
Sun Java™ System

Directory Server 5.2
Performance Tuning Guide

2004Q2

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-5220-10

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
This distribution may include materials developed by third parties.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the
U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, the Duke logo,
the Java Coffee Cup logo, the Solaris logo, the SunTone Certified logo and the Sun ONE logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
Legato and the Legato logo are registered trademarks, and Legato NetWorker, are trademarks or registered trademarks of Legato Systems, Inc.
The Netscape Communications Corp logo is a trademark or registered trademark of Netscape Communications Corporation.
The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun's written license agreements.
Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct
or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.
CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.
Cette distribution peut comprendre des composants développés par des tierces parties.
Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, le logo Duke, le
logo Java Coffee Cup, le logo Solaris, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
Legato, le logo Legato, et Legato NetWorker sont des marques de fabrique ou des marques déposées de Legato Systems, Inc. Le logo Netscape
Communications Corp est une marque de fabrique ou une marque déposée de Netscape Communications Corporation.
L'interface d'utilisation graphique OPEN LOOK et Sun(TM) a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique
pour l'industrie de l'informatique. Sun détient une license non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux
licences écrites de Sun.
Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales,
ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime, directement ou
indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des entites
figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui font objet d'un
ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la legislation
americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

3

Contents

Preface . 7

Who Should Read This Guide . 8
How This Guide Is Organized . 8
Using the Documentation . 9
Conventions . 10
Resources and Tools on the Web . 12
How to Report Problems . 14
Sun Welcomes Your Comments . 14

Chapter 1 Top Tuning Tips . 15

Chapter 2 Tuning the Operating System . 21
Checking Platform Support . 21
Patching the System . 22
Enforcing Basic Security . 22

Isolate the System . 22
No Dual Boot . 22
Strong Passwords . 22
Users and Groups . 23
Disabling Unnecessary Services . 23

Keeping Accurate Time . 24
Restarting After System Failure . 24
Generating Basic Tuning Recommendations . 25
Tuning System Settings . 25

File Descriptors . 26
Transmission Control Protocol (TCP) Settings . 26

Closed Connections in the TIME-WAIT State . 27
Connections Pending Acceptance . 27
Inactive Connections . 27
Incoming Connections . 28

4 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Outgoing Connections . 28
Retransmission Timeout . 28
Sequence Numbers . 28

Chapter 3 Tuning Cache Sizes . 29
Types of Cache . 29

Database Cache . 31
Entry Cache . 32
Import Cache . 33
File System Cache . 33
Total Aggregate Cache Size . 34

How Searches Use Cache . 34
Base Search Process . 35
Subtree and One-Level Search Process . 36

How Updates Use Cache . 37
How Suffix Initialization Uses Cache . 38
Optimizing For Searches . 40

All Entries and Indexes in Memory . 40
Plenty of Memory, 32-Bit Directory Server . 42
Not Enough Memory . 42

Optimizing for Updates . 42
Cache Priming and Monitoring . 44
Other Optimizations . 44

Chapter 4 Tuning Indexing . 45
About Indexes . 45
Benefits: How Searches Use Indexes . 46
Costs: How Updates Affect Indexes . 47

Presence Indexes . 48
Equality Indexes . 49
Substring Indexes . 51
Browsing (Virtual List View) Indexes . 52
Approximate Indexes . 53
International Indexes . 53
Example: Indexing an Entry . 53

Tuning Indexing for Performance . 55
Allowing Only Indexed Searches . 55
Limiting Index List Length . 55

Symptoms of Inappropriate Index List Size . 57
Changing the Index List Threshold Size . 57

5

Chapter 5 Tuning Logging . 59
Access Logging . 60
Audit Logging . 61
Error Logging . 62
Multi-Master Replication Change Logging . 64
Retro Change Logging . 65
Transaction Logging . 65

Chapter 6 Managing Use of Other Resources . 69
Limiting Resources Available to Clients . 69
Using Available System Resources . 72

Managing Access Control . 74
Configuring Server Plug-Ins . 75

Chapter 7 Tuning Class of Service . 77
How Class of Service Works . 77

Pointer CoS . 78
Indirect CoS . 79
Classic CoS . 81
CoS Ambiguity . 83

Implementing CoS for Best Performance . 84
When Many Entries Share the Same Value . 84
When Entries Have Natural Relationships . 85
Avoid Thousands of CoS Definitions . 89

Glossary . 91

Index . 93

6 Directory Server 5.2 2004Q2 • Performance Tuning Guide

7

Preface

The Directory Server Performance Tuning Guide contains the information you need
in order to carry out post-installation configuration and tuning. While Directory
Server offers great performance out of the box, you can tune it for even better
performance, sometimes with spectacular results.

This preface contains the following sections:

• Who Should Read This Guide

• How This Guide Is Organized

• Using the Documentation

• Conventions

• Resources and Tools on the Web

• How to Report Problems

• Sun Welcomes Your Comments

Before performing any of the tasks described in this guide, read the Directory Server
Release Notes. Before installing Directory Server for use in a production
environment, make sure your deployment objectives are clear. Refer to the
Directory Server Deployment Planning Guide for more information. When installing
the software, refer to the Directory Server Installation and Migration Guide for
instructions.

Who Should Read This Guide

8 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Who Should Read This Guide
This guide is intended for system administrators and developers aiming to tune
Directory Server for top performance.

The author of this guide assumes you are familiar with the following:

• Directory Server product concepts, especially if your deployment is complex

• Specifications for LDAP and related protocols

• Clustering model (if you are using Directory Server with Sun Cluster software)

• Internet and World Wide Web technologies

How This Guide Is Organized
This guide is divided into these chapters:

• Top Tuning Tips

Provides an quick overview of tuning and what to tune.

• Tuning the Operating System

Covers tuning operating system settings for top performance.

• Tuning Cache Sizes

Covers how caches work, and how you can tune their sizes.

• Tuning Indexing

Covers how indexes work, and how you can configure them to enhance search
and update rates.

• Tuning Logging

Discusses how to handle the different types of logs for top performance.

• Managing Use of Other Resources

Covers tuning how Directory Server limits resources made available to client
applications, and how Directory Server makes use of system resources.

• Tuning Class of Service

Covers how Directory Server implements CoS to help you gauge whether a
particular use of CoS fits your performance requirements.

Using the Documentation

Preface 9

Using the Documentation
The Directory Server manuals are available as online files in Portable Document
Format (PDF) and Hypertext Markup Language (HTML) formats. Both formats are
readable by assistive technologies for users with disabilities. The Sun™
documentation web site can be accessed here:

http://docs.sun.com

The Directory Server documentation set can be accessed here:

http://docs.sun.com/coll/DirectoryServer_04q2

Table 1 briefly describes each document in the set. The left column provides the
name and Web location of each document. The right column describes the general
contents of the document.

Table 1 Directory Server Documentation

Document Contents

Directory Server Release Notes

http://docs.sun.com/doc/817-5216

Contains the latest information about Directory Server, including
known problems.

Directory Server Technical Overview

http://docs.sun.com/doc/817-5217

Provides a quick look at many key features of Directory Server.

Directory Server Deployment Planning Guide

http://docs.sun.com/doc/817-5218

Explains how to plan directory topology, data structure, security,
and monitoring, and discusses example deployments.

Directory Server Installation and Migration Guide

http://docs.sun.com/doc/817-5219

Covers update, upgrade, and data migration procedures for
moving to the latest version of Directory Server.

Directory Server Performance Tuning Guide

http://docs.sun.com/doc/817-5220

Provides tips and explanations you can use to optimize Directory
Server performance.

Directory Server Administration Guide

http://docs.sun.com/doc/817-5221

Gives the procedures for using the console and command-line to
manage your directory contents and configure every feature of
Directory Server.

Directory Server Administration Reference

http://docs.sun.com/doc/817-5235

Details the Directory Server configuration parameters,
commands, files, error messages, and schema.

Directory Server Plug-In Developer’s Guide

http://docs.sun.com/doc/817-5222

Demonstrates how to develop Directory Server plug-ins.

Directory Server Plug-In Developer’s Reference

http://docs.sun.com/doc/817-5223

Details the data structures and functions of the Directory Server
plug-in API.

Conventions

10 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Conventions
Table 2 describes the typeface conventions used in this guide.

Table 3 describes placeholder conventions used in this guide.

Table 2 Typeface Conventions

Typeface Meaning Examples

AaBbCc123

(Monospace)

API and language elements, HTML
tags, web site URLs, command
names, file names, directory path
names, on-screen computer output,
sample code.

Edit your .login file.

Use ls -a to list all files.

% You have mail.

AaBbCc123

(Monospace
bold)

What you type, as contrasted with
on-screen computer output.

% su

Password:

AaBbCc123

(Italic)

Book titles.

New words or terms.

Words to be emphasized.

Command-line variables to be
replaced by real names or values.

Read Chapter 6 in the Developer’s Guide.

These are called class options.

You must be superuser to do this.

The file is located in the ServerRoot
directory.

Table 3 Placeholder Conventions

Item Meaning Examples

install-dir Placeholder for the directory prefix
under which software binaries
reside after installation.

The default install-dir prefix on Solaris
systems is /.

The default install-dir prefix on Red Hat
systems is /opt/sun.

ServerRoot Placeholder for the directory where
server instances and data reside.

You can manage each server under
a ServerRoot remotely through your
client-side Server Console. The
Server Console uses the
server-side Administration Server to
perform tasks that must execute
directly on the server-side system.

The default ServerRoot directory is
/var/opt/mps/serverroot.

Conventions

Preface 11

Table 4 describes the symbol conventions used in this book.

Table 5 describes the shell prompt conventions used in this book.

slapd-serverID Placeholder for the directory where
a specific server instance resides
under the ServerRoot and its
associated data resides by default.

The default serverID is the host name.

Table 4 Symbol Conventions

Symbol Meaning Notation Example

[] Contain optional command options. O[n] -O4, -O

{ }

|

Contain a set of choices for a required
command option.

Separates command option choices.

d{y|n} -dy

+ Joins simultaneous keystrokes in keyboard
shortcuts that are used in a graphical user
interface.

Ctrl+A

- Joins consecutive keystrokes in keyboard
shortcuts that are used in a graphical user
interface.

Esc-S

> Indicates menu selection in a graphical user
interface.

File > New

File > New > Templates

Table 5 Shell Prompts

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Bourne shell and Korn shell superuser #

Table 3 Placeholder Conventions (Continued)

Item Meaning Examples

Resources and Tools on the Web

12 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Input and output of Directory Server commands are usually expressed using the
Lightweight Data Interchange Format (LDIF) [RFC 2849]. Lines are wrapped for
readability.

Resources and Tools on the Web
The following location contains information about Java Enterprise System and its
component products such as Directory Server:

http://wwws.sun.com/software/learnabout/enterprisesystem/index.html

Some supported platforms provide native tools for accessing Directory Server. For
more tools useful when testing and maintaining LDAP directory servers,
download the Sun Java System Directory Server Resource Kit (DSRK). This
software is available at the following location:

http://wwws.sun.com/software/download/

Installation instructions and reference documentation for the DSRK tools are
available in the Directory Server Resource Kit Tools Reference.

For developing directory client applications, you may also download the Sun Java
System Directory SDK for C and the Sun Java System Directory SDK for Java from
the same location.

Additionally, Java Naming and Directory Interface (JNDI) technology supports
accessing Directory Server using LDAP and DSML v2 from Java applications.
Information about JNDI is available from:

http://java.sun.com/products/jndi/

The JNDI Tutorial contains detailed descriptions and examples of how to use JNDI.
It is available at:

http://java.sun.com/products/jndi/tutorial/

Resources and Tools on the Web

Preface 13

Third-party URLs are included in this document to provide additional, related
information.

NOTE Sun is not responsible for the availability of third-party Web sites
mentioned in this document. Sun does not endorse and is not
responsible or liable for any content, advertising, products, or other
materials that are available on or through such sites or resources.
Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with the use of or reliance
on any such content, goods, or services that are available on or
through such sites or resources.

How to Report Problems

14 Directory Server 5.2 2004Q2 • Performance Tuning Guide

How to Report Problems
If you have problems with Directory Server, contact Sun customer support using
one of the following mechanisms:

• Sun Software Support services online at

http://www.sun.com/service/sunone/software

This site has links to the Online Support Center and ProductTracker, as well as
to maintenance programs and support contact numbers.

• The SunSolve support website at

http://sunsolve.sun.com

This site includes patches, support documents, security information, and the
Sun System Handbook.

• The telephone dispatch number associated with your maintenance contract

So that we can best assist you in resolving problems, please have the following
information available when you contact support:

• Description of the problem, including the situation where the problem occurs
and its impact on your operation

• Machine type, operating system version, and product version, including any
patches and other software that might be affecting the problem

• Detailed steps on the methods you have used to reproduce the problem

• Any error logs or core dumps

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments
and suggestions. Use the web-based form to provide feedback to Sun:

http://www.sun.com/hwdocs/feedback/

Please provide the full document title and part number in the appropriate fields.
The part number is a seven-digit or nine-digit number that can be found on the title
page of the book or at the top of the document. For example, the part number of
this Performance Tuning Guide is 817-5220-10.

15

Chapter 1

Top Tuning Tips

Tuning performance implies modifying the default configuration to reflect specific
deployment requirements.

This guide describes how to tune a single Directory Server instance. It is assumed
here that your overall directory service design including the replication topology is
complete, and that you use the information here to tune the Directory Server
instances to meet the design requirements. If you have not yet completed the
overall directory service design, refer to the Directory Server Deployment Planning
Guide for suggestions on how to do so.

Tuning performance takes time, effort, and thought as reflected in Table 1-1.

16 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Table 1-1 Tuning Process

Phase Description

Define goals Define specific, measurable objectives for tuning, based on
deployment requirements. Consider questions such as:

• Which applications use Directory Server?

• Is the system dedicated to Directory Server? Does it run other
applications? If so, which other applications?

• How many entries does the deployment call for? How large are
such entries?

• How many searches per second must the Directory Server
support? What types of searches are expected?

• How many updates per second must the Directory Server
support? What types of updates are expected?

• What sort of peak update and search rates are expected? What
sort of average rates are expected?

• Does the deployment call for repeated bulk import initialization
on this system? If so, how often are imports performed? How
many entries are imported at a time? What types of entries?
Must initialization be performed online with the server running?

This list is not exhaustive. Ensure yours is.

Select methods Determine how you plan to implement tuning optimizations and how
you plan to measure and analyze them.

Can you change the hardware configuration of the system? Are you
limited to using existing hardware, tuning only the underlying
operating system and Directory Server itself? How can you
simulate other applications? How should you generate
representative data samples for testing? How should you measure
results? How should you analyze results?

Perform tests Carry out the tests planned. For large and complex deployments,
this phase may take considerable time.

Verify results Check whether the potential optimizations tested reach the goals
defined at the outset of the process.

If they reach the goals, document the results.

If they do not reach the goals, profile and monitor the Directory
Server you are tuning.

