
Sun Cluster Data Services
Developer’s Guide for Solaris OS

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–4227–10
April 2004, Revision A

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the
United States and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun Logo and Java are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other
countries.

Sun, Sun Microsystems, the Sun logo, Java, docs.sun.com, AnswerBook, AnswerBook2, NetBeans, Sun StorEdge, Sun Cluster, SunPlex, and Solaris are
trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products
bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. Adobe is a registered trademark of Adobe Systems,
Incorporated. PostScript logo is a trademark or registered trademark of Adobe Systems, Incorporated, which may be registered in certain jurisdictions.
ORACLE is a registered trademark of Oracle Corporation.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2004 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, docs.sun.com, AnswerBook, AnswerBook2, NetBeans, Sun StorEdge, Sun Cluster, SunPlex, et Solaris sont
des marques de fabrique ou des marques déposées, ou marques de service, de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les
marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et
dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc. Adobe est une
marque enregistree de Adobe Systems, Incorporated. Le logo PostScript est une marque de fabrique d’Adobe Systems, Incorporated, laquelle pourrait
é‘tre déposée dans certaines juridictions. ORACLE est une marque déposée registre de Oracle Corporation.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

040204@7940

Contents

Preface 13

1 Overview of Resource Management 19

Sun Cluster Application Environment 19
RGM Model 21

Resource Types 21
Resources 22
Resource Groups 22

Resource Group Manager 23
Callback Methods 23
Programming Interfaces 24

RMAPI 24
Data Service Development Library (DSDL) 25
SunPlex Agent Builder 25

Resource Group Manager Administrative Interface 26
SunPlex Manager 26
Administrative Commands 26

2 Developing a Data Service 27

Analyzing the Application for Suitability 27
Determining the Interface to Use 29
Setting Up the Development Environment for Writing a Data Service 30

� Setting Up the Development Environment 31
Transferring a Data Service to a Cluster 31

Setting Resource and Resource Type Properties 32

3

Declaring Resource Type Properties 32
Declaring Resource Properties 35
Declaring Extension Properties 38

Implementing Callback Methods 40
Accessing Resource and Resource Group Property Information 40
Idempotency for Methods 41

Generic Data Service 41
Controlling an Application 42

Starting and Stopping a Resource 42
Init, Fini, and Boot Methods 44

Monitoring a Resource 45
Adding Message Logging to a Resource 46
Providing Process Management 46
Providing Administrative Support for a Resource 47
Implementing a Failover Resource 47
Implementing a Scalable Resource 48

Validation Checks for Scalable Services 51
Writing and Testing Data Services 51

Using Keep-Alives 51
Testing HA Data Services 52
Coordinating Dependencies Between Resources 52

3 Upgrading a Resource Type 55

Overview 55
Resource Type Registration File 56

Resource Type Name 56
Directives 57
Changing the RT_Version in an RTR file 57
Resource Type Names in Earlier Versions of Sun Cluster 58

Resource Type_version Property 58
Migrating a Resource to a Different Version 59
Upgrading and Downgrading a Resource Type 60

� How to Upgrade a Resource Type 60
� How to Downgrade a Resource to an Older Version of Its Resource Type 61

Default Property Values 62
Resource Type Developer Documentation 63
Resource Type Name and Resource Type Monitor Implementations 64

4 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Application Upgrades 64

Resource Type Upgrade Examples 64

Installation Requirements for Resource Type Packages 68

Information That You Need to Know Before Changing the RTR File 68

Changing Monitor Code 69

Changing Method Code 69

4 Resource Management API Reference 71

RMAPI Access Methods 72

RMAPI Shell Commands 72

C Functions 73

RMAPI Callback Methods 77

Method Arguments 77

Exit Codes 78

Control and Initialization Callback Methods 78

Administrative Support Methods 79

Net-Relative Callback Methods 80

Monitor Control Callback Methods 80

5 Sample Data Service 83

Overview of the Sample Data Service 83

Defining the Resource Type Registration File 84

RTR File Overview 84

Resource Type Properties in the Sample RTR File 85

Resource Properties in the Sample RTR File 86

Providing Common Functionality to All Methods 90

Identifying the Command Interpreter and Exporting the Path 90

Declaring the PMF_TAG and SYSLOG_TAG Variables 90

Parsing the Function Arguments 91

Generating Error Messages 93

Obtaining Property Information 93

Controlling the Data Service 94

Start Method 94

Stop Method 97

Defining a Fault Monitor 100

Probe Program 100

Monitor_start Method 106

Contents 5

Monitor_stop Method 106
Monitor_check Method 108

Handling Property Updates 109
Validate Method 109
Update Method 113

6 Data Service Development Library (DSDL) 115

DSDL Overview 115
Managing Configuration Properties 116
Starting and Stopping a Data Service 117
Implementing a Fault Monitor 117
Accessing Network Address Information 118
Debugging the Resource Type Implementation 118
Enabling Highly Available Local File Systems 119

7 Designing Resource Types 121

The RTR File 122
The Validate Method 122
The Start Method 124
The Stop Method 125
The Monitor_start Method 126
The Monitor_stop Method 127
The Monitor_check Method 127
The Update Method 127
The Init, Fini, and Boot Methods 128
Designing the Fault Monitor Daemon 129

8 Sample DSDL Resource Type Implementation 133

X Font Server 133
X Font Server Configuration File 134
TCP Port Number 134

Naming Conventions 134
SUNW.xfnts RTR File 135
scds_initialize() Function 135
xfnts_start Method 136

Validating the Service Before Starting 136
Starting the Service 137

6 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Returning From svc_start() 138
xfnts_stop Method 140
xfnts_monitor_start Method 141
xfnts_monitor_stop Method 143
xfnts_monitor_check Method 144
SUNW.xfnts Fault Monitor 144

xfonts_probe Main Loop 145
svc_probe() Function 146
Determining the Fault Monitor Action 149

xfnts_validate Method 150
xfnts_update Method 152

9 SunPlex Agent Builder 155

Using Agent Builder 156
Analyzing the Application 156
Installing and Configuring Agent Builder 156
Launching Agent Builder 157
Using the Create Screen 159
Using the Configure Screen 161
Reusing Completed Work 165
Cloning an Existing Resource Type 165
Editing the Generated Source Code 165
Using the Command-Line Version of Agent Builder 166

Directory Structure 167
Output 167

Source and Binary Files 168
Utility Scripts and man Pages 169
Support Files 170
Package Directory 170
The rtconfig File 171

Navigating Agent Builder 171
Browse Button 172
Menus 173

Cluster Agent Module for Agent Builder 174
� Installing and Setting Up the Cluster Agent Module 174
� Starting the Cluster Agent Module 175
Using the Cluster Agent Module 177

Contents 7

Differences Between the Cluster Agent Module and Agent Builder 178

10 Generic Data Services 181

Overview of GDS 181
Precompiled Resource Type 181
Why Use GDS 182
Ways to Create a Service That Uses GDS 182
Required Properties for GDS 183
Optional Properties for GDS 184

Using the SunPlex Agent Builder to Create a Service Using GDS 186
Create a Service Using GDS in the SunPlex Agent Builder 187
Output From SunPlex Agent Builder 190

Using the Standard Sun Cluster Administration Commands to Create a Service Using
GDS 191

� How to Use Sun Cluster Administration Commands to Create a Highly
Available Service Using GDS 191
� Standard Sun Cluster Administration Commands to Create a Scalable Service
Using GDS 192

Command-Line Interface to the SunPlex Agent Builder 192
� Creating a Service That Uses GDS With the Command-Line Version of Agent
Builder 193

11 Data Service Development Library Reference 195

DSDL Functions 195
General Purpose Functions 195
Property Functions 197
Network Resource-Access Functions 197
Fault Monitoring Using TCP Connections 198
PMF Functions 198
Fault Monitor Functions 199
Utility Functions 199

12 CRNP 201

Overview of CRNP 201
Overview of the CRNP Protocol 202

Message Types That the CRNP Uses 203
How a Client Registers With the Server 205

8 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Assumptions About How Administrators Will Set Up the Server 205
How the Server Identifies a Client 205
How SC_CALLBACK_REG Messages Are Passed Between a Client and the
Server 205

How the Server Replies to a Client 207
Contents of an SC_REPLY Message 208
How a Client Is to Handle Error Conditions 208

How the Server Delivers Events to a Client 209
How the Delivery of Events Is Guaranteed 210
Contents of an SC_EVENT Message 210

How the CRNP Authenticates Clients and the Server 213
Creating a Java Application That Uses CRNP 213

� Set Up Your Environment 214
� Get Started 215
� Parse the Command Line Arguments 216
� Define the Event Reception Thread 217
� Register and Unregister Callbacks 218
� Generate the XML 219
� Create the Registration and Unregistration Messages 223
� Set Up the XML Parser 225
� Parse the Registration Reply 225
� Parse the Callback Events 227
� Run the Application 230

A Standard Properties 231

Resource Type Properties 231
Resource Properties 237
Resource Group Properties 246
Resource Property Attributes 250

B Sample Data Service Code Listings 253

Resource Type Registration File Listing 253
Start Method 256
Stop Method 259
gettime Utility 261
PROBE Program 262
Monitor_start Method 267

Contents 9

Monitor_stop Method 269
Monitor_check Method 271
Validate Method 273
Update Method 276

C Data Service Development Library Sample Resource Type Code Listing 279

xfnts.c 279
xfnts_monitor_check Method 291
xfnts_monitor_start Method 292
xfnts_monitor_stop Method 293
xfnts_probe Method 294
xfnts_start Method 297
The xfnts_stop Method 298
The xfnts_update Method 299
The xfnts_validate Method Code Listing 301

D Legal RGM Names and Values 303

RGM Legal Names 303
RGM Values 304

E Requirements for Non-Cluster Aware Applications 305

Multihosted Data 305
Using Symbolic Links for Multihosted Data Placement 306

Host Names 307
Multihomed Hosts 307
Binding to INADDR_ANY Versus Binding to Specific IP Addresses 308
Client Retry 309

F Document Type Definitions for CRNP 311

SC_CALLBACK_REG XML DTD 311
NVPAIR XML DTD 313
SC_REPLY XML DTD 314
SC_EVENT XML DTD 315

G CrnpClient.java Application 317

Contents of CrnpClient.java 317

10 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Index 339

Contents 11

12 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Preface

The Sun Cluster Data Services Developer’s Guide for Solaris OS contains information
about using the Resource Management API to develop Sun™ Cluster data services on
both SPARC® and x86 based systems.

Note – In this document, the term “x86” refers to the Intel 32-bit family of
microprocessor chips and compatible microprocessor chips made by AMD.

Note – Sun Cluster software runs on two platforms, SPARC and x86. The information
in this document pertains to both platforms unless otherwise specified in a special
chapter, section, note, bulleted item, figure, table, or example.

Who Should Use This Book
This document is intended for experienced developers with extensive knowledge of
Sun software and hardware. The information in this book assumes knowledge of the
Solaris™ Operating System.

13

How This Book Is Organized
The Sun Cluster Data Services Developer’s Guide for Solaris OS contains the following
chapters and appendixes:

� Chapter 1 provides an overview of the concepts needed to develop a data service.

� Chapter 2 provides detailed information about developing a data service.

� Chapter 3 discusses the issues that you need to understand to upgrade a resource
type and migrate a resource

� Chapter 4 provides a reference to the access functions and callback methods that
make up the Resource Management API (RMAPI).

� Chapter 5 provides a sample Sun Cluster data service for the in.named()
application.

� Chapter 6 provides an overview of the application programming interfaces
constituting the Data Services Development Library (DSDL)

� Chapter 7 explains the typical usage of the DSDL in designing and implementing
resource types.

� Chapter 8 describes a sample resource type implemented with DSDL.

� Chapter 9 describes SunPlex™Agent Builder.

� Chapter 10 describes how to create a generic data service.

� Chapter 11 describes the DSDL API functions.

� Chapter 12 provides information about the Cluster Reconfiguration Notification
Protocol (CRNP). CRNP enables failover and scalable applications to be “cluster
aware.”

� Appendix A describes the standard resource type, resource group, and resource
properties.

� Appendix B provides the complete code for each method in the sample data
service.

� Appendix C lists the complete code for each method in the SUNW.xfnts()
resource type.

� Appendix D lists the requirements for legal characters for Resource Group
Manager (RGM) names and values.

� Appendix E list the requirements for ordinary, non-cluster aware applications to be
candidates for high availability.

� Appendix F lists the document type definitions for CRNP.

� Appendix G shows the complete CrnpClient.java application that is discussed
in Chapter 12.

14 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Related Documentation
Information about related Sun Cluster topics is available in the documentation that is
listed in the following table. All Sun Cluster documentation is available at
http://docs.sun.com.

Topic Documentation

Concepts Sun Cluster Concepts Guide for Solaris OS

Overview Sun Cluster Overview for Solaris OS

Hardware administration Sun Cluster 3.x Hardware Administration Manual for Solaris OS

Individual hardware administration guides

Software installation Sun Cluster Software Installation Guide for Solaris OS

Data service administration Sun Cluster Data Services Planning and Administration Guide for
Solaris OS

Individual data service guides

Data service development Sun Cluster Data Services Developer’s Guide for Solaris OS

System administration Sun Cluster System Administration Guide for Solaris OS

Error messages Sun Cluster Error Messages Guide for Solaris OS

Command and function
reference

Sun Cluster Reference Manual for Solaris OS

A complete list of Sun Cluster documentation is available in the release notes for your
release of Sun Cluster at http://docs.sun.com.

Getting Help
If you have problems installing or using Sun Cluster, contact your service provider
and provide the following information.

� Your name and email address (if available)
� Your company name, address, and phone number
� The model number and serial number of your systems
� The release number of the operating system (for example, Solaris 10)
� The release number of Sun Cluster (for example, Sun Cluster 3.1)

Preface 15

http://docs.sun.com
http://docs.sun.com

Use the following commands to gather information on your systems for your service
provider.

Command Function

prtconf -v Displays the size of the system memory and reports
information about peripheral devices

psrinfo -v Displays information about processors

showrev -p Reports which patches are installed

SPARC: prtdiag -v Displays system diagnostic information

/usr/cluster/bin/scinstall
-pv

Displays Sun Cluster release and package version
information

Also have available the contents of the /var/adm/messages file.

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes used in this book.

16 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

http://docs.sun.com
http://docs.sun.com

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories; on-screen computer output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with
on-screen computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

To delete a file, type rm
filename.

AaBbCc123 Book titles, new words, or terms, or
words to be emphasized.

Read Chapter 6 in User’s Guide.

These are called class options.

You must be root to do this.

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the C
shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

Preface 17

18 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

CHAPTER 1

Overview of Resource Management

This book provides guidelines for creating a resource type for a software application
such as Oracle®, Sun Java™ System Web Server (formerly Sun™ ONE Web Server),
DNS, and so on. As such, this book is intended for developers of resource types.

This chapter provides an overview of the concepts you need to understand in order to
develop a data service and contains the following information.

� “Sun Cluster Application Environment” on page 19
� “RGM Model” on page 21
� “Resource Group Manager” on page 23
� “Callback Methods” on page 23
� “Programming Interfaces” on page 24
� “Resource Group Manager Administrative Interface” on page 26

Note – This book uses the terms resource type and data service interchangeably. The term
agent, though rarely used in this book, is equivalent to resource type and data service.

Sun Cluster Application Environment
The Sun Cluster system enables applications to be run and administered as highly
available and scalable resources. The cluster facility known as the Resource Group
Manager, or RGM, provides the mechanism for high availability and scalability. The
elements that form the programming interface to this facility include the following.

� A set of callback methods you write that enable the RGM to control an application
on the cluster

� The Resource Management API (RMAPI), a set of low-level API commands and
functions that you can use to write the callback methods. These APIs are
implemented in the libscha.so library.

19

� Process management facilities for monitoring and restarting processes on the
cluster

� The Data Service Development Library (DSDL), a set of library functions that
encapsulates the low-level API and process-management functionality at a higher
level and adds some additional functionality to ease the writing of callback
methods. These functions are implemented in the libdsdev.so library.

The following figure shows the interrelationship of these elements.

FIGURE 1–1 Programming Architecture

Included in the Sun Cluster package is SunPlex™ Agent Builder, a tool that automates
the process of creating a data service (see Chapter 9). Agent Builder generates data
service code in either C (using DSDL functions to write the callback methods) or in
Korn shell (ksh) (using low-level API commands to write the callback methods).

The RGM runs as a daemon on each cluster node and automatically starts and stops
resources on selected nodes according to preconfigured policies. The RGM makes a
resource highly available in the event of a node failure or reboot by stopping the
resource on the affected node and starting it on another. The RGM also automatically
starts and stops resource-specific monitors that can detect resource failures and
relocate failing resources onto another node or can monitor other aspects of resource
performance.

The RGM supports both failover resources, which can be online on at most one node
at a time, and scalable resources, which can be online on multiple nodes
simultaneously.

20 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

RGM Model
This section introduces some fundamental terminology and explains in more detail the
RGM and its associated interfaces.

The RGM handles three major kinds of interrelated objects: resource types, resources,
and resource groups. One way to introduce these objects is by means of an example, as
described below.

A developer implements a resource type, ha-oracle, that makes an existing Oracle
DBMS application highly available. An end user defines separate databases for
marketing, engineering, and finance, each of which is a resource of type ha-oracle.
The cluster administrator places these resources in separate resource groups so they
can run on different nodes and fail over independently. A developer creates a second
resource type, ha-calendar, to implement a highly available calendar server that
requires an Oracle database. The cluster administrator places the resource for the
finance calendar into the same resource group as the finance database resource so that
both resources run on the same node and fail over together.

Resource Types
A resource type consists of a software application to be run on the cluster, control
programs used as callback methods by the RGM to manage the application as a cluster
resource, and a set of properties that form part of the static configuration of a cluster.
The RGM uses resource type properties to manage resources of a particular type.

Note – In addition to a software application, a resource type can represent other system
resources such as network addresses.

The resource type developer specifies the properties for the resource type and sets
their values in a resource type registration (RTR) file. The RTR file follows a
well-defined format described in “Setting Resource and Resource Type Properties”
on page 32 and in the rt_reg(4) man page. See also “Defining the Resource Type
Registration File” on page 84 for a description of a sample resource type registration
file.

Table A–1 provides a list of the resource type properties.

The cluster administrator installs and registers the resource type implementation and
underlying application on a cluster. The registration procedure enters into the cluster
configuration the information from the resource type registration file. The Sun Cluster
Data Services Planning and Administration Guide for Solaris OS describes the procedure
for registering a data service.

Chapter 1 • Overview of Resource Management 21

Resources
A resource inherits the properties and values of its resource type. In addition, a
developer can declare resource properties in the resource type registration file. See
Table A–2 for a list of resource properties.

The cluster administrator can change the values of certain properties depending on
how they were specified in the resource type registration (RTR) file. For example,
property definitions can specify a range of allowable values and specify when the
property is tunable, for example, at creation, any time, or never. Within these
specifications, the cluster administrator can make changes to properties using
administration commands.

The cluster administrator can create many resources of the same type, each resource
having its own name and set of property values, so that more than one instance of the
underlying application can run on the cluster. Each instantiation requires a unique
name within the cluster.

Resource Groups
Each resource must be configured in a resource group. The RGM brings all resources
in a group online and offline together on the same node. When the RGM brings a
resource group online or offline, it invokes callback methods on the individual
resources in the group.

The nodes on which a resource group is currently online are called its primaries or
primary nodes. A resource group is mastered by each of its primaries. Each resource
group has an associated Nodelist property, which is set by the cluster administrator,
that identifies all potential primaries or masters of the resource group.

A resource group also has a set of properties. These properties include configuration
properties that can be set by the cluster administrator and dynamic properties, set by
the RGM, that reflect the active state of the resource group.

The RGM defines two types of resource groups, failover and scalable. A failover
resource group can be online on one node only at any time while a scalable resource
group can be online on multiple nodes simultaneously. The RGM provides a set of
properties to support the creation of each type of resource group. See “Transferring a
Data Service to a Cluster” on page 31 and “Implementing Callback Methods”
on page 40 for details about these properties.

See Table A–3 for a list of resource group properties.

22 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Resource Group Manager
The Resource Group Manager (RGM) is implemented as a daemon, rgmd, that runs on
each member node of the cluster. All of the rgmd processes communicate with each
other and act together as a single cluster-wide facility.

The RGM supports the following functions:

� Whenever a node boots or crashes, the RGM attempts to maintain availability of all
managed resource groups by automatically bringing them online on appropriate
masters.

� If a particular resource fails, its monitor program can request that the resource
group be restarted on the same master or switched to a new master.

� The cluster administrator can issue an administrative command to request one of
the following actions:

� Change mastery of a resource group
� Enable or disable a particular resource within a resource group
� Create, delete, or modify a resource, a resource group, or a resource type

Whenever the RGM activates configuration changes, it coordinates its actions across
all member nodes of the cluster. This kind of activity is known as a reconfiguration. To
effect a state change on an individual resource, the RGM invokes a resource-type
specific callback method on that resource.

Callback Methods
The Sun Cluster framework uses a callback mechanism to provide communication
between a data service and the RGM. The framework defines a set of callback
methods, including their arguments and return values, and the circumstances under
which the RGM calls each method.

You create a data service by coding a set of individual callback methods and
implementing each method as a control program callable by the RGM. That is, the
data service does not consist of a single executable but rather consists of a number of
executable scripts (ksh) or binaries (C), each of which is directly callable by the RGM.

Callback methods are registered with the RGM through the resource type registration
(RTR) file. In the RTR file you identify the program for each method you have
implemented for the data service. When a system administrator registers the data
service on a cluster, the RGM reads the RTR file, which provides, among other
information, the identity of the callback programs.

Chapter 1 • Overview of Resource Management 23

The only required callback methods for a resource type are a start method (Start or
Prenet_start), and a stop method (Stop or Postnet_stop).

The callback methods can be grouped into the following categories:

� Control and initialization methods

� Start and Stop start and stop resources in a group that is being brought
online or offline.

� Init, Fini, Boot execute initialization and termination code on resources.
� Administrative support methods

� Validate verifies properties set by administrative action.
� Update updates the property settings of an online resource.

� Net-relative methods

� Prenet_start and Postnet_stop do special startup or shutdown actions
before network addresses in the same resource group are configured up or after
they are configured down.

� Monitor control methods

� Monitor_start and Monitor_stop start or stop the monitor for a resource.
� Monitor_check assesses the reliability of a node before a resource group is

moved to the node.

See Chapter 4 and the rt_callbacks(1HA) man page for more information on the
callback methods. Also see Chapter 5 and Chapter 8 for callback methods in sample
data services.

Programming Interfaces
For writing data service code, the resource management architecture provides a
low-level, or base API, a higher-level library built on top of the base API, and a tool,
SunPlex Agent Builder, that automatically generates a data service from basic input
that you provide.

RMAPI
The RMAPI (Resource Management API) provides a set of low-level routines that
enable a data service to access information about the resources, resource types and
resource groups in the system, request a local restart or failover, and set the resource
status. You access these functions through the libscha.so library. The RMAPI

24 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

provides these callback methods both in the form of shell commands and in the form
of C functions. See scha_calls(3HA) and Chapter 4 for more information on the
RMAPI routines. Also see Chapter 5 for examples of how to use these routines in
sample data service callback methods.

Data Service Development Library (DSDL)
Built on top of the RMAPI is the DSDL, which provides a higher-level integrated
framework while retaining the underlying method-callback model of the RGM. The
DSDL brings together various facilities for data-service development, including:

� libscha.so—the low-level resource management APIs

� PMF—the process management facility, which provides a means of monitoring
processes and their descendants, and restarting them if they die (see pmfadm(1M)
and rpc.pmfd(1M)).

� hatimerun—a facility for running programs under a timeout (see
hatimerun(1M).

For the majority of applications, the DSDL provides most or all of the functionality
you need to build a data service. Note, however, that the DSDL does not replace the
low-level API but encapsulates and extends it. In fact, many DSDL functions call the
libscha.so functions. Likewise you can directly call libscha.so functions while
using the DSDL to code the bulk of your data service. The libdsdev.so library
contains the DSDL functions.

See Chapter 6 and the scha_calls(3HA) man page for more information about the
DSDL.

SunPlex Agent Builder
Agent Builder is a tool that automates the creation of a data service. You input basic
information about the target application and the data service to be created.Agent
Builder generates a data service, complete with source and executable code (C or Korn
shell), customized RTR file, and a Solaris™ package.

For most applications, you can use Agent Builder to generate a complete data service
with only minor manual changes on your part. Applications with more sophisticated
requirements, such as adding validation checks for additional properties, might
require work that Agent Builder cannot do. However, even in these cases you might be
able to use Agent Builder to generate the bulk of the code and manually code the rest.
At minimum, you can use Agent Builder to generate the Solaris package for you.

Chapter 1 • Overview of Resource Management 25

Resource Group Manager
Administrative Interface
Sun Cluster provides both a graphical user interface and a set of commands for
administering a cluster.

SunPlex Manager
SunPlex Manager is a Web-based tool that enables you to perform the following tasks.

� Install a cluster
� Administer a cluster
� Create and configure resources and resource groups
� Configure data services with the Sun Cluster software

See the Sun Cluster Software Installation Guide for Solaris OS for instructions on how to
install SunPlex Manager and how to use SunPlex Manager to install cluster software.
SunPlex Manager provides online help for most unique administrative tasks.

Administrative Commands
The Sun Cluster commands for administering RGM objects are scrgadm(1M),
scswitch(1M), and scstat(1M) -g.

The scrgadm command allows viewing, creating, configuring and deleting the
resource type, resource group, and resource objects used by the RGM. The command
is part of the administrative interface for the cluster, and is not to be used in the same
programming context as the application interface described in the rest of this chapter.
However, scrgadm is the tool for constructing the cluster configuration in which the
API operates. Understanding the administrative interface sets the context for
understanding the application interface. Refer to the scrgadm(1M) man page for
details on the administrative tasks that can be performed by the command.

The scswitch command switches resource groups online and offline on specified
nodes and enables or disables a resource or its monitor. See the scswitch(1M) man
page for details on the administrative tasks that the command can perform.

The scstat -g command shows the current dynamic state of all resource groups and
resources.

26 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

CHAPTER 2

Developing a Data Service

This chapter provides detailed information about developing a data service.

This chapter covers the following topics:

� “Analyzing the Application for Suitability” on page 27
� “Determining the Interface to Use” on page 29
� “Setting Up the Development Environment for Writing a Data Service” on page 30
� “Setting Resource and Resource Type Properties” on page 32
� “Implementing Callback Methods” on page 40
� “Generic Data Service” on page 41
� “Controlling an Application” on page 42
� “Monitoring a Resource” on page 45
� “Adding Message Logging to a Resource” on page 46
� “Providing Process Management” on page 46
� “Providing Administrative Support for a Resource” on page 47
� “Implementing a Failover Resource” on page 47
� “Implementing a Scalable Resource” on page 48
� “Writing and Testing Data Services” on page 51

Analyzing the Application for Suitability
The first step in creating a data service is to determine that the target application
satisfies the requirements for being made highly available or scalable. If the
application fails to meet all requirements, you might be able to modify the application
source code to make it so.

The list that follows summarizes the requirements for an application to be made
highly available or scalable. If you need more detail or if you need to modify the
application source code, refer to Appendix B.

27

Note – A scalable service must meet all the following conditions for high availability as
well as some additional criteria.

� Both network aware (client-server model) and non-network aware (client-less)
applications are potential candidates for being made highly available or scalable in
the Sun Cluster environment. However Sun Cluster cannot provide enhanced
availability in time-sharing environments in which applications are run on a server
that is accessed through telnet or rlogin.

� The application must be crash tolerant. That is, it must recover disk data (if
necessary) when it is started after an unexpected node death. Furthermore, the
recovery time after a crash must be bounded. Crash tolerance is a prerequisite for
making an application highly available because the ability to recover the disk and
restart the application is a data integrity issue. The data service is not required to
be able to recover connections

� The application must not depend upon the physical hostname of the node on
which it is running. See “Host Names” on page 307 for additional information.

� The application must operate correctly in environments in which multiple IP
addresses are configured to go up; for example, environments with multihomed
hosts, in which the node is on more than one public network, and environments
with nodes on which multiple, logical interfaces are configured to go up on one
hardware interface.

� To be highly available, the application data must reside in the cluster file
systems—see “Multihosted Data” on page 305.

If the application uses a hard-wired path name for the location of the data, you
could change that path to a symbolic link that points to a location in the cluster file
system, without changing application source code. See “Using Symbolic Links for
Multihosted Data Placement” on page 306 for additional information.

� Application binaries and libraries can reside locally on each node or on the cluster
file system. The advantage of residing on the cluster file system is that a single
installation is sufficient. The disadvantage is that rolling upgrade becomes an issue
because the binaries are in use while the application is running under control of the
RGM.

� The client should have some capacity to retry a query automatically if the first
attempt times out. If the application and protocol already handle the case of a
single server crashing and rebooting, then they also will handle the case of the
containing resource group being failed over or switched over. See “Client Retry”
on page 309 for additional information.

� The application must not have Unix domain sockets or named pipes in the cluster
file system.

Additionally, scalable services must meet the following requirements.

� The application must have the ability to run multiple instances, all operating on the
same application data in the cluster file system.

28 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� The application must provide data consistency for simultaneous access from
multiple nodes.

� The application must implement sufficient locking with a globally visible
mechanism, such as the cluster file system.

For a scalable service, application characteristics also determine the load-balancing
policy. For example, the load-balancing policy, LB_WEIGHTED, which allows any
instance to respond to client requests, does not work for an application that makes use
of an in-memory cache on the server for client connections. In this case, you should
specify a load-balancing policy that restricts a given client’s traffic to one instance of
the application. The load-balancing policies, LB_STICKY and LB_STICKY_WILD,
repeatedly send all requests by a client to the same application instance—where they
can make use of an in-memory cache. Note that if multiple client requests come in
from different clients, the RGM distributes the requests among the instances of the
service. See “Implementing a Failover Resource” on page 47 for more information
about setting the load balancing policy for scalable data services.

Determining the Interface to Use
The Sun Cluster developer support package (SUNWscdev) provides two sets of
interfaces for coding data service methods:

� The Resource Management API (RMAPI), a set of low-level routines (in the
libscha.so library)

� The Data Services Development Library (DSDL), a set of higher level functions (in
the libdsdev.so library) that encapsulate the functionality of the RMAPI and
provides some additional functionality

Also included in the Sun Cluster developer support package is SunPlex Agent Builder,
a tool that automates the creation of a data service.

The recommended approach to developing a data service is:

1. Decide whether to code in C or the Korn shell. If you decide to use the Korn shell,
you cannot use the DSDL, which provides a C interface only.

2. Run Agent Builder, specify the requested inputs, and generate a data service,
which includes source and executable code, an RTR file, and a package.

3. If the generated data service requires customizing, you can add DSDL code to the
generated source files. Agent Builder indicates, with comments, specific places in
the source files where you can add your own code.

4. If the code requires further customizing to support the target application, you can
add RMAPI functions to the existing source code.

Chapter 2 • Developing a Data Service 29

In practice, you could take numerous approaches to creating a data service. For
example, rather than add your own code to specific places in the code generated by
Agent Builder, you could replace entirely one of the generated methods or the
generated monitor program with a program you write from scratch using DSDL or
RMAPI functions. However, regardless of the manner you proceed, in almost every
case, starting with Agent Builder makes sense, for the following reasons:

� The code generated by Agent Builder, while generic in nature, has been tested in
numerous data services.

� Agent Builder generates an RTR file, a make file, a package for the resource, and
other support files for the data service. Even if you use none of the data service
code, using these other files can save you a considerable amount of work.

� You can modify the generated code.

Note – Unlike the RMAPI, which provides a set of C functions and a set of commands
for use in scripts, the DSDL provides a C function interface only. Therefore, if you
specify Korn shell (ksh) output in Agent Builder, the generated source code makes
calls to RMAPI because there are no DSDL ksh commands.

Setting Up the Development
Environment for Writing a Data Service
Before beginning data service development, you must have installed the Sun Cluster
development package (SUNWscdev) to have access to the Sun Cluster header and
library files. Although this package is already installed on all cluster nodes, typically,
you do development on a separate, non-cluster development machine, not on a cluster
node. In this typical case, you must use pkgadd to install the SUNWscdev package on
your development machine.

When compiling and linking your code, you must set particular options to identify the
header and library files. When you have finished development (on a non-cluster node)
you can transfer the completed data service to a cluster for running and testing.

Note – Be certain you are using a development version of Solaris 5.8 or higher.

Use the procedures in this section to:

� Install the Sun Cluster development package (SUNWscdev) and set the appropriate
compiler and linker options

30 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� Transfer the data service to a cluster

� Setting Up the Development Environment
This procedure describes how to install the SUNWscdev package and set the compiler
and linker options for data service development.

1. Become superuser or assume an equivalent role and change directory to the
CD-ROM directory that you want.

cd CD-ROM_directory

2. Install the SUNWscdev package in the current directory.

pkgadd -d . SUNWscdev

3. In the Makefile, specify compiler and linker options that identify the include
and library files for your data service code.

Specify the -I option to identify the Sun Cluster header files, the -L option to
specify the compile-time library search path on the development system, and the
-R option to specify the library search path to the runtime linker on the cluster.

Makefile for sample data service
...

-I /usr/cluster/include

-L /usr/cluster/lib

-R /usr/cluster/lib

...

Transferring a Data Service to a Cluster
When you have completed development of a data service on a development machine,
you must transfer it to a cluster for testing. To reduce the chance of error, the best way
to accomplish this transfer is to package together the data service code and the RTR
file and then install the package on all nodes of the cluster.

Note – Whether you use pkgadd or some other way to install the data service, you
must put the data service on all cluster nodes. Agent Builder automatically packages
together the RTR file and data service code.

Chapter 2 • Developing a Data Service 31

Setting Resource and Resource Type
Properties
Sun Cluster provides a set of resource type properties and resource properties that you
use to define the static configuration of a data service. Resource type properties
specify the type of the resource, its version, the version of the API, and so on, as well
as paths to each of the callback methods. Table A–1 lists all the resource type
properties.

Resource properties, such as Failover_mode, Thorough_probe_interval, and
method timeouts, also define the static configuration of the resource. Dynamic
resource properties such as Resource_state and Status reflect the active state of a
managed resource. Table A–2 describes the resource properties.

You declare the resource type and resource properties in the resource type registration
(RTR) file, which is an essential component of a data service. The RTR file defines the
initial configuration of the data service at the time the cluster administrator registers
the data service with Sun Cluster.

It is recommended that you use Agent Builder to generate the RTR file for your data
service because Agent Builder declares the set of properties that are both useful and
required for any data service. For example certain properties (such as
Resource_type) must be declared in the RTR file or registration of the data service
fails. Other properties, though not required, will not be available to a system
administrator unless you declare them in the RTR file, while some properties are
available whether you declare them or not, because the RGM defines them and
provides a default value. To avoid this level of complexity, you can simply use Agent
Builder to guarantee generation of a proper RTR file. Later on you can edit the RTR file
to change specific values if you need to do so.

The rest of this section leads you through a sample RTR file, created by Agent Builder.

Declaring Resource Type Properties
The cluster administrator cannot configure the resource type properties you declare in
the RTR file. They become part of the permanent configuration of the resource type.

Note – One resource type property, Installed_nodes, is configurable by a system
administrator. In fact, it is only configurable by a system administrator and you cannot
declare it in the RTR file.

The syntax for resource type declarations is:

32 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

property_name = value;

Note – The RGM treats property names as case insensitive. The convention for
properties in Sun-supplied RTR files, with the exception of method names, is
uppercase for the first letter of the name and lowercase for the rest of the name.
Method names—as well as property attributes—contain all uppercase letters.

Following are the resource type declarations in the RTR file for a sample (smpl) data
service:

Sun Cluster Data Services Builder template version 1.0
Registration information and resources for smpl
#
#NOTE: Keywords are case insensitive, i.e., you can use
#any capitalization style you prefer.
#
Resource_type = "smpl";
Vendor_id = SUNW;
RT_description = "Sample Service on Sun Cluster";

RT_version ="1.0";
API_version = 2;
Failover = TRUE;

Init_nodes = RG_PRIMARIES;

RT_basedir=/opt/SUNWsmpl/bin;

Start = smpl_svc_start;
Stop = smpl_svc_stop;

Validate = smpl_validate;
Update = smpl_update;

Monitor_start = smpl_monitor_start;
Monitor_stop = smpl_monitor_stop;

Monitor_check = smpl_monitor_check;

Tip – You must declare the Resource_type property as the first entry in the RTR file.
Otherwise, registration of the resource type will fail.

The first set of resource type declarations provide basic information about the resource
type, as follows:

Resource_type and Vendor_id Provide a name for the resource type. You can
specify the resource type name with the
Resource_type property alone (smpl) or
using the Vendor_id as a prefix with a “.”

Chapter 2 • Developing a Data Service 33

separating it from the resource type
(SUNW.smpl), as in the sample. If you use
Vendor_id, make it the stock symbol for the
company defining the resource type. The
resource type name must be unique in the
cluster.

Note – By convention, the resource type name
(Resource_typeVendor_id) is used as the
package name. Package names are limited to
nine characters, so it is a good idea to limit
the total number of characters in these two
properties to nine or fewer characters, though
the RGM does not enforce this limit. Agent
Builder, on the other hand, explicitly
generates the package name from the resource
type name, so it does enforce the nine
character limit.

Rt_version Identifies the version of the sample data
service.

API_version Identifies the version of the API. For example,
API_version = 2, indicates that the data
service runs under Sun Cluster, version 3.0.

Failover = TRUE Indicates that the data service cannot run in a
resource group that can be online on multiple
nodes at once, that is, specifies a failover data
service. See “Transferring a Data Service to a
Cluster” on page 31 for more information.

Start, Stop, Validate, and so on Provide the paths to the respective callback
method programs called by the RGM. These
paths are relative to the directory specified by
RT_basedir.

The remaining resource type declarations provide configuration information, as
follows:

Init_nodes = RG_PRIMARIES Specifies that the RGM call the Init, Boot,
Fini, and Validate methods only on nodes
that can master the data service. The nodes
specified by RG_PRIMARIES is a subset of all
nodes on which the data service is installed.
Set the value to RT_INSTALLED_NODES to

34 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

specify that the RGM call these methods all
nodes on which the data service is installed.

RT_basedir Points to /opt/SUNWsample/bin as the
directory path to complete relative paths,
such as callback method paths.

Start, Stop, Validate, and so on Provide the paths to the respective callback
method programs called by the RGM. These
paths are relative to the directory specified by
RT_basedir.

Declaring Resource Properties
As with resource type properties, you declare resource properties in the RTR file. By
convention, resource property declarations follow the resource type declarations in the
RTR file. The syntax for resource declarations is a set of attribute value pairs enclosed
by curly brackets:

{
Attribute = Value;
Attribute = Value;

.

.

.
Attribute = Value;

}

For resource properties provided by Sun Cluster, so-called system-defined properties,
you can change specific attributes in the RTR file. For example, Sun Cluster provides
method timeout properties for each of the callback methods, and specifies default
values. In the RTR file, you can specify different default values.

You can also define new resource properties in the RTR file, so-called extension
properties, using a set of property attributes provided by Sun Cluster. Table A–4 lists
the attributes for changing and defining resource properties. Extension property
declarations follow the system-defined property declarations in the RTR file.

The first set of system-defined resource properties specifies timeout values for the
callback methods:

...

Resource property declarations appear as a list of bracketed
entries after the resource-type declarations. The property
name declaration must be the first attribute after the open
curly bracket of a resource property entry.
#
Set minimum and default for method timeouts.
{

Chapter 2 • Developing a Data Service 35

PROPERTY = Start_timeout;
MIN=60;
DEFAULT=300;

}

{
PROPERTY = Stop_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Validate_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Update_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Monitor_Start_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Monitor_Stop_timeout;
MIN=60;
DEFAULT=300;

{
PROPERTY = Monitor_Check_timeout;
MIN=60;
DEFAULT=300;

}

The name of the property (PROPERTY = value) must be the first attribute for each
resource-property declaration. You can configure resource properties, within limits
defined by the property attributes in the RTR file. For example, the default value for
each method timeout in the sample is 300 seconds. An administrator can change this
value; however, the minimum allowable value, specified by the MIN attribute, is 60
seconds. See Table A–4 for a complete list of resource property attributes.

The next set of resource properties defines properties that have specific uses in the
data service.

{
PROPERTY = Failover_mode;
DEFAULT=SOFT;
TUNABLE = ANYTIME;

}
{

PROPERTY = Thorough_Probe_Interval;
MIN=1;

36 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

MAX=3600;
DEFAULT=60;
TUNABLE = ANYTIME;

}

The number of retries to be done within a certain period before concluding
that the application cannot be successfully started on this node.
{

PROPERTY = Retry_Count;
MAX=10;
DEFAULT=2;
TUNABLE = ANYTIME;

}

Set Retry_Interval as a multiple of 60 since it is converted from seconds
to minutes, rounding up. For example, a value of 50 (seconds)
is converted to 1 minute. Use this property to time the number of
retries (Retry_Count).
{

PROPERTY = Retry_Interval;
MAX=3600;
DEFAULT=300;
TUNABLE = ANYTIME;

}

{
PROPERTY = Network_resources_used;
TUNABLE = WHEN_DISABLED;
DEFAULT = "";

}
{

PROPERTY = Scalable;
DEFAULT = FALSE;
TUNABLE = AT_CREATION;

}
{

PROPERTY = Load_balancing_policy;
DEFAULT = LB_WEIGHTED;
TUNABLE = AT_CREATION;

}
{

PROPERTY = Load_balancing_weights;
DEFAULT = "";
TUNABLE = ANYTIME;

}
{

PROPERTY = Port_list;
TUNABLE = AT_CREATION;
DEFAULT = ;

}

Chapter 2 • Developing a Data Service 37

These resource-property declarations add the TUNABLE attribute, which limits the
occasions on which the system administrator can change their values. AT_CREATION
means the administrator can only specify the value when the resource is created and
cannot change it later.

For most of these properties you can accept the default values as generated by Agent
Builder unless you have a reason to change them. Information about these properties
follows (for additional information, see “Resource Properties” on page 237 or the
r_properties(5) man page):

Failover_mode
Indicates whether the RGM should relocate the resource group or abort the node in
the case of a failure of a Start or Stop method.

Thorough_probe_interval, Retry_count, Retry_interval
Used in the fault monitor. Tunable equals Anytime, so a system administrator can
adjust them if the fault monitor is not functioning optimally.

Network_resources_used
A list of logical hostname or shared address resources used by the data service.
Agent Builder declares this property so a system administrator can specify a list of
resources, if there are any, when configuring the data service.

Scalable
Set to FALSE to indicate this resource does not use the cluster networking (shared
address) facility. This setting is consistent with the resource type Failover
property set to TRUE to indicate a failover service. See “Transferring a Data Service
to a Cluster” on page 31 and “Implementing Callback Methods” on page 40 for
additional information about how to use this property.

Load_balancing_policy, Load_balancing_weights
Automatically declares these properties, however, they have no use in a failover
resource type.

Port_list
Identifies the list of ports on which the server is listening. Agent Builder declares
this property so a system administrator can specify a list of ports, when configuring
the data service.

Declaring Extension Properties
At the end of the sample RTR file are extension properties, as shown in the following
listing

Extension Properties
#

The cluster administrator must set the value of this property to point to the
directory that contains the configuration files used by the application.
For this application, smpl, specify the path of the configuration file on

38 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

PXFS (typically named.conf).
{

PROPERTY = Confdir_list;
EXTENSION;
STRINGARRAY;
TUNABLE = AT_CREATION;
DESCRIPTION = "The Configuration Directory Path(s)";

}

The following two properties control restart of the fault monitor.
{

PROPERTY = Monitor_retry_count;
EXTENSION;
INT;
DEFAULT = 4;
TUNABLE = ANYTIME;
DESCRIPTION = "Number of PMF restarts allowed for fault monitor.";

}
{

PROPERTY = Monitor_retry_interval;
EXTENSION;
INT;
DEFAULT = 2;
TUNABLE = ANYTIME;
DESCRIPTION = "Time window (minutes) for fault monitor restarts.";

}
Time out value in seconds for the probe.
{

PROPERTY = Probe_timeout;
EXTENSION;
INT;
DEFAULT = 120;
TUNABLE = ANYTIME;
DESCRIPTION = "Time out value for the probe (seconds)";

}

Child process monitoring level for PMF (-C option of pmfadm).
Default of -1 means to not use the -C option of pmfadm.
A value of 0 or greater indicates the desired level of child-process.
monitoring.
{

PROPERTY = Child_mon_level;
EXTENSION;
INT;
DEFAULT = -1;
TUNABLE = ANYTIME;
DESCRIPTION = “Child monitoring level for PMF";

}
User added code -- BEGIN VVVVVVVVVVVV

User added code -- END ^^^^^^^^^^^^

Agent Builder creates some extension properties that are useful for most data services,
as follows.

Chapter 2 • Developing a Data Service 39

Confdir_list
Specifies the path to the application configuration directory, which is useful
information for many applications. The system administrator can provide the
location of this directory when configuring the data service.

Monitor_retry_count, Monitor_retry_interval, Probe_timeout
Control restarts of the fault monitor itself, not of the server daemon.

Child_mon_level
Sets the level of monitoring to be done by PMF. See pmfadm(1M) for more
information.

You can create additional extension properties in the area delimited by the User added
code comments.

Implementing Callback Methods
This section provides some information that pertains to implementing the callback
methods in general.

Accessing Resource and Resource Group Property
Information
Generally, callback methods require access to the properties of the resource. The
RMAPI provides both shell commands and C functions that you can use in callback
methods to access the system-defined and extension properties of resources. See the
scha_resource_get(1HA) and scha_resource_get(3HA) man pages.

The DSDL provides a set of C functions (one for each property) to access
system-defined properties, and a function to access extension properties. See the
scds_property_functions(3HA) and scds_get_ext_property(3HA) man
pages.

You cannot use the property mechanism to store dynamic state information for a data
service because no API functions are available for setting resource properties (other
than for setting Status and Status_msg). Rather, you should store dynamic state
information in global files.

40 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Note – The cluster administrator can set certain resource properties using the scrgadm
command or through an available graphical administrative command or through an
available graphical administrative interface. However, do not call scrgadm from any
callback method because scrgadm fails during cluster reconfiguration, that is, when
the RGM calls the method.

Idempotency for Methods
In general, the RGM does not call a method more than once in succession on the same
resource with the same arguments. However, if a Start method fails, the RGM could
call a Stop method on a resource even though the resource was never started.
Likewise, a resource daemon could die of its own accord and the RGM might still
invoke its Stop method on it. The same scenarios apply to the Monitor_start and
Monitor_stop methods.

For these reasons, you must build idempotency into your Stop and Monitor_stop
methods. Repeated calls of Stop or Monitor_stop on the same resource with the
same parameters achieve the same results as a single call.

One implication of idempotency is that Stop and Monitor_stop must return 0
(success) even if the resource or monitor is already stopped and no work is to done.

Note – The Init, Fini, Boot, and Update methods must also be idempotent. A
Start method need not be idempotent.

Generic Data Service
A generic data service (GDS) is a mechanism for making simple applications highly
available or scalable by plugging them into the Sun Cluster’s Resource Group
Manager framework. This mechanism does not require the coding of an agent which is
the typical approach for making an application highly available or scalable.

The GDS model relies on a precompiled resource type, SUNW.gds, to interact with the
RGM framework

See Chapter 10 for additional information.

Chapter 2 • Developing a Data Service 41

Controlling an Application
Callback methods enable the RGM to take control of the underlying resource
(application) whenever nodes are in the process of joining or leaving the cluster.

Starting and Stopping a Resource
A resource type implementation requires, at a minimum, a Start method and a Stop
method. The RGM calls a resource type’s method programs at appropriate times and
on the appropriate nodes for bringing resource groups offline and online. For example,
after the crash of a cluster node, the RGM moves any resource groups mastered by
that node onto a new node. You must implement a Start method to provide the
RGM with a way of restarting each resource on the surviving host node.

A Start method must not return until the resource has been started and is available
on the local node. Be certain that resource types requiring a long initialization period
have sufficiently long timeouts set on their Start methods (set default and minimum
values for the Start_timeout property in the resource type registration file).

You must implement a Stop method for situations in which the RGM takes a resource
group offline. For example, suppose a resource group is taken offline on Node1 and
back online on Node2. While taking the resource group offline, the RGM calls the
Stop method on resources in the group to stop all activity on Node1. After the Stop
methods for all resources have completed on Node1, the RGM brings the resource
group back online on Node2.

A Stop method must not return until the resource has completely stopped all its
activity on the local node and has completely shut down. The safest implementation of
a Stop method would terminate all processes on the local node related to the
resource. Resource types requiring a long time to shut down should have sufficiently
long timeouts set on their Stop methods. Set the Stop_timeout property in the
resource type registration file.

Failure or timeout of a Stop method causes the resource group to enter an error state
that requires operator intervention. To avoid this state, the Stop and Monitor_stop
method implementations should attempt to recover from all possible error conditions.
Ideally, these methods should exit with 0 (success) error status, having successfully
stopped all activity of the resource and its monitor on the local node.

42 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Deciding Which Start and Stop Methods to Use
This section provides some tips about when to use the Start and Stop methods
versus using the Prenet_start and Postnet_stop methods. You must have
in-depth knowledge of both the client and the data service’s client-server networking
protocol to decide the methods that are correct to use.

Services that use network address resources might require that start or stop steps be
done in a particular order that is relative to the logical hostname address
configuration. The optional callback methods Prenet_start and Postnet_stop
allow a resource type implementation to do special start-up and shutdown actions
before and after network addresses in the same resource group are configured to go
up or configured to go down.

The RGM calls methods that plumb the network addresses (but do not configure
network addresses to go up) before calling the data service’s Prenet_start method.
The RGM calls methods that unplumb the network addresses after calling the data
service’s Postnet_stop methods. The sequence is as follows when the RGM takes a
resource group online.

1. Plumb network addresses.
2. Call data service’s Prenet_start method (if any).
3. Configure network addresses to go up.
4. Call data service’s Start method (if any).

The reverse happens when the RGM takes a resource group offline:

1. Call data service’s Stop method (if any).
2. Configure network addresses to go down.
3. Call data service’s Postnet_stop method (if any).
4. Unplumb network addresses.

When deciding whether to use the Start, Stop, Prenet_start, or Postnet_stop
methods, first consider the server side. When bringing online a resource group
containing both data service application resources and network address resources, the
RGM calls methods to configure the network addresses to go up before it calls the data
service resource Start methods. Therefore, if a data service requires network
addresses to be configured to go up at the time it starts, use the Start method to start
the data service.

Likewise, when bringing offline a resource group that contains both data service
resources and network address resources, the RGM calls methods to configure the
network addresses to go down after it calls the data service resource Stop methods.
Therefore, if a data service requires network addresses to be configured to go up at the
time it stops, use the Stop method to stop the data service.

For example, to start or stop a data service, you might have to invoke the data
service’s administrative utilities or libraries. Sometimes, the data service has
administrative utilities or libraries that use a client-server networking interface to

Chapter 2 • Developing a Data Service 43

perform the administration. That is, an administrative utility makes a call to the server
daemon, so the network address might need to be up to use the administrative utility
or library. Use the Start and Stop methods in this scenario.

If the data service requires that the network addresses be configured to go down at the
time it starts and stops, use the Prenet_start and Postnet_stop methods to start
and stop the data service. Consider whether your client software will respond
differently depending on whether the network address or the data service comes
online first after a cluster reconfiguration (either scha_control() with the
SCHA_GIVEOVER argument or a switchover with scswitch). For example, the client
implementation might do minimal retries, giving up soon after determining that the
data service port is not available.

If the data service does not require the network address to be configured to go up
when it starts, start it before the network interface is configured to go up. This ensures
that the data service is able to respond immediately to client requests as soon as the
network address has been configured to go up, and clients are less likely to stop
retrying. In this scenario, use the Prenet_start method rather than the Start
method to start the data service.

If you use the Postnet_stop method, the data service resource is still up at the point
the network address is configured to be down. Only after the network address is
configured to go down is the Postnet_stop method invoked. As a result, the data
service’s TCP or UDP service port, or its RPC program number, always appears to be
available to clients on the network, except when the network address also is not
responding.

The decision to use the Start and Stop methods versus the Prenet_start and
Postnet_stop methods, or to use both, must take the requirements and behavior of
both the server and client into account.

Init, Fini, and Boot Methods
Three optional methods, Init, Fini, and Boot enable the RGM to execute
initialization and termination code on a resource. The RGM invokes the Init method
to perform a one-time initialization of the resource when the resource becomes
managed—either when the resource group it is in is switched from an unmanaged to a
managed state, or when it is created in a resource group that is already managed.

The RGM invokes the Fini method to clean up after the resource when the resource
becomes unmanaged—either when the resource group it is in is switched to an
unmanaged state or when it is deleted from a managed resource group. The clean up
must be idempotent, that is, if the clean up has already been done, Fini exits 0
(success).

The RGM invokes the Boot method on nodes that have newly joined the cluster, that
is, have been booted or rebooted.

44 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

The Boot method normally performs the same initialization as Init. This
initialization must be idempotent, that is, if the resource has already been initialized
on the local node, Boot and Init exit 0 (success).

Monitoring a Resource
Typically, you implement monitors to run periodic fault probes on resources to detect
whether the probed resources are functioning correctly. If a fault probe fails, the
monitor can attempt to restart locally or request failover of the affected resource group
by calling the scha_control() RMAPI function or the scds_fm_action() DSDL
function.

You can also monitor the performance of a resource and tune or report performance.
Writing a resource type-specific fault monitor is completely optional. Even if you
choose not to write such a fault monitor, the resource type benefits from the basic
monitoring of the cluster that Sun Cluster itself does. Sun Cluster detects failures of
the host hardware, gross failures of the host’s operating system, and failures of a host
to be able to communicate on its public networks.

Although the RGM does not call a resource monitor directly, it does provide for
automatically starting monitors for resources. When bringing a resource offline, the
RGM calls the Monitor_stop method to stop the resource’s monitor on the local
nodes before stopping the resource itself. When bringing a resource online, the RGM
calls the Monitor_start method after the resource itself has been started.

The scha_control() RMAPI function and the scds_fm_action() DSDL function
(which calls scha_control()) allow resource monitors to request the failover of a
resource group to a different node. As one of its sanity checks, scha_control() calls
Monitor_check (if defined), to determine if the requested node is reliable enough to
master the resource group containing the resource. If Monitor_check reports back
that the node is not reliable, or the method times out, the RGM looks for a different
node to honor the failover request. If Monitor_check fails on all nodes, the failover
is canceled.

The resource monitor can set the Status and Status_msg properties to reflect the
monitor’s view of the resource state. Use the RMAPI scha_resource_setstatus()
function or scha_resource_setstatus command, or the DSDL
scds_fm_action() function to set these properties.

Note – Although Status and Status_msg are of particular use to a resource monitor,
any program can set these properties.

Chapter 2 • Developing a Data Service 45

See “Defining a Fault Monitor” on page 100 for an example of a fault monitor
implemented with the RMAPI. See “SUNW.xfnts Fault Monitor” on page 144 for an
example of a fault monitor implemented with the DSDL. See the Sun Cluster Data
Services Planning and Administration Guide for Solaris OS for information about fault
monitors that are built into data services that are supplied by Sun.

Adding Message Logging to a Resource
If you want to record status messages in the same log file as other cluster messages,
use the convenience function scha_cluster_getlogfacility() to retrieve the
facility number being used to log cluster messages.

Use this facility number with the regular Solaris syslog() function to write messages
to the cluster log. You can also access the cluster log facility information through the
generic scha_cluster_get() interface.

Providing Process Management
The RMAPI and the DSDL provide process management facilities to implement
resource monitors and resource control callbacks. The RMAPI defines the following
facilities (see the man pages for details about each of these commands and programs):

Process Monitor Facility: pmfadm and rpc.pmfd
The Process Monitor Facility (PMF), provides a means of monitoring processes and
their descendants, and restarting processes if they die. The facility consists of the
pmfadm command for starting and controlling monitored processes, and the
rpc.pmfd daemon.

halockrun
A program for running a child program while holding a file lock. This command is
convenient for use in shell scripts.

hatimerun
A program for running a child program under time-out control. This is a
convenience command for use in shell scripts.

The DSDL provides the scds_hatimerun function to implement the hatimerun
functionality.

The DSDL provides a set of functions (scds_pmf_*) to implement the PMF
functionality. See “PMF Functions” on page 198 for an overview of the DSDL PMF
functionality and for a list of the individual functions.

