object context.

Evaluates COMMANDin the context of OBJECT. This is equivalent to beginning the

object (using toe_begin), evaluating the command (using eval), and ending the

object (using toe_end).

Performs a catch send function, which is identical to a combination of toe_send and

the Tcl catch command. Any results or error messages from COMMAND are placed

in the variable named VAR, and the entire command returns 0 for success, 1 for

error.

toe_begin OBJECT

toe_end

toe_self

toe_send OBJECT COMMAND

toe_csend VAR OBJECT COMMAND

toe_supersend OBJECT COMMAND
204 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The supersend operation invokes the method of another object (usually a class) in

the context of the current object. This is usually used within object constructors, to

perform an initialization operation defined in a particular class on the current

instance.

Traverses the object tree below the current object and runs COMMAND on each

object. Whether the COMMAND is run before or after the subtrees are traversed

depends on whether “pre” or “post” is specified.

Returns the tree-based name of the specified TOE object. If no OBJECT is specified

then the name of the current object is returned. If the -full option is used then the

object’s full name, in absolute terms from the root of the object tree, is returned.

Outputs the parents, superior, methods and data keys of the specified object. If no

object is specified, the current object is dumped.

Dictionary Operations

These commands provide capability to allow users to apply operations on a certain

entry, in the current object, such as define/undefined an entry, find the value of an

entry or copy the value of a certain entry to a new entry.

toe_recurse pre|post COMMAND

toe_name [-full][OBJECT]

toe_dump [OBJECT]

define SLICE KEY VALUE [-t TYPE]
Chapter 11 Agent Interactive Mode 205

Creates a new dictionary entry in the current TOE object. A dictionary entry is

identified by two names, SLICE and KEY. The slice is the category or general type of

information, and the key is the specific name. This allows an object’s data space to

be partitioned into logical groups (for example, runtime data versus static

configuration information).

The optional TYPE can be used to associate a data type to the key. The most

commonly used data types are “string”, “int” and “float”. The default data type is

“string”. Data types are usually used for type checking data.

Removed a dictionary entry named KEY from SLICE. If no KEY is specified, then all

entries in the specified slice are removed.

With no arguments, this returns all slices in the current TOE object. If a SLICE is

specified, then all the keys in that slice are returned.

Reports whether a particular dictionary entry exists, returning 1 for true, 0 for false.

Returns the value of the dictionary entry named by SLICE and KEY. An error results

if the dictionary entry does not exist in the current object or its inherited parents.

This error is suppressed if the optional DEFAULT is provided, in which case the

DEFAULT is returned. If a TYPE is specified then the value is converted to that type.

Failure to convert the data type results in an error.

undefine SLICE [KEY]

entries [SLICE]

exists SLICE KEY

lookup [-d DEFAULT][-t TYPE] SLICE KEY

ilookup {SLICES} KEY [DEFAULT]
206 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The instance lookup command is the same as the standard lookup command

except only the current TOE object is referenced. This is more efficient than lookup

and can be used in cases where the parent classes of the object need not be

referenced (for example, looking up runtime data or state information).

The “scoped lookup” is like the standard lookup except that it also reference

superior objects and their parents. This allows data to be retrieved from higher levels

of the object tree in a manner similar to variable scoping in programming languages

such as C. This is useful for accessing resource information pertinent to an entire tree

of objects, but is the least efficient of the three lookup commands (lookup ,

iloopup , and slookup).

Dumps all the key/value pairs associated with the specified slice to stdout .

Promotes the value of the dictionary entry named by SLICE and KEY into the

current TOE object. This is used to pull dictionary values from parent classes into the

instance before modifying them. This is equivalent to:

Returns the number of keys defined in SLICE in the current TOE object.

Copies all keys from SLICE1 to SLICE2 in the current TOE object.

Compares two dictionary slices (in the current object) and returns three lists: added

keys, removed keys and changed keys.

slookup {SLICES} KEY [DEFAULT]

sdump {SLICES}

promote SLICE KEY

define SLICE KEY [lookup SLICE KEY]
slicelength SLICE

slicecopy SLICE1 SLICE2

slicediff SLICE1 SLICE2
Chapter 11 Agent Interactive Mode 207

Object/Dictionary I/O

These two commands allow user to import and export the agent’s data from and to

a file or a certain source.

Reads a configuration file and imports its contents into the current TOE object. For

string imports, SPEC is the body of the configuration file. For interface imports,

SPEC is the interface specification (usually the file name). The SLICE specification

indicates that any keys in the configuration file not qualified by a slice name should

be placed in SLICE.

If the configuration file contains hierarchical object specifications, these objects is

created as inferiors of the current object (that is, a tree of objects is constructed below

the current object). If PARENTS are specified then all new objects inherit from this

object. If the -exact option is specified, then any subobjects in the configuration file

specification must exactly match the existing object tree structure. Otherwise, it

results in an error .

Exports the pertinent dictionary information from the current TOE object and any of

its inferiors. The SLICE specification indicates which slice(s) are to be exported, and

a blank slice specification causes all slices to be exported. Any subobjects are

represented by a curly-brace-enclosed block in the resulting configuration file. The -
minimal option suppresses as the output of subobjects not containing any pertinent

dictionary entries (that is, empty config blocks). The -dot switch causes any

subobject dictionary keys to be output in dot notation, which does not use curly

braces.

Interactive Object Tree Navigation

These command enable users to interactively navigate the object tree. They are

similar to UNIX shell commands for file system navigation.

import string|interface SLICE SPEC [-class PARENTS][-exact]

export string|interface SLICE SPEC [-minimal][-dot]

cd name
208 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Mimics the UNIX shell cd command when interactively navigating the TOE object

tree. Navigating the TOE object tree is similar to UNIX shell cd . The functionality is

actually more like the C shell pushd command since an object context stack is

maintained. The special name ‘‘..’’ is used to pop the stack and return to the previous

object. The ‘‘*’’ can be used as a shortcut to an unique object in the TOE object tree.

Returns the full name of the current object.

Lists the names of the subobjects under the current object. The -a option shows

what (objects or data) and who (name) are under this object. The -l option outputs

detailed information about each object, such as the object’s TOE identification. If

names are specified, the subobject names (or detail information) are listed for each

named subobjects; otherwise, it means to look into all subobjects.

Class Definition

These commands can be used to define class, create class, or destroy a class at

runtime. They are not so useful in terms of debugging.

Creates a new class definition called name. The new class is subclassed from the

parent classes (using multiple inheritance), and base classes can be created with

empty set of parent classes. The body specification is a block of code, which defines

the methods and the data of the new class, and is evaluated in the context of the

class at the time of class creation.

Extends the definition of a class. This command can be used to add methods or data

to an existing class, and is useful for splitting large class definitions over multiple

places.

pwd

ls [-al] [names]

newclass name {parent classes} {body}

defineclass name {body}

method name {args} {body}
Chapter 11 Agent Interactive Mode 209

Creates a new method called name in the current class. The method command is

identical to the Tcl “proc” command, but it also creates an association between the

method and the class it is defined in.

Creates a new instance object of class. A new object is created which inherits from

the class definition object, and the constructor is invoked on the new object.

Destroys the object instance. Before removing the object, any inferior objects in the

object scope tree are uninstantiated, and the object’s destructor is invoked.

Class/Package Loading

These commands allow users to load classes or binary packages to an agent at

runtime.

Indicates to the interpreter that a particular class is required. The interpreter loads

the class if it has not been loaded, and it automatically pulls in the entire ancestor

hierarchy of the named class.

Indicates to the interpreter that a particular binary package is required. The

interpreter loads the package if it has not been loaded, and it automatically loads in

all packages the are required by the named package.

This loads an X file as a template and makes it available as a reference tree. This is

useful for loading tree specifications that are used by multiple other object trees.

Reference tree can be inherited to produce usable object tree.

instantiate class

uninstantiate object

requires class name

.class.name
requires package name

requires template name
210 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The loaded template is placed in the object tree at:

Agent Interactive Mode Usage Examples

This section includes the following procedures:

■ To Define a Module

■ To Find the Attribute Value of a Certain Object

■ To View the Result of an Operation on a Certain Object

■ To Import and Export a Set of Object Attributes

■ To Generate SNMP MIB From a Module

Note – Since the agent interactive mode is basically used for debugging, you can

define new object attributes and introduce new modules. However, anything done in

this mode is permanent.

.template.name
Chapter 11 Agent Interactive Mode 211

▼ To Define a Module

The rest of this chapter uses a hypothetical example consisting of three files:

hellosunmc-v01-m.x , hellosunmc-v01-d.x and hellosunmc-v01-d.prc . The

contents of the files are given below:

hellosunmc-v01-m.x:
.........
Location of the module
param:location =
.iso.org.dod.internet.private.enterprises.sun.prod.sunsymon\
.agent.modules.demo.HelloSunMCV01
param:oid = 1.3.6.1.4.1.42.2.12.2.2.1000.2
..........
hellosunmc-v01-d.x:
[load hellosunmc-v01-m.x]
HelloSunManagedObject = { [use templates.hellosunmc-v01-models\
-d.HelloWorldManagedObject]
 [source hellosunmc-v01-d.prc]
 type = active
 refreshMode = sync

 refreshService = _internal
 refreshCommand = getHS2String
 initInterval = 2
 refreshInterval = 300
}
hellosunmc-v01-d.prc:
proc getHS2String { } {
 set count [lookup -d "0" visitCount count]
 incr count
 define visitCount count $count
 return "Hello World! This data is updated $count time(s)"
}

212 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

▼ To Find the Attribute Value of a Certain Object
If the TOE object is HelloSunManagedObject, its location is specified in the

hellosunmc-v01-m.x file. To find its attribute:

1. Navigate to the specific object.

a. Determine the current object:

This displays the current TOE object id:

b. Determine the objects directly under this object:

This lists all objects under the current object, for example:

c. Determine the current object:

This gives you the full name of the objects.

d. Go to the specified object:

■ To go to a certain object directly under the current object:

agent > toe_self

toe2

agent> ls

classes templates _config config services iso shadow contexts rules

agent > pwd

agent> cd iso
.iso
Chapter 11 Agent Interactive Mode 213

■ For a short cut to an object whose name is unique in the current context:

Using the cd command, several times, takes you beyond the top object. If this

happens, you can use the following command:

This brings you back to the node you need to enter.

2. View all slices (logic groups) in the current object:

This lists all slices in this object.

3. Enter the following to view the attribute value in a certain slice:

This lists all key attributes/value pair in this slice:

agent:ios> cd *modules

.iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.\
agent.modules

agent:modules> cd *HelloSunMCV01

.iso.org.dod.internet.private.enterprises.sun.prod.sunsymon\

.agent.modules.demo.HelloSunMCV01

agent:HelloSunMCV01> ls

availability enabled HelloSunManagedObject
agent:HelloSunMCV01> cd HelloSunManagedObject

.iso.org.dod.internet.private.enterprises.sun.prod.sunsymon\

.agent.modules.demo.HelloSunMCV01.HelloSunManagedObject

agent> toe_begin toe2

agent:HelloSunManagedObject> entries

internal object peer timer timer-timer timer-attribute\
-timer target oid service serviceparam visitCount
agent:HelloSunManagedObject> sdump visitCount

count: 20
214 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

▼ To View the Result of an Operation on a Certain

Object

1. Invoke the method on the object:

a. Go to the object domain where the method has been defined:

The results are as follows:

b. View current value of an attribute:

The results are as follows:

c. Invoke the method:

The results are as follows:

agent> cd *HelloSunManagedObject

.iso.org.dod.internet.private.enterprises.sun.prod.sunsymon\

.agent.modules.demo.HelloSunMCV01.HelloSunManagedObject

agent:HelloSunManagedObject> sdump visitCount

count: 24

agent:HelloWorldManagedObjec> getHS2String

Hello World! This data is updated 26 time(s)
Chapter 11 Agent Interactive Mode 215

d. View a certain attribute if it is set as a result:

This returns the value of the set attribute, for example:

2. Apply the method on the object:

a. Apply operation on a certain object directly:

This applies the getHS2String() method to the specified object context and

return the result:

b. View certain attributes if it is set as results:

i. Go to the specified object context:

ii. View the attribute values:

▼ To Import and Export a Set of Object Attributes

To import and export a set of object attributes to and from a certain TOE object, do

the following:

agent:HelloSunManagedObject> lookup visitCount count

25

agent:modules> toe_send [locate *HelloSunManagedObject]
getHS2String

Hello World! This data is updated 26 time(s)

agent:modules> cd *HelloSunManagedObject

agent:HelloSunManagedObject> sdump visitCount
count: 26
216 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

1. Write all attributes (key/value pair) of a file in .x file format:

2. Go to the target object:

3. View the current value of an attribute:

4. Input data under this object to slice visitCount:

shell% cat helloworld_v03_update.x
initValue = 10
status = "OK"

agent> cd *HelloSunManagedObject
.iso.org.dod.internet.private.enterprises.sun.prod.sunsymon\
.agent.modules.demo.HelloSunMCV01.HelloSunManagedObject

agent:HelloSunManagedObject> sdump visitCount
count: 28

agent:HelloSunManagedObject> import interface visitCount \
helloworld_v03_update.x
Chapter 11 Agent Interactive Mode 217

5. View the attributes generated:

6. Define a new attribute in this slice (or apply a certain operation):

7. Export these attributes to a file:

8. View the output file:

This command provides the following result:

agent:HelloSunManagedObject> sdump visitCount
count:28
initValue:10
status:OK

agent:HelloSunManagedObject> define visitCount time 16:23:10
16:23:10

agent:HelloSunManagedObject> sdump visitCount
count:28
initValue:10
status:OK
time:16:23:10

agent> export interface visitCount helloworld_v03_update_out.x

shell% cat helloworld_v03_update_out.x

count=28
initValue=10
status=OK
time=16:23:10
HelloSunMCMessage = {
}

218 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

▼ To Generate SNMP MIB From a Module

1. Go to the destination module.

As defined in hellosunmc-v01-m.x , when this HelloWorld module is loaded, its

location is:

2. Generate SNMP MIB for these modules:

3. View the SNMP MIB files.

The mib files are located under the directory $VAROPTDIR, which is defined in

the following: $INSTALL_DIR/sbin/sm_setup_mib2.sh. You can locate the

hellosunmc-v01-mib.txt file at: the following location:

.iso.org.dod.internet.private.enterprises.sun.prod.sunsymon\

.agent.modules.demo.HelloSunMCV01

agent> cd *HelloSunMCV01

.iso.org.dod.internet.private.enterprises.sun.prod.sunsymon\

.agent.modules.demo.HelloSunMCV01

agent:HelloSunMCV01> ls

availability enabled HelloSunManagedObject

agent:HelloSunMCV01> mibExport

/var/opt/SUNWsymon/cfg/
Chapter 11 Agent Interactive Mode 219

220 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 12

Developer Environment Tools

This chapter describes the following SNMP commands:

■ snmpset —page 221

■ snmpget —page 225

■ snmpnext —page 228

■ snmptrap —page 231

■ snmpwalk —page 234

■ snmpwalktable —page 236

The following sections present the information in the format of man pages.

snmpset

Name

snmpset —Change information in manageable nodes with SNMP

Synopsis
/opt/SUNWsymon/util/bin/sparc-sun-solaris$VERSION/snmpset -h host \
[-p port] [-t timeout] [-i requestID] [-c community] name1 type1 \
value1 ... nameN typeN valueN
221

Description

With snmpset you can change information on a manageable node if you have

sufficient access privilege and the node is writable. You specify what information

you want to change with the objectid. Then you specify the type of data.

Options

-h host

host is the hostname of the machine on which the agent is running. The hostname

can be either the domain hostname or the IP address in dot notation.

-p port

Normally the remote port 161/UDP is used. If you run your snmp agent on an

another port you can specify which port here. The default value is taken from

environment variable SNMP_PORT. If this variable is not set then the value is

taken from services file’s entry snmp/udp.

-t timeout

Change the timeout time for each retry. Time is given in seconds. The default

timeout is 5 seconds.

-i requestID

This integer value is used to differentiate different requests. The default requestID

is 0.

-c community

This string will be used as community name. The default community is public.

name

name specifies the name of the managed property whose value is to be set. More

than one name can follow. The values of all the names are set. If one of the

specified names is invalid, then the request for all of the names fails.
222 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

type

type is the type of the value in the value field. Types can be:

value

This is the new value of the node. More than one name, type, and value
combination can follow.

Exit Status

Exit status is 0 if successful, In all other cases it is nonzero.

None

Integer

OctetString

IPAddr

Opaque

Counter

Gauge

TimeTicks

ObjectId

Null
Chapter 12 Developer Environment Tools 223

Examples of snmpset

CommandLine> snmpset -h ignite -p 161 -t 5 -i 100 -c foo "1.3.6.1.2.1.1.4.0"
"OctetString" "Administrators Name"

OutPut>Request Id: 100
Error: noError
Index: 0
Count: 1

Name: 1.3.6.1.2.1.1.4.0
Kind: OctetString
Value: "System Administrator"

CommandLine> snmpset -h ignite -p 161 -c foo 1.3.6.1.2.1.1.4.0 OctetString
"System Admin"

OutPut> Request Id: 0
Error: noError
Index: 0
Count: 1

Name: 1.3.6.1.2.1.1.4.0
Kind: OctetString
Value: "System Admin"
224 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

snmpget

Name

snmpget —Get information from manageable nodes with SNMP

Synopsis
/opt/SUNWsymon/util/bin/sparc-sun-solaris$VERSION/snmpget -h host \
[-p port] [-t timeout] [-i requestID][-c community] [-q] name1 \
... nameN

Description

With snmpget you can get information from a manageable node. You specify what

information you want with the objectId . After doing this, enter the hostname

where the agent is running. If the host (or other network connected device) can be

reached, then you will get an answer.

Options

-h host

host is the hostname of the machine on which the agent is running. The hostname

can be either the domain hostname or the IP address in dot notation.

-p port

Normally the remote port 161/UDP is used. If you run your snmp agent on

another port you can specify which port here. The default value is taken from

environment variable SNMP_PORT. If this variable is not set then the value is

taken from services file’s entry snmp/udp .

-t timeout

Change the timeout time for each retry. Time is given in seconds. The default

timeout is 5 seconds.
Chapter 12 Developer Environment Tools 225

-i requestID

This integer value is used to differentiate different requests. The default requestID

is 0.

-c community

This string will be used as community name. The default community is public.

-q name

name specifies the name of the managed property whose value is returned. More

than one name can follow. The values of all the names are returned. If one of the

specified names is invalid, then the request for all of the names fails. If names are

given without -q option then full detail output is listed and if -q option is

specified then only value is listed.

Exit Status

Exit status is 0 if successful, In all other cases it is nonzero.
226 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Examples of snmpget

CommandLine>snmpget -h symoncool -p 161 -t 5 -i 100 -c public \
-q 1.3.6.1.2.1.1.1.0

OutPut> "Sun SNMP Agent, Ultra-1"

CommandLine> snmpget -h ignite 1.3.6.1.2.1.1.1.0

OutPut> Request Id: 0
 Error: noError
 Index: 0
 Count: 1

 Name: 1.3.6.1.2.1.1.1.0
 Kind: OctetString
 Value: "SUNW,Ultra-Enterprise"

CommandLine> snmpget -h symoncool -p 161 -t 5 -i 100 -c public \
-q 1.3.6.1.2.1.1.2.0

OutPut> 1.3.6.1.4.1.42.2.1.1

CommandLine> snmpget -h symoncool -q 1.3.6.1.2.1.1.1.0

OutPut> "Sun SNMP Agent, Ultra-1"

CommandLine> snmpget -h 129.146.53.224 -p 161 -t 5 -i 100 -c
public -q 1.3.6.1.2.1.1.1.0

OutPut> "Sun SNMP Agent, Ultra-1"

CommandLine> snmpget -h symoncool -p 161 -t 5 -i 100 -c public \
-q 1.3.6.1.2.1.1.1.0 1.3.6.1.2.1.1.2.0 1.3.6.1.2.1.1.3.0
1.3.6.1.2.1.1.4.0 1.3.6.1.2.1.1.5.0

OutPut> “Sun SNMP Agent, Ultra-1”
 1.3.6.1.4.1.42.2.1.1
 9330516
 “System administrator” “symoncool”
Chapter 12 Developer Environment Tools 227

snmpnext

Name

snmpnext —Get information from manageable nodes with SNMP

Synopsis
/opt/SUNWsymon/util/bin/sparc-sun-solaris$VERSION/snmpnext -h host
[-p port] [-t timeout] [-i requestID] [-c community] name1 ... nameN

Description

With snmpnext you can get information from a manageable node. You specify what

information you want with the objectId. Then enter the name of the host on which

the agent is running.

If the host (or other network connected device) can be reached, you will get the

information about the next object id.

CommandLine> snmpget -h symoncool -p 161 -t 5 -i 100 -c public \
-q 1.3.6.1.2.1.1.10.0

OutPut> ““

CommandLine> snmpget -h symoncool -p 161 -t 5 -i 100 -c public \
-q 1.3.6.1.2.1.1.1.0 1.3.6.1.2.1.1.2.0 1.3.6.1.2.1.1.3.0
1.3.6.1.2.1.1.4.0 1.3.6.1.2.1.1.10.0

OutPut> ““
 ““
 ““
 ““
 ““
228 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Options

-h host

host is the hostname of the machine on which the agent is running. The hostname

can be a domain hostname or an IP address in dot notation.

-p port

Normally the remote port 161/UDP is used. If you run your snmp agent on

another port you can specify the port here. The default value is taken from

environment variable SNMP_PORT. If this variable is not set, then the value is

taken from the services file entry snmp/udp.

-t timeout

Change the timeout time in seconds for each retry. The default timeout is 0

seconds, which means there is no timeout.

-i requestID

This integer value is used to differentiate different requests. The default requestID

is 0.

-c community

This string is used as the community name. The default community is public.

name

name specifies the name of the previous managed property for which a value is

returned. Multiple names can follow. The value of the next managed object of all

the names is returned. If one of the names is invalid, the request fails for all of the

names.

Exit Status

Exit status is 0 if successful. In all other cases it is nonzero.
Chapter 12 Developer Environment Tools 229

Examples of snmpnext

CommandLine>snmpnext -h symoncool -p 161 -t 5 -i 1 -c \
public 1.3.6.1.2.1.1.1.0

OutPut>Request Id: 1
Error: noError
Index: 0
Count: 1

Name: 1.3.6.1.2.1.1.2.0
Kind: ObjectId
Value: 1.3.6.1.4.1.42.2.1.1

CommandLine>snmpnext -h symoncool 1.3.6.1.2.1.1.0

OutPut>Request Id: 0
 Error: noError
 Index: 0
 Count: 1

Name: 1.3.6.1.2.1.1.1.0
 Kind: OctetString
 Value: “Sun SNMP Agent, Ultra-1”

CommandLine>snmpnext -h symoncool -p 161 -t 5 -i 1 -c public 1.

OutPut>Request Id: 1
 Error: noError
 Index: 0
 Count: 1

 Name: 1.3.6.1.2.1.1.1.0
 Kind: OctetString
 Value: “Sun SNMP Agent, Ultra-1”
230 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

snmptrap

Name

snmptrap —Send an SNMP TRAP message to a host

Synopsis
/opt/SUNWsymon/util/bin/sparc-sun-solaris$VERSION/snmptrap \
-h fhost [-p fport] [-c community] enterprise agent_addr \
generic_trap specific_ trap timestamp \
[name1 type1 value1 ... nameN typeN valueN] ...

Options

-h host

host is the hostname of the machine to which TRAP is to be sent.

-p port

Port to which the TRAP is to be sent. The default value is taken from environment

variable SNMP_PORT. If this variable is not set, then the value is taken from the

services file entry snmp-trap/udp .

-c community

This string is used as the community name. The default community is public.

enterprise

This option can point to a mib sub tree or identify a product for which the TRAP

has been defined.

agent_addr

Change the address from which the trap reports it is being sent. By default,

snmptrap uses the address of the sending host.
Chapter 12 Developer Environment Tools 231

generic_trap

An integer that specifies the type of trap message being sent. Trap types are

defined below.

specific_trap

An integer that specifies the enterprise specific trap. For this the generic trap field

must be 6.

timestamp

Time elapsed between the last (re)initialization of the network entity and the

generation of the trap.

name

Object Id (OID) of the extra information to be sent with TRAP.

type

Type of the value in the value field. Types can be:

value

Value for the OID given in the name field

None

Integer

OctetString

IPAddr

Opaque

Counter

Gauge

TimeTicks

ObjectId

Null
232 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Exit Status

Exit status is 0 if successful. In all other cases it is nonzero.

Trap Type Information

The following table presents trap types and what they signify. The meaning of the

numbers is illustrated within parenthesis.

Examples of snmptrap

This example sends a trap on port 2000 on host symoncool with community =

public, agent = 129.146.53.224, timestamp = 12345, enterprise = 1.3.6.1.4.1.42, generic

trap = 6, and specific trap = 3.

TABLE 12-1 Trap Type and What it Signifies

Trap Type What the Sending Protocol Entity Signifies

0 (coldStart) Is reinitializing itself. The agent’s configuration or the protocol

entity implementation may be altered.

1 (warmStart) Is reinitializing itself. Neither the agent’s configuration nor the

protocol entity implementation is altered.

2 (linkDown) Recognizes a failure in one of the communication links represented

in the agent’s configuration.

3 (linkUp) Recognizes that one of the communication links represented in the

agent’s configuration has come up.

4

(authenticationFailure)

Is the addressee of a protocol message that isn’t properly

authenticated.

5 (egpNeighborLoss) Had an EGP neighbor as an EGP peer, and the neighbor has been

marked down so that the peer relationship no longer exists.

6 (enterpriseSpecific) Recognizes that some enterprise-specific event has occurred. The

specific trap field identifies the particular trap that occurred.

CommandLine>snmptrap -h symoncool -p 2000 -c \
public “1.3.6.1.4.1.42” 129.146.53.224 6 3 12345
Chapter 12 Developer Environment Tools 233

This example sends a trap on port 2000 on host symoncool with community = foo,

agent = 129.146.53.224, timestamp = 12345, enterprise = 1.3.6.1.4.1.42, generic trap =

6, and specific trap = 3.

snmpwalk

Name

snmpwalk —Query for a tree of information about a network entity

Synopsis
/opt/SUNWsymon/util/bin/sparc-sun-solaris$VERSION/snmpwalk -h fhost
[-p fport] [-t timeout] [-i requestId] [-c community]name1 ... nameN

Description

With snmpwalk you can get information from an manageable node. You specify

what information you want with the objectId. Then, enter the name of the host on

which the agent is running. If the host (or other network connected device) can be

reached, then you will get information about all the entries in the subtree below the

objectId specified in name. snmpwalk walks the subtree in lexicographical order.

Options

-h host

host is the hostname of the machine on which the agent is running. The hostname

can be a domain hostname or IP address in dot notation.

CommandLine>snmptrap -h symoncool -p 2000 -c foo \
“1.3.6.1.4.1.42” 129.146.53.224 6 3 12345
234 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

-p port

Normally the remote port 161/UDP is used. If you run your snmp agent on

another port, you can specify which port here. The default value is taken from

environment variable SNMP_PORT. If this variable is not set, then the value is

taken from the services file entry snmp/udp .

-t timeout

Change the timeout time in seconds for each retry. The default timeout value is 10

seconds.

-i requestID

This integer value is used to differentiate different requests. The default requestID
is 0.

-c community

This string is used as a community name. The default community is public.

name

The portion of the object identifier space that will be searched, using GET NEXT

requests. The snmpwalk utility queries all variables in the subtree below the

specified variable and displays their values.

Exit Status

Exit status is 0 if successful. In all other cases it is nonzero.

Examples of snmpwalk

CommandLine snmpwalk -h symoncool -p 161 -c public 1.3.6.1.2.1.1
OutPut> Sun SNMP Agent, Ultra-1
 1.3.6.1.4.1.42.2.1.1
 36472928
 System administrators office
 72
Chapter 12 Developer Environment Tools 235

Note – If there is no subtree with the specified OID or if the OID is invalid, then

snmpwalk returns without printing anything.

Note – If you do not have sufficient access privilege and there is no timeout,

snmpwalk just returns without printing anything.

snmpwalktable

Name

snmpwalktable —Query for a table of information about a network entity

Synopsis

/opt/SUNWsymon/util/bin/sparc-sun-solaris$VERSION/snmpwalktable\
-h fhost [-p fport] [-t timeout] [-i requestId] [-c community]\
[-n numcolumns] [-w width] name1 ... nameN

Description

With snmpwalktable you can get information from the table node. You specify

which table which you want information about by specifying the objectId. Then

enter the hostname where the agent is running. If the host (or other network

connected device) can be reached, you will get an answer. This command walks

from the start of the table to the end of the table in lexicographical order.

CommandLine>snmpwalk -h symoncool -p 161 -t 1 -c foo 1.3.6.1.2.1.2

OutPut>Request Timed Out: snmpwalk -h symoncool -p 161 -t 1 -c foo
1.3.6.1.2.1.2
236 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

-h host

host is the hostname of the machine on which the agent is running. The hostname

can be a domain hostname or an IP address in dot notation.

-p port

Normally remote port 161/UDP is used. If you run your snmp agent on another

port you can specify which port here. The default value is taken from

environment variable SNMP_PORT. If this variable is not set, then the value is

taken from the services file entry snmp/udp.

-t timeout

Change the timeout time for each retry in seconds. The default timeout is 10

seconds.

-i requestID

This integer value is used to differentiate different requests. The default requestID

is 0.

-c community

This string is used as the community name. The default community is public.

-n numcolumns

This integer value shows the number of columns to be printed. The default value

is 1.

-w width

This integer value indicates the width of every column. The default width is 10.

name

The ObjectId of the table

Exit Status

Exit status is 0 if successful, In all other cases it is nonzero.
Chapter 12 Developer Environment Tools 237

Examples of snmpwalktable

Note – If the access privilege is insufficient and no timeout occurs, snmpwalktable
returns without printing anything. Also, the command does not print anything if the

given OID is not a table.

CommandLine> snmpwalktable -h symoncool -p 161 1.3.6.1.2.1.4.20

OutPut> 127.0.0.1
 129.146.53.224
 1
 2
 255.0.0.0
 255.255.255.0
 1
 1
 65535
 65535

CommandLine> snmpwalktable -h symoncool -p 161 -n 5 -w 3 \
1.3.6.1.2.1.4.20

OutPut> 127 1 255 1 655
 129 2 255 1 655

CommandLine> snmpwalktable -h symoncool -p 161 -n 5 \
1.3.6.1.2.1.4.20

OutPut> 127.0.0.1 1 255.0.0.0 1 65535 129.146.53
2 255.255.25 1 65535

CommandLine> snmpwalktable -h symoncool -p 161 -n 5 -c foo \
-t 1 1.3.6.1.2.1.4.20

OutPut> Request Timed Out: snmpwalktable -h symoncool \
-p 161 -n 5 -c foo -t 1 1.3.6.1.2.1.4.20
238 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

PART II Programmer’s Reference to Console

Integration and Client API

This volume includes the following sections:

■ “Console Integration” on page 241

■ “Client API” on page 257

CHAPTER 13

Console Integration

This chapter covers the following topics:

■ Extending the Console—page 241

■ Integrating Sun Management Center Software With Other Management Tools—

page 246

■ Compilation and makefile Guidelines—page 255

This chapter contains instructions and examples for integrating the Sun

Management Center Console with other applications. Two significant aspects of

integration are considered:

■ enabling the Console to launch user-specific applications

■ enabling other management tools to utilize features provided by the Console

This chapter covers the following topics:

■ Extending the Console—page 241

■ Integration Levels—page 242

■ Configuration Files—page 243

■ Update Utilities—page 246

■ Integrating Sun Management Center Software With Other Management Tools—

page 246

■ Compilation and makefile Guidelines—page 255

Extending the Console

The Sun Management Center Console can be extended to include additional

functionality as users deem necessary. Support for the integration of applications

providing such functionality is through two configuration files

(console-tools.cfg and console-host-apps.cfg) and two utility scripts
241

(es-tool and es-apps) that update the environment based on the content of the

configuration files. Integration levels and syntax for entries in the configuration files

are discussed in this section.

The general process for extending the Console is as follows:

1. Place the Java class files or the .jar files for the user applications in the standard

Sun Management Center location:

/opt/SUNWsymon/apps/classes/

If there are any auxiliary files, such as, property files or images, they should also

be placed in either this directory or a .jar file.

2. Select the appropriate integration level to determine the appropriate

configuration file and utility.

3. Modify the appropriate configuration file to describe the desired extension.

4. Run the appropriate update utility.

5. Restart the Console. Depending upon your site’s configuration, it may be

necessary to restart the Server as well.

Integration Levels

Sun Management Center 2.1 supports the following levels of application integration:

■ External Java application with no API or access to the current host selection: This level

applies to external, stand-alone applications written in Java that the user wishes

to launch from the Console. The application must be written in Java; non-Java

applications are accommodated by the SMSystemCommandJava wrapper class

that executes other programs or shell scripts in a separate process. For a

description of SMSystemCommand, refer to the section on “Syntax for Entries in

the console-tools.cfg File” on page 243.

The application does not require any host selection context or Client API handle.

The application has no further interaction with Sun Management Center once it

has been launched. The name of the application (as specified in the console-
tools.cfg file) will be appended to the Tools Menu in the Console below the

standard menu items provided by the Sun Management Center. Support for this

integration level is provided through the console-tools.cfg file and the

es-tool update utility.

■ External Java application with API and host selection context: This level applies to

custom Java applications that the user wishes to launch from the Console. The

application runs under the same JVM as the Console. The application requires a

pre-authenticated Client API handle and additional global user information. The

application may also require access to the host selection context. The name of the
242 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

application (as specified in the console-tools.cfg file) will be appended to

the Tools Menu in the Console below the standard menu items provided by the

Sun Management Center. The GUI for the application is displayed in a separate

window. Support for this integration level is provided through the console-
tools.cfg file and the es-tool update utility.

■ Internal Java application utilizing the host details context: This level applies to custom

Java applications that the user wishes to launch for a particular host that has been

selected in the Browser tab or the Topology display. The application requires

access to the Host selection context. The name of the application (as specified in

the console-host-apps.cfg file) will be added to the tree list displayed in the

Applications tab in the Host Details window. The application may or may not

have an associated GUI; if it does have a GUI, the GUI will be displayed within

the Display portion of the Host Details window when the application is launched.

Support for this integration level is provided through the console-host-
apps.cfg file and the es-apps update utility.

Note – User applications may wish to implement the SMAppinterface or extend the

SmAppBase class in order to obtain access to the agent information. Refer to the

javadocs for specific information.

Configuration Files

The console-tools.cfg and console-host-apps.cfg files are plain text files

that can be edited with any standard text editor. The files reside on the host on

which the Server is running. The files may be modified at any time (including while

the Console is running), but changes introduced by editing the files will not take

effect until the appropriate update utility is run on the server host and the Console

is restarted (depending upon site configuration, it may be necessary to restart the

Server as well). Each file consists of a series of lines, each of which describes an

application; blank lines and lines beginning with the pound sign ‘#’ are ignored.

Fields within each line are separated by commas ‘,’.

Syntax for Entries in the console-tools.cfg File

Applications listed in the /var/opt/SUNWsymon/cfg/console-tools.cfg file

are launched from the Tools menu in the Console main window. Each application is

defined by a line with the following format:

Entry fields are as follows:

menu_label,class [args]
Chapter 13 Console Integration 243

■ menu label — the string that will appear in the Tools menu. The string can be

either unlocalized or localized text. Unlocalized text can contain embedded spaces.

Localized text must be specified as a property_file:key pair, where property_file is the

name of the file containing the localizable messages for a particular locale, and key
is the identifier used to locate the string that will appear in the Tools menu in the

property file. Note that spaces are not allowed in the key. Refer to chapter 17 for a

discussion of the syntax for the property file.

■ class — the fully qualified Java class name.

■ args — the list of arguments to the class.

The example file below shows entries for three applications to be listed on the Tools

menu: Example GUI , telnet , and ftp :

A special built-in Java wrapper class SystemCommand is provided to enable

the user to execute an arbitrary shell command. This class takes two arguments. The

first argument is the shell command to execute. If a program name is specified, a

full path should be given. If there are embedded spaces, the entire shell command

should be enclosed in double quotes. The second argument is the command to run if

on a Microsoft Windows client, in which case the first argument is ignored.

Variable substitution is performed on the arguments if special variable references are

present. The allowed variables are given below:

Format:
menu_label,class arguments
Example GUI,exampleApp.ExampleGUITool

Telnet,com.sun.symon.base.client.console.SMSystemCommand \
"/usr/openwin/bin/xterm -e telnet $host" "start telnet $host"

exampleApp.ExampleSystemCommand:ftp,exampleApp.ExampleSystemCommand \
"/usr/openwin/bin/xterm -e ftp $host" "start ftp $host"

com.sun.symon.base.client.console.SystemCommand \
shell_command windows_command

$host replaced with currently selected agent host name

$port replaced with currently selected agent port number
244 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Syntax for Entries in the console-host-apps.cfg File

Applications listed in the /var/opt/SUNWsymon/cfg/console-host-apps.cfg
file are launched from the Applications tab in the Host Details window. Each

application is defined by a line with the following format:

Entry fields are as follows:

■ menu label — the string that will appear in the Applications tab. The string can be

either unlocalized or localized text. Unlocalized text can contain embedded spaces.

Localized text must be specified as a property_file:key pair, where property_file is the

name of the file containing the localizable messages for a particular locale, and key
is the identifier used to locate the string that will appear in the Applications tab in

the property file. Note that spaces are not allowed in the key. Refer to chapter 17

for a discussion of the syntax for the property file.

■ class — the fully qualified Java class name.

■ args (optional) — the list of arguments to the class.

■ help (optional) —The help file is specified in one of two forms. The first form is a

key:file pair, where key is a unique string that associates the help file with the

application, and file is the name of the HTML file containing the help for the

application. (Note that this is only the file name, not the full path name of the

HTML file, and that this HTML help file must be installed on the Sun

Management Center help server). The second form is :url, where url is any URL

specification.

Note – In the case where there are no arguments to the class but you wish to specify

a help file, you must still indicate the (empty) arguments field with a comma.

The example file below lists two hypothetical applications. The first application has

arguments but no help file; the second application has a help file but no arguments.

menu_label, class,[args],[help]

example 1: arguments but no help file
example.ExampleModuleApp1:ExampleApp1, example.ExampleApp1, arg1 arg2 arg3

example 2: help file but no arguments
example.ExampleModuleApp2:ExampleApp2, example.ExampleApp2, key: file
Chapter 13 Console Integration 245

Update Utilities

The integration configuration files can be edited at any time; however, in order for

the changes specified in the file to be propagated to the Server, the appropriate

update utility must be run on the Server host. For each configuration file, there is a

corresponding update utility: for the console-tools.cfg file, the update utility is

/opt/SUNWsymon/sbin/es-tool ; for the console-host-apps.cfg file, the

update utility is /opt/SUNW/symon/sbin/es-apps . If you wish to use an

alternative configuration file, you can specify the name as an argument to the utility

The list of user applications is generated from these configuration files each time

these scripts are run. Removing an entry from a configuration file will cause it to be

also removed from the list.

Integrating Sun Management Center
Software With Other Management Tools

Sun Management Center software is an enterprise-wide management solution for

managing Sun platforms. Any other management solution that wants to use Sun

Management Center software for management of a Sun platform can achieve this

using a utility Bean that is provided as a part of the Sun Management Center

Developer Environment. This Bean is a Sun Management Center Object Details

window that can display details without requiring the user to navigate in the

topology view in the Sun Management Center main console.

The class specification of this Bean is:

HostdetailsBean is a Bean that launches an Sun Management Center 2.1 Host Details

window for a given Sun Management Center agent system monitored by a specified

Sun Management Center server. This Bean uses classes and configuration files that

are part of the Sun Management Center 2.1 installation and therefore work only

when the Sun Management Center 2.1 console and server installation exists. Note

that the Bean must be started in a separate thread.

package name: com.sun.symon.apps.details.hostdetailsBean
Class HostdetailsBean
java.lang.Object

|
+--com.sun.symon.tools.hostdetailsBean.HostdetailsBean
public class HostdetailsBean extends java.lang.Object
246 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

▼ To Invoke the HostDetailsBean

1. Instantiate a HostdetailsBean object:

2. Initialize Bean parameters:

3. Optionally, subscribe for PropertyChangeEvents from the Bean:

4. Optionally, set the exit() method of the Bean:

5. Launch hostdetails:

PropertyChangeEvent events are fired when exceptions from the Sun Management

Center client API are caught. It is the responsibility of the Bean user to listen for

these events and take appropriate action. Also, PropertyChangeEvents are fired to

relay informational (status) messages that could be reflected in a GUI or used to

control the Bean environment.

HostdetailsBean theBean = new HostdetailsBean();

theBean.init(String,String,String,String,String,null);

theBean.addPropertyChangeListener(this);

theBean.setExitAction(Object, String, Object[])

theBean.doLaunchHostdetails();
Chapter 13 Console Integration 247

Field Summary

Constructor Summary

Method Summary

Convenience method for subscribing an object to PropertyChangeEvents. This must

be done after init() is called.

Bean exit method.

static java.lang.String ERROR_NO_TARGET
Bounded property value indicating target system not found

static java.lang.String HOSTDETAILS_ERROR
 Bounded property-name for notification of Exception conditions

static java.lang.String HOSTDETAILS_STATUS
Bounded property-name for notification of status conditions

static java.lang.String SECURITY_SCHEME
 security scheme
static java.lang.String STATUS_AUTHENTICATION_OK
 Bounded property value indicating hostdetails is exiting without error
static java.lang.String STATUS_CONNECTION_OK
 Bounded property value indicating hostdetails is exiting without error
static java.lang.String STATUS_EXITING_OK

Bounded property value indicating hostdetails is exiting without error
static java.lang.String STATUS_STARTUP_OK

Bounded property value indicating hostdetails started okay

HostdetailsBean()

void
addPropertyChangeListener(java.Beans.PropertyChangeListener listener)

void doExitAction()

void doLaunchHostdetails()
248 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

This method communicates with the Sun Management Center server and launches

the Hostdetails window.

This method initializes values needed for proper operation of the Bean.

This method is responsible for notifying subscribers of property changes within the

Bean.

Convenience class for removing an object subscription to PropertyChangeEvents.

This must be done after init() is called.

This method allows specification of an alternate method to execute when the

hostdetails window is closed.

Mutator method for setting the Sun Management Center server hostname.

Mutator method for setting the Sun Management Center server port.

void init(java.lang.String sName, int sPort,
java.lang.StringtargetHost, java.lang.String user,
java.lang.String pass, java.lang.String key)

void propertyChange(java.Beans.PropertyChangeEvent evt)

void
removePropertyChangeListener(java.Beans.PropertyChangeListener
listener)

void setExitAction(java.lang.Object target, java.lang.String
method, java.lang.Object[] myArgs)

void setHostname(java.lang.String host)

void setHostport(int port)

void setPassword(java.lang.String pass)
Chapter 13 Console Integration 249

Mutator method for setting the Sun Management Center server password.

Mutator for Sun Management Center server public crypto key. If set to null, defaults

to an internal value.

Mutator method for setting the target system.

Mutator method for setting the Sun Management Center server login username.

Field Detail

Bounded property-name for notification of exception conditions

Bounded property-name for notification of status conditions

Bounded property value indicating hostdetails started okay

Bounded property value indicating hostdetails is exiting without error

void setPublicKey(java.lang.String key)

void setTarget(java.lang.String targ)

void setUser(java.lang.String user)

public static final java.lang.String HOSTDETAILS_ERROR

public static final java.lang.String HOSTDETAILS_STATUS

public static final java.lang.String STATUS_STARTUP_OK

public static final java.lang.String STATUS_EXITING_OK

public static final java.lang.String STATUS_CONNECTION_OK
250 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Bounded property value indicating hostdetails is exiting without error.

Bounded property value indicating hostdetails is exiting without an error.

Bounded property value indicating target system not found

Security scheme.

Encryption

Constructor Detail

Empty constructor for Bean compliance

Method Detail

This method initializes values needed for proper operation of the Bean. Mutators are

available for these fields in addition to this method.

Parameters:

public static final java.lang.String STATUS_AUTHENTICATION_OK

public static final java.lang.String ERROR_NO_TARGET

public static final java.lang.String SECURITY_SCHEME

public static final boolean WANT_ENCRYPTION

public HostdetailsBean()

public void init(java.lang.String sName, int sPort,
java.lang.String targetHost, java.lang.String user,
java.lang.String pass, java.lang.String key)
Chapter 13 Console Integration 251

sName - Hostname of the Sun Management Center server

sPort - Port number used by the Sun Management Center server

targetHost - Sun Management Center “label name” of the system to be

displayed

user - Sun Management Center server login name

pass - Sun Management Center server password for above user

key - Sun Management Center server public key (defaults if null)

Mutator method for setting the Sun Management Center server hostname.

Parameters:

host - Sun Management Center server hostname

Mutator method for setting the Sun Management Center server port.Parameters:

port - Sun Management Center server port number (probably 2099)

Mutator method for setting the target system; that is, the system for which you

would like hostdetails displayed.

Parameters:

targ - target system name, as known to Sun Management Center as “label name”

This is not the same as hostname. It is the Sun Management Center label name.

Mutator method for setting the Sun Management Center server login username.

Parameters:

public void setHostname(java.lang.String host)

public void setHostport(int port)

public void setTarget(java.lang.String targ)

public void setUser(java.lang.String user)
252 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

user - username for login to Sun Management Center server

Mutator method for setting the Sun Management Center server password.

Parameters:

pass - password for login to Sun Management Center server

Mutator for Sun Management Center server public crypto key If set null, this will

default to an internal value.

Parameters:

key - Sun Management Center server public key.

This method is responsible for notifying subscribers of property changes within the

Bean.

Parameters:

evt - PropertyChangeEvent to be fired

Convenience method for subscribing an object to PropertyChangeEvents. This must

be done after init() is called.

Parameters:

listener - a PropertyChangeListener to subscribe for events

public void setPassword(java.lang.String pass)

public void setPublicKey(java.lang.String key)

public void propertyChange(java.Beans.PropertyChangeEvent evt)

public void
addPropertyChangeListener(java.Beans.PropertyChangeListener
listener)

public void removePropertyChangeListener(java.Beans.PropertyChangeListener listener)
Chapter 13 Console Integration 253

Convenience class for removing an object subscription to PropertyChangeEvents.

This must be done after init() is called.

Parameters:

listener - PropertyChangeListener to remove from subscription list

Convenience method to do exit actions.

Throws

1. This method allows specification of an alternate method to execute when the

hostdetails window is closed. By default the Bean will call System.exit(0) .

Parameters:

target - Object which contains the method to be called

method - Method name to be called

argv - String array containing method arguments

Throws:

if introspection/invocation would fail.

Throws:

public void doExitAction()

public void setExitAction(java.lang.Object
target,java.lang.String method, java.lang.Object[] myArgs)

java.lang.IllegalArgumentException

java.lang.IllegalArgumentException

public void doLaunchHostdetails()

java.lang.IllegalStateException
254 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

This method communicates with the Sun Management Center server and launches

the Hostdetails window. If you did not initialize all fields correctly through init() ,

you may receive an IllegalStateException.

Throws:

Compilation and makefile Guidelines

For compilation of JavaBeans™, the Java CLASSPATHmust be set. Typically the

CLASSPATHshould be set to the following:

For an example of makefile, refer one the console examples under

/opt/SUNWsymon/sdk/examples/console.

java.lang.IllegalStateException - if any required fields are null.

ESROOT = /opt/SUNWsymon
CLASSPATH = \
 $(ESROOT)/jclass/chart/lib/jcchart362J.jar:\
 $(ESROOT)/classes/essrv.jar:\
 $(ESROOT)/classes/esclt.jar:\
 $(ESROOT)/classes/escon.jar:\
 $(ESROOT)/classes/escom.jar:\
 $(CLASSPATH)
Chapter 13 Console Integration 255

256 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 14

Client API

This chapter covers the following topics:

■ Introduction to Client API Classes—page 257

■ Sun Management Center Architecture—page 258

■ Java Language Object Class Examples—page 262

Refer to the javadocs , included in the Developer Environment CD, for details on

the Client classes, their methods and descriptions, including examples. Once the

product image is installed, the most up-to-date information on where the javadocs
reside will be available in the following HTML file:

/opt/SUNWsymon/sdk/docs/index.html

Introduction to Client API Classes

The Sun Management Center Client Application Programming Interface (API)

contains a set of public Java classes. The Sun Management Center console

developers or Java applications can use these classes to retrieve data from the Sun

Management Center server or the Sun Management Center agent.

The client API is packaged as a Java jar file, esclt.jar . This file is located in the

following directories depending on the operating system or platform:

■ Solaris - /opt/SUNWsymon/classes
■ Windows - c:\Program Files\symon2.0\esymon

Client API classes are all part of com.sun.symon.base.client package.

Note – The audience for this document is programmers who have knowledge of

object-oriented language and Java. This document does not explain object-oriented

fundamentals.
257

API Usage for System Management

This chapter includes many examples that can help developers get started with the

Client API. These samples introduce the concepts of Request, Response, and Data

classes. This section also contains information on how synchronous and

asynchronous methods are programmed. Once the concepts are explained for a

particular request class, the same principle applies for the various request class

categories. An explanation of the functionality of the request and response classes

and interfaces follow. For more information and other details on the Client API

classes, refer to “Java Language Object Class Examples” on page 262.

External Interface Requirements

The Client API is built on pure Java code. The JRE version is bundled with the Sun

Management Center console packages. This is available on Solaris software as well

as Windows versions. The Client API does not have any other external interface

requirements besides the Java 1.2 package.

Sun Management Center Architecture

This section includes the following:

■ Sun Management Center Three-Tier Architecture—page 258

■ Client API Class Usage—page 260

Sun Management Center Three-Tier Architecture

The Sun Management Center server stands between the Sun Management Center

console on one end and the Sun Management Center agents on the other. FIGURE 14-1

illustrates this configuration:

■ Sun Management Center agents provide the data required for manageability.

■ Sun Management Center console components provide the system monitoring,

control, and configuration user interfaces.

■ The Sun Management Center server acts as a request broker between the agent

and the console. It provides a set of low-level interfaces in the console receptor

module. These interfaces provide an access to the agent data for read/write

purposes. They are extremely generic and deal with raw untyped data. This

document does not contain information on the server.
258 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The Sun Management Center Client API is built on top of these interfaces to provide

a higher level of management functionality for the Sun Management Center console.

Using this API, the console applications fetch live or historic data to configure the

system dynamically.

The API supports both synchronous and asynchronous data models. The data

provided by the Sun Management Center server can be instantaneous, historic data

values retrieved from the Sun Management Center agents.

The following illustration represents the relationship of the Client API to the

product. This illustration is followed by another which represents the Sun

Management Center architecture and the Client API’s relationship to the Sun

Management Center software.

FIGURE 14-1 Client API Request Classes in Relationship With the Console and Server

The following figure shows:

■ Console/GUI client using the client API to connect to the server

■ Client API using RMI as a transport to the server

■ Sun Management Center server components

■ Sun Management Center agents in a server context with one or more modules

loaded

Center
Server

Sun Management
Center

AlarmObject ManagedEntity
AlarmStatus

DataLog LogRequestData

LogViewer Module RawData RowStatus

Client API
with
Request
Classes

Console

Sun Management
Chapter 14 Client API 259

FIGURE 14-2 The Client API and the Sun Management Center Architecture

Client API Class Usage

This section covers the API Class usage for Sun Management Center Developer

Environment. It includes samples to help users use the Client API. This chapter

contains the following sections:

■ “Client API Definition” on page 261

■ “Java Language Object Class Examples” on page 262

Center
Server

Center
Configuration

Agent

Center
Topology

Agent

SNMP

RMI (Remote

SNMP

Center
Agent

Center
Event Mgmt.

Agent

SNMP

Auth Table

Domains

Job Module

Sessions

Module
Module

...

Center
Agent
Module
Module

...

Center
Agent
Module
Module

...

Center
Trap Handler

Agent

Method Invocation)

Console

Client API

Console App

Sun
Management

Console

Sun Management

Sun Management

Sun Management

Sun Management

Sun Management

Sun Management

GUI
Client

Center
Center

Sun Management Sun Management Sun Management
260 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Client API Definition

The Sun Management Center console components have certain shared resources, like

images for various hardware platforms that are stored on the Sun Management

Center server. The console components download these resources using the Client

API. The Client API is the only source of data for the Console components.

For the Sun Management Center software, the transport protocol between the Client

API and the Sun Management Center server is based on RMI (Remote Method

Invocation). According to Sun Management Center architecture standards, this could

also be based on TCP or some other transport mechanism.

This package contains various classes each catering to a particular category of

information being retrieved. There are classes to retrieve alarms, view log files,

initiate discovery requests, create domains and so forth. These classes are bundled

with the rest of the console-related classes in the form of a jar file.

The API provides support for both synchronous and asynchronous requests.

■ The synchronous requests block till the data is retrieved from the agent/server.

■ The asynchronous requests return immediately, without returning any data. The

user requesting the asynchronous data provides a reference that gets called once

the data is available or an error is reported depending upon the situation. This

reference for the callback implements a particular interface depending on the type

of data that is being retrieved.

Based on the above, the API defines the following types of classes for each category

of information:

■ Request class—provides both synchronous and asynchronous methods to retrieve

the data.

■ Response interface—caller of the asynchronous request has to implement this

interface in order to register for a callback.

■ Data classes—applicable for each request class where there are one or more data

classes depending on the type of data that is retrieved. The data class is just an

encapsulation of the data retrieved from the agent. The console component may

choose to dispose the data class once the data is rendered on the console.

There are data classes that represent the Request status or Error status. The API

classes and interfaces are preceded with the prefix “SM,” which distinguishes them

as Sun Management Center classes.
Chapter 14 Client API 261

Java Language Object Class Examples

This chapter includes examples of client API classes. Each client API class example is

presented within the context of its category.

Refer to the javadocs , included in the Developer Environment CD, for details on

the client classes, their methods and descriptions, including examples. Once the

product image is installed, the most up-to-date information on where the javadocs
reside will be available in the following HTML file:

/opt/SUNWsymon/sdk/docs/index.html

Note – All of the classes have the same format. They are all preceded by:

com.sun.symon.base.client.SM< Class or Interface Name>.

The following table contains a list of the category of classes and their examples:

TABLE 14-1 Category of Classes and Examples

Category Example

“Login API” on page 263 “Example: SMLoginTest” on page 263

“Request Status API” on page 265 “Example: SMRequestStatus” on page 265

“Raw Data API” on page 265 • “Example: SMRawDataRequest” on page 265

• “Example: getURLValue Method” on page 266

• “Example: setURLValue Method” on page 267

• “Example: createURL Method” on page 267

• “Example: getUserId Method” on page 268

• “Example: SMProbeTest” on page 269

• “Example: SMRawDataTest” on page 273

• “Example: SMRawDataAsyncTest” on page 275

“Alarm API” on page 278 • “Example: SMAlarmObjectRequest Class” on page 278

• “Example: SMAlarmAsyncTest” on page 279

• “Example: SMAlarmSyncTest” on page 282

“Managed Entity API” on page 286 “Example: SMManagedEntityTest” on page 286

“Module API” on page 292 “Example: SMModuleTest” on page 292

“Log Viewer API” on page 298 “Example: SMLogViewerTest” on page 298

“Resource Access API” on page 301 “Example: SMResourceAccessTest” on page 301

“Topology Agent API” on page 304 “Example: SMTopologyTest” on page 304

“Exception Classes API” on page 308 There are no examples for this API.
262 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Login API

This section contains the following example:

■ Example: SMLoginTest

Example: SMLoginTest

This is the first operation that the Client API programmer must perform, before

using any other category of the API. The example below illustrates the usage of

SMLogin class for connection establishment with the server. Subsequently, you can

log in as a valid Sun Management Center user.

The user must supply the correct arguments which are server name, server port,

user name and user password in order to run the program. After running this

program, once the process is started, the Client API has a live connection with the

server and is ready for providing other data services:

■ It secures its connection between Sun Management Center console and the server.