Chapter 1 Top Tuning Tips 17

This chapter lists basic recommendations that apply almost every time you tune a
Directory Server instance. Although the recommendations presented here are in
general valid, avoid the temptation to apply them without understanding how
they impact the specific deployment at hand. This chapter is intended as a
checklist, not a cheat sheet.

1. Adjust cache sizes.

Ideally, the server has enough available physical memory to hold all caches
used by Directory Server, and an appropriate amount of extra available
physical memory to account for future growth. In the case where plenty of
physical memory is available, set the entry cache size large enough to hold all
entries in the directory, and set the database cache size large enough to hold all
indexes including the content of all *_id2entry.db3 files.

Refer to Chapter 3, “Tuning Cache Sizes,” for more information.

2. Optimize indexing.

Profile and monitor Profile and monitor the behavior of Directory Server after applying
the potential modifications. Collect measurements of all relative
behavior.

Plot and analyze Plot and analyze the behavior observed while profiling and
monitoring. Attempt to find evidence and patterns that suggest
further tests.

You may need to go back to the profiling and monitoring phase to
collect more data.

Tweak and tune Apply further potential optimizations suggested by your analysis of
measurements.

Return to the phase of performing tests.

Document results Once the optimizations applied reach the goals defined at the
outset of the process, document them well so they can be easily
reproduced.

Table 1-1 Tuning Process (Continued)

Phase Description

18 Directory Server 5.2 2004Q2 • Performance Tuning Guide

a. Remove unnecessary indexes and add additional indexes to support
expected requests.

From time to time, it may become necessary to add additional indexes that
support requests from new applications. It is possible to add, remove, and
modify indexes while Directory Server is running. Directory Server
gradually indexes data after you make changes to the indexes. You can
also force Directory Server to rebuild indexes.

Refer to “Benefits: How Searches Use Indexes” on page 46 and “Costs:
How Updates Affect Indexes” on page 47 for more information.

b. Allow only indexed searches.

Unindexed searches can have a strong negative impact on server
performance and may consume significant server resources. Consider
adding indexes to support specific searches applications may perform, and
forcing the server to reject unindexed searches.

Refer to “Allowing Only Indexed Searches” on page 55 for more
information.

c. Adjust the maximum length of index lists.

Refer to “Limiting Index List Length” on page 55 for more information.

3. Tune the underlying operating system.

Refer to Chapter 2, “Tuning the Operating System,” for more information.

4. Adjust operational limits.

Adjustable operational limits prevent Directory Server from devoting
inordinate resources to any single operation. Consider assigning unique bind
DNs to client applications requiring increased capabilities, then setting
resource limits specifically for these unique bind DNs.

Refer to Chapter 6, “Managing Use of Other Resources,” for more information.

5. Distribute disk activity.

Especially for deployments supporting large numbers of updates, Directory
Server can be extremely disk I/O intensive. If possible, consider spreading the
load across multiple disks using separate controllers.

Chapter 1 Top Tuning Tips 19

6. Disable unnecessary logging.

Disk access being slower than memory access, heavy logging can have a
negative impact on performance. Reduce disk load by leaving audit logging off
when not required, such as on a read-only server instance, and leave error
logging at a minimal level when not using the error log to troubleshoot
problems. You may also reduce the impact of logging by putting log files on a
lesser used disk, such as the disk used for the replication changelog.

Refer to Chapter 5, “Tuning Logging,” for more information.

7. When replicating large numbers of updates, consider adjusting network
configuration parameters related to replication as described in the Directory
Server Administration Guide.

8. (Solaris systems) Move the database home directory to a tmpfs file system.

The database home directory, specified by nsslapd-db-home-directory,
indicates where Directory Server locates database cache backing files. (Data
files continue to reside by default under ServerRoot/slapd-serverID/db.) By
placing the database cache backing files on a tmpfs file system, you keep the
system from flushing the database cache backing files to disk from time to
time, therefore avoiding a performance bottleneck for updates, and in some
cases even for searches. As the database cache memory is mapped to the
Directory Server process space, the system essentially shares cache memory
and memory used to hold the backing files in the tmpfs file system. You
therefore gain performance at essentially no cost in terms of memory space
needed.

The primary cost associated with this optimization is that database cache must
be rebuilt after a restart or reboot. This cost is probably not one you can avoid,
however, if you expect a restart or reboot to happen only after a crash. After a
crash, the database cache has to be rebuilt anyway.

9. Enable transaction batching if you can afford to lose updates during a crash.

20 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Each update to the transaction log is followed by a sync operation to ensure
update data is not lost. By enabling transaction batching, updates are grouped
together before being written to the transaction log, and sync operations only
take place when the whole batch is written to the transaction log. Enabling
transaction batching can therefore significantly increase update performance,
with the trade off that during a crash, you lose update data not yet written to
the transaction log.

10. Configure the referential integrity plug-in to delay integrity checks.

The referential integrity plug-in ensures that when entries are modified or
deleted from the directory, all references to those entries are updated. By
default, the processing is performed synchronously, before the response for the
delete operation is returned to the client. You can configure the plug-in to have
the updates performed asynchronously. Refer to “Configuring Server
Plug-Ins” on page 75 for details.

NOTE With transaction batching enabled, you lose up to
(nsslapd-db-transaction-batch-val - 1) updates during a crash,
because Directory Server waits for the batch to fill (or 1 second,
whichever is sooner) before flushing content to the transaction log.

Do not use this optimization if you cannot afford to lose updates.

21

Chapter 2

Tuning the Operating System

Default system and network settings may not be ideal for top directory service
performance. When tuning the underlying operating system for optimum
Directory Server performance, you should check that the latest recommended
patches are installed on the system, enforce basic security measures, and adjust
some system and network settings. This chapter addresses those tuning options.

The idsktune utility (directoryserver -u 5.2 idsktune) provided with the
product may help you to diagnose basic system configuration shortcomings. The
utility offers system tuning recommendations for support of high performance
directory services. The utility does not actually implement any of the
recommendations made. Tuning recommendations should be implemented by a
qualified system administrator.

This chapter covers the following topics:

• Checking Platform Support

• Patching the System

• Enforcing Basic Security

• Keeping Accurate Time

• Restarting After System Failure

• Generating Basic Tuning Recommendations

• Tuning System Settings

Checking Platform Support
Refer to the Directory Server Release Notes for an updated list of supported
platforms.

Patching the System

22 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Patching the System
In order to maintain overall system security, and to ensure proper installation and
operation of Directory Server 5.2, install the latest recommended system patches,
service packs, or fixes. Table 2-1 suggests where to look for required patches.

Enforcing Basic Security
The recommendations in this section do not eliminate all risk. Instead, they are
intended as a short checklist to help you work to limit some of the most obvious
security risks.

Isolate the System
If at all possible, isolate the system running Directory Server from the public
Internet using a network firewall.

No Dual Boot
Do not dual boot or run other operating systems on the system running Directory
Server. Other systems may permit access to otherwise restricted files.

Strong Passwords
Use a super user password at least 8 characters long that includes punctuation or
other non-alphabetic characters.

If you choose to use longer operating system passwords, it may be necessary to
configure the way passwords are handled by the system. Refer to the operating
system documentation for instructions.

Table 2-1 Where to Obtain Patches, By Platform

Platform Browse...

Sun Solaris™ Operating System http://sunsolve.sun.com/

Red Hat Linux http://www.redhat.com/

Enforcing Basic Security

Chapter 2 Tuning the Operating System 23

Users and Groups
For security reasons, it is recommended not to run Directory Server or the
associated Administration Server with super user privileges. You may, for
example, create a user and group without login privileges, and then install and run
the servers as this user and group. If you add the user and group to local files the
/etc/passwd entry could be, for example:

server:x:61001:61001:Server User:/dev/null:/dev/null

The corresponding /etc/group entry could be, for example:

servers:x:61001:

To facilitate debugging, you may choose to allow processes running with this user
and group identity to dump core, using utilities such as coreadm(1M) on Solaris
systems. For example, you can enable Directory Server running as this user and
group to generate core files by allowing setuid processes to do so, and updating
the coreadm configuration:

coreadm -e proc-setid
coreadm -u

Furthermore, by adding the following line near the top of the
ServerRoot/slapd-serverID/start-slapd script, you allow Directory Server to
generate core files of the form core.ns-slapd.pid, where pid is the process ID:

coreadm -p core.%f.%p $$

If a particular deployment calls for sharing Directory Server files with other servers
such as a messaging server, consider running those servers using the same user
and group.

If you must run the Administration Server as super user, consider stopping the
service when not using it. You must start the Administration Server again before
you can use the Console, which depends on Administration Server running.

Disabling Unnecessary Services
For top performance and less risk, dedicate the system to Directory Server alone.
Running additional services, especially network services, negatively affects server
performance and scalability, and may increase security risks.

Keeping Accurate Time

24 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Disable as many network services as possible. Directory Server uses only TCP/IP,
and UDP/IP if you run SNMP agents. It does not require file sharing and other
services. Disable services such as IP Routing, Mail, NetBIOS, NFS, RAS, Web
Publishing, and Windows Network Client services. Consider disabling telnet and
ftp.

As with many network services, telnet and ftp pose security risks. These two
services are particularly dangerous in that they transmit user passwords in clear
text over the network. You may be able to work around the need telnet and ftp
by using clients such as Secure Shell (ssh) and Secure FTP (sftp) instead.

If the Directory Server instance does not itself provide the naming service for the
network, consider enabling a naming service for the system, which Directory
Server then uses for example when resolving ACIs. Remote administration tools
such as Sun Java System Server Console rely on the naming service for some
aspects of their operation such as translating between IP addresses and host names.

Refer to the operating system documentation for details on disabling network
services.

Keeping Accurate Time
Ensure the system clock is reasonably in sync with those of other systems to
facilitate replication and correlation of date and time stamps in log files between
systems. Consider using a Network Time Protocol (NTP) client to set the correct
system time, for example.

Restarting After System Failure
When possible, stop Directory Server as described in the Directory Server
Administration Guide. Database corruption may cause Directory Server to start
slowly if stopped abruptly during system shutdown, rather than shut down
appropriately. Time may be needed to recover the database.

Consider using a logging option with your file system, which generally both
improves write performance and decrease the time required to perform a file
system check when the file system is not cleanly unmounted as is typically the case
during a crash. Also consider using RAID, as described in the Directory Server
Administration Guide.

As part of the installation and configuration process, appropriate scripts enable
restart at boot time.

Generating Basic Tuning Recommendations

Chapter 2 Tuning the Operating System 25

For other platforms, refer to the operating system documentation for details on
starting services at boot time.

Generating Basic Tuning Recommendations
Use the idsktune utility (directoryserver -u 5.2 idsktune) to generate basic
tuning recommendations.

When you run the utility as super user, it gathers information about the system. It
displays notices, warnings, and errors with recommended corrective actions. For
example, the utility checks that:

• Operating system and kernel versions are supported for this release.

• Available memory and disk space meet minimum requirements for typical use.

• System resource limits meet minimum requirements for typical use.

• Required patches are installed.

Individual deployment requirements may exceed minimum requirements. You
may opt to provide more resources than those identified as minimum system
requirements by the idsktune utility.

Refer to the Sun Java System Directory Server Resource Kit documentation for
details concerning the utility. The Sun Java System Directory Server Resource Kit
can be obtained as described in “Resources and Tools on the Web” on page 12.

Tuning System Settings
You may use the idsktune tool that reads current system settings and
recommends changes. In general, implementing the recommendations optimizes
performance both on systems dedicated to running Directory Server and on
systems running additional applications.

Consider local network conditions and other applications before implementing
specific recommendations. Refer to the operating system documentation for
additional network tuning tips.

NOTE Fix at minimum all ERROR conditions before installing Directory
Server software on a system intended for production use.

Tuning System Settings

26 Directory Server 5.2 2004Q2 • Performance Tuning Guide

File Descriptors
Directory Server uses file descriptors when handling concurrent client connections.
Having a low maximum number of file descriptors available in the system or
available to a process can thus limit the number of concurrent connections.
Recommendations concerning the number of file descriptors therefore relate to the
number of concurrent connections Directory Server may be able to handle on the
system.

On Solaris systems, the number of file descriptors available is configured through
the rlim_fd_max parameter, as described in the output of directoryserver -u
5.2 idsktune. Refer to the operating system documentation for further
instructions on modifying the number of available file descriptors.

After modifying the maximum number of available file descriptors on the system,
refer to Table 6-2 on page 72 for information on configuring Directory Server to use
the available file descriptors.

Transmission Control Protocol (TCP) Settings
Specific network settings depend on the platform. On some systems, it is possible
to enhance Directory Server performance by modifying TCP settings. This section
discusses the reasoning behind idsktune recommendations concerning TCP
settings.

Table 2-2 Configuration Files to Check Prior to Deployment

Platform File Remarks

Solaris Operating System /etc/init.d/inetinit Add ndd statements for tuning

/etc/system Check system tuning

/etc/vfstab Ensure files are local

Red Hat Linux /etc/fstab Ensure files are local

/etc/security/limits.conf Add nofile hard limit directive

/etc/sysctl.conf Check, set kernel parameters

/proc/sys/fs/file-max Check file descriptor limits

Tuning System Settings

Chapter 2 Tuning the Operating System 27

Closed Connections in the TIME-WAIT State
Some systems allow you to configure how long a TCP connection is held in the
kernel table after closure. While the connection is held, it may be opened again
quickly. When set too high, the system may track a large number of connections in
the kernel table over long intervals, reducing the number of available connections
to Directory Server. For most deployments, setting this parameter to a value of 30
seconds (30,000 milliseconds) allows more concurrent connections to Directory
Server.

On Solaris systems, this time interval is configured through the
tcp_time_wait_interval parameter, as described in the output of
directoryserver -u 5.2 idsktune.

Connections Pending Acceptance
Some systems allow you to configure the number of TCP connections pending
acceptance by a TCP listener such as Directory Server. When set too low, this limits
the number of pending connections Directory Server can accept. For most
deployments, setting this parameter to a value of at least 1024 allows Directory
Server to handle more concurrent connection requests.

On Solaris systems, the number of pending connections allowed is configured
through the tcp_conn_req_max_q0 parameter, as described in the output of
directoryserver -u 5.2 idsktune. Consider increasing tcp_conn_req_max_q0
to 2048.

Inactive Connections
Some systems allow you to configure the interval between transmission of
keepalive packets. This setting can determine how long a TCP connection is
maintained while inactive and potentially disconnected. When set too high, the
keepalive interval may cause the system to use unnecessary resources keeping
connections alive for clients that have become disconnected. For most
deployments, setting this parameter to a value of 600 seconds (600,000 milliseconds
= 10 minutes) allows more concurrent connections to Directory Server.

On Solaris systems, this time interval is configured through the
tcp_keepalive_interval parameter, as described in the output of
directoryserver -u 5.2 idsktune.

Tuning System Settings

28 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Incoming Connections
Some systems allow you to configure how long a system waits for an incoming
connection not sending acknowledgements. When set too high, this can cause long
delays in detecting connection failure. For intranet deployments on fast and
reliable networks, setting this parameter to a value of 600 seconds (600,000
milliseconds = 10 minutes) may improve performance.

