s bErT

Sun Java™ System

ldentity Server
Developer’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-5710-10

2004Q2

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http://wamv sun. con pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the
U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, the Duke logo,
the Java Coffee Cup logo, the Solaris logo, the SunTone Certified logo and the Sun ONE logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Legato and the Legato logo are registered trademarks, and Legato NetWorker, are trademarks or registered trademarks of Legato Systems, Inc.
The Netscape Communications Corp logo is a trademark or registered trademark of Netscape Communications Corporation.

The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun's written license agreements.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct
or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a
I'adresse ht t p: // waw sun. cont pat ent s et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.

CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par I'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, le logo Duke, le
logo Java Coffee Cup, le logo Solaris, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

Legato, le logo Legato, et Legato NetWorker sont des marques de fabrique ou des marques déposées de Legato Systems, Inc. Le logo Netscape
Communications Corp est une marque de fabrique ou une marque déposée de Netscape Communications Corporation.

L'interface d'utilisation graphiqgue OPEN LOOK et Sun(TM) a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnait les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique
pour I'industrie de I'informatique. Sun détient une license non exclusive de Xerox sur I'interface d'utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place I'interface d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux
licences écrites de Sun.

Les produits qui font I'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales,
ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimigues ou du nucleaire maritime, directement ou
indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des entites
figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui font objet d'un
ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la legislation
americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

Ccontents

LISt Of FIgUIeS ..o e e e 19
List Of Tables . ..o 21
List Of Procedures 23
List of Code EXamples 25
ADOUL This GUIAE . .. e e 29
Audience for ThisS GUIAE o e 29
Identity Server 2004Q2 Documentation Set i 30
Identity Server 2004Q2 Core Documentationttt 30
Identity Server Policy Agent Documentation it 31
Your Feedback on the Documentation it 32
Documentation Conventions Used in ThisGuide i 32
Typographic CONVENLIONSttt e e e e et e 32
TerMINOIOQY . . oot 33
Related Information 34
Related Third-Party Web Site References e 34
Chapter 2 INtrodUCHioN 35
Identity SErVEr OVEIVIEW . ..ot e 35
Data Management COmMPONENTS ittt e e 36
Identity Server Management SEIVICESttt 37
MANAGING A CCESS & o vt ettt ettt et e e 39
VD A CCESS . . vttt e e 39
APP I CAtION ACCESS .« ottt e 40
Extending [dentity Server 40
Service Definition With XMLo o 40
Console CUSTOMIZALIONot e e e e e 41
Identity SErver SDK 41

4

Identity Management SDK 41

Service Management SDK 41
Authentication Programming Interfaces i 41
Ut Y AP 42
Logging API And Logging SPI o 42
Client Detection APl ... oo 42

SO0 AP L 42
POlICY SDK .. 42
SAML S K 42
Federation Management APl 43
Identity Server File System 43
Client BrOWSEr SUPPOITot et e e e e e e e e e e e e 43
Chapter 3 The ldentity Server Console e 45
OV VI W . oot 45
Console INtErfaceo 46
Generating The Console Interface 47
Plug-In Moduleso 48
ACCeSSING The CONSOIEo e e e e e e e 48
Customizing The Console 48
The Default Console Files oo 49
Creating Custom Organization Files e 49
To Create Custom Organization Files e 50
Alternate Customization Procedure it 51
Miscellaneous CUSTOMIZAtIONSttt e e e 51
To Modify The Service Configuration Display 51

To Modify The User Profile VIiew e 52
Display Options For The User Profile Page i, 53
ToLocalize The CONSOIE e 53

To Display Service AttribULeS 53

To Customize Interface ColOrS o 53

To Change The Default Attribute Display Elements 54
TOAdd AModule Tabo 58

To Display Container ODJeCtSt e 58
CONS0le AP 59
Precompiling The Console JSP e e 60
CoNS0le SaAMIPIES . . o 60
Modify User Profile Page 60
Create A Tabbed Identity Management Display 60
CoNSOIEEVENTLISIENEY . . . oo e 61
Add Administrative FUNCLION e 61
Add ANew Module Tabo 61
Create A Custom User Profile VIew o e 62