■ It uses DSA/MD5 (Digital Signature Algorithm/Message Digest) algorithms that

are part of JDK to achieve this objective.)

■ The publicKey variable represents the Public key in the console which

corresponds to the Private key in the Sun Management Center server. The Sun

Management Center console uses this public key to authenticate the server data.

■ Finally, the user gets the SMRawDataRequest object handle. This handle is the

live connection with the server and serves as the base class in the Sun

Management Center Client API class hierarchy. The SMRawDataRequest class

provides the basic data operations like reading and writing the data from the

source. This can be either the Sun Management Center server or the Sun

Management Center agent.

■ The SMRawDataRequest object handle is then used as one of the parameters in

constructing other API request classes. This is illustrated in the examples below.

This is the most fundamental concept with the usage of the Client API.

CODE EXAMPLE 14-1 SMLoginTest

/*
 * @(#)SMLoginTest.java 1.2 99/09/15
 *
 * Copyright (c) 09/15/99 Sun Microsystems, Inc. All Rights Reserved.
*/

import com.sun.symon.base.client.*;
Chapter 14 Client API 263

public class SMLoginTest {
 public SMLoginTest(String server_name, int server_port,
 String user, String password) throws Exception {
 try {
 // This public key is to be used as it is.
 // Please copy this key for your Login program.
 // This release of SyMON does not have provision
 // for changing the keys dynamically.

 String publicKey = "687a8398ad4a85077d33b72a94e16ffde0c4ba023e" +
 "9c9ba77b247cc25bd3cd0015bc24b7429916751e68" +
 "1fd02e5ad6eb5345eb7c75b39a1c304e0f000846aa" +

"470b755b0640af974e7fc70daa6191dff6efa31a09" +
 "431bb5e9848b7dc4cf4b97e1dbca31792d2860ca5a" +
 "5990dfb369e1bcf296274a4e4984c8089329679dd3" +
 "04cd";
 System.out.println("\n...Testing Connection \n");

 SMLogin obj = new SMLogin();
 System.out.println("Before Connection Establishment");

obj.connect(server_name, server_port, user, password, publicKey);

 System.out.println("Successfully Connected and Authenticated");

// The following User and password should be valid for the DNS or
// the local password file on the SyMON server, depending
// on the /etc/nsswitch.conf file config. on the SyMON server host

// After authentication, the following call is used
// to obtain the SyMON server connection handle
 SMRawDataRequest req = obj.getRawDataRequest();

// The object handle "req" should be passed as one of the constructor
// arguments while instantiating any of the Client API classes.
// The handle can be used as it is, if any of the
//functionality of the SMRawDataRequest class is desired.

 }
 catch(Exception e) {
 System.out.println(e.toString());
 }
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 4) {
 System.out.println("usage: java" +

CODE EXAMPLE 14-1 SMLoginTest (Continued)
264 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Request Status API

This section includes the following example:

■ Example: SMRequestStatus

Example: SMRequestStatus

For an example of this usage of SMRequestStatus Class, see the example for

“Example: SMModuleTest” on page 292.

Raw Data API

This section includes the following examples:

■ Example: SMRawDataRequest

■ Example: SMProbeTest

■ Example: SMRawDataTest

■ Example: SMRawDataAsyncTest

Example: SMRawDataRequest

The SMRawDataRequest class object handle that is obtained in the login process

above provides some basic type independent data operation. That is, no distinction

is made whether the data is an alarm-related data or CPU data, and so forth.

 " SMLoginTest server_name server_port user password.");
 System.exit(1);
 }
 else
 {

new SMLoginTest(args[0], new Integer(args[1]).intValue(), args[2], args[3]);

 System.exit(0);
 }
 }
}

CODE EXAMPLE 14-1 SMLoginTest (Continued)
Chapter 14 Client API 265

This class has many overloaded methods essentially catering to various Java types.

They are provided for convenience and performance-related reasons. For example,

an array of objects is compared to a vector, when high performance is desired.

Whereas vectors score over arrays when the amount of data being requested is

dynamic.

The following are a few samples for the various functionalities for this class:

■ Example: getURLValue Method

■ Example: setURLValue Method

■ Example: createURL Method

■ Example: getUserId Method

Example: getURLValue Method

This method is a data type independent primitive to read the data for a property or

a set of properties (scalar and/or vector type) from the agent or the server. The data

type dependent APIs are built using this method.

The data.size() corresponds to the number of URLs being added to the urlvect
variable or the number of data properties being queried. In this example, since only

one URL is requested, the data.size() will return 1.

If the property is a vector or scalar, the software will return row.size().

■ If a scalar property, like CPU usage, is requested, the row.size() will return 1.

■ If a column in the table is queried, the row.size() will return the number of rows

in that column.

TABLE 14-2 getURLValue Method

url = "snmp://gurudev:161/mod/solaris-standard?managedobjects";
Vector urlvect = new Vector();
urlvect.addElement(url);
data=req.getURLValue(urlvect);
for (int j = 0; j < data.size(); j++) {
row = (Vector) data.elementAt(j);
for(int i = 0; i < row.size(); i++) {
System.out.println(row.elementAt(i));
 }
}

266 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Example: setURLValue Method

This method is a data type independent primitive to set the data value for a property

or a set of properties (scalar and/or vector type) on the agent or the server. The data

type dependent APIs are built using this method.

This example illustrates how the three different attributes are set in one call. Refer to

the HTML files for StObject class definition from the Sun Management Center web

site.

■ The getURLValue method above is a vector variant of the overloaded method.

■ The setURLValue method above is an array variant of the overloaded method.

But as indicated in the above section, both the variants are available for these

methods.

Example: createURL Method

Some of the samples of the above overloaded method are listed below. This method

is a helper function to create a Sun Management Center URL.

Note – The Sun Management Center URL is not the same as the URL class defined

in the JDK. Hence these utility method are needed. You can, however, compose their

Sun Management Center URLs once you are familiar with URL structure without

using these methods. The Sun Management Center agent section discusses the

various types of URLs and their format. These helper methods are static methods in

the SMRawDataRequest class.

CODE EXAMPLE 14-2 setURLValue Method

String[] reqURL = new String[3];

 StObject[][] reqdata = new StObject[3][1];

for(int i = 0; i < dataURL.size(); i++) {

 String dataurl = dataURL.elementAt(i).toString();

 reqURL[i*3] = dataurl + "?historychannel";

 reqdata[i*3][0] = new StString(logURL);

 reqURL[(i*3)+1] = dataurl + "?historyinterval";

 reqdata[(i*3)+1][0] = new StString(logInterval);

 reqURL[(i*3)+2] = dataurl + "?historystatus";

 reqdata[(i*3)+2][0] = new StString("on");

 }

 handle.setURLValue(reqURL, reqdata);
Chapter 14 Client API 267

Example: getUserId Method

The SMRawDataRequest class object handle, as explained before, represents the user

authenticated connection between the console and the server. This method allows

the API to get the userId for this connection.

CODE EXAMPLE 14-3 createURL Method

System.out.println(" *Complete URL*");

 try {

 url = SMRawDataRequest.createURL("gurudev", 0,

 "modules.operatingSystem.solaris.standard" ,

 "", "user", "primaryUser" ,"mapping", "/jiten");

 System.out.println(url);

 } catch (Exception e) {

 System.out.println("Exception: " + e.getMessage());

 }

System.out.println(" **Testing overloaded createURL with baseURL **");

url = SMRawDataRequest.createURL(

 "snmp://gurudev:161/mod//modules.operatingSystem.solaris.standard",

 "user", "primaryUser", "mapping", "/jiten");

System.out.println(url);

System.out.println(" **Testing probe create URL**");

System.out.println(" *Complete probe create URL*");

 url = SMRawDataRequest.createURL("gurudev", 0,

 "modules.operatingSystem.solaris.standard", "",

 "netstat","-a");

 System.out.println(url);

CODE EXAMPLE 14-4 getUserId Method

System.out.println(" **Testing getUserId interface**");
System.out.println("Current Login session user : " +
req.getUserId());
268 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Example: SMProbeTest

The SMProbeTest demonstrates that the console can perform an ad-hoc like query on

the agent. This example assumes that the Mib2-Instrumentation module is loaded

on the Sun Management Center Agent on the server host and is currently enabled.

The example will either execute a 'netstat -i ' or 'ifconfig -a ', based on the

selection in the example, and prints the output.

CODE EXAMPLE 14-5 SMProbeTest

/*

 * @(#)SMProbeTest.java 1.2 99/11/03

 *

 * Copyright (c) 11/03/99 Sun Microsystems, Inc. All Rights Reserved.

 */

import com.sun.symon.base.client.*;

import java.io.InputStream;

import java.io.OutputStream;

import java.net.Socket;

import java.net.SocketException;

/**

 * This class gives an example of the usage of probeConnect method in

 * SMRawDataRequest class. This method returns only one TCP socket handle,

 * established with the probe application. This is to be used for read/write

 * application data. The probeConnectWithStderr is a variant of this method.

 * It returns two socket handles. One for data as above and the other for

 * errors passed from the probe application.

 */

public class SMProbeTest {

 private Socket sock;

 public SMProbeTest(String server_name, int server_port, int agent_port,

 String user, String password) throws SMAPIException

 {

 sock = null;

 try {

 String publicKey = "687a8398ad4a85077d33b72a94e16ffde0c4ba023e" +

 "9c9ba77b247cc25bd3cd0015bc24b7429916751e68" +

 "1fd02e5ad6eb5345eb7c75b39a1c304e0f000846aa" +

"470b755b0640af974e7fc70daa6191dff6efa31a09" +

 "431bb5e9848b7dc4cf4b97e1dbca31792d2860ca5a" +

 "5990dfb369e1bcf296274a4e4984c8089329679dd3" +
Chapter 14 Client API 269

 "04cd";

 System.out.println("\n...Testing Connect...\n");

 SMLogin obj = new SMLogin();

 obj.connect(server_name, server_port, user, password, publicKey);

 System.out.println("Successfully Connected and Authenticated");

 SMRawDataRequest req = obj.getRawDataRequest();

 System.out.println(

 "This example assumes that the Mib2-Instrumentation module "+

 "is loaded on the Sun Management Center Agent on the server "+

 "host and is currently enabled.\n" +

 "This probe command will either execute a 'netstat -i' or "+

 "'ifconfig -a', based on the selection in this program, and "+

 "prints the output.");

 String probeURL = "snmp://" + server_name + ":" + agent_port +

 "/mod/mib2-instr/interfaces?runadhoccommand.";

 // set to true if you want 'ifconfig -a' to be executed.

 boolean useIfconfig = true;

 if (useIfconfig)

 probeURL += "ifconfig_a";

 else

 probeURL += "netstat_i";

 System.out.println("url: " + probeURL);

 sock = req.probeConnect(probeURL, null);

 System.out.println(getData());

 }

 catch (Exception e) {

 System.out.println(e.toString());

 }

 finally

 {

 closeConnection();

 }

 }

 public Object getData() throws SMAPIException {

CODE EXAMPLE 14-5 SMProbeTest
270 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

// The following timeout is added as InputStream fails to return

// -1 on end of stream. Without this timeout the sock.read blocks

// forever even though the probe application is done, sending all of

// its response data. Alternate implementations are also possible.

// This is only an example.

 try {

 sock.setSoTimeout(2000);

 }

 catch (SocketException e) {

 throw new SMAPIException(e.getMessage());

 }

 OutputStream op;

 InputStream ip;

 try {

 op = sock.getOutputStream();

 ip = sock.getInputStream();

 // If your application requires data to be written,

 // use op.write() and op.flush().

 }

 catch(Exception e) {

 throw new SMAPIException(e.getMessage());

 }

 StringBuffer tmp = new StringBuffer();

 byte buff[] = new byte[4096];

 int len = -1;

 while (true) {

 try {

 len = ip.read(buff);

 }

 catch (Exception e) {

 break;

 }

 if (len == -1)

 break;

 tmp.append(new String(buff, 0, len));

CODE EXAMPLE 14-5 SMProbeTest
Chapter 14 Client API 271

 }

 if (tmp.length() == 0) // no data

 return null;

 return tmp;

 }

 public void closeConnection() throws SMAPIException {

 try {

 if (sock != null) {

 sock.close();

 sock = null;

 }

 }

 catch(Exception e) {

 throw new SMAPIException(e.getMessage());

 }

 }

 private static void usage()

 {

 System.out.println(

 "usage: java SMProbeTest " +

 "server_name server_port agent_port user password");

 }

 public static void main(String[] args) throws Exception {

 if (args.length != 5) {

 usage();

 System.exit(1);

 }

 else {

 new SMProbeTest (args[0], new Integer(args[1]).intValue(),

 new Integer(args[2]).intValue(), args[3], args[4]);

 System.exit(0);

 }

 }

}

CODE EXAMPLE 14-5 SMProbeTest
272 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Example: SMRawDataTest

The SMRawDataTest demonstrates the usage of methods from the class

SMRawDataRequest. At the later part of the example, it will retrieve the CPU Idle

time and the CPU User time from the kernel reader module.

CODE EXAMPLE 14-6 SMRawDataTest

/*
 * @(#)SMRawDataTest.java 1.1 99/09/13
 *
 * Copyright (c) 09/13/99 Sun Microsystems, Inc. All Rights Reserved.
 */

import com.sun.symon.base.client.*;
import java.util.Vector;

public class SMRawDataTest {

public SMRawDataTest(String server_name, int server_port, int agent_port,
 String user, String password) throws Exception
 {
 try {
 String publicKey = "687a8398ad4a85077d33b72a94e16ffde0c4ba023e" +
 "9c9ba77b247cc25bd3cd0015bc24b7429916751e68" +
 "1fd02e5ad6eb5345eb7c75b39a1c304e0f000846aa" +

"470b755b0640af974e7fc70daa6191dff6efa31a09" +
 "431bb5e9848b7dc4cf4b97e1dbca31792d2860ca5a" +
 "5990dfb369e1bcf296274a4e4984c8089329679dd3" +
 "04cd";

 System.out.println("*** Testing Connect ****");
 SMLogin obj = new SMLogin();

 obj.connect(server_name, server_port, user, password, publicKey);
 System.out.println("Successfully Connected and Authenticated ");

 SMRawDataRequest req = obj.getRawDataRequest();

 System.out.println("*** Testing the SMRawDataRequest ***");

 // This method is used by the client application to know
 // location of the topology server
 System.out.println("** Testing getTopologyBaseURL**");
 System.out.println("Topology Base URL = " +
 req.getTopologyBaseURL());

 // This method is used by the client application to know
Chapter 14 Client API 273

 // location of the Event manager server
 System.out.println("** Testing getEventBaseURL**");

System.out.println("Event Base URL = " + req.getEventBaseURL());

 // This method is used by the client application to know
 // position of the Configuration manager server
 System.out.println("** Testing getConfigurationBaseURL**");

 System.out.println("Config Base URL = " +
 req.getConfigurationBaseURL());

 // This method enables the Client API
 // to get the userid of the current server session
 System.out.println("**Testing getUserId interface**");
 System.out.println("Current Login session user : " +
 req.getUserId());

 System.out.println("**Testing getURLValue **");
 String[] urlarr = new String[2];

 urlarr[0] = "snmp://" + server_name + ":" + agent_port +
 "/mod/kernel-reader/cpu-detail/cpu-util/cpuUtilTable/" +
 "cpuUtilEntry/cpu_idle";

 urlarr[1] = "snmp://" + server_name + ":" + agent_port +
 "/mod/kernel-reader/cpu-detail/cpu-util/cpuUtilTable/" +
 "cpuUtilEntry/cpu_user";

 Vector urlvect = new Vector();
 urlvect.addElement(urlarr[0]);
 urlvect.addElement(urlarr[1]);

 Vector dat = req.getURLValue(urlvect);

 if (dat.size() != 2)
 throw new SMAPIException("Incorrect data returned");

 for (int i = 0; i < dat.size(); i++) {
 Vector row = (Vector) dat.elementAt(i);
 for (int j = 0; j < row.size() ; j++)
 {
 if (i == 0)
 System.out.println("% CPU Idle time for cpu(s): "
 + row.elementAt(j));
 else
 System.out.println("% CPU User time for cpu(s): "
 + row.elementAt(j));

CODE EXAMPLE 14-6 SMRawDataTest (Continued)
274 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Example: SMRawDataAsyncTest

The SMRawDataAsyncTest is basically doing the same test as SMRawDataTest. This

example makes use of an asynchrous request in a periodic cycle of 60 seconds. Every

periodic time-out will cause the server to call back and the getURLresponse method

will be invoked.

 }
 }
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }

 private static void usage()
 {
 System.out.println(
 "usage: java SMRawDataTest " +
 "server_name server_port agent_port user password");
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 5) {
 usage();
 System.exit(1);
 }
 else {
 new SMRawDataTest (args[0], new Integer(args[1]).intValue(),
 new Integer(args[2]).intValue(), args[3], args[4]);
 System.exit(0);
 }
 }
}

CODE EXAMPLE 14-7 SMRawDataAsyncTest

/*
 * @(#)SMRawDataAsyncTest.java 1.1 99/09/13
 *
 * Copyright (c) 09/13/99 Sun Microsystems, Inc. All Rights Reserved.
 */

import com.sun.symon.base.client.*;

CODE EXAMPLE 14-6 SMRawDataTest (Continued)
Chapter 14 Client API 275

import java.util.Vector;

public class SMRawDataAsyncTest extends SMRawDataResponseAdapter {

 public SMRawDataAsyncTest(String server_name, int server_port,
 int agent_port, String user, String password) throws Exception
 {
 try {
 String publicKey = "687a8398ad4a85077d33b72a94e16ffde0c4ba023e" +
 "9c9ba77b247cc25bd3cd0015bc24b7429916751e68" +
 "1fd02e5ad6eb5345eb7c75b39a1c304e0f000846aa" +

"470b755b0640af974e7fc70daa6191dff6efa31a09" +
 "431bb5e9848b7dc4cf4b97e1dbca31792d2860ca5a" +
 "5990dfb369e1bcf296274a4e4984c8089329679dd3" +
 "04cd";

 System.out.println("*** Testing Connect ****");
 SMLogin obj = new SMLogin();

 obj.connect(server_name, server_port, user, password, publicKey);
 System.out.println("Successfully Connected and Authenticated");

 SMRawDataRequest req = obj.getRawDataRequest();

System.out.println("***Testing the Async. SMRawDataRequest ***");
 System.out.println("**Testing getURLValue **");

 // This is an example of how an async. cyclic URL request can be
 // placed. This request will cause a server callback every 60
 // seconds for the following URLs. If period is null then there
 // will be only a one time callback with the values for the URL.

 String[] urlarr = new String[2];

 urlarr[0] = "snmp://" + server_name + ":" + agent_port +
 "/mod/kernel-reader/cpu-detail/cpu-util/cpuUtilTable" +
 "/cpuUtilEntry/cpu_idle";

 urlarr[1] = "snmp://" + server_name + ":" + agent_port +
 "/mod/kernel-reader/cpu-detail/cpu-util/cpuUtilTable/" +
 "cpuUtilEntry/cpu_user";

 Vector urlvect = new Vector();
 urlvect.addElement(urlarr[0]);
 urlvect.addElement(urlarr[1]);

 req.getURLValue(urlvect, "60", this, this);

CODE EXAMPLE 14-7 SMRawDataAsyncTest (Continued)
276 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 System.out.println("sleeping...");
 Thread.sleep(200 * 1000);
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }

 public void getURLResponse(SMRequestStatus status, Vector dat,
 Object identifier)
 {
 int error = status.getReturnCode();
 if (error == SMErrorCode.SUCCESS) {
 if (dat.size() != 2)
 {
 System.out.println("Incorrect data returned. size =" +
 dat.size());
 }
 else {
 for (int i = 0; i < dat.size(); i++) {
 Vector row = (Vector) dat.elementAt(i);
 for (int j = 0; j < row.size() ; j++)
 {
 if (i == 0)
 System.out.println("% CPU Idle time for cpu(s): "
 + row.elementAt(j));
 else
 System.out.println("% CPU User time for cpu(s): "
 + row.elementAt(j));
 }
 }
 }
 }
 else { // Failure
 // The various error codes as in SMErrorCode may be reported here
 System.out.println("Error code = " + error + " " +
 "Msg Text = " + status.getMessageText() +

" " + "Exception = " + (status.getException()).getMessage());
 }
 }

 private static void usage()
 {
 System.out.println(
 "usage: java SMRawDataAsyncTest " +
 "server_name server_port agent_port user password");

CODE EXAMPLE 14-7 SMRawDataAsyncTest (Continued)
Chapter 14 Client API 277

Alarm API

This section includes the following example:

■ Example: SMAlarmObjectRequest Class

Example: SMAlarmObjectRequest Class

The following are examples related to the SMAlarmObjectRequest class:

■ Example: SMAlarmAsyncTest

■ Example: SMAlarmSyncTest

The following examples illustrate both the synchronous and asynchronous usage of

the API.

 }

 public static void main(String[] args) throws Exception {
 if (args.length != 5) {
 usage();
 System.exit(1);
 }
 else {
 new SMRawDataAsyncTest (args[0], new Integer(args[1]).intValue(),
 new Integer(args[2]).intValue(), args[3], args[4]);
 System.exit(0);
 }
 }
}

CODE EXAMPLE 14-7 SMRawDataAsyncTest (Continued)
278 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Example: SMAlarmAsyncTest

The SMAlarmAsyncTest demonstrates the usage of the client.alarm API to query

the alarm information from the server. Notice the example is doing the request

asynchronously. The program will go into a sleep mode for a certain period of time

and then wake up to response the callback from the server.

CODE EXAMPLE 14-8 SMAlarmAsyncTest

/*
 * @(#)SMAlarmAsyncTest.java 1.1 99/09/13
 *
 * Copyright (c) 09/13/99 Sun Microsystems, Inc. All Rights Reserved.
 */

import com.sun.symon.base.client.*;
import com.sun.symon.base.client.alarm.*;

import java.util.Vector;

/**
* This class is for testing the Client API.
**/
public class SMAlarmAsyncTest implements SMAlarmObjectResponse {

 private SMAlarmObjectRequest alreq = null;

 public SMAlarmAsyncTest(String server_name, int server_port, int agent_port,
 String user, String password) throws Exception {

 try {
 String publicKey = "687a8398ad4a85077d33b72a94e16ffde0c4ba023e" +
 "9c9ba77b247cc25bd3cd0015bc24b7429916751e68" +
 "1fd02e5ad6eb5345eb7c75b39a1c304e0f000846aa" +

"470b755b0640af974e7fc70daa6191dff6efa31a09" +
 "431bb5e9848b7dc4cf4b97e1dbca31792d2860ca5a" +
 "5990dfb369e1bcf296274a4e4984c8089329679dd3" +
 "04cd";

 System.out.println("*** Testing Connection ****");
 SMLogin obj = new SMLogin();
 System.out.println("Before Connection Establishment");
 obj.connect(server_name, server_port, user, password, publicKey);
 System.out.println("Successfully Connected and Authenticated");

 SMRawDataRequest req = obj.getRawDataRequest();

System.out.println(" ***Testing SMAlarmObjectRequest class ***");
Chapter 14 Client API 279

 alreq = new SMAlarmObjectRequest(req, null);
 Vector allist = null;

 // This commented section can be used if
 // Alarm retrieval is desired for a domain.

 System.out.println("** Testing getAlarms on topology**");
alreq.getAlarms("1", "Default Domain", "{ERR} {WRN}", "{O} {C} {F}",

 "{A} {N}", null, null, null, this, new Object());

System.out.println("** Initiating a fresh request to get alarms**");

 // get alarms on host
 alreq.getAlarms("2", server_name, null , "{ERR} {WRN}",
 "{O} {C} {F}", null, null,
 null, null, this, new Object());

 System.out.println("sleeping...");
 Thread.sleep(60 * 1000);
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }

 public void getAlarmResponse(SMRequestStatus status, Vector data,
 Object identifier, SMAlarmIteratorAsync iter) {

 if (data == null)
 return;

 SMAlarmObjectData aldata=null;

 System.out.println("Callback:size " + data.size());

 for(int i = 0; i < data.size(); i++) {
 aldata = (SMAlarmObjectData)data.elementAt(i);
 String host = aldata.getHost();
 System.out.println("Alarm Id: "+ aldata.getAlarmId());
 System.out.println("Rule Id: "+ aldata.getAlarmRuleId());

System.out.println("Open Time stamp: "+ aldata.getOpenTimestamp());
 System.out.print("Alarm text: " + aldata.getAlarmShortText());
 System.out.println("Alarm Long Key : "+ aldata.getAlarmLongKey());
 System.out.println("Node URL: "+ aldata.getMoURL());
 System.out.println("Target host: " + aldata.getHost());
 System.out.println("Alarm State: " + aldata.getAlarmState());
 System.out.println("Alarm Severity: " + aldata.getSeverity());

CODE EXAMPLE 14-8 SMAlarmAsyncTest (Continued)
280 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 System.out.println("Upd Time stamp: " +
 aldata.getUpdateTimestamp());
 System.out.println("Upd Reason: "+ aldata.getUpdateReason());
 System.out.println("Machine Type: "+ aldata.getMachineType());
 System.out.println("Rule Group: "+ aldata.getRuleGroup());
 System.out.println("Clo Time stamp: " +
 aldata.getCloseTimestamp());
 System.out.println("Ack Time stamp: " + aldata.getAckTimestamp());
 System.out.println("Ack operator: " + aldata.getAckOperator());
 System.out.println("Fix Time stamp: " + aldata.getFixTimestamp());
 System.out.println("Fix operator: " + aldata.getFixOperator());
 }

 try {
 if (data.size() > 0)
 iter.getNextAlarms();
 }
 catch(Exception e){
 e.printStackTrace();
 }
 }

 public void setAlarmResponse(SMRequestStatus status, Object identifier) {}

 private static void usage()
 {
 System.out.println("usage: java SMAlarmAsyncTest " +
 "server_name server_port agent_port name password");
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 5) {
 usage();
 System.exit(1);
 }
 else {
 new SMAlarmAsyncTest (args[0], new Integer(args[1]).intValue(),
 new Integer(args[2]).intValue(), args[3], args[4]);
 System.exit(0);
 }
 }
}

CODE EXAMPLE 14-8 SMAlarmAsyncTest (Continued)
Chapter 14 Client API 281

Example: SMAlarmSyncTest

SMAlarmSyncTest basically performs the same test as SMAlarmAsyncTest except

that the program does not go into any sleep mode.

CODE EXAMPLE 14-9 SMAlarmSyncTest

/*
 * @(#)SMAlarmSyncTest.java 1.1 99/09/13
 *
 * Copyright (c) 09/13/99 Sun Microsystems, Inc. All Rights Reserved.
 */

import com.sun.symon.base.client.*;
import com.sun.symon.base.client.alarm.*;

import java.util.Vector;

/**
 * This class is for testing the Client API.
 **/
public class SMAlarmSyncTest {

private SMAlarmObjectRequest alreq = null;

public SMAlarmSyncTest(String server_name, int server_port, int agent_port,
 String user, String password) throws Exception {
 try {
 String publicKey = "687a8398ad4a85077d33b72a94e16ffde0c4ba023e" +
 "9c9ba77b247cc25bd3cd0015bc24b7429916751e68" +
 "1fd02e5ad6eb5345eb7c75b39a1c304e0f000846aa" +

"470b755b0640af974e7fc70daa6191dff6efa31a09" +
 "431bb5e9848b7dc4cf4b97e1dbca31792d2860ca5a" +
 "5990dfb369e1bcf296274a4e4984c8089329679dd3" +
 "04cd";

 System.out.println("*** Testing Connection ****");
 SMLogin obj = new SMLogin();
 System.out.println("Before Connection Establishment");
 obj.connect(server_name, server_port, user, password, publicKey);
 System.out.println("Successfully Connected and Authenticated");

 SMRawDataRequest req = obj.getRawDataRequest();

System.out.println(" ***Testing SMAlarmObjectRequest class ***");
 alreq = new SMAlarmObjectRequest(req, null);

System.out.println(" ** Testing Sync. getAlarms with moURL **");
282 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

SMAlarmIteratorSync iter = alreq.getAlarms("1", null, null, "{ERR} {WRN}",
 "{O} {C} {F}", null, null, null, null);
 Vector allist = iter.getData();

 SMAlarmObjectData aldata=null;

 while (allist.size() > 0) {
 System.out.println(allist.size());
 for(int i = 0; i < allist.size(); i++) {
 aldata = (SMAlarmObjectData)allist.elementAt(i);
 System.out.println("Alarm Id : " +
 aldata.getAlarmId());
 System.out.println("Rule Id : " +
 aldata.getAlarmRuleId());
 System.out.println("Open Time stamp: " +
 aldata.getOpenTimestamp());
 System.out.println("Alarm text : " +
 aldata.getAlarmShortText());
 System.out.println("Alarm Long Key : " +
 aldata.getAlarmLongKey());
 System.out.println("Node URL : " +
 aldata.getMoURL());
 System.out.println("Target host : " +
 aldata.getHost());
 System.out.println("Alarm State : " +
 aldata.getAlarmState());
 System.out.println("Alarm Severity : " +
 aldata.getSeverity());
 System.out.println("Upd Time stamp : " +
 aldata.getUpdateTimestamp());
 System.out.println("Upd Reason : " +
 aldata.getUpdateReason());
 System.out.println("Machine Type : " +
 aldata.getMachineType());
 System.out.println("Rule Group : " +
 aldata.getRuleGroup());
 System.out.println("Clo Time stamp : " +
 aldata.getCloseTimestamp());
 System.out.println("Ack Time stamp : " +
 aldata.getAckTimestamp());
 System.out.println("Ack operator : " +
 aldata.getAckOperator());
 System.out.println("Fix Time stamp : " +
 aldata.getFixTimestamp());
 System.out.println("Fix operator : " +
 aldata.getFixOperator());

CODE EXAMPLE 14-9 SMAlarmSyncTest (Continued)
Chapter 14 Client API 283

 Vector ret = null;
 String[] id = new String[1];

 // set the following to true if you actually want
 // to modify the alarms.
 boolean modifyAlarms = false;

 if (modifyAlarms)
 {
 // Note the following test code for
 // ack/fix/delete is just an
 // example of its usage
 if (!aldata.isFixed()) {
 System.out.println("** Testing ack alarms **");

 if (aldata != null) {
 id[0] = aldata.getAlarmId();
 ret = alreq.ackAlarms(id, "just for" +
 " the heck of it");
 }
 else {
 System.out.println("No alarm to be acked");
 }

 if (ret == null) {
 System.out.println("Ack Success");
 }
 else {
 System.out.println("Ack Failed");
 }

 if (aldata.isOpen()) {
System.out.println("** Testing fix alarms **");

 ret = null;

 if (aldata != null) {
 id[0] = aldata.getAlarmId();
 ret = alreq.fixAlarms(id,
 "just for the heck of it");
 }
 else {

System.out.println("No alarm to be fixed");
 }

 if (ret == null) {
 System.out.println("Fix Success");
 }

CODE EXAMPLE 14-9 SMAlarmSyncTest (Continued)
284 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 else {
 System.out.println("Fix Failed");
 }
 }
 }

 System.out.println("** Testing delete alarms **");

 ret= null;
 if (aldata != null) {
 id[0] = aldata.getAlarmId();
 ret = alreq.deleteAlarms(id,
 "just for the heck of it");
 }
 else {
 System.out.println("No alarm to be deleted");
 }

 if (ret == null) {
 System.out.println("Success");
 }
 else {
 System.out.println("Failed");
 }
 }
 }
 System.out.println("** Requesting the next batch**");

 iter = iter.getNextAlarms();
 allist = iter.getData();
 }
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 }
 }

 private static void usage()
 {
 System.out.println("usage: java SMAlarmSyncTest " +
 "server_name server_port agent_port user password");
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 5) {
 usage();
 System.exit(1);

CODE EXAMPLE 14-9 SMAlarmSyncTest (Continued)
Chapter 14 Client API 285

Managed Entity API

This section includes the following example:

■ Example: SMManagedEntityRequest Class

Example: SMManagedEntityTest

This is a class that uses the services of the SMRawDataRequest class in order to get

data type dependent information.

This class is used to programmatically query the schema of the properties defined in

the agent. This section provides the organization of the schema on the agent.

The agent contains one or more modules. A module is made up of one or more

managed objects. Each managed object contains one or more properties. And each

property has qualifiers. For a detailed explanation of these terms, refer to the Sun

Management Center architecture document and the agent section.

The examples in this section include a few examples of how this class is used for the

purpose of obtaining the values for the above entities.

The constructor of this class takes the SMRawDataRequest object handle, which

encapsulates the authenticated RMI connection handle with the server, in order to be

capable of sending requests over the RMI to the server. This concept is used for

every other API request class instantiation in Sun Management Center.

 }
 else {
 new SMAlarmSyncTest (args[0], new Integer(args[1]).intValue(),
 new Integer(args[2]).intValue(), args[3], args[4]);
 System.exit(0);
 }
 }
}

CODE EXAMPLE 14-10 SMManagedEntityTest

/*
 * @(#)SMManagedEntityTest.java 1.2 99/10/15
 *

CODE EXAMPLE 14-9 SMAlarmSyncTest (Continued)
286 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 * Copyright (c) 10/15/99 Sun Microsystems, Inc. All Rights Reserved.
 */

import com.sun.symon.base.client.*;
import com.sun.symon.base.client.attribute.*;
import java.util.Vector;

/**
* This class is for testing the Client API.
**/
public class SMManagedEntityTest {
 public SMManagedEntityTest(String server_name, int server_port,
 int agent_port, String user, String password) throws Exception {
 try {
 /*Checkout SMLogin.java for Login/Authentication Test */
 String publicKey = "687a8398ad4a85077d33b72a94e16ffde0c4ba023e" +
 "9c9ba77b247cc25bd3cd0015bc24b7429916751e68" +
 "1fd02e5ad6eb5345eb7c75b39a1c304e0f000846aa" +

"470b755b0640af974e7fc70daa6191dff6efa31a09" +
 "431bb5e9848b7dc4cf4b97e1dbca31792d2860ca5a" +
 "5990dfb369e1bcf296274a4e4984c8089329679dd3" +
 "04cd";

 System.out.println("*** Testing Connection ****");
 SMLogin obj = new SMLogin();

 obj.connect(server_name, server_port, user, password, publicKey);
 System.out.println("Successfully Connected and Authenticated.");

 SMRawDataRequest req = obj.getRawDataRequest();

 // This file lists the usage of the various methods supported by
 // the SMManagedEntityRequest class.
 // The basic usage of this class is to request
 // the schema of the MIB supported on the agent.

 System.out.println("**Testing ManagedEntityRequest **");
 SMManagedEntityRequest mreq = new SMManagedEntityRequest(req);

 System.out.println("**Testing getManagedObjectList method**");
 // The following method is used to list all the Managed
 // objects associated with a module.

// The following call lists all the managed objects instrumented
 // on the "kernel-reader" module.

 String[] urlarr = new String[1];

CODE EXAMPLE 14-10 SMManagedEntityTest (Continued)
Chapter 14 Client API 287

 urlarr[0] = "snmp://" + server_name + ":" + agent_port +
 "/mod/kernel-reader";

 Vector molist = mreq.getManagedObjectList(urlarr[0]);

 for (int i = 0; i < molist.size(); i++) {
 System.out.println(molist.elementAt(i).toString());
 }

 // The SyMON agent supports managed object properties
 // which are internal to the agent/console
 // usage and should not be exposed to the SyMON console
 // browser in the form of tables etc.
 // The following call lists the visible properties
 // (can be displayed in the SyMON browser),
 // for a managed object based on a module.
 // Eg. The call below lists the visible properties for a
 // Managed object "filesystem" on a "kernel-reader" module.

// --
 System.out.println("**Testing getVisiblePropertyList method**");
 urlarr[0] = "snmp://" + server_name + ":" + agent_port +
 "/mod/kernel-reader";

Vector plist =mreq.getVisiblePropertyList(urlarr[0], "filesystem");

 System.out.println("The visible property data for URL " +
 urlarr[0] + "/filesystem");

 for (int i = 0; i < plist.size(); i++) {
 System.out.println("Visible Property Name : " +
 plist.elementAt(i).toString());
 }

// --
 System.out.println(
 "**Testing getVisiblePropertyDataList method**");
 // This method is similar to the method above,
 // but in addition to the name of the property, it also returns
 // the type of the property eg. Vector , Scalar etc.

 urlarr[0] = "snmp://" + server_name + ":" +
 agent_port + "/mod/kernel-reader";
 Vector pdlist = mreq.getVisiblePropertyDataList(urlarr[0],
 "filesystem");

 System.out.println("The visible property data for URL " +
 urlarr[0] + "/filesystem");

CODE EXAMPLE 14-10 SMManagedEntityTest (Continued)
288 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 for (int i = 0; i < pdlist.size(); i++) {
 SMPropertyData pd = (SMPropertyData)pdlist.elementAt(i);

 System.out.println("Visible Property Name : " +
 pd.getPropertyName() + " " +
 "Property Type : " +
 ((pd.getPropertyType()) ? "scalar" : "vector"));
 }

 // The following method is used to list all the
 // properties supported by a managed object on a
 // particular module. This includes the visible/hidden
 // properties supported by the managed object.

// --
 System.out.println("**Testing getPropertyList method**");

 urlarr[0] = "snmp://" + server_name + ":" + agent_port +
 "/mod/kernel-reader";

 Vector vplist = mreq.getPropertyList(urlarr[0], "filesystem");

 System.out.println("The property data for URL "+
 urlarr[0]+ "/filesystem");

 for (int i = 0; i < vplist.size(); i++) {
 System.out.println("Property Name : " +
 vplist.elementAt(i).toString());
 }

 // This method is similar to the above,
 // but in addition lists the type of the property, as a
 // Vector or a scalar.

// --
 System.out.println("**Testing getPropertyDataList method**");
 urlarr[0] = "snmp://" + server_name + ":" +
 agent_port + "/mod/kernel-reader";

 Vector vpdlist =mreq.getPropertyDataList(urlarr[0], "filesystem");

 System.out.println("The property data for URL " +
 urlarr[0] + "/filesystem");

 for (int i = 0; i < vpdlist.size(); i++) {
 SMPropertyData vpd = (SMPropertyData)vpdlist.elementAt(i);

CODE EXAMPLE 14-10 SMManagedEntityTest (Continued)
Chapter 14 Client API 289

 System.out.println("Property Name : " +
 vpd.getPropertyName() + " " +
 "Property Type : " +
 ((vpd.getPropertyType()) ? "scalar" : "vector"));
 }

 // This method is used to list all
 // the tables associated with a managed object.

// --
 System.out.println("**Testing getTableList method**");

 urlarr[0] = "snmp://" + server_name + ":" +
 agent_port + "/mod/kernel-reader";

 Vector tlist = mreq.getTableList(urlarr[0], "filesystem");

System.out.println("The tables for URL "+ urlarr[0]+"/filesystem");

 for (int i = 0; i < tlist.size(); i++) {
 System.out.println("Table Name : " +
 tlist.elementAt(i).toString());
 }

// --
 System.out.println("**Testing getTableSchema method**");

 for (int i = 0; i < tlist.size(); i++) {
 Vector ts = mreq.getTableSchema(urlarr[0], "filesystem",
 tlist.elementAt(i).toString());
 System.out.println("Table Schema for filesystem");

 for(int x = 0 ; x < ts.size() ; x++) {
 System.out.println("Column("+x+") = " +
 ts.elementAt(x).toString());
 }
 }
// --
 // Read the contents of the table.

 System.out.println("**Testing getTableValue method**");

 for (int i = 0; i < tlist.size(); i++) {
 Vector v = mreq.getTableValue(urlarr[0], "filesystem",
 tlist.elementAt(i).toString());

CODE EXAMPLE 14-10 SMManagedEntityTest (Continued)
290 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 for(int j = 0; j < v.size() ; j++) {
 Vector rowd = (Vector)v.elementAt(j);
 System.out.println(rowd.size());
 System.out.print("Row Data : ");
 for(int k = 0; k < rowd.size() ; k++) {
 System.out.print(rowd.elementAt(k).toString()+ " ");
 System.out.print("");
 }

 }
 }

 // For SyMON agents every Managed object property
 // has a list of attributes called Qualifiers.
 // The following method lists the qualifiers for
 // a managed object property.
// --
 System.out.println("**Testing getQualifierList method**");
 urlarr[0] = "snmp://" + server_name + ":" +
 agent_port + "/mod/kernel-reader";

 Vector qlist = mreq.getQualifierList(urlarr[0], "user",
 "primaryUser");

 System.out.println("The qualifier data for URL " +
 urlarr[0]+"/user/primaryUser");
 for (int i = 0; i < qlist.size(); i++) {
 System.out.println("Qualifier Name : " +
 qlist.elementAt(i).toString());
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 System.out.println(e.getMessage());
 }
 }

 private static void usage()
 {
 System.out.println(
 "usage: java SMManagedEntityTest " +
 "server_name server_port agent_port user password");
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 5) {
 usage();

CODE EXAMPLE 14-10 SMManagedEntityTest (Continued)
Chapter 14 Client API 291

Module API

This section includes information on the following:

■ Example: SMModuleTest

Example: SMModuleTest

This example also has the usage for SMRequestStatus class, which is used for

reporting errors in asynchronous methods.

The SMModuleTest demonstrates the dumping of modules information from the

agents. In this example, the program will list modules and loaded modules, get the

Health Monitor module’s information as specified in the corresponding

configuration file. It will also load, disable, enable, and unload the Health Monitor

module. Finally, it demonstrates getting the module information in asynchronous

mode.

 System.exit(1);
 }
 else {
 new SMManagedEntityTest(args[0], new Integer(args[1]).intValue(),
 new Integer(args[2]).intValue(), args[3], args[4]);
 System.exit(0);
 }
 }
}

CODE EXAMPLE 14-11 SMModuleTest

/*
 * @(#)SMModuleTest.java 1.6 99/10/15
 *
 * Copyright (c) 10/15/99 Sun Microsystems, Inc. All Rights Reserved.
 */

import com.sun.symon.base.client.*;
import com.sun.symon.base.client.module.*;

import java.util.StringTokenizer;
import java.util.Vector;

CODE EXAMPLE 14-10 SMManagedEntityTest (Continued)
292 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

public class SMModuleTest implements SMModuleResponse {

 public SMModuleTest(String server_name, int server_port, int agent_port,
 String user, String password) throws Exception
 {
 try {
 String publicKey = "687a8398ad4a85077d33b72a94e16ffde0c4ba023e" +
 "9c9ba77b247cc25bd3cd0015bc24b7429916751e68" +
 "1fd02e5ad6eb5345eb7c75b39a1c304e0f000846aa" +

"470b755b0640af974e7fc70daa6191dff6efa31a09" +
 "431bb5e9848b7dc4cf4b97e1dbca31792d2860ca5a" +
 "5990dfb369e1bcf296274a4e4984c8089329679dd3" +
 "04cd";

 // Connection establish
 System.out.println("\n...Testing Connection ...\n");
 SMLogin obj = new SMLogin();

 System.out.println("Before Connection Establishment");
 obj.connect(server_name, server_port, user, password, publicKey);

 System.out.println("Successfully Connected and Authenticated");
 SMRawDataRequest req = obj.getRawDataRequest();

 // SMModuleRequest
 System.out.println("\n... Testing the SMModuleRequest ...\n");
 SMModuleRequest modreq = new SMModuleRequest(req);

 System.out.println("\n...... List All the Modules\n");
 Vector allmodlist = modreq.listModules(server_name, agent_port);
 for(int i = 0; i < allmodlist.size(); i++){
 System.out.println(allmodlist.elementAt(i));
 }

 // List Loaded Modules
 System.out.println("\n...... List Loaded Modules\n");

Vector loadmodlist = modreq.listLoadedModules(server_name, agent_port);
 for(int i = 0; i < loadmodlist.size(); i++){
 System.out.println(loadmodlist.elementAt(i));
 }

 // Get Loaded Module Info
 System.out.println("\n......Get Loaded Module Info......\n");
 String[][] loadmodinfo = modreq.getLoadedModuleInfo(server_name,
 agent_port);
 for(int i = 0; i < loadmodinfo.length ; i++) {

CODE EXAMPLE 14-11 SMModuleTest (Continued)
Chapter 14 Client API 293

 // This will display the localized description for the module
 System.out.println("Module Name = " + loadmodinfo[i][0]);
 System.out.println("Module URL = " + loadmodinfo[i][1]);
 }

 // Use the health monitor module
 String module = "health-monitor";
 String modinst = null;
 String moduleName = "Health Monitor";
 String modUrl = "snmp://" + server_name + ":" +
 agent_port + "/mod/" + module;

 System.out.println("\n....... Get the " + moduleName +
 "Module's loading info. as specified in X-file\n");

 String moduleX = modreq.getModuleXfile(server_name,
 agent_port, module);

 System.out.println("Module X-file info = " + moduleX);

 System.out.println("\n......Load Health Monitor Module......\n");

 String modparam = getModuleParamFromX(moduleX);
 System.out.println(modparam);

 modparam = "moduleName = \"Health Monitor\"; version = \"2.0\";" +
 " console = \"health-monitor\"; enterprise = \"sun\"; " +
 " i18nModuleName = \"base.modules.health-monitor:moduleName\";"+
 " i18nModuleType = \"base.modules.health-monitor:moduleType\";"+
 " i18nModuleDesc = \"base.modules.health-monitor:moduleDesc\";"+
 " location =
\".iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.agent.modules.healthMonitor\";";

 if (!modreq.loadModule(server_name, agent_port, module,
 modinst, modparam))
 System.out.println(moduleName +
 " module is already loaded");
 else
 System.out.println(moduleName +
 " module is successfully loaded");

 System.out.println("\n......Check Module Loaded/Unloaded.....\n");
 if (modreq.isModuleLoaded(server_name, agent_port, module))
 System.out.println(moduleName+ " is loaded !");
 else
 System.out.println(moduleName+ " is unloaded !");

CODE EXAMPLE 14-11 SMModuleTest (Continued)
294 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 System.out.println("\n......Get Module Data.....\n");
 Vector modV = modreq.getModuleData(server_name,
 agent_port, module);
 SMModuleData modData;
 if (modV == null) {
 System.out.println("no module data is available");
 } else {
 for (int i=0; i<modV.size(); i++) {
 modData = (SMModuleData)modV.elementAt(i);
 System.out.println(modData.getModule()+", "+
 modData.getModuleName()+", "+
 modData.getModuleInstance()+", "+
 modData.getModuleLocation());
 }
 }

 // Get Module Parameters
 System.out.println("\n **Get Module Parameters** \n");
 String mParams = modreq.getModuleParams(server_name,
 agent_port, module, modinst);
 System.out.println(mParams);

 // Disable Module
 System.out.println("**Disable Module **");

 if (modreq.disableModule(server_name,agent_port,module,modinst)) {
 System.out.println(moduleName +
 " module is successfully disabled");
 } else {
 System.out.println(moduleName +
 " module is already disabled");
 }

 // Enable Module
 System.out.println("**Enable Module **");
 if (modreq.enableModule(server_name,agent_port,module,modinst)) {
 System.out.println(moduleName +
 " module is successfully enabled");
 } else {
 System.out.println(moduleName +
 " module is already enabled");
 }

 System.out.println("**Unload Module **");
 modreq.unloadModule(server_name, agent_port, module, modinst);

CODE EXAMPLE 14-11 SMModuleTest (Continued)
Chapter 14 Client API 295

 System.out.println(moduleName +
 " module is successfully unloaded");

 // Get info of all modules
 System.out.println("\n...... " +
 "Get module loading/select info. async.\n");

 // The following method submits the callback
 // interface implementation to receive the info.
 // This interface is also implemented by this class

 modreq.getModuleInfoRequest(server_name, agent_port,
 "20", this);

 System.out.println("Sleeping...");
 Thread.sleep(60 *1000);
 }
 catch (Exception e) {
 System.out.println(e.toString());
 e.printStackTrace();
 }
 }

 public void getModuleInfoResponse(SMRequestStatus status,
 SMModuleInfo[] data){

 // The callback may also be reporting an error condition,
 // hence this check is essential.

 int error = status.getReturnCode();
 if (error == SMErrorCode.SUCCESS) { /*Success */
 System.out.println("\n*************");
 for(int i = 0; i < data.length; i++) { // Number of modules

System.out.println("Module Nam e = " + data[i].getModuleName() +
 " Module Id = " + data[i].getModuleId() +
 " Module inst. Loaded = " + data[i].getCurrentLoadCount() +
 " Can more inst. be loaded ? = " + data[i].canLoadAnother());
 }
 }
 else { /* Failure */

//The various error codes as in SMErrorCode may be reported here */
 System.out.println("Error code = " + error + " " +
 "Msg Text = " + status.getMessageText() +
 " " +"Exception = " +
 (status.getException()).getMessage());

 }

CODE EXAMPLE 14-11 SMModuleTest (Continued)
296 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 }

 /* The following methods have empty implementations.*/
 public void getLoadedModulesResponse(SMRequestStatus status,
 Vector data, Object identifier) {}

 /**
 * Gets the module parameters (suitable for use with loadModule)
 * from the return value of getModuleXfile() as input.
 * Strip out all param:name = value and concatenate them. For example:
 * <pre>
 * param:module = health-monitor
 * param:moduleName = Health Monitor
 *
 * will return: module = health-monitor; moduleName = Health Monitor;
 **/

 private String getModuleParamFromX(String x)
 {
 StringTokenizer tok = new StringTokenizer(x, "\n");
 StringBuffer s = new StringBuffer();
 String t;

 while (tok.hasMoreTokens())
 {
 t = tok.nextToken();
 if (t.startsWith("param:"))
 {
 s.append(t.substring(6)); // skip over "param:"
 s.append("; ");
 }
 }

 return s.toString();
 }

 private static void usage()
 {
 System.out.println("usage: java SMModuleTest" +
 " server_name server_port agent_port user password");
 }

 public static void main(String[] args) throws Exception {
 // args[0] is server_name
 // args[1] is server_port
 // args[2] is agent_port
 // args[3] is user

CODE EXAMPLE 14-11 SMModuleTest (Continued)
Chapter 14 Client API 297

Log Viewer API

This section includes information on the following:

■ Example: SMLogViewerTest

Example: SMLogViewerTest

The SMLogViewerTest dumps the syslog from the specified URL in the program and

then it will go into sleep mode. During the sleeping time frame, if there is a wrong

password supplied to the ‘su ’, the method logSearchResponse will be invoked from

the server callback.

 // args[4] is password

 if (args.length != 5)
 usage();
 else
 new SMModuleTest(args[0], new Integer(args[1]).intValue(),
 new Integer(args[2]).intValue(), args[3], args[4]);

 System.exit(0);
 }
}

CODE EXAMPLE 14-12 SMLogViewerTest

/*
 * @(#)SMLogViewerTest.java 1.2 99/09/15
 *
 * Copyright (c) 09/15/99 Sun Microsystems, Inc. All Rights Reserved.
 */

import com.sun.symon.base.client.*;
import com.sun.symon.base.client.log.*;

/*
 The following class implements the SMLogViewerResponse interface to
 receive a callback from the SMLogViewerrequest.logSearch async. request
 method.
*/

CODE EXAMPLE 14-11 SMModuleTest (Continued)
298 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

public class SMLogViewerTest implements SMLogViewerResponse {

public SMLogViewerTest(String server_name, int server_port, int agent_port,
 String user, String password) throws Exception
 {
 try {
 String publicKey = "687a8398ad4a85077d33b72a94e16ffde0c4ba023e" +
 "9c9ba77b247cc25bd3cd0015bc24b7429916751e68" +
 "1fd02e5ad6eb5345eb7c75b39a1c304e0f000846aa" +

"470b755b0640af974e7fc70daa6191dff6efa31a09" +
 "431bb5e9848b7dc4cf4b97e1dbca31792d2860ca5a" +
 "5990dfb369e1bcf296274a4e4984c8089329679dd3" +
 "04cd";

 System.out.println("*** Testing Connection ****");
 SMLogin obj = new SMLogin();

 obj.connect(server_name, new Integer(server_port).intValue(),
 user, password, publicKey);
 System.out.println("Successfully Connected");

 SMRawDataRequest req = obj.getRawDataRequest();
 System.out.println("Successfully Authenticated");
 System.out.println(" **Testing SMLogViewerTest **");
 System.out.println(" **Testing logSearch**");

// The SMLogViewerRequest constructor creates a connection with the
// backend logscanner process on an agent machine.
 SMLogViewerRequest lvreq = new SMLogViewerRequest(req,
 server_name, agent_port);

// The following synchronous method returns matched lines for the
// query. This query is set for Syslog file(s), a max. of 20
// matches are to be reported. The query is also set for the search
// to begin from the latest message. The pattern to be matched is
// server_name. Here the user can pass any regular expression
// pattern.

 StringBuffer matchdata = lvreq.logSearch("Syslog", "",
 20, 0, 0, 0, true, server_name, 0);

 if (matchdata == null)
 System.out.println("No match for the query");
 else
 System.out.println("Match data: \n" + matchdata);

// The following asynchronous method requests Syslog file(s) to be

CODE EXAMPLE 14-12 SMLogViewerTest (Continued)
Chapter 14 Client API 299

// searched for pattern server_name. This method also accepts the
// SMLogViewerTest class object that has the callback method
// logSearchResponse. This method will not block as the sync.
// method above before returning the data. The last parameter
// for this method could be used for corelating the request
// response ids in case there are multiple async. logSearch requests.

// The async. call is for getting incremental changes.
// To cause something to change, try 'su' to root
// with a wrong password. This should trigger the callback.

 System.out.println("**Testing logSearch Async. call**");
 lvreq.logSearch("Syslog", "", null, this, new Object());

 System.out.println("sleeping...");
 System.out.println("Waiting for additions to Syslog.");
 System.out.println("Try 'su' to root with a wrong password.");

 Thread.sleep(120 *1000);
 }
 catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 }

 public void logSearchResponse(SMRequestStatus status, StringBuffer data,
 Object identifier)
 {
 System.out.println("Async. data = " + data.toString());
 }

 private static void usage()
 {
 System.out.println("usage: java SMLogViewerTest " +
 "server_name server_port agent_port name password");
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 5) {
 usage();
 System.exit(1);
 }
 else {
 new SMLogViewerTest (args[0], new Integer(args[1]).intValue(),
 new Integer(args[2]).intValue(), args[3], args[4]);

CODE EXAMPLE 14-12 SMLogViewerTest (Continued)
300 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Resource Access API

This section describes:

■ Example: SMResourceAccessTest

Example: SMResourceAccessTest

The SMResourceAccessTest demonstrates the retrieval of generic resources from the

server. It will ask the server to verify the existence of the ConsoleMain.class and

domain-config.x files, output the content of the file version-j.x and load the image

file cpu16x16.gif .

 System.exit(0);
 }
 }
}

CODE EXAMPLE 14-13 SMResrouceAccessTest

/*
 * @(#)SMResourceAccessTest.java 1.1 99/09/13
 *
 * Copyright (c) 09/13/99 Sun Microsystems, Inc. All Rights Reserved.
 */

import com.sun.symon.base.client.*;

import java.awt.Image;

public class SMResourceAccessTest {

 public SMResourceAccessTest(String server_name, int server_port,
 int agent_port, String user, String password) throws Exception {
 try {
 String publicKey = "687a8398ad4a85077d33b72a94e16ffde0c4ba023e" +
 "9c9ba77b247cc25bd3cd0015bc24b7429916751e68" +
 "1fd02e5ad6eb5345eb7c75b39a1c304e0f000846aa" +

"470b755b0640af974e7fc70daa6191dff6efa31a09" +
 "431bb5e9848b7dc4cf4b97e1dbca31792d2860ca5a" +
 "5990dfb369e1bcf296274a4e4984c8089329679dd3" +
 "04cd";

CODE EXAMPLE 14-12 SMLogViewerTest (Continued)
Chapter 14 Client API 301

 System.out.println("*** Testing Connect ****");
 SMLogin obj = new SMLogin();

 System.out.println("Before Connection Establishment");
 obj.connect(server_name, server_port, user, password, publicKey);
 System.out.println("Successfully Connected and Authenticated");
 SMRawDataRequest req = obj.getRawDataRequest();

// The SMResourceAccess class is used to retrieve generic
// resources from the server. Currently only image data/text
// files retrieval is supported.