On Solaris systems, this time interval is configured through the
tcp_ip_abort_interval parameter, as described in the output of
directoryserver -u 5.2 idsktune.

Outgoing Connections
Some systems allow you to configure how long a system waits for an outgoing
connection to be established. When set too high, establishing outgoing connections
to destination servers such as replicas not responding quickly can cause long
delays. For intranet deployments on fast and reliable networks, setting this
parameter to a value of 10 seconds may improve performance.

On Solaris systems, this time interval is configured through the
tcp_ip_abort_cinterval parameter, as described in the output of
directoryserver -u 5.2 idsktune.

Retransmission Timeout
Some systems allow you to configure the initial time interval between
retransmission of packets. This setting affects the wait before retransmission of an
unacknowledged packet. When set too high, clients may be kept waiting on lost
packets. For intranet deployments on fast and reliable networks, setting this
parameter to a value of 500 milliseconds may improve performance.

On Solaris systems, this time interval is configured through the
tcp_rexmit_interval_initial parameter, as described in the output of
directoryserver -u 5.2 idsktune.

Sequence Numbers
Some systems allow you to configure how the system handles initial sequence
number generation. For extranet and Internet deployments, set this parameter such
that initial sequence number generation is based on RFC 1948 to prevent sequence
number attacks.

On Solaris systems, this behavior is configured through the tcp_strong_iss
parameter, as described in the output of directoryserver -u 5.2 idsktune.

29

Chapter 3

Tuning Cache Sizes

Directory Server caches directory information in memory and on disk in order to
be able to respond more quickly to client requests. Properly tuned caching
minimizes the need to access disk subsystems when handling client requests.

This chapter covers the following topics:

• Types of Cache

• How Searches Use Cache

• How Updates Use Cache

• How Suffix Initialization Uses Cache

• Optimizing For Searches

• Optimizing for Updates

• Cache Priming and Monitoring

• Other Optimizations

Types of Cache
Directory Server handles three types of cache as described in Table 3-1.

NOTE Unless caches are tuned and working properly, other tuning may
have only limited impact on performance.

Types of Cache

30 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Directory Server also benefits from file system cache, handled by the underlying
operating system, and from I/O buffers in disk subsystems.

Figure 3-1shows caches for an instance of Directory Server handling three suffixes,
each with its own entry cache. The instance is configured to handle significant disk
activity.

Table 3-1 Caches

Cache Type Description

Database Each Directory Server instance has one database cache that holds
both indexes and entries in database format.

Refer to “Database Cache” on page 31 for more information.

Entry Each suffix has an entry cache that holds entries retrieved from the
database during previous operations and formatted for quick
delivery to client applications.

Refer to “Entry Cache” on page 32 for more information.

Import Each Directory Server instance has an import cache that is
structurally similar to the database cache and is used during bulk
loading.

Refer to “Import Cache” on page 33 for more information.

Types of Cache

Chapter 3 Tuning Cache Sizes 31

Figure 3-1 Entry and Database Caches in Context

Database Cache
Each Directory Server instance has one database cache. The database cache holds
pages from the database containing indexes and entries. Each page is not an entry,
but a slice of memory containing a portion of the database. You specify database
cache size (nsslapd-dbcachesize) in bytes. The change to database cache size
takes effect after you restart the server, with database cache space allocated at
server startup.

Directory Server moves pages between the database files and the database cache to
maintain maximum database cache size. The actual amount of memory used by
Directory Server for database cache may be up to 25 percent larger than the size
you specify, due to additional memory needed to manage the database cache itself.

Directory Server Instance

Database Cache
for the instance

Entry Cache
for o=suffix1
(formatted

entries)

Entry Cache
for o=suffix2
(formatted

entries)

Entry Cache
for o=suffix3
(formatted

entries)

Entry pages
from database

Indexes
from database

Operating System

Disk Subsystems

Memory (RAM), Including File System Cache

Types of Cache

32 Directory Server 5.2 2004Q2 • Performance Tuning Guide

When using a very large database cache, verify through empirical testing and by
monitoring memory use with tools such as pmap(1) on Solaris systems that the
memory used by Directory Server does not exceed the size of available physical
memory. Exceeding available physical memory causes the system to start paging
repeatedly, resulting in severe performance degradation.

The ps(1) utility can also be used with the -p pid and -o format options to view
current memory used by a particular process such as Directory Server (ns-slapd).
Refer to the operating system documentation for details.

For 32-bit servers, database cache size must be limited such that the total Directory
Server (ns-slapd) process size is less than the maximum process size allowed by
the operating system. In practice, this limit is generally in the 2-3 GB range.

Refer to the Directory Server Administration Reference for further details concerning
the valid range of nsslapd-dbcachesize values.

Entry Cache
The entry cache holds recently accessed entries, formatted for delivery to client
applications. You specify entry cache size for a suffix (nsslapd-cachememsize) in
bytes. Entry cache is allocated as needed.

Directory Server can return entries from an entry cache extremely efficiently, as
entries stored in this cache are already formatted. Entries in the database must be
formatted (and stored in the entry cache) before delivery to client applications.

When specifying entry cache size, know that nsslapd-cachememsize indicates
how much memory Directory Server requests from the underlying memory
allocation library. Depending on how the memory allocation library handles such
requests, actual memory used may be much larger than the effective amount of
memory ultimately available to Directory Server for the entry cache.

Actual memory used by the Directory Server process depends primarily on the
memory allocation library used, and on the entries cached. Entries with many
small attribute values usually require more overhead than entries with a few large
attribute values.

For 32-bit servers, entry cache size must be limited such that the total Directory
Server (ns-slapd) process size is less than the maximum process size allowed by
the operating system. In practice, this limit is generally in the 2-3 GB range.

Refer to the Directory Server Administration Reference for further details concerning
the valid range of nsslapd-cachememsize values.

Types of Cache

Chapter 3 Tuning Cache Sizes 33

Import Cache
The import cache is created and used during suffix initialization only, also known
as bulk loading or importing. If the deployment involves offline suffix initialization
only, import cache and database cache are not used together, so you need not add
them together when aggregating cache size as described in “Total Aggregate Cache
Size” on page 34. You specify import cache size (nsslapd-import-cachesize) in
bytes. Changes to import cache size take effect the next time the suffix is reset and
initialized, with import cache allocated for the initialization, then released after the
initialization.

Directory Server handles import cache as it handles database cache. Ensure
therefore that sufficient physical memory is available to prevent swapping.
Furthermore, benefits of larger import cache tend to diminish for cache sizes larger
than 1 GB, so do not allocate more than 1-2 GB for import cache.

Refer to the Directory Server Administration Reference for further details concerning
the valid range of nsslapd-import-cachesize values.

File System Cache
The operating system allocates available memory not used by Directory Server
caches and other applications to the file system cache. This cache holds data
recently read from the disk, making it possible for subsequent requests to obtain
data copied from cache rather than to read it again from the disk. As memory
access is many times faster than disk access, leaving some physical memory
available to the file system cache can boost performance.

For 32-bit servers, consider using file system cache as a replacement for some of the
database cache. Database cache is more efficient for Directory Server use than file
system cache, but file system cache is not directly associated with the Directory
Server (ns-slapd) process, so you can potentially make a larger total cache
available to Directory Server than would be available using database cache alone.

64-bit servers do not have the same process size limit issue. Use database cache
instead of file system cache with 64-bit servers.

Refer to the operating system documentation for details on file system cache.

How Searches Use Cache

34 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Total Aggregate Cache Size
The sum of all caches used simultaneously must remain smaller than the total size
of available physical memory, less the memory intended for file system cache, and
for other processes, such as Directory Server itself. For 32-bit servers, this means
total aggregate cache size must be limited such that the total Directory Server
(ns-slapd) process size is less than the maximum process size allowed by the
operating system. In practice, this limit is generally in the 2-3 GB range. Total cache
used may well be significantly larger than the size you specify. Refer to “Database
Cache” on page 31 for hints on how to check that the cache size and thus Directory
Server process size does not exceed available physical memory.

If suffixes are initialized (bulk loaded) while Directory Server is online, the sum of
database, entry, and import cache sizes should remain smaller than the total size of
available physical memory.

If all suffix initialization takes place offline with Directory Server stopped, you may
be able to work around this limitation. In this case import cache does not coexist
with database cache, so you may allocate the same memory to import cache for
offline suffix initialization and to database cache for online use. If you opt to
implement this special case, however, ensure that no one performs online bulk
loads on the production system. The sum of the caches used simultaneously must
still remain smaller than the total size of available physical memory.

How Searches Use Cache
Figure 3-2 illustrates how Directory Server handles both searches specifying a base
DN and searches using filters. Individual lines represent threads accessing
different levels of memory, with broken lines representing steps to minimize
through effective tuning.

Table 3-2 Suffix Initialization (Import) Operations and Cache Use

Cache Type Offline Import Online Import

Database no yes

Entry1

1. As shown in Figure 3-1 on page 31, you have one entry cache for each suffix.

yes yes

Import yes yes

How Searches Use Cache

Chapter 3 Tuning Cache Sizes 35

Figure 3-2 Searches and Cache

Base Search Process
As shown, base searches (those specifying a base DN) are the simplest type of
searches for Directory Server to handle. To process such searches, Directory Server:

Directory Server Instance

Database Cache
for the instance

Entry Cache
for o=suffix1
(formatted

entries)

Entry Cache
for o=suffix2
(formatted

entries)

Entry Cache
for o=suffix3
(formatted

entries)

Entry pages
from database

Indexes
from database

Operating System

Base search
(DN specified)

Sub-tree or
one-level search

Candidate list
for filter

1

2

3

1

2

Disk Subsystems

Memory (RAM), Including File System Cache

How Searches Use Cache

36 Directory Server 5.2 2004Q2 • Performance Tuning Guide

1. Attempts to retrieve the entry having the specified base DN from the entry
cache.

If the entry is found there, Directory Server checks whether the candidate entry
matches the filter provided for the search.

If the entry matches, Directory Server then quickly returns the formatted,
cached entry to the client application.

2. Attempts to retrieve the entry from the database cache.

If the entry is found there, Directory Server copies the entry to the entry cache
for the suffix, and then proceeds as if the entry had been found in the entry
cache.

3. Attempts to retrieve the entry from the database itself.

If the entry is found there, Directory Server copies the entry to the database
cache, then proceeds as if the entry had been found in the database cache.

Subtree and One-Level Search Process
Also as shown in Figure 3-2 on page 35, searches on a subtree or a level of a tree
involve additional processing to handle sets of entries. To process such searches,
Directory Server:

1. Attempts to build a set of candidate entries that match the filter from indexes
in the database cache.

If no appropriate index is present, the set of candidate entries must be
generated from the relevant entries in the database itself.

2. Handles each candidate entry by:

a. Performing a base search to retrieve the entry.

b. Checking whether the entry matches the filter provided for the search.

c. Returning the entry to the client application if the entry matches the filter.

In this way, Directory Server avoids constructing the set in memory.

Ideally, you know what searches to expect before tuning Directory Server. In
practice, verify assumptions through empirical testing.

How Updates Use Cache

Chapter 3 Tuning Cache Sizes 37

How Updates Use Cache
Figure 3-3 illustrates how Directory Server handles updates. Individual lines
represent threads accessing different levels of memory, with broken lines
representing steps to minimize through effective tuning.

Figure 3-3 Updates and Cache

Directory Server Instance

Database Cache
for the instance

Entry Cache
for o=suffix1
(formatted

entries)

Entry Cache
for o=suffix2
(formatted

entries)

Entry Cache
for o=suffix3
(formatted

entries)

Entry pages
from database

Indexes
from database

Operating System

Update

ACK sent to client application

1

2

3

4

5

Disk Subsystems

Memory (RAM), Including File System Cache

How Suffix Initialization Uses Cache

38 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Notice that Figure 3-3 does not show the potential impact on the entry cache of an
internal search performed to retrieve the entry for a modify or delete operation.
Figure 3-2 on page 35 shows how searches use cache.

Updates involve more processing than searches. To process updates, Directory
Server:

1. Performs a base DN search to retrieve the entry to update or verify in the case
of an add operation that it does not already exist.

2. Changes the database cache, updating in particular any indexes affected by the
update.

If the data affected by the update has not been loaded into the database cache,
this step can result in disk activity while the relevant data are loaded into the
cache.

3. Writes information about the changes to the transaction log, waiting for the
information to be flushed to disk.

Refer to “Transaction Logging” on page 65 for details.

4. Formats and copies the updated entry to the entry cache for the suffix.

5. Returns an acknowledgement of successful update to the client application.

How Suffix Initialization Uses Cache
Figure 3-4 illustrates how Directory Server handles suffix initialization, also known
as bulk load import. Individual lines represent threads accessing different levels of
memory, with broken lines representing steps to minimize through effective
tuning.

How Suffix Initialization Uses Cache

Chapter 3 Tuning Cache Sizes 39

Figure 3-4 Suffix Initialization (Bulk Loading) and Cache

To initialize a suffix, Directory Server:

1. Starts a thread to feed an entry cache, used as a buffer, from LDIF.

2. Starts a thread for each index affected and a thread to create entries in the
import cache. These threads consume entries fed into the entry cache.

Directory Server Instance

Entry Cache
for o=suffix1
(formatted

entries)

Entry Cache
for o=suffix2
(formatted

entries)

Entry Cache
for o=suffix3
(formatted

entries)

Operating System

Import Cache
for the instance

Entry pages
from database

Indexes
from database

Database Cache
for the instance

LDIF to
import into
o=suffix2

1

2

3

Disk Subsystems

Memory (RAM), Including File System Cache

Optimizing For Searches

40 Directory Server 5.2 2004Q2 • Performance Tuning Guide

3. Reads from and writes to the database files when import cache runs out.

Directory Server may also write log messages during suffix initialization, but
does not write to the transaction log.

Tools for suffix initialization such as ldif2db (directoryserver -u 5.2
ldif2db) delivered with Directory Server provide feedback concerning cache hit
rate and import throughput. Having both cache hit rate and import throughput
drop together suggests that import cache may be too small. Consider increasing
import cache size.

Optimizing For Searches
For top performance, cache as much directory data as possible in memory. In
preventing the directory from reading information from disk, you limit the disk
I/O bottleneck. There are a number of different possibilities for doing this,
depending on the size of your directory tree, the amount of memory available and
the hardware used. Depending on the deployment, you may choose to allocate
more or less memory to entry and database caches to optimize search performance.
You may alternatively choose to distribute searches across Directory Server
consumers on different servers.

This section covers the following scenarios:

• All Entries and Indexes in Memory

• Plenty of Memory, 32-Bit Directory Server

• Not Enough Memory

All Entries and Indexes in Memory
Imagine the optimum case. Database and entry caches fit into the physical memory
available. The entry caches are large enough to hold all entries in the directory. The
database cache is large enough to hold all indexes and entries. In this case, searches
find everything in cache. Directory Server never has to go to file system cache or to
disk to retrieve entries.

In this case, ensure that database cache can contain all database indexes even after
updates and growth. When space runs out in the database cache for indexes,
Directory Server must read indexes from disk for every search request, severely
impacting throughput. You can monitor activity with Directory Server Console,
which displays useful information under the Status tab as shown in Figure 3-5.

