
Developer’s Guide to Clients
Sun™ ONE Application Server

Version7

817-2173-10
March 2003

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

THIS SOFTWARE CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE,
DISCLOSURE OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN
MICROSYSTEMS, INC.U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc.
standard license agreement and applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Java and the Sun ONE logo are trademarks or registered trademarks of Sun Microsystems, Inc.
in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other
countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are
strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

__

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

CE LOGICIEL CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN
MICROSYSTEMS, INC. SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS
L’AUTORISATION EXPRESSE, ÉCRITE ET PRÉALABLE DE SUN MICROSYSTEMS, INC. Droits du gouvernement américain,
utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat de licence standard de
Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR [(Federal Acquisition Regulations) et des suppléments à
celles-ci. Distribué par des licences qui en restreignent l’utilisation.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Java et le logo Sun ONE sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d’autres pays et licenciée exlusivement par X/Open Company, Ltd.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont régis par la législation américaine en
matière de contrôle des exportations et peuvent être soumis au droit d’autres pays dans le domaine des exportations et importations.
Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et chimiques ou du
nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des États-Unis, ou vers des entités figurant sur les listes d’exclusion d’exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe ou indirecte, aux exportations
des produits ou des services qui sont régi par la législation américaine en matière de contrôle des exportations ("U.S. Commerce
Department’s Table of Denial Orders") et la liste de ressortissants spécifiquement désignés ("U.S. Treasury Department of Specially
Designated Nationals and Blocked Persons"), sont rigoureusement interdites.

3

Contents

About This Document . 7

Who Should Use This Guide . 7
Using the Documentation . 8
How This Guide Is Organized . 10
Reference Information . 11
Documentation Conventions . 11

General Conventions . 11
Conventions Referring to Directories . 12

Chapter 1 Overview of Clients . 15
Introducing Clients . 15
Types of Clients . 16

Web Clients . 17
Web Services Clients . 17
JMS Clients . 18
CORBA Clients . 18
Application Clients . 19

Chapter 2 Using the Application Client Container . 21
Introducing the Application Client Container . 21

Application Client Container Features . 22
Developing Applications Using the ACC . 22

Creating an Application Client . 22
Locating the Home Interface . 23
Creating an Enterprise Bean Instance . 23
Invoking a Business Method . 24

Using an Application Client to Invoke an EJB Module . 24

4 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

Making a Remote Call on the EJB . 25
Invoking an RMI/IIOP-based Client Without Using the ACC . 26
Authenticating an Application Client Using the JAAS Module . 28
Authenticating an RMI/IIOP Client Without Using the ACC . 35
Packaging an Application Client Using the ACC . 37

Editing the Configuration File . 38
Editing the appclient Script . 38
Editing the sun-acc.xml File . 38
Setting Security Options . 39
Using the package-appclient Script . 40

Running an Application Client Using the ACC . 41
Sample Client Application . 42

Application Client Deployment Descriptors . 42
Format of Deployment Descriptors . 43

Subelements . 43
Data . 44
Attributes . 44

J2EE Application Client Deployment Descriptor . 45
Sun ONE Application Client Deployment Descriptor . 45

Elements in sun-application-client.xml file . 45
Application Client Container Configuration File . 50

Elements in the sun-acc.xml File . 50

Chapter 3 Java-based CORBA Clients . 59
CORBA Client Scenarios . 59

Stand-alone Scenario . 59
Server to Server Scenario . 60
ORB Support Architecture . 61

Developing Java-based CORBA Clients . 61
Creating a Stand-alone CORBA Client . 62

Specifying the Naming Factory Class . 62
Specifying the JNDI Name of an EJB . 62
Sun ONE ORB Configuration . 63

Running a Stand-alone CORBA Client . 65
Third Party ORB Support . 65

Accessing EJBs in a Remote Application Server Instance From a Servlet/Enterprise JavaBean . . 65
Specifying the Naming Factory Class . 66
Specifying the JNDI Name of an EJB . 66

Configuring Back End Access Using Third Party Client ORBs Within Sun ONE Application Server
67

Installing Orbix . 67
Configuring Sun ONE Application Server to Use Orbix . 67
Overriding the Built-in ORB . 68

5

Chapter 4 C++ Clients . 71
Introducing C++ Clients . 71
Developing a C++ Client . 71

Configuring C++ Clients to Access Sun ONE Application Server . 72
Software Requirements . 72
Preparing for C++ Client Development . 73
Assumptions and Limitations . 75

Creating a C++ Client . 75
Generating the IDL Files . 75
Generating CPP Files from IDL Files . 79

Sample Applications . 83

Glossary . 85

Index . 111

6 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

7

About This Document

This guide describes how to create and run Java(2) Platform, Enterprise EditionTM

(J2EE) clients that access Enterprise JavaBeansTM (EJBs) on SunTM Open Net
Environment (Sun ONE) Application Server 7. In addition to describing
programming concepts and tasks, this guide offers sample code, implementation
tips, reference material, and a glossary.

This preface contains information about the following topics:

• Who Should Use This Guide

• Using the Documentation

• How This Guide Is Organized

• Reference Information

• Documentation Conventions

• Product Support

Who Should Use This Guide
The intended audience for this guide is the person who develops, assembles, and
deploys J2EE applications in a corporate enterprise.

This guide assumes you are familiar with the following topics:

• J2EE specification

• HTML

• JavaTM and XML programming

• Java APIs as defined in specifications for EJBs, JSPs, and JDBC

Using the Documentation

8 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

• Software development processes, including debugging and source code
control

Using the Documentation
The Sun ONE Application Server manuals are available as online files in Portable
Document Format (PDF) and Hypertext Markup Language (HTML) formats, at:

http://docs.sun.com/

The following table lists tasks and concepts described in the Sun ONE Application
Server manuals. The left column lists the tasks and concepts, and the right column
lists the corresponding manuals.

Table 1 Sun ONE Application Server Documentation Roadmap

For information about See the following

Late-breaking information about the software and the
documentation

Release Notes

Supported platforms and environments Platform Summary

Introduction to the application server, including new
features, general installation information, migration details,
and architectural overview

Getting Started Guide

Installing Sun ONE Application Server and its various
components (sample applications, Administration interface,
Sun ONE Message Queue).

Installation Guide

Creating and implementing J2EE applications that follow
the open Java standards model on the Sun ONE Application
Server 7. Includes general information about application
design, developer tools, security, assembly, deployment,
debugging, and creating lifecycle modules.

Developer’s Guide

Creating and implementing J2EE applications that follow
the open Java standards model for web applications on the
Sun ONE Application Server 7. Discusses web application
programming concepts and tasks, and provides sample
code, implementation tips, and reference material.

Developer’s Guide to Web
Applications

http://docs.sun.com/

Using the Documentation

About This Document 9

Creating and implementing J2EE applications that follow
the open Java standards model for EJBs on the Sun ONE
Application Server 7. Discusses EJB programming concepts
and tasks, and provides sample code, implementation tips,
and reference material.

Developer’s Guide to
Enterprise JavaBeans
Technology

Creating clients that access J2EE applications on the Sun
ONE Application Server.

Developer’s Guide to Clients

J2EE features such as JDBC, JNDI, JTS, JMS, and JavaMail. Developer’s Guide to J2EE
Features and Services

Creating custom NSAPI plug-ins Developer’s Guide to NSAPI

Performing the following administration tasks:

• Using the Administration interface and the command
line interface

• Configuring server preferences

• Using server instances

• Monitoring and logging server activity

• Configuring the web server plug-in

• Configuring the Java Messaging Service

• Using J2EE features

• Configuring support for CORBA-based clients

• Configuring database connectivity

• Configuring transaction management

• Configuring the web container

• Deploying applications

• Managing virtual servers

Administrator’s Guide

Editing server configuration files Administrator’s
Configuration File Reference

Configuring and administering security for the Sun ONE
Application Server 7 operational environment. Includes
information on general security, certificates, and SSL/TLS
encryption. Web-core-based security is also addressed.

Administrator’s Guide to
Security

Table 1 Sun ONE Application Server Documentation Roadmap

For information about See the following

How This Guide Is Organized

10 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

How This Guide Is Organized
This guide provides instructions for the development, assemble, and the
deployment of various types of J2EE clients to Sun ONE Application Server.

• Chapter 1, “Overview of Clients”

This chapter introduces you to various types of clients that are supported by
Sun ONE Application Server.

• Chapter 2, “Using the Application Client Container”

This chapter describes how to use the Application Client Container to develop
and package application clients.

• Chapter 3, “Java-based CORBA Clients”

This chapter describes the procedure to develop, assemble, and deploy
Java-based CORBA clients that do not use the ACC.

• Chapter 4, “C++ Clients”

This chapter describes the procedure to develop C++ clients using a
third-party ORB.

Finally, Glossary and Index are provided.

Configuring and administering service provider
implementation for J2EE CA connectors for the Sun ONE
Application Server 7. Includes information about the
Administration Tool, DTDs and provides sample XML files.

J2EE CA Service Provider
Implementation
Administrator’s Guide

Migrating your applications to the new Sun ONE
Application Server 7 programming model from the
Netscape Application Server version 2.1, including a
sample migration of an Online Bank application provided
with Sun ONE Application Server

Migration Guide

Using Sun ONE Message Queue. The Sun ONE Message
Queue documentation at

http://docs.sun.com/db/
prod/s1.s1msgqu#hic

Table 1 Sun ONE Application Server Documentation Roadmap

For information about See the following

http://docs.sun.com/db/

Reference Information

About This Document 11

Reference Information
We recommend the following additional reading:

General J2EE Information:

Core J2EE Patterns: Best Practices and Design Strategies by Deepak Alur, John Crupi,
& Dan Malks, Prentice Hall Publishing

Java Security, by Scott Oaks, O’Reilly Publishing

Programming with EJB components:

Enterprise JavaBeans, by Richard Monson-Haefel, O’Reilly Publishing

Java Remote Method Invocation Technology over Internet Inter-ORB Protocol:

http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/

Documentation Conventions
This section describes the types of conventions used throughout this guide:

• General Conventions

• Conventions Referring to Directories

General Conventions
The following general conventions are used in this guide:

• File and directory paths are given in UNIX® format (with forward slashes
separating directory names). For Windows versions, the directory paths are the
same, except that backslashes are used to separate directories.

• URLs are given in the format:

http://server.domain/path/file.html

In these URLs, server is the server name where applications are run; domain is
your Internet domain name; path is the server’s directory structure; and file is
an individual filename. Italic items in URLs are placeholders.

• Font conventions include:

http://java.sun.com/j2se/1.4/docs/guide/rmi-iiop/
http://server.domain/path/file.html

Documentation Conventions

12 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

❍ The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), file names,
pathnames, directory names, and HTML tags.

❍ Italic type is used for code variables.

❍ Italic type is also used for book titles, emphasis, variables and placeholders,
and words used in the literal sense.

❍ Bold type is used as either a paragraph lead-in or to indicate words used in
the literal sense.

• Installation root directories for most platforms are indicated by install_dir in
this document. Exceptions are noted in “Conventions Referring to Directories”
on page 12.

By default, the location of install_dir on most platforms is:

❍ Solaris 8 non-package-based Evaluation installations:

user’s home directory/sun/appserver7

❍ Solaris unbundled, non-evaluation installations:

/opt/SUNWappserver7

❍ Windows, all installations:

C:\Sun\AppServer7

For the platforms listed above, default_config_dir and install_config_dir are
identical to install_dir. See “Conventions Referring to Directories” on page 12
for exceptions and additional information.

• Instance root directories are indicated by instance_dir in this document, which
is an abbreviation for the following path:

default_config_dir/domains/domain/instance

• UNIX-specific descriptions throughout this manual apply to the Linux
operating system as well, except where Linux is specifically mentioned.

Conventions Referring to Directories
By default, when using the Solaris 8 and 9 package-based installation and the
Solaris 9 bundled installation, the application server files are spread across several
root directories. These directories are described in this section.

Documentation Conventions

About This Document 13

• For Solaris 9, bundled installations, this guide uses the following document
conventions to correspond to the various default installation directories
provided:

❍ install_dir refers to /usr/appserver/, which contains the static portion of
the installation image. All utilities, executables, and libraries that make up
the application server reside in this location.

❍ default_config_dir refers to /var/appserver/domains, which is the default
location for any domains that are created.

❍ install_config_dir refers to /etc/appserver/config, which contains
installation-wide configuration information such as licenses and the
master list of administrative domains configured for this installation.

• For Solaris 8 and 9 package-based, non-evaluation, unbundled installations,
this guide uses the following document conventions to correspond to the
various default installation directories provided:

❍ install_dir refers to /opt/SUNWappserver7, which contains the static
portion of the installation image. All utilities, executables, and libraries
that make up the application server reside in this location.

❍ default_config_dir refers to /var/opt/SUNWappserver7/domainswhich is
the default location for any domains that are created.

❍ install_config_dir refers to /etc/opt/SUNWappserver7/config, which
contains installation-wide configuration information such as licenses and
the master list of administrative domains configured for this installation.

Product Support
If you have problems with your system, contact customer support using one of the
following mechanisms:

• The online support web site at:

http://www.sun.com/supportraining/

• The telephone dispatch number associated with your maintenance contract

Please have the following information available prior to contacting support. This
helps to ensure that our support staff can best assist you in resolving problems:

• Description of the problem, including the situation where the problem occurs
and its impact on your operation

http://www.sun.com/supportraining/

Documentation Conventions

14 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

• Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem

• Detailed steps on the methods you have used to reproduce the problem

• Any error logs or core dumps

15

Chapter 1

Overview of Clients

A client can be a simple web browser or an application that runs on the client
system. Sun ONE Application Server 7 provides various types of clients, a
framework to connect to a back end source, execute the application logic, and
return the result to the client.

This chapter introduces different types of clients that Sun ONE Application Server
supports. The following topics are discussed in this chapter:

• Introducing Clients

• Types of Clients

Introducing Clients
A client application can be written using Java, C, C++, Visual Basic, or any
compatible programming language. A client application sends a request to an
application server at a given URL. The server receives the request, processes it, and
returns a response. These client programs execute remote procedures and
functions in an application server instance.

Sun ONE Application Server is a Java application server and is fully compliant
with the J2EE specifications. The important layers of J2EE platform are as follows:

• Client layer - The client layer is where the user accesses the application.

• Presentation layer - The presentation layer is where the user interface is
dynamically generated. An application may require the following J2EE
components in the presentation layer.

❍ Servlets

❍ JSPs

Types of Clients

16 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

❍ Static Content

In addition, an application may require the following non-J2EE, HTTP
server-based components in the presentation layer:

❍ SHTML

❍ CGI

For more information about the components in the presentation layer, see the
Sun ONE Application Server Developer’s Guide to Web Applications.

• Business logic layer -The business logic layer contains deployed EJB
components that encapsulate business rules and other functions in session
beans, entity beans, and message-driven beans.

For more information about components in business logic layer, see the Sun
ONE Application Server Developer’s Guide to Enterprise JavaBeans Technology.

• Data access layer - In the data access layer, JDBC (java database connectivity) is
used to connect to databases, make queries, and return query results, and
custom connectors work with Sun ONE Application Server to enable
communication with legacy EIS systems, such as IBM’s CICS.

Developers are likely to integrate access to the following systems using J2EE
CA (J2EE connection architecture):

❍ Enterprise resource management system

❍ Mainframe systems

❍ Third-party security systems

For more information about JDBC, see the Sun ONE Application Server
Developer’s Guide to J2EE Features and Services.

For more information about connections, see the J2EE CA Service Provider
Implementation Administration Guide and the corresponding release notes.

For more information on the J2EE Architecture, see Sun ONE Application Server
Developer’s Guide.

Types of Clients
This section introduces the following types of clients that are supported by Sun
ONE Application Server:

• Web Clients

Types of Clients

Chapter 1 Overview of Clients 17

• Web Services Clients

• JMS Clients

• CORBA Clients

• Application Clients

Web Clients
A web client consists of two parts:

• Dynamic web pages containing various types of markup languages such as
Hyper Text Markup Language (HTML), Extensible Markup Language (XML),
etc, that are generated by web components running in the web server.

• A web browser, which renders the pages received from the server.

A web client is sometimes called a thin client. Thin clients do not query databases,
execute complex business rules, or connect to legacy applications. When you use a
thin client, heavyweight operations like these are off-loaded to enterprise beans
executing on the J2EE server where they can leverage the security, speed, services,
and reliability of J2EE server-side technologies.

Web Services Clients
Sun ONE Application Server supports Java-based client applications to send
requests to the web service, and receive a response from the web service. To invoke
a web service, these clients must construct and send SOAP messages over HTTP.

Sun ONE Application Server supports Apache SOAP version 2.2 and JavaTM API
for XML-based RPC (JAX RPC) 1.1. Web services support is also built into Sun
ONE Studio 4, which is bundled with Sun ONE Application Server.

For information on developing and deploying Web Services clients, see the Sun
ONE Application Server Developer’s Guide to Web Services.

Types of Clients

18 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

JMS Clients
Java Message Service (JMS) clients are the Java language programs that send and
receive messages using the JMS provider. JMS client can be any type of J2EE
application component:a web application, an Application Client Container client,
an EJB component, and so on. A client accesses a special kind of Enterprise
JavaBeans called the message-driven beans (MDB), through JMS by sending
messages to the JMS destination.

For more information on using the JMS API to develop JMS clients, see the Sun
ONE Application Server Developer’s Guide to J2EE Features and Services.

