Sun

microsystems

WDR Developer’s Guide

Creating WBEM-Based System Management
Applications

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.

Part No. 816-1984-11
September 2002

Send comments about this document to: docf eedback@un. com

Copyright 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or
document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party
software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, AnswerBook?2, docs.sun.com, Sun Fire, Sun4U, SunSwift, Java, JDK, and Solaris are trademarks,
registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license
and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks
are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun’s written license agreements.

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS I1S” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 Etats-Unis. Tous droits réservés.

Ce produit ou document est distribué avec des licences qui en restreignent I’utilisation, la copie, la distribution, et la décompilation. Aucune
partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans I’autorisation préalable et
écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de
caracteéres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company;, Ltd.

Sun, Sun Microsystems, le logo Sun, AnswerBook2, docs.sun.com, Sun Fire, Sun4U, SunSwift, Java, JDK, et Solaris sont des marques de
fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques
SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans
d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour larecherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour I'industrie de I'informatique. Sun détient une licence non exclusive de Xerox sur I'interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

Achats fédéraux : logiciel commercial - Les utilisateurs gouvernementaux doivent respecter les conditions du contrat de licence standard.

LA DOCUMENTATION EST FOURNIE “EN L’'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, AL'APTITUDE AUNE UTILISATION PARTICULIERE OU A
L"’ABSENCE DE CONTREFACON.

@9 Elsglscj e ‘(‘

Adobe PostScript

Contents

Preface xiii

Before You Read This Book xiii

How This Book Is Organized xiv

Using UNIX Commands xiv
Typographic Conventions xv

Shell Prompts xv

Related Documentation xvi

Accessing Sun Documentation Online xvi

Sun Welcomes Your Comments xvi

Introduction to WDR 1
Hardware Required for WDR 1
Hardware Required for MSP on Sun Fire 6800/4810/4800/3800 Systems 1
Software Required for WDR 2
Software Required for Sun Fire 15K/12K Systems 2
Software Required for Sun Fire 6800/4810/4800/3800 Systems 2
About Web-Based Enterprise Management (WBEM) 2
Common Information Model (CIM) 3
Platform-Specific and Common MOF Files 4
Operations that WDR Performs 4

Administrator Security Models 5
WDR Security 5

Sun Fire 6800/4810/4800/3800 System Groups 5
Sun Fire 15K and 12K System Groups 6

Solaris WBEM Services 7

CIM Object Manager (CIMOM) 8

WBEM Providers 8

Solaris WBEM Software Development Kit (SDK) 9

2. Using Solaris WBEM Services in WDR 11
Overview of Solaris WBEM Services 11
Layers of Solaris WBEM Services 12
Solaris WBEM Services Application Layer 12
Sun WBEM User Manager and SMC Users Tool 12
Solaris Management Console (SMC) WBEM Log Viewer
Managed Object Format (MOF) Compiler 13
The mofcomp Command 13
Compiling a MOF File 15
v How to Compile a MOF File 15
The mofcomp Password Security Advisory 16
Solaris WBEM Services Management Layer 16
About the CIM Object Manager 16
Manually Starting and Stopping the CIM Object Manager
v To Start the CIM Object Manager 17
v To Stop the CIM Object Manager 18
Solaris WBEM Services Provider Layer 18
Solaris Providers 18
WBEM Security Services 19
Authentication 19

WDR Developer's Guide ¢ September 2002

13

17

Authorization 19
Replay Protection 19
Digital Signatures 20
Implementing Security 20
WBEM Access Control Lists 20
Using the Sun WBEM User Manager 21
v To Start the Sun WBEM User Manager 21
v To Grant Default Access Rights to a User 22
v To Change a User’s Access Rights 22
v To Remove a User’s Access Rights 22
v To Set Access Rights for a Namespace 23
v To Remove Access Rights for a Namespace 23
Using APIs to Set Access Control 23
The Solaris_UserAcl Class 24
v To Set Access Control on a User 25
The Solaris_NamespaceAcl Class 26
v To Set Access Control on a Namespace 26
Starting Solaris Management Console (SMC) Users Tool 27
v To Start SMC Users Tool 27
Solaris WBEM Logging Services 28
Solaris WBEM Services Log Files 29
Solaris WBEM Services Log File Rules 29
Solaris WBEM Services Log File Format 30
Solaris WBEM Log Classes 30
Solaris_LogRecord Class 31
Solaris_LogService Class 31
Using the APIs to Enable Solaris WBEM Logging 32
Writing Data to a Solaris WBEM Log File 32

Contents

v To Create an Instance of Solaris_LogRecord to Write Data 32
Reading Data from a Solaris WBEM Log File 35
v To Get an Instance of the Solaris_LogRecord Class and Read Data 35
Setting Solaris WBEM Logging Properties 38
v To Set Solaris WBEM Logging Properties 38

Solaris WBEM Log Viewer 39
v To Start SMC and Solaris Log Viewer 39

3. Using Process Indications 41

The CIM Event Model 41
How Indications are Generated 42
How Subscriptions Are Created 43
Adding a CIM Listener 44

v To Add aCIM Listener 44
Creating an Event Filter 44

v To Create an Event Filter 46
Creating an Event Handler 46

v To Create a CIM Event Handler 48
Binding an Event Filter to an Event Handler 48

v To Bind an Event Filter to an Event Handler 48

4. Classes, Domains, Associations, and Indications in WDR 51
WDR CIM Class Hierarchy Diagram 52
CIM Attachment Point Classes 53
CIM Solaris_ WDRAttachmentPoint Class 53
Position in the Class Hierarchy 53
Description 53
Direct Known Subclasses 54

CIM Solaris_ WDRAttachmentPoint Class Properties 54

vi WDR Developer’'s Guide * September 2002

CIM Solaris_ WDRAttachmentPoint Class Methods 55
CIM Solaris_CHSystemBoard Class 58

Position in the Class Hierarchy 58

Description 58

Direct Known Subclasses 58

CIM Solaris_CHSystemBoard Class Properties 59

CIM Solaris_CHSystemBoard Class Methods 59
CIM Solaris CHCPU Class 61

Position in the Class Hierarchy 62

Description 62

Direct Known Subclasses 62

CIM Solaris_ CHCPU Class Properties 62

CIM Solaris_ CHCPU Class Methods 62
CIM Solaris_CHMemory Class 63

Position in the Class Hierarchy 63

Description 63

Direct Known Subclasses 63

CIM Solaris_ CHMemory Properties 64

CIM Solaris_ CHMemory Class Methods 64
CIM Solaris_CHController Class 65

Position in the Class Hierarchy 65

Description 65

Direct Known Subclasses 65

CIM Solaris_CHController Class Properties 65

CIM Solaris_CHController Class Methods 65

CIM Slot Classes 66

CIM Solaris_WDRSIot Class 66

Position in the Class Hierarchy 66

Contents vii

Description 66
Direct Known Subclasses 66
CIM Solaris_WDRSIot Properties 67
CIM Solaris_ WDRSlot Methods 67
CIM Solaris_XCSlot Class 69
Position in the Class Hierarchy 69
Description 69
Direct Known Subclasses 70
CIM Solaris_XCSlot Properties 71
CIM Solaris_XCSlot Methods 71
CIM Solaris_SGSlot Class 72
Position in the Class Hierarchy 72
Description 72
Direct Known Subclasses 72
CIM Solaris_SGSlot Properties 73
CIM Solaris_SGSlot Methods 74
CIM Solaris_ WDRDomain Classes 74
CIM Solaris_ WDRDomain Class 74
Position in the Class Hierarchy 74
Description 74
Direct Known CIM Subclasses 75
CIM Solaris_ WDRDomain Class Properties 75
CIM Solaris_XCDomain Class 75
Position in the Class Hierarchy 75
Description 75
Direct Known CIM Subclasses 76
CIM Solaris_XCDomain Class Properties 77
CIM Solaris_SGDomain Class 79

viii WDR Developer's Guide ¢ September 2002

Position in the Class Hierarchy 79
Description 79
Direct Known CIM Subclasses 79
CIM Solaris_SGDomain Class Properties 80
WDR Schema Associations and Aggregations 81
CIM Solaris_DomainHasAttachmentPoints Aggregation 81
Description 81
CIM Solaris_DomainHasAttachmentPoints Aggregation Properties 82
CIM Solaris_DomainHasSlots Aggregation 82
Description 82
CIM Solaris_DomainHasSlots Aggregation Properties 83
Solaris_SlotHasSystemBoard Association 83
Description 83
CIM Solaris_SlotHasSystemBoard Association Properties 83
Solaris_SystemBoardHasProcessors Aggregation 84
Description 84
CIM Solaris_SystemBoardHasProcessors Aggregation Properties 84
Solaris_SystemBoardHasMemory Aggregation 84
Description 84
CIM Solaris_SystemBoardHasMemory Aggregation Properties 85
Solaris_SystemBoardHasControllers Aggregation 85
Description 85
CIM Solaris_SystemBoardHasControllers Aggregation Properties 86
CIM Process Indication Classes 86
The WDR Indication Class Hierarchy Diagram 87
Solaris_ WDRIndication Class 87
Solaris_SGBoardPresenceChange Indication 88

Description 88

Contents ix

Solaris_SGBoardPresenceChange Properties 88
Solaris_SGDomainACLChange Indication 88
Description 88
Solaris_SGDomainACLChange Properties 89
Solaris_SGDomainStateChange Indication 89
Description 89
Solaris_SGDomainStateChange Properties 90
Solaris_SGSlotAssignmentChange Indication 90
Description 90
Solaris_SGSlotAssignmentChange Properties 91
Solaris_SGBoardStateChange Indication 91
Description 91
Solaris_SGBoardStateChange Properties 92
Solaris_SGSlotAvailabilityChange Indication 92
Description 92
Solaris_SGSlotAvailabilityChange Properties 93
Solaris_XCSystemBoardConfigChange Indication 93
Description 93
Solaris_XCSystemBoardConfigChange Properties 94
Solaris_ XCEnvironmentallndication Indication 94
Description 94
Solaris_XCEnvironmentallndication Properties 94
Solaris_ XCComponentRemove Indication 94
Solaris_ XCComponentlnsert Indication 95
Solaris_XCBoardPowerOn Indication 95
Solaris_XCBoardPowerOff Indication 95
Solaris_XCDomainlIndication Indication 95

Description 95

WDR Developer's Guide ¢ September 2002

Solaris_XCDomainlIndication Properties 96
Solaris_XCDomainConfigChange Indication 96
Solaris_XCDomainUp Indication 96
Solaris_XCDomainDown Indication 96
Solaris_ XCDomainStop Indication 97
Solaris_XCDomainStateChange Indication 97

Description 97

Solaris_XCDomainStateChange Properties 97

Programming Techniques in WDR 99
Caching System State Information 99
Working with an EventProvider 100
v To Subscribe to and Read WDR Indications 100
v To Implement an Event Listener 102
v To Bind an Event Filter to an Event Handler 102
Working with an InstanceProvider 107
Working with an AssociatorProvider 108

Working with a MethodProvider 109

MOF Files 111
WDR_Corel.0.mof File 111
WDR_SG1.0.mof File 122
WDR_XC1.0.mof File 130

Index 139

Contents xi

xii WDR Developer's Guide « September 2002

Preface

This WDR Developer’s Guide is intended for use by systems administrators who want
to develop applications that perform DR operations remotely using WBEM, which is
an industry standard for Web-based enterprise management.

Developers can write WDR client applications in languages such as Java™, using
software development kits (SDKs) such as the Sun WBEM SDK.

Before You Read This Book

This book is intended for the Sun Fire™ 15K, 12K, 6800, 4810, 4800, and 3800 system
platform administrator who has a working knowledge of UNIX® systems,
particularly those based on the Solaris™ operating environment. If you do not have
such knowledge, first read the Solaris user and system administrator books provided
with this system, and consider UNIX system administration training.

Xiii

How This Book Is Organized

Chapter 1, “Introduction to DR,” provides an overview of WDR, and describes the
kind of tasks that WDR enables you to perform.

Chapter 2, “Using Solaris WBEM Services in WDR,” describes the different layers in
Solaris WBEM Services, which are included in the Solaris operating environment.

Chapter 3, “Using Process Indications,” describes process indications, which are
notifications of system events to which each WDR client can subscribe.

Chapter 4, “Classes, Domains, Associations, Indications in WDR” introduces all the
classes, indications (of system events), and associations that WDR provides to the
developer. All methods and properties that the developer needs to use are described
in this chapter.

Chapter 5, “Programming Techniques in WDR” presents programming techniques

that the developer may find useful in creating WDR applications that simplify and
automate systems administration on Sun Fire 156K/12K and 6800/4810/4800/3800

systems.

Using UNIX Commands

This document does not contain information on basic UNIX® commands and
procedures such as shutting down the system, booting the system, and configuring
devices.

See one or more of the following for this information:

= Solaris Handbook for Sun Peripherals

= Online documentation for the Solaris™ operating environment

= Other software documentation that you received with your system

xiv. WDR Developer's Guide « September 2002

Typographic Conventions

TABLE P-1

Typeface Meaning

Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

AaBbCc123 What you type, when
contrasted with on-screen
computer output

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Command-line variable; replace
with a real name or value

Edit your . | ogi n file.
Use |l s -a to list all files.
% You have mail.

% su
Passwor d:

Read Chapter 6 in the User’s Guide.
These are called class options.

You must be superuser to do this.

To delete a file, type r mfilename.

Shell Prompts

TABLE P-2
Shell Prompt
C shell machine_name%

C shell superuser
Bourne shell and Korn shell

Bourne shell and Korn shell superuser

machine_name#
$
#

Preface

XV

Related Documentation

TABLE P-3

Application

Title

Part Number

WODR Installation

DR on Sun Fire 6800,
4810, 4800, and 3800
systems

DR on Sun Fire 15K and
12K systems

System-level security on
Sun Fire 15K and 12K
systems

System-level security on
Sun Fire
6800/4810/4800/3800
systems

Solaris WBEM Services

WDR Installation Guide

Sun Fire 6800, 4810, 4800, and 3800
Systems Dynamic Reconfiguration User
Guide

Sun Fire 15K/12K Dynamic
Reconfiguration User Guide

System Management Services (SMS) 1.2
Administrator Guide for Sun Fire 15K/12K
Systems

Sun Fire 6800/4810/4800/3800 Systems
Platform Administration Manual

Solaris WBEM Services Administrator’s
Guide

816-4820
806-6783

816-5075

816-5259

805-7373

806-6468

Accessing Sun Documentation Online

You can view, print, or purchase a broad selection of Sun documentation, including

localized versions, at:

http://ww. sun. com docunent ati on

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. You can email your comments to Sun at:

WDR Developer's Guide ¢ September 2002

docf eedback@un. com

Please include the part number (816-1984-11) of your document in the subject line of
your email.

Preface xvii

xviii WDR Developer’'s Guide * September 2002

CHAPTER 1

Introduction to WDR

WDR (WBEM dynamic reconfiguration) provides an application program interface
(API) that software applications can use to perform dynamic reconfiguration (DR)
operations remotely on the following systems:

Sun Fire 15K
Sun Fire 12K
Sun Fire 6800
Sun Fire 4810
Sun Fire 4800
Sun Fire 3800

Software developers and systems administrators can use the WDR API to create
custom applications that remotely perform crucial system management functions
such as load balancing. WDR provides an alternative to the current, conventional
method of performing DR operations, which are achieved either on the Sun Fire
System Controller (SC) or on the Solaris domain (using the cf gadmsystem library).

Hardware Required for WDR

On Sun Fire 6800/4810/4800/3800 systems, WDR runs on an external host that is
referred to as the Midframe Service Processor (MSP). On Sun Fire 15K and 12K
systems, WDR runs on the System Controller (SC).

Hardware Required for MSP on Sun Fire
6800/4810/4800/3800 Systems

The minimum hardware requirements for an MSP are:
= Sun4U™ architecture

8 GB disk space

128 MB RAM

CD-ROM drive

SunSwift™ card or, ideally, a QuadFast Ethernet card

Software Required for WDR

WDR can be used on Sun Fire 6800/4810/4800/3800 and Sun Fire 15K/12K system
domains that run the Solaris 8 2/02 and Solaris 9 software. WDR is not bundled with
other software, such as the Solaris operating environment

Software Required for Sun Fire 15K/12K Systems

To enable WDR, both the WDR software and Solaris WBEM Services software must
be installed on the SC. Further, the System Management Services (SMS) version 1.2
software must be installed on the SC.

Software Required for Sun Fire
6800/4810/4800/3800 Systems

To enable WDR, both the WDR software and Solaris WBEM Services software must
be installed on the MSP.

2

About Web-Based Enterprise
Management (WBEM)

The WDR interface is based on the Web-based Enterprise Management (WBEM)
industry standard, which enables Web-based management of systems, networks, and
devices on a variety of platforms. WBEM was developed by members of the
Distributed Management Task Force (DMTF), who represent many industry leaders.

WBEM is comprised of three principal components:

WDR Developer's Guide ¢ September 2002

= A method of modeling managed objects. WBEM uses the Common Information
Model (CIM) to create classes that represent managed objects. These classes have
properties that represent the attributes and states of managed objects; and
methods that represent operations that can be performed on managed objects.

= A means of encoding CIM information so that it can be sent over the wire. WBEM
uses Extensible Markup Language (XML), a powerful and extensible subset of
SGML, to encode CIM classes.

= A way of encapsulating XML operations for transmission over the wire. WBEM
uses XML/HTTP or RMI for sending operations that get information from, set the
properties of, and perform operations on, managed objects

To summarize: in WBEM, managed objects are represented as CIM classes,
properties, and methods; CIM operations are represented as either XML/HTTP or
RMI messages; and those messages are sent over the wire.

A comprehensive description of the WBEM standard is beyond the scope of this
document. However, complete information about WBEM is available from a variety
of sources, including the DMTF Web site at www. dmt f . or g.

Common Information Model (CIM)

WDR is a Sun Fire system-specific extension of the CIM schema that is used to
represent:

= Resources on Sun Fire systems that can be managed using DR,

» Events that relate to DR or affect the state of the WDR model,

= DR platform resources such as attachment points, which are represented by the
AttachmentPoint class and its subclasses,

= The containers of DR platform resources, such as domains and slots,

= Events that affect the existence and/or state of objects in the WDR schema,

= Associations between objects in the WDR schema, and

= DR operations themselves.

The architecture of the Sun Fire 6800/4810/4800/3800 systems differs significantly
from that of the Sun Fire 15K and 12K systems. WDR includes CIM schema that
reflect the architectures of all the different Sun Fire systems on which it is used.

Some of the objects in the CIM schema are common to all Sun Fire systems; other
objects are used only on the Sun Fire 6800/4810/4800/3800 systems; while other
objects are used only on the Sun Fire 15K and 12K systems.

The commonalities between the system architectures are captured in platform-
independent superclasses; the differences are captured in platform-specific subclasses
of those platform-independent superclasses.

Chapter 1 Introduction to WDR 3

Platform-Specific and Common MOF Files

The CIM schema used by WDR is expressed in three Managed Object Format (MOF)
files, which are ASCII text files that define all the objects that represent managed
resources on Sun Fire systems.

= WDR corel. 0. nof defines the common elements of Sun Fire 15K/12K, and
6800/4810/4800/3800 systems.

= WDR_XC1. 0. nof defines elements specific to Sun Fire 15K/12K systems.

= WDR _SG1. 0. nof defines elements specific to Sun Fire 6800/4810/4800/3800
systems.

In addition to providing a schema, the MOF file also provides the software
developer or systems administrator with a formal definition of the objects that
comprise the WDR CIM schema.

Note — For a formal definition of CIM, see Common Information Model, Implementing
the Object Model for Enterprise Management, Winston Bumpus et al., Wiley Computer
Publishing, copyright 2000, New York, ISBN 0-471-35342-6.

4

Operations that WDR Performs

WDR can perform the following dynamic reconfiguration operations remotely:

= Add a system board (a CPU/memory board) to a domain that is running the
Solaris software. DR first connects the board electrically to the system, putting it
into a connected state. DR then configures the system board so that it is fully
available to all applications running in the domain; the board is put into the
configured state.

= Move a system board from one domain to another domain, via an unconfi gure
operation followed by a conf i gur e operation.

= Remove a system board from a domain and make it available for use by other
domains.

= List all attachment points that are currently available to domains on the system.

= Display information about the current state of a specified system board, such as
its power status, availability, and domain assignment.

= Retrieve the memory configuration of a configured system board.

= Retrieve information about the impact on memory, such as memory drain
information, that is associated with detaching a configured system board.

WDR Developer's Guide ¢ September 2002

The functionality of WDR is the same as the underlying functionality of DR itself;
WDR adds no additional operations to DR. However, WDR does enhance DR by
providing information about domains and slots; associations between classes; and
event notification.

WDR is designed to perform DR operations efficiently, without any noticeable
degradation of performance.

Administrator Security Models

WDR enforces the administrator security models on Sun Fire 15K/12K and
6800/4810/4800/3800 systems.

For complete information about implementing security at the Sun Fire
6800/4810/4800/3800 system level, see the Sun Fire 6800/4810/4800/3800 Systems
Platform Administration Manual (part number 805-7373).

For complete information about implementing security at the Sun Fire 15K/12K
system level, see the System Management Services (SMS) 1.2 Administrator Guide for
Sun Fire 15K/12K Systems (part number 816-5259).

In addition, security that is available through Solaris WBEM Services is described in
Chapter 2 “Using Solaris WBEM Services in WDR.”

WDR Security

The / et c/ gr oup file shows the groups to which the currently logged in user is
subscribed.

Sun Fire 6800/4810/4800/3800 System Groups

The / et c/ gr oup file, which shows group membership on a Sun Fire
6800/4810/4800/3800 system, can be edited manually.

Chapter 1 Introductionto WDR 5

6

The following table shows all the operations that users can perform based on their
group membership:

TABLE 1-1 Permitted Tasks Based on Group - Sun Fire 6800/4810/4800/3800

Group Tasks that the User Can Perform
None (all users) Enumerate domains and slots
spl tadm Assign and unassign boards
spltop No special privileges

sdxadm Where x represent a domain, can:

= Enumerate attachment points in domain x.

= Enumerate all attachment points if the user is in the sdxadm
group in all domains.

= Change an attachment point state, assign, unassign, power-on,
and power-off a board that is in domain x’s available component
list.

sdxop Where x represent a domain, can:
= Enumerate attachment points in domain x.

= Enumerate all attachment points if the user is in the sdxop group
in all domains.

Sun Fire 15K and 12K System Groups

To modify the / et ¢/ gr oup file, which shows group membership on a Sun Firel5K
or 12K system, you run the / opt / SUNWBMS/ bi n/ smeconf i g script with
arguments. See the System Management Services (SMS) 1.2 Administrator Guide for Sun
Fire 15K/12K Systems for more information.

WDR Developer's Guide ¢ September 2002

The following table shows all the operations that users can perform based on their

group membership:

TABLE 1-2 Permitted Tasks Based on Group - Sun Fire 15K and 12K

Group Tasks that the User Can Perform
pl at adm Assign, unassign, power-on, and power-off boards
pl at oper No special privileges
dmxadm Where x represent a domain, can:
= Enumerate attachment points in domain x.
= Enumerate all attachment points if the user is in the drmxadm
group in all domains.
= Change an attachment point state, assign, unassign, power-on,
and power-off a board that is in domain x’s available component
list.
dmxrcfg Where x represent a domain, can:

= Enumerate attachment points in domain x.

= Enumerate all attachment points if the user is in the dmmxr cf g
group in all domains.

= Change an attachment point state, assign, unassign, power-on,
and power-off a board that is in domain x’s available component
list.

Solaris WBEM Services

WDR is an extension of the Solaris WBEM Services software, which is included in
the Solaris 8 2/02 and Solaris 9 operating environments. Solaris WBEM Services
software provides secure access and manipulation of management data, and enables
software developers to create client applications that manage system resources in the

Solaris environment.

Solaris WBEM Services software consists of components that function at three levels:

= The Application Layer, where WBEM clients process and display data from
managed resources. Application Layer services includes the WBEM Workshop;
the WBEM User Manager, which allows administrators to add and remove
authorized WBEM users and set their access privileges; and the MOF compiler.

= The Management Layer, where the CIM API (which forms the boundary between
the Application and Management Layers) enables the administrator to perform
operations such as viewing and creating classes and instances of managed
resources from the CIMOM. The CIMOM, the CIM Repository, and the Provider
interface all reside at the Management Layer.

Chapter 1 Introduction to WDR

7

= The Provider Layer. At this layer resides the Solaris Provider, which provides the
CIMOM instances of managed resources in the Solaris operating environment,
and gets and sets information about managed resources. The Solaris Provider
forms the interface between CIMOM and managed system resources.

Solaris WBEM Services components interact with the Solaris software and with the
system hardware. For more information about the Solaris WBEM Services software,
visit the Solaris WBEM Web site at wwv. sun. com sof t war e/ sol ari s/ wbem

Developers of load balancing and other system management applications can use
Solaris WBEM Services software to obtain information about the current level of
resource utilization on a Sun Fire system domain. WDR itself does not provide
system performance data.

8

CIM Object Manager (CIMOM)

The CIMOM manages CIM objects on a WBEM system. The CIMOM transfers
information between WBEM clients, the CIMOM Repository, and to managed
resources via providers. The CIMOM accepts connections from management
applications using the RMI protocol, and provides the following services to
connected clients:

= Management services. The CIMOM checks the semantics and syntax of CIM data,
and distributes data between applications, the CIM Repository, and managed
resources.

= Security services that enable administrators to control user access to CIM
information.

= Logging services that consist of classes that developers can use to create
applications that dynamically record CIMOM event data to, and retrieve it from,
a log record.

= XML services that convert XML data into CIM classes, which enables XML-based
WBEM clients to communicate with the CIMOM.