Optimizing For Searches

Chapter 3 Tuning Cache Sizes 41

Figure 3-5 Monitoring Cache Hit Rate Using Directory Server Console

Alternatively, paging and cache activity can be monitored by searching from the
command line:

$ ldapsearch -D admin -w password \
-b "cn=monitor,cn=database_name,cn=ldbm database,cn=plugins,cn=config"

Finding appropriate caches sizes must be done through empirical testing with
representative data. Start by allocating a large amount of memory for the caches,
and then exercise and monitor Directory Server to observe the result, repeating the
process as necessary. Entry caches in particular may use much more memory than
you allocate to them.

Optimizing for Updates

42 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Plenty of Memory, 32-Bit Directory Server
Imagine a system with sufficient memory to hold all data in entry and database
caches, but no support for a 64-bit Directory Server process. If hardware
constraints prevent you from deploying on a Solaris system with 64-bit support,
the key is sizing caches appropriately with respect to memory limitations for 32-bit
processes, then leaving remaining memory to the file system cache. As a starting
point when benchmarking performance, size the entry cache to hold as many
entries as possible, and size the database cache relatively small such as 100 MB
without completely minimizing it, but letting file system cache hold the database
pages.

Avoid online import in this situation, as import cache is associated with the
Directory Server process.

Not Enough Memory
Imagine a system with insufficient available memory to hold all data in entry and
database caches. The key in this case is to avoid causing combined entry and
database cache sizes to exceed the available physical memory, resulting in heavy
virtual memory paging that could bring the system to a virtual halt.

Start benchmarking by devoting available memory to entry cache and database
caches, with sizes no less than 100 MB each. Try disabling the file system cache by
mounting Solaris UFS file systems with the -o forcedirectio option, described in
mount(1M). This can prevent the file system cache from using memory needed by
Directory Server. Verify and correct assumptions through empirical testing.

Optimizing for Updates
For top update performance, first remove any transaction log bottlenecks observed.
Refer to “Transaction Logging” on page 65 for details.

NOTE File system cache is shared with other processes on the system,
especially file based operations. It is thus considerably more difficult
to control than other caches, particularly on systems not dedicated
to Directory Server.

The system may reallocate file system cache to other processes.

Optimizing for Updates

Chapter 3 Tuning Cache Sizes 43

Next, attempt to provide enough memory for the database cache to handle updates
in memory and minimize disk activity. You can monitor the effectiveness of the
database cache by reading the hit ratio in Directory Server Console. Directory
Server Console displays hit ratios for suffixes under the Status tab as shown in
Figure 3-5 on page 41.

After Directory Server has run for some time, the caches should contain enough
entries and indexes that disk reads are no longer necessary. Updates should affect
the database cache in memory, with data from the large database cache in memory
being flushed only infrequently.

Flushing data to disk during a checkpoint can itself be a bottleneck, so storing the
database on a separate RAID system such as a Sun StorEdge™ disk array can help
improve update performance. You may use utilities such as iostat(1M) on Solaris
systems to isolate potential I/O bottlenecks.

Table 3-3 shows recommendations for systems with 2, 3, and 4 disks.

Table 3-3 Isolating Databases and Logs on Different Disks

Disks Available Recommendations

2 • Place the Directory Server database on one disk

• Place the transaction log, the access, audit, error logs, and any
changelogs on the other disk

3 • Place the Directory Server database on one disk

• Place the transaction log on the second disk

• Place the access, audit, error logs, and any changelogs on the
third disk

4 • Place the Directory Server database on one disk

• Place the transaction log on the second disk

• Place the access, audit, and error logs on the third disk

• Place changelogs on the fourth disk

Cache Priming and Monitoring

44 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Cache Priming and Monitoring
Priming caches means filling them with data such that subsequent Directory Server
behavior reflects normal operational performance, rather than ramp up. Priming
caches is typically useful for arriving at reproducible results when benchmarking,
and measuring and analyzing potential optimizations. In most cases, do not
actively prime the caches, but instead let the caches be primed by normal or typical.
client interaction with Directory Server before you measure performance.

After caches are primed, you may run tests, and monitor whether cache tuning has
produced the desired outcomes. Directory Server Console displays monitoring
information for caches when you select the Suffixes node under the Status tab as
shown in Figure 3-5 on page 41. Alternatively, paging and cache activity can be
monitored by searching from the command line:

$ ldapsearch -D admin -w password \
-b "cn=monitor,cn=database_name,cn=ldbm database,cn=plugins,cn=config"

If database cache size is large enough and the cache is primed, then the hit ratio
(dbcachehitratio) should be high, and number of pages read in
(dbcachepagein) and clean pages written out (dbcacheroevict) should be low.
Here, “high” and “low” must be understood relative to the deployment
constraints.

If entry cache for a suffix is large enough and the cache is primed, then the hit ratio
(entrycachehitratio) should be high. As the entry cache fills, entry cache size
(currententrycachesize) approaches the maximum entry cache size
(maxentrycachesize). Ideally, the size in entries (currententrycachecount)
should be either equal to or very close to the total number of entries in the suffix.

Other Optimizations
Tuning cache sizes represent only one approach to improving search, update or
bulk load rates. As you tune the cache, performance bottlenecks from cache move
to other parts of the system. Refer to the other chapters in this guide for more
information.

45

Chapter 4

Tuning Indexing

As Directory Server handles more and more entries, searches potentially consume
more and more time and system resources. Indexes are one tool to improve search
performance. This chapter covers how Directory Server indexes work so that you
understand the costs and benefits of using a specific index in the context of a
particular deployment. It includes the following sections:

• About Indexes

• Benefits: How Searches Use Indexes

• Costs: How Updates Affect Indexes

• Tuning Indexing for Performance

About Indexes
Indexes associate lookup information with Directory Server entries. Indexes take
the form of files stored with Directory Server databases. A database in this context is
the physical representation of a suffix. For most deployments, one suffix
corresponds to one database. For some deployments, one suffix may be split across
multiple databases. Directory Server stores databases under
ServerRoot/slapd-ServerID/db/ by default (the default value of
nsslapd-directory). Here you find individual database instances having one
index file per indexed attribute. For instance, a CN index file for a database,
example, holding entries from the suffix dc=example,dc=com, is called
ServerRoot/slapd-ServerID/db/example/example_cn.db3.

What you index depends upon how client applications access directory data.
Table 4-1 includes short descriptions of standard index types.

Benefits: How Searches Use Indexes

46 Directory Server 5.2 2004Q2 • Performance Tuning Guide

An index file for a particular attribute such as CN may contain multiple types of
indexes. For instance, if CN is indexed in the example database for equality and for
substring matching, then example_cn.db3 contains both equality and substring
indexes.

Refer to the Directory Server Administration Guide for:

• An overview of each index type

• Instructions on creating and deleting indexes

• A list of default indexes created by Directory Server

• A list of system indexes required by Directory Server

Default indexes improve search performance in many situations, and support
searches performed by certain other applications. In some cases, you may choose to
disable or even delete particular default indexes for performance reasons. System
indexes are those on which Directory Server depends. Do not delete or modify
them.

Benefits: How Searches Use Indexes
Indexes speed up searches. An index contains a list of values, each associated with
a list of entry identifiers corresponding to the value. Directory Server can look up
entries quickly using the lists of entry identifiers in indexes. Without an index to
manage a list of entries, Directory Server may have to check every entry in a suffix
to find matches for a search.

Table 4-1 Standard Index Types

Index Type Answers the question...

Approximate Which entries have a value that sounds like foobar for this attribute?

Browsing Which entries fit this virtual list view search?

Equality Which entries have value foobar for this attribute?

International Which entries match for this international locale?

Presence Which entries have this attribute?

Substring Which entries have a value matching *foo* for this attribute?

Costs: How Updates Affect Indexes

Chapter 4 Tuning Indexing 47

The reason an indexed search may require significantly less processing than an
unindexed search becomes evident when search request processing is explained.
Here is how Directory Server processes each search request:

1. A client application sends a search request to Directory Server.

2. Directory Server examines the request to ensure the search base corresponds to
a suffix it can handle. If not, it returns an error to the client, and may return a
referral to another Directory Server instance.

3. Directory Server determines whether it manages an index or indexes
appropriate to the search.

For each such index that exists, Directory Server looks up candidate entries —
entries that might be a match for the search request — in the index, as shown in
Figure 3-2 on page 35.

Notice that if no such index exists, Directory Server generates the set of candidate
entries from all entries in the database. For large deployments, this step may
consume considerable time and system resources, depending on the search.

4. Directory Server examines each candidate entry to determine if it matches the
search criteria. Directory Server returns matching entries to the client
application as it finds them.

Directory Server continues examining candidates either until all candidates
have been examined, or until it reaches a resource limit such as
nsslapd-lookthroughlimit, nsslapd-sizelimit, or nsslapd-timelimit,
as described in “Limiting Resources Available to Clients” on page 69.

As is evident from Step 3, indexes can reduce significantly the processing Directory
Server must perform to respond to a search request from a client.

Costs: How Updates Affect Indexes
Updates change not only entries themselves, but also indexes referencing the
entries. The more references to an entry in indexes, the higher the potential
processing cost to modify the indexes during an update. Specifically, Directory
Server modifies all impacted indexes as shown in Figure 3-3 on page 37 before
sending acknowledgement of the update to the client application.

Costs: How Updates Affect Indexes

48 Directory Server 5.2 2004Q2 • Performance Tuning Guide

In addition to the processing costs incurred for index maintenance, indexes have a
cost in terms of space on disk and potentially space in memory. When optimizing
database cache size for searches, as described “Optimizing For Searches” on
page 40, you may opt to provide enough memory to hold both entries and indexes
in database cache. The larger the indexes, the more space required. 64-bit indexes
require somewhat more space than 32-bit indexes, as well.

In general, tuning indexing for an instance of Directory Server means maintaining
only those indexes for which the benefits from faster search processing offset the
costs of more update processing and of more space needed. Maintaining useful
indexes is good practice; maintaining unused indexes for attributes on which
clients rarely search is a waste.

This section explains the costs of using each type of indexing:

• Presence Indexes

• Equality Indexes

• Substring Indexes

• Browsing (Virtual List View) Indexes

• Approximate Indexes

• International Indexes

• Example: Indexing an Entry

Presence Indexes
Figure 4-1 depicts a presence index for the nsRoleDN attribute, showing how this
index is independent of the attribute value, but simply includes all entries in the
database having an nsRoleDN attribute. Every value of the attribute matches +.

Costs: How Updates Affect Indexes

Chapter 4 Tuning Indexing 49

Figure 4-1 Representation of a Presence Index

As shown, the internal entryid attribute value allows Directory Server to store a
reference to the entry that allows for quick retrieval. Directory Server actually
retrieves the entry using the dbinstance/id2entry.db3 index file, where dbinstance
depends on the database identifier as implied in “About Indexes” on page 45.

When Directory Server receives an update request to remove an attribute value
indexed for presence, it must remove the entry from the presence index for that
attribute before returning acknowledgement of the update to the client application.

The cost of presence indexes is generally lower than for other index types, although
the list of entries maintained for a presence index may be long. When index list
length is limited, presence indexes are useful primarily for attributes present in a
relatively small percentage of directory entries. Refer to “Limiting Index List
Length” on page 55 for further information.

Equality Indexes
Figure 4-2 depicts an equality index for the SN (surname) attribute. It shows how
this index maintains a list per attribute value of entries having that attribute value
for the SN attribute.

+

Entry IDs

entry-id: 23
dn: uid=yyorgens,ou=People,dc=example,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
uid: yyorgens
givenName: Yolanda
sn: Yorgenson
cn: Yolanda Yorgenson
mail: yyorgens@example.com
secretary: uid=bcubbins,ou=People,dc=example,dc=com
nsRoleDN: cn: managers,ou=People,dc=example,dc=com

nsroledn entryidentryid entryid entryid entryid entryid entryid entryid entryid ...

Costs: How Updates Affect Indexes

50 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Figure 4-2 Representation of an Equality Index

When Directory Server receives an update request for an entry having an attribute
indexed for equality, it must determine whether the entry must be removed from
the index or not, determine whether a list must be added to or removed from the
index, and must then carry out any necessary modifications before returning
acknowledgement of the update to the client application.

The cost of equality indexes is generally lower than for substring indexes, for
example, but higher in terms of space than for presence. Some client applications
such as messaging servers may, however, rely on equality indexes for top search
performance. Avoid equality indexes for large binary attributes such as photos and
hashed passwords.

Entry IDs

allids

entry-id: 23
dn: uid=yyorgens,ou=People,dc=example,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
uid: yyorgens
givenName: Yolanda
sn: Yorgenson
cn: Yolanda Yorgenson
mail: yyorgens@example.com
secretary: uid=bcubbins,ou=People,dc=example,dc=com

smith

wilson

yorgenson

blinn

cubbins

cooper

...

...

SN

entryidentryid entryid entryid entryid entryid entryid entryid entryid

entryid entryid entryid entryid entryid entryid

entryid

entryid

entryid entryid entryid entryid entryid entryid entryid entryid

entryid entryid entryid entryid entryid entryid entryid entryid entryid entryid

entryid entryid entryid entryid entryid

Costs: How Updates Affect Indexes

Chapter 4 Tuning Indexing 51

Substring Indexes
Figure 4-3 depicts a substring index for the SN (surname) attribute. It shows an
excerpt of how this index maintains a series of lists per attribute value.

Directory Server indexes substrings in three-character group. The search algorithm
includes an optimization such that searches for two-character substrings may use
the index. A search for (sn=*ab*) may therefore be accelerated using an index, for
example, but a search for (sn=*a*) cannot. The optimization still is less efficient
than using substring searches with at least three-character groups, as the
three-character groups are actually stored in the indexes, as shown in Figure 4-3.

Figure 4-3 Representation of a Substring Index

Furthermore, two-character substring search are more subject to reaching the index
list length limit, after which the search no longer uses indexes. Refer to “Limiting
Index List Length” on page 55 for further information.

Entry IDs

entryid

entry-id: 23
dn: uid=yyorgens,ou=People,dc=example,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
uid: yyorgens
givenName: Yolanda
sn: Yorgenson
cn: Yolanda Yorgenson
mail: yyorgens@example.com
secretary: uid=bcubbins,ou=People,dc=example,dc=com

...

on$

son

^yo

yor

org

rge

gen

SN

entryidentryid entryid entryid entryid entryid entryid entryid entryid

entryid entryid entryid entryid entryid entryid

entryid

entryid

entryid entryid entryid entryid entryid entryid entryid entryid

entryid entryid entryid entryid entryid entryid entryid entryid entryid entryid

entryid entryid entryid entryid entryid

entryid

entryid entryid

Costs: How Updates Affect Indexes

52 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Directory Server offers a further optimization allowing initial substring searches of
only one character before the wildcard. Thus a search for (sn=a*), but not
(sn=*a*) or (sn=*a), can also be accelerated when a substring index is available,
for example. This optimization is subject to the same limitations as the
two-character substring searches.