46 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Providing Administrative Support for a
Resource
Administrative actions on resources include setting and changing resource properties.
The API defines the Validate and Update callback methods so you can hook into
these administrative actions.

The RGM calls the optional Validate method when a resource is created and when
administrative action updates the properties of the resource or its containing group.
The RGM passes the property values for the resource and its resource group to the
Validate method. The RGM calls Validate on the set of cluster nodes indicated by
the Init_nodes property of the resource’s type (see “Resource Type Properties”
on page 231, or the rt_properties(5) man page, for information about
Init_nodes. The RGM calls Validate before the creation or update is applied, and
a failure exit code from the method on any node causes the creation or update to fail.

The RGM calls Validate only when resource or group properties are changed
through administrative action, not when the RGM sets properties, or when a monitor
sets the resource properties Status and Status_msg.

The RGM calls the optional Update method to notify a running resource that
properties have been changed. The RGM invokes Update after an administrative
action succeeds in setting properties of a resource or its group. The RGM calls this
method on nodes where the resource is online. This method can use the API access
functions to read property values that might affect an active resource and adjust the
running resource accordingly.

Implementing a Failover Resource
A failover resource group contains network addresses such as the built in resource
types logical hostname and shared address, and failover resources such as the data
service application resources for a failover data service. The network address
resources, along with their dependent data service resources move between cluster
nodes when data services fail over or are switched over. The RGM provides a number
of properties that support implementation of a failover resource.

Set the boolean resource type property Failover to TRUE, to restrict the resource
from being configured in a resource group that can be online on more than one node
at a time. This property defaults to FALSE, so you must declare it as TRUE in the RTR
file for a failover resource.

Chapter 2 • Developing a Data Service 47

The Scalable resource property determines if the resource uses the cluster
shared-address facility. For a failover resource, set Scalable to FALSE because a
failover resource does not use shared addresses.

The RG_mode resource group property allows the cluster administrator to identify a
resource group as failover or scalable. If RG_mode is FAILOVER, the RGM sets the
Maximum_primaries property of the group to 1 and restricts the resource group to
being mastered by a single node. The RGM does not allow a resource whose
Failover property is TRUE to be created in a resource group whose RG_mode is
SCALABLE.

The Implicit_network_dependencies resource group property specifies that the
RGM should enforce implicit strong dependencies of non-network-address resources
on all network-address resources (logical hostname and shared address) within the
group. This means that the non-network address (data service) resources in the group
will not have their Start methods called until the network addresses in the group are
configured to go up. The Implicit_network_dependencies property defaults to
TRUE.

Implementing a Scalable Resource
A scalable resource can be online on more than one node simultaneously. Scalable
resources include data services such as Sun Cluster HA for Sun Java System Web
Server (formerly Sun Cluster HA for Sun ONE Web Server) and Sun Cluster HA for
Apache.

The RGM provides a number of properties that support implementation of a scalable
resource.

Set the boolean resource type property, Failover, to FALSE, to allow the resource to
be configured in a resource group that can be online on more than one node at a time.

The Scalable resource property determines if the resource uses the cluster
shared-address facility. Set this property to TRUE because a scalable service uses a
shared-address resource to make the multiple instances of the scalable service appear
as a single service to the client.

The RG_mode property enables the cluster administrator to identify a resource group
as failover or scalable. If RG_mode is SCALABLE, the RGM allows
Maximum_primaries to have a value greater than 1, meaning the group can be
mastered by multiple nodes simultaneously. The RGM allows a resource whose
Failover property is FALSE to be instantiated in a resource group whose RG_mode
is SCALABLE.

48 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

The cluster administrator creates a scalable resource group to contain scalable service
resources, and a separate failover resource group to contain the shared-address
resources upon which the scalable resource depends.

The cluster administrator uses the RG_dependencies resource group property to
specify the order in which resource groups are brought online and offline on a node.
This ordering is important for a scalable service because the scalable resources and the
shared address resources upon which they depend are in different resource groups. A
scalable data service requires that its network address (shared address) resources be
configured to go up before it is started. Therefore, the administrator must set the
RG_dependencies property (of the resource group containing the scalable service) to
include the resource group containing the shared address resources.

When you declare the Scalable property in the RTR file for a resource, the RGM
automatically creates the following set of scalable properties for the resource:

Network_resources_used Identifies the shared address resources used by this
resource. This property defaults to the empty string
so the cluster administrator must provide the actual
list of shared addresses the scalable service uses
when creating the resource. The scsetup command
and SunPlex Manager provide features to
automatically set up the necessary resources and
groups for scalable services.

Load_balancing_policy Specifies the load balancing policy for the resource.
You can explicitly set the policy in the RTR file (or
allow the default, LB_WEIGHTED). In either case,
the cluster administrator can change the value when
creating the resource (unless you set Tunable for
Load_balancing_policy to NONE or FALSE in
the RTR file). Legal values are:

LB_WEIGHTED
The load is distributed among various nodes
according to the weights set in the
Load_balancing_weights property.

LB_STICKY
A given client (identified by the client IP address)
of the scalable service, is always sent to the same
node of the cluster.

LB_STICKY_WILD
A given client (identified by the client’s IP
address), that connects to an IP address of a
wildcard sticky service, is always sent to the
same cluster node regardless of the port number
it is coming to.

Chapter 2 • Developing a Data Service 49

For a scalable service with
Load_balancing_policy LB_STICKY or
LB_STICKY_WILD, changing
Load_balancing_weights while the service is
online can cause existing client affinities to be reset.
In that case, a different node might service a
subsequent client request even if the client had been
previously serviced by another node in the cluster.

Similarly, starting a new instance of the service on a
cluster, might reset existing client affinities.

Load_balancing_weights Specifies the load to be sent to each node. The
format is weight@node,weight@node, where weight is
an integer reflecting the relative portion of load
distributed to the specified node. The fraction of load
distributed to a node is the weight for this node
divided by the sum of all weights of active
instances. For example, 1@1,3@2 specifies that node
1 receives 1/4 of the load and node 2 receives 3/4.

Port_list Identifies the ports on which the server is listening.
This property defaults to the empty string. You can
provide a list of ports in the RTR file. Otherwise, the
cluster administrator must provide the actual list of
ports when creating the resource.

You can create a data service that can be configured by the administrator to be either
scalable or failover. To do so, declare both the Failover resource type property and
the Scalable resource property as FALSE in the data service’s RTR file. Specify the
Scalable property to be tunable at creation.

The Failover property value (FALSE) allows the resource to be configured into a
scalable resource group. The administrator can enable shared addresses by changing
the value of Scalable to TRUE when creating the resource, and thusly create a
scalable service.

On the other hand, even though Failover is set to FALSE, the administrator can
configure the resource into a failover resource group to implement a failover service.
The administrator does not change the value of Scalable, which is FALSE. To
support this contingency, you should provide a check in the Validate method on the
Scalable property. If Scalable is FALSE, verify that the resource is configured into
a failover resource group.

The Sun Cluster Concepts Guide for Solaris OS contains additional information about
scalable resources.

50 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Validation Checks for Scalable Services
Whenever a resource is created or updated with the scalable property set to TRUE, the
RGM validates various resource properties. If the properties are not configured
correctly, the RGM rejects the attempted update or creation. The RGM performs the
following checks:

� The Network_resources_used property must be non-empty and contain the
names of existing shared address resources. Every node in the Nodelist of the
resource group containing the scalable resource must appear in either the
NetIfList property or AuxNodeList property of each of the named shared
address resources.

� The RG_dependencies property of the resource group that contains the scalable
resource must include the resource groups of all shared address resources listed in
the scalable resource’s Network_resources_used property.

� The Port_list property must be non-empty and contain a list of port-protocol pairs
such that protocol is either tcp or udp. For example,

Port_list=80/tcp,40/udp

Writing and Testing Data Services
This section provides some information about writing and testing data services.

Using Keep-Alives
On the server side, using TCP keep-alives protects the server from wasting system
resources for a down (or network-partitioned) client. If these resources are not cleaned
up (in a server that stays up long enough), eventually the wasted resources grow
without bound as clients crash and reboot.

If the client-server communication uses a TCP stream, then both the client and the
server should enable the TCP keep-alive mechanism. This provision applies even in
the non-HA, single-server case.

Other connection-oriented protocols might also have a keep-alive mechanism.

On the client side, using TCP keep-alives enables the client to be notified when a
network address resource has failed over or switched over from one physical host to
another. That transfer of the network address resource breaks the TCP connection.
However, unless the client has enabled the keep-alive, it does not necessarily learn of
the connection break if the connection happens to be quiescent at the time.

Chapter 2 • Developing a Data Service 51

For example, suppose the client is waiting for a response from the server to a
long-running request, and the client’s request message has already arrived at the
server and has been acknowledged at the TCP layer. In this situation, the client’s TCP
module has no need to keep retransmitting the request, and the client application is
blocked, waiting for a response to the request.

Where possible, in addition to using the TCP keep-alive mechanism, the client
application also must perform its own periodic keep-alive at its level, because the TCP
keep-alive mechanism is not perfect in all possible boundary cases. Using an
application-level keep-alive typically requires that the client-server protocol supports a
null operation or at least an efficient read-only operation such as a status operation.

Testing HA Data Services
This section provides suggestions about how to test a data service implementation in
the HA environment. The test cases are suggestions and are not exhaustive. You need
access to a test-bed Sun Cluster configuration so the testing work does not impact
production machines.

Test that your HA data service behaves properly in all cases where a resource group is
moved between physical hosts. These cases include system crashes and the use of the
scswitch command. Test that client machines continue to get service after these
events.

Test the idempotency of the methods. For example, replace each method temporarily
with a short shell script that calls the original method two or more times.

Coordinating Dependencies Between Resources
Sometimes one client-server data service makes requests on another client-server data
service while fulfilling a request for a client. Informally, a data service A depends on a
data service B if, for A to provide its service, B must provide its service. Sun Cluster
provides for this requirement by permitting resource dependencies to be configured
within a resource group. The dependencies affect the order in which Sun Cluster starts
and stops data services. See the scrgadm(1M) man page for details.

If resources of your resource type depend on resources of another type, you need to
instruct the user to configure the resources and resource groups appropriately, or
provide scripts or tools to correctly configure them. If the dependent resource must
run on the same node as the depended-on resource, then both resources must be
configured in the same resource group.

52 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Decide whether to use explicit resource dependencies, or to omit them and poll for the
availability of the other data service(s) in your HA data service’s own code. In the case
that the dependent and depended-on resource can run on different nodes, configure
them into separate resource groups. In this case, polling is required because it is not
possible to configure resource dependencies across groups.

Some data services store no data directly themselves, but instead depend on another
back-end data service to store all their data. Such a data service translates all read and
update requests into calls on the back-end data service. For example, consider a
hypothetical client-server appointment calendar service that keeps all of its data in an
SQL database such as Oracle. The appointment calendar service has its own
client-server network protocol. For example, it might have defined its protocol using
an RPC specification language, such as ONC RPC.

In the Sun Cluster environment, you can use HA-ORACLE to make the back-end
Oracle database highly available. Then you can write simple methods for starting and
stopping the appointment calendar daemon. Your end user registers the appointment
calendar resource type with Sun Cluster.

If the appointment calendar application must run on the same node as the Oracle
database, then the end user configures the appointment calendar resource in the same
resource group as the HA-ORACLE resource, and makes the appointment calendar
resource dependent on the HA-ORACLE resource. This dependency is specified using
the Resource_dependencies property tag in scrgadm.

If the HA-ORACLE resource is able to run on a different node than the appointment
calendar resource, the end user configures them into two separate resource groups.
The end user might configure a resource group dependency of the calendar resource
group on the Oracle resource group. However resource group dependencies are only
effective when both resource groups are being started or stopped on the same node at
the same time. Therefore, the calendar data service daemon, after it has been started,
might poll waiting for the Oracle database to become available. The calendar resource
type’s Start method usually would just return success in this case, because if the
Start method blocked indefinitely it would put its resource group into a busy state,
which would prevent any further state changes (such as edits, failovers, or
switchovers) on the group. However, if the calendar resource’s Start method
timed-out or exited non-zero, it might cause the resource group to ping-pong between
two or more nodes while the Oracle database remained unavailable.

Chapter 2 • Developing a Data Service 53

54 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

CHAPTER 3

Upgrading a Resource Type

This chapter discusses the issues that you need to understand to upgrade a resource
type and migrate a resource.

� “Overview” on page 55
� “Resource Type Registration File” on page 56
� “Resource Type_version Property” on page 58
� “Migrating a Resource to a Different Version” on page 59
� “Upgrading and Downgrading a Resource Type” on page 60
� “Default Property Values” on page 62
� “Resource Type Developer Documentation” on page 63
� “Resource Type Name and Resource Type Monitor Implementations” on page 64
� “Application Upgrades” on page 64
� “Resource Type Upgrade Examples” on page 64
� “Installation Requirements for Resource Type Packages” on page 68

Overview
System administrators require the ability to install and register a new version of an
existing resource type, to allow the registration of multiple versions of a given
resource type, and to migrate an existing resource to a new version of the resource
type without having to delete and recreate the resource. Resource developers need to
understand the requirements for providing resource type upgrade and resource
migration.

Resource types developed with upgrade in mind are called upgrade aware.

A new version of a resource type can differ from a previous version in several ways:

� Attributes of resource type properties may change

55

� The set of declared resource properties, including standard and extension
properties, may change

� Attributes of resource properties, such as default, min, max, arraymin,
arraymax or tunability may change

� The set of declared methods may differ
� The implementation of methods or monitors may change.

The resource type developer decides when an existing resource can be migrated to a
new version from among the following tunability options. The options are listed from
least restrictive to most restrictive:

� Any time (Anytime)
� When the resource is unmonitored (When_unmonitored)
� When the resource is offline (When_offline)
� When the resource is disabled (When_disabled)
� When the resource group is unmanaged (When_unmanaged)
� At creation (At_creation)

See “Resource Type_version Property” on page 58 for an explanation of each
option.

Note – Throughout this chapter, the scrgadm command is used when discussing how
to do an upgrade. The administrator is not restricted to using the scrgadm command
but can also use the GUI or the scsetup command to do the upgrade.

Resource Type Registration File

Resource Type Name
The three components of the resource type name are properties specified in the RTR
file as Vendor_id, Resource_type, and RT_version. The scrgadm command inserts the
period and the colon delimiters to create the name of the resource type:

vendor_id.resource_type:rt_version

The Vendor_id prefix serves to distinguish between two registration files of the same
name provided by different vendors. The RT_version distinguishes between multiple
registered versions (upgrades) of the same base resource type. To ensure that the
Vendor_id is unique, the recommended approach is to use the stock symbol for the
company creating the resource type.

56 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Registration of the resource type will fail if the RT_version string includes a blank, tab,
slash (/), backslash (\), asterisk (*), question mark (?), comma (,), semicolon (;), left
square bracket ([), or right square bracket (]) character.

The RT_Version property, which was optional in Sun Cluster 3.0, is mandatory
starting in Sun Cluster 3.1.

The fully qualified name is the name returned by the following command:

scha_resource_get -O Type -R resource_name -G resource_group_name

Resource type names that you registered prior to Sun Cluster 3.1 continue to use the
syntax:

vendor_id.resource_type

Directives
RTR files for upgrade aware resource types must include a #$upgrade directive,
followed by zero or more directives of the form:

#$upgrade_from version tunability

The upgrade_from directive consists of the string #$upgrade_from, followed by
the RT_Version, followed by the tunability constraint on the resource. If the resource
type from which the upgrade is being performed does not have a version, the
RT_Version is specified as the empty string, as shown in the last example below:

#$upgrade_from "1.1" when_offline
#$upgrade_from "1.2" when_offline
#$upgrade_from "1.3" when_offline
#$upgrade_from "2.0" when_unmonitored
#$upgrade_from "2.1" anytime

#$upgrade_from "" when_unmanaged

The RGM enforces these constraints on a resource when the system administrator
attempts to change the resource Type_version. If the current version of the resource
type does not appear in the list, the RGM imposes the tunability of When_unmanaged.

These directives must appear between the resource type property declarations section
of the RTR file and the resource declarations section of the RTR file. See rt_reg(4).

Changing the RT_Version in an RTR file
Change the RT_Version string in an RTR file whenever the contents of the RTR file
changes. The value of this property must make it obvious which is the newer version
of the resource type and which is the older. There is no need to change the
RT_Version string if there are no changes to the RTR file.

Chapter 3 • Upgrading a Resource Type 57

Resource Type Names in Earlier Versions of Sun
Cluster
Resource type names in Sun Cluster 3.0 did not contain the version suffix:

vendor_id.resource_name

A resource type that was originally registered under Sun Cluster 3.0 continues to have
a name of this form even after you upgrade the clustering software to Sun Cluster 3.1
or later releases. Similarly, a resource type whose RTR file is missing the #$upgrade
directive is given a Sun Cluster 3.0 format name, without the version suffix, if the RTR
file is registered on a cluster that is running Sun Cluster 3.1 or later software.

You can register RTR files with the #$upgrade or #$upgrade_from directive in Sun
Cluster 3.0, but, migrating existing resources to new resource types in Sun Cluster 3.0
is not supported.

Resource Type_version Property
The standard resource property Type_version stores the RT_Version property of a
resource’s type. This property does not appear in the RTR file. The system
administrator edits this property value by using the following command:

scrgadm -c -j resource -y Type_version=new_version

This property’s tunability is derived from:

� The current version of the resource type
� The #$upgrade_from directives in the RTR file

Use the following tunability values in the #$upgrade_from directives:

Anytime
If there are no restrictions on when the resource can be upgraded. The resource can
be fully online.

When_unmonitored
If the new resource type version’s Update, Stop, Monitor_check, and
Postnet_stop methods are known to be compatible with older resource type
version’s starting methods (Prenet_stop and Start), and if the new resource
type version’s Fini method is known to be compatible with the Init method of
older versions. This scenario requires only that the resource monitor program be
stopped before the upgrade

When_offline
If the new resource type version’s Update, Stop, Monitor_check, or
Postnet_stop methods are known not to be compatible with older resource type

58 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

version’s starting methods (Prenet_stop and Start) but are known to be
compatible with the Init method of older versions, the resource must be offline
when the type upgrade is applied to it.

When_disabled
Similar to When_offline. However, this tunability value imposes the stronger
condition that the resource be disabled.

When_unmanaged
If the new resource type version’s Fini method is not compatible with the Init
method of older versions. This tunability value requires the existing resource group
to be switched to the unmanaged state before you can upgrade the resource.

At_creation
If resources cannot be upgraded to the new resource type version. Only new
resources of the new version can be created.

The tunability of At_creation means that the resource type developer can
prohibit the migration of an existing resource to the new type. In this case, the
system administrator must delete and recreate the resource. This is equivalent to
declaring that the resource’s version can only be set at creation time.

Migrating a Resource to a Different
Version
An existing resource takes on the new resource type version when the system
administrator edits the Type_version property of the resource. This follows the
same conventions that are used to edit other resource properties, except that some
information will be derived or taken from the new resource type version instead of the
current version:

� Resource property attributes for all properties such as min, max, arraymin,
arraymax, default, and tunability are taken from the new resource type version

� The tunability applicable to the Type_version property is taken from the
#$upgrade_from directives in the RTR file and the RT_version property of the
resource type of the existing resource. This tunability is unlike the tunability
described in property_attributes(5).

� The Validate method for the new resource type version will be applied. This
ensures that the property attributes are valid for the new resource type. If the
existing resource property attributes do not satisfy the validation conditions of the
new resource type version, the system administrator has to provide valid values
for such properties on the scrgadm command line. This can occur if the newer
resource type version starts to use a property that was not declared in the earlier
version and which does not have a default. It might also occur if the existing

Chapter 3 • Upgrading a Resource Type 59

resource already has a property which was assigned a value that is invalid for the
newer resource type version.

� Resource properties that were declared in an older version of the resource type can
be undeclared in the newer version. When the resource is migrated to the newer
version, the property will be deleted from the resource.

Note – The Validate method can query the current Type_version of the resource
(using scha_resource_get) as well as the new Type_version (which is passed on
the Validate command line). Therefore, Validate can rule out upgrades from
unsupported versions.

Upgrading and Downgrading a
Resource Type
The section “Upgrading a Resource Type” in Sun Cluster Data Services Planning and
Administration Guide for Solaris OS contains additional information about upgrading or
migrating a resource type.

� How to Upgrade a Resource Type
1. Read the upgrade documentation for the new resource type to find out the

resource type changes and resource tunability constraints.

2. Install the resource type upgrade package on all cluster nodes.

The recommended practice for installing new resource type packages is in a rolling
upgrade fashion: the pkgadd occurs while the node is booted in non-cluster mode.
There are scenarios in which it would be possible to install new resource type
packages on a node in cluster mode:

� If resource type package installation leaves the method code unchanged and
only updates the monitor, then it is necessary to stop monitoring on all
resources of that type during the installation.

� If resource type package installation leaves both the method and monitor code
unchanged then it is not necessary to stop monitoring on the resource during
the installation, because the installation is only putting a new RTR file on the
disk.

3. Register the new resource type version using the scrgadm (or equivalent)
command, referencing the RTR file of the upgrade.

60 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

The RGM creates a new resource type whose name is of the form

vendor_id.resource_type:version

4. If the resource type upgrade is installed on only a subset of the nodes, you must
set the Installed_nodes property of the new resource type to the nodes on
which it is actually installed.

When a resource takes on the new type (either by being newly created or updated),
the RGM requires that the resource group nodelist be a subset of the
Installed_nodes list of the resource type.

scrgadm -c -t resource_type -h installed_node_list

5. For each resource of the preupgraded type that is to be migrated to the upgraded
type, invoke scswitch to change the state of the resource or its resource group
to the appropriate state as dictated by the upgrade documentation.

6. For each resource of the preupgraded type that is to be migrated to the upgraded
type, edit the resource, changing its Type_version property to the new version.

scrgadm -c -j resource -y Type_version=new_version

If necessary, edit other properties of the same resource to appropriate values in the
same command.

7. Restore the previous state of the resource or resource group by reversing the
command invoked in Step 5.

� How to Downgrade a Resource to an Older Version
of Its Resource Type
You can downgrade a resource to an older version of its resource type. The conditions
under which you can downgrade a resource to an older version of the resource type
are more restrictive than when you upgrade to a newer version of the resource type.
You must first unmanage the resource group. In addition, you can only downgrade a
resource to an upgrade-enabled version of the resource type. You can identify
upgrade-enabled versions by using the scrgadm -p command. In the output,
upgrade-enabled versions contain the suffix :version.

1. Switch the resource group that contains the resource you want to downgrade
offline.

scswitch -F -g resource_group

2. Disable the resource that you want to downgrade and all resources in the
resource group.

scswitch -n -j resource_to_downgrade
scswitch -n -j resource1
scswitch -n -j resource2

Chapter 3 • Upgrading a Resource Type 61

scswitch -n -j resource3
...

Note – Disable resources in order of dependency, starting with the most dependent
(application resources) and ending with the least dependent (network address
resources).

3. Unmanage the resource group.

scswitch -u -g resource_group

4. Is the old version of the resource type to which you want to downgrade still
registered in the cluster?

� If yes, go to the next step.
� If no, re-register the old version that you want.

scrgadm -a -t resource_type_name

5. Downgrade the resource by specifying the old version that you want for
Type_version.

scrgadm -c -j resource_to_downgrade -y Type_version=old_version

If necessary, edit other properties of the same resource to appropriate values in the
same command.

6. Bring the resource group that contains the resource that you downgraded to a
managed state, enable all the resources, and switch the group online.

scswitch -Z -g resource_group

Default Property Values
The RGM stores all resources such that any property that was not explicitly set by the
system administrator (and which was defaulted) is not stored in the resource entry in
the CCR (cluster configuration repository). The RGM obtains the default value of a
missing resource property from the resource type (or if not defined there, using a
system-defined default) when a resource is read in from the CCR. It is this method of
storing properties that permits an upgraded resource type to define new properties or
new default values for existing properties.

When resource properties are edited, the RGM stores in the CCR the properties that
were specified in the edit command.

62 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

If an upgraded version of the resource type declares a new default value for a
defaulted property, the new default value is inherited by existing resources, even if the
property is declared tunable only At_creation or When_disabled. If the
application of the new default would cause a method such as Stop or Postnet_stop
or Fini to fail, the resource type implementor must accordingly restrict the state of
the resource at the time that it is upgraded. This is done by limiting the tunability of
the Type_version property.

The new resource type version Validate method can check to make sure that
existing property attributes are appropriate. If they are not, the system administrator
can edit the properties of an existing resource to appropriate values in the same
command that edits the Type_version property to upgrade the resource to the new
resource type version.

Note – Resources that were created in Sun Cluster 3.0 do not inherit new default
property attributes from the resource type when they are migrated to a later version
because their default properties are stored in the CCR.

Resource Type Developer
Documentation
The resource type developer must provide documentation with the new resource that
provides the following information:

� Describe any property additions, changes, or deletions

� Describe how to make the properties conform to the new requirements

� State the tunability constraints on resources

� Call out any new default property attributes

� Inform the system administrator that existing resource properties are editable to
appropriate values using the same command used to edit the Type_version
property to upgrade the resource to the new resource type version

Chapter 3 • Upgrading a Resource Type 63

Resource Type Name and Resource Type
Monitor Implementations
You can register an upgrade aware resource type in Sun Cluster 3.0, but its name is
recorded in the CCR without the version suffix. To run correctly in both Sun Cluster
3.0 and Sun Cluster 3.1 (and later releases), the monitor for this resource type must be
able to handle both naming conventions:

vendor_id.resource_name:version

vendor_id.resource_name

The monitor code can determine the proper name to use by running the equivalent of:

scha_resourcetype_get -O RT_VERSION -T VEND.myrt

scha_resourcetype_get -O RT_VERSION -T VEND.myrt:vers

Then compare the output values with vers. Only one of these commands will
succeed for a particular value of vers, because it is not possible to register the same
version of the resource type twice under two different names.

Application Upgrades
The upgrading of application code is unlike the upgrading of agent code, although
some of the issues are similar. An application upgrade might or might not be
accompanied by a resource type upgrade.

Resource Type Upgrade Examples
These examples illustrate several different resource type installation and upgrade
scenarios. Tunability and packaging information have been chosen based on the types
of changes made to the resource type implementation. Tunability applies to the
migration of the resource to the new resource type.

All examples assume that:

� The resource type is delivered in a Solaris package. See pkgadd(1M) and
pkgrm(1M).

� There is only one previous version of the resource type and, therefore, only one
#$upgrade_from directive in the new RTR file

64 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� The installation procedure will not remove or overwrite the methods if it is
possible that the RGM could call the methods while they are removed from the
disk

� New methods are compatible with old methods unless otherwise stated

� Resources and resource groups are moved to the required state before installation
or migration using the correct scswitch(1M) command or equivalent. The
following example shows how to move the resource group to an unmanaged state:

scswitch -M -n -j resource
scswitch -n -j resource
scswitch -F -g resource_group
scswitch -u -g resource_group

� You register a resource type by using this command:

scrgadm -a -t resource_type -f path_to_RTR_file

� You migrate a resource by using this command:

scrgadm -c -j resource -y Type_version=version \
-y property=value \

-x property=value ...

� Resources and resource groups are restored to their previous state after migration
using the appropriate scswitch(1M) command or equivalent:

scswitch -M -e -j resource
scswitch -e -j resource
scswitch -o -g resource_group
scswitch -Z -g resource_group

The resource type developer might need to specify more restrictive tunability values
than the ones used in these examples. The tunability values depend on the exact
changes made to the resource type implementation. Also, the resource type developer
might choose to use a different packaging scheme in place of the Solaris packaging
used in these examples.

TABLE 3–1 Examples of Upgrading a Resource Type

Type of change Tunability Packaging Procedure

Property changes are only
made in the RTR file.

Anytime Only deliver new RTR file. Do a pkgadd of the new RTR
file on all nodes.

Register the new resource
type.

Migrate the resource.

Chapter 3 • Upgrading a Resource Type 65

TABLE 3–1 Examples of Upgrading a Resource Type (Continued)
Type of change Tunability Packaging Procedure

Methods are updated. Anytime Place the updated methods in
a distinct path from the old
methods.

Do a pkgadd of the updated
methods on all nodes.

Register the new resource
type.

Migrate the resource.

New monitor program. When_unmonitored Only overwrite the previous
version of the monitor.

Disable monitoring.

Do a pkgadd of the new
monitor program on all
nodes.

Register the new resource
type.

Migrate the resource.

Enable monitoring.

Methods are updated. The
new Update/Stop
methods are incompatible
with the old Start
methods.

When_offline Place the updated methods in
a distinct path from the old
methods.

Do a pkgadd of the updated
methods on all nodes.

Register the new resource
type.

Take the resource offline.

Migrate the resource.

Bring the resource online.

Methods are updated and
new properties are added
to the RTR file. The new
methods require new
properties. (The goal is to
allow the containing
resource group to remain
online but to prevent the
resource from coming
online should the resource
group move from the
offline state to the online
state on a node.)

When_disabled Overwrite the previous
versions of the methods.

Disable the resource.

For each node:
� Take the node out of the

cluster
� Do a

pkgrm/pkgadd of the
methods being updated

� Restore the node to the
cluster

Register the new resource
type.

Migrate the resource.

Enable the resource.

66 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

TABLE 3–1 Examples of Upgrading a Resource Type (Continued)
Type of change Tunability Packaging Procedure

Methods are updated and
new properties are added
to the RTR file. New
methods do not require
new properties.

Anytime Overwrite the previous
versions of the methods.

For each node:
� Take the node out of the

cluster
� Do a pkgrm/pkgadd of

the methods being
updated

� Restore the node to the
cluster

During this procedure, the
RGM will call the new
methods even though
migration (which would
configure the new properties)
has not yet been performed.
It is important that the new
methods be able to work
without the new properties.

Register the new resource
type.

Migrate the resource.

Methods are updated. The
new Fini method is
incompatible with the old
Init method.

When_unmanaged Place the updated methods in
a distinct path from the old
methods.

Make the containing resource
group unmanaged.

Do a pkgadd of the updated
methods on all nodes.

Register the resource type.

Migrate the resource.

Make the containing resource
group managed.

Methods are updated. No
changes are made to the
RTR file.

Not applicable. No
changes are made to
RTR file

Overwrite the previous
versions of the methods.

For each node:
� Take the node out of the

cluster
� Do a pkgadd of the

updated methods
� Restore the node to the

cluster.

Because there were no
changes to the RTR file, the
resource does not need to be
registered or migrated.

Chapter 3 • Upgrading a Resource Type 67

Installation Requirements for Resource
Type Packages
There are two requirements related to the installation of the new resource type
packages:

� When a new resource type is registered, its RTR file must be accessible on disk
� When a resource of the new type is created, all of the declared method pathnames

and the monitor program for the new type must be on disk and executable. The old
method and monitor programs must remain in place as long as the resource is in
use.

To decide on the most appropriate packaging, the resource type implementor must
consider the following:

� Does the RTR file change?
� Does the default value or tunability of a property change?
� Does the min or max value of a property change?
� Does the upgrade add or delete properties?
� Does the method code change?
� Does the monitor code change?
� Are the new methods or monitor code compatible with the previous version?

Information That You Need to Know Before
Changing the RTR File
Some resource type upgrades do not involve new method or monitor code. For
example, a resource type upgrade might only change the default value or tunability of
a resource property. Since the method code is not changing, the only requirement for
installing the upgrade is to have a valid pathname to a readable RTR file.

If there is no need to reregister the old resource type, the new RTR file can overwrite
the previous version. Otherwise the new RTR file can be placed in a new pathname.

If the upgrade changes the default value or tunability of a property, the Validate
method for the new version can verify at migration time that the existing property
attributes are valid for the new resource type. If the upgrade changes the min, max, or
type attributes of a property, the scrgadm command automatically validates these
constraints at migration time.

The upgrade documentation must call out any new default property attributes. The
documentation must inform the system administrator that existing resource properties
are editable to appropriate values using the same command that edits the
Type_version property to upgrade the resource to the new resource type version.

68 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

If the upgrade adds or deletes properties, it is likely that some callback methods or
monitor code also must be changed.

Changing Monitor Code
If the monitor code is the only change in the updated resource type, then the package
installation can overwrite the monitor binaries. The documentation must instruct the
system administrator to suspend monitoring before installing the new package.

Changing Method Code
If the method code is the only change in the updated resource type, it is important to
determine whether the new method code is compatible with the previous version.
This determines whether the new method code must be stored in a new pathname or
whether the old methods can be overwritten.

If the new Stop, Postnet_stop and Fini methods (if declared) can be applied to
resources that were initialized or started by the old versions of the Start,
Prenet_stop, or Init methods, then it is possible to overwrite the old methods
with the new methods.

If the new method code is not compatible with the previous version, then it is
necessary to stop or unconfigure a resource using the old versions of the methods
before it can be migrated to the upgraded resource type. If the new methods overwrite
the old ones, it can require shutting down (and possibly unmanaging) all resources of
the type before doing the resource type upgrade. If the new methods are stored
separately from the old (and both are accessible at once), then even without backward
compatibility it is possible to install the new resource type version and upgrade the
resources one by one.

Even if the new methods are backward compatible, it might be a requirement to
upgrade one resource at a time to use the new methods, while other resources
continue to use the old methods. It still is necessary to store the new methods in a
separate directory rather than overwriting the old ones.

An advantage to storing each resource type version’s methods in a separate directory
is that it makes it easy to switch resources back to the older resource type version if a
problem arises with the newer version.

One packaging approach is to include all of the earlier versions that are still supported
in the package. This permits the new package version to replace the older version,
without overwriting or deleting the old method paths. It is up to the resource type
developer to decide how many previous versions to support.

Chapter 3 • Upgrading a Resource Type 69

Note – It is not recommended to overwrite methods or pkgrm/pkgadd methods on a
node that is currently in the cluster. If the RGM were to call a method when the
method is not accessible on disk, unexpected results can occur. Removing or replacing
the binary of a running method might also cause unexpected results.

70 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

CHAPTER 4

Resource Management API Reference

This chapter provides a reference to the access functions and callback methods that
make up the Resource Management API (RMAPI). It lists and briefly describes each
function and method. However, the definitive reference for these functions and
methods is the RMAPI man pages.

The information in this chapter includes:

� “RMAPI Access Methods” on page 72 – in the form of shell script commands and
C functions

� scha_resource_get(1HA), scha_resource_close(3HA),
scha_resource_get(3HA), scha_resource_open(3HA)

� scha_resource_setstatus(1HA), scha_resource_setstatus(3HA)
� scha_resourcetype_get(1HA), scha_resourcetype_close(3HA),

scha_resourcetype_get(3HA), scha_resourcetype_open(3HA)
� scha_resourcegroup_get(1HA), scha_resourcegroup_get(3HA),

scha_resourcegroup_close(3HA), scha_resourcegroup_open(3HA)
� scha_control(1HA), scha_control(3HA)
� scha_cluster_get(1HA), scha_cluster_close(3HA),

scha_cluster_get(3HA), scha_cluster_open(3HA)
� scha_cluster_getlogfacility(3HA)
� scha_cluster_getnodename(3HA)
� scha_strerror(3HA)

� “RMAPI Callback Methods” on page 77 – described in the rt_callbacks(1HA)
man page.

� Start
� Stop
� Init
� Fini
� Boot

71

� Prenet_start
� Postnet_stop
� Monitor_start
� Monitor_stop
� Monitor_check
� Update
� ValidateS

RMAPI Access Methods
The API provides functions to access resource, resource type, and resource group
properties, and other cluster information. These functions are provided both in the
form of shell commands and C functions, enabling resource type providers to
implement control programs as shell scripts or as C programs.

RMAPI Shell Commands
Shell commands are to be used in shell script implementations of the callback methods
for resource types representing services controlled by the cluster’s RGM. You can use
these commands to:

� Access information about resources, resource types, resource groups, and clusters
� Use with a monitor to set the Status and Status_msg properties of a resource
� Request the restart or relocation of a resource group

Note – Although this section provides brief descriptions of the shell commands, the
individual man pages in the section 1HA provide the definitive reference for the shell
commands. Each command has a man page of the same name unless otherwise noted.

RMAPI Resource Commands
You can access information about a resource or set the Status and Status_msg
properties of a resource with these commands.

scha_resource_get
Accesses information about a resource or resource type under the control of the
RGM. It provides the same information as the scha_resource_get() function.

scha_resource_setstatus
Sets the Status and Status_msg properties of a resource under the control of the
RGM. It is used by the resource’s monitor to indicate the resource’s state as

72 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

perceived by the monitor. It provides the same functionality as the
scha_resource_setstatus() C function.

Note – Although scha_resource_setstatus() is of particular use to a resource
monitor, any program can call it.

Resource Type Command
This command accesses information about a resource type registered with the RGM.

scha_resourcetype_get
This command provides the same functionality as the scha_resourcetype_get
() C function.

Resource Group Commands
You can access information about or restart a resource group with these commands.

scha_resourcegroup_get
Accesses information about a resource group under the control of the RGM. This
command provides the same functionality as the scha_resourcetype_get() C
function.

scha_control
Requests the restart of a resource group under the control of the RGM or its
relocation to a different node. This command provides the same functionality as the
scha_control() C function.

Cluster Command
This command accesses information about a cluster, such as node names, IDs, and
states, the cluster name, resource groups, and so on.

scha_cluster_get
This command provides the same information as the scha_cluster_get() C
function.

C Functions
C functions are to be used in C program implementations of the callback methods for
resource types representing services controlled by the cluster’s RGM. You can use
these functions to do the following:

� Access information about resources, resource types, resource groups, and clusters

Chapter 4 • Resource Management API Reference 73

� Use with a monitor to set the Status and Status_msg properties of a resource
� Request the restart or relocation of a resource group
� Convert an error code to an appropriate error message

Note – Although this section provides brief descriptions of the C functions, the
individual (3HA) man pages provide the definitive reference for the C functions. Each
function has a man page of the same name unless otherwise noted. See the
scha_calls(3HA) man page for information on the output arguments and return
codes of the C functions.

Resource Functions
These functions access information about a resource managed by the RGM or indicate
the state of the resource as perceived by the monitor.

scha_resource_open(), scha_resource_get(), and scha_resource_close
()

Together these functions access information on a resource managed by the RGM.
The scha_resource_open() function initializes access to a resource and returns
a handle for scha_resource_get(), which accesses the resource information.
The scha_resource_close() function invalidates the handle and frees memory
allocated for scha_resource_get() return values.

A resource can change, through cluster reconfiguration or administrative action,
after scha_resource_open() returns the resource’s handle, in which case the
information scha_resource_get() obtains through the handle could be
inaccurate. In cases of cluster reconfiguration or administrative action on a
resource, the RGM returns the scha_err_seqid error code to
scha_resource_get() to indicate information about the resource might have
changed. This is a non-fatal error message; the function returns successfully. You
can choose to ignore the message and accept the returned information, or you can
close the current handle and open a new handle to access information about the
resource.

A single man page describes these three functions. You can access this man page
through any of the individual functions, scha_resource_open(3HA),
scha_resource_get(3HA), or scha_resource_close(3HA).

scha_resource_setstatus()
Sets the Status and Status_msg properties of a resource under the control of the
RGM. The resource’s monitor uses this function to indicate the resource’s state.

Note – Although scha_resource_setstatus() is of particular use to a resource
monitor, any program can call it.

74 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Resource Type Functions
Together these functions access information about a resource type registered with the
RGM.

scha_resourcetype_open(), scha_resourcetype_get(),
scha_resourcetype_close()

The scha_resourcetype_open() function initializes access to a resource and
returns a handle for scha_resourcetype_get(), which accesses the resource
type information. The scha_resourcetype_close() function invalidates the
handle and frees memory allocated for scha_resourcetype_get() return
values.

A resource type can change, through cluster reconfiguration or administrative
action, after scha_resourcetype_open() returns the resource type’s handle, in
which case the information scha_resourcetype_get() obtains through the
handle could be inaccurate. In cases of cluster reconfiguration or administrative
action on a resource type, the RGM returns the scha_err_seqid error code to
scha_resourcetype_get() to indicate information about the resource type
might have changed. This is a non-fatal error message; the function returns
successfully. You can choose to ignore the message and accept the returned
information, or you can close the current handle and open a new handle to access
information about the resource type.

A single man page describes these three functions. You can access this man page
through any of the individual functions, scha_resourcetype_open(3HA),
scha_resourcetype_get(3HA), or scha_resourcetype_close(3HA).

Resource Group Functions
You can access information about or restart a resource group with these functions.

scha_resourcegroup_open(3HA), scha_resourcegroup_get(3HA), and
scha_resourcegroup_close(3HA)

Together these functions access information on a resource group managed by the
RGM. The scha_resourcegroup_open() function initializes access to a resource
group and returns a handle for scha_resourcegroup_get(), which accesses the
resource group information. The scha_resourcegroup_close() function
invalidates the handle and frees memory allocated for
scha_resourcegroup_get() return values.

A resource group can change, through cluster reconfiguration or administrative
action, after scha_resourcegroup_open() returns the resource group’s handle,
in which case the information scha_resourcegroup_get() obtains through the
handle could be inaccurate. In cases of cluster reconfiguration or administrative
action on a resource group, the RGM returns the scha_err_seqid error code to
scha_resourcegroup_get() to indicate information about the resource group

Chapter 4 • Resource Management API Reference 75

might have changed. This is a non-fatal error message; the function returns
successfully. You can choose to ignore the message and accept the returned
information, or you can close the current handle and open a new handle to access
information about the resource group.

scha_control(3HA)
Requests the restart of a resource group under the control of the RGM or its
relocation to a different node.

Cluster Functions
These functions access or return information about a cluster.

scha_cluster_open(3HA), scha_cluster_get(3HA),
scha_cluster_close(3HA)

Together these functions access information about a cluster, such as node names,
IDs, and states, cluster name, resource groups, and so on.

A cluster can change—through reconfiguration or administrative action—after
scha_cluster_open() returns the cluster’s handle, in which case the
information scha_cluster_get() obtains through the handle could be
inaccurate. In cases of reconfiguration or administrative action on a cluster, the
RGM returns the scha_err_seqid error code to scha_cluster_get() to
indicate information about the cluster might have changed. This is a non-fatal error
message; the function returns successfully. You can choose to ignore the message
and accept the returned information, or you can close the current handle and open
a new handle to access information about the cluster.

scha_cluster_getlogfacility(3HA)
Returns the number of the system log facility being used as the cluster log. Uses the
returned value with the Solaris syslog() function to record events and status
messages to the cluster log.

scha_cluster_getnodename(3HA)
Returns the name of the cluster node on which the function is called.

Utility Function
This function converts an error code to an error message.

scha_strerror(3HA)
Translates an error code—returned by one of the scha_ functions—to the
appropriate error message. Use this function with logger to log messages to the
system log (syslog).

76 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

RMAPI Callback Methods
Callback methods are the key elements provided by the API for implementing a
resource type. Callback methods enable the RGM to control resources in the cluster in
the event of a change in cluster membership, such as a node boot or crash.

Note – The callback methods are executed by the RGM with root permissions because
the client programs control HA services on the cluster system. Install and administer
these methods with restrictive file ownership and permissions. Specifically, give them
a privileged owner, such as bin or root, and do not make them writable.

This section describes callback method arguments and exit codes and lists and
describes callback methods in the following categories:

� Control and initialization methods
� Administrative support methods
� Net-relative methods
� Monitor control methods

Note – Although this section provides brief descriptions of the callback methods,
including the point at which the method is invoked and the expected effect on the
resource, the rt_callbacks(1HA) man page is the definitive reference for the
callback methods.

Method Arguments
The RGM invokes callback methods as follows:

method -R resource-name -T type-name -G group-name

The method is the path name of the program that is registered as the Start, Stop, or
other callback. The callback methods of a resource type are declared in its registration
file.

All callback method arguments are passed as flagged values, with -R indicating the
name of the resource instance, -T indicating the type of the resource, and -G
indicating the group into which the resource is configured. Use the arguments with
access functions to retrieve information about the resource.

The Validate method is called with additional arguments (the property values of the
resource and resource group on which it is called).

Chapter 4 • Resource Management API Reference 77

See scha_calls(3HA) for more information.

Exit Codes
All callback methods have the same exit codes defined to specify the effect of the
method invocation on the resource state. The scha_calls(3HA) man page describes
all these exit codes. The exit codes are:

� 0 – Method succeeded
� Any nonzero value – Method failed

The RGM also handles abnormal failures of callback method execution, such as time
outs and core dumps.

Method implementations must output failure information using syslog on each
node. Output written to stdout or stderr is not guaranteed to be delivered to the
user (though it currently is displayed on the console of the local node).

Control and Initialization Callback Methods
The primary control and initialization callback methods start and stop a resource.
Other methods execute initialization and termination code on a resource.

Start
This required method is invoked on a cluster node when the resource group
containing the resource is brought online on that node. This method activates the
resource on that node.

A Start method should not exit until the resource it activates has been started and
is available on the local node. Therefore, before exiting, the Start method should
poll the resource to determine that it has started. In addition, you should set a
sufficiently long time-out value for this method. For example, certain resources,
such as database daemons, take more time to start, and thus require that the
method have a longer timeout value.

The way in which the RGM responds to failure of the Start method depends on
the setting of the Failover_mode property.

The START_TIMEOUT property in the resource type registration file sets the
time-out value for a resource’s Start method.

Stop
This required method is invoked on a cluster node when the resource group
containing the resource is brought offline on that node. This method deactivates the
resource if it is active.

78 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

A Stop method should not exit until the resource it controls has completely
stopped all its activity on the local node and has closed all file descriptors.
Otherwise, because the RGM assumes the resource has stopped, when in fact it is
still active, data corruption can result. The safest way to avoid data corruption is to
terminate all processes on the local node related to the resource.

Before exiting, the Stop method should poll the resource to determine that it has
stopped. In addition, you should set a sufficiently long time-out value for this
method. For example, certain resources, such as database daemons, take more time
to stop, and thus require that the method have a longer time-out value.

The way in which the RGM responds to failure of the Stop method depends on the
setting of the Failover_mode property (see Table A–2).

The STOP_TIMEOUT property in the resource type registration file sets the time-out
value for a resource’s Stop method.

Init
This optional method is invoked to perform a one-time initialization of the resource
when the resource becomes managed—either when the resource group it is in is
switched from an unmanaged to a managed state, or when the resource is created
in a resource group that is already managed. The method is called on nodes
determined by the Init_nodes resource property.

Fini
This optional method is invoked to clean up after the resource when the resource
becomes unmanaged—either when the resource group it is in is switched to an
unmanaged state or when the resource is deleted from a managed resource group.
The method is called on nodes determined by the Init_nodes resource property.

Boot
This optional method, similar to Init, is invoked to initialize the resource on nodes
that join the cluster after the resource group containing the resource has already
been put under the management of the RGM. The method is invoked on nodes
determined by the Init_nodes resource property. The Boot method is called
when the node joins or rejoins the cluster as the result of being booted or rebooted.

Note – Failure of the Init, Fini, or Boot methods causes the syslog() function to
generate an error message but does not otherwise affect RGM management of the
resource.

Administrative Support Methods
Administrative actions on resources include setting and changing resource properties.
The Validate and Update callback methods enable a resource type implementation
to hook into these administrative actions.

Chapter 4 • Resource Management API Reference 79

Validate
This optional method is called when a resource is created and when administrative
action updates the properties of the resource or its containing resource group. This
method is called on the set of cluster nodes indicated by the Init_nodes property of
the resource’s type. Validate is called before the creation or update is applied,
and a failure exit code from the method on any node causes the creation or update
to be canceled.

Validate is called only when resource or resource group properties are changed
through administrative action, not when the RGM sets properties, or when a
monitor sets the resource properties Status and Status_msg.

Update
This optional method is called to notify a running resource that properties have
been changed. Update is invoked after an administration action succeeds in setting
properties of a resource or its group. This method is called on nodes where the
resource is online. The method uses the API access functions to read property
values that might affect an active resource and adjust the running resource
accordingly.

Failure of the Update method causes the syslog() function to generate an error
message but does not otherwise affect RGM management of the resource.

Net-Relative Callback Methods
Services that use network address resources might require that start or stop steps be
done in a certain order relative to the network address configuration. The following
optional callback methods, Prenet_start and Postnet_stop, enable a resource
type implementation to do special startup and shutdown actions before and after a
related network address is configured or unconfigured.

Prenet_start
This optional method is called to do special startup actions before network
addresses in the same resource group are configured.

Postnet_stop
This optional method is called to do special shutdown actions after network
addresses in the same resource group are configured down.

Monitor Control Callback Methods
A resource type implementation optionally can include a program to monitor the
performance of a resource, report on its status, or take action on resource failure. The
Monitor_start, Monitor_stop, and Monitor_check methods support the
implementation of a resource monitor in a resource type implementation.

80 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Monitor_start
This optional method is called to start a monitor for the resource after the resource
is started.

Monitor_stop
This optional method is called to stop a resource’s monitor before the resource is
stopped.

Monitor_check
This optional method is called to assess the reliability of a node before a resource
group is relocated to the node. The Monitor_check method must be implemented
so that it does not conflict with the concurrent running of another method.

Chapter 4 • Resource Management API Reference 81

82 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

CHAPTER 5

Sample Data Service

This chapter describes a sample Sun Cluster data service, HA-DNS, for the in.named
application. The in.named daemon is the Solaris implementation of the Domain
Name Service (DNS). The sample data service demonstrates how to make an
application highly available, using the Resource Management API.

The Resource Management API supports a shell script interface and a C program
interface. The sample application in this chapter is written using the shell script
interface.

The information in this chapter includes:

� “Overview of the Sample Data Service” on page 83
� “Defining the Resource Type Registration File” on page 84
� “Providing Common Functionality to All Methods” on page 90
� “Controlling the Data Service” on page 94
� “Defining a Fault Monitor” on page 100
� “Handling Property Updates” on page 109

Overview of the Sample Data Service
The sample data service starts, stops, restarts and switches the DNS application
among the nodes of the cluster in response to cluster events such as administrative
action, application failure, or node failure.

Application restart is managed by the Process Monitor Facility (PMF). If application
deaths exceed the failure count within the failure time window, the fault monitor fails
the resource group containing the application resource over to another node.

83

The sample data service provides fault monitoring in the form of a PROBE method.
that uses the nslookup command to ensure that the application is healthy. If the
probe detects a hung DNS service, it tries to correct the situation by restarting the DNS
application locally. If this does not improve the situation and the probe repeatedly
detects problems with the service, then the probe attempts to fail over the service to
another node in the cluster.

Specifically, the sample data service includes:

� A resource type registration file that defines the static properties of the data service.
� A Start callback method invoked by the RGM to start the in.named daemon

when the resource group containing the HA-DNS data service is brought online.
� A Stop callback method invoked by the RGM to stop the in.named daemon

when the resource group containing HA-DNS goes offline.
� A fault monitor to check the availability of the service by verifying that the DNS

server is running. The fault monitor is implemented by a user-defined PROBE
method and started and stopped by Monitor_start and Monitor_stop
callback methods.

� A Validate callback method invoked by the RGM to validate that the
configuration directory for the service is accessible.

� An Update callback method invoked by the RGM to restart the fault monitor
when the system administrator changes the value of a resource property.

Defining the Resource Type Registration
File
The resource type registration (RTR) file in this example defines the static
configuration of the DNS resource type. Resources of this type inherit the properties
defined in the RTR file.

The information in the RTR file is read by the RGM when the cluster administrator
registers the HA-DNS data service.

RTR File Overview
The RTR file follows a well-defined format. Resource type properties are defined first
in the file, system-defined resource properties are defined next, and extension
properties are defined last. See the rt_reg(4) man page and “Setting Resource and
Resource Type Properties” on page 32 for more information.

84 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

This section describes the specific properties in the sample RTR file. It provides listings
of different parts of the file. For a complete listing of the contents of the sample RTR
file, see “Resource Type Registration File Listing” on page 253.

Resource Type Properties in the Sample RTR File
The sample RTR file begins with comments followed by resource type properties that
define the HA-DNS configuration, as shown in the following listing.

#
Copyright (c) 1998-2004 by Sun Microsystems, Inc.
All rights reserved.
#
Registration information for Domain Name Service (DNS)
#

#pragma ident “@(#)SUNW.sample 1.1 00/05/24 SMI”

RESOURCE_TYPE = “sample”;
VENDOR_ID = SUNW;
RT_DESCRIPTION = “Domain Name Service on Sun Cluster”;

RT_VERSION =”1.0”;
API_VERSION = 2;
FAILOVER = TRUE;

RT_BASEDIR=/opt/SUNWsample/bin;
PKGLIST = SUNWsample;

START = dns_svc_start;
STOP = dns_svc_stop;

VALIDATE = dns_validate;
UPDATE = dns_update;

MONITOR_START = dns_monitor_start;
MONITOR_STOP = dns_monitor_stop;

MONITOR_CHECK = dns_monitor_check;

Tip – You must declare the Resource_type property as the first entry in the RTR file.
Otherwise, registration of the resource type will fail.

Chapter 5 • Sample Data Service 85

Note – The RGM treats property names as case insensitive. The convention for
properties in Sun-supplied RTR files, with the exception of method names, is
uppercase for the first letter of the name and lowercase for the rest of the name.
Method names—as well as property attributes—contain all uppercase letters.

Some information about these properties follows.

� The resource type name can be specified by the Resource_type property alone
(sample) or using the Vendor_id as a prefix with a “.” separating it from the
resource type (SUNW.sample).

If you use Vendor_id, make it the stock symbol for the company defining the
resource type. The resource type name must be unique in the cluster.

� The Rt_version property identifies the version of the sample data service as
specified by the vendor.

� The API_version property identifies the Sun Cluster version. For example,
API_version = 2, indicates that the data service runs under Sun Cluster version
3.0.

� Failover = TRUE indicates that the data service cannot run in a resource group
that can be online on multiple nodes at once.

� RT_basedir points to /opt/SUNWsample/bin as the directory path to complete
relative paths, such as callback method paths.

� Start, Stop, Validate, and so on provide the paths to the respective callback
method programs invoked by the RGM. These paths are relative to the directory
specified by RT_basedir.

� Pkglist identifies SUNWsample as the package that contains the sample data
service installation.

Resource type properties not specified in this RTR file, such as Single_instance,
Init_nodes, and Installed_nodes, get their default value. See Table A–1 for a
complete list of the resource type properties, including their default values.

The cluster administrator cannot change the values specified for resource type
properties in the RTR file.

Resource Properties in the Sample RTR File
By convention, you declare resource properties following the resource type properties
in the RTR file. Resource properties include system-defined properties provided by
Sun Cluster and extension properties you define. For either type you can specify a
number of property attributes supplied by Sun Cluster, such as minimum, maximum,
and default values.

86 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

System-Defined Properties in the RTR File
The following listing shows the system-defined properties in the sample RTR file.

A list of bracketed resource property declarations follows the
resource-type declarations. The property-name declaration must be
the first attribute after the open curly bracket of each entry.

The <method>_timeout properties set the value in seconds after which
the RGM concludes invocation of the method has failed.

The MIN value for all method timeouts is set to 60 seconds. This
prevents administrators from setting shorter timeouts, which do not
improve switchover/failover performance, and can lead to undesired
RGM actions (false failovers, node reboot, or moving the resource group
to ERROR_STOP_FAILED state, requiring operator intervention). Setting
too-short method timeouts leads to a *decrease* in overall availability
of the data service.
{

PROPERTY = Start_timeout;
MIN=60;
DEFAULT=300;

}

{
PROPERTY = Stop_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Validate_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Update_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Monitor_Start_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Monitor_Stop_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Thorough_Probe_Interval;
MIN=1;
MAX=3600;
DEFAULT=60;
TUNABLE = ANYTIME;

Chapter 5 • Sample Data Service 87

}

The number of retries to be done within a certain period before concluding
that the application cannot be successfully started on this node.
{

PROPERTY = Retry_Count;
MIN=0;
MAX=10;
DEFAULT=2;
TUNABLE = ANYTIME;

}

Set Retry_Interval as a multiple of 60 since it is converted from seconds
to minutes, rounding up. For example, a value of 50 (seconds)
is converted to 1 minute. Use this property to time the number of
retries (Retry_Count).
{

PROPERTY = Retry_Interval;
MIN=60;
MAX=3600;
DEFAULT=300;
TUNABLE = ANYTIME;

}

{
PROPERTY = Network_resources_used;
TUNABLE = AT_CREATION;
DEFAULT = ““;

}

Although Sun Cluster provides the system-defined properties, you can set different
default values using resource property attributes. See “Resource Property Attributes”
on page 250 for a complete list of attributes available for applying to resource
properties.