Identity Server 2004Q2 « Developer's Guide

Chapter 4 Authentication ServiCe e e 63

OV IV W Lot e e 63
Authentication Via A Web BroWSert e 64
Authentication Via The Java APl e 65
Authentication Via The C APl e e e e e 65
RedireCtioN URLS e 66

Authentication Service Modules i 66
Authentication Configuration SErvice 66
Core AUthentication SEIVICEt e e e e 66
Anonymous Authentication Module 67
Certificate Authentication Module e 67
HTTP Basic Authentication Module i e e 68
Kerberos Authentication e 69

Windows Desktop SSO Module OVErVIEW i 70

Configuring the Windows Desktop SSO Authentication Module 70
LDAP Authentication Module i e 70
Membership Authentication Module 71
NT Authentication Module e e e e 72
RADIUS Authentication Module 73
SafeWord Authentication Module 74
SecurlD Authentication Module e 74
UNIX® Authentication Module i e e e e 75

Authentication Service User Interface i e e e e 76
The User Interface Login URL e 76
Login URL Parametersttt e e e e e e e e 76

OtO Parameter 77
gotoONFail Parameter 78
OFg ParamME el . .o 78
USEE Paramieler .o e 79
POl ParamME el . . . o e e 79
locale Parameter e 79
MoOdUle Parameter e e 80
SEIVICE Paramieter ... 81
NG ParamMEIEr . 81
authlevel Parameter 81
domain Parameter e 82
IPSPCOOKIE Parametert e 82
IDTOKENN Parametersttt et e e e e e 82
File Types Of The User Interface e 83
JAVAS IV PagES . . oot e 84
Authentication Module Configuration Files 86
JavaSCrIPt FIleS .o 87
Cascading Style Sheets 88

Contents 5

Image Files . .. o 89

Localization Properties Files 89
Customizing The Authentication User Interface i ... 90
To Create New Directories For Custom Console Files 91
To Create A Custom Login Interface e 93
Authentication Methods 105
Organization-based Authentication i 107
Organization-based Authentication Login URLS 107
Organization-based Authentication Redirection URLS 108
Role-based Authentication e 109
Role-based Authentication Login URLS e 110
Role-based Authentication Redirection URLS i, 111
Service-based Authentication 113
Service-based Authentication Login URLS e 113
Service-based Authentication Redirection URLS i, 113
User-based Authentication e 115
User-based Authentication Login URLS e 115
User-based Authentication Redirection URLS i, 116
Authentication Level-based Authentication i 118
Authentication Level-based Authentication Login URLS 119
Authentication Level-based Authentication Redirection URLs 119
Module-based Authentication 121
Module-based Authentication Login URLS i 121
Module-based Authentication Redirection URLS i, 121
Authentication Features e e e e 123
ACCOUNt LOCKING e 123
Physical LOCKINGo 124
Memory LOCKINGo 125
Authentication Module Chaining e 125
Fully Qualified Domain Name Mapping oot e 127
Possible Uses FOr FQDN Mappingttt e e 127
Persistent CoOKIE 128
Multi-LDAP Authentication Module Configuration 128
To Add An Additional LDAP Configuration i 129
SeSSION UPgrade 131
Validation Plug-in Interface 132
JAAS Shared State 132
Enabling JAAS Shared Statet 133
JAAS Shared State Store Optiono 133
Authentication DTD Files i e e 133
Auth_Module_Properties.dtd 134
ModuleProperties Element 134
Callbacks Element 135