Notice that Directory Server builds an index of substrings according to its own
built-in rules. These substrings are not configurable by the system administrator.

When Directory Server receives an update request for an entry having an attribute
indexed for substrings, it must determine whether the entry must be removed from
the index, determine whether and how modifications to the entry affect the index,
determine whether entry IDs or lists of entry IDs must be added to or removed
from the index, and must then carry out any necessary modifications before
returning acknowledgement of the update to the client application. The number of
updates depends on the length of the attribute value string.

Maintaining substring indexes is generally quite costly. As the cost is a function of
the length of the string indexed, avoid unnecessary substring indexes, especially
for attributes having potentially long string values such as description. Substring
indexes cannot be applied to binary attributes such as photos.

Browsing (Virtual List View) Indexes
Figure 4-4 depicts a browsing index for a virtual lists view. It shows how this index
depends on the virtual list view information. That is, the vlvBase, vlvScope,
vlvFilter, and vlvSort attribute values for the browsing index. Entry IDs in this
type of index are ordered according to the vlvSort criteria.

Figure 4-4 Representation of a Browsing Index

VLV information

Entry IDs

entry-id: 23
dn: uid=yyorgens,ou=People,dc=example,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
uid: yyorgens
givenName: Yolanda
sn: Yorgenson
cn: Yolanda Yorgenson
mail: yyorgens@example.com
secretary: uid=bcubbins,ou=People,dc=example,dc=com
nsRoleDN: cn=managers,ou=People,dc=example,dc=com

vlvSearch entryidentryid entryid entryid entryid entryid entryid entryid entryid ...

vlvBase: “dc=example,dc=com”
vlvScope: subtree
vlvFilter: (objectclass=inetOrgPerson)
vlvSort: cn givenname sn

Costs: How Updates Affect Indexes

Chapter 4 Tuning Indexing 53

When Directory Server receives an update request for an entry matching a
vlvFilter value, it must determine whether the entry must be removed from the
index or not, determine the correct position of the entry in the list, and must then
carry out any necessary modifications before returning acknowledgement of the
update to the client application.

Approximate Indexes
Directory Server maintains approximate indexes using a variation of the metaphone
phonetic algorithm. This algorithm breaks down an attribute string value into a
rough approximation of its English phonetic pronunciation. Values to match in
incoming search requests are handled using the same algorithm. As the algorithm
is based loosely on syllables, it is not effective for attributes containing numbers
such as telephone numbers.

The algorithm generates a target string for each attribute value string. Costs for this
“sounds like” indexing of English-language strings are therefore similar to those
for equality indexing.

International Indexes
International indexes use matching rules for particular locales to maintain indexes.
Costs for such indexes therefore resemble costs for substring and equality indexes.

Using a custom matching rule server plug-in, you can extend standard support for
international and other types of indexing. Refer to the Directory Server Plug-In
Developer’s Guide for more information on custom matching rule plug-ins.

Example: Indexing an Entry
Consider a user entry as shown in Code Example 4-1 being added to a suffix
indexed for equality on uid, for equality, substring and approximate searches on
Common Name (cn) and surname (sn) attributes, for equality searches on the mail
attribute, for equality and substring searches on the telephoneNumber attribute,
and for substring searches on the description attribute. This section examines
why you might not want, for example, to create substring attributes on long string
values, such as that in the description attribute.

Costs: How Updates Affect Indexes

54 Directory Server 5.2 2004Q2 • Performance Tuning Guide

In adding this entry, Directory Server must modify indexes for cn, sn, mail,
telephoneNumber, and description. Table 4-2 illustrates the expected number of
entries.

Notice that the number of substring index updates for the description string is
larger (47) than the number of updates (44) for all other attributes combined. Also,
further modifications to the description string may again imply a maximum
number of updates or more depending on the new string. In most cases, avoid
substring indexing of this volume by not applying substring indexing to long
strings such as description values.

Code Example 4-1 Sample User Entry

dn: uid=yyorgens,ou=People,dc=example,dc=com
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
uid: yyorgens
givenName: Yolanda
sn: Yorgenson
cn: Yolanda Yorgenson
mail: yolanda.yorgenson@example.com
telephoneNumber: 1-650-960-1300
description: Business Development Manager, Platinum Partners

Table 4-2 Index Updates for Sample User Entry

Attribute Approximate Equality Substring1

1. Substring indexing on strings as long as the description string here is not recommended for most deployments.

Total Index Updates

uid 1 1

cn 1 1 17 19

sn 1 1 9 11

mail 1 1

telephoneNumber 1 11 12

description 47 47

Tuning Indexing for Performance

Chapter 4 Tuning Indexing 55

Tuning Indexing for Performance
In many cases, tuning indexing for performance implies activating indexes to
speed up frequent searches, and deactivating indexes that are expensive to
maintain and not frequently used.

Allowing Only Indexed Searches
Directory Server makes it possible to prevent costly unindexed searches, returning
LDAP_UNWILLING_TO_PERFORM to clients requesting an unindexed search.

To prevent unindexed searches against a particular database, set the
nsslapd-require-index attribute value to on for the database:

$ ldapmodify -h host -p port -D "cn=Directory Manager" -w password
dn: cn=example, cn=ldbm database, cn=plugins, cn=config
changetype: modify
replace: nsslapd-require-index
nsslapd-require-index: on
^D (^Z on Windows systems)

The change takes effect immediately. No need to restart Directory Server.

Limiting Index List Length
In large and fast growing directory deployments, indexing may reach the point of
diminishing returns for a particular index key. At the point of diminishing returns,
the list associated with a particular key becomes so long that maintaining the list
costs more than performing an occasional unindexed search on that particular key
for candidate entries.

Imagine a library card catalog proposal for indexing by topic. Imagine one of the
topics is fiction. Yet, the library has so many works of fiction that looking them up
in the card catalog and then going to the shelves to retrieve the books takes longer
than simply browsing through the fiction section. So the library does not maintain
a catalog for fiction, but still maintains card catalogs for other topics.

NOTE Database backups include indexes, and so should match the
Directory Server configuration.

After changing how indexes are configured, back up both the
configuration and the data.

Tuning Indexing for Performance

56 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Directory Server has a mechanism for handling this situation, using a configuration
attribute holding a threshold value. If the number of entries in the list for a
particular key reaches the threshold, Directory Server replaces the list for the key
with a token specifying that an unindexed search should be performed to find
candidate entries for that particular key. The value is somewhere near but less than
the value for the maximum number of candidate entries checked for a search, set
using nsslapd-lookthroughlimit, as described in Table 6-2 on page 72.

The mechanism is referred to as the all IDs threshold, named after the configuration
attribute used to set the global threshold value, nsslapd-allidsthreshold on
cn=config,cn=ldbm database,cn=plugins,cn=config. Notice this value is
currently global to the Directory Server instance. It cannot be set differently for
different indexes.

Figure 4-5 illustrates the example of indexing on surname with a number of Smiths
greater than nsslapd-allidsthreshold.

Figure 4-5 Reaching the All IDs Threshold for an Index Key

Entry IDs

allidssmith

wilson

yorgenson

blinn

cubbins

cooper

...

...

SN

entryidentryid entryid entryid entryid entryid entryid entryid entryid

entryid entryid entryid entryid entryid entryid

entryid

entryid

entryid entryid entryid entryid entryid entryid entryid entryid

entryid entryid entryid entryid entryid entryid entryid entryid entryid entryid

entryid entryid entryid entryid entryid

Many entries for people with
surname Smith -- more than
nsslapd-allidsthreshold.
Handled by Directory Server

as an unindexed search.

Tuning Indexing for Performance

Chapter 4 Tuning Indexing 57

Notice that the threshold affects only one list in the index table. Lists for other keys
are not affected.

Symptoms of Inappropriate Index List Size
If clients perform primarily indexed searches and cache sizes are correctly tuned as
described in Chapter 3, “Tuning Cache Sizes,” yet you still observe poor search
performance, an inappropriate threshold value may be the cause. When you
observe poor search performance for indexed searches, ensure cache sizes are
appropriately tuned first. Next, examine the access log to determine whether
Directory Server is reaching the all IDs threshold often.

The notes=U flag at the end of an access log RESULT message indicates Directory
Server performed an unindexed search. A previous SRCH message for the same
connection and operation specifies the search filter used. The following two-line
example traces an unindexed search for (cn=Smith) returning 10000 entries. Time
stamps have been removed from the messages.

conn=2 op=1 SRCH base="o=example.com" scope=0 filter="(cn=Smith)"
conn=2 op=1 RESULT err=0 tag=101 nentries=10000 notes=U

If you observe many such pairs for searches that should be indexed, you may be
able to improve search performance by increasing the threshold.

Changing the Index List Threshold Size
Good values for nsslapd-allidsthreshold typically fall in a range around 5
percent of the total number of entries in the directory. For example, the default
value of 4000 is generally right for Directory Server instances handling 80,000
entries or less. You may decide to set the value significantly higher than 5 percent
of the total if you expect to add large numbers of entries to the directory in the near
term, or if you expect the directory to grow considerably. You may also decide to
set the threshold differently on consumer replicas supporting many searches than
on masters supporting almost only writes. If you plan to initialize a large directory
from LDIF in the near term, you may even choose to adjust the value for
nsslapd-allidsthreshold just before initialization, as each change to the value
of this attribute requires that all indexes be rebuilt. Finally, you may choose to set
this value quite high in directories with deeply hierarchical DITs, so searches for all
entries below a given branch are indexed. In any case, avoid setting the all IDs
threshold very high (above 50,000) even for very large deployments unless you
have a good, specific reason for doing so.

Change the all IDs threshold as follows. Note that service is interrupted on the
Directory Server instance undergoing the change.

Tuning Indexing for Performance

58 Directory Server 5.2 2004Q2 • Performance Tuning Guide

1. Adjust the value of the nsslapd-allidsthreshold attribute on cn=config,
cn=ldbm database, cn=plugins, cn=config using ldapmodify.

2. Stop the Directory Server instance.

3. Export all directory databases to LDIF.

4. Initialize all directory databases from LDIF.

Refer to the Directory Server Administration Guide for specific instructions.

5. If database cache size was tuned for the old all IDs threshold value and the
server has adequate physical memory, consider increasing database cache size
by 25 percent of the magnitude of the increase to the threshold.

In other words, if you increase the all IDs threshold from 4000 to 6000, you may
choose to increase database cache size by about 12.5 percent to account for
increased index list size. Find the optimum size empirically before applying
changes to production servers. Refer to Chapter 3, “Tuning Cache Sizes,” for
details on database cache tuning.

6. Restart the Directory Server instance.

59

Chapter 5

Tuning Logging

Directory Server provides several log types, summarized in Table 5-1. This chapter
discusses how to handle the different types of logs.

Table 5-1 Types of Logs Used by Directory Server

Log Type Use

Access Flat file Evaluating directory use patterns, verifying configuration settings,
diagnosing access problems.

Refer to “Access Logging” on page 60 for details.

Audit Flat file Providing audit trails for security and data integrity.

Refer to “Audit Logging” on page 61 for details.

Changelog Database Enables synchronization between replicas.

Refer to “Multi-Master Replication Change Logging” on page 64 for details.

Error Flat file Debugging directory deployments.

Refer to “Error Logging” on page 62 for details.

Retro changelog Database Permitting backward compatibility with previous versions.

Refer to “Retro Change Logging” on page 65 for details.

Transaction Database Maintaining database integrity.

Refer to “Transaction Logging” on page 65 for details.

Access Logging

60 Directory Server 5.2 2004Q2 • Performance Tuning Guide

In high-volume deployments, writing to logs can be disk intensive, resulting in
noticeable negative performance impact. Given the potential for I/O bottlenecks
inherent with heavy logging in high volume systems, consider putting log files on
a lesser used disk.

Access Logging
The access log contains detailed information about client connections and
operations performed. The access log can be indispensable when diagnosing access
problems, verifying server configuration settings, and evaluating server usage
patterns.

Although the access log provides beneficial troubleshooting information, it may
become an I/O bottleneck. Set access logging levels to the minimum required level.
Table 5-2 provides further recommendations for specific attributes.

Table 5-2 Tuning Recommendations for Access Logging

Configuration Attribute Short Description and Tuning Recommendations

dn: cn=config

nsslapd-accesslog

Specifies the path and filename of the access log file.

In most deployments, the access log may share a disk with
the audit and error logs, and the replication changelog.

dn: cn=config

nsslapd-accesslog-level

Specifies the level of informational logging used.

Leave at default (256) unless a higher level is required.

dn: cn=config

nsslapd-accesslog-logbuffering

Determines whether the access log is buffered.

Leave on (default) unless you must disable buffering to
see access log messages as they are triggered. Disabling
buffering can result in a drop in overall performance.

dn: cn=config

nsslapd-accesslog-logging-enabled

Enables and disables access logging.

Set nsslapd-accesslog-level to the lowest
acceptable setting. Rotate the access log frequently (each
day or week) and use
nsslapd-accesslog-logmaxdiskspace and
nsslapd-accesslog-logminfreediskspace to
manage disk space use.

Audit Logging

Chapter 5 Tuning Logging 61

Refer to the Directory Server Administration Reference for details concerning
individual configuration attributes.

The Directory Server Resource Kit Tools Reference covers extracting information from
the access log.

Audit Logging
The audit log contains detailed information about all changes made to each
database as well as to server configuration. Audit logging is disabled by default.

When enabled in deployments having high modify volume, enabling audit logging
causes a very noticeable overall drop in performance. Unless the deployment
requires it, leave audit logging disabled. For large or high volume deployments
that require audit logging, consider allocating a separate disk on a separate
controller to the audit log. Table 5-3 provides further recommendations for specific
attributes.

dn: cn=config

nsslapd-accesslog-logmaxdiskspace

Specifies maximum disk space in MB that all access logs
(current and rotated logs) may consume.

Set this value below the total amount of disk space
dedicated to access logging, leaving space for other logs
on the disk.

dn: cn=config

nsslapd-accesslog-logminfreediskspace

Specifies minimum free disk space in MB allowed before
old logs are purged.

When the amount of free disk space falls below the value
specified on this attribute, the oldest access logs are
deleted until enough disk space is freed to correspond to
the setting for this attribute. If the access logs cannot be
written because the disk is full, the server shuts down.

Table 5-2 Tuning Recommendations for Access Logging (Continued)

Configuration Attribute Short Description and Tuning Recommendations

Error Logging

62 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Refer to the Directory Server Administration Reference for details concerning
individual configuration attributes.

Error Logging
The error log for a Directory Server instance contains detailed error, warning, and
informational messages encountered during normal server operation. The low
default logging level produces relatively little disk activity.

When log level is set higher to generate debugging information, however,
Directory Server may begin writing large numbers of messages to disk. The write
load can result in a very noticeable overall drop in performance. To avoid a drop in
performance, increase log levels progressively, component by component, instead
of activating log levels for all components at once.

Table 5-3 Tuning Recommendations for Audit Logging

Configuration Attribute Short Description and Tuning Recommendations

dn: cn=config

nsslapd-auditlog

Specifies the path and filename of the audit log file.