Note the following about the system-defined resource properties in the sample RTR
file:

� Sun Cluster provides a minimum value (1 second) and a default value (3600
seconds) for all timeouts. The sample RTR file changes the minimum 60 and
changes the default to 300 seconds. A cluster administrator can accept this default
value or change the value of the timeout to something else, (60 or greater). Sun
Cluster has no maximum allowable value.

� The properties Thorough_Probe_Interval, Retry_count, and
Retry_interval, have the TUNABLE attribute set to ANYTIME. This settings
means the cluster administrator can change the value of these properties, even
when the data service is running. These properties are used by the fault monitor
implemented by the sample data service. The sample data service implements an
Update method to stop and restart the fault monitor when these or other resource
properties are changed by administrative action. See “Update Method”
on page 113.

� Resource properties are classified as

88 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� required—the cluster administrator must specify a value when creating a
resource;

� optional—if the administrator does not specify a value, the system supplies a
default value.

� conditional—the RGM creates the property only if it is declared in the RTR file.

The fault monitor of the sample data service makes use of the
Thorough_probe_interval, Retry_count, Retry_interval, and
Network_resources_used conditional properties, so the developer needed to
declare them in the RTR file. See the r_properties(5) man page or “Resource
Properties” on page 237 for information about how properties are classified.

Extension Properties in the RTR File
At the end of the sample RTR file are extension properties, as shown in the following
listing

Extension Properties

The cluster administrator must set the value of this property to point to the
directory that contains the configuration files used by the application.
For this application, DNS, specify the path of the DNS configuration file on
PXFS (typically named.conf).
{

PROPERTY = Confdir;
EXTENSION;
STRING;
TUNABLE = AT_CREATION;
DESCRIPTION = “The Configuration Directory Path”;

}

Time out value in seconds before declaring the probe as failed.
{

PROPERTY = Probe_timeout;
EXTENSION;
INT;
DEFAULT = 120;
TUNABLE = ANYTIME;
DESCRIPTION = “Time out value for the probe (seconds)”;

}

The sample RTR file defines two extension properties, Confdir and
Probe_timeout. Confdir specifies the path to the DNS configuration directory. This
directory contains the in.named file, which DNS requires to operate successfully. The
sample data service’s Start and Validate methods use this property to verify that
the configuration directory and the in.named file are accessible before starting DNS.

When the data service is configured, the Validate method verifies that the new
directory is accessible.

Chapter 5 • Sample Data Service 89

The sample data services’s PROBE method is not a Sun Cluster callback method but a
user-defined method. Therefore, Sun Cluster doesn’t provide a Probe_timeout
property for it. The developer has defined an extension property in the RTR file to
allow a cluster administrator to configure a Probe_timeout value.

Providing Common Functionality to All
Methods
This section describes the following functionality that is used in all callback methods
of the sample data service:

� “Identifying the Command Interpreter and Exporting the Path” on page 90.
� “Declaring the PMF_TAG and SYSLOG_TAG Variables” on page 90.
� “Parsing the Function Arguments” on page 91.
� “Generating Error Messages” on page 93.
� “Obtaining Property Information” on page 93.

Identifying the Command Interpreter and
Exporting the Path
The first line of a shell script must identify the command interpreter. Each of the
method scripts in the sample data service identifies the command interpreter as
follows:

#!/bin/ksh

All method scripts in the sample application export the path to the Sun Cluster
binaries and libraries rather than rely on the user’s PATH settings.

###
MAIN
###

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Declaring the PMF_TAG and SYSLOG_TAG
Variables
All the method scripts (with the exception of Validate) use pmfadm to launch (or
stop) either the data service or the monitor, passing the name of the resource. Each
script defines a variable, PMF_TAG that can be passed to pmfadm to identify either the
data service or the monitor.

90 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Likewise each method script uses the logger command to log messages with the
system log. Each script defines a variable, SYSLOG_TAG that can be passed to logger
with the -t option to identify the resource type, resource group, and resource name of
the resource for which the message is being logged.

All methods define SYSLOG_TAG in the same way, as shown in the following sample.
The dns_probe, dns_svc_start, dns_svc_stop, and dns_monitor_check
methods define PMF_TAG as follows (the use of pmfadm and logger is from the
dns_svc_stop method):

###
MAIN
###

PMF_TAG=$RESOURCE_NAME.named

SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Send a SIGTERM signal to the data service and wait for 80% of the
total timeout value.
pmfadm -s $PMF_TAG.named -w $SMOOTH_TIMEOUT TERM
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.info \
-t [$SYSLOG_TAG] \
“${ARGV0} Failed to stop HA-DNS with SIGTERM; Retry with \

SIGKILL”

The dns_monitor_start, dns_monitor_stop, and dns_update, methods define
PMF_TAG as follows (the use of pmfadm is from the dns_monitor_stop method):

###
MAIN
###

PMF_TAG=$RESOURCE_NAME.monitor
SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME
...

See if the monitor is running, and if so, kill it.
if pmfadm -q $PMF_TAG.monitor; then

pmfadm -s $PMF_TAG.monitor KILL

Parsing the Function Arguments
The RGM invokes all of the callback methods—with the exception of Validate—as
follows.

method_name -R resource_name -T resource_type_name -G resource_group_name

Chapter 5 • Sample Data Service 91

The method name is the path name of the program that implements the callback
method. A data service specifies the path name for each method in the RTR file. These
path names are relative to the directory specified by the Rt_basedir property, also in
the RTR file. For example, in the sample data service’s RTR file, the base directory and
method names are specified as follows.

RT_BASEDIR=/opt/SUNWsample/bin;
START = dns_svc_start;
STOP = dns_svc_stop;
...

All callback method arguments are passed as flagged values, with -R indicating the
name of the resource instance, -T indicating the type of the resource, and -G
indicating the group into which the resource is configured. See the
rt_callbacks(1HA) man page for more information on callback methods.

Note – The Validate method is called with additional arguments (the property
values of the resource and resource group on which it is called). See “Handling
Property Updates” on page 109 for more information.

Each callback method needs a function to parse the arguments it is passed. Because
the callbacks are all passed the same arguments, the data service provides a single
parse function that is used in all the callbacks in the application.

The following shows the parse_args() function used for the callback methods in
the sample application.

###
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ’R:G:T:’ opt
do

case "$opt" in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)

92 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
"ERROR: Option $OPTARG unknown"
exit 1

;;
esac

done
}

Note – Although the PROBE method in the sample application is user defined (not a
Sun Cluster callback method), it is called with the same arguments as the callback
methods. Therefore, this method contains a parse function identical to the one used by
the other callback methods.

The parse function is called in MAIN as:

parse_args “$@”

Generating Error Messages
It is recommended that callback methods use the syslog facility to output error
messages to end users. All callback methods in the sample data service use the
scha_cluster_get() function to retrieve the number of the syslog facility used
for the cluster log, as follows:

SYSLOG_FACILITY=‘scha_cluster_get -O SYSLOG_FACILITY‘

The value is stored in a shell variable, SYSLOG_FACILITY and can be used as the
facility of the logger command to log messages in the cluster log. For example, the
Start method in the sample data service retrieves the syslog facility and logs a
message that the data service has been started, as follows:

SYSLOG_FACILITY=‘scha_cluster_get -O SYSLOG_FACILITY‘
...

if [$? -eq 0]; then
logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \
"${ARGV0} HA-DNS successfully started"

fi

See the scha_cluster_get(1HA) man page for more information.

Obtaining Property Information
Most callback methods need to obtain information about resource and resource type
properties of the data service. The API provides the scha_resource_get() function
for this purpose.

Chapter 5 • Sample Data Service 93

Two kinds of resource properties, system-defined properties and extension properties,
are available. System-defined properties are predefined whereas you define extension
properties in the RTR file.

When you use scha_resource_get() to obtain the value of a system-defined
property, you specify the name of the property with the -O parameter. The command
returns only the value of the property. For example, in the sample data service, the
Monitor_start method needs to locate the probe program so it can launch it. The
probe program resides in the base directory for the data service, which is pointed to by
the RT_BASEDIR property, so the Monitor_start method retrieves the value of
RT_BASEDIR, and places it in the RT_BASEDIR variable, as follows.

RT_BASEDIR=‘scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME -G \
$RESOURCEGROUP_NAME‘

For extension properties, you must specify with the -O parameter that it is an
extension property and supply the name of the property as the last parameter. For
extension properties, the command returns both the type and value of the property. For
example, in the sample data service, the probe program retrieves the type and value of
the probe_timeout extension property, and then uses awk to put the value only in
the PROBE_TIMEOUT shell variable, as follows.

probe_timeout_info=‘scha_resource_get -O Extension -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME Probe_timeout‘
PROBE_TIMEOUT=‘echo $probe_timeout_info | awk ’{print $2}’‘

Controlling the Data Service
A data service must provide a Start or Prenet_start method to activate the
application daemon on the cluster, and a Stop or Postnet_stop method to stop the
application daemon on the cluster. The sample data service implements a Start and a
Stop method. See “Deciding Which Start and Stop Methods to Use” on page 43 for
information about when you might want to use Prenet_start and Postnet_stop
instead.

Start Method
The RGM invokes the Start method on a cluster node when the resource group
containing the data service resource is brought online on that node or when the
resource group is already online and the resource is enabled. In the sample
application, the Start method activates the in.named (DNS) daemon on that node.

94 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

This section describes the major pieces of the Start method for the sample
application. It does not describe functionality common to all callback methods, such as
the parse_args() function and obtaining the syslog facility, which are described in
“Providing Common Functionality to All Methods” on page 90.

For the complete listing of the Start method, see “Start Method” on page 256.

Start Overview
Before attempting to launch DNS, the Start method in the sample data service
verifies the configuration directory and configuration file (named.conf) are accessible
and available. Information in named.conf is essential to successful operation of DNS.

This callback method uses the process monitor facility (pmfadm) to start the DNS
daemon (in.named). If DNS crashes or fails to start, the PMF attempts to start it a
prescribed number of times during a specified interval. The number of retries and the
interval are specified by properties in the data service’s RTR file.

Verifying the Configuration
In order to operate, DNS requires information from the named.conf file in the
configuration directory. Therefore, the Start method performs some sanity checks to
verify that the directory and file are accessible before attempting to launch DNS.

The Confdir extension property provides the path to the configuration directory. The
property itself is defined in the RTR file. However, the cluster administrator specifies
the actual location when configuring the data service.

In the sample data service, the Start method retrieves the location of the
configuration directory using the scha_resource_get() function.

Note – Because Confdir is an extension property, scha_resource_get() returns
both the type and value. The awk command retrieves just the value and places it in a
shell variable, CONFIG_DIR.

find the value of Confdir set by the cluster administrator at the time of
adding the resource.
config_info=‘scha_resource_get -O Extension -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME Confdir‘

scha_resource_get returns the "type" as well as the "value" for the
extension properties. Get only the value of the extension property

CONFIG_DIR=‘echo $config_info | awk ’{print $2}’‘

The Start method then uses the value of CONFIG_DIR to verify that the directory is
accessible. If it is not accessible, Start logs an error message and exits with error
status. See “Start Exit Status” on page 97.

Chapter 5 • Sample Data Service 95

Check if $CONFIG_DIR is accessible.
if [! -d $CONFIG_DIR]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$SYSLOG_TAG] \
"${ARGV0} Directory $CONFIG_DIR is missing or not mounted"

exit 1
fi

Before starting the application daemon, this method performs a final check to verify
that the named.conf file is present. If it is not present, Start logs an error message
and exits with error status.

Change to the $CONFIG_DIR directory in case there are relative
pathnames in the data files.
cd $CONFIG_DIR

Check that the named.conf file is present in the $CONFIG_DIR directory
if [! -s named.conf]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$SYSLOG_TAG] \
"${ARGV0} File $CONFIG_DIR/named.conf is missing or empty"

exit 1
fi

Starting the Application
This method uses the process manager facility (pmfadm) to launch the application. The
pmfadm command allows you to set the number of times to restart the application
during a specified time frame. The RTR file contains two properties, Retry_count,
which specifies the number of times to attempt restarting an application, and
Retry_interval, which specifies the time period over which to do so.

The Start method retrieves the values of Retry_count and Retry_interval
using the scha_resource_get() function and stores their values in shell variables.
It then passes these values to pmfadm using the -n and -t options.

Get the value for retry count from the RTR file.
RETRY_CNT=‘scha_resource_get -O Retry_Count -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME‘
Get the value for retry interval from the RTR file. This value is in seconds
and must be converted to minutes for passing to pmfadm. Note that the
conversion rounds up; for example, 50 seconds rounds up to 1 minute.
((RETRY_INTRVAL=‘scha_resource_get -O Retry_Interval -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME‘ / 60))

Start the in.named daemon under the control of PMF. Let it crash and restart
up to $RETRY_COUNT times in a period of $RETRY_INTERVAL; if it crashes
more often than that, PMF will cease trying to restart it.
If there is a process already registered under the tag
<$PMF_TAG>, then PMF sends out an alert message that the
process is already running.
pmfadm -c $PMF_TAAG -n $RETRY_CNT -t $RETRY_INTRVAL \

96 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

/usr/sbin/in.named -c named.conf

Log a message indicating that HA-DNS has been started.
if [$? -eq 0]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$SYSLOG_TAG] \
"${ARGV0} HA-DNS successfully started"

fi
exit 0

Start Exit Status
A Start method should not exit with success until the underlying application is
actually running and available, particularly if other data services are dependent on it.
One way to verify success is to probe the application to verify it is running before
exiting the Start method. For a complex application, such as a database, be certain to
set the value for the Start_timeout property in the RTR file sufficiently high to
allow time for the application to initialize and perform crash recovery.

Note – Because the application resource, DNS, in the sample data service launches
quickly, the sample data service does not poll to verify it is running before exiting with
success.

If this method fails to start DNS and exits with failure status, the RGM checks the
Failover_mode property, which determines how to react. The sample data service
does not explicitly set the Failover_mode property, so this property has the default
value NONE (unless the cluster administrator has overridden the default and specified
a different value). In this case, the RGM takes no action other than to set the state of
the data service. User intervention is required to restart on the same node or fail over
to a different node.

Stop Method
The Stop method is invoked on a cluster node when the resource group containing
the HA-DNS resource is brought offline on that node or if the resource group is online
and the resource is disabled. This method stops the in.named (DNS) daemon on that
node.

This section describes the major pieces of the Stop method for the sample application.
It does not describe functionality common to all callback methods, such as the
parse_args() function and obtaining the syslog facility, which are described in
“Providing Common Functionality to All Methods” on page 90.

For the complete listing of the Stop method, see “Stop Method” on page 259.

Chapter 5 • Sample Data Service 97

Stop Overview
There are two primary considerations when attempting to stop the data service. The
first is to provide an orderly shutdown. Sending a SIGTERM signal through pmfadm is
the best way to accomplish an orderly shutdown.

The second consideration is to ensure that the data service is actually stopped to avoid
putting it in Stop_failed state. The best way to accomplish this is to send a
SIGKILL signal through pmfadm.

The Stop method in the sample data service takes both these considerations into
account. It first sends a SIGTERM signal. If this signal fails to stop the data service, the
method sends a SIGKILL signal.

Before attempting to stop DNS, this Stop method verifies that the process is actually
running. If the process is running, Stop uses the process monitor facility (pmfadm) to
stop it.

This Stop method is guaranteed to be idempotent. Although the RGM should not call
a Stop method twice without first starting the data service with a call to its Start
method, the could call a Stop method on a resource even though the resource was
never started or it died of its own accord. Therefore, this Stop method exits with
success even if DNS is not running.

Stopping the Application
The Stop method provides a two-tiered approach to stopping the data service: an
orderly or smooth approach using a SIGTERM signal through pmfadm and an abrupt
or hard approach using a SIGKILL signal. The Stop method obtains the
Stop_timeout value (the amount of time in which the Stop method must return).
Stop then allocates 80% of this time to stopping smoothly and 15% to stopping
abruptly (5% is reserved), as shown in the following sample.

STOP_TIMEOUT=`scha_resource_get -O STOP_TIMEOUT -R $RESOURCE_NAME
\

-G $RESOURCEGROUP_NAMÈ
((SMOOTH_TIMEOUT=$STOP_TIMEOUT * 80/100))

((HARD_TIMEOUT=$STOP_TIMEOUT * 15/100))

The Stop method uses pmfadm -q to verify that the DNS daemon is running. If it is,
Stop first uses pmfadm -s to send a TERM signal to terminate the DNS process. If this
signal fails to terminate the process after 80% of the timeout value has expired Stop
sends a SIGKILL signal. If this signal also fails to terminate the process within 15% of
the timeout value, the method logs an error message and exits with error status.

If pmfadm terminates the process, the method logs a message that the process has
stopped and exits with success.

98 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

If the DNS process is not running, the method logs a message that it is not running
and exits with success anyway. The following code sample shows how Stop uses
pmfadm to stop the DNS process.

See if in.named is running, and if so, kill it.
if pmfadm -q $PMF_TAG; then

Send a SIGTERM signal to the data service and wait for 80% of
the

total timeout value.
pmfadm -s $RESOURCE_NAME.named -w $SMOOTH_TIMEOUT TERM
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
“${ARGV0} Failed to stop HA-DNS with SIGTERM; Retry with \
SIGKILL”

Since the data service did not stop with a SIGTERM signal, use
SIGKILL now and wait for another 15% of the total timeout value.
pmfadm -s $PMF_TAG -w $HARD_TIMEOUT KILL
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$SYSLOG_TAG]
“${ARGV0} Failed to stop HA-DNS; Exiting UNSUCCESFUL”

exit 1
fi

fi
else

The data service is not running as of now. Log a message and
exit success.
logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \
“HA-DNS is not started”

Even if HA-DNS is not running, exit success to avoid putting
the data service resource in STOP_FAILED State.

exit 0

fi

Could successfully stop DNS. Log a message and exit success.
logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME]
\

“HA-DNS successfully stopped”

exit 0

Stop Exit Status
A Stop method should not exit with success until the underlying application is
actually stopped, particularly if other data services have dependencies on it. Failure to
do so can result in data corruption.

Chapter 5 • Sample Data Service 99

For a complex application, such as a database, be certain to set the value for the
Stop_timeout property in the RTR file sufficiently high to allow time for the
application to clean up while stopping.

If this method fails to stop DNS and exits with failure status, the RGM checks the
Failover_mode property, which determines how to react. The sample data service
does not explicitly set the Failover_mode property, so it has the default value NONE
(unless the cluster administrator has overridden the default and specified a different
value). In this case, the RGM takes no action other than to set the state of the data
service to Stop_failed. User intervention is required to stop the application forcibly
and clear the Stop_failed state.

Defining a Fault Monitor
The sample application implements a basic fault monitor to monitor the reliability of
the DNS resource (in.named). The fault monitor consists of:

� dns_probe, a user-defined program that uses nslookup to verify that the DNS
resource controlled by the sample data service is running. If DNS is not running,
this method attempts to restart it locally, or depending on the number of restart
attempts, requests that the RGM relocate the data service to a different node.

� dns_monitor_start, a callback method that launches dns_probe. The RGM
automatically calls dns_monitor_start after the sample data service is brought
online if monitoring is enabled.

� dns_monitor_stop, a callback method that stops dns_probe. The RGM
automatically calls dns_monitor_stop before bringing the sample data service
offline.

� dns_monitor_check, a callback method that calls the Validate method to
verify that the configuration directory is available when the PROBE program fails
the data service over to a new node.

Probe Program
The dns_probe program implements a continuously running process that verifies the
DNS resource controlled by the sample data service is running. The dns_probe is
launched by the dns_monitor_start method, which is automatically invoked by
the RGM after the sample data service is brought online. The data service is stopped
by the dns_monitor_stop method, which then RGM invokes before bringing the
sample data service offline.

100 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

This section describes the major pieces of the PROBE method for the sample
application. It does not describe functionality common to all callback methods, such as
the parse_args() function and obtaining the syslog facility, which are described in
“Providing Common Functionality to All Methods” on page 90.

For the complete listing of the PROBE method, see “PROBE Program” on page 262.

Probe Overview
The probe runs in an infinite loop. It uses nslookup to verify that the proper DNS
resource is running. If DNS is running, the probe sleeps for a prescribed interval (set
by the Thorough_probe_interval system-defined property) and then checks
again. If DNS is not running, this program attempts to restart it locally, or depending
on the number of restart attempts, requests that the RGM relocate the data service to a
different node.

Obtaining Property Values
This program needs the values of the following properties:

� Thorough_probe_interval – To set the period during which the probe sleeps

� Probe_timeout – to enforce the time-out value of the probe on the nslookup
command that does the probing

� Network_resources_used – To obtain the IP address on which DNS is running

� Retry_count and Retry_interval – To determine the number of restart
attempts and the period over which to count them

� Rt_basedir – To obtain the directory containing the PROBE program and the
gettime utility

The scha_resource_get() function obtains the values of these properties and
stores them in shell variables, as follows.

PROBE_INTERVAL=‘scha_resource_get -O THOROUGH_PROBE_INTERVAL \
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME‘

probe_timeout_info=‘scha_resource_get -O Extension -R $RESOURCE_NAME
\
-G $RESOURCEGROUP_NAME Probe_timeout‘
PROBE_TIMEOUT=‘echo $probe_timeout_info | awk ’{print $2}’‘

DNS_HOST=‘scha_resource_get -O NETWORK_RESOURCES_USED -R $RESOURCE_NAME
\
-G $RESOURCEGROUP_NAME‘

RETRY_COUNT=‘scha_resource_get -O RETRY_COUNT -R $RESOURCE_NAME
-G\
$RESOURCEGROUP_NAME‘

Chapter 5 • Sample Data Service 101

RETRY_INTERVAL=‘scha_resource_get -O RETRY_INTERVAL -R $RESOURCE_NAME
-G\
$RESOURCEGROUP_NAME‘

RT_BASEDIR=‘scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME -G\
$RESOURCEGROUP_NAME‘

Note – For system-defined properties, such as Thorough_probe_interval,
scha_resource_get() returns the value only. For extension properties, such as
Probe_timeout, scha_resource_get() returns the type and value. Use the awk
command to obtain the value only.

Checking the Reliability of the Service
The probe itself is an infinite while loop of nslookup commands. Before the while
loop, a temporary file is set up to hold the nslookup replies. The probefail and retries
variables are initialized to 0.

Set up a temporary file for the nslookup replies.
DNSPROBEFILE=/tmp/.$RESOURCE_NAME.probe
probefail=0
retries=0

The while loop itself:

� Sets the sleep interval for the probe
� Uses hatimerun to launch nslookup passing the Probe_timeout value and

identifying the target host
� Sets the probefail variable based on the success or failure of the nslookup return

code
� If probefail is set to 1 (failure), verifies that the reply to nslookup came from the

sample data service and not some other DNS server

Here is the while loop code.

while :
do

The interval at which the probe needs to run is specified in the
property THOROUGH_PROBE_INTERVAL. Therefore, set the probe to sleep
for a duration of THOROUGH_PROBE_INTERVAL.
sleep $PROBE_INTERVAL

Run an nslookup command of the IP address on which DNS is serving.
hatimerun -t $PROBE_TIMEOUT /usr/sbin/nslookup $DNS_HOST $DNS_HOST \

> $DNSPROBEFILE 2>&1

retcode=$?
if [$retcode -ne 0]; then

102 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

probefail=1
fi

Make sure that the reply to nslookup comes from the HA-DNS
server and not from another nameserver mentioned in the
/etc/resolv.conf file.
if [$probefail -eq 0]; then

Get the name of the server that replied to the nslookup query.
SERVER=‘ awk ’ $1=="Server:" { print $2 }’ \
$DNSPROBEFILE | awk -F. ’ { print $1 } ’ ‘
if [-z "$SERVER"]; then

probefail=1
else

if [$SERVER != $DNS_HOST]; then
probefail=1

fi
fi

fi

Evaluating Restart Versus Failover
If the probefail variable is something other than 0 (success), it means the nslookup
command timed out or that the reply came from a server other than the sample
service’s DNS. In either case, the DNS server is not functioning as expected and the
fault monitor calls the decide_restart_or_failover() function to determine
whether to restart the data service locally or request that the RGM relocate the data
service to a different node. If the probefail variable is 0, then a message is generated that
the probe was successful.

if [$probefail -ne 0]; then
decide_restart_or_failover

else
logger -p ${SYSLOG_FACILITY}.err\
-t [$SYSLOG_TAG]\
"${ARGV0} Probe for resource HA-DNS successful"

fi

The decide_restart_or_failover() function uses a time window
(Retry_interval) and a failure count (Retry_count) to determine whether to
restart DNS locally or request that the RGM relocate the data service to a different
node. It implements the following conditional code (see the code listing for
decide_restart_or_failover() in “PROBE Program” on page 262).

� If this is the first failure, restart the data service. Log an error message and bump
the counter in the retries variable.

� If this is not the first failure, but the window has been exceeded, restart the data
service. Log an error message, reset the counter, and slide the window.

� If the time is still within the window and the retry counter has been exceeded, then
fail over to another node. If the fail over does not succeed, log an error and exit the
probe program with status 1 (failure).

Chapter 5 • Sample Data Service 103

� If time is still within the window but the retry counter has not been exceeded,
restart the data service. Log an error message and bump the counter in the
retries variable.

If the number of restarts reaches the limit during the time interval, the function
requests that the RGM relocate the data service to a different node. If the number of
restarts is under the limit, or the interval has been exceeded so the count begins again,
the function attempts to restart DNS on the same node. Note the following about this
function:

� The gettime utility is used to track the time between restarts. This is a C program
residing in the (Rt_basedir) directory.

� The Retry_count and Retry_interval system-defined resource properties
determine the number of restart attempts and the interval over which to count.
These properties default to 2 attempts in a period of 5 minutes (300 seconds) in the
RTR file, though the cluster administrator could change them.

� The restart_service() function is called to attempt to restart the data service
on the same node. See the next section, “Restarting the Data Service” on page 104,
for information about this function.

� The scha_control() API function, with the GIVEOVER option, brings the
resource group containing the sample data service offline and back online on a
different node.

Restarting the Data Service
The restart_service() function is called by decide_restart_or_failover()
to attempt to restart the data service on the same node. This function does the
following.

� It determines if the data service is still registered under PMF. If the service is still
registered, the function:

� Obtains the Stop method name and the Stop_timeout value for the data
service.

� Uses hatimerun to launch the Stop method for the data service, passing the
Stop_timeout value.

� (If the data service is successfully stopped) obtains the Start method name
and the Start_timeout value for the data service.

� Uses hatimerun to launch the Start method for the data service, passing the
Start_timeout value.

� If the data service is no longer registered under PMF, the implication is that the
data service has exceeded the maximum number of allowable retries under PMF,
so the scha_control() function is called with the GIVEOVER option to fail the
data service over to a different node.

function restart_service
{

104 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

To restart the data service, first verify that the
data service itself is still registered under PMF.
pmfadm -q $PMF_TAG
if [[$? -eq 0]]; then

Since the TAG for the data service is still registered under
PMF, first stop the data service and start it back up again.

Obtain the Stop method name and the STOP_TIMEOUT value for
this resource.
STOP_TIMEOUT=`scha_resource_get -O STOP_TIMEOUT \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
STOP_METHOD=`scha_resource_get -O STOP \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
hatimerun -t $STOP_TIMEOUT $RT_BASEDIR/$STOP_METHOD \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \
-T $RESOURCETYPE_NAME

if [[$? -ne 0]]; then
logger-p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Stop method failed.”
return 1

fi

Obtain the START method name and the START_TIMEOUT value for
this resource.
START_TIMEOUT=`scha_resource_get -O START_TIMEOUT \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
START_METHOD=`scha_resource_get -O START \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
hatimerun -t $START_TIMEOUT $RT_BASEDIR/$START_METHOD \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \
-T $RESOURCETYPE_NAME

if [[$? -ne 0]]; then
logger-p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Start method failed.”
return 1

fi

else
The absence of the TAG for the dataservice
implies that the data service has already
exceeded the maximum retries allowed under PMF.
Therefore, do not attempt to restart the
data service again, but try to failover
to another node in the cluster.
scha_control -O GIVEOVER -G $RESOURCEGROUP_NAME \

-R $RESOURCE_NAME
fi

return 0
}

Chapter 5 • Sample Data Service 105

Probe Exit Status
The sample data service’s PROBE program exits with failure if attempts to restart
locally have failed and the attempt to fail over to a different node has failed as well. It
logs the message, “Failover attempt failed”.

Monitor_start Method
The RGM calls the Monitor_start method to launch the dns_probe method after
the sample data service is brought online.

This section describes the major pieces of the Monitor_start method for the sample
application. This section does not describe functionality common to all callback
methods, such as the parse_args() function and obtaining the syslog facility, which
are described in “Providing Common Functionality to All Methods” on page 90.

For the complete listing of the Monitor_start method, see “Monitor_start
Method” on page 267.

Monitor_start Overview
This method uses the process monitor facility (pmfadm) to launch the probe.

Starting the Probe
The Monitor_start method obtains the value of the Rt_basedir property to
construct the full path name for the PROBE program. This method launches the probe
using the infinite retries option of pmfadm (-n -1, -t -1), which means if the probe fails
to start, PMF tries to start it an infinite number of times over an infinite period of time.

Find where the probe program resides by obtaining the value of the
RT_BASEDIR property of the resource.
RT_BASEDIR=‘scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME -G \
$RESOURCEGROUP_NAME‘

Start the probe for the data service under PMF. Use the infinite retries
option to start the probe. Pass the resource name, type, and group to the
probe program.
pmfadm -c $RESOURCE_NAME.monitor -n -1 -t -1 \

$RT_BASEDIR/dns_probe -R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \
-T $RESOURCETYPE_NAME

Monitor_stop Method
The RGM calls the Monitor_stop method to stop execution of dns_probe when the
sample data service is brought offline.

106 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

This section describes the major pieces of the Monitor_stop method for the sample
application. This section does not describe functionality common to all callback
methods, such as the parse_args() function and obtaining the syslog facility, which
are described in “Providing Common Functionality to All Methods” on page 90.

For the complete listing of the Monitor_stop method, see “Monitor_stop
Method” on page 269.

Monitor_stop Overview
This method uses the process monitor facility (pmfadm) to see if the probe is running,
and if so, to stop it.

Stopping the Monitor
The Monitor_stop method uses pmfadm -q to see if the probe is running, and if so,
uses pmfadm -s to stop it. If the probe is already stopped, the method exits
successfully anyway, which guarantees the idempotency of the method.

See if the monitor is running, and if so, kill it.
if pmfadm -q $PMF_TAG; then

pmfadm -s $PMF_TAG KILL
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$SYSLOG_TAG] \
"${ARGV0} Could not stop monitor for resource " \
$RESOURCE_NAME
exit 1

else
could successfully stop the monitor. Log a message.
logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \
"${ARGV0} Monitor for resource " $RESOURCE_NAME \
" successfully stopped"

fi
fi
exit 0

Caution – Be certain to use the KILL signal with pmfadm to stop the probe and not a
maskable signal such as TERM. Otherwise the Monitor_stop method can hang
indefinitely and eventually time out. The reason for this problem is that the PROBE
method calls scha_control() when it is necessary to restart or fail over the data
service. When scha_control() calls Monitor_stop as part of the process of
bringing the data service offline, if Monitor_stop uses a maskable signal, it hangs
waiting for scha_control() to complete and scha_control() hangs waiting for
Monitor_stop to complete.

Chapter 5 • Sample Data Service 107

Monitor_stop Exit Status
The Monitor_stop method logs an error message if it cannot stop the PROBE
method. The RGM puts the sample data service into MONITOR_FAILED state on the
primary node, which can panic the node.

Monitor_stop should not exit before the probe has been stopped.

Monitor_check Method
The RGM calls the Monitor_check method whenever the PROBE method attempts to
fail the resource group containing the data service over to a new node.

This section describes the major pieces of the Monitor_check method for the sample
application. This section does not describe functionality common to all callback
methods, such as the parse_args() function and obtaining the syslog facility, which
are described in “Providing Common Functionality to All Methods” on page 90.

For the complete listing of the Monitor_check method, see “Monitor_check
Method” on page 271.

The Monitor_check method must be implemented so that it does not conflict with
other methods running concurrently.

The Monitor_check method calls the Validate method to verify that the DNS
configuration directory is available on the new node. The Confdir extension property
points to the DNS configuration directory. Therefore Monitor_check obtains the
path and name for the Validate method and the value of Confdir. It passes this
value to Validate, as shown in the following listing.

Obtain the full path for the Validate method from
the RT_BASEDIR property of the resource type.
RT_BASEDIR=`scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAMÈ

Obtain the name of the Validate method for this resource.
VALIDATE_METHOD=`scha_resource_get -O VALIDATE \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

Obtain the value of the Confdir property in order to start the
data service. Use the resource name and the resource group entered to
obtain the Confdir value set at the time of adding the resource.
config_info=`scha_resource_get -O Extension -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME Confdir`

scha_resource_get returns the type as well as the value for extension
properties. Use awk to get only the value of the extension property.
CONFIG_DIR=`echo $config_info | awk ‘{print $2}’`

Call the validate method so that the dataservice can be failed over

108 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

successfully to the new node.
$RT_BASEDIR/$VALIDATE_METHOD -R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \

-T $RESOURCETYPE_NAME -x Confdir=$CONFIG_DIR

See the “Validate Method” on page 109 to see how the sample application verifies
the suitability of a node for hosting the data service.

Handling Property Updates
The sample data service implements Validate and Update methods to handle
updating of properties by a cluster administrator.

Validate Method
The RGM calls the Validate method when a resource is created and when
administrative action updates the properties of the resource or its containing group.
The RGM calls Validate before the creation or update is applied, and a failure exit
code from the method on any node causes the creation or update to be canceled.

The RGM calls Validate only when resource or group properties are changed
through administrative action, not when the RGM sets properties, or when a monitor
sets the resource properties Status and Status_msg.

Note – The Monitor_check method also explicitly calls the Validate method
whenever the PROBE method attempts to fail the data service over to a new node.

Validate Overview
The RGM calls Validate with additional arguments to those passed to other
methods, including the properties and values being updated. Therefore this method in
the sample data service must implement a different parse_args() function to
handle the additional arguments.

The Validate method in the sample data service verifies a single property, the
Confdir extension property. This property points to the DNS configuration directory,
which is critical to successful operation of DNS.

Chapter 5 • Sample Data Service 109

Note – Because the configuration directory cannot be changed while DNS is running,
the Confdir property is declared in the RTR file as TUNABLE = AT_CREATION.
Therefore, the Validate method is never called to verify the Confdir property as
the result of an update, but only when the data service resource is being created.

If Confdir is one of the properties the RGM passes to Validate, the
parse_args() function retrieves and saves its value. Validate then verifies that
the directory pointed to by the new value of Confdir is accessible and that the
named.conf file exists in that directory and contains some data.

If the parse_args() function cannot retrieve the value of Confdir from the
command-line arguments passed by the RGM, Validate still attempts to validate the
Confdir property. Validate uses scha_resource_get() to obtain the value of
Confdir from the static configuration. Then it performs the same checks to verify that
the configuration directory is accessible and contains a non-empty named.conf file.

If Validate exits with failure, the update or creation of all properties, not just
Confdir, fails.

Validate Method Parsing Function
The RGM passes the Validate method a different set of parameters than the other
callback methods so Validate requires a different function for parsing arguments
than the other methods. See the rt_callbacks(1HA) man page for more information
on the parameters passed to Validate and the other callback methods. The following
shows the Validate parse_args() function.

###
Parse Validate arguments.
#
function parse_args # [args...]
{

typeset opt
while getopts ’cur:x:g:R:T:G:’ opt
do

case "$opt" in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)

110 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

r)
The method is not accessing any system defined
properties so this is a no-op
;;

g)
The method is not accessing any resource group
properties, so this is a no-op
;;

c)
Indicates the Validate method is being called while
creating the resource, so this flag is a no-op.
;;

u)
Indicates the updating of a property when the
resource already exists. If the update is to the
Confdir property then Confdir should appear in the
command-line arguments. If it does not, the method must
look for it specifically using scha_resource_get.
UPDATE_PROPERTY=1
;;

x)
Extension property list. Separate the property and
value pairs using "=" as the separator.
PROPERTY=‘echo $OPTARG | awk -F= ’{print $1}’‘
VAL=‘echo $OPTARG | awk -F= ’{print $2}’‘
If the Confdir extension property is found on the
command line, note its value.
if [$PROPERTY == "Confdir"]; then

CONFDIR=$VAL
CONFDIR_FOUND=1

fi
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$SYSLOG_TAG] \
"ERROR: Option $OPTARG unknown"
exit 1
;;

esac
done

}

As with the parse_args() function for other methods, this function provides a flag
(R) to capture the resource name, (G) to capture the resource group name, and (T) to
capture the resource type passed by the RGM.

The r flag (indicating a system-defined property), g flag (indicating a resource group
property), and the c flag (indicating that the validation is occurring during creation of
the resource) are ignored, because this method is being called to validate an extension
property when the resource is being updated.

Chapter 5 • Sample Data Service 111

The u flag sets the value of the UPDATE_PROPERTY shell variable to 1 (TRUE). The x
flag captures the names and values of the properties being updated. If Confdir is one
of the properties being updated, its value is placed in the CONFDIR shell variable and
the variable CONFDIR_FOUND is set to 1 (TRUE).

Validating Confdir

In its MAIN function, Validate first sets the CONFDIR variable to the empty string
and UPDATE_PROPERTY and CONFDIR_FOUND to 0.

CONFDIR=""
UPDATE_PROPERTY=0
CONFDIR_FOUND=0

Validate then calls parse_args() to parse the arguments passed by the RGM.

parse_args “$@”

Validate then checks if Validate is being called as the result of an update of
properties and if the Confdir extension property was on the command line.
Validate then verifies that the Confdir property has a value, and if not, exits with
failure status and an error message.

if ((($UPDATE_PROPERTY == 1)) && ((CONFDIR_FOUND == 0))); then
config_info=‘scha_resource_get -O Extension -R $RESOURCE_NAME \

-G $RESOURCEGROUP_NAME Confdir‘
CONFDIR=‘echo $config_info | awk ’{print $2}’‘

fi

Verify that the Confdir property has a value. If not there is a failure
and exit with status 1
if [[-z $CONFDIR]]; then

logger -p ${SYSLOG_FACILITY}.err \
"${ARGV0} Validate method for resource "$RESOURCE_NAME " failed"

exit 1
fi

Note – Specifically, the preceding code checks if Validate is being called as the result
of an update ($UPDATE_PROPERTY == 1) and if the property was not found on the
command line (CONFDIR_FOUND == 0), in which case it retrieves the existing value
of Confdir using scha_resource_get(). If Confdir was found on the command
line (CONFDIR_FOUND == 1), the value of CONFDIR comes from the parse_args()
function, not from scha_resource_get().

The Validate method then uses the value of CONFDIR to verify that the directory is
accessible. If it is not accessible, Validate logs an error message and exits with error
status.

Check if $CONFDIR is accessible.
if [! -d $CONFDIR]; then

112 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

logger -p ${SYSLOG_FACILITY}.err \
-t [$SYSLOG_TAG] \
"${ARGV0} Directory $CONFDIR missing or not mounted"

exit 1
fi

Before validating the update of the Confdir property, Validate performs a final
check to verify that the named.conf file is present. If it is not, the method logs an
error message and exits with error status.

Check that the named.conf file is present in the Confdir directory
if [! -s $CONFDIR/named.conf]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$SYSLOG_TAG] \
"${ARGV0} File $CONFDIR/named.conf is missing or empty"

exit 1
fi

If the final check is passed, Validate logs a message indicating success and exits
with success status.

Log a message indicating that the Validate method was successful.
logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \
"${ARGV0} Validate method for resource "$RESOURCE_NAME \
" completed successfully"

exit 0

Validate Exit Status
If Validate exits with success (0) Confdir is created with the new value. If
Validate exits with failure (1), Confdir and any other properties are not created
and a message indicating why is sent to the cluster administrator.

Update Method
The RGM calls the Update method to notify a running resource that its properties
have been changed. The RGM invokes Update after an administrative action succeeds
in setting properties of a resource or its group. This method is called on nodes where
the resource is online.

Update Overview
The Update method doesn’t update properties—that is done by the RGM. Rather, it
notifies running processes that an update has occurred. The only process in the sample
data service affected by a property update is the fault monitor, so it is this process the
Update method stops and restarts.

Chapter 5 • Sample Data Service 113

The Update method must verify the fault monitor is running and then kill it using
pmfadm. The method obtains the location of the probe program that implements the
fault monitor, then restarts it using pmfadm again.

Stopping the Monitor With Update

The Update method uses pmfadm -q to verify that the monitor is running, and if so
kills it with pmfadm -s TERM. If the monitor is successfully terminated, a message to
that effect is sent to the administrative user. If the monitor cannot be stopped, Update
exits with failure status and sends an error message to the administrative user.

if pmfadm -q $RESOURCE_NAME.monitor; then

Kill the monitor that is running already
pmfadm -s $PMF_TAG TERM

if [$? -ne 0]; then
logger -p ${SYSLOG_FACILITY}.err \

-t [$SYSLOG_TAG] \
"${ARGV0} Could not stop the monitor"

exit 1
else
could successfully stop DNS. Log a message.

logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \

"Monitor for HA-DNS successfully stopped"
fi

Restarting the Monitor
To restart the monitor, the Update method must locate the script that implements the
probe program. The probe program resides in the base directory for the data service,
which is pointed to by the Rt_basedir property. Update retrieves the value of
Rt_basedir and stores it in the RT_BASEDIR variable, as follows.

RT_BASEDIR=‘scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME -G \
$RESOURCEGROUP_NAME‘

Update then uses the value of RT_BASEDIR with pmfadm to restart the dns_probe
program. If successful, Update exits with success and sends a message to that effect to
the administrative user. If pmfadm cannot launch the probe program, Update exits
with failure status and logs an error message.

Update Exit Status
Update method failure causes the resource to be put into an “update failed” state.
This state has no effect on RGM management of the resource, but indicates the failure
of the update action to administration tools through the syslog facility.

114 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

CHAPTER 6

Data Service Development Library
(DSDL)

This chapter provides an overview of the application programming interfaces
constituting the Data Service Development Library, or DSDL. The DSDL is
implemented in the libdsdev.so library and is included in the Sun Cluster package.

This chapter covers the following topics:

� “DSDL Overview” on page 115
� “Managing Configuration Properties” on page 116
� “Starting and Stopping a Data Service” on page 117
� “Implementing a Fault Monitor” on page 117
� “Accessing Network Address Information” on page 118
� “Debugging the Resource Type Implementation” on page 118

DSDL Overview
The DSDL API is layered on top of the RMAPI. As such, it does not supersede the
RMAPI but rather encapsulates and extends the RMAPI functionality. The DSDL
simplifies data service development by providing predetermined solutions to specific
Sun Cluster integration issues. Consequently, you can devote the majority of
development time to the high availability and scalability issues intrinsic to your
application, and avoid spending a large amount of time on integrating the application
startup, shutdown, and monitor procedures with Sun Cluster.

115

Managing Configuration Properties
All callback methods require access to the configuration properties. The DSDL
supports access to properties by:

� Initializing the environment
� Providing a set of convenience functions to retrieve property values

The scds_initialize function, which must be called at the beginning of each
callback method, does the following:

� Checks and processes the command-line arguments (argc and argv[]) the RGM
passes to the callback method, obviating the need for you to write a command-line
parsing function.

� Sets up internal data structures for use by other DSDL functions. For example, the
convenience functions that retrieve property values from the RGM store the values
in these structures. Likewise, values from the command-line, which take
precedence over values retrieved from the RGM, are stored in these data structures.

Note – For the Validate method, scds_initialize parses the property values that are
passed on the command line, obviating the need to write a parse function for
Validate.

The scds_initialize function also initializes the logging environment and
validates fault monitor probe settings.

The DSDL provides sets of functions to retrieve resource, resource type, and resource
group properties as well as commonly-used extension properties. These functions
standardize access to properties by using the following conventions.

� Each function takes only a handle argument (returned by scds_initialize).

� Each function corresponds to a particular property. The return value type of the
function matches the type of the property value it retrieves.

� Functions do not return errors as the values have been precomputed by
scds_initialize. Functions retrieve values from the RGM unless a new value is
passed on the command line.

116 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Starting and Stopping a Data Service
A Start method is expected to perform the actions required to start a data service on
a cluster node. Typically, this includes retrieving the resource properties, locating
application-specific executables and configuration files, and launching the application
with the appropriate command-line arguments.

The scds_initialize function retrieves the resource configuration. The Start
method can use property convenience functions to retrieve values for specific
properties, such as Confdir_list, that identify the configuration directories and
files for the application to launch.

A Start method can call scds_pmf_start to launch an application under control of
the Process Monitor Facility (PMF). PMF enables you to specify the level of
monitoring to apply to the process and provides the ability to restart the process in
case of failure. See “xfnts_start Method” on page 136 for an example of a Start
method implemented with the DSDL.

A Stop method must be idempotent such that it exits with success even if it is called
on a node when the application is not running. If the Stop method fails, the resource
being stopped is set to the STOP_FAILED state, which can lead to a hard reboot of the
cluster.

To avoid putting the resource in STOP_FAILED state the Stop method must make
every effort to stop the resource. The scds_pmf_stop function provides a phased
attempt to stop the resource. It first attempts to stop the resource using SIGTERM
signal, and if this fails, uses a SIGKILL signal. See scds_pmf_stop(3HA) for details.

Implementing a Fault Monitor
The DSDL absorbs much of the complexity of implementing a fault monitor by
providing a predetermined model. A Monitor_start method launches the fault
monitor, under the control of PMF, when the resource starts on a node. The fault
monitor runs in loop as long as the resource is running on the node. The high-level
logic of a DSDL fault monitor is as follows.

� The scds_fm_sleep function uses the Thorough_probe_interval property to
determine the amount of time between probes. Any application process failures
determined by PMF during this interval lead to a restart of the resource.

� The probe itself returns a value indicating the severity of failures, from 0, no
failure, to 100 complete failure.

Chapter 6 • Data Service Development Library (DSDL) 117

� The probe return value is sent to the scds_action function, which maintains a
cumulative failure history within the interval of the Retry_interval property.

� The scds_action function determines what to do in the event of failure, as
follows.

� If the cumulative failure is below 100, do nothing.
� If the cumulative failure reaches 100 (complete failure) restart the data service.

If Retry_interval is exceeded, reset the history.
� If the number of restarts exceeds the value of the Retry_count property,

within the time specified by Retry_interval, failover the data service.

Accessing Network Address Information
The DSDL provides convenience functions to return network address information for
resources and resource groups. For example, the scds_get_netaddr_list retrieves
the network-address resources used by a resource, enabling a fault monitor to probe
the application.

The DSDL also provides a set of functions for TCP-based monitoring. Typically, these
functions establish a simple socket connection to a service, read and write data to the
service, and then disconnect from the service. The result of the probe can be sent to the
DSDL scds_fm_action function to determine the action to take.

See “xfnts_validate Method” on page 150 for an example of TCP-based fault
monitoring.

Debugging the Resource Type
Implementation
The DSDL has built-in features to help you debug your data service.

The DSDL utility scds_syslog_debug() provides a basic framework for adding
debugging statements to the resource type implementation. The debugging level (a
number between 1-9) can be dynamically set per resource type implementation per
cluster node. A file named /var/cluster/rgm/rt/rtname/loglevel, which
contains only an integer between 1 and 9, is read by all resource type callback
methods. The DSDL routine scds_initialize() reads this file and sets the debug
level internally to the specified level. The default debug level 0, specifies that the data
service log no debugging messages.

118 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

The scds_syslog_debug() function uses the facility returned by the
scha_cluster_getlogfacility() function at a priority of LOG_DEBUG. You can
configure these debug messages in /etc/syslog.conf.

You can turn some debugging messages into informational messages for regular
operation of the resource type (perhaps at LOG_INFO priority) using the
scds_syslog utility. If you look at the sample DSDL application in Chapter 8 you
will notice that it makes liberal use of scds_syslog_debug and scds_syslog
functions.

Enabling Highly Available Local File
Systems
You can use the HAStoragePlus resource type to make a local file system highly
available within a Sun Cluster environment. The local file system partitions must be
located on global disk groups. Affinity switchovers must be enabled and the Sun
Cluster environment must be configured for failover. This set up enables the user to
make any file system on multi-host disks accessible from any host directly connected
to those multi-host disks. Using a highly available local file system is strongly
recommended for some I/O intensive data services. “Enabling Highly Available Local
File Systems” in Sun Cluster Data Services Planning and Administration Guide for Solaris
OS contains information about configuring the HAStoragePlus resource type.

Chapter 6 • Data Service Development Library (DSDL) 119

120 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

CHAPTER 7

Designing Resource Types

This chapter explains the typical usage of the DSDL in designing and implementing
resource types. This chapter also focuses on designing the resource type to validate the
resource configuration, and to start, stop, and monitor the resource. This chapter
finally describes how to use the DSDL to implement the resource type callback
methods.

Refer to the rt_callbacks(1HA) man page for additional information.

You need access to the resource’s property settings to complete these tasks. The DSDL
utility scds_initialize() gives you a uniform way to access the resource
properties. This function is designed to be called at the beginning of each callback
method. This utility function retrieves all the properties for a resource from the cluster
framework and makes it available to the family of scds_getname() functions.

This chapter covers the following topics:

� “The RTR File” on page 122
� “The Validate Method” on page 122
� “The Start Method” on page 124
� “The Stop Method” on page 125
� “The Monitor_start Method” on page 126
� “The Monitor_stop Method” on page 127
� “The Monitor_check Method” on page 127
� “The Update Method” on page 127
� “The Init, Fini, and Boot Methods” on page 128
� “Designing the Fault Monitor Daemon” on page 129

121

The RTR File
The Resource Type Registration (RTR) file is an important component of a resource
type. This file specifies the details about the resource type to Sun Cluster. These details
include information such as the properties that are needed by the implementation, the
data types of those properties, the default values of those properties, the file system
path for the callback methods for the resource type implementation, and various
settings for the system-defined properties.

The sample RTR file that is shipped with the DSDL should suffice for most resource
type implementations. All you need to do is edit some basic elements such as the
resource type name and the pathname of the resource type callback methods. If a new
property is needed to implement the resource type, you can declare it as an extension
property in the Resource Type Registration (RTR) file of the resource type
implementation, and then access the new property using the DSDL
scds_get_ext_property() utility.

The Validate Method
The Validate method of a resource type implementation is called by the RGM in
two scenarios: 1) when a new resource of the resource type is being created, and 2)
when a property of the resource or resource group is being updated. These two
scenarios can be distinguished by the presence of the command line option -c
(creation) or -u (update) passed to the Validate method of the resource.

The Validate method is called on each node of a set of nodes, where the set of nodes
is defined by the value of the resource type property INIT_NODES. If INIT_NODES is
set to RG_PRIMARIES, Validate is called on each node that can host (be a primary
of) the resource group containing the resource. If INIT_NODES is set to
RT_INSTALLED_NODES, Validate is called on each node where the resource type
software is installed, typically all nodes in the cluster. The default value of
INIT_NODES is RG_PRIMARIES (see rt_reg(4). At the point the Validate method
is called, the RGM has not yet created the resource (in the case of creation callback) or
has not yet applied the updated value(s) of the properties being updated (in the case
of update callback). The purpose of the Validate callback method of a resource type
implementation is to check that the proposed resource settings (as specified by the
proposed property settings on the resource) are acceptable to the resource type.

122 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Note – If you are using local file systems managed by HAStoragePlus, you use the
scds_hasp_check to check the state of the HAStoragePlus resource, This
information is obtained from the state (online or otherwise) of all
SUNW.HAStoragePlus(5) resources that the resource depends upon using
Resource_dependencies or Resource_dependencies_weak system properties
defined for the resource. .See scds_hasp_check(3HA) for a complete list of status
codes returned from the scds_hasp_check call.

The DSDL function scds_initialize() takes care of these situations in the
following manner:

� In the case of resource creation, it parses the proposed resource properties, as
passed on the command line. The proposed values of resource properties are thus
available to the resource type developer as if the the resource were already created
in the system.

� In the case of resource or resource group update, the proposed values of the
properties being updated by the administrator are read in from the command line,
and the remaining properties (whose values are not being updated) are read in
from Sun Cluster using the Resource Management API. A resource type developer
using the DSDL need not concern himself with all these housekeeping tasks. The
validation of a resource can be done as if all the properties of the resource were
available to the developer.

Suppose the function that implements the validation of a resource’s properties is
called svc_validate() which uses the scds_get_name() family of functions to
look at the property it is interested in validating. Assuming that an acceptable resource
setting is represented by a 0 return code from this function, the Validate method of
the resource type can thus be represented by the following code fragment:

int
main(int argc, char *argv[])
{

scds_handle_t handle;
int rc;

if (scds_initialize(&handle, argc, argv)!= SCHA_ERR_NOERR) {
return (1); /* Initialization Error */
}
rc = svc_validate(handle);
scds_close(&handle);
return (rc);

}

The the validation function should also log the reason for the failure of the validation
of resource. Leaving out that detail (see the next chapter for a more realistic treatment
of a validation function), a simple example svc_validate() function can then be
implemented as:

Chapter 7 • Designing Resource Types 123

int
svc_validate(scds_handle_t handle)
{

scha_str_array_t *confdirs;
struct stat statbuf;
confdirs = scds_get_confdir_list(handle);
if (stat(confdirs->str_array[0], &statbuf) == -1) {
return (1); /* Invalid resource property setting */
}
return (0); /* Acceptable setting */

}

The resource type developer thus has to concern himself with only the implementation
of the svc_validate() function. A typical example for a resource type
implementation could be to ensure that an application configuration file named
app.conf exists under the Confdir_list property. That can be conveniently
implemented by a stat() system call on the appropriate pathname derived from the
Confdir_list property.

The Start Method
The Start callback method of a resource type implementation is called by the RGM
on a chosen cluster node to start the resource. The resource group name, the resource
name, and resource type name are passed on the command line. The Start method is
expected to perform the actions needed to start up a data service resource on the
cluster node. Typically this involves retrieving the resource properties, locating the
application specific executables and/or configuration files, and launching the
application with appropriate command line arguments.

With the DSDL, the resource configuration is already retrieved by the
scds_initialize() utility. The startup action for the application can be contained
in a function svc_start(). Another function, svc_wait(), can be called to verify
that the application actually starts. The simplified code for the Start method
becomes:

int
main(int argc, char *argv[])
{

scds_handle_t handle;

if (scds_initialize(&handle, argc, argv)!= SCHA_ERR_NOERR) {
return (1); /* Initialization Error */
}
if (svc_validate(handle) != 0) {
return (1); /* Invalid settings */
}
if (svc_start(handle) != 0) {

124 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

return (1); /* Start failed */
}
return (svc_wait(handle));

}

This start method implementation calls svc_validate() to validate the resource
configuration. If it fails, either the resource configuration and application
configuration do not match, or there is currently a problem on this cluster node with
regard to the system. For example, a global file system needed by the resource may
currently not be available on this cluster node. In this case, it is futile to even attempt
to start the resource on this cluster node. It is better to let the RGM attempt to start the
resource on a different node. Note however that the above assumes svc_validate()
is sufficiently conservative (so that it checks only for resources on the cluster node that
are absolutely needed by the application) or else the resource might fail to start up on
all cluster nodes and thus land in START_FAILED state. See scswitch(1M) and the
Sun Cluster Data Services Planning and Administration Guide for Solaris OS for an
explanation of this state.

The svc_start() function must return 0 for a successful startup of the resource on
the node. If the startup function encountered a problem, it must return non-zero.
Upon failure of this function, the RGM attempts to start the resource on a different
cluster node.

To leverage the DSDL as much as possible, the svc_start() function can use the
scds_pmf_start() utility to start the application under the Process Management
Facility (PMF). This utility also leverages the failure callback action feature of PMF
(see the -a action flag in pmfadm(1M)) to implement process failure detection.

The Stop Method
The Stop callback method of a resource type implementation is called by the RGM on
a cluster node to stop the application. The callback semantics for the Stop method
demands that

� The Stop method must be idempotent because the Stop method can be called by
the RGM even if the Start method did not complete successfully on the node.
Thus the Stop method must succeed (exit zero) even if the application is not
currently running on the cluster node and there is no work for it to do.