 System.out.println("***Testing the SMResourceAccessRequest ***");
 SMResourceAccess resacc = new SMResourceAccess(req);

// The following method is used to verify the existence of the
// file on the server. Depending on the URL scheme, the server
// will use different paths to lookup for the presence of the file.
// eg. for a file xfile:/domain-config.x the server will use
// INTERFACE_PATH env. var. for a file
// cfile:/com/sun/symon/base/console/main/ConsoleMain.class,
// CLASSPATH var. is used.

 String file = "xfile:/domain-config.x";
 if (resacc.fileExists(file))
 System.out.println(file + " exists");
 else
 System.out.println(file + " does not exist");

 file =
 "cfile:/com/sun/symon/base/console/main/ConsoleMain.class";
 if (resacc.fileExists(file))
 System.out.println(file + " file exists");
 else
 System.out.println(file + " file does not exist");

// The following method could be used to get a listing of all the
// files in a particular directory. The directory path specified
// in this call will be relative to the INTERFACE_PATH env. var.
// in the server startup shell script. The following example will
// get resolved under $ESROOT/classes/base/console/cfg dir.
// This dir. is part of the INTERFACE_PATH env. var.
 String[] listfiles = null;
 listfiles = resacc.listFiles("stdimages");
 if (listfiles != null) {

CODE EXAMPLE 14-13 SMResrouceAccessTest (Continued)
302 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 for(int i=0; i < listfiles.length; i++)
 System.out.println("Filename = " + listfiles[i]);
 }
 else {
 System.out.println("Either directory is empty " +
 "or no files under the directory");
 }

// The following method could be used to read any config. file
// from the server. The server will use the INTERFACE_PATH env.
// var. to resolve the file. The pathname/filename should be
// relative to the dirs. listed in the INTERFACE_PATH env. var.

 file = "version-j.x";
 String filecontents = resacc.getConfigFile(file);

 System.out.println("Contents of the Config. file " + file +
 " = \n" + filecontents);

// The following method could be used for reading an image file
// from the server. The console applications can share such a
// resouce loaded on the server. The pathname of the file is
// resolved using the INTERFACE_PATH env. var.

 file = "stdimages/cpu16x16-j.gif";
 Image img = resacc.getImage(file);

 if (img == null)
 System.out.println(
 file + " could not be loaded from the server");
 else
 System.out.println(file + " was loaded");
 }
 catch (Exception e) {
 System.out.println("Exception: " + e.getMessage());
 }
 }

 private static void usage()
 {
 System.out.println(
 "usage: java SMResourceAccessTest " +
 "server_name server_port agent_port user password");
 }

 public static void main(String[] args) throws Exception {
 if (args.length != 5) {

CODE EXAMPLE 14-13 SMResrouceAccessTest (Continued)
Chapter 14 Client API 303

Topology Agent API

Example: SMTopologyTest

This example demonstrates how to create a domain, how to show all domains

created in the topology agent and how to get all children information under a

domain.

 usage();
 System.exit(1);
 }
 else {

new SMResourceAccessTest (args[0], new Integer(args[1]).intValue(),
 new Integer(args[2]).intValue(), args[3], args[4]);
 System.exit(0);
 }
 }
}

CODE EXAMPLE 14-14 SMTopologyTest

/*
* @(#)SMTopologyTest.java 1.17 98/09/11
*
* Copyright (c) 09/11/98 Sun Microsystems, Inc. All Rights Reserved.
*/

import java.io.InputStream;
import java.io.InterruptedIOException;
import java.io.OutputStream;

import java.lang.String;
import java.lang.System;

import java.net.Socket;

import java.util.StringTokenizer;
import java.util.Vector;

import com.sun.symon.base.client.*;
import com.sun.symon.base.client.topology.*;

CODE EXAMPLE 14-13 SMResrouceAccessTest (Continued)
304 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

/**
* This class is for testing the Topology Client API.
* It shows how to create an domain, how to get all domains created in the
* topology agent and how to get children informaiton under each domain.
**/
public class SMTopologyTest {

public SMTopologyTest(String serverHost, String serverPort,
 String userName, String passwd)
 throws Exception {

 try {
 String publicKey =
 "687a8398ad4a85077d33b72a94e16ffde0c4ba023e" +
 "9c9ba77b247cc25bd3cd0015bc24b7429916751e68" +
 "1fd02e5ad6eb5345eb7c75b39a1c304e0f000846aa" +
 "470b755b0640af974e7fc70daa6191dff6efa31a09" +
 "431bb5e9848b7dc4cf4b97e1dbca31792d2860ca5a" +
 "5990dfb369e1bcf296274a4e4984c8089329679dd3" +
 "04cd";

 System.out.println("*** Testing Connect establishment and Auth ****");

 System.out.println("Before Connection Establishment");
 SMLogin obj = new SMLogin();
 obj.connect(serverHost, Integer.parseInt(serverPort),
 userName, passwd, publicKey);
 System.out.println("Successfully Authenticated");

 SMRawDataRequest req = obj.getRawDataRequest();

 SMUserDomainRequest domReq = new SMUserDomainRequest(req);

 System.out.println("******** Create a Domain *******");
 String domName = "test_domain";
 SMUserDomainData domDt = domReq.createDomain(domName);

 if (domDt == null) {
 System.out.println("Domain "+domName+" exists");
 } else {
 System.out.println(domDt.getDomainName()+", URL="+
 domDt.getDomainRootUrl());
 }

 System.out.println("******** Get All Domains *******");
 SMUserDomainData domData [] = domReq.getAllConfiguredDomains();

CODE EXAMPLE 14-14 SMTopologyTest (Continued)
Chapter 14 Client API 305

 SMTopologyRequest topoReq = new SMTopologyRequest(req);
 SMTopologyEntityData topoData[] = null;
 SMTopologyEntityData data = null;
 int j=0;
 String name = null;
 String baseURL = null;
 String str = null;
 SMTopologyData topoD = null;
 Vector dataV = null;
 String children [] = new String[2];

 for (int i=0; i<domData.length; i++) {
 name = domData[i].getDomainName();
 baseURL = domData[i].getDomainRootUrl();
 System.out.println("Domain: "+name+", URL="+ baseURL);
 topoData = topoReq.getTopologyInfo(baseURL, null);
 for (j=0; j<topoData.length; j++) {
 data = topoData[j];
 System.out.println("\t"+data.getDesc()+", "+ data.getPollType());
 }
 }

 System.out.println("******** Get Children under the Domains *******");
 for (int i=0; i<domData.length; i++) {
 name = domData[i].getDomainName();
 baseURL = domData[i].getDomainRootUrl();
 topoReq.getHierarchyChildRequest(baseURL, "1000", true,
 new TopoHierTest(name), null);
 }
 }catch (Exception e) {
 System.out.println(e.getMessage());
 e.printStackTrace();
 }
 // System.exit(-1);

}

public static void main(String[] args) throws Exception {
 if (args.length != 4) {
 System.out.println("usage: java" +
 " SMTopologyTest server_name server_port user password.");
 System.exit(1);
 } else {
 new SMTopologyTest(args[0], args[1], args[2], args[3]);
 }
}

CODE EXAMPLE 14-14 SMTopologyTest (Continued)
306 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

}

class TopoHierTest implements SMHierarchyResponse {

 private String rootName;

 public TopoHierTest(String name) {
 rootName = name;
 }

 public void getHierarchyRootResponse(SMRequestStatus status,
 SMHierarchyViewData data, Object identifier) {
 if (status.getReturnCode() != SMErrorCode.SUCCESS) {
 System.out.println("Error getting hierarchy root " +
 status.getMessageText());
 } else {
 System.out.println("Root data");
 }
 }

 public void getHierarchyChildResponse(SMRequestStatus status,
 SMHierarchyViewData[] data, Object identifier) {
 if (status.getReturnCode() != SMErrorCode.SUCCESS) {
 System.out.println("Error getting hierarchy children " +
 status.getMessageText());
 } else {
 System.out.println("Domain: "+ rootName);
 for (int i=0; i<data.length; i++) {
 System.out.println("\t"+data[i].getName()+", "+
 data[i].getTargetUrl());
 }
 }
 }
}

CODE EXAMPLE 14-14 SMTopologyTest (Continued)
Chapter 14 Client API 307

Exception Classes API

Note – Exception classes do not need separate examples since they are covered

within the context of the examples for each class or interface. These class and

interface descriptions are presented in the javadocs included as part your install of

the Sun Management Center Developer Environment.
308 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

PART III Additional Material

This volume includes the following sections:

■ “Internationalization Guidelines” on page 311

■ “Graphical User Interface Guidelines” on page 329

■ “Sun Management Center 2.1 Developer Environment Packaging” on page 357

■ “Troubleshooting” on page 361

■ “Time Expression Specifications” on page 429

■ “Module Building Tutorial” on page 437

■ “SNMP Proxy Monitoring Modules” on page 453

■ “URL Specifications” on page 471

■ “Status Propagation” on page 489

■ “SNMP Trap Subscription” on page 493

This section also includes:

■ “Glossary” on page 505

■ “Index” on page 513

CHAPTER 15

Internationalization Guidelines

This chapter covers the following topics:

■ Internationalization—page 311

■ Software Guidelines—page 312

Internationalization

Sun Management Center consoles and associated GUI clients operate in a global

environment. To do this, a mechanism is required to isolate the language dependent

code/information from the language independent code and provide a

straightforward method for graphical developers to reference the language

dependent information. This chapter details this mechanism, and describes specific

guidelines for creating internationalized consoles for Sun Management Center.

This chapter also describes the effects of running the Sun Management Center

console in non-English environments, where the console needs to handle non-ASCII

user input and outlines the methodology for dealing with this sort of information.

This chapter provides implementation details and guidelines for creating

internationalized consoles and managing localization information (agents and

consoles) for Sun Management Center 2.x.

Terminology

Internationalization is the process of designing an application so that it can be

adapted to various languages and regions without engineering changes. Sometimes

the term internationalization is abbreviated as i18n, because there are 18 letters

between the first i and the last n.
311

Localization is the process of adapting software for a specific region or language by

adding locale-specific components and translating text. The term localization is often

abbreviated as l10n, because there are 10 letters between the l and the n.

Constraints

To maximize maintainability, the Sun Management Center internationalization

system must be compatible with the standard JDK 1.2 internationalization

mechanism and algorithms.

Assumptions and Dependencies

The descriptions in this chapter assume that the developer is familiar with the JDK

1.2 support for i18n. Concepts such as locale, ResourceBundle, and properties file
must be understood completely.

Software Guidelines

Properties Files

The preferred method for managing internationalization information is to store all

localized console information in Java properties files. According to the Java

specification, properties files contain key=value pairs, with each entry separated by

newlines. The key corresponds to the programmatic identifier for the

internationalized information, which is either hardcoded in the Java program or is

contained in the associated console configuration file. With the exception of spaces,

the key identifier is free-form, but the proposed key format must be a dot separated

list of identifiers that provide some form of hierarchical organization within a

functional group. For example, the label for the exit button in the file menu might

appear in the properties file as:

menu.file.exit.label=Au Revoir
312 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

om
Note – Following the equal sign (=), leading and trailing spaces are included in the

localized value.

There are two reasons for selecting property files as the preferred mechanism for

managing internationalization information. First, display text information can be

modified without recompiling Java code, which simplifies the maintenance of the

internationalization information. Second, this form of property/resource

specification is consistent with the configuration file system used to build the Sun

Management Center consoles, thus retaining a familiarity within the product

development.

ResourceBundle Class Instances

The use of properties files is the preferred method for managing internationalization

information, but the alternate use of ResourceBundle classes is also allowed. In this

case, the ResourceBundle class is extended (or, more preferably, the

ListResourceBundle class is extended), with the handleGetObject() method being

defined to provide the appropriate internationalization information for the provided

key. The suggested key format is as described previously for the property files.

Obtaining Resource Bundles/Properties Files

In order to properly obtain the property files and/or resource bundle class instances fr
the Sun Management Center server or the HTTP server, the appropriate ClassLoader

instance for the requesting Java object must be used. For example, a console bean

object that was installed in the Sun Management Center server installation area

would be loaded through the RMI class loader. As a result, internationalization

information for that bean, which is also be installed in the Sun Management Center

server area, must be loaded with this particular class loader instance.

Investigation of the implementation of the ResourceBundle class in JDK 1.2 reveals

that the static getBundle() methods will handle this situation properly. An internal

method (getLoader()) determines the appropriate ClassLoader instance for the current

object context (using a native method getClassContext()). As a result, if the bean

object mentioned above requests an information bundle through the getBundle()
method, this process correctly uses the RMI class loader that provided the bean class

in the first place. It also properly hashes the cached information, preventing possible

conflicts arising from multiple source definitions of the same resource bundles. Thus,

we are able to utilizethe standard ResourceBundle methods, without modification

and maintain standard performance/caching capabilities.
Chapter 15 Internationalization Guidelines 313

Note – This level of detail for the process description has been provided in the

interest of future debugging in case this process fails in the future. If the process

does fail, an appropriate alternative must be provided to properly support the

directed information retrieval.

Independent Client/Bean Usage

An independent Java application (one running outside of the Sun Management

Center configuration file framework) will have several methods for directly

obtaining localized information.

UcInternationalizer Class

This is the class that is used by the i18n and i18n-specific type converters to

parse the functional_group:key specification, load the resource bundles, and translate

the key. To use it in your Java application, make the following declaration:

This declaration presents a static method translateKey() that takes in the

functional_group:key value and returns the corresponding localized value according

to the rules for the i18n converter specified previously. Also, an overloaded version

of this method takes a fallback resource in the event that the specified

internationalization key is not found. So, for example, if you are looking for the

localized form of the mybean label from the ConsoleGeneric functional group, the code

might be:

or

As previously described, the com.sun.symon part of the location can be dropped

for convenience.

import com.sun.symon.base.utility.UcInternationalizer;

String lbl = UcInternationalizer.translateKey(
"base.console.ConsoleGeneric:mybean.label");

String lbl = UcInternationalizer.translateKey(
"base.console.ConsoleGeneric:mybean.label",
"Help Me");
314 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

An additional feature of this translateKey() method can take a single argument that

can be inserted into the final localized string value. This is a very simple interface to

the Java MessageFormat interface. The following example illustrates the use of this

simple argument facility:

In this case, example:dog.story is the key used to find the resource bundle and

localized string information and brown is the argument value. Now, if the example

properties file contains the line:

the result is “The quick brown fox ...”. The value provided in the argument replaces

the {0} argument indicator in the localized string value.

Two important things to note about this argument form of the internationalization

key:

■ The argument is not parsed or converted to a localized value. The argument is

intended for instance values that have been user specified and are not stored in

properties files. If an argument of the form functional_group:key is given, that is

how it can be substituted in the main localized string.

■ If the argument substitution value {0} does not appear in the localized string in

the properties file, no error will occur, but the argument value will not appear.

Being able to hide the argument for certain locales may or may not be a feature.

Direct ResourceBundle Management

Developers who are creating Sun Management Center client applications or beans in

Java also have the option to manage the i18n of their application as defined by Java.

At any point where internationalization information is needed, the programmer can

request the property bundle for the required functional_group and lookup the

localized information within the bundle using the information key. As for a previous

String arg = "brown";
String lbl = UcInternationalizer.translateKey(
"example:dog.story(" + arg + ")");

dog.story = The quick {0} fox ...
Chapter 15 Internationalization Guidelines 315

example, if you require the internationalized resource directly for the key

menu.filebutton for the functional group console you can use the following

code:

The getString() method is used regardless of whether the resource bundle

information was stored in a properties file or class definition (see “Properties Files”

on page 312). You will also need to handle the MissingResourceException, that is

generated whenever the requested resource bundle or key entry is missing. Note

that the getBundle() call must receive the full path to properties/class files associated

with the functional group (that is, the com.sun.symon prefix must be specified, if

applicable).

This method of obtaining internationalized information can also be used directly

within Sun Management Center bean objects, using the code provided above. Doing

this is not suggested, as the Sun Management Center infrastructure provides the

AWX type converters and the UcInternationalizer class to centralize

internationalization information retrieval. One advantage of this centralization is

that the UcInternationalizer code can be modified to warn about undefined key

values or mark values that have been properly internationalized, allowing potential

internationalization problems to be identified prior to the final localization process/

testing.

Formatted Messages

There can be circumstances where a variable piece of information must be embedded

into an internationalized string. Examples of these embedded bits are module

instance names or dynamic object counts. This embedding is available as a standard

Java feature through the java.text.MessageFormat class. This class is not fully

documented here. See the appropriate Java documentation for more details.

However, there are two specific examples that cover almost all of the cases where

embedding is required. These are:

■ where a string value needs to be inserted into a localized string, and

■ the embedding of an integer value into the localized string

/* Get the internationalized button label */
ResourceBundle bundle = ResourceBundle.getBundle("console");
String label = bundle.getString("menu.filebutton");
316 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The first example is where a string value (that is, a module instance name) needs to

be inserted into a localized string. This corresponds to the simple argument

mechanism available through the UcInternationalizer class described in

“UcInternationalizer Class” on page 314. The code that accomplishes this is as

follows:

In this case, the localized value for the advert key in the example functional group

marks the point where the text is to be embedded by the marker “{0}”. For example,

this value might be defined as:

Thus, the final lbl value is “Space For Rent [Your Name Here]”.

Situations where multiple strings need to be embedded can be accommodated by

passing multiple entries in the object array and marking their locations by {0}, {1},

{2}.... The values in the braces indicate the argument number, so that the embedded

string values can be rearranged as required. An embedded string can be dropped

without any errors by leaving the marker out of the localized definition.

The second example is the embedding of an integer value into the localized string.

This can be accomplished by turning the integer value into a string and using the

embedding described above. This method would not properly accommodate locales

where integer values are not represented by left-to-right roman digits. There are Java

classes that can be used to manually convert the integer to a string value according

to the locale, but the MessageFormat class handles this automatically. The code that

accomplishes this is:

String name = "Your Name Here";
String baseStr =
UcInternationalizer.translateKey("example:advert");
String lbl = MessageFormat.format(baseStr, new Object[] { name });

advert=Space For Rent [{0}]

int val = 20;
String baseStr =
UcInternationalizer.translateKey("example:found");
String lbl = MessageFormat.format(baseStr,
new Object[] { new Integer(val) });
and the localized found value in the example properties file looks
like
found=I found {0,number,integer} grapplegrommets.
Chapter 15 Internationalization Guidelines 317

The only real differences between this and the string example above are that the

object passed to the format() call is an integer instance and that the marker in the

localized value contains additional formatting information that indicates the

argument is an integer. Again, multiple integers can be used by indexing the

arguments {0...}, {1...}, ... and passing multiple values in the Object array. For

information on other available formats, see the appropriate Java documentation.

Handling Non-ASCII Input

The majority of this document focuses on the presentation of “static” information in

the Sun Management Center console/client applications (through the use of fixed

keys and localized lookup tables), but a global application also needs to properly

handle user input in any locale. For a purely Java application this is not a problem,

as the string class is 16-bit based and all AWT/swing input/output fields use

Unicode to fully support all languages/character sets. In many cases, developers

within the Sun Management Center framework are insulated by the Client API and

do not need to deal explicitly with non-ASCII user input.

The Sun Management Center agents are not written in Java, nor do they properly

handle Unicode or 16-bit text. In fact, the Tcl parsing mechanism (as of Tcl 7.5 that is

used by Sun Management Center 2.x software) has difficulty handling 8-bit non-

ASCII character values (>0x7F). The standard Java Unicode string conversion

function (which is used by the server process to convert from string to SNMP Octet

strings) uses UTF-8 encoding that does produce non-ASCII 8-bit characters. As a

result, a non-ASCII Unicode string sent in raw form from a console/client

application to the agent can potentially cause a problem, as the agent Tcl engine tries

to parse the UTF encoded data.

Two types of data have specific handling requirements, as described in the following

sections.

Data Only Stored in Agents

This type of data is stored in the agent for later use by a Sun Management Center

console/client application, and is never directly used by the agent itself. Examples of

this type of data are domain names, object names/descriptions, graph labels, and so

forth. Typically, this data is managed by methods within the Client API (insulating

the users of the data from the specifics of the agent). As a result, developers of

functionality within the Sun Management Center Client API as well as developers of

client applications that directly communicate with the agent (bypassing the Client

API) are responsible for massaging the non-ASCII data into a form that can be safely

handled by the agents.
318 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The UcListUtil class contains two static methods that are used to encode/decode

non-ASCII string data into an ASCII form that can safely pass through the agent Tcl

parser. UnicodeToAscii() takes a Java string corresponding to user input and

returns an ASCII encoded version of the information suitable for storage in the

agent. AsciiToUnicode() reverses this process to regenerate the non-ASCII string

information for display. The encoding scheme is designed with an escape sequence

that will not interfere with Tcl escapes, does not appear in standard data (so that the

decoder is safe to use generically) and is compact in order to reduce data overhead.

Data Stored in and Manipulated By Agents

This represents information that is typically used to configure the agent. For

example, alarm limits and actions, filenames, and so forth, all fall into this category.

In this case, the user input should be specifically restricted to prevent the entering of

any non-ASCII information, as there is no encoding mechanism relevant to the agent

that can be used.

No central mechanism (as the Client API was before) exists to handle this case, since

every situation is different. As a result, the client or the Sun Management Center

bean must handle this situation properly and provide appropriate user feedback if

the user enters non-ASCII text. Ideally, the bean will refuse to accept the data and

request that the user enter ASCII-only text where required.

In the Sun Management Center console, the vast majority of this type of information

is handled through the attribute editor bean, which has a protocol for indicating that

entries are directly used by the agent and cannot accept non-ASCII text.

Agent Internationalization

This section describes the various pieces of information that are defined by the

agents themselves for console display and how the internationalization information

is to be specified (either in the infrastructure or in the module definitions).

Note – This information refers to static display strings that can be internationalized.

Dynamic structures such as data input or status messages are not internationalized

in Sun Management Center 2.x software.

Objects/Classes/Properties

This internationalization information is typically used in the hierarchy/topology/

table displays associated with the browser tab in the details window. Each instance

of MANAGED-OBJECT, MANAGED-PROPERTY-CLASS and MANAGED-
Chapter 15 Internationalization Guidelines 319

PROPERTY needs to define an internationalization key to allow the console to

lookup a localized name for the object, class and property, respectively. This key

information is also defined in other agent objects that may appear in the console

(such as the mibman.modules hierarchy).

The specification of the internationalized name is made alongside the

value:mediumDesc specification (that is, in the module models file (See “Module

Building”). However, in this case the consoleHint:mediumDesc value is defined. The

value corresponds to the functional_group:key specification used in the Console

configuration files and by the UcInternationalizer class.

For example, an entry for the user-managed object in the solaris-standard-
models-d.x file:

This module has a private properties file contained in the base/modules Sun

Management Center directory.

The next section describes the definitions required for the MANAGED-MODULE

object.

Modules

Module instance internationalization involves two areas: internationalizing the name

of the module instance, and internationalizing the parameters used in loading/

editing the module, which are described in the following sections.

Module Instance Naming

There are two basic types of modules:

■ those that are single instance (that is, Solaris operating environment)

■ those where multiple independent instances can be loaded by the user (for

example, fscan).

First consider the single instance modules. In this case, there is no specific instance

identifier, so the “name” of the module can be specified in the MANAGED-

MODULE object of the module hierarchy using the consoleHint:mediumDesc value

described above. To reduce confusion, this description specification is identical to

the i18nModuleName parameter described below. In fact, if the

consoleHint:mediumDesc value is not found in the module root object, the

i18nModuleName parameter can be used in its place.

user = { [use MANAGED-OBJECT]
mediumDesc = User Statistics
consoleHint:mediumDesc = base.modules.solaris:user
320 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The second type of module (multiple instances) is more complicated as the name of

the module has to be shown in the console in combination with the user specified

instance description. In this case, the i18nModuleName parameter and the

consoleHint:mediumDesc must be different (and fully specified). The i18nModuleName
is the general (the non-instanced) name of the module. For example, for the fscan
module this is File Scanning, which is specified as described in this section.

However, when the module is viewed in the browser hierarchy, the user specified

instance of the module must also appear. In this case, the consoleHint:mediumDesc
value is used to obtain the base internationalization key, and then the instance

details are appended to this key as an argument. For example, the root object of the

fscan module has the following specification:

When the module description is obtained (for the System Log instance), the

following key is sent to the console:

The definition of the moduleDetail key in the fscan.properties file is:

From “Formatted Messages” on page 316, the {0} identifier indicates the location

where the argument (in this case, the instance name) appears, so that the module

name that appears in the console is "File Scanning [System Log]" for

example. If the consoleHint:mediumDesc is not specified, the key falls back to the one

specified in the i18nModuleName, which does not have this marker defined, so the

module instance information is not displayed in the console.

Module Parameters

Several parameter specifications (contained in the <module><-subspec>-m.x file)

must be internationalized or involve internationalization, as described below. Note

that in almost every case, the internationalization value is a functional_group:key
specification as used in console configuration files or by the UcInternationalizer class

described previously.

consoleHint:mediumDesc = base.modules.fscan:moduleDetail

base.modules.fscan:moduleDetail(System Log)

moduleDetail=File Scanning[{0}]
Chapter 15 Internationalization Guidelines 321

■ The first (and most obvious) piece of internationalization is the descriptions of

parameters and parameter groups. The parameter group description is what

appears in the “tab” label, and is specified for the param group as:

The parameter description is what appears to the left of the data entry field, and

is specified as follows (for the module parameter):

■ The second parameter-related internationalization involves parameter values that

must be internationalized. Examples of these are the i18nModuleName, the

i18nModuleType and the i18nModuleDesc parameters, that respectively provide the

key specification for the name of the module (“File Scanning”), the type of the

module (“Local Applications”) and a longer description of the module. In each

case, the value of the parameter is the familiar functional_group:key identifier and a

line of the following form must appear for each parameter to indicate to the

module loader/editor that the value is to be parsed to obtain a localized value:

These parameters must be read-only, otherwise the user can edit the localized

value and send that back as the key (with unusual effects). There is also a

parameter format specification of i18ncomment that does not actually indicate

that the key is to be translated, but instead indicates that the value is a multiline

label to appear as unbordered text (for the description).

■ The third parameter internationalization point is the handling of list parameters,

where a choice of several values are sent to the agent but an internationalized list

is displayed to the user. In this case, the list format appears as follows:

Thus, the list values are separated by the pipe character (|). Each entry contains

the selection value to send to the agent, followed by a comma and the

functional_group:key specification for the internationalized text to appear in the

selection box pulldown.

?param:?description = base.modules.default:moduleParam

?param:module?description = base.modules.default:module

?param:i18nModuleName?i18n = yes

?param:parameter?format = \
list:val1,fn_group:key1|val2,fn_group:key2|...
322 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The final internationalization-related parameter settings involve those parameters

that are input by the users that are not processed by the agent, but are only used

for console display. Currently, this is only used for the instance name provided by

the user for each loaded module instance.

This is different from the instance parameter, which is used as a context key in the

agent. In this case, the user can enter localized text in the native language the

console is currently running in. Behind the scenes, the module loader/editor can

use the ASCII encoding/decoding mechanism, described in “Data Only Stored in

Agents” on page 318, to translate the user entered instance name into a form that

is safe to store in the agent. To indicate that this (or any other) module parameter

is permitted to take non-ASCII text from the user, the following format

specification is required:

This format should not be used for any parameter that can be utilized by the

agent, as there are no facilities in the agent to decompose the encoding scheme.

Attribute Editing

Developers who are adding or modifying the shadow maps that are edited through

the attribute editor, or who are customizing the shadow entries that are edited by a

specific object must internationalize properly the labels and possibly the values

associated with these attributes. The following sections describe the three

components of internationalizing attributes.

Attribute Groups

The set of shadow groups, as defined by the value:shadowGroups() settings in the

edited object, is a single level Tcl list where each pair of values defines the access key

and the internationalized information key. For example, a definition can appear as:

Each pair of values has first a simple (English) key that is used to organize the

attributes in that group, and second the familiar functional_group:key specification,

that is used to determine the localized text to display in the group selection tab of

the attribute editor.

?param:parameter?format = unicode

shadowGroups()=Info
base.console.ConsoleGeneric:editGroup.info \

 Module base.console.ConsoleGeneric:editGroup.module
Chapter 15 Internationalization Guidelines 323

Scalar Attributes

For each scalar attribute, there is a single internationalized description that is given

as the third entry in the shadowSpec() definition for that attribute. For example, the

object name definition can appear as:

The provided key is used to find a localized label for that attribute to display

alongside the value in the attribute editor. In practice (observe base-shadowmap-d.x)

this value is never specified. Instead, a blank entry {} appears in its place. If a blank

internationalization name is given for a scalar variable, the key is programmatically

determined by appending the shadowmap key (name in this case) to the string

base.console.ConsoleGeneric:editAtt. , arriving at the result shown above

for this example.

There are other internationalization issues related to the value of the attribute and

how the user edits it (as specified by the format indicator in the shadow

specification). For example, the value can be an internationalization key that is

translated prior to displaying (read-only) in the editor, or the value can be a selection

list where the value provided to the agent corresponds to an internationalized value

to display in the pulldown list. The following list describes the various formats that

relate to internationalized values:

i18n— the value is an internationalized key that is translated prior to display in the

editor. These attributes are always read-only.

i18ncomment —identical to the i18n format, except the presentation is slightly

different to accommodate multline values.

list:... —specifies a selection list with mapping between the agent values and the

internationalized display information. See the module parameters description for

more information on the exact specification of this format.

unicode— enables the user to enter non-ASCII text as a value for this attribute.

Generally not used as the agent cannot utilize the entered value (but there are

always exceptions).

Vector Attributes

With the exception of the attribute label, these attributes are identical to the scalar

attributes described above as the data type and format information is identical for all

members of the vector. However, each attribute in the vector can have a different

description (and hence different internationalization information). This description

shadowSpec(name) = \
"name {Object Name} base.console.ConsoleGeneric:editAtt.name

string {} ro scalar";
324 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

is obtained using the method specified in the shadowInfo() specification for the

vector attribute. The name returned from this method is appended to

“base.console.ConsoleGeneric.editAtt.” to construct the internationalization key for

that entry of the vector. For example, a numeric alarm limit might have two

attributes in the vector, the bigger and smaller limits, for which the shadowInfo()

method returns too-big and too-small. In this case, the

ConsoleGeneric.properties file will have the lines:

Note – Rule parameters, which are technically vector attributes, are handled by

their own naming mechanism as described in the next section.

Dynamic Tables (RFC1903)

For certain modules, there are tables in which rows can be dynamically added/

deleted/enabled/disabled by the user (using the RFC1903 protocol). For example,

the fscan module enables the user to add new patterns to be scanned for in the file.

In this case, the row add/edit window needs two pieces of internationalization

information: the column entry label and (optionally) the format of the column data.

The entry label (that appears alongside the editor field) is obtained from the setting

of consoleHint:mediumDesc as described in “Objects/Classes/Properties”. The value

format is obtained from the value:dataFormat setting, which can be any of the

standard attribute editor format types. With regards to internationalization, the two

formats of interest are the list setting and the unicode setting, as described in

“Scalar Attributes” above. In this case the unicode setting is a common thing for the

row description, which is not used by the agent and is returned to the console to

label the rows in the table as the user describes them.

Rules

For each parameter defined in a rule (by the rule:<rule>-editparam setting), the

attribute editor will present an entry field that needs an internationalized label for

that parameter. The internationalized label key is constructed from several sources.

First, the base path of the functional_group is specified in the rule:<rule>-keypath

setting and the name of the module is appended to give the full group specification.

editAtt.too-big=Error if bigger than
editAtt.too-small=Error if smaller than
Chapter 15 Internationalization Guidelines 325

The key entry in the properties file is determined by combining the string “editAtt.”

with the name of the rule and the name of the rule parameter. For example, consider

an “example” module that has the following lines in the rules definition block:

The internationalized label entries for the “one” and “two” rules are contained in the

functional group [com.sun.symon].base.modules.example and the .properties file

contains the following entries:

Installation/Setup Script Internationalization

Solaris software-based add on products that require their own scripts to handle

installation and/or setup will need to internationalize these scripts if they are to be

used globally. The basic method here is that which is used in C programming. A

portable object file is created (filename.po) that contains the text displayed by the

scripts. The msgfmt command is run on this file to create a message object file

(filename.mo). As the script runs, it obtains localized messages from the message

object file. This guideline does not describe all of the details of internationalizing C

programs. Refer to the man pages for msgfmt, gettext and textdomain for

details.

The way a script obtains localized messages from its message object file is through

the TEXTDOMAIN variable. This variable is set to the name of the script’s message

object file. Sun Management Center software provides a function called

setup_textdomain, that can be used by add-on products to establish a domain for

their own localized messages. You can call this function in the beginning of your

script and pass it the name of your message object file. While your script runs, it

obtains messages from its own message object file.

If your script must call a function within the core Sun Management Center scripts

(other than setup_textdomain) , set TEXTDOMAIN to the core Sun Management

Center setting for the duration of this call. If your script is invoked from the core Sun

rule:da_rule-editparam = "one two"
rule:da_rule-keypath = base.modules

editAtt.da_rule.one=Rule One
editAtt.da_rule.two=Rule Two
326 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Management Center script, save the current setting of TEXTDOMAIN before

changing it to your domain value. When the function ends and control returns to

your script, reset TEXTDOMAIN to your own setting. For example:

If your script is invoked independently of the core Sun Management Center scripts,

and you must call a core Sun Management Center script function, the value of the

core Sun Management Center setting for TEXTDOMAIN is SUNW_ES_SCRIPTS.

Simply call setup_textdomain with this value before making the core function

call.

Of course, if you have no need to call a core Sun Management Center function, then

you only need to set TEXTDOMAIN at the beginning of your script. If you are

invoked from the core script, reset it to the core setting upon completion.

Note – If your add-on product has packages that can be installed using the core Sun

Management Center install script, your message object file must be in $PKG_DIR/
locale/$LANG/LC_MESSAGES .

SyMON script running... calls your script
domain_save = TEXTDOMAIN
setup_textdomain SUNW_MY_DOMAIN
your script running...
setup_textdomain domain_save
call core SyMON script function...
core SyMON script function ends, returns to your script
setup_textdomain SUNW_MY_DOMAIN
return to your script running...
Chapter 15 Internationalization Guidelines 327

328 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 16

Graphical User Interface Guidelines

This section covers the following topics:

■ Main Console—page 332

■ Server Object Representation and Object Management

■ Status Messages—page 339

■ User Input—page 341

■ Keyboard Navigation Shortcuts—page 343

■ Table Appearance and Behavior—page 344

■ Colors—page 347

■ Fonts—page 348

■ Graphing—page 348

■ Property Setting Dialog—page 350

■ Time Setting—page 352

■ Alarms—page 353

■ Details Window—page 355

These UI guidelines can help the developer of Sun Management Center

software-related products to create a user interface that is easy to learn, easy to use,

and highly consistent with the existing Sun Management Center user interface.

Note – This chapter provides guidelines for making your software consistent with

the various components of the Sun Management Center graphical user interface.

However, these guidelines should not be construed to imply that support for a

particular component necessarily exists in the Client API.

Sun Management Center 2.1 software is built on Java 1.2, which placed limitations

on the implementation of some UI elements, including:

■ Keyboard navigation

■ Keyboard shortcuts

■ Default buttons

■ Drag and Drop
329

Although these elements are not fully implemented in Sun Management Center 2.1

software, they are important and are discussed in the following section. If you

implement using a version of Java that supports these features, you can use these

elements.

Consistency

Consistency is a broad term that can be interpreted in a number of ways. Here are

three simple definitions, with examples, to keep in mind.

■ When users must distinguish differences quickly and reliably, the visual cues to

make that distinction should be consistent for different uses and in different

locations in the application.

Example:

Sun Management Center software uses alarm badges to indicate trouble states on

objects, and the OK state is signalled implicitly with no badge. This makes it easy

for users to detect anomalies in the console view (trouble states stand out).

Adding an OK badge is inconsistent with the Sun Management Center model.

■ The location of information is important, as users can find information quickly

and automatically if it is always in the same place (where "place" is a main

window, a tree hierarchy, a dialog window, a menu, and so forth). In adding new

functionality, use the established locations for the same types of information. If

the established location runs out of space, make it larger before adding a new

location.

Example:

Sun Management Center software presents detailed alarms information in the

Alarms tab of the Details window. If you have additional alarms information to

present, put the new information into the existing Alarms tab panel. If the main

Alarms panel cannot hold the your information, try putting it into child-windows

of the Alarms panel (for example, dialogs).

■ Layout of information inside windows should arrange the most important or

most frequently-used information consistently with existing windows. This way,

users can keep their old habits of where to look and where to point.

Example 1:

Sun Management Center domain manager places buttons that modify table

elements to the right of the table.

Example 2:
330 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Sun Management Center attribute editor gives important information about the

object (object label, object location, variable name, variable’s current value) at the

top of the window. Consistency requires that new dialogs provide the same kinds

of information and put it in the same place.

Information Sources

If you have questions that this guide does not address, here are some additional

sources of information:

■ Use Sun Management Center 2.x software as your guide.

■ Conduct usability testing. This can range from hiring a professional for complete

testing, to showing your proposed design to end-users and getting their feedback.

■ Consult published guidelines. While not always consistent at the detail level

because they were developed under different operating systems, they agree on

the basic principles. Internet links to published guidelines include:

■ Java Look and Feel Guidelines by Sun Microsystems, Inc.

http://java.sun.com/products/jlf/dg/index.htm

■ Windows Interface Guidelines for Software Design by Microsoft Inc.

http://mspress.microsoft.com/prod/books/963.htm

■ Macintosh Human Interface Guidelines by Apple Computer, Inc.

http://developer.apple.com/techpubs/mac/HIGuidelines/
HIGuidelines-2.html

■ Links to consortium guidelines for UNIX user interfaces:

http://www.acm.org/sigchi/hci-sites/

■ Employ the services of a professional UI/interaction designer. A directory of

designers is available at:

http://www.acm.org/sigchi/hci-sites/CONSULTANTS.html
Chapter 16 Graphical User Interface Guidelines 331

Main Console

FIGURE 16-1 shows the Main Console Window.

FIGURE 16-1 Main Console

The main console is divided into seven sections: pull down menus, navigation

buttons, Sun Management Center Administrative Domains pulldown menu, alarm

buttons, two panels and a status line.

■ Menus: The pull down menus going across the top of the console window are

labeled File, Edit, View, Go, and Tools.

■ File menu: The items under the File are Domain Manager, Remote Domain

Manager, Set Home Domain, Sun Management Center-Console. These items

operate on domains. If you plan to add Domain management functionality, it

should be launched from this menu.
332 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ Edit menu: The items under Edit are Create an Object, Create a Connection,

Delete Object/Connection, Rename, Modify, Cut, Copy, Paste, Paste Into and

Select All. The Edit menu items are used to modify objects, not domains.

■ View menu: The items under View are Topology Layouts and Set Topology

Background. If you add any view-like functionality to Sun Management

Center, put it in this menu.

■ Go menu: The items under Go are Back, Forward, Home, Up, History and

Search. These act the same as web browser buttons and contain the same

functionality as the navigation buttons located directly below the menu bar.

■ Tools menu: The items under Tools are Details, Attribute Editor, Graph,

Discover, and Load Module. Most add-on applications that enhance Sun

Management Center software should be listed here.

■ Navigation buttons: The navigation buttons act the same as web browser buttons.

■ Back takes you to your most recent topology hierarchy location.

■ Forward moves forward in the navigation history.

■ Home takes you to your home domain.

■ Up arrow on folder traverses the object hierarchy upward.

■ Search magnifier icon opens the Go To window.

■ Help “?” icon opens the Sun Management Center online Help.

■ About box: An About Box can be brought up by clicking on the Sun

Management Center icon to the far right of the navigation buttons. The About

Box includes information such as the product name, version number, build

number, and copyright information.

■ Sun Management Center Administrative domain pulldown menu: Lists all of the

domains that the console can administer.

■ Alarms buttons: The Alarms buttons are in a horizontal array under the Sun

Management Center logo. Clicking on the alarm button opens a window with a

summary of the objects that are reporting problems to the level of the alarm. The

icons appear on both the alarm buttons and as badges on the hardware icons. If

you add new alarm levels (and hence additional buttons) make sure that buttons

are arranged in descending order of alarm severity.

Server Object Representation and Object

Management

Sun Management Center software provides a host-centric user interface. That is,

management is done from the perspective of the managed objects (servers and

workstations). The entire main console is devoted to creating, displaying and editing
Chapter 16 Graphical User Interface Guidelines 333

managed objects. In a large or complex enterprise server installation, the number of

managed objects can be large, and monitoring for errors or anomalies requires the

ability to find malfunctioning objects quickly.

FIGURE 16-2 Main Console Window with Hierarchy and Topology Views

The server objects are represented in both a tree view list in the left panel and a

layout view in the right panel (FIGURE 16-4). Object icons can be any size, but most of

the existing icons are 42 x 42 pixels in the right-hand topology view and 16 x 16

pixels in the left hierarchy view. If you add new object icons, their sizes should be

approximately the same as the existing icons.

The layout view, presented in FIGURE 16-4, is potentially very powerful, as it can be

used to indicate the location of a managed object in real physical space, such as a

server room. This enables monitoring or service personnel to pinpoint the exact

location of a trouble source. Background images for this purpose can be added by

selecting Set Topology Background from the View menu.
334 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Typical Sun Management Center software customers have hundreds, and in some

cases thousands, of host objects to manage and for this reason the main console, and

all of the sub-consoles, must scale to large numbers. The main console has several

features designed specifically for scalability:

■ Main console uses both main panels for showing objects. The left panel is a

hierarchical list; the righthand panel enables user-specified layout views (network

view, list view, bus view, and so forth) and the ability to superimpose managed

object icons on a graphical background.

■ Grouping: Users can create group containers and place managed objects in them,

in any way that makes sense for that user’s management requirements. Groups

can be moved around with their contents unchanged just like objects.

■ The highest level of grouping in the Sun Management Center software console is

the administrative domain. Domains can be created and deleted, populated with

objects automatically or manually, and have user permissions (security) set

specifically for them.

■ The Sun Management Center console provides a Go To function (similar to

search) that enables the user to find an object by name. This permits quick access

to a particular object (including groups) within a large number of managed

objects and groups.

■ Actions specific to particular managed objects are quickly accessible through the

right-mouse-button. These actions vary according to the object.

■ Sorting and filtering permits the user to reduce the amount of information in a

particular view by showing only the most relevant information. Sun Management

Center software currently supports sorting and filtering at the data-table level,

but does not support these functions at the topology object level.

Guidelines for Modifying Topology Views

Do not enhance or change the presentation of the Sun Management Center software

agent in such a way as to interfere with the features described previously.

■ Add new group and object types: Study the Create Topology Object dialog

carefully (including the contents of all menus) before adding any new object

types. The type you need may already exist. If not, make sure any new object

types are represented in all the right places (Create Topology Object dialog,

Discovery filters dialog), and that each has a full set of icons (large, small, tagged,

untagged).

■ Use good object management dialogs: FIGURE 16-3 is an example of the Sun

Management Center Domain Manager dialog. Its central feature is a list of the

objects. Along the right side, arranged vertically, are buttons that provide the

main actions that can be done on the objects. Selecting an object enables all

buttons whose actions can be applied to the selected object.
Chapter 16 Graphical User Interface Guidelines 335

FIGURE 16-3 Domain Manager

■ Add and subtract right mouse menu items freely: Ensure that they consist only of

items that apply to a particular object.

■ Sorting/filtering: If you are developing an enhancement or addition to Sun

Management Center software that can provide sorting and/or filtering, make sure

that the results of sorting/filtering are consistent with the presentation of objects

by Sun Management Center software.

■ Make sure filter/sort actions are presented near the site of their action, for

example, just over the list of objects.

■ Make sure the action applies equally to both console panels (layout view and

list view).

■ Provide an explicit show all and/or unsort option.
336 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Layout View

The topology view (FIGURE 16-4) displays the object selected in the hierarchy view,

along with any peers that share its container.

FIGURE 16-4 Main Console Window with Hierarchy and Topology Views
Chapter 16 Graphical User Interface Guidelines 337

FIGURE 16-5 shows an example of how the user can load a background gif file and

place the items in a physical location, in this case a server room.

FIGURE 16-5 Topology View

Object Layouts

Only users with permission to create objects and groups are permitted to change

layouts.

The choices are accessed through the Views menu:

■ Network (unconstrained)

■ Grid (object positions constrained to lie in a rectangular grid)

■ List (objects listed vertically)

■ Bus (objects linked with lines in a bus pattern)

■ Star (objects linked with lines in a star pattern)

■ Spoked ring (objects linked around a ring)

Layout affects only the group within which it was chosen, but it is visible by any

user console in which that group can be seen.
338 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Status line

A Status line is located at the bottom of the console window. Be sure to give the user

feedback about what is going on. The Sun Management Center status line gives

messages such as “Downloading physical view images, please wait.” “Paste was

successful”, “Object was created.” This is a good place to put error messages, such as

“Object not found.”

Status Messages

Status messages must be shown left-justified at the bottom of every window

(FIGURE 16-6). Messages from a previous action must last only until the next

command is requested. When a new action is initiated, the status field must clear

first and then show a message indicating the ongoing status of the new action, as

that becomes available. Fonts and colors for status fields should be as defined in the

Fonts section.
Chapter 16 Graphical User Interface Guidelines 339

FIGURE 16-6 Status Message Location

Status
message
location
340 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

User Input

Mouse Actions

The mouse actions are consistent across the Main Console, Details windows, and

dialogs. This is an especially important consistency feature, because mouse actions

are used quickly and automatically by most users. They do not want to have to stop

and think about how to use the mouse. Mouse actions are defined as follows:

■ Left button click:

■ Objects—If the cursor is on an object in the topology or hierarchy view, left

button click highlights and selects the object.

■ Widgets—If the cursor is on a widget (for instance a checkbox or pulldown

menu), a single left button click operates the widget.

■ Text fields—On entering a dialog containing text fields, the user is not required

to click the mouse inside the first field. Rather, the contents of the first field are

highlighted with the cursor positioned at the far right of the contents.

■ Left button double-click:

This action opens a topology object. In Sun Management Center software, open is

defined as follows:

■ In the topology view:

If the object is a host, then double-click opens the Host Details window and the

object in the topology and hierarchy views maintains the selection

highlighting.

If the object is a container, then double-click opens the container to show the

contents.

■ In the hierarchy view:

If the object is a closed container, then double-click opens the container in both

views (drops open the contents list in hierarchy view, navigates to and shows

contents of container in layout view and the name of the container in the

location field above layout view).

If the object is an open container, then double-click closes the container in

hierarchy views (snaps up contents list) and also navigates to and shows

contents of container in topo view and the name of container in location field

above layout view).
Chapter 16 Graphical User Interface Guidelines 341

If the object is a node, then double-click opens the Details window and the

object in the hierarchy view maintains the selection highlighting.

■ Right button click:

In all views, this action opens a popup menu to provide commands that can be

executed on the selected object. The popup menu is context sensitive; the exact

commands appearing there vary according to the selected object.

■ Left button Click-and-Drag:

This action enables you to drag objects to change their positions inside the

righthand layout view of the Main Console. Dragging objects over other

objects and dropping them has no effect. Drag-and-drop are not supported in

Sun Management Center 2.x software.

Selection Highlighting

Selecting Objects

■ In the hierarchy view, highlighting must be done with a solid medium-blue

rectangle enclosing the label (with label text inverted to white).

■ In the topology view, highlighting must be done with a medium-blue open

rectangle enclosing the icon, and a solid medium-blue rectangle enclosing the

label (with label text inverted to white).

When a selected object is put into the cut mode (by selecting the Cut item from the

edit menu), the selection rectangle must go to the dashed-line form. The dashed-line

rectangle must encircle the entire icon plus the text area (for example, remove text

highlighting).

Multiple selection of topology objects is supported. Multiple selection cam be done

two ways:

■ Drag-select

■ Shift+select for second and additional objects

De-selecting Objects

■ Any selected object must be deselected when another object in the hierarchy or

the topology is selected.

■ Any selected object or group must be de-selected with a mouse click elsewhere in

the window.

■ Clicking again on a selected object must not de-select it. The cursor must be

elsewhere to de-select. The exception is:
342 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ When a selected object has been put into cut mode (by selecting the Cut item

from the Edit menu), then removing the cut mode from the object must be

done by explicitly clicking the object again. The dashed-line rectangle is then

removed and the regular selection highlighting is replaced on the object.

■ When multiple objects have been put into the cut mode, then clicking any

object again will remove the cut mode from all the objects.

Keyboard Navigation Shortcuts

Like mouse actions, consistent keyboard action are important because users rely on

keyboard navigation to be quick and automatic, requiring little thought.

Sun Management Center software follows the Microsoft guidelines for keyboard

navigation (The Windows Interface Guidelines for Software Design, Microsoft Corp.,

1995).

Note – Keyboard methods are not well supported in Java 1.x software, on which

Sun Management Center software is built. Only minimal keyboard navigation is

provided.

The appropriate exit buttons for a dialog depend on what the dialog is intended to

do:

■ Use OK and Cancel for confirmation dialogs and for dialogs that consist of a

single discrete action that the user wants to complete quickly.

Example (confirmation): Do you want to save this?; Launch discovery now?, Are

you sure you want to delete that object?

■ Use OK, Apply, and Close for dialogs in which objects are created, or properties

edited, using multiple fields. The OK and APPLY buttons are only sensitized if

fresh data has been entered into the window since the last click of APPLY. Close

will close the window without taking any action on data currently entered in the

dialog.

■ Use a Close button only if the changes made in a dialog or window take effect

immediately and are not accumulated over multiple input fields before being

committed.

■ Use Action Names (for example, Load, Save, Create) as the default action (instead

of OK) in cases where the appropriate word is obvious, and short enough to fit on

a button.

■ When buttons are arrayed horizontally at the bottom of a dialog, then the order is:

■ Leftmost—the default action, for example: OK, Save, Create
Chapter 16 Graphical User Interface Guidelines 343

■ Middle—additional options, for example: Apply, Reset, Clear

■ Rightmost—the cancellation or closing action, for example: Cancel, Close,

Done

Note – Java 1.x does not provide an easy way to specify a default button activated

by keypress. If you develop on a version of Java that supports this, use the Java

Look and Feel guidelines.

Table Appearance and Behavior

The appearance and behavior of tables throughout Sun Management Center

software must be consistent with respect to:

■ Table contents

■ Color

■ Fonts

■ Table position

■ Rows

■ Columns

■ Growth under window resizing

■ Cell, row, and column selection

■ Sorting and filtering

Refer to the following illustration.
344 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

FIGURE 16-7 Table Details Window

Table Contents
■ Types of contents—Tables are used to show the values of properties, for listing

domains and users, and for listing alarms information. Tables can contain strings

(the names of variables), numerical values on a variety of unit scales (percent,

Mbytes, and so forth), and graphical icons.

■ Labels—Row and column labels are optional at the discretion of the designer.

When they exist, the first letter of each main word must be capitalized. The name

must include, in parentheses, the unit in which the values are shown. For

example, CPU Usage (%).
Chapter 16 Graphical User Interface Guidelines 345

■ Contents with rules—When a variable or any table row has a viewable and/or

editable rule associated with it, the name (and unit) must have three dots

(ellipsis), For example, Disk Usage (%)... appended to it.

■ Table titles—If a table is the only or primary element of a window or panel, the

panel label serves as a table label (for example, Processes tab labels the processes

table). If a table is not the only element of a window or panel, or is a secondary

element of a window or panel, the table must have a label top-left justified and

outside of the table border.

■ Justification of contents:

■ Row labels must be left-justified, with a 3-pixel margin between the far left

edge of the cell and the first pixel of contents.

■ Column headings must be centered.

■ Text phrases and messages of varying length must be left-justified always (and

preferably placed in nth column), with a 3-pixel margin between the far left

edge of the cell and the first pixel of the contents.

■ Numeric values must be right-justified always (with a 3-pixel margin between

the far right edge of the cell and the last pixel of the contents).

■ Alphanumeric strings that are not phrases in a human language can be right- or

left-justified depending on table layout needs (at the designer’s discretion).

■ Column widths are variable according to the typical length of information

provided in the given column, with fixed minimum and maximum widths. Do

not make column labels significantly longer than the longest value provided in

the column, as it is wasteful of space.

Color
■ Text color: Table information must be in black text on a white background.

Column headers must be black text on Java-table-widget grey.

■ Alarm color: When a cell in a data table has an alarm state associated with it, cell

background color must change to reflect the type of state. Coloring inside the cell

should not go all the way to the cell borders, but rather stop 1 pixel short on all

sides. This is to allow space for a selection color to be shown for the cell as well.

See below.

Note – In the Alarms Console window, Alarms are signaled with the appropriate

alarm icon rather than a background color.

■ Cell Selection color: When the user selects a cell or row, the selection must be

indicated by a medium-blue open highlight rectangle, enclosing the cell. In the

case of property tables that can have an alarms color in the cell, the selection

rectangle goes outside of the alarms color area, and inside the cell border.
346 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Table Position
■ Tables that are the sole occupants of a window pane are center-justified inside the

pane and remain centered irrespective of changes in the window width. Tables

that appear in the same pane with other tables are left-justified with the left

margin set to a value that centers the largest (widest) of the tables at the standard

(default) window width.

Cell, Row, and Column Selection
■ A table can be defined to be row-selectable only (for example, the Alarms

Window), in which case clicking in any column selects the entire row.

■ A table defined as cell-selectable must allow selection of any and all cells by

clicking inside the cell. In such a table, however, clicking on the row label must

select an entire row.

■ Column selection is not currently used. However, for column-specific sorting this

setting may be necessary.

■ Cell Selection color—When the user selects a cell or row, the selection must be

indicated by a medium-blue open highlight rectangle, enclosing the cell. In the

case of property tables, which can have an alarms color in the cell, the selection

rectangle must go outside of the alarms color area.

Colors

Sun Management Center software follows the Java software look for the colors of

windows and dialog with the following extensions and exceptions.

■ Status fields must be bold black on the grey background of the window.

■ User-editable text fields must be black text inside an enclosing box with white

background and black border. At the designer’s discretion, the box can be inset.

■ Non-user-editable text fields must be black text on the grey background (no

enclosing box).

■ List views, icon views, tables, charts and graphs must have white backgrounds.

■ Menus must have a grey background when dropped open.

■ Field/Widget labels must be Java Blue.
Chapter 16 Graphical User Interface Guidelines 347

Fonts

Sun Management Center software follows the Java software font guidelines. Consult

http://java.sun.com/products/jlf/dg/index.htm for details.

Graphing

FIGURE 16-8 Graphing Window

Sun Management Center software allows graphing of any numerical data variable

with respect to time. Up to five variables can be plotted on the same graph. The

white background is essential for making plotted points and their corresponding

axis values highly visible.

■ Graphing specifications are made at the data level, from within the table showing

the data.

■ Graphing specifications can be saved and reinvoked (by specification, not by

data) from the main console Tools menu.
348 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ All graph labels (titles, legends, axis ticks, and so forth) are fully user-

customizable both in terms of contents, position, and whether they are shown or

hidden in a particular graph. Graphing features are edited in dialogs that are

opened by menu items.

FIGURE 16-9 Graph Header Title Editing Dialog

In this example, text can be entered, styled, and positioned. The Apply button is

useful here in enabling the user to see the results of the changes before exiting the

dialog.

If you intend to enhance the existing graphing system or add new graphing

functionality, follow these guidelines closely.

Caution – Changing the axis scale and tick setting can potentially destabilize the

actual or perceived behavior of the graphing function. Make such changes carefully.

■ Keep the white background, as visual detail is important in a graph.

■ Use the Sun Management Center 2.x dialog structure for implementing the same

or similar settings.

■ Always provide an Apply button and apply the changes directly to graph so the

user can see the results before exiting the dialog.
Chapter 16 Graphical User Interface Guidelines 349

■ If you wish to provide an easier or more direct method of invoking dialogs than

those in Sun Management Center 2.x software (which invokes them from menus),

the following two methods are equally good:

■ Double-click mouse on the intended element (or in intended area for a title) to

open the appropriate dialog.