In most deployments, the audit log may share a disk with
the access and error logs, and the replication changelog.

dn: cn=config

nsslapd-auditlog-logging-enabled

Enables and disables audit logging.

Leave off (default setting) unless audit logging is
required.

dn: cn=config

nsslapd-auditlog-logmaxdiskspace

Specifies maximum disk space in MB that all audit logs
(current and rotated logs) may consume.

Set this value below the total amount of disk space
dedicated to audit logging, leaving space for other logs on
the disk.

dn: cn=config

nsslapd-auditlog-logminfreediskspace

Specifies minimum free disk space in MB allowed before
old logs are purged.

When the amount of free disk space falls below the value
specified on this attribute, the oldest audit logs are deleted
until enough disk space is freed to correspond to the
setting for this attribute. If the audit logs cannot be written
because the disk is full, the server shuts down.

Error Logging

Chapter 5 Tuning Logging 63

The error log does not support log buffering. All messages are flushed to disk
immediately. Table 5-4 provides recommendations for specific attributes.

Refer to the Directory Server Administration Reference for details concerning
individual configuration attributes.

Table 5-4 Tuning Recommendations for Error Logging

Configuration Attribute Short Description and Tuning Recommendations

dn: cn=config

nsslapd-errorlog

Specifies the path and filename of the error log file.

In most deployments, the error log may share a disk with
the access and audit logs, and the replication changelog.

dn: cn=config

nsslapd-errorlog-logging-enabled

Enables and disables error logging.

Leave on (default setting).

dn: cn=config

nsslapd-errorlog-logmaxdiskspace

Specifies maximum disk space in MB that all error logs
(current and rotated logs) may consume.

Set this value below the total amount of disk space
dedicated to error logging, leaving space for other logs on
the disk.

dn: cn=config

nsslapd-errorlog-logminfreediskspace

Specifies minimum free disk space in MB allowed before
old logs are purged.

When the amount of free disk space falls below the value
specified on this attribute, the oldest error logs are deleted
until enough disk space is freed to correspond to the
setting for this attribute. If the error logs cannot be written
because the disk is full, the server shuts down.

dn: cn=config

nsslapd-infolog-area

Specifies the components for which informational
messages are logged.

Leave at 0 (default) unless debugging a component. Avoid
setting for more than one component at a time on
production servers.

dn: cn=config

nsslapd-infolog-level

Specifies the level of informational logging used.

Leave at 0 (default) unless debugging a component for
which setting nsslapd-infolog-area alone fails to
generate sufficient detail.

Multi-Master Replication Change Logging

64 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Multi-Master Replication Change Logging
Directory Server uses a replication changelog to enable synchronization between
replicas. Refer to the Directory Server Deployment Planning Guide for an discussion
of the changelog and to the Directory Server Administration Reference for
configuration details. Table 5-5 provides further recommendations for specific
attributes.

Refer to the Directory Server Administration Reference for details concerning
individual configuration attributes.

Table 5-5 Tuning Recommendations for Multi-Master Change Logging

Configuration Attribute Short Description and Tuning Recommendations

dn: cn=changelog5,cn=config

nsslapd-cachememsize

Specifies the changelog database cache size.

Consider changing this from the default of 10 MB for high
volume deployments.

dn: cn=changelog5,cn=config

nsslapd-changelogdir

Specifies the path of the changelog database.

In most deployments, the replication changelog may share
a disk with the access, audit, and error logs.

dn: cn=changelog5,cn=config

nsslapd-changelogmaxage

Specifies the maximum age for entries in the changelog.
Refer to the Directory Server Administration Reference for
details on the syntax.

Change this from 0 (default, indicating no maximum) to an
interval after which replicated servers are fully
synchronized and the changelog may be trimmed.

dn: cn=changelog5,cn=config

nsslapd-changelogmaxentries

Specifies the maximum number of entries in the
changelog.

Change this from 0 (default, indicating no maximum) to a
number sufficient to allow replicated servers to become
fully synchronized before the changelog is trimmed.

Retro Change Logging

Chapter 5 Tuning Logging 65

Retro Change Logging
Directory Server ships with a retro changelog plug-in that you may enable to
record changes on a supplier server in a format compatible with Directory Server
4.x releases and accessible through LDAP. The retro changelog plug-in is disabled
by default and should not be enabled unless required for compatibility reasons.
Refer to the Directory Server Administration Reference for details. Table 5-6 provides
further recommendations for specific attributes.

Refer to the Directory Server Administration Reference for details concerning
individual configuration attributes.

Transaction Logging
Directory Server maintains database integrity through transaction logging. Upon
accepting an update operation — add, modify, delete, or modrdn — Directory
Server writes a log message about the operation to the transaction log. Durable
transaction logging, enabled by default, ensures data integrity. It does so by
ensuring each update operation is committed to the transaction log on disk before

Table 5-6 Tuning Recommendations for Retro Change Logging

Configuration Attribute Short Description and Tuning Recommendations

dn: cn=Retro Changelog
Plugin,cn=plugins,cn=config

nsslapd-changelogdir

Specifies the path of the retro changelog.

In most deployments, the retro changelog may share a disk
with the access, audit, and error logs.

dn: cn=Retro Changelog
Plugin,cn=plugins,cn=config

nsslapd-changelogmaxage

Specifies the maximum age for entries in the retro
changelog. Refer to the Directory Server Administration
Reference for details on the syntax.

Change this from 0 (default, indicating no maximum) to an
interval after which clients using the retro changelog have
processed the log entries generated.

dn: cn=Retro Changelog
Plugin,cn=plugins,cn=config

nsslapd-changelogmaxentries

Specifies the maximum number of entries in the retro
changelog.

Change this from 0 (default, indicating no maximum) to a
maximum number of entries retained in the retro changelog
before trimming.

Transaction Logging

66 Directory Server 5.2 2004Q2 • Performance Tuning Guide

the result code for the update operation is returned to the client application. In the
event of a system crash, Directory Server uses the transaction log to recover the
database. As the transaction log aids in the recovery of a database shut down
abnormally, consider storing the transaction log and directory database on
separate disk subsystems.

Table 5-7 provides recommendations for specific attributes.

Table 5-7 Tuning Recommendations for Transaction Logging

Configuration Entry DN and Configuration Attribute Short Description and Tuning Recommendations

dn: cn=config,cn=ldbm
database,cn=plugins,cn=config

nsslapd-db-checkpoint-interval

Specifies how often Directory Server checkpoints the
transaction log, ensures the entire database system is
synchronized to disk, and cleans up transaction logs.

Leave at 60 (default interval in seconds) unless database
performance optimization based on empirical testing calls
for a different value. Increasing the value of this attribute
may result in a performance boost for update operations,
but also means that recovery after disorderly shutdown
takes longer, and that the transaction log uses more disk
space.

dn: cn=config,cn=ldbm
database,cn=plugins,cn=config

nsslapd-db-durable-transaction

Specifies whether update operations are committed to the
transaction log on disk before result codes are sent to
clients.

Leave on (default) for deployments requiring a high level of
data integrity. Rather than disabling durable transaction
logging to boost performance, first consider batching
transactions using nsslapd-db-transaction-batch-val.

When durability is disabled, log messages flushed to the
file system but not yet to disk may be lost in the event of a
system crash. This means that with durable transaction
logging off, some updates may be unrecoverable even
after the client receives a successful update result code.

Transaction Logging

Chapter 5 Tuning Logging 67

Refer to the Directory Server Administration Reference for details concerning
individual configuration attributes.

dn: cn=config,cn=ldbm
database,cn=plugins,cn=config

nsslapd-db-logbuf-size

Specifies the buffer size for log information stored in
memory until the buffer fills or the transaction commit
forces the buffer to be written to disk.

Leave at 524288 (512K, default). If you must change the
value, do so before loading much data into the directory,
then follow these steps:

1. Reduce the load on Directory Server.

2. Export all databases to LDIF.

3. Change the value of nsslapd-db-logbuf-size.

4. Stop Directory Server.

5. Delete files with names of the form __db.xxx and
guardian in nsslapd-db-home-directory.

6. Import all databases from LDIF.

7. Start Directory Server.

The value of this attribute must not exceed 25% of the
transaction log file size, which by default is 10 MB. For a
default configuration, therefore, this attribute should not
exceed 2.5 MB in size.

dn: cn=config,cn=ldbm
database,cn=plugins,cn=config

nsslapd-db-logdirectory

Specifies the path of the transaction log.

Consider storing the transaction log and directory database
on separate disk subsystems.

dn: cn=config,cn=ldbm
database,cn=plugins,cn=config

nsslapd-db-transaction-batch-val

Specifies how many updates are batched before being
committed to the directory database.

Only change from 0 (no batching, default) if you can afford
to lose updates in the event of a crash.

If you can afford to lose updates in a crash, then setting
this to attribute to a value such as 5 can potentially
increase write performance significantly. In order for
batching to work correctly, the maximum size of a batch of
transactions must fit in the transaction log buffer. You may
therefore need to increase the value of
nsslapd-db-logbuf-size when changing the value of this
attribute.

Table 5-7 Tuning Recommendations for Transaction Logging (Continued)

Configuration Entry DN and Configuration Attribute Short Description and Tuning Recommendations

Transaction Logging

68 Directory Server 5.2 2004Q2 • Performance Tuning Guide

69

Chapter 6

Managing Use of Other Resources

After optimizing cache size, attribute value indexing, and log management, it may
prove useful to tune how Directory Server limits resources made available to client
applications, and how Directory Server makes use of system resources. It may also
prove useful to reconfigure and even disable some features offered as Directory
Server plug-ins. This chapter includes the following sections:

• Limiting Resources Available to Clients

• Using Available System Resources

Limiting Resources Available to Clients
Default configuration may allow client applications to use more Directory Server
resources than are actually required. This may leave the door open to accidentally
or intentionally abusive client applications negatively impacting server
performance, by opening many connections then leaving them idle or unused,
launching costly and unnecessary unindexed searches, or storing enormous and
unplanned for binary attribute values in the directory.

In some deployment situations, it is not advisable to modify the default
configuration. For deployments in which you opt not to change the configuration
attribute values mentioned in this section, consider using Sun Java System
Directory Proxy Server software to set limits externally, and to help protect against
denial of service attacks.

In some deployment situations, one instance of Directory Server must support both
directory-intensive client applications such as messaging servers and occasional
directory clients such as user mail applications. In such situations, consider using
bind DN-based resource limits as described in the Directory Server Administration
Guide to raise individual limits for directory-intensive applications.

Limiting Resources Available to Clients

70 Directory Server 5.2 2004Q2 • Performance Tuning Guide

The recommendations in Table 6-1 address settings for limiting resources available
to all client applications. These limits do not apply to the Directory Manager user,
so ensure client applications do not connect as the Directory Manager user.

Table 6-1 Tuning Recommendations for Limiting Resources Available to Clients

Configuration Entry DN and Attribute Short Description and Tuning Recommendations

dn: cn=config

nsslapd-idletimeout

Sets the time in seconds after which Directory Server closes an idle
client connection. Here idle means that the connection remains
open, yet no operations are requested. By default, no time limit is set.

Some applications, such as messaging servers, may open a pool of
connections that remain idle when traffic is low, but that should not
be closed. Ideally, you might dedicate a replica to support the
application in this case. If that is not possible, consider bind
DN-based limits.

In any case, set this value high enough not to close connections that
other applications expect to remain open, but set it low enough that
connections cannot be left idle abusively. Consider setting it to 7200
(2 hours), for example.

dn: cn=config

nsslapd-ioblocktimeout

Sets the time in milliseconds after which Directory Server closes a
stalled client connection. Here stalled means that the server is
blocked either sending output to the client or reading input from the
client.

For Directory Server instances particularly exposed to denial of
service attacks, consider lowering this value from the default of
1,800,000 milliseconds (30 minutes).

dn: cn=config,cn=ldbm
database,cn=plugins,cn=config

nsslapd-lookthroughlimit

Sets the maximum number of candidate entries checked for matches
during a search.

Some applications, such as messaging servers, may need to search
the entire directory. Ideally, you might dedicate a replica to support
the application in this case. If that is not possible, consider bind
DN-based limits.

In any case, consider lowering this value from the default of 5000
entries, but not below the threshold value of
nsslapd-sizelimit.

Limiting Resources Available to Clients

Chapter 6 Managing Use of Other Resources 71

dn: cn=config

nsslapd-maxbersize

Sets the maximum size in bytes for an incoming ASN.1 message
encoded according to Basic Encoding Rules (BER). Directory Server
rejects requests to add entries larger than this limit.

If you are confident you can accurately anticipate maximum entry
size for your directory data, consider changing this value from the
default of 2097152 (2 MB) to the size of the largest expected
directory entry.

The next largest size limit for an update is the size of the transaction
log file, nsslapd-db-logfile-size, which by default is 10 MB.

dn: cn=config

nsslapd-maxthreadsperconn

Sets the maximum number of threads per client connection.

Some applications, such as messaging servers, may open a pool of
connections and may issue many requests on each connection.
Ideally, you might dedicate a replica to support the application in this
case. If that is not possible, consider bind DN-based limits.

If you anticipate that some applications may perform many requests
per connection, consider increasing this value from the default of 5,
but do not increase it to more than 10. It is typically not advisable to
specify more than 10 threads per connection.

dn: cn=config

nsslapd-sizelimit

Sets the maximum number of entries Directory Server returns in
response to a search request.

Some applications, such as messaging servers, may need to search
the entire directory. Ideally, you might dedicate a replica to support
the application in this case. If that is not possible, consider bind
DN-based limits.

In any case, consider lowering this value from the default of 2000
entries.

dn: cn=config

nsslapd-timelimit

Sets the maximum number of seconds Directory Server allows for
handling a search request.

Some applications, such as messaging servers, may need to
perform very large searches. Ideally, you might dedicate a replica to
support the application in this case. If that is not possible, consider
bind DN-based limits.

In any case, set this value as low as you can and still meet
deployment requirements. The default value of 3600 seconds (1
hour) is larger than necessary for many deployments. Consider using
600 seconds (10 minutes) as a starting point for optimization tests.

Table 6-1 Tuning Recommendations for Limiting Resources Available to Clients (Continued)

Configuration Entry DN and Attribute Short Description and Tuning Recommendations

Using Available System Resources

72 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Refer to the Directory Server Administration Reference for details concerning
individual configuration attributes.

Using Available System Resources
Depending on deployment requirements, you may choose to tune how a Directory
Server instance uses system and network resources, how access control is
managed, and how server plug-ins are configured. The recommendations in
Table 6-2 address settings for system resources.

Table 6-2 Tuning Recommendations for Configuring Use of System Resources

Attribute (on dn: cn=config) Short Description and Tuning Recommendations

nsslapd-listenhost Sets the hostname for the IP interface on which Directory Server
listens. This attribute is single-valued.

Default behavior is to listen on all interfaces. The default behavior is
adapted for high volume deployments using redundant network
interfaces for availability and throughput.