� If the Stop method of the resource type fails (exits non-zero) on a cluster node, the
resource being stopped would end up in the STOP_FAILED state. Depending upon
the Failover_mode setting on the resource, this may lead to a hard rebooting of
the cluster node by the RGM. Thus it is important to design the Stop method so
that it tries very hard to really stop the application, even by a hard and abrupt
killing of the application (for example, using SIGKILL) if the application otherwise
fails to terminate. It should also make sure that it does so in a timely fashion,

Chapter 7 • Designing Resource Types 125

because the framework treats expiry of Stop_timeout as a stop failure, and puts
the resource in STOP_FAILED state.

The DSDL utility scds_pmf_stop() should suffice for most applications as it first
attempts to softly (via SIGTERM) stop the application (it assumes that it was started
under PMF via scds_pmf_start()) followed by a delivering a SIGKILL to the
process. See “PMF Functions” on page 198 for details about this utility.

Following the model of the code we have been using so far, assuming that the
application specific function to stop the application is called svc_stop() (whether
the implementation of svc_stop() uses the scds_pmf_stop() is besides the point
here, and would depend upon whether or not the application was started under PMF
via the Start method)) the Stop method can be implemented as

if (scds_initialize(&handle, argc, argv)!= SCHA_ERR_NOERR)
{

return (1); /* Initialization Error */
}

return (svc_stop(handle));

The svc_validate() method is not used in the implementation of the Stop
method, because even if the system currently has a problem, the Stop method should
attempt to stop the application on this node.

The Monitor_start Method
The RGM calls the Monitor_start method to start a fault monitor for the resource.
Fault monitors monitor the health of the application being managed by the resource.
Resource type implementations typically implement a fault monitor as a separate
daemon which runs in the background. The Monitor_start callback method is used
to launch this daemon with the appropriate arguments.

Because the monitor daemon itself is prone to failures (for example, it could die,
leaving the application unmonitored) you should use the PMF to start the monitor
daemon. The DSDL utility scds_pmf_start() has built in support for starting fault
monitors. This utility uses the relative pathname (relative to the RT_basedir for the
location of the resource type callback method implementations) of the monitor
daemon program. It uses the Monitor_retry_interval and
Monitor_retry_count extension properties managed by the DSDL to prevent
unlimited restarts of the daemon. It imposes the same command line syntax as defined
for all callback methods (that is, -R resource -G resource_group -T resource_type) onto the
monitor daemon, although the monitor daemon is never called directly by the RGM. It
allows the monitor daemon implementation itself to leverage the
scds_initialize() utility to set up its own environment. The main effort is in
designing the monitor daemon itself.

126 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

The Monitor_stop Method
The RGM calls the Monitor_stop method to stop the fault monitor daemon that was
started via the Monitor_start method. Failure of this callback method is treated in
exactly the same fashion as failure of the Stop method; therefore the Monitor_stop
method must be idempotent and robust like the Stop method.

If you use the scds_pmf_start() utility to start the fault monitor daemon, use the
scds_pmf_stop() utility to stop it.

The Monitor_check Method
The Monitor_check callback method on a resource is invoked on a node for the
specified resource to ascertain whether the cluster node is capable of mastering the
resource (that is, can the application(s) being managed by the resource be run
successfully on the node?). Typically this situation involves making sure that all the
system resources needed by the application are indeed available on the cluster node.
As discussed in “The Validate Method” on page 122, the function
svc_validate() implemented by the developer is intended to ascertain at least that.

Depending upon the specific application being managed by the resource type
implementation, the Monitor_check method can be written to do some additional
tasks. The Monitor_check method must be implemented so that it does not conflict
with other methods running concurrently. For developers using the DSDL it is
recommended that the Monitor_check method leverage the svc_validate()
function written for the purpose of implementing application specific validation of
resource properties.

The Update Method
The RGM calls the Update method of a resource type implementation to apply any
changes that were made by the system administrator to the configuration of the active
resource. The Update method is only called on nodes (if any) where the resource is
currently online.

The changes that have just been made to the resource configuration are guaranteed to
be acceptable to the resource type implementation because the RGM runs the
Validate method of the resource type before it runs the Update method. The

Chapter 7 • Designing Resource Types 127

Validate method is called before the resource or resource group properties are
changed and the Validate method can veto the proposed changes. The Update
method is called after the changes have been applied to give the active (online)
resource the opportunity to take notice of the new settings.

As a resource type developer, you need to cautiously decide the properties that you
want to be able to update dynamically and mark those with the TUNABLE = ANYTIME
setting in the RTR file. Typically, you can specify that you want to be able to
dynamically update any property of a resource type implementation that the fault
monitor daemon uses, provided that the Update method implementation at least
restarts the monitor daemon.

Possible candidates are as follows:

� Thorough_Probe_Interval
� Retry_Count
� Retry_Interval
� Monitor_retry_count
� Monitor_retry_interval
� Probe_timeout

These properties affect the way a fault monitor daemon does health checking of the
service, how often it does it, what history interval it uses to keep track of the errors,
and what are the restart thresholds set on it by PMF. To implement updates of these
properties the utility scds_pmf_restart() is provided in the DSDL.

If you need to be able to dynamically update a resource property, but the modification
of that property might affect the running application, you need to implement the
appropriate actions so that the updates to that property are correctly applied to any
running instances of the application. Currently there is no way to facilitate this via the
DSDL. Update is not passed the modified properties on the command line (as is
Validate).

The Init, Fini, and Boot Methods
These are one time action methods as defined by the Resource Management API
specifications. The sample implementation included with the DSDL does not illustrate
the use of these methods. However, all the facilities in the DSDL are available to these
methods as well, should a resource type developer have a need for these methods.
Typically, the Init and the Boot methods would be exactly the same for a resource
type implementation to implement a one time action. The Fini method typically would
perform an action which undoes the action of the Init or Boot methods.

128 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Designing the Fault Monitor Daemon
Resource type implementations using the DSDL typically have a fault monitor
daemon with the following responsibilities.

� Periodically monitoring the health of the application being managed. This
particular aspect of a monitor daemon is heavily application dependent and could
vary widely from resource type to resource type. The DSDL has some built in
utility functions to perform health checks for simple TCP based services.
Applications implementing ASCII based protocols such as HTTP, NNTP, IMAP,
and POP3 can be implemented using these utilities.

� Keeping track of the problems encountered by the application using the resource
properties Retry_interval and Retry_count. Upon complete failures of the
application, deciding whether the PMF action script should restart the service or
whether the application failures have accumulated so rapidly that a failover could
be considered. The DSDL utilities scds_fm_action() and scds_fm_sleep()
are intended to aid you in implementing this mechanism.

� Taking appropriate actions (typically either restarting the application or attempting
a failover of the containing resource group). The DSDL utility
scds_fm_action() implements such an algorithm. It computes the current
accumulation of probe failures in the past Retry_interval seconds for this purpose.

� Updating the resource state so that application health state is available to the
scstat command as well as to the cluster management GUI.

The DSDL utilities are designed so the main loop of the fault monitor daemon can be
represented by the following pseudo code.

For fault monitors implemented using the DSDL,

� The detection of application process death by scds_fm_sleep() is fairly rapid
because the process death notification via PMF is asynchronous. Contrast that with
a case where a fault monitor wakes up every so often to check on service health
and finds the application dead. The fault detection time is reduced significantly,
thereby increasing the availability of the service.

� If the RGM rejects the attempt to fail over the service via the scha_control
(3HA) API, scds_fm_action() resets (forgets) its current failure history. The
reason is that the failure history is already above Retry_count, and if the monitor
daemon wakes up in the next iteration and is unable to successfully complete its
health check of the daemon, it would again attempt to invoke the
scha_control() call, which would probably still be rejected, as the situation
which led to its rejection in the last iteration is still valid. Resetting the history
ensures that the fault monitor at least attempts to correct the situation locally (for
example, via application restart) in the next iteration.

Chapter 7 • Designing Resource Types 129

� scds_fm_action() does not reset application failure history in case of restart
failures, as one would typically like to try scha_control() soon if the situation
doesn’t correct itself.

� The utility scds_fm_action() updates the resource status to
SCHA_RSSTATUS_OK, SCHA_RSSTATUS_DEGRADED or
SCHA_RSSTATUS_FAULTED depending upon the failure history. This status is thus
available to cluster system management.

In most cases, the application specific health check action can be implemented in a
separate stand-alone utility (svc_probe(), for example) and integrated with this
generic main loop.

for (;;) {

/ * sleep for a duration of thorough_probe_interval between
* successive probes. */
(void) scds_fm_sleep(scds_handle,
scds_get_rs_thorough_probe_interval(scds_handle));

/* Now probe all ipaddress we use. Loop over
* 1. All net resources we use.
* 2. All ipaddresses in a given resource.
* For each of the ipaddress that is probed,
* compute the failure history. */
probe_result = 0;
/* Iterate through the all resources to get each
* IP address to use for calling svc_probe() */
for (ip = 0; ip < netaddr->num_netaddrs; ip++) {
/* Grab the hostname and port on which the
* health has to be monitored.
*/
hostname = netaddr->netaddrs[ip].hostname;
port = netaddr->netaddrs[ip].port_proto.port;
/*
* HA-XFS supports only one port and
* hence obtaint the port value from the
* first entry in the array of ports.
*/
ht1 = gethrtime(); /* Latch probe start time */
probe_result = svc_probe(scds_handle,

hostname, port, timeout);
/*
* Update service probe history,
* take action if necessary.
* Latch probe end time.
*/
ht2 = gethrtime();
/* Convert to milliseconds */
dt = (ulong_t)((ht2 - ht1) / 1e6);

/*
* Compute failure history and take
* action if needed

130 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

*/
(void) scds_fm_action(scds_handle,
probe_result, (long)dt);
} /* Each net resource */

} /* Keep probing forever */

Chapter 7 • Designing Resource Types 131

132 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

CHAPTER 8

Sample DSDL Resource Type
Implementation

This chapter describes a sample resource type, SUNW.xfnts, implemented with the
DSDL. The data service is written in C. The underlying application is the X Font
Server, a TCP/IP-based service.

The information in this chapter includes.

� “X Font Server” on page 133
� “SUNW.xfnts RTR File” on page 135
� “scds_initialize() Function” on page 135
� “xfnts_start Method” on page 136
� “xfnts_stop Method” on page 140
� “xfnts_monitor_start Method” on page 141
� “xfnts_monitor_stop Method” on page 143
� “xfnts_monitor_check Method” on page 144
� “SUNW.xfnts Fault Monitor” on page 144
� “xfnts_validate Method” on page 150

X Font Server
The X Font Server is a simple TCP/IP-based service that serves font files to its clients.
Clients connect to the server to request a font set, and the server reads the font files off
the disk and serves them to the clients. The X Font Server daemon consists of a server
binary /usr/openwin/bin/xfs. The daemon is normally started from inetd,
however, for the current sample, assume that the appropriate entry in the
/etc/inetd.conf file has been disabled (for example, by the fsadmin -d
command) so the daemon is under sole control of Sun Cluster.

133

X Font Server Configuration File
By default, the X Font Server reads its configuration information from the file
/usr/openwin/lib/X11/fontserver.cfg. The catalog entry in this file contains
a list of font directories available to the daemon for serving. The cluster administrator
can locate the font directories on the global file system (to optimize the use of the X
Font Server on Sun Cluster by maintaining a single copy of the font’s database on the
system). If so, the administrator must edit fontserver.cfg to reflect the new paths
for the font directories.

For ease of configuration, the administrator can also place the configuration file itself
on the global file system. The xfs daemon provides command line arguments to
override the default, built-in location of this file. The SUNW.xfnts resource type uses
the following command to start the daemon under control of Sun Cluster.

/usr/openwin/bin/xfs -config <location_of_cfg_file>/fontserver.cfg \
-port <portnumber>

In the SUNW.xfnts resource type implementation, you can use the Confdir_list
property to manage the location of the fontserver.cfg configuration file.

TCP Port Number
The TCP port number on which the xfs server daemon listens is normally the “fs”
port (typically defined as 7100 in the /etc/services file). However, the -port
option on the xfs command line enables the system administrator to override the
default setting. You can use the Port_list property in the SUNW.xfnts resource
type to set the default value and to support the use of the -port option on the xfs
command line. You define the default value of this property as 7100/tcp in the RTR
file. In the SUNW.xfnts Start method, you pass Port_list to the -port option on
the xfs command line. Consequently, a user of this resource type isn’t required to
specify a port number—the port defaults to 7100/tcp—but does have the option of
specifying a different port if they wish when configuring the resource type, by
specifying a different value for the Port_list property.

Naming Conventions
You can identify the various pieces of the sample code by keeping the following
conventions in mind.

� RMAPI functions begin with scha_.
� DSDL functions begin with scds_.
� Callback methods begin with xfnts_.

134 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� User-written functions begin with svc_.

SUNW.xfnts RTR File
This section describes several key properties in the SUNW.xfnts RTR file. It does not
describe the purpose of each property in the file. For such a description, see “Setting
Resource and Resource Type Properties” on page 32.

The Confdir_list extension property identifies the configuration directory (or a list
of directories), as follows.

{
PROPERTY = Confdir_list;
EXTENSION;
STRINGARRAY;
TUNABLE = AT_CREATION;
DESCRIPTION = "The Configuration Directory Path(s)";

}

The Confdir_list property does not specify a default value. The cluster
administrator must specify a directory at the time of resource creation. This value
cannot be changed later because tunability is limited to AT_CREATION.

The Port_list property identifies the port on which the server daemon listens, as
follows.

{
PROPERTY = Port_list;
DEFAULT = 7100/tcp;
TUNABLE = AT_CREATION;

}

Because the property declares a default value, the cluster administrator has a choice of
specifying a new value or accepting the default at the time of resource creation. This
value cannot be changed later because tunability is limited to AT_CREATION.

scds_initialize() Function
The DSDL requires that each callback method call the scds_initialize(3HA)
function at the beginning of the method. This function performs the following
operations:

Chapter 8 • Sample DSDL Resource Type Implementation 135

� Checks and processes the command line arguments (argc and argv) that the
framework passes to the data service method. The method does not have to do any
additional processing of the command-line arguments.

� Sets up internal data structures for use by the other functions in the DSDL.
� Initializes the logging environment.
� Validates fault monitor probe settings.

Use the scds_close() function to reclaim the resources allocated by
scds_initialize().

xfnts_start Method
The RGM invokes the Start method on a cluster node when the resource group
containing the data service resource is brought online on that node or when the
resource is enabled. In the SUNW.xfnts sample resource type, the xfnts_start
method activates the xfs daemon on that node.

The xfnts_start method calls scds_pmf_start() to start the daemon under
PMF. PMF provides automatic failure notification and restart features, as well as
integration with the fault monitor.

Note – The first call in xfnts_start is to scds_initialize(), which performs
some necessary house-keeping functions (the “scds_initialize() Function”
on page 135 and the scds_initialize(3HA) man page contain more detail).

Validating the Service Before Starting
Before it attempts to start the X Font Server, the xfnts_start method calls
svc_validate() to verify that a proper configuration is in place to support the xfs
daemon (see “xfnts_validate Method” on page 150 for details), as follows.

rc = svc_validate(scds_handle);
if (rc != 0) {

scds_syslog(LOG_ERR,
"Failed to validate configuration.");

return (rc);

}

136 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Starting the Service
The xfnts_start method calls the svc_start() method, defined in xfnts.c to
start the xfs daemon. This section describes svc_start().

The command to launch the xfs daemon is as follows.

xfs -config config_directory/fontserver.cfg -port port_number

The Confdir_list extension property identifies the config_directory while the
Port_list system property identifies the port_number. When the cluster
administrator configures the data service, he provides specific values for these
properties.

The xfnts_start method declares these properties as string arrays and obtains the
values the administrator sets using the scds_get_ext_confdir_list() and
scds_get_port_list() functions (described in
scds_property_functions(3HA)), as follows.

scha_str_array_t *confdirs;
scds_port_list_t *portlist;
scha_err_t err;

/* get the configuration directory from the confdir_list property */
confdirs = scds_get_ext_confdir_list(scds_handle);

(void) sprintf(xfnts_conf, "%s/fontserver.cfg", confdirs->str_array[0]);

/* obtain the port to be used by XFS from the Port_list property */
err = scds_get_port_list(scds_handle, &portlist);
if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,
"Could not access property Port_list.");

return (1);

}

Note that the confdirs variable points to the first element (0) of the array.

The xfnts_start method uses sprintf to form the command line for xfs as
follows.

/* Construct the command to start the xfs daemon. */
(void) sprintf(cmd,

"/usr/openwin/bin/xfs -config %s -port %d 2>/dev/null",

xfnts_conf, portlist->ports[0].port);

Note that he output is redirected to dev/null to suppress messages generated by the
daemon.

The xfnts_start method passes the xfs command line to scds_pmf_start() to
start the data service under control of PMF, as follows.

Chapter 8 • Sample DSDL Resource Type Implementation 137

scds_syslog(LOG_INFO, "Issuing a start request.");
err = scds_pmf_start(scds_handle, SCDS_PMF_TYPE_SVC,

SCDS_PMF_SINGLE_INSTANCE, cmd, -1);

if (err == SCHA_ERR_NOERR) {
scds_syslog(LOG_INFO,

"Start command completed successfully.");
} else {

scds_syslog(LOG_ERR,
"Failed to start HA-XFS ");

}

Note the following points about the call to scds_pmf_start().

� The SCDS_PMF_TYPE_SVC parameter identifies the program to start as a data
service application—this method can also start a fault monitor or some other type
of application.

� The SCDS_PMF_SINGLE_INSTANCE parameter identifies this as a single-instance
resource.

� The cmd parameter is the command line generated previously.
� The final parameter, -1, specifies the child monitoring level. The -1 specifies that

PMF monitor all children as well as the original process.

Before returning, svc_pmf_start() frees the memory allocated for the portlist
structure, as follows.

scds_free_port_list(portlist);

return (err);

Returning From svc_start()
Even when svc_start() returns successfully, it is possible the underlying
application failed to start. Therefore, svc_start() must probe the application to
verify that it is running before returning a success message. The probe must also take
into account that the application might not be immediately available because it takes
some time to start up. The svc_start() method calls svc_wait(), which is defined
in xfnts.c, to verify the application is running, as follows.

/* Wait for the service to start up fully */
scds_syslog_debug(DBG_LEVEL_HIGH,

"Calling svc_wait to verify that service has started.");

rc = svc_wait(scds_handle);

scds_syslog_debug(DBG_LEVEL_HIGH,
"Returned from svc_wait");

if (rc == 0) {
scds_syslog(LOG_INFO, "Successfully started the service.");

138 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

} else {
scds_syslog(LOG_ERR, "Failed to start the service.");

}

The svc_wait() function calls scds_get_netaddr_list(3HA) to obtain the
network-address resources needed to probe the application, as follows.

/* obtain the network resource to use for probing */
if (scds_get_netaddr_list(scds_handle, &netaddr)) {

scds_syslog(LOG_ERR,
"No network address resources found in resource group.");

return (1);
}

/* Return an error if there are no network resources */
if (netaddr == NULL || netaddr->num_netaddrs == 0) {

scds_syslog(LOG_ERR,
"No network address resource in resource group.");

return (1);

}

Then svc_wait() obtains the start_timeout and stop_timeout values, as
follows.

svc_start_timeout = scds_get_rs_start_timeout(scds_handle)

probe_timeout = scds_get_ext_probe_timeout(scds_handle)

To account for the time the server might take to start up, svc_wait() calls
scds_svc_wait() and passes a timeout value equivalent to three percent of the
start_timeout value. Then svc_wait() calls svc_probe() to verify that the
application has started. The svc_probe() method makes a simple socket connection
to the server on the specified port. If fails to connect to the port, svc_probe() returns
a value of 100, indicating total failure. If the connection goes through but the
disconnect to the port fails, then svc_probe() returns a value of 50.

On failure or partial failure of svc_probe(), svc_wait() calls scds_svc_wait()
with a timeout value of 5. The scds_svc_wait() method limits the frequency of the
probes to every five seconds. This method also counts the number of attempts to start
the service. If the number of attempts exceeds the value of the Retry_count property
of the resource within the period specified by the Retry_interval property of the
resource, the scds_svc_wait() function returns failure. In this case, the
svc_start() function also returns failure.

#define SVC_CONNECT_TIMEOUT_PCT 95
#define SVC_WAIT_PCT 3

if (scds_svc_wait(scds_handle, (svc_start_timeout * SVC_WAIT_PCT)/100)
!= SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR, "Service failed to start.");
return (1);

}

Chapter 8 • Sample DSDL Resource Type Implementation 139

do {
/*
* probe the data service on the IP address of the
* network resource and the portname
*/
rc = svc_probe(scds_handle,

netaddr->netaddrs[0].hostname,
netaddr->netaddrs[0].port_proto.port, probe_timeout);

if (rc == SCHA_ERR_NOERR) {
/* Success. Free up resources and return */
scds_free_netaddr_list(netaddr);
return (0);

}

/* Call scds_svc_wait() so that if service fails too
if (scds_svc_wait(scds_handle, SVC_WAIT_TIME)

!= SCHA_ERR_NOERR) {
scds_syslog(LOG_ERR, "Service failed to start.");
return (1);

}

/* Rely on RGM to timeout and terminate the program */

} while (1);

Note – Before it exits, the xfnts_start method calls scds_close() to reclaim
resources allocated by scds_initialize(). See “scds_initialize() Function”
on page 135 and the scds_close(3HA) man page for details.

xfnts_stop Method
Because the xfnts_start method uses scds_pmf_start() to start the service
under PMF, xfnts_stop uses scds_pmf_stop() to stop the service.

Note – The first call in xfnts_stop is to scds_initialize(), which performs
some necessary house-keeping functions (the “scds_initialize() Function”
on page 135 and the scds_initialize(3HA) man page contain more detail.

The xfnts_stop method calls the svc_stop() method, which is defined in
xfnts.c as follows.

scds_syslog(LOG_ERR, "Issuing a stop request.");
err = scds_pmf_stop(scds_handle,

140 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

SCDS_PMF_TYPE_SVC, SCDS_PMF_SINGLE_INSTANCE, SIGTERM,
scds_get_rs_stop_timeout(scds_handle));

if (err != SCHA_ERR_NOERR) {
scds_syslog(LOG_ERR,

"Failed to stop HA-XFS.");
return (1);

}

scds_syslog(LOG_INFO,
"Successfully stopped HA-XFS.");

return (SCHA_ERR_NOERR); /* Successfully stopped */

Note the following about the call in svc_stop() to the scds_pmf_stop() function.

� SCDS_PMF_TYPE_SVC parameter identifies the program to stop as a data service
application—this method can also stop a fault monitor or some other type of
application.

� The SCDS_PMF_SINGLE_INSTANCE parameter identifies the signal.
� The SIGTERM parameter identifies the signal to use to stop the resource instance. If

this signal fails to stop the instance, scds_pmf_stop() sends SIGKILL to stop
the instance, and if that fails, returns with a timeout error. See the
scds_pmf_stop(3HA) man page for details.

� The timeout value is that of the Stop_timeout property of the resource.

Note – Before it exits, the xfnts_stop method calls scds_close() to reclaim
resources allocated by scds_initialize(). See “scds_initialize() Function”
on page 135 and the scds_close(3HA) man page for details.

xfnts_monitor_start Method
The RGM calls the Monitor_start method on a node to start the fault monitor after
a resource is started on the node. The xfnts_monitor_start method uses
scds_pmf_start() to start the monitor daemon under PMF.

Note – The first call in xfnts_monitor_start is to scds_initialize(), which
performs some necessary house-keeping functions (the “scds_initialize()
Function” on page 135 and the scds_initialize(3HA) man page contain more
detail.

Chapter 8 • Sample DSDL Resource Type Implementation 141

The xfnts_monitor_start method calls the mon_start method, which is defined
in xfnts.c as follows.

scds_syslog_debug(DBG_LEVEL_HIGH,
"Calling Monitor_start method for resource <%s>.",
scds_get_resource_name(scds_handle));

/* Call scds_pmf_start and pass the name of the probe. */
err = scds_pmf_start(scds_handle, SCDS_PMF_TYPE_MON,

SCDS_PMF_SINGLE_INSTANCE, "xfnts_probe", 0);

if (err != SCHA_ERR_NOERR) {
scds_syslog(LOG_ERR,

"Failed to start fault monitor.");
return (1);

}

scds_syslog(LOG_INFO,
"Started the fault monitor.");

return (SCHA_ERR_NOERR); /* Successfully started Monitor */

}

Note the following about the call in svc_mon_start() to the scds_pmf_start()
function.

� SCDS_PMF_TYPE_MON parameter identifies the program to start as a fault
monitor—this method can also start a data service or some other type of
application.

� The SCDS_PMF_SINGLE_INSTANCE parameter identifies this as a single-instance
resource.

� The xfnts_probe parameter identifies the monitor daemon to start. The
assumption is that the monitor daemon is in the same directory as the other
callback programs.

� The final parameter, 0, specifies the child monitoring level—in this case, monitor
the monitor daemon only.

Note – Before it exits, the xfnts_monitor_start method calls scds_close() to
reclaim resources allocated by scds_initialize(). See “scds_initialize()
Function” on page 135 and the scds_close(3HA) man page for details.

142 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

xfnts_monitor_stop Method
Because the xfnts_monitor_start method uses scds_pmf_start() to start the
monitor daemon under PMF, xfnts_monitor_stop uses scds_pmf_stop()to stop
the monitor daemon.

Note – The first call in xfnts_monitor_stop is to scds_initialize(), which
performs some necessary house-keeping functions (the “scds_initialize()
Function” on page 135 and the scds_initialize(3HA) man page contain more
detail.

The xfnts_monitor_stop() method calls the mon_stop method, which is defined
in xfnts.c as follows.

scds_syslog_debug(DBG_LEVEL_HIGH,
"Calling scds_pmf_stop method");

err = scds_pmf_stop(scds_handle, SCDS_PMF_TYPE_MON,
SCDS_PMF_SINGLE_INSTANCE, SIGKILL,
scds_get_rs_monitor_stop_timeout(scds_handle));

if (err != SCHA_ERR_NOERR) {
scds_syslog(LOG_ERR,

"Failed to stop fault monitor.");
return (1);

}

scds_syslog(LOG_INFO,
"Stopped the fault monitor.");

return (SCHA_ERR_NOERR); /* Successfully stopped monitor */

}

Note the following about the call in svc_mon_stop() to the scds_pmf_stop()
function.

� SCDS_PMF_TYPE_MON parameter identifies the program to stop as a fault
monitor—this method can also stop a data service or some other type of
application.

� The SCDS_PMF_SINGLE_INSTANCE parameter identifies this as a single-instance
resource.

� The SIGKILL parameter identifies the signal to use to stop the resource instance. If
this signal fails to stop the instance, scds_pmf_stop() returns with a timeout
error. See the scds_pmf_stop(3HA)) man page for details.

Chapter 8 • Sample DSDL Resource Type Implementation 143

� The timeout value is that of the Monitor_stop_timeout property of the
resource.

Note – Before it exits, the xfnts_monitor_stop method calls scds_close() to
reclaim resources allocated by scds_initialize(). See “scds_initialize()
Function” on page 135 and the scds_close(3HA) man page for details.

xfnts_monitor_check Method
The RGM calls the Monitor_check method whenever the fault monitor attempts to
fail the resource group containing the resource over to another node. The
xfnts_monitor_check method calls the svc_validate() method to verify that a
proper configuration is in place to support the xfs daemon (see “xfnts_validate
Method” on page 150 for details). The code for xfnts_monitor_check is as follows.

/* Process the arguments passed by RGM and initialize syslog */
if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{
scds_syslog(LOG_ERR, "Failed to initialize the handle.");
return (1);

}

rc = svc_validate(scds_handle);
scds_syslog_debug(DBG_LEVEL_HIGH,

"monitor_check method "
"was called and returned <%d>.", rc);

/* Free up all the memory allocated by scds_initialize */
scds_close(&scds_handle);

/* Return the result of validate method run as part of monitor check */
return (rc);

}

SUNW.xfnts Fault Monitor
The RGM does not directly call the PROBE method but rather calls the
Monitor_start method to start the monitor after a resource is started on a node.
The xfnts_monitor_start method starts the fault monitor under the control of
PMF. The xfnts_monitor_stop method stops the fault monitor.

144 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

The SUNW.xfnts fault monitor performs the following operations:

� Periodically monitors the health of the xfs server daemon using utilities
specifically designed to check simple TCP-based services, such as xfs.

� Tracks problems the application encounters within a time window (using the
Retry_count and Retry_interval properties) and decides whether to restart
or failover the data service in case of complete application failure. The
scds_fm_action() and scds_fm_sleep() functions provide built-in support
for this tracking and decision mechanism.

� Implements the failover or restart decision using scds_fm_action().
� Updates the resource state and makes it available to administrative tools and

graphics user interfaces.

xfonts_probe Main Loop
The xfonts_probe method implements a loop. Before implementing the loop,
xfonts_probe

� Retrieves the network-address resources for the xfnts resource, as follows.

/* Get the ip addresses available for this resource */
if (scds_get_netaddr_list(scds_handle, &netaddr)) {

scds_syslog(LOG_ERR,
"No network address resource in resource group.");

scds_close(&scds_handle);
return (1);

}

/* Return an error if there are no network resources */
if (netaddr == NULL || netaddr->num_netaddrs == 0) {

scds_syslog(LOG_ERR,
"No network address resource in resource group.");

return (1);

}

� Calls scds_fm_sleep() and passes the value of Thorough_probe_interval
as the timeout value. The probe sleeps for the value of
Thorough_probe_interval between probes.

timeout = scds_get_ext_probe_timeout(scds_handle);

for (;;) {
/*
* sleep for a duration of thorough_probe_interval between
* successive probes.
*/
(void) scds_fm_sleep(scds_handle,

scds_get_rs_thorough_probe_interval(scds_handle));

Chapter 8 • Sample DSDL Resource Type Implementation 145

The xfnts_probe method implements the loop as follows.

for (ip = 0; ip < netaddr->num_netaddrs; ip++) {
/*
* Grab the hostname and port on which the
* health has to be monitored.
*/
hostname = netaddr->netaddrs[ip].hostname;
port = netaddr->netaddrs[ip].port_proto.port;
/*
* HA-XFS supports only one port and
* hence obtain the port value from the
* first entry in the array of ports.
*/
ht1 = gethrtime(); /* Latch probe start time */
scds_syslog(LOG_INFO, "Probing the service on port: %d.", port);

probe_result =
svc_probe(scds_handle, hostname, port, timeout);

/*
* Update service probe history,
* take action if necessary.
* Latch probe end time.
*/
ht2 = gethrtime();

/* Convert to milliseconds */
dt = (ulong_t)((ht2 - ht1) / 1e6);

/*
* Compute failure history and take
* action if needed
*/
(void) scds_fm_action(scds_handle,

probe_result, (long)dt);
} /* Each net resource */

} /* Keep probing forever */

The svc_probe() function implements the probe logic. The return value from
svc_probe() is passed to scds_fm_action(), which determines whether to restart
the application, failover the resource group, or do nothing.

svc_probe() Function
The svc_probe() function makes a simple socket connection to the specified port by
calling scds_fm_tcp_connect(). If the connection fails, svc_probe() returns a
value of 100 indicating a complete failure. If the connection succeeds, but the
disconnect fails, svc_probe() returns a value of 50 indicating a partial failure. If the
connection and disconnection both succeed, svc_probe() returns a value of 0,
indicating success.

146 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

The code for svc_probe() is as follows.

int svc_probe(scds_handle_t scds_handle,
char *hostname, int port, int timeout)
{

int rc;
hrtime_t t1, t2;
int sock;
char testcmd[2048];
int time_used, time_remaining;
time_t connect_timeout;

/*
* probe the data service by doing a socket connection to the port */
* specified in the port_list property to the host that is
* serving the XFS data service. If the XFS service which is configured
* to listen on the specified port, replies to the connection, then
* the probe is successful. Else we will wait for a time period set
* in probe_timeout property before concluding that the probe failed.
*/

/*
* Use the SVC_CONNECT_TIMEOUT_PCT percentage of timeout
* to connect to the port
*/
connect_timeout = (SVC_CONNECT_TIMEOUT_PCT * timeout)/100;
t1 = (hrtime_t)(gethrtime()/1E9);

/*
* the probe makes a connection to the specified hostname and port.
* The connection is timed for 95% of the actual probe_timeout.
*/
rc = scds_fm_tcp_connect(scds_handle, &sock, hostname, port,

connect_timeout);
if (rc) {

scds_syslog(LOG_ERR,
"Failed to connect to port <%d> of resource <%s>.",
port, scds_get_resource_name(scds_handle));

/* this is a complete failure */
return (SCDS_PROBE_COMPLETE_FAILURE);

}

t2 = (hrtime_t)(gethrtime()/1E9);

/*
* Compute the actual time it took to connect. This should be less than
* or equal to connect_timeout, the time allocated to connect.
* If the connect uses all the time that is allocated for it,
* then the remaining value from the probe_timeout that is passed to
* this function will be used as disconnect timeout. Otherwise, the
* the remaining time from the connect call will also be added to
* the disconnect timeout.
*
*/

Chapter 8 • Sample DSDL Resource Type Implementation 147

time_used = (int)(t2 - t1);

/*
* Use the remaining time(timeout - time_took_to_connect) to disconnect
*/

time_remaining = timeout - (int)time_used;

/*
* If all the time is used up, use a small hardcoded timeout
* to still try to disconnect. This will avoid the fd leak.
*/
if (time_remaining <= 0) {

scds_syslog_debug(DBG_LEVEL_LOW,
"svc_probe used entire timeout of "
"%d seconds during connect operation and exceeded the "
"timeout by %d seconds. Attempting disconnect with timeout"
" %d ",
connect_timeout,
abs(time_used),
SVC_DISCONNECT_TIMEOUT_SECONDS);

time_remaining = SVC_DISCONNECT_TIMEOUT_SECONDS;
}

/*
* Return partial failure in case of disconnection failure.
* Reason: The connect call is successful, which means
* the application is alive. A disconnection failure
* could happen due to a hung application or heavy load.
* If it is the later case, don’t declare the application
* as dead by returning complete failure. Instead, declare
* it as partial failure. If this situation persists, the
* disconnect call will fail again and the application will be
* restarted.
*/
rc = scds_fm_tcp_disconnect(scds_handle, sock, time_remaining);
if (rc != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,
"Failed to disconnect to port %d of resource %s.",
port, scds_get_resource_name(scds_handle));

/* this is a partial failure */
return (SCDS_PROBE_COMPLETE_FAILURE/2);

}

t2 = (hrtime_t)(gethrtime()/1E9);
time_used = (int)(t2 - t1);
time_remaining = timeout - time_used;

/*
* If there is no time left, don’t do the full test with
* fsinfo. Return SCDS_PROBE_COMPLETE_FAILURE/2
* instead. This will make sure that if this timeout
* persists, server will be restarted.

148 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

*/
if (time_remaining <= 0) {

scds_syslog(LOG_ERR, "Probe timed out.");
return (SCDS_PROBE_COMPLETE_FAILURE/2);

}

/*
* The connection and disconnection to port is successful,
* Run the fsinfo command to perform a full check of
* server health.
* Redirect stdout, otherwise the output from fsinfo
* ends up on the console.
*/
(void) sprintf(testcmd,

"/usr/openwin/bin/fsinfo -server %s:%d > /dev/null",
hostname, port);

scds_syslog_debug(DBG_LEVEL_HIGH,
"Checking the server status with %s.", testcmd);

if (scds_timerun(scds_handle, testcmd, time_remaining,
SIGKILL, &rc) != SCHA_ERR_NOERR || rc != 0) {

scds_syslog(LOG_ERR,
"Failed to check server status with command <%s>",
testcmd);

return (SCDS_PROBE_COMPLETE_FAILURE/2);
}
return (0);

}

When finished, svc_probe() returns a success (0), partial failure (50), or complete
failure (100) value. The xfnts_probe method passes this value to
scds_fm_action().

Determining the Fault Monitor Action
The xfnts_probe method calls scds_fm_action() to determine the action to take.
The logic in scds_fm_action() is as follows:

� Maintain a cumulative failure history within the value of the Retry_interval
property.

� If the cumulative failure reaches 100 (complete failure) restart the data service. If
Retry_interval is exceeded, reset the history.

� If the number of restarts exceeds the value of the Retry_count property, within
the time specified by Retry_interval, failover the data service.

For example, suppose the probe makes a connection to the xfs server, but fails to
disconnect. This indicates that the server is running, but could be hung or just under a
temporary load. The failure to disconnect sends a partial (50) failure to
scds_fm_action(). This value is below the threshold for restarting the data service,
but the value is maintained in the failure history.

Chapter 8 • Sample DSDL Resource Type Implementation 149

If during the next probe the server again fails to disconnect, a value of 50 is added to
the failure history maintained by scds_fm_action(). The cumulative failure value
is now 100, so scds_fm_action() restarts the data service.

xfnts_validate Method
The RGM calls the Validate method when a resource is created and when
administrative action updates the properties of the resource or its containing group.
The RGM calls Validate before the creation or update is applied, and a failure exit
code from the method on any node causes the creation or update to be canceled.

The RGM calls Validate only when resource or group properties are changed
through administrative action, not when the RGM sets properties, or when a monitor
sets the resource properties Status and Status_msg.

Note – The Monitor_check method also explicitly calls the Validate method
whenever the PROBE method attempts to fail the data service over to a new node.

The RGM calls Validate with additional arguments to those passed to other
methods, including the properties and values being updated. The call to
scds_initialize() at the beginning of xfnts_validate parses all the
arguments the RGM passes to xfnts_validate and stores the information in the
scds_handle parameter. The subroutines that xfnts_validate calls make use of
this information.

The xfnts_validate method calls svc_validate(), which verifies the following.

� The Confdir_list property has been set for the resource and defines a single
directory.

scha_str_array_t *confdirs;
confdirs = scds_get_ext_confdir_list(scds_handle);

/* Return error if there is no confdir_list extension property */
if (confdirs == NULL || confdirs->array_cnt != 1) {

scds_syslog(LOG_ERR,
"Property Confdir_list is not set properly.");

return (1); /* Validation failure */

}

� The directory specified by Confdir_list contains the fontserver.cfg file.

(void) sprintf(xfnts_conf, "%s/fontserver.cfg", confdirs->str_array[0]);

if (stat(xfnts_conf, &statbuf) != 0) {

150 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

/*
* suppress lint error because errno.h prototype
* is missing void arg
*/
scds_syslog(LOG_ERR,

"Failed to access file <%s> : <%s>",
xfnts_conf, strerror(errno)); /*lint !e746 */

return (1);

}

� The server daemon binary is accessible on the cluster node.

if (stat("/usr/openwin/bin/xfs", &statbuf) != 0) {
scds_syslog(LOG_ERR,

"Cannot access XFS binary : <%s> ", strerror(errno));
return (1);

}

� The Port_list property specifies a single port.

scds_port_list_t *portlist;
err = scds_get_port_list(scds_handle, &portlist);
if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,
"Could not access property Port_list: %s.",
scds_error_string(err));

return (1); /* Validation Failure */
}

#ifdef TEST
if (portlist->num_ports != 1) {

scds_syslog(LOG_ERR,
"Property Port_list must have only one value.");

scds_free_port_list(portlist);
return (1); /* Validation Failure */

}

#endif

� The resource group containing the data service also contains at least one
network-address resource.

scds_net_resource_list_t *snrlp;
if ((err = scds_get_rs_hostnames(scds_handle, &snrlp))

!= SCHA_ERR_NOERR) {
scds_syslog(LOG_ERR,

"No network address resource in resource group: %s.",
scds_error_string(err));

return (1); /* Validation Failure */
}

/* Return an error if there are no network address resources */
if (snrlp == NULL || snrlp->num_netresources == 0) {

scds_syslog(LOG_ERR,

Chapter 8 • Sample DSDL Resource Type Implementation 151

"No network address resource in resource group.");
rc = 1;
goto finished;

}

Before it returns, svc_validate() frees all allocated resources.

finished:
scds_free_net_list(snrlp);
scds_free_port_list(portlist);

return (rc); /* return result of validation */

Note – Before it exits, the xfnts_validate method calls scds_close() to reclaim
resources allocated by scds_initialize(). See “scds_initialize() Function”
on page 135 and the scds_close(3HA) man page for details.

xfnts_update Method
The RGM calls the Update method to notify a running resource that its properties
have changed. The only properties that can be changed for the xfnts data service
pertain to the fault monitor. Therefore, whenever a property is updated, the
xfnts_update method calls scds_pmf_restart_fm() to restart the fault monitor.

* check if the Fault monitor is already running and if so stop
* and restart it. The second parameter to scds_pmf_restart_fm()
* uniquely identifies the instance of the fault monitor that needs
* to be restarted.
*/

scds_syslog(LOG_INFO, "Restarting the fault monitor.");
result = scds_pmf_restart_fm(scds_handle, 0);
if (result != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,
"Failed to restart fault monitor.");

/* Free up all the memory allocated by scds_initialize */
scds_close(&scds_handle);
return (1);

}

scds_syslog(LOG_INFO,

"Completed successfully.");

152 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Note – The second parameter to scds_pmf_restart_fm() uniquely identifies the
instance of the fault monitor to be restarted if there are multiple instances. The value 0
in the example indicates there is only one instance of the fault monitor.

Chapter 8 • Sample DSDL Resource Type Implementation 153

154 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

CHAPTER 9

SunPlex Agent Builder

This chapter describes SunPlex Agent Builder and the Cluster Agent module for Agent
Builder, which are tools that automate the creation of resource types, or data services,
to be run under the Resource Group Manager (RGM). A resource type essentially is a
wrapper around an application to enable the application to run in a clustered
environment under control of the RGM.

Agent Builder provides a screen-based interface for entering simple information about
your application and the kind of resource type that you want to create. Based on the
information you enter, Agent Builder generates the following software:

� A set of source files—C, Korn shell (ksh), or GDS (generic data service)—for a
failover or scalable resource type, corresponding to the resource type’s method
callbacks

� A customized Resource Type Registration (RTR) file (if you generate C or Korn
shell source)

� Customized utility scripts for starting, stopping, and removing an instance
(resource) of the resource type, as well as customized man pages documenting how
to use each of these files

� A Solaris package that includes the binaries (if you generate C source), an RTR file
(if you generate C or Korn shell source), and the utility scripts

Agent Builder supports network-aware applications-applications that use the network
to communicate with clients—as well as non network-aware (or stand-alone)
applications. Agent Builder also enables you to generate a resource type for an
application that has multiple independent process trees that the Process Monitor
Facility (PMF) must monitor and restart individually (see “Creating Resource Types
With Multiple Independent Process Trees” on page 164.

Topics covered in this chapter include:

� “Using Agent Builder” on page 156
� “Directory Structure” on page 167
� “Output” on page 167

155

� “Navigating Agent Builder” on page 171
� “Cluster Agent Module for Agent Builder” on page 174

Using Agent Builder
This section describes how to use Agent Builder, including tasks you must complete
before you can use Agent Builder. This section also explains ways you can leverage
Agent Builder after you have generated your resource type code.

Analyzing the Application
Before using Agent Builder you must determine if your application meets the criteria
to be made highly available or scalable. Agent Builder cannot perform this analysis,
which is based solely on the runtime characteristics of the application. “Analyzing the
Application for Suitability” on page 27 provides more information about this topic.

Agent Builder may not always be able to create a complete resource type for your
application, though in most cases Agent Builder provides at least a partial solution.
For example, more sophisticated applications might require additional code that Agent
Builder does not generate by default, such as code to add validation checks for
additional properties or to tune parameters that Agent Builder does not expose. In
these cases, you must make changes to the generated source code or to the RTR file.
Agent Builder is designed to provide just this sort of flexibility.

Agent Builder places comments at certain points in the generated source code where
you can add your own specific resource type code. After making changes to the source
code, you can use the makefile that Agent Builder generates to recompile the source
code and regenerate the resource type package.

Even if you write your entire resource type code without using any code generated by
Agent Builder, you can leverage the makefile and structure that Agent Builder
provides to create the Solaris package for your resource type.

Installing and Configuring Agent Builder
Agent Builder requires no special installation. Agent Builder is included in the
SUNWscdev package, which is installed by default as part of a standard Sun Cluster
software installation (the Sun Cluster Software Installation Guide for Solaris OS contains
more information). Before you use Agent Builder, verify the following information:

� Java is included in your $PATH variable Agent Builder depends on Java (Java
Development Kit version 1.3.1 or higher) and if Java is not in your $PATH,
scdsbuilder returns with an error message.

156 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� You have installed the “Developer System Support” software group of Solaris 8 or
higher.

� The cc compiler is included in your $PATH variable Agent Builder uses the first
occurrence of cc in your $PATH variable to identify the compiler with which to
generate C binary code for the resource type. If cc is not included in $PATH, Agent
Builder disables the option to generate C code (see “Using the Create Screen”
on page 159.

Note – You can use a different compiler with Agent Builder than the standard cc
compiler. One way to do this is to create a symbolic link in $PATH from cc to a
different compiler, such as gcc. Another way is to change the compiler specification in
the makefile (currently, CC=cc) to the complete path for a different compiler. For
example, in the makefile generated by Agent Builder, change CC=cc to
CC=pathname/gcc. In this case you cannot run Agent Builder directly but must use the
make and make pkg commands to generate data service code and a package.

Launching Agent Builder
Launch Agent Builder by entering the following command:

% /usr/cluster/bin/scdsbuilder

The initial Sun Builder screen, as shown in the following figure, appears.

Chapter 9 • SunPlex Agent Builder 157

FIGURE 9–1 Initial Screen

Note – You can access Agent Builder through a command-line interface (see “Using the
Command-Line Version of Agent Builder” on page 166) if the GUI version is not
accessible.

Agent Builder provides two screens to guide you through the process of creating a
new resource type:

1. Create—On this screen you provide basic information about the resource type to
create, such as its name and the working directory (that is, the directory where you
create and configure the resource type template) for the generated files. You also
identify the kind of resource to create (scalable or failover), whether the base
application is network aware (that is, if it uses the network to communicate with its
clients), and the type of code (C, ksh, or GDS) to generate. For information on GDS
(generic data service), see Chapter 10. You must complete the information in this
screen, and select Create to generate the corresponding output, before you can
display the Configure screen.

2. Configure—On this screen, you are required to provide a command to start the
application. Optionally, you can provide commands to stop and probe the
application. If you do not specify these commands, the generated output uses
signals to stop the application and provides a default probe mechanism (see the

158 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

description of the probe command in “Using the Configure Screen” on page 161).
This screen also enables you to change the timeout values for each of these three
commands.

Note – If you launch Agent Builder from the working directory for an existing resource
type, Agent Builder initializes the Create and Configure screens to the values of the
existing resource type.

See “Navigating Agent Builder” on page 171 if you have questions about how to use
any of the buttons or menu commands on either of the Agent Builder screens.

Using the Create Screen
The first step in creating a resource type is to fill out the Create screen, which appears
when you launch Agent Builder. The following figure shows the Create screen after
you enter information in the fields.

FIGURE 9–2 Create Screen

The Create screen contains the following fields, radio buttons, and check box:

Chapter 9 • SunPlex Agent Builder 159

� Vendor Name — A name to identify the vendor of the resource type. Typically, you
specify the stock symbol of the vendor, but any name that uniquely identifies the
vendor is valid. Use alphanumeric characters only.

� Application Name — The name of the resource type. Use alphanumeric characters
only.

Note – Together, the vendor name and application name make up the full name of
the resource type. The full name must not exceed nine characters.

� Working Directory — The directory under which Agent Builder creates a directory
structure to contain all the files created for the target resource type. You can create
only one resource type in any one working directory. Agent Builder initializes this
field to the path of the directory from which you launched Agent Builder, though
you can type a different name or use the Browse button to locate a different
directory.

Under the working directory, Agent Builder creates a subdirectory with the
resource-type name. For example, if SUNW is the vendor name and ftp is the
application name, then Agent Builder names this subdirectory SUNWftp.

Agent Builder places all the directories and files for the target resource type under
this subdirectory (see “Directory Structure” on page 167).

� Scalable or Failover — Specify whether the target resource type will be failover or
scalable.

� Network Aware — Specify whether the base application is network aware; that is,
if it uses the network to communicate with its clients. Check the box to specify
network aware; leave it blank to specify non-network aware. Korn shell code
requires that the application be network aware. Therefore, Agent Builder checks
this box, and grays it out if you check the ksh or the GDS button.

� C, ksh — Specify the language of the generated source code. Although these
options are mutually exclusive, with Agent Builder you can create a resource type
with ksh generated code and then reuse the same information to create C
generated code (see “Cloning an Existing Resource Type” on page 165).

� GDS — Specifies that this service is a generic data service. See Chapter 10 for
information about creating and configuring a generic data service.

Note – If the cc compiler is not in your $PATH, Agent Builder grays out the C option
button and puts a check in the ksh button. To specify a different compiler, see the note
at the end of “Installing and Configuring Agent Builder” on page 156.

160 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

After you have entered the required information, click the Create button. The Output
Log at the bottom of the screen shows the actions that Agent Builder is taking. You can
use the Save Output Log command in the Edit menu to save the information in the
output log.

When finished, Agent Builder displays either a success message or a warning message
that it was unable to complete this step, and you should check the output log for
details.

If Agent Builder completes successfully, you can Click the Next button to bring up the
Configure screen, which enables you to finish generating the resource type.

Note – Although generation of a complete resource type is a two-step process, you can
exit Agent Builder after completing the first step (create) without losing the
information you have entered or the work that Agent Builder has completed (see
“Reusing Completed Work” on page 165).

Using the Configure Screen
The Configure screen, shown in the following figure, appears after Agent Builder
finishes creating the resource type and you select the Next button on the Create screen.
You cannot access the Configure screen before the resource type has been created.

Chapter 9 • SunPlex Agent Builder 161

FIGURE 9–3 Configure Screen

The Configure screen contains the following fields:

� Start Command — The full command line that can be passed to any UNIX shell to
start the base application. It is required that you specify this command. You can
type the command in the field provided or use the Browse button to locate a file
containing the command to start the application.

The complete command line must include everything necessary to start the
application, such as hostnames, port numbers, a path to configuration files, and so
on. If your application requires a hostname to be specified on the command line,
you can use the $hostnames variable that Agent Builder defines (see “Using the
Agent Builder $hostnames Variable” on page 163).

Do not enclose the command in double quotes (““).

Note – If the base application has multiple independent process trees, each of which
is started with its own tag under PMF control, you cannot specify a single
command. Rather, you must create a text file with individual commands to start
each process tree, and specify the path to this file in the Start Command text field.
See “Creating Resource Types With Multiple Independent Process Trees”
on page 164, which lists some special characteristics this file requires to work
properly.

162 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� Stop Command — The full command line that can be passed to any UNIX shell to
stop the base application. You can type the command in the field provided or use
the Browse button to locate a file containing the command to stop the application.
If your application requires a hostname to be specified on the command line, you
can use the $hostnames variable defined by Agent Builder (see “Using the Agent
Builder $hostnames Variable” on page 163).

This command is optional. If you do not specify a stop command, the generated
code uses signals (in the Stop method) to stop the application, as follows.

� The Stop method sends SIGTERM to stop the application and waits for 80% of
the timeout value for the application to exit.

� If the SIGTERM signal is unsuccessful, the Stop method sends SIGKILL to stop
the application and waits for 15% of the timeout value for the application to
exit.

� If SIGKILL is unsuccessful the Stop method exits unsuccessfully (the
remaining 5% of the timeout value is considered overhead).

Caution – Be certain the stop command does not return before the application has
stopped completely.

� Probe Command — A command that can be run periodically to check the health of
the application and return an appropriate exit status between 0 (success) and 100
(complete failure). This command is optional. You can type the complete path to
the command or use the Browse button to locate a file that contains the commands
to probe the application.

Typically, you specify a simple client of the base application. If you do not specify a
probe command, the generated code simply connects to and disconnects from the
port used by the resource, and if that succeeds, declares the application healthy.
You can only use a probe command with network aware applications. Agent
Builder always generates a probe command, but disables it for non-network aware
applications.

If your application requires that you specify a hostname on the probe command
line, you can use the $hostnames variable that Agent Builder defines (see “Using
the Agent Builder $hostnames Variable” on page 163).

� Timeout — (for each command)—A timeout value (in seconds) for each command.
You can specify a new value or accept the default value Agent Builder provides
(300 seconds for start and stop, 30 seconds for probe).

Using the Agent Builder $hostnames Variable
For many applications, specifically network-aware applications, the hostname on
which the application listens and services customer requests must be passed to the
application on the command line. Therefore, in many cases, hostname is a parameter

Chapter 9 • SunPlex Agent Builder 163

you must specify for start, stop, and probe commands for the target resource type (on
the Configure screen). However, the hostname on which an application listens is
cluster specific—it is determined when the resource is run on a cluster and cannot be
determined when Agent Builder generates your resource type code.

To solve this problem, Agent Builder provides the $hostnames variable that you can
specify on the command line for the start, stop, and probe commands. You specify the
$hostnames variable exactly as you would an actual hostname, for example:

/opt/network_aware/echo_server -p port_no -l $hostnames

When a resource of the target resource type is run on a cluster, the LogicalHostname
or SharedAddress hostname configured for that resource (in the
Network_resources_used resource property of the resource) is substituted for the
value of the $hostnames variable.

If you configure the Network_resources_used property with multiple hostnames,
the $hostnames variable contains all of them separated by commas.

Creating Resource Types With Multiple Independent
Process Trees
Agent Builder can create resource types for applications that have more than one
independent process tree. These process trees are independent in the sense that PMF
monitors and starts them individually. PMF starts each process tree with its own tag.

Note – Agent Builder enables you to create resource types with multiple independent
process trees only if the generated source code that you specify is C. You cannot use
Agent Builder to create these resource types for ksh or for GDS. To create these
resource types for ksh or for GDS, you must write the code by hand.

In the case of a base application with multiple independent process trees, you cannot
specify a single command line to start the application. Rather, you must create a text
file, with each line specifying the full path to a command to start one of the
application’s process trees. This file must not contain any blank lines. You specify this
text file in the Start Command text field in the Configure screen.

Ensuring that this file does not have execute permissions enables Agent Builder to
distinguish this file, whose purpose is to start multiple process trees, from a simple
executable script containing multiple commands. If this text file is given execute
permissions, the resources would come up with no problems or errors on a cluster, but
all the commands would be started under one PMF tag, precluding the possibility of
monitoring and restarting the process trees individually by PMF.

164 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Reusing Completed Work
Agent Builder enables you leverage completed work in several ways.

� You can clone an existing resource type created with Agent Builder.
� You can edit the source code Agent Builder generates and then recompile the code

to create a new package.

Cloning an Existing Resource Type
Follow this procedure to clone an existing resource type generated by Agent Builder.

1. Load an existing resource type into Agent Builder. You can do this in either of
two ways:

a. Launch Agent Builder from the working directory (which contains the
rtconfig file) for an existing resource type (created with Agent Builder),
and Agent Builder loads the values for that resource type in the Create and
Configure screens.

b. Use the Load Resource Type command in the File menu.

2. Change the working directory on the Create screen.

You must use the Browse button to select a directory—typing a new directory
name is not sufficient. After you select a directory, Agent Builder re-enables the
Create button.

3. Make changes.

You might use this procedure to change the type of code generated for the resource
type. For example, if you initially create a ksh version of a resource type but find
over time that you require a C version, you can load the existing ksh resource
type, change the language for the output to C, and then have Agent Builder build a
C version of the resource type.

4. Create the cloned resource type.

Select Create to create the resource type. Select Next to bring up the Configure
screen. Select Configure to configure the resource type and then Cancel to finish.

Editing the Generated Source Code
To keep the process of creating a resource type simple, Agent Builder limits the
number of inputs, which necessarily limits the scope of the generated resource type.
Therefore, to add more sophisticated features, such as validation checks for additional
properties, or to tune parameters Agent Builder does not expose, you need to modify
the generated source code or the RTR file.

Chapter 9 • SunPlex Agent Builder 165

The source files are in the install_directory/rt_name/src directory. Agent Builder
embeds comments in the source code at places you can add code. These comments are
of the form (for C code):

/* User added code -- BEGIN vvvvvvvvvvvvvvv */
/* User added code -- END ^^^^^^^^^^^^^^^ */

Note – These comments are identical in Korn shell code, except they use the pound
sign (#) to begin the comment line.

For example, rt_name.h declares all the utility routines that the different programs
use. At the end of the list of declarations are comments that enable you to declare
additional routines you might have added to any of your code.

Agent Builder also generates the makefile in the install_directory/rt_name/src
directory, with appropriate targets. Use the make command to recompile the source
code, and the make pkg command to regenerate the resource type package.

The RTR file is in the install_directory/rt_name/etc directory. You can edit the RTR file
with a standard text editor (see “Setting Resource and Resource Type Properties”
on page 32 for more information about the RTR file and Appendix A for information
about properties).