Identity Server 2004Q2 « Developer's Guide

NameCallback Element 136

PasswordCallback Element 136
ChoiceCallback Element 137
ConfirmationCallback Element 137
Prompt Element 137
ChoiceValues and ChoiceValue Element i, 137
OptionValues and OptionValue Element i 138
Value Element 138
The remote-auth.dtd StruCtUre e 138
AuthContext EIEMENt 138
Request Element e 138
ReSpONSE Element 140
IndexTypeNamePair Element 141
Subject Elemento 141
Callbacks Elemento o 141
ModuleName Element 143
HeaderValue Element 143
ImageName Element e 143
PageTimeOutValue Element e e 143
TemplateName Element 143
AttributeValuePair Element 144
Prompt Element 144
Locale Element 144
ChoiceValues Element 144
ChoiceValue Element 144
SelectedValues Element o o 144
SelectedValue Element 145
OptionValue Element 145
DefaultOptionValue Element e 145
Custom Authentication Modules 145
Integrating A Custom Authentication Module i 145
Configuring The Authentication Module i 147
Elements Of The Authentication Module ConfigurationFile 148
Customizing Membership.xml 149
Configuring Authentication Localization Properties 154
Modifying The Core Authentication SErvice i 155
Pluggable Auth Module Classes Attribute i 155
Organization Authentication Modules Attribute 156
Authentication Programming Interfaces 156
Application Programming Interfaces i 157
Authentication APl For Java Applications i 157
Authentication API For C Applications 159
Authentication Option For Other Applications i 170

Contents 7

XML MBS Sa0ES . o . ottt et e e et e e e e e 170

Service Programming Interfaces i 173
Implementing A Custom Authentication Module 174
Implementing A Pure JAAS Module 180
Implementing Authentication POSt Processingt 185

Authentication SamIPIes oo 189

Certificate Authentication Sample 189

LDAP Authentication Sample e 190

MSISDN (Wireless) Module e 190

QP Sample . 190

JDBC Authentication Sample 190

JCDI Authentication Sample 191

Chapter 5 Single Sign-On And SeSSIONSttt e e 193
OV VI W . oottt e e 193

SESSION SErVICE CONCEPLS . . .ttt ettt e e e e e e e e e e e 194
I TCTSES] o o 194
SESSION I o 194
SOOI T OKEN o 195

SiNGIE SIgN-ON PrOCESS . . . o .ttt et e e e e e e e e e 195
Contacting A Protected RESOUICEottt 195
Providing User Credentials 195

COoO0KIES AN SESSIONS . . ottt et e e 196
SESSION STIUCTUIE . . oottt et e e e e e e e e et e e e e e 196

Fixed ATrDUTESo 196

Protected And CuUStOm Properties oo e 197
Protected Properties e 197

CUSIOM PrOPEItIES . . oottt e e e e e e e e e e e e 198

Cross-Domain SUPPOrt FOr SSOt 198

POl Y AN . . 199

Cross-Domain Controller 199

A Cross-Domain SSO SCENAIIO v ettt e e e e 200

Enabling Cross-Domain Single Sign-On e 201

SO0 APl 201

JaVa APL OVEIVIBW . . o 202
SSOTokenManager Classt 202
SSOTOKeNID INterface 203
SSOTOKEN INTEITACE ot e e 203
SSOTOKENEVENT . e e e 205
SSOTOKENLISTENET . . .ttt e e e 205
Sample SSO Java Files 206

C AP OVEIVIBW . . oot e e e e e e e 208
CSSO INclude Files o 208

Identity Server 2004Q2 « Developer's Guide

C SSO PrOPEIIES . . oottt e 208

C SSO INTEITACES . .o\ttt e e 209

C SSO SaMIPIe . . 217

Java versus C AP ... 217
Non-Web-Based Applications e 219
SSO SaAMIPIES .o 219
Chapter 6 Identity Management e 221
L@ Y = 221
Identity Server Console 222
UMS XM o e 222
Identity Management Software Development Kit (SDK) 222
Identity-related ODJECTS o 222
Marker ODJeCt Classeso ot e e 223
Identity-related Objects AS LDAP ENtries e e 224
OrganizatioNS i 224
(O0] o1 -] =] 224
USBES . . 225