Consider setting this value when deploying on a multihomed
system, or when listening only for IPv4 or IPv6 traffic on a system
supporting each protocol through a separate interface. Consider
setting nsslapd-securelistenhost when using SSL.

nsslapd-maxdescriptors Sets the maximum number of file descriptors Directory Server
attempts to use.

The default value is the maximum number of file descriptors allowed
for a process on the system at the time when the Directory Server
instance is created. The maximum value corresponds to the
maximum number of file descriptors allowed for a process on the
system. Refer to your operating system documentation for details.

Directory Server uses file descriptors to handle client connections,
and to maintain files internally. If the error log indicates Directory
Server sometimes stops listening for new connections because not
enough file descriptors are available, increasing the value of this
attribute may increase the number of client connections Directory
Server can handle simultaneously.

If you have increased the number of file descriptors available on the
system as described in “File Descriptors” on page 26, then set the
value of this attribute accordingly. The value of this attribute should
be less than or equal to the maximum number of file descriptors
available on the system.

Using Available System Resources

Chapter 6 Managing Use of Other Resources 73

nsslapd-nagle Sets whether to delay sending of TCP packets at the socket-level.

Consider setting this to on if you need to reduce network traffic.

nsslapd-reservedescriptors Sets the number of file descriptors Directory Server maintains to
manage indexing, replication and other internal processing. Such
file descriptors become unavailable to handle client connections.

Consider increasing the value of this attribute from the default of 64
if all of the following are true.

• Directory Server replicates to more than 10 consumers or
Directory Server maintains more than 30 index files.

• Directory Server handles a large number of client connections.

• Messages in the error log suggest Directory Server is running
out of file descriptors for operations not related to client
connections.

Notice that as the number of reserved file descriptors increases, the
number of file descriptors available to handle client connections
decreases. If you increase the value of this attribute, consider
increasing the number of file descriptors available on the system,
and increasing the value of nsslapd-maxdescriptors.

If you decide to change this attribute, for a first estimate of the
number of file descriptors to reserve, try setting the value of
nsslapd-reservedescriptors to:

20 + 4 * (number of databases) + (total number of
indexes) + (value of nsoperationconnectionslimit) *
(number of chaining backends) + ReplDescriptors +
PTADescriptors + SSLDescriptors

Where ReplDescriptors = number of supplier replica + 8 if replication
is used, PTADescriptors is 3 if the Pass Through Authentication
(PTA) plug-in is enabled (0 otherwise), and SSLDescriptors is 5 if
SSL is used (0 otherwise).

The number of databases is the same as the number of suffixes for
the instance, unless the instance is configured to use more than one
database per suffix. Verify estimates through empirical testing.

nsslapd-securelistenhost Sets the hostname for the IP interface on which Directory Server
listens for SSL connections. This attribute is single-valued.

Default behavior is to listen on all interfaces. Consider this attribute
in the same way as nsslapd-listenhost.

Table 6-2 Tuning Recommendations for Configuring Use of System Resources (Continued)

Attribute (on dn: cn=config) Short Description and Tuning Recommendations

Using Available System Resources

74 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Refer to the Directory Server Administration Reference for details concerning
individual configuration attributes.

Managing Access Control
Directory Server now offers performance and scalability improvements for Access
Control Instructions (ACIs) such as better memory management and support for
macro ACIs. Improvements notwithstanding, Directory Server uses significant
system resources to evaluate complex ACIs. Extensive use of complex ACIs can
therefore negatively impact performance.

Macro ACIs help you limit the number of ACIs used. By limiting the number of
ACIs, you render access control easier to manage and reduce the load on the
system. Macros are placeholders that represent a DN, or a portion of a DN, in an
ACI. A macro can be used in an ACI target, in an ACI bind rule, or in both. When
Directory Server receives a request, it checks which ACI macros match against the

nsslapd-threadnumber Sets the number of threads Directory Server uses.

Consider adjusting the value of this attribute if any of the following
are true:

• Client applications perform many simultaneous, time-consuming
operations such as updates or complex searches.

• Directory Server supports many simultaneous client
connections.

Multiprocessor systems can sustain larger thread pools than single
processor systems. As a first estimate when optimizing the value of
this attribute, use two times the number of processors or 20 +
number of simultaneous updates. Consider also adjusting the
maximum number of threads per client connection,
nsslapd-maxthreadsperconn, as discussed in Table 6-1.
The maximum number of these threads handling client connections
cannot exceed the maximum number of file descriptors available on
the system. In some cases, it may prove useful to reduce, rather than
increase, the value of this attribute.

Verify estimates through empirical testing. Results depend not only
on the particular deployment situation but also on the underlying
system.

Table 6-2 Tuning Recommendations for Configuring Use of System Resources (Continued)

Attribute (on dn: cn=config) Short Description and Tuning Recommendations

Using Available System Resources

Chapter 6 Managing Use of Other Resources 75

resource targeted for the resulting operation. If a macro matches, Directory Server
replaces it with the value of the actual DN. Directory Server then evaluates the ACI
normally. For more information on ACIs, refer to the Directory Server
Administration Guide.

Testing has demonstrated that Directory Server can support more than 50,000
ACIs. The impact on performance for various deployment scenarios is currently
under analysis. Keep the number of ACIs as small as possible to limit negative
impact on performance, and to reduce the complexity of managing access controls.
For deployments involving complex ACI environments, consider using Sun Java
System Directory Proxy Server to provide some access control features.

Configuring Server Plug-Ins
Directory Server implements many key features such as access control, replication,
syntax checking, and attribute uniqueness using plug-ins. In the context of a
particular deployment, you may find it useful to reconfigure some plug-ins. The
recommendations in Table 6-3 address settings for some standard plug-ins.

Table 6-3 Tuning Recommendations for Some Standard Plug-Ins

Name and DN Short Description and Tuning Recommendations

7-Bit Check Plug-In

dn: cn=7-bit
check,cn=plugins,cn=config

Allows Directory Server to check that attribute values are 7-bit
clean. That is, that attribute values provided contain only
those characters that fit in 7-bit encoding.

You may choose to disable this plug-in (default on) if the
infrastructure is designed to support wider encodings such as
Japanese characters, for example.

Legacy Replication Plug-In

dn: cn=Legacy Replication
Plugin,cn=plugins,cn=config

Allows Directory Server to function as a consumer of a 4.x
supplier.

Unless you intend to use Directory Server as a consumer of a
4.x supplier during an upgrade for example, turn this plug-in
off (on by default in case 4.x replication capabilities are
required).

Using Available System Resources

76 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Refer to the Directory Server Administration Reference for details concerning
individual configuration attributes.

Referential Integrity Plug-In

dn: cn=referential integrity
postoperation,cn=plugins,cn=config

Allows Directory Server to ensure relationships between
related entries are maintained. For example, when a user
entry is removed from the directory or renamed, the groups to
which the user belonged are updated as needed without
manual intervention.

Enable and configure this plug-in on all masters. Set the
nsslapd-pluginarg0 to a positive value, such as 10
(seconds) to ensure that work performed by this plug-in
happens asynchronously, rather than synchronously.

When enabling the plug-in, also create equality indexes for all
attributes configured for use with the plug-in. The plug-in uses
such indexes when searching for entries to update. Without
equality indexes for the attributes it uses, the plug-in must
perform costly unindexed searches that have negative impact
on performance.

Refer to the Directory Server Administration Guide for
instructions on configuring and enabling the plug-in.

Table 6-3 Tuning Recommendations for Some Standard Plug-Ins (Continued)

Name and DN Short Description and Tuning Recommendations

77

Chapter 7

Tuning Class of Service

Directory Server provides Class of Service (CoS) functionality to facilitate
centralized management of common attribute values. For example, many users
may share the same fax number as an attribute of their entries; CoS lets you store
that number in one entry, then generate it for the other entries. As a result, you
only have to keep track of the fax number in one place, but client applications can
search for it on any entry to which it applies.

The disadvantage of CoS is the performance penalty paid for the convenience of
having Directory Server generate attribute values for you. In many cases, the
advantages of centralized management of common attribute values clearly
outweigh the cost disadvantages. Yet it helps to have some idea how CoS works in
order to make that comparison.

This chapter covers how Directory Server implements CoS to help you gauge
whether a particular use of CoS fits your performance requirements. It includes the
following sections:

• How Class of Service Works

• Implementing CoS for Best Performance

How Class of Service Works
This section takes a look at how CoS works from the inside. To gain a clear
understanding of the functionality CoS provides and to find information on using
CoS in your deployment, refer to the Directory Server Deployment Planning Guide.
For step by step instructions on how to set up CoS, refer to the Directory Server
Administration Guide.

How Class of Service Works

78 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Directory Server supports three types of CoS functionality: pointer CoS, indirect
CoS, and classic CoS. For each type of CoS, template entries provide the actual
attribute values, and definition entries specify the relationship between the
template entries and the target entries on which Directory Server generates
attribute values. The following sections cover CoS operation:

• Pointer CoS

• Indirect CoS

• Classic CoS

• CoS Ambiguity

Pointer CoS
Pointer CoS definition entries point to a template entry holding the attribute value
used. Recall also that a CoS definition entry targets all entries in the subtree where
the definition is located. For pointer CoS, Directory Server therefore generates the
same attribute value for all entries in the subtree. Figure 7-1 shows how Directory
Server generates each CoS attribute value.

Figure 7-1 Pointer CoS Operation

Entry in pointer
CoS scope?

Does entry
ObjectClass allow

CoS attribute?

Generate attribute
value from

template entry

Yes

Yes

No

No
Stop

Stop

How Class of Service Works

Chapter 7 Tuning Class of Service 79

As shown, pointer CoS attribute generation involves:

1. Checking whether the entry is in the scope of the pointer CoS definition.

2. Checking whether the object class(es) for the target entry allow that entry to
hold the attribute specified by the pointer CoS definition.

In other words, if the pointer CoS definition provides for fax numbers, can the
entry in question hold a fax number attribute?

If you turn nsslapd-schemacheck on cn=config to off, Directory Server skips
this step.

3. Generating the attribute value from the template entry onto the target entry.

As pointer CoS definitions directly identify template entries, Directory Server can
cache attribute values to generate. Pointer CoS therefore typically has lower
performance cost than indirect or classic CoS configurations involving the same
number of CoS definitions.

Indirect CoS
Indirect CoS definition entries specify both the attribute to generate and the
attribute in the target entry identifying the template entry. You might use Indirect
CoS, for example, to generate fax numbers for employees in
ou=People,dc=example,dc=com where fax number depends on building code.
Figure 7-2 shows how Directory Server generates each CoS attribute value.

How Class of Service Works

80 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Figure 7-2 Indirect CoS Operation

As shown, indirect CoS attribute generation involves:

1. Checking whether the entry is in the scope of the indirect CoS definition.

Entry in pointer
CoS scope?

Does entry
ObjectClass allow

CoS attribute?

Yes

Yes

No

No
Stop

Stop

Generate attribute
value from

template entry

Does entry
have a CoS

specifier value?

No
Stop

Yes

Does template
entry exist?

No
Stop

Yes

How Class of Service Works

Chapter 7 Tuning Class of Service 81

2. Checking whether the object class(es) for the target entry allow that entry to
hold the attribute specified by the indirect CoS definition.

If you turn nsslapd-schemacheck on cn=config to off, Directory Server skips
this step.

3. Retrieving the value of the target entry attribute identified by the CoS indirect
specifier attribute of the definition entry.

This attribute value is the DN of the template entry.

4. Looking up the template entry using the attribute value retrieved in Step 3.

5. Generating the attribute value from the template entry onto the target entry.

Directory Server can cache indirect CoS definition entries efficiently. It does not
cache indirect CoS template entries in any special way. As template indirect CoS
template entries depend entirely on target entry attribute values, the cost of
maintaining such a cache could be prohibitively expensive. Looking up template
entries can of course work faster if Directory Server retrieves them from entry
cache in RAM, rather than from disk storage.

Indirect CoS typically has higher performance cost than both pointer CoS and
classic CoS for configurations involving the same number of CoS definitions.

Classic CoS
Classic CoS definition entries provide similar functionality to indirect CoS
definition entries. Instead of specifying a target entry attribute that then fully
identifies the template entry by DN, however, classic CoS definition entries specify
the base DN of the template entry and the CoS specifier attribute on the target
entry that further identifies the template entry under the base DN that holds the
CoS attribute value to generate. You might use classic CoS, for example, to generate
one set of fax numbers for managers, fax machines used for confidential
information perhaps, and another set of fax numbers for other employees, where
fax number depends on the building code.

As each classic CoS definition entry specifies a base DN to identify template
entries, each classic CoS definition potentially relates to a large number of
templates that Directory Server can identify in advance. Directory Server caches
the list of templates for each classic CoS definition entry.

How Class of Service Works

82 Directory Server 5.2 2004Q2 • Performance Tuning Guide

To optimize the cache structure for fast lookup, Directory Server maintains a hash
when more than 10 templates correspond to a definition. Directory Server builds
hash keys from the values of the attributes identified as cosSpecifier attribute
values (the RDNs of the template entries). To avoid clashes, where several
templates correspond to the same hash key, ensure the RDNs of the template
entries are significantly different. You can monitor CoS through CoS monitoring
attributes described in the Directory Server Administration Reference.

Figure 7-3 shows how Directory Server generates each CoS attribute value.

Figure 7-3 Classic CoS Operation

Entry in pointer
CoS scope?

Does entry
ObjectClass allow

CoS attribute?

Yes

Yes

No

No
Stop

Stop

Find template
entry in list of

entries for CoS
definition

Generate attribute
value from

template entry

Determine
template DN from
CoS specifier on
target entry and

base DN on
definition entry

How Class of Service Works

Chapter 7 Tuning Class of Service 83

As shown, classic CoS attribute generation involves:

1. Checking whether the entry is in the scope of the classic CoS definition.

2. Checking whether the object class(es) for the target entry allow that entry to
hold the attribute specified by the classic CoS definition.

If you turn nsslapd-schemacheck on cn=config to off, Directory Server skips
this step.

3. Determining the template entry DN using the base DN specified in the
definition entry and the specifier value in the target entry.

4. Looking up the template entry in the list of template entries under the base DN
specified in the definition entry.

5. Generating the attribute value from the template entry onto the target entry.

Each classic CoS attribute value generation therefore requires several lookups. The
performance cost of classic CoS typically costs less than indirect CoS and more than
pointer CoS configurations involving the same number of CoS definitions.

CoS Ambiguity
Nothing in Directory Server prevents you from creating multiple CoS definition
entries that each generate a value for the same single-valued attribute on a given
target entry. The Directory Server Administration Guide explains that when multiple
definitions of identical CoS priority can apply Directory Server picks one
arbitrarily. By default, unless you specify otherwise, all CoS definitions have the
same priority.

Directory Server logs warning messages when forced to make an arbitrary
distinction among multiple applicable definition entries. This logging capability
was not provided in earlier versions of Directory Server. Such warning messages
takes the form:

Definition defDN1 and definition defDN2 compete to provide attribute 'type' at priority level

You can also configure Directory Server to log informational messages when it is
forced to make an arbitrary distinction among multiple, potentially applicable
definition entries. To do so, set the log level high enough to include informational
messages from plug-ins. Note that this can result in a heavy logging load, so you
might not want to set logging that high on a production server instance. The
content of informational messages takes the following form:

Definition defDN1 and definition defDN2 potentially compete to provide attribute 'type' at priority level

Implementing CoS for Best Performance

84 Directory Server 5.2 2004Q2 • Performance Tuning Guide

You can then choose whether to resolve such cases of CoS ambiguity by setting
CoS priorities appropriately on the definition entries.