WBEM Providers

WDR contains several provider classes, which are expressed in the MOF files.
WBEM providers are classes that act as intermediaries between the CIMOM and
managed objects on a system. WBEM providers get information from, set
information on, and may perform operations on, managed devices. WBEM providers
forward retrieved information to the CIMOM, which is a part of the Solaris WBEM
Services software, for delivery to the requesting clients.

WDR Developer's Guide ¢ September 2002

When the CIMOM receives a request for information that is not available in the
CIMOM Repository, it forwards the request to a provider. The provider receives
requests for information, and returns the information, using APIs.

Solaris WBEM Software Development
Kit (SDK)

Developers of WDR applications can use the Solaris WBEM SDK. However, there is
no requirement to use the Solaris WBEM SDK because WDR uses a standard set of
protocols. For more information about the Solaris WBEM SDK visit the Sun
Developer Connection at:

www. sun. cont sol ari s/ wbem

Chapter 1 Introduction to WDR 9

10 WDR Developer’'s Guide * September 2002

CHAPTER 2

Using Solaris WBEM Services in
WDR

Overview of Solaris WBEM Services

Solaris WBEM Services provide the WDR application developer with a variety of
WBEM services on domains that are running either the Solaris 8 2/02 or Solaris 9
operating environment. Solaris WBEM Services, which are included with the Solaris
software, make it easier for developers to create applications that use WBEM to
manage systems running Solaris software.

This developer’s guide provides information about only those Solaris WBEM
Services with which a WDR application developer needs to become familiar.
Complete information about Solaris WBEM Services is available at the following
Web site:

http://ww. sun. conl sol ari s/ wbem

Solaris WBEM Services provide secure access to information about managed
resources, which in turn enable applications that use WDR to get information about,
and manage, system resources. A built-in Solaris Provider allows access to
information about managed resources such as hardware and software state
information, performance metrics, and other data that are needed by management
applications to perform load balancing and to respond to device failovers.

Solaris WBEM Services uses the Common Information Model (CIM) to create a
schema that represents managed objects in a system running Solaris software. CIM
objects are specified in a Managed Object Format (MOF) file, which is provided with
WDR and compiled when WDR s installed.

11

Layers of Solaris WBEM Services

Solaris WBEM Services is a software package that resides at three layers. At each
layer reside software components that are important to WDR application developers:

= Application Layer
= Management Layer
= Provider Layer

12

Solaris WBEM Services Application
Layer

The following Solaris WBEM Services Application Layer software programs, which
are especially useful to WDR application developers, are described in detail in this
chapter:

= Solaris Management Console (SMC) WBEM Log Viewer on page 13
= Managed Object Format (MOF) Compiler on page 13

= Using the Sun WBEM User Manager on page 21

= Starting Solaris Management Console (SMC) Users Tool on page 27

Sun WBEM User Manager and SMC Users Tool

The Sun WBEM User Manager and SMC Users Tool applications enable systems
administrators to add and remove authorized users and to set their access privileges
to managed resources.

There are two separate mechanisms for administering security with domains
running the Solaris software: WBEM access control list (ACL) and Solaris role-based
access control (RBAC).

You use the WBEM User Manager to add users to existing ACLs and to grant them
either read or read-write access privileges.

You use the Users Tool in the Solaris Management Console (SMC) to add users, and
to grant user roles and privileges, using RBAC.

See the section “WBEM Security Services” on page 19 for more information about
administering WBEM security, including details of ACL- and RBAC-based system
security.

WDR Developer's Guide « September 2002

Solaris Management Console (SMC) WBEM Log
Viewer

The SMC WBEM Log Viewer displays log files that include information such as the
names of users who issued logged commands, and the client computers on which
the logged commands were issued.

Solaris WBEM Services includes APIs to enable logging of system events. See the
section “Solaris WBEM Logging Services” on page 28 (and subsequent sections) for
complete information about log files; rules associated with log files; log file formats;
classes that developers can use to record system events; and using APls to enable
logging services.

Managed Object Format (MOF) Compiler

The MOF Compiler is used to compile MOF files, which are ASCII text files that
specify objects in a CIM schema that represent managed objects in a system running
Solaris software.

WDR includes three MOF files that define schema comprised of objects that
represent managed resources. One MOF file is used for all Sun Fire systems; another
is used only on Sun Fire 15K and 12K systems; and the third is used for Sun Fire
6800, 4810, 4800, or 3800 systems.

The MOF compiler reads statements in a MOF file that define classes and instances,
and then adds them to the CIM Object Manager Repository, which is a central
storage area for information about management data.

The nof conp Command
To start the MOF compiler and compile a MOF file, use the nof conp command:

/usr/sadn bi n/ mof conp [-help] [-v] [-sc] [-si] [-sq] [-version]
[-c cinbm hostnane] [-u usernane] [-p password] fil ename

Chapter 2 Using Solaris WBEM Services in WDR 13

14

Where:

TABLE2-1 Arguments to the nof conp Command

Argument

Description

-hel p

-V

-SC

- Si

-sq

-version

-c cinom_host nanme

Lists the arguments to the nof conp command.

Runs the compiler in verbose mode, which displays all
compiler messages.

Runs the compiler with the “set class” option, which updates
a class if it already exists and contains no instances, and
returns an error if the class does not already exist. If you do
not specify the - sc option, the compiler adds a CIM class to
the connected namespace, and returns an error if the class
already exists.

Runs the compiler with the “set instance” option, which
updates an instance if it already exists, and returns an error
message if it does not. If you do not specify the - si option,
the compiler adds a CIM instance to the connected
namespace, and returns an error if the instance already exists.

Runs the compiler with the “set qualifier types” option,
which updates a qualifier if it already exists, and returns an
error message if it does not. If you do not specify the - sq
option, the compiler adds a CIM qualifier type to the
connected namespace, and returns an error if the qualifier
type already exists.

Displays the version number of the MOF compiler.

Specifies a system that is running the CIM Object Manager.

WDR Developer's Guide ¢ September 2002

TABLE2-1 Arguments to the nof conp Command

Argument

Description

-u usernane

-p password

filenanme

Specifies the user name for connecting to the CIM Object
Manager. Use the - u user nane option for compilations that
require privileged access to the CIM Object Manager.

If you specify both - p and - u, you must type the password
on the command line, which can pose a security risk. A more
secure way to specify a password is to specify - u but not - p,
so that the compiler will prompt you for the password. See
the section “The mofcomp Password Security Advisory” on
page 16 below.

Specifies a password for connecting to the CIM Object
Manager. Use this option for compilations that require
privileged access to the CIM Object Manager.

If you specify both - p and - u, you must type the password
on the command line, which can pose a security risk. A more
secure way to specify a password is to specify - u but not - p,
so that the compiler will prompt you for the password. See
the section “The mofcomp Password Security Advisory” on
page 16 below.

The name of the MOF file to be compiled.

Compiling a MOF File

You can compile a MOF file whether its filename contains or does not contain a. nof

extension. The MOF files that describe the CIM and Solaris Schemas are located in

[usr/ sadm nof .

How to Compile a MOF File

. To run the MOF Compiler with no options, type the following:

nofconp fil enanme

For example,

nof comp /usr/sadm nof/ Sol ari s_Applicationl. 0. nof

The MOF file named Sol ari s_Appl i cati onl. 0. nof is compiled into the CIM
Object Manager Repository.

Chapter 2 Using Solaris WBEM Services in WDR

15

The nof conp Password Security Advisory

If you run the nof conp command with the - p option, or with the - p and - u
options, and you include a password on the command line, another user can
subsequently run the ps command or the hi st ory command to display your
password. The system does not display a security warning.

Note — If you run a command that requires you to provide your password on the
command line, immediately change your password after running the command. This
will prevent another user from displaying your current password.

The following examples show unsafe (insecure) usage:
% nmofconp -p Log8Rif
% nmofconp -up molly Log8Ri f

If you use the nof conp command in either of the preceding ways, make sure to
change your password immediately after running the command.

16

Solaris WBEM Services Management
Layer

The Solaris WBEM Services Management Layer software program that is useful to
WDR application developers is the Common Information Model (CIM) Object
Manager.

About the CIM Object Manager

Solaris WBEM Services includes the CIM Object Manager, which manages objects in
a WBEM-enabled system. Each CIM object represents a managed system object, such
as a CPU, an I/0 board, or an attachment point.

The CIM Object Manager first accepts connections to management applications
using either the RMI or XML/HTTP protocol; sets up a connection to the CIM Object
Repository; and then awaits requests from client applications for services, which
include:

WDR Developer's Guide « September 2002

= Management services that check the semantics and syntax of CIM data operations
to ensure that they comply with the latest CIM specification; and that distribute
management data between applications (such as WDR applications), the CIM
Repository, and managed resources.

= Security services that authenticate user login requests and control access to
system resources.
= Logging services that record system events

After WBEM clients are connected to a WBEM-enabled system, they can request
WBEM operations such as creating, viewing, and deleting CIM classes and instances;
retrieving the values of properties; and enumerating instances of classes, or classes
within a specified class hierarchy.

Manually Starting and Stopping the CIM Object
Manager

Normally, the CIM Object Manager is started automatically during installation and
whenever you boot a domain by a utility called / etc/init.d/init.wbemIn
addition to the CIM Object Manager, the command starts the Solaris Management
Console (SMC); both run as a single process.

You should not need to start and stop the CIM Object Manager manually, but you
can do so if the need should arise. The i ni t . woemutility has the following syntax:

/fetc/init.d/init.wbem start|stop|status

The st art option starts the CIM Object Manager on the domain from which it is
invoked. The st op option stops the CIM Object Manager on the domain. The
st at us option gets the status of the CIM Object Manager on the domain.

To Start the CIM Object Manager

. Enter the following command at the system prompt to become a root user:
% su

. At the root system prompt (#) type the root password for the domain when
prompted to do so.

. Start the CIM Object Manager by typing the following command:
letc/init.d/init.wem start

Chapter 2 Using Solaris WBEM Services in WDR 17

v To Stop the CIM Object Manager

1. Enter the following command at the system prompt to become a root user:

% su

2. When prompted, enter the root password for the domain at the root system

prompt (#).

3. Stop the CIM Object Manager by entering the following command:

letc/init.d/init.wbem stop

18

Solaris WBEM Services Provider Layer

The Solaris WBEM Services Provider Layer includes the Solaris Provider software
program, which is especially useful to WDR application developers.

Solaris Providers

A Solaris Provider is a class that communicates with managed objects. Providers
provide the CIM Object Manager with instances of managed resources on systems
running the Solaris operating environment, and retrieve and set information on
managed devices.

When a WDR application attempts to access CIM data about managed resources,
WBEM first validates the user login information on the domain. Users are granted
Read Only access by default. See the section “WBEM Security Services” on page 19
for more information about WBEM system security.

The CIM Object Manager uses object provider APIs to communicate with providers.
After an application requests dynamic data from the CIM Object Manager, the CIM
Object Manager responds via the provider APIs to pass the requested information to
the provider.

Providers can be either native providers, which are machine-specific, or they can be
written using the portable, machine-independent Java Native Interface (JNI), which
is part of the Java™ Development Kit (JDK™),

WDR Developer's Guide « September 2002

WBEM Security Services

There are three principal security features that protect CIM objects from intrusion on
a WBEM-enabled system:

= Authentication
= Authorization
= Replay protection

Authentication

Authentication is the process of verifying the identity of a user, device, or other
entity in a Sun Fire system. Authentication is frequently used to give valid users
access to system resources; and to deny access to users who cannot be authenticated.

When a user logs in and enters a user name and password, the client uses the
password to generate an encrypted digest that the server verifies. When the user is
authenticated, the CIM Object Manager grants a MAC token and establishes a client
session. All subsequent operations occur within that secure client session, and
contain a MAC token that uses the session key that was negotiated during the
authentication process. (A MAC is a token parameter added to a remote call which
contains security information used to authenticate that message.)

Authorization

Authorization is the process of granting to a user, program, or process the right to
access system resources. Authorization occurs after authentication.

After the CIM Object Manager has authenticated the user’s identity, that identity can
be used to verify whether the user should be allowed to execute an application or
any of its related tasks. The CIM Object Manager supports capability-based
authorization, which allows a privileged user to assign read and write access to
other users. Such authorizations are added to existing Solaris user accounts.

Replay Protection

Replay protection prevents an unauthorized client picking up and sending another
client’s message to the server by validating a session key.

Chapter 2 Using Solaris WBEM Services in WDR 19

20

A client cannot copy another client’s last message that was sent to the CIM Object
Manager. The CIM Object Manager uses a MAC for each message, based on the
session key that was negotiated during authentication, to guarantee that all
communications in the client-server session is indeed with the same client that
initiated the session and participated in client-server authentication.

The MAC is used to confirm that each message actually came from the client that
was originally authenticated for the session, and that the message was not being
replayed by another client. This type of mechanism is used in WBEM to verify RMI
messages. The session key that was negotiated during the user authentication
exchange is used to encrypt the security information in the message’s MAC token.

Digital Signatures

WBEM Security Services does not perform digital signing of messages.

Implementing Security

You use WBEM Access Control Lists to administer security within the Solaris
operating environment.

WBEM Access Control Lists

Access Control List-based security is implemented using classes that are defined in
the Sol ari s_Acl 1. 0. nof file. Access Control List-based security, which is specific
to Solaris WBEM Services, provides a default authorization scheme for Solaris
WBEM Services, and applies to all CIM operations. Instances of these classes
determine the default authorizations that are assigned to WBEM users and/or
namespaces.

To add users to existing Access Control Lists and assign to them either read or read-
write access privileges, use the Sun WBEM User Manager, which is described in the
section Sun WBEM User Manager. The Sun WBEM User Manager is located at

[usr/ sadnt bi n/ wbemadmi n.

For more information, see the section “Using the Sun WBEM User Manager” on
page 21.

WDR Developer's Guide ¢ September 2002

Using the Sun WBEM User Manager

The Sun WBEM User Manager allows privileged users to add and delete authorized
users and to set their access privileges to CIM objects on a WBEM-enabled system.
Each user must have a Solaris user account.

You can use the Sun WBEM User Manager to set access privileges on individual
namespaces or on a user/namespace combination. When you add a user and select a
namespace, the user has default read access to the CIM objects within the specified
namespace.

You can restrict access by all users to a namespace, and then grant individual users
read, read-write, or write access to that namespace.

You cannot set access rights to individual managed objects. However, you can set
access rights for all managed objects within a namespace and on a per-user basis.

If you log in as root, you can use the WBEM User Manager to set the following types
of access to CIM objects:

= Read Only — Allows read-only access to objects within the CIM schema. Users
with Read Only privileges can retrieve instances and classes, but cannot create,
delete, nor modify CIM objects. The default user access.

= Read/Write — Allows full read, write, and delete access to all CIM classes and
instances.

» Write — Allows write and delete, but not read access to all CIM classes and
instances.

= None — Allows no access to CIM classes and instances.

To Start the Sun WBEM User Manager

. Enter the following command on the command line as root:

[usr/sadnl bi n/ wbermadni n

The Sun WBEM User Manager is loaded, and the Login dialog is displayed. To use
context-sensitive help, click on fields in the dialog to display the Context Help panel.
. In the Login dialog, enter the user name in the User Name field.

You must have Read access to the r oot \ securi t y namespace to log in. By default,
Solaris users have guest privileges, which grant them Read access to the default
namespaces. Users with Read access can view, but not change, user privileges.

To grant access rights to users, you must log in either as root or as a user with Write
access to the r oot \ securi t y namespace.

Chapter 2 Using Solaris WBEM Services in WDR 21

22

. In the Login dialog, enter the password for the user account in the Password field.

. Click OK.

The User Manager dialog is displayed. It contains a list of users and their access
rights to WBEM objects within the namespaces on the current domain.

To Grant Default Access Rights to a User

. Start the Sun WBEM User Manager.

. Click Add in the Users Access portion of the User Manager dialog.

A dialog is displayed that lists all available namespaces on the domain.

. Type the Solaris user’s account name in the User Name field.
. Select a namespace from the list of available namespaces.

. Click OK.

The user name is added to the list of users shown in the User Manager dialog.

. Click OK to save the changes and close the User Manager dialog. Or, click Apply

to save the changes and leave the dialog open.

The user now has Read Only access to CIM objects in the selected namespaces.

To Change a User’s Access Rights

. Start the Sun WBEM User Manager.
. Select the user from the list whose access rights you want to change.

. To grant Read Only access to the user, click the Read check box. To grant the user

Write access, click the Write check box.

. Click OK to save the changes and close the User Manager dialog. Or, click Apply

to save the changes and leave the dialog open.

To Remove a User’s Access Rights

. Start the Sun WBEM User Manager.

. In the Users Access portion of the User Manager dialog, select the user from the

list whose access rights you want to remove.

WDR Developer's Guide « September 2002

3.

4.

v

1.
2.

Click Delete to revoke the user’s access rights to the namespace.
A confirmation dialog prompts you to confirm that you want to revoke the user’s
access rights. Click OK to proceed.

Click OK to save the changes and close the User Manager dialog. Or, click Apply
to save the changes and leave the dialog open.

To Set Access Rights for a Namespace

Start the Sun WBEM User Manager.

In the Namespace Access portion of the User Manager dialog, click Add.
A dialog is displayed that lists all the namespaces that are available in the domain.

Select the namespace for which you want to set access rights.

By default users have Read Only access to namespaces, and the Read check box is
checked. To allow Write access, click the Write check box. To allow Read/Write
access click both the Read and Write check boxes. To allow no access to the
namespace, make sure both the Read and Write check boxes are not checked.

Click OK to save the changes and close the User Manager dialog. Or, click Apply
to save the changes and leave the dialog open.

To Remove Access Rights for a Namespace

Start the Sun WBEM User Manager.

In the Namespace Access portion of the User Manager dialog, select the
namespace whose access rights you want to remove and click Delete.

This removes access control from the namespace, and removes the namespace from
the list of namespaces displayed in the User Manager dialog box.

Click OK to save the changes and close the User Manager dialog. Or, click Apply
to save the changes and leave the dialog open.

Using APIs to Set Access Control

You can use the Sun WBEM SDK APIs to set access control on a namespace or on a
per-user basis. The following security classes are stored in the r oot \ security
namespace:

Chapter 2 Using Solaris WBEM Services in WDR 23

24

= Sol ari s_Acl - Base class for Solaris access control lists (ACLs). This class
defines the string property capability and sets its default value to “r ” (read only).

= Sol ari s_User Acl - Represents the access control that a user has to the CIM
objects within the specified namespace.

= Sol ari s_NanmespaceAcl - Represents the access control on a namespace.

You can set access control on individual users to the CIM objects within a namespace
by creating an instance of the Sol ari s_User ACL class and then using the APIs to
change the access rights for that instance. Similarly, you can set access control on
namespaces by creating an instance of the Sol ari s_NameSpaceACL class and then
using APIs, such as the set | nst ance method, to set the access rights for that
instance.

An effective way to combine the use of these two classes is to first use the

Sol ari s_NameSpaceACL class to restrict access to all users to the objects in a
namespace. Then use the Sol ari s_User ACL class to grant selected users access to
the namespace.

Note — Access control lists (ACLs) are governed by a standard being developed by
the DMTF. Although the Solaris ACL schema are currently CIM-compliant, they will
need to change when the DMTF finalizes the ACL standard. Programs you write
using the Solaris ACL schema classes are subject to that risk.

The Sol ari s_User Acl Class

The Sol ari s_User Acl class extends the Sol ari s_Acl base class, from which it
inherits the string property capabi | i ty that has a default value of “r” (Read
Only).

You can set access privileges by setting the capabi | i ty property of the
Sol ari s_User Acl class to one of the following values:

TABLE 2-2 Settings of the capabi | i t y Property

Access Right Description

r Read Only
rw Read/Write
w Write

none Only

WDR Developer's Guide ¢ September 2002

In addition to the capabi | i ty property, the Sol ari s_User Acl class defines the
following two key properties. Only one instance of the namespace- user name ACL
pair can exist in a namespace.

TABLE 2-3 Key Properties of the Sol ari s_User Acl class

Property Data Type Purpose
nspace string Identifies the namespace to which this ACL applies.
user nanme string Identifies the user to which this ACL applies.

To Set Access Control on a User

. Create an instance of the Solaris_UserAcl class, using code such as the following:

/* Create a nanespace object initialized with root\security
(name of namespace) on the local host. */

Cl MNaneSpace cns = new Cl MNaneSpace("", "root\security");

/1l Connect to the root\security namespace as root.

cc = new CIMCient(cns, "root", "root_password");

/'l Get the Solaris_UserAcl class

cinclass = cc.getd ass(new Cl Mbj ect Pat h(" Sol ari s_User Acl ") ;

/! Create a new instance of the Solaris_UserAcl

class ci = cintlass. newl nstance();

. Set the capabi | i ty property to the desired access rights, using code such as the
following:

/* Change the access rights (capability) to read/wite for
user Quest

on objects in the root\molly nanespace. */
ci.setProperty("capability", new Cl Malue(new String("rw'));

ci.setProperty("nspace", new Cl Mal ue(new String("root\
mol 1y"));
ci.setProperty("usernane”, new Cl MWal ue(new String("guest"));

Chapter 2 Using Solaris WBEM Services in WDR 25

26

3. Update the newly created instance using code such as the following:

/'l Pass the updated instance to the CIM Cbject Manager
cc.setlnstance(new Cl MXjectPath(), ci);

The Sol ari s_NanmespaceAcl| Class

The Sol ari s_NamespaceAcl class extends the Sol ari s_Acl base class, from
which it inherits the string property capabi | i t y whose default value is ’r ” (Read
Only for GUEST and all users). The Sol ari s_NanespaceAc| class defines the
following key property:

Property Data Type Purpose

nspace string Identifies the namespace to which this access control list
(ACL) applies. Only one instance of the namespace ACL
can exist in a namespace.

To Set Access Control on a Namespace

. Create an instance of the Solaris_namespaceACL class, using code such as the

following:

/* Create a nanespace object initialized with root\security
(nanme of nanmespace) on the local host. */

Cl MNaneSpace cns = new Cl MNaneSpace("", "root\security");
/'l Connect to the root\security namespace as root.

cc = new CIMCient(cns, "root", "root_password");

/'l Get the Solaris_nanespaceAcl class

cinclass = cc.getd ass(new
Cl Mbj ect Pat h(" Sol ari s_nanespaceAcl ") ;

/'l Create a new instance of the Sol aris_namespaceAcl
class ci = cintlass. newl nstance();

WDR Developer's Guide ¢ September 2002

2. Set the capability property to grant the desired access rights, using code such as
the following:

/* Create a nanespace object initialized with root\security
(nanme of nanmespace) on the local host. */

Cl MNaneSpace cns = new Cl MNaneSpace("", "root\security");
/'l Connect to the root\security namespace as root.

cc = new CIMCient(cns, "root", "root_password");

/'l Get the Solaris_nanespaceAcl class

cintlass = cc.getC ass(new
Cl MObj ect Pat h(" Sol ari s_nanmespaceAcl ") ;

/'l Create a new instance of the Sol aris_namespaceAcl
class ci = cintlass. newl nstance();

3. Update the newly created instance, using code such as the following:
/'l Pass the updated instance to the CIM Cbject Manager
cc. setlnstance(new Cl Mlbj ectPath(), ci);

Starting Solaris Management Console
(SMC) Users Tool

The SMC Users tool lets you add users to existing roles and grant RBAC rights to
existing users. RBAC rights are managed in the Rights portion of the SMC Users
tool.

v To Start SMC Users Tool

1. Enter the following command to change to the location of the SMC invocation
command:

cd /usr/sbin

2. Type the following command to start the SMC:
snc

Chapter 2 Using Solaris WBEM Services in WDR 27

3. After the application is loaded and the user interface is displayed, double-click

“This Computer” (or single-click the expand/compress icon next to “This
Computer”) in the left-hand Navigation panel to expand the tree beneath “This
Computer.”

. Double-click “System Configuration” (or single-click the expand/compress icon

next to “System Configuration”) in the left-hand Navigation panel to expand the
tree beneath “System Configuration.” The Users icon is displayed.

. Click the Users icon to start the Users Tool.

Note — For more information about using the Solaris Management Console, see the
snt(1m) man page.

28

Solaris WBEM Logging Services

WBEM Logging services enable systems administrators to monitor system events
and to determine how they occurred.

The logging service records all those actions that the service provider has been
programmed to return, and that are completed by Solaris WBEM Services
components. In addition, informational and error content can be recorded to a log.

For example, if a user disables a serial port, this information can be logged
automatically by a serial port provider. Or, if a system error or other failure occurs,
the administrator can check the log record to trace the cause of the occurrence.

All components, applications, and providers start logging automatically, in response
to events. For example, the CIM Object Manager automatically logs events after it is
installed and started.

You can set up logging for applications and providers that you develop for the
WBEM environment. For information, see the section “Using the APIs to Enable
Solaris WBEM Logging” on page 32.

You can view log data in the Solaris Management Console (SMC) Log Viewer to
debug the logging functionality that you have set up. For more information about
viewing log files, see the section “Solaris WBEM Log Viewer” on page 39, and the
snt(1lm) man page.

WDR Developer's Guide ¢ September 2002

Solaris WBEM Services Log Files

When you set up an application or a provider to log events, its events are recorded
in log files. All log records are stored in the path: / var/ sadnf wbeni | og. Log files
use the following naming convention:

wbem | og. #
where # is a number appended to indicate the version of the log file.

A log file appended with a “. 1” is the most recently-saved version, such as
wbem | og. 1. A log file appended with a “. 2” is the next oldest version, and so on.
All versions of the log file co-exist as an archive in / var/ sadnf wbeni | og.

Log files are renamed with a . 1 file extension, and saved when one of the following
two conditions are met:

= The current file reaches the file size limit specified by the
Sol ari s_LogServi ceProperti es class. Default values are set in the
wbenSer vi ce. properti es file.