CORBA Clients
CORBA clients are the client applications written in any language supported by
Common Object Request Broker Architecture (CORBA), including the Java
programming language, C++, and C.

CORBA clients are used when a stand-alone program or another application server
acts as a client to the EJBs deployed to Sun ONE Application Server. Sun ONE
Application Server supports access to EJBs using the Internet Inter-ORB Protocol
(IIOP) as specified in the Enterprise JavaBeans Specification, V2.0, and the
Enterprise JavaBeans to CORBA Mapping Specification. These clients use Java
Naming and Directory Interface (JNDI) to locate EJBs, and use JavaTM Remote
Method Invocation/Internet Inter-ORB Protocol (RMI/IIOP) to access business
methods of remote EJBs.

CORBA clients that do not use the Application Client Container (ACC) have the
following limitations:

• JNDI is not supported. However, you can build name translations and do
lookups using standard COSNaming binding.

• SSL over RMI/IIOP is not supported.

• Features that are configurable in the sun-application-client.xml and
sun-acc.xml files are not available.

Types of Clients

Chapter 1 Overview of Clients 19

Application Clients
A J2EE application client runs on a client machine and provides a way to handle
tasks that require a richer user interface than can be provided by a markup
language. Typically, an application client has a GUI created from Swing or
Abstract Window Toolkit (AWT) APIs. Alternatively, you can use the
command-line interface.

Application clients directly access the EJB components residing in Sun ONE
Application Server. However, if application requirements warrant it, a J2EE
application client can open an HTTP connection to establish communication with a
servlet running in the web server.

The figure, “Client and Sun ONE Application Server Architecture” illustrates client
machines running the web browser, web service clients, RMI-IIOP clients, or JMS
clients; J2EE server machines running the Sun ONE Application Server; and EIS
server machines running databases and legacy applications. JSPs and servlets
provide the interface to the client tier, EJBs reside in the business tier, and
connectors provide the interface to legacy applications.

Figure 1-1 Client and Sun ONE Application Server Architecture

Types of Clients

20 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

RDBMS

Client
layer

Client Server EIS

Presentation
layer

Web container

JMS provider

EJB container

Business
Logic layer

Data
Access layer

Data
layer

Web
Service
client

JMS
client

Browser

Browser

Legacy
application

JSP

JSP

Servlet

Servlet

HTML

EJB

EJB

EJB Connector

Connector

MDB Connector

Application
Client container

RMI/IIOP
client

Servlet

JDBC

21

Chapter 2

Using the Application Client
Container

This chapter describes how to access the application server using RMI/IIOP
protocol, and how to use the Application Client Container (ACC) to develop and
package application clients.

This chapter contains the following sections:

• Introducing the Application Client Container

• Developing Applications Using the ACC

• Application Client Deployment Descriptors

Introducing the Application Client Container
The Application Client Container (ACC) includes a set of Java classes, libraries, and
other files that are required and distributed along with Java client programs that
execute on their own Java Virtual Machine. It manages the execution of the
application client components. The ACC provides system services that enable a
Java client program to execute. It communicates with Sun ONE Application Server
using RMI/IIOP and manages the details of RMI/IIOP communication using the
client ORB that is bundled with it. The ACC is specific to the EJB container and is
often provided by the same vendor. Compared to other J2EE containers that reside
on the server, this container is lightweight.

Developing Applications Using the ACC

22 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

Application Client Container Features

Security
The ACC is responsible for collecting authentication data such as the username and
password from the user. Sends the collected data over RMI/IIOP to the server. The
server then processes the authentication data using the configured JavaTM

Authentication and Authorization Service (JAAS) module. See “Authenticating an
Application Client Using the JAAS Module” on page 28.

Authentication techniques are provided by the client container, and are not under
the control of the application client. The container integrates with the platform’s
authentication system. When you execute a client application, it displays a login
window and collects authentication data from the user. It also support SSL (Secure
Socket Layer)/IIOP if configured and when it is necessary.

Naming
The client container enables the application clients to use Java Naming and
Directory Interface (JNDI) to look up EJB components and to reference
configurable parameters set at the time of deployment.

Developing Applications Using the ACC
This section describes the procedure to develop, assemble, and deploy client
applications using the ACC. This section describes the following topics:

• Creating an Application Client

• Using an Application Client to Invoke an EJB Module

• Invoking an RMI/IIOP-based Client Without Using the ACC

• Authenticating an Application Client Using the JAAS Module

• Packaging an Application Client Using the ACC

• Running an Application Client Using the ACC

Creating an Application Client
A J2EE application client is a program written in the Java programming language.
At runtime, the client program executes in a different virtual machine than the
J2EE server.

Developing Applications Using the ACC

Chapter 2 Using the Application Client Container 23

Code examples from the Converter sample application illustrate the following
steps involved in the development of an application client:

• Locating the Home Interface

• Creating an Enterprise Bean Instance

• Invoking a Business Method

Locating the Home Interface

Use Java Naming and Directory InterfaceTM (JNDI) to lookup and locate an EJB
component’s home interface. The following steps describe the procedure to locate
an EJB component’s home interface.

1. Create an initial naming context.

Context initial = new InitialContext();

Context myEnv = (Context)initial.lookup(“java:comp/env”);
Object objref = myEnv.lookup(“ejb/RMIConverter”);

The context interface is part of JNDI. An initial context object, which
implements the Context interface, provides the starting point for the
resolution of names. All naming operations are relative to a context.

2. Retrieve the object bound to the name rmiConverter.

Object objref = initial.lookup("rmiConverter");

The rmiConverter name is bound to an enterprise bean reference, a logical
name for the home of an enterprise bean component. In this case, the
rmiConverter name refers to the ConverterHome object. The names of
enterprise bean components should reside in the java:com/env/ejb
subcontext.

3. Narrow the reference to a ConverterHome object.

ConverterHome home =(ConverterHome)

PortableRemoteObject.narrow(objref, ConverterHome.class);

Creating an Enterprise Bean Instance
To create the bean instance, the client invokes the create method on the
ConverterHome object. The create method returns an object whose type is
Converter. The remote converter interface defines the business methods of the
bean that the client may call and the EJB container instantiates the bean and then
invokes the ConverterBean.ejbCreate method.

Converter currencyConverter = home.create();

Developing Applications Using the ACC

24 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

Invoking a Business Method
To invoke a business method, you first need to invoke a method on the Converter
object. The EJB container will invoke the corresponding method on the
ConverterEJB instance that is running on the server. The client invokes the
dollarToYen business method in the following lines of code:

BigDecimal param = new BigDecimal ("100.00");

BigDecimal amount = currencyConverter.dollarToYen(param);

Using an Application Client to Invoke an EJB
Module
This section describes how an application client can be used to call a stand-alone
EJB module, or an EJB module residing in another J2EE application client.

To call an EJB module from an application client, perform the following steps:

1. Define the element <ejb-ref> in the sun-application-client.xml file.

For more information on the sun-application-client.xml file, see “Sun
ONE Application Client Deployment Descriptor” on page 45.

2. Make sure that the JNDI name matches with the JNDI name defined in the EJB
module.

3. Deploy the EJB module using the Administration interface. For more
information on deploying an EJB module using the Administration interface,
see the Sun ONE Application Server Administrator’s Guide.

The client JAR file is created at the following location:
/application/j2ee-modules/ejbmodulename/appclient.jar

4. Distribute your appclient.jar file to the location that the client JVM can
access.

5. Ensure that the appclient.jar file includes the following files:

❍ a Java class to access the bean

❍ application-client.xml

❍ sun-application-client-.xml

❍ The MANIFEST.MF file. This file contains the main class, which states the
complete package prefix and classname of the Java client.

Developing Applications Using the ACC

Chapter 2 Using the Application Client Container 25

6. Run the application client to access the EJB component. The following line of
code illustrates how to invoke an EJB component using the ACC:

appclient -client jarpath -mainclass client application main class|-name
name -xml config_xml_file app-args

❍ -client is required and specifies the name and location of the application
client jar file.

❍ -mainclass is optional and specifies the class name, that is located within
the appclient.jar file whose main() method is to be invoked. By default,
the class specified in the client jars Main-class attribute of the MANIFEST
file is used.

❍ -name is optional and specifies the display name that is located within the
appclient.jar. By default, the display name is specified in the client jar
application-client.xml file as display-name attribute.

❍ -xml, which specifies the name and location of the ACC configuration xml
file, is required if you are not using the default domain and instance. By
default, the ACC uses instance_dir/config/sun-acc.xml for clients
running on the application server, or
install_dir//lib/appclient/sun-acc.xml for clients that are packaged
using the package-applclient script.

❍ app-args are optional and they represent the arguments passed to the
client’s main() method.

7. To deploy the application client, assemble the application client to create a
standard J2EE .ear file and then deploy the application client to Sun ONE
Application Server.

Making a Remote Call on the EJB
If you need to access the EJB components that are residing in a remote system other
than the system where the application client is being developed, make the
following changes into the sun-acc.xml fie.

• Define the <target-server> address attribute to reference the remote server
machine.

• Define the <target-server> port attribute to reference the ORB port on the
remote server.

This information can be obtained from the server.xml file on the remote system.

For more information on server.xml file, see the Sun ONE Application Server
Administrator’s Configuration File Reference.

Developing Applications Using the ACC

26 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

Invoking an RMI/IIOP-based Client Without
Using the ACC
You can invoke a J2EE client without using the ACC. When you are creating an
application client that does not use the ACC, you need to setup your development
environment as follows:

1. Include the following non-java libraries in the client’s classpath.

Windows:

The following libraries can be found at install_dir/bin:

❍ cis.dll

❍ libnspr4.dll

❍ libplc4.dll

❍ nss3.dll

❍ ssl3.dll

Solaris:

The following libraries can be found at install_dir/lib:

❍ libcis.so

❍ libnspr4.so

❍ libplc4.so

❍ libnss3.so

❍ libssl3.so

2. In addition to the non-java libraries, copy the following jar files to the client
system and add them to the classpath:

❍ appserv-ext.jar

❍ appserv-rt.jar

❍ fscontext.jar

❍ imq.jar

❍ imqadmin.jar

❍ imqutil.jar

Developing Applications Using the ACC

Chapter 2 Using the Application Client Container 27

The following steps describe the procedure to create a client:

1. Define the main class as shown in the code illustration below:

public static(String[] args) {

 String url = null;

 String jndiname = null;

 boolean acc = true;

}

2. If the code sees the url and jndiname passed in, the acc flag is set to false and
does the EJB lookup differently than it does if this client code is called by the
application client utility without any arguments.

if (args.length == 2) {

url = args[0];
jndiname = args[1];
acc = false;
System.out.println("url = "+url);

}

3. Obtain the naming initial context and perform the JNDI look up.

Properties env = new Properties();

env.put("java.naming.factory.initial",
"com.sun.jndi.cosnaming.CNCtxFactory");

env.put("java.naming.provider.url", url);

initial = new InitialContext(env);

objref = initial.lookup(jndiname);

4. Run the client from the command line.

java -classpath CP ClientApp URL JNDIName

where,

❍ CP is the CLASSPATH which includes the application client jar file and the
appserv-ext.jar.

❍ ClientApp refers to the client program.

❍ URL refers to the application server running on a machine with host name
and with an ORB-port.

❍ JNDIName matches the JNDIName specified in the deployment file.

Developing Applications Using the ACC

28 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

Authenticating an Application Client Using the
JAAS Module
Using the JAAS module, you can provide security in your application client code.
Create a LoginModule that describes the interface implemented by authentication
technology providers. LoginModules are plugged in under applications to provide
a particular type of authentication.The following steps are involved in creating a
LoginModule:

1. Write the LoginModule interface.

public class ClientPasswordLoginModule implements LoginModule{

private static Logger _logger=null;

 static{

 _logger=LogDomains.getLogger(LogDomains.SECURITY_LOGGER);

 }

}

private Subject subject;
private CallbackHandler callbackHandler;
private Map sharedState;
private Map options;

The standard JAAS package required by this class is javax.security. The
code line below illustrates how you can import the package in your client
application:

import javax.security.*;

2. Initialize the LoginModule interface that you just created.

public void initialize(Subject subject, CallbackHandler
callbackHandler, Map sharedState, Map options) {

this.subject = subject;
this.callbackHandler = callbackHandler;
this.sharedState = sharedState;
this.options = options;

}

❍ The parameter subject, is the subject to be authenticated.

❍ callbackHandler, for communicating with the end user which prompts
for the username and password.

❍ sharedState, is the shared LoginModule state.

Developing Applications Using the ACC

Chapter 2 Using the Application Client Container 29

❍ options, the options specified in the configuration file of the
LoginModule.

3. Use login() method to fetch the login information from the client application
and authenticate the user.

public boolean login() throws LoginException {

if (uname != null) {
username = new String (uname);
pswd = System.getProperty (LOGIN_PASSWORD);

}

The login information is fetched using the CallBackHandler.

Callback[] callbacks = new Callback[2];

callbacks[0] = new
NameCallback(localStrings.getLocalString("login.username",
"ClientPasswordModule username: "));

callbacks[1] = new
PasswordCallback(localStrings.getLocalString("login.password",
"ClientPasswordModule password: "), false);

username = ((NameCallback)callbacks[0]).getName();

char[] tmpPassword =
((PasswordCallback)callbacks[1]).getPassword();

The login() method tries to connect to the server using the login information
that is fetched. If the connection is established, the method returns the value
true.

4. Use commit() method to set the subject in the session to the username that is
verified by the login method. If the commit method returns a value true, then
this method associates PrincipalImpl with the subject located in the
LoginModule. If this LoginModule’s own authentication attempt is failed, then
this method removes any state that was originally saved.

public boolean commit() throws LoginException {
if (succeeded == false) {
return false;
} else {
// add a Principal (authenticated identity)to the Subject
// assume the user we authenticated is the PrincipalImpl
userPrincipal = new PrincipalImpl(username);

5. Use logout() method to remove the privilege settings associated with the
roles of the subject.

Developing Applications Using the ACC

30 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

public boolean logout() throws LoginException {

subject.getPrincipals().remove(userPrincipal);
succeeded = false;
succeeded = commitSucceeded;
username = null;
if (password != null) {

for (int i = 0; i < password.length; i++)
password[i] = ’ ’;
password = null;

}
userPrincipal = null;
return true;
}

6. Edit the sun-acc.xml deployment descriptor to configure JAAS
authentication for the client. See “auth-realm” on page 57.

7. Integrate the LoginModule with the application server.

Edit the deployment descriptor to make the following changes:

❍ Configure the server with a realm that uses a specific LoginModule for
security authentication.

❍ Map the application realm and roles to the realm and roles defined by the
LoginModule.

8. Assemble the application client. See “Packaging an Application Client Using
the ACC” on page 37.

Sample Code
The sample code of ClinetLoginPasswordModule is given below:

package com.sun.enterprise.security.auth.login;

import java.util.*;
import java.io.IOException;
import javax.security.auth.*;
import javax.security.auth.callback.*;
import javax.security.auth.login.*;
import javax.security.auth.spi.*;
import com.sun.enterprise.security.auth.login.PasswordCredential;
import com.sun.enterprise.security.PrincipalImpl;
import com.sun.enterprise.security.auth.LoginContextDriver;
import com.sun.enterprise.util.LocalStringManagerImpl;
import java.util.logging.*;
import com.sun.logging.*;

Developing Applications Using the ACC

Chapter 2 Using the Application Client Container 31

public class ClientPasswordLoginModule implements LoginModule {

private static Logger _logger=null;
static{

_logger=LogDomains.getLogger(LogDomains.SECURITY_LOGGER);
}

private static final String DEFAULT_REALMNAME = "default";
private static LocalStringManagerImpl localStrings =

new LocalStringManagerImpl(ClientPasswordLoginModule.class);

// initial state

private Subject subject;
private CallbackHandler callbackHandler;
private Map sharedState;
private Map options;

private boolean debug = com.iplanet.ias.util.logging.Debug.enabled;

// the authentication status

private boolean succeeded = false;
private boolean commitSucceeded = false;

// username and password

private String username;
private char[] password;

private final PasswordCredential passwordCredential=null;

// testUser’s PrincipalImpl

private PrincipalImpl userPrincipal;
public static String LOGIN_NAME = "j2eelogin.name";
public static String LOGIN_PASSWORD = "j2eelogin.password";

public void initialize(Subject subject, CallbackHandler
callbackHandler, Map sharedState, Map options) {

this.subject = subject;
this.callbackHandler = callbackHandler;
this.sharedState = sharedState;
this.options = options;

// initialize any configured options

debug =
"true".equalsIgnoreCase((String)options.get("debug"));

}

Developing Applications Using the ACC

32 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

/* Authenticate the user by prompting for a username and password.
@return true in all cases since this <code>LoginModule</code> should
not be ignored.*/

/* @exception FailedLoginException if the authentication fails.
@exception LoginException if this <code>LoginModule</code> is unable
to perform the authentication.*/

public boolean login() throws LoginException {

// prompt for a username and password

if (callbackHandler == null){

String failure =
localStrings.getLocalString("login.nocallback","Error: no
CallbackHandler available to garner authentication information from
the user");

throw new LoginException(failure);
}

String uname = System.getProperty (LOGIN_NAME);
String pswd;

if (uname != null) {

username = new String (uname);
pswd = System.getProperty (LOGIN_PASSWORD);
char[] dest;
if (pswd == null){

dest = new char[0];
password = new char[0];

} else {
int length = pswd.length();
dest = new char[length];
pswd.getChars(0, length, dest, 0);
password = new char[length];