Implementing CoS for Best Performance
This section examines some implications of how CoS works on the ways you might
naturally use CoS functionality as intended, and avoid performance pitfalls.

• When Many Entries Share the Same Value

• When Entries Have Natural Relationships

• Avoid Thousands of CoS Definitions

When Many Entries Share the Same Value
CoS provides big benefits for relatively low cost when you need the same attribute
value to appear on a large number of entries in a subtree.

Imagine, for example, a directory for MyCompany, Inc. in which every user entry
under ou=People has a companyName attribute. Contractors have real values for
companyName attributes on their entries, but all regular employees have a single
CoS-generated value, MyCompany, Inc., for companyName. Figure 7-4 demonstrates
this with pointer CoS. Notice here that CoS generates companyName values for all
permanent employees without overriding real, not CoS generated, companyName
values stored for contractor employees.

NOTE CoS generation always impacts performance. Client applications
that search for more attributes than they need can compound the
problem.

Sometimes you cannot prevent developers from creating clients that
search for objectclass=*, and then examine a big result set on the
client when they actually need only an email address, for example. If
you can influence how client applications are written, however,
work to convince directory client developers that their applications
will perform much better when looking up only those attribute
values they actually need.

Implementing CoS for Best Performance

Chapter 7 Tuning Class of Service 85

Figure 7-4 Generating CompanyName With Pointer CoS

In cases where many, many entries share the same value, pointer CoS works
particularly well. The ease of maintaining companyName for permanent employees
clearly offsets the additional processing cost of generating attribute values. Deep
directory information trees (DIT) tend to bring entries sharing common
characteristics together. Pointer CoS can often be used in deep DITs to generate
common attribute values by placing CoS definitions at appropriate branches in the
tree.

When Entries Have Natural Relationships
CoS also provides big data administration benefits where directory data has
natural relationships.

Consider an enterprise directory for example in which every employee has a
manager, and every employee shares a mail stop and fax number with the nearest
administrative assistant. Figure 7-5 and Figure 7-6 demonstrate use of indirect CoS
to retrieve department number from the manager entry and mail stop and fax
number from the administrative assistant entry, respectively.

dn: cn=CompanyNamePtrCoS,dc=example,dc=com
cosTemplateDn: cn=CompanyName,cn=data
cosAttribute: companyName

dn: cn=CompanyName,cn=data
companyName: MyCompany, Inc.

dn: ou=People,dc=example,dc=com

cn: Sue Jacobs
employeeType: Employee
companyName: MyCompany, Inc.

cn: William Holiday
employeeType: Employee
companyName: MyCompany, Inc.

cn: Babs Jensen
employeeType: Contractor
companyName: FlyByNite Corp.

Directory Server generates
identical companyName

attribute values for all
permanent employees.

Real attribute values for
companyName override CoS

generation on contractor
employee entries.

Implementing CoS for Best Performance

86 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Figure 7-5 Generating DepartmentNumber With Indirect CoS

In this implementation, manager’s entries have real values for departmentNumber,
and these real values override generated values. Directory Server does not
generate attribute values from CoS generated attribute values. As a result, for the
example shown in Figure 7-5 department number attribute values need to be
managed only on manager entries. Likewise, for the example shown in Figure 7-6
mail stop and fax number attributes need to be managed only on administrative
assistants’ entries.

dn: cn=deptNoIndirectCoS,dc=example,dc=com
cosIndirectSpecifier: manager
cosAttribute: departmentNumber

dn: ou=People,dc=example,dc=com

cn: Sue Jacobs
manager: cn=William Holiday,ou=People,dc=example,dc=com
departmentNumber: 123456

cn: Babs Jensen
manager: cn=Sue Jacobs,ou=People,dc=example,dc=com
departmentNumber: 123456

Sue is a manager; her entry
has a real value stored on

departmentNumber.

For Babs’s entry, Directory
Server generates the

departmentNumber value
using indirect CoS.

Implementing CoS for Best Performance

Chapter 7 Tuning Class of Service 87

Figure 7-6 Generating Mail Stop and Fax Number With Indirect CoS

Notice that a single CoS definition entry can be used to exploit relationships such
as these for many different entries in the directory.

Another natural relationship is service level. Consider an Internet service provider
offering customers standard, silver, gold, platinum packages. A customer’s disk
quota, number of mailboxes, and rights to prepaid support levels depends on the
service level purchased. Figure 7-7 demonstrates how a classic CoS scheme enables
this.

dn: cn=faxNoIndirectCoS,dc=example,dc=com
cosIndirectSpecifier: admin
cosAttribute: facsimileTelephoneNumber

dn: ou=People,dc=example,dc=com

cn: Babs Jensen
facsimileTelephoneNumber: +1 800 555 1212
mailStop: EGNB07

cn: Sue Jacobs
admin: cn=Babs Jensen,ou=People,dc=example,dc=com
facsimileTelephoneNumber: +1 800 555 1212
mailStop: EGNB07

Babs is an administrative
assistant; the values for fax

number and mail stop on
Babs’s entry are real.

For Sue’s entry, Directory
Server generates the values

using indirect CoS.

dn: cn=mailStopIndirectCoS,dc=example,dc=com
cosIndirectSpecifier: admin
cosAttribute: mailStop

Implementing CoS for Best Performance

88 Directory Server 5.2 2004Q2 • Performance Tuning Guide

Figure 7-7 Generating Service Level Data With Classic CoS

Notice one CoS definition may be associated with multiple CoS template entries.

dn: cn=servLevelClassicCoS,dc=example,dc=com
cosTemplateDn: cn=CoS,cn=data
cosSpecifier: serviceLevel
cosAttribute: diskQuota
cosAttribute: noMailboxes
cosAttribute: supportLevel

dn: ou=Customers,dc=example,dc=com

cn: FlyByNite Corp.
serviceLevel: standard
diskQuota: 10 MB
noMailboxes: 5
supportLevel: 8x5

Directory Server generates
disk quotas, numbers of
mailboxes, and support

levels, based on the
serviceLevel value for the

customer.

dn: cn=standard,cn=CoS,cn=data
diskQuota: 10 MB
noMailboxes: 5
supportLevel: 8x5

dn: cn=silver,cn=CoS,cn=data
diskQuota: 25 MB
noMailboxes: 10
supportLevel: 12x6

dn: cn=gold,cn=CoS,cn=data
diskQuota: 100 MB
noMailboxes: 25
supportLevel: 24x7

dn: cn=platinum,cn=CoS,cn=data
diskQuota: 2 GB
noMailboxes: unlimited
supportLevel: 24x7 on site

cn: Small Shop Ltd.
serviceLevel: silver
diskQuota: 25 MB
noMailboxes: 10
supportLevel: 12x6

cn: Fast Growth Inc.
serviceLevel: gold
diskQuota: 100 MB
noMailboxes: 25
supportLevel: 24x7

cn: Bulk Mail Industries
serviceLevel: platinum
diskQuota: 2 GB
noMailboxes: unlimited
supportLevel: 24x7 on site

Implementing CoS for Best Performance

Chapter 7 Tuning Class of Service 89

Avoid Thousands of CoS Definitions
As described in “Classic CoS” on page 81, Directory Server optimizes for the case
where one classic CoS definition entry is associated with multiple CoS template
entries. Directory Server does not, however, optimize for the case where many,
many CoS definitions potentially apply. Instead, Directory Server checks each CoS
definition to determine whether it applies. This behavior leads to performance
problems when you define thousands of CoS definitions.

This situation can arise in a modified version of the example shown in Figure 7-7.
Consider an Internet service provider offering customers delegated administration
of their customers’ service level. Each customer provides definition entries for
standard, silver, gold, and platinum service levels. Ramping up to 1000 customers
therefore means creating 1000 classic CoS definitions, with the consequent
performance hit as Directory Server runs through the list of 1000 CoS definitions to
determine which apply. If you must use CoS in this sort of situation, consider
indirect CoS, where customers’ customers’ entries identify the entries defining
their class of service allotments.

With or without thousands of CoS definitions, once you start approaching the limit
of having different CoS schemes for every target entry or two, you are better off
paying the management price of updating the real values, thereby gaining the
performance price of reading real, rather than CoS-generated values.

Implementing CoS for Best Performance

90 Directory Server 5.2 2004Q2 • Performance Tuning Guide

91

Glossary

Refer to the Java Enterprise System Glossary (http://docs.sun.com/doc/816-6873) for
a complete list of terms that are used in this documentation set.

92 Directory Server 5.2 2004Q2 • Performance Tuning Guide

93

Index

A
access control 74–75
access log 60
approximate indexes 53
audit log 61

B
browsing indexes 52

C
cache

database 31
entry 32
file system 33
import 33
monitoring 41, 44
optimizing 40–44
priming 44
total size 34
use in searches 34–36
use in suffix initialization 38–40
use in updates 37–38

cache types 29
coreadm 23
currententrycachecount 44

currententrycachesize 44

D
dbcachehitratio 44
dbcachepagein 44
dbcacheroevict 44
documentation 9

E
entrycachehitratio 44
equality indexes 49
error log 62

H
hardware sizing. See sizing

I
idsktune 21, 22, 25
indexes

32-bit vs. 64-bit 48

Section L

94 Directory Server 5.2 2004Q2 • Performance Tuning Guide

approximate 53
benefits 17, 46–47
browsing (VLV) 52
costs 47–54
equality 49
files 45
international 53
limiting size 18, 55–58
presence 48
substrings 51
tuning 55–58
types 46
use in searches 47, 55

L
logs

access 60
audit 61
error 62
replication changelog 64
retro changelog 65
transaction 65
types 59

M
maxentrycachesize 44

N
nsslapd-accesslog 60
nsslapd-accesslog-level 60
nsslapd-accesslog-logbuffering 60
nsslapd-accesslog-logging-enabled 60
nsslapd-accesslog-logmaxdiskspace 60, 61
nsslapd-accesslog-logminfreediskspace 60, 61
nsslapd-allidsthreshold 56, 57, 58
nsslapd-auditlog 62

nsslapd-auditlog-logging-enabled 62
nsslapd-auditlog-logmaxdiskspace 62
nsslapd-auditlog-logminfreediskspace 62
nsslapd-cachememsize 32, 64
nsslapd-changelogdir 64, 65
nsslapd-changelogmaxage 64, 65
nsslapd-changelogmaxentries 64
nsslapd-dbcachesize 31
nsslapd-db-checkpoint-interval 66
nsslapd-db-durable-transaction 66
nsslapd-db-home-directory 19
nsslapd-db-logbuf-size 67
nsslapd-db-logdirectory 67
nsslapd-db-transaction-batch-val 20, 67
nsslapd-directory 45
nsslapd-errorlog 63
nsslapd-errorlog-logging-enabled 63
nsslapd-errorlog-logmaxdiskspace 63
nsslapd-errorlog-logminfreediskspace 63
nsslapd-idletimeout 70
nsslapd-import-cachesize 33
nsslapd-infolog-area 63
nsslapd-infolog-level 63
nsslapd-ioblocktimeout 70
nsslapd-listenhost 72, 73
nsslapd-lookthroughlimit 47, 56, 70
nsslapd-maxbersize 71
nsslapd-maxdescriptors 72, 73
nsslapd-maxthreadsperconn 71, 74
nsslapd-nagle 73
nsslapd-require-index 55
nsslapd-reservedescriptors 73
nsslapd-securelistenhost 72, 73
nsslapd-sizelimit 47, 70, 71
nsslapd-threadnumber 74
nsslapd-timelimit 47, 71
NTP 24

Section P

Index 95

P
patches

required 22
plug-ins

7-bit check 75
legacy replication 75
referential integrity 76

presence indexes 48

R
replication changelog 64
restarting

directory service 24
retro changelog 65

S
security 22–24

firewall 22
no dual boot 22
services 23
strong passwords 22
users and groups 23

sizing
total cache 34

substring indexes 51

T
transaction log 65
tuning

access control 74–75
blocked connections 70
cache 17, 29–44
entry sizes 71
file descriptors 26, 72, 73
generating recommendations 25

idle connections 70
indexes 55–58
IP interfaces 72, 73
logs 19, 60–67
plug-ins 75–76
resource limits 18, 69–72
search sizes 70, 71
system resources 72–74
system settings 25–28
TCP 26–28, 73
threads 71, 74
time limits 71
tips 15–20

V
virtual list view indexes 52

Section V

96 Directory Server 5.2 2004Q2 • Performance Tuning Guide

	Directory Server 5.2 Performance Tuning Guide
	Contents
	Preface
	Who Should Read This Guide
	How This Guide Is Organized
	Using the Documentation
	Conventions
	Resources and Tools on the Web
	How to Report Problems
	Sun Welcomes Your Comments

	Top Tuning Tips
	Tuning the Operating System
	Checking Platform Support
	Patching the System
	Enforcing Basic Security
	Isolate the System
	No Dual Boot
	Strong Passwords
	Users and Groups
	Disabling Unnecessary Services

	Keeping Accurate Time
	Restarting After System Failure
	Generating Basic Tuning Recommendations
	Tuning System Settings
	File Descriptors
	Transmission Control Protocol (TCP) Settings

	Tuning Cache Sizes
	Types of Cache
	Database Cache
	Entry Cache
	Import Cache
	File System Cache
	Total Aggregate Cache Size

	How Searches Use Cache
	Base Search Process
	Subtree and One-Level Search Process

	How Updates Use Cache
	How Suffix Initialization Uses Cache
	Optimizing For Searches
	All Entries and Indexes in Memory
	Plenty of Memory, 32-Bit Directory Server
	Not Enough Memory

	Optimizing for Updates
	Cache Priming and Monitoring
	Other Optimizations

	Tuning Indexing
	About Indexes
	Benefits: How Searches Use Indexes
	Costs: How Updates Affect Indexes
	Presence Indexes
	Equality Indexes
	Substring Indexes
	Browsing (Virtual List View) Indexes
	Approximate Indexes
	International Indexes
	Example: Indexing an Entry

	Tuning Indexing for Performance
	Allowing Only Indexed Searches
	Limiting Index List Length

	Tuning Logging
	Access Logging
	Audit Logging
	Error Logging
	Multi-Master Replication Change Logging
	Retro Change Logging
	Transaction Logging

	Managing Use of Other Resources
	Limiting Resources Available to Clients
	Using Available System Resources
	Managing Access Control
	Configuring Server Plug-Ins

	Tuning Class of Service
	How Class of Service Works
	Pointer CoS
	Indirect CoS
	Classic CoS
	CoS Ambiguity

	Implementing CoS for Best Performance
	When Many Entries Share the Same Value
	When Entries Have Natural Relationships
	Avoid Thousands of CoS Definitions

	Glossary
	Index