For information about how the properties of the
Sol ari s_LogServi ceProperti es class control how a log file is used, see the
section “Solaris WBEM Services Log File Rules” on page 29.

= The cl ear Log() method of the Sol ari s_LogSer vi ce class is invoked on the
current log file.

For information about the Sol ari s_LogSer vi ce class and its methods, see the
section “Solaris_LogService Class” on page 31.

Solaris WBEM Services Log File Rules

The Sol ari s_LogServi ceProperti es class is defined in
Sol aris_Corel. 0. nof. The Sol ari s_LogSer vi ceProperti es class has
properties that control the following attributes of a log file:

= The directory where the log file is written

= The name of the log file

= The size allowed for a log file before it is renamed with a . 1 file extension and
saved.

= The number of log files you can have in the archive

= The ability to write log data to SysLog, the default logging system of the Solaris
operating environment

Chapter 2 Using Solaris WBEM Services in WDR 29

To specify any of these attributes for an application that writes data to a log file,
create a new instance of the Sol ari s_LogSer vi ceProperti es class and set the
values of its associated properties. See the section “Setting Solaris WBEM Logging
Properties” on page 38 for detailed information about how to set property values of
the new instance.

Solaris WBEM Services Log File Format

The logging service provides three categories of log records: application, system, and
security. Log records may be informational, or may record data derived from errors
or warnings. A standard set of fields is defined for the data that can be presented in
logs; however, logs do not necessarily use all fields. For example, an informational
log may provide a brief message describing an event. An error log may provide a
more detailed message.

Some log data fields are required to identify data in the CIM Repository. These fields
are properties flagged with a read-only key qualifier in the Sol ari s_LogRecor d
class. You cannot set the values of these fields. You can, however, set the values of
any of the following fields in your log files:

= Cat egory — The type of log record

= Severity — The severity of conditions that caused data to be written to a log
file

= AppNane — The name of the application from which the data was obtained

= User Name — The name of the individual who was using the application when
log data was generated

= Cl i ent Machi neName — The name of the computer on which an incident
occurred that generated log data.

= Server Machi neNane —- The name of the server on which an incident occurred
that generated log data

= Summar yMessage — A brief message describing the occurrence

= Det ai | edMessage — A detailed message describing the occurrence

= Dat a — Context information that applications and providers can present to
interpret a log message.

Solaris WBEM Log Classes

Solaris WBEM Logging Services uses two Solaris Schema classes:
Sol ari s_LogRecord and Sol ari s_LogServi ce.

30 WDR Developer's Guide * September 2002

Sol ari s_LogRecord Class

The Sol ari s_LogRecor d class is defined in the Sol ari s_Cor el. 0. nof file to
model an entry in a log file. When an application or provider calls the

Sol ari s_LogRecor d class in response to an event, the Sol ari s_LogRecor d class
causes all data generated by the event to be written to a log file. To see the definition
of the Sol ari s_LogRecor d class as part of the Solaris Provider, view the

Sol ari s_Corel. 0. nof file in a text editor. The Sol ari s_Cor el. 0. nof file is
located in / usr/ sadni nof .

The Sol ari s_LogRecor d class uses a vector of properties and key qualifiers to
specify attributes of the events, system, user, and application or provider that
generate data. Read-only qualifier values are generated transparently for use
between the application and the CIM Repository. For example, the value Recor dl D
uniquely identifies the log entry but is not displayed as part of the log format when
you view generated data.

You can set the values of writable qualifier values. For example, you can set the
qualifier values of properties such as Cl i ent Machi neNane and
Ser ver Machi neNane, which identify the system on which an event occurs.

When the SysLogFl ag property is set to true, then a detailed message of the log
record is automatically sent to the sysl og daemon on UNIX systems.

Sol aris_LogServi ce Class

The Solaris_LogService class controls the operation of the logging service and
defines the ways in which log data is handled. This class has a set of methods that
an application can use to distribute data about a particular event to the CIM Object
Manager from the issuing application. The data becomes a trigger that generates a
response from the CIM Object Manager, such as a retrieval of data from the CIM
Repository.

The Solaris_LogService class uses the following methods:

cl ear Log — Renames, and saves a current log file or deletes a saved log file.

get NunRecor ds — Returns the number of records in a particular log file.

Ii st LogFi | es — Returns a list of all log files stored in / usr/ sadn wobent | og.

get Current LogFi | eName — Returns the name of the most recent log file.

get NurmLogFi | es — Returns the number of log files stored in

[usr/ sadm wobent | og.

= get LogFi | eSi ze — Returns the size, in megabytes, of a particular log file.

= get Sysl ogSwi t ch — Enables log data to be sent to SysLog, the logging service
of the Solaris operating environment.

= get LogSt or ageNanme — Returns the name of the host computer or device where

log files are stored.

Chapter 2 Using Solaris WBEM Services in WDR 31

= get LogFil eDi r — Returns the path and name of the directory where log files
are stored.

The Sol ari s_LogSer vi ceProperti es class lets you set logging properties. See
the section “Setting Solaris WBEM Logging Properties” on page 38.

You can view the definition of the Sol ari s_LogSer vi ce class in the
Sol ari s_Corel. 0. nof file, which is located in / usr/ sadm nof .

32

Using the APIs to Enable Solaris WBEM
Logging

Currently, you can view log file content in Log Viewer. However, you can develop
your own log viewer if you prefer to view log files in a customized manner. You can
use the logging application programming interfaces (APIs) to develop a log viewer.
The APIs enable you to:

= Write data from an application to a log file
. Read data from a log file to your log viewer
. Set logging properties that specify how logging is handled

Writing Data to a Solaris WBEM Log File

Enabling an application to write data to a log file involves the following main tasks:

= Creating a new instance of the Sol ari s_LogRecord class

= Specifying the properties that will be written to the log file and setting values for
the property qualifiers

= Setting the new instance and properties to print

To Create an Instance of Sol ari s_LogRecord
to Write Data

. Import all the necessary Java classes. The minimum classes are:

inmport java.rm.*;

import comsun.wbemclient.Cl Mlient;
i mport com sun. wbem ci m Cl M nst ance;
i mport com sun. wbem ci m Cl Mal ue;

WDR Developer's Guide « September 2002

i mport com sun. wbem ci m Cl MProperty;
i mport com sun. wbem ci m Cl MNaneSpace;
i mport com sun. wbem ci m Cl MObj ect Pat h;
i mport com sun. wbem ci m Cl MJ ass;
i mport com sun. wbem ci m Cl MExcepti on;
i mport com sun. wbem sol ari sprovi der. *;
import java.util.*;
. Declare the public class Cr eat eLog and create instances of the following classes:
CI MCl i ent, Cl MObj ect Pat h, and Cl MNaneSpace:
public class CreatelLog {
public static void main(String args[]) throws Cl MException {
if (args.length !'=3) {
Systemout. println("Usage: CreatelLog host usernane password");
Systemexit(1);
}
CIMdient cc = null;
Cl Mbj ect Path cop = nul | ;
try {
Cl MNaneSpace cns = new Cl MNaneSpace(args[0]);
cc = new CIMJient(cns, args[1], args[2]);
. Specify the vector of properties to be returned. Set values for the properties of the
qualifiers.
Vector keys = new Vector();
Cl MProperty | ogsvcKey;
| ogsvcKey = new Cl MProperty("category");
| ogsvcKey. set Val ue(new Cl MWal ue(new I nteger(2)));
keys. addEl enent (| ogsvcKey) ;
| ogsvcKey = new Cl MProperty("severity");
| ogsvcKey. set Val ue(new Cl Wal ue(new I nteger(2)));
keys. addEl ement (| ogsvcKey) ;
| ogsvcKey = new Cl MProperty("AppNane");
| ogsvcKey. set Val ue(new Cl MWal ue(" SoneApp"));
keys. addEl enent (| ogsvcKey) ;
| ogsvcKey = new Cl MProperty("User Nane");
| ogsvcKey. set Val ue(new Cl Wal ue("mol 1 y"));
keys. addEl enment (| ogsvcKey) ;

Chapter 2 Using Solaris WBEM Services in WDR 33

| ogsvcKey = new Cl MProperty("d i ent Machi neName") ;

| ogsvcKey. set Val ue(new Cl MWal ue("dragonfly"));

keys. addEl enment (| ogsvcKey) ;

| ogsvcKey = new Cl MProperty(" Server Machi neNanme") ;

| ogsvcKey. set Val ue(new Cl MWal ue("spider"));

keys. addEl enent (| ogsvcKey) ;

| ogsvcKey = new Cl MProperty(" Sunmar yMessage") ;

| ogsvcKey. set Val ue(new Cl MWal ue("bri ef _description"));
keys. addEl ement (| ogsvcKey) ;

| ogsvcKey = new Cl MProperty("Detail edMessage");

| ogsvcKey. set Val ue(new Cl Wal ue("detai |l ed_description"));
keys. addEl enent (| ogsvcKey) ;

| ogsvcKey = new Cl MProperty("data");

| ogsvcKey. set Val ue(new Cl MWal ue("0xfe 0x45 Oxae Oxda"));
keys. addEl enment (| ogsvcKey) ;

| ogsvcKey = new Cl MProperty("Sysl ogFl ag");

| ogsvcKey. set Val ue(new Cl MWal ue(new Bool ean(true)));
keys. addEl enent (| ogsvcKey) ;

4. Declare the new instance of the CIMObjectPath class for the log record.
Cl Mbj ect Pat h | ogreccop = new Cl Mbj ect Pat h(" Sol ari s_LogRecord",
keys);
5. Declare the new instance of Sol ari s_LogRecor d. Set the vector of properties to
write to a file.
Cl M nstance ci = new Cl M nstance();
ci.setCl assNane(" Sol ari s_LogRecord");
ci .set Properties(keys);
[1Systemout.println(ci.toString());
cc. setlnstance(l ogreccop, ci);

}
catch (Exception e) {

System out. println("Exception: "+e);
e. printStackTrace();
}

6. Close the session after data has been written to the log file.
/1 close session.
if(cc '=null) {

34 WDR Developer’'s Guide * September 2002

cc.close();

Reading Data from a Solaris WBEM Log File

Enabling an application to read data from a log file to a log viewer involves the

following tasks:

= Enumerating instances of the Solaris_LogRecord class

= Getting the desired instance

= Printing properties of the instance to an output device, typically a user interface
for the log viewer

To Get an Instance of the Sol ari s_LogRecord
Class and Read Data

. Import all the necessary Java classes. The classes listed below are the minimum

required:

i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport
i mport

java.rm.*;

com sun.wbemclient.ClMJient;
com sun. woem ci m Cl M nst ance;
com sun. wbem ci m Cl Mval ue;

com sun. wbem ci m Cl MPr operty;
com sun. wbem ci m Cl MNaneSpace;
com sun. wbem ci m Cl Mobj ect Pat h;
com sun. wbem ci m Cl MJ ass;

com sun. wbem ci m Cl MExcept i on;
com sun. wbem sol ari sprovi der. *;
java.util.*;

java.util.Enuneration;

. Declare the class ReadlLog.

public class ReadLog

{

public static void nmain(String args[]) throws
Cl MExcept i on

{

Chapter 2 Using Solaris WBEM Services in WDR

35

36

if (args.length !'= 3)

System out. println("Usage: ReadLog host username password");
System exit(1);
}

3. Setthe Cl MOl i ent, Cl MObj ect Pat h, and Cl MNaneSpace values of the ReadLog

class.

CIMJdient cc = null;

Cl Mbj ect Path cop = nul | ;

try { Cl MNaneSpace cns = new Cl MNaneSpace(args[0]);
cc = new CIMJient(cns, args[1], args[2]);

cop = new Cl MDbj ect Pat h(" Sol ari s_LogRecord");

. Enumerate the instances of Sol ari s_LogRecord.

Enunerati on e = cc. enunl nstances(cop, true);
for (; e.hasMoreEl enents();) {

. Send the property values to an output device.

Systemout.println("---------cmmmmm ")
Cl MDbj ect Path op = (Cl Mobj ect Pat h) e. next El ement () ;

Cl M nstance ci = cc.getlnstance(op);
Systemout.println("Record ID: " +

(((Long)ci.getProperty("Recordl D). getVal ue(). get Val ue()) .l ongVal ue
)));

Systemout.println("Log filename : " +
((String)ci.getProperty("FileNane"). getVal ue().getValue()));

int categ = 0
(((I'nteger)ci.getProperty("category").getValue().getValue()).intV
al ue());

if (categ == 0)

Systemout.println("Category : Application Log");
else if (categ == 1)

Systemout.println("Category : Security Log");
else if (categ == 2)

Systemout.println("Category : System Log");

int severity =
(((Integer)ci.getProperty("severity").getValue().getValue()).intV
al ue());

if (severity == 0)

WDR Developer's Guide ¢ September 2002

Systemout.println("Severity : Informational");
else if (severity == 1)

Systemout.println("Severity : Warning Log!");
else if (severity == 2)

Systemout.println("Severity : Error!!");

Systemout.println("Log Record witten by :" +
((String)ci.getProperty("AppNane").getVal ue().getValue()));
Systemout. println("User : " +

((String)ci.getProperty("UserName").getVal ue(). getValue()));

Systemout.println("dient Machine : " +
((String)ci.getProperty("dientMachi neName"). get Val ue() . get Val ue(

1))
Systemout.println("Server Machine : " +
((String)ci.getProperty("ServerMachi neNanme"). get Val ue() . get Val ue())
)
Systemout. println("Summary Message : " +
((String)ci.getProperty("SummaryMessage"). get Val ue(). get Val ue())
)

Systemout.printin("Detail ed Message : " +
((String)ci.getProperty("Detail edMessage"). get Val ue(). get Val ue()

).

Systemout. println("Additional data : " +
((String)ci.getProperty("data").getVal ue().getValue()));

bool ean sysl ogflag =
((Bool ean)ci . get Property("sysl ogflag").getVal ue().getValue()).
bool eanVal ue() ;

if (syslogflag == true) {

Systemout. println("Record was witten to syslog as well");
} else {

Systemout. println("Record was not written to syslog");

}
Systemout.printin("--------------------------------- ")

. Return an error message to the user if an error condition occurs.

catch (Exception e) {
Systemout. println("Exception: "+e);
e.printStackTrace(); }

7. Close the session when the data has been read from the file.

Chapter 2 Using Solaris WBEM Services in WDR 37

38

/1l close session.
if(cc !'=null) {
cc.close();

}

Setting Solaris WBEM Logging Properties

You can create an instance of the Sol ari s_LogSer vi ceProperti es class and set
property values for the instance to control how your application or provider handles

logging.

To Set Solaris WBEM Logging Properties

The following code example shows how to set logging properties. Properties are
stored in the / var/ sadni | i b/ wben! WhenSer vi ces. properti es file.

public class SetProps {
public static void main(String args[]) throws Cl MException {
if (args.length !'=3) {
Systemout. println("Usage: SetProps host usernanme password");
Systemexit(1);
}
CMlient cc = null;
try {
Cl MNaneSpace cns = new Cl MNaneSpace(args[0]);
cc = new CIMJient(cns, args[1l], args[2]);

Cl Moj ect Pat h | ogpropcop = new
Cl MObj ect Pat h(" Sol ari s_LogServi ceProperties");

Enuneration e = cc. enunl nstances(| ogpropcop, true);

for (; e.hasMoreEl ements();) {
Cl Moj ect Path op = (Cl MObj ect Pat h) e. next El enent () ;
Cl M nstance ci = cc.getlnstance(op);
ci.setProperty("Directory”, new Cl Wal ue("/tnp/barl/"));
ci.setProperty("FileSize", new Cl Mval ue("10"));
ci.setProperty("NunFiles", new Cl Mal ue("2"));

WDR Developer's Guide ¢ September 2002

ci.setProperty("SyslogSwitch", new Cl MWal ue("off"));
cc. setlnstance(l ogpropcop, ci);

}
catch (Exception e) {

Systemout. println("Exception: "+e);
e. print StackTrace();

}

/1 close session.

if(cc !'=null) {
cc.close();

}

Solaris WBEM Log Viewer

You can view all details of a log record in the Solaris Management Console (SMC)
Log Viewer, an application that provides a graphical user interface for viewing
recorded data. For more information on the SMC, see the man page snt(1M).

After you have created a log record, you can start the SMC and then its Log Viewer.

To Start SMC and Solaris Log Viewer
. Change to the location of the SMC invocation command by typing the following:
cd /usr/sbin

. Start SMC by typing the following command:
snt

. In the Navigation panel, double-click This Computer (or single-click the
expand/compress icon next to it) to expand the tree beneath it. Double-click
System Status and the Log Viewer icon will be displayed.

. Click the Log Viewer icon to start the application.

Chapter 2 Using Solaris WBEM Services in WDR 39

40 WDR Developer’'s Guide * September 2002

CHAPTER 3

Using Process Indications

This chapter describes CIM process indications; how they are used to communicate
the occurrence of events; and the classes that enable clients to subscribe to receive
CIM process indications. This chapter includes the following topics:

= “The CIM Event Model” on page 41

= “How Indications are Generated” on page 42

= “How Subscriptions Are Created” on page 43

= “Adding a CIM Listener” on page 44

= “Creating an Event Filter” on page 44

= “Creating an Event Handler” on page 46

= “Binding an Event Filter to an Event Handler” on page 48

For more information about process indication classes, see Chapter 4, “Classes,
Domains, Associations, and Indications in WDR.”

Note — For more in-depth information on the CIM Event Model, see the Distributed
Management Task Force white paper at
http://ww. dntf. org/ education/ whitepapers. php.

The CIM Event Model

Tip — The CIM Event API is located at
/usr/sadm |i b/ wbent doc/j avax/ whem cl i ent/Cl MEvent. html .

An event is a real-world occurrence. A process indication is an object that is created as
a result of the occurrence of an event. It is important to distinguish between the
event; and the process indication, which is a notification of the event. In CIM, events
are not published; process indications are published.

41

A process indication is a subtype of a class that has an association with zero or more
triggers (descriptions of changes in data that result from events) that can create
instances of the | ndi cat i on class. The WBEM implementation does not have an
explicitly defined object that represents a trigger. Triggers are implied either by the
operations on basic objects of the system (cr eat e, del et e, and nodi f y on classes,
instances, and namespaces) or by events in the managed environment. When an
event takes place, the WBEM provider generates a process indication that something
happened in the system.

For example, with a Ser vi ce class, when the service stops and a trigger is engaged,
it results in a process indication that serves as notification that the service stopped.

You can view the related CIM classes in the Solaris WBEM Services schema at
/usr/sadm | i b/ woem doc/ nof ht m /i ndex. ht ml . The class is structured as
follows:

= Root class: Cl M_I ndi cati on

» Superclass: CI M_Cl assl ndi cati on

« Subclasses: CI M_Cl assCreati on
« CIM Cl assDel etion
« CIM Cl assModification

» Superclass: CI M I nst | ndi cati on

« Subclasses: Cl M | nst Creati on
« CIM.InstDeletion

« CI MInstMet hodRecal |

« Cl M. nstRead

« Superclass: CI M_Processl ndi cati on

The Cl M_Processl ndi cat i on superclass resides at the top of the “The WDR
Indication Class Hierarchy Diagram” on page 87.

How Indications are Generated

CIM events can be classified as either life cycle events or process events. A life cycle
event is a built-in (intrinsic) CIM event that occurs in response to a change to data in
which a class or class instance is created, modified, or deleted. A process event is a
user-defined (extrinsic) event that is not described by a life cycle event.

Administrators can change the event polling interval and the default polling
behavior of the CIM Object Manager by editing the properties in the

ci nom properti es file. For instructions on editing the ci nom pr operti es file,
see the Solaris WBEM Services Administrator’s Guide (part number 806-6468-10).

42 WDR Developer's Guide « September 2002

Event providers generate indications in response to requests made by the CIM
Object Manager. The CIM Object Manager analyzes subscription requests and uses
the Event Provi der interface to contact the appropriate provider, requesting that it
generate the appropriate indications. When the provider generates the indication,
the CIM Object Manager routes the indication to the destinations specified by the
Cl M_I ndi cat i onHandl er instances. These instances are created by the
subscribers.

How Subscriptions Are Created

A client application can subscribe to be notified of CIM events. A subscription is a
declaration of interest in one or more streams of indications.

An application that subscribes for indications of CIM events describes:
= The events in which it is interested.
= The action that the CIM Object Manager must take when each event occurs.

The occurrence of an event is represented as an instance of one of the subclasses of
the Cl M_I ndi cat i on class. An indication is generated only when a client
subscribes for the event.

To create a subscription, specify an instance of the Cl MLi st ener interface and
create instances of the following subclasses of the Cl M_I ndi cat i on class:

Cl M_I ndi cati onFi | t er — Defines the criteria for generating an indication and
which data should be returned in the indication.

Cl M_I ndi cat i onHandl er — Describes how to process and handle an indication.
May include a destination and a protocol for delivering indications.

CI M_I ndi cati onSubscri pti on — An association that binds an event filter with
an event handler.

An application can create one or more event filters with one or more event handlers.
Event indications are not delivered until the application creates the event
subscription.

Chapter 3 Using Process Indications 43

Adding a CIM Listener

To register for indications of CIM events, add an instance of the Cl MLi st ener
interface. The CIM Object Manager generates indications for CIM events that are
specified by the event filter when a client subscription is created.

The Cl MLi st ener interface must implement the i ndi cat i onCccurr ed method
which takes the argument Cl MEvent . This method is invoked when an indication is
available for delivery.

To Add a CIM Listener

Use code such as the following to add a CIM listener:

/1 Connect to the CIM Cbject Manager

cc = new CIMJient();

/'l Register the CI M Listener

cc. addCl M.i stener (new Cl M.i stener() {
public void indicationCccured(Cl MEvent e) {
}

1)

44

Creating an Event Filter

Event filters describe the types of events to be delivered and the conditions under
which they are delivered. An application creates an event filter by creating an
instance of the CI M_| ndi cati onFi | t er class and defining values for its
properties. Event filters belong to a namespace. Each event filter works only on
events that belong to the namespace to which the filter also belongs.

WDR Developer's Guide « September 2002

The CI M_I ndi cati onFi | t er class has string properties that an application can set
to identify the filter uniquely, specify a query string, and set the query language

used to parse the query string, as shown in the following table. Currently, only the
WBEM Query Language is supported.

TABLE 3-1

Properties in the Cl M_| ndi cati onFi |l ter Class

Property

Description

Required/Optional

Syst enCr eati onCl assNane

Syst enName

Creati onCl assNane

Sour ceNanespace

Query

QuerylLanguage

The name of the system on
which the creation class for
the filter resides, or to
which it applies

The name of the system on
which the filter resides, or
to which it applies

The name of the class or
subclass that was used to
create the filter

The unique name of the
filter

The path to a local
namespace where the CIM
indications originate

A query expression that
defines the conditions
under which indications are
generated. Currently, only
Level 1 WBEM Query
Language expressions are
supported. To learn how to
construct WQL query
expressions, see the section
“Querying” in the Sun
WBEM SDK Developer’s
Guide (part number 806-
6831-10).

The language in which the
query expression is written.

Optional. The default for
this key property is the
Cl Msystem Creation
Cl assNane

Optional. The default for
this key property is the
name of the system on
which the CIM Object
Manager is running.

Optional. The CIM Object
Manager assigns

CIM IndicationFilter
as the default for this key
property.

Optional. The CIM Object
Manager assigns a unique
name.

Optional. The default is
null.

Required

Required. The default is

WQL (WBEM Query
Language).

Chapter 3

Using Process Indications 45

v

1

To Create an Event Filter

Create an instance of the Cl M_I ndi cati onFi | t er Class, using code such as the
following:

CIMClass cinfilter = cc.getC ass
(new Cl MbjectPath('‘CIM.IndicationFilter’’), true, true,
true, null);CIMnstance ci = cinfilter.new nstance();
Specify the name of the event filter, using code such as the following:
Nane = ‘“‘filter_all_new_ sol ari sdi skdrives’’;
Create a WQL string to identify event indications to be returned, using code such
as the following:
String filterString = ** SELECT *
FROM CI M | nst Creati on WHERE sourcelnstance is
| SA Sol aris_Di skDrive'’

Set property values in the ci nfi |l t er instance to identify the name of the filter,
the filter string that selects CIM events, and the query language used to parse the
query string, using code such as the following.

Note — Currently, only the WBEM Query Language can be used to parse query
strings.

ci.setProperty(‘‘Nane’’;, new

Cl Mal ue("filter_all _new_sol ari sdi skdri ves&r dquo;));
ci.setProperty("Query", new ClWalue(filterString));
ci.setProperty("QeryLanguage", new Cl Wal ue("WQL");)

Create an instance from the ci nfi | t er instance and store it in the CIM Object
Manager Repository, using code such as the following:

Cl Mbj ectPath filter = cc.createlnstance(new Cl Mobject Pat h(),
ci);

46

Creating an Event Handler

The Solaris Event MOF extends the Cl M_| ndi cat i onHandl er class by creating the
Sol ari s_JAVARXM Del i very class to handle delivery of indications of CIM
events to client applications using the RMI protocol. RMI clients must instantiate the
Sol ari s_JAVAXRM Del i very class to set up an RMI delivery location. Clients can
use only RMI to receive events; HTTP is not supported.

WDR Developer's Guide « September 2002

An application sets the properties in the Cl M_I ndi cati onHandl er class to
uniquely name the handler and identify the UID of its owner.

TABLE 3-2

Properties in the Cl M_I ndi cat i onHandl er Class

Property

Description

Required/Optional

Syst enCr eat i onCl assNanme

Syst enName

Creati onCl assNane

Omner

The name of the system on
which the creation class for
the handler resides, or to
which it applies

The name of the system on
which the handler resides,
or to which it applies

The name of the class or
subclass that was used to
create the handler

The unique name of the
handler

The name of the entity that
created, or that maintains,
this handler. The provider
can check this value to
determine whether to
authorize a handler to
receive an indication.