■ Right-mouse click on the intended element (or in intended area for a title) to

open a menu of appropriate actions.

Property Setting Dialog

Sun Management Center software enables property settings for the following, at a

minimum:

■ Managed servers—properties such as label, description, and type

■ Module parameters (at the point they are loaded)—instance name and description

■ Module run-time scheduling (at any time)—cyclical, one-time only, and so forth

■ Data variable alarm thresholds—value at which alarm of given severity is

generated

■ Alarm actions—script to run or command to execute on generation of the specific

alarm

■ History—where and how to log data value

■ Security—access permissions to objects

Most of these settings are done in the Sun Management Center Attribute Editor

(AE). The AE has a tabbed structure (folder tabs at top) that gives it extensibility.

Here are some guidelines for modifying or enhancing the Attribute Editor and/or

for adding new property-setting dialogs.

■ If you add a new object, enable setting of the same properties that the Sun

Management Center program already supports. You can also enable additional

properties to be set.

■ If you add properties, add them to existing dialog panels instead of creating

additional property dialogs for the same object.

■ If you cannot fit them into existing panels, then add a tab to the existing Attribute

Editor. Make sure that the functionality is apportioned between them in a

distinctive way, and that the names given reflect those differences very clearly.

■ When laying out property-setting dialogs, be consistent with the Sun

Management Center Attribute Editor (where most property settings are made).

In the following example, the History setting tab for a data value inside a particular

managed object (host machine) is shown (FIGURE 16-10).
350 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

FIGURE 16-10 History Tab of Attribute Editor on a Data Variable

The information shown in the preceding figure is typical, in that all instances of the

Attribute Editor follow a similar pattern. This pattern is:

■ At the top, above the tabs, there is general identifying information about where

the information comes from: object label and object location.

■ Below this are the tabs that provide extensibility to the window.

■ Typically, more detailed identifying information about the data value whose

attributes are being shown goes below the tabs: folder and variable. A delineating

line appears at this point, above the actual settings.

■ Bold-text headings in black separate areas of slightly different functionality (Disk

File versus Memory Cache, in this example).

■ Every setting has a label in Java-blue text. Note that the settings are in vertical

stacks, colon-justified.
Chapter 16 Graphical User Interface Guidelines 351

■ Read-only settings (history.log in this example) are shown without a box around

them, against the grey background of the panel.

■ Dialog buttons are discussed in detail elsewhere, but, in the case of the Attribute

Editor, should always include:

■ Apply, which changes the setting so user can see the result in situ (inside the

table where the item lives) before exiting the dialog.

■ OK, which applies and closes the window automatically.

■ Cancel, which closes window without applying any actions.

■ Help

Optional buttons

Reset is especially useful in the case of large panels with a lot of settings. Users

occasionally make enough mistakes that is it better to start over. Reset reverts to

original (current when dialog opened) values, not to a blank state. Use a button

labelled Clear for users who want to set all widgets.

Things to avoid:

■ Do not make text fields longer than needed. This is a stylistic issue but more

importantly, the length of a field gives the user a cue as to valid data that can go

into the field. For example, if the field holds two-digit numbers but is 72

characters long, the user can be misled.

■ Do not provide text fields for complex expressions. Instead give the user explicit

widgets for setting complex expressions.

■ Do not use a label (for example., yes/no) to the right of a checkbox.

Time Setting

Time setting is a commonly-used function in management applications. The

following guidelines stress optimal design:

■ Use the same design and the same time database everywhere.

■ Get as much as possible onto one dialog. Time-setting is inherently complicated

and the more the user can see all in one view without relying on memory, the

better.

■ Put only the simplest and most frequently used functions in the main dialog. Ask

the user/customer what they need, what they use most, and then place those

functions frontmost. Place less used and expert features in a separate dialog
352 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

behind a button. Use sufficient labels. In time-setting more than any other

functionality, it is easy for users to become confused. Generous labelling can help.

For example:

■ Time of day to begin recording (hh:mm):

■ Date to begin recording (mm/dd/yy):

■ Group similar items together under headings, rather than repeating long phrases

over again. An improvement to the previous example is shown here:

■ Begin recording:

Time of day (hh:mm):

Date (mm/dd/yy):

■ Make the time/date format explicit, either in text as shown above, or by artful use

of time-setting widgets. For example, clicking arrows to change time values of the

selected element (day, in the date setting).

■ If possible, provide both widget and typing options.

■ Compute as much as possible for the user, including the effects of daylight

savings time (user simply checks/unchecks a box), leap years, holidays, time

zones, and so forth.

■ If a 24-hour clock is used, be sure to specify legal value(s) for midnight (24 or 0).

■ For internationalization, give users a choice of date/time formats.

Alarms

Sun Management Center software has an event signalling system that spans every

aspect of the product, from the main console to the individual data table cells.

If you plan to modify or augment this alarm functionality, it is important to maintain

consistency with this system.

Alarm System
■ Domain Status Summary buttons: Buttons at the top of the main console give

summary counts and open windows with filtered views of the alarmed objects in

the domain. The summary count only counts the object’s highest severity event.

Example: If a server has both a yellow alarm and a red alarm condition, the

alarm will be counted in the red total, not in the yellow total.
Chapter 16 Graphical User Interface Guidelines 353

■ Alarm badges: These are shown in a variety of places, on buttons, affixed to

hardware icons, and inside tables. When affixed to hardware icons, only one can

be affixed at a time and, like the Domain Status Summary buttons, the severity

corresponds to the worst alarm currently existing on the server. In the Alarms

console of the Details window, all alarm severities are shown by default.

■ Alarm badges are affixed to hardware icons by centering the alarm badge at

the bottom righthand corner of the HW icon. Alarm badges in the layout view

(large hardware icons) are 16 x 16 pixels. Alarm badges in the hierarchy view

(small hardware icons) are 12 x 12 pixels.

■ Alarm badges must be distinguishable and look good in all of the various

locations that they are used.

■ Alarm colors inside data table: When a data variable enters an alarm state, the

corresponding data table entries become shaded in that color. These colors

correspond to the colors of the alarm badges.

■ Sun Management Center Alarms Console: Inside the tabbed Details window (see

Details window section), this tab contains information on all alarms related to the

object whose Details window you are looking at.

As mentioned in the main console section, when modifying Domain Status

Summary buttons make sure any new/modified buttons and icons are consistent

with existing ones:

■ If you add new alarm severities, the corresponding badges must conform to the

basic pattern of existing Sun Management Center badges, that is, identical

background shape, distinctive color, and distinctive internal design.

■ When adding/modifying alarm severities, remember to use the correct

corresponding color inside the data table cells.

■ Modifications to the alarms table in the Alarms Console must follow the Table

guidelines (see Table section). Modifications to show/sort dialogs should follow

Dialog guidelines (see Dialog section).
354 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Details Window

FIGURE 16-11 Browser Details Window

The Sun Management Center Details window provides a wide variety of data for a

managed object.

This window has six tabs in Sun Management Center 2.1 software; Info, Browser,

Alarms, Processes, Log View, and Configuration. The tabs are an extensibility

mechanism that product developers can use to enhance the capabilities of the

software.
Chapter 16 Graphical User Interface Guidelines 355

■ The tabs are the top level of navigation in the Details window. Menus, buttons

and other navigation tools are not to be added above the tabs, but can be added

below the tabs.

■ When adding buttons, panel-specific buttons go at the top above the data area,

and the general dialog buttons (shared by every tabbed panel) go at the bottom.

■ If you plan to add functionality to the Details window, you need to decide if it

belongs in one of the tabbed categories, or its own new one. It is always best to

add new functionality to existing panels. If you cannot do this, then try launching

a dialog (child window) from the existing panel.

Example: You want to add the ability to annotate the Alarms window to include

notes from the system administrator. Add a button on the Alarms Console that

spawns a dialog box.

The Browser and Configuration panels each have a two-part structure similar to that

of the main console, but the hierarchy at left contains subobjects of the host object,

and the right panel contains subobjects and detailed tables. If you are adding a tab,

consider creating a hierarchy of subobjects, where applicable.

The Details window has a status area at the bottom, like the main console. Use this

area to give users status feedback. The Details window can be iconified and will

continue to update data tables, update the logs, and register alarms.

Any subwindows spawned from this window will close when this window is closed,

with the exception of the Graphing window.
356 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 17

Sun Management Center 2.1
Developer Environment Packaging

This chapter covers the following topics:

■ Packaging Helloworld_01 —page 357

■ Sun Management Center Software Packaging Practices—page 359

The information provided in this chapter will be based on the packaging of the

example modules provided as part of the Developer Environment.

The following documents are suggested reading for more detailed explanation of

Solaris software packaging:

■ Pkginfo (4)
■ Pkgmk (1)
■ Prototype (4)
■ Pkgmap (4)
■ Depend (4)
■ docs.sun.com (Application Packaging Developer’s Guide)

■ docs.sun.com (Search for “Packaging”)

This chapter provides examples and a list of suggested Sun Management Center

software packaging practices with more details on the configuration of the

packaging files.

Packaging Helloworld_01
The following section describes the packaging of the Helloworld_01 module

(src/examples/modules/helloworld_01/package).
357

Makefile

The makefile is set up to look for the components to be packaged in the parent

directory of the package directory (src/examples/modules/helloworld_01).

This is accomplished by supplying the pkgmk utility with the

’-r [path_to_components] ’ option, which in this example is ’..’:

The contents of the package are defined in:

src/examples/modules/helloworld_01/package/prototype .

Prototype Entries

Here are the entries in the prototype file and a description of their functions:

■ i pkginfo: pkginfo(4) is an ASCII file that describes the characteristics of

the package along with information that helps control the flow of installation. It is

created by the software package developer. In this example, the pkginfo is

expected to reside in the same directory as the prototype file.

■ i copyright=install/copyright is the copyright that is displayed when the

package is being installed. In this example, the copyright is expected to reside in

the install subdirectory. Note in the examples that the format for the prototype

entries is <component destination >=<component source>. Component source being

the location where the source can be found and component destination being the

name and location of where the file will reside. Note that the names of the

component source and destination may be different.

■ i depend=install/depend: depend(4) is an ASCII file used to specify

information concerning software dependencies for a particular package. The file

is created by a software developer. The helloworld_01 package depends on the

SUNWesagt Sun Management Center agent package at runtime.

■ !default 0755 root sys is a packaging directive to assign the components

following this statement to the file attributes of read/write/execute-read/

execute-read/execute, ownership equals root, and group equals sys.

■ d none SUNWsymon ? ? ? specifies the directories that need to be created

during package installation to contain the components. The first field, the file type

field, of the entry ’d’, specifies that this component is a directory. The second

field, the class field, ’none’ specifies that this entry belongs to the package class

’none ’. The third field is the pathname of the component, in this case

COMPONENT_ROOT = ..
DEMOeshw1:
$(PKGMK) -o -r $(COMPONENT_ROOT) -d .
358 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

‘SUNWsymon’. The fields ’? ? ? ’ are used when you know that this component

has been installed be a another package and that you want this component to

have the same attributes assigned to it.

■ !default 0444 root sys is a packaging directive to assign the components

following this statement to the file attributes of read-only-read-only-read-only,

ownership equals root, and group equals sys.

■ f none SUNWsymon/modules/cfg/helloworld-version01-
d.x=helloworld-version01-d.x has ’f ’ as the first field, which denotes that

the component is a ’file ’. The second field denotes that this component belong

to the class ’none ’. The third fields denotes that destination for this component

will be SUNWsymon/modules/cfg/helloworld-version01-d.x and that the

source to this component can be found at helloworld-version01-d.x .

Remember at the beginning of this section, that the ’-r $(COMPONENT_ROOT)’
option to pkgmk, allows the pkgmk utility to begin finding the source component

helloworld-version01-d.x in the directory ’.. ’.

Sun Management Center Software
Packaging Practices

Package Naming

The Sun Management Center team uses SUNWes to denote that this package is a

Sun Microsystems (SUNW) package and belongs to the Enterprise software group of

packages. The next three characters are used to identify the individual packages of

Sun Management Center software.

Package Versioning

The Sun Management Center team uses the VERSION, REVISION macros with the

following form for Solaris software dependent packages (OS equals Solaris Release,

note that 2.5.1 would be 2.5:, that is, Major.Minor, not Major.Minor.Micro):

VERSION=[product release version], REV=[OS Major.Minor].[YYYY.MM.DD]

For packages that are not Solaris Release specific (meaning the package is supported

on all Solaris Sun Management Center supported releases, the [OS Major.Minor]

string must be out of the REV string.
Chapter 17 Sun Management Center 2.1 Developer Environment Packaging 359

Component Naming

All components must have a unique name to avoid component collision at install

time.

Package Dependencies

When installing modules, SUNWesagt is the suggested package dependency. When

installing a console bean, SUNWessrv is the suggested package dependency.

Prototype File

The Sun Management Center team uses explicit entries in their packaging to

facilitate clarity for developers when maintaining the prototype files.

Sun Management Center Module Name Practices

Sun Management Center modules are installed in a specific directory. So that there

are no conflicts with the modules developed by other users, you need to ensure the

uniqueness of your module filenames. It is suggested that you use the registry that is

setup by Sun Management Center. Please visit the following website for more

information:

Note – The above discussion is applicable for the console help files also.

http://www.sun.com/sunmanagementcenter/
360 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CHAPTER 18

Troubleshooting

This section includes information on troubleshooting. Items covered include

information on:

■ Module—page 361

■ Console—page 363

Module

During the Sun Management Center module development process, when you

encounter problems with module loading and its additional functionalities, refer to

one of the three areas where Sun Management Center software provides you with

trouble shooting information.

■ On the console—While loading a module from console, Sun Management Center

software provides information about the status of the loading operation.

■ In the agent log file—The agent log file provides information regarding module

loading and module operation. The agent log file is a circular log file and can be

viewed by entering the following command:

■ When in the Interactive Agent mode—Starting the agent in the interactive mode

allows you to troubleshoot module loading. To run the agent in interactive mode,

enter the following command:

The following sections provide some examples for each one of the above categories.

/opt/SUNWsymon/sbin/es-run ctail -f /var/opt/SUNWsymon/log/agent.log

/opt/SUNWsymon/es-start -ai
361

Console Messages

Agent Log File Messages

TABLE 18-1 Example Error Messages that Display on the Console

Problem Troubleshooting Information

Loading at the wrong

place.

Check the ‘ param:moduleType = ' value in <module>-m.x

file.

Error Message:

Module load failed.

Check to see if the following conditions exist:

• If the agent file is under /opt/SUNWsymon/modules/cfg
• If the models file is under /opt/SUNWsymon/modules/cfg
• For any syntax error in module files

• For valid syntax and datatypes in the models file

• If the library files exist

TABLE 18-2 Example Error Messages That Are Found in the Agent Log File

Error Messages Troubleshooting Information

Import interface failed Check to see if the agent file is under

/opt/SUNWsymon/modules/cfg .

Shutting down subagents parsing error in file: /
/localhost/<module>-d.x flags=ro(1) :

failed to open file. aborting execution

Check to see if the models file is under

/opt/SUNWsymon/modules/cfg .

Syntax error in file:

//localhost/<module-file >

flags=ro(42) at token '}' aborting execution

Check for syntax error in <module-file>

around line# 42.

Parsing error in file:
//localhost/<module>-models-d.x
flags=ro(17)inheri t: could not inherit

ASDF. aborting execution

Check the datatype ASDF in models file.

Shutting down subagents, general parsing error,

file:

//localhost/helloworld-version02-d.x
flags=ro 10 couldn't load file
pkgdemohw2.so":ld.so.1:esd:fatal:lib
demohw2.so.1:open failed: No such file or

directory"], aborting execution

Check to see if the of library files exist.
362 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Interactive Agent Mode Messages

Console

The Sun Management Center console is based on a configuration file infrastructure.

This infrastructure provides a scripting language that is interpreted at run time to

create Java consoles. Because of this late binding, most of the errors are shown at run

time.

Errors are displayed in two places:

■ Inside the terminal window in which the Sun Management Center console is

started: If you have made any syntax errors in your configuration file definition

for your application, those errors will show up in this terminal window.

■ Inside the Sun Management Center Console Messages dialog which is invoked

from the file pulldownmenu in the main console: The error messages that are

shown here are run time errors. For example, as given in the Task List, if you

mention a wrong path for your awx:component bean, you will get an error that

indicates this class was not found. It is advisable to keep the Sun Management

Center Console Messages dialog up while you are doing development. You can

TABLE 18-3 Example Error Messages Provided by the Interactive Agent

Error Messages Troubleshooting Information

Parsing error in file: //localhost/<module>-
d.x flags=ro(1) : failed to open file

aborting execution

Check to see if the models file is under

/opt/SUNWsymon/modules/cfg .

Syntax error in file: //localhost/<module-
file> flags=ro(42) at token '} '

aborting execution

Check for syntax error in <module-file>

around line# 42.

Parsing error in file: //localhost/<module>-
models-d.x flags=ro(17) :

inherit: could not inherit ASDF

aborting execution

Check the datatype ASDF in models

file.

General parsing error

file://localhost/helloworld-version02-
d.x
flags=ro 10

couldn't load file pkgdemohw2.so":

.so.1: esd: fatal: libdemohw2.so.1: open failed: No

such file or directory"]

aborting execution

Check to see if the library file exists.
Chapter 18 Troubleshooting 363

also look at the Sun Management Center server log to see if the communication

between the Sun Management Center console and Sun Management Center server

is going through.

Note – All configuration files (those with extension .x) are installed on the Sun

Management Center server, hence any action on these files will go through that

server.

For example, if you are using a [load myConsole-j.x] construct in your

application, then in the Sun Management Center server log you should see this file

being read by the console.

The Sun Management Center server log is a circular text file. To look at it in a ’tail’

mode run following command:

No console log is created by the Sun Management Center console. All console debug

messages are displayed in the Sun Management Center Console Messages dialog.

When the Sun Management Center console comes up, it redirects all stdout
messages to this dialog. Thus, if your Java code has System.out.println
statements, the output of those will be displayed in this dialog.

/opt/SUNWsymon/sbin/es-run ctail -f /var/opt/SUNWsymon/log/server.log
364 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

APPENDIX A

Modules Appendix

This chapter covers the following topics:

■ Module Building Environment—page 365

■ Agent Framework—page 374

■ Useful Tcl Commands and Filters—page 395

■ Alarm Status Strings—page 398

■ Module Testing Tips—page 400

■ File Naming Conventions—page 401

■ Location of Module Files—page 404

■ Data Management—page 405

Module Building Environment
This section covers the following topics:

■ Agent Development—page 365

■ Agent Framework—page 374

Agent Development

The Sun Management Center agent is based on Tcl and TOE technologies. This

section provides background information about the development environment of the

Sun Management Center agent.
365

Tcl Environment

Tcl (Tool Command Language) is an interpreted command-oriented language that

can be used to connect building blocks built in system programming languages like

C. Commands can be added to the interpreter using a clean C interface, and these

commands co-exist with built-in Tcl commands.

Tcl has both simple variables and associative arrays, and all values (including

procedure bodies) are represented as strings.

For more information about the Tcl language, refer to Tcl and Tk Toolkit.

TOE Environment

The Tcl Object Extension (TOE) is a simple modification to the Tcl language that

provides an object-oriented environment that supports a rich set of object-oriented

(OO) features, and that is backward compatible with conventional Tcl code.

The premise behind the TOE modifications is simple. It was observed that all Tcl

hash table access is channelled through two C macros, one to create hash entries and

one to locate them.

Using this knowledge, these macros were overridden to call a set of recursive hash

table operators that are capable of locating commands or data in a more

sophisticated manner. This twisting of the hash table operators can be done with a

one-line modification to the Tcl source code and is completely transparent to all

users of these functions.

Using the modified hash table behavior, an object system was built that capitalizes

on this new hash table scoping algorithm. A simple data structure, known as a TOE

object, was created that is simply a pair of hash tables (one for commands, one for

data) and a set of pointers to other TOE objects. The hash tables store procedures

and data (properties) local to that object, while the pointers reference parent objects.

Parent objects can be recursed to locate commands or data not found in the local

hash tables.

To complete the system, a pointer to the current TOE object is placed in the global

command hash table of the interpreter. When a command is executed, the Tcl system

uses the low level Tcl hash operators to find the body of the command. These

modified operators detect an active TOE context, and delegate the hash lookup to

the hash tables of the current TOE object. Failure to locate the target key in that

object triggers recursion into each of the parent pointers until the key is hit or all

ancestors have been searched.
366 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

This transparent recursion makes all hash entries in all parents of an object appear to

be local to that object. This behavior corresponds to inheritance in an object oriented

environment. Other key object oriented features, such as polymorphism and

dynamic binding, also fall out of the design, as the function performed by a

procedure depends entirely on the object in which it was invoked.

TOE Objects

A TOE object is a data structure consisting of a command hash table, a dictionary

hash table (for object property storage), parent object pointers (for ancestral

relationships) and a superior object pointer (for structural relationships).

FIGURE A-1 TOE Object

Because a TOE object contains its own command and dictionary hash tables, objects

can support their own command vocabulary and properties. The command names

are local to the object, so commands bearing the same name can coexist in different

objects. The dictionary properties are independent of the Tcl variable system, so

variable use need not alter or conflict with object properties.

Object Relationships

The TOE system supports ancestral and structural object relationships.

Ancestral Relationships

These relationships define the parent/child relationships of objects. This defines the

object-oriented inheritance characteristics of an object, with the child object

inheriting commands and data from the parent object.

Parents
Superior

Command Dictionary
Appendix A Modules Appendix 367

FIGURE A-2 Simple Parent/Child Object Relationship

In this relationship, child objects can see all of the commands and dictionary data in

the parent object, that is implemented by referencing the parent objects on every

hash table lookup. This parental referencing becomes a parent tree traversal if the

parents themselves have parents.

FIGURE A-3 Multiparent/Child Object Relationships

Structural Relationships

These relationships define the superior/inferior relationships of objects in a tree

structure. Objects can be organized into tree structures where each object has a

superior (the object up the tree) and zero or more inferiors (the objects down the

tree).

FIGURE A-4 Superior and Inferior Object Relationship

Combining Ancestral and Structural Relationships

By independently supporting these two types of relationships, trees of objects can be

constructed where the structural aspects of the tree (defined by the overall purpose

of the objects) is independent of the inheritance of the nodes in the tree (defined by

the functions performed by the individual objects).

parent child

parent childparent

parent

branch

leaf1 leaf2 leaf3 leaf4

su
pe

ri
or

in
fe

ri
or
368 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

FIGURE A-5 Object Relationships of Filesystem Example

In this example, the structure of the tree is related to the overall purpose of the

objects (in this case, a model of a file system), while the ancestry of each object

determines what the objects do and how it behaves (in this case, the primitive data

types the object represents).

Object Property Dictionaries

Every TOE object contains a set of properties. In the TOE environment, object

properties are stored in a dictionary. Each object contains a dictionary that stores

properties relevant to that object instance. In the implementation of TOE, a

dictionary is a hash table that stores information using logical keys.

Dictionary Keys

The TOE object dictionaries use a two-key paradigm, where two logical names are

used to reference any one data entity. This allows dictionaries to be partitioned into

separate sections, with the division being based on the purpose, source, or volatility

of the data being stored. These dictionary partitions are referred to as slices in the

TOE system, and the pieces of data within each slice are named using what is

referred to as the dictionary key. Dictionary slices can be thought of as property

classes when used to configure object instances.

TABLE A-1 Dictionary Example

Slice Key Value

value refreshCommand "df -kF ufs"

value refreshInterval "60"

alarmlimit warning "10000"

alarmlimit error "5000"

data 1 "95000"

primitives filesystem

sizestring mount freefloat
Appendix A Modules Appendix 369

)

The object’s dictionary has three partitions or slices:

■ Value

■ Alarmlimit

■ Data

Value

The value slice contains configuration information. In this case it is the refresh

command and interval of the file system entity.

Alarmlimit

The alarmlimit slice contains the error and warning level alarm limits.

Data

The data slice contains the dynamic data of the object, in this case the current

floating point value of the managed property, free.

This is a typical example of data partitioning using slices, where the slices are based

on the purposes and sources of the dictionary entries and are directly related to the

classes of properties used by an object instance.

The dictionaries define certain operations that can be performed on entire slices.

These operations include the ability to list all the currently defined keys in a slice

and to undefine an entire slice. Hence maintenance of dictionary keys is simplified if

the slices are properly configured, and a certain amount of accountability can be

achieved if the dictionaries are partitioned along functional boundaries.

Importing and Exporting Dictionaries (Module Configuration Files

The TOE object dictionaries have the inherent ability to import and export

themselves as formatted text. The format of this representation is referred to as the .x

file format. In this format, the slices and keys of a dictionary are represented using a

well-defined, unambiguous syntax.
370 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Dictionary Entry (Property) Representation

Dictionary entries can be described using the following syntax:

Using this syntax, the dictionary entries in the preceding example table can be

represented as:

In this example, both of the slices of the object’s dictionary were exported together,

and all keys are prefixed by their slice name. In actuality, slices can be exported and

imported individually, and if there is only one slice present, the slice prefix is

optional. This can be thought of as slice relative, since the keys are placed in

whatever slice is specified at the time of import. For example, the data slice of the

dictionary can be exported slice relative as follows:

Multi-object Dictionary Representation

The dictionaries of many objects can be exported or imported in a single operation.

In such operations, the tree structure of the objects is maintained in the .x file output.

The .x file syntax for an object is as follows:

In this notation, the opening of the curly brace indicates that the key-value pairs to

follow belong to the object named object1. Such a representation is generated if an

export is performed from the superior object of the object1 object. This hierarchical

[slice:]key = value

value:refreshCommand = "df -kFufs"
value:refreshInterval = "60"
alarmlimit:warning = "10000"
alarmlimit:error = "5000"
data:1 = 95000

warning = "10000"
error = "5000"

object1 = {
key1 = "value 1"
key2 = "value 2"
}

Appendix A Modules Appendix 371

representation can be nested as deep as the object tree, supporting arbitrarily nested

.x file representations. The following is an example of an .x file representation that is

two levels deep:

Action Specifications

The .x file format supports the specification of actions, or logical operations, to be

performed during initialization on objects described in the object tree. The general

form of an action is:

This syntax is simply a set of square braces enclosing the action command line, and

optional arguments can be specified. The actual actions supported by the .x file

parser depends on the application using the object tree, but several actions are

always valid, such as:

■ Inherit

■ Load

■ Source

Inherit—Adds the named object(s) to the object’s parent list, thus altering the

ancestral relationships of the current object. This action is the primary way of

creating parent and child relationships within trees that are specified using module

configuration files.

object1 = {
key1 = "value 1"
key2 = "value 2"
object2 = {
key3 = "value 3"
key4 = "value 4"
}
}

[action args ...]

mount = { [inherit primitives.string] ... }
372 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Load—Loads the named .x file into the current object. This is the primary

mechanism for combining multiple module configuration files into a single object

tree. In the following example, the .x file named primitives.x is loaded into the

primitives object.

Source—Loads and executes a Tcl/TOE source file into the current object. This is the

primary means of extending and overriding an object’s command set from an .x file.

In the example, a Tcl/TOE file named primitives.prc is loaded and executed

into the proc object.

By using the nested nature of module configuration files and the inherit action, both

the ancestral and structural aspects of an object tree can be represented.

The following .x file can be used to describe the file system subtree in FIGURE A-5:

FIGURE A-6 .x file Syntax for Filesystem Example

TOE Object Classes

TOE object classes are the primary mechanism employed to extend the command

vocabulary of TOE objects. TOE object classes encapsulate a set of commands that

provide a well defined function. TOE objects can then inherit these classes to gain

the desired functionality of the command set.

primitives = { [load primitives.x] }

proc = { [source primitives.prc] }

filesystem = {
mount = {
[inherit primitives.string]
}
size = {
[inherit primitives.float]
}
free = {
[inherit primitives.float]
}
}

Appendix A Modules Appendix 373

Examples of TOE object classes used by the Sun Management Center agent include

the MIB node class and the SNMP class. The MIB node class enables TOE objects to

gather and store data periodically and perform alarm checks on the data. The SNMP

class encapsulates SNMP communication capabilities.

Agent Framework
The agent framework consists of a single tree structure within the agent that

contains global services, configuration data, classes and templates that can be used

by any object within the agent.

The following is a general structure of an agent’s TOE object tree:

FIGURE A-7 TOE Object Tree Structure of Agent

The agent framework provides the core agent services and functions that include

SNMP communications, command execution, and module management.

This framework exists to support the realization of managed objects, properties and

other modeling elements that perform the actual monitoring and management

functions of the agent. The managed objects, properties, and other modeling

elements are encapsulated in management modules and are also loaded in this tree.

Shell Service

The shell service object (.services.io.sh) provides a mechanism for the Sun

Management Center agent to execute commands (scripts and programs) and obtain

the results of the command. This service is commonly used by module MIB nodes

for data acquisition and for executing alarm actions.

The shell service supports the queuing of commands to be executed. It also supports

the spawning of multiple shells to allow commands to be executed in parallel.

This service involves the agent opening pipes to one or more captive Bourne shell

processes. The maximum number of shells to run is configurable.

classes config services isotemplates config

(root)
374 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

FIGURE A-8 Shell Service Data Flow

Shell Service Result Handling

When interfacing with the shell services, the caller specifies the shell command and

the callback to process the command results.

The shell command to be executed can be specified with or without a full path. If the

command is not specified with a full path, the command is searched for in the

directories specified by the PATH environment variable of the agent.

The callback specification is comprised of a TOE object identifier and a callback

method. The TOE ID specifies the TOE object context in which the callback method

should be executed. The callback method must be specified with the %result
argument (for example, callbackMethod %result) that is substituted with a result

specification every time the callback is invoked.

The result specification returned to the callback is in the form of a three element list

comprised of a return code, a transaction identifier, and corresponding data. The

possible results are as follows:

■ wait <tid> "" indicates that the command is being executed asynchronously and

that the final result is pending.

Shell service

Management Information Base (MIB)

Sun Management Center agent

Bourne Bourne

Incoming results

Outgoing commands

shell shell
Appendix A Modules Appendix 375

■ data <tid> <command result> indicates successful execution of the command and

the command results are included as the third element in the list.

■ error <tid> <error message> indicates that the execution of the command resulted

in an error (that is, program does not exist or the program wrote to STDERR

instead of STDOUT). The error message is included as the third element in the

list.

Shell Protocol

A very simple shell protocol defines the interaction between the agent and the shell.

For each command to be executed, the agent sends the command to be executed to

the shell, followed by echo EOT, where EOT is the terminating character. The shell

executes the commands so that the command result is returned followed by EOT.

The reception of the terminating character indicates the end of the transaction,

implying that the next command can be sent to the shell.

Ping Service

The icmp object (.services.io.icmp) enables the Sun Management Center agent

to ping hosts to determine whether they are up or down. Ping uses the ICMP

protocol ECHO_REQUESTdatagram to elicit an ICMP ECHO_RESPONSEfrom the

specified host. A host is assumed to be up if it responds. By default, a host is

assumed to be down if it does not respond after three retries, each with a timeout of

10 seconds. The number of retries and the timeout can be overridden by specifying

the maxRetries and retryInterval parameters, respectively, in the

.services.io.icmp object.

The ping service is used by the SNMP interface to determine the status of a host

whose agent does not respond to an SNMP request. This service is also used by the

Topology module in the Topology agent when monitoring entities as IP-based

devices.

Master Event Loop (MEL) Service

The mel object (.services.mel) provides timer services to other objects. It allows

other nodes to register and cancel time based events.
376 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Default I/O Service

The default service (.services.io.default) is a default shell service provided

for general use by any object. However, in general, modules that require a shell

service should specify their own shell service to guarantee the availability of its

access to a shell service.

Data Logging Registry Service

This service (.services.history) maintains a table of all current data logging

requests. This table is automatically updated whenever the data logging

specifications of a managed property changes.

This table is queried by the data logging registry module using the listRegistry
method. This module allows console users to view information about all managed

properties whose values are currently being logged.

The logging information includes the following fields:

■ state—state of destination log file

■ module name—name of module in which the property whose data is being logged

resides

■ instance name—module instance name of module in which the property whose

data is being logged resides

■ property name—name of property whose value is being logged

■ log interval—logging interval

■ file status—flag indicating whether data logging to file is currently enabled (for

example, on|off)

■ logURL—interface specification of the destination log file

■ cache status—flag indicating whether data is currently being updated in the

internal history buffer

■ cache size—current size of the internal history buffer

Note – The data logging registry service does not perform the actual addition or

removal data logging requests; it maintains a table that reflects the current data

logging requests.

The configuration of data logging is supported through shadow SNMP requests to

the appropriate MIB node.
Appendix A Modules Appendix 377

File Scanning Service

This service (.services.fscan) allows MIB objects to subscribe for file scanning

services. Conceptually, MIB objects subscribe by specifying a filename, regular

expression pattern, and a callback. The service incrementally scans the file for

regular expression pattern and when the pattern is detected, the callback is called

with the match results. When the MIB object is no longer interested in the scanning

of the pattern, it can then perform an unsubscription request.

This service is used by MIB objects whose alarm check involves log rules.

Subscribing for Patterns

To subscribe for the detection of a pattern in a file, the fsSubscribe method is used:

where:

■ filename is the name of the file to be scanned.

■ pattern is the regular expression pattern to scan for.

■ callback spec is a callback specification that is dependent on the node template. For

the default node template (fscan-node-d), the callback spec is comprised of a three

element list consisting of a TOE object id, a row name, and a rule identifier.

■ node template is an optional specification that defines the type of object that must

be instantiated to service the subscription request. The default node template is

fscan-node-d, which assumes that the caller is a rule (that is, logSubscribe) and

expects the callback specification to contain a TOE object id, a row name, and a

rule identifier. Currently, no other node templates are defined.

If the subscription is successful, the TOE object ID of the file scanning node is

returned. If the subscription fails, –1 is returned.

Unsubscribing Patterns

To remove an existing subscription, the fsUnsubscribe method can be used:

fsSubscribe < filename> <pattern> <callback spec> ?< node template>?

fsUnsubscribe < filename> <pattern> <callback>
378 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Module Management

Module management is a fundamental function provided by the Sun Management

Center agent framework. It enables the agent to load and unload the management

modules that define the monitoring and management functions performed by the

agent.

Modules comprise of a set of managed objects and properties that focus on a

particular aspect of system or application condition and performance.

The discussion of module management in the Sun Management Center agent is

divided into the following topics:

■ MIB Subtrees: This section describes the structure of the trees in which

management modules are loaded.

■ Module Loading: This section describes the mechanisms used for loading and

unloading modules.

■ MIB Manager: This section describes additional functions provided by the agent

to manage modules.

MIB Subtrees

The Sun Management Center agent supports SNMP contexts to identify MIB

modules that can have multiple instances. Each SNMP context is represented by a

separate MIB subtree.

Default SNMP Context

The .iso subtree represents the default SNMP context (all modules that can only be

instantiated once they are loaded into this subtree). The standard MIB objects that

are not part of modules are also loaded into this subtree.
Appendix A Modules Appendix 379

FIGURE A-9 Default Context—ISO subtree

In general, the .iso subtree for the default SNMP context contains two main branches,

the standard management branch (mgmt) and the private enterprises branch.

The standard SNMP management MIB objects are loaded in the mgmt subtree. An

example of a standard SNMP MIB is the MIB for Network Management of TCP/IP-

based internets (MIB-II).

The enterprises branch contains enterprise specific subtrees.

For instance, the Sun Management Center agent always instantiates a core module

loader in the .iso*enterprises.sun.prod.sunsymon.agent.base.mibman
object in the default SNMP context. Sun Management Center modules that can only

have a single instance are also loaded in under the enterprises branch in the default

SNMP context.

Non-default SNMP Contexts

Each instance of a module that can be multi-instantiated is assigned an SNMP

context. The name of the module instance corresponds to the SNMP context name.

Each nondefault SNMP context is represented by a separate <context name>.iso.*
subtree under the .contexts object.

org

dod

internet

mgmt private

mib-2

system

enterprises

halcyoninterfaces sun

iso
380 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

For example, loading a Topology module whose instance name is view-1 creates the

.contexts.view-1.iso.* subtree that represents the view-1 SNMP context.

FIGURE A-10 Nondefault SNMP Contexts—Contexts Subtree

Private Enterprises

By convention, the Sun Management Center agent modules developed by Sun are

loaded within the sun branch in the appropriate SNMP context. Similarly, Sun

Management Center agent modules developed by Halcyon are loaded in a subtree

under the appropriate SNMP context.

org

iso

...view-1 view-2

contexts

view-N

iso iso iso
Appendix A Modules Appendix 381

FIGURE A-11 Private Enterprise Subtree

The preferred location of Sun Management Center modules can be specified in an .x

file (base-oids-<enterprise>-d.dat) that maps the logical object names to

object identifiers. The Sun Management Center agent loads this file on start up. It

can also be specified in the parameter file of the module.

The location where modules are loaded is important for hierarchical summarization

and for general module management. Hierarchical summarization groups the alarm

statuses of all managed child objects to generate an overall status of the managed

objects for that portion of the MIB tree. Organizing modules into groups allows

modules to be managed as a group.

Module Subtrees

Sun Management Center specific modules loaded by the agent are classified into the

following module types:

operatingSystem—monitor operating system related entities associated with the local

host system (for example, CPU usage, swap, processes, file systems, and so forth.)

private

enterprises

sun

prod

sunsymon

agent

base modules

trapForward hardware operatingSystem ...

halcyon

infomibman trapInfo
382 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ hardware—modules that monitor hardware related entities associated with the

local host system (for example, disks, CPUs, power supplies, and so forth)

■ localApplication—modules that monitor software applications that run on the local

host (for example, custom software applications)

■ remoteSystem—modules that monitor entities running on other host systems (for

example, legacy SNMP agents on remote hosts)

■ serverSupport—modules that perform server agent functions and are not intended

to be accessed using the standard MIB browsing mechanisms (for example,

domain-control, topology, cfgserver, and so forth)

Each Sun Management Center agent module is loaded into its corresponding

module type branch under the appropriate modules subtree and SNMP context. The

following diagram shows a module subtree.

FIGURE A-12 Modules Subtree

Classifying modules by these categories is important for hierarchical summarization.

This classification of modules separates the various alarm summary lists, enabling

the alarm summary of managed objects in the MIB to reflect the status of the

respective category.

Module Loading

When a Sun Management Center agent starts up, the agent loads the set of modules

specified in its module configuration file (base-modules-d.da t). Once the agent is

running, a Sun Management Center console user can load additional modules or

unload loaded modules. The loaded modules are saved to the module configuration

file (that is, /var/opt/SUNWsymon/cfg/base-modules-d.dat) so that the same

set of modules is automatically reloaded if the agent is restarted.

The module configuration file contains entries for each module to be loaded. For

each module to be loaded, its location in the MIB tree hierarchy, name, and

parameters must be specified. Each entry in the file has the following format:

operating hardware

modules

solariscpu fscan sybase

remoteSystemlocal serverSupport

topology ...

System Application
Appendix A Modules Appendix 383

where:

module spec specifies the module name and module instance name (if one exists)

concatenated with a + sign (for example, fscan+syslog, mib2-system).

MIB location specifies the full TOE object path to the root node of the module. For

example, the mib2 system module location is:

enterprise specifies the name of the enterprise MIB that the module resides in. For

example, a module developed by Sun should reside in the sun enterprise. A

module that is not enterprise specific (for example, mib2-system) should specify a

blank enterprise.

module name specifies the actual name of the module without the module instance

specification (for example, mib2-system , fscan).

module parameters specifies the module parameters in the form of a list containing

key-value pairs terminated by semi-colons (that is, ‘;’). All string values with

white-spaces should be enclosed with backslashed double quotes (that is, ”

"\aaa bbb\"). For example, to specify module parameters a and b whose values

are 123 and "1 2 3", respectively; use the following specification: {a = 123; b = \"1
2 3\";}.

Module Parameters

The module parameters that can be specified correspond to those parameters

specified in the module’s parameter file (that is, <module>-m.x).

Common module parameters include:

■ module specifies the module name.

■ moduleName specifies the module name for display purposes.

■ version specifies the module version.

■ location specifies the MIB location of module.

<module spec> = "< MIB location> < enterprise> < module name> < module parameters>"

.iso.org.dod.internet.mgmt.mib-2.system.
384 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ enterprise defines enterprise MIB in whcih the module resides.

■ moduleType specifies module classification. Possible values are hardware,

operatingSystem, localApplication, remoteSystem, or serverSupport.

■ desc specifies a module description

For modules that can be instantiated multiple times, the instance and instanceName
parameters should also be defined. In addition, modules can specify additional

parameters that are specific for the module.

base-modules-d.dat

This file contains three module entries: mib2-system , agent-stats , and

fscan+syslog . The mib2-system entry demonstrates the loading of a non-

enterprise specific module. The agent-stats entry shows how to load a simple

Sun Enterprise module. The fscan+syslog entry shows how to load a Sun

Enterprise module that can be instantiated multiple times. This module also contains

module specific parameters.

Note – Each entry must be specified on one line only. To improve readability, each

entry has been divided into multiple lines in the following example.
Appendix A Modules Appendix 385

In the following table, note that each row is a continious string of syntax.

MIB Manager

The MIB manager provides general MIB related services to external entities through

SNMP. Sun Management Center agents instantiate the MIB manager in the

.iso*enterprise.sun.prod.sunsymon.agent.base.mibman object.

FIGURE A-13 MIB Manager Branch

CODE EXAMPLE A-1 base-modules-d.dat

#

File: base-modules-d.dat

#

mib2-system =
".iso.org.dod.internet.mgmt.mib-2.system {} mib2-system
{module = \"mib2-system\"; moduleName = \"MIB2 System\"; version = \"1.0\";
console = \"mib2-system\"; location = \".iso.org.dod.internet.mgmt.mib-
2.system\"; enterprise = \"\"; moduleType = \"localApplication\"; instance =
\"\"; desc = \"The MIB2 System module monitors MIB2 system information.\"; }"

agent-stats =
".iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.agent.modules.age
ntStats sun agent-stats {module = \"agent-stats\"; moduleName = \"Agent
Statistics\"; version = \"2.0\"; console = \"agent-stats\"; location =
\".iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.agent.modules.ag
entStats\"; enterprise = \"sun\"; moduleType = \"localApplication\"; instance =
\"\"; desc = \"The Agent Statistics module monitors the health of the agent
installed on the local host.\"; }"

fscan+syslog =
".contexts.syslog.iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.a
gent.modules.fscan sun fscan {module = \"fscan\"; moduleName = \"File
Scanning\"; version = \"2.0\"; console = \"fscan\"; location =
\".iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.agent.modules.fs
can\"; enterprise = \"sun\"; moduleType = \"localApplication\"; instance =
\"syslog\"; instanceName = \"System Log\"; filename = \"/var/adm/messages\";
scanmode = \"tail\"; desc = \"The File Scanning module monitors files for regular
expressions.\"; }

finder loader checker ...

mibman
386 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The MIB manager is comprised of MIB objects that provide the following services:

■ URL/OID finder

■ Module loader

■ Module checker

■ Browser root

■ Module registry

■ Module tables

A procedures (that is, _procedures) TOE object also exists as a peer object of the

MIB objects listed above. This object is not a MIB node object and only serves as a

repository for MIB manager related procedures that can be inherited by the MIB

nodes that need to execute the procedures.

URL/OID Finder

The finder object is used to resolve the SNMP URL of a currently loaded MIB

object to its object identifier (OID).

When an SNMP URL is set into the finder object, the finder object locates the MIB

object identified by the URL and returns its OID in the form of an OID URL.

The OID URL has the following general format;

Subsequently, the OID can be determined from the OID URL and used to access

directly the MIB object identified by the SNMP URL.

▼ To Convert an OID URL to an Actual OID

1. Parse off the OID portion of the URL.

2. Extract the context if one is specified.

3. If the OID includes a shadow specification, extract it.

4. If the instance spec is a non-integer, it can be comprised of one or more comma
separated instance data types (int , ip , str , +str , oid , or +oid).

These data types define how to convert the textual instance to a numeric instance.

The ‘+’ indicates that the actual length of the instance must be prepended to the

instance since its length is not implied. The values of int , ip , and oid instance

types are integers and so these values map directly to the subid values. The str

snmp://< host>:< port>/ oid/[< context>]/< oids>[/< subid>][?< shadow spec>]#< instance spec>
Appendix A Modules Appendix 387

instance types indicate that the instance values are alphanumeric and must be

converted to their corresponding decimal ASCII value and concatenated with a

period (.) (for example, abc --> 97.98.99).

5. If it is a shadow OID, append the instance length and append the shadow
specification.

6. Replace all (/), (#), and (?) characters with a period (.).

For example, the SNMP URL for the system description property in the mib-2

system module is:

When this value is set to the finder node, the resulting response is the OID URL:

The actual OID can be extracted from the OID URL as follows:

a. Parse off the portion after the /oid/ substring (that is, 1.3.6.1.2.1.1/1#0).

b. Substitute all ‘/’ and ‘#’characters with ‘.’ (that is, 1.3.6.1.2.1.1.1.0).

This OID can then be used to access the data via SNMP.

▼ To Access the fulldes Shadow Attribute of the Same MIB
Property

● Set the following URL to the finder:

The resulting OID URL is:

▼ To Convert the Shadow OID URL to a Valid OID

The OID URL for a shadow OID contains a ‘?’ that signifies the start of the shadow

attribute index specification. The ‘#’ signifies the start of the instance specification.

To convert the shadow OID URL to a valid OID, do the following:

1. Parse off the portion after /oid/ (for example, 2.3.6.1.2.1.1/1?7.1#0).

snmp://<host>:<port>/mod/mib2-system/sysDescr#0

snmp://<host>:<port>/oid/1.3.6.1.2.1.1/1#0

snmp://<host>:<port>/mod/mib2-system/sysDescr?fulldesc#0

snmp://<host>:<port>/oid/2.3.6.1.2.1.1/1?7.1#0
388 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

2. From the parsed string, extract the shadow index specification that is enclosed by
‘?’ and ‘#’ and replace the ‘/’ and ‘?’ with a ‘.’ (that is, shadow index specification is
7.1 and OID is 2.3.6.1.2.1.1.1#0).

3. Since the instance is an integer, simply append the length of the instance
specification to the OID and replace the # with ‘.’ since instance is ‘0’, length is 1 -
- 2.3.6.1.2.1.1.1.0.1.

4. Append the shadow index specification to the OID (2.3.6.1.2.1.1.1.0.1.7.1).

This OID can then be used to get the full description shadow attribute for the mib-2

system description property.

▼ To Access a Table Property in a Module

An example to get the scan pattern for a specific row (unix_error row instance) in

the file scanning module (syslog module instance):

● Send the following SNMP URL to the finder:

The resulting OID URL is:

▼ To Convert the OID URL to an OID

1. Parse off the OID portion (that is, syslog/1.3.6.1.4.1.42.2.12.2.2.24/1/3/1/4#+str).

2. Extract the context (that is, syslog).

3. Since the instance specification is +str, the textual instance name must be
converted to a numeric instance with the length prepended (unix_error -->
10.117.110.105.120.95.101.114.114.111.114).

4. Append the instance to the OID and replace the ‘/’ and ‘#’ with ‘.’
(1.3.6.1.4.1.42.2.12.2.2.24.1.3.1.4.10.117.110.105.120.95.101.114.114.111.114).

This OID can then be used to request the data via SNMP. If using SNMPv2c or

SNMPv2u, specify the context in the contextName field of the SNMP PDU. If using

SNMPv1, specify the context name in the community field as <community>:<context>
(for example, if the community name is public and the context is syslog , use

public:syslog as the community field).

snmp://< host>:< port>/mod/fscan+syslog/fscanstats/scanTable/
scanEntry/pattern#unix_error

snmp://< host>:< port>/oid/syslog/1.3.6.1.4.1.42.2.12.2.2.24/1/3/1/
4#+str
Appendix A Modules Appendix 389

Module Loader

The loader MIB object is a leaf node that permits modules to be loaded by SNMP.

Only users with sufficient security privileges are permitted to load modules (refer to

the Sun Management Center Security SDS for more details about SNMP security).

The module loader input specifies the module parameters as key-value pairs

separated by ‘;’. These parameters are based on the same information specified in the

module configuration file described earlier.

For example, to load the mib-2 system module, the following string can be set to the

loader node.

Module Checker

The checker MIB object is a leaf node that provides an SNMP interface for checking

the status of a module. Given a module name and an optional module instance, it

determines whether the module is currently loaded, not loaded, or not installed on

the agent machine.

The following responses can be returned by the checker node:

■ notInstalled string is returned if the set value corresponds to a nonexistent module

name (for example, bogus where there is no module named ‘bogus’)

■ installed string is returned under the following conditions: if the set value

corresponds to an existing module name and that module is not currently loaded;

if the set value is only the module name of a module that can be instantiated

multiple times (for example, fscan without the instance specification); or if the set

value is a module name + instance (for example, fscan+bogus where the bogus

instance of the fscan module is not loaded) and the specified module instance is

not loaded

■ loaded string is returned under the following conditions: if the set value

corresponds to a module name that is currently loaded and that module can only

be instantiated once; or if the set value of a module name and (+) instance name

corresponds to a loaded module with the specified instance (for example,

fscan+syslog where the syslog instance of the fscan module is loaded)

module = mib2-system; moduleName = “MIB2 System”; version = 1.0;
console = mib2-system; location = .iso.org.dod.internet.mgmt.mib-
2.system; enterprise = ““; moduleType = localApplication; instance
= ““; desc = “The MIB2 System module monitors MIB2 system
information.”;
390 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Browser Root

The browser root MIB object is a leaf node whose value can be retrieved via SNMP.

The value of the node is an SNMP URL that represents the root object of the MIB

hierarchy tree. This value is used by the Sun Management Center console to

determine the root of the MIB hierarchy of an agent’s MIB for browsing purposes.

The default browser root URL is:

Module Registry

This MIB object is a leaf node that supports the retrieval of information about

modules that are currently loaded by the agent via SNMP.

Specifically, by setting a module name to this MIB node, it returns the module name,

module version, and number of loaded instances of the specified module. For

example, setting the value fscan must return fscan 2.0 1 where fscan is the

module name, 2.0 is the version, and 1 is the number of loaded instances.

Alternatively, by setting a blank value to the MIB node, the module name, module

version, and number of loaded instances for all the modules currently loaded are

returned as a list of sublists ({fscan 2.0 1 } {mib2-system 2.0 1 }).

Module Tables

The modules object is branch MIB object that contains five module tables

corresponding to the five module types: hardware, operatingSystem,

localApplication, remoteSystem, and serverSupport. Each table contains the

currently loaded modules, classified by their module type.

Each table contains the following columns:

■ module spec specifies the module name + optional instance name.

■ name specifies a description of the module.

■ i18nName specifies a key used to lookup the internationalized description of the

module.

■ version specifies the module version.

■ URL specifies an SNMP URL to get the overall status of the module.

■ status specifies the current status of the module.

■ id specifies the TOE ID of the module root (for internal use).

snmp://<host>:<port>/sym/base/mibman/modules
Appendix A Modules Appendix 391

Additional Base MIB Branches

In addition to the mibman branch in the .iso*base subtree, every Sun Management

Center agent component MIB contains the info, trapInfo, trapForward, and control
branches. This section describes these MIB branches.

FIGURE A-14 .iso*base Subtree

System and Agent Information

The .iso*base.info branch contains nodes that provide general information

about the host system, the agent, and modules installed on the system.

FIGURE A-15 info Branch

System Information

The system branch contains leaf nodes that provide the following information:

■ Hostname

■ System architecture

■ Operating system version

■ Hardware description

mibman info trapInfo trapForward

base

control

system agent modules

info

name ... general moduleTable

osversion
Tclversion

moduleEntry...

...module
392 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ IP address

■ Trap destination

■ Event destination

Agent Information

The agent branch contains leaf nodes that provide the following information:

■ Software version

■ Tcl version

■ Tcl Patch Level

Module Information

The modules branch contains a table listing all the modules that can be loaded by

the agent. The table contains the following columns:

■ Module name

■ Module description

■ Internationalized module description

■ Version

■ Module count

The module count can be –1, 0, or some positive integer. A value of –1 implies that the

module is currently loaded and cannot be instantiated multiple times. A value of 0

implies that the module is not currently loaded. A positive integer reflects the

current number of loaded instances of the module and implies that the module can

be loaded multiple times.

Trap Information

The .iso*base.trapInfo branch contains MIB objects whose values are included

in the variable bindings of various enterprise specific traps that can be generated by

the agent. The branch contains the following nodes:

■ statusOID — included in variable binding of the statusChange trap. The value of

the statusOID is set to the object identifier of the MIB node whose alarm status

has changed.

■ refreshOID — included in the variable binding of the valueRefresh trap. The value

of the object is set to the object identifier of the node whose value has been

manually refresh.
Appendix A Modules Appendix 393

■ eventInfo — included in the variable binding of event traps. The value of the object

is set to a string containing the event version format, hostname, last line in the

event circular log file, and the file creation time (for example, Tv0 manila 27

920442422).

■ userConfig — included in the variable binding of userConfig traps. The value of the

object is set to a string containing the agent’s SNMP engine ID and

usmUserSpinLock value.

■ moduleInfo — included in the variable binding of the moduleLoad and moduleUnload
traps. The value of the object is set to the module specification and module

version (for example, fscan+syslog 2.0).

The setTrapInfo method is the primary interface for sending the statusChange and

valueRefresh traps whose variable bindings include the statusOID and refreshOID
objects, respectively. This method takes the trap type (statusOID or refreshOID) as

an argument to specify the type of trap to send. The method must be called from the

context of the MIB object whose OID must be included in the trap message variable

binding.

The other traps have more specific functions and are intended to be used only by

their respective users (eventInfo is used by event infrastructure, userConfig is used

by usmUser MIB, and moduleInfo is used by the module load and unload methods).

Trap Forward

The .iso*base.trapForward branch contains nodes that support trap

subscription. Specifically, this branch contains the following nodes:

■ clientRegistrar supports trap subscription

■ jobAdder supports incremental additions to an existing trap subscription

■ jobRemover supports incremental deletions to an existing trap subscription

The subscription specifications supported by these nodes are described in appendix

e??? xxx: xref.

Control Functions

The .iso*base.control branch object contains the action and cache leaf nodes.

The set security access of these nodes are restricted to users with administrative

security privileges.
394 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Action Object

The action node supports the ability to shutdown the agent. To shutdown the agent,

set the value to 2. The ability to restart the agent using this node is not supported in

Sun Management Center 2.1.

Cache Object

The cache node is included in Sun Management Center 2.1 software. This node

supports the ability to retrieve and manage the agent’s current SNMP finder cache

via SNMP. The current contents of the finder cache can be retrieved through a get

request to the cache node.

Setting the cache node value to * clears all the entries in the finder cache. Setting the

node value to a host name clears all the cache entries associated with the specified

host. Setting the node value to a host name and port (host:port) clears all the

cache entries associated with the specified host and port.

Useful Tcl Commands and Filters
The Tcl/TOE commands and procedures tha follow are available in all nodes for use

as refresh commands or filters.

valueOf <node name>

This function takes the name of a managed property as its only argument and

returns the value of the managed property. This function must be executed in the

node that is the superior of <node name>.

getValue <index>

This function must be executed in a leaf node and returns the value stored for the

specified <index>. If the leaf node is a scalar, <index> is always 0. If the leaf node is a

vector (within a table), <index> can be any value from 1 to the number of rows

stored in the table.
Appendix A Modules Appendix 395

getValues

This function can be used to return all data stored in a leaf node. Like getValue ,

this function must be executed in a leaf node.

getRowData [<rowname>]

This function can be used to return data from a table. This function must be executed

from a node that inherits from the MANAGED-OBJECT-TABLE-ENTRYprimitive. If no

<rowname> is specified, the function returns all the data. If <rowname> is specified,

the data for the row reference by that name is returned.

getTableDepth

This function returns the number of rows stored in a table. This function must be

called from a node that inherits from the MANAGED-OBJECT-TABLE-ENTRYprimitive.

setValue <index> <value>

This function can be used to set the value of a managed property. <index> is 0 for all

scalar leaf nodes, and 1 or higher for a table property indicating which element in

the vector is to be set. <value> is the value to be set.

locate <node name>

Typically, this function is used together with toe_send to enable the evaluation of a

command in the context of another object. This function recursively searches up the

MIB tree for <node name> and returns the unique TOE ID of that object if it is found.

