System Administration Guide: Network Services

DH Authentication

DH authentication uses the Data Encryption Standard (DES) and Diffie-Hellman public-key cryptography to authenticate both users and computers in the network. DES is a standard encryption mechanism. Diffie-Hellman public-key cryptography is a cipher system that involves two keys: one public and one secret. The public keys and secret keys are stored in the namespace. NIS stores the keys in the public-key map. These maps contain the public key and secret key for all potential users. See the System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP) for more information about how to set up the maps.

The security of DH authentication is based on a sender's ability to encrypt the current time, which the receiver can then decrypt and check against its own clock. The timestamp is encrypted with DES. The requirements for this scheme to work are as follows:

If a network runs a time-synchronization program, the time on the client and the server is synchronized automatically. If a time-synchronization program is not available, timestamps can be computed by using the server's time instead of the network time. The client asks the server for the time before starting the RPC session, then computes the time difference between its own clock and the server's. This difference is used to offset the client's clock when computing timestamps. If the client and server clocks become unsynchronized the server begins to reject the client's requests. The DH authentication system on the client resynchronizes with the server.

The client and server arrive at the same encryption key by generating a random conversation key, also known as the session key, and by using public-key cryptography to deduce a common key. The common key is a key that only the client and server are capable of deducing. The conversation key is used to encrypt and decrypt the client's timestamp. The common key is used to encrypt and decrypt the conversation key.