Optional. Set by the CIM
Object Manager.

Optional. The default for
this key property is the
name of the system on
which the CIM Object
Manager is running.

Optional. The CIM Object
Manager assigns the
appropriate class as the
default for this key

property.

Required. The client
application must assign a
unique name.

Optional. The default
value is the Solaris user
name of the user who is
creating the instance.

Chapter 3 Using Process Indications

47

v To Create a CIM Event Handler

To create a CIM event handler, use code such as the following:

/'l Create an instance of the Solaris_RMDelivery class.
CIMCl ass rnidelivery = cc.getC ass(new Cl Mdbj ect Path
(*“Solaris_RMDelivery'’;), false, true, true, null);

ClM nstance ci = rmdelivery. new nstance();

//Create a new instance (delivery) from

//the rmidelivery instance.

Cl MObj ect Pat h delivery = cc.createlnstance(new
Cl MObj ect Path(), ci);

48

Binding an Event Filter to an Event
Handler

An application binds an event filter to an event handler by creating an instance of
the Cl M_I ndi cati onSubscri pti on class. When a

Cl M_I ndi cati onSubscri pti on is created, indications for the events specified by
the event filter are delivered.

To Bind an Event Filter to an Event Handler

The following example code creates a subscription (fi | t er del i very) and defines
thefilter property tothefilter object that was created in “Creating an Event
Filter” on page 44, and defines the handl er property to the del i very object
created in “To Create a CIM Event Handler” on page 48:

CIMClass filterdelivery = cc.getC ass(new
Cl MObj ect Pat h(** CI M_I ndi cati onSubscription "),
true, true, true, null);

ci = filterdelivery.new nstance();

/Il Create a property called “filter” that refers to the filter
/'l'i nst ance.
ci.setProperty("filter", new Cl Mvalue(filter));

WDR Developer's Guide « September 2002

// Create a property called handler that refers to the delivery
/'l'instance.

ci.setProperty("handler”, new Cl Wal ue(delivery));

Cl MObj ect Path indsub = cc. createl nstance(new Cl Mobj ect Pat h(),
ci);

Chapter 3 Using Process Indications 49

50 WDR Developer’'s Guide ¢ September 2002

CHAPTER 4

Classes, Domains, Associations, and
Indications in WDR

This chapter describes the classes, domains, associations, and indications that are
part of the WDR CIM class hierarchy, which is depicted in the diagram below.

Chapter 4 contains five sections:

“CIM Attachment Point Classes” on page 53

“CIM Slot Classes” on page 66

“CIM Solaris_ WDRDomain Classes” on page 74

“WDR Schema Associations and Aggregations” on page 81
“CIM Process Indication Classes” on page 86

51

WDR CIM Class Hierarchy Diagram

CIM_CollectionOfMSEs

a

Solaris_ WDRAttachmentPoint

* Busy

* ClassName
+ Condition

* DomainID
* LogicallD

Solaris_DomainHasAttachmentPoints> * MiscInfo

Solaris_SGDomain

* BoardRelationship
* KeySwitchPosition
* State

Solaris_XCDomain

* ActiveEthernetBoard
* AdminGroup

« BoardRelationship

» KeySwitchPosition

* OccupantState

* PhysicallD

* ReceptacleState
* StatusTime

* Type

CIM_LogicalElement

.
>

A

Solaris_CHMemory

* Deleted
« Interleaved
* Permanent

* Configure()

* Connect()

+ Disconnect()
* Test()

« Unconfigure()

A

Solaris_CHSystemBoard

* PhysicalAddress
* Remaining

* Size

* Source

* Target

* Unconfigurable

N

Solaris_CHController

* Device

* Referenced

* Assigned
» PoweredOn

Solaris_SystemBoardHasControllers

* Assign()

» PowerOff()

Solaris_SystemBoardHasMemory

» PowerOn()
* Unassign()

£ | |* ReconfigGroup

0 | |* State

(%2}

1]

<

£

@©

£

8

I Solaris_CHCPU

| |*ECache

@1 |+ID

* Speed
Solaris_SystemBoardHasProcessors
ola DRSlo

* Empty Solaris_SlotHasSystemBoard
* LogocallD
* Assign()
* Unassign() CIM_LogicalElement

Solaris_XCSlot

* AssignedDomain
* AssignmentState
* BoardType

» PowerState

* TestState

Solaris_SGSlot

* AssignedDomain
* AssignmentState
* BoardType

» PowerState

« TestState

52 WDR Developer’'s Guide * September 2002

Legend

Properties

Methods

——>» Children/Parent class

|:> Association

CIM Attachment Point Classes

Attachment point classes provide logical elements that represent attachment points
in Sun Fire 15K, 12K, 6800, 4810, 4800, or 3800 systems. An attachment point is an
interface to a physical location in Sun Fire 15K, 12K, 6800, 4810, 4800, or 3800
systems where you can use WDR to configure system boards, CPUs, and memory
modules in domains that are running the Solaris operating environment. An
attachment point is comprised of a receptacle and an occupant. When you insert an
occupant into a receptacle or remove it from a receptacle, the attachment point’s
state changes.

Note — For more information about attachment points, refer to the cf gadm(1M
man page (all Sun Fire models) and the cf gadm_sbd(1M) man page (Sun Fire 15K
and 12K only).

Attachment point classes are similar to Slot classes insofar as they represent physical
locations in Sun Fire 15K, 12K, 6800, 4810, 4800, or 3800 systems where you can use
WDR. (See the section “CIM Slot Classes” on page 66.) However, Slot classes provide
logical elements that represent only system board and 1/0 boards, and not CPUs,
memory, and 1/0 controllers. Slots are a type of attachment point whose scope is
limited only to boards.

CIM Solaris. WDRAttachmentPoint Class

Position in the Class Hierarchy

Cl M _Logi cal El enent

|
+- - Sol ari s_WDRAt t achnent Poi nt

Description
Represents the core Configuration Administration information. (For more

information see the cf gadm(1M) man page.) This information is gathered using the
I i bcf gadmlibrary on domains.

Chapter 4 Classes, Domains, Associations, and Indications in WDR 53

Direct Known Subclasses

CIM Solaris_CHCPU Class, CIM Solaris_CHSystemBoard Class, CIM
Solaris_CHController Class, and CIM Solaris_CHMemory Class

CIM Solaris_ WDRAttachmentPoint Class Properties

Note — For more information about attachment points, refer to the cf gadm(1M) man
page (all Sun Fire systems), and the cf gadm_sbd(1M) man page (Sun Fire 15K and
12K systems only).

TABLE 4-1 CIM Solaris_WDRAttachmentPoint Properties

Property Data Type Description

Cl assNane string The class of attachment point. For example, “sbd” represents a
system board.

Busy uint32 Indicates whether the attachment point is currently in a state
transition.
Condi tion uint32 The condition of the attachment point. Possible values: Unknown,

CK, Fai |l i ng, Fai | ed, and Unusabl e

Logi cal I D string The logical identifier of the attachment point

Physi cal I D string The physical identifier of the attachment point. For example:
/ devi ces/ pseudo/ dr @: : SB6

Dorai nl D uint32 The domain to which this attachment point is assigned or available.
On Sun Fire 15K systems, domains are numbered between 0 and 17.
On Sun Fire 12K systems, domains are numbered between 0 and 8.
On Sun Fire 3800, 4800, and 4810 systems, domains are numbered 0
and 1 (maximum two domains). On Sun Fire 6800 systems, domains
are numbered between 0 and 3 (maximum four domains).

Qccupant St at e uint32 The occupant state of the attachment point. Possible values: None,
Confi gur ed, and Unconfi gured

Recept acl eSt at e uint32 The receptacle state of the attachment point. Possible values: None,
Enpty, Di sconnect ed, and Connect ed

Type string The type of the attachment point. Either cpun, pcin, or memn,
where n is the number of the component.

54 WDR Developer’'s Guide * September 2002

TABLE 4-1 CIM Solaris_ WDRAttachmentPoint Properties

M sclnfo

string

Driver-specific information that the driver sets. A list of name-value
pairs. Depends on the value of the Type property.

For example, if the Type property is cpun, the M scl nf o property
contains is populated with the following information: the Processor
ID, the Processor speed, and the Ecache memory size in MB.

St at usTi ne

datetime

The date and time of the latest status change to the attachment
point, in the following format:

yyyymmddhhnmmss. nmmmmmsut ¢

Where:

yYyyy represents the year,
mmrepresents the month,
dd represents the day,

hh represents the hour,
mmrepresents the minutes,
ss represents the seconds,

CIM Solaris. WDRAttachmentPoint Class Methods

There are five Sol ari s_WDRAt t achrment Poi nt methods, which you use to add
attachment point resources to, and remove them from, live domains; and test the
status of attachment points.

Note — For more information about Sol ari s_WDRAt t achnent Poi nt Class
methods, refer to the following man pages: cf gadm(1M , cf gadm sbd(1M, and

rcfgadnm(1M .

Method Return Codes

All the Sol ari s_WDRAt t achnment Poi nt methods return an si nt 32 value that
indicates whether the method executed successfully. A return value of zero indicates
successful execution, and a non-zero value indicates that an error occurred, as

follows:

0 = Configuration operation succeeded

1 = Configuration operation cancelled

Chapter 4 Classes, Domains, Associations, and Indications in WDR 55

56

2 = Configuration administration not supported
3 = Configuration operation not supported
4 = Insufficient privileges

5 = Component system is busy, try again

6 = System is busy, try again

7 = Data error

8 = Library error

9 = No Library found

10 = Insufficient condition

11 = Configuration operation invalid

12 = Hardware specific failure

13 = Attachment point not found

14 = No attachment point with specified attributes found

Note — For more information about how clients invoke methods see the Sun WBEM
API Specification in the WBEM SDK, which can be found at

/usr/sadnt | i b/ wbent doc/i ndex. ht m . Before you use i nvokeMet hod(), you
populate the i nPar anms vector with all the [IN] (input) parameters, in the exact
order shown; and populate the out Par ans vector with an empty string. After

i nvokeMet hod() returns, the out Par ans vector will contain any error string that
might have been generated by the corresponding DR operation; or will be an empty

string.

WDR Developer's Guide ¢ September 2002

CIM Solaris_ WDRAttachmentPoint Method Descriptions

TABLE 4-2 CIM Solaris. WDRAttachmentPoint Methods

Name

Description

Configure

Configures the attachment point into a Solaris domain.

Parameters:

= boolean — f or ce [IN] Forces the Conf i gur e operation, which might otherwise fail due to
the condition of the attachment point or other hardware-dependent considerations.
Hardware-specific safety and integrity checks can prevent the f or ce option from having
any effect.

string — har dwar eOpt s [IN] These options are passed to the cf gadmhardware-specific
plug-in. WDR currently interfaces with the cf gadm_sbd plug-in indirectly. If you specify
- 0 nopower of f, the disconnect function leaves the board powered on. If you specify - o
unassi gn, the disconnect function unassigns the board from the domain.
If you unassign a board from a domain, you can assign it to another domain. However, if
it is assigned to another domain, it is not available to the domain from which is was
unassigned.

uint32 — retri es [IN] Specifies the number of times the dynamic reconfiguration (DR)
request is retried on the domain. The default is zero.

uint32 — r et ryDel ay [IN] Specifies the time interval, in seconds, between retries. This
option cannot be used alone and must be specified with the -r retry_count option.
The default value is zero, meaning that the DR request is retried immediately.

e string — error [OUT] The specified string will contain any error string returned by the

corresponding DR command; or will be empty if the command does not return an error
string.

Unconfi gure

Removes the resources of the attachment point from the Solaris domain in which it is currently
configured.

The parameters used by this method are the same as those shown for the Conf i gur e method
above.

Connect Changes the receptacle state to connected.
The parameters used by this method are the same as those shown for the Conf i gur e method
above.

Di sconnect Disables normal communication, to, or, from the occupant in a receptacle.

The parameters used by this method are the same as those shown for the Conf i gur e method
above.

Chapter 4 Classes, Domains, Associations, and Indications in WDR 57

TABLE 4-2 CIM Solaris_ WDRAttachmentPoint Methods

Test

Explicitly requests that the board be tested using POST, even if the board has already been
tested.

Note: Calling the Connect method tests the board using POST, making a call to the Test
method unnecessary.

Parameters:

= boolean — ver bose [IN] Does not perceptibly affect the function of this method because
DR command output is not available to the client.

e string — har dwar eOpt s [IN] Used in the same way as the har dwar eOpt s parameter
described for the Conf i gur e method above.

e string — error [OUT] Used in the same way as the er r or parameter described for the
Conf i gur e method above.

CIM Solaris_ CHSystemBoard Class

Position in the Class Hierarchy

Cl M _Logi cal El erent

I
+- - Sol ari s_WDRAt t achnent Poi nt

|
+- - Sol ari s_CHSyst enBoar d

Description

Represents a logical element that models the UltraSPARC-I11I generation of system
boards that support the functionality of Dynamic Reconfiguration Model 2.0.

As illustrated in the “WDR CIM Class Hierarchy Diagram” on page 52, the CIM
Sol ari s_CHSyst enBoar d class has association relationships with the following
CIM classes: Sol ari s_CHMVenory, Sol ari s_CHControl | er, Sol ari s_WDRSI ot
and Sol ari s_CHCPU.

Direct Known Subclasses

None

58 WDR Developer's Guide * September 2002

CIM Solaris_ CHSystemBoard Class Properties

TABLE 4-3 CIM Solaris_CHSystemBoard Properties

Name Data Type Description
Assi gned boolean Indicates that the board is assigned to a Solaris domain.
Power edOn boolean Indicates that the board is powered-on.

CIM Solaris_CHSystemBoard Class Methods

There are four Sol ari s_CHSyst enBoar d methods, which you use to power-on
and power-off system boards; and assign them to, and unassign them from, live
domains.

Note — For more information about Sol ari s_CHSyst emBoar d Class methods,
refer to the following man pages: cf gadn(1M, cf gadm sbd(1M, and

rcf gadm 1M

Method Return Codes

All the Sol ari s_CHSyst emBoar d methods return an si nt 32 value that indicates

whether the method executed successfully. A return value of zero indicates
successful execution, and a non-zero value indicates that an error occurred, as
follows:

0 = Configuration operation succeeded

1 = Configuration operation cancelled

2 = Configuration administration not supported
3 = Configuration operation not supported

4 = Insufficient privileges

5 = Component system is busy, try again

6 = System is busy, try again

7 = Data error

8 = Library error

Chapter 4 Classes, Domains, Associations, and Indications in WDR

59

9 = No Library found

10 = Insufficient condition

11 = Configuration operation invalid
12 = Hardware specific failure

13 = Attachment point not found

14 = No attachment point with specified attributes found

Note — For more information about how clients invoke methods see the Sun WBEM
API Specification in the WBEM SDK, which is located at

/usr/sadn | i b/ wbent doc/i ndex. ht ml . Before you use i nvokeMet hod(), you
populate the i nPar ans vector with all the [IN] (input) parameters, in the exact
order shown; and populate the out Par ans vector with an empty string. After

i nvokeMet hod() returns, the out Par ans vector will contain any error string that
might have been generated by the corresponding DR operation; or will be an empty
string.

60 WDR Developer's Guide * September 2002

CIM Solaris_CH_SystemBoard Method Descriptions

TABLE 4-4 CIM Solaris_CH_SystemBoard Methods

Name Description
Assi gn Assigns the board to a specified Solaris domain.
Parameters:

= boolean — f or ce [IN] Forces the Assi gn operation, which might otherwise fail
due to the condition of the attachment point or other hardware-dependent
considerations. Hardware-specific safety and integrity checks can prevent the
f or ce option from having any effect.

= string — har dwar eOpt s [IN] These options are passed to the cf gadmhardware-
specific plug-in. WDR currently interfaces with the cf gadm sbd plug-in
indirectly.
If you unassign a board from a domain, you can assign it to another domain.
However, if it is assigned to another domain, it is not available to the domain
from which is was unassigned.

e string — error [OUT] The specified string will contain any error string returned

by the corresponding DR command; or will be empty if the command does not
return an error string.

Power On Powers-on the board.

Parameters:

The parameters used by this method are the same as those shown for the Assi gn
method above.

Power Of f Powers-off the board.

Parameters:

The parameters used by this method are the same as those shown for the Assi gn
method above.

Unassi gn Unassigns the board from the domain to which it is currently assigned.

Parameters:

The parameters used by this method are the same as those shown for the Assi gn
method above.

CIM Solaris CHCPU Class

Chapter 4 Classes, Domains, Associations, and Indications in WDR 61

Position in the Class Hierarchy

Cl M_Logi cal El ement

|
+- - Sol ari s_WDRAt t achnent Poi nt

I
+- - Sol ari s_CHCPU

Description

A logical element that represents a processor on a system board. There can be as
many as four processors per system board on an UltraSPARC-III generation system
board. Because the processor is physically attached to a CPU socket on a system
board, and because DR operations such as configure and unconfigure can be
performed on the attachment point, the CIM Sol ari s_CHCPU class is derived from
the CIM Sol ari s_WDRAt t achnent Poi nt class.

As illustrated in the “WDR CIM Class Hierarchy Diagram” on page 52, the CIM
Sol ari s_CHCPU class has an aggregation relationship with the CIM
Sol ari s_CHSyst enBoar d class.

Direct Known Subclasses

None

CIM Solaris_ CHCPU Class Properties

TABLE 4-5 Solaris_CHCPU Properties

Name Data Type Description

I D uint32 A unique identifier for the processor
Speed uint32 The clock speed of the processor in MHz
ECache uint32 The size of the ECache memory in MB.

CIM Solaris_ CHCPU Class Methods

None

62 WDR Developer’'s Guide * September 2002

CIM Solaris CHMemory Class

Position in the Class Hierarchy

Cl M _Logi cal El emrent

I
+- - Sol ari s_WDRAt t achnent Poi nt

|
+--Sol ari s_CHWenory

Description

A logical element that describes the memory information for a system board. There
is a one-to-one relationship between instances of the Sol ari s_CHSyst enBoar d
and Sol ari s_CHVenory CIM classes. Furthermore, because memory is an
attachment point on the system board, the CIM Sol ari s_CHMVenory class is
derived from the CIM Sol ari s_WDRAt t achnment Poi nt class.

Direct Known Subclasses

None

Chapter 4 Classes, Domains, Associations, and Indications in WDR 63

CIM Solaris_ CHMemory Properties

TABLE 4-6 CIM Solaris_CHMemory Properties

Name Data Type Description

Del et ed uint32 While a memory drain is in progress, the Deleted property stores
the amount of memory that has already been deleted. Otherwise the
Del et ed property is null.

Interl eaved boolean True if the board is participating in interleaving with other boards.

Per manent uint32 Stores the number of non-pageable memory pages in the board’s
memory, in kilobytes.

Physi cal Addr ess uint64 The base physical address of memory on the board

Remai ni ng uint32 When a memory drain is in progress, the Remaining property stores
the amount of remaining memory that needs to be drained, in
megabytes. Otherwise the Rermai ni ng property is null.

Si ze uint32 The size of memory on the board in megabytes

Source string The name of the copy-rename source attachment point. When there
is no copy-rename operation, the Sour ce property is null.

Tar get string The name of the copy-rename target attachment point. When there
is no copy-rename operation, the Tar get property is null.

Unconfi gurabl e boolean True if the operating system has been configured to disallow this
memory from being unconfigured.

CIM Solaris_CHMemory Class Methods

None

64 WDR Developer’'s Guide * September 2002

CIM Solaris_ CHController Class

Position in the Class Hierarchy

Cl M _Logi cal El emrent

I
+- - Sol ari s_WDRAt t achnent Poi nt

|
+--Sol aris_CHControl |l er

Description

A logical CIM element that models the 1/0 controller attachment points on an 1/0
board.

Direct Known Subclasses

None

CIM Solaris_CHController Class Properties

TABLE 47 Solaris_CHController Properties

Name Data Type Description
Devi ce string The physical path of the 1/0 component in the / devi ces path
Ref er enced boolean True if the 1/0 component is referenced.

CIM Solaris_CHController Class Methods

None

Chapter 4 Classes, Domains, Associations, and Indications in WDR 65

66

CIM Slot Classes

The CIM Slot classes model system board slots on Sun Fire 15K, 12K, 3800, 4800,
4810, and 6800 systems. The slots can be empty or occupied. Like attachment points,
slots can be assigned to, and unassigned from, domains. However, unlike
attachment points, slots can exist independent of any domain, and they always exist.

Note — Classes whose names contain “XC” are used with Sun Fire™ 15K and 12K
systems. Classes whose names contain “SG” are used with Sun Fire 6800, 4810, 4800,
and 3800 systems.

CIM Solaris. WDRSIot Class

Position in the Class Hierarchy

Cl M _Logi cal El erent

I
+--Sol ari s_WDRS| ot

The abstract CIM Sol ari s_WDRS| ot class models a platform-independent slot.

Description

A logical CIM element that provides a superclass to those logical CIM elements that
model the slots in a Sun Fire 15K, 12K, 6800, 4810, 4800, or 3800 chassis. A slot can
contain either a system board or an 1/0 board.

As illustrated in the “WDR CIM Class Hierarchy Diagram” on page 52, the
Sol ari s_WDRSI| ot class has association relationships with the following CIM
classes: Sol ari s_CHSyst enBoar d and Sol ari s_WDRDonai n.

Direct Known Subclasses

CIM Solaris_XCSlot Cass and CIM Sol aris_SGSl ot C ass

WDR Developer's Guide ¢ September 2002

CIM Solaris_ WDRSIlot Properties

TABLE4-8 CIM Solaris_WDRSIlot Properties

Name

Data Type

Description

Logi cal I D

string

The logical name of the slot.

On a Sun Fire 15K system there are 18 expanders, and each can hold
one system board and one I/0 board. System board slots are
represented as SBO, SB1, ... SB17, and 1/0 board slots are
represented as 100, 101, ... 1017.

On a Sun Fire 12K system there are 9 expanders, and each can hold
one system board and one I/0 board. System board slots are
represented as SBO, SB1, ... SB8, and I/0 board slots are represented
as 100, 101, ... 108.

On a Sun Fire 6800, 4810, 4800, or 3800 system there can be up to 6
system boards, whose slots are represented as SBO, SB1, ... SB5; and
up to 4 170 boards, whose slots are represented as 1B6, IB7, IB8, and
1B9.

Empt y

boolean

Indicates whether this slot contains a board. A value of NULL
indicates that the state of the slot is unknown.

If the Enpt y property is True, then the following properties of the
CI M Sol ari s_XCSl ot Cl ass and the CI M Sol ari s_SGSI ot
Cl ass are NULL: Assi gnnent St at e, Boar dType, Power St at e,
and Test St ate.

CIM Solaris. WDRSlot Methods

There are two Sol ari s_WDRS| ot methods, which you use to assign and unassign

slots.

Method Return Codes

On Sun Fire 15K and 12K systems, all the Sol ari s_WDRSI| ot methods return an
si nt 32 value that indicates whether the method executed successfully. A return
value of zero indicates successful execution, and a non-zero value indicates that an
error occurred, as follows:

0 = Configuration operation succeeded

Chapter 4 Classes, Domains, Associations, and Indications in WDR

67

68

1 = Configuration operation cancelled

2 = Configuration administration not supported
3 = Configuration operation not supported
4 = Insufficient privileges

5 = Component system is busy, try again

6 = System is busy, try again

7 = Data error

8 = Library error

9 = No Library found

10 = Insufficient condition

11 = Configuration operation invalid

12 = Hardware specific failure

13 = Attachment point not found

14 = No attachment point with specified attributes found

Note — For more information about how clients invoke methods see the Sun WBEM
API Specification in the WBEM SDK, which is located at

/usr/sadnt | i b/ wbent doc/ i ndex. ht ml . Before you use i nvokeMet hod(), you
populate the i nPar ans vector with all the [IN] (input) parameters, in the exact
order shown; and populate the out Par ans vector with an empty string. After

i nvokeMet hod() returns, the out Par ans vector will contain any error string that
might have been generated by the corresponding DR operation; or will be an empty

string.

WDR Developer's Guide ¢ September 2002

CIM_SolariswDRSIlot Method Descriptions

TABLE 4-9 CIM Solaris_ WDRSIlot Methods

Name

Description

Assi gn

Assigns the slot to the specified domain.

Parameters:

= uint32 — domai nl D [IN] Specifies a domain to which this slot is to be assigned.
On a Sun Fire 15K/12K server there can be up to 18 domains. On a Sun Fire
3800, 4800, or 4810 system there can be 1 or 2 domains. On a Sun Fire 6800
system, there can be between 1 and 4 domains.

e string — error [OUT] Contains any error string that is returned by the
corresponding DR operation; or empty if the operation does not return an error
string.

Unassi gn

Unassigns a board from a domain. No board in the slot can be active (i.e., connected
or configured) in the domain.

Parameters:

The parameters used by this method are the same as those shown for the Assi gn
method above.

CIM Solaris_XCSlot Class

Position in the Class Hierarchy

Cl M _Logi cal El emrent

I
+--Sol ari s_VDRSI ot

I
+- - Sol ari s_XCSlI ot

Description

A logical CIM element that models the slots on a Sun Fire 15K or 12K system. A slot
can contain either a system board or an 1/0 board.

Chapter 4 Classes, Domains, Associations, and Indications in WDR 69

On a Sun Fire 15K system there are 18 expanders, and each can hold one system
board and one 1/0 board. System board slots are represented as SBO, SB1, ... SB17,
and 1/0 board slots are represented as 100 (zero), 101, 102, ... 1017.

On a Sun Fire 12K system there are 9 expanders, and each can hold one system
board and one 1/0 board. System board slots are represented as SBO, SB1, ... SBS,
and 1/0 board slots are represented as 100 (zero), 101, 102, ... 108.