<node name> can be a absolute path to the node (starting from .iso) or a relative

path to the node <node1>.<node2>...

toe_send <toeid> <command>

This function is used to evaluat the allows command in the context of another

object. The <toeid> is the TOE ID of the object in which the command is to be

evaluated. The TOE ID of an object is typically determined using the locate
command. <command> can be any Tcl/TOE command that is valid in the context of

the node. For example, toe_send [locate node1] getValue 0 , retrieves the

data value stored in node1 .
396 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

transposeFilter

A useful data filter is the transposeFilter , which can be used to transpose a table

of data.

rateFilter<node name>

This function accepts the name of a managed property and returns the rate of

change per second for the managed property since the previous sample.

rateFilter64 <node name>

Same as rateFilter except for 64-bit integer values.

tableRateFilter<node name>

This function is similar to rateFilter function, except that is operates on a list of

data instead of a scalar.

tableRateFilter64 <node name>

Same as tableRateFilter except for 64-bit integer values.

pctFilter<node1><node2>

This function computes the value of a named managed property as a percentage of

another managed property.

This function accepts the name of two managed property peers, each of which

contains the same number of values. The list of values associated with the first

property is computed as a percentage of the list of values associated with the second

property. The function returns a list of percentages.

linearFit<value>

This function is used to compute the slope of the line that best fits through a set of

data values. This function accepts a single numerical argument. This value is stored

along with previous values passed into this function. The number of data points

stored internally is specified by the refreshParams qualifier
Appendix A Modules Appendix 397

digitalFilter<value>

This function provides a multiply and accumulate function to provide digital

filtering capabilities. This function accepts a single numerical argument that is stored

along with other values passed into the function.

The refreshParams qualifier specifies the coefficients of the filter. The sum of the

coefficients must be one so that the result does not have to be normalized. The

number of coefficients indicates the number of data points to store internally.

Alarm Status Strings
A status string can be retrieved for any node via SNMP through the shadowmap.

The status string is a sequence of tab-separated fields. It is constructed out of the

state and name of the node, and other relevant information.The exact format of this

status string may change as Sun Management Center software development

progresses.

This section contains examples of status strings as they currently exist. The purpose

of these examples is to show how the node state contributes to the status string, and

how the status of underlying child objects is represented in the status of a parent

branch object.
398 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Solaris Example of Status Strings—CPU Managed
Object

Consider a managed object, CPU, with managed properties of idle time and busy

average. If there is no alarm condition on either of the managed properties, the

shadowmap status strings are displayed as:

Now suppose that the idle time is in alarm because the system is less than 10% idle,

and the busy average is in alarm because the system is more than 90% busy. Now

the shadowmap status strings are displayed as:

Note – The overall CPU status is a list of the alarm statuses of the underlying

properties.

Idle Time Status:
{INF-0 fly Solaris Example CPU Idle Time OK
 snmp://204.225.247.154:161/mod/solaris/cpu/idle 0 882368193 }

Busy Average Status:
{INF-0 fly Solaris Example Average CPU Usage OK

snmp://204.225.247.154:161/mod/solaris/cpu/average 0 882368193}

CPU Status:
{INF-0 fly Solaris Example CPU Usage OK
 snmp://204.225.247.154:161/mod/solaris/cpu 0 882368193 }

Idle Time Status:
{ERR-5 fly Solaris Example CPU Idle Time < 10%
 snmp://204.225.247.154:161/mod/solaris/cpu/idle 25 882368193 }

Busy Average Status:
{ERR-5 fly Solaris Example Average CPU Usage > 50%
 snmp://204.225.247.154:161/mod/solaris/cpu/average 25 882368193}

CPU Status:
{ERR-5 fly Solaris Example CPU Idle Time < 10%

snmp://204.225.247.154:161/mod/solaris/cpu/idle 25 882368193
}
{ERR-5 fly Solaris Example Average CPU Usage > 50%

snmp://204.225.247.154:161/mod/solaris/cpu/average 25 882368193}
Appendix A Modules Appendix 399

In general the contents of a status string is given by a tab-separated string:

where:

<alarm state> is the alarm state value in nickname form (see TABLE A-2). This value

drives the icon that is displayed in the console.

<alarm severity> is a value from 0 to 9 that is used to rank alarms within each

state.

<host> is the name of the host that is generating this alarm.

<module name> is the name of the module that is generating this alarm.

<medium description> is the mediumDesc value of the node that is generating the

alarm.

For nodes using the rCompare rule, <alarm message> is <alarm check> <alarm limit>
[<unit>]. In the preceding examples, <alarm check> is > or <, <alarm limit> is 10 or

50, and <unit> is %. Other alarm rules can set the this message text explicitly.

<snmp url> is the SNMP URL that corresponds to the node that is generating the

alarm.

<alarm level> is the numeric representation of <alarm state>-<alarm severity>. The

conversion is <alarm state value> *10 + <alarm severity>. Fore example ERR-5 has

an <alarm level> of 25. TABLE A-2 lists the default values for <alarm state value> and

<alarm severity>.

<timestamp> is the epoch time when the alarm limit was last evaluated.

<alarm state> - <alarm severity> \t <host> \t <module name> \t <medium
description> \t <alarm message> \t <snmp url> \t <alarm level> \t <timestamp>

TABLE A-2 Alarm Level

Alarm State State Value
Default
Severity

OK 0 0

OFF 0 1

DIS 0 1

INF 0 5

WRN 1 5
400 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Module Testing Tips
When a module is loaded into the agent and viewed through the Sun Management

Center console, information is cached and also saved to files. This is done for

performance and to allow the information to be persistent across restarts of the

agent. As a result, there are issues to consider when testing changes to a module:

■ Before reloading a modified module, restart the agent to ensure that cached files

are not used when the module is reloaded.

■ If the MIB structure of the module is changed and the module was previously

loaded into the agent, then the Sun Management Center Java Server must also be

restarted. In addition, delete the file

/var/opt/SUNWsymon/cfg/user-oids-d.dat before restarting the agent.

■ If the module parameters are modified, unload the module from the agent before

restarting the agent.

File Naming Conventions
Module definition files adhere to the following naming conventions:

<module><-subspec> - <descriptor> . <extension>

where

<module> is the module name.

<subspec> is an optional qualifier for the module name.

<descriptor> is one of a set of standard descriptors indicating the purpose of the

file.

<extension> is one of a set of standard file extensions indicating the file type.

ERR 2 5

IRR 2 7

DWN 2 9

TABLE A-2 Alarm Level

Alarm State State Value
Default
Severity
Appendix A Modules Appendix 401

By convention, the <module> and <subspec> portions of the filename are common for

all files associated with a specific module. This allows related module files to be

easily grouped together while eliminating the chances of filename contention with

the definition files of other modules. The following are standard descriptors for

module definition files:

Additional standard descriptors are:

Standard Extensions

The following are standard extensions for module definition files:

-d Daemon file

-ruletext-d Rule message text file

-models-d Model file

-m Parameter file

-ruletext-d Rule initialization file

-j Java console file

-s Java server file

.x File in module configuration file

format

.def .Default file

.flt Tcl/TOE Filter file

.prc Tcl/TOE Procedure file

.tcl Tcl commands and procedures

.sh Executable shell scripts

.dat Data file

.rul Tcl/TOE rule file

.properties Internationalization text file
402 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Solaris Example Module Filenames

Some of module definition files for the Solaris Example module must be named as

follows:

The following are solaris example module file names:

Mandatory and Optional Module Files

The following lists the required definition files.

The following optional files can be defined for each module, depending on the

module implementation requirements:

solaris-example-m.x Solaris Example Parameter file

solaris-example-d.x Solaris Example Agent file

solaris-example-d.def Solaris Example Alarm file

solaris-example-d.flt Solaris Filter file

TABLE A-3 Mandatory Module Files

<module><-subspec> -m x Parameter file

<module><-subspec> -models-d.x
<object*>-models -d.x

Model files (may be multiple files)

<module><-subspec> -d.x Agent file

TABLE A-4 Optional Module Files

<module><-subspec> -d.flt Filter file

<module><-subspec> -d.prc Procedure file

<module><-subspec> -*.sh Executable Shell Scripts

(can be multiple files)

<module><-subspec> -d.rul Rule file

<module><-subspec>-ruleinit-d.x Rule Initialization file

<module><subspec>-ruletext-d.x Rule Message Text file

<module ><- subspec >.properties Properties file

ServerOverrideBundle.properties Server Override Properties file
Appendix A Modules Appendix 403

If binary extensions or packages are used by a module to facilitate or optimize data

acquisition and alarm processing, one or more of the following files can exist also:

Each of the files listed above is discussed in detail in the following sections.

Location of Module Files
All module files except the following must be installed in the

/opt/SUNWsymon/modules/cfg directory of the agent host. The exceptions to this

rule are:

■ Shell scripts must be installed in the /opt/SUNWsymon/modules/sbin directory

of the agent host.

■ Properties files must be installed in the /opt/SUNWsymon/classes/com/sun/
symon/base/modules directory of the host running the Sun Management Center

server layer.

■ Shared object files and packages must be installed in the

/opt/SUNWsymon/base/lib/< arch > directory of the agent host.

■ The serveroverride properties file is a special file that must be located in

/opt/SUNWsymon/classes on the server host.

■ Standard icon files must be installed in

/opt/SUNWsymon/classes/base/console/cfg/stdimages directory of the

host running the Sun Management Center server layer.

<module ><- subspec >-oids-d.dat Module OIDs file

<module ><- subspec >-traps-d.x Traps file

<name>16x16-j.gif Standard Icon file

<name>32x32-j.gif Topology Icon file

<module><-subspec> -d.def Alarm file

TABLE A-5 Binary Extension Files

<module><-subspec> -shell.tcl Package load commands

pkg <module><-subspec> .so Standard Tcl package shared object

lib <module><-subspec> .so Standard UNIX shared object

TABLE A-4 Optional Module Files
404 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ Topology icon files must be installed in the

/opt/SUNWsymon/classes/base/console/cfg/topoimages directory of the

host running the Sun Management Center server layer.

■ The parameter file must be installed on the agent host.

The list of modules available in the Load Module console window is determined

only when the agent is first started. When a new module has been added, this list

can be updated by forcing the agent to redetermine the list of available modules.

This can be done by right-clicking in the Load Module window and selecting the

Refresh menu option. The update of the list may take a while depending on the

number of modules available. The list can be also be updated by restarting the agent.

Data Management
This section covers the following topics:

■ Information Model—page 405

■ Operational Model—page 410

■ Management Information Base (MIB)—page 422

■ Data Logging—page 425

The chapter describes the concepts and techniques used in Sun Management Center

software to construct models of the entities to be managed. It also describes

mechanisms employed by the Sun Management Center agent to enable these models

to gather data, determine status, and perform actions on the managed entities.

■ Information Model defines the concepts used in Sun Management Center

software when modeling entities to be managed. It also describes how these

entities can be modeled using TOE objects and primitive classes.

■ Operational Model describes how the Sun Management Center agent realizes the

management model to manage entities. Sun Management Center agents

autonomously collect data and utilize simple alarm checks and/or rules based

technology to determine the status of the managed objects. The agent can then

generate alarms or perform actions based on the detected conditions, thereby

providing predictive failure capabilities and auto-management.

■ Management Information Base (MIB) is the repository of the managed entity data

and management parameters. Management modules that are loaded into the MIB

are also discussed.

For more information about management modules, refer to the Chapter 5.
Appendix A Modules Appendix 405

Information Model

This section describes how the entities to be managed by the Sun Management

Center agent are modeled using TOE objects and primitive classes. It also describes

how alarm conditions associated with the managed entities are represented.

General Concepts

Sun Management Center software is based on the object oriented paradigm, in

which objects are used to model the various aspects of a system for the purpose of

managing that system. The physical and logical components of a system that are

being managed are referred to as managed entities. Managed entities can be disks,

boards, hosts, clusters and networks. Managed entities that are host platforms are

referred to as managed nodes.

The various types of managed entities are modeled using managed object classes, and

these classes are combined to form a meta model for a particular system, the structure

of which accurately models the structure of the managed entities it represents. To

perform management functions, models must be realized in a process running on a

managed node, at which time each managed object class in the model is instantiated

into a managed object.

Because of the hierarchical nature of the components of a system, managed entities

can be the aggregation of other managed entities. Similarly, managed objects that are

instantiated during the realization of a model are considered to be the aggregation of

all the subordinate managed objects in that model.

An example of this would be a host that is composed of a power supply, boards, a

chassis and other components. The host and all subcomponents are considered

managed entities, even though the host entity collectively includes the others. In the

model of such a system, the managed object class representing the host is an

aggregation of the classes representing the other entities. In a realization of this

model, the host managed object is an aggregation of managed objects representing

the power supply, boards, a chassis and other components.

In Sun Management Center software, models of managed entities usually take the

form of a management module, and the tree structure of the managed objects and

properties within a module is often referred to as a Management Information Base, or

MIB.
406 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Managed Entity Modeling

Managed entities are modeled using managed objects, which are instances of

managed object classes. The managed properties of the managed entities directly

correspond to the properties of the managed object classes used to build the model.

In a realization of a model, it is these managed properties that contain the

information pertinent to the monitoring and management of the managed entity.

When realizing a model, a tree of TOE objects is created that implements the

structure and functions of the model. In this realization, a MIB node object is created

for every managed object and every managed property in the model.

These objects are derived from a set of primitives, that in turn are derived from the

TOE MIB node class, which implements much of the required management

functionality, including timed data acquisition, alarm status checking, rule

execution, and alarm creation. The object instances are therefore quite adept at

general management functions, and the model that describes them is responsible for

configuring them for their specific management purpose.

Using this approach, one inconsistency must be understood. The use of a TOE object

to represent a managed object would be very straightforward if it were not for the

fact that the properties of the managed object cannot be modeled directly by the

properties of the TOE object. If this were the case, then the set of properties available

to be managed by a TOE object would be limited to the set of properties not used by

the TOE object internally to perform its management function. In other words, there

could be contention between the object properties and those of the managed object

in the model.

It is for this reason, as well as for the simplification of the TOE object

implementation, that the properties of managed objects are represented using

separate TOE objects. This is a natural function for these objects, which exist

primarily to acquire data and take management actions. This means that objects in

the realization can correspond to properties of the managed entity, and the

properties of the TOE object can, in fact, correspond to qualifiers of the managed

entity. This remapping in the realization is necessary given the realization

mechanism used.

For example, a file system can be modeled as a managed object represented by a

TOE object in the Sun Management Center agent. Conversely, the file system size

would be modeled as a managed property but would be represented by another

TOE object; instead of a property of the TOE object that represents the file system.

Management Model Primitives

The construction of management models involves the use of management

primitives, which are object classes that exhibit specific management behavior. These

primitives correspond to the following model elements:
Appendix A Modules Appendix 407

■ Managed objects

■ Managed object tables

■ Managed properties

■ Managed property classes

Managed properties are divided into specific primitives based on the data type of

the property and the types of alarm checks to be performed on that object (such as

integer type with high limits or string type with regular expression checks).

Primitives are composed of several property classes. This means that the type,

function, and behavior of the primitive is defined by several broad categories of

properties. TABLE A-6 lists the five property classes used to define primitives.

FIGURE A-16 shows the composition of object primitives using these five property

classes.

TABLE A-6 Managed Model Primitives

Type of Property Class Description

Structural Object tree structure properties

Technique specific Properties pertaining to security and communication protocols

Realization Properties defining the data acquisition operations of the object

Management Properties specifying operational ranges and alarm actions

Management Rules Inference-based rule specification properties
408 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

FIGURE A-16 Management Model Primitive Classes

A set of object primitives is available when constructing models that cover all the

major object types and alarm check scenarios. These primitives intrinsically define

all properties pertinent to SNMP access and ASN.1 description, including the ASN.1

type and the access communities.

Using primitives when constructing models will therefore define most of the

properties in the structural and technique-specific property classes. Properties of the

other classes, such as refresh information (for data acquisition) and alarm limits (for

status determination) can then be added to the model.

All of the properties associated with a MIB object are effectively defined in the TOE

object that represents the MIB object. Most of these properties are accessible through

SNMP and the shadow MIB.

Alarm Representation

One of the primary purposes of management models is to detect system events.

There are two types of events that can be detected, hard events, which are specific

occurrences within the system (such as a disk crash or a process termination), and

soft events, which correspond to a managed property going into or out of an arbitrary

range. Hard events can be detected in a very objective way, usually through the

presence of a message in a log file or a specific indication in a data acquisition

Realization

refreshService
refreshCommand
refreshInterval
refreshFilter

properties
Structural

name
type
dimension
description
identifier

properties
Technique-specific

communities
asn1type
...

Management

alarmChecks
alarmLimits
alarmActions

properties
Management

dependencies
triggers
rule specifications

rules

Primitive classMIB node class

properties
Appendix A Modules Appendix 409

operation. Soft events, on the other hand, are very subjective, and their occurrence is

purely a function of the operational limits associated with the related property or

properties.

The nodes of a MIB tree attempt to ascertain the condition of the managed system

entities with which they correspond. All changes in an entity’s condition correspond

to a system event, and the detection of a system event typically leads to a change in

the status of a managed object or managed property. Changes in status lead to the

creation of an alarm event, which is passed through the system as an indication that

the event occurred. It is the creation of these alarms that is of primary importance in

the monitoring process.

Alarms contain all of the information useful to clients interested in a particular

event. This information includes the identity of the managed node on which the

event was detected, a readable portion describing the nature of the event or of the

current condition of the entity, a severity number, the time of detection of the event,

and the URL of the managed object or property which detected the event. Alarms

are intended to be globally valid, and thus all fields, including the readable portions

and the URL, are sufficiently qualified to make them completely unambiguous in a

global context.

Alarm objects can contain the following fields:

■ Ack/Alarm Label—the current alarm state of the object and an optional

acknowledgment flag. The alarm state is represented by a three letter code (for

example, INF for informational, WRN for warning, ERR for error, and so forth)

and the ack flag is denoted by a preceding asterisk (*).

■ Target Host—the host on which the object in alarm exists

■ Module Instance—the instance name of the module (if applicable)

■ Module Name—the name of the module

■ Sub-Module Specification—this field is not supported in the Sun Management

Center product; it is always blank

■ Table Row Name—the row instance name of the object (if the object is an entry in a

table)

■ Object Description—the medium description of the object

■ Problem Info—the alarm message describing the current status

■ Source URL—the URL of the object in alarm

■ Alarm Severity—an integer representing the alarm severity of the object—the

higher the number, the more severe the alarm.

■ Timestamp—the time at which the alarm condition was detected—the time in

seconds elapsed since midnight January 1, 1970 (GMT).

The fields in the alarm object are separated by tabs.
410 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Operational Model

Sun Management Center agents manage objects by autonomously collecting and

monitoring data. The agents use simple alarm checks and/or rules based technology

to determine the status of the managed objects. The agent can then automatically

generate alarms or perform actions based on the detected conditions, thereby

providing predictive failure capabilities and automanagement. The agents make data

and status of the managed objects available to the Sun Management Center server

and Sun Management Center console layers.

Operation Sequence

A fully realized model will perform monitoring and management operation at

regular intervals or on demand. The objects within the model perform certain

operations to achieve this, and the results of these operations are well defined.

In a typical management scenario, the following sequence of events occurs for a

managed object or property:

1. Data acquisition request is made.

2. Results of request are forwarded to managed object/property.

3. Data is disseminated into appropriate objects/properties (the data cascade).

4. Alarm rule checks are performed (where applicable) to determine object/property

state.

5. Changes in state trigger alarm actions:

a. Alarm propagates up object tree.

b. Traps are sent.

c. Status is logged.

d. User-defined actions are taken.

Essentially, the nodes in the tree autonomously gather data, place it in the

appropriate objects or properties, check limits, fire rules, and take action on state

changes. In a normal scenario, no interaction is required between the manager and

the agent in order to perform management operations, and the only communication

required is the trapping of alarms on state changes.
Appendix A Modules Appendix 411

Data Acquisition Scenarios

To refresh the information in the MIB tree, data acquisition operations must be

performed. In Sun Management Center agents, this is generally referred to as the

refresh operation. Typical refresh operations manifest themselves as the invocation of

a refresh command in the context of a refresh service. A refresh service is an object

within the agent that can be used for data acquisition. A refresh command is a

service-dependent command that defines the specific operation to perform.

Conceptually, the refresh command is sent to the refresh service each time a refresh

is triggered.

Refresh services can be any object supporting the service interface. Typically, refresh

services can include such things as:

■ Objects in the MIB tree (from which you can acquire data)

■ Objects maintaining pipes to subshells (such as a Bourne shell, Perl process, or

another Tcl shell that can load Tcl extensions)

■ SNMP stack (for performing data acquisition from other agents)

■ Internal service, which allows access to built-in or dynamically loaded extensions

to the agent process.

Services are discussed in detail in the Agent Framework chapter in this document.

Note – Since the agent is single-threaded, it is blocked when running Tcl commands

in the internal service. If it is expected that a Tcl command can take a significant

amount of time to return its result, a Tcl subshell service should be employed to

execute these commands. The Tcl subshell process can load the required Tcl

extension(s) so that it can execute Tcl commands and return the results to the agent

asynchronously.

Cascade Scenarios

The data cascade is disseminating a buffer of data into a tree of managed objects or

properties. By strictly defining the rules governing data updates, a wide variety of

data acquisition scenarios are available. Data can be acquired one piece at a time and

placed into managed properties, or larger amounts of information can be acquired in

a single data acquisition operation and cascaded into several managed properties or

even several managed objects.

In general, all data acquisition operations are initiated by an active node. An active

node is a managed object or property that has refresh information associated with it.

Active nodes can be managed objects, managed property classes, or managed

properties, depending on the desired cascade scenario. Also, properties can be of

either a scalar or a vector dimension, and this affects the data update operation.
412 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Conceptually, the data cascade consists of a tree node acquiring information and

either placing the information in itself (in the case of managed properties) or passing

it down to inferiors in the tree, who in turn either consume it or pass it on. Data left

over from one inferior node tree is passed on to the next inferior tree until all the

data is consumed. Failure to consume all the information, or there not being enough

information to fill the tree, constitute an overflow or underflow condition.

Overflow conditions are not detected by the agent since extra data is discarded.

Underflow conditions are not directly detected by the affected nodes. However,

other nodes or external clients that query the node for its value detect the absence of

data and flag the condition.

Because the structure of the object tree can vary infinitely, so too can the various

manifestations of the data cascade. In practice, however, there are only a few

common cascade scenarios that lend themselves to several broad categories of tree

structure. These cascade scenarios are described in the following sections.

Active Scalar

In this scenario, a property node (which is always a leaf of the tree) is the active

node. It initiates a data acquisition (DAQ) operation, receives the results, and places

the information in itself. In this scenario, the property is scalar in dimension,

meaning it represents one datum, and hence the DAQ operation must return one

and only one piece of data. This can be illustrated as follows:

FIGURE A-17 Active Scalar Cascade

An example of an active scalar node is the system uptime managed property. The

refresh command of this node computes the system uptime and the uptime value is

stored in the node.

Active Vector

As in the active scalar case, active vector cascades result from a single property

being the active node. In this case, however, the property is a vector, meaning it

represents zero or more pieces of information. The DAQ operation must return zero

or more pieces of data, all of which are placed, in order, into the managed property.

A

Active Scalar
Appendix A Modules Appendix 413

FIGURE A-18 Active Vector Cascade

An example of an active vector node is a managed property that stores the list of

files in a directory. The refresh command runs the UNIX ls command and the list of

files in the current directory are stored in the node.

Compound Scalar

In this scenario, a branch of the node tree is the active object. This branch can be a

managed object, managed object table, or a managed property class, but it is never a

managed property (which are always leaves). Under this branch are several scalar

leaves (managed properties), each requiring one datum per refresh. The DAQ

operation in the branch returns several pieces of data, with the data being passed

first to the first leaf node, which consumes one piece, and then on to the subsequent

leaf nodes, each of which consuming another piece. The amount of data returned by

the refresh operation must match the number of leaves under the active node, or an

over/underflow condition occurs.

FIGURE A-19 Compound Scalar Cascade

An example of a compound scalar would be a set of nodes modeling the one, five,

and fifteen minute load averages of a system. A load managed object is the active

branch. Under this branch are the one, five, and fifteen minute load average

managed properties. The refresh command of the active branch would return the

three load average values and these values are cascaded into the three children

nodes.

A

Active Vector

AAAA

P P

A

Compound Scalar
414 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Compound Vector

This scenario, also known as a table cascade, arises when a branch of the node tree

contains several property leaves, all of which are vector in dimension. In this case,

data cascading down the tree is placed into the vector leaves in equal amounts, with

the data order interpreted as row-major and the property leaves treated as columns

of a table. If there are N leaves in the tree, then the DAQ operation must return

exactly M*N pieces of data, where M is the resulting table depth.

FIGURE A-20 Compound Vector Cascade

An example of a compound vector would be a set of nodes modeling a file system

table that contains information for each file system partition. Possible columns in

this table would be the partition mount point and size. The refresh command of the

branch would then return the mount point name and corresponding size of each file

system partition.

Complex Vector

The complex case represents a mixture of the preceding scenarios. In the complex

case, the information is passed down through the tree using the general mechanism

described above. Scalar leaves consume one piece of data, tables will consume M*N

pieces of information and simple vectors consume all they are given.

FIGURE A-21 Complex Cascade

Compound Vector

P P

A

Complex

P P

P PPPP
PPP

A

Appendix A Modules Appendix 415

An example of a complex cascade scenario involves augmenting the file system table

example described earlier with an additional managed property that stores the

number of file system partitions. In this case, the active object’s refresh command

returns the number of partitions, followed by the mount points and sizes of each file

system partition.

Nested Heterogeneous

This is where active nodes are placed under other active nodes in the node tree. As a

rule, active nodes do not accept information from higher-level cascades. Hence, in

this case, the higher-level cascade bypasses the nested active node, and the nested

object is responsible for refreshing itself and/or the tree of nodes below it.

FIGURE A-22 Nested Heterogeneous Cascade

An example of a nested heterogeneous cascade is a set of nodes modeling the

process usage of a system. The managed properties consist two passive nodes

(number of active processes and number of sleeping processes) and an active node

(maximum number of available process slots). The active branch object’s refresh

command returns the number of active and sleeping processes. The active leaf

node’s refresh command returns the maximum number of available process slots.

Derived Heterogeneous

Similar to the nested heterogeneous case, this scenario involves a derived node

placed under an active node (or another derived node) in the node tree. Like active

nodes, derived nodes do not accept information from above. In this case, however,

the DAQ operation of the derived node may depend on, and hence be triggered by,

the update of the objects around it. The firing of the refresh operation of the derived

node therefore is intrinsically linked to the data cascade from the superior object.

Nested Heterogeneous

P P

A

A

416 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

FIGURE A-23 Derived Heterogeneous Cascade

An example of a derived heterogeneous cascade is a set of nodes modeling the swap

usage of a system. The managed properties consist of two passive nodes (current

swap usage and the total swap) and a derived node (percentage swap used). The

active object’s refresh command returns the current and total swap. The percentage

swap used is then computed from the two returned values.

Derived Nodes

A derived node is a member of the MIB tree that uses other MIB nodes as the

service(s) for its refresh. In other words, its value is a function of the values or

qualifiers of one or more other managed properties. Through the use of derived

variables, it is possible to create nodes whose value represents averages, rates of

change, specific digital filters (for example, high pass, low pass, or band pass) or

other useful calculated information.

Derived nodes establish dependency relationships with the nodes on which they rely

through the use of the refresh triggers specification. Nodes can be triggered off the

change in value or status of one or more nodes, and refreshes automatically when

any of the specified events occur. Derived nodes can also update at an interval,

although this is usually unnecessary if the triggers are specified properly.

Alarm Rule Checks

After completion of the full refresh operation (the refresh request and the

subsequent data cascade), a set of refresh actions occur. For nodes in a MIB tree, these

actions include the alarm rule checks, which involve checking the data values of the

managed properties against a set of alarm criteria.

These alarm checks determine the current status of the managed entities being

monitored, as described in the information model. The alarm checks can be classified

into simple comparison checks or more complex rule evaluation.

Derived Heterogeneous

A

D PP
Appendix A Modules Appendix 417

Simple Comparison Checks

Simple comparison checks apply only to single data entries of managed properties

and are usually dyadic relational operations involving numeric limits, regular

expressions, or comparison strings. The output of these checks is a status code, with

the status produced corresponding to the state associated with the most severe alarm

check that tests positive. If none of the checks are satisfied, the node is considered to

be in the ok state, and nodes with no alarm checks are always considered ok.

Rule Evaluation

Rules provide a mechanism to specify customized alarm checks in place of standard

alarm checks that perform simple comparisons. Rules are potentially complex

expressions involving the values or status of one or more MIB nodes, and generate

values or status that corresponds to the outcome of their computations. As opposed

to simple comparison alarm checks, rules can embody complex comparisons,

computations and relationships, and the status they produce may represent a very

informed decision.

Each rule in the agent has a corresponding MIB node, and this node triggers the

evaluation of the rule, maintains any rule-specific qualifiers, and acts as a repository

for the resulting data or status.

Having a one-to-one correspondence between rules and MIB nodes facilitates both

the triggering of the rule and the generation of alarm objects, as the identity of the

MIB node generating the alarm must be placed in the alarm. The URL in the alarm

can then point back to a node that represents the rule. Acknowledgment of the

alarms generated by a rule and the editing of rule-specific qualifiers can be done

through the use of the rule’s URL.

Using this approach, the technology to evaluate rules is independent of the

triggering mechanism and the alarm generation. Because the rule is fired by the

standard triggering mechanisms, and because the values or status of all nodes on

which the rule depends can be passed to the rule at the time of triggering, the rule

needs to implement the relevant computation or comparison and return the ensuing

data or status. Making use of this, a simple Tcl-based rule mechanism are available

for implementing the body of a rule, and support for rules based on commercial,

third party inference engines can be added easily in the future.

Alarm Actions

If a change in alarm status is detected, an alarm object (as described earlier in the

information model) is generated and the following alarm actions are triggered:

■ Event information is written to the event circular log file.

■ Status is propagated up the MIB tree to all superior nodes.
418 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ StatusChange and event traps are generated to inform the management layers.

■ User-defined alarm actions are executed.

Status Propagation

Detection of system events causes a change in the status of the corresponding

managed property in the MIB tree. This change in status must be reported to

superiors in the MIB tree, as these superiors correspond to the managed objects or

managed property classes to which the managed property exhibiting the status

change belongs. By propagating status at the time of a status change, all managed

objects and properties at any level of the MIB tree are in sync with the current state

of their inferiors.

This upward passing of status information is typically referred to as hierarchical
summarization, and is very important to the operation of both the agents and the

management layer. By permitting managed objects at all levels to describe their own

status, the determination of status at the server and console levels is greatly

simplified.

The placement of status lists in objects at each level of the MIB tree can be

diagrammed as follows:

FIGURE A-24 Objects in MIB Tree

Each object in the tree can be queried for its status using shadow SNMP operations.

Leaf objects such as idle and busy only contains their own statuses generated from

the alarm rule checks.

Branch objects reflect the status of all its children by containing a list of all

exceptional (not ok) status conditions. For example, the status of the usage object

contains any alarm status conditions of the idle and busy properties. Similarly, the

cpu object status are based on the count, load, usage, and threads objects. Finally, the

resources object status contains the statuses of all the objects shown in the tree above.

process swap cpu disk network

count load usage threads

idle busy

memory

resources
Appendix A Modules Appendix 419

The ability to query the status of any managed object in the MIB tree allows agents

to logically combine the status of many disjointed, structurally unrelated managed

objects into a single logical element group. Logical element groups can then be used to

extend the managed object hierarchy beyond a single agent.

Alarm Status Change and Event Traps

Alarm objects are passed to the management layers through the transmission of

SNMP traps. Specifically, two SNMP traps are generated when the status of a

managed object changes:

■ statusChange trap is sent to the Trap Handler. The trap varbind contains the

statusOID MIB object, whose value is the OID of the managed property whose

alarm status changed.

■ event trap is sent to the Event Manager. The trap varbind contains the eventInfo
MIB object whose value contain the event version format code, hostname, last line

in the event log file, and the event log file creation time. This trap informs the

Event Manager of a new event, causing the Event Manager to retrieve the event

information from the agent.

These traps are used by the management layers to facilitate centralized event

management and alarm correlation.

Event Propagation

When the alarm status of an object is detected, event information is written to a

circular log file on the local host and an event trap is sent to the event manager.

The default event log destination is specified through agent’s status channel output

specification (that is statusOutput in the file base-config.x). For example, the

default event log destination for the Sun Management Center agent is specified as

follows:

The event trap sent to the Event Manager causes the Event Manager to request all

the event information that it has not previously retrieved from the agent. This is

accomplished by tracking the last known line number in the event file and file

creation time.

The Event Manager then stores the retrieved events in the event database where it

can be accessed from the Sun Management Center console.

statusOutput = “clog://localhost/../log/
agentStatus.log;lines=250; width=200;flags=rw+;mode=644”
420 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

If an event trap is lost, the Event Manager does not immediately request the event

information corresponding to the trap. However, upon reception of the next event

trap, it will retrieve all events not previously retrieved.

Alarm Logging

All statusChange traps received by the Trap Handler are logged to the trap output

channel. By default, the log destination is defined in the file base-config.x to be a

circular log file.

User-Defined Alarm Actions

If any user-defined alarm actions were specified for the managed property and the

detected alarm condition, the actions are performed. The execution of the alarm

action is logged in the agent’s circular log file; however, the user has to explicitly

redirect output from the script to a file if this information is required.

User-defined alarm actions are entered through the Actions tab in the Attribute

Editor, and are only applicable at present for leaf nodes. An alarm action can be

specified for each of the possible alarm levels, namely critical, alert, caution,

indeterminate, close, as well as for the case of any change in alarm state.

The alarm action entered is the name (without a path specified) of a user-defined

Bourne shell script placed in the bin subdirectory of the directory named by

environment variable ESDIR. The script must be owned by root and executable.

Command line arguments can also be specified following the name of the script. The

necessity of root ownership on the script provides an added measure of security, so

that only privileged users can create scripts that run automatically.

Special command line arguments the have the following significance can be

specified.

trapOutput = "clog://localhost/../log/alarms.log;lines=1000;
width=200;flags=r w+;mode=644"

TABLE A-7 Special Command Line Arguments

Argument Significance

%rowname row name

%state current alarm state
Appendix A Modules Appendix 421

There is also a special script for sending email to specified users. The script name to

use is simply email followed by one or more space-separated UNIX user names.

This script causes an email message to be sent to the specified user names with text:

Management Information Base (MIB)

The Management Information Base (MIB) is the realization of the managed objects

and properties that comprise the management modules currently loaded by the Sun

Management Center agent. The MIB is embodied by the ISO subtree described

previously.

The MIB makes all the managed objects and properties accessible to other Sun

Management Center components through SNMP. The MIB also contains

infrastructure for loading management modules and arbitrating user interactions

with managed objects and properties.

Modules

Modules are the lowest level of granularity of management models. They embody a

set of managed objects and their corresponding properties, and are designed to

fulfill a particular management requirement. The scope of a module is typically such

that a loaded module incorporates a set of management functions broad enough to

completely satisfy a particular management requirement.

Modules are defined using the module configuration file format, described

previously. This specification represents a model that, when loaded, created a tree of

TOE objects configured to perform the functions defined by that module. The act of

loading an X file into a running agent corresponds directly to the realization of the

object model, since the relationship between the information model and the

underlying object technology is very close.

%prevstate previous alarm state

%value current value

%statusstringfmt formatted status string

(similar to the message in the console tooltip)

SyMON alarm action notification ... statusstring: Critical yangtze
Solaris /var Space Used > 90%

TABLE A-7 Special Command Line Arguments

Argument Significance
422 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The management functions of modules can be enabled and disabled through an

SNMP request or through the specification of the module’s active time window.

Disabling a module simply deactivates the autonomous data acquisition normally

performed by the module’s nodes.

Shadow MIB

The concept of a shadow MIB that supports SNMP access to attributes associated

with the managed objects and properties in the agent MIB. These attributes can also

be referred to as qualifiers.

The default shadow attributes for all managed objects and properties are specified in

the file base-shadowmap-d.x . These shadow attribute specifications can be

overridden for specific managed objects and properties by specifying the relevant

parameters in the appropriate object’s configuration file.

Some of the default attributes that are accessible through shadow operations

include:

■ Refresh attributes—refresh service, command, parameters, and interval

■ Timestamp—time at which object/property was last updated

■ Alarm criteria—info, warning, error level alarm limits

■ Alarm actions—actions can be specified for detected events

■ Data logging properties—interval, destination

■ Access control configuration—users, groups, and communities

■ Object and property descriptions—short, medium, full descriptions

Ad-hoc SNMP Operations

The Sun Management Center agent MIB supports the specification of MIB objects

that gather data or execute actions only on demand. These MIB objects are accessible

through SNMP, and their execution would normally be triggered by ad-hoc SNMP

requests originating from a Sun Management Center GUI client.

Note – Note that these ad-hoc MIB objects do not gather data autonomously, and

hence, are not intended for monitoring entities and determining their statuses.

These commands executed by these MIB objects must be synchronous so that the

command result can be returned in the SNMP response. Examples of synchronous

commands can include such things as Tcl command extensions and Tcl procedures.
Appendix A Modules Appendix 423

Shell commands are not permitted since they are asynchronous. Note that the agent

process is blocked while the synchronous command is executed; this blocking is a

very important consideration when designing these synchronous commands.

Examples of ad-hoc SNMP requests include:

■ Getting the current time on the agent host (for example, use Tcl clock command)

■ Performing a system call to read the contents of a file (for example, use Tcl file
command)

For example, the managed property related to file statistics can be associated with

the ad-hoc operation to retrieve the file contents.

Other MIB objects can be associated with one or more ad-hoc operations by

specifying the appropriate ad-hoc MIB objects in its ad-hoc command shadow

attribute. This list of ad-hoc commands specifications are accessible through shadow

SNMP operations. For example, the managed property related to process statistics

can be associated with the ad-hoc operation to get the process table.

Ad-hoc Probe Operations

The Sun Management Center agent MIB also supports the specification of MIB

objects that facilitate the establishment of a stream based connection between a

probe client and an agent spawned probe server. These connection based operations

are referred to as probe operations and are typically initiated on an ad-hoc basis by

the probe client (for example, a Sun Management Center GUI client connected to the

Sun Management Center server). The involvement of the Sun Management Center

agent permits the use of a consistent security model (namely SNMP usec security)

when executing probe requests.

Ad-hoc probe operations are used to support:

■ Log file viewing

■ File transfers

For example, the managed property related to scanning a logfile can be associated

with the ad-hoc operation to view the logfile.

Probe operations are facilitated by the probe server that the Sun Management Center

agent runs when servicing probe requests.

Probe Server

The probe server is a generic process that does the following:

1. On startup, accepts command line arguments specifying a command and a

connection timeout specification.
424 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

2. Opens a listen server socket and writes the port number and a password (a string

containing a framed randomly generated number) to standard output. The

password string is stored internally.

3. Sets a timer for length of the connection timeout specification.

4. Waits for a connection request; if the timer expires, the process exits.

5. If a connect request is received by the listen socket, the connection is accepted, the

listen socket is closed, and the timer is also cancelled.

6. Reads the password from socket and compares it with the stored password. If the

passwords do not match, the process exits.

7. If the passwords match, the process redirects stdin and stdout to the socket

connection and executes the command specification.

Establishing a Probe Connection

To establish the stream connection between a probe client and agent spawned probe

server, the following mechanism is employed:

1. A probe client sends an SNMP set request to the MIB object in the Sun

Management Center agent that supports the desired probe operation. The set

request specifies any required parameters for the probe operation.

2. Sun Management Center agent receives SNMP set request and spawns a probe

server process, passing in the command and timeout specification. The command

specification includes arguments specified in the SNMP set request. These

parameters are used to execute the actual probe process once the connection to

the probe client is established and authenticated.

3. The probe server process opens a listen socket and returns the number of the

opened port and a randomly generated password back to the agent. The pipe

connection between the agent and the listen server process is then closed.

4. The agent forwards the port number and password back to the probe client as the

SNMP set response.

5. The probe client connects to the port on the probe server process on the agent

host. When the connection is accepted, the probe server process closes the listen

socket so that no additional connect requests are accepted.

6. The probe client transmits the password to provide authentication. If the

password is invalid, the probe server process closes the connection and exits.

7. If the passwords match, the probe server process executes the actual probe

application over itself, using the command specification the agent has passed to it

on startup.
Appendix A Modules Appendix 425

8. At this point, a stream connection is established between the probe client and a

process on the agent host. The communication across this connection depends on

the nature of the probe request. Once the request is complete, the connection is

closed.

Data Logging

The Sun Management Center agent is configurable to periodically log any managed

property in the agent MIB to an internal data buffer and/or to an interface URL for

persistent storage.

Each agent maintains a persistent registry of the current data logging requests to

ensure that data logging continues when the agent is restarted. The agent can also

load a data logging module that allows a console user to view the contents of the

data logging registry.

Internal History Buffer

The logging of the value of any managed property to an internal history buffer can

be enabled/disabled through shadow SNMP operations. The length and logging

interval of the internal history buffer is configurable through shadow SNMP

operations.

The buffered data is accessible through shadow SNMP operations. This data is not

persistent and is used for things as graphing.

Logging Data to a File

The logging of the value of any managed property to a circular or regular log file can

be enabled/disabled through shadow SNMP operations. The logging destination

and logging interval is also configurable through shadow SNMP operations.

Data Log Format

By default, the data is logged in the following format:

<channel> <date> <component> <alarm code> <host> <module instance>
 <module name> <managed property> =<value>
 <units> <URL> <alarm severity> <timestamp>
426 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

where:

<channel> is the name diagnostic channel this message was logged under.

<date> is the timestamp in a date format (for example, Dec. 25 18:00:00.)

<component> is the daemon component that printed this message (for example,

agent).

<alarm label> is the alarm code that specifies the current alarm condition of the

managed property (for example, INF-0).

<host> is the name of the host

<module instance> specifies the module instance, for modules that can be

instantiated multiple times.

<module name> specifies the module name.

<managed property> is the full name of the managed property being logged (for

example, for the system uptime in the MIB-II module,

.iso.org.dod...mib2.system.sysUptime).

<value> is the value of the managed property.

<units> specifies the units of the property value.

<URL> is the URL of the property (for example, snmp://<host>:<port>/
mod/<modspec>/<property>#<instance>.

<alarm severity> is an integer reflecting the severity of the alarm condition; the

higher the number, the more severe the alarm condition.

<timestamp> is the time in seconds that have elapsed since midnight January 1,

1970 (GMT).

Data Logging Destinations

Each managed property can be logged to a standard log file or to a circular log file to

conserve disk space.

Logging to files can be considered as short term storage. Conversely, logging to a

database can be considered as long term storage. Data logged to files can be

transferred to a database in a batch fashion. This functionality is not within the

scope of standard agent data logging.

If more than one managed property is logged to the same destination, the logged

data is interleaved. This should not pose a problem since each logged data entry is

tagged with its name and timestamp.
Appendix A Modules Appendix 427

Logged Data Retrieval

The current design of the Sun Management Center agent does not include facilities

to retrieve the data logged to a URL through shadow SNMP operations.

Data Logging Registry

This data logging registry maintains a table containing information about data

currently being logged. This functionality are implemented in the form of a service

and will make data logging requests persistent.

The registry contains a table to store the following information for each data element

to be logged:

■ state indicates the current status of the log destination (ok|error).

■ module name specifies the name of the module in which the logged property

resides.

■ module instance identifies the module instance, if applicable.

■ property name specifies the managed property being logged.

■ log interval specifies when to log the data. This interval can be specified as a

simple interval or as a complex time specification.

■ file logging status indicates the current status of logging to a file (on|off).

■ log URL specifies the logging destination of the data value.

■ internal buffer status indicates the current status of logging to the internal cache

(on|off).

■ buffer length specifies the maximum length of the internal history buffer

■ log status indicates whether the data is being logged successfully

This table is accessible by a data logging registry module to allow Sun Management

Center console users to view the data currently being logged by a single agent. The

module can be extended to allow console users to do such things as add, edit, and

delete data logging request entries. These additional functions are not supported in

Sun Management Center software.
428 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

APPENDIX B

Time Expression Specifications

This appendix describes time format with which complex time intervals can be

specified in the agent.

It covers the following topics:

■ Notation—page 429

■ Time Expression Specification—page 430

Notation

When specifying values for the time specification, white space is not usually

important. However, an exception to this rule is that spaces are not allowed in

numbers (that is, 4.5 not 4. 5) or in time (10:03 not 10: 03). In addition, upper or

lower case is not important.

The exact specification for the time format is described in the next section. Below are

some general comments about the notation used.

■ Any string enclosed by “” represents a literal string that must be used.

■ DIGIT represent any single numeric value from 0 to 9.

■ The notation ‘N*’ before any value can be interpreted as N or more items of that

value, where N is 1 or more. For example 2*DIGIT specifies 2 or more DIGIT

values.

■ To specify 0 or more values, precede the item with ‘*’. For example *DIGIT

represents 0 or more DIGIT values.

■ To specify an exact number of items, precede the item with the number of values

required. For example 1DIGIT represents exactly one DIGIT value.

■ The ‘|’ denotes a logical “or” condition. For example 1DIGIT | 2DIGIT represents

a value that can have one or two DIGIT values.
429

■ Any item enclosed in [] is optional. For example [time] indicates that the time
value may or may not be specified.

Time Expression Specification

When specifying an interval using the time specification, the following syntax is

used (the refreshInterval command is used as an example):

The time specification can be set to an empty_string (““) or can be composed of 1

or more simple_exp items connected together using logical “and” and “or”

operators. Using the empty_string specification is equivalent to specifying second
= * (see below). The logical operators “and” and “or” are represented by the C &&
and || operators, respectively. The precedence of the logical operators is the same as

in C. In addition, bracketing is also allowed.

The different types of simple_exp are describe in the following sections:

Absolute Time Expression Specification

The absolute format allows the specification of a single instance in time. The

syntax is:

"refreshInterval" = timex_spec
timex_spec = empty_string
 | simple_exp *(("&&" | "||") simple_exp)

empty_string = ""
simple_exp = absolute
 | cyclic
 | comparison
 | cron
 | variable_subsitution

CODE EXAMPLE B-1 Absolute Time Expression Specification

absolute = “epoch(“ 1*DIGIT “)”

 | month_of_year “/” day_of_month “/” (yr | year) [time]

 | month day_of_month [“,”] year [time]

month_of_year = <1*DIGIT value from 1 to 12>
430 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The first form specifies the number of seconds from Jan 1, 1970 12:00am GMT. This is

provided for UNIX programmers. The second and third forms, allow an optional

time specification. If this is not specified, then the time used will be midnight of

date specified. Examples of the absolute specification are:

Cyclic Time Specification

The cyclic specification allows the specifications of periodic events. The period can

be seconds, minutes, hours, days, or weeks in length. The syntax is:

day_of_month = <1*DIGIT value from 1 to 31>

month = “jan” | “feb” | “mar” | “apr” | “may” | “jun” | “jul” | “aug” |

 “sep” | “oct” | “nov” | “dec” | “january” | “february” | “march”

 | “april” | “june” | “july” | “august” | “september” | “october”

 | “november” | “december”

yr = 2DIGIT

year = <4DIGIT value from 1970 to 2038>

time = (hour12 “:” minute [“:” second] time_suffix)

 | (hour24 “:” minute [“:” second])

hour12 = <1*DIGIT value from 1 to 12>

hour24 = <1*DIGIT value from 0 to 23>

minute = <2DIGIT value from 00 to 59>

second = <2DIGIT value from 00 to 59>

time_suffix = “am” | “pm”

refreshInterval = Jan 3, 1996 10:03:23 pm
refreshInterval = Jan 3 1996 10:03:23 pm
refreshInterval = 01/03/96 10pm
refreshInterval = epoch(234324324)

CODE EXAMPLE B-2 Syntax for Cyclic Specification

cyclic = “cycle(“ rel_time “)”

rel_time = FLOAT [rel_units]

rel_units = unit_week | unit_day | unit_hour | unit_min | unit_sec

CODE EXAMPLE B-1 Absolute Time Expression Specification(Continued)
Appendix B Time Expression Specifications 431

If the rel_uints are not supplied, then seconds are assumed. If the entire time

specification is a in cyclic format, the cycle() can be dropped. For example, both

of the following examples are valid:

Comparison Time Specification

The comparison specification can be used to specific conditions on variables that

must be true. The syntax is:

unit_week = “w” | “wk” | “wks” | “week” | “weeks”

unit_day = “d” | “day” | “days”

unit_hour = “h” | “hr” | “hrs” | “hour” | “hours”

unit_min = “m” | “min” | “minute” | “minutes”

unit_sec = “s” | “sec” | “secs” | “second” | “seconds”

FLOAT = (1*DIGIT “.” *DIGIT)

 | (*DIGIT “.” 1*DIGIT)

 | *DIGIT

refreshInterval = cycle(5 h)
refreshInterval = 5 h

CODE EXAMPLE B-3 Syntax for Comparison Specification

comparison = [“!”] variable op value

variable = “day_of_week”

 | “week_of_year”

 | “day_of_year”

 | “second”

 | “minute”

 | “hour”

 | “day_of_month”

 | “week_of_month”

 | “month”

 | “year”

 | “date”

 | “time”

op = “<“

 | “<=”

CODE EXAMPLE B-2 Syntax for Cyclic Specification
432 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The optional (!) in front of the variable can be interpreted as a “not” logical operator.

When (*) is specified for value any value is valid for that variable and that all

values will be considered when finding the next beat. For example minute=* says

that the object will be true all the time and will beat once at the start of every

minute.

Only certain types of value_basic can be used in with certain variables (see the

example below). In addition only certain types of value_basic can be specified in a

range in value_item. The value_basic types that cannot be specified in a range

are: hour , hour24 , minute , second , and time. In addition, ranges can only be used

when the “=” op is used. For example, day_of_month < 2-15,25 is invalid and

day_of_month = 2-15,25 is valid.

The ranges for value_basic types written maximum to minimum will get

translated to minimum to maximum. For example, day_of_month=25-5 , will be

treated the same as day_of_month = 25-31,1-5.

Internally, a precision is kept for each value so that seconds will be not lost when

specifying ranges. For example, time<8:05am && time>=8:05am will cover the

entire day. Without the precision, there would be a 59-second period that would not

be covered (8:04:01am-8:04:59am).

 | “=”

 | “==”

 | “>”

 | “>=”

 | “!=”

value = “*”

 | value_item *[“,” value_item]

value_item = value_basic

 | value-basic “-” value_basic

value_basic = *DIGIT

 | day_of_week

 | day

 | week_of_year

 | day_of_year

 | second

 | minute

 | hour

 | day_of_month

 | year

 | absolute

 | time

CODE EXAMPLE B-3 Syntax for Comparison Specification
Appendix B Time Expression Specifications 433

Each of the variable and associated value items is described below.

■ Monday corresponds to a numeric value of 1.

■ Sunday can have a numeric value of 0 or 7.

■ Saturday has a numeric value of 6.

■ The words sun or sunday correspond to the numeric value 0, not 7.

Do not use <, <=, >=, or > with day_of_week , since Sunday can be 0 or 7. For

example, day_of_week <= 7 means the entire week (0-7) whereas

day_of_week<=0 or day_of_week<=Sun means Sunday only.

Use two end points. For example, use day_of_week=wed-sun or

day_of_week>=wed && day_of_week<=Sun so that the start and end days are

clear.

■ A value of 1 is the first week in the year where there are four days of the week in

that year (monday is considered the beginning of a week).

■ A value of 0 is defined to be the 1, 2 or 3 days that may lie in that year but come

before week 1.

“day_of_week”
value = day_of_week | day
day_of_week = <1DIGIT value from 0 to 7>
day = “mon” | “tue” | “wed” | “thu” | “fri” | “sat” | “sun”
 | “monday” | “tuesday” | “wednesday” | “thursday” | “friday”
 | “saturday” “sunday”

“week_of_year”
value = week_of_year
week_of_year = <1*DIGIT value from 1 to 53>
434 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ A value of 53 may occur under certain conditions. For example, if the first day of

the year falls on a thursday and the year is a leap year.

■ week_of_month represents the number of times that day of the week has

occurred in the month.

■ Used to represent things like the first sunday in July week_of_month==1 &&
day_of_week==sun && month==july

Cron Time Specification

The cron specification allows UNIX cron style inputs. The syntax is:

“day_of_year”
value = day_of_year
day_of_year = <1*DIGIT value from 1 to 366>
“second”
value = second
“minute”
value = minute
“hour”
value = hour
hour = (hour12 time_suffix) | hour24
midnight is 0 or 12am
noon is 12 or 12pm
“day_of_month”
value = day_of_month
day_of_month = <1*DIGIT value from 1 to 31>
“week_of_month”
value = week_of_month
week_of_month = <1DIGIT value from 1 to 5>

“month”
value = month_of_year | month
“year”
value = year
“date”
value = absolute
“time”
value = time

cron = “cron(“ minute hour day_of_month month day_of_week “)”
Appendix B Time Expression Specifications 435

The five entries correspond to the usual minute, hour, day of month, month, day of

week values respectively. These values can include ranges as in the comparison

specification. If the entire time specification is a cron specification, then the “cron()”

can be dropped. For example both of the following specifications are valid:

Variable Substitution Specification

The time specification also allows variable substitution. All variables will be de-

referenced from the base-timex-d.x file. The notation for referencing variables is:

For example, the variable xmas can be specified in the base-timex-d.x file:

This variable can then be used in specifying an interval:

This example indicates that on Christmas, specify a cycle interval with a period of

one hour. Otherwise, cycle with a period of 5 seconds.

refreshInterval = cron(5 * * * *)
refreshInterval = 5 * * * *

variable_subsitution = “$” <character string>

xmas = “day_of_month = 25 && month = dec”

refreshInterval = “!($xmas) && cycle(5s) || ($xmas) && cycle(1hr)”
436 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

APPENDIX C

Module Building Tutorial

This appendix provides a tutorial describing how to build a module.

It covers the following topics:

■ Module Example—page 437

■ Steps to Create a Module—page 437

Module Example

An example module that monitors the size of a file is described here to illustrate the

module construction process. The functionality of the module is simplified to

demonstrate the creation of a simple module prototype. Enhanced versions of the

module example are then described. The process of the module example is:

1. Monitor the size of the /var/adm/wtmp file using UNIX ls command.

2. Monitor file size using Tcl file command.

3. Parameterize filename so that any file can be monitored.

4. Add SNMP table management capabilities to monitor more than one file.

Steps to Create a Module

Creating a module consists of creating the definition files that describe the module

and writing whatever code is required to perform the data acquisition and alarm

checking.
437

This process comprises:

■ Naming the Module

■ Creating a Data Model

■ Realizing the Model

■ Specifying Alarm Management Information

filesize Module Version 1—Simple
Prototype

To simplify the implementation of the module, it is assumed that the module will

always monitor the size of the system file /var/adm/wtmp .

Naming the Module

The first step is to name the module and create the parameter file for the module. By

convention, the names of the definition files are based on the module name.

The example module to monitor the size of the file /var/adm/wtmp can be called

filesize. The associated parameter file then must be named filesize-m.x and

contain the following entries:

CODE EXAMPLE C-1 Example Parameter File (filesize-m.x)

[load default-m.x]

consoleHint:moduleParams(param) = module i18nModuleName \
i18nModuleDesc version enterprise i18nModuleType

param:module = filesize

param:moduleName = File Size Monitoring

param:version = 1.0

param:console = filesize

param:moduleType = localApplication

param:enterprise = halcyon

param:location = .iso.org.dod.internet.private.enterprises \

.halcyon.primealert.modules.filesize

param:oid = 1.3.6.1.4.1.1242.1.2.91

param:desc = An example module that monitors the size \
of /var/adm/wtmp.
438 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Creating a Data Model

Creating the data model is the most important step in the module construction

process. This step involves identifying the components and properties of the

managed entity that are to be included in the data model. These components and

properties then must be organized in a tree hierarchy. The data model is specified in

a model file.