LT 011 o 225
ROIES . 226
Object Templates ANd UMS.XMIo o i 226
Structure Of UMS. XM ..o o e 226
Structure TemMPIAtes 227
Creation Templates 227
Search Templates e 228
Modifying UMS. XMl . .. e 228
Adding Custom ODbject Classest e 229

DAL SIVICE . .ottt 229
amENtrySpecific.Xxml 230
Identity Management SDK 231
It aCES . o o 232
AMASSIgNableDynamicGroUPt e 232
AMCaIIDACK 232
AMCONSIANTS 232
AMDYNAMICGIOUD . ..ottt et e e e e e e e e e e e e e 232
AMEVENTLISTENEr . o 232
AMEFilteredROle o 233
AM G OUD .o 233
AMGIOUPCONTAINET . . . ot e e e e e e e e e e e 233
AMODECT . oot 233
AMOIgaNIZationo e e 234
AMOrganizationalUnit 234
AMPeopleCONtAINEr 234

Contents 9

AMROIE 234

AMSearchCoNtrol e 234
AMSEAtICOIOUD . . . oottt e e et e e e 235
AMSEOreCONNECTION . . oo ot et e e e 235
AMTEmMpPIate ... 235
AMUS T 236
AMUSserPasswordValidationo 237
Search Methods IN The SDK o e 237
Search Method Parameters 238
searchUsers Sample Code it e e e 239
Search Groups Sample Code 240
Email Notification And The SDK 241
Caching And The SDK e 242
Installing The SDK Remotely o e 242
Management Function Samples 243
Creating ObJeCtS o 243
Retrieve Templates o 245
Identity Management Samples 245
Adding User AttriDULES e 246
Creating Objects With The SDK e 246
Chapter 7 Service Managementt e 247
OV VI W . o 247
XML Service FileS ... 248
Document Type Definition Structure Files 248
Service Management SDK 249
Defining A CUSIOM SEIVICE ot e e e e e e e e e e e 249
Creating A Service File 251
Service File Naming CONVENtIONSt e 251
Service ALribULES o 251
ALtribute INNEritanCe 254
Extending The Directory Server SChema e 255
To Extend The Directory Server LDAP Schema i 255
Adding Identity Server Object Classes To Existing Userso, 257
Importing The XML Service File e 257
Configuring Console Localization Properties i e 257
Localizing With TWO Languagest e 259
Updating Files For Abstract ObjJects e 259
Registering The Service e e 259
DT D RIS ..ttt 259
The SMS.Atd StrUCTUNEo e e e e e 261
ServicesConfiguration Element 261
Service Element 261

10 Identity Server 2004Q2 « Developer's Guide

Schema Element 262

Service Attribute Elements 264
SubSchema Elemento 266
AttributeSchema Element e 266
The amAdMIN.Atd SITUCTUIE o e e e 271
Requests Element 271
OrganizationRequests Element 273
ContainerRequests Element 274
PeopleContainerRequests Element 275
RoleRequests Element e 276
GroupRequests Element 277
UserRequests Element 277
ServiceConfigurationRequests Element 277
AttributeValuePair Element 278
CreateObject Elements 279
DeleteObject EIeMENtS o 284
ModifyObject Elements 285
GetObjeCt EIEmMENtS 286
GetService Elements o 287
ActionServiceTemplate Element 288
ActionServiceTemplateAttributeValues Element 288
ACtIONSErVICES EIBMENTS oo 288
SchemaRequests Element 289
Federation Management Elements 292
XML Service Files ..o 292
Default XML Service Files 293
Modifying A Default XML Service File 294
Batch Processing With XML Templateso e 296
XML TemPlateso e e 296
Modifying A Batch Processing XML Template 298
CUStOMIZING USEE PagES . . . o ottt et e e e e e e e e e e e e e 298
Creating Users Using A Modified Directory Server Schema 299
Service Management SDK 300
ServiceSchemaManager Class oot 300
Retrieve Logging LOCAtioNo 300
Retrieve User Or Dynamic Attributes e 301
Retrieve Attribute Values 301
Chapter 8 Policy Management e 309
POIICY SDK . 309
Java SDK FOr POIICY ... 309
Policy APLFOrJava e 310
Policy PIugin APLFOrJava e i 315