Direct Known Subclasses

None

70 WDR Developer’'s Guide * September 2002

CIM Solaris_XCSlot Properties

TABLE 4-10 CIM Solaris_XCSlot Properties

Name

Data Type

Description

Assi gnedDomai n

sint32

The domain to which this slot is assigned, if the value of its

Assi gnnent St at e property is Assi gned. The numeric Values -1
through 18 represent the following in the ValueMap: None, A, B, C,
DEFRGHI,J,KLMNONPQandR

Assi gnnent St at e

uint32

The current assignment state of the slot. The Values 0 through 3
represent the following in the ValueMap: Unknown, Fr ee,
Assi gned, and Act i ve.

Always NULL is the Empty property (inherited from the
Sol ari s_WDRSI ot class) is True.

Boar dType

uint32

The type of board that resides in the slot, if known. The Values 0
through 8 represent the following items in the ValueMap: CPU, W B,
HPCI , CPClI , MCPU, WPCI , SPCI , HPCI X, and Unknown. Note:
Unknown is not equal to Enpt y.

Always NULL is the Empty property (inherited from the
Sol ari s_WDRSI ot class) is True.

Power St at e

uint32

The power state of the board. The Values 0 through 3 represent the
following items in the ValueMap: Of f , On, Unknown, or M ni mal .

Always NULL is the Empty property (inherited from the
Sol ari s_WDRSI ot class) is True.

TestState

uint32

The test state of the board. The numeric Values 0 through 4
represent the following in the ValueMap: Unknown, i POST,
Passed, Degr aded, or Fai | ed.

Always NULL is the Empty property (inherited from the
Sol ari s_WDRSI ot class) is True.

CIM Solaris_XCSlot Methods

None

Chapter 4 Classes, Domains, Associations, and Indications in WDR 71

72

CIM Solaris_SGSlot Class

Position in the Class Hierarchy

Cl M _Logi cal El emrent

I
+- - Sol ari s_WDRSI ot

|
+--Sol ari s_SGS| ot

Description

A logical CIM element that models the slots on a Sun Fire 6800, 4810, 4800, or 3800
system.

Note — On a Sun Fire 6800, 4810, 4800, or 3800 system there can be up to 6 system
boards, whose slots are represented as SBO, SB1, ... SB5; and up to 4 1/0 boards,
whose slots are represented as IB6, IB7, IB8, and 1B9.

Direct Known Subclasses

None

WDR Developer's Guide ¢ September 2002

CIM Solaris_SGSlot Properties

TABLE 4-11 CIM Solaris_SGSlot Properties

Name Data Type Description

Assi gnedDomai n sint32 The domain to which this slot is assigned, if the value of the slot’s

Assi gnnent St at e property is Assi gned. The Values 1 through 5

represent the following items in the ValueMap:

= None

- A

B

-C
D

Assi gnnent St at e uint32 The current assignment state of the slot. The Values 1 through 4
represent the following in the ValueMap:

= Unknown
* Free

= Assigned
= Active

Boar dType uint32 The type of board that resides in the slot if known. The Values 1
through 11 represent the following items in the ValueMap:

« Unknown

= Empty

- CPU

- 10

= CPUWIB

= |OWIB

= SC

- L2

= Fan

= Power Supply
= Logic Analyzer

Power St at e uint32 The power state of the board. The Values 1 through 4 represent the
following items in the ValueMap:

« Unknown
e On

= Off

« Failed

Chapter 4 Classes, Domains, Associations, and Indications in WDR 73

TABLE 4-11 CIM Solaris_SGSlot Properties

Test State uint32 The test state of the board. The Values 1 through 8 represent the
following items in the ValueMap:

« Unknown
« Not Tested
= Passed

« Failed

= Under Test
= Start Test

= Degraded

= Unusable

CIM Solaris_SGSlot Methods

None

CIM Solaris. WDRDomain Classes

The CIM Solaris domain classes represent domains on Sun Fire systems that are
running the Solaris operating environment.

CIM Solaris. WDRDomain Class

Position in the Class Hierarchy

CI M Col | ecti onOf MSEs

|
+- - Sol ari s_WDRDomai n

Description
The CIM Sol ari s_WDRDonai n class is an abstract superclass that describes domain

information on all Sun Fire systems (the 15K, 12K 6800, 4810, 4800, and 3800
systems).

74 WDR Developer’'s Guide * September 2002

As illustrated in the*WDR CIM Class Hierarchy Diagram” on page 52, the CIM
Sol ari s_WDRDomai n class has an association relationship with the

Sol ari s_WDRSI ot class and an aggregation relationship with the

Sol ari s_WDRAt t achment Poi nt class.

Direct Known CIM Subclasses

CIM Sol aris_SGomai n Class and CI M Sol ari s_XCDomai n C ass

Note — CIM domain classes whose names contain “XC” are used with Sun Fire™
15K and 12K systems. CIM domain classes whose names contain “SG” are used with
Sun Fire 6800, 4810, 4800, and 3800 systems.

CIM Solaris_ WDRDomain Class Properties

TABLE 4-12 CIM Solaris_ WDRDomain Properties

Name

Data Type Description

uint32 Identifies the domain uniquely.

CIM Solaris_ XCDomain Class

Position in the Class Hierarchy

CI M Col | ecti onOf MSEs

I
+- - Sol ari s_WDRDomai n

+- - Sol ari s_XCDomai n

Description

The CIM Sol ari s_XCDomai n class, which is a subclass of the CI M

Sol ari s_WDRDonai n class, describes domain information on Sun Fire 15K and 12K
systems. It contains several CIM properties that contain information that is specific
to Sun Fire 15K and 12K systems.

Chapter 4 Classes, Domains, Associations, and Indications in WDR 75

Direct Known CIM Subclasses

None

76 WDR Developer’'s Guide * September 2002

CIM Solaris_XCDomain Class Properties

TABLE 4-13 CIM Solaris_XCDomain Properties

Name Data Type Description

Act i veEt her net Board | string The 170 board that hosts the active Ethernet connection for the
internal system controller (SC) network.

Admi nGr oup string The name of the UNIX group that is assigned to the Domain
Administrator group

Boar dRel ati onshi p[] | sint32 An array of values, one for each board, that indicates the status of
the board within the domain. Each position in the array’s BitMap

represents the status of one board; each number in the ValueMap

represents one of the following Values:

= Not Available

= Available

= Assigned

= Active

Numbers 1 through 18 in the array’s BitMap represent the status of
each system board (SBO through SB17). Numbers 19 through 36 in
the array’s BitMap represent the status of each 1/0 board (100
through 1017).

Keyswi t chPosi tion uint32 Indicates the status of the domain. Each of the Values 0 through 5
represents an item in the ValueMap, which indicates the status of
the domain:

« On
Standby
« Off

= Diag

= Secure

« Unknown

Reconfi gG oup string The name of the UNIX group that is assigned to the Domain
Reconfiguration role.

Chapter 4 Classes, Domains, Associations, and Indications in WDR 77

TABLE 4-13 CIM Solaris_XCDomain Properties

State uint32 The current state of the domain. Each number, 0 through 36, in the
ValueMap represents one of the following Values, which indicate
the current state of the domain:

« Unknown

= Powered Off

= Keyswitch Standby

< Running Domain POST
« Running Board POST
= Layout OBP

= Loading OBP

= OBP Booting

= OBP Running

= OBP Callback

= OBP Loading Solaris

= OBP Booting Solaris

= OBP Domain Exited

« OBP Failed

= OBP in Sync Callback
= OBP Exited

= OBP Error Reset

= OBP Domain Halt

= OBP Environmental Domain Halt
= OBP Booting Solaris Failed
= OBP Loading Solaris Failed
= OBP Debug

= OS Running Solaris

= OS Quiesce in Progress
 OS Quiesced

= OS Resume in Progress
= OS Panic

= OS Panic Debug

« OS Panic Continue

= OS Panic Dump

= OS Halt

= OS Panic Exit

= OS Environmental Exit
= OS Debug

« OS Exit

= Domain Down

= Domain In Recovery

78 WDR Developer’'s Guide * September 2002

CIM Solaris_SGDomain Class

Position in the Class Hierarchy

Cl M Col | ecti onCf MSEs

I
+- - Sol ari s_WDRDomai n

+--Sol ari s_SGDonai n

Description

The CIM Sol ari s_SGDomai n class, which is a subclass of the Cl M

Sol ari s_WDRDonai n class, describes domain information on Sun Fire 6800, 4810,
4800, and 3800 systems. It contains several CIM properties that contain information
that is specific to Sun Fire 6800, 4810, 4800, and 3800 systems.

Direct Known CIM Subclasses

None

Chapter 4 Classes, Domains, Associations, and Indications in WDR 79

CIM Solaris_SGDomain Class Properties

TABLE 4-14 CIM Solaris_SGDomain Properties

Name

Data Type

Description

Boar dRel at i onshi p[]

sint32

An array of values, one for each board, that indicates the status of
the board in the domain. For each position in the array BitMap,
ValueMap items 0 through 4 represents the following board status
values:

= Nonexistent Slot

= Not Available

= Available

= Assigned

= Active

On a Sun Fire 6800 system, the BitMap values 1 through 10
represent all boards. BitMap values 1 through 6 relate to system
boards 0 through 5 (SBO through SB5). BitMap values 7 through 10
relate to 1/0 boards, 1B6 through IB9.

On Sun Fire 4810, 4800, and 3800 systems, only five slots are
available, for three CPU boards and two 1/0 boards. Therefore, the
BitMap values 4, 5, and 6 (for SB3, SB4, and SB5), and BitMap
values 9 and 10 (for IB8 and IB9), are always 0 (Nonexistent Slot).

Keyswi t chPosi tion

uint32

Indicates the status of the domain. The Values 1 through 16
represent the following items in the ValueMap:

« Unknown

- Off

= Standby

= On

= Diag

= Secure

= Off To Standby

= Off To On

= Off To Diag

= Off To Secure

= Standby To Off

= Active To Off

= Active To Standby
= Reboot To On

= Reboot To Diag
= Reboot To Secure

80 WDR Developer’'s Guide * September 2002

TABLE 4-14 CIM Solaris_SGDomain Properties

State

uint32 The current state of the domain. The ValueMap items 1 through 14
represent the following values:

« Unknown

= Running POST
= Standby

= Active

= Powered Off

= Domain Idle

= Running OBP
= Booting

= Running Solaris
= Halted

* Reset

= Panic

« Debugger

« Hang Detected

WDR Schema Associations and
Aggregations

A CIM association is a special class that relates one WDR class or instance to
another. Associations can be one-to-one relationships or aggregations.

WDR aggregations relate one WDR class or instance to many other classes or
instances.

CIM Solaris_DomainHasAttachmentPoints
Aggregation

Description

A domain is said to have an attachment point if that attachment point is either
available to the domain (and appears in the domain’s available component list) or is
assigned to the domain. Only domains that are running can have attachment points.

Chapter 4 Classes, Domains, Associations, and Indications in WDR 81

The Sol ari s_Domai nHasAt t achnent Poi nt s aggregation relates sub-instances of
the Solaris_ WDRDomain class to the sub-instances of the

Sol ari s_WDRAt t achnment Poi nt class that are available or assigned to the
domain.

The Sol ari s_Domai nHasAt t achnment Poi nt s aggregation is a composition
association where the domain is composed of one or more attachment points. The
parent of the Sol ari s_Domai nHasAt t achnment Poi nt s aggregation is a sun-
instance of the Solaris_ WDRDomain class. The child of the

Sol ari s_Domai nHasAt t achnment Poi nt s aggregation is a sub-instance of the
Sol ari s_WDRAt t achment Poi nt class. The

Sol ari s_Domai nHasAt t achnment Poi nt s aggregation is a one-to-many
relationship, where multiple attachment points can be available or assigned to a
single domain.

CIM Solaris_DomainHasAttachmentPoints Aggregation
Properties

TABLE 4-15 CIM Solaris_DomainHasAttachmentPoints Aggregation Properties

Name Data Type Description
Col | ection REF Solaris_WDRDomain References the parent in the relationship.
Merber REF Solaris_ WDRAttachmentPoint References a child in the relationship.

CIM Solaris_DomainHasSlots Aggregation

Description

One of the characteristics of a domain is that it contains zero or more slots. A slot
can be assigned to a domain regardless of whether it is occupied by a system board.
Consequently, the Sol ari s_Domai nHas S| ot s aggregation relates the binding
between the CIM Sol ari s_WDRDongi n and CIM Sol ari s_WDRSI ot classes.

The Sol ari s_Domai nHas Sl ot s aggregation is a composition association, where
the domain is composed of one or more slots.

82 WDR Developer's Guide « September 2002

The parent of the Sol ari s_Domai nHas S| ot s aggregation is an instance of the
Sol ari s_XCDormmai n class, and the child is an instance of the Sol ari s_\WDRS| ot
class. The Sol ari s_Domai nHas S| ot s aggregation is a one-to-many relationship,
where multiple slots can be assigned to a single domain. However, a single slot
cannot reside in multiple domains at one time.

CIM Solaris_DomainHasSlots Aggregation Properties

TABLE 4-16 CIM Solaris_DomainHasSlots Aggregation Properties

Name

Data Type Description

Col | ecti on

REF Solaris_ WDRDomain | References the parent in the relationship.

Menber

REF Solaris_WDRSIot References a child in the relationship.

Solaris_SlotHasSystemBoard Association

Description

A slot can contain a board regardless of whether the slot is assigned to a domain.
The CIM Sol ari s_SI ot HasSyst enBoar d association relates an instance of the
CIM Sol ari s_WDRSI ot class to an instance of the CIM Sol ari s_Syst enBoard
class that corresponds to the board in the slot.

The CIM Sol ari s_SI ot HasSyst enBoar d is a composition association, and an
instance of the CIM Sol ari s_WDRSI ot class can be composed of zero or one
instance of the CIM Sol ari s_Syst enBoar d class.

CIM Solaris_SlotHasSystemBoard Association Properties

TABLE 4-17 CIM Solaris_SlotHasSystemBoard Association Properties

Name

Data Type Description

Ant ecedent

REF Solaris_WDRSIlot References the parent in the relationship.

Dependent

REF Solaris_CHSystemBoard References the child in the relationship.

Chapter 4 Classes, Domains, Associations, and Indications in WDR 83

Solaris_SystemBoardHasProcessors Aggregation

Description

A system board is a large circuit board that contains processors, a memory module,
and 1/0 modules. The CIM Sol ari s_Syst enBoar dHasPr ocessor s aggregation
describes the relationship between an instance of the Sol ari s_CHSyst enBoar d
class and an instance of the Sol ar i s_CHCPU class; it relates a system board with the
processors that it contains.

The aggregation is a one-to-many relationship where a board can contain between
zero and four processors.

CIM Solaris_SystemBoardHasProcessors Aggregation
Properties

TABLE 4-18 CIM Solaris_SystemBoardHasProcessors Aggregation Properties

Name Data Type Description
Gr oupConponent REF Solaris_CHSystemBoard References the parent in the relationship.
Par t Conponent REF Solaris_CHCPU References a child in the relationship.

Solaris_SystemBoardHasMemory Aggregation

Description

A system board is a large circuit board that contains processors, a memory module,
and 1/0 modules. The CIM Sol ari s_Syst enBoar dHasMenor y aggregation
relates an instance of the Sol ari s_CHSyst enBoar d class with an instance of the
Sol ari s_CHMenory class; it relates a board with the memory that it contains.

The Sol ari s_CHMenory class is a collection of information that describes memory
on a system board. For a given system board, there is a maximum of one instance of
the Sol ari s_CHMenory class.

84 WDR Developer’'s Guide * September 2002

CIM Solaris_SystemBoardHasMemory Aggregation
Properties

TABLE 4-19 CIM Solaris_SystemBoardHasMemory Aggregation Properties

Name

Data Type

Description

G oupConponent

REF Solaris_CHSystemBoard

References the parent in the relationship.

Par t Conponent

REF Solaris_CHMemory

References a child in the relationship.

Solaris_SystemBoardHasControllers Aggregation

Description

In addition to processors and memory modules, a system board can have I/0
modules such as disk and network controllers. The CIM

Sol ari s_Syst enBoar dHasCont r ol | er s aggregation relates a system board to
the controllers that it contains.

Sol ari s_Syst enBoar dHasCont r ol | er s is a one-to-many relationship where
one system board can contain multiple 1/0 devices.

Chapter 4 Classes, Domains, Associations, and Indications in WDR

85

CIM Solaris_SystemBoardHasControllers Aggregation
Properties

TABLE 4-20 CIM Solaris_SystemBoardHasControllers Aggregation Properties

Name

Data Type

Description

G oupConponent

REF Solaris_CHSystemBoard

References the parent in the relationship.

Par t Conponent

REF Solaris_ CHController

References a child in the relationship.

CIM Process Indication Classes

CIM process indications are subclasses of the CI M_Pr ocessi ndi cati on class.
They are used by WDR to forward notifications of events on Sun Fire 15K, 12K, 6800,
4810, 4800, and 3800 systems to client applications. Process indications are discussed

fully in Chapter 3, “Using Process Indications.”

Process indications on Sun Fire 6800, 4810, 4800, and 3800 systems are derived from

selected SNMP traps that are received from the System Controller (SC).

Process indications on Sun Fire 15K and 12K systems are derived from selected
events that are generated by the system event facility, sysevent, on the Sun Fire

15K and Sun Fire 12K SC.

Note — Process indication classes whose names contain “XC” are used with Sun
Fire™ 15K and 12K systems. Classes whose names contain “SG” are used with Sun

Fire 6800, 4810, 4800, and 3800 systems.

86 WDR Developer’'s Guide * September 2002

The WDR Indication Class Hierarchy
Diagram

CIM_Processindication

Solaris_WDRIndication

A

YYYYVYY

Solaris_SGBoardPresenceChange Solaris_SGSlotAssignmentChange [l Solaris_XCDomainIndication Solaris_XCSystemBoardconfigChange
* BoardType « AssignedDomain DomainID DomainID
* ChassisSerialNumber « AssignmentState
* LogicallD * ChassisSerialNumber AAAAL
* LogicallD Solaris_XCEnvironmentallndication
» ComponentID
Solaris_SGDomainAcIChange - ; . GROID
Solaris_SGBoardStateChange Solaris_XCDomainStop
* AvailableBoards —
« DomainiD « ChassisSerialNumber ‘ |
« LogicallD
« PowerState : ;]
Solaris_XCDomainDown
« TestState _ Solaris_XCBoardPowerOn
Solaris_SGDomainStateChange ‘ |
» DomainID
* KeySwitchPosition Solaris_SGSlotAvailabilityChange Solaris_XCDomainUp Solaris_XCBoardPowerOff
« State
« AssignedDomain ‘ | ‘ ‘
« AssignmentState
* LogicallD Solaris_XCDomainStateChange gl < |- i XCComponentRemove
« Signature
« State \ |
* SubState
Legend Solaris_XCComponentlnsert
\ |

Properties Solaris_XCDomainconfigChange
Methods

Solaris_ WDRIndication Class

The Sol ari s_WDRI ndi cati on class is an abstract class from which all process
indication classes are derived on all Sun Fire systems. The

Sol ari s_WDRI ndi cat i on class adds no properties to its base class.

Chapter 4 Classes, Domains, Associations, and Indications in WDR 87

Solaris_SGBoardPresenceChange Indication

Description

This process indication, which is used on Sun Fire 6800, 4810, 4800, and 3800
systems, notifies a client that a CPU or an 1/0 board has become present or absent

from a slot.

Solaris_SGBoardPresenceChange Properties

TABLE 4-21 Solaris_SGBoardPresenceChange Properties

Name

Data Type

Description

Logi cal I D

string

The logical name of the slot. On a Sun Fire 6800, 4810, 4800, or

3800 system there can be up to 6 system boards, whose slots are
represented as SBO, SB1, ... SB5; and up to 4 1/0 boards, whose
slots are represented as I1B6, IB7, IB8, and 1B9.

Chassi sSeri al Nunber | string

The serial number of the chassis, which is an 8-digit hexadecimal
string, such as 10483D99.

Boar dType

uint32

The type of board that occupies the slot is it is not empty. Possible
values: Unknown, Enpty, CPU, | O, CPUW B, | OW B, SC, L2, Fan,

Power Supply,orLogi c Anal yzer. Currently, only boards of
type CPU and | Oare reported.

Solaris_SGDomainACLChange Indication

Description

This process indication, which is used on Sun Fire 6800, 4810, 4800, and 3800
systems, notifies the client that the available component list has changed.

88 WDR Developer’'s Guide * September 2002

Solaris_ SGDomainACLChange Properties

TABLE 4-22 Solaris_SGDomainACLChange Properties

Name Data Type Description

Domai nl D uint32 The domain to which the board was assigned, or from which it was
unassigned. Possible values: A, B, C, or D.

Avai | abl eBoar ds|] boolean The list of slots that are available to the domain that is identified by

the Dormi nl D property. Possible values: SBO, SB1, SB2, SB3, SB4,
SB5, | B6, | B7, 1 B8, and | B9.

Solaris_ SGDomainStateChange Indication

Description

This process indication, which is used on Sun Fire 6800, 4810, 4800, and 3800
systems, notifies the client that a domain goes up or down; that a domain self-test
fails; or that the keyswitch state of a domain has changed.

Chapter 4 Classes, Domains, Associations, and Indications in WDR

89

Solaris_ SGDomainStateChange Properties

TABLE 4-23 Solaris_SGDomainStateChange Properties

Name Data Type Description

Dorei nl D uint32 The domain whose state has changed. Possible values: A, B, C, or D.

Keyswi t chPosition [uint32 Identifies the keyswitch position of the virtual keyswitch. Possible
values: Unknown, O f , St andby, On, Di ag, Secure, O f To
St andby, O0ff To On,Off To Diag,Off To Secure, St andby
To Of,Active To O f,Active To Standby, Reboot To
On, Reboot To Di ag, and Reboot To Secure.

State uint32 The current state of the domain. Possible values: Unknown,

Runni ng Post, St andby, Acti ve, Powered O f, Donmai n
I dl e, Runni ng OBP, Booti ng, Runni ng Sol ari s, Hal t ed,
Reset, Pani c, Debugger, or Hang Det ect ed.

Solaris_SGSlotAssignmentChange Indication

Description

This process indication, which is used on Sun Fire 6800, 4810, 4800, and 3800
systems, notifies the client that a slot has been assigned to, or unassigned from, a
domain.

90 WDR Developer's Guide * September 2002

Solaris_SGSlotAssignmentChange Properties

TABLE 4-24 Solaris_SGSlotAssignmentChange Properties

Name Data Type Description

Logical I D string The logical name of the slot. On a Sun Fire 6800, 4810, 4800, or
3800 system there can be up to 6 system boards, whose slots are
represented as SBO, SB1, ... SB5; and up to 4 1/0 boards, whose
slots are represented as I1B6, IB7, IB8, and 1B9.

Chassi sSeri al Nunber | string The serial number of the chassis, which is an 8-digit hexadecimal
string such as 10483D99.

Assi gnedDomai n sint32 The domain to which the slot is assigned, if it is assigned. Possible
values: A, B, C, or D, or None.

Assi gnnent St at e uint32 The current assignment state of the slot. Possible values:

Unknown, Fr ee, Assi gned, or Acti ve.

Solaris_SGBoardStateChange Indication

Description

This process indication, which is used on Sun Fire 6800, 4810, 4800, and 3800
systems, notifies the client that a board self-test has completed, or that a board was
powered-on or powered-off.

Chapter 4 Classes, Domains, Associations, and Indications in WDR

91

Solaris_SGBoardStateChange Properties

TABLE 4-25 Solaris_SGBoardStateChange Properties

Name

Data Type

Description

Logi cal I D

string

The logical name of the slot. On a Sun Fire 6800, 4810, 4800, or

3800 system there can be up to 6 system boards, whose slots are
represented as SBO, SB1, ... SB5; and up to 4 1/0 boards, whose
slots are represented as I1B6, IB7, IB8, and 1B9.

Chassi sSeri al Nunber | string

The serial number of the chassis, which is an 8-digit hexadecimal
string such as 10483D99.

Power St at e uint32 The power status of the board. Possible values: Unknown, On, OF f |
or Fai |l ed.
Test State uint32 The test status of the board. Possible values: Unknown, Not

Tested, Passed, Failed, Under Test, Start Test, Degraded, or
Unusable.

Solaris_SGSlotAvailabilityChange Indication

Description

This process indication, which is used on Sun Fire 6800, 4810, 4800, and 3800
systems, notifies the client that the slot’s availability has changed.

92 WDR Developer’'s Guide * September 2002

Solaris_SGSlotAvailabilityChange Properties

TABLE 4-26 Solaris_SGSlotAvailabilityChange Properties

Name

Data Type

Description

Logi cal I D

string

The logical name of the slot. On a Sun Fire 6800, 4810, 4800, or 3800
system there can be up to 6 system boards, whose slots are
represented as SBO, SB1, ... SB5; and up to 4 1/0 boards, whose slots
are represented as IB6, IB7, IB8, and IB9.

Assi gnedDomai n sint32

The domain to which the slot was assigned, and from which it is
now unassigned; or the domain to which the slot has been assigned.
Possible values: A, B, C, or D.

Assi gnnent St at e uint32

The current assignment state of the slot. Possible values: Unknown,
Free, Assi gned, or Acti ve.

Solaris_XCSystemBoardConfigChange Indication

Description

This process indication, which is used only on Sun Fire 15K and 12K systemes,
notifies the client that one or more Sun Fire 15K/12K domain configuration
properties has changed for a specific domain.

Chapter 4 Classes, Domains, Associations, and Indications in WDR 93

Solaris_XCSystemBoardConfigChange Properties

TABLE 4-27 Solaris_XCSystemBoardConfigChange Properties

Name Data Type Description
Logical I D string Identifies the system board whose configuration data has
changed.
Solaris_ XCEnvironmentallndication Indication
Description
An abstract class that serves as a common ancestor to all environmental indications
on Sun Fire 15K and 12K systems.
Solaris_XCEnvironmentallndication Properties
The Sol ari s_XCEnvi ronnent al | ndi cat i on class adds the following properties
to its base class:
TABLE 4-28 Solaris_XCEnvironmentallndication Properties
Name Data Type Description
Conmponent | D string The component that is experiencing the environmental event
FRUI D uint32 If the component is a system board, contains the corresponding
Field Replaceable Unit identifier; otherwise NULL.