}
System.arraycopy (dest, 0, password, 0, dest.length);
} else{

Callback[] callbacks = new Callback[2];
callbacks[0] = new

NameCallback(localStrings.getLocalString("login.username",
"ClientPasswordModule username: "));

callbacks[1] = new
PasswordCallback(localStrings.getLocalString("login.password",
"ClientPasswordModule password: "), false);

Developing Applications Using the ACC

Chapter 2 Using the Application Client Container 33

try {
callbackHandler.handle(callbacks);
username = ((NameCallback)callbacks[0]).getName();
if(username == null){

String fail =
localStrings.getLocalString("login.nousername", "No user
specified");

throw new LoginException(fail);
}

char[] tmpPassword =
((PasswordCallback)callbacks[1]).getPassword();

if (tmpPassword == null) {
// treat a NULL password as an empty password

tmpPassword = new char[0];
}
password = new char[tmpPassword.length];
System.arraycopy(tmpPassword, 0,
password, 0, tmpPassword.length);
((PasswordCallback)callbacks[1]).clearPassword();
} catch (java.io.IOException ioe) {
throw new LoginException(ioe.toString());
} catch (UnsupportedCallbackException uce) {

String nocallback =
localStrings.getLocalString("login.callback","Error: Callback not
available to garner authentication information from
user(CallbackName):");
throw new LoginException(nocallback + uce.getCallback().toString());

}

}

// print debugging information
if (debug) {

for (int i = 0; i < password.length; i++){
//System.out.print(password[i]);
}
//System.out.println();
}

// by default - the client side login module will always say
// that the login successful. The actual login will take place
// on the server side.
if (debug)

Developing Applications Using the ACC

34 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

{
_logger.log(Level.FINE,"[ClientPasswordLoginModule] "
+"authentication succeeded");
succeeded = true;
return true;

}

public boolean commit() throws LoginException {
if (succeeded == false) {

return false;
} else {
// add a Principal (authenticated identity)to the Subject
// assume the user we authenticated is the PrincipalImpl

userPrincipal = new PrincipalImpl(username);
if (!subject.getPrincipals().contains(userPrincipal))

subject.getPrincipals().add(userPrincipal);
if (debug) {
_logger.log(Level.FINE,"[ClientPasswordLoginModule] "

+"added PrincipalImpl to Subject");
}

PasswordCredential pc = new PasswordCredential(username, new
String(password), realm);
if(!subject.getPrivateCredentials().contains(pc))subject.getPrivate
Credentials().add(pc);

username = null;
for (int i = 0; i < password.length; i++){
password[i] = ’ ’;
password = null;
commitSucceeded = true;
return true;
}
}

public boolean abort() throws LoginException {
if (succeeded == false) {
return false;
} else if (succeeded == true && commitSucceeded == false) {
// login succeeded but overall authentication failed

succeeded = false;
username = null;
if (password != null) {

for (int i = 0; i < password.length; i++)
password[i] = ’ ’;

Developing Applications Using the ACC

Chapter 2 Using the Application Client Container 35

password = en das ull;
}
userPrincipal = null;
} else {

// overall authentication succeeded and commit succeeded,
// but someone else’s commit failed
logout();
}
return true;
}

public boolean logout() throws LoginException {

subject.getPrincipals().remove(userPrincipal);
succeeded = false;
succeeded = commitSucceeded;
username = null;
if (password != null) {

for (int i = 0; i < password.length; i++)
password[i] = ’ ’;
password = null;

}
userPrincipal = null;
return true;
}

}

Authenticating an RMI/IIOP Client Without Using
the ACC
This section describes the necessary steps and procedure to create an RMI/IIOP
client that accesses secure EJBs from outside the ACC.

First, you must setup your client development environment using the following
steps:

1. Include the following jar files in the classpath on the client side:

❍ appserv-rt.jar - available at install_dir/lib

❍ appserv-ext.jar - available at install_dir/lib

❍ The client jar that is generated after you deploy your application

Developing Applications Using the ACC

36 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

2. Set org.omg.CORBA.ORBInitialHost to the host on which the IIOP listener is
running.

env.setProperty("org.omg.CORBA.ORBInitialHost", “name service

hostname");

3. Set org.omg.CORBA.ORBInitialPort to the port on which the IIOP listener is
listening (usually 3700).

env.setProperty("org.omg.CORBA.ORBInitialPort", "3700");

4. Set java.security.auth.login.config to
install_dir/lib/appclient/appclientlogin.conf

Next step is to create the client application. The following steps describe the
procedure:

1. Obtain a username and a password. To obtain a username and a password,
you can either write your own JAAS login callback handler or use the standard
one provided with Sun ONE Application Server
(com.sun.enterprise.security.auth.login.LoginCallbackHandler).

The following code line illustrates the use of standard handler using
GUI-based authentication:

LoginCallbackHandler handler = new LoginCallbackHandler(true);

The following code line illustrates the use of standard handler using the text
authentication:

LoginCallbackHandler handler = new LoginCallbackHandler(false);

The following code line is an example code for writing your own login callback
handler:

import javax.security.auth.callback.CallbackHandler;
import
javax.security.auth.callback.UnsupportedCallbackException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;

public class LoginCallbackHandler implements CallbackHandler {

NOTE Do not set java.naming.factory.initial. The default JNDI
provider will by default be picked from the above set classpath.

Developing Applications Using the ACC

Chapter 2 Using the Application Client Container 37

private String username = "j2ee";
private String password = "j2ee";

public void handle(Callback[] callbacks) throws
UnsupportedCallbackException {
try {

for (int i = 0; i <callbacks.length; i++) {
if (callbacks[i] instanceof NameCallback) {

NameCallback nc = (NameCallback)callbacks[i];
nc.setName(username);
} else if(callbacks[i] instanceof PasswordCallback) {

PasswordCallback pc = (PasswordCallback)callbacks[i];
pc.setPassword(password.toCharArray());

}
}

} catch (Exception ex) {
ex.printStackTrace();

}
}

}

2. Pass an instance of your handler to the security infrastructure using the
following call:

LoginContextDriver.doClientLogin(AppContainer.USERNAME_PASSWORD,
handler);

The following two imports are required for the above call:

import com.sun.enterprise.appclient.AppContainer;
import com.sun.enterprise.security.auth.LoginContextDriver;

Packaging an Application Client Using the ACC
After installing Sun ONE Application Server, the ACC can be run by executing the
appclient script located in the install_dir/bin directory. The script
package-appclient that is located in the same directory, is used to package a
client application into a single appclient.jar file. Packaging an application client
involves the following main steps:

• Editing the Configuration File

• Editing the appclient Script

• Editing the sun-acc.xml File

• Setting Security Options

Developing Applications Using the ACC

38 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

• Using the package-appclient Script

Editing the Configuration File
Modify the environment variables in asenv.conf file located in the
default-config_dir directory as shown below:

• $AS_INSTALL to reference the location where the package was un-jared plus
/appclient. For example: $AS_INSTALL=/mylocation/appclient.

• $AS_NSS to reference the location of the nss libs.

For example:

UNIX:

$AS_NSS=/mylocation/appclient/lib

WINDOWS:

%AS_NSS%=\mylocation\appclient\bin

• $AS_JAVA to reference the location where you have installed the JDK.

• $AS_ACC_CONFIG to reference the configuration xml (sun-acc.xml). The
sun-acc.xml is located at install_dir/config.

• $AS_IMQ_LIB to reference the imq home. It should be: install_dir/imq/lib.

Editing the appclient Script
Modify the appclient script file as follows:

UNIX:

Change $CONFIG_HOME/asenv.conf to your_ACC_dir/config/asenv.conf.

Windows:

Change %CONFIG_HOME%\config\asenv.bat to your_ACC_dir\config\asenv.bat

Editing the sun-acc.xml File
Modify sun-acc.xml file to set the following attributes:

• Ensure that the DOCTYPE references %%%SERVER_ROOT%%%/lib/dtds to
your_ACC_dir/lib/dtds.

• Ensure that the <target-server> address attribute references the remote
server machine.

Developing Applications Using the ACC

Chapter 2 Using the Application Client Container 39

• Ensure that the <target-server> port attribute references the ORB port on
the remote server.

• If you want to log the messages in a file, specify a file name for the
<log-service> file attribute. You can also set the log level.

For example,

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE client-container SYSTEM "file:{Your installed server
root}/lib/dtds/sun-application-client-container_1_0.dtd ">

<client-container>

<target-server name="qasol-e1" address="qasol-e1"
port="3700">

<log-service file=" " level="WARNING"/>

</client-container>

For more information on the sun-acc.xml file, see “Application Client Container
Configuration File” on page 50.

Setting Security Options
You can run the application client using SSL with certificate authentication. In
order to set the security options, modify the sun-acc.xml file as shown in the code
illustration below. For more information on the sun-acc.xml file, see the
“Application Client Container Configuration File” on page 50.

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE client-container SYSTEM

"file:////export3/sun/appserver7/appserv/lib/dtds/sun-applicatio
n-client-container_1_0.dtd">

<client-container>

<target-server name="qasol-e1" address="qasol-e1" port="3700">

<security>

<ssl cert-nickname="cts" ssl2-enabled="false"
ssl2-ciphers="-rc4,-rc4export,-rc2,-rc2export,-des,-desede3"

ssl3-enabled="true"

ssl3-tls-ciphers="+rsa_rc4_128_md5,-rsa_rc4_40_md5,+rsa3_des_sha
,+rsa_des_sha,-rsa_rc2_40_md5,-rsa_null_md5,-rsa_des_56_sha,-rsa
_rc4_56_sha"

tls-enabled="true" tls-rollback-enabled="true"/>

file:////export3/sun/appserver7/appserv/lib/dtds/sun-applicatio

Developing Applications Using the ACC

40 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

<cert-db path="/export3/ctsdata/ctscertdb" password="changeit"/>

</security>

</target-server>

<client-credential user-name="j2ee" password="j2ee"/>

<log-service file="" level="WARNING"/>

</client-container>

Using the package-appclient Script
The following steps describe the procedure to use the package-appclient script
that is bundled with Sun ONE Application Server:

1. Under install_dir/bin directory, run the package-appclient script. This
creates an appclient.jar file and stores it under install_dir/lib/appclient/
directory.

2. Copy the install_dir/lib/appclient/appclient.jar file to the desired
location. The appclient.jar file contains the following files:

❍ appclient/bin - contains the appclient script which you use to launch
the ACC.

❍ appclient/lib - contains the JAR and runtime shared library files.

❍ appclient/lib/appclient - contains the following files:

• sun-acc.xml - the ACC configuration file.

• client.policy file- the security manager policy file for the ACC.

• appclientlogin.conf file - the login configuration file.

• client.jar file - is created during the deployment of the client
application.

NOTE The appclient.jar file provides an application client container
package targeted at remote hosts and does not contain a server
installation. You can run this file from a remote machine with the
same operating system as where it is created. That is,
appclient.jar created on a Solaris platform will not function on
Windows.

Developing Applications Using the ACC

Chapter 2 Using the Application Client Container 41

❍ appclient/lib/dtds - contains
sun-application_client-contianer_1_3-0.dtd which is the DTD
corresponding to sun-acc.xml.

client.policy
client.policy file is the J2SE policy file used by the application client. Each
application client has a client.policy file. The default policy file limits the
permissions of J2EE deployed application clients to the minimal set of permissions
required for these applications to operate correctly. If you develop an application
client that requires more than this default set of permissions, you can edit the
client.policy file to add the custom permissions that your applications need.
You can use the J2SE standard policy tool or any text editor to edit this file. For
more information on using the J2SE policy tool, visit the following URL:

http://java.sun.com/docs/books/tutorial/security1.2/tour2/
index.html

For more information about the permissions you can set in the client.policy file,
visit the following URL:

http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

Running an Application Client Using the ACC
To run a client application that is packaged in an application jar file, you first need
to launch the ACC. You can launch the application client container using
appclient script.

appclient -client client_application_jar [-mainclass
client_application_main_class_name|-name display_name][-xml sun-acc.xml]
[-textauth] [-user user_name] [-password password]

• -client: Specifies the name and location of the client application jar file. This
is a required parameter.

• -mainclass: Specifies the class name that is located within the client jar whose
main() method is to be invoked. By default, uses the class specified in the
client jar. This is optional.

NOTE The class name must be the full name. For example,
com.sun.test.AppClient

http://java.sun.com/docs/books/tutorial/security1.2/tour2/
http://java.sun.com/j2se/1.4/docs/guide/security/permissions.html

Application Client Deployment Descriptors

42 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

• -name: Specifies the display name that is located in the application client jar
file. By default, the display name is specified in the client jar
application-client.xml file which is identified by the display-name
attribute. This is optional.

• -xml: is used to specify the name and location of the client configuration xml
file. If you do not specify this option, ACC will use the default one from
appclient script identified by $AS_ACC_CONFIG that references to the default
instance. For Solaris bundle, this option is required.

• -textauth: is optional for user to specify authentication using the text format.

The following example shows how to run the sample application client,
rmiConverter:

appclient -client rmi-simpleClient.jar

Sample Client Application
You can find the sample client application that demonstrates the working of an
RMI/IIOP client that uses an application client container at the following location:

install_dir/samples/rmi-iiop/simple

Application Client Deployment Descriptors
Deployment descriptors are the XML files used to configure the runtime properties
of a module or application. The J2EE Specification defines the format of these
descriptors. You can view and edit the deployment descriptors using a text editor
at any time during the development process.

Sun ONE Application Server application clients require three deployment
descriptors files:

• A J2EE standard file (application.client.xml), described in the J2EE
Specification.

NOTE -mainclass, -name are optional for a single client application. For
multiple client applications use either the -classname option or the
-name option.

Application Client Deployment Descriptors

Chapter 2 Using the Application Client Container 43

• An optional Sun ONE Application Server specific client deployment descriptor
file (sun-application-client.xml), described in this section.

• An optional Sun ONE Application Server specific Application Client Container
Configuration file (sun-acc.xml), described in this section.

This section presents the following topics:

• Format of Deployment Descriptors

• J2EE Application Client Deployment Descriptor

• Sun ONE Application Client Deployment Descriptor

• Application Client Container Configuration File

Format of Deployment Descriptors
A deployment descriptor file defines the elements that an XML file can contain and
the subelements and attributes these elements can have. The
sun-application-client-1_3-0.dtd file defines the format of the
sun-application-client.xml file. The
sun-application-client-container-1_0.dtd file defines the format of
sun-acc.xml file. These DTD files are located in the install_dir/lib/dtds directory.

For general information about DTD files and XML, see the XML specification at:

http://www.w3.org/TR/REC-xml

Each element defined in a DTD file (which may be present in the corresponding
XML file) can contain the following:

• Subelements

• Data

• Attributes

Subelements
An element can contain other elements. For example, the following code defines
the client-container element.

NOTE Do not edit the DTD files. Their contents change only with new
versions of Sun ONE Application Server.

http://www.w3.org/TR/REC-xml

Application Client Deployment Descriptors

44 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

<!ELEMENT
client-container(target-server,auth-realm?,client-credential?,
log-service?,property*))>

The ELEMENT tag specifies that a client-container element can contain
target-server, auth-realm, client-credential, log-service, property
subelements.

The following table shows how optional suffix characters of subelements
determine the requirement rules, or number of allowed occurrences, for the
subelements. The left column lists the subelement ending character, and the right
column lists the corresponding requirement rule:

If an element cannot contain other elements, you see EMPTY or (#PCDATA) instead
of a list of element names in parentheses.

Data
Some elements contain data instead of subelements. These elements have
definitions of the following format:

<!ELEMENT element-name (#PCDATA)>

For example:

<!ELEMENT credential (#PCDATA)>

Attributes
Elements that have ATTLIST tags contain attributes (name-value pairs). Attributes
have definitions of the following format:

<!ATTLIST element attribute type default attribute type default ...>

For example:

<!ATTLIST client-container user-name CDATA #REQUIRED

Table 2-1 requirement rules for subelement suffixes

Subelement Ending Character Requirement

* Can contain zero or more of this subelement.

? Can contain zero or one of this subelement.

+ Must contain one or more of this subelement.

(none) Must contain only one of this subelement.

Application Client Deployment Descriptors

Chapter 2 Using the Application Client Container 45

password CDATA #REQUIRED

realm CDATA #IMPLIED>

A client-container element can contain user-name, password, and realm

attributes.

The #REQUIRED label means that a value must be supplied.

The #IMPLIED label means that the attribute is optional, and that Sun ONE
Application Server generates a default value. Wherever possible, explicit defaults
for optional attributes (such as "true") are listed.

Attribute declarations specify the type of the attribute. For example, CDATA means
character data, and %boolean is a predefined enumeration.

J2EE Application Client Deployment Descriptor
Application clients are packaged in JAR format files with a .jar extension and
include a deployment descriptor similar to other J2EE application components. The
deployment descriptor describes the enterprise beans and external resources
referenced by the application. As with other J2EE application components, you
need to configure access to resources at the time of deployment, assign names for
enterprise beans and resources, etc.The deployment descriptor is standardized by
the J2EE 1.3 specification.

Sun ONE Application Client Deployment
Descriptor
The sun-application-client.xml is the deployment descriptor for the
application clients. The easiest way to create a sun-application-client.xml file
is to deploy the application client. For more information on deploying a client
using the Administration interface, see the Sun ONE Application Server Developer’s
Guide.

Elements in sun-application-client.xml file
Elements in the sun-application-client.xml file are as follows:

• sun-application-client

• resource-ref

• ejb-ref

Application Client Deployment Descriptors

46 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

• resource-env-ref

• res-ref-name

• resource-env-ref-name

• default-resource-principal

• name

• password

• ejb-ref-name

• jndi-name

Attributes
Elements can contain attributes (name, value pairs). Attributes are defined in
attributes lists using the ATTLIST tag.