Contents 11

12

C Library FOr PoliCY 316

Policy Evaluation APIfor C 317
Extending the Policy Management Feature it ieii i 317
Compiling the Policy Samples 318
Adding the Policy Service to Identity Server i 318
Developing Custom Subijects, Conditionsand Referrals 319
To Load the Modified SErViCes 320
Creating Policies for the SErvice 321
Developing and Running Policy Evaluation Programs 322
To Run the Policy Evaluation Program e i 322
Constructing Policies Programmatically 323
TOo RUN POLICYCreatorjavat e e e e e 323
POlICYCreator.java 323
Chapter 9 SAML SerViCet 329
OV VI W . oot 329
ACCeSSING The SAML SEIVICE oo e e e e e 331
SAML Component Details 331
Profile TYPES . 332
Web Browser Artifact Profile 332

Web Browser POST Profile 334
ASSEITION TY DS . . ottt ettt e e e e e e e e e 335
SAML SOAP RECEIVEN . . .ottt e e e e 336
SOAP MBS agES . . ottt ettt e e e e 337
Protecting The SOAP ReCEIVEr i e 337

AMS AM XM L 338
QAL SDK .. 339
com.sun.identity.saml 339
com.sun.identity.samlassertion 340
com.sun.identity.samLCOMMON 340
com.sun.identity.samLplugins 341
com.sun.identity.samLprotocol 342
AUthenticatioNQUENY e e 342

AN DUTEQUEIY . . o 343
AuthorizationDeCiSIONQUETYt e 343
com.sun.identity.samlLxXmISIg 345
SAML SaMPIES . 345
Chapter 10 Auditing Features i e 347
LOgging SErVICE OVeIVIBW . ..ottt e e e e e e e 347
Logging ArChiteCtUre o 348
aMLOggING. XMl o 349

Identity Server 2004Q2 « Developer’s Guide

LOg IS .. 349

Recorded EVENTS 349
TIMIE o 349
Data ... 349
ModUIENGAME . .. 350
DOMAIN . o 350
Log LeVel . . 350
LOgin ID .. 350
P AAAIESS . oo 350
LOgQed BY .. 350
HOSE INAME . . . 350

Log File FOrmMats 351
Flat File FOrmMato e e 351
Relational Database FOrmato o e 351

Java Enterprise System Installation LOgS oo 353

Identity SErver SErviCe LOOSttt e e e e 353
SESSION LOgS .« . ottt ettt e 353
CONS0IE LOOS . . ittt e 354
AUthentication LOgSt e e 354
Federation LOgS e e e 354
POIICY LOOS .ottt 354
AGENE LOGS .o 355
SAML LOQS i i et 355
AMAAMIN LOGS . oottt e e e e e e 355

Logging FEAtUIES oot 355

To Enable Secure LOGQiNg oot 356

Command Line LOGQINGottt et e e e e e 356

REMOtE LOGQING . . . o oottt e 357
Using ReMOte LOGQINGottt et et e e e e e e e e e 357
Enabling Remote LOggingottt e e e 357

LOgging APl . o 359

Setting Environment Variables 359

LOgger Classttt 360

LOgReCOrd Classo 360
AddiNg Log Data 360
Caching LOG RECOIASo e e e e e e e 361
Flushing Log ReCOIdS o e e e e 361