Using the Command-Line Version of Agent Builder
The command-line version of Agent Builder has the same two-step process as the
graphical user interface. However, instead of entering information in the graphical
user interface, you pass parameters to the commands scdscreate(1HA) and
scdsconfig(1HA).

Follow these steps to use the command-line version of Agent Builder:

1. Use scdscreate to create a Sun Cluster resource type template for making an
application highly available (HA) or scalable.

2. Use scdsconfig to configure the resource type template that you created with
scdscreate.

3. Change directories to the pkg subdirectory in the working directory.

4. Use the pkgadd(1M) command to install the packages that you created with
scdscreate.

5. If you want, edit the generated source code.

6. Run the start script.

166 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Directory Structure
Agent Builder creates a directory structure to hold all the files it generates for the
target resource type. You specify (on the Create screen) the working directory. You
must specify separate install directories for any additional resource types you develop.
Under the working directory, Agent Builder creates a subdirectory whose name is a
concatenation of the vendor name and the resource-type name (from the Create
screen). For example, if you specify SUNW as the vendor name and create a resource
type called ftp, Agent Builder creates a directory called SUNWftp under the working
directory.

Under this subdirectory, Agent Builder creates and populates the directories listed in
the following table.

Directory
Name Contents

bin For C output, contains the binary files compiled from the source files. For ksh
output, contains the same files as the src directory.

etc Contains the RTR file. Agent Builder concatenates the vendor name and
application name, separated by a period (.), to form the RTR filename. For
example, if the vendor name is SUNW and the name of the resource type is ftp, the
name of the RTR file is SUNW.ftp.

man Contains customized man pages for the start, stop, and remove utility scripts.
For example, startftp(1M), stopftp(1M), and removeftp(1M).

To view these man pages, specify the path with the man -M option. For example,

man -M install_directory/SUNWftp/man removeftp.

pkg Contains the final package.

src Contains the source files that Agent Builder generates.

util Contains the start, stop, and remove utility scripts that Agent Builder
generates. See “Utility Scripts and man Pages” on page 169. Agent Builder
appends the application name to each of these script names; for example,
startftp, stopftp, removeftp.

Output
This section describes the output that Agent Builder generates.

Chapter 9 • SunPlex Agent Builder 167

Source and Binary Files
The Resource Group Manager (RGM)—which manages resource groups and
ultimately, resources on a cluster—works on a callback model. When specific events
happen, such as a node failure, the RGM calls the resource type’s methods for each of
the resources running on the affected node. For example, the RGM calls the Stop
method to stop a resource running on the affected node and then calls the resource’s
Start method to start the resource on a different node. (See “RGM Model”
on page 21, “Callback Methods” on page 23 and the rt_callbacks(1HA) man page
for more information on this model).

To support this model, Agent Builder generates (in the install_directory/rt_name/bin
directory) eight executable programs (C) or scripts (ksh) that serve as callback
methods.

Note – Strictly speaking, the rt_name_probe program, which implements a fault
monitor, is not a callback program. The RGM does not directly call rt_name_probe but
rather calls rt_name_monitor_start and rt_name_monitor_stop, which start and
stop the fault monitor by calling rt_name_probe.

The eight methods that Agent Builder generates are:

� rt_name_monitor_check
� rt_name_monitor_start
� rt_name_monitor_stop
� rt_name_probe
� rt_name_svc_start
� rt_name_svc_stop
� rt_name_update
� rt_name_validate

Refer to the rt_callbacks(1HA) man page for specific information on each of these
methods.

In the install_directory/rt_name/src directory (C output), Agent Builder generates the
following files:

� A header file (rt_name.h).
� A source file (rt_name.c) containing code common to all methods.
� An object file (rt_name.o) for the common code.
� Source files (*.c) for each of the methods.
� Object files (*.o) for each of the methods.

Agent Builder links the rt_name.o file to each of the method .o files to create the
executables in the install_directory/rt_name/bin directory.

168 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

For ksh output, the install_directory/rt_name/bin and install_directory/rt_name/src
directories are identical—each contains the eight executable scripts corresponding to
the seven callback methods and the PROBE method.

Note – The ksh output includes two compiled utility programs (gettime and
gethostnames) that certain of the callback methods require for getting the time and
probing.

You can edit the source code, run the make command to recompile the code, and when
you are finished, run the make pkg command to generate a new package. To support
making changes to the source code, Agent Builder embeds comments in the source
code at appropriate locations to add code. See “Editing the Generated Source Code”
on page 165.

Utility Scripts and man Pages
Once you have generated a resource type and installed its package on a cluster, you
must still get an instance (resource) of the resource type running on a cluster, generally
by using administrative commands or SunPlex Manager. However, as a convenience,
Agent Builder generates a customized utility script for this purpose (the start script) as
well as scripts for stopping and removing a resource of the target resource type. These
three scripts, located in the install_directory/rt_name/util directory, do the following:

� Start script—registers the resource type, and creates the necessary resource groups
and resources. It also creates the network address resources (LogicalHostname or
SharedAddress) that enable the application to communicate with the clients on the
network.

� Stop script—stops and disables the resource.
� Remove script—undoes the work of the start script, that is, it stops and removes

the resources, resource groups, and the target resource type from the system.

Note – You can only use the remove script with a resource started by the
corresponding start script because these scripts use internal conventions to name
resources and resource groups.

Agent Builder names these scripts by appending the application name to the script
names. For example, if the application name is ftp, the scripts are called startftp,
stopftp, and removeftp.

Chapter 9 • SunPlex Agent Builder 169

Agent Builder provides man pages in the install_directory/rt_name/man/man1m
directory for each of the utility scripts. You should read these man pages before you
launch these scripts because they document the parameters you need to pass to the
script.

To view these man pages, specify the path to this man directory using the -M option
with the man command. For example, if SUNW is the vendor and ftp is the application
name, use the following command to view the startftp(1M) man page:

man -M install_directory/SUNWftp/man startftp

The man page utility scripts are also available to the cluster administrator. When an
Agent Builder-generated package is installed on a cluster, the man pages for the utility
scripts are placed in the /opt/rt_name/man directory. For example, use the following
command to view the startftp(1M) man page:

man -M /opt/SUNWftp/man startftp

Support Files
Agent Builder places support files, such as pkginfo, postinstall, postremove,
and preremove, in the install_directory/rt_name/etc directory. This directory also
contains the resource type registration (RTR) file, which declares resource and resource
type properties available for the target resource type and initializes property values at
the time a resource is registered with a cluster (see “Setting Resource and Resource
Type Properties” on page 32 for more information). The RTR file is named as
vendor_name.resource_type_name—for example, SUNW.ftp.

You can edit this file with a standard text editor and make changes without
recompiling your source code. However, you must rebuild the package with the make
pkg command.

Package Directory
The install_directory/rt_name/pkg directory contains a Solaris package. The name of
the package is a concatenation of the vendor name and the application name, for
example, SUNWftp. The Makefile in the install_directory/rt_name/src directory
supports creation of a new package. For example, if you make changes to the source
files and recompile the code, or make changes to the package utility scripts, use the
make pkg command to create a new package.

When you remove a package from a cluster, the pkgrm command can fail if you
attempt to run the command from more than one node simultaneously. You can solve
this problem in one of two ways:

� Run the removert_name script from one node of the cluster before running pkgrm
from any node.

170 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� Run pkgrm from one node of the cluster, which takes care of all necessary clean up,
then run pkgrm from the remaining nodes, simultaneously if necessary.

If pkgrm fails because you attempt to run it simultaneously from multiple nodes, run
it again from one node then run it from the remaining nodes.

The rtconfig File
If you generate C or ksh source code, in the working directory, Agent Builder
generates a configuration file rtconfig, which contains the information that you
entered on the Create and Configure screens. If you launch Agent Builder from the
working directory for an existing resource type (or load an existing resource type
using the File menu Load Resource Type command), Agent Builder reads the
rtconfig file and fills in the Create and Configure screens with the information that
you provided for the existing resource type. This feature is useful if you want to clone
an existing resource type (see “Cloning an Existing Resource Type” on page 165.

Navigating Agent Builder
Navigating Agent Builder is simple and intuitive. Agent Builder is a two-step wizard
with a corresponding screen for each step (Create and Configure screens). You enter
information in each screen by:

� Typing information in a field.

� Browsing your directory structure and selecting a file or directory.

� Checking one of a set of mutually exclusive radio buttons—for example, Scalable
or Failover.

� Checking an on/off box. For example, checking Network Aware identifies the base
application as network aware, while leaving this box blank identifies a
non-network aware application.

The buttons at the bottom of each screen enable you to complete the task, move to the
next or previous screen, or exit Agent Builder. Agent Builder highlights or grays out
these buttons as appropriate.

For example, when you have filled in the fields and checked the desired options on the
Create screen, click the Create button at the bottom of the screen. The Previous and
Next buttons are grayed out because no previous screen exists and you cannot go to
the next step before you complete this one.

Chapter 9 • SunPlex Agent Builder 171

Agent Builder displays progress messages in the output log area at the bottom of the
screen. When Agent Builder finishes, it displays a success message, or a warning to
look at the output log. The Next button is highlighted, or if this is the last screen, only
the Cancel button is highlighted.

You can select Cancel at any time to exit Agent Builder.

Browse Button
Particular Agent Builder fields enable you to type information or to click the Browse
button to browse your directory structure and select a file or directory.

When you click Browse, a screen similar to the following screen appears:

Double click on a folder to open it. When you highlight a file, its name appears in the
File name box. Click Select when you have located and highlighted the appropriate
file.

172 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Note – If you are browsing for a directory, highlight it and select the Open button. If
there are no subdirectories, Agent Builder closes the browse window and places the
name of the directory you highlighted in the appropriate field. If this directory has
subdirectories, click the close button to close the browse window and return to the
previous screen. Agent Builder places the name of the directory you highlighted in the
appropriate field.

The icons in the upper right corner of the screen do the following:

This icon moves you up one level in the directory tree.

This icon returns you to the home folder.

This icon creates a new folder under the currently selected folder.

This icon, for toggling between different views, is reserved for future
use.

Menus
Agent Builder provides File and Edit menus.

File Menu
The File men has two commands:

� Load Resource Type — Load an existing resource type. Agent Builder provides a
browse screen from which you select the working directory for an existing resource
type. If a resource type exists in the directory from which you launch Agent
Builder, Agent Builder automatically loads the resource type. The Load Resource
Type command allows you to launch Agent Builder from any directory and select
an existing resource type to use as a template for creating a new resource type (see
“Cloning an Existing Resource Type” on page 165).

Chapter 9 • SunPlex Agent Builder 173

� Exit — Exit Agent Builder. You can also exit by clicking Cancel on the Create or
Configure screen.

Edit Menu
The Edit menu has commands to clear and save the output log:

� Clear Output Log — Clears the information from the output log. Each time you
select Create or Configure, Agent Builder appends status messages to the output
log. If you are engaged in an iterative process of making changes to your source
code and regenerating output in Agent Builder and want to segregate the status
messages, you can save and clear the log file before each use.

� Save Log File — Save the log output to a file. Agent Builder provides a browse
screen that enables you to choose the directory and specify a filename.

Cluster Agent Module for Agent Builder
The Cluster Agent module for Agent Builder is a NetBeans™ module. The Cluster
Agent module enables users of the Sun Java Studio (formerly Sun ONE Studio)
product to create resource types, or data services, for the Sun Cluster software through
an integrated development environment. The Cluster Agent module provides a
screen-based interface for describing the kind of resource type that you want to create.

Note – The Sun Java Studio documentation contains information about how to set up,
install, and use the Sun Java Studio product.

� Installing and Setting Up the Cluster Agent
Module
The Cluster Agent module is installed when you install the Sun Cluster software. The
Sun Cluster installation tool places the Cluster Agent module file scdsbuilder.jar
in /usr/cluster/lib/scdsbuilder. To use the Cluster Agent module with the
Sun Java Studio software, you need to create a symbolic link to this file.

Note – The Sun Cluster and Sun Java Studio products and Java™ 1.4 must be installed
and available to the system on which you intend to run the Cluster Agent module.

174 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

http://wwws.sun.com/software/sundev/jde/documentation/index.html

1. Do you want to enable all users or only yourself to use the Cluster Agent
module?

� To enable all users, become superuser or assume an equivalent role and create
the symbolic link in the global module directory:

cd /opt/s1studio/ee/modules
ln -s /usr/cluster/lib/scdsbuilder/scdsbuilder.jar

Note – If you installed the Sun Java Studio software in a directory other than
/opt/s1studio/ee, substitute this directory path with the path that you
used.

� To enable only yourself, create the symbolic link in your modules subdirectory:

% cd ~your-home-dir/ffjuser40ee/modules
% ln -s /usr/cluster/lib/scdsbuilder/scdsbuilder.jar

2. Stop and restart the Sun Java Studio software.

� Starting the Cluster Agent Module
The following steps describe how to start the Cluster Agent module from the Sun Java
Studio software.

1. From the Sun Java Studio File menu, select New, or click this icon on the toolbar:

The New Wizard screen appears.

Chapter 9 • SunPlex Agent Builder 175

2. In the Select a Template window, scroll down (if necessary) and click the key
next to the Other folder:

The Other menu opens.

3. From the Other menu, select Sun Cluster Agent Builder and click Next.

The Cluster Agent module for Sun Java Studio starts. The first New Wizard - Sun
Cluster Agent Builder screen appears.

176 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Using the Cluster Agent Module
Use the Cluster Agent module as you would the Agent Builder software. The
interfaces are identical. For example, the following figures show that the Create screen
in the Agent Builder software and the first New Wizard - Sun Cluster Agent Builder
screen in the Cluster Agent module contain the same fields and selections.

Chapter 9 • SunPlex Agent Builder 177

FIGURE 9–4 Create Screen in the Agent Builder Software

FIGURE 9–5 New Wizard - Sun Cluster Agent Builder Screen in the Cluster Agent Module

Differences Between the Cluster Agent Module and
Agent Builder
Despite the similarities between the Cluster Agent module and Agent Builder, minor
differences exist:

178 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� In the Cluster Agent module, the resource type is created and configured only after
you click Finish on the second New Wizard - Sun Cluster Agent Builder screen.
The resource type is not created when you click Next on the first New Wizard - Sun
Cluster Agent Builder screen.

In Agent Builder, the resource type is immediately created when you click Create
on the Create screen and configured when you click Configure on the Configure
screen.

� The information that appears in the Output Log window in Agent Builder appears
in a separate output window in the Sun Java Studio product.

Chapter 9 • SunPlex Agent Builder 179

180 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

CHAPTER 10

Generic Data Services

This chapter provides information on the generic data service (GDS) and shows you
how to create a service that uses the GDS using either the SunPlex Agent Builder or
the standard Sun Cluster administration commands.

� “Overview of GDS” on page 181
� “Using the SunPlex Agent Builder to Create a Service Using GDS” on page 186
� “Using the Standard Sun Cluster Administration Commands to Create a Service

Using GDS” on page 191
� “Command-Line Interface to the SunPlex Agent Builder” on page 192

Overview of GDS
The GDS is a mechanism for making simple network-aware applications highly
available or scalable by plugging them into the Sun Cluster Resource Group
Management framework. This mechanism does not require the coding of an agent
which is the typical approach for making an application highly available or scalable.

The GDS is a single, precompiled data service. You cannot modify the precompiled
data service and its components, the callback method (rt_callbacks(1HA))
implementations and the resource type registration file (rt_reg(4)).

Precompiled Resource Type
The generic data service resource type SUNW.gds is included in the SUNWscgds
package. The scinstall(1M) utility installs this package during cluster installation.
The SUNWscgds package includes the following files:

pkgchk -v SUNWscgds

181

/opt/SUNWscgds
/opt/SUNWscgds/bin
/opt/SUNWscgds/bin/gds_monitor_check
/opt/SUNWscgds/bin/gds_monitor_start
/opt/SUNWscgds/bin/gds_monitor_stop
/opt/SUNWscgds/bin/gds_probe
/opt/SUNWscgds/bin/gds_svc_start
/opt/SUNWscgds/bin/gds_svc_stop
/opt/SUNWscgds/bin/gds_update
/opt/SUNWscgds/bin/gds_validate
/opt/SUNWscgds/etc
/opt/SUNWscgds/etc/SUNW.gds

Why Use GDS
The GDS has the following advantages over using either the SunPlex Agent Builder
generated source code model (see scdscreate(1HA)) or the standard Sun Cluster
administration commands:

� The GDS is easy to use.
� The GDS and its methods are precompiled and are therefore not modifiable.
� The SunPlex Agent Builder can be used to generate driving scripts for your

application and these scripts are put in a Solaris package that can be reused across
multiple clusters.

Ways to Create a Service That Uses GDS
There are two ways to create a service that uses the GDS:

� Using the SunPlex Agent Builder
� Using the standard Sun Cluster administration commands

GDS and the SunPlex Agent Builder
Use the SunPlex Agent Builder and select GDS as the type of generated source code.
The user input is used to generate a set of driving scripts that configure resources for
the given application.

GDS and the Standard Sun Cluster Administration
Commands
This method uses the precompiled data service code in SUNWscgds but requires that
the system administrator use the standard Sun Cluster administration commands
(scrgadm(1M) and scswitch(1M)) to create and configure the resource.

182 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Selecting the Method to Use to Create a GDS-Based
Service
As shown in the procedures “How to Use Sun Cluster Administration Commands to
Create a Highly Available Service Using GDS” on page 191 and “Standard Sun Cluster
Administration Commands to Create a Scalable Service Using GDS” on page 192, a
significant amount of typing is required to issue the appropriate scrgadm and
scswitch commands.

Using the GDS with SunPlex Agent Builder simplifies the process because it generates
the driving scripts that issue the scrgadm and scswitch commands for you.

When Is GDS Not the Mechanism to Use
While using the GDS has many advantages, there are instances when it is not the
mechanism to use the GDS. The GDS is not the mechanism to use when:

� More control is required than is available using the precompiled resource type.
such as when you need to add extension properties or change the defaults.

� The source code needs to be modified to add special functions.
� You want to use multiple process trees.
� You want to use non-network-aware applications.

Required Properties for GDS
The following properties must be provided:

� Start_command (extension property)
� Port_list

Start_command Extension Property
The start command, which you specify in the Start_command extension property,
launches the application. It must be a UNIX command complete with its arguments
that can be passed directly to a shell to start the application.

Port_list Property
The Port_list property identifies the list of ports that the application listens on. The
Port_list property must be specified on the start script created by the SunPlex
Agent Builder or on the scrgadm command if you are using the standard Sun Cluster
administration commands.

Chapter 10 • Generic Data Services 183

Optional Properties for GDS
Optional GDS properties include:

� Network_resources_used

� Stop_command (extension property)
� Probe_command(extension property)
� Start_timeout

� Stop_timeout

� Probe_timeout (extension property)
� Child_mon_level (extension property only used with the standard

administration commands)
� Failover_enabled (extension property)
� Stop_signal (extension property)

Network_resources_used Property
The default value for this property is null. This property must be specified if the
application needs to bind to one or more specific addresses. If this property is omitted
or is specified as Null, the application is assumed to listen on all addresses.

Before creating the GDS resource, a LogicalHostname or SharedAddress resource
must already have been configured. See the Sun Cluster Data Services Planning and
Administration Guide for Solaris OS for information about how to configure a
LogicalHostname or SharedAddress resource.

To specify a value, specify one or more resource names; each resource name can
contain one or more LogicalHostname or one or more SharedAddress. See
r_properties(5) for details.

Stop_command Property
The stop command must stop the application and only return after the application has
been completely stopped. It must be a complete UNIX command that can be passed
directly to a shell to stop the application.

If the Stop_command is provided, the GDS stop method launches the stop command
with 80% of the stop timeout. Regardless of the outcome of launching the stop
command, the GDS stop method sends SIGKILL with 15% of the stop timeout. The
remaining 5% of the time is reserved for housekeeping overhead.

If the stop command is omitted, the GDS tries to stop the application using the signal
specified in Stop_signal.

184 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Probe_command Property
The probe command periodically checks the health of the given application. It must be
a UNIX command complete with its arguments that can be passed directly to a shell to
probe the application. The probe command returns with an exit status of 0 if the
application is OK.

The exit status of the probe command is used to determine the severity of the failure
of the application. This exit status, called probe status, must be an integer between 0
(for success) and 100 (for complete failure). The probe status can also be a special
value of 201 which results in immediate failover of the application unless
Failover_enabled is set to false. The probe status is used within the GDS probing
algorithm (see scds_fm_action(3HA) to make the decision about restarting the
application locally versus failing it over to another node; if the exit status is 201, the
application is immediately failed over.

If the probe command is omitted, the GDS provides its own simple probe that
connects to the application on the set of IP addresses derived from the
Network_resources_used property or the output of
scds_get_netaddr_list(3HA). If the connect succeeds, it disconnects
immediately. If both connect and disconnect succeed, the application is deemed to be
running healthily.

Note – The probe provided with the GDS is only intended to be a simple substitute for
the fully functioning application-specific probe.

Start_timeout Property
This property specifies the start timeout for the start command (see “Start_command
Extension Property” on page 183 for additional information). The default for
Start_timeout is 300 seconds.

Stop_timeout Property
This property specifies the stop timeout for the stop command (see “Stop_command
Property” on page 184 for the additional information. The default for Stop_timeout
is 300 seconds.

Probe_timeout Property
This property specifies the timeout value for the probe command (see
“Probe_command Property” on page 185 for additional information. The default for
Probe_timeout is 30 seconds.

Chapter 10 • Generic Data Services 185

Child_mon_level Property
This property provides control over which processes get monitored through PMF. It
denotes the level up to which the forked children processes are monitored. This is
similar to the -C argument to the pmfadm(1M) command.

Omitting this property, or setting it to the default value of -1, has the same effect as
omitting the -C option on the pmfadm command; that is, all children (and their
descendents) will be monitored.

Note – This option can only be specified using the standard Sun Cluster administration
commands. This option cannot be specified if you are using the SunPlex Agent
Builder.

Failover_enabled Property
This boolean extension property controls the failover behavior of the resource. If this
extension property is set to true, the application fails over when the number of
restarts exceeds the retry_count within the retry_interval number of seconds.

If this extension property is set to false, the application does not restart or fail over
to another node when the number of restarts exceed the retry_count within the
retry_interval number of seconds.

This extension property can be used to prevent the application resource from initiating
a failover of the resource group. The default is true.

Stop_signal Property
The GDS uses the value of this integer extension property to determine the signal used
for stopping the application through PMF. See signal(3HEAD) for a list of the
integer values that can be specified. The default is 15 (SIGTERM).

Using the SunPlex Agent Builder to
Create a Service Using GDS
You can use the SunPlex Agent Builder to create the service that uses the GDS. The
SunPlex Agent Builder is described in more detail in Chapter 9.

186 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Create a Service Using GDS in the SunPlex Agent
Builder

� Creating a Service Using GDS in the Agent Builder
1. Start the SunPlex Agent Builder.

/usr/cluster/bin/scdsbuilder

2. The SunPlex Agent Builder panel appears.

3. Enter the Vendor Name.

4. Enter the Application Name.

Note – The combination of Vendor and Application Name may not contain more
than nine characters. It is used as the name of the package for the driving scripts.

5. Go to the working directory.

Chapter 10 • Generic Data Services 187

You can use the Browse pulldown to select the directory rather than typing the
path.

6. Select whether the data service is scalable or failover.

You do not need to select Network Aware since that is the default when creating
the GDS.

7. Select GDS.

8. Click the Create button to create the driving scripts.

9. The SunPlex Agent Builder panel displays the results of the creation of the
service. The Create button is grayed out and you can now use the Next button.

� Configuring the Driving Scripts
After creating the driving scripts, you need to use the SunPlex Agent Builder to
configure the new service.

1. Click the Next button and the configuration panel appears.

2. Either enter the location of the Start command or use the browse button to locate
the Start command.

188 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

3. (Optional) Enter the Stop command or use the browse button to locate the Stop
command.

4. (Optional) Enter the Probe command or use the browse button to locate the
Probe command.

5. (Optional) Specify the timeout values for the Start, Stop, and Probe commands.

6. Click Configure to start the configuration of the driving scripts.

Note – The package name will consist of a concatenation of the Vendor Name and
Application Name.

A package for driving scripts will be created and placed in:

<working-dir>/<vendor_name><application>/pkg
For example, /export/wdir/NETapp/pkg

7. Install the completed package on all nodes of the cluster.

cd /export/wdir/NETapp/pkg
pkgadd -d . NETapp

8. The following files will be installed during the pkgadd:

/opt/NETapp
/opt/NETapp/README.app
/opt/NETapp/man
/opt/NETapp/man/man1m
/opt/NETapp/man/man1m/removeapp.1m
/opt/NETapp/man/man1m/startapp.1m
/opt/NETapp/man/man1m/stopapp.1m
/opt/NETapp/man/man1m/app_config.1m
/opt/NETapp/util
/opt/NETapp/util/removeapp
/opt/NETapp/util/startapp
/opt/NETapp/util/stopapp
/opt/NETapp/util/app_config

Note – The man pages and script names will correspond to the Application Name
you entered above preceded by the script name; for example, startapp.

To view the man pages, you need to specify the path to the man page. For example,
to view the startapp man pages, use:

man -M /opt/NETapp/man startapp

9. On one node of the cluster, configure the resources and start the application.

Chapter 10 • Generic Data Services 189

/opt/NETapp/util/startapp -h <logichostname> -p <port and protocol list>

The arguments to the start script will vary according to the type of resource:
failover or scalable. Check the customized man page or run the start script without
any argument to get a usage statement.

/opt/NETapp/util/startapp
The resource name of LogicalHostname or SharedAddress must be
specified.
For failover services:
Usage: startapp -h <logical host name>

-p <port and protocol list>
[-n <ipmpgroup/adapter list>]

For scalable services:
Usage: startapp

-h <shared address name>
-p <port and protocol list>
[-l <load balancing policy>]
[-n <ipmpgroup/adapter list>]
[-w <load balancing weights>]

Output From SunPlex Agent Builder
The SunPlex Agent Builder generates three driving scripts and a configuration file
based on input you provide during package creation. The configuration file specify the
names of the resource group and resource type.

The driving scripts are:

� Start script: Used to configure the resources and start the application under RGM
control.

� Stop script: Used to stop the application and take down resources and resource
groups.

� Remove script: Used to remove the resources and resource groups created by the
start script.

These driving scripts have the same interface and behavior as the utility scripts
generated by the SunPlex Agent Builder for non-GDS-based agents. The scripts are put
in a Solaris package that can be reused across multiple clusters.

You can customize the configuration file to provide your own names for resource
groups or other parameters that are normally given as inputs to the scrgadm
command. If you do not customize the scripts, the SunPlex Agent Builder provides
reasonable defaults for the scrgadm parameters.

190 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Using the Standard Sun Cluster
Administration Commands to Create a
Service Using GDS
In this section we describe how these parameters can actually be input to the GDS.
The GDS is used and administered using the existing Sun Cluster administration
commands such as scrgadm and scswitch.

Then there is no need to enter the lower level administration commands shown in this
section if the driving scripts provide adequate functionality. However, you can do so if
you need to have finer control over the GDS-based resource. These are the commands
actually executed by the driving scripts.

� How to Use Sun Cluster Administration
Commands to Create a Highly Available Service
Using GDS
1. Register the resource type SUNW.gds

scrgadm -a -t SUNW.gds

2. Create the resource group containing the LogicalHostname resource and the
failover service itself.

scrgadm -a -g haapp_rg

3. Create the resource for the LogicalHostname resource.

scrgadm -a -L -g haapp_rs -l hhead

4. Create the resource for the failover service itself.

scrgadm -a -j haapp_rs -g haapp_rg -t SUNW.gds \
-y Scalable=false -y Start_timeout=120 \
-y Stop_timeout=120 -x Probe_timeout=120 \
-y Port_list="2222/tcp" \
-x Start_command="/export/ha/appctl/start" \
-x Stop_command="/export/ha/appctl/stop" \
-x Probe_command="/export/app/bin/probe" \
-x Child_mon_level=0 -y Network_resources_used=hhead \

-x Failover_enabled=true -x Stop_signal=9

5. Bring the resource group haapp_rg online.

scswitch -Z -g haapp_rg

Chapter 10 • Generic Data Services 191

� Standard Sun Cluster Administration Commands
to Create a Scalable Service Using GDS
1. Register the resource type SUNW.gds.

scrgadm -a -t SUNW.gds

2. Create the resource group for the SharedAddress resource.

scrgadm -a -g sa_rg

3. Create the SharedAddress resource on sa_rg.

scrgadm -a -S -g sa_rg -l hhead

4. Create the resource group for the scalable service.

scrgadm -a -g app_rg -y Maximum_primaries=2 \

-y Desired_primaries=2 -y RG_dependencies=sa_rg

5. Create the resource group for the scalable service itself.

scrgadm -a -j app_rs -g app_rg -t SUNW.gds \
-y Scalable=true -y Start_timeout=120 \
-y Stop_timeout=120 -x Probe_timeout=120 \
-y Port_list="2222/tcp" \
-x Start_command="/export/app/bin/start" \
-x Stop_command="/export/app/bin/stop" \
-x Probe_command="/export/app/bin/probe" \
-x Child_mon_level=0 -y Network_resource_used=hhead \

-x Failover_enabled=true -x Stop_signal=9

6. Bring the resource group containing the network resources online.

scswitch -Z -g sa_rg

7. Bring the resource group app_rg online.

scswitch -Z -g app_rg

Command-Line Interface to the SunPlex
Agent Builder
The SunPlex Agent Builder has a command-line interface that has equivalent
functionality to the GUI interface. This interface consists of the commands
scdscreate(1HA) and scdsconfig(1HA). The following section performs the same
function as the GUI-based procedure “Creating a Service That Uses GDS With the
Command-Line Version of Agent Builder” on page 193 but uses the non-GUI interface.

192 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� Creating a Service That Uses GDS With the
Command-Line Version of Agent Builder
1. Create the service.

For a failover service, use:

scdscreate -g -V NET -T app -d /export/wdir

For a scalable service, use:

scdscreate -g -s -V NET -T app -d /export/wdir

Note – The –d parameters are optional. If it is not specified, the working directory
defaults to the current directory.

2. Configure the service.

scdsconfig -s "/export/app/bin/start’ -t "/export/app/bin/stop" \
-m "/export/app/bin/probe" -d /export/wdir

Note – Only the start command is required. All other parameters are optional.

3. Install the completed package on all nodes of the cluster.

cd /export/wdir/NETapp/pkg
pkgadd -d . NETapp

4. The following files will be installed during the pkgadd:

/opt/NETapp
/opt/NETapp/README.app
/opt/NETapp/man
/opt/NETapp/man/man1m
/opt/NETapp/man/man1m/removeapp.1m
/opt/NETapp/man/man1m/startapp.1m
/opt/NETapp/man/man1m/stopapp.1m
/opt/NETapp/man/man1m/app_config.1m
/opt/NETapp/util
/opt/NETapp/util/removeapp
/opt/NETapp/util/startapp
/opt/NETapp/util/stopapp
/opt/NETapp/util/app_config

Note – The man pages and script names will correspond to the Application Name
you entered above preceded by the script name; for example, startapp.

Chapter 10 • Generic Data Services 193

To view the man pages, you need to specify the path to the man page. For example,
to view the startapp man pages, use:

man -M /opt/NETapp/man startapp

5. On one node of the cluster, configure the resources and start the application.

/opt/NETapp/util/startapp -h <logichostname> -p <port and protocol list>

The arguments to the start script will vary according to the type of resource:
failover or scalable. Check the customized man page or run the start script without
any argument to get a usage statement.

/opt/NETapp/util/startapp
The resource name of LogicalHostname or SharedAddress must be
specified.
For failover services:
Usage: startapp -h <logical host name>

-p <port and protocol list>
[-n <ipmpgroup/adapter list>]

For scalable services:
Usage: startapp

-h <shared address name>
-p <port and protocol list>
[-l <load balancing policy>]
[-n <ipmpgroup/adapter list>]
[-w <load balancing weights>]

194 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

CHAPTER 11

Data Service Development Library
Reference

This chapter lists and briefly describes the Data Service Development Library (DSDL)
API functions. See the individual 3HA man pages for a complete description of each
DSDL function. The DSDL defines a C interface only. There is no scriptable DSDL
interface.

The DSDL provides functions in the following categories.

� “General Purpose Functions” on page 195
� “Property Functions” on page 197
� “Network Resource-Access Functions” on page 197
� “PMF Functions” on page 198
� “Fault Monitor Functions” on page 199
� “Utility Functions” on page 199

DSDL Functions
The following subsections provide a brief overview to each category of DSDL
functions. However, the individual 3HA man pages are the definitive reference for
DSDL functions.

General Purpose Functions
The functions in this section provide a broad range of functionality. These functions
enable you to

� Initialize the DSDL environment
� Retrieve resource, resource type, and resource group names, and extension

property values

195

� Failover and restart a resource group and restart a resource
� Convert error strings to error messages
� Execute a command under a timeout

The following functions initialize the calling method.

� scds_initialize – allocate resources and initialize the DSDL environment.
� scds_close – free resources allocated by scds_initialize.

The following functions retrieve information about resources, resource types, resource
groups, and extension properties.

� scds_get_resource_name – retrieve the name of the resource for the calling
program.

� scds_get_resource_type_name – retrieve the name of the resource type for
the calling program.

� scds_get_resource_group_name – retrieve the name of the resource group for
the calling program.

� scds_get_ext_property – retrieve the value of the specified extension
property.

� scds_free_ext_property – free the memory allocated by
scds_get_ext_property.

The following function retrieves status information about the SUNW.HAStoragePlus
resources used by a resource.

� scds_hasp_check – retrieves status information about SUNW.HAStoragePlus
resources used by a resource. This information is obtained from the state (online or
otherwise) of all SUNW.HAStoragePlus resources that the resource depends upon
using the Resource_dependencies or Resource_dependencies_weak
system properties defined for the resource.

See SUNW.HAStoragePlus(5) for more information about
SUNW.HAStoragePlus.

The following functions fail over or restart a resource or resource group.

� scds_failover_rg – fail over a resource group.
� scds_restart_rg – restart a resource group.
� scds_restart_resource – restart a resource.

The following two functions execute a command under a timeout and convert an error
code to an error message.

� scds_timerun – execute a command under a timeout value.
� scds_error_string – translate an error code to an error string.

196 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Property Functions
These functions provide convenience APIs for accessing specific properties of the
relevant resource, resource group and resource type, including some commonly-used
extension properties. The DSDL provides the scds_initialize function to parse
the command line arguments. The library then caches the various properties of the
relevant resource, resource group and resource type.

A single man page, scds_property_functions(3HA) describes all of these
functions. This section contains the following functions

� scds_get_rs_property_name
� scds_get_rg_property_name
� scds_get_rt_property_name
� scds_get_ext_property_name

Network Resource-Access Functions
The functions listed in this section retrieve, print, and free network resources used by
resources and resource groups. The scds_get_* functions in this section provide a
convenient way of retrieving network resources without querying specific properties
such as Network_resources_used, and Port_list using the RMAPI functions.
The scds_print_name() functions print values from the data structures returned by
the scds_get_name() functions. The scds_free_name() functions free the
memory allocated by the scds_get_name() functions.

The following functions are concerned with hostnames.

� scds_get_rg_hostnames – retrieve a list of hostnames used by the network
resources in a resource group.

� scds_get_rs_hostnames – retrieve a list of hostnames used by the resource.
� scds_print_net_list – print the contents of the list of hostnames returned by

scds_get_rg_hostnames or scds_get_rs_hostnames.
� scds_free_net_list – free the memory allocated by

scds_get_rg_hostnames or scds_get_rs_hostnames.

The following functions are concerned with port lists.

� scds_get_port_list – retrieve a list of port-protocol pairs used by a resource.
� scds_print_port_list – print the contents of the list of port-protocol pairs

returned by scds_get_port_list.
� scds_free_port_list – free the memory allocated by scds_get_port_list.

The following functions are concerned with network addresses.

� scds_get_netaddr_list – retrieve a list of network addresses used by a
resource.

Chapter 11 • Data Service Development Library Reference 197

� scds_print_netaddr_list – print the contents of the list of network addresses
returned by scds_get_netaddr_list.

� scds_free_netaddr_list – free the memory allocated by
scds_get_netaddr_list.

Fault Monitoring Using TCP Connections
The functions in this section enable TCP-based monitoring. Typically, a fault monitor
uses these functions to establish a simple socket connection to a service, read and
write data to the service to ascertain its status, and then disconnect from the service.

This section contains the following functions.

� scds_tcp_connect – establish a TCP connection to a process.
� scds_tcp_read – use a TCP connection to read data from the process being

monitored.
� scds_tcp_write – use a TCP connection to write data to a process being

monitored.
� scds_simple_probe – probe a process by establishing and terminating a TCP

connection to the process.
� scds_tcp_disconnect – terminate the connection to a process being monitored.

PMF Functions
These functions encapsulate the PMF functionality. The DSDL model for monitoring
through PMF creates and uses implicit tag values for pmfadm(1M). The PMF facility
also uses implicit values for the Restart_interval, Retry_count and
action_script (the -t, -n and -a options to pmfadm). Most importantly, the DSDL
ties the process death history, as discovered by PMF, into the application failure
history as detected by the fault monitor to compute the restart or failover decision.

This section contains the following functions.

� scds_pmf_get_status – determine if the specified instance is being monitored
under PMF control.

� scds_pmf_restart_fm – restarts the fault monitor using PMF.
� scds_pmf_signal – send the specified signal to a process tree running under

PMF control.
� scds_pmf_start – execute a specified program (including a fault monitor) under

PMF control.
� scds_pmf_stop – terminate a process running under PMF control.
� scds_stop_monitoring — stop monitoring a process running under PMF

control.

198 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Fault Monitor Functions
The functions in this section provide a predetermined model of fault-monitoring by
keeping the failure history and evaluating it in conjunction with the Retry_count
and Retry_interval properties.

This section contains the following functions.

� scds_fm_sleep – wait for a message on a fault monitor control socket.
� scds_fm_action – take action after completion of a probe.
� scds_fm_print_probes – write probe status information to the system log.

Utility Functions
The functions in this section enable you to write messages and debugging messages to
the system log. This section contains the following two functions.

� scds_syslog – write messages to the system log.
� scds_syslog_debug – write a debugging message to the system log.

Chapter 11 • Data Service Development Library Reference 199

200 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

CHAPTER 12

CRNP

This chapter provides information about the Cluster Reconfiguration Notification
Protocol (CRNP). CRNP enables failover and scalable applications to be “cluster
aware.” More specifically, CRNP provides a mechanism that enables applications to
register for, and receive subsequent asynchronous notification of, Sun Cluster
reconfiguration events. Data services that run within the cluster and applications that
run outside the cluster can register for notification of events. Events are generated
when membership in a cluster changes and when the state of a resource group or a
resource changes.

� “Overview of CRNP” on page 201
� “Message Types That the CRNP Uses” on page 203
� “How a Client Registers With the Server” on page 205
� “How the Server Replies to a Client” on page 207
� “How the Server Delivers Events to a Client” on page 209
� “How the CRNP Authenticates Clients and the Server” on page 213
� “Creating a Java Application That Uses CRNP” on page 213

Overview of CRNP
CRNP provides mechanisms and daemons that generate cluster reconfiguration
events, route them through the cluster, and send them to interested clients.

The cl_apid daemon interacts with the clients. The Sun Cluster Resource Group
Manager (RGM) generates cluster reconfiguration events. These daemons use
syseventd(1M) to transmit events on each local node. The cl_apid daemon uses
Extensible Markup Language (XML) over TCP/IP to communicate with interested
clients.

201

The following diagram presents an overview of the flow of events between the CRNP
components. In this diagram, one client is running on cluster node 2, and the other
client is running on a computer that is not part of the cluster.

Node 2Node 1

XML over TCP

Event
subsystem

Resource Group
Manager (RGM)

President

Events

Client

Client

Event
subsystem

CRNP
server

XML
over TCP

FIGURE 12–1 How CRNP Works

Overview of the CRNP Protocol
The CRNP defines the Application, Presentation, and Session layers of the standard
seven layer Open System Interconnect (OSI) protocol stack. The Transport layer must
be TCP and the Network layer must be IP. The CRNP is independent of the Data Link
and Physical layers. All Application layer messages that are exchanged in the CRNP
are based on XML 1.0.

Semantics of the CRNP Protocol
Clients initiate communication by sending a registration message (SC_CALLBACK_RG)
to the server. This registration message specifies the event types for which the clients
want to receive notification as well as a port to which the events can be delivered. The
source IP of the registration connection and the specified port, taken together, form the
callback address.

202 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Whenever an event of interest to a client is generated within the cluster, the server
contacts the client on its callback address (IP and port) and delivers the event
(SC_EVENT) to the client. The server is highly available, running within the cluster
itself. The server stores client registrations in storage that persists even after the cluster
is rebooted.

Clients unregister by sending a registration message (SC_CALLBACK_RG, which
contains a REMOVE_CLIENT message) to the server. After the client receives an
SC_REPLY message from the server, the client closes the connection.

The following diagram shows the flow of communication between a client and a
server.

Client Server

Client unregistration

Client registration
(callback port and event types of interest)

Time

Event deliveries

FIGURE 12–2 Flow of Communication Between a Client and a Server

Message Types That the CRNP Uses
The CRNP uses three types of messages, all of which are XML-based, as described in
the following table. These message types are described in more detail later in this
chapter. Usage is also described in more detail later in this chapter.

Chapter 12 • CRNP 203

Type of Message Description

SC_CALLBACK_REG This message takes four forms: ADD_CLIENT, REMOVE_CLIENT,
ADD_EVENTS, and REMOVE_EVENTS. Each of these forms contains the
following information:
� Protocol version
� Callback port in ASCII format (not binary format)

The ADD_CLIENT, ADD_EVENTS, and REMOVE_EVENTS forms also
contain an unbounded list of event types, each of which includes the
following information:
� Event class
� Event subclass (optional)
� List of the name and value pairs (optional)

Together, the event class and event subclass define a unique “event type.”
The DTD (document type definition) from which the classes of
SC_CALLBACK_REG are generated is SC_CALLBACK_REG. This DTD is
described in more detail in Appendix F.

SC_EVENT This message contains the following information:
� Protocol version
� Event class
� Event subclass
� Vendor
� Publisher
� Name and value pairs list (0 or more name and value pair data

structures)
� Name (string)
� Value (string or string array)

The values in an SC_EVENT are not typed. The DTD (document type
definition) from which the classes of SC_EVENT are generated is
SC_EVENT. This DTD is described in more detail in Appendix F.

SC_REPLY This message contains the following information:
� Protocol version
� Error code
� Error message

The DTD (document type definition) from which the classes of
SC_REPLY are generated is SC_REPLY. This DTD is described in more
detail in Appendix F.

204 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

How a Client Registers With the Server
This section describes how an administrator will set up the server, how clients are
identified, how information is sent over the Application and Session layers, and error
conditions.

Assumptions About How Administrators Will Set
Up the Server
The system administrator must configure the server with a highly available IP address
(that is, an IP address that is not tied to a particular machine in the cluster) and a port
number. The administrator must publish this network address to prospective clients.
The CRNP does not define how this server name is made available to clients.
Administrators will either use a naming service, which will enable clients to find the
network address of the server dynamically, or will add the network name to a
configuration file for the client to read. The server will run within the cluster as a
failover resource type.

How the Server Identifies a Client
Each client is uniquely identified by its callback address, that is, its IP address and
port number. The port is specified in the SC_CALLBACK_REG messages, and the IP
address is obtained from the TCP registration connection. CRNP assumes that
subsequent SC_CALLBACK_REG messages with the same callback address come from
the same client, even if the source port from which the messages are sent is different.

How SC_CALLBACK_REG Messages Are Passed
Between a Client and the Server
A client initiates a registration by opening a TCP connection to the server’s IP address
and port number. After the TCP connection is established and ready for writing, the
client must send its registration message. The registration message must be one
correctly formatted SC_CALLBACK_REG message that does not contain extra bytes
either before or after the message.

After all the bytes have been written to the stream, the client must keep its connection
open to receive the reply from the server. If the client does not format the message
correctly, the server does not register the client, and sends an error reply to the client.
If the client closes the socket connection before the server sends a reply, the server
registers the client as normal.

Chapter 12 • CRNP 205

A client can contact the server at any time. Every time a client contacts the server, the
client must send an SC_CALLBACK_REG message. If the server receives a message that
is malformed, out of order, or invalid, the server sends an error reply to the client.

A client cannot send an ADD_EVENTS, REMOVE_EVENTS, or REMOVE_CLIENT message
before that client sends an ADD_CLIENT message. A client cannot send a
REMOVE_CLIENT message before that client sends an ADD_CLIENT message.

If a client sends an ADD_CLIENT message and the client is already registered, the
server might tolerate this message. In this situation, the server silently replaces the old
client registration with the new client registration that is specified in the second
ADD_CLIENT message.

In most situations, a client registers with the server once, when the client starts, by
sending an ADD_CLIENT message. And a client unregisters once by sending a
REMOVE_CLIENT message to the server. However, the CRNP provides more flexibility
for those clients that need to modify their event type list dynamically.

Contents of an SC_CALLBACK_REG Message
Each ADD_CLIENT, ADD_EVENTS, and REMOVE_EVENTS message contains a list of
events. The following table describes the event types that the CRNP accepts, including
the required name and value pairs.

If a client either:

� Sends a REMOVE_EVENTS message that specifies one or more event types for which
the client has not previously registered, or

� Registers for the same event type twice

the server silently ignores these messages.

Class and Subclass Name and Value Pairs Description

EC_Cluster

ESC_cluster_membership

Required: none

Optional: none

Registers for all cluster membership change
events (node death or join)

EC_Cluster

ESC_cluster_rg_state

One required, as
follows:

rg_name

Value type: string

Optional: none

Registers for all state change events for resource
group name

206 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Class and Subclass Name and Value Pairs Description

EC_Cluster

ESC_cluster_r_state

One required, as
follows:

r_name

Value type: string

Optional: none

Registers for all state change events for resource
name

EC_Cluster

None

Required: none

Optional: none

Registers for all Sun Cluster events

How the Server Replies to a Client
After processing the registration, the server sends the SC_REPLY message. The server
sends this message on the open TCP connection from the client on which the server
received the registration request. The server then closes the connection. The client
must keep the TCP connection open until it receives the SC_REPLY message from the
server.

For example, the client carries out the following actions:

1. Opens a TCP connection to the server

2. Waits for a connection to be “writeable”

3. Sends an SC_CALLBACK_REG message (which contains an ADD_CLIENT message)

4. Waits for an SC_REPLY message

5. Receives an SC_REPLY message

6. Receives an indicator that the server has closed the connection (reads 0 bytes from
the socket)

7. Closes the connection

At a later point in time, the client then carries out the following actions:

1. Opens a TCP connection to the server

2. Waits for a connection to be “writeable”

3. Sends an SC_CALLBACK_REG message (which contains a REMOVE_CLIENT
message)

4. Waits for an SC_REPLY message

5. Receives an SC_REPLY message

6. Receives an indicator that the server has closed the connection (reads 0 bytes from
the socket)

Chapter 12 • CRNP 207

7. Closes the connection

Each time that the server receives an SC_CALLBACK_REG message from a client, the
server sends an SC_REPLY message on the same open connection. This message
specifies whether the operation succeeded or failed. “SC_REPLY XML DTD”
on page 314 contains the XML document type definition of an SC_REPLY message,
and the possible error messages that this message can include.

Contents of an SC_REPLY Message
An SC_REPLY message specifies whether an operation succeeded or failed. This
message contains the version of the CRNP protocol message, a status code, and a
status message, which describes the status code in more detail. The following table
describes the possible values for the status code.

Status Code Description

OK The message was processed successfully.

RETRY The registration of the client was rejected by the server due to a
transient error (the client should try to register again, with
different parameters).

LOW_RESOURCE Cluster resources are low, and the client can only try again at a
later time (the system administrator for the cluster can also
increase the resources on the cluster).

SYSTEM_ERROR A serious problem occurred. Contact the system administrator for
the cluster.

FAIL Authorization failed or another problem caused the registration
to fail.

MALFORMED The XML request was malformed and could not be parsed.

INVALID The XML request was invalid (does not meet the XML
specification).

VERSION_TOO_HIGH The version of the message was too high to process the message
successfully.

VERSION_TOO_LOW The version of the message was too low to process the message
successfully.

How a Client Is to Handle Error Conditions
Under normal conditions, a client that sends an SC_CALLBACK_REG message receives
a reply that indicates that the registration succeeded or failed.

208 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

However, the server can experience an error condition when a client is registering that
prohibits the server from sending an SC_REPLY message to the client. In this case, the
registration could either have succeeded before the error condition occurred, could
have failed, or could not yet have been processed.

Because the server must function as a failover, or highly available, server on the
cluster, this error condition does not mean an end to the service. In fact, the server
could soon begin sending events to the newly registered client.

To remedy these conditions, your client should both:

� Impose an application-level time-out on a registration connection that is waiting
for an SC_REPLY message, after which the client needs to retry registering.

� Begin listening on its callback IP address and port number for event deliveries
before it registers for the event callbacks. The client should wait for a registration
confirmation message and for event deliveries in parallel. If the client begins to
receive events before the client receives a confirmation message, the client should
silently close the registration connection.

How the Server Delivers Events to a
Client
As events are generated within the cluster, the CRNP server delivers them to all clients
who requested events of those types. The delivery consists of sending an SC_EVENT
message to the client’s callback address. The delivery of each event occurs on a new
TCP connection.

Immediately after a client registers for an event type, through an SC_CALLBACK_REG
message that contains an ADD_CLIENT message or an ADD_EVENT message, the server
sends the most recent event of that type to the client. The client can then discover the
current state of the system from which the subsequent events come.

When the server initiates a TCP connection to the client, the server sends exactly one
SC_EVENT message on the connection. The server then issues a full-duplex close.

For example, the client carries out the following actions:

1. Waits for the server to initiate a TCP connection

2. Accepts the incoming connection from the server

3. Waits for an SC_EVENT message

4. Reads an SC_EVENT message

5. Receives an indicator that the server has closed the connection (reads 0 bytes from
the socket)

Chapter 12 • CRNP 209

6. Closes the connection

When all clients have registered, they must listen at their callback address (the IP
address and port number) at all times for an incoming event delivery connection.

If the server fails to contact the client to deliver an event, the server tries again to
deliver the event the number of times and at the interval that you define. If all
attempts fail, the client is removed from the server’s list of clients. The client also
needs to re-register by sending another SC_CALLBACK_REG message that contains an
ADD_CLIENT message before the client can receive more events.

How the Delivery of Events Is Guaranteed
There is a total ordering of event generation within the cluster that is preserved in the
order of delivery to each client. In other words, if event A is generated within the
cluster before event B, then client X receives event A before that client receives event B.
However, the total ordering of event delivery to all clients is not preserved. That is,
client Y could receive both events A and B before client X receives event A. In this way,
slow clients do not hold up delivery to all clients.

All events that the server delivers (except the first event for a subclass and events that
follow server errors) occur in response to the actual events that the cluster generates,
except if the server experiences an error that causes it to miss cluster-generated events.
In this case, the server generates an event for each event type that represents the
current state of the system for that type. Each event is sent to clients that registered
interest in that event type.

Event delivery follows the “at least once” semantics. That is, the server is allowed to
send the same event to a client more than once. This allowance is necessary in cases in
which the server goes down temporarily, and when it comes back up, cannot
determine if the client has received the latest information.

Contents of an SC_EVENT Message
The SC_EVENT message contains the actual message that is generated within the
cluster, translated to fit into the SC_EVENT XML message format. The following table
describes the event types that the CRNP delivers, including the name and value pairs,
publisher, and vendor.

210 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Class and Subclass Publisher and Vendor Name and Value Pairs Notes

EC_Cluster

ESC_cluster_membership

Publisher: rgm

Vendor: SUNW

Name: node_list

Value type: string array

Name: state_list

Value type: string array

The positions of the array
elements for state_list
are synchronized with
those of the node_list.
That is, the state for the
node listed first in the
node_list array is first
in the state_list array.

The state_list
contains only numbers
represented in ASCII.
Each number represents
the current incarnation
number for that node in
the cluster. If the number
is the same as the number
that was received in a
previous message, the
node has not changed its
relationship to the cluster
(departed, joined, or
rejoined). If the
incarnation number is –1,
the node is not a member
of the cluster. If the
incarnation number is a
number other than a
negative number, the
node is a member of the
cluster.

Additional names starting
with ev_ and their
associated values might
be present, but are not
intended for client use.

Chapter 12 • CRNP 211

Class and Subclass Publisher and Vendor Name and Value Pairs Notes

EC_Cluster

ESC_cluster_rg_state

Publisher: rgm

Vendor: SUNW

Name: rg_name

Value type: string

Name: node_list

Value type: string array

Name: state_list

Value type: string array

The positions of the array
elements for state_list
are synchronized with
those of the node_list.
That is, the state for the
node listed first in the
node_list array is first
in the state_list array.

The state_list
contains string
representations of the
state of the resource
group. Valid values are
those values that you can
retrieve with the
scha_cmds(1HA)
commands.

Additional names starting
with ev_ and their
associated values might
be present, but are not
intended for client use.

EC_Cluster

ESC_cluster_r_state

Publisher: rgm

Vendor: SUNW

Three required, as follows:

Name: r_name

Value type: string

Name: node_list

Value type: string array

Name: state_list

Value type: string array

The positions of the array
elements for state_list
are synchronized with
those of the node_list.
That is, the state for the
node listed first in the
node_list array is first
in the state_list array.

The state_list
contains string
representations of the
state of the resource. Valid
values are those values
that you can retrieve with
the scha_cmds(1HA)
commands.

Additional names starting
with ev_ and their
associated values might
be present, but are not
intended for client use.

212 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

How the CRNP Authenticates Clients
and the Server
The server authenticates a client by using a form of TCP wrappers. The source IP
address of the registration message (which is also used as the callback IP address on
which events are delivered) must be in the list of allowed clients on the server. The
source IP address and registration message cannot be in the denied clients list. If the
source IP address and registration are not in the list, the server rejects the request and
issues an error reply to the client.

When the server receives an SC_CALLBACK_REG ADD_CLIENT message, subsequent
SC_CALLBACK_REG messages for that client must contain a source IP address that is
the same as the source IP address in the first message. If the CRNP server receives an
SC_CALLBACK_REG that does not meet this requirement, the server either:

� Ignores the request and sends an error reply to the client, or
� Assumes that the request comes from a new client (depending on the contents of

the SC_CALLBACK_REG message)

This security mechanism helps to prevent denial of service attacks, where someone
attempts to unregister a legitimate client.

Clients should also similarly authenticate the server. Clients need only accept event
deliveries from a server whose source IP address and port number are the same as the
registration IP address and port number that the client used.

Because it is expected that clients of the CRNP service are located inside a firewall that
protects the cluster, CRNP does not include additional security mechanisms.

Creating a Java Application That Uses
CRNP
The following example illustrates how to develop a simple Java application named
CrnpClient that uses the CRNP. The application registers for event callbacks with
the CRNP server on the cluster, listens for the event callbacks, and processes the
events by printing their contents. Before terminating, the application unregisters its
request for event callbacks.

Keep the following points in mind when reviewing this example.

Chapter 12 • CRNP 213

� The sample application performs XML generation and parsing with the JAXP (Java
API for XML Processing). This example does not teach you how to use the JAXP.
JAXP is described in more detail at
http://java.sun.com/xml/jaxp/index.html.

� This example presents pieces of a complete application, which can be found in its
entirety in Appendix G. To illustrate particular concepts more effectively, the
example presented in this chapter differs slightly from the complete application
that is presented in Appendix G.

� For the sake of brevity, comments are excluded from the sample code in the
example in this chapter. The complete application in Appendix G includes
comments.

� The application that is shown in this example handles most error conditions by
simply exiting the application. Your actual application needs to handle errors more
robustly.

� Set Up Your Environment
First, you need to set up your environment.

1. Download and install JAXP and the correct version of the Java compiler and
virtual machine.

You can find instructions at http://java.sun.com/xml/jaxp/index.html.

Note – This example requires Java 1.3.1 or a later version of Java.

2. Ensure that you specify a classpath in your compilation command line so that
the compiler can find the JAXP classes. From the directory in which your source
file is located, type:

% javac -classpath JAXP_ROOT/dom.jar:JAXP_ROOTjaxp-api. \
jar:JAXP_ROOTsax.jar:JAXP_ROOTxalan.jar:JAXP_ROOT/xercesImpl \
.jar:JAXP_ROOT/xsltc.jar -sourcepath . SOURCE_FILENAME.java

where JAXP_ROOT is the absolute or relative path to the directory in which the
JAXP jar files are located and SOURCE_FILENAME is the name of your Java source
file.

