System Administration Guide: IP Services

IKE With Public Key Certificates

Public key certificates eliminate the need for communicating systems to share secret keying material out of band. Public keys use the Diffie-Hellman protocol (DH) for authenticating and negotiating keys. Public key certificates come in two flavors. The certificates can be self-signed, or the certificates can be certified by a certificate authority (CA).

Self-signed public key certificates are created by you, the administrator. The ikecert certlocal -ks command creates the private part of the public-private key pair for the system. You then get the self-signed certificate output in X.509 format from the remote system. The remote system's certificate is input to the ikecert certdb command for the public part of the key pair. The self-signed certificates reside in the /etc/inet/ike/publickeys directory on the communicating systems. When you use the -T option, the certificates reside on attached hardware.

Self-signed certificates are a halfway point between preshared keys and CAs. Unlike preshared keys, a self-signed certificate can be used on a mobile machine or on a system that might be renumbered. To self-sign a certificate for a system without a fixed number, use a DNS (www.example.org) or email (root@domain.org) alternative name.

Public keys can be delivered by a PKI or a CA organization. You install the public keys and their accompanying CAs in the /etc/inet/ike/publickeys directory. When you use the -T option, the certificates reside on attached hardware. Vendors also issue certificate revocation lists (CRLs). Along with installing the keys and CAs, you are responsible for installing the CRL in the /etc/inet/ike/crls directory.

CAs have the advantage of being certified by an outside organization, rather than by the site administrator. In a sense, CAs are notarized certificates. As with self-signed certificates, CAs can be used on a mobile machine or on a system that might be renumbered. Unlike self-signed certificates, CAs can very easily scale to protect a large number of communicating systems.