Solaris_XCComponentRemove Indication

Derived from the Sol ari s_XCEnvi ronnent al | ndi cat i on abstract class, this
class notifies a client that a specific hot-pluggable component has been removed
from its slot on a Sun Fire 15K or 12K system.

This class adds no properties to its base class and has no direct known subclasses.

94 WDR Developer’'s Guide ¢ September 2002

Solaris_ XCComponentinsert Indication

Derived from the Sol ari s_XCEnvi ronnent al | ndi cat i on abstract class, this
class notifies a client that a specific hot-pluggable component has been inserted into
its slot on a Sun Fire 15K or 12K system.

This class adds no properties to its base class and has no direct known subclasses.

Solaris_XCBoardPowerOn Indication

Derived from the Sol ari s_XCEnvi ronment al | ndi cat i on abstract class, this
class notifies a client that a system board has been powered-on in a Sun Fire 15K or
12K system.

This class adds no properties to its base class and has no direct known subclasses.

Solaris_ XCBoardPowerOff Indication

Derived from the Sol ari s_XCEnvi ronnment al | ndi cat i on abstract class, this
class notifies a client that a system board has been powered-off in a Sun Fire 15K or
12K system.

This class adds no properties to its base class and has no direct known subclasses.

Solaris_ XCDomainlndication Indication

Description

Derived from the Sol ari s_XCEnvi ronnment al | ndi cat i on abstract class, this
abstract class that serves as a common ancestor to all domain indications on Sun Fire
15K and 12K systems.

Chapter 4 Classes, Domains, Associations, and Indications in WDR 95

Solaris_XCDomainlIndication Properties

The Sol ari s_XCDomai nl ndi cat i on class adds the following property to its base
class:

TABLE 4-29 Solaris_XCDomainlIndication Properties

Name

Data Type Description

Donai nl D

uint32 Identifies the domain that is experiencing the event.

Solaris_ XCDomainConfigChange Indication

Derived from the Sol ari s_XCDomai nl ndi cat i on abstract class, this class notifies
a client that one or more configuration properties have been changed in a specific
domain on a Sun Fire 15K or 12K system.

This class adds no properties to its base class and has no direct known subclasses.

Solaris_ XCDomainUp Indication

Derived from the Sol ari s_XCDonmai nl ndi cat i on abstract class, this class notifies
a client that a specific domain has gone up on a Sun Fire 15K or 12K system. A
domain goes up when the keyswitch is set to On; or after the domain monitoring
daemon, DSMD, is re-started and finds that the IOSRAM that is assigned to the
domain is accessible.

This class adds no properties to its base class and has no direct known subclasses.

Solaris_ XCDomainDown Indication

Derived from the Sol ari s_XCDonmai nl ndi cat i on abstract class, this class notifies
a client that a specific domain has gone down on a Sun Fire 15K or 12K system. A
domain goes down when the keyswitch is set to Off or Standby.

This class adds no properties to its base class and has no direct known subclasses.

96 WDR Developer's Guide * September 2002

Solaris_ XCDomainStop Indication

Derived from the Sol ari s_XCDonmi nl ndi cat i on abstract class, this class notifies
a client that a specific domain on a Sun Fire 15K or 12K system has begun a
hardware state dump. A hardware state dump occurs when a non-recoverable
hardware failure causes the domain to write its state information to a dump file.

This class adds no properties to its base class and has no direct known subclasses.

Solaris_ XCDomainStateChange Indication

Description

Derived from the Sol ari s_XCDomai nl ndi cat i on abstract class, this indication
notifies the client that the state of a specific domain on a Sun Fire 15K or 12K system
has changed.

Solaris_XCDomainStateChange Properties

The Sol ari s_XCDonmi nSt at eChange class adds the following property to its
base class:

TABLE 4-30 Solaris_XCDomainStateChange Properties

Name Data Type Description

Si gnature uint32 The Si gnat ur e, St at e, and SubSt at e properties combine to
describe the current state of the domain.

State uint32 The Si gnat ur e, St at e, and SubSt at e properties combine to
describe the current state of the domain.

SubSt at e uint32 The Si gnat ure, St at e, and SubSt at e properties combine to

describe the current state of the domain.

Chapter 4 Classes, Domains, Associations, and Indications in WDR 97

98 WDR Developer's Guide * September 2002

CHAPTER 5

Programming Techniques in WDR

This chapter provides code examples that illustrate techniques for performing tasks
using WDR. However, these examples are not intended for use in production WDR
applications.

The code examples demonstrate how you work with the following providers:

= EventProvider

» InstanceProvider

= AssociatorProvider
= MethodProvider

Caching System State Information

An important consideration when developing client applications for WDR is that
there are two fundamentally different possible approaches to ensure that the client
has a knowledge of the current state of the domains, attachment points and slots of
the managed platform: polling and using cache.

The client can periodically poll for the status of domains, attachment points and
slots, by enumerating the instances of the corresponding WDR classes. This
approach is not recommended, since the time taken to execute an operation using
WDR is dependent on the system state and workload, and can be variable. This will
adversely affect the performance of both the System Controller (SC) and the client
application.

A better approach is for the client to maintain a current cache of the domain,
attachment point and slot status, and use the WDR Process Indications to indicate
when updates to the client’s cache of status information are necessary. See the
section “CIM Process Indication Classes” on page 86 for more information.

99

Working with an EventProvider

To create an EventProvider, you perform the following tasks:

= Subscribe to and read WDR Indications.
= Implement an Event Listener.
= Bind an Event Filter to an Event Handler.

v To Subscribe to and Read WDR Indications

The following code shows how to subscribe to, and to read, WDR event indications:
/* Standard java packages */

import java.io.*;

/* Sol aris WBEM packages */

i mport com sun.wbem ci m *;

i mport com sun.wbemclient.*;

i mport com sun.wbem security.*;

public class IndicationReader

{
public static void main(String args[]) throws Cl MException

{

if (args.length I'= 3) {
Systemout. println("Usage: java |ndicati onReader " +
"<host name> <user nane> <password>");

Systemexit(1);

}

String host Nane = args[O0];

User Pri nci pal userName = new UserPrincipal (args[1]);

Passwor dCr edenti al passWrd = new Passwor dCr edenti al (args[2]);
Cl MNaneSpace nanmeSpace = new Cl MNaneSpace();

naneSpace. set Host (host Nan®e) ;

/! Read all WDR Indications.

final String filter = "SELECT * FROM Sol ari s_WDRI ndi cati on";

I ndi cati onSubscri ption subscription = null;

100 WDR Developer’'s Guide * September 2002

try

{
/1 creates a CIMJient adding Cl Mistener to it.
CIMJient cc = new Cl MJient(naneSpace, user Nane,

passWord) ;

cc. addCl M.i st ener (new Event Li stener());
/'l subscribes to WDR I ndications and waits
subscription = new I ndi cationSubscription(cc, filter);
Systemout.println("Waiting for Indications...");
wai t ForQuit ();

}

catch (Exception e) {
e.printStackTrace();
}
finally {
if (subscription !=null) {
subscri ption. renove();

}
System exit(0);
}
| *
* Exit when user types 'quit’
*/
private static void waitForQuit() throws | OException
{
Buf f eredReader stdin =
new Buf f er edReader (new | nput St reanReader (Systemin));
String line = null;
do {
Systemout.println("Type 'quit' followed by <CR>to exit");
Systemout.print("IR> ");
line = stdin.readLine();
} while (! line.startsWth("quit"));

Chapter 5 Programming Techniques in WDR 101

102

v To Implement an Event Listener

The following code inplements the CIMListener interface so that it can listen for
CIM events. To register for indications of CIM events, the client must add an
instance of CIMListener.

/* WBEM | i braries */
i mport com sun.wbemclient.*;

public class EventlListener inplements Cl M.istener

{
publ i c EventLi stener()
{
}
/**
* Prints indication of an event when the indication is available
* for delivery.
*/
public void indicationCccured(Cl MEvent e)
{
Systemout. println("Received " + e.getlndication());
}
}

To Bind an Event Filter to an Event Handler

The IndicationSubscription class enables clients to subscribe to be notified of CIM
events. The following code binds an event filter to an event handler.

/* Standard Java packages */
import java.util.*;

/* Standard WBEM packages */

i mport com sun.wbem ci m *;

i mport com sun.wbemclient.*;

i mport com sun. wbem security. UserPrincipal;

i mport com sun. wbem security. Passwor dCredenti al ;

WDR Developer's Guide ¢ September 2002

public class IndicationSubscription

{
static protected int mFilterCnt = 0;

protected CIMJient mdient;

protected Cl MObjectPath mFilter;
protected Cl Mbj ect Path m Handl er;
protected Cl MObj ect Path m Subscri pti on;

final String subscriptiond assNane =
"Cl M_I ndi cati onSubscri ption";

final String filterClassNane = "CIM.IndicationFilter";
final String deliveryd assNanme = "Sol ari s_RM Del i very";
/**
* Force construction through another constructor that is public.
*/
protected IndicationSubscription() {
mdient = null;
mFilter = null;
m Handl er = nul | ;

m _Subscription = null;

[*%
* Construct an |ndicationSubscription that subscribed for

I ndi cations as expressed by the specified filterExp. Three
* CIMobjects are created in the CiMrepository as a
* side-effect of calling this method, a CIM.IndicationFilter,
* a ClM.IndicationHandl er, and a Cl M. ndicationSubscription.
* These can be renoved by calling the renove nethod.

* @aram cc a CMJient instance
* @aramfilterExp The query string on which to filter
I ndi cati ons

* @xception Cl MException
*/
public IndicationSubscription(ClMlient cc, String filterExp)

Chapter 5 Programming Techniques in WDR 103

t hrows Cl MException

{

m dient = cc;

mFilter = createFilter(filterExp);

m Handl er = createHandl er();

m Subscri ption = createSubscription();
}
/**

* Renoves the otherw se persistant filter, handler and
* subscription ClMobjects fromthe ClMrepository.

* @xception Cl MException if an attenpt is made to delete a
* non-exi stent Cl M object.
*/
public void remove() throws Cl MException {
if (mSubscription != null) {
m Subscri pti on. set NaneSpace("");
m_Cl i ent. del et el nst ance(m Subscri ption);
m Subscription = null;
}
if (mHandler !'= null) {
m Handl| er . set NaneSpace("");
m dient. del etel nstance(m Handl er);
m Handl er = nul Il ;
}
if ((mFilter '=null) {
m Fi |l ter. set NameSpace("");
m Client.del etelnstance(mFilter);
mFilter = null;

/**

* Create an IndicationFilter of the specified name and with the

*

specified filterExp as the query string. Register the filter
* by creating its instance in the repository. Only one filter
* may exist per IndicationSubscription object.

104 WDR Developer's Guide ¢ September 2002

* @aramfilterExp The query string on which to filter
* | ndi cations

* @eturn ClMXjectPath of the filter.

* @xception Cl MException

*/

protected Cl MdbjectPath createFilter(String filterExp) throws
Cl MException

{
ClMJ ass filterdass =
m Client.getd ass(new Cl Mbj ect Path(filterC assName),
false, true, true, null);
ClM nstance ci = filterC ass. new nstance();
ci.setProperty("Name", new Cl Wal ue(generateFilterName()));
ci.setProperty("Query", new Cl MWal ue(filterExp));
ci .setProperty("QueryLanguage", new Cl MWal ue("WQL"));
Cl Mbj ectPath op = m dient.createl nstance(new
Cl Mbj ect Pat h(), ci);
return (op);
}
/**

* Generate a unique filter nane for this Java VM

*

* @eturn Nanme of the filter.

*/

protected String generateFilterNane()

{
String filterNanme = "WDRFilter"+ mFilterCnt;
mFilterCht = (mFilterCnt + 1) % I nteger. MAX_VALUE;
return (filterNanme);

}

IEL;

* Create an indication handler.

* Regi ster the handl er by creatingits instance inthe repository.

Chapter 5 Programming Techniques in WDR

105

106

*

* @eturn Cl MXjectPath of the handler.

*/
protected Cl Mbj ect Path createHandl er() throws Cl MException
{

Cl MCl ass deliveryd ass =

m Cl i ent. get G ass(new Cl Mbj ect Pat h(del i veryC assNane),

false, true, true, null);
Cl M nstance ci = deliveryd ass. new nstance();
Cl Mbj ectPath op = m Cient.createl nstance(new
Cl Mbj ect Path(), ci);

return (op);
}
/**

* Create an indication subscription that binds filter to handler.

* Regi ster the subscription by creating its instance in the
repository.

*

* @eturn Cl MXjectPath of subscription.

*/

protected Cl MObj ect Path createSubscription() throws Cl MException

{

final String subscriptionC assName =
"Cl M_I ndi cati onSubscri ption";

Cl MCl ass subscriptionC ass =

m Cl i ent. get A ass(new Cl Mobj ect Pat h(subscri pti onC assNane),
false, true, false, null);

Cl M nstance ci = subscriptionC ass. new nstance();
ci.setProperty("Filter", new Cl Walue(mFilter));
ci.setProperty("Handler", new Cl Wal ue(m Handl er));

m Cient.createl nstance(new Cl MObj ectPath(), ci);

/1 we are | ooking for the subscription s reference because

WDR Developer's Guide ¢ September 2002

/'l createlnstance() returns a null reference for the
subscri pti on.

Cl MDbj ect Path cop =

new Cl Mbj ect Pat h(subscri pti onCl assNane,
ci . get KeyVal uePairs());

return (cop);

Working with an InstanceProvider

The following code samples assume that a CIMClient object called m Cl i ent has
already been created and is available for use.

. Get all instances of the Sol ari s_XCDomai n class using the
enumer at el nst anceNanes and get | nst ance methods:

/1 gets path to all instances

Cl Mbj ect Path cop = new Cl MObj ect Pat h(" Sol ari s_XCDorrai n") ;
Enuneration e = m dient.enuneratel nstanceNanes(cop);

/1 gets instances fromthe instances’ paths
while (e.hasMreEl ements()) {
cop = (Cl Mbj ect Path) e.nextEl enent();

ClMnstance ci = mdient.getlnstance(cop, true, false, false,
nul l');

Systemout.println(ci.toString());
}

. Invoke the enuner at el nst ances method:
Cl Mbj ect Path cop = new Cl MObj ect Pat h(" Sol ari s_XCDorai n") ;

Enuneration e = m dient. enunerat el nstances(cop, true, false, false,
nul I');

while (e.hasMreEl ements()) {

ClMnstance ci = (Cl M nstance) e.nextEl enent();
Systemout.println(ci.toString());

Chapter 5 Programming Techniques in WDR 107

Working with an AssociatorProvider

The following code samples assume that a CIMClient object called m Cl i ent has
been created and is available for use.

1. Get each instance of the Solaris_CHCPU class that is associated with an instance
of the Sol ari s_CHSyst enBoar d class via the
Sol ari s_Syst enBoar dHasPr ocessor s association:

/1 sbCOP is a Cl MbjectPath of a system board.

String assocC ass = "Sol ari s_Syst enBoar dHasPr ocessor";
String resultd ass = "Sol ari s_CHCPU";

String role = "SystenBoard";

String resultRole = "Processor”;

bool ean includeQualifiers = true;

bool ean i ncluded assOrigin = true;

String[] cpuProperty = null;

Enuneration e = m Cient.associ at ors(sbhCOP, assocd ass, resultd ass,
role, resultRole, includeQualifiers, included assOrigin,
cpuProperty);

while (e.hasMreEl ements()) {
ClMnstance ci = (ClMnstance) e.nextEl ement();
Systemout.println(ci.toString());
}
2. Enumerate association objects that refer to an instance of the
Sol ari sCHSyst enBoar d class and to instances of the Sol ari s_CHCPU class:
/1 cop is ClMxXjectPath of the Solaris_CHSystenBoard i nstance
String resultd ass = "Sol ari s_Syst enBoar dHasPr ocessors”
String role = "SystenBoard";
String includeQualifiers = true;
String included assOrigin = true;
String[] propertylList = "Processor";

Enuneration e = mCient.references(cop, resultC ass, role,
includeQualifiers, included assOrigin, propertylist);

while (e.hasMreEl ements()) {

108 WDR Developer's Guide ¢ September 2002

Cl M nst ance assoc = (Cl M nstance) e.nextEl ement();
Systemout. println(assoc.toString());

Working with a MethodProvider

The following code samples assume that a Cl MCl i ent object called m Cl i ent has
been created and is available for use.

. Configure a single processor and print out to the standard output any error
messages that may occur during the configuration process:

/1 cop is ClMxXjectPath of the processor

String method = "configure”;

Vector inParams = new Vector(4);

Vect or outParans = new Vector(2);

i nPar ans. add(Cl Mal ue. FALSE) ; /* force */

i nPar ans. add(new Cl Mal ue(new String(""))); /* hwOptions */

i nPar ans. add(new Cl Mval ue(new I nteger(3))); /* 3 retries */

i nPar ans. add(new Cl Mval ue(new | nteger(5))); /* 5s delay */

Cl Wal ue returnVal = m Client.invokeMet hod(cop, nethod, inParans,
out Par ans) ;

int status = ((Integer)(returnVal.getValue())).intValue();
if (status != 0 && outParans.size() !'=0) {
oj ect obj = ((Cl MWal ue) (out Parans. el enent At (0))) . get Val ue();
String error = (String) obj;
if (error I=null) {
Systemout.println(error);

}

. Assign a system board to a domain and print to the standard output any error
messages that may occur during the assignment process:

/1 cop is the Cl MbjectPath of a system board
String nmethod = "Assign";

Chapter 5 Programming Techniques in WDR 109

110

Vector inParanms = new Vector(1);
Vect or outParans = new Vector(2);
i nPar ans. add(new Cl Wal ue(new | nt eger (domainlD))); /* domainlD

Cl Wal ue returnvVal = m Client.invokeMet hod(cop, nethod, inParans,
out Par ans) ;

int status = ((Integer)(returnVal.getValue())).intValue();
if (status != 0 & outParans.size() !'=0) {

hj ect obj = ((Cl MWal ue) (out Parans. el enent At (0))) . get Val ue();
String error = (String) obj;

if (error I=null) {

Systemout.println(error);

WDR Developer's Guide ¢ September 2002

APPENDIX A

MOF Files

A Managed Object Format (MOF) file describes the objects that you can manage
using WDR. There are three MOF files delivered with WDR:

= The WDR_Cor el. 0. nof file describes the objects that are common to all the
systems on which WDR can run.

= The WDR_SGl1, 0. nof file describes objects on Sun Fire 6800, 4810, 4800, and 3800
systems that you can manage using WDR.

= The third MOF file describes objects on Sun Fire 15K and 12K systems that you
can manage using WDR.

All three MOF files are listed in the sections that follow.

WDR Cor el. 0. nof File

/1l Copyright (c) 2001 by Sun M crosystens, Inc. Al rights
/'l reserved.

Il Title: WBEM Dynani ¢ Reconfigurati on (DR) Comon
Informati on Model (CIM Schena

/'l Filenane: WDR_Cor el. 0. nof

/1 Author: Sun M crosystenms, Inc.

/'l Description: This file contains CIM classes and CIM
/'l associations for the WBEM DR Common
/1l Information Mdel (CIM Schema that are
/1 commn to all platforminplementations. The
/1 WBEM DR CIM Scherma nodel s DR rel at ed
/'l operations and resources for the SunFire
// 15K and SunFire 68x0, 48x0, and 3800
/'l platforns.

111

[l @#) WDR_Corel.O.nof 1.10@ #)

#pragma nanespace ("root/systent)

i nstance of Solaris_ProviderPath {
[Description("Describes the path to the JAR file
containing the WBEM DR provider classes.")]
pathurl = "file:///usr/sadm|ib/wbem wdr.jar";

b
#pragma Locale ("en-US")

#pragma nanmespace ("root/cim2")

/1 CIM Sol ari s_WDRAtt achnment Poi nt cl ass

[Description("The CIM Sol ari s_WDRAtt achnment Poi nt cl ass
represents the core Configuration Adnministration (cfgadm
i nformation. This information is gathered using the
libcfgadm library."),

Provi der ("com sun. woem wdr . At t achnment Poi nt Provi der"),
Version("1.0")]

class Solaris_WDRAttachment Point : ClI M Logical El ement
{

[Key, MaxLen(30), Description("The |ogical nanme of the
attachnment point.")]
string LogicallD;

[Key, Description("The domain to which this attachnent
point is assigned or available.")]
ui nt 32 Donai nl D;

[MaxLen(1044), Description("The physical nane of the
attachnent point.")]
string PhysicallD,

[MaxLen(12), Description("The class of the attachnment
point.")]
string C assNang;

[Description("The busy state indicator of the attachment

point.")]
ui nt 32 Busy;

112 WDR Developer's Guide « September 2002

[Description("The receptacle state of the attachment point.
There are four possible states for the receptacle of an
attachnent point: "None, Enpty, Disconnected, Connected"),
Val ueMap{"0", "1", "2", "3"}, Values{"None", "Enpty",
"Di sconnected", "Connected"}]

ui nt 32 Recept acl eSt at e;

[Description("The occupant state of the attachment point.
There are three possible states for the occupant attachment
poi nt: "None, Unconfigured, Configured"),
Val ueMap{"0", "4", "5"},
Val ues{" None", "Unconfigured", "Configured"}]

ui nt 32 Occupant St at e;

[Description("The condition state of the attachnent point.

There are five different condition states for the attachnment

poi nt: "Unknown, OK, Failing, Failed, Unusable"),

val ueMap{"o", "1", "2", "3", "4"},

Val ues{" Unknown", "OK", "Failing", "Failed", "Unusable"}]
ui nt 32 Condition;

[MaxLen(12), Description("The attachment point type.")]
string Type;

[MaxLen(4096), Description("The driver specifc information.
This field contains the info string that the driver sets.
This property will be populated with a set of name-val ue
pairs.")]

string M sclnfo;

[MaxLen(4096), Description("The is the tinme at which the
Attachment Point was |ast updated.")]
dateti ne StatusTi ne;

[Override("InstallDate"), Description("This property’s val ue
will always be NULL.")]
datetine |nstall Date;

[Override("Nanme"), Description("This property’'s value wll
al ways be NULL.")]
string Nane;

[Override("Status"), Description("This property’s val ue
will always be NULL.")]
string Status;

[Override("Caption"), Description("This property’ s val ue
will always be NULL.")]
string Caption;

Appendix A MOF Files 113

[Override("Description"), Description("This property’s
value will always be NULL.")]
string Description;

[Description ("This method is used to bring the hardware
resources contained on, or attached to, an occupant into
the realm of Solaris, allow ng use of the occupant’s
hardware resources by the system™)]
sint32 Configure([IN] boolean force, [IN string
hardwareOpts, [IN uint32 retries, [IN uint32
retryDelay, [OQUT] string error);

[Description ("This nmethod is used to renmpbve the

hardware resources contained on, or attached to, an

occupant fromthe real mof Solaris, disallow ng further use

of the occupant’s hardware resources by the system")]
sint32 Unconfigure([IN] boolean force, [IN string
hardwareOpts, [IN uint32 retries, [IN uint32
retryDelay, [OUT] string error);

[Description("Change the receptacle state to connected.")]
sint32 Connect([IN boolean force, [IN] string
hardwareOpts, [IN uint32 retries, [IN uint32
retryDelay, [OUT] string error);

[Description("This nmethod is used to disable normal
conmmuni cation to or from an occupant in a receptacle.")]
sint32 Disconnect([IN boolean force, [IN] string
hardwareOpts, [IN uint32 retries, [IN uint32

retryDelay, [OUT] string error);

[Description ("This nmethod is used to test an attachment
point. The test, used to evaluate the condition of the
attachnent point, checks for hard faults. Note that the
receptacle state of the attachment point nust be
di sconnected to be tested. See cfgadm(1M.")]
sint32 Test([IN] boolean verbose, [IN string
hardwareQpts, [QUT] string error);

[Abstract, Description("This CIM Sol aris_WDRDomai n
represents a dommin superclass for Starcat and Serengeti
domains. "), Version("1.0")]

114 WDR Developer's Guide ¢ September 2002

class Solaris_WDRDomain : CIMCollectionOf MSEs
{

[Key, Description("This is the domain unique identifier on
the Starcat and Serengeti platfornms. The dommin identifier
will be a positive integer between 0 and 17 on the Starcat
and 0 and 4 on the Serengeti.")]

uint32 1d;

[Override("Cl M_ManagedEl enent . Caption"), Description("This
property’'s value will always be NULL.")]
string Caption;

[Override("C M ManagedEl enent . Descri ption"),
Description("This property’s value will always be NULL.")]
string Description;

[Override("CollectionlD'), Description("This property’s
value will always be NULL.")]
string Coll ectionlD,

b

// e ————————————————————————————————
/1 CIM Sol ari s_CHSyst enBoard cl ass
// s s ————————————————

[Description("The CIM Sol ari s_CHSyst enBoard cl ass descri bes
the system board information on the Sun’'s enterprise system
that supports the NextGeneration Dynanmic Reconfiguration
(NextGen DR)."),

Provi der ("com sun. woem wdr . CHSyst enBoar dPr ovi der "),
Version("1.0")]

class Solaris_CHSystenmBoard : Sol ari s_WDRAtt achment Poi nt
{

[Description("Board assigned to the domain")]
bool ean Assi gned,;

[Description("Board is powered-on")]
bool ean Power edOn;

[Description("Assign an available board to the domain.
This command requires the receptacle state of the board to
be Di sconnected or Enpty.")]