Sample Logging Codet 361

LOgging SP I . .. 362
Log Verifier PIugin e 362
Log Authorization PIUgin e 362

DebUg FileS . .. 363
DebUg LeVelS . 363

Contents 13

14

Debug OUtpUL Files 364

Using Debug Files 365
Multiple Identity Server Instances And Debug Files i, 365
Chapter 11 Client Detection ServiCe i e e e 367
OV IV W L ot 367
ClieNt DeteCtioN PrOCESS . ..\ ittt ettt e et e e e e e e e 368
Enabling Client Detection i e e e et e e 368
ClENt Data . ..ot e e e 370
HT M 370
ENEriCHT ML L 371
Client DeteCtion AP ... o 372
Chapter 12 Identity Server Utilities i 373
ULty AP o 373
AdMINULILS .o 373
AMCEHENTDELECTON . . . oottt e e e e e e e 373
AMPassWOrdULIL o 374
DU . o 374
[0 ToF | - 374

SY S EMIP ORI S . .ottt 375
ThreadPool 375
Password API PIUG-INS 375
Notify Password Sample 376
Password Generator SAmpPle i 376
Appendix A AMConfig.properties File e 377
OV B VI W . oottt e 377
DEPlOYMENt PrOPEItiES .. ittt e 378
TNty SEIVEr . o 378
INStallation 378
CONS0lE . o 378
CO0KIES . o ottt 379
MISCEIANBOUS . .. o 380
DB O Y SO VO . ottt e 380
INStallation 381
DiIrECIOrY SEIVEI TIBE . ittt ettt e e e e e e e e e e 381
ConfiguIration Properties ot 381
DU SEIVICE . . .o e 381
SHAES SN VICE ottt e 382
NOIFICAtION SEIVICE e e e 383
SDK CaChing .. ot 384

Identity Server 2004Q2 « Developer’s Guide

Online Certificate Status Protocol (OCSP) o e 384

Identity ODJeCt Processingt e e 385
SO UL . 385
SO ot 385
Certificate Databaseo 385
REPICAtION .. 386
Event And LDAP CONNECLION o e et 387
EVvent CONNECHION o 387
LDAP CONNECLION e e e e e 387
SAMIL o 388
KeYStOre ProPerties e e e e e 388
MISCEIlaNBOUS SEIVICES e e 389
Read-Only Properties o e 389
INStallation e 389
DEPlOYMENt . e 390
Shared SECIet 390
SESSION PrOPEItIES . .ottt 391
Simple Mail Transfer Protocol (SMTP) o e 392
AULheNtiCatiON 392
I N 392
SBCUNID . 393
U X o e 393

SO UL . ot 393
SECUrERANAOM . 393
SOCKEEFACTO Y . e 393
BN Y P iON . 394

IP Address ChecKing oo 394
Remote Policy APl . . . 394
POIICY .o 396
Federation 396
FODN M . oottt ettt e e e e e e e 396
ENCryptioNn KeY .. 397
Appendix B serverconfig.xml File 399
(@Y= Y = 399
PrOXY USBE ot 399
AAMIN USBr oo 400
server-config Definition Type DOCUMENt i e 401
iPlanetDataAccessLayer Element i 401
ServerGroup Element 401
SErVEr ElemMeNt . .o 401
USEr ElemMent .. 402
DIirDN Elemento 402

Contents 15

16

DirPassword Element 402

BaseDN Element e 402
MiscConfig Element 403
Failover Or Multimaster Configuration e 404
Appendix C WAR FIlES 405
OV VI W . ottt 405
WD COMIPONENTS ittt ettt e e e 406
Packaging Web Components ittt 406
WARS AN Their CONENTSttt e e e e e e e e 407
CONSOIBVVAL oot e e e e e e 407
PASSWOITL WAL .\ ottt e et et e et e e e e e 408
SEIVICES.WVAL oottt ettt e e e e e e e e 409
Redeploying Modified WARS o 410
BEA WebLogiC SErVEr 6.1ot 411
To Deploy console.war OnNWebLogiCo e e 411