None of the elements in the sun-application-client.xml file contain attributes.

sun-application-client
This is the root element describing all the runtime bindings of a single application
client.

Subelements
The following table describes subelements for the sun-application-client
element. The left column lists the subelement name, the middle column indicates
the requirement rule, and the right column describes what the element does.

NOTE Subelements must be defined in the order in which they are listed
under each Subelements heading unless otherwise noted.

Table 2-2 sun-application-client subelements

Element Required Description

resource-ref zero or more Maps the absolute JNDI name to the
resource-ref in the corresponding J2EE
XML file.

ejb-ref zero or more Maps the absolute JNDI name to the ejb-ref
in the corresponding J2EE XML file.

Application Client Deployment Descriptors

Chapter 2 Using the Application Client Container 47

resource-ref
Maps the absolute JNDI name to the resource-ref element in the corresponding
J2EE XML file.

Subelements
The following table describes subelements for the resource-ref element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

res-ref-name
Specifies the res-ref-name in the corresponding J2EE application-client.xml

file resource-ref entry.

Subelements
none

default-resource-principal
Specifies the default principal (user) that the container uses to access a resource.

resource-env-ref zero or more Maps the absolute JNDI name to the
resource-env-ref in the corresponding
J2EE XML file.

Table 2-3 resource-ref subelements

Element Required Description

res-ref-name only one Specifies the res-ref-name in the
corresponding J2EE
application-client.xml file.

jndi-name only one Specifies the absolute jndi name of a resource.

default-resource-princi
pal

zero or
more

Specifies the default principal (user) that the
container uses to access a resource.

Table 2-2 sun-application-client subelements (Continued)

Element Required Description

Application Client Deployment Descriptors

48 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

If this element is used in conjunction with a JMS Connection Factory resource, the
name and password subelements must be valid entries in Sun ONE Message
Queue’s broker user repository. See the “Security Management” chapter in the Sun
ONE Message Queue Administrator’s Guide for details.

Subelements
The following table describes subelements for the default-resource-principal
element. The left column lists the subelement name, the middle column indicates
the requirement rule, and the right column describes what the element does.

name
Contains data that specifies the name of the principal.

Subelement
none

password
Contains data that specifies the password for the principal.

Subelement
none

ejb-ref
Maps the ejb-ref-name in the corresponding J2EE ejb-jar.xml file ejb-ref
entry to the absolute jndi-name of a resource.

Subelements
The following table describes subelements for the ejb-ref element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Table 2-4 default-resource-principal subelements

Element Required Description

name only one Specifies the name of the principal.

password only one Specifies the password for the principal.

Application Client Deployment Descriptors

Chapter 2 Using the Application Client Container 49

ejb-ref-name
Specifies the ejb-ref-name in the corresponding J2EE ejb-ref.xml file ejb-ref
entry. This element locates the name of the ejb reference in the application.

Subelement
none

resource-env-ref
Specifies the name of a resource env reference.

Subelements
The following table describes subelements for the resource-env-ref element.
The left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

resource-env-ref-name
Specifies the res-ref-name in the corresponding J2EE application-client.xml

file resource-env-ref entry.

Subelements

Table 2-5 ejb-ref subelements

Element Required Description

ejb-ref-name only one Specifies the name of a ejb reference in the
corresponding J2EE appclient.xml file.

jndi-name only one Specifies the absolute jndi name of a resource.

Table 2-6 resource-env-ref subelements

Element Required Description

resource-env-ref-name only one Specifies the res-ref-name in the corresponding
J2EE application-client.xml file
resource-env-ref entry.

default-resource-principal only one Specifies the default principal (user) that the container
uses to access a resource.

jndi-name only one Specifies the jndi-name of the associated entity.

Application Client Deployment Descriptors

50 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

none

jndi-name
Contains data that specifies the absolute jndi-name of a URL resource or a
resource in the application-client.xml file.

Subelement
none

Application Client Container Configuration File
The sun-acc.xml file tracks changes in Sun ONE Application Client Container
configuration.

Elements in the sun-acc.xml File
Elements in the sun-acc.xml file are as follows:

• client-container

• target-server

• description

• client-credential

• log-service

• security

• ssl

• cert-db

• auth-realm

• property

client-container
Defines Sun ONE Application Server specific configuration for the ACC. This is the
root element; there can only be one client-container element in a sun-acc.xml

file.

Application Client Deployment Descriptors

Chapter 2 Using the Application Client Container 51

Subelements
The following table describes subelements for the client-container element.
The left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Attributes
The following table describes attributes for the client-container element. The
left column lists the attribute name, the middle column indicates the default value,
and the right column describes what the attribute does.

target-server
Defines the IIOP listener configuration of the target server.

Table 2-7 client-container subelements

Element Required Description

target-server zero or
more

Specifies the IIOP listener configuration of the
target server.

auth-realm only one Specifies the optional configuration for JAAS
authentication realm.

client-credential only one Specifies the default client credential that will be
sent to the server.

log-service only one Specifies the default log file and the severity
level of the message.

property zero or
more

Specifies a property which has a name and a
value.

Table 2-8 client-container attributes

Attribute Default Value Description

sendPassword none Specifies whether client authentication credentials
should be sent to the server. Without
authentication credential all access to protected
EJBs will result in exceptions.

Application Client Deployment Descriptors

52 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

Subelements
The following table describes subelements for the target-server element. The
left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Attributes
The following table describes attributes for the target-server element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

description
Contains data that specifies a text description of the containing element.

Subelement
none

Table 2-9 target-server subelements

Element Required Description

description zero or
more

Specifies the description of the target server.

security zero or
more

Specifies the security configuration for the
IIOP/SSL communication with the target
server.

Table 2-10 target-server attributes

Attribute Default Value Description

name none Specifies the name of the application server
instance accessed by the client container.

address none Specifies the host name or IP address (resolvable by
DNS) of the ORB.

port 3700 Specifies port number of the ORB.

For the new server instance, you need to assign a
different port number other than 3700. You can
change the port number in the Administration
Interface. See the Sun ONE Application Server
Administrator’s Guide for more information.

Application Client Deployment Descriptors

Chapter 2 Using the Application Client Container 53

Attributes
none

client-credential
Default client credentials that will be sent to the server. If this element is present,
then it will be automatically sent to the server, without prompting the user for
username and password on the client side.

Subelements
The following table describes subelements for the client-credential element.
The left column lists the subelement name, the middle column indicates the
requirement rule, and the right column describes what the element does.

Attributes
The following table describes attributes for the client-credential element. The
left column lists the attribute name, the middle column indicates the default value,
and the right column describes what the attribute does.

log-service
Specifies configuration settings for the log file.

Table 2-11 client-credential subelement

Element Required Description

property zero or
more

Specifies a property which has a name and a
value.

Table 2-12 client-credential attributes

Attribute Default Value Description

user-name none The user name used to authenticate the Application
client container.

password none The password used to authenticate the Application
client container.

realm none The realm (specified by name) where credentials
are to be resolved.

Application Client Deployment Descriptors

54 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

Subelements
The following table describes subelements for the log-service element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Attributes
The following table describes attributes for the log-service element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

security
Defines SSL security configuration for IIOP/SSL communication with the target
server.

Subelements
The following table describes subelements for the security element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Table 2-13 log-service subelement

Element Required Description

property zero or
more

Specifies a property which has a name and a
value.

Table 2-14 log-service attributes

Attribute Default Value Description

log-file client.log Specifies the name of the file where the application
client container logging information will be stored.
By default, the log file will be located at
your_Acc_dir/logs/client.log.

level none Sets the base level of severity. Messages at or above
this setting get logged into the log file.

Application Client Deployment Descriptors

Chapter 2 Using the Application Client Container 55

Attributes
none

ssl
Defines SSL processing parameters.

Subelements
none

Attributes
The following table describes attributes for the SSL element. The left column lists
the attribute name, the middle column indicates the default value, and the right
column describes what the attribute does.

Table 2-15 security subelement

Element Required Description

ssl zero or
more

Specifies the SSL processing parameters.

cert-db zero or
more

Specifies the location and authentication to read
the certification database.

Table 2-16 ssl attributes

Attribute Default Value Description

cert-nickname none The nickname of the server certificate in the
certificate database or the PKCS#11 token.In the
certificate, the name format is
tokenname:nickname. Including the tokenname:
part of the name in this attribute is optional.

ssl2-enabled none (Optional) Determines whether SSL2 is enabled.

ssl3-enabled none (Optional) Determines whether SSL3 is enabled.

ssl2-ciphers none (Optional) A space-separated list of the SSL2
ciphers used with the prefix + to enable or - to
disable. For example, +rc4. Allowed values are
rc4, rc4export, rc2, rc2export,
idea, des, desede3.

Application Client Deployment Descriptors

56 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

If both SSL2 and SSL3 are enabled, the server tries SSL3 encryption first. If that
fails, the server tries SSL2 encryption. If both SSL2 and SSL3 are enabled for a
virtual server, the server tries SSL3 encryption first. If that fails, the server tries
SSL2 encryption.

cert-db
Location and password to read the certificate database. SunONE Application
Server provides utilities with which a certificate database can be created.
certutil, distributed as part of NSS can also be used to create certificate database.

Subelement
none

Attributes
The following table describes attributes for the cert-db element. The left column
lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute does.

ssl3-tls-ciphers none (Optional) A space-separated list of the SSL3
ciphers used, with the prefix + to enable or - to
disable, for example +rsa_des_sha. Allowed
SSL3 values are rsa_rc4_128_md5,
rsa3_des_sha, rsa_des_sha,
rsa_rc4_40_md5, rsa_rc2_40_md5,
rsa_null_md5. Allowed TLS values
are rsa_des_56_sha, rsa_rc4_56_sha.

tls-enabled none Determines whether TLS is enabled.

tls-rollback-ena
bled

none Determines whether TLS rollback is
enabled.TLS rollback should be enabled for
MicroSoft Internet Explorer 5.0 and 5.5.

client-auth-enab
led

none Determines whether SSL3 client authentication
is performed on every request, independent of
ACL-based access control.

Table 2-16 ssl attributes

Attribute Default Value Description

Application Client Deployment Descriptors

Chapter 2 Using the Application Client Container 57

auth-realm
JAAS is available on the ACC. Defines the optional configuration for JAAS
authentication realm.

Authentication realms require provider-specific properties, which vary depending
on what a particular implementation needs.

For more information about how to define realms, see the Sun ONE Application
Server Developer’s Guide.

Here is an example of the default file realm:

<auth-realm name="file"

classname="com.iplanet.ias.security.auth.realm.file.FileRealm">

<property name="file" value="instance_dir/config/keyfile"/>

<property name="jaas-context" value="fileRealm"/>

</auth-realm>

Which properties an auth-realm element uses depends on the value of the
auth-realm element’s name attribute. The file realm uses file and jaas-context

properties. Other realms use different properties.

Subelements
The following table describes subelements for the auth-realm element. The left
column lists the subelement name, the middle column indicates the requirement
rule, and the right column describes what the element does.

Table 2-17 cert-db attributes

Attribute Default Value Description

cert-db-path none Specifies the absolute path of the certificate
database (cert7.db).

cert-db-password none Specifies the password to access the certificate
database.

Table 2-18 auth-realm subelement

Element Required Description

property zero or
more

Specifies a property which has a name and a
value.

Application Client Deployment Descriptors

58 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

Attributes
The following table describes attributes for the auth-realm element. The left
column lists the attribute name, the middle column indicates the default value, and
the right column describes what the attribute does.

property
Specifies a property, which has a name and a value.

Subelement
none

Attributes
The following table describes attributes for the property element. The left column
lists the attribute name, the middle column indicates the default value, and the
right column describes what the attribute does.

Table 2-19 auth-realm attributes

Attribute Default Value Description

auth-realm-name none Defines the name of this realm.

classname none Defines the Java class which implements this realm.

Table 2-20 property attributes

Attribute Default Value Description

name none Specifies the name of the property.

value none Specifies the value of the property.

59

Chapter 3

Java-based CORBA Clients

This chapter describes how to develop and deploy CORBA clients that use
RMI/IIOP protocol.

This chapter contains the following sections:

• CORBA Client Scenarios

• Developing Java-based CORBA Clients

• Third Party ORB Support

CORBA Client Scenarios
The most common scenarios in which CORBA clients are used are when either a
stand-alone program or another application server acts as a client to EJBs deployed
to Sun ONE Application Server. This section describes the following scenarios:

• Stand-alone Scenario

• Server to Server Scenario

Stand-alone Scenario
In the simplest case, a stand-alone program which does not use the ACC, running
on a variety of operating systems uses IIOP to access business logic housed in
backend EJB components, as shown in the figure “Stand-alone Client Accessing the
EJB Components”.

Figure 3-1 Stand-alone Client Accessing the EJB Components

CORBA Client Scenarios

60 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

Server to Server Scenario
CORBA objects, and other application servers can use IIOP to access EJB
components housed in Sun ONE Application Server, as shown in the figure
“Application Server and CORBA Objects Accessing EJB Components”.

Figure 3-2 Application Server and CORBA Objects Accessing EJB Components

EJB

EJB Container

Sun ONE Application Server

Java-based RMI/IIOP
CORBA Client

EJB

EJB Container

Sun ONE

Application Server

RMI/IIOP

Application

CORBA Server

Server

EJB

Java

CORBA

Object

Developing Java-based CORBA Clients

Chapter 3 Java-based CORBA Clients 61

ORB Support Architecture
CORBA client support in Sun ONE Application Server involves the communication
between the ORB on the client and the ORB on the server, as shown in the figure
“ORB Support Architecture”.

Figure 3-3 ORB Support Architecture

You can use the ORB that is bundled as part of the Sun ONE Application Server, or
you can use a third-party ORB (ORBIX 2000 or ORBacus 4.1).

Developing Java-based CORBA Clients
This section describes the procedure to create, assemble, and deploy a Java-based
CORBA client that is not packaged using the ACC. This section describes the
following topics:

• Creating a Stand-alone CORBA Client

• Running a Stand-alone CORBA Client

Sun ONE Application Server

RMI/IIOP

Java Engine

EJB

EJB Container

Client

ORB

Sun ONE

ORB

Sun ONE

ORB

Other

ORB

RMI/IIOP
Java

Client

Backend
CORBA
Server

IIOP

Developing Java-based CORBA Clients

62 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

Creating a Stand-alone CORBA Client
Clients do not directly access the EJB components. Instead, clients communicate
with the EJB components using the JNDI to locate EJB components’s home
interface. Clients invoke a method on the EJB component’s home interface to get a
reference to the EJB components’s home interface.

One of the first steps in coding a CORBA client using RMI/IIOP is, to perform a
lookup of an EJB components’s home interface. In preparation for performing a
JNDI lookup of the home interface, you must first set several environment
properties for the InitialContext. Then you provide a lookup name for the EJB
component.

The steps and an example are summarized in the following sections.

• Specifying the Naming Factory Class

• Specifying the JNDI Name of an EJB

Specifying the Naming Factory Class
According to the RMI/IIOP specification, the client must specify
com.sun.jndi.cosnaming.CNCtxFactory as the value of the
java.naming.factory.initial entry in an instance of a Properties object. This
object is then passed to the JNDI InitialContext constructor prior to looking up
an EJB component’s home interface. For example:

...

Properties env = new Properties();

env.put("java.naming.factory.initial","com.sun.jndi.cosnaming.CN
CtxFactory");

env.put("java.naming.provider.url", "iiop://" + host +":"+port);

Context initial = new InitialContext(env);
Object objref = initial.lookup("rmiconverter");

...

Specifying the JNDI Name of an EJB
After creating a new JNDI InitialContext object, your client calls the lookup
method on the InitialContext to locate EJB component’s home interface. The
name of the EJB components is provided on the call to lookup. When using
RMI/IIOP to access remote EJB components, the parameter is referred to as the
“JNDI name” of the EJB component. The supported values of the JNDI name vary,
depending on how your client application is packaged.

Developing Java-based CORBA Clients

Chapter 3 Java-based CORBA Clients 63

When the client application is not packaged as part of an Application Client
Container (ACC), you must specify the absolute name of the EJB component in the
JNDI lookup. You must use the prefix java:comp/env/ejb/ when performing
lookups using absolute references. For example, the lookup in the rmiconverter
sample could be written as follows:

initial.lookup("java:comp/env/ejb/rmiconverter");

Or, with a module name, it could be written as follows:

initial.lookup("java:comp/env/ejb/rmiconverterEjb/
rmiconverter");

There is no mechanical difference between supplying this prefix and the first two
approaches. You might find the java:comp/env/ejb/ confusing when used in
conjunction with absolute EJB references because this notation is typically used
when you are using indirect EJB references.

Sun ONE ORB Configuration
If you are using built-in Sun ONE ORB, you can configure client-side load
balancing using the Round Robin DNS approach.

To implement a simple load balancing scheme without making source code
changes to your client, you can leverage the round robin feature of DNS. In this
approach, you define a single virtual host name representing multiple physical IP
addresses on which server instance ORBs are listening. Assuming that you
configure all of the ORBs to listen on a common IIOP port number, the client
applications can use a single host_name: IIOP port during the JNDI lookup. The
DNS server resolves the host name to a different IP address each time the client is
executed.