sint32 Assign([IN boolean force, [IN string

har dwar eOpts, [OUT] string error);

Appendix A MOF Files 115

[Description("Power off the board. The receptacle state of
the board nust be Disconnected.”)]
sint32 PowerOff ([IN] boolean force, [IN] string
hardwareOpts, [OUT] string error);

[Description("Power on the board. The receptacle state of
the board nust be Disconnected.”)]
sint32 PowerOn([IN] boolean force, [IN string
hardwareOpts, [OUT] string error);

[Description("Unassign a board fromthe domain. An active,
(i.e. connected, or configured board may be unassigned.")]
sint32 Unassign([IN boolean force, [IN string
har dwar eOpts, [OQUT] string error);

b
// b ———

I/ CIM Sol aris_CHCPU cl ass
// e e

[Description("The CIM Sol aris_CHCPU cl ass describes the
processor information available on Sun’s enterprise
systens. "), Provider("com sun. wbem wdr. CHCPUPr ovi der "),
Version("1.0")]

class Solaris_CHCPU : Sol ari s_WDRAtt achment Poi nt
{

[Description("The processor identifier.")]
uint32 I D

[Units("MegaHertz"), Description("The speed of the
processor.")]
ui nt 32 Speed;

[Units("MegaBytes"), Description("The ECache menory size of
the processor.")]
ui nt 32 ECache;

b

// e
/1 CIM Sol aris_CHwvenory cl ass
// g

[Description("The CIM Solaris_CHvernory cl ass describes the
menory information configured on Sun’s enterprise systens
that supports the NextGeneration Dynam c Reconfiguration

116 WDR Developer's Guide ¢ September 2002

(NextGen DR)."),
Provi der ("com sun. woem wdr . CHVenor yPr ovi der "),
Version("1.0")]

class Solaris_CHvenory : Sol ari s_WDRAtt achment Poi nt
{

[Units("MegaBytes"), Description("Wen the nenory drain is
in progress, this property stores the anount of already
deleted menory.")]

ui nt 32 Del et ed;

[Description("True if the board is participating in
interleaving with other boards.")]
bool ean Interl eaved,;

[Units("KiloBytes"), Description("The property stores the
size of non-pageable nmenory in the board’'s menory.")]
ui nt 32 Per manent ;

[octetstring, Description("The base physical address of
menory on the board.")]
ui nt 64 Physi cal Addr ess;

[Units("MegaBytes"), Description("Wen the nenory drainis in
progress, this property stores the remaining nmenory needed
to be drained.")]

ui nt 32 Remai ni ng;

[Units("MegaBytes"), Description("The board nenory size.")]
uint32 Size;

[Description("Wen the menory drain is in progress, this
property stores the source system board attachnent point
identifier.")]

string Source;

[Description("Wen the menory drain is in progress, this
property stores the target system board attachnent point
identifier.")]

string Target;

[Description("True if the operating system has been
configured to disallow this nenory from being
unconfigured.")]

bool ean Unconfi gurabl e;

Appendix A MOF Files 117

I/ CIM Sol aris_CHControll er class

[Description("The CIM CIM Sol ari s_CHControl | er class nodel s
the controller information configured in the Sun's
enterprise systens that supports the NextCGeneration Dynam c
Configuration (NextGen DR)."),

Provi der ("com sun. woem wdr . CHCont rol | er Provi der"),
Version("1.0")]

class Solaris_CHController : Solaris_WDRAttachment Poi nt
{

[Description("The physical path of the 10O conponent in
/devices.")]
string Devi ce;

[Description("True if the 1/0O conponent is referenced.")]
bool ean Referenced;

/1 CIM Sol ari s_WDRSI ot cl ass

[Abstract, Description("The CIM Solaris_WRSIot is a
superclass class for the platform specific slot classes,
Sol aris_XCSlot and Solaris_SGSlot. "),

Version("1.0")]

class Solaris_WDRSlI ot : ClIM Logical El enent
{

[Key, MaxLen(30), Description("The |ogical name of the slot
attachment point, (e.g SBO, 1015 for the Starcat or SB5, and
IB9 for the Serengeti).")]

string LogicallD;

[Description("lIndicates whether this slot contains a board
or not. A NULL value for this property indicates the Enpty
state of slot is unknown.")]

bool ean Enpty;

[Override("Install Date"), Description("This property’s val ue
will always be NULL.")]
datetine Install Date;

118 WDR Developer's Guide ¢ September 2002

[Override("Nane"), Description("This property’'s value wll
al ways be NULL.")]
string Nane;

[Override("Status"), Description("This property’ s value wll
al ways be NULL.")]
string Status;

[Override("Caption"), Description("This property’s val ue
will always be NULL.")]
string Caption;

[Override("Description"), Description("This property’s val ue
will always be NULL.")]
string Description;

[Description("Assign the Slot to the specified domain.")]
sint32 Assign([IN uint32 domainlD, [QUT] string
error);

[Description("Unassign a board from the domain. This Sl ot
must not be active, (i.e. connected, or configured), in a
domain.")]

sint32 Unassign([IN uint32 domainlD, [OUT] string

error);
b
// e ——————————————————————_———————————————————————————
I Associ ati ons
// s ————————————————————— e —————————————————————————

[Associ ation, Aggregation,

Description("This CIM Rel ationship class is an aggregation
rel ati onship between the CIM Sol ari s_CHSyst emBoard i nst ance
and the CIM Solaris_CHCPU instance."),

Provi der (" com sun. woem wdr . Boar dHasPart sProvi der"),
Version("1.0")]

class Sol ari s_Syst enBoar dHasProcessors : Cl M Conponent

{

[Override(" G oupConponent™), Aggregate, Mn(1l), Max(1),
Description("This property references to the parent of the
relationship.") 1]

Sol ari s_CHSyst enBoard ref G oupConponent;

Appendix A MOF Files 119

[Override("Part Conponent"), Description("This property
references the child of the relationship.")]
Sol aris_CHCPU ref Part Conponent;

[Associ ation, Aggregation, Description("This CIM

Rel ati onship class is an aggregation relationship between
the CIM Sol aris_CHSystenBoard instance and the CIM

Sol aris_CHMenory instance."),

Provi der ("com sun. woem wdr . Boar dHasPart sProvi der"),
Version("1.0")]

cl ass Sol ari s_Syst enBoar dHasMenory : CI M _Conponent

{
[Override(" G oupConponent"), Aggregate, Mn(1l), Max(1),
Description("This property references to the parent of the
relationship.")]
Sol ari s_CHSystenBoard ref G oupConmponent;
[Override("Part Conponent"), Max(1l), Description("This
property references the child of the relationship.")]
Sol aris_CHwvenory ref PartConponent;
3

[Associ ati on, Aggregation, Description("This CIM

Rel ati onship class is an aggregation relationship between
the CIM Sol ari s_CHSystenBoard instance and the CIM

Sol aris_CHControl l er instance."),

Provi der ("com sun. woem wdr . Boar dHasPart sProvi der"),
Version("1.0")]

cl ass Sol ari s_Syst enBoardHasControllers : ClI M Conponent
{

[Override(" G oupConponent"), Aggregate, Mn(1l), Max(1l),
Description("This property references to the parent of the
relationship.")]

Sol ari s_CHSyst enBoard ref G oupConponent;

[Override("Part Component"), Description("This property
references the child of the relationship.")]
Sol aris_CHControll er ref PartConponent;

120 WDR Developer's Guide « September 2002

[Associ ation, Description("This CIMRel ationship class is an
associ ation relationship between the CIM Sol ari s_WDRSI ot
instance and the CIM Sol aris_CHSystenBoard instance."),
Provi der ("com sun. woem wdr . Sl ot HasBoar dPr ovi der "),
Version("1.0")]

class Sol ari s_Sl ot HasSystenBoard : CI M _Dependency
{

[Override("Antecedent”), Mn(1l), Max(1l), Description("This
property references to the parent of the relationship.")]
Sol ari s_WDRS| ot REF Ant ecedent;

[Override("Dependent"), Mn(1l), Mx(1), Description("This
property references the child of the relationship.")]
Sol ari s_CHSyst enBoard REF Dependent;

[Associ ati on, Aggregation, Description("This CIM

Rel ati onship class is an aggregation relationship between a
CIM Sol ari s_WDRDomai n instance and a set of CIM

Sol aris_WDRS| ots instances."),

Provi der ("com sun. woem wdr . Dormai nHas Sl ot sProvi der"),
Version("1.0")]

class Sol ari s_Domai nHasSl ots: Cl M _Col | ect edMSEs

{
[Override("Coll ection"), Aggregate, Mn(1l), Max(1l),
Description("This property references to the parent of the
relationship.")]
Sol ari s_WDRDonai n REF Col | ecti on;
[Override("Menber"), Mn(1), Max(1l), Description("This
property references the child of the relationship.")]
Sol ari s_WDRS| ot REF Menber;
1

[Associ ati on, Aggregation, Description("This CIM

Rel ationship class is an aggregation rel ationship between a
CIM Sol ari s_WDRDonmi n instance and a set of CIM

Sol ari s_WDRAt t achment Poi nts instances."),

Provi der (" com sun. woem wdr . Domai nHasAt t achnment Poi nt sProvi der

"y,
Version("1.0")]

class Sol ari s_Domai nHasAt t achment Poi nts: Cl M _Col | ect edMSEs
{

Appendix A MOF Files 121

b

11
I
I
I
I

[Override("Collection"), Aggregate, Mn(1), Mx(1),
Description("This property references to the parent of the
relationship.")]

Sol ari s_WDRDonmai n REF Col | ecti on;

[Override("Menber"), Mn(1l), Max(1l), Description("This
property references the child of the relationship.")]
Sol ari s_WDRAt t achnment Poi nt REF Menber;

Sol aris_WDRI ndi cati on indication

[Abstract, Indication, Description ("This indication class
serves as a common ancestor to all WBEM DR | ndications. A
client can construct a filter using this class to subscribe
to all WBEM DR Indications."),

Version("1.0")]

class Solaris WDRIndication: ClIMProcesslndication

{
b

WDR _SG1. 0. nof File

I
I

I

I
/1
I

Copyright (c) 2001 by Sun Mcrosystens, Inc. Al rights
reserved.

Title: WBEM Dynani ¢ Reconfiguration (DR) Commobn
/1l Information Mdel (CIM Schema for the
/1 SunFire 68x0, 48x0, and 3800

Fi | enane: WDR_SGl1. 0. nof
Aut hor : Sun M crosystenms, Inc.
Descri ption: This file contains CIM class and

/'l association definitions for the WBEM
/1 Dynam c Reconfiguration Mdel (CM

122 WDR Developer's Guide « September 2002

/'l Schema that are specific to the SunFire
/1l 68x0, 48x0, and 3800 platforns

/1 inplementation. The WBEM DR CI M Schema
/1 nmodels DR related operations and

/'l resources for the SunFire

/] 15K/ 12K and SunFire 68x0, 48x0, and 3800
/'l platformns. The WDR_Corel. 0. nof nust be
/1l compiled before this file.

/1 @#) WDR_SGL.0.nmof 1.12@#)

#pragma Locale ("en-US")

#pragma nanmespace ("root/cinm2")

[Description("This CIM Sol ari s_SGDomai n represents the
domain on the Serengeti platform"),
Provi der (" com sun. woem wdr . SGDorai nProvi der"), Versi on("1.0")

]

class Solaris_SGbonmein : Solaris_WDRDonmai n

{

[Description("This property defines how a board is rel ated
to this domain. The first 6 array positions relate to SBO
through SB5. The next 4 positions relate to I1B6 through
| B9. Note that this applies for the Sun Fire 6800. The
Sun Fire 4810, 4800, and 3800 have only 5 system board
slots, (3 CPU boards and 2 1/0O boards). For these nodels
the values of the array at indices SB3, SB4, SB5, 1B8, and
IBO9 will be 0, (i.e. Nonexistent Slot)."),
val uveMap {"0", "1", "2", "3", "4"},
Val ues {"Nonexistent Slot", "Not Available", "Available"
"Assigned", "Active"},
Bitvp {"1, "2", "3", "4", "5, "6", "7", "8", "9", "10"},
Bi t val ues {"SB0", "SB1", "SB2", "SB3", "SB4", "SB5", "IB6",
“IB7", "I1B8", "IB9"}]

si nt 32 BoardRel ati onship[];

Appendix A MOF Files 123

[Description("This property identifies the keysw tch
position of the virtual keyswitch. The possible values and
their encodings are enunerated in the ValueMap and Val ues
qualifiers respectively."),
Mappi ngStrings {"MB.|ETF | SUN-SC-M B. domai nKeySwi t ch"},
val uveMap {"1*, "2", "3", "4", "5", """, "7, "8", "9",
*i10"," 11", "12", "13", "14", "15", "16"},
Val ues {"Unknown", "Off", "Standby", "On", "Diag",
"Secure", "Of To Standby", "Of To On", "Of To Diag",
"Off To Secure", "Standby To Of", "Active To Of", "Active
To Standby", "Reboot To On", "Reboot To Diag", "Reboot To
Secure"}]

ui nt 32 Keysw t chPosition;

[Description("This is the current state of the domain."),
Mappi ngStrings {"MB.|IETF | SUN-SC-M B. donai nSt at us"},

val uemgp {"1*, "2", "3", "4", "5" "6", "7, "8", "9",
*io0", "ai1v, "i2", "13", "14"},

Val ues {"Unknown", "Running Post", "Standby", "Active",
"Powered Of", "Domain Idle", "Running OBP", "Booting",
"Running Solaris", "Halted", "Reset", "Panic", "Debugger",

"Hang Detected"}]
ui nt 32 St at e;

b

// e
I CIM Sol ari s_SGSl ot cl ass
// e

[Description("The CIM Solaris_SGSlot class represents the
expander board slots on a Serengeti platform which may or
may not contain various L1 system boards."),

Provi der ("com sun. woem wdr . SGS| ot Pr ovi der "),

Version("1.0")]

class Solaris _SGSlot : Solaris_WDRS| ot
{

[Description("The Domain to which this slot is assigned if
indeed it is assigned."),
Mappi ngStrings {"MB.1ETF | SUN-SC-M B. sl ot Domai n"},
val uveMap {"-1", "O", "1", "2", "3"},
Val ues {"None", "A", "B", "C', "D'} 1]
sint32 AssignedDonai n;

124 WDR Developer's Guide ¢ September 2002

b

I
11
I

I

I
I
I

[Description("The current assignment state of the slot."),
Mappi ngStrings {"MB.1ETF | SUN-SC-M B. sl ot State"},
val uemMap {"1", "2", "3", "4"},
Val ues {"Unknown", "Free", "Assigned", "Active"}]
ui nt 32 Assi gnnent St at e;

[Description("The type of board occupying the slot if the
slot is not enpty."),
Mappi ngStrings {"MB.|ETF | SUN- SC-M B. sl ot Boar dType"},
val uemap {"1", "2", "3", "4", "5", "6", "7, "8", "9", "10",
"11'},
Val ues {"Unknown", "Enpty", "CPU', "IO', "CPUWB", "IOWB",
"sC', "L2", "Fan", "Power Supply", "Logic Analyzer"}]

ui nt 32 BoardType;

[Description("The power state of a board."),
Mappi ngStrings {"MB.|ETF | SUN SC-M B. sl ot Power St at us"},
Val ueMap {"1", "2", "3", "4"},
Val ues {"Unknown", "On", "Of", "Failed"}]
ui nt 32 Power St at e;

[Description("The test state of a board."),
Mappi ngStrings {"MB.|ETF | SUN-SC-M B. sl ot Test Status"},
val uvemap {"1*, "2*, "3", "4", "5, "e", "7", "8"},
Val ues {"Unknown", "Not Tested", "Passed", "Failed", "Under
Test", "Start Test", "Degraded", "Unusable"}]

ui nt 32 Test St at e;

Adapted from SC MB Traps in SUN.SC MB.mb These

i ndications are derived from a subset of SunFire SC SNWP
Traps. Only SNWP traps of interest to WBEM DR are reported.
Information is conpiled fromthe SNW trap and additional
M B queri es.

[I'ndication, Description ("CPU or |10 Board becones
present/absent fromslot. Sent to platform and all donmins
that have this slot in their Available Control List (ACL).
From SNMP Enterprise Trap sunFireEvents 6.1. Variables

Appendix A MOF Files 125

sl ot Chassi sl ndex, slotlndex, slotBoardType."),
Provi der ("com sun. woem wdr . SGEvent Provi der "),
Version("1.0")]

cl ass Sol ari s_SGBoar dPresenceChange : Sol ari s_WDRI ndi cati on

{
[MaxLen(30), Description("The |ogical name of the slot
attachnent point, (e.g SB5, and IB9).")]
string LogicallD;
[MaxLen(8), Description("The serial nunber of the chassis,
which is an eight-digit hex string. E.g., 10483D99.")]
string Chassi sSeri al Nunmber ;
[Description("The type of board occupying the slot if the
slot is not enpty. Presently anong boards only CPU and 10O
boards are reported."),
Mappi ngStrings {"MB.|IETF | SUN-SC-M B. sl ot BoardType"},
val uemgp {"1", "2", "3", "4", "5" "6, "7, "8", "9",
"10", "11"},
Val ues {"Unknown", "Enpty", "CPU', "IO', "CPUWB", "|OWNB",
"SsC', "L2", "Fan", "Power Supply", "Logic Analyzer"}]
ui nt 32 BoardType;
3
// s —————————————
/'l Sol ari s_SGS| ot Assi gnment Change i ndi cation
// e e

[I'ndication, Description ("A slot is assigned/ unassigned to
this donmain. Sent to the new domain in the event of an
assi gnnent . Sent to the old domain in the event of an
unassi gnment. From SNMP Enterprise Trap sunFireEvents 6. 2.
Vari abl es domai nl ndex, sl ot Chassislndex, slotlndex,
slotState."),

Provi der ("com sun. woem wdr . SGEvent Provi der"),

Version("1.0")]

cl ass Sol ari s_SGSI ot Assi gnnent Change : Sol ari s_WDRI ndi cati on

{
[MaxLen(30), Description("The |ogical name of the slot

attachment point, (e.g SB5, and 1B9).")]
string LogicallD;

[MaxLen(8), Description("The serial nunber of the chassis,
which is an eight-digit hex string. E. g., 10483D99.")]
string ChassisSerial Nunber;

126 WDR Developer's Guide ¢ September 2002

[Description("The Domain to which this slot is assigned if
indeed it is assigned."),
val uveap {"-1", "O", "1, "2", "3"},
Val ues {"None", "A"', "B", "C', "D'}]
si nt 32 Assi gnedDonmi n;

[Description("The current assignnment state of the slot."),
Mappi ngStrings {"MB.IETF | SUN-SC-M B. sl ot State"},
val uemMap {"1", "2", "3", "4"},
Val ues {"Unknown", "Free", "Assigned", "Active"}]
ui nt 32 Assi gnnent St at e;

[Indication, Description ("The Available Control List (ACL)
for this domain has changed. Sent to the domain with the

ACL that changed. From SNWMP Enterprise Trap sunFireEvents
6.3. Variabl es donminl ndex, domai nACLDescr."),

Provi der ("com sun. woem wdr . SGEvent Provi der"),

Version("1.0")]

cl ass Sol ari s_SGDomnai nAcl Change : Sol ari s_WDRI ndi cati on

{

[Description("The domain the slot was assigned to or
unassi gned from"),
val ueMap {"0", "1", "2", "3"},
Val ues {"A", "B", "C', "D'}]
ui nt 32 Donai nl D;
[Description("The list of slots available to the domain

identified by DomainlD."),
Bitwvp {"1", "2", "3", "4, "5, "e", "7", "8", "9", "10"},

Bi t val ues {"SB0", "SB1", "SB2", "SB3", "SB4", "SB5", "IB6",
"IB7", "IB8", "IB9"}]
bool ean Avai |l abl eBoards[];
3
// - - - - - - - . . . - . - . =
/'l Sol ari s_SGBoar dSt at eChange i ndi cation
// e

[Indication, Description ("Indicates (i) if a board self
test has conpleted or (ii) if a board was powered on/off.
Sent to the platform and the domain that owns the board

Appendix A MOF Files 127

if any. From SNMP Enterprise Trap sunFireEvents 6. 4.
Vari abl es sl ot Chassi sl ndex, sl otl ndex, sl ot Test St at us,

sl ot Power St atus. "),
Provi der ("com sun. woem wdr . SGEvent Provi der"),

Version("1.0")]

cl ass Sol ari s_SGBoar dSt at eChange : Sol ari s_WDRI ndi cati on

{
[MaxLen(30), Description("The |ogical name of the slot
attachnment point, (e.g SB5, and 1B9).")]
string LogicallD;
[MaxLen(8), Description("The serial nunber of the chassis,
which is an eight-digit hex string. E.g., 10483D99.")]
string ChassisSerial Nunber;
[Description("The power status of a board."),
Mappi ngStrings {"MB.|IETF | SUN- SC-M B. sl ot Power St at us"},
val ueMap {"1", "2", "3", "4"},
Val ues {"Unknown", "On", "Of", "Failed"}]
ui nt 32 Power St at e;
[Description("The test status of a board."),
Mappi ngStrings {"MB.IETF | SUN-SC-M B. sl ot Test Status"},
val uvemap {"1", "2, "3", "4", "5" "6", "7", "8"},
Val ues {"Unknown", "Not Tested", "Passed", "Failed", "Under
Test", "Start Test", "Degraded", "Unusable"}]
ui nt 32 Test State;
1
// s —————————————
/1 Sol ari s_SGDomai nSt at eChange i ndi cati on
// e e

[I'ndication, Description ("Indicates when (i) domain goes up
or down, (ii) domain self test fails or (iii) the keyswitch
state of a dommin has changed. Sent to the platform and the
domai n who changed state. From SNMP Enterprise Trap

sunFi reEvents 6.9. Vari abl es domai nl ndex, domai nSt at us,
domai nKeySwi tch. "),

Provi der ("com sun. woem wdr . SGEvent Provi der"),

Version("1.0")]

cl ass Sol ari s_SGDonei nSt at eChange : Sol ari s_WDRI ndi cati on

{

128 WDR Developer's Guide ¢ September 2002

b

I
I
I

cl ass Sol ari s_SGS| ot Avai | abi | i tyChange

{

[Description("The domain which underwent a state change."),

Val ue'\/Bp { n Ou , " 1u , n 2u , " 3"} ,
Val ues { n Au ; " Bu , n CI , " Dn}]
ui nt 32 Donmi nl D;

[Description ("This property identifies the keyswitch
position of the virtual keyswitch. The possible values an
their encodings are enumerated in the ValueMap and Val ues
qualifiers, respectively."),

Mappi ngStrings {"MB.|ETF | SUN- SC-M B. domai nKeySwi tch"},
val uvemap {"1", "2", "3", "4", "5", "6", "7", "8", "9", "10"
11, “i2", "i3", "14", "15", "16"},

Val ues{" Unknown", "Of", "Standby", "On", "Diag", "Secure'
"OFf To Standby", "Of To On", "Of To Diag", "Of To
Secure", "Standby To Of", "Active To Of", "Active To
St andby", "Reboot To On", "Reboot To Diag", "Reboot To
Secure"}]

ui nt 32 Keysw t chPosition;

[Description("This is the current state of the domain."),
Mappi ngStrings {"MB.|IETF | SUN SC-M B. donai nSt at us"},

val uvepp {"1*, "2", "3", "4", "5", "6, "7", "8", "9", "10"
i1, "i2v, "13", "14"},

Val ues {"Unknown", "Running Post", "Standby", "Active",
"Powered Of", "Domain Idle", "Running OBP",
"Booting","Running Solaris", "Halted", "Reset", "Panic",
"Debugger", "Hang Detected"}]

ui nt 32 St at e;

[Indication, Description("This trap indicates that the
availability for a slot has changed. Not currently sent.
From SNMP Enterprise Trap sunFireEvents 6.19. Variables
domai nl ndex, sl otChassislndex, slotlndex, slotState."),
Provi der ("com sun. woem wdr . SGEvent Provi der"),
Version("1.0")]

[MaxLen(30), Description ("The logical name of the slot
attachment point, (e.g SB5, and 1B9).")]
string LogicallD;

Appendix A MOF Files

d

Sol ari s_WDRI ndi cati on

129

[Description("The Domain to which this slot was assigned and
is now unassigned fromor to which it is newy assigned."),
val uveap {"-1", "O", "1, "2", "3"},
Val ues {"None", "A"', "B", "C', "D'}]

si nt 32 Assi gnedDonmi n;

[Description("The current assignment state of the slot."),
Mappi ngStrings {"MB.IETF | SUN-SC-MB.slotState"},
val ueMap {"1", "2", "3", "4"},
Val ues {"Unknown", "Free", "Assigned", "Active"}]
ui nt 32 Assi gnnent St at e;

VDR XC1. 0. nof File

11
I
/11

I

Copyright (c) 2002 by Sun M crosystens, Inc.
Al rights reserved.

Title: WBEM Dynani ¢ Reconfigurati on (DR) Common
/!l Information Mdel (CIM Schema for the
/1 SunFire 15K/ 12K

Fi | enane: WDR_XC1. 0. nof
Aut hor : Sun M crosystens, Inc.

Description: This file contains CIM class and associ ation
/1l definitions for the WBEM Dynanmic
/'l Reconfiguration Mdel (CIM Schema that
/'l are specific to the SunFire 15K/ 12K
/1l platforminplementation. The WBEM DR CI M
/'l Schema nodels DR rel ated operations and
/'l resources for the Starcat and Serengeti
/1l platforms. The WDR_Corel.O.nof nust be
/'l compiled before this file.