To Deploy services.war on WebLOgICottt e e 411

To Deploy password.war on WebLOgICt e 411

Sun Java System Application Server 7.0 411
To Deploy console.war On Sun Java System ApplicationServer 411

To Deploy services.war On Sun Java System Application Server 412

To Deploy password.war on Sun Java System Application Server 412

IBM WebSphere Application Server 412
Appendix D Notification Service i 413
OV IV W . o et e e 413
Appendix E Directory Server CONCePtSttt e e 417
OV IV W . ot 417
ROIES 418
Managed ROIES 418
DefiNitioN ENtry 419
Member ENtry . ..o 419

How Identity Server UsSes ROIES o e e e i 420
ROl Creation 420

ROIE LOCAtiON 421
Displaying The Correct Login Start Page i 421
ACCESS CoNtrol INSTIUCTIONSo e e e e e e 422
DefiNING ACIS . .. e 423
iplanet-am-admin-console-role-default-acis 423
iplanet-am-admin-console-dynamic-aci-list 423
Format of Predefined ACIS 423

Identity Server 2004Q2 « Developer’s Guide

Default ACIS . 424

Class Of SEIVICEot 426
CoS Definition ENtry oo 427
COSCIaSSICDEfINITION 427

CoS Template ENtry e 427
Conflicts and COS i 428
GlOSSaANY . .ottt 429
I X . e 431

Contents 17

18 Identity Server 2004Q2 « Developer's Guide

Figure 3-1
Figure 3-2
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 9-1
Figure 10-1

List of Figures

The Identity Server Console ... 47
Console With Three Tabs e 61
Anonymous Authentication Login Requirement Screen 67
Certificate-based Authentication Login Requirement Screen 68
HTTP Basic Authentication Login RequirementScreen 69
LDAP Authentication Login Requirement Screen ..., 71
Membership Authentication Login Requirement Screen 72
NT Authentication Login RequirementScreencciiiiiiiinnnaan. 73
RADIUS Authentication Login Requirement Screen 73
SafeWord Authentication Login RequirementScreent 74
SecurlD Authentication Login Requirement Screencoiiiiinn.n. 75
UNIX Authentication Login Requirement Screen oo, 75
Authentication Level-based Authentication LoginScreen 118
Self-Registration Login Requirement SCreencoiiiiiiiiinennn.. 153
SAML Interaction Within Identity Server i 330
Logging Service Architecture i e e 348

19

20 Identity Server 2004Q2 « Developer's Guide

Table 3-1
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 5-1
Table 6-1
Table 10-1

List of Tables

Service Attribute Values and Corresponding Display Elements 55
Authentication Service User Interface File Types i, 83
List of Customizable JSP Templates 84
List of Authentication Module ConfigurationFiles 87
Listof JavaScript Files oo 88
List of Cascading Style Sheets 88
List of Sun Microsystems Branded GIFImagesccoiiiiiiiinnnnan. 89
List of Localization Properties Files i i 90
Directory Paths Based On Customization Level 92
Request Sub-Elements And Possible Responses, 139
Comparison BetweenJava ANd CSSO AP e 217
Recorded Cache Properties e 242
Relational Database LogFormatc it 351