You can also implement client-side load balancing using the Sun ONE Application
Server-specific naming factory class SIASCtxFactory. You can use this class both
on the client-side and on the server-side which maintains a pool of ORB instances
in order to limit the number of ORB instances that are created in a given process.

The following code illustrates the use of S1ASCtxFactory class:

Properties env = new Properties();

env.setProperty("java.naming.factory.initial","com.sun.appserv.nami
ng.S1ASCtxFactory");

NOTE Sun ONE Application Server does not support the authentication of
Java-based stand-alone CORBA clients.

Developing Java-based CORBA Clients

64 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

env.setProperty("org.omg.CORBA.ORBInitialHost", “name service
hostname");

env.setProperty("org.omg.CORBA.ORBInitialPort", "“name service port
number"");

InitialContext ic = new InitialContext(env);

If you set a single URL property for the host and port above, your code would look
like this:

Properties env = new Properties();

env.setProperty("java.naming.factory.initial",
"com.sun.appserv.naming.S1ASCtxFactory");

env.setProperty("java.naming.provider.url", "iiop://“name service
hostname:name service port number");

InitialContext ic = new InitialContext(env);

If you prefer, you may set the host and port values and the URL value as Java
System properties, instead of setting them in the environment as shown in the
above code illustration. The values set in your code will, however, override any
System property settings. Also, if you set both the URL and the host and port
properties, the URL takes precedence.

Note that the [name service hostname] value mentioned above could be a name
that maps to multiple IP addresses. The S1ASCtxFactory will appropriately round
robin ORB instances across all the IP addresses everytime a user calls new
InitialContext() method.

You can also use the following property of S1ASCtxFactory class to implement
client-side load balancing:

com.sun.appserv.iiop.loadbalancingpolicy=roundrobin,host1:port1,host2:po
rt2,...,

This property provides you with a list of host:port combinations to round robin the
ORBs. These host names may also map to multiple IP addresses. If you use this
property along with org.omg.CORBA.ORBInitialHost and
org.omg.CORBA.ORBInitialPort as system properties, the round robin algorithm
will round robin across all the values provided. If, however, you provide a host
name and port number in your code, in the environment object, that value will
override any such system property settings.

Third Party ORB Support

Chapter 3 Java-based CORBA Clients 65

Running a Stand-alone CORBA Client
As long as the client environment is set appropriately and you are using a
compatible JVM, you merely need to run the main class. Depending on whether
you are passing the IIOP URL components (host and port number) on the
command line or obtaining this information from a properties file, the exact
manner in which you run the main program will vary. For example, the
rmiconverter sample is run in the following manner:

java rmiconverter.ConverterClient host_name port

The host_name is the name of the host on which an ORB is listening on the specified
port.

Third Party ORB Support
Sun ONE provides a built-in ORB to support IIOP access to the EJBs. You can also
install and configure a third party ORB to use IIOP with Sun ONE Application
Server.

For information on Configuring built-in ORB for supporting CORBA clients, see
the Sun ONE Application Server Administrator’s Guide.

This section discusses the following scenarios:

• Accessing EJBs in a Remote Application Server Instance From a
Servlet/Enterprise JavaBean

• Configuring Back End Access Using Third Party Client ORBs Within Sun ONE
Application Server

Accessing EJBs in a Remote Application Server
Instance From a Servlet/Enterprise JavaBean
Sun ONE Application Server supports accessing the EJBs residing in another
instance of the server via RMI/IIOP. This section describes the procedure to create
a client application that accesses the EJB components residing in another instance
of the application server.

Clients do not directly access the EJB components. Instead, clients communicate
with the EJB components using the JNDI to locate EJB component’s home interface.
Clients invoke a method on the EJBs’s home interface to get a reference to the EJB
component’s home interface.

Third Party ORB Support

66 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

One of the first steps in coding a client using RMI/IIOP is, to perform a lookup of
an EJB component’s home interface. In preparation for performing a JNDI lookup
of the home interface, you must first set several environment properties for the
InitialContext. Then you provide a lookup name for the EJB.

The steps and an example are summarized in the following sections.

• Specifying the Naming Factory Class

• Specifying the JNDI Name of an EJB

Specifying the Naming Factory Class
According to the RMI/IIOP specification, the client must specify
com.sun.jndi.cosnaming.CNCtxFactory as the value of the
java.naming.factory.initial entry in an instance of a Properties object. This
object is then passed to the JNDI InitialContext constructor prior to looking up
an EJB component’s home interface. For example:

...

Properties env = new Properties();

env.put("java.naming.factory.initial","com.sun.jndi.cosnaming.CN
CtxFactory");

env.put("java.naming.provider.url", "iiop://" + host +":"+port);

Context initial = new InitialContext(env);
System.out.println("Inside other host after initialcontext");
Object objref = initial.lookup("MyConverter");

...

The above code line is part of the EJB business method.

Specifying the JNDI Name of an EJB
After creating a new JNDI InitialContext object, your client calls the lookup
method on the InitialContext to locate the EJB component’s home interface. The
name of the EJB is provided on the call to lookup. When using RMI/IIOP to access
remote EJBs, the parameter is referred to as the “JNDI name” of the EJB.

initial.lookup("ejb/ejb-name");

initial.lookup("ejb/module-name/ejb-name");

The ejb-name is the name of the EJB as it appears in the <ejb-name> element of the
EJB’s deployment descriptor. For example, here is a lookup using the value
Myconverter:

Third Party ORB Support

Chapter 3 Java-based CORBA Clients 67

initial.lookup("MyConverter");

ConverterHome home =
(ConverterHome)PortableRemoteObject.narrow(objref,ConverterHome.cla
ss);

Converter currencyConverter = home.create();

System.out.println("Inside other host after Create");

Configuring Back End Access Using Third Party
Client ORBs Within Sun ONE Application Server
J2EE components (such as Servlet and EJBs) deployed to Sun ONE Application
Server can access backend CORBA objects through third party Object Request
Brokers (ORBs). This support enables J2EE applications to leverage investments in
the existing CORBA-based business components. In addition to supporting server
side access to backend CORBA objects, you can also use the built-in Sun ONE ORB
for RMI/IIOP-based access to EJB components from Java or C++ application clients
as explained in the RMI/IIOP samples.

Configuring Orbix ORB with Sun ONE Application Server involves the following
steps:

• Installing Orbix

• Configuring Sun ONE Application Server to Use Orbix

• Overriding the Built-in ORB

Installing Orbix
To install Orbix, perform the following steps:

• Ensure that you have the Orbix 2000 software available for installation.

• Install the software. For instructions to install Orbix 2000, read through the
Orbix Installation Guide.

• Verify to ensure that the Orbix configuration is proper.

Configuring Sun ONE Application Server to Use Orbix
You must configure the runtime environment to enable the application server to
load the Orbix ORB classes. Add the following to the CLASSPATH:

• Orbix classes

Third Party ORB Support

68 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

• OMG classes

• Directory containing Orbix license file

Go to Application Server Instances -> server1 (or any other instance) then
click on Java Options and append the following:

classpath to Class Path Suffix text field under Directory Paths option

/etc/opt/iona/:/opt/iona/orbix_art/1.2/classes/orbix2000.jar:/opt/i
ona/orbix_art/1.2/classes/omg.jar

After modifying Class Path Suffix click Save then click on server1 (server instance)
and click on Apply Changes tab, restart the application server instance to update
the changes.

Overriding the Built-in ORB
Sun ONE Application Server relies on a built-in ORB to support RMI/IIOP access
to EJB components from Java application clients. When implementing servlets and
EJB components that access backend CORBA-based applications residing outside
of the application server, you may need to override the built-in ORB classes with
the ORB classes from third party products such as Orbix 2000.

You can use any of the following approaches to override the built-in ORB classes
with ORB classes from third party products:

• ORB.init() Properties Approach

• orb.properties Approach

• Providing JVM Start-up Arguments

ORB.init() Properties Approach
The code illustration given below overrides the built-in Sun ONE ORB classes with
ORB classes from IONA’s ORBIX 2000.

For example:

...

Properties orbProperties = new Properties();

orbProperties.put("org.omg.CORBA.ORBClass","com.iona.corba.art.arti
mpl.ORBImpl");

orbProperties.put("org.omg.CORBA.ORBSingletonClass","com.iona.corba
.art.artimpl.ORBSingleton");

orb = ORB.init(args, orbProperties);

Third Party ORB Support

Chapter 3 Java-based CORBA Clients 69

...

The advantage of this approach is that RMI/IIOP access to EJB components housed
in the application server will still be performed using the built-in Sun ONE ORB
classes while only access from servlets and EJB components to backend
CORBA-based applications will use the third party ORB classes. This is the efficient
method of supporting simultaneous use of multiple ORBs in the application server
environment.

orb.properties Approach
In Java 2 1.2.1 environment, the JVM’s orb.properties file contains property
settings to identify the ORB implementation classes that are used by default
throughout the JVM. To override the use of the built-in Sun ONE ORB classes, you
can simply modify the orb.properties file to specify third party ORB classes and
restart the application server.

For example, to set the implementation classes to specify the Orbix 2000 classes,
make the following modification to the orb.properties file that is located at:
install_dir/jdk/jre/lib/

Before:

org.omg.CORBA.ORBClass=com.sun.corba.se.internal.Interceptors.PIOR

org.omg.CORBA.ORBSingletonClass=com.sun.corba.se.internal.corba.ORB
Singleton

After:

org.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl

org.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.
ORBSingleton

The javax.rmi classes are used to support RMI/IIOP client access to EJB
components housed in the application server. Since these classes are not used to
access backend CORBA servers, you do not need to override these settings.

The main advantage of this approach is that it involves only one time setting for all
applications deployed to the application server. There is no need for each servlet
and/or EJB component that is acting as a client to a backend CORBA application to
specify the ORB implementation classes.

Providing JVM Start-up Arguments
You can also specify the ORB implementation classes as server’s JVM_ARGS in the
server.xml file.

Go to the

Third Party ORB Support

70 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

instances_dir/config

and edit the server.xml file and add these jvm options as a subelement under
<java-config> tag.

<jvm-options>

-Dorg.omg.CORBA.ORBClass=com.iona.corba.art.artimpl.ORBImpl

</jvm-options>

<jvm-options>

-Dorg.omg.CORBA.ORBSingletonClass=com.iona.corba.art.artimpl.
ORBSingleton

</jvm-options>

This approach gives the benefit of specifying the ORB implementation classes only
once, but the main advantage when compared to changing the orb.properties
file is that, the changes made to server’s configuration file are specific to server
instance and are applicable to all the applications running on a particular instance
only.

You can find a sample that demonstrates the third-party ORB support in Sun ONE
Application Server at the following location:

install_dir/samples/corba/

71

Chapter 4

C++ Clients

This chapter describes how to develop and deploy C++ clients that uses third-party
ORBs.

This chapter contains the following sections:

• Introducing C++ Clients

• Developing a C++ Client

Introducing C++ Clients
Sun ONE Application Server relies on the Sun ONE built-in ORB to support access
to EJBs via RMI/IIOP. Java programs and other components, such as servlets and
applets can use the existing RMI/IIOP support to access EJB components housed in
Sun ONE Application Server.

A C++ client can access EJB components via IIOP. However, this can not be
achieved using the Sun ONE ORB due to the absence of a Sun ONE ORB for C++
clients. A C++ client requires an ORB implementation on its side; the Sun ONE
ORB has only a Java version of the implementation. This forces the C++ client
developers to use a third-party ORB on the client side.

Developing a C++ Client
This section describes the steps to develop a C++ client using ORBacus 4.1 runtime
and development environment. This C++ client will call methods of an EJB that are
deployed to Sun ONE Application Server.

This section describes the following topics:

Developing a C++ Client

72 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

• Configuring C++ Clients to Access Sun ONE Application Server

• Creating a C++ Client

Configuring C++ Clients to Access Sun ONE
Application Server
This section describes how to configure C++ clients to access Sun ONE Application
Server. In the code example here, C++ client accesses the third party ORB ORBacus
4.1.

This section presents the following topics:

• Software Requirements

• Preparing for C++ Client Development

• Assumptions and Limitations

Software Requirements
The following software are necessary for the development of a C++ client:

SOLARIS:

• Solaris 2.8

• ORBacus 4.1 for C++ on Solaris

• Sun Workshop 6 Update 2 (C++ 5.2)

• Sun ONE Application Server

• JavaTM 2 Platform, Standard Edition (J2SETM platform) 1.4

Windows:

• Windows 2000

• ORBacus 4.1 for C++ on WIN 2000

• VC++ Version 6.0

• Sun ONE Application Server

• J2SE 1.4 for WIN 2000

Developing a C++ Client

Chapter 4 C++ Clients 73

Preparing for C++ Client Development
You must perform the following tasks before you start developing a C++ client:

1. Make sure that all the required software are installed. For more information on
the software required for C++ client development, see “Software
Requirements” on page 72.

2. Install Java Development Kit (JDK) 1.4.

3. Install ORBacus 4.1.

For instructions on installing ORBacus 4.1, see the ORBacus documentation.

4. SOLARIS:

Set the PATH to CC (C++ compiler of Sun workshop 6.2), rmic (RMI compiler),
idl compiler of ORBacus.

export

PATH=<SUNworkshoppath>/SUNWspro/WS6U2/bin:<JDK_HOME>bin::$PATH

export ORBACUS_LICENSE=path to ORBacus 4.1 license file
directory/licenses.txt
export LD_LIBRARY_PATH=path to ORBacus home/lib

Windows:

Set the PATH to cl (VC++ compiler of MicroSoft visual studio), rmic of JDK1.4,
idl compiler of ORBacus.

These can be set at the command prompt as follows:

set PATH=C:Programfiles\MicrosoftVisualStudio\VC98·in;

C:\J2SDK_Forte\jdk1.4.0·in;C:\ORBacus_IDL;%PATH%

set ORBACUS_LICENSE=path/licenses.txt.

You can also set the PATH from the Environmental Settings dialog box.

Developing a C++ Client

74 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

5. Install Sun ONE Application Server and test for basic functionality.

6. Deploy the sample application Cart - BookCartApp.ear.

You can deploy this application using the Administration interface. It is not
mandatory to deploy the application, but a recommended step. For detailed
information on deploying this application, see the Sun ONE Application Server
Administrator’s Guide.

NOTE • If your client development machine is different from that of the
machine where Sun ONE Application Server is installed, copy
the following classes to your client system:

❍ The appserv-ext.jar part of Sun ONE Application Server
available in install dir/lib.

❍ All the classes corresponding to the application including
home interface, remote interface, helper classes, and third
party classes used by the application.

• Java language mapping specification does not support the use of
Java package names differing only in case, to simplify the
mapping. Sun ONE Application Server also does not support
the use of class or interface names within the same package that
differ only in case. Both of these are treated as errors. Therefore
the deployed beans should not have package name and class
name differing only in case.

• The explanations in this document are with respect to the
sample application Cart available at the following location:
install_dir/samples/rmi-iiop/cpp/

NOTE To develop a C++ client, all the corresponding classes of the
application should be accessible. That is, the home and remote
interfaces of all the EJB components, helper classes, and other classes
that are part of the application must be accessible. After the
deployment, these can be made either part of Sun ONE Application
Server or independent of Sun ONE Application Server.

Developing a C++ Client

Chapter 4 C++ Clients 75

Assumptions and Limitations
For Java data types such as, HashTable or other custom Java classes that have to be
passed by value, you have to provide native C++ implementation or provide a
wrapper over existing C++ implementation of those classes (such as STL) that
conforms to the IDL files generated for the Java classes.

Creating a C++ Client
This section describes the procedure to create a C++ client that uses a third party
ORB. The developed C++ client application can then be deployed to Sun ONE
Application Server. The following are the major steps involved in creating a C++
client:

• Generating the IDL Files

• Generating CPP Files from IDL Files

Generating the IDL Files
1. Create a directory for C++ client development. For example:

mkdir cppclient

cd cppclient

2. Generate IDL files corresponding to remote and home interfaces of the EJB
components, helper classes, and other third party classes used by J2EE
applications.

Use the rmic tool, which is part of JDKTM 1.4, for generating IDL files.

a. Generate the IDL files corresponding to home and remote interface of all
the EJB components.

When the IDL files corresponding to home and remote references are
generated, the IDL files corresponding to the classes mentioned as part of
the method signature are also generated. Thus, the separate IDL
generation of those classes are not required. Generate only the classes
which do not figure as part of the method signature separately.

For example:

I. rmic -classpath

instance_dir/applications/j2ee-apps/BookCartApp_1/BookCartApp
Ejb_jar:install_dir/lib/appserv-ext.jar
-idl samples.rmi_iiop.cpp.ejb.CartHome

Developing a C++ Client

76 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

II. rmic -classpath

instance_dir/applications/j2ee-apps/BookCartApp_1/BookCartApp
Ejb_jar:install_dir/lib/appserv-ext.jar
-idl samples.rmi_iiop.cpp.ejb.Cart

III. rmic -classpath

instance_dir/applications/j2ee-apps/BookCartApp_1/BookCartApp
Ejb_jar:install_dir/lib/appserv-ext.jar
-idl samples.rmi_iiop.cpp.ejb.InterfaceTestClass

-classpath - contains the path to all the classes against which IDL is
being generated. If the classes appearing as arguments to the method
are part of a different package, include those paths also. Include the
path to appserv-ext.jar in the classes.

The generated IDL files will be stored under directories corresponding
to the package of the classes.

For example, the Cart.class will be mapped to Cart.idl and will be
under /cppclient/samples/rmi_iiop/cpp/ejb/ directory.