Note – The data model does not need to contain every component and property of

the managed entity. It only needs to contain the information that is pertinent to the

determination of the status of the entity. Additional information about the entity can

be included at the discretion of the module developer.

In the data model of the wtmp file, the managed object is simply the file. Managed

properties of the file can include such items as its name, inode, size, last

modification date, contents, and so forth. To simplify this example, the data model

includes the file size as its only managed property. The size is represented by an

INTHI primitive data type, which implies that its value is an integer and is capable

of performing alarm checks against high limits.

The relationship between the managed object and property is specified in the model

file:

param:i18nModuleName = base.modules.filesize:moduleName

param:i18nModuleType = base.modules.filesize:moduleType

param:i18nModuleDesc = base.modules.filesize:moduleDesc

?param:i18nModuleName?i18n = yes

?param:i18nModuleType?i18n = yes

?param:i18nModuleDesc?i18n = yes

CODE EXAMPLE C-2 Example Model File (filesize-models-d.x)

type = reference

file = { [use MANAGED-OBJECT]

 mediumDesc = File

 consoleHint:mediumDesc = base.modules.filesize:file

 size = { [use MANAGED-PROPERTY INTHI]

 shortDesc = size

CODE EXAMPLE C-1 Example Parameter File (filesize-m.x) (Continued)
Appendix C Module Building Tutorial 439

The contents of the corresponding Properties File is shown below:

Realizing the Model

After the data model has been defined, it is realized by instantiating it in the context

of a module and adding data acquisition mechanisms.

For the example, the size of the wtmp file is computed by running the UNIX

commands ls -l /var/adm/wtmp | awk ’{print $5}’ in a shell context. The

execution of these commands is facilitated by the shell service (_services.sh),

which provides a mechanism to run commands in a shell context.

The commands refreshService, refresh Command, and refreshInterval,
are specified in the wtmp object to define the means and the frequency at which the

datais acquired. The file object is set to an active node type to enable it, periodically,

to acquire data.

 mediumDesc = file size

 fullDesc = Size of file

 units = bytes

consoleHint:mediumDesc = base.modules.filesize:file.size

consoleHint:i18nunits = base.modules.filesize:units.bytes

 }

}

CODE EXAMPLE C-3 Example Properties File (filesize.properties)

moduleName=filesize
moduleType=localApplication
moduleDesc=An example module that monitors the size of \
/var/adm/wtmp.

file=File
file.size=file size

units.bytes=bytes

CODE EXAMPLE C-4 Example Agent File (filesize-d.x)

[use MANAGED-MODULE]
[load filesize-m.x]
[requires template filesize-models-d]
_services = { [use SERVICE]

CODE EXAMPLE C-2 Example Model File (filesize-models-d.x) (Continued)
440 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Specifying Alarm Management Information

This step involves the specification of default alarm criteria and actions for managed

properties. Alarm checks are performed every time the property value is computed.

The alarm criteria that can be specified is dependent on the primitive data types

used to represent the property.

In the filesize example, the size property is an INTHI data type; consequently,

high alarm limits can be specified.

 #
 # Standard Bourne Shell
 #
 sh = {
 command = “pipe://localhost//bin/sh;transport=shell ”
 max = 2
 }
}
initInterval = 0
file = { [use templates.filesize-models-d.file]
 type = active
 refreshService = _services.sh
 refreshCommand = ls -l /var/adm/wtmp | awk ’{print $5}’
 refreshInterval = 60
}
[load filesize-d.def]

CODE EXAMPLE C-5 Example Alarm File (filesize-d.def)

file = {
 size = {
 alarmlimit:error-gt = 2000000
 alarmlimit:warning-gt = 1500000
 }
}

CODE EXAMPLE C-4 Example Agent File (filesize-d.x) (Continued)
Appendix C Module Building Tutorial 441

filesize Module Version 2—
Improving DAQ Mechanism

Alternatively, the size can be computed more efficiently in C and integrated with the

agent in the form of a Tcl package. The migration of functionality from scripts to C is

described in the chapter of this document entitled “Binary Extensions and Packages”.

For the filesize module example, a Tcl command extension for obtaining file

statistics already exists. The Tcl file command can be used to get the size of a file in

bytes. The agent file is modified to use the Tcl file command in place of the UNIX

ls command.

Note – The refreshService must also be set to _internal to facilitate the

execution of the Tcl file command.

Since the module MIB is modified in new version of the module, it is safe to release

the new version of the module with the same module name and MIB location.

CODE EXAMPLE C-6 Example Parameter File (filesize-m.x)

[load default-m.x]

consoleHint:moduleParams(param) = module i18nModuleName \
i18nModuleDesc version enterprise i18nModuleType

param:module = filesize
param:moduleName = File Size Monitoring
param:version = 2.0
param:console = filesize
param:moduleType = localApplication
param:enterprise = halcyon
param:location = .iso.org.dod.internet.private.enterprises
\ .halcyon.primealert.modules.filesize
param:oid = 1.3.6.1.4.1.1242.1.2.91
param:desc = An example module that monitors the size \
of /var/adm/wtmp.

param:i18nModuleName = base.modules.filesize:moduleName
param:i18nModuleType = base.modules.filesize:moduleType
param:i18nModuleDesc = base.modules.filesize:moduleDesc
442 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

?param:i18nModuleName?i18n = yes
?param:i18nModuleType?i18n = yes
?param:i18nModuleDesc?i18n = yes

CODE EXAMPLE C-7 Example Agent File (filesize-d.x)

[use MANAGED-MODULE]
[load filesize-m.x]
[requires template filesize-models-d]
initInterval = 0
file = { [use templates.filesize-models-d.file]
 type = active
 refreshService = _internal
 refreshCommand = file size /var/adm/wtmp
 refreshInterval = 60
}

[load filesize-d.def]

CODE EXAMPLE C-6 Example Parameter File (filesize-m.x) (Continued)
Appendix C Module Building Tutorial 443

filesize Module Version 3—Adding
Parameters to File Name Specification

This example illustrates how to allow any file to be monitored by the module. This

enhancement will allow the module to have multiple instances in order to monitor

multiple files.

As in version 2 of the module, the new version does not modify module MIB, so the

new version can be released with the same module name and location.

Instance parameters must be added to parameter file to support the multiple

instantiation of the module. In addition, entries for the file name parameter must be

added so that the Sun Management Center console user is queried for this

information when the module is loaded.

CODE EXAMPLE C-8 Example Parameter File (filesize-m.x)

[load default-m.x]

consoleHint:moduleParams(param) = module i18nModuleName
i18nModuleDesc version enterprise i18nModuleType instance
instanceName i18nFilename

param:module = filesize

param:moduleName = File Size Monitoring

param:version = 3.0

param:console = filesize

param:moduleType = localApplication

param:enterprise = halcyon

param:location =
.iso.org.dod.internet.private.enterprises.halcyon.primealert.mod
ules.filesize

param:oid = 1.3.6.1.4.1.1242.1.2.91

param:desc = An example module that monitors filesize

param:i18nModuleName = base.modules.filesize:moduleName

param:i18nModuleType = base.modules.filesize:moduleType

param:i18nModuleDesc = base.modules.filesize:moduleDesc

?param:i18nModuleName?i18n = yes

?param:i18nModuleType?i18n = yes

?param:i18nModuleDesc?i18n = yes
444 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The refresh command must be modified to reference the filename parameter instead

of simply monitoring /var/adm/wtmp .

The instance values must be internationalized.

param:i18nFilename =

?param:i18nFilename?description = base.modules.filesize:filename

?param:i18nFilename?access = rw

param:instance =

param:instanceName =

?param:instance?description = base.modules.default:instance

?param:instance?reqd = yes

?param:instance?format = instance

?param:instanceName?description =
base.modules.default:description

?param:instanceName?reqd = yes

CODE EXAMPLE C-9 Example Agent File (filesize-d.x)

[use MANAGED-MODULE]

[load filesize-m.x]

[requires template filesize-models-d]

consoleHint:mediumDesc = base.modules.filesize:moduleDetail

initInterval = 0

file = { [use templates.filesize-models-d.file]

 type = active

 refreshService = _internal

 refreshCommand = file size %i18nFilename

 refreshInterval = 60

}

[load filesize-d.def]

CODE EXAMPLE C-8 Example Parameter File (filesize-m.x) (Continued)
Appendix C Module Building Tutorial 445

The corresponding changes to the properties file are:

filesize Module Version 4—Adding
SNMP Table Management Capabilities

The previous versions of this module were limited monitoring the size of a single

file. To monitor the size of more than one file, the module needed to be loaded

multiple times. Version four of the module can monitor one or more files in a single

module instance. To do this, SNMP table management capabilities are added.

In this version of the module, the module MIB must be changed. The most

significant change is the introduction of a SNMP table to support the monitoring of

multiple files. As a result, the new version of this module must be released with a

new module name and MIB location.

Module Name

To distinguish this version of the module from previous versions, the module name

has been modified. The subspec table is added to indicate that multiple files can be

monitored, and the module name becomes filesize-table. This version of the module

CODE EXAMPLE C-10 Example Properties File (filesize.properties)

moduleName=filesize

moduleType=localApplication

moduleDesc=An example module that monitors filesize

filename=File Name

moduleDetail=filesize [{0}]

file=File

file.size=file size

units.bytes=bytes
446 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

does not support multiple instantiation. However, this feature can be added in a

similar manner as before. The associated parameter file is shown below. Differences

between this version and previous versions are in bold.

Modifying the Model

To support the monitoring of multiple files, the single managed property size must

be made part of a SNMP table with other managed properties. The additional

managed properties are:

■ rowstatus - this node is required for SNMP management of tables

■ instance - this node is used as the index for each row of the table

■ name - the node is used to store the names of the files being monitored

CODE EXAMPLE C-11 Example Parameter File (filesize-table-m.x)

[load default-m.x]

consoleHint:moduleParams(param) = module i18nModuleName \
i18nModuleDesc version enterprise i18nModuleType

param:module = filesize-table
param:moduleName = File Size Monitoring (Table)
param:version = 1.0
param:console = filesize-table
param:moduleType = localApplication
param:enterprise = halcyon
param:location = .iso.org.dod.internet.private.enterprises\
.halcyon.primealert.modules.filesizetable
param:oid = 1.3.6.1.4.1.1242.1.2.92
param:desc = An example module that monitors the size \
of multiple files.

param:i18nModuleName = base.modules.filesize-table:moduleName
param:i18nModuleType = base.modules.filesize-table:moduleType
param:i18nModuleDesc = base.modules.filesize-table:moduleDesc

?param:i18nModuleName?i18n = yes
?param:i18nModuleType?i18n = yes
?param:i18nModuleDesc?i18n = yes
Appendix C Module Building Tutorial 447

The complete model file is shown below.

CODE EXAMPLE C-12 Example Model File (filesize-table-models-d.x)

type = reference

initInterval = 0

file = { [use MANAGED-OBJECT]

 mediumDesc = File

 consoleHint:mediumDesc = base.modules.filesize-table:file

 fileTable = { [use MANAGED-OBJECT-TABLE]

 mediumDesc = File Table

 consoleHint:mediumDesc = base.modules.filesize-table:file.fileTable

 fileEntry = { [use MANAGED-OBJECT-TABLE-ENTRY]

 mediumDesc = File Entry

 consoleHint:mediumDesc = base.modules.filesize-
table.file.fileTable.fileEntry

 index = instance

 rowstatus = { [use ROWSTATUS MANAGED-PROPERTY]

 mediumDesc = Row Status

 consoleHint:mediumDesc = base.modules.filesize\
-table:file.fileTable.fileEntry.rowstatus

 consoleHint:hidden = true

 }

 instance = { [use STRING MANAGED-PROPERTY]

 mediumDesc = File Instance

 consoleHint:mediumDesc = base.modules.filesize\
-table:file.fileTable.fileEntry.instance

name = { [use STRING MANAGED-PROPERTY]

 mediumDesc = File Name

 consoleHint:mediumDesc = base.modules.filesize\
-table:file.fileTable.fileEntry.name

 required = true

 }

 size = { [use INTHI MANAGED-PROPERTY]

 shortDesc = size

 mediumDesc = file size

 fullDesc = Size of file

 units = bytes

consoleHint:mediumDesc = base.modules.filesize-\
table:file.fileTable.fileEntry.size
448 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Realize the Modified Model

The agent file for this version of the module contains a number of differences from

the previous versions. These changes are:

■ Adhoc commands are added to support the addition and removal of rows using

the Sun Management Center console.

■ A Procedure File which defines the refresh command as well as other procedures.

■ setrowActions are defined for createAndGo , createAndWait , and destroy
states. Both the createAndGo and createAndWait actions simply call a Tcl

procedure that triggers a refresh and issues a SNMP trap when it is done. This

trap allows the Sun Management Center console to refresh the data immediately.

The destroy action calls a Tcl procedure removeEntry which is defined in the

Procedure File.

■ The instance node is given the operational type of derived. This is done so that

data is not cascaded into it from the refresh command.

 consoleHint:i18nunits = base.modules.filesize-\
table:units.bytes

}

}

}

}

CODE EXAMPLE C-13 Example Agent File (filesize-table-d.x)

[use MANAGED-MODULE]
[load filesize-table-m.x]
[requires template filesize-table-models-d]

_procedures = { [use PROC]
 [source filesize-table-d.prc]
}
initInterval = 0
file = { [use templates.filesize-table-models-d.file _procedures
]
 type = active
 refreshService = _internal
 refreshCommand = getFileSizes
 refreshInterval = 300

 fileTable = {

CODE EXAMPLE C-12 Example Model File (filesize-table-models-d.x)
Appendix C Module Building Tutorial 449

 fileEntry = {

consoleHint:tableHeaderCommands = addrow
 consoleHint:tableCommands = addrow unload

 consoleHint:commandLabel(addrow) = \
base.console.ConsoleGeneric:tableRow.addPopup

consoleHint:commandSpec(addrow) = launchUniqueDialog
%windowID .templates.tools.rowadder objectUrl=snmp://
%targetHost:%targetPort/mod/filesize-table/file/fileTable/
fileEntry#%targetFragment

 consoleHint:commandLabel(unload) =
base.console.ConsoleGeneric:tableRow.deletePopup
 consoleHint:commandSpec(unload) =
requestTableRowOperation %windowID snmp://
%targetHost:%targetPort/mod/filesize-table/file/fileTable/
fileEntry/rowstatus#%targetFragment unload

 rowstatus = {
 setrowActions(createAndGo) = refresh
 setrowActions(createAndWait) = refresh
 setrowActions(destroy) = remove
 setrowService() = file

 setrowCommand(refresh) = refreshValueAndTrap
 setrowCommand(remove) = removeEntry %rowname

}
 instance = {
 type = derived
 }

name = {
 access = rw
 }

 size = {
 defaultvalue = 0
 }
 }
 }
}
[load filesize-table-d.def]

CODE EXAMPLE C-13 Example Agent File (filesize-table-d.x) (Continued)
450 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

CODE EXAMPLE C-14 Example: Procedure File (filesize-table-d.prc)

#

Tcl proc for refreshCommand

#

This procedure gets the list of filenames in the table and
determines the size of each file (in bytes) using the Tcl file
command. A list of filename and file size is returned.

#

proc getFileSizes {} {

 #

 # initialize result

 #

 set result ""

 #

 # get list of all filenames

 #

 set files [toe_send [locate fileTable*name] getValues]

 #

 # loop through each file and determine file size

 # append filename and filesize to result

 #

 foreach file $files {

 set filesize [file size $file]

 set result "$result $file $filesize"

 }

 return $result

}

#

Tcl proc for removing a row

#

proc removeEntry { name } {

 #

 # clear any alarm status and editable parameters (limits,

 # status command, and acks) associated with this row

 #

 set tableObject [locate fileTable.fileEntry]

 if { $tableObject != "" } {

toe_send $tableObject cleanupRow $name CLEAR_PARMS

 }
Appendix C Module Building Tutorial 451

Alarm Management

The alarm file is modified to take into account the new model that is used.

 refreshValueAndTrap

 return [list "$name Entry Removed"]

}

CODE EXAMPLE C-15 Properties File (filesize-table.properties)

moduleName=File Size Monitoring (Table)

moduleType=localApplication

moduleDesc=An example module that monitors the size multiple
files.

file=File

file.fileTable=File Table

file.fileTable.fileEntry=File Entry

file.fileTable.fileEntry.rowstatus=Row Status

file.fileTable.fileEntry.instance=File Instance

file.fileTable.fileEntry.name=File Name

file.fileTable.fileEntry.size=File Size

units.bytes=bytes

CODE EXAMPLE C-16 Example Alarm File (filesize-table-d.def)

file = {
 fileTable = {
 fileEntry = {
 size = {
 alarmlimit:error-gt() = 2000000
 alarmlimit:warning-gt() = 1500000
 }
 }
 }
}

CODE EXAMPLE C-14 Example: Procedure File (filesize-table-d.prc) (Continued)
452 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

APPENDIX D

SNMP Proxy Monitoring Modules

This appendix covers the following topics:

■ Proxy Monitoring—page 453

■ SNMP Sets—page 464

Proxy Monitoring

This appendix describes how to build modules that enable Sun Management Center

agents to proxy monitor other legacy SNMP agents running on the same host or

other hosts or devices on the network.

These modules allow Sun Management Center agents to manage and determine the

status of objects being monitored by legacy agents in the same manner as objects

being monitored by typical Sun Management Center modules. This is accomplished

by having the Sun Management Center agent query the legacy agent and storing any

retrieved data locally. This data can then be processed by the Sun Management

Center agent for typical module actions such as alarm limit checking. In addition,

traps issued from the legacy agent can be correlated with jobs in the Sun

Management Center agent and used to trigger refresh actions that can reacquire data

from legacy agents to determine the status in a timely manner.

The following sections describe the differences in the various module definition files

for SNMP proxy monitoring modules. Two new module definition files are also

described.

Module Parameter File

In addition to the standard module parameters required, SNMP proxy monitoring

modules require additional information to be specified in the module parameter file.
453

These parameters are:

■ targetHost —the name of the remote host on which the legacy agent is running.

■ targetPort —the SNMP port of legacy agent.

■ targetEnterprise —the symbolic OID corresponding to the branch of interest in

the MIB of the legacy agent. This is typically the enterprise specific branch. A

symbolic OID is an OID that specifies the node names instead of the numerical

values. For example, iso.org.dod is a symbolic OID.

■ context —the MIB context of the object if any.

■ snmpVersion —the version of the SNMP protocol used by the legacy agent. This

can have one of the following values: SNMPv1, SNMPv2c, or SNMPv2u.

■ securityLevel —this defines the level of security used in the SNMP

communication. The valid values are: priv , auth , or noauth. priv indicates that

the SNMP communication will be encrypted (this is not currently implemented).

auth indicates that the SNMP communication will be authenticated. This is only

valid for SNMPv2u. Finally, noauth indicates that no authentication will be done.

This is required for SNMPv2c and SNMPv1 protocols.

■ securityName —this is the security name (or community for SNMPv1 and

SNMPv2c) used to perform SNMP gets from the legacy agent.

These additional parameters are used to automatically construct the

refreshCommand for nodes that inherit from the TARGET-SNMPprimitive (see

below). As such, only SNMP gets from legacy agents are permitted using these

module parameters. Additional parameters may be specified for SNMP sets (see

below).

These parameters are specified in the module parameter file in the same manner as

other parameters and can have optional parameters, such as description, associated

with them.

The following example shows the module parameter file for the MIB2 Proxy

Module. This example includes the standard module parameters as well as the four

additional parameters and associated optional parameters (description , reqd and

access) required for SNMP proxy monitoring modules.

CODE EXAMPLE D-1 Example: mib2-proxy-v2-m.x

[load default-m.x]

Tabulation and ordering specifications

consoleHint:moduleParams(param) = module i18nModuleName i18nModuleDesc version
console enterprise i18nModuleType instance instanceName targetHost targetPort
targetEnterprise snmpVersion securityLevel securityName context

param:module = mib2-proxy

param:moduleName = MIB-II Proxy Monitoring

param:version = 2.0

param:console = mib2-proxy
454 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

param:moduleType = remoteSystem

param:i18nModuleName = base.modules.mib2Proxy:moduleName

param:i18nModuleType = base.modules.mib2Proxy:moduleType

param:i18nModuleDesc = base.modules.mib2Proxy:moduleDesc

?param:i18nModuleName?i18n = yes

?param:i18nModuleType?i18n = yes

?param:i18nModuleDesc?i18n = yes

param:enterprise = sun

param:targetEnterprise = iso.org.dod.internet.mgmt.mib-2

param:snmpVersion = SNMPv1

param:instance =

param:instanceName =

param:targetHost =

param:targetPort =

param:context =

param:securityName = public

param:securityLevel = noauth
param:location = .iso.org.dod.internet.private.enterprises.sun.prod.sunsymon.agent.modules.mib2Proxy

?param:targetHost?description = base.modules.default:targetHost

?param:targetHost?reqd = yes

?param:targetPort?description = base.modules.default:targetPort

?param:targetPort?reqd = yes

?param:targetEnterprise?description = base.modules.default:targetMibEnt

?param:targetEnterprise?reqd = yes

?param:securityName?description = base.modules.default:securityName

?param:securityName?reqd = yes

?param:snmpVersion?description = base.modules.default:snmpVersion

?param:snmpVersion?reqd = yes

?param:securityLevel?description = base.modules.default:securityLevel

?param:securityLevel?reqd = yes

?param:context?description = base.modules.default:context

?param:instance?description = base.modules.default:instanceId

?param:instance?reqd = yes

?param:instance?format = instance

?param:instanceName?description = base.modules.default:instanceName

?param:instanceName?reqd = yes

CODE EXAMPLE D-1 Example: mib2-proxy-v2-m.x (Continued)
Appendix D SNMP Proxy Monitoring Modules 455

Module Models File

For SNMP proxy monitoring modules, the module Model file must be used to map

out the portion of the MIB in the legacy agent (under the branch specified by the

targetEnterprise) that is of interest to the module.

For example, a fragment of the MIB2 proxy module model file for the system and

udp branches of the MIB2 tree is shown in the next section.

CODE EXAMPLE D-2 Example: mib2-proxy-models-d.x

type = reference

consoleHint:mediumDesc = base.modules.mib2Proxy:moduleDetail

#

system Managed Object

implements MIB-II system Group

#

system = { [use MANAGED-OBJECT]

 mediumDesc = MIB-II System Group

 consoleHint:mediumDesc = base.modules.mib2Proxy:system

 sysDescr = { [use STRING MANAGED-PROPERTY]

 shortDesc = sysDescr

 mediumDesc = System Descr

 fullDesc = MIB-II System Description

consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysDescr

 }

 sysObjectID = { [use OID MANAGED-PROPERTY]

 shortDesc = sysOID

 mediumDesc = System OID

 fullDesc = Object Identifier of the software system

consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysObjectID

 }

 sysUpTime = { [use STRING MANAGED-PROPERTY]

 shortDesc = Time since up

 mediumDesc = Time since System is up

fullDesc = The time in microseconds since the system is up

consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysUpTime

 }

 sysContact = { [use STRING MANAGED-PROPERTY]

 shortDesc = Contact

 mediumDesc = System Contact

 fullDesc = Contact name for this system

consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysContact

 }
456 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

 sysName = { [use STRING MANAGED-PROPERTY]

 mediumDesc = system name

 consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysName

 }

 sysLocation = { [use STRING MANAGED-PROPERTY]

 shortDesc = Time since up

 mediumDesc = system location

consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysLocation

 }

 sysServices = { [use INT MANAGED-PROPERTY]

 mediumDesc = system services

consoleHint:mediumDesc = base.modules.mib2Proxy:system.sysServices

 }

}

...

...

...

udp = { [use MANAGED-OBJECT]

 mediumDesc = MIB-II UDP Group

 consoleHint:mediumDesc = base.modules.mib2Proxy:udp

 udpInDatagrams = { [use COUNTER MANAGED-PROPERTY]

 mediumDesc = udpInDatagrams

consoleHint:mediumDesc = base.modules.mib2Proxy:udp.udpInDatagrams

 }

 udpNoPorts = { [use COUNTER MANAGED-PROPERTY]

 mediumDesc = udpNoPorts

 consoleHint:mediumDesc = base.modules.mib2Proxy:udp.udpNoPorts

 }

 udpInErrors = { [use COUNTER MANAGED-PROPERTY]

 mediumDesc = udpInErrors

consoleHint:mediumDesc = base.modules.mib2Proxy:udp.udpInErrors

 }

 udpOutDatagrams = { [use COUNTER MANAGED-PROPERTY]

 mediumDesc = udpOutDatagrams

consoleHint:mediumDesc = base.modules.mib2Proxy:udp.udpOutDatagrams

 }

 udpTable = { [use MANAGED-OBJECT-TABLE]

 shortDesc = UDP Table

 mediumDesc = UDP Table

 fullDesc = UDP Table in MIB-II

 consoleHint:mediumDesc = base.modules.mib2Proxy:udp.udpTable

 udpEntry = {[use MANAGED-OBJECT-TABLE-ENTRY]

 shortDesc = UDP Entry

CODE EXAMPLE D-2 Example: mib2-proxy-models-d.x(Continued)
Appendix D SNMP Proxy Monitoring Modules 457

Legacy MIB OIDs Mapping File

To allow the Sun Management Center agent to reference the legacy agent using

URLs, an additional module definition file must be created and loaded into the agent

(see the next section). This file is used to map symbolic object identification names to

their numeric OID values. The naming convention for this file is <module><-
subspec>-oids-d.dat and can be generated using the script mib2x. This script is

located in /opt/SUNWsymon/util/bin/<arch> . The general usage for this script is:

This script reads an ASN.1 MIB text file and generates, on standard output, text with

the following format:

 mediumDesc = UDP Entry

 fullDesc = UDP Entry in MIB-II

consoleHint:mediumDesc = base.modules.mib2Proxy:udp.udpTable.udpEntry

 index = udpLocalAddress udpLocalPort

 udpLocalAddress = { [use STRING MANAGED-PROPERTY]

 mediumDesc= udpLocalAddress

 consoleHint:mediumDesc = \
base.modules.mib2Proxy:udp.udpTable.udpEntry.udpLocalAddress

 }

 udpLocalPort = { [use INT MANAGED-PROPERTY]

 mediumDesc = udpLocalPort

 consoleHint:mediumDesc = \
base.modules.mib2Proxy:udp.udpTable.udpEntry.udpLocalPort

 }

 }

 }

}

mib2x -f <ASN.1 MIB text file> > <module><-subspec> -oids-d.dat

<sym1> = <oid1> [<instance>]
<sym1>/ <sym2> = <oid1> . <oid2> [<instance>]
<sym1>/ <sym2>/ <sym3> = <oid1> . <oid2> .<oid3> [<instance>]
...

CODE EXAMPLE D-2 Example: mib2-proxy-models-d.x(Continued)
458 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

This file maps symbolic names of nodes in the legacy MIB to OIDs. The text created

by the mib2x script may need to be edited manually. The first few lines from the

MIB2 Proxy module legacy MIB OIDs file (mib2-proxy-oids-d.dat) are:

Module Realization File

To enable the Sun Management Center agent to reference the legacy agent using

URLs, OIDs file of the legacy agent must be loaded into the agent. The loading of

this file and the qualifiers required to collect data from the legacy agent are

described in the following section.

Loading the Legacy MIB OIDs Mapping File

The legacy agent’s OIDs file must be loaded into the Sun Management Center agent

SNMP OID cache. This is done by specifying the following qualifiers in the module

realization file:

Where <key> can be any unique identifier and the <module><-subspec>-oids
corresponds to legacy MIB OIDs file. The activateActions(post) qualifier is a

space separated list of keys that corresponds to actions that will be performed after

the current MIB tree has been instantiated. Each <key> must have a

activateService and activateCommand that specifies the command as well as the

context in which the command is to be executed.

iso = 1
iso/org = 1.3
iso/org/dod = 1.3.6
iso/org/dod/internet = 1.3.6.1
iso/org/dod/internet/directory = 1.3.6.1.1
iso/org/dod/internet/mgmt = 1.3.6.1.2
iso/org/dod/internet/mgmt/mib-2 = 1.3.6.1.2.1
iso/org/dod/internet/mgmt/mib-2/system = 1.3.6.1.2.1.1
iso/org/dod/internet/mgmt/mib-2/system/sysDescr = 1.3.6.1.2.1.1.1
...

activateActions(post) = <key>
activateService(<key>) = .services.snmp
activateCommand(<key>) = cache load <module><-subspec> -oids
Appendix D SNMP Proxy Monitoring Modules 459

In this case, there is only one key and it corresponds to the action of loading the

legacy MIB OIDs file into the context of the SNMP service object. For example, for

the MIB2 Proxy module the qualifiers used to load the OIDs file are:

Data Acquisition

For SNMP proxy monitoring modules, data acquisition is accomplished through

proxy SNMP operations such as SNMP get, instead of typical module data

acquisition mechanisms such as shell scripts or TCL/TOE code. To facilitate data

acquisition for proxy SNMP operations, one of the following primitives should be

used:

■ TARGET-SNMP—to do an snmp get for typical data

■ TARGET-SNMP-BINARY—to do an snmp get for binary data

These primitives automatically set the node type to active and constructs the

refreshCommand . Nodes that inherit from this primitive are typically the nodes that

realize the objects from the models file. For example, shown below are the two

objects from the MIB2 Proxy module realization file that instantiate the objects from

the models file. These objects also inherit from the TARGET-SNMPprimitive.

activateActions(post) = loadcache
activateService(loadcache) = .services.snmp
activateCommand(loadcache) = cache load pmib2-oids

CODE EXAMPLE D-3 Example: mib2-proxy-d.x

[requires templates mib2-proxy-models-d]

...

system = { [use templates.mib2-proxy-models-d.system TARGET-SNMP
]

...

}

...

udp = { [use templates.mib2-proxy-models-d.udp TARGET-SNMP]

udpTabl e = { [use templates.mib2-proxy-models-d.udp.udpTable
TARGET-SNMP]

 }

}

460 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Nodes that inherit from the TARGET-SNMPprimitive must also specify two

additional qualifiers. These two qualifiers are used to automatically construct the

refreshCommand .

They are:

■ refreshOidPrefix

■ refreshOids

The refreshOidPrefix specifies the symbolic OID in the legacy agent from the

enterprise branch (as specified by the targetEnterprise parameter) to the node

containing the managed properties of interest. The refreshOids qualifier is a

comma separated list of managed properties. Together, the targetEnterprise ,

refreshOidPrefix , and refreshOids specify the full symbolic OIDs used to

access the MIB of the legacy agent. For example, suppose data from the symbolic

OID shown below is required.

iso.org.dod.internet.mgmt.mib-2.system.sysDescr

The targetEnterprise is set to iso.org.dod.internet.mgmt.mib-2 , the

refreshOidPrefix is set to system , and the refreshOids is set to sysDescr #0.

The #0 is added to indicate a scalar value. If the managed property was a vector

value, then no #0 is required.

Note – The number of items in the refreshOids list is the number of data values

that will be acquired from the legacy agent and cascaded into passive managed

properties below the active node. As a result, the number of items in the

refreshOids list must match the number of passive managed properties below the

active node.

Nodes that inherit from the TARGET-SNMP-BINARYprimitive must specify a

refreshHint qualifier in addition to the refreshOidPrefix and refreshOids
qualifiers. refreshHint must specify the conversion from binary to ascii. See

Mapping of the DISPLAY-HINT clause in RFC 1903 for more information on the valid

contents of refreshHint (Note: octal and binary conversions are not supported for

INT nodes and octal conversions are not supported for STRING nodes). The

refreshHint specification is typically 1x: , indicating that the value returned from

the snmp get is a : delimited string, where each delimited value is a hexadecimal

representing a single byte
Appendix D SNMP Proxy Monitoring Modules 461

Shown below is a section from the MIB2 proxy module realization file illustrating

the specification of the refreshOidPrefix and refreshOids qualifiers.

In the iftableget node, refreshOp is set to walk and the items in the

refreshOids list do not have #0 appended to them, as the data values to be

retrieved are vectors.

By default, the TARGET-SNMPprimitive sets refreshOp = get to perform a single

SNMP get operation for scalar values. However, by setting the refreshOp to walk ,

the TARGET-SNMPprimitive will traverse the MIB tree from the point specified and

return all values. As a result, all values from the vector are returned.

Shown below is the complete module realization file for the MIB2 proxy module.

system = { [use templates.mib2-proxy-models-d.sysget TARGET-SNMP
]
 type = active
 refreshInterval = 3600
 refreshOidPrefix = system
 refreshOids =
sysDescr#0,sysObjectID#0,sysUpTime#0,sysContact#0,
 sysName#0,sysLocation#0,sysServices#0
}
udp = { [use templates.mib2-proxy-models-d.udp TARGET-SNMP]
 type = active
 refreshInterval = 3600
 refreshOidPrefix = udp
 refreshOids = udpInDatagrams#0,udpNoPorts#0,udpInErrors#0,
udpOutDatagrams#0

udpTable = { [use templates.mib2-proxy-models-d.udp.udpTable
TARGET-SNMP]
 type = active
 refreshOp = walk
 refreshInterval = 0
 refreshOidPrefix = udp.udpTable.udpEntry
 refreshOids = udpLocalAddress,udpLocalPort
 }
}

CODE EXAMPLE D-4 Module Realization: MIB2 Proxy Module

[use MANAGED-MODULE]

[load mib2-proxy-m.x]

[requires template mib2-proxy-models-d]
462 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

consoleHint:mediumDesc = base.modules.mib2Proxy:moduleDetail

refreshService = .services.snmp

activateActions(post) = loadcache

activateService(loadcache) = .services.snmp

activateCommand(loadcache) = cache load mib2-proxy-oids

system = { [USE TEmplates.mib2-proxy-models-d.system TARGET-SNMP
]

 type = active

 initInterval = 1

 refreshInterval = 3600

 refreshOidPrefix = system

 refreshOids = \

sysDescr#0,sysObjectID#0,sysUpTime#0,sysContact#0,sysName#0,\

sysLocation#0,sysServices#0

}

...

...

...

udp = { [use templates.mib2-proxy-models-d.udp TARGET-SNMP]

 type = active

 initInterval = 1

 refreshInterval = 3600

 refreshOidPrefix = udp

 refreshOids =
udpInDatagrams#0,udpNoPorts#0,udpInErrors#0,udpOutDatagrams#0

udpTabl e = { [use templates.mib2-proxy-models-d.udp.udpTable
TARGET-SNMP]

 type = active

 initInterval = 1

 refreshOp = walk

 refreshInterval = 0

 refreshOidPrefix = udp.udpTable.udpEntry

 refreshOids = udpLocalAddress,udpLocalPort

 }

}

CODE EXAMPLE D-4 Module Realization: MIB2 Proxy Module
Appendix D SNMP Proxy Monitoring Modules 463

SNMP Sets

SNMP sets to legacy agents can be made as part of the setActions infrastructure

(see Chapter 6). The setService must be set to .services.snmp and the

setCommand must be set to:

where:

<ip address> is the IP address of the host where the legacy agent is running. If this is

the same as the targetHost module parameter, then %targetAddress can be used

for this value.

<port> is the port used by the legacy agent. If this value is the same as the

targetPort module parameter, then %targetPort can be used for this value.

<varbind> consists of <url> <asn1 type> <value> [<display hint>].

<url> can be either one of sym/ <symbolic oid> , oid/ <numeric oid> , or mod/
<module oid> .

<asn1 type> specifies the type of data being set. This can be OCTET STRING,
Integer32 , NULL, OBJECT IDENTIFIER , IpAddress , Counter32 , Unsigned32 ,

TimeTicks , Counter64 , INTEGER, or Gauge32 .

<value> is the value to be set.

<display hint> is optional and used to convert <value> to the appropriate format

for setting. See Mapping of the DISPLAY-HINT clause in RFC 1903 for more

information (Note that octal and binary conversions are not supported for

INTEGERtypes and octal conversions are not supported for OCTET STRINGtypes.

The <display hint> specification is typically used to set binary data in the legacy

agents. In such a case, <display hint> is typically 1x: , indicating that the <value> is

a : delimited string, where each delimited value is a hexadecimal representing a

single byte.

<snmpVersion> is optional (default is SNMPv2u) and specifies snmp version used by

the legacy agent. If this is the same as the snmpVersion module parameter,

%snmpVersion can be used for this value.

set <ip address> <port> -1 {{ <varbind> } [{ <varbind> } ...]} \
[-version <snmpVersion>] [-securityLevel <securityLevel>] \
[-securityName <securityName>] [-context <context>] [-timeout <timeout>] \
[-retries <retries>]
464 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

<securityLevel> is optional (default is auth) and specifies the SNMP security level

supported by the legacy agent. If this value is the same as the securityLevel
module parameter, %securityLevel can be used.

<securityName> is optional (default is espublic) and specifies the name (or

community) with which to perform the SNMP set. If this value is the same as the

securityName module parameter, %securityName can be used.

<context> is optional (default is no context) and specifies the MIB context for the

object to be set. If this value is the same as the context module parameter, then

%context can be used.

<timeout> is optional (default is 30 seconds) and specifies the time out for the SNMP

request in seconds.

<retries> is optional (default is 3 times) and specified the number of times the SNMP

set is retried.

SNMP Set Example

In the code fragment below, setnode is a node that has setActions defined.

Whenever an SNMP set is made to this node, it will execute an SNMP set to a legacy

agent. The set command specifies <ip address>, <port>, <snmpVersion>,

<securityLevel>, and <securityName> to be the same as the module parameters. Note,

this would indicate that the read and write security names (or communities) are the

same. The SNMP set is setting some fixed binary data to the OID

1.3.6.1.4.1.9999.1.1.0.

Module Trap Action Definition File

In certain cases, the legacy agent may issue traps that the SNMP proxy monitoring

module may be interested in. In such a case, the legacy agent must first be

configured to send the traps to the Sun Management Center Trap handler.

setnode = { ...
 setActions = doset
 setService(doset) = services.snmp
 setCommand(doset) = set %targetAddress %targetPort -1 {{oid/
1.3.6.1.4.1.9999.1.1.0 {OCTET STRING}
0:0:4:da:40:cc:e1:f7:99:1f:e1:0 1x:}} -version %snmpVersion -
securityLevel %securityLevel -securityName %securityName
}

Appendix D SNMP Proxy Monitoring Modules 465

Once traps are being sent to the Sun Management Center Trap handler, they will be

forwarded to the Sun Management Center agent. The SNMP proxy monitoring

module must then add to the agent the actions to be preformed for the traps that it

is interested in. This is done by loading a new module definition file in to the Sun

Management Center agent.

Naming Conventions

The naming convention for this file is <module>-<subspec>-traps-d.x and the format

is as follows:

Sample Specification

Specifying the following:

criteria = enterprise

enterprise = <oid corresponding to targetEnterprise>

[requires class trapaction]
[inherit classes.trapaction]

<object1> = {
 [inherit classes.trapaction]

 criteria = enterprise
 enterprise = <oid corresponding to targetEnterprise>

<object2> = {
 [inherit classes.trapaction]

 criteria = <criteria1> [<criteria2> <criteria3> ...]
<criteria1> = <value1>

 ...

 trapActions = <key1> [<key2> ...]
 trapService(<key1>) = <service>
 trapMethod(<key1>) = <command>
 }

[<other objects>]
}

<object1> should be a unique identifier indicating the module

name.
466 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

allows traps from the specified enterprise (the OID corresponding to the value set in

the targetEnterprise module parameter) to be passed down to <object2> (and

other objects if specified) for further processing. This allows <object2> to be selective

in which traps are processed. Again <object2> is another unique identifier.

Specifying the following:

allows further trap filtering capabilities. The criteria qualifier is a space separated

list of parameters whose values are checked for comparison.

Valid Parameters

The list of valid parameters are:

■ .agentAddr —address of the agent originating the trap (for example,

192.83.121.224)

■ enterprise —the OID up to the enterprise branch from where the trap was

issued (e.g. 1.3.6.1.4.1.1242)

■ genericTrap —the generic type of the trap (for example, 1)

■ specificTrap —the specific type of the trap (for example, 0)

■ trapOid —the OID where the trap was issued (not including the enterprise) (for

example, 1.1.1.1.1)

■ timeStamp —time stamp of the trap (for example, 472d 3:17:27.72)

■ receiveTime —time trap was received (for example, Wed Oct 18 12:12:20 EDT

1995)

■ version —SNMP version (for example, SNMPv1)

■ community —SNMP community (for example, public)

■ forwarder —trap forwarder (for example, 192.83.121.224:30001)

Use trapOid in place of the genericTrap and specificTrap specifications. The

trapOid specification will support both SNMPv1 and SNMPv2 traps, whereas

genericTrap and specificTrap specifications only support SNMPv1 traps.

For every parameter specified in the criteria list, there must be a qualifier that

corresponds to the parameter and the value to be checked against.

criteria = <criteria1> [<criteria2> <criteria3> ...] \
<criteria1> = <value1>
Appendix D SNMP Proxy Monitoring Modules 467

The following example will check the agentAddr parameter for equivalence to

192.83.121.224. :

If the test fails, no further processing of the trap is done. The ‘equal to’ test can be

changed to ‘not equal to’, by specifying not before the value.

The following exa,mple will test the agentAddr parameter and fail if it equals

1982.83.121.224.

If no criteria list is specified, all traps passed into <object2> will activate all trap

actions. The specification of actions to be performed on traps is made by the

following set of qualifiers:

The trapActions qualifier is a space separated list of actions to be performed. For

each action in the list, there must be a trapService and trapMethod specified.

Typically the action required on a trap is to refresh the data values.

This is done by specifying:

In this case, the trapMethod qualifier specifies a command to fire all jobs associated

with the specific agent and enterprise.

criteria = agentAddr
agentAddr = 192.83.121.224

criteria = agentAddr
agentAddr = not 192.83.121.224

trapActions = <key1> [<key2> ...]
trapService(<key1>) = <service>
trapMethod(<key1>) = <command>

trapActions = <key>
trapService(<key>) = .services.snmp
trapMethod(<key>) = jobFireByTag %agentAddr:%enterprise
468 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Example: Trap Action File for HP JetDirect

Shown below is the trap action file for the HP JetDirect module:

To load the trap actions file into the agent, an additional key is required in the

activateActions(post) list (see Chapter 6).

Shown below are the qualifiers required:

activateActions(post) = <key1> <key2>

activateService(<key2>) = .services.trap

activateCommand(<key2>) = loadActions <module><-subspec> -traps

In this case the activateCommand qualifier will load the file <module>-
<subspec>-traps-d.x file into the context of the .services.trap object in the Sun

Management Center agent.

CODE EXAMPLE D-5 Example: hp-jetdirect-trapspd.x

[requires class trapaction]

[inherit classes.trapaction]

hpjetdirect = {

 [inherit classes.trapaction]

 criteria = enterprise

 enterprise = 1.3.6.1.4.1.11.2.3.9.1

 notauth = {

 [inherit classes.trapaction]

 #

 # match traps that are not authentication failures

 #

 criteria = trapOIDRegexp

trapOIDRegexp = not ^1\\.3\\.6\\.1\\.6\\.3\\.1\\.1\\.5\\.5$

 #

 # perform trap correlation in job module using trap enterprise

 #

 trapActions = jobfire

 trapService(jobfire) = .services.snmp

trapMethod(jobfire) = jobFireByTag %agentAddr:/%enterprise

 }

}

Appendix D SNMP Proxy Monitoring Modules 469

Example: Qualifiers for Loading the HP JetDirect Module
Trap Actions File

Shown below are the qualifiers for loading the HP JetDirect module trap actions file.

Example: Qualifiers for Loading Both the OIDs and Trap
Actions Files for the HP JetDirect Module

Shown below are the qualifiers for loading both the OIDs and trap actions files for

the HP JetDirect module:

activateActions(post) = loadtraps
activateService(loadtraps) = .services.trap
activateCommand(loadtraps) = loadActions hp-jetdirect-traps

activateActions(post) = loadcache loadtraps

activateService(loadcache) = .services.snmp
activateCommand(loadcache) = cache load hp-jetdirect-oids

activateService(loadtraps) = .services.trap
activateCommand(loadtraps) = loadActions hp-jetdirect-traps
470 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

APPENDIX E

URL Specifications

This appendix covers the following topics:

■ Uniform Resource Locator (URL)—page 471

■ SNMP URLs—page 472

■ Shadow Operations—page 475

■ Condensed URL specifications—page 480

Uniform Resource Locator (URL)

The Uniform Resource Locators (URLs) schemes employed in Sun Management

Center software comply with the general URL format defined in the RFCs pertaining

to URLs.

<scheme>://<net_loc>/<path>;<params>?<query>#<fragment>

URLs are used by Sun Management Center components to access and interface with

various resources. URLs are used to do the following:

■ Access values and attributes of managed objects and properties in the Sun

Management Center agent MIB via SNMP

■ Interface with standard I/O file descriptors

■ Interface with regular and circular log files

■ Interface with other processes using pipes, UNIX, TCP and UDP sockets

■ Interface with the UNIX system logging service (for example, syslog).

The discussion of URLs is divided into SNMP URLs and interface URLs.
471

SNMP URLs

The Sun Management Center components employ URLs to uniquely identify values

and qualifiers of managed objects and properties in Sun Management Center agent

MIBs. SNMP URLs permit a more readable representation of SNMP object identifiers

(OIDs). These URLs can be resolved to the actual OID by querying the finder object

residing in all Sun Management Center agents.

For example, SNMP URLs can be used to access the value of a managed property

stored in a Sun Management Center agent MIB such as the MIB-II system

description.

SNMP URLs can also access qualifiers associated with managed properties and

managed objects. These qualifiers are also referred to as shadow attributes and the

act of accessing these qualifiers are known as shadow operations. For example, the

refresh attributes of a managed property like refreshcommand or

refreshinterval can be accessed through shadow operations.

SNMP URL Format

The general format of the SNMP URL is shown below:

where

snmp specifies the SNMP scheme

<host> specifies the host on which the SNMP agent resides

<port> specifies the port the SNMP agent is listening on

<type> specifies the SNMP URL type which can be one of oid, sym, or mod

<spec> will vary according to the type and specifies the data element being identified

<query> specifies the shadow attribute being accessed

<instance> specifies the managed property instance being accessed

snmp://<host>[:<port>]/<type>/<spec>[?<query>][#<instance>]
472 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

SNMP URL Types

The following SNMP URL types are supported in Sun Management Center:

■ Numeric type (oid) uses object identifiers (OIDs) to identify the MIB object

■ Symbolic type (sym) uses the logical names to identify the MIB object

■ Module type (mod) uses module, instance, and logical names to identify the MIB

object

Numeric

Numeric SNMP URLs are specified using the oid type and are comprised of the

subidentifiers (subIDs) of the MIB object they represent. Numeric SNMP URLs are

easily converted to a SNMP request packet since they contain the object identifier

(OID) specifications required to construct SNMP PDUs.

These URLs have the following form:

Note – The separators between subIDs can be either slashes “/” or dots “.”.

For example, the value of the system description managed property in the MIB-II

module can be accessed using the following numeric SNMP URL:

Symbolic

Symbolic SNMP URLs are specified using the sym type and are comprised of the

hierarchical name of MIB object they represent. The objects named in the hierarchy

can be from the root of the MIB tree (.iso) or relative to the base of the enterprises

MIB object (.iso.org...private.enterprises).

They have the following form:

snmp://<host>[:<port>]/oid/<subid1>[.../<subidN>] [?<query>][#<instance>]

snmp://manila/oid/1/3/6/1/2/1/1/1#0
snmp://manila/oid/1.3.6.1.2.1.1.1#0

snmp://< host>[:< port>]/sym/< name1>[.../< nameN>][?< query>][#< instance>]
Appendix E URL Specifications 473

Note – The separators between names can be either slashes (/) or dots (.). Also, a

single slash (/) or a double slash (//) can follow the SNMP URL type, for example:

snmp://<host>[:<port>]/sym//<name1>[.../<nameN>][?<query>][#<instance>]

is the same as:

snmp://<host>[:<port>]/sym/<name1>[.../<nameN>][?<query>][#<instance>]

The value of the system description managed property in the MIB-II module can be

accessed using the following symbolic SNMP URL:

The logical names must be resolved before an SNMP request packet is constructed.

The names can be resolved to OIDs by performing a lookup in an URL/OID cache or

by sending a finder request to the target agent. Once the symbolic SNMP URL is

mapped to a numeric SNMP URL, the SNMP request packet can be built and sent.

Module

Module SNMP URLs are specified using the mod type and are comprised of the

module specification and the hierarchical name of MIB object relative to the root of

the module. The module specification consists of the module name and an optional

instance specification, separated by a ‘+’ sign.

They have the following form:

Note – The separators between names can be either slashes “/” or dots “.”.

For example, the value of the system description managed property in the MIB-II

module can be accessed using the following module SNMP URL:

snmp://manila/sym/iso/org/dod/internet/mgmt/mib2/system/sysDescr#0
snmp://manila/sym/iso.org.dod.internet.mgmt.mib2.system.sysDescr#0

snmp://< host>[:< port>]/mod/< module>[+< inst>]/< name1>[.../< nameN>] [?< query>][#< instance>]

snmp://manila:161/mod/mib2-system/sysDescr#0
474 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

The module names, instances names, and logical names must be resolved to OIDs

before an SNMP request packet can be constructed. The names can be resolved to

OIDs by performing a lookup in an URL/OID cache or by sending a finder request

to the target agent. Once the module SNMP URL is mapped to a numeric SNMP

URL, the SNMP request packet can be built and sent.

Shadow Operations

In addition to getting and setting the value of managed properties, SNMP URLs can

also be used to access additional attributes of managed properties and managed

objects, known as qualifiers.

The set of qualifiers accessible through SNMP includes such things as alarm limits,

refresh attributes, descriptions, and so forth. The complete list of available qualifiers

for each managed object or property is listed in the file base-shadowmap-d.x .

The shadow map is specified in a URL in the ?<query> specification.

Some shadow map attributes support the specification of an index to access a

specific instance of the shadow map attribute. For example, the status list shadow

map allows the list of statuses associated with a managed object or property to be

accessed. Specifying ?statuslist alone as the query accesses the entire list. To

access specific elements in the status list, ?statuslist. N can be specified to access

the Nth status. If the specified status instance does not exist, nothing is returned.

SNMP URL Examples

Examples of SNMP URLs for values of managed property and qualifiers of managed

objects and properties are provided in this section. Each example is represented

using numeric, symbolic (absolute and relative), and module type SNMP URLs.

Managed Property Value (scalar)

Managed properties represent the entities being monitored by the Sun Management

Center agent. Managed properties that are scalars are specified by an instance

specification of “#0”.

For example, the value of the CPU idle property in the Solaris standard module can

be accessed using the following URLs:
Appendix E URL Specifications 475

Numeric SNMP URL
snmp://manila:161/oid/1.3.6.1.4.1.1242.1.1.2.1.2.1.6.1#0

Symbolic SNMP URL (absolute)
snmp://manila:161/sym/
iso.org.dod.internet.private.enterprise.halcyon.openagent.v4.module
s.operatingSystem.solaris.standard.cpu.idle#0

Symbolic SNMP URL (relative)
snmp://manila:161/sym/
halcyon.openagent.v4.modules.operatingSystem.solaris.standard.cpu.i
dle#0

Module SNMP URL
snmp://manila:161/mod/solaris-standard/cpu/idle#0

Managed Property Value (vector)

The Sun Management Center agent MIB can also model tabular entities. SNMP

URLs support access to specific row entries in such tables through the use of

instance specifications (for example, #<instance>).

For example, the file system statistics are represented by a table in the Solaris

standard module. Each file system partition constitutes a row in this table and

partition’s mount point name is used as the index. Thus, to access the value of the

size managed property of /usr filesystem partition, the following URLs can be

used:

Numeric SNMP URL
snmp://manila:161/oid/1.3.6.1.4.1.1242.1.1.2.1.2.1.8.1.1.2#/usr

Symbolic SNMP URL
snmp://manila:161/sym/iso.org.dod...local.solaris\
-standard.filesystem. fileTable.fileEntry.size#/usr
476 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Module SNMP URL
snmp://manila:161/mod/solaris-standard/filesystem/\

fileTable/fileEntry/size#/usr

Managed Property Qualifier (Scalar Property, Scalar
Qualifier)

Qualifiers associated with managed properties are also accessible using SNMP

URLs. Managed property qualifiers are specified using the query specification (that

is, ?<query>).

For example, the refresh interval qualifier of the CPU idle property in the Solaris

standard module can be accessed using the following URLs:

Numeric SNMP URL
snmp://manila:161/oid/
1.3.6.1.4.1.1242.1.1.2.1.2.1.6.1?refreshinterval#0

Symbolic SNMP URL
snmp://manila:161/sym/iso.org.dod...local.solaris-standard.\
cpu.idle?refreshinterval#0

Module SNMP URL
snmp://manila:161/mod/solaris-standard/cpu/idle?refreshinterval#0

Managed Property Qualifier (Vector Property, Scalar
Qualifier)

Similarly, qualifiers associated with managed properties which are vectors are also

accessible using SNMP URLs. These qualifiers are specified using the query

(?<query>) and instance specifications (#<instance>).

For example, the refresh interval qualifier of the file system size managed property

for the /usr partition in the Solaris standard module can be accessed using the

following URLs:
Appendix E URL Specifications 477

Numeric SNMP URL
snmp://manila:161/oid/
1.3.6.1.4.1.1242.1.1.2.1.2.1.8.1.1.2?refreshinter-val#/usr

Symbolic SNMP URL
snmp://manila:161/sym/iso.org.dod...local.solaris\
-standard.filesystem. fileTable.fileEntry.size?refreshinterval#/usr

Module SNMP URL
snmp://manila:161/mod/solaris-standard/filesystem/fileTable\
/fileEntry/size?refreshinterval#/usr

Managed Property Qualifier (Vector Property, Vector
Qualifier)

Qualifiers associated with managed properties can themselves be vectors. Specific

elements of the qualifier’s vector list are specified using ?<query>.N to access the

Nth element.

For example, the alarm limit qualifier of managed properties is a vector since

multiple alarm limits can be specified (for instance. info, warning, error). To access

the first alarm limit of the file system size managed property for the /usr partition

in the solaris standard module, the following URLs can be used:

Numeric SNMP URL
snmp://manila:161/oid/
1.3.6.1.4.1.1242.1.1.2.1.2.1.8.1.1.2?alarmlimit.0#/usr

Symbolic SNMP URL
snmp://manila:161/sym/iso.org.dod...local.solaris-
standard.filesystem.fileTable.fileEntry.size?alarmlimit.0#/usr

Module SNMP URL
snmp://manila:161/mod/solaris-standard/filesystem/fileTable/
fileEntry/size?alarmlimit.0#/usr
478 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Managed Object Qualifier (Scalar Qualifier)

Qualifiers associated with managed object are also accessible using SNMP URLs.

Managed object qualifiers are also specified using the query specification (that is,

?<query>).

For example, the refresh interval qualifier of the CPU managed object in the Solaris

standard module can be accessed using the following URLs:

Numeric SNMP URL
snmp://manila:161/oid/
1.3.6.1.4.1.1242.1.1.2.1.2.1.6?refreshinterval#0

Symbolic SNMP URL
snmp://manila:161/sym/iso.org.dod...local.solaris-standard.
cpu?refreshinterval#0

Module SNMP URL
snmp://manila:161/mod/solaris-standard/cpu?refreshinterval#0

Managed Object Qualifier (Vector Qualifier)

Qualifiers associated with managed objects can themselves be vectors. Specific

elements of the qualifier’s vector list are specified using ?<query>.N to access the

Nth element.

For example, the status list qualifier of managed objects is a vector since multiple

status messages can be generated by the managed properties associated with the

managed object.