3. When you run the application, specify the classpath so that the application
can load the proper JAXP class files (note that the first path in the classpath is
the current directory):

java -cp .:JAXP_ROOT/dom.jar:JAXP_ROOTjaxp-api. \
jar:JAXP_ROOTsax.jar:JAXP_ROOTxalan.jar:JAXP_ROOT/xercesImpl \
.jar:JAXP_ROOT/xsltc.jar SOURCE_FILENAME ARGUMENTS

Now that your environment is configured, you can develop your application.

214 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

http://java.sun.com/xml/jaxp/index.htm
http://java.sun.com/xml/jaxp/index.html

� Get Started
In this part of the example, you create a basic class called CrnpClient, with a main
method that parses the command line arguments and constructs a CrnpClient
object. This object passes the command line arguments to the class), waits for the user
to terminate the application, calls shutdown on the CrnpClient, and then exits.

The constructor of the CrnpClient class needs to execute the following tasks:

� Set up the XML processing objects.
� Create a thread that listens for event callbacks.
� Contact the CRNP server and register for event callbacks.

� Create the Java code that implements the preceding logic.

The following example shows the skeleton code for the CrnpClient class. The
implementations of the four helper methods that are referenced in the constructor
and shutdown methods are shown later. Note that the code that imports all the
packages you need is shown.

import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import org.w3c.dom.*;

import java.net.*;
import java.io.*;
import java.util.*;

class CrnpClient
{

public static void main(String []args)
{

InetAddress regIp = null;
int regPort = 0, localPort = 0;

try {
regIp = InetAddress.getByName(args[0]);
regPort = (new Integer(args[1])).intValue();
localPort = (new Integer(args[2])).intValue();

} catch (UnknownHostException e) {
System.out.println(e);
System.exit(1);

}

CrnpClient client = new CrnpClient(regIp, regPort, localPort,
args);

System.out.println("Hit return to terminate demo...");
try {

System.in.read();

Chapter 12 • CRNP 215

} catch (IOException e) {
System.out.println(e.toString());

}
client.shutdown();
System.exit(0);

}

public CrnpClient(InetAddress regIpIn, int regPortIn, int localPortIn,
String []clArgs)

{
try {

regIp = regIpIn;
regPort = regPortIn;
localPort = localPortIn;
regs = clArgs;

setupXmlProcessing();
createEvtRecepThr();
registerCallbacks();

} catch (Exception e) {
System.out.println(e.toString());
System.exit(1);

}
}

public void shutdown()
{

try {
unregister();

} catch (Exception e) {
System.out.println(e);
System.exit(1);

}
}

private InetAddress regIp;
private int regPort;
private EventReceptionThread evtThr;
private String regs[];

public int localPort;
public DocumentBuilderFactory dbf;

}

Member variables are discussed in more detail later.

� Parse the Command Line Arguments
� To see how to parse command line arguments, refer to the code in Appendix G.

216 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� Define the Event Reception Thread
In the code, you need to ensure that event reception is performed in a separate thread
so that your application can continue to do other work while the event thread blocks
and waits for event callbacks.

Note – Setting up the XML is discussed later.

1. In your code, define a Thread subclass called EventReceptionThread that
creates a ServerSocket and waits for events to arrive on the socket.

In this part of the example code, events are neither read nor processed. Reading
and processing events are discussed later. The EventReceptionThread creates a
ServerSocket on a wildcard internetworking protocol address.
EventReceptionThread also keeps a reference to the CrnpClient object so that
EventReceptionThread can send events to the CrnpClient object to process.

class EventReceptionThread extends Thread
{

public EventReceptionThread(CrnpClient clientIn) throws IOException
{

client = clientIn;
listeningSock = new ServerSocket(client.localPort, 50,

InetAddress.getLocalHost());
}

public void run()
{

try {
DocumentBuilder db = client.dbf.newDocumentBuilder();
db.setErrorHandler(new DefaultHandler());

while(true) {
Socket sock = listeningSock.accept();
// Construct event from the sock stream and process it
sock.close();

}
// UNREACHABLE

} catch (Exception e) {
System.out.println(e);
System.exit(1);

}
}

/* private member variables */
private ServerSocket listeningSock;
private CrnpClient client;

}

Chapter 12 • CRNP 217

2. Now that you see how the EventReceptionThread class works, construct an
createEvtRecepThr object:

private void createEvtRecepThr() throws Exception
{

evtThr = new EventReceptionThread(this);
evtThr.start();

}

� Register and Unregister Callbacks
The registration task consists of:

� Opening a basic TCP socket to the registration internetworking protocol and port
� Constructing the XML registration message
� Sending the XML registration message on the socket
� Reading the XML reply message off the socket
� Closing the socket

1. Create the Java code that implements the preceding logic.

The following example shows the implementation of the registerCallbacks
method of the CrnpClient class (which is called by the CrnpClient
constructor). The calls to createRegistrationString() and
readRegistrationReply() are described in more detail later.
regIp and regPort are object members that are set up by the constructor.

private void registerCallbacks() throws Exception
{

Socket sock = new Socket(regIp, regPort);
String xmlStr = createRegistrationString();
PrintStream ps = new

PrintStream(sock.getOutputStream());
ps.print(xmlStr);
readRegistrationReply(sock.getInputStream();
sock.close();

}

2. Implement the unregister method. This method is called by the shutdown
method of CrnpClient. The implementation of
createUnregistrationString is described in more detail later.

private void unregister() throws Exception
{

Socket sock = new Socket(regIp, regPort);
String xmlStr = createUnregistrationString();
PrintStream ps = new PrintStream(sock.getOutputStream());
ps.print(xmlStr);
readRegistrationReply(sock.getInputStream());
sock.close();

}

218 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� Generate the XML
Now that you have set up the structure of the application and have written all the
networking code, you write the code that generates and parses the XML. Start by
writing the code that generates the SC_CALLBACK_REG XML registration message.

An SC_CALLBACK_REG message consists of a registration type (ADD_CLIENT,
REMOVE_CLIENT, ADD_EVENTS, or REMOVE_EVENTS), a callback port, and a list of
events of interest. Each event consists of a class and a subclass, followed by a list of
name and value pairs.

In this part of the example, you write a CallbackReg class that stores the registration
type, callback port, and list of registration events. This class also can serialize itself to
an SC_CALLBACK_REG XML message.

An interesting method of this class is the convertToXml method, which creates an
SC_CALLBACK_REG XML message string from the class members. The JAXP
documentation at http://java.sun.com/xml/jaxp/index.html describes the
code in this method in more detail.

The implementation of the Event class is shown below. Note that the CallbackReg
class uses an Event class that stores one event and can convert that event to an XML
Element.

1. Create the Java code that implements the preceding logic.

class CallbackReg
{

public static final int ADD_CLIENT = 0;
public static final int ADD_EVENTS = 1;
public static final int REMOVE_EVENTS = 2;
public static final int REMOVE_CLIENT = 3;

public CallbackReg()
{

port = null;
regType = null;
regEvents = new Vector();

}

public void setPort(String portIn)
{

port = portIn;
}

public void setRegType(int regTypeIn)
{

switch (regTypeIn) {
case ADD_CLIENT:

regType = "ADD_CLIENT";
break;

case ADD_EVENTS:
regType = "ADD_EVENTS";

Chapter 12 • CRNP 219

http://java.sun.com/xml/jaxp/index.htm

break;
case REMOVE_CLIENT:

regType = "REMOVE_CLIENT";
break;

case REMOVE_EVENTS:
regType = "REMOVE_EVENTS";
break;

default:
System.out.println("Error, invalid regType " +

regTypeIn);
regType = "ADD_CLIENT";
break;

}
}

public void addRegEvent(Event regEvent)
{

regEvents.add(regEvent);
}

public String convertToXml()
{

Document document = null;
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
try {

DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.newDocument();

} catch (ParserConfigurationException pce) {
// Parser with specified options can’t be built
pce.printStackTrace();
System.exit(1);

}

// Create the root element
Element root = (Element) document.createElement(

"SC_CALLBACK_REG");

// Add the attributes
root.setAttribute("VERSION", "1.0");
root.setAttribute("PORT", port);
root.setAttribute("regType", regType);

// Add the events
for (int i = 0; i < regEvents.size(); i++) {

Event tempEvent = (Event)
(regEvents.elementAt(i));

root.appendChild(tempEvent.createXmlElement(
document));

}
document.appendChild(root);

// Convert the whole thing to a string
DOMSource domSource = new DOMSource(document);
StringWriter strWrite = new StringWriter();

220 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

StreamResult streamResult = new StreamResult(strWrite);
TransformerFactory tf = TransformerFactory.newInstance();
try {

Transformer transformer = tf.newTransformer();
transformer.transform(domSource, streamResult);

} catch (TransformerException e) {
System.out.println(e.toString());
return ("");

}
return (strWrite.toString());

}

private String port;
private String regType;
private Vector regEvents;

}

2. Implement the Event and NVPair classes.

Note that the CallbackReg class uses an Event class, which itself uses an
NVPair class.

class Event
{

public Event()
{

regClass = regSubclass = null;
nvpairs = new Vector();

}

public void setClass(String classIn)
{

regClass = classIn;
}

public void setSubclass(String subclassIn)
{

regSubclass = subclassIn;
}

public void addNvpair(NVPair nvpair)
{

nvpairs.add(nvpair);
}

public Element createXmlElement(Document doc)
{

Element event = (Element)
doc.createElement("SC_EVENT_REG");

event.setAttribute("CLASS", regClass);
if (regSubclass != null) {

event.setAttribute("SUBCLASS", regSubclass);
}
for (int i = 0; i < nvpairs.size(); i++) {

NVPair tempNv = (NVPair)

Chapter 12 • CRNP 221

(nvpairs.elementAt(i));
event.appendChild(tempNv.createXmlElement(

doc));
}
return (event);

}

private String regClass, regSubclass;
private Vector nvpairs;

}

class NVPair
{

public NVPair()
{

name = value = null;
}

public void setName(String nameIn)
{

name = nameIn;
}

public void setValue(String valueIn)
{

value = valueIn;
}

public Element createXmlElement(Document doc)
{

Element nvpair = (Element)
doc.createElement("NVPAIR");

Element eName = doc.createElement("NAME");
Node nameData = doc.createCDATASection(name);
eName.appendChild(nameData);
nvpair.appendChild(eName);
Element eValue = doc.createElement("VALUE");
Node valueData = doc.createCDATASection(value);
eValue.appendChild(valueData);
nvpair.appendChild(eValue);

return (nvpair);
}

private String name, value;
}

222 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� Create the Registration and Unregistration
Messages
Now that you have created the helper classes that generate the XML messages, you
can write the implementation of the createRegistrationString method. This
method is called by the registerCallbacks method, which is described in
“Register and Unregister Callbacks” on page 218.

createRegistrationString constructs a CallbackReg object and sets its
registration type and port. Then createRegistrationString constructs various
events, using the createAllEvent, createMembershipEvent, createRgEvent,
and createREvent helper methods. Each event is added to the CallbackReg object
after this object is created. Finally, createRegistrationString calls the
convertToXml method on the CallbackReg object to retrieve the XML message in
String form.

Note that the regs member variable stores the command line arguments that a user
provides to the application. The fifth and subsequent arguments specify the events for
which the application should register. The fourth argument specifies the type of
registration, but is ignored in this example. The complete code in Appendix G shows
how to use this fourth argument.

1. Create the Java code that implements the preceding logic.

private String createRegistrationString() throws Exception
{

CallbackReg cbReg = new CallbackReg();
cbReg.setPort("" + localPort);

cbReg.setRegType(CallbackReg.ADD_CLIENT);

// add the events
for (int i = 4; i < regs.length; i++) {

if (regs[i].equals("M")) {
cbReg.addRegEvent(

createMembershipEvent());
} else if (regs[i].equals("A")) {

cbReg.addRegEvent(
createAllEvent());

} else if (regs[i].substring(0,2).equals("RG")) {
cbReg.addRegEvent(createRgEvent(

regs[i].substring(3)));
} else if (regs[i].substring(0,1).equals("R")) {

cbReg.addRegEvent(createREvent(
regs[i].substring(2)));

}
}

String xmlStr = cbReg.convertToXml();
return (xmlStr);

}

Chapter 12 • CRNP 223

private Event createAllEvent()
{

Event allEvent = new Event();
allEvent.setClass("EC_Cluster");
return (allEvent);

}

private Event createMembershipEvent()
{

Event membershipEvent = new Event();
membershipEvent.setClass("EC_Cluster");
membershipEvent.setSubclass("ESC_cluster_membership");
return (membershipEvent);

}

private Event createRgEvent(String rgname)
{

Event rgStateEvent = new Event();
rgStateEvent.setClass("EC_Cluster");
rgStateEvent.setSubclass("ESC_cluster_rg_state");

NVPair rgNvpair = new NVPair();
rgNvpair.setName("rg_name");
rgNvpair.setValue(rgname);
rgStateEvent.addNvpair(rgNvpair);

return (rgStateEvent);
}

private Event createREvent(String rname)
{

Event rStateEvent = new Event();
rStateEvent.setClass("EC_Cluster");
rStateEvent.setSubclass("ESC_cluster_r_state");

NVPair rNvpair = new NVPair();
rNvpair.setName("r_name");
rNvpair.setValue(rname);
rStateEvent.addNvpair(rNvpair);

return (rStateEvent);
}

2. Create the unregistration string.

Creating the unregistration string is easier than creating the registration string
because you don’t need to accommodate events:

private String createUnregistrationString() throws Exception
{

CallbackReg cbReg = new CallbackReg();
cbReg.setPort("" + localPort);
cbReg.setRegType(CallbackReg.REMOVE_CLIENT);
String xmlStr = cbReg.convertToXml();
return (xmlStr);

}

224 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

� Set Up the XML Parser
You have now created the networking and XML generation code for the application.
The final step is to parse and process the registration reply and event callbacks. The
CrnpClient constructor calls a setupXmlProcessing method. This method creates
a DocumentBuilderFactory object and sets various parsing properties on that
object. The JAXP documentation at
http://java.sun.com/xml/jaxp/index.html describes this method in more
detail.

� Create the Java code that implements the preceding logic.

private void setupXmlProcessing() throws Exception
{

dbf = DocumentBuilderFactory.newInstance();

// We don’t need to bother validating
dbf.setValidating(false);
dbf.setExpandEntityReferences(false);

// We want to ignore comments and whitespace
dbf.setIgnoringComments(true);
dbf.setIgnoringElementContentWhitespace(true);

// Coalesce CDATA sections into TEXT nodes.
dbf.setCoalescing(true);

}

� Parse the Registration Reply
To parse the SC_REPLY XML message that the CRNP server sends in response to a
registration or unregistration message, you need a RegReply helper class. You can
construct this class from an XML document. This class provides accessors for the
status code and status message. To parse the XML stream from the server, you need to
create a new XML document and use that document’s parse method (the JAXP
documentation at http://java.sun.com/xml/jaxp/index.html describes this
method in more detail).

1. Create the Java code that implements the preceding logic.

Note that the readRegistrationReply method uses the new RegReply class.

private void readRegistrationReply(InputStream stream) throws Exception
{

// Create the document builder
DocumentBuilder db = dbf.newDocumentBuilder();
db.setErrorHandler(new DefaultHandler());

//parse the input file
Document doc = db.parse(stream);

Chapter 12 • CRNP 225

http://java.sun.com/xml/jaxp/index.htm
http://java.sun.com/xml/jaxp/index.htm

RegReply reply = new RegReply(doc);
reply.print(System.out);

}

2. Implement the RegReply class.

Note that the retrieveValues method walks the DOM tree in the XML
document and pulls out the status code and status message. The JAXP
documentation at http://java.sun.com/xml/jaxp/index.html contains
more detail.

class RegReply
{

public RegReply(Document doc)
{

retrieveValues(doc);
}

public String getStatusCode()
{

return (statusCode);
}

public String getStatusMsg()
{

return (statusMsg);
}
public void print(PrintStream out)
{

out.println(statusCode + ": " +
(statusMsg != null ? statusMsg : ""));

}

private void retrieveValues(Document doc)
{

Node n;
NodeList nl;
String nodeName;

// Find the SC_REPLY element.
nl = doc.getElementsByTagName("SC_REPLY");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "SC_REPLY node.");

return;
}

n = nl.item(0);

// Retrieve the value of the statusCode attribute
statusCode = ((Element)n).getAttribute("STATUS_CODE");

// Find the SC_STATUS_MSG element
nl = ((Element)n).getElementsByTagName("SC_STATUS_MSG");
if (nl.getLength() != 1) {

226 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

http://java.sun.com/xml/jaxp/index.htm

System.out.println("Error in parsing: can’t find "
+ "SC_STATUS_MSG node.");

return;
}
// Get the TEXT section, if there is one.
n = nl.item(0).getFirstChild();
if (n == null || n.getNodeType() != Node.TEXT_NODE) {
// Not an error if there isn’t one, so we just silently return.

return;
}

// Retrieve the value
statusMsg = n.getNodeValue();

}

private String statusCode;
private String statusMsg;

}

� Parse the Callback Events
The final step is to parse and process the actual callback events. To aid in this task, you
modify the Event class that you created in “Generate the XML” on page 219 so that
this class can construct an Event from an XML document and create an XML
Element. This change requires an additional constructor (that takes an XML
document), a retrieveValues method, the addition of two member variables
(vendor and publisher), accessor methods for all fields, and finally, a print method.

1. Create the Java code that implements the preceding logic.

Note that this code is similar to the code for the RegReply class that is described
in “Parse the Registration Reply” on page 225.

public Event(Document doc)
{

nvpairs = new Vector();
retrieveValues(doc);

}
public void print(PrintStream out)
{

out.println("\tCLASS=" + regClass);
out.println("\tSUBCLASS=" + regSubclass);
out.println("\tVENDOR=" + vendor);
out.println("\tPUBLISHER=" + publisher);
for (int i = 0; i < nvpairs.size(); i++) {

NVPair tempNv = (NVPair)
(nvpairs.elementAt(i));

out.print("\t\t");
tempNv.print(out);

}
}

Chapter 12 • CRNP 227

private void retrieveValues(Document doc)
{

Node n;
NodeList nl;
String nodeName;

// Find the SC_EVENT element.
nl = doc.getElementsByTagName("SC_EVENT");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "SC_EVENT node.");

return;
}

n = nl.item(0);

//
// Retrieve the values of the CLASS, SUBCLASS,
// VENDOR and PUBLISHER attributes.
//
regClass = ((Element)n).getAttribute("CLASS");
regSubclass = ((Element)n).getAttribute("SUBCLASS");
publisher = ((Element)n).getAttribute("PUBLISHER");
vendor = ((Element)n).getAttribute("VENDOR");

// Retrieve all the nv pairs
for (Node child = n.getFirstChild(); child != null;

child = child.getNextSibling())
{

nvpairs.add(new NVPair((Element)child));
}

}

public String getRegClass()
{

return (regClass);
}

public String getSubclass()
{

return (regSubclass);
}

public String getVendor()
{

return (vendor);
}

public String getPublisher()
{

return (publisher);
}

public Vector getNvpairs()
{

228 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

return (nvpairs);
}

private String vendor, publisher;

2. Implement the additional constructors and methods for the NVPair class that
support the XML parsing.

The changes to the Event class that are shown in Step 1 require similar changes to
the NVPair class.

public NVPair(Element elem)
{

retrieveValues(elem);
}
public void print(PrintStream out)
{

out.println("NAME=" + name + " VALUE=" + value);
}
private void retrieveValues(Element elem)
{

Node n;
NodeList nl;
String nodeName;

// Find the NAME element
nl = elem.getElementsByTagName("NAME");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "NAME node.");

return;
}
// Get the TEXT section
n = nl.item(0).getFirstChild();
if (n == null || n.getNodeType() != Node.TEXT_NODE) {

System.out.println("Error in parsing: can’t find "
+ "TEXT section.");

return;
}

// Retrieve the value
name = n.getNodeValue();

// Now get the value element
nl = elem.getElementsByTagName("VALUE");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "VALUE node.");

return;
}
// Get the TEXT section
n = nl.item(0).getFirstChild();
if (n == null || n.getNodeType() != Node.TEXT_NODE) {
System.out.println("Error in parsing: can’t find "

+ "TEXT section.");
return;

Chapter 12 • CRNP 229

}

// Retrieve the value
value = n.getNodeValue();
}

public String getName()
{

return (name);
}

public String getValue()
{

return (value);
}

}

3. Implement the while loop in EventReceptionThread, which waits for event
callbacks (EventReceptionThread is described in “Define the Event
Reception Thread” on page 217).

while(true) {
Socket sock = listeningSock.accept();
Document doc = db.parse(sock.getInputStream());
Event event = new Event(doc);
client.processEvent(event);
sock.close();

}

� Run the Application
� Run your application.

java CrnpClient crnpHost crnpPort localPort ...

The complete code for the CrnpClient application is listed in Appendix G.

230 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

APPENDIX A

Standard Properties

This appendix describes the standard resource type, resource group, and resource
properties. It also describes the resource property attributes that are available for
changing system-defined properties and creating extension properties.

This appendix includes the following major sections:

� “Resource Type Properties” on page 231
� “Resource Properties” on page 237
� “Resource Group Properties” on page 246
� “Resource Property Attributes” on page 250

Note – The property values, such as True and False, are not case sensitive.

Resource Type Properties
The following table describes the resource type properties defined by Sun Cluster. The
property values are categorized as follows (in the Category column):

� Required — The property requires an explicit value in the Resource Type
Registration (RTR) file or the object to which it belongs cannot be created. A blank
or the empty string is not allowed as a value.

� Conditional — To exist, the property must be declared in the RTR file; otherwise,
the RGM does not create it and it is not available to administrative utilities. A blank
or the empty string is allowed. If the property is declared in the RTR file but no
value is specified, the RGM supplies a default value.

� Conditional/Explicit — To exist, the property must be declared in the RTR file with
an explicit value; otherwise, the RGM does not create it and it is not available to
administrative utilities. A blank or the empty string is not allowed.

231

� Optional — The property can be declared in the RTR file. If the property is not, the
RGM creates it and supplies a default value. If the property is declared in the RTR
file but no value is specified, the RGM supplies the same default value as if the
property were not declared in the RTR file.

Resource type properties cannot be updated by administrative utilities with the
exception of Installed_nodes, which cannot be declared in the RTR file and must
be set by the administrator.

TABLE A–1 Resource Type Properties

Property Name Description
Can Be
Updated? Category

Allow_hosts (string array) Controls the set of clients that are allowed to
register with the cl_apid daemon to receive
cluster reconfiguration events. The general
form of this property is
ipaddress/masklength, which defines a
subnet from which the clients are allowed to
register. For example, the setting
129.99.77.0/24 allows clients on the subnet
129.99.77 to register for events. As another
example, 192.9.84.231/32 allows only the
client 192.9.84.231 to register for events.
This property provides security to the CRNP.
The cl_apid daemon is described in
SUNW.Event(5).

In addition, the following special keywords are
recognized. LOCAL refers to all clients that are
located in directly connected subnets of the
cluster. ALL allows all clients to register. Note
that if a client matches an entry in both the
Allow_hosts and the Deny_hosts property,
that client is prevented from registering with
the implementation.

The default is LOCAL.

N Optional

API_version (integer) The version of the resource management API
used by this resource type implementation.

The default for Sun Cluster 3.1 4/04 is 2.

N Optional

Boot (string) An optional callback method: the path to the
program that the RGM invokes on a node,
which joins or rejoins the cluster when a
resource of this type is already managed. This
method is expected to do initialization actions
for resources of this type similar to the Init
method.

N Conditional/
Explicit

232 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

TABLE A–1 Resource Type Properties (Continued)

Property Name Description
Can Be
Updated? Category

Client_retry_count
(integer)

Controls the number of attempts made by the
cl_apid daemon while communicating with
external clients. If a client fails to respond
within Client_retry_count attempts, the
client times out. The client is subsequently
removed from the list of registered clients that
are eligible to receive cluster reconfiguration
events. The client must re-register in order to
start receiving events again. See the description
of the Client_retry_interval property to
learn more about how often these retries are
made by the implementation. The cl_apid
daemon is described in SUNW.Event(5).

The default is 3.

Y Optional

Client_retry_interval
(integer)

Defines the time period (in seconds) used by
the cl_apid daemon while communicating
with unresponsive external clients. Up to
Client_retry_count attempts are made
during this interval to contact the client. The
cl_apid daemon is described in
SUNW.Event(5).

The default is 1800.

Y Optional

Client_timeout (integer) The time-out value (in seconds) that is used by
the cl_apid daemon while communicating
with external clients. However, the cl_apid
daemon continues to attempt to contact the
client for a tunable number of times. See the
descriptions of the Client_retry_count and
Client_retry_interval properties to learn
more about the means that you can use to tune
this property. The cl_apid daemon is
described in SUNW.Event(5).

The default is 60.

Y Optional

Deny_hosts (string array) Controls the set of clients that are prevented
from registering to receive cluster
reconfiguration events. To determine access, the
settings of this property take precedence over
those in the Allow_hosts list. The format of
this property is the same as the format that is
defined in the Allow_hosts property. This
property provides security to the CRNP.

The default is NULL.

Y Optional

Appendix A • Standard Properties 233

TABLE A–1 Resource Type Properties (Continued)

Property Name Description
Can Be
Updated? Category

Failover (Boolean) True indicates that resources of this type
cannot be configured in any group that can be
online on multiple nodes at once. The default is
False.

N Optional

Fini (string) An optional callback method: the path to the
program that the RGM invokes when a
resource of this type is removed from RGM
management.

N Conditional/
Explicit

Init (string) An optional callback method: the path to the
program that the RGM invokes when a
resource of this type becomes managed by the
RGM.

N Conditional/
Explicit

Init_nodes (enum) The values can be RG_primaries (just the
nodes that can master the resource) or
RT_installed_nodes (all nodes on which
the resource type is installed). Indicates the
nodes on which the RGM is to call the Init,
Fini, Boot and Validate methods.

The default value is RG_primaries.

N Optional

Installed_nodes (string
array)

A list of the cluster node names on which the
resource type is allowed to be run. The RGM
automatically creates this property. The cluster
administrator can set the value. You cannot
declare this property in the RTR file.

The default is all cluster nodes.

Y Can be
configured by the
cluster
administrator

Max_clients (integer) Controls the maximum number of clients that
can register with the cl_apid daemon to
receive notification of cluster events. Attempts
by additional clients to register for events are
rejected by your application. Since each client
registration uses resources on the cluster,
tuning this property allows users to control
resource usage on the cluster by external
clients. The cl_apid daemon is described in
SUNW.Event(5).

The default is 1000.

Y Optional

Monitor_check (string) An optional callback method: the path to the
program that the RGM invokes before doing a
monitor-requested failover of a resource of this
type.

N Conditional/
Explicit

234 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

TABLE A–1 Resource Type Properties (Continued)

Property Name Description
Can Be
Updated? Category

Monitor_start (string) An optional callback method: the path to the
program that the RGM invokes to start a fault
monitor for a resource of this type.

N Conditional/
Explicit

Monitor_stop (string) A callback method that is required if
Monitor_start is set: the path to the
program that the RGM invokes to stop a fault
monitor for a resource of this type.

N Conditional/
Explicit

Num_resource_restarts
on each cluster node (integer)

This property is set by the RGM to the number
of scha_control RESTART calls that have
been made for this resource on this node within
the past n seconds, where n is the value of the
Retry_interval property of the resource. If a
resource type does not declare the
Retry_interval property, then the
Num_resource_restarts property is not
available for resources of that type.

N Query-only

Pkglist (string array) An optional list of packages that are included in
the resource type installation.

N Conditional/
Explicit

Postnet_stop (string) An optional callback method: the path to the
program that the RGM invokes after calling the
Stop method of any network-address resources
(Network_resources_used) on which a
resource of this type depends. This method is
expected to do STOP actions that must be done
after the network interfaces are configured
down.

N Conditional/
Explicit

Prenet_start (string) An optional callback method: the path to the
program that the RGM invokes before calling
the Start method of any network-address
resources (Network_resources_used) that a
resource of this type is dependent on. This
method is expected to do START actions that
must be done before network interfaces are
configured up.

N Conditional/
Explicit

Appendix A • Standard Properties 235

TABLE A–1 Resource Type Properties (Continued)

Property Name Description
Can Be
Updated? Category

Resource_type (string) The name of the resource type. To view the
names of the currently registered resource
types, use:

scrgadm -p

In Sun Cluster 3.1 and later releases,

a resource type name includes the

version, which is mandatory:

vendor_id.resource_type:version

The three components of the resource

type name are properties specified in

the RTR file as Vendor_id, Resource_type,
and RT_version. The scrgadm command

inserts the period and colon

delimiters. The RT_version suffix of

the resource type name is the same

value as the RT_version property. To

ensure that the Vendor_id is unique, the

recommended approach is to use the

stock symbol for the company creating

the resource type. Resource type names

created prior to Sun Cluster 3.1

continue to use the syntax:

vendor_id.resource_type

The default is the empty string.

N Required

RT_basedir (string) The directory path that is used to complete
relative paths for callback methods. This path is
expected to be set to the installation location for
the resource type packages. It must be a
complete path, that is, it must start with a
forward slash (/). This property is not required
if all the method path names are absolute.

N Required unless
all method path
names are
absolute

RT_description (string) A brief description of the resource type.

The default is the empty string.

N Conditional

RT_version (string) Starting in Sun Cluster 3.1, a required version
string of this resource type implementation.
The RT_version is the suffix component of the
full resource type name. The RT_version
property, which was optional in Sun Cluster
3.0, is mandatory starting in Sun Cluster 3.1.

N Conditional/
Explicit

236 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

TABLE A–1 Resource Type Properties (Continued)

Property Name Description
Can Be
Updated? Category

Single_instance
(Boolean)

If True, indicates that only one resource of this
type can exist in the cluster. The RGM allows
only one resource of this type to run
cluster-wide at one time.

The default value is False.

N Optional

Start (string) A callback method: the path to the program
that the RGM invokes to start a resource of this
type.

N Required unless
the RTR file
declares a
Prenet_start
method

Stop (string) A callback method: the path to the program
that the RGM invokes to stop a resource of this
type.

N Required unless
the RTR file
declares a
Postnet_stop
method

Update (string) An optional callback method: the path to the
program that the RGM invokes when
properties of a running resource of this type are
changed.

N Conditional/
Explicit

Validate (string) An optional callback method: the path to the
program that will be invoked to check values
for properties of resources of this type.

N Conditional/
Explicit

Vendor_ID (string) See the Resource_type property. N Conditional

Resource Properties
Table A–2 describes the resource properties defined by Sun Cluster. The property
values are categorized as follows (in the Category column):

� Required — The administrator must specify a value when creating a resource with
an administrative utility.

� Optional — If the administrator does not specify a value when creating a resource
group, the system supplies a default value.

� Conditional — The RGM creates the property only if the property is declared in
the RTR file. Otherwise, the property does not exist and is not available to system
administrators. A conditional property declared in the RTR file is optional or
required, depending on whether a default value is specified in the RTR file. For
details, see the description of each conditional property.

Appendix A • Standard Properties 237

� Query-only — Cannot be set directly by an administrative tool.

Table A–2 also lists whether and when you can update resource properties (in the Can
Be Updated? column), as follows:

None or False Never

True or Anytime Any time

At_creation When the resource is added to a cluster

When_disabled When the resource is disabled

TABLE A–2 Resource Properties

Property Name Description
Can Be
Updated? Category

Affinity_timeout (integer) Length of time in seconds during which
connections from a given client IP address for
any service in the resource will be sent to the
same server node.

This property is relevant only when
Load_balancing_policy is either
Lb_sticky or Lb_sticky_wild. In
addition, Weak_affinity must be set to
false (the default value).

This property is only used for scalable
services.

Any time Optional

Cheap_probe_interval (integer) The number of seconds between invocations
of a quick fault probe of the resource. This
property is only created by the RGM and
available to the administrator if it is declared
in the RTR file.

This property is optional if a default value is
specified in the RTR file. If the Tunable
attribute is not specified in the resource type
file, the Tunable value for the property is
When_disabled.

This property is required if the Default
attribute is not specified in the property
declaration in the RTR file.

When
disabled

Conditional

238 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

TABLE A–2 Resource Properties (Continued)

Property Name Description
Can Be
Updated? Category

Extension properties Extension properties as declared in the RTR
file of the resource’s type. The
implementation of the resource type defines
these properties. For information on the
individual attributes you can set for extension
properties, see Table A–4.

Depends
on the
specific
property

Conditional

Failover_mode (enum) Possible settings are NONE, SOFT, and HARD.
Controls whether the RGM relocates a
resource group or aborts a node in response to
a failure of a Start, Stop, or
Monitor_stop method call on the resource.
NONE indicates that the RGM should just set
the resource state on method failure and wait
for operator intervention. SOFT indicates that
failure of a Start method should cause the
RGM to relocate the resource’s group to a
different node while failure of a Stop or
Monitor_stop method should cause the
RGM to set the resource to STOP_FAILED
state and the resource group to
ERROR_STOP_FAILED state and wait for
operator intervention. For Stop or
Monitor_stop failures, the NONE and SOFT
settings are equivalent. HARD indicates that
failure of a Start method should cause the
relocation of the group and failure of a Stop
or Monitor_stop method should cause the
forcible stop of the resource by aborting the
cluster node.

The default is NONE.

Any time Optional

Appendix A • Standard Properties 239

TABLE A–2 Resource Properties (Continued)

Property Name Description
Can Be
Updated? Category

Load_balancing_policy (string) A string that defines the load-balancing policy
in use. This property is used only for scalable
services. The RGM automatically creates this
property if the Scalable property is
declared in the RTR file.
Load_balancing_policy can take the following
values:

Lb_weighted (the default). The load is
distributed among various nodes according to
the weights set in the
Load_balancing_weights property.
Lb_sticky. A given client (identified by the
client IP address) of the scalable service is
always sent to the same node of the cluster.
Lb_sticky_wild. A given client (identified
by the client’s IP address), that connects to an
IP address of a wildcard sticky service, is
always sent to the same cluster node
regardless of the port number it is coming to.

The default value is Lb_weighted.

At
creation

Conditional/
Optional

Load_balancing_weights (string
array)

For scalable resources only. The RGM
automatically creates this property if the
Scalable property is declared in the RTR
file. The format is weight@node,weight@node,
where weight is an integer that reflects the
relative portion of load distributed to the
specified node. The fraction of load distributed
to a node is the weight for this node divided
by the sum of all weights. For example,
1@1,3@2 specifies that node 1 receives 1/4 of
the load and node 2 receives 3/4. The empty
string (“”), the default, sets a uniform
distribution. Any node that is not assigned an
explicit weight, receives a default weight of 1.

If the Tunable attribute is not specified in the
resource type file, the Tunable value for the
property is Anytime. Changing this property
revises the distribution for new connections
only.

The default value is the empty string (“”).

Any time Conditional/
Optional

240 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

TABLE A–2 Resource Properties (Continued)

Property Name Description
Can Be
Updated? Category

method_timeout for each callback
method in the Type (integer)

A time lapse, in seconds, after which the RGM
concludes that an invocation of the method
has failed.

The default is 3,600 (one hour) if the method
itself is declared in the RTR file.

Any time Conditional/

Optional

Monitored_switch (enum) Set to Enabled or Disabled by the RGM if
the cluster administrator enables or disables
the monitor with an administrative utility. If
Disabled, the monitor does not have its
Start method called until it is enabled again.
If the resource does not have a monitor
callback method, this property does not exist.

The default is Enabled.

Never Query-only

Network_resources_used (string
array)

A list of logical host name or shared address
network resources used by the resource. For
scalable services, this property must refer to
shared address resources that exist in a
separate resource group. For failover services,
this property refers to logical host name or
shared address resources that exist in the
same resource group. The RGM automatically
creates this property if the Scalable
property is declared in the RTR file. If
Scalable is not declared in the RTR file,
Network_resources_used is unavailable
unless it is explicitly declared in the RTR file.

If the Tunable attribute is not specified in the
resource type file, the Tunable value for the
property is At_creation.

At
creation

Conditional/
Required

On_off_switch (enum) Set to Enabled or Disabled by the RGM if
the cluster administrator enables or disables
the resource with an administrative utility. If
disabled, a resource has no callbacks invoked
until it is enabled again.

The default is Disabled.

Never Query-only

Appendix A • Standard Properties 241

TABLE A–2 Resource Properties (Continued)

Property Name Description
Can Be
Updated? Category

Port_list (string array) A list of port numbers on which the server is
listening. Appended to each port number is
the protocol being used by that port, for
example, Port_list=80/tcp. If the
Scalable property is declared in the RTR
file, the RGM automatically creates
Port_list. Otherwise, this property is
unavailable unless it is explicitly declared in
the RTR file.

Setting up this property for Apache is
described in the Sun Cluster Data Service for
Apache Guide for Solaris OS.

At
creation

Conditional/

Required

R_description (string) A brief description of the resource.

The default is the empty string.

Any time Optional

Resource_name (string) The name of the resource instance. This name
must be unique within the cluster
configuration and cannot be changed after a
resource has been created.

Never Required

Resource_project_name (string) The Solaris project name associated with the
resource. Use this property to apply Solaris
resource management features such as CPU
shares and resource pools to cluster data
services. When the RGM brings resources
online, it launches the related processes under
this project name. If this property is not
specified, the project name will be taken from
the RG_project_name property of the
resource group that contains the resource (see
rg_properties (5)). If neither property is
specified, the RGM will use the predefined
project name default. The specified project
name must exist in the projects database and
the user root must be configured as a
member of the named project. This property
is only supported starting in Solaris 9.

Note – Changes to this property take effect
after the resource has been restarted.

The default is null.

Any time Optional

242 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

TABLE A–2 Resource Properties (Continued)

Property Name Description
Can Be
Updated? Category

Resource_state on each cluster
node (enum)

The RGM-determined state of the resource on
each cluster node. Possible states are Online,
Offline, Stop_failed, Start_failed,
Monitor_failed, and
Online_not_monitored.

This property is not user configurable.

Never Query-only

Retry_count (integer) The number of times a monitor attempts to
restart a resource if it fails. This property is
created by the RGM only and available to the
administrator if it is declared in the RTR file.
It is optional if a default value is specified in
the RTR file.

If the Tunable attribute is not specified in the
resource type file, the Tunable value for the
property is When_disabled.

This property is required if the Default
attribute is not specified in the property
declaration in the RTR file.

When
disabled

Conditional

Retry_interval (integer) The number of seconds over which to count
attempts to restart a failed resource. The
resource monitor uses this property in
conjunction with Retry_count. This
property is created by the RGM only and
available to the administrator if it is declared
in the RTR file. It is optional if a default value
is specified in the RTR file.

If the Tunable attribute is not specified in the
resource type file, the Tunable value for the
property is When_disabled.

This property is required if the Default
attribute is not specified in the property
declaration in the RTR file.

When
disabled

Conditional

Appendix A • Standard Properties 243

TABLE A–2 Resource Properties (Continued)

Property Name Description
Can Be
Updated? Category

Scalable (Boolean) Indicates whether the resource is scalable. If
this property is declared in the RTR file, the
RGM automatically creates the following
scalable service properties for resources of
that type: Network_resources_used,
Port_list, Load_balancing_policy,
and Load_balancing_weights. These
properties have their default values unless
they are explicitly declared in the RTR file.
The default for Scalable—when it is
declared in the RTR file—is True.

When this property is declared in RTR file, the
Tunable attribute must be set to
At_creation or resource creation fails.

If this property is not declared in the RTR file,
the resource is not scalable, the cluster
administrator cannot tune this property and
no scalable service properties are set by the
RGM. However, you can explicitly declare the
Network_resources_used and
Port_list properties in the RTR file, if
desired, because they can be useful in a
non-scalable service as well as in a scalable
service.

At
creation

Optional

Status on each cluster node (enum) Set by the resource monitor. Possible values
are: OK, degraded, faulted, unknown, and
offline. The RGM sets the value to
unknown when the resource is brought online
and to Offline when it is brought offline.

Never Query-only

Status_msg on each cluster node
(string)

Set by the resource monitor at the same time
as the Status property. This property can be
set per resource, per node. The RGM sets it to
the empty string when the resource is brought
offline.

Never Query-only

244 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

TABLE A–2 Resource Properties (Continued)

Property Name Description
Can Be
Updated? Category

Thorough_probe_interval
(integer)

The number of seconds between invocations
of a high-overhead fault probe of the resource.
This property is created by the RGM only and
available to the administrator if it is declared
in the RTR file. It is optional if a default value
is specified in the RTR file.

If the Tunable attribute is not specified in the
resource type file, the Tunable value for the
property is When_disabled.

This property is required if the Default
attribute is not specified in the property
declaration in the RTR file.

When
disabled

Conditional

Type (string) The resource type of which this resource is an
instance.

Never Required

Type_version (string) Specifies which version of the resource type is
currently associated with this resource. The
RGM automatically creates this property,
which cannot be declared in the RTR file. The
value of this property is equal to the
RT_version property of the resource’s type.
When a resource is created, the
Type_version property is not specified
explicitly, though it may appear as a suffix of
the resource type name. When a resource is
edited, the Type_version may be changed
to a new value.

Its tunability is derived from:
� The current version of the resource type
� The #$upgrade_from directive in the

RTR file

See
description

See
description

UDP_affinity (Boolean) If true, all UDP traffic from a given client is
sent to the same server node that currently
handles all TCP traffic for the client.

This property is relevant only when
Load_balancing_policy is either
Lb_sticky or Lb_sticky_wild. In
addition, Weak_affinity must be set to
False (the default value).

This property is only used for scalable
services.

When
disabled

Optional

Appendix A • Standard Properties 245

TABLE A–2 Resource Properties (Continued)

Property Name Description
Can Be
Updated? Category

Weak_affinity (Boolean) If true, enable the weak form of the client
affinity. This allows connections from a given
client to be sent to the same server node
except:
� When a server listener starts up, for

example, due to a fault monitor restarts, a
resource failover or switchover, or a node
rejoining a cluster after failing.

� When Load_balancing_weights for
the scalable resource changes due to an
administration action.

Weak affinity provides a low overhead
alternative to the default form, both in terms
of memory consumption and processor cycles.

This property is relevant only when
Load_balancing_policy is either
Lb_sticky or Lb_sticky_wild.

This property is only used for scalable
services.

When
disabled

Optional

Resource Group Properties
The following table describes the resource group properties defined by Sun Cluster.
The property values are categorized as follows (in the Category column):

� Required — The administrator must specify a value when creating a resource
group with an administrative utility.

� Optional — If the administrator does not specify a value when creating a resource
group, the system supplies a default value.

� Query-only — Cannot be set directly by an administrative tool.

The Can Be Updated? column shows whether the property can be updated (Y) or not
(N) after it is initially set.

246 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

TABLE A–3 Resource Group Properties

Property Name Description
Can Be
Updated? Category

Auto_start_on_new_cluster
(Boolean)

This property disallows automatic startup of the
Resource Group when a new cluster is forming.

The default is TRUE. If set to TRUE, the Resource
Group Manager attempts to start the resource
group automatically to achieve
Desired_primaries when the cluster is
rebooted. If set to FALSE, the Resource Group does
not start automatically when the cluster reboots.

Y Optional

Desired_primaries (integer) The number of nodes where the group is desired to
be online at once.

The default is 1. If the RG_mode property is
Failover, the value of this property must be no
greater than 1. If the RG_mode property is
Scalable, a value greater than 1 is allowed.

Y Optional

Failback (Boolean) A Boolean value that indicates whether to
recalculate the set of nodes where the group is
online when the cluster membership changes. A
recalculation can cause the RGM to bring the group
offline on less preferred nodes and online on more
preferred nodes.

The default is False.

Y Optional

Global_resources_used (string
array)

Indicates whether cluster file systems are used by
any resource in this resource group. Legal values
that the administrator can specify are an asterisk (*)
to indicate all global resources, and the empty
string (“”) to indicate no global resources.

The default is all global resources.

Y Optional

Implicit_network_dependencies
(Boolean)

A Boolean value that indicates, when True, that the
RGM should enforce implicit strong dependencies
of non-network-address resources on
network-address resources within the group.
Network-address resources include the logical host
name and shared address resource types.

In a scalable resource group, this property has no
effect because a scalable resource group does not
contain any network-address resources.

The default is True.

Y Optional

Appendix A • Standard Properties 247

TABLE A–3 Resource Group Properties (Continued)

Property Name Description
Can Be
Updated? Category

Maximum_primaries (integer) The maximum number of nodes where the group
might be online at once.

The default is 1. If the RG_mode property is
Failover, the value of this property must be no
greater than 1. If the RG_mode property is
Scalable, a value greater than 1 is allowed.

Y Optional

Nodelist (string array) A list of cluster nodes where the group can be
brought online in order of preference. These nodes
are known as the potential primaries or masters of
the resource group.

The default is the list of all cluster nodes.

Y Optional

Pathprefix (string) A directory in the cluster file system in which
resources in the group can write can write essential
administrative files. Some resources might require
this property. Make Pathprefix unique for each
resource group.

The default is the empty string.

Y Optional

Pingpong_interval (integer) A non-negative integer value (in seconds) used by
the RGM to determine where to bring the resource
group online in the event of a reconfiguration or as
the result of a scha_control -O GIVEOVER
command or scha_control() function with the
SCHA_GIVEOVER argument being executed.

In the event of a reconfiguration, if the resource
group fails to come online more than once within
the past Pingpong_interval seconds on a
particular node (because the resource’s Start or
Prenet_start method exited non-zero or timed
out), that node is considered ineligible to host the
resource group and the RGM looks for another
master.

If a call to a resource’s scha_control command
or scha_control() function causes the resource
group to be brought offline on a particular node
within the past Pingpong_interval seconds,
that node is ineligible to host the resource group as
the result of a subsequent call to scha_control()
originating from another node.

The default value is 3,600 (one hour).

Y Optional

248 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

TABLE A–3 Resource Group Properties (Continued)

Property Name Description
Can Be
Updated? Category

Resource_list (string array) The list of resources that are contained in the
group. The administrator does not set this property
directly. Rather, the RGM updates this property as
the administrator adds or removes resources from
the resource group.

The default is the empty list.

N Query-
only

RG_description (string) A brief description of the resource group.

The default is the empty string.

Y Optional

RG_mode (enum) Indicates whether the resource group is a failover
or scalable group. If the value is Failover, the
RGM sets the Maximum_primaries property of
the group to 1 and restricts the resource group to
being mastered by a single node.

If the value of this property is Scalable, the RGM
allows the Maximum_primaries property to have
a value greater than 1, meaning the group can be
mastered by multiple nodes simultaneously. The
RGM does not allow a resource whose Failover
property is True to be added to a resource group
whose RG_mode is Scalable.

The default is Failover if Maximum_primaries
is 1 and Scalable if Maximum_primaries is
greater than 1.

N Optional

RG_name (string) The name of the resource group. This name must be
unique within the cluster.

N Required

RG_project_name (string) The Solaris project name associated with the
resource group. Use this property to apply Solaris
resource management features such as CPU shares
and resource pools to cluster data services. When
the RGM brings resource groups online, it launches
the related processes under this project name for
resources that do not have the
Resource_project_name property set. The
specified project name must exist in the projects
database and the user root must be configured as
a member of the named project.

This property is only supported starting in Solaris
9.

Note – Changes to this property take effect after the
resource has been restarted.

Any
time

Required

Appendix A • Standard Properties 249

TABLE A–3 Resource Group Properties (Continued)

Property Name Description
Can Be
Updated? Category

RG_state on each cluster node (enum) Set by the RGM to Online, Offline,
Pending_online, Pending_offline,
Pending_online_blocked,
Error_stop_failed, or Online_faulted to
describe the state of the group on each cluster node.

This property is not user configurable. However,
you can indirectly set this property by invoking
scswitch(1M) (or by using the equivalent
scsetup(1M) or SunPlex Manager commands).

N Query-
only

Resource Property Attributes
The following table describes the resource property attributes that can be used to
change system-defined properties or create extension properties.

Caution – You cannot specify NULL or the empty string (“”) as the default value for
boolean, enum, or int types.

TABLE A–4 Resource Property Attributes

Property Description

Property The name of the resource property.

Extension If used, indicates that the RTR file entry declares an extension property defined by the
resource type implementation. Otherwise, the entry is a system-defined property.

Description A string annotation intended to be a brief description of the property. The description
attribute cannot be set in the RTR file for system-defined properties.

Type of the property Allowable types are: string, boolean, int, enum, and stringarray. You cannot set
the type attribute in an RTR file entry for system-defined properties. The type determines
acceptable property values and the type-specific attributes that are allowed in the RTR file
entry. an enum type is a set of string values.

Default Indicates a default value for the property.

250 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

TABLE A–4 Resource Property Attributes (Continued)
Property Description

Tunable Indicates when the cluster administrator can set the value of this property in a resource.
Can be set to None or False to prevent the administrator from setting the property.
Values that allow administrator tuning are: True or Anytime (at any time),
At_creation (only when the resource is created), or When_disabled (when the
resource is offline).

The default is True (Anytime).

Enumlist For an enum type, a set of string values permitted for the property.

Min For an int type, the minimal value permitted for the property.

Max For an int type, the maximum value permitted for the property.

Minlength For string and stringarray types, the minimum string length permitted.

Maxlength For string and stringarray types, the maximum string length permitted.

Array_minsize For stringarray type, the minimum number of array elements permitted.

Array_maxsize For stringarray type, the maximum number of array elements permitted.

Appendix A • Standard Properties 251

252 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

APPENDIX B

Sample Data Service Code Listings

This appendix provides the complete code for each method in the sample data service.
It also lists the contents of the resource type registration file.

This appendix includes the following code listings.

� “Resource Type Registration File Listing” on page 253
� “Start Method” on page 256
� “Stop Method” on page 259
� “gettime Utility” on page 261
� “PROBE Program” on page 262
� “Monitor_start Method” on page 267
� “Monitor_stop Method” on page 269
� “Monitor_check Method” on page 271
� “Validate Method” on page 273
� “Update Method” on page 276

Resource Type Registration File Listing
The RTR (resource type registration) file contains resource and resource type property
declarations that define the initial configuration of the data service at the time the
cluster administrator registers the data service.

EXAMPLE B–1 SUNW.Sample RTR File

#
Copyright (c) 1998-2004 by Sun Microsystems, Inc.
All rights reserved.
#
Registration information for Domain Name Service (DNS)
#

253

EXAMPLE B–1 SUNW.Sample RTR File (Continued)

#pragma ident “@(#)SUNW.sample 1.1 00/05/24 SMI”

RESOURCE_TYPE = “sample”;
VENDOR_ID = SUNW;
RT_DESCRIPTION = “Domain Name Service on Sun Cluster”;

RT_VERSION =”1.0”;
API_VERSION = 2;
FAILOVER = TRUE;

RT_BASEDIR=/opt/SUNWsample/bin;
PKGLIST = SUNWsample;

START = dns_svc_start;
STOP = dns_svc_stop;

VALIDATE = dns_validate;
UPDATE = dns_update;

MONITOR_START = dns_monitor_start;
MONITOR_STOP = dns_monitor_stop;
MONITOR_CHECK = dns_monitor_check;

A list of bracketed resource property declarations follows the
resource-type declarations. The property-name declaration must be
the first attribute after the open curly bracket of each entry.
#

The <method>_timeout properties set the value in seconds after which
the RGM concludes invocation of the method has failed.

The MIN value for all method timeouts is set to 60 seconds. This
prevents administrators from setting shorter timeouts, which do not
improve switchover/failover performance, and can lead to undesired
RGM actions (false failovers, node reboot, or moving the resource group
to ERROR_STOP_FAILED state, requiring operator intervention). Setting
too-short method timeouts leads to a *decrease* in overall availability
of the data service.
{

PROPERTY = Start_timeout;
MIN=60;
DEFAULT=300;

}

{
PROPERTY = Stop_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Validate_timeout;
MIN=60;

254 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE B–1 SUNW.Sample RTR File (Continued)

DEFAULT=300;
}
{

PROPERTY = Update_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Monitor_Start_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Monitor_Stop_timeout;
MIN=60;
DEFAULT=300;

}
{

PROPERTY = Thorough_Probe_Interval;
MIN=1;
MAX=3600;
DEFAULT=60;
TUNABLE = ANYTIME;

}

The number of retries to be done within a certain period before concluding
that the application cannot be successfully started on this node.
{

PROPERTY = Retry_Count;
MIN=0;
MAX=10;
DEFAULT=2;
TUNABLE = ANYTIME;

}

Set Retry_Interval as a multiple of 60 since it is converted from seconds
to minutes, rounding up. For example, a value of 50 (seconds)
is converted to 1 minute. Use this property to time the number of
retries (Retry_Count).
{

PROPERTY = Retry_Interval;
MIN=60;
MAX=3600;
DEFAULT=300;
TUNABLE = ANYTIME;

}

{
PROPERTY = Network_resources_used;
TUNABLE = AT_CREATION;
DEFAULT = ““;

}

Appendix B • Sample Data Service Code Listings 255

EXAMPLE B–1 SUNW.Sample RTR File (Continued)

#
Extension Properties
#

The cluster administrator must set the value of this property to point to the
directory that contains the configuration files used by the application.
For this application, DNS, specify the path of the DNS configuration file on
PXFS (typically named.conf).
{

PROPERTY = Confdir;
EXTENSION;
STRING;
TUNABLE = AT_CREATION;
DESCRIPTION = “The Configuration Directory Path”;

}

Time out value in seconds before declaring the probe as failed.
{

PROPERTY = Probe_timeout;
EXTENSION;
INT;
DEFAULT = 30;
TUNABLE = ANYTIME;
DESCRIPTION = “Time out value for the probe (seconds)”;

}

Start Method
The RGM invokes the Start method on a cluster node when the resource group
containing the data service resource is brought online on that node or when the
resource is enabled. In the sample application, the Start method activates the
in.named (DNS) daemon on that node.

EXAMPLE B–2 dns_svc_start Method

#!/bin/ksh
#
Start Method for HA-DNS.
#
This method starts the data service under the control of PMF. Before starting
the in.named process for DNS, it performs some sanity checks. The PMF tag for
the data service is $RESOURCE_NAME.named. PMF tries to start the service a
specified number of times (Retry_count) and if the number of attempts exceeds
this value within a specified interval (Retry_interval) PMF reports a failure
to start the service. Retry_count and Retry_interval are both properties of the
resource set in the RTR file.

256 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE B–2 dns_svc_start Method (Continued)

#pragma ident “@(#)dns_svc_start 1.1 00/05/24 SMI”

###
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case “$opt” in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
;;

esac
done

}

###
MAIN
#
##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method

Appendix B • Sample Data Service Code Listings 257

EXAMPLE B–2 dns_svc_start Method (Continued)

parse_args “$@”

PMF_TAG=$RESOURCE_NAME.named
SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Get the value of the Confdir property of the resource in order to start
DNS. Using the resource name and the resource group entered, find the value of
Confdir value set by the cluster administrator when adding theresource.
config_info=scha_resource_get -O Extension -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME Confdir`
scha_resource_get returns the “type” as well as the “value” for the extension
properties. Get only the value of the extension property.
CONFIG_DIR=`echo $config_info | awk ‘{print $2}’`

Check if $CONFIG_DIR is accessible.
if [! -d $CONFIG_DIR]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
“${ARGV0} Directory $CONFIG_DIR missing or not mounted”

exit 1
fi

Change to the $CONFIG_DIR directory in case there are relative
path names in the data files.
cd $CONFIG_DIR

Check that the named.conf file is present in the $CONFIG_DIR directory.
if [! -s named.conf]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
“${ARGV0} File $CONFIG_DIR/named.conf is missing or empty”

exit 1
fi

Get the value for Retry_count from the RTR file.
RETRY_CNT=`scha_resource_get -O Retry_Count -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAMÈ

Get the value for Retry_interval from the RTR file. Convert this value, which is in
seconds, to minutes for passing to pmfadm. Note that this is a conversion with
round-up, for example, 50 seconds rounds up to one minute.
((RETRY_INTRVAL = `scha_resource_get -O Retry_Interval -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAMÈ 60))

Start the in.named daemon under the control of PMF. Let it crash and restart
up to $RETRY_COUNT times in a period of $RETRY_INTERVAL; if it crashes
more often than that, PMF will cease trying to restart it. If there is a
process already registered under the tag <$PMF_TAG>, then, PMF sends out
an alert message that the process is already running.
echo “Retry interval is “$RETRY_INTRVAL
pmfadm -c $PMF_TAG.named -n $RETRY_CNT -t $RETRY_INTRVAL \

/usr/sbin/in.named -c named.conf

Log a message indicating that HA-DNS has been started.
if [$? -eq 0]; then

258 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE B–2 dns_svc_start Method (Continued)

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \
“${ARGV0} HA-DNS successfully started”

fi

exit 0

Stop Method
The Stop method is invoked on a cluster node when the resource group containing
the HA-DNS resource is brought offline on that node or the resource is disabled. This
method stops the in.named (DNS) daemon on that node.