Similarly, classes corresponding to JDK are generated under
java/lang,java/io,javax/rmi/ejb,org/omg/ and other similar
directories.

Developing a C++ Client

Chapter 4 C++ Clients 77

3. Generate the valuetypes corresponding to the classes native to J2SDK.

As mentioned in Step 2, when IDL specific to application classes such as, home
interface, remote interface, and other classes part of the application are
generated, it also generates the IDLs corresponding to the classes native to the
JDK.

The classes of JDK that are serializable get mapped as IDL value types. You
have to provide the implementation for these valuetypes using the IDL-to-CPP
compiler.

This will create C++ classes corresponding to the classes native to JDK.
However, these C++ files have only dummy methods apart from protected
methods that have implementation of accessor and modifier methods. If you
need to manipulate the C++ objects, you need to add new methods to the
generated C++ files.

If the Java class has any member variables, then the value type implementation
of that class will have accessor and modifier methods and they are protected.
You can add new public methods in the implementation class of valuetypes to
access and modify those member variables by calling the corresponding
protected methods.

Subsequently, compile these classes to generate an object file or as a shared
library. This is a one time effort and you do not require perform for every J2EE
application that you develop. You may re-use these implementations.

4. Develop the library for the valuetype implementations.

The following steps describe the procedure to develop your own library for the
valuetype implementations. All these valuetype implementations can be
grouped as a library. This library should contain object files (valuetype
implementation), the header(.h) and the IDL (.idl) files.

a. Modify the IDL files as required by following the guidelines given in the
next step.

b. Generate cpp files for all the IDL files corresponding to the Java classes
using the IDL compiler supplied with ORBacus. For example,

idl --impl-all -I. -Iclasspath to IDL files -Iorbacus_home/idl/
-Iorbacus_home/idl/OB *.idl

c. Implement the valuetype types, if required.

This is required only if you need to manipulate the object. For example,
collection classes like Vector, Hashtable, etc., proper implementation has to
be provided as lists so that elements can be retrieved and added to the list.

Developing a C++ Client

78 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

d. Compile the cpp file to generate an object file or a shared library.

5. Modify the generated IDL files such as the EJBs, helper classes, and third-party
classes corresponding to the application.

The generated IDL files do not compile directly. You need to manually modify
the IDL files for generating a CPP file. The list below explains the situations
when you need to modify the IDL files:

a. Delete the duplicate variables defined.

For example, in Employee.idl, employee_ is defined twice as:
private::CORBA::WStringValue employee_;

attribute::CORBA::WStringValue employee_;

Either of the duplicate entries can be deleted. Deleting the following
attribute is recommended:
attribute::CORBA::WStringValue employee_;

b. Change the custom valuetypes to non-custom valuetypes.

For example, Valuetype Exception inherits from Throwable, which is a
custom valuetype. Remove the tag custom from the Throwable valuetype
definition.

c. There will be cases where the same IDL file will be included more than
once. This will result in improper generation of the CPP files. Comment
such multiple includes.

• For example, Exception.idl under java/lang has
java/lang/Throwable.idl included twice. Comment the second
include.

• The IDL file may compile even when multiple includes are present.
However, the generated CPP file will be incorrect.

NOTE Generate the Java language classes before processing other IDL files.
Implement all the IDL files corresponding to the JDK before
proceeding with application specific IDL files.

NOTE This is not a complete list and you may need to make suitable
modification to IDL files for successful generation of IDL files to
CPP files.

Developing a C++ Client

Chapter 4 C++ Clients 79

d. There will be cases where other IDL files are included circularly.

Some of the abstract valuetypes would be inheriting from
java::io::Serializable. Remove such inheritance.

For example, in InterfaceTest.idl, InterfaceTest is an abstract
valuetype and it inherits from java::io::Serializable. Remove this
inheritance.

Generating CPP Files from IDL Files
To generate the .cpp files form the .idl files, perform the following steps:

1. Go to the path where the IDL files are generated. Include the following paths to
the idl command:

a. paths to all the application IDLs

b. paths to all the JDK related IDLs

c. ORBacus_home/idl

d. ORBacus_home/idl/OB

The paths are included by the -I option.

2. Execute the following command with the paths mentioned in Step 1, with
--impl-all options idl_file_name.

For example,

idl --impl-all -Iclasspath_to_java_classes_IDL -I/cppclient
-I/orbacus_home/idl/ -I/orbacus_home/idl/OB -I. ComplexObject.idl

You must first include the classpath to Java classes IDL files.

3. Execute the above command for all the IDL files corresponding to the
application in all the directories.

4. Modify the generated classes.

Some of the cpp files should be manually modified. The situations under
which modifications are required are given below:

Developing a C++ Client

80 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

a. There can be clashes in the namespaces that appear in the code generated
from IDL to CPP using the IDL tool.

The following examples illustrate the scenarios:

Example 1

The class, ClassDesc, generated under javax/rmi/CORBA uses the classes
such as, CORBA::ValueBase. The class, CORBA::ValueBase, is part of the
ORB implementation and is defined under the namespace, CORBA.

ClassDesc is defined under the namespace, javax::rmi::CORBA. If a
reference to ValueBase as CORBA::ValueBase is made inside this class, it
looks for its definition under the javax::rmi::CORBA namespace.

This fails as it is defined under the namespace CORBA and not
javax::rmi::CORBA. To force it to look in the namespace CORBA, change
the syntax to javax::rmi::CORBA::ValueBase.

Example 2

In the class example generated under the java/lang directory, there are
references to the Exception class.

There are two types of exceptions: CORBA::Exception and
java::lang::Exception. Change to java::lang::Exception from
CORBA::Exception. These kind of code changes are required for the
classes to compile properly.

NOTE You need not compile the classes corresponding to the skeletons, as
they will not be used to implement the valuetypes.

Developing a C++ Client

Chapter 4 C++ Clients 81

5. Implement the valuetypes.

The --impl-all option to the IDL command also generates the code for the
valuetype implementation, including the factories for creating the value types.
The valuetype implementation will have most of the methods as protected.

Therefore, they cannot be accessed directly and add new methods to the
valuetype implementation that are public. These methods call the protected
methods to achieve the desired functionality. The client programs will call
these newly added methods depending on the functionality.

However, sometimes these public methods are also generated by the IDL. In
such cases implementation can be provided in these methods by calling the
protected methods without adding new methods.

This type of generation is dependent on whether the variables are defined as
private or attribute in the IDL files. For example, Employee.class gets
mapped as Employee valuetype. The implementation which is Employee.cpp
generated for this valuetype as part of IDL command consists of the method,
employee_() as protected. Since this cannot be accessed directly, we have to
add getEmployeeName() as a public method in the Employee_impl.cpp and
Employee.h. This method calls employee_() method to achieve the
functionality of returning the EmployeeName.

6. Compile the value type implementations and other generated cpp files. You
need to write the makefile to generate a cpp file.

Windows:

Use the /GR option.

NOTE You may have to add additional methods to achieve specific
functionality and to change the state of the object. These are
determined by your application design and the required
functionality.

Developing a C++ Client

82 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

7. Develop the client program as required by design and functionality.

Include the header files of all the valuetypes. The following code illustrates the
steps:

samples::rmi_iiop::cpp::ejb::ComplexObjectFactory_impl

*complexObjectVf = new

samples::rmi_iiop::cpp::ejb::ComplexObjectFactory_impl();

// initializing the ORB

CORBA::ORB_var orb = CORBA::ORB_init(argc,argv);

// registering the value factories. This is required for
//unmarshalling the valuetypes

orb->register_value_factory(
samples::rmi_iiop::cpp::ejb::ComplexObject::_OB_id(),complexObje
ctVf);

Register the valuefactories after orbinit(). The registration of the
valuefactories are very essential. If they are not registered, it results in
marshalling exceptions and the ORB fails to unmarshall valuetypes.

8. Compile and link the client program with the previously generated object files.

Windows

Use /GR option.

9. Run the client program.

Provide the NameService URL to the program. You can pass this as the
-ORBconfig <config file> property to the client. The configuration file
contains the NameService URL as follows:

ooc.orb.service.NameService=corbaloc::green.india.sun.com:1050/N

ameService

For other ways to pass the NameService URL, refer to the ORBacus
documentation.

For example, c++client -ORBconfig = config_file_path/config_file_name

Developing a C++ Client

Chapter 4 C++ Clients 83

Sample Applications
RMI/IIOP sample applications have been bundled with Sun ONE Application
Server. These samples have been augmented with detailed setup instructions for
deploying the application to Sun ONE Application Server. The setup
documentation and source code are available at the following location:

install_dir/samples/rmi-iiop/

Developing a C++ Client

84 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

85

Glossary

This glossary provides definitions for common terms used to describe the Sun ONE
Application Server deployment and development environment. For a glossary of
standard J2EE terms, please see the J2EE glossary at:

http://java.sun.com/j2ee/glossary.html

access control The means of securing your Sun ONE Application Server by
controlling who and what has access to it.

ACL Access Control List. ACLs are text files that contain lists identifying who can
access the resources stored on your Sun ONE Application Server. See also general
ACL.

activation The process of transferring an enterprise bean's state from secondary
storage to memory.

Administration interface The set of browser based forms used to configure and
administer the Sun ONE Application Server. See also CLI.

administration server An application server instance dedicated to providing the
administrative functions of the Sun ONE Application Server, including
deployment, browser-based administration, and access from the command-line
interface (CLI) and Integrated Development Environment (IDE).

administrative domain Multiple administrative domains is a feature within the
Sun ONE Application Server that allows different administrative users to create
and manage their own domains. A domain is a set of instances, created using a
common set of installed binaries in a single system.

API Applications Program Interface. A set of instructions that a computer
program can use to communicate with other software or hardware that is designed
to interpret that API.

http://java.sun.com/j2ee/glossary.html

86 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

applet A small application written in Java that runs in a web browser. Typically,
applets are called by or embedded in web pages to provide special functionality.
By contrast, a servlet is a small application that runs on a server.

application A group of components packaged into an .ear file with a J2EE
application deployment descriptor. See also component, module.

application client container See container.

application server A reliable, secure, and scalable software platform in which
business applications are run. Application servers typically provide high-level
services to applications, such as component lifecycle, location, and distribution and
transactional resource access,

application tier A conceptual division of a J2EE application:

client tier: The user interface (UI). End users interact with client software (such as a
web browser) to use the application.

server tier: The business logic and presentation logic that make up your application,
defined in the application’s components.

data tier: The data access logic that enables your application to interact with a data
source.

assembly The process of combining discrete components of an application into a
single unit that can be deployed. See also deployment.

asynchronous communication A mode of communication in which the sender of
a message need not wait for the sending method to return before it continues with
other work.

attribute A name-value pair in a request object that can be set by a servlet. Also a
name-value pair that modifies an element in an XML file. Contrast with parameter.
More generally, an attribute is a unit of metadata.

auditing The method(s) by which significant events are recorded for subsequent
examination, typically in error or security breach situations.

authentication The process by which an entity (such as a user) proves to another
entity (such as an application) that it is acting on behalf of a specific identity (the
user’s security identity). Sun ONE Application Server supports basic, form-based,
and SSL mutual authentication. See also client authentication, digest authentication,
host-IP authentication, pluggable authentication.

Glossary 87

authorization The process by which access to a method or resource is
determined. Authorization in the J2EE platform depends upon whether the user
associated with a request through authentication is in a given security role. For
example, a human resources application may authorize managers to view personal
employee information for all employees, but allow employees to only view their
own personal information.

backup store A repository for data, typically a file system or database. A backup
store can be monitored by a background thread (or sweeper thread) to remove
unwanted entries.

bean-managed persistence Data transfer between an entity bean's variables and
a data store. The data access logic is typically provided by a developer using Java
Database Connectivity (JDBC) or other data access technologies. See also
container-managed persistence.

bean-managed transaction Where transaction demarcation for an enterprise
bean is controlled programmatically by the developer. See also container-managed
transaction.

BLOB Binary Large OBject. A data type used to store and retrieve complex object
fields. BLOBs are binary or serializable objects, such as pictures, that translate into
large byte arrays, which are then serialized into container-managed persistence
fields.

BMP See bean-managed persistence.

BMT See bean-managed transaction.

broker The Sun ONE Message Queue entity that manages JMS message routing,
delivery, persistence, security, and logging, and which provides an interface that
allows an administrator to monitor and tune performance and resource use.

business logic The code that implements the essential business rules of an
application, rather than data integration or presentation logic.

CA See certificate authority or connector architecture.

88 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

cached rowset A CachedRowSet object permits you to retrieve data from a data
source, then detach from the data source while you examine and modify the data.
A cached row set keeps track both of the original data retrieved, and any changes
made to the data by your application. If the application attempts to update the
original data source, the row set is reconnected to the data source, and only those
rows that have changed are merged back into the database.

Cache Control Directives Cache-control directives are a way for Sun ONE
Application Server to control what information is cached by a proxy server. Using
cache-control directives, you override the default caching of the proxy to protect
sensitive information from being cached, and perhaps retrieved later. For these
directives to work, the proxy server must comply with HTTP 1.1.

callable statement A class that encapsulates a database procedure or function
call for databases that support returning result sets from stored procedures.

certificate Digital data that specifies the name of an individual, company, or
other entity, and certifies that the public key included in the certificate belongs to
that entity. Both clients and servers can have certificates.

certificate authority A company that sells certificates over the Internet, or a
department responsible for issuing certificates for a company’s intranet or extranet.

cipher A cryptographic algorithm (a mathematical function), used for encryption
or decryption.

CKL Compromised Key List. A list, published by a certificate authority, that
indicates any certificates that either client users or server users should no longer
trust. In this case, the key has been compromised. See also CRL.

classloader A Java component responsible for loading Java classes according to
specific rules. See also classpath.

classpath A path that identifies directories and JAR files where Java classes are
stored. See also classloader.

CLI Command-line interface. An interface that enables you to type executable
instructions at a user prompt. See also Administration interface.

client authentication The process of authenticating client certificates by
cryptographically verifying the certificate signature and the certificate chain
leading to the CA on the trust CA list. See also authentication, certificate authority.

Glossary 89

client contract A contract that determines the communication rules between a
client and the EJB container, establishes a uniform development model for
applications that use enterprise beans, and guarantees greater reuse of beans by
standardizing the relationship with the client.

CMP See container-managed persistence.

CMR See container-managed relationship.

CMT See container-managed transaction.

co-locate To position a component in the same memory space as a related
component in order avoid remote procedure calls and improve performance.

column A field in a database table.

commit To complete a transaction by sending the required commands to the
database. See rollback, transaction.

component A web application, enterprise bean, message-driven bean,
application client, or connector. See also application, module.

component contract A contract that establishes the relationship between an
enterprise bean and its container.

configuration The process of tuning the server or providing metadata for a
component. Normally, the configuration for a specific component is kept in the
component’s deployment descriptor file. See also administration server,
deployment descriptor.

connection factory An object that produces connection objects that enable a J2EE
component to access a resource. Used to create JMS connections (TopicConnection
or QueueConnection) which allow application code to make use of the provided
JMS implementation. Application code uses the JNDI Service to locate connection
factory objects using a JNDI Name.

Connection Pool allows highly efficient access to a database by caching and
reusing physical connections, thus avoiding connection overhead and allowing a
small number of connections to be shared between a large number of threads. See
also JDBC connection pool

90 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

connector A standard extension mechanism for containers to provide
connectivity to EISs. A connector is specific to an EIS and consists of a resource
adapter and application development tools for EIS connectivity. The resource
adapter is plugged in to a container through its support for system level contracts
defined in the connector architecture.

connector architecture An architecture for the integration of J2EE applications
with EISs. There are two parts to this architecture: a EIS vendor-provided resource
adapter and a J2EE server that allows this resource adapter to plug in. This
architecture defines a set of contracts that a resource adapter has to support to plug
in to a J2EE server, for example, transactions, security and resource management.

container An entity that provides life cycle management, security, deployment,
and runtime services to a specific type of J2EE component. Sun ONE Application
Server provides web and EJB containers, and supports application client
containers. See also component.

container-managed persistence Where the EJB container is responsible for entity
bean persistence. Data transfer between an entity bean's variables and a data store,
where the data access logic is provided by the Sun ONE Application Server. See also
bean-managed persistence.

container-managed relationship A relationship between fields in a pair of
classes where operations on one side of the relationship affect the other side.

container-managed transaction Where transaction demarcation for an enterprise
bean is specified declaratively and automatically controlled by the EJB container
See also bean-managed transaction.

control descriptor A set of enterprise bean configuration entries that enable you
to specify optional individual property overrides for bean methods, plus enterprise
bean transaction and security properties.

conversational state Where the state of an object changes as the result of repeated
interactions with the same client. See also persistent state.

cookie A small collection of information that can be transmitted to a calling web
browser, then retrieved on each subsequent call from that browser so the server
can recognize calls from the same client. Cookies are domain-specific and can take
advantage of the same web server security features as other data interchange
between your application and the server.

Glossary 91

CORBA Common Object Request Broker Architecture. A standard architecture
definition for object-oriented distributed computing.

COSNaming Service An an IIOP-based naming service.

CosNaming provider To support a global JNDI name space (accessible to IIOP
application clients), Sun ONE Application Server includes J2EE based CosNaming
provider which supports binding of CORBA references (remote EJB references).

create method A method for customizing an enterprise bean at creation.