For example, to access the first status message of the file system managed object in

the Solaris standard module, the following URLs can be used:

Numeric SNMP URL
snmp://manila:161/oid/
1.3.6.1.4.1.1242.1.1.2.1.2.1.8.1.1?statuslist.0
Appendix E URL Specifications 479

Symbolic SNMP URL
snmp://manila:161/sym/iso.org.dod...local.solaris-
standard.filesystem.fileTable.fileEntry?statuslist.0

Module SNMP URL
snmp://manila:161/mod/solaris-standard/filesystem/fileTable/
fileEntry/?statuslist.0

Condensed URL specifications

The values and qualifiers of managed properties associated with the same managed

object can be specified using a condensed form of SNMP URLs.

For example, the load managed object in the Solaris standard module contains three

managed properties (one, five, and fifteen load averages). This managed object also

has status and timestamp qualifiers associated with it.

The following condensed SNMP URL can be used to specify the values of the one,

five, and fifteen managed properties, and the status and timestamp qualifiers.

This condensed SNMP URL expands to the following URLs:

snmp://manila:161/mod/local.solaris\
-standard.load(one,five,fifteen,?status,?timestamp)#0

snmp://manila:161/mod/solaris-standard.load.one#0

snmp://manila:161/mod/solaris-standard.load.five#0

snmp://manila:161/mod/solaris-standard.load.fifteen#0

snmp://manila:161/mod/solaris-standard.load.?status#0

snmp://manila:161/mod/solaris-standard.load.?timestamp#0
480 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Interface URLs

The interface library provides a common interface for I/O communication for agent

components. These interfaces are not supported by the console and server

components. Currently, the supported I/O schemes are:

■ clog —circular log file

■ desc —file descriptor

■ file —text file

■ inet —internet sockets

■ pipe —UNIX pipe

■ syslog —UNIX system logging facility

■ unix —UNIX sockets

Intraface options can be incorporated into most interface URLs. These options are

described later in this appendix.

clog

Circular log files are fixed sized files which can be opened for writing and/or

reading. Circular log files are identified using the clog scheme and are always

assumed to be on the local host.

The circular log file URL has the following format:

where:

<filename> is the path and file name of the circular log file. Note that the path is

assumed to be relative to the current working directory (for example, $ESDIR/cfg)

unless it begins with a “/ ”, in which case, it is assumed to be an absolute path.

<intraface_options> are intraface specifications.

<lines> is the maximum number of lines in the log file. The default value is 1000.

<width> is the number of characters per line. The default value is 80. Lines that

exceed the width specification are truncated.

<flags> is the file permission to use when opening the file. The valid values are r |

ro | rw | rw+ and the default value is rw+

clog://localhost/<filename>[;<intraface_options>][;lines=<lines>]\
[;width=<width>][;flags=<flags>][;mode=<mode>]
Appendix E URL Specifications 481

<mode> is the 3-digit octal mode that shall be assigned to the file. If not set, 666 and

the user's umask will be used.

The following examples demonstrate how various circular log files can be specified

using the clog URL (assuming that the current working directory is $ESDIR/cfg) :

desc

File descriptor URLs are identified using the desc scheme and are always assumed

to be on the local host.

The file descriptor URL has the following format:

where

<file_desc> is either a numeric file descriptor corresponding to an already open file or

one of the standard file descriptor names (for example, stderr , stdout , or stdin)

<intraface_options> are intraface specifications.

Examples of desc URLs are provided below:

file

Standard ASCII text files are can also be specified using file URL. Standard files are

identified using the file scheme and are currently always assumed to be on the local

host.

The file URL has the following format:

/tmp/circular.log --> clog://localhost//tmp/circular.log
$ESDIR/cfg/abc.log --> clog://localhost/abc.log
$ESDIR/log/xyz.log --> clog://localhost/../log/xyz.log

desc://localhost/< file_desc>[;< intraface_options>]

Standard Output --> desc://localhost/stdout
Standard Error --> desc://localhost/stderr

file://localhost/< filename>[;< intraface_options>][;flags=< flags>]
482 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

where

<filename> is the path and filename. Note that the path is assumed to be relative to

the current working directory (that is, $ESDIR/cfg) unless it begins with a “/ ”, in

which case, it is assumed to be an absolute path.

<intraface_options> are intraface specifications.

<flags> is the file permission for the file. The valid values are: r | ro | w | wo | w+
| wo+ | rw | rw+ . The default value is rw.

The following examples demonstrate how various files can be specified using the file

URL (assuming that the current working directory is $ESDIR/cfg):

inet

Internet socket interfaces can be specified using inet URLs. These URLs can be used

to specify client or server TCP and UDP sockets.

These URLs have the following format:

where

<host> is optional. If <host> is specified, the socket is opened as a client to connect to

the port on the specified host. The <host> can set to ‘localhost’, a host name, or an IP

address. If <host> is not specified, the socket is opened on the local host as a server

listen socket.

<port> is the port to connect to or open, depending on whether the socket is a client

or a server. The port number can be specified explicitly (for example, 161).

Alternatively, the service name associated with the port can specified (for example,

SNMP)

<protocol> is the type of socket to use. Valid values are: tcp | udp

<intraface_options> are intraface specifications.

/tmp/regular.log --> file://localhost//tmp/regular.log

$ESDIR/cfg/abc.log --> file://localhost/abc.log

$ESDIR/log/xyz.log --> file://localhost/../log/xyz.log

inet://[< host>]:< port>/< protocol>[;< intraface_options>]
Appendix E URL Specifications 483

Various inet URL examples are listed below:

pipe

UNIX pipe interfaces can be used to specify a pipe connection to another process.

These URLs are denoted by the pipe scheme and support pipes on the local host

only.

Pipe URLs have the following format:

where

<command> is any valid UNIX command with an optional path. Note that the

command path is assumed to be relative to the current working directory unless it

begins with a “/ ”, in which case, an absolute path is implied.

<intraface_options> are intraface specifications.

<flags> is the file permission for the pipe. The valid values are r | ro | w | wo | rw
and the default value is rw.

An example of a pipe URL that establishes a pipe connection to a bourne shell using

the shell transport intraface is specified below:

syslog

An interface to the UNIX system logging facility (that is, syslog) can be specified

using syslog URLs. These URLs are denoted by the syslog scheme and support

interfacing with the syslog daemon on the local host only. It should be noted that the

syslog facility itself supports remote logging.

SNMP UDP Socket Port 161 --> inet://:161/udp

TCP Listen Socket Port 20000 --> inet://:20000/tcp

TCP Connect Socket to Host bob on Port 30000 --> inet://bob:30000/tcp

pipe://localhost/< command>[;< intraface_options>][;flags=< flags>]

pipe://localhost//bin/sh;transport=shell
484 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

UNIX syslog URLs have the following format:

where

<priority> is the priority level of the message and can be one of: LOG_EMERG|\

LOG_ALERT| LOG_CRIT| LOG_ERR| LOG_WARN| LOG_NOTICE|\ LOG_INFO |

LOG_DEBUG

<intraface_options> are intraface specifications.

<appname> is the application name used to identify the message.

<facility> is the system log facility to enter the message under and can be one of:

LOG_KERN| LOG_USER| LOG_MAIL| LOG_DAEMON| LOG_AUTH| LOG_SYSLOG\
| LOG_LPR| LOG_NEWS| LOG_UUCP| LOG_CRON| LOG_LOCAL0\
| LOG_LOCAL1| LOG_LOCAL2| LOG_LOCAL3| LOG_LOCAL4| LOG_LOCAL5|\

LOG_LOCAL6| LOG_LOCAL7.

The default value is LOG_USER.

<logopt> are any logging options that are OR'ed together. The valid values are:

LOG_PID, LOG_CONS, LOG_NDELAY, LOG_NOWAIT

The default syslog URL employed by the agent daemon is shown below:

For more information about the syslog parameters, refer to the syslog.conf man page.

UNIX

UNIX socket interfaces can be specified using unix URLs. These URLs can be used to

specify client connection or server listen sockets on the local host only.

These URLs have the following format:

unix://localhost/<filename>[;<intraface_options>][;role=<role>]

where

<filename> is the UNIX filename to use for the socket connection

<intraface_options> are intraface specifications.

syslog://localhost/< priority>[;< intraface_options>][;app=< appname>]
[;facility=< facility>] [;logopt=< logopt1>|< logopt2>|...]

syslog://localhost/LOG_ALERT;app=agent; facility=LOG_DAEMON;logopt=LOG_PID
Appendix E URL Specifications 485

<role> is either ‘listener’ or ‘connected’. The default value is ‘connected’

Examples of UNIX URLs are listed below:

Intraface Options

Intraface options can be incorporated into an interface URL to specify additional

layers to the communication channel.

Intraface options have the following format:

where:

<ace> is the authentication, compression, and encryption option (for example, sin)

<pie> is the parameter insertion and extraction option

(for example, tid | tsid | type)

<transport> is the transport option (for example, ctrld | eot | eotn | shell)

Parameter Insertion and Extraction (PIE)

The PIE layer provides the ability to employ a predefined format for the messages

being transmitted across the interface. The insertion function is used to insert the

message header information and message data when writing a message to the

interface. The extraction function is used to extract the message header information

and message data when reading data from the interface.

Currently supported PIE types are:

■ tid - insert /extract type and id parameters

■ tsid - insert /extract type, subtype, and id parameters

■ type - insert /extract type parameter

unix://localhost/file;role=listener

unix://localhost/file;role=connected

[;ace=< ace>][;pie=< pie>][;transport=< transport>]
486 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Authentication, Compression, Encryption (ACE)

The ACE layer provides authentication, compression, and encryption functions for

communication across the interface. This layer allows a message to be compressed

and encrypted before it is written to an interface. Conversely, it allows the same

message to be authenticated, uncompressed, and decrypted when reading from an

interface.

Currently supported ACE types are:

■ sin - encrypt/decrypt using a sin-wave algorithm

Transport

This layer provides framing functionality when reading and writing across an

interface.

Currently support transport types are:

■ ctrld - uses ctrl-d (\004) to delimit packets

■ eot - uses eot (\004) to delimit packets

■ eotn - uses eot\n (\004\n) to delimit packets

■ shell - uses ‘\necho \004\n’ to delimit packets
Appendix E URL Specifications 487

488 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

APPENDIX F

Status Propagation

This appendix covers the following topics:

■ Example Topology Hierarchy—page 489

■ Missed SNMP Traps—page 492

This appendix provides an example topology hierarchy configuration to

demonstrate how status changes are propagated from the Sun Management Center

agent to the Topology agent and Sun Management Center console.

Note – The Domain Alarms at the top of the Sun Management Center console

should show the count of host entities in alarm throughout the topology hierarchy.

The count does not include the cumulative alarms within each host.

Example Topology Hierarchy

The following figure illustrates an example topology consisting of the following

domains, groups, and entities:

■ Domain A

■ Child Group B

■ Host entities C and D

■ Modules E and F residing in Host C and modules G and H in Host D.

In addition, there is a console viewing Domain A and there are no current alarms.

Thus, the total alarm counts are zero in the console.
489

FIGURE F-1 Example Topology Hierarchy

The following sections present example events or scenarios:

■ Event 1: Node in Module E on Host C Goes into Error (Red)

■ Event 2: Node in Module G on Host D Goes into Warning (Amber)

■ Event 3: Node in Module F on Host C Goes into Warning (Amber)

■ Event 4: Another Node in Module E on Host C Goes into Warning (Amber)

Event 1: Node in Module E on Host C Goes into

Error (Red)
■ A status trap indicating a ‘status change for module E on host C’ is generated.

■ Since the error in module E is the most severe alarm on host C, the overall status

of host C changes, causing another status trap indicating a status change for

host C.

■ Group B repolls host C, since the status trap for host C correlates with an existing

SNMP job of group B.

■ Since the host C in error is the most serious in group B, the overall status of group

B is now in error as well. This generates a status trap indicating a status change

for group B.

■ A console viewing Topology group B would display the error immediately since

this last status trap from group B would trigger a repoll of the group B and a

subsequent screen update. Also, the host C icon gets a red circle at this point. The

total count at the top of the screen still shows 0.

■ A status trap for group B also triggers a repoll of domain A since it correlates

with an existing SNMP job. Domain A immediately repolls group B for its current

Status and child host alarm counts.

Host C Host D

Domain A

Group B

Module E Module F Module G Module H
490 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ The group B error alarm is the most severe alarm condition in domain A. This

causes domain A to generate a status trap indicating a status change for domain

A.

■ If the console was viewing the top level of domain A, this status trap triggers a

repoll of the domain A status, and thereby causes a red circle to appear on the

group B icon in the display.

■ The domain counts on the Console screen are triggered by the domain A status

trap, to repoll domain A for the current alarm counts. The screen updates,

showing the error count as 1.

All of the above happens within a few seconds, since it is all trap based.

Event 2: Node in Module G on Host D Goes into

Warning (Amber)

Assume this second event takes place after the first. This alarm is not as severe as the

initial alarm currently in effect on host C.

■ Status trap is generated indicating a status change for module G on host D.

■ Since this is the most severe alarm condition on host D, the overall status of host

D is warning. Another status trap indicating a status change for host D is

generated.

■ Group B detects a status change on host D and immediately repolls host D for its

current status.

■ The warning on host D is less severe than the error on host C, so the overall status

of group B does not change (still is equal to the host C error). Nonetheless, group

B generates a status trap indicating a “status change for group B”. This trap is

issued to inform higher topology layers about the change in child host D in group

B.

■ A console viewing group B would display the host D icon to be amber (warning)

since this last status trap from group B would trigger a repoll and screen update.

The total warning count at top of screen still shows 1 error (from host C), but 0

warnings (host D warning count not propagated up yet).

■ Domain A detects the status trap for the group B and repolls group B for its

current status and counts.

■ Although the status of domain A's children have changed (group B was error

before, and is still in error), domain A recognizes that the total child host count

has changed: before there was one error, now there is one error and one warning.

Accordingly, domain A generates a status trap indicating a status change in

domain A. This trap will trigger a repoll and update of the Domain Counts on the

Console Screen.
Appendix F Status Propagation 491

Event 3: Node in Module F on Host C Goes into

Warning (Amber)

Assume this third event takes place after the others. This is a second event on host

C. This alarm is only a warning and is less severe than the previous alarm on host C,

which was an error. This new alarm is in a “different” module from the previous

host C alarm.

■ Status trap indicating a status change for module F on host C is generated.

■ This is not the most serious condition on host C, but host C generates a status trap

anyway, to indicate to upper layers that the status of module F changed (because

this new alarm is in a different module, and module F was not in alarm before).

■ Group B detects the status trap from host C and repolls host C for its current

status.

■ Group B notes that the overall status of host C has not changed, so group B does

not need to generate any new traps (no change in child counts or status for group

B).

Event 4: Another Node in Module E on Host C

Goes into Warning (Amber)

Assume this fourth event takes place after the others. This one is a warning in

another node in module E (there is already an error on this module from one of the

previous events).

■ Status trap issued indicating status change for a node in module E on host C.

■ This is not the most severe alarm condition on module E on host C (an earlier

error alarm condition was detected on another node). The overall status of host C

Is unchanged and no new status trap is issued.

■ No counts or status need to be updated anywhere in the topology.

Missed SNMP Traps

The delivery of SNMP traps is not guaranteed. If a status change trap is missed, then

status and counts will not be updated immediately. However, this will correct itself

on the next poll (generally less than five minutes).
492 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

APPENDIX G

SNMP Trap Subscription

This appendix covers the following topics:

■ Sun Management Center Agent Components and Trap Subscription—page 493

■ Subscribing for Traps—page 494

■ Sun Management Center Enterprise Specific Traps—page 499

■ SNMP Trap Subscription Support—page 501

Sun Management Center Agent
Components and Trap Subscription

Sun Management Center agent components (including the Trap Handler) support

SNMP trap subscription. Trap subscription allows interested parties to request that

selected SNMP traps be forwarded to them. Sun Management Center agent

components can also subscribe for traps.

Every Sun Management Center agent component supports a MIB that contains the

.iso*base.trapForward branch, which contains the following nodes:

■ clientRegistrar —supports trap subscription for specific traps through the

specification of the trap criteria.

■ jobAdder —for existing trap subscriptions with the tag criteria set to be true. This

node supports incremental additions to the list hosts of interest.

■ jobRemover —for existing trap subscriptions with the tag criteria set to be true,

this node supports incremental deletions from the list of hosts of interest.

The jobAdder and jobRemover nodes are designed to be used with the Sun

Management Center agent SNMP job caches, which are used to support periodic

SNMP jobs.
493

Subscribing for Traps

The clientRegistrar node is used to subscribe for traps and is located at:

iso.org.dod.internet.private.enterprises...base.trapForward.\
clientRegistrar

For the SUN enterprise MIB, the corresponding url for this node is:

To subscribe for SNMP traps from a Sun Management Center agent component,

perform an SNMP set of a trap subscription specification into the

clientRegistrar node. If a trap client has an existing trap subscription, a

subsequent subscription replaces the previous subscription. The trap subscription

specification has the following format:

where:

ipAddress is the IP Address of the trap subscriber.

snmpPort is the SNMP port of the trap subscriber.

spec N is the trap filter criteria, filter criteria expressions, or subscription expiry

specification.

Trap filter criteria are specified using the following format:

where:

criteria is the trap filter criteria. These criteria are mapped to the contents of the trap

PDU.

regexp is the regular expression for the corresponding criteria

Possible criteria values are:

■ trapAddress —IP address of trap originator

■ trapOID —Trap object identifier

snmp://<host>:<port>/sym//iso/org/dod/internet/private/
enterprises/sun/prod/sunsymon/agent/base/trapForward/
clientRegistrar#0

{< ipAddress>:< snmpPort> {{{< spec1} {< spec2>} ...}}}

{< criteria> < regexp>}
494 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

■ oid N - Nth OID in trap varbind

■ value N - Nth value in the trap varbind

■ tag - flag indicating whether to use the taglist criteria which contains a list of host

IP addresses when determining a match (that is, if true, use taglist; if false, ignore

taglist)

■ taglist - list of host IP address to match against the IP address of trap

originator. The entries cannot be regular expressions, they must be actual IP

address.

The tag and taglist criteria is designed to be used by agent SNMP job cache, which

subscribes for traps from a specific a list of IP addresses hosts. This explicit list of IP

addresses is used in place of a regular expression to support the dynamic

modification of the list via the jobAdder and jobRemover nodes.

By default, if multiple trap filter criteria are specified, they are OR'd together. To

modify this behaviour, filter criteria expressions can be used.

Filter criteria expressions are specified as follows:

where:

criteria N is one of the filter criteria specified above

logical operator can be a logical AND '&&' or logical OR '||'

Subscription expiry is specified as follows:

where:

seconds is the number of seconds before subscription is cancelled. For a

subscription that does not expire, 0 can be specified. If the expiry is not specified, it

defaults to ~46 days.

{filter-exp {%<criteria1> <logical operator> %<criteria2> ...}}

{expiry <seconds>}
Appendix G SNMP Trap Subscription 495

Trap Subscription Examples

For example, if your process is on host:port 204.225.247.123:162 and you wish to

subscribe for linkDown (whose trap OID is 1.3.6.1.6.3.1.1.5.3) traps from any agent,

set the following trap subscription spec:

Similarly, to subscribe for all linkDown (1.3.6.1.6.3.1.1.5.3) and linkUp

(1.3.6.1.6.3.1.1.5.4) traps, set the following trap subscription spec:

Note – The regular expression includes double backslashes '\\' for the dots '.' since

one set is removed when the expression is processed by the Tcl procedure that

processes the trap subscription request.

To subscribe for all linkDown traps originating from a specific agent on host:port

204.225.247.100:161, set the following trap subscription spec:

For example, if your process is on host 129.146.53.216 port 2000, and you wish to

subscribe for statusChange (whose OID is 1.3.6.1.4.1.42.2.12.2.0.1) traps from any

agent, set the following trap subscription spec:

Similarly, to subscribe for statusChange, valueRefresh, moduleLoaded,

moduleUnloaded (respective OIDs are 1.3.6.1.4.1.42.2.12.2.0.1 1.3.6.1.4.1.42.2.12.2.0.2

1.3.6.1.4.1.42.2.12.2.0.4 1.3.6.1.4.1.42.2.12.2.0.5) traps from any agent, set the

following trap subscription specification:

{204.225.247.123:162 {{{trapOID 1.3.6.1.6.3.1.1.5.3}}}}

{204.225.247.123:162 {{{trapOID
^1\\.3\\.6\\.1\\.6\\.3\\.1\\.1\\.5\\.[34]}}}}

{204.225.247.123:162 {{{trapAddress 204.225.247.100} {trapOID
1.3.6.1.6.3.1.1.5.3} {filter-exp {trapAddress && trapOID}}}}}

{129.146.53.216:2000 {{{trapOID 1.3.6.1.4.1.42.2.12.2.0.1}}}}

{129.146.53.216:2000 {{{trapOID 1.3.6.1.4.1.42.2.12.2.0.[1245]}}}}
496 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Similarly, to subscribe for statusChange, valueRefresh traps from an agent running

on 129.146.53.216, set the following subscription specification:

SNMP SET Command

The following are the SNMP set commands for above examples:

Trap subscription in Sun Management Center Trap Handler (running on

129.146.53.216:162) for statusChange trap:

Trap subscription in Sun Management Center Trap Handler (running on

129.146.53.216:162) for statusChange, valueRefresh, moduleLoaded,

moduleUnloaded traps.

Trap subscription in Sun Management Center Trap Handler (running on

129.146.53.216:162) for statusChange and valueRefresh traps from agent running on

129.146.53.216.

{129.146.53.216:2000 {{{trapAddress 129.146.53.216 } {trapOID
1.3.6.1.4.1.42.2.12.2.0.[12]}
{filter-exp {trapAddress && trapOID}}}}}

snmpset -h 129.146.53.216 -p 162 -c community \
1.3.6.1.4.1.42.2.12.2.1.4.1.0 "OctetString" \
"{129.146.53.216:2000 \
{{{trapOID 1.3.6.1.4.1.42.2.12.2.0.1}}}}"

snmpset -h 129.146.53.216 -p 162 -c community \
1.3.6.1.4.1.42.2.12.2.1.4.1.0 OctetString "{129.146.53.216:2000 \
{{{trapOID 1.3.6.1.4.1.42.2.12.2.0.[1245]}}}}"

snmpset -h 129.146.53.216 -p 162 -c community \
1.3.6.1.4.1.42.2.12.2.1.4.1.0 "OctetString" \
"{129.146.53.216:2000 \
{{{trapAddress 129.146.53.216 } {trapOID \
1.3.6.1.4.1.42.2.12.2.0.[12]} \
{filter-exp {trapAddress && trapOID}}}}}"
Appendix G SNMP Trap Subscription 497

Note – All of the preceding snmpset commands will work if the Trap Handler is

configured for no authentication. Otherwise, these sets have to be valid

SNMPV2USEC SETCommands.

Adding Jobs

The jobAdder node is used to incrementally add IP addresses to the taglist
criteria of an existing trap subscription. This node is located at:

For the SUN enterprise MIB, the corresponding url for this node is:

To add jobs to an existing subscription for traps from a Sun Management Center

agent component, perform an SNMP set of a trap subscription specification into this

node. The job adder specification has the following format:

where:

subscriber address is the IP address:port of the subscriber

list of IP address is one or more IP addresses to be added to the taglist.

Removing Jobs

The jobRemover node is used to remove IP address entries from the taglist criteria

of an existing trap subscription. This node is located at:

iso.org.dod.internet.private.enterprises...base.trapForward.jobAdder

snmp://< host>:< port>/sym//iso/org/dod/internet/private/enterprises/
sun/prod/sunsymon/agent/base/trapForward/jobAdder#0

<subscriber address> < list of IP addresses>

iso.org.dod.internet.private.enterprises...base.trapForward.jobRemover
498 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

For the SUN enterprise MIB, the corresponding URL for this node is:

To remove jobs from an existing subscription for SNMP traps from a Sun

Management Center agent component, perform an SNMP set of a trap subscription

specification into this node. The job remover specification has the following format:

where:

subscriber address is the IP address:port of the subscriber

list of IP address is one or more IP addresses to be removed from the taglist.

Sun Management Center Enterprise
Specific Traps

This section provides the MIB for enterprise specific traps generated by Sun

Management Center agent.

snmp://< host>:< port>/sym//iso/org/dod/internet/private/enterprises/
sun/prod/sunsymon/agent/base/trapForward/jobRemover#0

<subscriber address> < list of IP addresses>

CODE EXAMPLE G-1 Sun Management Center Enterprise Specific Traps

base OBJECT IDENTIFIER ::= { * 1 }

traps OBJECT IDENTIFIER ::= { base 0 }

trapInfo OBJECT IDENTIFIER ::= { base 3 }

statusChange NOTIFICATION-TYPE

OBJECTS { statusOID }

STATUS current

DESCRIPTION

"A statusChange trap signifies that the status of an object has
changed."

::= { traps 1 }

valueRefresh NOTIFICATION-TYPE

OBJECTS { refreshOID }

STATUS current

DESCRIPTION
Appendix G SNMP Trap Subscription 499

"A valueRefresh trap signifies that the value of an object has been
manually refreshed."

::= { traps 2 }

event NOTIFICATION-TYPE

OBJECTS { eventInfo }

STATUS current

DESCRIPTION

"An event trap signifies that an event has been detected and logged
by the monitoring software."

::= { traps 3 }

moduleLoaded NOTIFICATION-TYPE

OBJECTS { version }

STATUS current

DESCRIPTION

"A moduleLoaded trap signifies that a module has been loaded."

::= { traps 4 }

moduleUnloaded NOTIFICATION-TYPE

OBJECTS { version }

STATUS current

DESCRIPTION

"A moduleUnloaded trap signifies that a module has been unloaded."

::= { traps 5 }

userConfig NOTIFICATION-TYPE

OBJECTS { userConfig }

STATUS current

DESCRIPTION

"A userConfig trap signifies that the sender of the trap is
requesting user configuration information."

::= { traps 6 }

trapClient NOTIFICATION-TYPE

STATUS current

DESCRIPTION

"A trapClient trap signifies that the sender of the trap is
requesting that traps be forwarded to it."

::= { traps 7 }

userUpdate NOTIFICATION-TYPE

STATUS current

DESCRIPTION

CODE EXAMPLE G-1 Sun Management Center Enterprise Specific Traps
500 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

"A userUpdate trap signifies that the user configuration
information has changed. It is employed by a master agent to inform
its subagents to reload its user configuration data."

::= { traps 8 }

statusOID OBJECT-TYPE

SYNTAX OBJECT IDENTIFIER

MAX-ACCESS accessible-for-notify

STATUS current

DESCRIPTION

"The identification of the object for which the status changed.
This occurs as the first trap-specific varbind in a
statusChangeTrap."

::= { trapInfo 1 }

refreshOID OBJECT-TYPE

SYNTAX OBJECT IDENTIFIER

MAX-ACCESS accessible-for-notify

STATUS current

DESCRIPTION

"The identification of the object for which the value was refreshed
changed. This occurs as the first

trap-specific varbind in a valueRefreshTrap."

::= { trapInfo 2 }

eventInfo OBJECT-TYPE

SYNTAX OCTET STRING

MAX-ACCESS accessible-for-notify

STATUS current

DESCRIPTION

"The event message of the object for which an event was detected.
This occurs as the first trap-specific

varbind in an eventTrap."

::= { trapInfo 3 }

userConfig OBJECT-TYPE

SYNTAX OCTET STRING

MAX-ACCESS accessible-for-notify

STATUS current

DESCRIPTION

"The snmp engine id and the usmUserSpinLock value of the snmp
entity requesting user configuration information. This occurs as
the first trap-specific varbind in a userConfigTrap."

::= { trapInfo 4 }

CODE EXAMPLE G-1 Sun Management Center Enterprise Specific Traps
Appendix G SNMP Trap Subscription 501

SNMP Trap Subscription Support

Sun Management Center agent components (including the Trap Handler) support

SNMP trap subscription. Trap subscription allows interested parties to request

selected SNMP traps be forwarded to them. Sun Management Center agent

components can also subscribe for traps.

Every Sun Management Center agent component supports a MIB that contains the

clientRegistrar node. The clientRegistrar node is located at:

For the SUN enterprise MIB, the corresponding url for this node is:

snmp://<host>:<port>/sym//iso/org/dod/internet/private/enterprises\
/sun/prod/sunsymon/agent/base/trapForward/clientRegistrar#0

To subscribe for SNMP traps from a Sun Management Center agent component, one

performs an SNMP set of a trap subscription specification into the clientRegistrar

node. The trap subscription specification has the following format:

where:

ipAddress is the IP Address of the trap subscriber

snmpPort is the SNMP port of the trap subscriber

specN is the trap filter criteria, filter criteria expressions, or subscription expiry

specification

Trap filter criteria are specified using the following format:

where:

criteria is the trap filter criteria. These criteria are mapped to the contents of the trap

PDU.

regexp is the regular expression for the corresponding criteria

iso.org.dod.internet.private.enterprises...base.trapForward.clientRegistra

{<ipAddress>:<snmpPort> {{{<spec1} {<spec2>} ...}}}

{< criteria> < regexp>}
502 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Possible criteria values are:

trapAddress - IP address of trap originator

trapOID - trap object identifier

oidN - Nth OID in trap varbind

valueN - Nth value in the trap varbind

By default, if multiple trap filter criteria are specified, they are OR'd together. To

modify this behavior, filter criteria expressions can be used.

Filter criteria expressions are specified as follows:

where:

criteriaN is one of the filter criteria specified above

logical operator can be a logical AND '&&' or logical OR '||'

Subscription expiry is specified as follows:

where:

seconds is the number of seconds before subscription is cancelled. For a subscription

that does not expire, 0 can be specified. If the expiry is not specified, it defaults to

~46 days.

For example, if your process is on host:port 204.225.247.123:162 and you wish to

subscribe for linkDown (whose trap OID is 1.3.6.1.6.3.1.1.5.3) traps from any agent,

set the following trap subscription spec:

Similarly, to subscribe for all linkDown (1.3.6.1.6.3.1.1.5.3) and linkUp

(1.3.6.1.6.3.1.1.5.4) traps, set the following trap subscription spec:

{filter-exp {%<criteria1> <logical operator> %<criteria2> ...}}

{expiry <seconds>}

{204.225.247.123:162 {{{trapOID 1.3.6.1.6.3.1.1.5.3}}}}

{204.225.247.123:162 {{{trapOID ^1\\.3\\.6\\.1\\.6\\.3\\.1\\.1\\.5\\.[34]}}}}
Appendix G SNMP Trap Subscription 503

Note – The regular expression includes double backslashes '\\' for the dots '.' since

one set is removed when the expression is processed by the Tcl procedure that

processes the trap subscription request.

To subscribe for all linkDown traps originating from a specific agent on host:port

204.225.247.100:161, set the following trap subscription spec:

{204.225.247.123:162 {{{trapAddress 204.225.247.100} {trapOID\
1.3.6.1.6.3.1.1.5.3} {filter-exp {trapAddress && trapOID}}}}}
504 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Glossary

3-tier architecture The Sun Management Center server stands between the Sun Management

Center console on one end and the Sun Management Center agents on the

other.

Sun Management Center agents provide the data required for manageability.

Sun Management Center console components provide the system monitoring,

control, and configuration user interfaces.

The Sun Management Center server acts as a request broker between the agent

and the console.

ACE Authentication, Compression, Encryption. The ACE layer provides
authentication, compression, and encryption functions for communication
across the interface.

ACLs Access Control Lists. The Sun Management Center agent MIB supports the
specification of multiple levels of SNMP read or write access controls.
These access control (ACL) specifications define the minimum security
level required of users and/or groups to perform SNMP read or write
operations on objects in the MIB.

active nodes An active node is a managed object or managed property that has refresh

information associated with.

agent A software process, usually specific to a particular local managed host, that

carries out manager requests and makes local system and application

information available to remote users.

agent MIB The MIB that corresponds to a specific agent.

alarm An abnormal event, which may be indicative of current or impending

problems, is detected by a Sun Management Center agent. The agent passes

information about the abnormal event to the Sun Management Center server.

The server passes this information on to the user as an alarm when the

abnormal event matches a predefined alarm threshold.
Glossary 505

alarm
acknowledgment Sun Management Center users can acknowledge alarms indicating that the

alarm does not represent a serious problem or that the problem is being

resolved. Acknowledged alarms take a lower priority than unacknowledged

alarms.

alarm file The Alarm File defines information used by alarm checks performed on

managed properties. This file is loaded by the Agent File.

API Application Programming Interface. Examples are alarm API, authenticate

API, data API, and so forth.

Attribute Editor A window that provides information about the selected object. In addition, the

Attribute Editor in the Sun Management Center software enables you to

customize various monitoring criteria for that object. The monitoring criteria

are dependent on the type of object. There are Attribute Editors for domains,

hosts, modules, and data properties.

Base-modules.dat file This file contains three module entries: mib2-system , agent-stats , and
fscan+syslog .

Bourne shell service Essentially an object maintaining a pipe to one or more shell processes to

which commands can be directed and the results returned asynchronously.

check operations Provides a mechanism for triggering refresh operations based on some criteria

tested by the check operation.

community A string similar to a password that is used to authenticate access to an agent’s

monitored data.

complex alarm A complex alarm is based on a set of conditions becoming true. Unlike simple

alarms, you cannot set thresholds for complex alarms. See also simple alarm.

console window A graphical user interface component of Sun Management Center software

based on Java technology that is used to view monitored hosts (and managed

objects) information and status and to interact with Sun Management Center

agents.

DAQ Data aquisition.

data cascade The dissemination of a buffer of data into a tree of managed objects and

managed properties is known as the data cascade.

derived nodes Derived nodes establish dependency relationships with the nodes on which

they rely through the use of the refresh triggers specification.

digitalFilter This function provides a multiply and accumulate function to provide digital

filtering capabilities.
506 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

discovery A Sun Management Center tool available from the main console window that

is used to find hosts, routers, networks, and Simple Network Management

Protocol (SNMP) devices that can be reached from the Sun Management Center

server.

domain An arbitrary collection of hosts and networks that are monitored by the

software as a single hierarchal entity. Users may choose to divide their

enterprise into several domains, each to be managed by different users.

dynamic loadable
modules A Sun Management Center agent module that can be loaded or unloaded at

runtime, enabling monitored properties to be displayed on the main console

window without having to restart the console or agent.

event An occurrence that triggers a change in the state of a managed object.

enterprise module
parameter The enterprise module parameter is used to specify the OIDs file in which

the location of the module is defined.

file scanning The act of scanning a file (usually a log file) for certain patterns (regular

expressions) that may be indicative of problems or significant information. Sun

Management Center agents use file scanning to assist in the monitoring of

systems and applications when these components do not provide direct access

to status information.

filter file These filters are used to extract the pertinent information from the raw results

of data acquisition commands.

fileFilter The filter file defines data filters implemented with Tcl/TOE procedures.

These filters are used to extract the pertinent information from the raw

results of data acquisition commands.

hardware modules These modules mamage hardware for the host on which the agent is running.

For example boards, SIMMs, and so on.

hierarchy view A window view that defines objects in a hierarchy or tree relationship to one

another. Objects are grouped depending on the rank of the object in the

hierarchy.

initHoldoff This qualifier specifies the time, in time specification, to wait before running

the refresh command for the first time.

initInterval This qualifier specifies, in time specification, the time window within which

the node should run the refresh command for the first time after the module

initializes.

instance A single word or alpha-character string that is used internally within the Sun

Management Center agent to identify uniquely a particular module or a row

within a module.
Glossary 507

internal service The internal service should be specified when the refresh command is a Tcl/

TOE command or procedure to be executed in the current node’s context.

localization/
internationalization Sun Management Center consoles and associated GUI clients operate in a

global environment. To do this, a mechanism is required to isolate the
language dependent code/information from the language independent
code and provide a straightforward method for graphical developers to
reference the language dependent information.

managed entities The physical and logical components of a system that are being managed. For

example disks, boards, hosts and networks.

managed object table
primitive This branch primitive is used in conjunction with the MANAGED-OBJECT-TABLE-

ENTRYprimitive when constructing a managed object with a table of managed

properties

manage In Sun Management Center software, manage is defined as being able to

monitor, as well as manipulate an object. For example, management privileges

include acknowledging and closing alarms, loading and unloading modules,

changing alarm thresholds, and so on. Management privileges are similar to

read, write, and execute access.

managed object
classes Building blocks used to model managed entities.

mandatory
parameters All modules must specify the standard set of parameters.

managed object
primitive A primitive used by managed object nodes that are branch nodes in the object

tree.

managed property
classes These classes are used to group together related managed properties of one

managed object .

managed property
class This primitive is used to group related managed properties of a managed

object together.

MEL pg 396

MIB Management Information Base. A MIB is a hierarchical database schema

describing the data available from an agent. The MIB is used by Sun

Management Center agents to store monitored data that can be accessed

remotely.

MIB node service This type of service should be used when the refresh command is to be

executed in the context of another MIB node.
508 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

model file Defines the building blocks used to monitor an entity to be managed.

module A software component that can be loaded dynamically to monitor data

resources of systems, applications and network devices.

monitor In Sun Management Center software, monitor is defined as being able to

observe an object, view alarms and properties. Monitoring privileges are

similar to read-only access.

nested managed
object This managed object contains other managed objects.

node A node is a workstation or server.

object A particular resource (computer host, network interface, software process, and

so on), which is subject to monitoring or management by Sun Management

Center software. A managed object is one that you can manipulate. For

example, you can acknowledge and turn off an alarm condition for an object

that you can manage. A monitored object is one that you can observe but not

acknowledge or otherwise manage.

object manager
primitive This primitive is used to identify the start of a subtree in the hierarchy where

the contents of the subtree may change and must be discovered dynamically.

operating system
modules These modules manage operating system entities for the host on which the

agent is running. For example swap, cpu usage, and so on.

optional parameters These additional parameters are specified in the module’s Parameter File to

facilitate user input for the requisite information when the module is loaded.

pctFilter This function computes the value of a named managed property as a

percentage of another managed property.

passive nodes Nodes that do not actively collect data but instead have data cascaded into

them.

Parameter File Specifies the parameters which the module requires when it is loaded by the

agent.

Prevalidate Actions The purpose of prevalidate actions is to ensure that the value can be set
into the node

postrowActions These actions are triggered to execute after the set but before the
postvalidate actions. command, 181

Postvalidate Actions Post-validate actions can be specified to validate the set value.

procedure file Objects in the MIB tree may need to perform special data acquisition functions

or alarm status actions.This provides a simple mechanism to override or

extend the functionality of the core MIB object primitives.
Glossary 509

rCompareRule This rule performs numeric comparisons, regular expression checks, or string

comparisons.

rateFilter This function accepts the name of a managed property and returns the rate of

change per second for the managed property since the previous sample.

reference node Reference nodes are objects that are loaded for use as a template in the
model file.

refreshFilter The refreshFilter qualifier specifies a Tcl command or procedure that is used to

process the data acquired by the refresh command.

refreshMode
Qualifier The refreshMode qualifier specifies the execution mode of the refresh

command.

refresh operation The refresh operation consists of performing DAQ and disseminating the

acquired data into the appropriate managed property nodes.

refreshParams The refreshParams qualifier can be used to specify arguments to be passed to

the refresh command.

refresh service A refresh service is an object within the agent that can be used for the purposes

of data acquisition.

refreshTrigger Derived nodes establish dependency relationships with one or more nodes on

which they rely on through the use of the refresh triggers specification.

remote modules Capable of managing entities on remote hosts. For example Oracle, Sybase, and

so on.

remote server context A remote server context refers to a collection of Sun Management Center

agents and a particular server layer with which the remote agents are

associated.

request caching The Sun Management Center server consolidates duplicate outstanding

requests originating from multiple consoles and eliminates the execution of

redundant requests.

rollbackActions The purpose of rollback actions is to restore the state of the object after the
failed set.

RMI Remote Method Invocation.

rule A rule is an alarm check mechanism that allows for complex or special purpose

logic in determining the status of a monitored host or node.

seed The password for the Sun Management Center user group called esmaster .

The seed is an alpha-numeric string of up to 8 characters. (This is not

necessarily a UNIX password.) You can select your own seed, or accept the

default seed (maplesyr) provided by the Sun Management Center software. If

you select your own seed, be sure to record it for later reference.
510 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

shadow MIB supports SNMP access to attributes associated with the managed objects
and properties in the agent MIB

superior service The superior service should be specified when the refresh command is a Tcl/

TOE command or procedure to be executed in the context of the current node’s

superior in the tree hierarchy.

server The collection of programs and processes (SNMP-based trap, event, topology,

configuration, and Java server) that work on behalf of a Sun Management

Center user to help manage a particular set of networks, hosts and devices.

Usually sends requests to Sun Management Center agents, accepts collected

data from them, and passes the data to the main console window for display.

server context See “remote server context.”

setActions The setActions specification defines one or more actions to execute when the

value of the object is set via SNMP.

simple alarm Simple alarms are based on one condition becoming true. You may set alarm

thresholds for simple alarms.

SNMP Simple Network Management Protocol. A complex protocol designed to allow

networked entities (hosts, routers, and so on) to exchange monitoring

information.

SNMP Service The SNMP service should be specified when the refresh command is an SNMP

get request for acquiring data from another SNMP agent.

SNMPv2 usec SNMP version 2, user-based security model security standards.

Sun Management
Center superuser Sun Management Center superuser is a valid user on a server host. The

superuser decides what the agents are in the context of the server. By default,

the superuser password is used as a seed for security key generation.

Sun Management
Center user Sun Management Center users are the members of the symon group in the

/etc/group file.

tableRateFilter This function is similar to rateFilter function, except that it operates on a list of

data instead of a scalar.

Tcl Tool Command Language.

Time A time specification format that permits the entry of complex time

specifications, including time windows, specific points in time, and time

intervals.
Glossary 511

timeoutInterval If the refresh command does not complete within the specified time out

interval, then the command will be aborted.

transposeFilter A useful data filter is the transposeFilter , which can be used to
transpose a table of data

TOE Tcl Object Extension.

tooltip Proxy monitoring.

topology view The topology view displays the members of the object selected in the hierarchy

view.

transposeFilter TransposeFilter can be used to transpose a table of data.

updateFilter The update filter specifies a Tcl command or procedure that is used to process

the data being cascaded into the passive node.

URL Uniform Resource Locator. A URL is a textual specification describing a

resource which is network-accessible.

userFilter Loops through each line to determine the console user and count the
number of unique users and sessions.

.x file A Sun Management Center file used to represent TOE objects.
512 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

Index
NUMERICS
3-tier architecture, 258

A
absolute time expressions, 430

ACE, 487

ACL specifications, 186, 505

ACLs

default settings, 189

specifying, 189

activateActions command, 180

activateCommand command, 180

activateService command, 180

active node, 54, 412

ad hoc commands, 168

implementing using families, 192

probe commands, 169

specifying, 169

row-specific, 169

specifying for a managed object, 168

agent

data logging registry service, 377

default I/O service, 377

file scanning service, 378

log file, 361

manage finder cache, 395

master event loop (MEL) service, 376

ping service, 376

shell protocol, 376

shutdown, 395

TOE object tree, 374

agent file, 440, 443, 445, 449

agent interactive mode, 201

exiting the agent, 202

finding attribute value of an object, 213

generating SNMP MIB from a module, 219

importing/exporting a set of object

attributes, 216

starting the agent, 202

viewing the result of an operation on an

object, 215

alarm

.x file format in alarm file, 109

criteria, 101

event

values, 116

hard events, 409

limits, 111

for scalars, 112

for vectors, 112

managing, 441, 452

passed up topology, 489

propagation, 489

rules, 101

assigment of, 102

customized, 102

log rules, 102

severity, 114

soft events, 409

state, 101

state value and severity, 400

status string

format, 400
Index 513

alarm actions, 418

change in status, 419

alarm API, 278

alarm checks, 101, 417

adding, 15

alarm logging, 421

default for alarm types, 110

event propagation, 420

event traps, 420

overview of rules for, 119

rule evaluation, 418

simple comparison, 418

status change, 420

user-defined actions, 421

alarm functionality

GUI guidelines, 353

alarm primitives, 48, 107

alarm types, 107

alarmChecks qualifier, 110

alarmlimit slice, 370

alarms buttons, 333

alarmSeverity qualifier, 114

alarmWindow qualifier, 115

ancestral object relationships, 367

APIs

alarm, 278

authenticate, 263

exception classes, 308

log viewer, 298

managed entity, 286

module, 292

raw data, 265

request status, 265

resource access, 301

architecture

3-tier, 258

ASCII files as file URL, 482

async, 78

attribute editor

rules and internationalization, 325

attributes

internationlization of, 323

internationlization of attribute groups, 323

internationlization of scalar attributes, 324

internationlization of vector attributes, 324

authenticate API, 263

Authentication,Compression,Encryption, 487

availability property, 165

specifying in the agent file, 166

B
base-modules-d.dat file, 385

Bourne shell service

used for data acquisition, 53

used for refresh service, 55

browser root, 391

building a module, 437

C
capitalization in time expressions, 429

cascade scenarios

active scalar, 413

active vector, 413

complex vector, 415

compound scalar, 414

compound vector, 415

derived heterogeneous, 416

nested heterogeneous, 416

table cascade, 415

check operation, 80

checkCommand qualifier, 80

checkInterval qualifier, 80

checkService qualifier, 80

circular log files, 481

classes

and Client API, 261

Java language object, 262

management model primitive, 409

structural property, 409

technique-specific property, 409

TOE object, 373

classpath (Java)

setting, 255

Client API

definition, 261

external interface requirements, 258

types of classes, 261

used for system management, 258

using, 20
514 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

clientRegistrar, 494

clientRegistrar, location, 502

clog, 481

cmdSsinfo function, 96

code examples, See examples

color

GUI guidelines, 346, 347

comparison time specification, 432

condensed URL

interface

clog, 481

desc, 482

file, 482

inet, 483

pipe, 484

syslog, 484

UNIX, 485

intraface

Authentication,Compression,

Encryption, 487

Parameter Insertion and Extraction, 486

transport, 487

specifications, 480

console integration, 241

method summary, 248

consoleHint qualifier, 168

contexts subtree, 381

converters

i18n

UcInternationalizer class, 314

i18N-specific

UcInternationalizer class, 314

CPU, 62

cpuFilter command, 62

cron time specification, 435

cyclic time specification, 431

D
DAQ mechanism, 442

data acquisition

implementation issues

performance, 99

implementing, 52

using a Tcl extension, 95

using C-code libraries and Tcl/TOE command

extensions, 74

using generic C-code libraries, 94

using Tcl and TOE code, 74

using UNIX and shell scripts, 52

integrating with agent file, 52

loading DAQ services, 53

executing with Bourne shell, 53

executing with Tcl shell, 97

specifying node types, 54

active node, 54

derived node, 75

passive node, 75

using cpuFilter, 62

using fileFilter, 64

using loadFilter, 63

using userFilter, 63

data cascade, 52, 412

data logging, 16, 426

automatic, 162

destinations, 427

format, 426

history buffer, 426

of a scalar node to an internal cache, 165

registry, 428

retrieval of data, 428

to a file, 163

circular log file, 164

typical flat file, 164

to internal cache, 163

two rows of a table managed property, 165

data logging registry service, 377

data model

creating, 14

realizing, 15, 51

using procedure file, 88

data model realization, 50

data model specification, 36

data model structure, 39

data model, creating, 439

data modeling

adding alarm types, 48

adding data types, 48

defining the structure, 39

data realization techniques, 61

data slice, 370

data type primitives, 48

data types
Index 515

available, 48

day of week in time expressions, 433

debug mode

activating, 16

default I/O service, 377

definitions

(ACL) access control specifications, 186, 505

active node, 54, 412

check operation, 80

data cascade, 52

data model structure, 39

derived node, 75, 417

hard event, 409

hardware modules, 24

hierarchical summarization, 419

internationalization, 311

local application modules, 24

localization, 312

log rules, 102

managed entities, 406

managed nodes, 406

MIB (Management Information Base), 406, 422

modules, 23

nodes, 39

operating system modules, 24

packages, 95

parameter file (for modules), 28

probe server, 424

reference node, 50, 510

refresh command, 55

refresh operation, 52, 412

refresh service, 412

remote modules, 24

rules (for alarm checking), 119

scoped lookup, 207

soft event, 409

status actions, 101

status string (for alarms), 398

Sun Management Center, 3

Tcl (Tool Command Language), 366

TOE (Tcl Object Extension), 366

unit qualifier, 49

X File format, 370

derived node, 75, 417

refresh parameters, 76

desc, 482

de-selecting objects, 342

Details window

GUI guidelines, 355

Developer Environment

Client API, 260

dictionary operations

defining with TOE commands, 205

exporting agent’s data, 208

importing agent’s data, 208

key, 206

slice, 206

digitalFilter command, 398

documentation

overview, 12

domain menu, 333

dynamic tables

and internationlization of modules, 325

E
enterprise module parameter, 160

event state transition, 127

event trap, 420

examples

absolute time, 430

agent file, 440, 443, 445, 449

agent interactive mode

defining a module, 212

alarm file, 102, 441, 452

alarm type primitives, 108

comparison time, 432

ConfigReader module agent file, 143

ConfigReader module model file, 142

ConfigReader rule (for alarm checking), 148

CPU alarm severity, 114

CPU alarm window, 116

CPU data model structure, 45

CPU status action, 117

createURL method, 267

cyclic time, 431

data primitives, 108

file system data model structure, 47

filesize module, 175

find files, 171

getURLValue method, 266

getUserId method, 268

intermediate data model, 105

log rule (for alarm checking), 148

managed object (scalar), 479
516 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

managed object (vector), 479

managed property (scalar), 475

managed property (scalar, vector), 477

managed property (vector), 476

managed property (vector, scalar), 477

managed property (vector, vector), 478

mib2-proxy-d.x, 460

mib2-proxy-m.x, 454

mib2-proxy-models-d.x, 456

mib2x usage, 200

model file, 439, 448

Module realization, MIB2 proxy module, 462

parameter file, 438, 442, 444, 447

performance data model structure, 46

probe test, 273

procedure file, 451

properties file, 440, 446

refresh services, 55

setURLValue method, 267

simple rules (for alarm checking), 148

SMAlarmObjectRequest class, 278

SMLogViewerTest, 298

SMModuleData class, 292

SMRawDataRequest class, 265

SNMP set, 465

SNMP table management set actions, 185

snmpget, 227

snmpnext, 230

snmpset, 224

snmptrap, 233

snmpwalk, 235

snmpwalktable, 238

Solaris agent file, 89

Solaris m.x file, 150

Solaris model file, 42

Solaris parameter file, 32

Solaris scalar alarm limits, 112

Solaris status strings, 399

Solaris vector alarm limits, 113

specifying ACLs, 189

Sun Management Center Server Login

Connection, 263

Tcl rules, 135

trap action for HP JetDirect, 469

trap subscription, 496

exception classes API, 308

F
famil, 192

family files, 192

file descriptor URL, 482

file name specification, 444

file naming conventions

for module definition files, 27, 401

file scanning

subscribing to detect patterns, 378

unsubscribing pattern detection, 378

file scanning service, 378

file URL, 482

fileFilter command, 64

FLOATHI primitive, 112

fonts

GUI guidelines, 348

for dictionary keys, 370

formatted messages

internationalization of, 316

fulldesc Shadow Attribute, 388

G
getRowData command, 396

getTableDepth command, 396

getValue command, 395

getValues command, 396

globActions command, 186

globCommand command, 186

GLOBROWNODE primitive, 177

globService command, 186

GLOBTABLENODE primitive, 177

graphical user interface guidelines, 329

alarm functionality, 353

cell, row, and column selection (in tables), 347

color, 346, 347

consistency, 330

de-selecting objects, 342

Details window, 355

fonts, 348

graphing, 348

information sources, 331

keyboard navigation, 343

main console, 332

alarms buttons, 333
Index 517

domain menu, 333

layout view, 334

menus, 332

navigation buttons, 333

object icons, 334

scalability issues, 335

server objects, 334

status line, 338

modifying object layouts, 338

modifying topology views, 335

mouse actions, 341

property setting dialog, 350

selecting objects, 342

status messages, 339

table appearance and behavior, 344

table contents, 345

table position (in a window), 347

time-setting, 352

graphing

GUI guidelines, 348

H
HelloWorld module

location of, 219

Helloworld_01 packaging, 357

helloworld-version03-mib.txt file

location of, 219

hierarchical summarization, 419

hierarchy

commands to establish, 203

history buffer, 426

historyLength qualifier, 163

Hostdetails window

launching, 249

I
icons

adding node icons, 177

console, 177

topology view, 177

index qualifier, 170

inet URL, 483

info Branch subtree, 392

agent information, 393

control information, 394

module information, 393

system information, 392

trap information, 393

trapForward information, 394

information model, 406

managed entity modeling, 407

management model primitives, 407

primitive classes, 409

initHoldoff specification, 79

installation script

internationalization of, 326

instance node, 174

instance specification, 156

integration of applications, 22

interface URLs, 481

internal service

used for refresh service, 82

internationalization

and properties files, 34, 312

and ResourceBundle classes, 313

defined, 311

formatted messages, 316

guidelines for, 311

information defined by agents

classes, 319

objects, 319

properties, 319

of a module, 21

of attribute groups, 323

of attributes, 323

of data stored in agents, 318

of data stored in and manipulated by agents, 319

of module instances, 320

of non-ASCII input, 318

of scalar attributes, 324

of the console, 311

of the installation script, 326

of the setup script, 326

of vector attributes, 324

referencing internationalized text, 36

using Java, 20

internet socket interfaces as inet URL, 483

intraface options

Parameter Insertion and Extraction, 486

ISO subtree, 380
518 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

iso*base subtree, 392

J
Java beans

HostdetailsBean, 246

invoking, 247

Java classpath, 255

Java languages object classes, 262

jobAdder, 498

jobRemover, 498

K
keyboard navigation, 343

L
legacy agents, monitoring, 453

linearFit command, 397

loadFilter command, 63

localization

defined, 312

locate command, 396

log rules, 102

log viewer API, 298

M
makefile guidelines, 255

makefile packaging, 358

managed entities, 406

managed entity

components and properties, 37

CPU component, 38

file system component, 38

system component, 38

managed entity API, 286

managed nodes, 406

managed object, 406

scalar, 479

vector, 479

MANAGED- OBJECT structural primitives, 40

managed properties

hiding from the console, 162

managed property

availability, 165

scalar, 475

scalar dimension, 412

scalar, vector, 477

vector, 476

vector dimension, 412

vector, scalar, 477

vector, vector, 478

MANAGED-MODULE primitive, 51

MANAGED-OBJECT-TABLE structural

primitives, 40

MANAGED-OBJECT-TABLE-ENTRY

primitive, 186, 191

MANAGED-OBJECT-TABLE-ENTRY structural

primitives, 41

MANAGED-PROPERTY structural primitives, 40

MANAGED-PROPERTY-CLASS structural

primitives, 40

Management Information Base (MIB), 406, 422

ad-hoc probe operations, 424

ad-hoc SNMP operations, 423

shadow, 423

management model primitives, 407

primitive classes, 409

managing alarms, 441, 452

MEL (master event loop) service, 376

menus, 332

MIB manager

browser root, 391

module checker, 390

module loader, 390

module tables, 391

URL/OID finder, 387

MIB node service

used for refresh service, 83

MIB OIDs mapping file

legacy, 458

loading, 459

mib2x syntax and options, 199

mib2x tool, 198

MIB-specific traps, 499

mod type in SNMP URLs, 474

model
Index 519

data, 439

example file, 439, 448

modifying, 447

realizing, 440

module API, 292

module availability, 190

core modules, 167

module checker, 390

module loader, 390

module models file, 456

module parameter files, 453

module realization file, 459

module tables, 391

module trap action definition, 465

moduleAvailability function, 166

modules, 14, 422

accessing table property, 389

building, 13, 437

building process, 401

module naming, 25

specifying parameters, 28

testing changes to a module, 401

creating a data model, 14

defined, 23

definition files

binary extensions, 404

location of, 404

mandatory, 403

optional, 403

standard descriptors, 28, 402

standard extensions, 28, 402

definition files for

x.file format, 24

determining availability of, 405

file naming conventions for, 27, 401

hardware, 24

installing module files, 16

internationalization of, 21, 320

module instance naming, 320

module parameters, 321

use of dynamic tables, 325

loaded by agent, 382

loading, 16

local application, 24

managing via agent framework, 379

MIB manager, 386

MIB subtrees, 379

module loading, 383

naming, 438, 446

naming definition files, 14

not loadable, 159

operating system, 24

realizing a data model, 15

remote, 24

required components, 27

specifying parameters, 14

subtrees, 382

writing for SNMP MIB, 18

monitoring legacy agents, 453

monitoring multiple files, 446

mouse actions, 341

multiple files, monitoring, 446

N
naming a module, 438, 446

naming conventions, SNMP trap file, 466

navigation buttons, 333

nodes, 39

action, 395

adding descriptions for, 49

adding icons for, 177

association with rules (for alarm checking), 123

cache, 395

description qualifiers, 49

instance node, 174

multiple rule requirement, 124

structural primitives, 39

MANAGED-OBJECT, 40

MANAGED-OBJECT-TABLE, 40

MANAGED-OBJECT-TABLE-ENTRY, 41

MANAGED-PROPERTY, 40

MANAGED-PROPERTY-CLASS, 40

non-ASCII input

internationalization of, 318

nternationalization

information defined by agents, 319

O
object

shell service, 374

TOE objects, 367
520 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

object icons, 334

object layout

modifying, 338

object property dictionary, 369

X File format, 370

object property dictionary keys, 369

object property dictionary slices, 370

object relationships

ancestral, 367

ancestral and structural, 368

structural, 368

oid type in SNMP URLs, 473

operational model, 411

cascade scenarios, 412

data acquisition scenarios, 412

operation sequence, 411

P
packages

command registration, 96

issues when creating, 95

package naming, 95

returning data into Tcl, 96

writing initialization procedure, 95

package registration, 95

packaging

component naming, 360

Helloworld_01, 357

makefile, 358

package dependencies, 360

prototype file, 360

SUNWesagt, 360

SUNWessrv, 360

package naming, 359

package versioning, 359

prototype file entries, 358

assign file attributes, 358

copyright, 358

depend, 358

directory creation, 358

pkginfo, 358

parameter file, 28

example, 438, 442, 444, 447

instance specification, 156

mandatory lines, 29, 33

used for internationalization, 34

Parameter Insertions and Extraction, 486

parameters

displaying parameter groups, 158

enterprise module, 160

instance, 156

instanceName, 156

module, 384

referencing, 161

patterns

subscribing for detection during file

scanning, 378

unsubscribing for detection during file

scanning, 378

pctFilter command, 397

PERCENTHI primitive, 106

PERCENTLO primitive, 106

persistence, 167

persistentSlices qualifier, 167

PIE, 486

ping service, 376

pipe URL, 484

port 161, 237

postrowActions command, 181

postrowCommande command, 182

postrowService command, 182

primitives

FLOATHI, 112

GLOBROWNODE, 177

GLOBTABLENODE, 177

MANAGED-MODULE, 51

MANAGED-OBJECT-TABLE-ENTRY, 186, 191

PERCENTHI, 106

PERCENTLO, 106

ROWSTATUS, 178, 191

RULE, 124

private enterprise subtree, 382

probe command security, 172

limiting top probe command, 172

probe connection

establishing, 425

probe queries, 170

probe server, 424

probe test example, 273

procedure file, 451

properties file, 440, 446

server override, 161
Index 521

properties files

used for internationalization, 312

using the correct class loader for

internationalization, 313

property setting dialog, 350

prototype file entries, 358

proxy monitoring

additional information, 454

data acquisition, 460

legacy MIB OID mapping, 458

module models file, 456

module parameter file, 453

module realization file, 459

Q
qualifiers

alarm ruler, 120

alarmChecks, 110

alarmRules, 120

alarmSeverity, 114

alarmWindow, 115

checkCommand, 80

checkInterval, 80

checkService, 80

consoleHint, 168

for active nodes, 54

for node descriptions, 49

historyLength, 163

index, 170

initHoldoff, 79

persistentSlices, 167

predefined optional, 153

refresh, 55

refreshCommand, 55

refreshFilter, 73

refreshInterval, 56

refreshMode, 78

refreshParams, 78

refreshService, 55

refreshTrigger, 76

timeoutInterval, 76

unit qualifier, 49

updateFilter, 81

qualifiers, accessing with SNMP URLs, 475

R
rateFilter command, 397

rateFilter64 command, 397

raw data API, 265

realizing the model, 440

reference node, 50, 510

referencing parameters, 161

refresh command, 55

refresh operation, 52, 412

refresh parameters, 76

refresh qualifiers, 89, 97

initHoldoff, 79

refreshCommand, 55

refreshFilter, 73

refreshInterval, 56

refreshMode, 78, 79

refreshParams, 78

refreshService, 55

Bourne shell, 55

internal service, 82

SNMP service, 82

superior service, 82

refreshServiceMID node service, 83

refreshTrigger, 76

specifying node name, 77

timeoutInterval, 76

updateFilter, 81

refresh service, 412

refresh triggers, 75

refresh variables

determining rule to invoke for object, 132

refreshCommand specification, 55

refreshFilter specification, 73

refreshInterval specification, 56

refreshMode specification, 78

refreshParams specification, 78

refreshTrigger events, 77

refreshTrigger specification, 76

request status API, 265

resource access API, 301

ResourceBundle

management of, 315

ResourceBundle classes

used for internationalization, 313

using the correct class loader for
522 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