@#) WDR XCL.0.nof 1.12@#)

#pragnma Local e ("en-US")

130 WDR Developer’s Guide « September 2002

#pragma nanmespace ("root/cim2")

[Description("This CIM Sol ari s_XCDonai n represents the
domain on the Starcat platform™"),

Provi der ("com sun. woem wdr . XCDorei nPr ovi der "),
Version("1.0")]

class Sol aris_XCDormain : Solaris_WDRDonmai n

{

[Description("This property specifies which IO board has the
active ethernet for the internal SC network.")]
string ActiveEt hernet Board,;

[Description("This property contains the UN X group nane
assigned to the Domain Adm nistrator Goup.")]
string Adm nG oup;

[Description("This property defines how a board is related
to this domain. The first 18 array positions relate to SBO
through SB17. The next 18 positions relate to |1B0 through
| B17."),

Val ueMap {"1", "2", "3", "4"},

Val ues {"Not Avail able", "Available", "Assigned', "Active"},
Bitwwp {"1v, "2", "3", "4", "5 "e", "7", "8", "9", "10",
11, "1i2", "13", "14", "15", "1e6", "a17", "18", "19", "20"
"21, "22", "23", "24", "25", "26", "27", "28", "29", "30",
"31", "32", "33", "34", "35", "36"},

Bi t Val ues {"SB0O", "SBl1", "SB2", "SB3", "SB4", "SB5", "SB6",
"sBy', "sB8", "sSB9", "SB1O", "SB1l1l", "SB12", "SB13", "SB14",

"SsB15", "SBl6", "sSBi7", "l©oO", "i1o1", "Ioet, "1@s", "1o4",
"Io", "itoe", "“1ort, "ros", "roe", "powo", "iow1t, "roiz2v,
"1 o3, "lo14t, "roist, tiroiet, "1o17'}]

sint 32 BoardRel ati onship[];

[Description("This property identifies the keysw tch
position of the virtual keyswitch. The possible values and
their encodings are enunerated in the ValueMap and Val ues
qualifiers, respectively."),

val ueMap {"O", "21", "2", "3", "4", "5"},

Val ues {"On", "Standby", "Of", "Diag", "Secure", "Unknown"}
]

ui nt 32 Keyswi t chPosi ti on;

Appendix A MOF Files 131

[Description("This is the current state of the domain."),
val uvemap {"O", "21", "2, "3", "4", "5, "6", "7", "8", "9",
*io", "11", "12", "13", "14", "i5", "1e", "17", "18", "19",
"20", "21", "22", "23", "24", "25", "26", "27", "28", "29",
"30", "31", "32", "33", "34", "35", "36"},

Val ues {"Unknown", "Powered Of", "Keysw tch Standby",
"Runni ng Domain Post", "Running Board Post", "Layout OBP",
"Loading OBP", "OBP Booting", "OBP Running", "OBP

Cal | back”, "OBP Loading Solaris", "OBP Booting Solaris",
"OBP Domain Exited", "OBP Failed", "OBP In Sync Call back",
"OBP Exited", "OBP Error Reset", "OBP Domain Halt", "OBP
Environnental Domain Halt", "OBP Booting Solaris Failed",
"OBP Loading Solaris Failed", "OBP Debug", "OS Running
Solaris", "OS Quiesce In Progress”, "OS Quiesced", "OS

Resune In Progress”, "OS Panic", "OS Panic Debug", "OCS
Pani ¢ Continue", "OS Panic Dunp", "OS Halt", "OS Panic
Exit", "OS Environnmental Exit", "OS Debug", "OS Exit",
"Domai n Down", "Domain In Recovery"}]

ui nt 32 St at e;

[Description("This is the UNI X group ID assigned to
represent the Domain Reconfiguration privileges.")]
string ReconfigG oup;

b

// e e
I CIM Sol ari s_XCSl ot cl ass
// g

[Description("The CIM Sol aris_XCSlot class represents the
expander board slots on the Starcat platform which may or
may not contain various L1 system boards."),

Provi der ("com sun. woem wdr . XCS| ot Provi der "),

Version("1.0")]

class Solaris _XCSlot : Solaris_WDRS| ot
{

[Description("The Domain to which this slot is assigned if

indeed it is assigned."),

Val vemap {"-1", "O", "1, "2", "3", "4", "5" "e", "7T",

"g", "9", "i0", "11", "12", "13", "14", "15", "1e6", "17",

"18"},

Val ues {"None", "A', "B', "C', "D', "E', "F', "G', "H',

L, o"J", "K', "L", "M, "N, "O', "N, "P', "Q, "R'}]
si nt 32 Assi gnedDonmi n;

132 WDR Developer's Guide « September 2002

[Description("The current assignment state of the slot."),
Val ue'\mp {Il Oll , n lll , n 2|l , " 3"} ,
Val ues {"Unknown", "Free", "Assigned", "Active"}]

ui nt 32 Assi gnnent St at e;

[Description("The type of board occupying the slot if the
slot is not enpty."),
val uveMap {"O", "1", "2", "3", "4", "5" "6e", "7, "8"},
Values {"CPU', "WB", "HPCI", "CPCl", "MCPU', "WPCl",
"SPCl ", "HPCIX"', "Unknown"}]

ui nt 32 Boar dType;

[Description("The power state of a board."),

VaI ue'\mp { n OII , " lll , " 2ll , n 3“} ,

Val ues {"Of", "On", "Mnimal", "Unknown"}]
ui nt 32 Power St at e;

[Description("The test state of a board."),
val uevap {"0", "1", "2", "3", "4"},
Val ues {"Unknown", "iPOST", "Passed", "Degraded", "Failed"}

]
ui nt 32 Test St at e;

}s

// s —————————————————
/] 1ndications
// S S S . s

// e e
/'l Sol ari s_XCSyst enmBoar dConf i gChange i ndi cation
// e

[I'ndication, Description ("Indications of this type notify
the client that some SunFire 15K/ 12K system board
configuration property (or properties) has changed for a
specific system board."),

Provi der ("com sun. woem wdr . XCEvent Provi der"),

Version("1.0")]

cl ass Sol ari s_XCSyst enBoar dConf i gChange: Sol ari s_WDRI ndi cati on
{

[Description("The system board whose configuration data has
changed. ")]
string LogicallD;

}s

Appendix A MOF Files 133

/1 Sol aris_XCEnvironment al I ndi cati on indication
// g

[Abstract, Indication, Description("This abstract class
serves as a comon ancestor to all environnental

i ndications on the SunFire 15K/ 12K "),

Version("1.0")]

class Sol aris_XCEnvironnental | ndi cati on: Sol ari s_WDRI ndi cati on

{
[Description("The conponent experiencing the environnenta
event.")]
string Conponentl D;
[Description("If the conponent is an L1 board, (i.e. a
system board), this property will contain the correspondi ng
Field Replaceable Unit identifier, otherwise it will be
NULL. ")]
ui nt 32 FRUI D;
3
// s s ———
/1 Sol ari s_XCConponent Renove i ndi cation
// s s s ——————

[I'ndication, Description("Indications of this type notify
the client when a specific hot-pluggable conponent is
renoved fromits slot on a SunFire 15K/ 12K. "),

Provi der (" com sun. woem wdr . XCEvent Provi der "),
Version("1.0")]

cl ass Sol ari s_XCConponent Renove
Sol ari s_XCEnvi ronnent al | ndi cati on

/1 Sol ari s_XCConponent I nsert indication

[Indication, Description("Indications of this type notify
the client when a specific hot-pluggable conponent is
inserted into its slot on a SunFire 15K/ 12K "),

Provi der ("com sun. woem wdr . XCEvent Provi der"),
Version("1.0")]

134 WDR Developer’s Guide September 2002

cl ass Sol ari s_XCConponent | nsert:
Sol ari s_XCEnvi ronnent al I ndi cati on

[I'ndication, Description("Indications of this type notify
the client when a specific system board is powered on."),
Provi der ("com sun. wobem wdr . XCEvent Provi der"),
Version("1.0")]

cl ass Sol ari s_XCBoar dPower On: Sol ari s_XCEnvi ronnent al | ndi cati on

/1 Sol ari s_XCBoar dPower O f i ndi cati on

[I'ndication, Description("Indications of this type notify
the client when a specific system board is powered off."),
Provi der ("com sun. woem wdr . XCEvent Provi der"),

Version("1.0")]

cl ass Sol ari s_XCBoar dPower O f :
Sol ari s_XCEnvi ronment al | ndi cati on

/1 Sol ari s_XCDonai nl ndi cati on indication

[Abstract, |Indication,Description("This abstract class
serves as a common ancestor to all donmmin indications on the
SunFire 15K/ 12K."),

Version("1.0")]

cl ass Sol ari s_XCDomei nl ndi cati on: Sol ari s_WDRI ndi cation

{

[Description("The domain experiencing the event.")]
ui nt 32 Donmi nl D

Appendix A MOF Files 135

[I'ndication, Description("Indications of this type notify
the client that some SunFire 15K/ 12K domain configuration
property (or properties) has changed for a specific
domain."),

Provi der ("com sun. woem wdr . XCEvent Provi der"),
Version("1.0")]

cl ass Sol ari s_XCDorai nConf i gChange: Sol ari s_XCDonmai nl ndi cati on

[Indication, Description("Indications of this type notify
the client when a specific domain goes up. This occurs
when a domain is keyswitched on, or after the domain
noni tori ng daenon, DSMD, is restarted and finds that the
| OSRAM assigned to this domain is accessible."),

Provi der ("com sun. woem wdr . XCEvent Provi der"),
Version("1.0")]

class Sol ari s_XCDomai nUp: Sol ari s_XCDomai nl ndi cati on

[Indication, Description("Indications of this type notify
the client when a specific dommin goes down. This occurs
as when a domain is keyswitched to off or standby."),
Provi der (" com sun. woem wdr . XCEvent Provi der"),

Version("1.0")]

class Sol ari s_XCDonai nDown: Sol ari s_XCDonmi nl ndi cati on

{
b

136 WDR Developer's Guide September 2002

[I'ndication, Description("Indications of this type notify
the client when a specific domain begins a hardware state
dunp. This occurs as a result of some non-recoverable
hardware failure and as a consequence the domain dunps it
state information to a dunp file."),

Provi der ("com sun. woem wdr . XCEvent Provi der"),

Version("1.0")]

class Sol ari s_XCDonmi nSt op: Sol ari s_XCDonmi nl ndi cati on

[I'ndication, Description("Indications of this type notify
the client when a specific domain s state changes."),
Provi der ("com sun. woem wdr . XCEvent Provi der"),
Version("1.0")]

cl ass Sol ari s_XCDomei nSt at eChange: Sol ari s_XCDonei nl ndi cati on

{

[Description("The triple (Signature, State, SubState)
conbine to describe the current state of the domain.")]
ui nt 32 Si gnature;
uint32 State;
ui nt 32 SubSt at e;

Appendix A MOF Files 137

138 WDR Developer's Guide « September 2002

Index

A C
access control list (ACL) CIM (Common Information Model (CIM)
Solaris_NamespaceAcl class and, 26 listeners
Solaris_UserAcl class and, 24 adding, 44
WBEM, 12, 20 CIM (Common Information Model), 3, 8, 11
ACL (access control list) aggregations, 81, 82, 84, 85
Solaris_NamespaceAcl class and, 26 associations, 81, 83
Solaris_UserAcl class and, 24 attachment point classes, 53
WBEM, 12, 20 CIM Solaris_CHController class, 65
aggregations, 81, 82, 84, 85 CIM Solaris_ CHCPU class, 61
APls CIM Solaris_CHMemory class, 63
using to set access control, 23 CIM Solaris_CHSystemBoard class, 58

application program interface (API) CIM Solaris_WDRAttachmentPoint class, 53
WBEM DR. 1 class hierarchy diagram, 52
! classes
CIM_IndicationSubscription class, 48
domain classes, 74
Solaris_SGDomain class, 79
Solaris_ WDRDomain class, 74

associations, 81, 83
AssociatorProvider
creating
example, 99, 108

attachment points Solaris_XCDomain class, 75
classes, 53 event model, 41
CIM Solaris_AttachmentPoint class, 53 indication classes
CIM Solaris_CHController class, 65 CIM_IndicationFilter class, 44
CIM Solaris_CHCPU class, 61 CIM_IndicationHandler class, 46
CIM Solaris_CHMemory class, 63 indications
CIM Solaris_CHSystemBoard class, 58 generating, 42
listing all in a domain, 4 slot classes, 66
available component list, 6, 7, 81, 88 Solaris_SGSlot class, 72

Solaris WDRSlot class, 66
Solaris_XCSlot class, 69

CIMOM (CIM Object Manager), 8
classes
aggregations, 81

B
boards, 83, 84, 85, 88, 91, 93, 94, 95, 96, 97

139

Solaris_DomainHasSlots Aggregation, 82 Solaris indication, 87

Solaris_SystemBoardHasControllers Common Information Model (CIM)
Aggregation, 85 process indications, 86
Solaris_SystemBoardHasMemory components
Aggregation, 84 available, 88

Solaris_SystemBoardHasProcessors
Aggregation, 84
associations, 81
Solaris_SlotHasSystemBoard Association, 83
attachment point, 53 D
CIM Solaris_CHController class, 65
CIM Solaris_ CHCPU class, 61
CIM Solaris_CHMemory class, 63
CIM Solaris_CHSystemBoard class, 58
CIM Solaris_WDRAttachmentPoint class, 53
domain, 74
Solaris_SGDomain class, 79
Solaris. WDRDomain class, 74
Solaris_XCDomain class, 75
indication
Solaris_SGBoardPresenceChange
indication, 88 E
Solaris_SGBoardStatusChange indication, 91
Solaris_SGDomainACLChange indication, 88

controllers, 85

development tools
types used to develop WBEM DR clients, xiii
domains, 82, 88, 89
classes, 74
Solaris_SGDomain class, 79
Solaris_ WDRDomain class, 74
Solaris_XCDomain class, 75
DTMF (Distributed Management Task Force), 2, 3

EventProvider

Solaris_SGDomainStateChange indication, 89 creating
Solaris_SGSlotAssignmentChange example, 99

indication, 90 events, 41,86
Solaris_SGSlotAvailabilityChange filters

indication, 92 binding to an event handler, 48
Solaris_XCBoardPowerOff indication, 95 creating, 44
Solaris_XCBoardPowerOn indication, 95 handler_s
Solaris_XCComponentinsert indication, 95 ~ creating, 46
Solaris_XCComponentRemove indication, 94 listening for, 44
Solaris_XCDomainConfigChange subscribing to receive, 43

indication, 96
Solaris_ XCDomainDown indication, 96
Solaris_XCDomainlIndication indication, 95 =
Solaris_XCDomainStateChange)

indication, 97 filters
Solaris_XCDomainStop indication, 97 event
Solaris_XCDomainUp indication, 96 binding to an event handler, 48
Solaris_XCEnvironmentallndication creating, 44

indication, 94
Solaris_XCSystemBoardConfigChange

indication, 93 H

slot, 66

Solaris_SGSlot class, 72 handlers
Solaris_WDRSlot class, 66 event _
Solaris XCSlot class, 69 binding to an event filter, 48

140 WDR Developer's Guide * September 2002

creating, 46

indication classes
CIM_IndicationFilter class, 44
CIM_IndicationHandler class, 46
CIM_IndicationSubscription class, 48
indications, 41, 86, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97
generating, 42
hierarchy of classes, 87
InstanceProvider
creating
example, 99, 107

L

listeners
CIM
adding, 44
logging services, 28, 29, 30, 31
reading data from log files, 35
setting properties, 38
Solaris WBEM Log Viewer, 39

M

Managed Object Format (MOF)
compiling files, 15
memory, 84
memory configuration
retrieving information about, 4
MethodProvider
creating
example, 99, 109
Midframe Service Processor (MSP), 1
MOF (Managed Object Format)
and CIM objects, 11
compiler, 13
files
compiling with the mofcomp command, 13
in WDR, 4, 111
WDR_Corel.0.mof, 111
WDR_SG1.0.mof, 122
WDR_XC1.0.mof, 130

mofcomp command, 13
arguments to, 14

MSP, 1

N

namespaces
setting access control on, 26

P
process indications, 41
processors, 84
programming techniques, 99

R
Remote Method Invocation (RMI), 8
RMI (Remote Method Invocation), 8

S
security, 12, 20, 24
changing a user’s access rights, 22
granting access rights to a user, 22
on Sun Fire 15K/12K and 6800/4810/4800/3800
systems, 5
removing access rights for a namespace, 23
removing access rights from a user, 22
setting access control, 23
setting access control on a namespace, 26
setting access control on a user, 25
setting access rights for a namespace, 23
Solaris_NamespaceAcl class and, 26
slots, 82, 83, 90, 92
classes, 66
Solaris_SGSlot class, 72
Solaris_Slot class, 66
Solaris_XCSlot class, 69
SMC (Solaris Management Console)
WBEM Log Viewer, 13
SMC (Solaris Management Console) User’s
Tool, 27
SMC (Solaris Management Console) Users Tool, 12

Index 141

Solaris
indication class hierarchy, 87
Solaris RBAC (role-based access control), 12
Solaris WBEM log files
reading data from, 35
Solaris WBEM Log Viewer, 39
Solaris WBEM logging classes, 30
Solaris_LogRecord class, 31
Solaris_LogService class, 31
Solaris WBEM logging properties
setting, 38
Solaris WBEM Logging Services, 28

Solaris WBEM SDK (software development kit), 9

Solaris WBEM Services, 7

layers of, 12

log files, 29

format, 30
rules, 29

overview, 11

web site, 11
Solaris_LogServiceProperties class, 38
Solaris_NamespaceAcl class

and security, 26
Solaris_UserAcl class, 24

using to set access control on a user, 25
subscriptions

to events, 43
Sun Fire systems

models that support WBEM DR, 1
Sun WBEM User Manager, 12,21

starting, 21
system architecture

differences between platforms, 3
system boards

adding to a domain, 4

displaying information about, 4

moving between domains, 4

removing from a domain, 4

U

UNIX commands
using, xiv

142 WDR Developer's Guide * September 2002

W
WBEM
ACL (access control list), 12, 20
providers, 8
WBEM (Web-based Enterprise Management)
components, 2
WBEM DR
Sun Fire systems that support, 1
WDR (WBEM dynamic reconfiguration)
operations perfomed by, 4
software required for, 2
systems that support, 1

	Contents
	Preface
	Introduction to WDR
	Hardware Required for WDR
	Hardware Required for MSP on Sun Fire 6800/4810/4800/3800 Systems

	Software Required for WDR
	Software Required for Sun Fire 15K/12K Systems
	Software Required for Sun Fire 6800/4810/4800/3800 Systems

	About Web-Based Enterprise Management (WBEM)
	Common Information Model (CIM)
	Platform-Specific and Common MOF Files

	Operations that WDR Performs
	Administrator Security Models
	WDR Security
	Sun Fire 6800/4810/4800/3800 System Groups
	Sun Fire 15K and 12K System Groups

	Solaris WBEM Services
	CIM Object Manager (CIMOM)
	WBEM Providers
	Solaris WBEM Software Development Kit (SDK)

	Using Solaris WBEM Services in WDR
	Overview of Solaris WBEM Services
	Layers of Solaris WBEM Services

	Solaris WBEM Services Application Layer
	Sun WBEM User Manager and SMC Users Tool
	Solaris Management Console (SMC) WBEM Log Viewer
	Managed Object Format (MOF) Compiler
	The mofcomp Command
	Compiling a MOF File
	How to Compile a MOF File
	The mofcomp Password Security Advisory

	Solaris WBEM Services Management Layer
	About the CIM Object Manager
	Manually Starting and Stopping the CIM Object Manager
	To Start the CIM Object Manager
	To Stop the CIM Object Manager

	Solaris WBEM Services Provider Layer
	Solaris Providers

	WBEM Security Services
	Authentication
	Authorization
	Replay Protection
	Digital Signatures
	Implementing Security
	WBEM Access Control Lists

	Using the Sun WBEM User Manager
	To Start the Sun WBEM User Manager
	To Grant Default Access Rights to a User
	To Change a User’s Access Rights
	To Remove a User’s Access Rights
	To Set Access Rights for a Namespace
	To Remove Access Rights for a Namespace

	Using APIs to Set Access Control
	The Solaris_UserAcl Class
	To Set Access Control on a User
	The Solaris_NamespaceAcl Class
	To Set Access Control on a Namespace

	Starting Solaris Management Console (SMC) Users Tool
	To Start SMC Users Tool

	Solaris WBEM Logging Services
	Solaris WBEM Services Log Files
	Solaris WBEM Services Log File Rules
	Solaris WBEM Services Log File Format

	Solaris WBEM Log Classes
	Solaris_LogRecord Class
	Solaris_LogService Class

	Using the APIs to Enable Solaris WBEM Logging
	Writing Data to a Solaris WBEM Log File
	To Create an Instance of Solaris_LogRecord to Write Data
	Reading Data from a Solaris WBEM Log File
	To Get an Instance of the Solaris_LogRecord Class and Read Data
	Setting Solaris WBEM Logging Properties
	To Set Solaris WBEM Logging Properties

	Solaris WBEM Log Viewer
	To Start SMC and Solaris Log Viewer

	Using Process Indications
	The CIM Event Model
	How Indications are Generated
	How Subscriptions Are Created
	Adding a CIM Listener
	To Add a CIM Listener

	Creating an Event Filter
	To Create an Event Filter

	Creating an Event Handler
	To Create a CIM Event Handler

	Binding an Event Filter to an Event Handler
	To Bind an Event Filter to an Event Handler

	Classes, Domains, Associations, and Indications in WDR
	WDR CIM Class Hierarchy Diagram
	CIM Attachment Point Classes
	CIM Solaris_WDRAttachmentPoint Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_WDRAttachmentPoint Class Properties
	CIM Solaris_WDRAttachmentPoint Class Methods

	CIM Solaris_CHSystemBoard Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_CHSystemBoard Class Properties
	CIM Solaris_CHSystemBoard Class Methods

	CIM Solaris_CHCPU Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_CHCPU Class Properties
	CIM Solaris_CHCPU Class Methods

	CIM Solaris_CHMemory Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_CHMemory Properties
	CIM Solaris_CHMemory Class Methods

	CIM Solaris_CHController Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_CHController Class Properties
	CIM Solaris_CHController Class Methods

	CIM Slot Classes
	CIM Solaris_WDRSlot Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_WDRSlot Properties
	CIM Solaris_WDRSlot Methods

	CIM Solaris_XCSlot Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_XCSlot Properties
	CIM Solaris_XCSlot Methods

	CIM Solaris_SGSlot Class
	Position in the Class Hierarchy
	Description
	Direct Known Subclasses
	CIM Solaris_SGSlot Properties
	CIM Solaris_SGSlot Methods

	CIM Solaris_WDRDomain Classes
	CIM Solaris_WDRDomain Class
	Position in the Class Hierarchy
	Description
	Direct Known CIM Subclasses
	CIM Solaris_WDRDomain Class Properties

	CIM Solaris_XCDomain Class
	Position in the Class Hierarchy
	Description
	Direct Known CIM Subclasses
	CIM Solaris_XCDomain Class Properties

	CIM Solaris_SGDomain Class
	Position in the Class Hierarchy
	Description
	Direct Known CIM Subclasses
	CIM Solaris_SGDomain Class Properties

	WDR Schema Associations and Aggregations
	CIM Solaris_DomainHasAttachmentPoints Aggregation
	Description
	CIM Solaris_DomainHasAttachmentPoints Aggregation Properties

	CIM Solaris_DomainHasSlots Aggregation
	Description
	CIM Solaris_DomainHasSlots Aggregation Properties

	Solaris_SlotHasSystemBoard Association
	Description
	CIM Solaris_SlotHasSystemBoard Association Properties

	Solaris_SystemBoardHasProcessors Aggregation
	Description
	CIM Solaris_SystemBoardHasProcessors Aggregation Properties

	Solaris_SystemBoardHasMemory Aggregation
	Description
	CIM Solaris_SystemBoardHasMemory Aggregation Properties

	Solaris_SystemBoardHasControllers Aggregation
	Description
	CIM Solaris_SystemBoardHasControllers Aggregation Properties

	CIM Process Indication Classes
	The WDR Indication Class Hierarchy Diagram
	Solaris_WDRIndication Class
	Solaris_SGBoardPresenceChange Indication
	Description
	Solaris_SGBoardPresenceChange Properties

	Solaris_SGDomainACLChange Indication
	Description
	Solaris_SGDomainACLChange Properties

	Solaris_SGDomainStateChange Indication
	Description
	Solaris_SGDomainStateChange Properties

	Solaris_SGSlotAssignmentChange Indication
	Description
	Solaris_SGSlotAssignmentChange Properties

	Solaris_SGBoardStateChange Indication
	Description
	Solaris_SGBoardStateChange Properties

	Solaris_SGSlotAvailabilityChange Indication
	Description
	Solaris_SGSlotAvailabilityChange Properties

	Solaris_XCSystemBoardConfigChange Indication
	Description
	Solaris_XCSystemBoardConfigChange Properties

	Solaris_XCEnvironmentalIndication Indication
	Description
	Solaris_XCEnvironmentalIndication Properties

	Solaris_XCComponentRemove Indication
	Solaris_XCComponentInsert Indication
	Solaris_XCBoardPowerOn Indication
	Solaris_XCBoardPowerOff Indication
	Solaris_XCDomainIndication Indication
	Description
	Solaris_XCDomainIndication Properties

	Solaris_XCDomainConfigChange Indication
	Solaris_XCDomainUp Indication
	Solaris_XCDomainDown Indication
	Solaris_XCDomainStop Indication
	Solaris_XCDomainStateChange Indication
	Description
	Solaris_XCDomainStateChange Properties

	Programming Techniques in WDR
	Caching System State Information
	Working with an EventProvider
	To Subscribe to and Read WDR Indications
	To Implement an Event Listener
	To Bind an Event Filter to an Event Handler

	Working with an InstanceProvider
	Working with an AssociatorProvider
	Working with a MethodProvider

	MOF Files
	WDR_Core1.0.mof File
	WDR_SG1.0.mof File
	WDR_XC1.0.mof File

	Index