EXAMPLE B–3 dns_svc_stop Method

#!/bin/ksh
#
Stop method for HA-DNS
#
Stop the data service using PMF. If the service is not running the
method exits with status 0 as returning any other value puts the resource
in STOP_FAILED state.

#pragma ident “@(#)dns_svc_stop 1.1 00/05/24 SMI”

###
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case “$opt” in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

Appendix B • Sample Data Service Code Listings 259

EXAMPLE B–3 dns_svc_stop Method (Continued)

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
;;

esac
done

}

###
MAIN
#
##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method
parse_args “$@”

PMF_TAG=$RESOURCE_NAME.named
SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Obtain the Stop_timeout value from the RTR file.
STOP_TIMEOUT=`scha_resource_get -O STOP_TIMEOUT -R $RESOURCE_NAME -G \
$RESOURCEGROUP_NAMÈ

Attempt to stop the data service in an orderly manner using a SIGTERM
signal through PMF. Wait for up to 80% of the Stop_timeout value to
see if SIGTERM is successful in stopping the data service. If not, send SIGKILL
to stop the data service. Use up to 15% of the Stop_timeout value to see
if SIGKILL is successful. If not, there is a failure and the method exits with
non-zero status. The remaining 5% of the Stop_timeout is for other uses.
((SMOOTH_TIMEOUT=$STOP_TIMEOUT * 80/100))

((HARD_TIMEOUT=$STOP_TIMEOUT * 15/100))

See if in.named is running, and if so, kill it.
if pmfadm -q $PMF_TAG.named; then

Send a SIGTERM signal to the data service and wait for 80% of the
total timeout value.
pmfadm -s $PMF_TAG.named -w $SMOOTH_TIMEOUT TERM
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.info -t [SYSLOG_TAG] \
“${ARGV0} Failed to stop HA-DNS with SIGTERM; Retry with \
SIGKILL”

Since the data service did not stop with a SIGTERM signal, use
SIGKILL now and wait for another 15% of the total timeout value.

260 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE B–3 dns_svc_stop Method (Continued)

pmfadm -s $PMF_TAG.named -w $HARD_TIMEOUT KILL
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [SYSLOG_TAG] \
“${ARGV0} Failed to stop HA-DNS; Exiting UNSUCCESFUL”

exit 1
fi

fi
else

The data service is not running as of now. Log a message and
exit success.
logger -p ${SYSLOG_FACILITY}.info -t [SYSLOG_TAG] \

“HA-DNS is not started”

Even if HA-DNS is not running, exit success to avoid putting
the data service in STOP_FAILED State.
exit 0

fi

Successfully stopped DNS. Log a message and exit success.
logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

“HA-DNS successfully stopped”

exit 0

gettime Utility
The gettime utility is a C program used by the PROBE program to track the elapsed
time between restarts of the probe. You must compile this program and place it in the
same directory as the callback methods, that is, the directory pointed to by the
RT_basedir property.

EXAMPLE B–4 gettime.c Utility Program

#
This utility program, used by the probe method of the data service, tracks
the elapsed time in seconds from a known reference point (epoch point). It
must be compiled and placed in the same directory as the data service callback
methods (RT_basedir).

#pragma ident “@(#)gettime.c 1.1 00/05/24 SMI”

#include <stdio.h>
#include <sys/types.h>
#include <time.h>

main()
{

Appendix B • Sample Data Service Code Listings 261

EXAMPLE B–4 gettime.c Utility Program (Continued)

printf(“%d\n”, time(0));
exit(0);

}

PROBE Program
The PROBE program checks the availability of the data service using nslookup(1M)
commands. The Monitor_start callback method launches this program and the
Monitor_start callback method stops it.

EXAMPLE B–5 dns_probe Program

#!/bin/ksh
#pragma ident “@(#)dns_probe 1.1 00/04/19 SMI”
#
Probe method for HA-DNS.
#
This program checks the availability of the data service using nslookup, which
queries the DNS server to look for the DNS server itself. If the server
does not respond or if the query is replied to by some other server,
then the probe concludes that there is some problem with the data service
and fails the service over to another node in the cluster. Probing is done
at a specific interval set by THOROUGH_PROBE_INTERVAL in the RTR file.

#pragma ident “@(#)dns_probe 1.1 00/05/24 SMI”

###
Parse program arguments.
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case “$opt” in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG

262 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE B–5 dns_probe Program (Continued)

;;
*)

logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
;;

esac
done

}

###
restart_service ()
#
This function tries to restart the data service by calling the Stop method
followed by the Start method of the dataservice. If the dataservice has
already died and no tag is registered for the dataservice under PMF,
then this function fails the service over to another node in the cluster.
#
function restart_service
{

To restart the dataservice, first, verify that the
dataservice itself is still registered under PMF.
pmfadm -q $PMF_TAG
if [[$? -eq 0]]; then

Since the TAG for the dataservice is still registered under
PMF, first stop the dataservice and start it back up again.
Obtain the Stop method name and the STOP_TIMEOUT value for
this resource.
STOP_TIMEOUT=`scha_resource_get -O STOP_TIMEOUT \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
STOP_METHOD=`scha_resource_get -O STOP \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
hatimerun -t $STOP_TIMEOUT $RT_BASEDIR/$STOP_METHOD \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \
-T $RESOURCETYPE_NAME

if [[$? -ne 0]]; then
logger-p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Stop method failed.”
return 1

fi

Obtain the Start method name and the START_TIMEOUT value for
this resource.
START_TIMEOUT=`scha_resource_get -O START_TIMEOUT \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
START_METHOD=`scha_resource_get -O START \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ
hatimerun -t $START_TIMEOUT $RT_BASEDIR/$START_METHOD \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \
-T $RESOURCETYPE_NAME

Appendix B • Sample Data Service Code Listings 263

EXAMPLE B–5 dns_probe Program (Continued)

if [[$? -ne 0]]; then
logger-p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \

“${ARGV0} Start method failed.”
return 1

fi

else
The absence of the TAG for the dataservice
implies that the dataservice has already
exceeded the maximum retries allowed under PMF.
Therefore, do not attempt to restart the
dataservice again, but try to failover
to another node in the cluster.
scha_control -O GIVEOVER -G $RESOURCEGROUP_NAME \

-R $RESOURCE_NAME
fi

return 0
}

###
decide_restart_or_failover ()
#
This function decides the action to be taken upon the failure of a probe:
restart the data service locally or fail over to another node in the cluster.
#
function decide_restart_or_failover
{

Check if this is the first restart attempt.
if [$retries -eq 0]; then

This is the first failure. Note the time of
this first attempt.
start_time=`$RT_BASEDIR/gettimè
retries=`expr $retries + 1`
Because this is the first failure, attempt to restart
the data service.
restart_service
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
“${ARGV0} Failed to restart data service.”

exit 1
fi

else
This is not the first failure
current_time=`$RT_BASEDIR/gettimè
time_diff=`expr $current_time - $start_timè
if [$time_diff -ge $RETRY_INTERVAL]; then

This failure happened after the time window
elapsed, so reset the retries counter,
slide the window, and do a retry.
retries=1
start_time=$current_time

264 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE B–5 dns_probe Program (Continued)

Because the previous failure occurred more than
Retry_interval ago, attempt to restart the data service.
restart_service
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err \
-t [$SYSLOG_TAG
“${ARGV0} Failed to restart HA-DNS.”

exit 1
fi

elif [$retries -ge $RETRY_COUNT]; then
Still within the time window,
and the retry counter expired, so fail over.
retries=0
scha_control -O GIVEOVER -G $RESOURCEGROUP_NAME \

-R $RESOURCE_NAME
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
“${ARGV0} Failover attempt failed.”

exit 1
fi

else
Still within the time window,
and the retry counter has not expired,
so do another retry.
retries=`expr $retries + 1`
restart_service
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
“${ARGV0} Failed to restart HA-DNS.”

exit 1
fi

fi
fi
}

###
MAIN
###

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method
parse_args “$@”

PMF_TAG=$RESOURCE_NAME.named
SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

The interval at which probing is to be done is set in the system defined
property THOROUGH_PROBE_INTERVAL. Obtain the value of this property with
scha_resource_get

Appendix B • Sample Data Service Code Listings 265

EXAMPLE B–5 dns_probe Program (Continued)

PROBE_INTERVAL=scha_resource_get -O THOROUGH_PROBE_INTERVAL \
-R $RESOURCE_NAME -G $RESOURCEGROUP_NAMÈ

Obtain the timeout value allowed for the probe, which is set in the
PROBE_TIMEOUT extension property in the RTR file. The default timeout for
nslookup is 1.5 minutes.
probe_timeout_info=`scha_resource_get -O Extension -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME Probe_timeout`
PROBE_TIMEOUT=`echo $probe_timeout_info | awk ‘{print $2}’`

Identify the server on which DNS is serving by obtaining the value
of the NETWORK_RESOURCES_USED property of the resource.
DNS_HOST=`scha_resource_get -O NETWORK_RESOURCES_USED -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAMÈ

Get the retry count value from the system defined property Retry_count
RETRY_COUNT =`scha_resource_get -O RETRY_COUNT -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAMÈ

Get the retry interval value from the system defined property
Retry_interval
RETRY_INTERVAL=scha_resource_get -O RETRY_INTERVAL -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAMÈ

Obtain the full path for the gettime utility from the
RT_basedir property of the resource type.
RT_BASEDIR=scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAMÈ

The probe runs in an infinite loop, trying nslookup commands.
Set up a temporary file for the nslookup replies.
DNSPROBEFILE=/tmp/.$RESOURCE_NAME.probe
probefail=0
retries=0

while :
do

The interval at which the probe needs to run is specified in the
property THOROUGH_PROBE_INTERVAL. Therefore, set the probe to sleep for a
duration of <THOROUGH_PROBE_INTERVAL>
sleep $PROBE_INTERVAL

Run the probe, which queries the IP address on
which DNS is serving.
hatimerun -t $PROBE_TIMEOUT /usr/sbin/nslookup $DNS_HOST $DNS_HOST \

> $DNSPROBEFILE 2>&1

retcode=$?
if [retcode -ne 0]; then

probefail=1
fi

Make sure that the reply to nslookup command comes from the HA-DNS

266 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE B–5 dns_probe Program (Continued)

server and not from another name server listed in the
/etc/resolv.conf file.
if [$probefail -eq 0]; then

Get the name of the server that replied to the nslookup query.
SERVER=` awk ‘ $1==”Server:” {print $2 }’ \
$DNSPROBEFILE | awk -F. ‘ { print $1 } ‘ `

if [-z “$SERVER”];
then

probefail=1
else

if [$SERVER != $DNS_HOST]; then
probefail=1

fi
fi

fi

If the probefail variable is not set to 0, either the nslookup command
timed out or the reply to the query was came from another server
(specified in the /etc/resolv.conf file). In either case, the DNS server is
not responding and the method calls decide_restart_or_failover,
which evaluates whether to restart the data service or to fail it over
to another node.

if [$probefail -ne 0]; then
decide_restart_or_failover

else
logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \
“${ARGV0} Probe for resource HA-DNS successful”

fi

done

Monitor_start Method
This method starts the PROBE program for the data service.

EXAMPLE B–6 dns_monitor_start Method

#!/bin/ksh
#
Monitor start Method for HA-DNS.
#
This method starts the monitor (probe) for the data service under the
control of PMF. The monitor is a process that probes the data service
at periodic intervals and if there is a problem restarts it on the same node
or fails it over to another node in the cluster. The PMF tag for the
monitor is $RESOURCE_NAME.monitor.

Appendix B • Sample Data Service Code Listings 267

EXAMPLE B–6 dns_monitor_start Method (Continued)

#pragma ident “@(#)dns_monitor_start 1.1 00/05/24 SMI”

###
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case “$opt” in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)
logger -p ${SYSLOG_FACILITY}.err \

-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
;;

esac
done

}

###
MAIN
#
##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method
parse_args “$@”

PMF_TAG=$RESOURCE_NAME.monitor
SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Find where the probe method resides by obtaining the value of the

268 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE B–6 dns_monitor_start Method (Continued)

RT_BASEDIR property of the data service.
RT_BASEDIR=`scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAMÈ

Start the probe for the data service under PMF. Use the infinite retries
option to start the probe. Pass the resource name, group, and type to the
probe method.
pmfadm -c $PMF_TAG.monitor -n -1 -t -1 \

$RT_BASEDIR/dns_probe -R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \
-T $RESOURCETYPE_NAME

Log a message indicating that the monitor for HA-DNS has been started.
if [$? -eq 0]; then

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \
“${ARGV0} Monitor for HA-DNS successfully started”

fi

exit 0

Monitor_stop Method
This method stops the PROBE program for the data service.

EXAMPLE B–7 dns_monitor_stop Method

#!/bin/ksh
Monitor stop method for HA-DNS
Stops the monitor that is running using PMF.

#pragma ident “@(#)dns_monitor_stop 1.1 00/05/24 SMI”

###
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case “$opt” in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the resource is
configured.

Appendix B • Sample Data Service Code Listings 269

EXAMPLE B–7 dns_monitor_stop Method (Continued)

RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
;;

esac
done

}

###
MAIN
#
##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method
parse_args “$@”

PMF_TAG=$RESOURCE_NAME.monitor
SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

See if the monitor is running, and if so, kill it.
if pmfadm -q $PMF_TAG.monitor; then

pmfadm -s $PMF_TAG.monitor KILL
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
“${ARGV0} Could not stop monitor for resource “ \
$RESOURCE_NAME
exit 1

else
Could successfully stop the monitor. Log a message.
logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

“${ARGV0} Monitor for resource “ $RESOURCE_NAME \
“ successfully stopped”

fi
fi

exit 0

270 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Monitor_check Method
This method verifies the existence of the directory pointed to by the Confdir
property. The RGM calls Monitor_check whenever the PROBE method fails the data
service over to a new node and also to check nodes that are potential masters.

EXAMPLE B–8 dns_monitor_check Method

#!/bin/ksh#
Monitor check Method for DNS.
#
The RGM calls this method whenever the fault monitor fails the data service
over to a new node. Monitor_check calls the Validate method to verify
that the configuration directory and files are available on the new node.

#pragma ident “@(#)dns_monitor_check 1.1 00/05/24 SMI”

###
Parse program arguments.
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case “$opt” in

R)
Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
;;
esac

done

Appendix B • Sample Data Service Code Listings 271

EXAMPLE B–8 dns_monitor_check Method (Continued)

}

###
MAIN
##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method.
parse_args “$@”

PMF_TAG=$RESOURCE_NAME.named
SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Obtain the full path for the Validate method from
the RT_BASEDIR property of the resource type.
RT_BASEDIR=`scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAMÈ

Obtain the name of the Validate method for this resource.
VALIDATE_METHOD=`scha_resource_get -O VALIDATE -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAMÈ

Obtain the value of the Confdir property in order to start the
data service. Use the resource name and the resource group entered to
obtain the Confdir value set at the time of adding the resource.
config_info=`scha_resource_get -O Extension -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME Confdir`

scha_resource_get returns the type as well as the value for extension
properties. Use awk to get only the value of the extension property.
CONFIG_DIR=`echo $config_info | awk ‘{print $2}’`

Call the validate method so that the dataservice can be failed over
successfully to the new node.
$RT_BASEDIR/$VALIDATE_METHOD -R $RESOURCE_NAME -G $RESOURCEGROUP_NAME \
-T $RESOURCETYPE_NAME -x Confdir=$CONFIG_DIR

Log a message indicating that monitor check was successful.
if [$? -eq 0]; then

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \
“${ARGV0} Monitor check for DNS successful.”

exit 0
else

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
“${ARGV0} Monitor check for DNS not successful.”

exit 1

fi

272 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Validate Method
This method verifies the existence of the directory pointed to by the Confdir
property. The RGM calls this method when the data service is created and when data
service properties are updated by the cluster administrator. The Monitor_check
method calls this method whenever the fault monitor fails the data service over to a
new node.

EXAMPLE B–9 dns_validate Method

#!/bin/ksh
Validate method for HA-DNS.
This method validates the Confdir property of the resource. The Validate
method gets called in two scenarios. When the resource is being created and
when a resource property is getting updated. When the resource is being
created, this method gets called with the -c flag and all the system-defined
and extension properties are passed as command-line arguments. When a resource
property is being updated, the Validate method gets called with the -u flag,
and only the property/value pair of the property being updated is passed as a
command-line argument.
#
ex: When the resource is being created command args will be
#
dns_validate -c -R <..> -G <...> -T <..> -r <sysdef-prop=value>...
-x <extension-prop=value>.... -g <resourcegroup-prop=value>....
#
when the resource property is being updated
#
dns_validate -u -R <..> -G <...> -T <..> -r <sys-prop_being_updated=value>
OR
dns_validate -u -R <..> -G <...> -T <..> -x <extn-prop_being_updated=value>

#pragma ident “@(#)dns_validate 1.1 00/05/24 SMI”

###
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ‘cur:x:g:R:T:G:’ opt
do

case “$opt” in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the resource is
configured.

Appendix B • Sample Data Service Code Listings 273

EXAMPLE B–9 dns_validate Method (Continued)

RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

r)
#The method is not accessing any system defined
#properties, so this is a no-op.
;;

g)
The method is not accessing any resource group
properties, so this is a no-op.
;;

c)
Indicates the Validate method is being called while
creating the resource, so this flag is a no-op.
;;

u)
Indicates the updating of a property when the
resource already exists. If the update is to the
Confdir property then Confdir should appear in the
command-line arguments. If it does not, the method must
look for it specifically using scha_resource_get.
UPDATE_PROPERTY=1
;;

x)
Extension property list. Separate the property and
value pairs using “=” as the separator.
PROPERTY=`echo $OPTARG | awk -F= ‘{print $1}’`
VAL=echo $OPTARG | awk -F= ‘{print $2}’`

If the Confdir extension property is found on the
command line, note its value.
if [$PROPERTY == “Confdir”];
then
CONFDIR=$VAL
CONFDIR_FOUND=1
fi
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$SYSLOG_TAG] \
“ERROR: Option $OPTARG unknown”
exit 1
;;

esac
done

}

###
MAIN
#

274 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE B–9 dns_validate Method (Continued)

##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Set the Value of CONFDIR to null. Later, this method retrieves the value
of the Confdir property from the command line or using scha_resource_get.
CONFDIR=””
UPDATE_PROPERTY=0
CONFDIR_FOUND=0

Parse the arguments that have been passed to this method.
parse_args “$@”

If the validate method is being called due to the updating of properties
try to retrieve the value of the Confdir extension property from the command
line. Otherwise, obtain the value of Confdir using scha_resource_get.
if ((($UPDATE_PROPERTY == 1)) && ((CONFDIR_FOUND == 0))); then

config_info=scha_resource_get -O Extension -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAME Confdir`

CONFDIR=`echo $config_info | awk ‘{print $2}’`
fi

Verify that the Confdir property has a value. If not there is a failure
and exit with status 1.
if [[-z $CONFDIR]]; then

logger -p ${SYSLOG_FACILITY}.err \
“${ARGV0} Validate method for resource “$RESOURCE_NAME “ failed”

exit 1
fi

Now validate the actual Confdir property value.

Check if $CONFDIR is accessible.
if [! -d $CONFDIR]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
“${ARGV0} Directory $CONFDIR missing or not mounted”

exit 1
fi

Check that the named.conf file is present in the Confdir directory.
if [! -s $CONFDIR/named.conf]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
“${ARGV0} File $CONFDIR/named.conf is missing or empty”

exit 1
fi

Log a message indicating that the Validate method was successful.
logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

“${ARGV0} Validate method for resource “$RESOURCE_NAME \
“ completed successfully”

Appendix B • Sample Data Service Code Listings 275

EXAMPLE B–9 dns_validate Method (Continued)

exit 0

Update Method
The RGM calls the Update method to notify a running resource that its properties
have been changed.

EXAMPLE B–10 dns_update Method

#!/bin/ksh
Update method for HA-DNS.
#
The actual updates to properties are done by the RGM. Updates affect only
the fault monitor so this method must restart the fault monitor.

#pragma ident “@(#)dns_update 1.1 00/05/24 SMI”

###
Parse program arguments.
#
function parse_args # [args ...]
{

typeset opt

while getopts ‘R:G:T:’ opt
do

case “$opt” in
R)

Name of the DNS resource.
RESOURCE_NAME=$OPTARG
;;

G)
Name of the resource group in which the resource is
configured.
RESOURCEGROUP_NAME=$OPTARG
;;

T)
Name of the resource type.
RESOURCETYPE_NAME=$OPTARG
;;

*)
logger -p ${SYSLOG_FACILITY}.err \
-t [$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME] \
“ERROR: Option $OPTARG unknown”
exit 1
;;

276 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE B–10 dns_update Method (Continued)

esac
done

}

###
MAIN
##

export PATH=/bin:/usr/bin:/usr/cluster/bin:/usr/sbin:/usr/proc/bin:$PATH

Obtain the syslog facility to use to log messages.
SYSLOG_FACILITY=`scha_cluster_get -O SYSLOG_FACILITY`

Parse the arguments that have been passed to this method
parse_args “$@”

PMF_TAG=$RESOURCE_NAME.monitor
SYSLOG_TAG=$RESOURCETYPE_NAME,$RESOURCEGROUP_NAME,$RESOURCE_NAME

Find where the probe method resides by obtaining the value of the
RT_BASEDIR property of the resource.
RT_BASEDIR=`scha_resource_get -O RT_BASEDIR -R $RESOURCE_NAME \
-G $RESOURCEGROUP_NAMÈ

When the Update method is called, the RGM updates the value of the property
being updated. This method must check if the fault monitor (probe)
is running, and if so, kill it and then restart it.
if pmfadm -q $PMF_TAG.monitor; then

Kill the monitor that is running already
pmfadm -s $PMF_TAG.monitor TERM
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
“${ARGV0} Could not stop the monitor”

exit 1
else

Could successfully stop DNS. Log a message.
logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \

“Monitor for HA-DNS successfully stopped”
fi

Restart the monitor.
pmfadm -c $PMF_TAG.monitor -n -1 -t -1 $RT_BASEDIR/dns_probe \

-R $RESOURCE_NAME -G $RESOURCEGROUP_NAME -T $RESOURCETYPE_NAME
if [$? -ne 0]; then

logger -p ${SYSLOG_FACILITY}.err -t [$SYSLOG_TAG] \
“${ARGV0} Could not restart monitor for HA-DNS “

exit 1
else

logger -p ${SYSLOG_FACILITY}.info -t [$SYSLOG_TAG] \
“Monitor for HA-DNS successfully restarted”

fi
fi

Appendix B • Sample Data Service Code Listings 277

EXAMPLE B–10 dns_update Method (Continued)

exit 0

278 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

APPENDIX C

Data Service Development Library
Sample Resource Type Code Listing

This appendix lists the complete code for each method in the SUNW.xfnts resource
type. It includes the listing for xfnts.c, which contains code for the subroutines
called by the callback methods. The code listings in this appendix are as follows.

� “xfnts.c” on page 279
� “xfnts_monitor_check Method” on page 291
� “xfnts_monitor_start Method” on page 292
� “xfnts_monitor_stop Method” on page 293
� “xfnts_probe Method” on page 294
� “xfnts_start Method” on page 297
� “The xfnts_stop Method” on page 298
� “The xfnts_update Method” on page 299
� “The xfnts_validate Method Code Listing” on page 301

xfnts.c
This file implements the subroutines called by the SUNW.xfnts methods.

EXAMPLE C–1 xfnts.c

/*
* Copyright (c) 1998-2004 by Sun Microsystems, Inc.
* All rights reserved.
*
* xfnts.c - Common utilities for HA-XFS
*
* This utility has the methods for performing the validation, starting and
* stopping the data service and the fault monitor. It also contains the method
* to probe the health of the data service. The probe just returns either
* success or failure. Action is taken based on this returned value in the
* method found in the file xfnts_probe.c

279

EXAMPLE C–1 xfnts.c (Continued)

*
*/

#pragma ident “@(#)xfnts.c 1.47 01/01/18 SMI”

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <netinet/in.h>
#include <scha.h>
#include <rgm/libdsdev.h>
#include <errno.h>
#include “xfnts.h”

/*
* The initial timeout allowed for the HAXFS data service to
* be fully up and running. We will wait for 3 % (SVC_WAIT_PCT)
* of the start_timeout time before probing the service.
*/
#define SVC_WAIT_PCT 3

/*
* We need to use 95% of probe_timeout to connect to the port and the
* remaining time is used to disconnect from port in the svc_probe function.
*/
#define SVC_CONNECT_TIMEOUT_PCT 95

/*
* SVC_WAIT_TIME is used only during starting in svc_wait().
* In svc_wait() we need to be sure that the service is up
* before returning, thus we need to call svc_probe() to
* monitor the service. SVC_WAIT_TIME is the time between
* such probes.
*/

#define SVC_WAIT_TIME 5

/*
* This value will be used as disconnect timeout, if there is no
* time left from the probe_timeout.
*/

#define SVC_DISCONNECT_TIMEOUT_SECONDS 2

/*
* svc_validate():
*

280 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE C–1 xfnts.c (Continued)

* Do HA-XFS specific validation of the resource configuration.
*
* svc_validate will check for the following
* 1. Confdir_list extension property
* 2. fontserver.cfg file
* 3. xfs binary
* 4. port_list property
* 5. network resources
* 6. other extension properties
*
* If any of the above validation fails then, Return > 0 otherwise return 0 for
* success
*/

int
svc_validate(scds_handle_t scds_handle)
{

char xfnts_conf[SCDS_ARRAY_SIZE];
scha_str_array_t *confdirs;
scds_net_resource_list_t *snrlp;
int rc;
struct stat statbuf;
scds_port_list_t *portlist;
scha_err_t err;

/*
* Get the configuration directory for the XFS dataservice from the
* confdir_list extension property.
*/
confdirs = scds_get_ext_confdir_list(scds_handle);

/* Return an error if there is no confdir_list extension property */
if (confdirs == NULL || confdirs->array_cnt != 1) {

scds_syslog(LOG_ERR,
“Property Confdir_list is not set properly.”);

return (1); /* Validation failure */
}

/*
* Construct the path to the configuration file from the extension
* property confdir_list. Since HA-XFS has only one configuration
* we will need to use the first entry of the confdir_list property.
*/
(void) sprintf(xfnts_conf, “%s/fontserver.cfg”, confdirs->str_array[0]);

/*
* Check to see if the HA-XFS configuration file is in the right place.
* Try to access the HA-XFS configuration file and make sure the
* permissions are set properly
*/
if (stat(xfnts_conf, &statbuf) != 0) {

/*
* suppress lint error because errno.h prototype

Appendix C • Data Service Development Library Sample Resource Type Code Listing 281

EXAMPLE C–1 xfnts.c (Continued)

* is missing void arg
*/
scds_syslog(LOG_ERR,

“Failed to access file <%s> : <%s>”,
xfnts_conf, strerror(errno)); /*lint !e746 */

return (1);
}

/*
* Make sure that xfs binary exists and that the permissions
* are correct. The XFS binary are assumed to be on the local
* File system and not on the Global File System
*/
if (stat(“/usr/openwin/bin/xfs”, &statbuf) != 0) {

scds_syslog(LOG_ERR,
“Cannot access XFS binary : <%s> “, strerror(errno));

return (1);
}

/* HA-XFS will have only port */
err = scds_get_port_list(scds_handle, &portlist);
if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,
“Could not access property Port_list: %s.”,
scds_error_string(err));

return (1); /* Validation Failure */
}

#ifdef TEST
if (portlist->num_ports != 1) {

scds_syslog(LOG_ERR,
“Property Port_list must have only one value.”);

scds_free_port_list(portlist);
return (1); /* Validation Failure */

}
#endif

/*
* Return an error if there is an error when trying to get the
* available network address resources for this resource
*/
if ((err = scds_get_rs_hostnames(scds_handle, &snrlp))

!= SCHA_ERR_NOERR) {
scds_syslog(LOG_ERR,

“No network address resource in resource group: %s.”,
scds_error_string(err));

return (1); /* Validation Failure */
}

/* Return an error if there are no network address resources */
if (snrlp == NULL || snrlp->num_netresources == 0) {

scds_syslog(LOG_ERR,
“No network address resource in resource group.”);

282 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE C–1 xfnts.c (Continued)

rc = 1;
goto finished;

}

/* Check to make sure other important extension props are set */
if (scds_get_ext_monitor_retry_count(scds_handle) <= 0)
{

scds_syslog(LOG_ERR,
“Property Monitor_retry_count is not set.”);

rc = 1; /* Validation Failure */
goto finished;

}
if (scds_get_ext_monitor_retry_interval(scds_handle) <= 0) {

scds_syslog(LOG_ERR,
“Property Monitor_retry_interval is not set.”);

rc = 1; /* Validation Failure */
goto finished;

}

/* All validation checks were successful */
scds_syslog(LOG_INFO, “Successful validation.”);
rc = 0;

finished:
scds_free_net_list(snrlp);
scds_free_port_list(portlist);

return (rc); /* return result of validation */
}

/*
* svc_start():
*
* Start up the X font server
* Return 0 on success, > 0 on failures.
*
* The XFS service will be started by running the command
* /usr/openwin/bin/xfs -config <fontserver.cfg file> -port <port to listen>
* XFS will be started under PMF. XFS will be started as a single instance
* service. The PMF tag for the data service will be of the form
* <resourcegroupname,resourcename,instance_number.svc>. In case of XFS, since
* there will be only one instance the instance_number in the tag will be 0.
*/

int
svc_start(scds_handle_t scds_handle)
{

char xfnts_conf[SCDS_ARRAY_SIZE];
char cmd[SCDS_ARRAY_SIZE];
scha_str_array_t *confdirs;
scds_port_list_t *portlist;
scha_err_t err;

Appendix C • Data Service Development Library Sample Resource Type Code Listing 283

EXAMPLE C–1 xfnts.c (Continued)

/* get the configuration directory from the confdir_list property */
confdirs = scds_get_ext_confdir_list(scds_handle);

(void) sprintf(xfnts_conf, “%s/fontserver.cfg”, confdirs->str_array[0]);

/* obtain the port to be used by XFS from the Port_list property */
err = scds_get_port_list(scds_handle, &portlist);
if (err != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,
“Could not access property Port_list.”);

return (1);
}

/*
* Construct the command to start HA-XFS.
* NOTE: XFS daemon prints the following message while stopping the XFS
* “/usr/openwin/bin/xfs notice: terminating”
* In order to suppress the daemon message,
* the output is redirected to /dev/null.
*/
(void) sprintf(cmd,

“/usr/openwin/bin/xfs -config %s -port %d 2>/dev/null”,
xfnts_conf, portlist->ports[0].port);

/*
* Start HA-XFS under PMF. Note that HA-XFS is started as a single
* instance service. The last argument to the scds_pmf_start function
* denotes the level of children to be monitored. A value of -1 for
* this parameter means that all the children along with the original
* process are to be monitored.
*/
scds_syslog(LOG_INFO, “Issuing a start request.”);
err = scds_pmf_start(scds_handle, SCDS_PMF_TYPE_SVC,

SCDS_PMF_SINGLE_INSTANCE, cmd, -1);

if (err == SCHA_ERR_NOERR) {
scds_syslog(LOG_INFO,

“Start command completed successfully.”);
} else {

scds_syslog(LOG_ERR,
“Failed to start HA-XFS “);

}

scds_free_port_list(portlist);
return (err); /* return Success/failure status */

}

/*
* svc_stop():
*
* Stop the XFS server
* Return 0 on success, > 0 on failures.

284 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE C–1 xfnts.c (Continued)

*
* svc_stop will stop the server by calling the toolkit function:
* scds_pmf_stop.
*/
int
svc_stop(scds_handle_t scds_handle)
{

scha_err_t err;

/*
* The timeout value for the stop method to succeed is set in the
* Stop_Timeout (system defined) property
*/
scds_syslog(LOG_ERR, “Issuing a stop request.”);
err = scds_pmf_stop(scds_handle,

SCDS_PMF_TYPE_SVC, SCDS_PMF_SINGLE_INSTANCE, SIGTERM,
scds_get_rs_stop_timeout(scds_handle));

if (err != SCHA_ERR_NOERR) {
scds_syslog(LOG_ERR,

“Failed to stop HA-XFS.”);
return (1);

}

scds_syslog(LOG_INFO,
“Successfully stopped HA-XFS.”);

return (SCHA_ERR_NOERR); /* Successfully stopped */
}

/*
* svc_wait():
*
* wait for the data service to start up fully and make sure it is running
* healthy
*/

int
svc_wait(scds_handle_t scds_handle)
{

int rc, svc_start_timeout, probe_timeout;
scds_netaddr_list_t *netaddr;

/* obtain the network resource to use for probing */
if (scds_get_netaddr_list(scds_handle, &netaddr)) {

scds_syslog(LOG_ERR,
“No network address resources found in resource group.”);

return (1);
}

/* Return an error if there are no network resources */
if (netaddr == NULL || netaddr->num_netaddrs == 0) {

scds_syslog(LOG_ERR,
“No network address resource in resource group.”);

Appendix C • Data Service Development Library Sample Resource Type Code Listing 285

EXAMPLE C–1 xfnts.c (Continued)

return (1);
}

/*
* Get the Start method timeout, port number on which to probe,
* the Probe timeout value
*/
svc_start_timeout = scds_get_rs_start_timeout(scds_handle);
probe_timeout = scds_get_ext_probe_timeout(scds_handle);

/*
* sleep for SVC_WAIT_PCT percentage of start_timeout time
* before actually probing the dataservice. This is to allow
* the dataservice to be fully up in order to reply to the
* probe. NOTE: the value for SVC_WAIT_PCT could be different
* for different data services.
* Instead of calling sleep(),
* call scds_svc_wait() so that if service fails too
* many times, we give up and return early.
*/
if (scds_svc_wait(scds_handle, (svc_start_timeout * SVC_WAIT_PCT)/100)

!= SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR, “Service failed to start.”);
return (1);

}

do {
/*
* probe the data service on the IP address of the
* network resource and the portname
*/
rc = svc_probe(scds_handle,

netaddr->netaddrs[0].hostname,
netaddr->netaddrs[0].port_proto.port, probe_timeout);

if (rc == SCHA_ERR_NOERR) {
/* Success. Free up resources and return */
scds_free_netaddr_list(netaddr);
return (0);

}

/*
* Dataservice is still trying to come up. Sleep for a while
* before probing again. Instead of calling sleep(),
* call scds_svc_wait() so that if service fails too
* many times, we give up and return early.
*/
if (scds_svc_wait(scds_handle, SVC_WAIT_TIME)

!= SCHA_ERR_NOERR) {
scds_syslog(LOG_ERR, “Service failed to start.”);
return (1);

}

286 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE C–1 xfnts.c (Continued)

/* We rely on RGM to timeout and terminate the program */
} while (1);

}

/*
* This function starts the fault monitor for a HA-XFS resource.
* This is done by starting the probe under PMF. The PMF tag
* is derived as <RG-name,RS-name,instance_number.mon>. The restart option
* of PMF is used but not the “infinite restart”. Instead
* interval/retry_time is obtained from the RTR file.
*/

int
mon_start(scds_handle_t scds_handle)
{

scha_err_t err;

scds_syslog_debug(DBG_LEVEL_HIGH,
“Calling MONITOR_START method for resource <%s>.”,
scds_get_resource_name(scds_handle));

/*
* The probe xfnts_probe is assumed to be available in the same
* subdirectory where the other callback methods for the RT are
* installed. The last parameter to scds_pmf_start denotes the
* child monitor level. Since we are starting the probe under PMF
* we need to monitor the probe process only and hence we are using
* a value of 0.
*/
err = scds_pmf_start(scds_handle, SCDS_PMF_TYPE_MON,

SCDS_PMF_SINGLE_INSTANCE, “xfnts_probe”, 0);

if (err != SCHA_ERR_NOERR) {
scds_syslog(LOG_ERR,

“Failed to start fault monitor.”);
return (1);

}

scds_syslog(LOG_INFO,
“Started the fault monitor.”);

return (SCHA_ERR_NOERR); /* Successfully started Monitor */
}

/*
* This function stops the fault monitor for a HA-XFS resource.
* This is done via PMF. The PMF tag for the fault monitor is
* constructed based on <RG-name_RS-name,instance_number.mon>.
*/

int

Appendix C • Data Service Development Library Sample Resource Type Code Listing 287

EXAMPLE C–1 xfnts.c (Continued)

mon_stop(scds_handle_t scds_handle)
{

scha_err_t err;

scds_syslog_debug(DBG_LEVEL_HIGH,
“Calling scds_pmf_stop method”);

err = scds_pmf_stop(scds_handle, SCDS_PMF_TYPE_MON,
SCDS_PMF_SINGLE_INSTANCE, SIGKILL,
scds_get_rs_monitor_stop_timeout(scds_handle));

if (err != SCHA_ERR_NOERR) {
scds_syslog(LOG_ERR,

“Failed to stop fault monitor.”);
return (1);

}

scds_syslog(LOG_INFO,
“Stopped the fault monitor.”);

return (SCHA_ERR_NOERR); /* Successfully stopped monitor */
}

/*
* svc_probe(): Do data service specific probing. Return a float value
* between 0 (success) and 100(complete failure).
*
* The probe does a simple socket connection to the XFS server on the specified
* port which is configured as the resource extension property (Port_list) and
* pings the dataservice. If the probe fails to connect to the port, we return
* a value of 100 indicating that there is a total failure. If the connection
* goes through and the disconnect to the port fails, then a value of 50 is
* returned indicating a partial failure.
*/
int
svc_probe(scds_handle_t scds_handle, char *hostname, int port, int
timeout)
{

int rc;
hrtime_t t1, t2;
int sock;
char testcmd[2048];
int time_used, time_remaining;
time_t connect_timeout;

/*
* probe the dataservice by doing a socket connection to the port
* specified in the port_list property to the host that is
* serving the XFS dataservice. If the XFS service which is configured
* to listen on the specified port, replies to the connection, then
* the probe is successful. Else we will wait for a time period set

288 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE C–1 xfnts.c (Continued)

* in probe_timeout property before concluding that the probe failed.
*/

/*
* Use the SVC_CONNECT_TIMEOUT_PCT percentage of timeout
* to connect to the port
*/
connect_timeout = (SVC_CONNECT_TIMEOUT_PCT * timeout)/100;
t1 = (hrtime_t)(gethrtime()/1E9);

/*
* the probe makes a connection to the specified hostname and port.
* The connection is timed for 95% of the actual probe_timeout.
*/
rc = scds_fm_tcp_connect(scds_handle, &sock, hostname, port,

connect_timeout);
if (rc) {

scds_syslog(LOG_ERR,
“Failed to connect to port <%d> of resource <%s>.”,
port, scds_get_resource_name(scds_handle));

/* this is a complete failure */
return (SCDS_PROBE_COMPLETE_FAILURE);

}

t2 = (hrtime_t)(gethrtime()/1E9);

/*
* Compute the actual time it took to connect. This should be less than
* or equal to connect_timeout, the time allocated to connect.
* If the connect uses all the time that is allocated for it,
* then the remaining value from the probe_timeout that is passed to
* this function will be used as disconnect timeout. Otherwise, the
* the remaining time from the connect call will also be added to
* the disconnect timeout.
*
*/

time_used = (int)(t2 - t1);

/*
* Use the remaining time(timeout - time_took_to_connect) to disconnect
*/

time_remaining = timeout - (int)time_used;

/*
* If all the time is used up, use a small hardcoded timeout
* to still try to disconnect. This will avoid the fd leak.
*/
if (time_remaining <= 0) {

scds_syslog_debug(DBG_LEVEL_LOW,
“svc_probe used entire timeout of “
“%d seconds during connect operation and exceeded the “

Appendix C • Data Service Development Library Sample Resource Type Code Listing 289

EXAMPLE C–1 xfnts.c (Continued)

“timeout by %d seconds. Attempting disconnect with timeout”
“ %d “,
connect_timeout,
abs(time_used),
SVC_DISCONNECT_TIMEOUT_SECONDS);

time_remaining = SVC_DISCONNECT_TIMEOUT_SECONDS;
}

/*
* Return partial failure in case of disconnection failure.
* Reason: The connect call is successful, which means
* the application is alive. A disconnection failure
* could happen due to a hung application or heavy load.
* If it is the later case, don’t declare the application
* as dead by returning complete failure. Instead, declare
* it as partial failure. If this situation persists, the
* disconnect call will fail again and the application will be
* restarted.
*/
rc = scds_fm_tcp_disconnect(scds_handle, sock, time_remaining);
if (rc != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,
“Failed to disconnect to port %d of resource %s.”,
port, scds_get_resource_name(scds_handle));

/* this is a partial failure */
return (SCDS_PROBE_COMPLETE_FAILURE/2);

}

t2 = (hrtime_t)(gethrtime()/1E9);
time_used = (int)(t2 - t1);
time_remaining = timeout - time_used;

/*
* If there is no time left, don’t do the full test with
* fsinfo. Return SCDS_PROBE_COMPLETE_FAILURE/2
* instead. This will make sure that if this timeout
* persists, server will be restarted.
*/
if (time_remaining <= 0) {

scds_syslog(LOG_ERR, “Probe timed out.”);
return (SCDS_PROBE_COMPLETE_FAILURE/2);

}

/*
* The connection and disconnection to port is successful,
* Run the fsinfo command to perform a full check of
* server health.
* Redirect stdout, otherwise the output from fsinfo
* ends up on the console.
*/
(void) sprintf(testcmd,

“/usr/openwin/bin/fsinfo -server %s:%d > /dev/null”,

290 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE C–1 xfnts.c (Continued)

hostname, port);
scds_syslog_debug(DBG_LEVEL_HIGH,

“Checking the server status with %s.”, testcmd);
if (scds_timerun(scds_handle, testcmd, time_remaining,

SIGKILL, &rc) != SCHA_ERR_NOERR || rc != 0) {

scds_syslog(LOG_ERR,
“Failed to check server status with command <%s>”,
testcmd);

return (SCDS_PROBE_COMPLETE_FAILURE/2);
}
return (0);

}

xfnts_monitor_check Method
This method verifies that the basic resource type configuration is valid.

EXAMPLE C–2 xfnts_monitor_check.c

/*
* Copyright (c) 1998-2004 by Sun Microsystems, Inc.
* All rights reserved.
*
* xfnts_monitor_check.c - Monitor Check method for HA-XFS
*/

#pragma ident “@(#)xfnts_monitor_check.c 1.11 01/01/18
SMI”

#include <rgm/libdsdev.h>
#include “xfnts.h”

/*
* just make a simple validate check on the service
*/

int
main(int argc, char *argv[])
{

scds_handle_t scds_handle;
int rc;

/* Process the arguments passed by RGM and initialize syslog */
if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{
scds_syslog(LOG_ERR, “Failed to initialize the handle.”);

Appendix C • Data Service Development Library Sample Resource Type Code Listing 291

EXAMPLE C–2 xfnts_monitor_check.c (Continued)

return (1);
}

rc = svc_validate(scds_handle);
scds_syslog_debug(DBG_LEVEL_HIGH,

“monitor_check method “
“was called and returned <%d>.”, rc);

/* Free up all the memory allocated by scds_initialize */
scds_close(&scds_handle);

/* Return the result of validate method run as part of monitor check */
return (rc);

}

xfnts_monitor_start Method
This method starts the xfnts_probe method.

EXAMPLE C–3 xfnts_monitor_start.c

/*
* Copyright (c) 1998-2004 by Sun Microsystems, Inc.
* All rights reserved.
*
* xfnts_monitor_start.c - Monitor Start method for HA-XFS
*/

#pragma ident “@(#)xfnts_monitor_start.c 1.10 01/01/18
SMI”

#include <rgm/libdsdev.h>
#include “xfnts.h”

/*
* This method starts the fault monitor for a HA-XFS resource.
* This is done by starting the probe under PMF. The PMF tag
* is derived as RG-name,RS-name.mon. The restart option of PMF
* is used but not the “infinite restart”. Instead
* interval/retry_time is obtained from the RTR file.
*/

int
main(int argc, char *argv[])
{

scds_handle_t scds_handle;
int rc;

292 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE C–3 xfnts_monitor_start.c (Continued)

/* Process arguments passed by RGM and initialize syslog */
if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{
scds_syslog(LOG_ERR, “Failed to initialize the handle.”);
return (1);

}

rc = mon_start(scds_handle);

/* Free up all the memory allocated by scds_initialize */
scds_close(&scds_handle);

/* Return the result of monitor_start method */
return (rc);

}

xfnts_monitor_stop Method
This method stops the xfnts_probe method.

EXAMPLE C–4 xfnts_monitor_stop.c

/*
* Copyright (c) 1998-2004 by Sun Microsystems, Inc.
* All rights reserved.
*
* xfnts_monitor_stop.c - Monitor Stop method for HA-XFS
*/

#pragma ident “@(#)xfnts_monitor_stop.c 1.9 01/01/18 SMI”

#include <rgm/libdsdev.h>
#include “xfnts.h”

/*
* This method stops the fault monitor for a HA-XFS resource.
* This is done via PMF. The PMF tag for the fault monitor is
* constructed based on RG-name_RS-name.mon.
*/

int
main(int argc, char *argv[])
{

scds_handle_t scds_handle;
int rc;

Appendix C • Data Service Development Library Sample Resource Type Code Listing 293

EXAMPLE C–4 xfnts_monitor_stop.c (Continued)

/* Process arguments passed by RGM and initialize syslog */
if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{
scds_syslog(LOG_ERR, “Failed to initialize the handle.”);
return (1);

}
rc = mon_stop(scds_handle);

/* Free up all the memory allocated by scds_initialize */
scds_close(&scds_handle);

/* Return the result of monitor stop method */
return (rc);

}

xfnts_probe Method
The xfnts_probe method checks the availability of the application and decides
whether to failover or restart the data service. The xfnts_monitor_start callback
method launches this program and the xfnts_monitor_stop callback method stops
it.

EXAMPLE C–5 xfnts_probe.c+

/*
* Copyright (c) 1998-2004 by Sun Microsystems, Inc.
* All rights reserved.
*
* xfnts_probe.c - Probe for HA-XFS
*/

#pragma ident “@(#)xfnts_probe.c 1.26 01/01/18 SMI”

#include <stdio.h>
#include <stdlib.h>
#include <strings.h>
#include <unistd.h>
#include <signal.h>
#include <sys/time.h>
#include <sys/socket.h>
#include <strings.h>
#include <rgm/libdsdev.h>
#include “xfnts.h”

/*

294 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE C–5 xfnts_probe.c+ (Continued)

* main():
* Just an infinite loop which sleep()s for sometime, waiting for
* the PMF action script to interrupt the sleep(). When interrupted
* It calls the start method for HA-XFS to restart it.
*
*/

int
main(int argc, char *argv[])
{

int timeout;
int port, ip, probe_result;
scds_handle_t scds_handle;

hrtime_t ht1, ht2;
unsigned long dt;

scds_netaddr_list_t *netaddr;
char *hostname;

if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)
{

scds_syslog(LOG_ERR, “Failed to initialize the handle.”);
return (1);

}

/* Get the ip addresses available for this resource */
if (scds_get_netaddr_list(scds_handle, &netaddr)) {

scds_syslog(LOG_ERR,
“No network address resource in resource group.”);

scds_close(&scds_handle);
return (1);

}

/* Return an error if there are no network resources */
if (netaddr == NULL || netaddr->num_netaddrs == 0) {

scds_syslog(LOG_ERR,
“No network address resource in resource group.”);

return (1);
}

/*
* Set the timeout from the X props. This means that each probe
* iteration will get a full timeout on each network resource
* without chopping up the timeout between all of the network
* resources configured for this resource.
*/
timeout = scds_get_ext_probe_timeout(scds_handle);

for (;;) {

/*
* sleep for a duration of thorough_probe_interval between

Appendix C • Data Service Development Library Sample Resource Type Code Listing 295

EXAMPLE C–5 xfnts_probe.c+ (Continued)

* successive probes.
*/
(void) scds_fm_sleep(scds_handle,

scds_get_rs_thorough_probe_interval(scds_handle));

/*
* Now probe all ipaddress we use. Loop over
* 1. All net resources we use.
* 2. All ipaddresses in a given resource.
* For each of the ipaddress that is probed,
* compute the failure history.
*/
probe_result = 0;
/*
* Iterate through the all resources to get each
* IP address to use for calling svc_probe()
*/
for (ip = 0; ip < netaddr->num_netaddrs; ip++) {

/*
* Grab the hostname and port on which the
* health has to be monitored.
*/
hostname = netaddr->netaddrs[ip].hostname;
port = netaddr->netaddrs[ip].port_proto.port;
/*
* HA-XFS supports only one port and
* hence obtain the port value from the
* first entry in the array of ports.
*/
ht1 = gethrtime(); /* Latch probe start time */
scds_syslog(LOG_INFO, “Probing the service on “

“port: %d.”, port);

probe_result =
svc_probe(scds_handle, hostname, port, timeout);

/*
* Update service probe history,
* take action if necessary.
* Latch probe end time.
*/
ht2 = gethrtime();

/* Convert to milliseconds */
dt = (ulong_t)((ht2 - ht1) / 1e6);

/*
* Compute failure history and take
* action if needed
*/
(void) scds_fm_action(scds_handle,

probe_result, (long)dt);
} /* Each net resource */

296 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE C–5 xfnts_probe.c+ (Continued)

} /* Keep probing forever */

}

xfnts_start Method
The RGM invokes the Start method on a cluster node when the resource group
containing the data service resource is brought online on that node or when the
resource is enabled. The xfnts_start method activates the xfs daemon on that
node.

EXAMPLE C–6 xfnts_start.c

/*
* Copyright (c) 1998-2004 by Sun Microsystems, Inc.
* All rights reserved.
*
* xfnts_svc_start.c - Start method for HA-XFS
*/

#pragma ident “@(#)xfnts_svc_start.c 1.13 01/01/18 SMI”

#include <rgm/libdsdev.h>
#include “xfnts.h”

/*
* The start method for HA-XFS. Does some sanity checks on
* the resource settings then starts the HA-XFS under PMF with
* an action script.
*/

int
main(int argc, char *argv[])
{

scds_handle_t scds_handle;
int rc;

/*
* Process all the arguments that have been passed to us from RGM
* and do some initialization for syslog
*/

if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)
{

scds_syslog(LOG_ERR, “Failed to initialize the handle.”);
return (1);

}

Appendix C • Data Service Development Library Sample Resource Type Code Listing 297

EXAMPLE C–6 xfnts_start.c (Continued)

/* Validate the configuration and if there is an error return back */
rc = svc_validate(scds_handle);
if (rc != 0) {

scds_syslog(LOG_ERR,
“Failed to validate configuration.”);

return (rc);
}

/* Start the data service, if it fails return with an error */
rc = svc_start(scds_handle);
if (rc != 0) {

goto finished;
}

/* Wait for the service to start up fully */
scds_syslog_debug(DBG_LEVEL_HIGH,

“Calling svc_wait to verify that service has started.”);

rc = svc_wait(scds_handle);

scds_syslog_debug(DBG_LEVEL_HIGH,
“Returned from svc_wait”);

if (rc == 0) {
scds_syslog(LOG_INFO, “Successfully started the service.”);

} else {
scds_syslog(LOG_ERR, “Failed to start the service.”);

}

finished:
/* Free up the Environment resources that were allocated */
scds_close(&scds_handle);

return (rc);

}

The xfnts_stop Method
The RGM invokes the Stop method on a cluster node when the resource group
containing the HA-XFS resource is brought offline on that node or the resource is
disabled. This method stops the xfs daemon on that node.

EXAMPLE C–7 xfnts_stop.c

/*
* Copyright (c) 1998-2004 by Sun Microsystems, Inc.
* All rights reserved.

298 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE C–7 xfnts_stop.c (Continued)

*
* xfnts_svc_stop.c - Stop method for HA-XFS
*/

#pragma ident “@(#)xfnts_svc_stop.c 1.10 01/01/18 SMI”

#include <rgm/libdsdev.h>
#include “xfnts.h”

/*
* Stops the HA-XFS process using PMF
*/

int
main(int argc, char *argv[])
{

scds_handle_t scds_handle;
int rc;

/* Process the arguments passed by RGM and initialize syslog */
if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{
scds_syslog(LOG_ERR, “Failed to initialize the handle.”);
return (1);

}

rc = svc_stop(scds_handle);

/* Free up all the memory allocated by scds_initialize */
scds_close(&scds_handle);

/* Return the result of svc_stop method */
return (rc);

}

The xfnts_update Method
The RGM calls the Update method to notify a running resource that its properties
have been changed. The RGM invokes Update after an administrative action succeeds
in setting properties of a resource or its group.

EXAMPLE C–8 xfnts_update.c

#pragma ident “@(#)xfnts_update.c 1.10 01/01/18 SMI”

/*

Appendix C • Data Service Development Library Sample Resource Type Code Listing 299

EXAMPLE C–8 xfnts_update.c (Continued)

* Copyright (c) 1998-2004 by Sun Microsystems, Inc.
* All rights reserved.
*
* xfnts_update.c - Update method for HA-XFS
*/

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <rgm/libdsdev.h>

/*
* Some of the resource properties might have been updated. All such
* updatable properties are related to the fault monitor. Hence, just
* restarting the monitor should be enough.
*/

int
main(int argc, char *argv[])
{

scds_handle_t scds_handle;
scha_err_t result;

/* Process the arguments passed by RGM and initialize syslog */
if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{
scds_syslog(LOG_ERR, “Failed to initialize the handle.”);
return (1);

}

/*
* check if the Fault monitor is already running and if so stop and
* restart it. The second parameter to scds_pmf_restart_fm() uniquely
* identifies the instance of the fault monitor that needs to be
* restarted.
*/

scds_syslog(LOG_INFO, “Restarting the fault monitor.”);
result = scds_pmf_restart_fm(scds_handle, 0);
if (result != SCHA_ERR_NOERR) {

scds_syslog(LOG_ERR,
“Failed to restart fault monitor.”);

/* Free up all the memory allocated by scds_initialize */
scds_close(&scds_handle);
return (1);

}

scds_syslog(LOG_INFO,
“Completed successfully.”);

/* Free up all the memory allocated by scds_initialize */
scds_close(&scds_handle);

300 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

EXAMPLE C–8 xfnts_update.c (Continued)

return (0);

}

The xfnts_validate Method Code
Listing
This method verifies the existence of the directory pointed to by the Confdir_list
property. The RGM calls this method when the data service is created and when data
service properties are updated by the cluster administrator. The Monitor_check
method calls this method whenever the fault monitor fails the data service over to a
new node.

EXAMPLE C–9 xfnts_validate.c

/*
* Copyright (c) 1998-2004 by Sun Microsystems, Inc.
* All rights reserved.
*
* xfnts_validate.c - validate method for HA-XFS
*/

#pragma ident “@(#)xfnts_validate.c 1.9 01/01/18 SMI”

#include <rgm/libdsdev.h>
#include “xfnts.h”

/*
* Check to make sure that the properties have been set properly.
*/

int
main(int argc, char *argv[])
{

scds_handle_t scds_handle;
int rc;

/* Process arguments passed by RGM and initialize syslog */
if (scds_initialize(&scds_handle, argc, argv) != SCHA_ERR_NOERR)

{
scds_syslog(LOG_ERR, “Failed to initialize the handle.”);
return (1);

}
rc = svc_validate(scds_handle);

/* Free up all the memory allocated by scds_initialize */

Appendix C • Data Service Development Library Sample Resource Type Code Listing 301

EXAMPLE C–9 xfnts_validate.c (Continued)

scds_close(&scds_handle);

/* Return the result of validate method */
return (rc);

}

302 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

APPENDIX D

Legal RGM Names and Values

This appendix lists the requirements for legal characters for RGM names and values.

RGM Legal Names
RGM names fall into five categories:

� Resource group names
� Resource type names
� Resource names
� Property names
� Enumeration literal names

Except for resource type names, all names must comply with the following rules:

� Must be in ASCII.

� Must start with a letter.

� Can contain upper and lowercase letters, digits, dashes (-), and underscores (_).

� Must not exceed 255 characters.