internationalization, 313

return strings, 129

REVISION macro, 359

RFC1903, 173, 325

rollbackActions command, 185

rollbackCommand command, 185

rollbackService command, 185

ROWSTATUS primitive, 174, 178, 191

RULE primitive, 124

ruleFire procedure, 128

rules

in the attribute editor

and internationalization, 325

rules (for alarm checking), 119

assigning values to rule parameters, 144

assignment via refresh variables, 132

attaching to module configuration files, 142

event states and transitions, 127

event status, 129

valid return strings, 129

implementation via Tcl, 131, 134

major steps to create, 137

methods callable by rules, 129

multiple rule requirement, 124

naming convention, 120

not attached to node, 124

relationship to derived objects, 120

rule designer access to data, 126

rule files, 121

base rules, 122

custom rules, 123

module specific, 121

rule invocation, 128

rule placement in hierarchy, 123

rule priority, 121

rule template, 137

specifying text messages, 144

English status message, 145

internationalized status message, 146

Tcl file format, 136

variables, 125

dynamic, 125

editable, 125

static, 125

temporary, 125

runadhoccommand shadow MIB attribute, 172

S
scalar alarm limits, 112

scoped lookup, 207

selecting objects, 342

server override properties file, 161

setActions command, 184

setCommand command, 184

setrowActions command, 183

setrowCommand command, 183

setrowService command, 183

setService command, 184

setup script

internationalization of, 326

setValue command, 396

shadow MIB, 423

default attributes, 423

shadow operations, 475

shell protocol

between agent and shell, 376

shell service object, 374

SNMP agent

monitoring legacy agents

data acquisition, 460

MIB OIDs mapping file, 458

MIB OIDs mapping file, loading, 459

module models files, 456

module parameter file, 453

use of port 161, 237

SNMP commands

snmpget, 225

snmpnext, 228

snmpset, 221, 497

snmptrap, 231

trap type inforrmation, 233

snmpwalk, 234

snmpwalktable, 236

SNMP interface

publishing, 18

SNMP jobs, periodic, 493

SNMP MIB

writing modules for, 18

SNMP security, 186

levels of logical users, 187

admin, 187

general, 187

operator, 187
Index 523

logical users, groups, and community

names, 187

security levels, 188

auth, 188

default ACLs, 189

noauth, 188

none, 188

priv, 188

SNMP service

used for refresh service, 82

SNMP set

example, 465

module trap action definition, 465

naming conventions, 466

valid parameters, 467

SNMP sets

SNMP table management, 173, 178, 446

data formats for managed properties, 175

global table or row actions, 176

instance node, 174

required values for managed properties, 174

ROWSTATUS primitive, 174

user-defined action

postrow actions, 181

user-defined actions, 179

activating, 179

global actions, 186

postvalidate actions, 182, 509

prevalidate actions, 181, 509

rollback actions, 185

set actions, 184

setrow actions, 183

set-value process, 180

SNMP table management commands, 190

adding a row, 191

disabling a row, 192

editing a row, 191

enabling a row, 192

loading a module instance, 192

removing a row, 191

SNMP trap

alarm, 492

clientRegistrar, 494

jobAdder, 498

jobRemover, 498

MIB-specific, 499

subscription, 493

subscription example, 496

SNMP URLs

advantages over URLs, 472

examples

managed object (scalar), 479

managed object (vector), 479

managed property (scalar), 475

managed property (scalar, vector), 477

managed property (vector), 476

managed property (vector, scalar), 477

managed property (vector, vector), 478

format, 472

mod type, 474

oid type, 473

See also condensed URL

shadow operations, 475

sym type, 473

types

module, 474

numeric, 473

symbolic, 473

ssinfo command arguments, 96

status, 489

status actions, 101

status changes, 489

status line, 338

status messages, 339

statusChange trap, 420

structural object relationships, 368

structural primitives, 39

subscribing, SNMP traps, 493

subtrees

context, 381

info Branch, 392

ISO, 380

iso*base, 392

modules, 382

private enterprise, 382

Sun Management Center

defined, 3

Sun Management Center 3-tier architecture, 258

SUNWesagt package dependency, 360

SUNWessrv package dependency, 360

superior service

used for refresh service, 82

sym type in SNMP URLs, 473

sync, 79
524 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

syslog URL, 484

T
table appearance and behavior, 344

table contents

GUI guidelines, 345

table property

accessing in a module, 389

tableRateFilter command, 397

tableRateFilter64 command, 397

Tcl (Tool Command Language)

used to develop agents, 366

Tcl clock command, 424

Tcl command extension package

used for data acquisition, 97

Tcl commands

ssinfo, 89

Tcl_AppendElement, 96

Tcl_AppendResult, 96

used as refresh commands or filters, 395

digitalFilter, 398

getRowData, 396

getTableDepth, 396

getValue, 395

getValues, 396

linearFit, 397

locate, 396

pctFilter, 397

rateFilter, 397

rateFilter64, 397

setValue, 396

tableRateFilter, 397

tableRateFilter64, 397

toe_send, 396

transposeFilter, 397

valueOf, 395

Tcl file command, 424

Tcl filters

used for data acquisition, 73

Solaris example, 73

Tcl procedures

used for data acquisition, 89

Tcl shell service

used for data acquisition, 97

Solaris example, 98

Tcl_CreateCommand function, 96

time expressions

absolute, 430

capitalization in, 429

comparison, 432

cron, 435

cyclic, 431

day of week, 433

notation, 429

variable substitution, 436

white space, 429

timeoutInterval specification, 76

time-setting

GUI guidelines, 352

TOE (Tcl Object Extension)

used to develop agents, 366

TOE commands

creating new TOE object, 202

define dictionary operations, 205

defining class, 209

destroying TOE object, 202

establish relationship among objects, 203

establishing hierarchy, 203

load classes or binary packages to an agent, 210

navigating object tree, 208

set object context, 204

TOE functions

how rules access agent object data, 133

TOE object tree, 374

toe_send command, 396

topology agent API, 304

topology views

modifying, 335

transport types, 487

transposeFilter command, 397

Trap Handler, 502

troubleshooting

console, 363

error messages, 363

module loading, 361

agent log file error messages, 362

console error messages, 362

interactive agent error messages, 363

tutorial, model building, 437
Index 525

U
unit qualifier, 49

UNIX URL, 485

updateFilter specification, 81

URL/OID finder, 387

converting OID URL, 387, 388

URLs

purpose, 471

See also condensed URL

See also SNMP URLs

userFilter command, 63

V
valid parameters for SNMP trap files, 467

validateActions command, 181

validateActions(post) command, 182, 509

validateCommand command, 181

validateService command, 181

value slice, 370

valueOf command, 395

variable substitution specification, 436

vector, 476

vector alarm limits, 112

VERSION macro, 359

W
white space in time expressions, 429

X
X File format, 370

x file format in alarm file, 109
526 Sun Management Center 2.1 Developer Environment Reference Manual • December 1999

	Sun™ Management Center 2.1 Developer Environment Reference Manual
	Contents
	1. Sun Management Center and the Developer Environment� 3
	2. Sun Management Center Developer Environment Installation� 7
	3. Introduction to the Reference Manual� 11
	4. Introduction to Modules� 23
	5. Building a Simple Module� 27
	6. Advanced Data Model Realization Techniques� 61
	7. Alarm Management� 101
	8. Rules� 119
	9. Additional Specifications for a Module� 149
	10. Modules and SNMP� 173
	11. Agent Interactive Mode � 201
	12. Developer Environment Tools� 221
	13. Console Integration� 241
	14. Client API� 257
	15. Internationalization Guidelines� 311
	16. Graphical User Interface Guidelines � 329
	17. Sun Management Center 2.1 Developer Environment Packaging� 357
	18. Troubleshooting� 361
	A. Modules Appendix� 365
	B. Time Expression Specifications� 429
	C. Module Building Tutorial� 437
	D. SNMP Proxy Monitoring Modules� 453
	E. URL Specifications� 471
	F. Status Propagation� 489
	G. SNMP Trap Subscription� 493

	Figures
	Tables
	Procedures and Examples
	Preface

	Audience
	Contents in this Manual
	Access to Up-to-date Information on the Developer Environment
	Using UNIX Commands
	Shell Prompts
	TABLE�P�1 Shell Prompts

	Typographic Conventions
	TABLE�P�2 Typographic Conventions

	Sun Documentation on the Web
	Related Documentation
	TABLE�P�3 Related Documentation
	1. Sun Management Center 2.1 Software User’s Guide
	2. Sun Management Center 2.1 Software Release Notes
	3. Sun Management Center 2.1 Software CD Installation Guide
	4. Sun Management Center 2.1 Developer Environment Release Notes
	1. 806-3166-10
	2. 806-3168-10
	3. 804-6849-10
	4. 806-3169-10

	Sun Welcomes Your Comments
	I Introduction to Developer Environment
	1
	Sun Management Center and the Developer Environment

	Sun Management Center Framework
	FIGURE�1�1 Sun Management Center Components
	Sun Management Center Console
	Sun Management Center Server
	Sun Management Center Agent

	Sun Management Center Developer Environment
	2
	Sun Management Center Developer Environment Installation

	Uninstalling Previous Versions of Sun Management Center Software
	Sun Management Center Developer Environment Licensing
	Installing the Sun Management Center Developer Environment From CD
	TABLE�2�1 Related Installation Documents�

	Code Examples and Client API
	3
	Introduction to the Reference Manual

	The Different Parts of this Manual
	Accessing Information in this Manual
	1. Installing Sun Management Center Developer Environment
	2. Building Modules
	3. Writing Rules
	4. Building Consoles
	5. Using Client API
	6. Conforming to Internationalization & GUI Guidelines
	7. Packaging Your Product
	8. Working within the Agent Interactive Mode

	Building Modules
	1. Name Module Definition Files.
	2. Specify Module Parameters.
	3. Create a Data Model.
	4. Realize the Data Model.
	5. Add Alarm Checks.
	6. Install Module Files.
	7. Load a Module.
	8. Log Data and To Activate Debug Mode.
	9. Write a Module from an existing SNMP MIB.
	10. Publish an SNMP Interface.
	Name Module Definition Files
	Specify Module Parameters
	1. Decide on the module requirements.
	2. Specify the standard or mandatory set of parameters.
	3. Specify any optional parameters that are required for the module.
	4. Specify any parameters for internationalization.

	Create a Data Model
	1. Identify the components and properties that must belong to the module.
	2. Define the data model structure.
	i. Add the structural primitive.
	ii. Assign data and alarm and rule type primitives to properties.
	iii. Add the node description and units.
	iv. Add the qualifiers for internationalization.

	Realize the Data Model
	1. Determine the data acquisition method to use:
	2. Incorporate the data model into the module framework.
	3. Add data acquisition services.
	4. Add operational types to the node.
	5. Add refresh parameters.

	Add Alarm Checks
	1. If a property has a threshold type alarm check, define thresholds in the file: <module>-d.def....
	a. Specify the alarm criteria.
	b. Specify alarm severity.
	c. Specify alarm actions.

	2. If the property has rules:
	a. Determine if the rules need to have any editable threshold parameters.
	b. Define all the rule initialization parameters in the file: <module>-ruleinit-d.x.
	c. Create the rules. The <module>-d.rul file contains the rule logic.
	d. Assign the appropriate rule to the property in the <module>-d.x file using the alarmRule quali...

	Install Module Files
	Load a Module
	1. Start all Sun Management Center components.
	2. In the Sun Management Center console, highlight the host you want to monitor with your new mod...
	3. Bring up the Load Module Window. Select the module you want to load.

	Log Data and To Activate Debug Mode
	a. Go to the following directory:
	b. Edit the domain-config.x file.
	a. Start the agent interactively:
	b. Close any existing debug level currently set:
	c. Open a new debug channel, for example:
	d. To enable the corresponding debug level:

	Write a Module from an existing SNMP MIB
	1. Use MIB2x to generate the module configuration files.
	2. Update the module configuration files to implement data acquisition.
	3. Write the data acquisition code, with one or more of the following:
	4. Write the rules on the data properties, if required.
	5. Install the module configuration files and other libraries/scripts/procedure files.
	6. Load the module into the agent.

	Publish an SNMP Interface
	1. Prepare the data model with the following information:
	2. Write a models file for the data model.
	3. Write the data acquisition code.
	4. Write the rules on the data properties if required.
	5. Install the module configuration files and other libraries/scripts/ procedure files.
	6. Start the agent in interactive mode.
	7. Load the module into the agent.
	8. Use mibExport to export the SNMP MIB for the module.

	Building Consoles
	Build Your Own Console
	1. Design the graphical user interface (GUI) using the Java programming language.
	2. Obtain information from Sun MC programmatically through the Client API.
	3. Invoke the Host Details bean to incorporate all the functionality provided in the console Host...

	Using Client API
	Use the Client API
	1. Log in to the session.
	2. Get the SMRawDataRequest handle from the SMClientRMIImpl Class.
	3. Use it in the constructor of other API class categories.
	4. Start using the classes documented in the Client API section.

	Conforming to Internationalization and GUI Guidelines
	Work With a Java Application
	1. Create a .properties file for all text to be internationalized.
	2. Import the UcInternationalizer class into your objects:
	3. Wherever you display text that needs to be internationalized, enter UcInternationalizer.transl...

	Internationalize a Module
	1. Internationalize the module loader window:
	a. In the module parameter file (*-m.x), add two lines for each item to be internationalized. The...
	b. Add the internationalized parameters to the list of parameters to be displayed in the module l...
	c. Create a property file. The name of the file is <module>.properties.
	d. Add an entry in the properties file for each internationalized string. The entry is of the for...

	2. Internationalize the text within the module.
	a. In the module models file, add the following line for each node:
	b. In the properties file created in Step c above, add the key/value for each internationalized s...
	c. For example, key/value pair for the fileid node for the Fscan module is:

	Integrating Applications
	4
	Introduction to Modules

	Modules Definition
	How to Load Modules
	Basic Module Building Concepts
	Types of Modules
	Module Naming
	Module Names and Subspecs
	SNMP & Modules
	5
	Building a Simple Module

	Required Components
	File Naming Conventions
	TABLE�5�1 Standard Descriptors for Module Definition Files
	Standard Extensions
	TABLE�5�2 Standard Extensions for Module Definition Files

	Parameters Specification
	Creating a Parameter File
	1. Specify the mandatory parameters in the parameter file.
	2. Identify any additional parameters required by the module and add the appropriate entries to t...

	Mandatory Parameters
	Example Parameter File

	Internationalizing Modules
	Mandatory Parameters for Internationalization in the Parameters File
	Properties File
	Example Properties File

	Referencing Internationalized Text

	Data Model Specifications
	Creating a Data Model
	1. Identify the components that comprise the entity to be managed.
	2. Define the data model.
	3. Add node descriptions.

	Identifying Components and Properties of Managed Entity
	Solaris Example—Components and Properties
	CPU
	System
	File System

	Defining the Data Model Structure
	Node Definition and Trees
	Structural Primitives
	MANAGED-OBJECT
	MANAGED-PROPERTY
	MANAGED-PROPERTY-CLASS
	MANAGED-OBJECT-TABLE
	MANAGED-OBJECT-TABLE-ENTRY

	Example Data Model File
	Solaris Example—Model File
	CODE�EXAMPLE�5�1 Solaris Example—Model File �

	Solaris Example—CPU Data Model Structure
	FIGURE�5�1 Simple Managed Object
	CODE�EXAMPLE�5�2 Module Configuration File Format �

	Solaris Example—Performance Data Model Structure
	FIGURE�5�2 Performance Managed Object
	CODE�EXAMPLE�5�3 Performance Data Model Structure

	Solaris Example—filesystems Data Model Structure
	FIGURE�5�3 Managed Object with Tabular Properties
	CODE�EXAMPLE�5�4 File System Data Model Structure Code

	Adding Data Types
	Available Data Types

	Adding Node Descriptions
	Node Type Based on Operational Behavior

	Simple Data Model Realization
	Steps Involved in Data Model Realization
	Mandatory Contents of Every Data Model Realization File
	Implementing Data Acquisition Mechanisms
	UNIX Programs and Shell Scripts

	Integrating Data Acquisition
	Loading the DAQ Services
	Bourne Shell Services

	Node Type Based on Operational Behavior
	Active Nodes

	Mandatory RefreshQualifiers for Active Nodes
	refreshService
	Bourne Shell Service

	refreshCommand
	refreshInterval

	Example of a Simple Module
	Example Data Model Realization File
	CODE�EXAMPLE�5�5 Solaris Example Model Realization File �

	The solaris-example-console-user-d.sh File
	CODE�EXAMPLE�5�6 The solaris-example-console-user-d.sh File
	6
	Advanced Data Model Realization Techniques

	What are Filters
	Standard Extensions for File Name
	Examples of Filters
	CPU Data Filter
	User Data Filter
	Load Data Filter
	File System Data Filter

	Adding Filters to Data Model Realization
	Example Data Model File
	CODE�EXAMPLE�6�1 The solaris-example-models-d.x File�
	CODE�EXAMPLE�6�2 The solaris-example.properties File�

	Example Data Model Realization File Using Tcl Filters
	CODE�EXAMPLE�6�3 Solaris Example Model Realization File �
	CODE�EXAMPLE�6�4 The solaris-example-primary-user-d.sh File�

	Loading the DAQ Services
	Tcl Filters

	RefreshQualifier for Filters
	refreshFilter
	Solaris Example—Loading the Filter File
	CODE�EXAMPLE�6�5 Loading the Filter File

	Advanced Data Acquisition Mechanisms
	Tcl/TOE Code
	C Code Libraries and Tcl/TOE Command Extensions

	Other Node Types based on their Operational Behavior
	Passive Nodes
	Derived Nodes

	refreshQualifiers & Other Qualifiers
	timeoutInterval
	refreshTrigger
	Specifying Node Name
	Specifying RefreshTriggers from a Node in Another Module

	refreshParams
	refreshMode Qualifier
	async
	sync

	initInterval
	initHoldoff
	Check Qualifiers
	checkCommand, checkService and checkInterval

	updateFilter
	refreshService
	SNMP Service
	Internal Service
	Superior Service
	MIB Node Service

	Data Model Realization Specifications with Tcl procedures as DAQ
	Example Data Model File
	CODE�EXAMPLE�6�6 Solaris Example Model File �
	CODE�EXAMPLE�6�7 Solaris Example Model Realization File �
	CODE�EXAMPLE�6�8 The solaris-example-system.prc File �
	CODE�EXAMPLE�6�9 The solaris-example-average-d.flt File �

	Standard Extension for File Name
	Loading the DAQ Services
	Tcl Procedures

	Node Type Based on Operational Behavior
	Refresh Qualifiers

	Data Model Realization Specifications with C libraries and Tcl/TOE Command Extensions as DAQ
	Solaris Example Data Model Realization File
	CODE�EXAMPLE�6�10 Agent File Modifications�
	CODE�EXAMPLE�6�11 Code Fragments From ssi Package File�
	CODE�EXAMPLE�6�12 DAQ C code�

	Steps Involved
	Writing a C Library
	CODE�EXAMPLE�6�13 Code Fragment Used to Retrieve System Load Average �

	Writing a Tcl Extension
	Package Naming
	Init Function
	Package Registration
	Command Registration
	Returning Data into Tcl

	Loading the DAQ Services
	Tcl Command Extension Packages

	Node Type Based on Operational Behavior
	Refresh Qualifiers

	Another DAQ Service
	Tcl Shell Service
	1. Create binary extensions in the form of a Tcl package.
	2. Create a simple Tcl wrapper script to load the packages required by the subshell.
	3. Add a Tcl shell service object in the agent file.
	Solaris Example—Tcl Shell

	Performance Considerations
	7
	Alarm Management

	What are Alarms
	Modules and Alarms
	Built-In rCompare Rule
	Writing Custom Rules

	Alarm Management using rCompare Rule
	Example Alarm File (solaris-example-d.def)
	CODE�EXAMPLE�7�1 Alarm File�

	Managing Alarms using rCompare
	1. Create the rule in the models file.
	2. Create the alarm definition file.
	3. Speficy alarm limits and other alarm criteria.
	4. Specify actions to be performed based on the alarm state.

	Using the rCompare Rule in the Models File
	Example—Intermediate Data Model
	CODE�EXAMPLE�7�2 Solaris Example—Intermediate Data Model�

	How to specify Alarms in the Data Model File
	Alarm Types
	Data and Alarm Type Primitive Examples

	Required Content in the Model Realization File
	Creating the Alarm File
	File Name
	Contents

	Specifying the Alarm Criteria
	Specifying Alarm Checks
	Alarm Checks
	Specifying Alarm Limits
	Scalars
	Solaris Example—Scalar Alarm Limit
	Vectors
	Solaris Example—Vector Alarm Limit

	Alarm Severities
	TABLE�7�1 Alarm Severities
	Solaris Example—CPU Alarm Severity

	Alarm Window
	Solaris Example—CPU Alarm Window

	Specifying Status Actions
	Solaris Example—CPU Status Action
	8
	Rules

	Rules Agent Infrastructure
	Rules and Derived Objects
	Rule Naming
	Rule Assignment

	Rule Files
	Module-Specific Rules
	General Rules or Base Rules
	Rules Created By Clients

	Rule Placement in Hierarchy
	A Node Can Require More Than One Rule
	Rule Can Have No Natural Node to be Attached to
	Node Can Have a Rule but No Data

	Rules Attributes
	Rule Data Storage
	TABLE�8�1 Rule Variables
	TABLE�8�2 Rule Message Key
	TABLE�8�3 Rule Designer Access to Internal Data�

	Rule State Transitions
	TABLE�8�4 Rule State Transistions and Events

	Rule Invocation Procedure (ruleFire)
	1. Invoke the specified rule procedure, specifying an init action if initialization is required, ...
	2. Invoke the specified rule procedure to determine whether the event condition is true or false ...
	3. Determine the current rule/event state (for example, open, continue, close), based on the eval...
	4. The following state transitions can occur based on evaluating the condition and the current ru...
	5. Invoke the specified rule procedure, whenever an end-user performs an ack or fix action on a c...
	6. Perform internal processing to maintain the state of the rule and related events.

	Rule Event Status
	TABLE�8�5 Rule Event Status

	Rule Functions
	TABLE�8�6 Rule Functions�

	Third Party Rule Engine Interface Functions
	Rule Loading
	Rule Assignment
	Key TOE Functions
	TABLE�8�7 Key TOE Functions�

	How to Write A Tcl Rule
	Tcl Rule Example
	CODE�EXAMPLE�8�1 Tcl Rule Example�

	Tcl Rules File Format
	CODE�EXAMPLE�8�2 Tcl rules File Format
	Tcl Rule Template
	Guidelines
	1. Determine the name for the rule (for example, rcr4u209). The name must be unique across all ru...
	2. Determine the initial values for any static (for example, group), or editable parameters requi...
	TABLE�8�8 Datatypes Allowed

	3. Define a description of the rule and its parameters; this description is displayed in the Attr...
	4. Determine any text messages (for example, .rcr4u209msg) that belong with the rule, and add the...
	5. Design the Tcl code for all possible states/actions; the rule is basically a switch statement,...
	6. For log rules, use logSubscribe in the init case; specify the regular expressions in parenthes...
	7. Only use getRuleParm/setRuleParm to read/write parameters that are saved between rule invocati...
	8. Source the rules in the module configuration file through a special node, _rules (see config-r...
	9. Attach the rule to the appropriate node(s) in the module models configuration file (for exampl...
	CODE�EXAMPLE�8�3 Template�

	Attaching a Rule to the Module Configuration Files
	CODE�EXAMPLE�8�4 Module Model File�
	The Module Agent File
	CODE�EXAMPLE�8�5 Module Agent File

	Assigning Initial Values to Rule Parameters
	Specifying Rule Text Messages
	English Status Message
	Internationalized Status Message

	More Examples Of Rules
	CODE�EXAMPLE�8�6 Simple Rule�
	Config Reader Rule
	Log Rule
	CODE�EXAMPLE�8�7 Log Rule
	9
	Additional Specifications for a Module

	Additional Parameter Specifications
	Example: Solaris m.x File
	Additional Parameters
	Predefined Additional Qualifiers
	TABLE�9�1 Predefined Additional Qualifiers�

	Creating Multiple Instances of a Module
	Instance Specification

	Organizing Module Parameters
	Making a Module Not Loadable
	Alternate Way of Specifying a Module Location
	Enterprise Module Parameter
	Referencing Parameters

	Improving Performance using Server Override Properties File
	Server Override Properties File
	Example Server Override Properties File

	Additional Data Model Specifications
	Specifying Hidden Managed Properties
	Data Logging Support
	Automatic Data Logging
	Logging To Internal Cache
	Logging To File
	To Log Data to a Typical Flat File
	To Log Data to a Circular Log File
	Logging Data of a Scalar Node to an Internal Cache
	Logging Two Rows of a Table Managed Property

	Specifying Module Availability
	Specifying the Availability Property in the Agent File
	CODE�EXAMPLE�9�1 Specifying Availability Property

	Making a Module a Core Module
	Core Modules

	Persistence

	Specifying Adhoc Commands
	Command Specification
	Row-Specific Commands
	Probe Commands
	To Specify a Probe Command
	Row Dependent Probe Queries
	Find Files Example
	CODE�EXAMPLE�9�2 Find Files
	CODE�EXAMPLE�9�3 Entry in the Solaris Example Properties File

	Probe Command Security
	To Limit Top Probe Command
	10
	Modules and SNMP

	Adding Support for SNMP Table Management
	ROWSTATUS Primitive
	Instance Node
	Required Values
	Data Formats
	Example—Filesize
	CODE�EXAMPLE�10�1 Model file For the Filesize Module�

	Adding Support for Global Table or Row Actions
	Adding Node Icons
	Adding SNMP Table Management
	User-defined Actions
	Activate Actions
	SNMP Set Actions
	1. Prevalidate the set.
	2. Set the value (no actions can be defined at this stage).
	3. Post-set check for ROWSTATUS nodes only.
	4. Post-validate the set.
	5. Row set actions for ROWSTATUS nodes only.
	6. Set actions.

	Prevalidate Actions
	postrow Actions
	TABLE�10�1 Allowable rowstatus States�

	Postvalidate Actions
	setrow Actions
	Set Actions
	CODE�EXAMPLE�10�2 Set Actions

	Rollback Actions
	Global Actions

	Adding SNMP Security
	Logical Users, Groups, and Community Names
	CODE�EXAMPLE�10�3 Default Memberships to Logical Users, Groups and Communities

	Security Levels
	Default ACLs
	CODE�EXAMPLE�10�4 Default ACL settings for All Nodes

	Examples—Specifying ACLs
	CODE�EXAMPLE�10�5 Specifying Authenticated/Encrypted SNMP get and set Requests
	CODE�EXAMPLE�10�6 Specifying Requests without SNMP set operations for UNIX User
	CODE�EXAMPLE�10�7 Permitting admin/operator to Perform SNMP get and set

	Using SNMP Table Management Commands
	To Add a Row
	To Remove a Row
	To Edit a Row
	To Disable a Row
	To Enable a Row
	To Load a Module Instance
	Example: Adhoc SNMP Table Management
	CODE�EXAMPLE�10�8 Adhoc SNMP Table Management Commands

	Example: Additional Objects to the Solaris Example File
	CODE�EXAMPLE�10�9 Additional Objects to the Solaris Example Model d.x File

	Sending Traps from the Agent
	Example: Agent File
	CODE�EXAMPLE�10�10 Example of the Agent File

	Using the mib2x Tool
	mib2x Syntax
	TABLE�10�2 mib2x Syntax and Options �

	Examples of mib2x
	11
	Agent Interactive Mode

	Working in the Agent Interactive Mode
	To Work Within the Agent Interactive Mode
	To Exit the Environment

	Tcl/TOE Commands
	Object Creation
	Object Relationship
	Object Interaction
	Dictionary Operations
	Object/Dictionary I/O
	Interactive Object Tree Navigation
	Class Definition
	Class/Package Loading

	Agent Interactive Mode Usage Examples
	To Define a Module
	To Find the Attribute Value of a Certain Object
	1. Navigate to the specific object.
	a. Determine the current object:
	b. Determine the objects directly under this object:
	c. Determine the current object:
	d. Go to the specified object:

	2. View all slices (logic groups) in the current object:
	3. Enter the following to view the attribute value in a certain slice:

	To View the Result of an Operation on a Certain Object
	1. Invoke the method on the object:
	a. Go to the object domain where the method has been defined:
	b. View current value of an attribute:
	c. Invoke the method:
	d. View a certain attribute if it is set as a result:

	2. Apply the method on the object:
	a. Apply operation on a certain object directly:
	b. View certain attributes if it is set as results:
	i. Go to the specified object context:
	ii. View the attribute values:

	To Import and Export a Set of Object Attributes
	1. Write all attributes (key/value pair) of a file in .x file format:
	2. Go to the target object:
	3. View the current value of an attribute:
	4. Input data under this object to slice visitCount:
	5. View the attributes generated:
	6. Define a new attribute in this slice (or apply a certain operation):
	7. Export these attributes to a file:
	8. View the output file:

	To Generate SNMP MIB From a Module
	1. Go to the destination module.
	2. Generate SNMP MIB for these modules:
	3. View the SNMP MIB files.
	12
	Developer Environment Tools

	snmpset
	Name
	Synopsis
	Description
	Options
	Exit Status
	Examples of snmpset

	snmpget
	Name
	Synopsis
	Description
	Options
	Exit Status
	Examples of snmpget

	snmpnext
	Name
	Synopsis
	Description
	Options
	Exit Status
	Examples of snmpnext

	snmptrap
	Name
	Synopsis
	Options
	Exit Status
	Trap Type Information
	TABLE�12�1 Trap Type and What it Signifies

	Examples of snmptrap

	snmpwalk
	Name
	Synopsis
	Description
	Options
	Exit Status
	Examples of snmpwalk

	snmpwalktable
	Name
	Synopsis
	Description
	Exit Status
	Examples of snmpwalktable

	II Programmer’s Reference to Console Integration and Client API
	13
	Console Integration

	Extending the Console
	1. Place the Java class files or the .jar files for the user applications in the standard Sun Man...
	2. Select the appropriate integration level to determine the appropriate configuration file and u...
	3. Modify the appropriate configuration file to describe the desired extension.
	4. Run the appropriate update utility.
	5. Restart the Console. Depending upon your site’s configuration, it may be necessary to restart ...
	Integration Levels
	Configuration Files
	Syntax for Entries in the console-tools.cfg File
	Syntax for Entries in the console-host-apps.cfg File

	Update Utilities

	Integrating Sun Management Center Software With Other Management Tools
	To Invoke the HostDetailsBean
	1. Instantiate a HostdetailsBean object:
	2. Initialize Bean parameters:
	3. Optionally, subscribe for PropertyChangeEvents from the Bean :
	4. Optionally, set the exit() method of the Bean:
	5. Launch hostdetails:

	Field Summary
	Constructor Summary
	Method Summary
	Field Detail
	Constructor Detail
	Method Detail
	1. This method allows specification of an alternate method to execute when the hostdetails window...

	Compilation and makefile Guidelines
	14
	Client API
	Introduction to Client API Classes
	API Usage for System Management
	External Interface Requirements

	Sun Management Center Architecture
	Sun Management Center Three-Tier Architecture
	FIGURE�14�1 Client API Request Classes in Relationship With the Console and Server
	FIGURE�14�2 The Client API and the Sun Management Center Architecture

	Client API Class Usage
	Client API Definition
	Java Language Object Class Examples
	TABLE�14�1 Category of Classes and Examples �

	Login API
	Example: SMLoginTest
	CODE�EXAMPLE�14�1 SMLoginTest �

	Request Status API
	Example: SMRequestStatus

	Raw Data API
	Example: SMRawDataRequest
	Example: getURLValue Method
	TABLE�14�2 getURLValue Method

	Example: setURLValue Method
	CODE�EXAMPLE�14�2 setURLValue Method�

	Example: createURL Method
	CODE�EXAMPLE�14�3 createURL Method�

	Example: getUserId Method
	CODE�EXAMPLE�14�4 getUserId Method

	Example: SMProbeTest
	CODE�EXAMPLE�14�5 SMProbeTest

	Example: SMRawDataTest
	CODE�EXAMPLE�14�6 SMRawDataTest �

	Example: SMRawDataAsyncTest
	CODE�EXAMPLE�14�7 SMRawDataAsyncTest �

	Alarm API
	Example: SMAlarmObjectRequest Class
	Example: SMAlarmAsyncTest
	CODE�EXAMPLE�14�8 SMAlarmAsyncTest �

	Example: SMAlarmSyncTest
	CODE�EXAMPLE�14�9 SMAlarmSyncTest �

	Managed Entity API
	Example: SMManagedEntityTest
	CODE�EXAMPLE�14�10 SMManagedEntityTest �

	Module API
	Example: SMModuleTest
	CODE�EXAMPLE�14�11 SMModuleTest �

	Log Viewer API
	Example: SMLogViewerTest
	CODE�EXAMPLE�14�12 SMLogViewerTest �

	Resource Access API
	Example: SMResourceAccessTest
	CODE�EXAMPLE�14�13 SMResrouceAccessTest �

	Topology Agent API
	Example: SMTopologyTest
	CODE�EXAMPLE�14�14 SMTopologyTest �

	Exception Classes API

	III Additional Material
	15
	Internationalization Guidelines

	Internationalization
	Terminology
	Constraints
	Assumptions and Dependencies

	Software Guidelines
	Properties Files
	ResourceBundle Class Instances
	Obtaining Resource Bundles/Properties Files
	Independent Client/Bean Usage
	UcInternationalizer Class
	Direct ResourceBundle Management
	Formatted Messages
	Handling Non-ASCII Input
	Data Only Stored in Agents
	Data Stored in and Manipulated By Agents

	Agent Internationalization
	Objects/Classes/Properties
	Modules
	Module Instance Naming
	Module Parameters

	Attribute Editing
	Attribute Groups
	Scalar Attributes
	Vector Attributes

	Dynamic Tables (RFC1903)
	Rules

	Installation/Setup Script Internationalization
	16
	Graphical User Interface Guidelines

	Consistency
	Information Sources

	Main Console
	FIGURE�16�1 Main Console
	Server Object Representation and Object Management
	FIGURE�16�2 Main Console Window with Hierarchy and Topology Views

	Guidelines for Modifying Topology Views
	FIGURE�16�3 Domain Manager

	Layout View
	FIGURE�16�4 Main Console Window with Hierarchy and Topology Views
	FIGURE�16�5 shows an example of how the user can load a background gif file and place the items i...
	FIGURE�16�5 Topology View

	Object Layouts
	Status line

	Status Messages
	FIGURE�16�6 Status Message Location

	User Input
	Mouse Actions
	Selection Highlighting
	Selecting Objects
	De-selecting Objects

	Keyboard Navigation Shortcuts
	Table Appearance and Behavior
	FIGURE�16�7 Table Details Window
	Table Contents
	Color
	Table Position
	Cell, Row, and Column Selection

	Colors
	Fonts
	Graphing
	FIGURE�16�8 Graphing Window
	FIGURE�16�9 Graph Header Title Editing Dialog

	Property Setting Dialog
	FIGURE�16�10 History Tab of Attribute Editor on a Data Variable
	Optional buttons
	Time Setting

	Alarms
	Alarm System

	Details Window
	FIGURE�16�11 Browser Details Window
	17
	Sun Management Center 2.1 Developer Environment Packaging

	Packaging Helloworld_01
	Makefile
	Prototype Entries

	Sun Management Center Software Packaging Practices
	Package Naming
	Package Versioning
	Component Naming
	Package Dependencies
	Prototype File
	Sun Management Center Module Name Practices
	18
	Troubleshooting

	Module
	Console Messages
	TABLE�18�1 Example Error Messages that Display on the Console

	Agent Log File Messages
	TABLE�18�2 Example Error Messages That Are Found in the Agent Log File

	Interactive Agent Mode Messages
	TABLE�18�3 Example Error Messages Provided by the Interactive Agent

	Console
	A
	Modules Appendix

	Module Building Environment
	Agent Development
	Tcl Environment
	TOE Environment

	TOE Objects
	FIGURE�A�1 TOE Object
	Object Relationships
	Ancestral Relationships
	FIGURE�A�2 Simple Parent/Child Object Relationship
	FIGURE�A�3 Multiparent/Child Object Relationships

	Structural Relationships
	FIGURE�A�4 Superior and Inferior Object Relationship

	Combining Ancestral and Structural Relationships
	FIGURE�A�5 Object Relationships of Filesystem Example

	Object Property Dictionaries
	Dictionary Keys
	TABLE�A�1 Dictionary Example
	Value
	Alarmlimit
	Data

	Importing and Exporting Dictionaries (Module Configuration Files)
	Dictionary Entry (Property) Representation
	Multi-object Dictionary Representation
	Action Specifications
	FIGURE�A�6 .x file Syntax for Filesystem Example

	TOE Object Classes

	Agent Framework
	FIGURE�A�7 TOE Object Tree Structure of Agent
	Shell Service
	FIGURE�A�8 Shell Service Data Flow
	Shell Service Result Handling
	Shell Protocol
	Ping Service
	Master Event Loop (MEL) Service
	Default I/O Service
	Data Logging Registry Service
	File Scanning Service
	Subscribing for Patterns
	Unsubscribing Patterns

	Module Management
	MIB Subtrees
	Default SNMP Context
	FIGURE�A�9 Default Context—ISO subtree

	Non-default SNMP Contexts
	FIGURE�A�10 Nondefault SNMP Contexts—Contexts Subtree

	Private Enterprises
	FIGURE�A�11 Private Enterprise Subtree

	Module Subtrees
	FIGURE�A�12 Modules Subtree

	Module Loading
	Module Parameters
	base-modules-d.dat
	CODE�EXAMPLE�A�1 base-modules-d.dat

	MIB Manager
	FIGURE�A�13 MIB Manager Branch
	URL/OID Finder
	To Convert an OID URL to an Actual OID
	1. Parse off the OID portion of the URL.
	2. Extract the context if one is specified.
	3. If the OID includes a shadow specification, extract it.
	4. If the instance spec is a non-integer, it can be comprised of one or more comma separated inst...
	5. If it is a shadow OID, append the instance length and append the shadow specification.
	6. Replace all (/), (#), and (?) characters with a period (.).
	a. Parse off the portion after the /oid/ substring (that is, 1.3.6.1.2.1.1/1#0).
	b. Substitute all ‘/’ and ‘#’characters with ‘.’ (that is, 1.3.6.1.2.1.1.1.0).

	To Access the fulldes Shadow Attribute of the Same MIB Property
	To Convert the Shadow OID URL to a Valid OID
	1. Parse off the portion after /oid/ (for example, 2.3.6.1.2.1.1/1?7.1#0).
	2. From the parsed string, extract the shadow index specification that is enclosed by ‘?’ and ‘#’...
	3. Since the instance is an integer, simply append the length of the instance specification to th...
	4. Append the shadow index specification to the OID (2.3.6.1.2.1.1.1.0.1.7.1).

	To Access a Table Property in a Module
	To Convert the OID URL to an OID
	1. Parse off the OID portion (that is, syslog/1.3.6.1.4.1.42.2.12.2.2.24/1/3/1/4#+str).
	2. Extract the context (that is, syslog).
	3. Since the instance specification is +str, the textual instance name must be converted to a num...
	4. Append the instance to the OID and replace the ‘/’ and ‘#’ with ‘.’ (1.3.6.1.4.1.42.2.12.2.2....

	Module Loader
	Module Checker
	Browser Root
	Module Registry
	Module Tables

	Additional Base MIB Branches
	FIGURE�A�14 .iso*base Subtree
	System and Agent Information
	FIGURE�A�15 info Branch

	System Information
	Agent Information
	Module Information
	Trap Information
	Trap Forward
	Control Functions
	Action Object
	Cache Object

	Useful Tcl Commands and Filters
	valueOf <node name>
	getValue <index>
	getValues
	getRowData [<rowname>]
	getTableDepth
	setValue <index> <value>
	locate <node name>
	toe_send <toeid> <command>
	transposeFilter
	rateFilter<node name>
	rateFilter64 <node name>
	tableRateFilter<node name>
	tableRateFilter64 <node name>
	pctFilter<node1><node2>
	linearFit<value>
	digitalFilter<value>

	Alarm Status Strings
	Solaris Example of Status Strings—CPU Managed Object
	TABLE�A�2 Alarm Level

	Module Testing Tips
	File Naming Conventions
	Standard Extensions
	Solaris Example Module Filenames
	Mandatory and Optional Module Files
	TABLE�A�3 Mandatory Module Files
	TABLE�A�4 Optional Module Files
	TABLE�A�5 Binary Extension Files

	Location of Module Files
	Data Management
	Information Model
	General Concepts
	Managed Entity Modeling
	Management Model Primitives
	TABLE�A�6 Managed Model Primitives
	FIGURE�A�16 Management Model Primitive Classes

	Alarm Representation

	Operational Model
	Operation Sequence
	1. Data acquisition request is made.
	2. Results of request are forwarded to managed object/property.
	3. Data is disseminated into appropriate objects/properties (the data cascade).
	4. Alarm rule checks are performed (where applicable) to determine object/property state.
	5. Changes in state trigger alarm actions:
	a. Alarm propagates up object tree.
	b. Traps are sent.
	c. Status is logged.
	d. User-defined actions are taken.

	Data Acquisition Scenarios
	Cascade Scenarios
	Active Scalar
	FIGURE�A�17 Active Scalar Cascade

	Active Vector
	FIGURE�A�18 Active Vector Cascade

	Compound Scalar
	FIGURE�A�19 Compound Scalar Cascade

	Compound Vector
	FIGURE�A�20 Compound Vector Cascade

	Complex Vector
	FIGURE�A�21 Complex Cascade

	Nested Heterogeneous
	FIGURE�A�22 Nested Heterogeneous Cascade
	Derived Heterogeneous
	FIGURE�A�23 Derived Heterogeneous Cascade

	Derived Nodes
	Alarm Rule Checks
	Simple Comparison Checks
	Rule Evaluation

	Alarm Actions
	Status Propagation
	FIGURE�A�24 Objects in MIB Tree

	Alarm Status Change and Event Traps
	Event Propagation
	Alarm Logging
	User-Defined Alarm Actions
	TABLE�A�7 Special Command Line Arguments

	Management Information Base (MIB)
	Modules
	Shadow MIB
	Ad-hoc SNMP Operations
	Ad-hoc Probe Operations
	Probe Server
	1. On startup, accepts command line arguments specifying a command and a connection timeout speci...
	2. Opens a listen server socket and writes the port number and a password (a string containing a ...
	3. Sets a timer for length of the connection timeout specification.
	4. Waits for a connection request; if the timer expires, the process exits.
	5. If a connect request is received by the listen socket, the connection is accepted, the listen ...
	6. Reads the password from socket and compares it with the stored password. If the passwords do n...
	7. If the passwords match, the process redirects stdin and stdout to the socket connection and ex...
	Establishing a Probe Connection
	1. A probe client sends an SNMP set request to the MIB object in the Sun Management Center agent ...
	2. Sun Management Center agent receives SNMP set request and spawns a probe server process, passi...
	3. The probe server process opens a listen socket and returns the number of the opened port and a...
	4. The agent forwards the port number and password back to the probe client as the SNMP set respo...
	5. The probe client connects to the port on the probe server process on the agent host. When the ...
	6. The probe client transmits the password to provide authentication. If the password is invalid,...
	7. If the passwords match, the probe server process executes the actual probe application over it...
	8. At this point, a stream connection is established between the probe client and a process on th...

	Data Logging
	Internal History Buffer
	Logging Data to a File
	Data Log Format
	Data Logging Destinations
	Logged Data Retrieval
	Data Logging Registry
	B
	Time Expression Specifications

	Notation
	Time Expression Specification
	Absolute Time Expression Specification
	CODE�EXAMPLE�B�1 Absolute Time Expression Specification�
	Cyclic Time Specification
	CODE�EXAMPLE�B�2 Syntax for Cyclic Specification

	Comparison Time Specification
	CODE�EXAMPLE�B�3 Syntax for Comparison Specification

	Cron Time Specification
	Variable Substitution Specification
	C
	Module Building Tutorial

	Module Example
	1. Monitor the size of the /var/adm/wtmp file using UNIX ls command.
	2. Monitor file size using Tcl file command.
	3. Parameterize filename so that any file can be monitored.
	4. Add SNMP table management capabilities to monitor more than one file.

	Steps to Create a Module
	filesize Module Version 1—Simple Prototype
	Naming the Module
	CODE�EXAMPLE�C�1 Example Parameter File (filesize-m.x)�

	Creating a Data Model
	CODE�EXAMPLE�C�2 Example Model File (filesize-models-d.x)�
	CODE�EXAMPLE�C�3 Example Properties File (filesize.properties)

	Realizing the Model
	CODE�EXAMPLE�C�4 Example Agent File (filesize-d.x)�

	Specifying Alarm Management Information
	CODE�EXAMPLE�C�5 Example Alarm File (filesize-d.def)

	filesize Module Version 2— Improving DAQ Mechanism
	CODE�EXAMPLE�C�6 Example Parameter File (filesize-m.x)�
	CODE�EXAMPLE�C�7 Example Agent File (filesize-d.x)

	filesize Module Version 3—Adding Parameters to File Name Specification
	CODE�EXAMPLE�C�8 Example Parameter File (filesize-m.x)�
	CODE�EXAMPLE�C�9 Example Agent File (filesize-d.x)
	CODE�EXAMPLE�C�10 Example Properties File (filesize.properties)

	filesize Module Version 4—Adding SNMP Table Management Capabilities
	Module Name
	CODE�EXAMPLE�C�11 Example Parameter File (filesize-table-m.x)�
	Modifying the Model
	CODE�EXAMPLE�C�12 Example Model File (filesize-table-models-d.x)

	Realize the Modified Model
	CODE�EXAMPLE�C�13 Example Agent File (filesize-table-d.x)�
	CODE�EXAMPLE�C�14 Example: Procedure File (filesize-table-d.prc)�
	CODE�EXAMPLE�C�15 Properties File (filesize-table.properties)

	Alarm Management
	CODE�EXAMPLE�C�16 Example Alarm File (filesize-table-d.def)
	D
	SNMP Proxy Monitoring Modules

	Proxy Monitoring
	Module Parameter File
	CODE�EXAMPLE�D�1 Example: mib2-proxy-v2-m.x �

	Module Models File
	CODE�EXAMPLE�D�2 Example: mib2-proxy-models-d.x �

	Legacy MIB OIDs Mapping File
	Module Realization File
	Loading the Legacy MIB OIDs Mapping File
	Data Acquisition
	CODE�EXAMPLE�D�3 Example: mib2-proxy-d.x�
	CODE�EXAMPLE�D�4 Module Realization: MIB2 Proxy Module

	SNMP Sets
	SNMP Set Example
	Module Trap Action Definition File
	Naming Conventions
	Sample Specification
	Valid Parameters

	Example: Trap Action File for HP JetDirect
	CODE�EXAMPLE�D�5 Example: hp-jetdirect-trapspd.x �
	Example: Qualifiers for Loading the HP JetDirect Module Trap Actions File
	Example: Qualifiers for Loading Both the OIDs and Trap Actions Files for the HP JetDirect Module
	E
	URL Specifications

	Uniform Resource Locator (URL)
	SNMP URLs
	SNMP URL Format
	SNMP URL Types
	Numeric
	Symbolic
	Module

	Shadow Operations
	SNMP URL Examples
	Managed Property Value (scalar)
	Numeric SNMP URL
	Symbolic SNMP URL (absolute)
	Symbolic SNMP URL (relative)
	Module SNMP URL

	Managed Property Value (vector)
	Numeric SNMP URL
	Symbolic SNMP URL
	Module SNMP URL

	Managed Property Qualifier (Scalar Property, Scalar Qualifier)
	Numeric SNMP URL
	Symbolic SNMP URL
	Module SNMP URL

	Managed Property Qualifier (Vector Property, Scalar Qualifier)
	Numeric SNMP URL
	Symbolic SNMP URL
	Module SNMP URL

	Managed Property Qualifier (Vector Property, Vector Qualifier)
	Numeric SNMP URL
	Symbolic SNMP URL
	Module SNMP URL

	Managed Object Qualifier (Scalar Qualifier)
	Numeric SNMP URL
	Symbolic SNMP URL
	Module SNMP URL

	Managed Object Qualifier (Vector Qualifier)
	Numeric SNMP URL
	Symbolic SNMP URL
	Module SNMP URL

	Condensed URL specifications
	Interface URLs
	clog
	desc
	file
	inet
	pipe
	syslog
	UNIX

	Intraface Options
	Parameter Insertion and Extraction (PIE)
	Authentication, Compression, Encryption (ACE)
	Transport
	F
	Status Propagation

	Example Topology Hierarchy
	FIGURE�F�1 Example Topology Hierarchy
	Event 1: Node in Module E on Host C Goes into Error (Red)
	Event 2: Node in Module G on Host D Goes into Warning (Amber)
	Event 3: Node in Module F on Host C Goes into Warning (Amber)
	Event 4: Another Node in Module E on Host C Goes into Warning (Amber)

	Missed SNMP Traps
	G
	SNMP Trap Subscription

	Sun Management Center Agent Components and Trap Subscription
	Subscribing for Traps
	Trap Subscription Examples
	SNMP SET Command
	Adding Jobs
	Removing Jobs

	Sun Management Center Enterprise Specific Traps
	CODE�EXAMPLE�G�1 Sun Management Center Enterprise Specific Traps

	SNMP Trap Subscription Support
	Glossary
	3-tier architecture
	ACE
	ACLs
	active nodes
	agent
	agent MIB
	alarm
	alarm acknowledgment
	alarm file
	API
	Attribute Editor
	Base-modules.dat file
	Bourne shell service
	check operations
	community
	complex alarm
	console window
	DAQ
	data cascade
	derived nodes
	digitalFilter
	discovery
	domain
	dynamic loadable modules
	event
	enterprise module parameter
	file scanning
	filter file
	fileFilter
	hardware modules
	hierarchy view
	initHoldoff
	initInterval
	instance
	internal service
	localization/ internationalization
	managed entities
	managed object table primitive
	manage
	managed object classes
	mandatory parameters
	managed object primitive
	managed property classes
	managed property class
	MEL
	MIB
	MIB node service
	model file
	module
	monitor
	nested managed object
	node
	object
	object manager primitive
	operating system modules
	optional parameters
	pctFilter
	passive nodes
	Parameter File
	Prevalidate Actions
	postrowActions
	Postvalidate Actions
	procedure file
	rCompareRule
	rateFilter
	reference node
	refreshFilter
	refreshMode Qualifier
	refresh operation
	refreshParams
	refresh service
	refreshTrigger
	remote modules
	remote server context
	request caching
	rollbackActions
	RMI
	rule
	seed
	shadow MIB
	superior service
	server
	server context
	setActions
	simple alarm
	SNMP
	SNMP Service
	SNMPv2 usec
	Sun Management Center superuser
	Sun Management Center user
	tableRateFilter
	Tcl
	Time
	timeoutInterval
	transposeFilter
	TOE
	tooltip
	topology view
	transposeFilter
	updateFilter
	URL
	userFilter
	.x file
	Index

	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