CRL Certificate Revocation List. A list, published by a certificate authority, that
indicates any certificates that either client users or server users should no longer
trust. In this case, the certificate has been revoked. See also CKL.

data access logic Business logic that involves interacting with a data source.

database A generic term for Relational Database Management System (RDBMS).
A software package that enables the creation and manipulation of large amounts of
related, organized data.

database connection A database connection is a communication link with a
database or other data source. Components can create and manipulate several
database connections simultaneously to access data.

data source A handle to a source of data, such as a database. Data sources are
registered with the iPlanet Application Server and then retrieved
programmatically in order to establish connections and interact with the data
source. A data source definition specifies how to connect to the source of data.

DataSource Object A DataSource object has a set of properties that identify and
describe the real world data source that it represents.

declarative security Declaring security properties in the component’s
configuration file and allowing the component’s container (for instance, a bean’s
container or a servlet engine) to manage security implicitly. This type of security
requires no programmatic control. Opposite of programmatic security. See
container-managed persistence.

declarative transaction See container-managed transaction.

decryption The process of transforming encrypted information so that it is
intelligible again.

92 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

delegation An object-oriented technique for using the composition of objects as
an implementation strategy. One object, which is responsible for the result of an
operation, delegates the implementation to another object, its delegatee. For
example, a classloader often delegates the loading of some classes to its parent.

deployment The process of distributing the files required by an application to an
application server to make the application available to run on the application
server. See also assembly.

deployment descriptor An XML file provided with each module and application
that describes how they should be deployed. The deployment descriptor directs a
deployment tool to deploy a module or application with specific container options
and describes specific configuration requirements that a deployer must resolve.

destination resource An objects that represents Topic or Queue destinations.
Used by applications to read/write to Queues or publish/subscribe to Topics.
Application code uses the JNDI Service to locate JMS resource objects using a JNDI
Name.

digest authentication A for of authentication that allows the user to authenticate
based on user name and password without sending the user name and password
as cleartext.

digital signature an electronic security mechanism used to authenticate both a
message and the signer.

directory server See Sun ONE Directory Server.

Distinguished Name See DN, DN attribute.

distributable session A user session that is distributable among all servers in a
cluster.

distributed transaction A single transaction that can apply to multiple
heterogeneous databases that may reside on separate servers.

Document Root The document root (sometimes called the primary document
directory) is the central directory that contains all the virtual server’s files you want
to make available to remote clients.

Glossary 93

Domain Registry The Domain Registry is a single data structure that contains
domain-specific information, for all the domains created and configured on an
installation of Sun ONE Application Server, such as domain name, domain
location, domain port, domain host.

DTD Document Type Definition. A description of the structure and properties of
a class of XML files.

DN Distinguished Name. The string representation for the name of an entry in a
directory server.

DN attribute Distinguished Name attribute. A text string that contains
identifying information for an associated user, group, or object.

dynamic redeployment The process of redeploying a component without
restarting the server.

dynamic reloading The process of updating and reloading a component without
restarting the server. By default, servlet, JavaServer Page (JSP), and enterprise bean
components can be dynamically reloaded. Also known as versioning.

EAR file Enterprise ARchive file. An archive file that contains a J2EE application.
EAR files have the .ear extension. See also JAR file.

e-commerce Electronic commerce. A term for business conducted over the
Internet.

EIS Enterprise Information System. This can be interpreted as a packaged
enterprise application, a transaction system, or a user application. Often referred to
as an EIS. Examples of EISs include: R/3, PeopleSoft, Tuxedo, and CICS.

EJB container See container.

EJB QL EJB Query Language. A query language that provides for navigation
across a network of entity beans defined by container-managed relationships.

EJB technology An enterprise bean is a server-side component that encapsulates
the business logic of an application. The business logic is the code that fulfills the
purpose of the application. In an inventory control application, for example, the
enterprise beans might implement the business logic in methods called
checkInventoryLevel and orderProduct. By invoking these methods, remote
clients can access the inventory services provided by the application. See also
container, entity bean, message-driven bean, and session bean.

94 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

ejbc utility The compiler for enterprise beans. It checks all EJB classes and
interfaces for compliance with the EJB specification, and generates stubs and
skeletons.

element A member of a larger set; for example, a data unit within an array, or a
logic element. In an XML file, it is the basic structural unit. An XML element
contains subelements or data, and may contain attributes.

encapsulate To localize knowledge within a module. Because objects encapsulate
data and implementation, the user of an object can view the object as a black box
that provides services. Instance variables and methods can be added, deleted, or
changed, but if the services provided by the object remain the same, code that uses
the object can continue to use it without being rewritten.

encryption The process of transforming information so it is unintelligible to
anyone but the intended recipient.

entity bean An enterprise bean that relates to physical data, such as a row in a
database. Entity beans are long lived, because they are tied to persistent data.
Entity beans are always transactional and multi-user aware. See message-driven
bean, read-only bean, session bean.

ERP Enterprise Resource Planning. A multi-module software system that
supports enterprise resource planning. An ERP system typically includes a
relational database and applications for managing purchasing, inventory,
personnel, customer service, shipping, financial planning, and other important
aspects of the business.

event A named action that triggers a response from a module or application.

external JDNI resource Allows the JNDI Service to act as a bridge to a remote
JNDI server.

facade Where an application-specific stateful session bean is used to manage
various Enterprise JavaBeans (EJBs).

factory class A class that creates persistence managers. See also connection
factory.

failover A recovery process where a bean can transparently survive a server
crash.

Glossary 95

finder method Method which enables clients to look up a bean or a collection of
beans in a globally available directory.

firewall an electronic boundary that allows a network administrator to restrict
the flow of information across networks in order to enforce security.

File Cache The file cache contains information about files and static file content.
The file cache is turned on by default.

form action handler A specially defined method in servlet or application logic
that performs an action based on a named button on a form.

FQDN Fully Qualified Domain Name. The full name of a system, containing its
hostname and its domain name.

general ACL A named list in the Sun ONE Directory Server that relates a user or
group with one or more permissions. This list can be defined and accessed
arbitrarily to record any set of permissions.

generic servlet A servlet that extends javax.servlet.GenericServlet. Generic
servlets are protocol-independent, meaning that they contain no inherent support
for HTTP or any other transport protocol. Contrast with HTTP servlet.

global database connection A database connection available to multiple
components. Requires a resource manager.

global transaction A transaction that is managed and coordinated by a
transaction manager and can span multiple databases and processes. The
transaction manager typically uses the XA protocol to interact with the database
backends. See local transaction.

granularity level The approach to dividing an application into pieces. A high level
of granularity means that the application is divided into many smaller, more
narrowly defined Enterprise JavaBeans (EJBs). A low level of granularity means the
application is divided into fewer pieces, producing a larger program.

group A group of users that are related in some way. Group membership is
usually maintained by a local system administrator. See user, role.

handle An object that identifies an enterprise bean. A client may serialize the
handle, and then later deserialize it to obtain a reference to the bean.

96 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

Heuristic Decision The transactional mode used by a particular transaction. A
transaction has to either Commit or Rollback.

home interface A mechanism that defines the methods that enable a client to
create and remove an enterprise bean.

host-IP authentication A security mechanism used for of limiting access to the
Administration Server, or the files and directories on a web site by making them
available only to clients using specific computers.

HTML Hypertext Markup Language. A coding markup language used to create
documents that can be displayed by web browsers. Each block of text is
surrounded by codes that indicate the nature of the text.

HTML page A page coded in HTML and intended for display in a web browser.

HTTP Hypertext Transfer Protocol. The Internet protocol that fetches hypertext
objects from remote hosts. It is based on TCP/IP.

HTTP servlet A servlet that extends javax.servlet.HttpServlet. These
servlets have built-in support for the HTTP protocol. Contrast with generic servlet.

HTTPS HyperText Transmission Protocol, Secure. HTTP for secure transactions.

IDE Integrated Development Environment. Software that allows you to create,
assemble, deploy, and debug code from a single, easy-to-use interface.

IIOP Internet Inter-ORB Protocol. Transport-level protocol used by both Remote
Method Invocation (RMI) over IIOP and Common Object Request Broker
Architecture (CORBA).

IIOP Listener The IIOP listener is a listen socket that listens on a specified port
and accepts incoming connections from CORBA based client application

IP address A structured, numeric identifier for a computer or other device on a
TCP/IP network. The format of an IP address is a 32-bit numeric address written as
four numbers separated by periods. Each number can be zero to 255. For example,
123.231.32.2 could be an IP address.

IMAP Internet Message Access Protocol.

isolation level See transaction isolation level.

Glossary 97

J2EE Java 2 Enterprise Edition. An environment for developing and deploying
multi-tiered, web-based enterprise applications. The J2EE platform consists of a set
of services, application programming interfaces (APIs), and protocols that provide
the functionality for developing these applications.

JAF The JavaBeans Activation Framework (JAF) integrates support for MIME
data types into the Java platform. See Mime Types.

JAR file Java ARchive file. A file used for aggregating many files into one file.
JAR files have the.jar extension.

JAR file contract Java ARchive contract that specifies what information must be
in the enterprise bean package.

JAR file format Java ARchive file format. A platform-independent file format
that aggregates many files into one file. Multiple applets and their requisite
components (class files, images, sounds, and other resource files) can be bundled in
a JAR file and subsequently downloaded to a browser in a single HTTP transaction.
The JAR files format also supports file compression and digital signatures.

JavaBean A portable, platform-independent reusable component model.

Java IDL Java Interface Definition Language. APIs written in the Java
programming language that provide a standards-based compatibility and
connectivity with Common Object Request Broker Architecture (CORBA).

JavaMail session An object used by an application to interact with a mail store.
Application code uses the JNDI Service to locate JavaMail session resources objects
using a JNDI name.

JAXM Java API for XML Messaging. Enables applications to send and receive
document-oriented XML messages using the SOAP standard. These messages can
be with or without attachments.

JAXP Java API for XML Processing. A Java API that supports processing of XML
documents using DOM, SAX, and XSLT. Enables applications to parse and
transform XML documents independent of a particular XML processing
implementation.

JAXR Java API for XML Registry. Provides a uniform and standard Java API for
accessing different kinds of XML registries. Enables users to build, deploy and
discover web services.

98 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

JAX-RPC Java API for XML-based Remote Procedure Calls. Enables developers
to build interoperable web applications and web services based on XML-based
RPC protocols.

JDBC Java Database Connectivity. A standards-based set of classes and
interfaces that enable developers to create data-aware components. JDBC
implements methods for connecting to and interacting with data sources in a
platform- and vendor-independent way.

JDBC connection pool A pool that combines the JDBC data source properties
used to specify a connection to a database with the connection pool properties.

JDBC resource A resource used to connect an application running within the
application server to a database using an existing JDBC connection pool. Consists
of a JNDI name (which is used by the application) and the name of an existing
JDBC connection pool.

JDK Java Development Kit. The software that includes the APIs and tools that
developers need to build applications for those versions of the Java platform that
preceded the Java 2 Platform. See also JDK.

JMS Java Message Service. A standard set of interfaces and semantics that define
how a JMS client accesses the facilities of a JMS message service. These interfaces
provide a standard way for Java programs to create, send, receive, and read
messages.

JMS-administered object A pre-configured JMS object—a connection factory or
a destination—created by an administrator for use by one or more JMS clients.

The use of administered objects allows JMS clients to be provider-independent;
that is, it isolates them from the proprietary aspects of a provider. These objects are
placed in a JNDI name space by an administrator and are accessed by JMS clients
using JNDI lookups.

JMS client An application (or software component) that interacts with other JMS
clients using a JMS message service to exchange messages.

JMS connection factory The JMS administered object a JMS client uses to create a
connection to a JMS message service.

Glossary 99

JMS destination The physical destination in a JMS message service to which
produced messages are delivered for routing and subsequent delivery to
consumers. This physical destination is identified and encapsulated by an JMS
administered object that a JMS client uses to specify the destination for which it is
producing messages and/or from which it is consuming messages.

JMS messages Asynchronous requests, reports, or events that are consumed by
JMS clients. A message has a header (to which additional fields can be added) and
a body. The message header specifies standard fields and optional properties. The
message body contains the data that is being transmitted.

JMS provider A product that implements the JMS interfaces for a messaging
system and adds the administrative and control functions needed for a complete
product.

JMS Service Software that provides delivery services for a JMS messaging
system, including connections to JMS clients, message routing and delivery,
persistence, security, and logging. The message service maintains physical
destinations to which JMS clients send messages, and from which the messages are
delivered to consuming clients.

JNDI Java Naming and Directory Interface. This is a standard extension to the
Java platform, providing Java technology-enabled applications with a unified
interface to multiple naming and directory services in the enterprise. As part of the
Java Enterprise API set, JNDI enables seamless connectivity to heterogeneous
enterprise naming and directory services.

JNDI name A name used to access a resource that has been registered in the JNDI
naming service.

JRE Java Runtime Environment. A subset of the Java Development Kit (JDK)
consisting of the Java virtual machine, the Java core classes, and supporting files
that provides runtime support for applications written in the Java programming
language. See also JDK.

JSP JavaServer Page. A text page written using a combination of HTML or XML
tags, JSP tags, and Java code. JSPs combine the layout capabilities of a standard
browser page with the power of a programming language.

jspc utility The compiler for JSPs. It checks all JSPs for compliance with the JSP
specification.

100 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

JTA Java Transaction API. An API that allows applications and J2EE servers to
access transactions.

JTS Java Transaction Service. The Java service for processing transactions.

key-pair file See trust database.

LDAP Lightweight Directory Access Protocol. LDAP is an open directory access
protocol that runs over TCP/IP. It is scalable to a global size and millions of entries.
Using Sun ONE Directory Server, a provided LDAP server, you can store all of
your enterprise’s information in a single, centralized repository of directory
information that any application server can access through the network.

LDIF LDAP Data Interchange Format. Format used to represent Sun ONE
Directory Server entries in text form.

lifecycle event A stage in the server life cycle, such as startup or shutdown.

lifecycle module A module that listens for and performs its tasks in response to
events in the server life cycle.

Listener A class, registered with a posting object, that says what to do when an
event occurs.

local database connection The transaction context in a local connection is local to
the current process and to the current data source, not distributed across processes
or across data sources.

local interface An interface that provides a mechanism for a client that is located
in the same Java Virtual Machine (JVM) with a session or entity bean to access that
bean.

local session A user session that is only visible to one server.

local transaction A transaction that is native to one database and is restricted
within a single process. Local transactions work only against a single backend.
Local transactions are typically demarcated using JDBC APIs. See also global
transaction.

mapping The ability to tie an object-oriented model to a relational model of data,
usually the schema of a relational database. The process of converting a schema to
a different structure. Also refers to the mapping of users to security roles.

Glossary 101

MDB See message-driven bean.

message-driven bean An enterprise bean that is an asynchronous message
consumer. A message-driven bean has no state for a specific client, but its instance
variables may contain state across the handling of client messages, including an
open database connection and an object reference to an EJB object. A client accesses
a message-driven bean by sending messages to the destination for which the
message-driven bean is a message listener.

messaging A system of asynchronous requests, reports, or events used by
enterprise applications that allows loosely coupled applications to transfer
information reliably and securely.

metadata Information about a component, such as its name, and specifications
for its behavior.

MIME Data Type MIME (Multi-purpose Internet Mail Extension) types control
what types of multimedia files your system supports.

module A web application, enterprise bean, message-driven bean, application
client, or connector that has been deployed individually, outside an application. See
also application, component, lifecycle module.

NTV Name, Type, Value.

object persistence See persistence.

O/R mapping tool Object-to-relational [database] tool. A mapping tool within
the Sun ONE Application Server Administrative interface that creates XML
deployment descriptors for entity beans.

package A collection of related classes that are stored in a common directory.
They are often literally packaged together in a Java archive JAR file. See also
assembly, deployment.

parameter A name/value pair sent from the client, including form field data,
HTTP header information, and so on, and encapsulated in a request object.
Contrast with attribute. More generally, an argument to a Java method or database-
prepared command.

passivation A method of releasing a bean’s resources from memory without
destroying the bean. In this way, a bean is made to be persistent, and can be
recalled without the overhead of instantiation.

102 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

permission A set of privileges granted or denied to a user or group. See also ACL.

persistence For enterprise beans, the protocol for transferring the state of an
entity bean between its instance variables and an underlying database. Opposite of
transience. For sessions, the session storage mechanism.

persistence manager The entity responsible for the persistence of the entity beans
installed in the container.

persistent state Where the state of an object is kept in persistent storage, usually a
database.

pluggable authentication A mechanism that allows J2EE applications to use the
Java Authentication and Authorization Service (JAAS) feature from the J2SE
platform. Developers can plug in their own authentication mechanisms.

point-to-point delivery model Producers address messages to specific queues;
consumers extract messages from queues established to hold their messages. A
message is delivered to only one message consumer.

pooling The process of providing a number of preconfigured resources to
improve performance. If a resource is pooled, a component can use an existing
instance from the pool rather than instantiating a new one. In the Sun ONE
Application Server, database connections, servlet instances, and enterprise bean
instances can all be pooled.

POP3 Post Office Protocol

prepared command A database command (in SQL) that is precompiled to make
repeated execution more efficient. Prepared commands can contain parameters. A
prepared statement contains one or more prepared commands.

prepared statement A class that encapsulates a QUERY, UPDATE, or INSERT
statement that is used repeatedly to fetch data. A prepared statement contains one
or more prepared commands.

presentation layout The format of web page content.

presentation logic Activities that create a page in an application, including
processing a request, generating content in response, and formatting the page for
the client. Usually handled by a web application.