A resource type name can be a simple name (specified by the Resource_type
property in the RTR file) or a complete name (specified by the Vendor_id and
Resource_type properties in the RTR file). When you specify both these properties,
the RGM inserts a period between the Vendor_id and Resource_type to form the
complete name. For example, if Vendor_id=SUNW and Resource_type=sample,
the complete name is SUNW.sample. This is the only case where a period is a legal
character in an RGM name.

303

RGM Values
RGM values fall into two categories: property values and description values, both of
which share the same rules, as follows:

� Values must be in ASCII.

� The maximum length of a value is 4 megabytes minus 1, that is, 4,194,303 bytes.

� Values cannot contain any of the following characters: null, newline, comma, or
semicolon.

304 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

APPENDIX E

Requirements for Non-Cluster Aware
Applications

An ordinary, non-cluster-aware application must meet certain requirements to be a
candidate for high availability (HA). The section “Analyzing the Application for
Suitability” on page 27 lists these requirements. This appendix provides additional
details about particular items in that list.

An application is made highly available by configuring its resources into resource
groups. The application’s data is placed on a highly available global file system,
making the data accessible by a surviving server in the event that one server fails. See
information regarding cluster file systems in Sun Cluster Concepts Guide for Solaris OS.

For network access by clients on the network, a logical network IP address is
configured in logical host name resources that are contained in the same resource
group as the data service resource. The data service resource and the network address
resources fail over together, causing network clients of the data service to access the
data service resource on its new host.

Multihosted Data
The highly available global file systems’ disk sets are multihosted so that when a
physical host crashes, one of the surviving hosts can access the disk. For an
application to be highly available, its data must be highly available, and thus its data
must reside in the global HA file systems.

The global file system is mounted on disk groups that are created as independent
entities. The user can choose to use some disk groups as mounted global file systems
and others as raw devices for use with a data service, such as HA Oracle.

305

An application might have command-line switches or configuration files pointing to
the location of the data files. If the application uses hard-wired pathnames, you could
change the pathnames to symbolic links that point to a files in a global file system,
without changing the application code. See “Using Symbolic Links for Multihosted
Data Placement” on page 306 for a more detailed discussion about using symbolic
links.

In the worst case, the application’s source code must be modified to provide some
mechanism for pointing to the actual data location. You could do this by
implementing additional command-line switches.

Sun Cluster supports the use of UNIX UFS file systems and HA raw devices
configured in a volume manager. When installing and configuring , the system
administrator must specify which disk resources to use for UFS file systems and which
for raw devices. Typically, raw devices are used only by database servers and
multimedia servers.

Using Symbolic Links for Multihosted Data
Placement
Occasionally an application has the path names of its data files hard-wired, with no
mechanism for overriding the hard-wired path names. To avoid modifying the
application code, you can sometimes use symbolic links.

For example, suppose the application names its data file with the hard-wired path
name /etc/mydatafile. You can change that path from a file to a symbolic link that
has its value pointing to a file in one of the logical host’s file systems. For example,
you can make it a symbolic link to /global/phys-schost-2/mydatafile.

A problem can occur with this use of symbolic links if the application, or one of its
administrative procedures, modifies the data file name as well as its contents. For
example, suppose that the application performs an update by first creating a new
temporary file, /etc/mydatafile.new. Then it renames the temporary file to have
the real file name by using the rename(2) system call (or the mv(1) program). By
creating the temporary file and then renaming it to the real file, the data service is
attempting to ensure that its data file contents are always well formed.

Unfortunately, the rename(2) action destroys the symbolic link. The name
/etc/mydatafile is now a regular file, and is in the same file system as the /etc
directory, not in the cluster’s global file system. Because the /etc file system is private
to each host, the data is not available after a failover or switchover.

306 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

The underlying problem in this situation is that the existing application is not aware of
the symbolic link and was not written with symbolic links considered. To use symbolic
links to redirect data access into the logical host’s file systems, the application
implementation must behave in a way that does not obliterate the symbolic links. So,
symbolic links are not a complete remedy for the problem of placing data on the
cluster’s global file systems.

Host Names
You must determine whether the data service ever needs to know the host name of the
server on which it is running. If so, the data service might need to be modified to use a
logical host name (that is, a host name configured into a logical host name resource
that resides in the same resource group as the application resource), rather than that of
the physical host.

Occasionally, in the client-server protocol for a data service, the server returns its own
host name to the client as part of the contents of a message to the client. For such
protocols, the client could be depending on this returned host name as the host name
to use when contacting the server. For the returned host name to be usable after a
failover or switchover, the host name should be a logical host name of the resource
group, not the name of the physical host. In this case, you must modify the data
service code to return the logical host name to the client.

Multihomed Hosts
The term multihomed host describes a host that is on more than one public network.
Such a host has multiple host names and IP addresses. It has one host name-IP address
pair for each network. Sun Cluster is designed to permit a host to appear on any
number of networks, including just one (the non-multihomed case). Just as the
physical host name has multiple host name-IP address pairs, each resource group can
have multiple host name-IP address pairs, one for each public network. When Sun
Cluster moves a resource group from one physical host to another, the complete set of
host name-IP address pairs for that resource group is moved.

The set of host name-IP address pairs for a resource group is configured as logical host
name resources contained in the resource group. These network address resources are
specified by the system administrator when the resource group is created and
configured. The Sun Cluster Data Service API contains facilities for querying these
host name-IP address pairs.

Appendix E • Requirements for Non-Cluster Aware Applications 307

Most off-the-shelf data service daemons that have been written for the Solaris
Operating System already handle multihomed hosts properly. Many data services do
all their network communication by binding to the Solaris wildcard address
INADDR_ANY. This binding automatically causes the data services to handle all the IP
addresses for all the network interfaces. INADDR_ANY effectively binds to all IP
addresses currently configured on the machine. A data service daemon that uses
INADDR_ANY generally does not have to be changed to handle the Sun Cluster logical
network addresses.

Binding to INADDR_ANY Versus Binding
to Specific IP Addresses
Even when non-multihomed hosts are used, the Sun Cluster logical network address
concept enables the machine to have more than one IP address. The machine has one
IP address for its own physical host and additional IP addresses for each network
address (logical host name) resource that it currently masters. When a machine
becomes the master of a network address resource, it dynamically acquires additional
IP addresses. When it gives up mastery of a network address resource, it dynamically
relinquishes IP addresses.

Some data services cannot work properly in a Sun Cluster environment if they bind to
INADDR_ANY. These data services must dynamically change the set of IP addresses to
which they are bound as the resource group is mastered or unmastered. One strategy
for accomplishing the rebinding is to have the starting and stopping methods for these
data services kill and restart the data service’s daemons.

The Network_resources_used resource property permits the end user to configure
a specific set of network address resources to which the application resource should
bind. For resource types that require this feature, the Network_resources_used
property must be declared in the RTR file for the resource type.

When the RGM brings the resource group online or offline, it follows a specific order
for plumbing, unplumbing and configuring network address up or down in relation to
when it calls call data service resource methods. See “Deciding Which Start and
Stop Methods to Use” on page 43.

By the time the data service’s Stop method returns, the data service must have
stopped using the resource group’s network addresses. Similarly, by the time the
Start method returns, the data service must have started to use the network
addresses.

If the data service binds to INADDR_ANY rather than to individual IP addresses, the
order in which data service resource methods are called and network address methods
are called is not relevant.

308 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

If the data service’s stopping and starting methods accomplish their work by killing
and restarting data service’s daemons, then the data service stops and starts using the
network addresses at the appropriate times.

Client Retry
To a network client, a failover or switchover appears to be a crash of the logical host
followed by a fast reboot. Ideally, the client application and the client-server protocol
are structured to do some amount of retrying. If the application and protocol already
handle the case of a single server crashing and rebooting, then they also will handle
the case of the resource group being taken over or switched over. Some applications
might elect to retry endlessly. More sophisticated applications notify the user that a
long retry is in progress and enable the user to choose whether to continue.

Appendix E • Requirements for Non-Cluster Aware Applications 309

310 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

APPENDIX F

Document Type Definitions for CRNP

This appendix lists the DTDs (document type definitions) for Cluster Reconfiguration
Notification Protocol (CRNP).

SC_CALLBACK_REG XML DTD

Note – The NVPAIR data structure that is used by both SC_CALLBACK_REG and
SC_EVENT is defined only once.

<!— SC_CALLBACK_REG XML format specification
Copyright 2001-2004 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

Intended Use:

A client of the Cluster Reconfiguration Notification Protocol should use this xml format
to register initially with the service, to subsequently register for more events, to
subsequently remove registration of some events, or to remove itself from the service
entirely.

A client is uniquely identified by its callback IP and port. The port is defined in the
SC_CALLBACK_REG element, and the IP is taken as the source IP of the registration
connection. The final attribute of the root SC_CALLBACK_REG element is either an
ADD_CLIENT, ADD_EVENTS, REMOVE_CLIENT, or REMOVE_EVENTS, depending on which form of the
message the client is using.

The SC_CALLBACK_REG contains 0 or more SC_EVENT_REG sub-elements.

One SC_EVENT_REG is the specification for one event type. A client may specify only the
CLASS (an attribute of the SC_EVENT_REG element), or may specify a SUBCLASS (an optional
attribute) for further granularity. Also, the SC_EVENT_REG has as subelements 0 or more

311

NVPAIRs, which can be used to further specify the event.

Thus, the client can specify events to whatever granularity it wants. Note that a client
cannot both register for and unregister for events in the same message. However a client
can subscribe to the service and sign up for events in the same message.

Note on versioning: the VERSION attribute of each root element is marked "fixed", which
means that all message adhering to these DTDs must have the version value specified. If a
new version of the protocol is created, the revised DTDs will have a new value for this
fixed" VERSION attribute, such that all message adhering to the new version must have the
new version number.
—>

<!— SC_CALLBACK_REG definition

The root element of the XML document is a registration message. A registration message
consists of the callback port and the protocol version as attributes, and either an
ADD_CLIENT, ADD_EVENTS, REMOVE_CLIENT, or REMOVE_EVENTS attribute, specifying the
registration type. The ADD_CLIENT, ADD_EVENTS, and REMOVE_EVENTS types should have one or
more SC_EVENT_REG subelements. The REMOVE_CLIENT should not specify an SC_EVENT_REG
subelement.

ATTRIBUTES:
VERSION The CRNP protocol version of the message.
PORT The callback port.
REG_TYPE The type of registration. One of:

ADD_CLIENT, ADD_EVENTS, REMOVE_CLIENT, REMOVE_EVENTS

CONTENTS:
SUBELEMENTS: SC_EVENT_REG (0 or more)
—>
<!ELEMENT SC_CALLBACK_REG (SC_EVENT_REG*)>
<!ATTLIST SC_CALLBACK_REG

VERSION NMTOKEN #FIXED
PORT NMTOKEN #REQUIRED
REG_TYPE (ADD_CLIENT|ADD_EVENTS|REMOVE_CLIENT|REMOVE_EVENTS) #REQUIRED

>
<!— SC_EVENT_REG definition

The SC_EVENT_REG defines an event for which the client is either registering or
unregistering interest in receiving event notifications. The registration can be for any
level of granularity, from only event class down to specific name/value pairs that must be
present. Thus, the only required attribute is the CLASS. The SUBCLASS attribute, and the
NVPAIRS sub-elements are optional, for higher granularity.

Registrations that specify name/value pairs are registering interest in notification of
messages from the class/subclass specified with ALL name/value pairs present.
Unregistrations that specify name/value pairs are unregistering interest in notifications
that have EXACTLY those name/value pairs in granularity previously specified.
Unregistrations that do not specify name/value pairs unregister interest in ALL event
notifications of the specified class/subclass.

ATTRIBUTES:
CLASS: The event class for which this element is registering

or unregistering interest.

312 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

SUBCLASS: The subclass of the event (optional).

CONTENTS:
SUBELEMENTS: 0 or more NVPAIRs.

—>

<!ELEMENT SC_EVENT_REG (NVPAIR*)>
<!ATTLIST SC_EVENT_REG

CLASS CDATA #REQUIRED
SUBCLASS CDATA #IMPLIED

>

NVPAIR XML DTD
<!— NVPAIR XML format specification

Copyright 2001-2004 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

Intended Use:
An nvpair element is meant to be used in an SC_EVENT or SC_CALLBACK_REG
element.

—>

<!— NVPAIR definition

The NVPAIR is a name/value pair to represent arbitrary name/value combinations.
It is intended to be a direct, generic, translation of the Solaris nvpair_t
structure used by the sysevent framework. However, there is no type information
associated with the name or the value (they are both arbitrary text) in this xml
element.

The NVPAIR consists simply of one NAME element and one or more VALUE elements.
One VALUE element represents a scalar value, while multiple represent an array
VALUE.

ATTRIBUTES:

CONTENTS:
SUBELEMENTS: NAME(1), VALUE(1 or more)

—>

<!ELEMENT NVPAIR (NAME,VALUE+)>
<!— NAME definition

The NAME is simply an arbitrary length string.

ATTRIBUTES:

Appendix F • Document Type Definitions for CRNP 313

CONTENTS:
Arbitrary text data. Should be wrapped with <![CDATA[...]]> to prevent XML
parsing inside.

—>
<!ELEMENT NAME (#PCDATA)>

<!— VALUE definition
The VALUE is simply an arbitrary length string.

ATTRIBUTES:

CONTENTS:
Arbitrary text data. Should be wrapped with <![CDATA[...]]> to prevent XML
parsing inside.

—>

<!ELEMENT VALUE (#PCDATA)>

SC_REPLY XML DTD
<!— SC_REPLY XML format specification

Copyright 2001-2004 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

—>

<!— SC_REPLY definition

The root element of the XML document represents a reply to a message. The reply
contains a status code and a status message.

ATTRIBUTES:
VERSION: The CRNP protocol version of the message.
STATUS_CODE: The return code for the message. One of the

following: OK, RETRY, LOW_RESOURCES, SYSTEM_ERROR, FAIL,
MALFORMED, INVALID_XML, VERSION_TOO_HIGH, or
VERSION_TOO_LOW.

CONTENTS:
SUBELEMENTS: SC_STATUS_MSG(1)

—>

<!ELEMENT SC_REPLY (SC_STATUS_MSG)>
<!ATTLIST SC_REPLY

VERSION NMTOKEN #FIXED "1.0"
STATUS_CODE OK|RETRY|LOW_RESOURCE|SYSTEM_ERROR|FAIL|MALFORMED|INVALID,\

VERSION_TOO_HIGH, VERSION_TOO_LOW) #REQUIRED
>

314 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

<!— SC_STATUS_MSG definition
The SC_STATUS_MSG is simply an arbitrary text string elaborating on the status
code. Should be wrapped with <![CDATA[...]]> to prevent XML parsing inside.

ATTRIBUTES:

CONTENTS:
Arbitrary string.

—>

<!ELEMENT SC_STATUS_MSG (#PCDATA)>

SC_EVENT XML DTD

Note – The NVPAIR data structure that is used by both SC_CALLBACK_REG and
SC_EVENT is defined only once.

<!— SC_EVENT XML format specification

Copyright 2001-2004 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

The root element of the XML document is intended to be a direct, generic,
translation of the Solaris syseventd message format. It has attributes to
represent the class, subclass, vendor, and publisher, and contains any number of
NVPAIR elements.

ATTRIBUTES:
VERSION: The CRNP protocol version of the message.
CLASS: The sysevent class of the event
SUBCLASS: The subclass of the event
VENDOR: The vendor associated with the event
PUBLISHER: The publisher of the event

CONTENTS:
SUBELEMENTS: NVPAIR (0 or more)

—>

<!ELEMENT SC_EVENT (NVPAIR*)>
<!ATTLIST SC_EVENT

VERSION NMTOKEN #FIXED "1.0"
CLASS CDATA #REQUIRED
SUBCLASS CDATA #REQUIRED
VENDOR CDATA #REQUIRED
PUBLISHER CDATA #REQUIRED

>

Appendix F • Document Type Definitions for CRNP 315

316 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

APPENDIX G

CrnpClient.java Application

This appendix shows the complete CrnpClient.java application that is discussed
in more detail in Chapter 12.

Contents of CrnpClient.java
/*
* CrnpClient.java
* ================
*
* Note regarding XML parsing:
*
* This program uses the Sun Java Architecture for XML Processing (JAXP) API.
* See http://java.sun.com/xml/jaxp/index.html for API documentation and
* availability information.
*
* This program was written for Java 1.3.1 or higher.
*
* Program overview:
*
* The main thread of the program creates a CrnpClient object, waits for the
* user to terminate the demo, then calls shutdown on the CrnpClient object
* and exits the program.
*
* The CrnpClient constructor creates an EventReceptionThread object,
* opens a connection to the CRNP server (using the host and port specified
* on the command line), constructs a registration message (based on the
* command-line specifications), sends the registartion message, and reads
* and parses the reply.
*
* The EventReceptionThread creates a listening socket bound to
* the hostname of the machine on which this program runs, and the port
* specified on the command line. It waits for an incoming event callback,

317

* at which point it constructs an XML Document from the incoming socket
* stream, which is then passed back to the CrnpClient object to process.
*
* The shutdown method in the CrnpClient just sends an unregistration
* (REMOVE_CLIENT) SC_CALLBACK_REG message to the crnp server.
*
* Note regarding error handling: for the sake of brevity, this program just
* exits on most errors. Obviously, a real application would attempt to handle
* some errors in various ways, such as retrying when appropriate.
*/

// JAXP packages
import javax.xml.parsers.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import org.w3c.dom.*;

// standard packages
import java.net.*;
import java.io.*;
import java.util.*;

/*
* class CrnpClient
* -----------------
* See file header comments above.
*/
class CrnpClient
{

/*
* main
* ----
* The entry point of the execution, main simply verifies the
* number of command-line arguments, and constructs an instance
* of a CrnpClient to do all the work.
*/
public static void main(String []args)
{

InetAddress regIp = null;
int regPort = 0, localPort = 0;

/* Verify the number of command-line arguments */
if (args.length < 4) {

System.out.println(
"Usage: java CrnpClient crnpHost crnpPort "
+ "localPort (-ac | -ae | -re) "
+ "[(M | A | RG=name | R=name) [...]]");

System.exit(1);
}

/*

318 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

* We expect the command line to contain the ip/port of the
* crnp server, the local port on which we should listen, and
* arguments specifying the type of registration.
*/
try {

regIp = InetAddress.getByName(args[0]);
regPort = (new Integer(args[1])).intValue();
localPort = (new Integer(args[2])).intValue();

} catch (UnknownHostException e) {
System.out.println(e);
System.exit(1);

}

// Create the CrnpClient
CrnpClient client = new CrnpClient(regIp, regPort, localPort,

args);

// Now wait until the user wants to end the program
System.out.println("Hit return to terminate demo...");

// read will block until the user enters something
try {

System.in.read();
} catch (IOException e) {

System.out.println(e.toString());
}

// shutdown the client
client.shutdown();
System.exit(0);

}

/*
* ======================
* public methods
* ======================
*/

/*
* CrnpClient constructor
* -----------------------
* Parses the command line arguments so we know how to contact
* the crnp server, creates the event reception thread, and starts it
* running, creates the XML DocumentBuilderFactory obect, and, finally,
* registers for callbacks with the crnp server.
*/
public CrnpClient(InetAddress regIpIn, int regPortIn, int localPortIn,

String []clArgs)
{

try {

regIp = regIpIn;
regPort = regPortIn;
localPort = localPortIn;
regs = clArgs;

Appendix G • CrnpClient.java Application 319

/*
* Setup the document builder factory for
* xml processing.
*/
setupXmlProcessing();

/*
* Create the EventReceptionThread, which creates a
* ServerSocket and binds it to a local ip and port.
*/
createEvtRecepThr();

/*
* Register with the crnp server.
*/
registerCallbacks();

} catch (Exception e) {
System.out.println(e.toString());
System.exit(1);

}
}

/*
* processEvent
* ---------------
* Callback into the CrnpClient, used by the EventReceptionThread
* when it receives event callbacks.
*/
public void processEvent(Event event)
{

/*
* For demonstration purposes, simply print the event
* to System.out. A real application would obviously make
* use of the event in some way.
*/
event.print(System.out);

}

/*
* shutdown
* -------------
* Unregister from the CRNP server.
*/
public void shutdown()
{

try {
/* send an unregistration message to the server */
unregister();

} catch (Exception e) {
System.out.println(e);
System.exit(1);

}
}

320 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

/*
* ======================
* private helper methods
* ======================
*/

/*
* setupXmlProcessing
* --------------------
* Create the document builder factory for
* parsing the xml replies and events.
*/
private void setupXmlProcessing() throws Exception
{

dbf = DocumentBuilderFactory.newInstance();

// We don’t need to bother validating
dbf.setValidating(false);
dbf.setExpandEntityReferences(false);

// We want to ignore comments and whitespace
dbf.setIgnoringComments(true);
dbf.setIgnoringElementContentWhitespace(true);

// Coalesce CDATA sections into TEXT nodes.
dbf.setCoalescing(true);

}

/*
* createEvtRecepThr
* -------------------
* Creates a new EventReceptionThread object, saves the ip
* and port to which its listening socket is bound, and
* starts the thread running.
*/
private void createEvtRecepThr() throws Exception
{

/* create the thread object */
evtThr = new EventReceptionThread(this);

/*
* Now start the thread running to begin listening
* for event delivery callbacks.
*/
evtThr.start();

}

/*
* registerCallbacks
* ------------------
* Creates a socket connection to the crnp server and sends
* an event registration message.

Appendix G • CrnpClient.java Application 321

*/
private void registerCallbacks() throws Exception
{

System.out.println("About to register");

/*
* Create a socket connected to the registration ip/port
* of the crnp server and send the registration information.
*/
Socket sock = new Socket(regIp, regPort);
String xmlStr = createRegistrationString();
PrintStream ps = new PrintStream(sock.getOutputStream());
ps.print(xmlStr);

/*
* Read the reply
*/
readRegistrationReply(sock.getInputStream());

/*
* Close the socket connection.
*/
sock.close();

}

/*
* unregister
* ----------
* As in registerCallbacks, we create a socket connection to
* the crnp server, send the unregistration message, wait for
* the reply from the server, then close the socket.
*/
private void unregister() throws Exception
{

System.out.println("About to unregister");

/*
* Create a socket connected to the registration ip/port
* of the crnp server and send the unregistration information.
*/
Socket sock = new Socket(regIp, regPort);
String xmlStr = createUnregistrationString();
PrintStream ps = new PrintStream(sock.getOutputStream());
ps.print(xmlStr);

/*
* Read the reply
*/
readRegistrationReply(sock.getInputStream());

/*
* Close the socket connection.
*/
sock.close();

}

322 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

/*
* createRegistrationString
* ------------------
* Constructs a CallbackReg object based on the command line arguments
* to this program, then retrieves the XML string from the CallbackReg
* object.
*/
private String createRegistrationString() throws Exception
{

/*
* create the actual CallbackReg class and set the port.
*/
CallbackReg cbReg = new CallbackReg();
cbReg.setPort("" + localPort);

// set the registration type
if (regs[3].equals("-ac")) {

cbReg.setRegType(CallbackReg.ADD_CLIENT);
} else if (regs[3].equals("-ae")) {

cbReg.setRegType(CallbackReg.ADD_EVENTS);
} else if (regs[3].equals("-re")) {

cbReg.setRegType(CallbackReg.REMOVE_EVENTS);
} else {

System.out.println("Invalid reg type: " + regs[3]);
System.exit(1);

}

// add the events
for (int i = 4; i < regs.length; i++) {

if (regs[i].equals("M")) {
cbReg.addRegEvent(

createMembershipEvent());
} else if (regs[i].equals("A")) {

cbReg.addRegEvent(
createAllEvent());

} else if (regs[i].substring(0,2).equals("RG")) {
cbReg.addRegEvent(createRgEvent(

regs[i].substring(3)));
} else if (regs[i].substring(0,1).equals("R")) {

cbReg.addRegEvent(createREvent(
regs[i].substring(2)));

}
}

String xmlStr = cbReg.convertToXml();
System.out.println(xmlStr);
return (xmlStr);

}

/*
* createAllEvent
* ----------------
* Creates an XML registartion event with class EC_Cluster, and no
* subclass.

Appendix G • CrnpClient.java Application 323

*/
private Event createAllEvent()
{

Event allEvent = new Event();
allEvent.setClass("EC_Cluster");
return (allEvent);

}

/*
* createMembershipEvent
* ----------------------
* Creates an XML registration event with class EC_Cluster, subclass
* ESC_cluster_memberhip.
*/
private Event createMembershipEvent()
{

Event membershipEvent = new Event();
membershipEvent.setClass("EC_Cluster");
membershipEvent.setSubclass("ESC_cluster_membership");
return (membershipEvent);

}

/*
* createRgEvent
* ----------------
* Creates an XML registration event with class EC_Cluster,
* subclass ESC_cluster_rg_state, and one "rg_name" nvpair (based
* on input parameter).
*/
private Event createRgEvent(String rgname)
{

/*
* Create a Resource Group state change event for the
* rgname Resource Group. Note that we supply
* a name/value pair (nvpair) for this event type, to
* specify in which Resource Group we are interested.
*/
/*
* Construct the event object and set the class and subclass.
*/
Event rgStateEvent = new Event();
rgStateEvent.setClass("EC_Cluster");
rgStateEvent.setSubclass("ESC_cluster_rg_state");

/*
* Create the nvpair object and add it to the Event.
*/
NVPair rgNvpair = new NVPair();
rgNvpair.setName("rg_name");
rgNvpair.setValue(rgname);
rgStateEvent.addNvpair(rgNvpair);

return (rgStateEvent);
}

324 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

/*
* createREvent
* ----------------
* Creates an XML registration event with class EC_Cluster,
* subclass ESC_cluster_r_state, and one "r_name" nvpair (based
* on input parameter).
*/
private Event createREvent(String rname)
{

/*
* Create a Resource state change event for the
* rgname Resource. Note that we supply
* a name/value pair (nvpair) for this event type, to
* specify in which Resource Group we are interested.
*/
Event rStateEvent = new Event();
rStateEvent.setClass("EC_Cluster");
rStateEvent.setSubclass("ESC_cluster_r_state");

NVPair rNvpair = new NVPair();
rNvpair.setName("r_name");
rNvpair.setValue(rname);
rStateEvent.addNvpair(rNvpair);

return (rStateEvent);
}

/*
* createUnregistrationString
* ------------------
* Constructs a REMOVE_CLIENT CallbackReg object, then retrieves
* the XML string from the CallbackReg object.
*/
private String createUnregistrationString() throws Exception
{

/*
* Crate the CallbackReg object.
*/
CallbackReg cbReg = new CallbackReg();
cbReg.setPort("" + localPort);
cbReg.setRegType(CallbackReg.REMOVE_CLIENT);

/*
* we marshall the registration to the OutputStream
*/
String xmlStr = cbReg.convertToXml();

// Print the string for debugging purposes
System.out.println(xmlStr);
return (xmlStr);

}

/*
* readRegistrationReply

Appendix G • CrnpClient.java Application 325

* ------------------------
* Parse the xml into a Document, construct a RegReply object
* from the document, and print the RegReply object. Note that
* a real application would take action based on the status_code
* of the RegReply object.
*/
private void readRegistrationReply(InputStream stream)

throws Exception
{

// Create the document builder
DocumentBuilder db = dbf.newDocumentBuilder();

//
// Set an ErrorHandler before parsing
// Use the default handler.
//
db.setErrorHandler(new DefaultHandler());

//parse the input file
Document doc = db.parse(stream);

RegReply reply = new RegReply(doc);
reply.print(System.out);

}

/* private member variables */
private InetAddress regIp;
private int regPort;
private EventReceptionThread evtThr;
private String regs[];

/* public member variables */
public int localPort;
public DocumentBuilderFactory dbf;

}

/*
* class EventReceptionThread
* ----------------------------
* See file header comments above.
*/
class EventReceptionThread extends Thread
{

/*
* EventReceptionThread constructor
* ----------------------------------
* Creates a new ServerSocket, bound to the local hostname and
* a wildcard port.
*/
public EventReceptionThread(CrnpClient clientIn) throws IOException
{

/*
* keep a reference to the client so we can call it back
* when we get an event.
*/

326 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

client = clientIn;

/*
* Specify the IP to which we should bind. It’s
* simply the local host ip. If there is more
* than one public interface configured on this
* machine, we’ll go with whichever one
* InetAddress.getLocalHost comes up with.
*
*/
listeningSock = new ServerSocket(client.localPort, 50,

InetAddress.getLocalHost());
System.out.println(listeningSock);

}

/*
* run
* ---
* Called by the Thread.Start method.
*
* Loops forever, waiting for incoming connections on the ServerSocket.
*
* As each incoming connection is accepted, an Event object
* is created from the xml stream, which is then passed back to
* the CrnpClient object for processing.
*/
public void run()
{

/*
* Loop forever.
*/
try {

//
// Create the document builder using the document
// builder factory in the CrnpClient.
//
DocumentBuilder db = client.dbf.newDocumentBuilder();

//
// Set an ErrorHandler before parsing
// Use the default handler.
//
db.setErrorHandler(new DefaultHandler());

while(true) {
/* wait for a callback from the server */
Socket sock = listeningSock.accept();

// parse the input file
Document doc = db.parse(sock.getInputStream());

Event event = new Event(doc);
client.processEvent(event);

/* close the socket */

Appendix G • CrnpClient.java Application 327

sock.close();
}
// UNREACHABLE

} catch (Exception e) {
System.out.println(e);
System.exit(1);

}
}

/* private member variables */
private ServerSocket listeningSock;
private CrnpClient client;

}

/*
* class NVPair
* -----------
* This class stores a name/value pair (both Strings). It knows how to
* construct an NVPAIR XML message from its members, and how to parse
* an NVPAIR XML Element into its members.
*
* Note that the formal specification of an NVPAIR allows for multiple values.
* We make the simplifying assumption of only one value.
*/
class NVPair
{

/*
* Two constructors: the first creates an empty NVPair, the second
* creates an NVPair from an NVPAIR XML Element.
*/
public NVPair()
{

name = value = null;
}

public NVPair(Element elem)
{

retrieveValues(elem);
}

/*
* Public setters.
*/
public void setName(String nameIn)
{

name = nameIn;
}

public void setValue(String valueIn)
{

value = valueIn;
}

/*

328 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

* Prints the name and value on a single line.
*/
public void print(PrintStream out)
{

out.println("NAME=" + name + " VALUE=" + value);
}

/*
* createXmlElement
* ------------------
* Constructs an NVPAIR XML Element from the member variables.
* Takes the Document as a parameter so that it can create the
* Element.
*/
public Element createXmlElement(Document doc)
{

// Create the element.
Element nvpair = (Element)

doc.createElement("NVPAIR");
//
// Add the name. Note that the actual name is
// a separate CDATA section.
//
Element eName = doc.createElement("NAME");
Node nameData = doc.createCDATASection(name);
eName.appendChild(nameData);
nvpair.appendChild(eName);
//
// Add the value. Note that the actual value is
// a separate CDATA section.
//
Element eValue = doc.createElement("VALUE");
Node valueData = doc.createCDATASection(value);
eValue.appendChild(valueData);
nvpair.appendChild(eValue);

return (nvpair);
}

/*
* retrieveValues
* ----------------
* Parse the XML Element to retrieve the name and value.
*/
private void retrieveValues(Element elem)
{

Node n;
NodeList nl;

//
// Find the NAME element
//
nl = elem.getElementsByTagName("NAME");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "

Appendix G • CrnpClient.java Application 329

+ "NAME node.");
return;

}

//
// Get the TEXT section
//
n = nl.item(0).getFirstChild();
if (n == null || n.getNodeType() != Node.TEXT_NODE) {

System.out.println("Error in parsing: can’t find "
+ "TEXT section.");

return;
}

// Retrieve the value
name = n.getNodeValue();

//
// Now get the value element
//
nl = elem.getElementsByTagName("VALUE");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "VALUE node.");

return;
}

//
// Get the TEXT section
//
n = nl.item(0).getFirstChild();
if (n == null || n.getNodeType() != Node.TEXT_NODE) {

System.out.println("Error in parsing: can’t find "
+ "TEXT section.");

return;
}

// Retrieve the value
value = n.getNodeValue();

}

/*
* Public accessors
*/
public String getName()
{

return (name);
}

public String getValue()
{

return (value);
}

330 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

// Private member vars
private String name, value;

}

/*
* class Event
* -----------
* This class stores an event, which consists of a class, subclass, vendor,
* publisher, and list of name/value pairs. It knows how to
* construct an SC_EVENT_REG XML Element from its members, and how to parse
* an SC_EVENT XML Element into its members. Note that there is an assymetry
* here: we parse SC_EVENT elements, but construct SC_EVENT_REG elements.
* That is because SC_EVENT_REG elements are used in registration messages
* (which we must construct), while SC_EVENT elements are used in event
* deliveries (which we must parse). The only difference is that SC_EVENT_REG
* elements don’t have a vendor or publisher.
*/
class Event
{

/*
* Two constructors: the first creates an empty Event; the second
* creates an Event from an SC_EVENT XML Document.
*/
public Event()
{

regClass = regSubclass = null;
nvpairs = new Vector();

}

public Event(Document doc)
{

nvpairs = new Vector();

//
// Convert the document to a string to print for debugging
// purposes.
//
DOMSource domSource = new DOMSource(doc);
StringWriter strWrite = new StringWriter();
StreamResult streamResult = new StreamResult(strWrite);
TransformerFactory tf = TransformerFactory.newInstance();
try {

Transformer transformer = tf.newTransformer();
transformer.transform(domSource, streamResult);

} catch (TransformerException e) {
System.out.println(e.toString());
return;

}
System.out.println(strWrite.toString());

// Do the actual parsing.
retrieveValues(doc);

Appendix G • CrnpClient.java Application 331

}

/*
* Public setters.
*/
public void setClass(String classIn)
{

regClass = classIn;
}

public void setSubclass(String subclassIn)
{

regSubclass = subclassIn;
}

public void addNvpair(NVPair nvpair)
{

nvpairs.add(nvpair);
}

/*
* createXmlElement
* ------------------
* Constructs an SC_EVENT_REG XML Element from the member variables.
* Takes the Document as a parameter so that it can create the
* Element. Relies on the NVPair createXmlElement ability.
*/
public Element createXmlElement(Document doc)
{

Element event = (Element)
doc.createElement("SC_EVENT_REG");

event.setAttribute("CLASS", regClass);
if (regSubclass != null) {

event.setAttribute("SUBCLASS", regSubclass);
}
for (int i = 0; i < nvpairs.size(); i++) {

NVPair tempNv = (NVPair)
(nvpairs.elementAt(i));

event.appendChild(tempNv.createXmlElement(
doc));

}
return (event);

}

/*
* Prints the member vars on multiple lines.
*/
public void print(PrintStream out)
{

out.println("\tCLASS=" + regClass);
out.println("\tSUBCLASS=" + regSubclass);
out.println("\tVENDOR=" + vendor);
out.println("\tPUBLISHER=" + publisher);
for (int i = 0; i < nvpairs.size(); i++) {

NVPair tempNv = (NVPair)

332 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

(nvpairs.elementAt(i));
out.print("\t\t");
tempNv.print(out);

}
}

/*
* retrieveValues
* ----------------
* Parse the XML Document to retrieve the class, subclass, vendor,
* publisher, and nvpairs.
*/
private void retrieveValues(Document doc)
{

Node n;
NodeList nl;

//
// Find the SC_EVENT element.
//
nl = doc.getElementsByTagName("SC_EVENT");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "SC_EVENT node.");

return;
}

n = nl.item(0);

//
// Retrieve the values of the CLASS, SUBCLASS,
// VENDOR and PUBLISHER attributes.
//
regClass = ((Element)n).getAttribute("CLASS");
regSubclass = ((Element)n).getAttribute("SUBCLASS");
publisher = ((Element)n).getAttribute("PUBLISHER");
vendor = ((Element)n).getAttribute("VENDOR");

//
// Retrieve all the nv pairs
//
for (Node child = n.getFirstChild(); child != null;

child = child.getNextSibling())
{

nvpairs.add(new NVPair((Element)child));
}

}

/*
* Public accessor methods.
*/
public String getRegClass()
{

return (regClass);
}

Appendix G • CrnpClient.java Application 333

public String getSubclass()
{

return (regSubclass);
}

public String getVendor()
{

return (vendor);
}

public String getPublisher()
{

return (publisher);
}

public Vector getNvpairs()
{

return (nvpairs);
}

// Private member vars.
private String regClass, regSubclass;
private Vector nvpairs;
private String vendor, publisher;

}

/*
* class CallbackReg
* -----------
* This class stores a port and regType (both Strings), and a list of Events.
* It knows how to construct an SC_CALLBACK_REG XML message from its members.
*
* Note that this class does not need to be able to parse SC_CALLBACK_REG
* messages, because only the CRNP server must parse SC_CALLBACK_REG
* messages.
*/
class CallbackReg
{

// Useful defines for the setRegType method
public static final int ADD_CLIENT = 0;
public static final int ADD_EVENTS = 1;
public static final int REMOVE_EVENTS = 2;
public static final int REMOVE_CLIENT = 3;

public CallbackReg()
{

port = null;
regType = null;
regEvents = new Vector();

}

/*
* Public setters.

334 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

*/
public void setPort(String portIn)
{

port = portIn;
}

public void setRegType(int regTypeIn)
{

switch (regTypeIn) {
case ADD_CLIENT:

regType = "ADD_CLIENT";
break;

case ADD_EVENTS:
regType = "ADD_EVENTS";
break;

case REMOVE_CLIENT:
regType = "REMOVE_CLIENT";
break;

case REMOVE_EVENTS:
regType = "REMOVE_EVENTS";
break;

default:
System.out.println("Error, invalid regType " +

regTypeIn);
regType = "ADD_CLIENT";
break;

}
}

public void addRegEvent(Event regEvent)
{

regEvents.add(regEvent);
}

/*
* convertToXml
* ------------------
* Constructs an SC_CALLBACK_REG XML Document from the member
* variables. Relies on the Event createXmlElement ability.
*/
public String convertToXml()
{

Document document = null;
DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();
try {

DocumentBuilder builder = factory.newDocumentBuilder();
document = builder.newDocument();

} catch (ParserConfigurationException pce) {
// Parser with specified options can’t be built
pce.printStackTrace();
System.exit(1);

}
Element root = (Element) document.createElement(

Appendix G • CrnpClient.java Application 335

"SC_CALLBACK_REG");
root.setAttribute("VERSION", "1.0");
root.setAttribute("PORT", port);
root.setAttribute("REG_TYPE", regType);
for (int i = 0; i < regEvents.size(); i++) {

Event tempEvent = (Event)
(regEvents.elementAt(i));

root.appendChild(tempEvent.createXmlElement(
document));

}
document.appendChild(root);

//
// Now convert the document to a string.
//
DOMSource domSource = new DOMSource(document);
StringWriter strWrite = new StringWriter();
StreamResult streamResult = new StreamResult(strWrite);
TransformerFactory tf = TransformerFactory.newInstance();
try {

Transformer transformer = tf.newTransformer();
transformer.transform(domSource, streamResult);

} catch (TransformerException e) {
System.out.println(e.toString());
return ("");

}
return (strWrite.toString());

}

// private member vars
private String port;
private String regType;
private Vector regEvents;

}

/*
* class RegReply
* -----------
* This class stores a status_code and status_msg (both Strings).
* It knows how to parse an SC_REPLY XML Element into its members.
*/
class RegReply
{

/*
* The only constructor takes an XML Document and parses it.
*/
public RegReply(Document doc)
{

//
// Now convert the document to a string.
//
DOMSource domSource = new DOMSource(doc);
StringWriter strWrite = new StringWriter();
StreamResult streamResult = new StreamResult(strWrite);

336 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

TransformerFactory tf = TransformerFactory.newInstance();
try {

Transformer transformer = tf.newTransformer();
transformer.transform(domSource, streamResult);

} catch (TransformerException e) {
System.out.println(e.toString());
return;

}
System.out.println(strWrite.toString());

retrieveValues(doc);
}

/*
* Public accessors
*/
public String getStatusCode()
{

return (statusCode);
}

public String getStatusMsg()
{

return (statusMsg);
}

/*
* Prints the info on a single line.
*/
public void print(PrintStream out)
{

out.println(statusCode + ": " +
(statusMsg != null ? statusMsg : ""));

}

/*
* retrieveValues
* ----------------
* Parse the XML Document to retrieve the statusCode and statusMsg.
*/
private void retrieveValues(Document doc)
{

Node n;
NodeList nl;

//
// Find the SC_REPLY element.
//
nl = doc.getElementsByTagName("SC_REPLY");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "SC_REPLY node.");

return;
}

Appendix G • CrnpClient.java Application 337

n = nl.item(0);

// Retrieve the value of the STATUS_CODE attribute
statusCode = ((Element)n).getAttribute("STATUS_CODE");

//
// Find the SC_STATUS_MSG element
//
nl = ((Element)n).getElementsByTagName("SC_STATUS_MSG");
if (nl.getLength() != 1) {

System.out.println("Error in parsing: can’t find "
+ "SC_STATUS_MSG node.");

return;
}

//
// Get the TEXT section, if there is one.
//
n = nl.item(0).getFirstChild();
if (n == null || n.getNodeType() != Node.TEXT_NODE) {

// Not an error if there isn’t one, so we
// just silently return.
return;

}

// Retrieve the value
statusMsg = n.getNodeValue();

}

// private member vars
private String statusCode;
private String statusMsg;

}

338 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

Index

Numbers and Symbols
#$upgrade_from directive, 57, 58

Anytime, 58
At_creation, 59
tunability values, 58
When_disabled, 59
When_offline, 58
When_unmanaged, 59
When_unmonitored, 58

$hostnames variable, Agent Builder, 163

A
accessing network address, with DSDL, 118
Agent Builder

$hostnames variable, 163
analyzing the application, 156
binary files, 168
cloning existing resource type, 165
Cluster Agent module, 174

differences, 178
command-line version, 166
Configure screen, 161
configuring, 156
Create screen, 159
creating a service using GDS, 187
creating a service using GDS with the

command-line version of, 192
creating resource types, 164
description, 20, 25
directory structure, 167
editing generated source code, 165

Agent Builder (Continued)
GDS output, 190
installing, 156
launching, 157
man pages, 169
navigating in, 171

Browse button, 172
Edit menu, 174
File menu, 173
menus, 173

package directory, 170
reusing completed work, 165
rtconfig file, 171
scripts, 169
source files, 168
starting, 157
support files, 170
using, 156
using to create GDS, 182, 186

Anytime, #$upgrade_from directive, 58
API, Resource Management, See RMAPI
arguments, RMAPI method, 77
arraymax, resource type migration, 56
arraymin, resource type migration, 56
At_creation, #$upgrade_from

directive, 59
attributes, resource property, 250

B
binary files, Agent Builder, 168
Boot method, using, 44, 79

339

Browse button, Agent Builder, 172

C
C program functions, RMAPI, 73
callback method, overview, 19
callback methods

control, 78
description, 23
initialization, 78
Monitor_check, 81
Monitor_start, 81
Monitor_stop, 81
Postnet_start, 80
Prenet_start, 80
RMAPI, 77
Update, 80
using, 47
Validate, 80

CCR (cluster configuration repository), 62
checks, validating for scalable services, 51
client, CRNP, 205
cloning existing resource type, Agent

Builder, 165
Cluster Agent module

Agent Builder differences, 178
description, 174
installing, 174
setting up, 174
starting, 175
using, 177

cluster commands, RMAPI, 73
cluster configuration repository, 62
cluster functions, RMAPI, 76
Cluster Reconfiguration Notification Protocol,

See CRNP
code

changing method, 69
changing monitor, 69

codes, RMAPI exit, 78
command line

Agent Builder, 166
commands on, 26

commands
halockrun, 46
hatimerun, 46
RMAPI resource type, 73

commands (Continued)
Sun Cluster, 26
using to create GDS, 182, 191

components, RMAPI, 24
Configure screen, Agent Builder, 161
configuring, Agent Builder, 156
Create screen, Agent Builder, 159
creating resource types, Agent Builder, 164
CRNP

authentication, 213
client, 205
client identification process, 205
communciation, 203
description, 201
error conditions, 208
example Java application, 213
function of, 202
message types, 203
protocol, 202
registration of client and server, 205
SC_CALLBACK_REG messages, 205
semantics of protocol, 202
server, 205
server event delivery, 209
server reply, 207

D
daemon, designing the fault monitor, 129
data service

creating
analyzing suitability, 27
determining the interface, 29

sample, 83
common functionality, 90
controlling the data service, 94
defining a fault monitor, 100
extension properties in RTR file, 89
generating error messages, 93
handling property updates, 109
Monitor_check method, 108
Monitor_start method, 106
Monitor_stop method, 106
obtaining property information, 93
probe program, 100
resource properties in RTR file, 86
RTR file, 85

340 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

data service, sample (Continued)
Start method, 94
Stop method, 97
Update method, 113
Validate method, 109

setting up development environment, 30
transferring to cluster for testing, 31

Data Service Development Library, See DSDL
data services

testing, 51
testing HA, 52
writing, 51

debugging resource types with DSDL, 118
default property values

cluster configuration repository, 62
new value for upgrade, 63
Sun Cluster 3.0, 63
upgrades, 62
when inherited, 63

dependencies, coordinating between
resources, 52

directive
#$upgrade_from, 57, 58
default tunability, 57
placement in RTR file, 57
tunability constraints, 57

directories, Agent Builder, 170
directory structure, Agent Builder, 167
distinguishing between multiple registered

versions, RT_version, 56
distinguishing between vendors, Vendor_id, 56
documentation requirements

for upgrade, 63
tunability constraints, 63

DSDL
accessing network address, 118
components, 25
debugging resource types, 118
description, 115, 116
enabling HA local file systems, 119
fault monitor functions, 199
fault monitoring, 198
functions, 195
general purpose functions, 195
implementing a fault monitor, 117
libdsdev.so, 20
network resource-access functions, 197
overview, 20

DSDL (Continued)
PMF (Process Monitor Facility)
functions, 198
property functions, 197
sample resource type implementation

determining the fault monitor action, 149
returning from svc_start(), 138
scds_initialize() function, 135
starting the service, 137
SUNW.xfnts fault monitor, 144
SUNW.xfnts RTR file, 135
svc_probe() function, 146
TCP port number, 134
validating the service, 136
X font server, 133
X font server configuration file, 134
xfnts_monitor_check method, 144
xfnts_monitor_start method, 141
xfnts_monitor_stop method, 143
xfnts_probe main loop, 145
xfnts_start method, 136
xfnts_stop method, 140
xfnts_update method, 152
xfnts_validate method, 150

starting a data service, 117
stopping a data service, 117
utility functions, 199
where implemented, 20

E
editing generated Agent Builder source

code, 165
enabling HA local file systems with DSDL, 119
error conditions, CRNP, 208
examples

data service, 83
Java application that uses CRNP, 213
resource type upgrade, 64

exit codes, RMAPI, 78
extension properties, declaring, 38

F
failover resource, implementing, 47

Index 341

fault monitor
daemon

designing the, 129
functions, DSDL, 199
SUNW.xfnts, 144

files
binary in Agent Builder, 168
rtconfig, 171
source in Agent Builder, 168
support in Agent Builder, 170

Fini method, using, 44, 79
fully qualified name, how obtained, 57
functions

DSDL, 195
DSDL fault monitor, 199
DSDL network resource-access, 197
DSDL PMF (Process Monitor Facility), 198
DSDL property, 197
DSDL utility, 199
general purpose DSDL, 195
RMAPI C program, 73
RMAPI cluster, 76
RMAPI resource, 74
RMAPI resource group, 75
RMAPI resource type, 75
RMAPI utility, 76
scds_initialize(), 135
svc_probe(), 146

G
GDS

Agent Builder output, 190
Child_mon_level property, 186
creating a service with Agent Builder, 187
creating a service with command-line version

of Agent Builder, 192
definition, 41
description, 181
Failover_enabled property, 186
Network_resources_used property, 184
Port_list property, 183
Probe_command property, 185
Probe_timeout property, 185
required properties, 183
Start_command extension property, 183
Start_timeout property, 185

GDS (Continued)
Stop_command property, 184
Stop_signal property, 186
Stop_timeout property, 185
SUNW.gds resource type, 181
using with Agent Builder, 182, 186
using with Sun Cluster administration

commands, 182, 191
ways to use, 182
when to use, 183
why use, 182

generic data service
See GDS

H
HA data services, testing, 52
halockrun, description, 46
hatimerun, description, 46

I
idempotency, methods, 41
implementing

fault monitor with DSDL, 117
resource type monitor, 64
resource type names, 64
RMAPI, 19

Init method, using, 44, 79
installation requirements, resource type

packages, 68
installing Agent Builder, 156
interfaces, command-line, 26

J
Java, sample application that uses CRNP, 213

K
keep-alives, using, 51

342 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

L
libdsdev.so, DSDL, 20
libscha.so, RMAPI, 19
logging, adding to a resource, 46

M
man pages, Agent Builder, 169
master, description, 22
max, resource type migration, 56
menus

Agent Builder, 173
Agent Builder Edit, 174
Agent Builder File, 173

message logging, adding to a resource, 46
messages, SC_CALLBACK_REG CRNP, 205
method arguments, RMAPI, 77
method code, changing, 69
methods

Boot, 44, 79, 128
callback, 47

control, 78
initialization, 78

Fini, 44, 79, 128
idempotency, 41
Init, 44, 79, 128
Monitor_check, 81, 127
Monitor_check callback, 81
Monitor_start, 81, 126
Monitor_start callback, 81
Monitor_stop, 81, 127
Monitor_stop callback, 81
Postnet_start, 80
Postnet_start callback, 80
Prenet_start, 80
Prenet_start callback, 80
Start, 43, 78, 124
Stop, 43, 78, 125
Update, 47, 80, 127
Update callback, 80
Validate, 47, 80, 122
Validate callback, 80
xfnts_monitor_check, 144
xfnts_monitor_start, 141
xfnts_monitor_stop, 143
xfnts_start, 136
xfnts_stop, 140

methods (Continued)
xfnts_update, 152
xfnts_validate, 150

migrating resource types, 55
min, resource type migration, 56
Monitor_check method

compatibility, 58
using, 81

monitor code, changing, 69
Monitor_start method, using, 81
Monitor_stop method, using, 81

N
navigating Agent Builder, 171
network resource-access functions, DSDL, 197

O
obtaining fully qualified name, 57
options, tunability, 56

P
package directory, Agent Builder, 170
PMF

functions, DSDL, 198
purpose, 46

Postnet_start method, using, 80
Postnet_stop, compatibility, 58
Prenet_start method, using, 80
primaries, 22
primary nodes, 22
process management, 46
process management facility, overview, 20
process monitor facility, See PMF
process trees, creating resource types with

multiple independent, 164
programming architecture, 20
properties

changing resource, 47
Child_mon_level, 186
declaring extension, 38
declaring resource, 35
declaring resource type, 32

Index 343

properties (Continued)
Failover_enabled, 186
GDS, required, 186
Network_resources_used, 184
Port_list, 183
Probe_command, 185
Probe_timeout, 185
resource, 237
resource group, 246
resource type, 231
setting resource, 32, 47
setting resource type, 32
Start_command extension, 183
Start_timeout, 185
Stop_command, 184
Stop_signal, 186
Stop_timeout, 185

property attributes, resource, 250
property functions, DSDL, 20
property values, default, 62
protocol, CRNP, 202

R
registering CRNP clients and servers, 205
resource

adding message logging to a, 46
implementing a failover, 47
implementing a scalable, 48
migrating to a different version, 59
monitoring, 45
starting, 42
stopping, 42

resource commands, RMAPI, 72
resource dependencies, coordinating, 52
resource functions, RMAPI, 74
resource group commands, RMAPI, 73
resource group functions, RMAPI, 75
Resource Group Manager, See RGM
resource group properties, 246

accessing information about, 40
resource groups

description, 22
failover, 22
properties, 22
scalable, 22

Resource Management API, See RMAPI

resource properties, 237
accessing information about, 40
changing, 47
declaring, 35
setting, 32, 47

resource property attributes, 250
Resource_type, migration, 56
resource type

migration requirements, 55
multiple versions, 55
upgrading, 60

resource type commands, RMAPI, 73
resource type functions, RMAPI, 75
resource type monitor, implementing, 64
resource type names

implementing, 64
restrictions, 57
Sun Cluster 3.0, 58
version suffix, 56
without version suffix, 58

resource type packages, installation
requirements, 68

resource type properties, 231
declaring, 32
setting, 32

resource type registration, See RTR
resource type upgrades, examples of, 64
resource Type_version property, 58

editing, 58
tunability, 58

resource types
creating, 164
debugging with DSDL, 118
description, 21

resources
coordinating dependencies between, 52
description, 22

reusing completed work, Agent Builder, 165
RGM

description, 23
handling of resource groups, 21
handling of resource types, 21
handling of resources, 21
purpose, 20

RMAPI, 19
C program functions, 73
callback methods, 77
cluster commands, 73

344 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

RMAPI (Continued)
cluster functions, 76
components, 24
exit codes, 78
libscha.so, 19
method arguments, 77
resource commands, 72
resource functions, 74
resource group commands, 73
resource group functions, 75
resource type commands, 73
resource type functions, 75
shell commands, 72
utility functions, 76
where implemented, 19

RT_version, migration, 56
RT_Version

purpose, 57
when not to change, 57
when to change, 57

rtconfig file, 171
RTR

description, 23
file

changing, 68
description, 122
migration, 56
SUNW.xfnts, 135

S
sample data service

common functionality, 90
controlling the data service, 94
defining a fault monitor, 100
extension properties in RTR file, 89
generating error messages, 93
handling property updates, 109
Monitor_check method, 108
Monitor_start method, 106
Monitor_stop method, 106
obtaining property information, 93
probe program, 100
RTR file, 85
sample properties in RTR file, 86
Start method, 94
Stop method, 97

sample data service (Continued)
Update method, 113
Validate method, 109

sample DSDL
determining the fault monitor action, 149
returning from svc_start(), 138
scds_initialize() function, 135
starting the service, 137
SUNW.xfnts fault monitor, 144
SUNW.xfnts RTR file, 135
svc_probe() function, 146
TCP port number, 134
validating the service, 136
X font server, 133
X font server configuration file, 134
xfnts_monitor_check method, 144
xfnts_monitor_start method, 141
xfnts_monitor_stop method, 143
xfnts_probe main loop, 145
xfnts_start method, 136
xfnts_stop method, 140
xfnts_update method, 152
xfnts_validate method, 150

scalable resource, implementing, 48
scalable services, validating, 51
scds_initialize() function, 135
screens

Configure, 161
Create, 159

scripts, Agent Builder, 169
server

CRNP, 205
X font

configuration file, 134
definition, 133

xfs
port number, 134

shell commands, RMAPI, 72
source code, editing generated Agent

Builder, 165
source files, Agent Builder, 168
Start method, using, 43, 78
starting a data service with DSDL, 117
Stop method

compatibility, 58
using, 43, 78

stopping a data service with DSDL, 117

Index 345

Sun Cluster
commands, 26
using with GDS, 182

SunPlex Agent Builder, See Agent Builder
SunPlex Manager, description, 26
SUNW.xfnts

fault monitor, 144
RTR file, 135

support files, Agent Builder, 170
svc_probe() function, 146

T
TCP connections, using DSDL fault

monitoring, 198
testing

data services, 51
HA data services, 52

tunability constraints, documentation
requirements, 63

tunability options, 56
Anytime, 58
At_creation, 59
When_disabled, 59
When_offline, 58
When_unmanaged, 59
When_unmonitored, 58

U
Update method

compatibility, 58
using, 47, 80

upgrade aware, defined, 55
upgrades

default property values, 62
documentation requirements, 63
examples of resource type, 64

utility functions
DSDL, 199
RMAPI, 76

V
Validate method

checking property values for upgrade, 63
upgrades, 60
using, 47, 80

validation checks, scalable services, 51
values, default property, 62
Vendor_id

distinguishing between, 56
migration, 56

W
When_disabled, #$upgrade_from

directive, 59
When_offline, #$upgrade_from

directive, 58
When_unmanaged, #$upgrade_from

directive, 59
When_unmonitored, #$upgrade_from

directive, 58
writing data services, 51

X
X font server

configuration file, 134
definition, 133

xfnts_monitor_check, 144
xfnts_monitor_start, 141
xfnts_monitor_stop, 143
xfnts_start, 136
xfnts_stop, 140
xfnts_update, 152
xfnts_validate, 150
xfs server, port number, 134

346 Sun Cluster Data Services Developer’s Guide for Solaris OS • April 2004, Revision A