Glossary 103

primary key The unique identifier that enables the client to locate a particular
entity bean.

primary key class name A variable that specifies the fully qualified class name of
a bean’s primary key. Used for JNDI lookups.

principal The identity assigned to an entity as a result of authentication.

private key See public key cryptography.

process Execution sequence of an active program. A process is made up of one or
more threads.

programmatic security The process of controlling security explicitly in code
rather than allowing the component’s container (for instance, a bean’s container or
a servlet engine) to handle it. Opposite of declarative security.

programmer-demarcated transaction See bean-managed transaction.

property A single attribute that defines the behavior of an application
component. In the server.xml file, a property is an element that contains a
name/value pair.

public key cryptography A form of cryptography in which each user has a
public key and a private key. Messages are sent encrypted with the receiver's
public key; the receiver decrypts them using the private key. Using this method,
the private key never has to be revealed to anyone other than the user.

publish/subscribe delivery model Publishers and subscribers are generally
anonymous and may dynamically publish or subscribe to a topic. The system
distributes messages arriving from a topic’s multiple publishers to its multiple
subscribers.

queue An object created by an administrator to implement the point-to-point
delivery model. A queue is always available to hold messages even when the client
that consumes its messages is inactive. A queue is used as an intermediary holding
place between producers and consumers.

QOS QOS (Quality of Service) refers to the performance limits you set for a
server instance or virtual server. For example, if you are an ISP, you might want to
charge different amounts of money for virtual servers depending on how much
bandwidth is provided. You can limit two areas: the amount of bandwidth and the
number of connections.

104 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

RAR file Resource ARchive. A JAR archive that contains a resource adapter.

RDB Relational database.

RDBMS Relational database management system.

read-only bean An entity bean that is never modified by an EJB client. See also
entity bean.

realm A scope over which a common security policy is defined and enforced by
the security administrator of the security service. Also called a security policy domain
or security domain in the J2EE specification.

remote interface One of two interfaces for an Enterprise JavaBean. The remote
interface defines the business methods callable by a client.

request object An object that contains page and session data produced by a
client, passed as an input parameter to a servlet or JavaServer Page (JSP).

resource manager An object that acts as a facilitator between a resource such as a
database or message broker, and client(s) of the resource such as Sun ONE
Application Server processes. Controls globally-available data sources.

resource reference An element in a deployment descriptor that identifies the
component’s coded name for the resource.

response object An object that references the calling client and provides methods
for generating output for the client.

ResultSet An object that implements the java.sql.ResultSet interface.
ResultSets are used to encapsulate a set of rows retrieved from a database or
other source of tabular data.

reusable component A component created so that it can be used in more than
one capacity, for instance, by more than one resource or application.

RMI Remote Method Invocation. A Java standard set of APIs that enable
developers to write remote interfaces that can pass objects to remote processes.

RMIC Remote Method Invocation Compiler.

role A functional grouping of subjects in an application, represented by one or
more groups in a deployed environment. See also user, group.

Glossary 105

rollback Cancellation of a transaction.

row A single data record that contains values for each column in a table.

RowSet An object that encapsulates a set of rows retrieved from a database or
other source of tabular data. RowSet extends the java.sql.ResultSet interface,
enabling ResultSet to act as a JavaBeans component.

RPC Remote Procedure Call. A mechanism for accessing a remote object or
service.

runtime system The software environment in which programs run. The runtime
system includes all the code necessary to load programs written in the Java
programming language, dynamically link native methods, manage memory, and
handle exceptions. An implementation of the Java virtual machine is included,
which may be a Java interpreter.

SAF Server Application Function. A function that participates in request
processing and other server activities

schema The structure of the underlying database, including the names of tables,
the names and types of columns, index information, and relationship (primary and
foreign key) information.

Secure Socket Layer See SSL.

security A screening mechanism that ensures that application resources are only
accessed by authorized clients.

serializable object An object that can be deconstructed and reconstructed, which
enables it to be stored or distributed among multiple servers.

server instance A Sun ONE Application Server can contain multiple instances in
the same installation on the same machine. Each instance has its own directory
structure, configuration, and deployed applications. Each instance can also contain
multiple virtual servers. See also virtual server.

servlet An instance of the Servlet class. A servlet is a reusable application that
runs on a server. In the Sun ONE Application Server, a servlet acts as the central
dispatcher for each interaction in an application by performing presentation logic,
invoking business logic, and invoking or performing presentation layout.

106 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

servlet engine An internal object that handles all servlet metafunctions.
Collectively, a set of processes that provide services for a servlet, including
instantiation and execution.

servlet runner The part of the servlet engine that invokes a servlet with a request
object and a response object. See servlet engine.

session An object used by a servlet to track a user’s interaction with a web
application across multiple HTTP requests.

session bean An enterprise bean that is created by a client; usually exists only for
the duration of a single client-server session. A session bean performs operations
for the client, such as calculations or accessing other EJBs. While a session bean
may be transactional, it is not recoverable if a system crash occurs. Session bean
objects can be either stateless (not associated with a particular client) or stateful
(associated with a particular client), that is, they can maintain conversational state
across methods and transactions. See also stateful session bean, stateless session
bean.

session cookie A cookie that is returned to the client containing a user session
identifier. See also sticky cookie.

session timeout A specified duration after which the Sun ONE Application
Server can invalidate a user session. See session.

single sign-on A situation where a user’s authentication state can be shared
across multiple J2EE applications in a single virtual server instance.

SMTP Simple Mail Transport Protocol

SNMP SNMP (Simple Network Management Protocol) is a protocol used to
exchange data about network activity. With SNMP, data travels between a
managed device and a network management station (NMS). A managed device is
anything that runs SNMP: hosts, routers, your web server, and other servers on
your network. The NMS is a machine used to remotely manage that network.

SOAP The Simple Object Access Protocol (SOAP) uses a combination of
XML-based data structuring and Hyper Text Transfer Protocol (HTTP) to define a
standardized way of invoking methods in objects distributed in diverse operating
environments across the Internet.

SQL Structured Query Language. A language commonly used in relational
database applications. SQL2 and SQL3 designate versions of the language.

Glossary 107

SSL Secure Sockets Layer. A protocol designed to provide secure
communications on the Internet.

state 1. The circumstances or condition of an entity at any given time. 2. A
distributed data storage mechanism which you can use to store the state of an
application using the Sun ONE Application Server feature interface IState2. See
also conversational state, persistent state.

stateful session bean A session bean that represents a session with a particular
client and which automatically maintains state across multiple client-invoked
methods.

stateless session bean A session bean that represents a stateless service. A
stateless session bean is completely transient and encapsulates a temporary piece
of business logic needed by a specific client for a limited time span.

sticky cookie A cookie that is returned to the client to force it to always connect
to the same server process. See also session cookie.

stored procedure A block of statements written in SQL and stored in a database.
You can use stored procedures to perform any type of database operation, such as
modifying, inserting, or deleting records. The use of stored procedures improves
database performance by reducing the amount of information that is sent over a
network.

streaming A technique for managing how data is communicated through HTTP.
When results are streamed, the first portion of the data is available for use
immediately. When results are not streamed, the whole result must be received
before any part of it can be used. Streaming provides a way to allow large amounts
of data to be returned in a more efficient way, improving the perceived
performance of the application.

system administrator The person who administers Sun ONE Application Server
software and deploys Sun ONE Application Server applications.

Sun ONE Application Server RowSet A RowSet object that incorporates the Sun
ONE Application Server extensions.

Sun ONE Directory Server The Sun ONE version of Lightweight Directory
Access Protocol (LDAP). Every instance of Sun ONE Application Server uses Sun
ONE Directory Server to store shared server information, including information
about users and groups. See also LDAP.

108 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

Sun ONE Message Queue The Sun ONE enterprise messaging system that
implements the Java Message Service (JMS) open standard: it is a JMS provider.

TLS Transport Layer Security. A protocol that provides encryption and
certification at the transport layer, so that data can flow through a secure channel
without requiring significant changes to the client and server applications.

table A named group of related data in rows and columns in a database.

thread An execution sequence inside a process. A process may allow many
simultaneous threads, in which case it is multi-threaded. If a process executes each
thread sequentially, it is single-threaded.

topic An object created by an administrator to implement the publish/subscribe
delivery model. A topic may be viewed as node in a content hierarchy that is
responsible for gathering and distributing messages addressed to it. By using a
topic as an intermediary, message publishers are kept separate from message
subscribers.

transaction context A transaction’s scope, either local or global. See local
transaction, global transaction.

transaction isolation level Determines the extent to which concurrent
transactions on a database are visible to one-another.

transaction manager An object that controls a global transaction, normally using
the XA protocol. See global transaction.

transaction A set of database commands that succeed or fail as a group. All the
commands involved must succeed for the entire transaction to succeed.

Transaction Recovery Automatic or manual recovery of distributed transactions.

Transaction Attribute A transaction attribute controls the scope of a transaction.

transience A protocol that releases a resource when it is not being used. Opposite
of persistence.

trust database I security file that contains the public and private keys; also
referred to as the key-pair file.

Glossary 109

URI Universal Resource Identifier. Describes a specific resource at a domain.
Locally described as a subset of a base directory, so that /ham/burger is the base
directory and a URI specifies toppings/cheese.html. A corresponding URL
would be http://domain:port/toppings/cheese.html.

URL Uniform Resource Locator. An address that uniquely identifies an HTML
page or other resource. A web browser uses URLs to specify which pages to
display. A URL describes a transport protocol (for example, HTTP, FTP), a domain
(for example, www.my-domain.com), and optionally a URI.

user A person who uses an application. Programmatically, a user consists of a
user name, password, and set of attributes that enables an application to recognize
a client. See also group, role.

user session A series of user application interactions that are tracked by the
server. Sessions maintain user state, persistent objects, and identity authentication.

versioning See dynamic reloading.

virtual server A virtual web server that serves content targeted for a specific
URL. Multiple virtual servers may serve content using the same or different host
names, port numbers, or IP addresses. The HTTP service can direct incoming web
requests to different virtual servers based on the URL. Also called a virtual host.

A web application can be assigned to a specific virtual server. A server instance can
have multiple virtual servers. See also server instance.

WAR file Web ARchive. A Java archive that contains a web module. WAR files
have the.war extension.

web application A collection of servlets, JavaServer Pages, HTML documents,
and other web resources, which might include image files, compressed archives,
and other data. A web application may be packaged into an archive (a WAR file) or
exist in an open directory structure.

Sun ONE Application Server also supports some non-Java web application
technologies, such as SHTML and CGI.

web cache An Sun ONE Application Server feature that enables a servlet or JSP
to cache its results for a specific duration in order to improve performance.
Subsequent calls to that servlet or JSP within the duration are given the cached
results so that the servlet or JSP does not have to execute again.

http://domain:port/toppings/cheese.html

110 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

web connector plug-in An extension to a web server that enables it to
communicate with the Sun ONE Application Server.

web container See container.

web module An individually deployed web application. See web application.

web server A host that stores and manages HTML pages and web applications,
but not full J2EE applications. The web server responds to user requests from web
browsers.

Web Server Plugin The web server plugin is an HTTP reverse proxy plugin that
allows you to instruct a Sun One Web Server or Sun ONE Application Server to
forward certain HTTP requests to another server.

web service A service offered via the web. A self-contained, self-describing,
modular application that can accept a request from a system across the Internet or
an intranet, process it, and return a response.

WSDL Web Service Description Language. An XML-based language used to
define web services in a standardized way. It essentially describes three
fundamental properties of a web service: definition of the web service, how to
access that web service, and the location of that web service.

UDDI Universal Description, Discovery, and Integration. Provides worldwide
registry of web services for discovery and integration.

XA protocol A database industry standard protocol for distributed transactions.

XML Extensible Markup Language. A language that uses HTML-style tags to
identify the kinds of information used in documents as well as to format
documents.

111

Index

A
ACC

features 22
naming 22
security 22

acc 21
acc flag 27
acc package

asenv configuration settings 38
editing sun-acc.xml 38
modifying appclient script 38
using package-appclient script 40

appclient.jar file 40
contents 40

application client 19
accessing EJB 25
appclient script 41
create bean instance 23
creating using the ACC 23
invoke business method 24
invoking an EJB module 24
locate EJB home interface 23
making a remote call 25
running 41
using SSL with CA 39

application client container 21
application client container package

client.policy file 41
application clients

authenticating using JAAS 28
security 28

application-client.xml 45

ATTLIST tag 44
attributes

#IMPLIED label 45
#REQUIRED label 45

authentication realm 57

C
c++ clients 71

configuring 72
developing 75
preparing for development 73
required classes 74
running 82

client 15, 50
architecture 19
web services clients 17

client types 16
clients

application clients 19
CORBA clients 18
JMS clients 18
RMI-IIOP clients 18
web client 17
web services clients 17

client-side load balancing 63
configure to use orbix 67
configuring Sun ONE ORB 63
CORBA clients 18

scenarios 59

Section D

112 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

cpp files 79
create bean instance

create method 23

D
deployment descriptors 42

application client container 50
attributes 44
data 44
element 43
format 43
J2EE application client 45
subelements 43
Sun ONE application client 45

developing c++ clients
generate cpp files 79
generate IDL files 75
generate valuetypes 77
implementing valuetypes 81
modifying the generated IDL files 78
registering valuefactories 82

document directories
primary 92

document root 92

E
EJBs

accessing with IIOP 59
specifying JNDI name 62, 66

F
form-hint-field attribute 51

I
IDL files

generate 75
rmic tool 75

IIOP 18
accessing EJBs 59
accessing servers 60

IIOP listener configuration 51
IIOP/SSL configuration 54
InitialContext 62, 66
invoking a J2EE client without using acc 26

J
J2EE application client 22
J2EE platform layers 15

Business logic layer 16
client 15
database 16
presentation 15

J2SE policy file 41
JAAS module 28

LoginModule 28
JMS clients 18
JNDI 18

specifying EJB name 62, 66
JVM arguments in server.xml 69

L
launching acc 41
library for valuetype implementation

developing 77
load balancing 63
logging messages 39
LoginModule

CallBackHandler 29
commit() method 29
integrate 30
login() method 29

Section M

Index 113

logout() method 29

M
message-driven beans 18
MIME (Multi-purpose Internet Mail Extension) types

definition and accessing page 101
modifying the generated IDL files

changing valuetypes 78
deleting duplicate variables 78

N
naming factory class 62, 66

O
ORB architecture 61
overriding built-in ORB 68

approaches 68
ORB.init properties approach 68
ORB.init() properties 68
orb.properties 69
orb.properties approach 69
provide JVM start-up arguments 69
providing JVM arguments 69

P
param-name element 47
presentation layer

J2EE components 15
non-J2EE components 16

primary document directory, setting 92

R
RMI/IIOP 18

S
S1ASCtxFactory class 63
scenarios

server-server 60
stand-alone 59

security
authentication data 22
JAAS module 22
using SSL with CA 39

setting the ORB port 39
singleton approach 69
SSL 22
SSL processing parameters 55
stand-alone CORBA client

creating 62
running 65

subelements
requirement rules 44

Sun ONE customer support 13
Sun ONE ORB 71
sun-acc.xml elements

auth-realm 57
cert-db 56
client-container 50
client-credential 53
description 52
log-service 53
property 58
security 54
ssl 55
target-server 51

sun-acc.xml file 50
elements in 50

sun-application element
definition in sun-application_1_3-0.dtd file 43

sun-application-client.xml 45
sun-application-client.xml elements

default-resource-principal 47

Section T

114 Sun ONE Application Server 7 • Developer’s Guide to Clients • March 2003

ejb-ref 48
ejb-ref-name 49
jndi-name 50
name 48
password 48
resource-env-ref 49
resource-env-ref-name 49
resource-ref 47
resource-ref-name 47
sun-application-client 46

sun-application-client.xml file 46
elements in 45

T
thin client 17
third party ORB 65

accessing another server instance 65
accessing backend 67
configure Orbix ORB 67

transactions
attributes 108

W
web client 17
web services clients 17

	Developer’s Guide to Clients
	Contents
	About This Document
	Who Should Use This Guide
	Using the Documentation
	How This Guide Is Organized
	Reference Information
	Documentation Conventions
	General Conventions
	Conventions Referring to Directories

	Overview of Clients
	Introducing Clients
	Types of Clients
	Web Clients
	Web Services Clients
	JMS Clients
	CORBA Clients
	Application Clients

	Using the Application Client Container
	Introducing the Application Client Container
	Developing Applications Using the ACC
	Creating an Application Client
	Using an Application Client to Invoke an EJB Module
	Invoking an RMI/IIOP-based Client Without Using the ACC
	Authenticating an Application Client Using the JAAS Module
	Authenticating an RMI/IIOP Client Without Using the ACC
	Packaging an Application Client Using the ACC
	Running an Application Client Using the ACC
	Sample Client Application

	Application Client Deployment Descriptors
	Format of Deployment Descriptors
	J2EE Application Client Deployment Descriptor
	Sun ONE Application Client Deployment Descriptor
	Application Client Container Configuration File

	Java-based CORBA Clients
	CORBA Client Scenarios
	Stand-alone Scenario
	Server to Server Scenario
	ORB Support Architecture

	Developing Java-based CORBA Clients
	Creating a Stand-alone CORBA Client
	Running a Stand-alone CORBA Client

	Third Party ORB Support
	Accessing EJBs in a Remote Application Server Instance From a Servlet/Enterprise JavaBean
	Configuring Back End Access Using Third Party Client ORBs Within Sun ONE Application Server

	C++ Clients
	Introducing C++ Clients
	Developing a C++ Client
	Configuring C++ Clients to Access Sun ONE Application Server
	Creating a C++ Client
	Sample Applications

	Glossary
	Index