21

22 Identity Server 2004Q2 « Developer's Guide

List of Procedures

To Create Custom Organization Files i e e 50
To Modify The Service Configuration Display i e 51
To Modify The User Profile VIew e 52
Display Options For The User Profile Page e 53
ToLocalize The CONSOIE i e e e 53
To Display Service AttribDULES o 53
To Customize Interface COlOrS it e 53
To Change The Default Attribute Display Elements i e 54
ToAdd AModule Tab o 58
To Display Container ObjJectSttt e 58
To Create New Directories For Custom Console Files, 91
To Create A Custom Login Interface e 93
To Add An Additional LDAP Configuration i e 129
Integrating A Custom Authentication Module i 145
Customizing Membership.xml 149
Creating A ServiCe Fileo o 251
To Extend The Directory Server LDAP Schema i e 255
Adding Identity Server Object Classes To Existing USers 257
Importing The XML Service File e e 257
Modifying A Default XML Service File e e 294
Modifying A Batch Processing XML Template i 298
Creating Users Using A Modified Directory ServerSchemao, 299
To Enable SecUre Loggingttt e e 356
Enabling Remote LOgQiNgottt e e e e e 357
Enabling Client Detectiont e e e 368
To Deploy console.war OnWebLOGICot e e 411
To Deploy services.war on WebLOGICot e 411

23

24

To Deploy password.war on WebLOgIC e 411

To Deploy console.war On Sun Java System ApplicationServer 411
To Deploy services.war On Sun Java System Application Servercccvun.. 412
To Deploy password.war on Sun Java System Application Server.......... 412

Identity Server 2004Q2 « Developer’s Guide

Code Example 3-1
Code Example 3-2
Code Example 3-3
Code Example 3-4
Code Example 4-1
Code Example 4-2
Code Example 4-3
Code Example 4-4
Code Example 4-5
Code Example 4-6
Code Example 4-7
Code Example 4-8
Code Example 4-9
Code Example 4-10
Code Example 4-11
Code Example 4-12
Code Example 4-13
Code Example 4-14
Code Example 4-15
Code Example 4-16
Code Example 4-17
Code Example 4-18
Code Example 4-19
Code Example 4-20
Code Example 4-21
Code Example 4-22
Code Example 4-23

List of Code Examples

The AMBase.jsp Fileo e e 50
BQODY. navFrane Portion of adminstyle.css, 53
ui type XML Attribute Sample 54
Module Tab Key And Value Pairs, 58
styles.css Style Sheet o 94
Module Header Text Definition in Login.jsp 95
Unix.xml Authentication Module ConfigurationFile 96
Name Prompt And Field Definition in Login.jsp 96
Password Prompt And Field Definition in Loginjsp 97
Choice Prompt And Value Fields Definition in membership.jsp 99
Membership.xml Configuration File Extract.......................... 100
Image Source Attributes in Membership.xml Extract 101
Image Source Attribute in Login.jsp ... 101
Submit Button Code From Login.jsp ..., 102
€SS_Ns4s0l.csS EXTraction 103
amAuthULproperties Extract i, 104
FQDN Mapping Attribute In AMConfi g. properties................... 127
Sample XML File To Add An LDAP SubConfiguration 129
LD AP XML . 134
Sample Authentication Module ConfigurationFile 148
Membership.xml ConfigurationFile 149
Telephone Number Name Callback 152
Portion of amAut hLDAP. propertiescoouiiiiiiiinnnnnnannn. 154
i pl anet - am aut h- aut henti cat ors Attribute 155
i pl anet - am aut h- al | owed- nodul es Attribute 156
Method For Organization-based Authentication 158
Method For Defining Authentication Method 158

25

26

Code Example 4-24
Code Example 4-25
Code Example 4-26
Code Example 4-27
Code Example 4-28
Code Example 4-29
Code Example 4-30
Code Example 4-31
Code Example 4-32
Code Example 4-33
Code Example 4-34
Code Example 4-35
Code Example 5-1

Code Example 5-2

Code Example 5-3

Code Example 5-4

Code Example 5-5

Code Example 5-6
Interfaces

Code Example 5-7
Code Example 6-1
Code Example 6-2
Code Example 6-3
Code Example 6-4
Code Example 6-5
Code Example 6-6
Code Example 6-7
Code Example 6-8
Code Example 7-1
Code Example 7-2
Code Example 7-3
Code Example 7-4
Code Example 7-5
Code Example 7-6
Code Example 7-7
Code Example 7-8
Code Example 7-9

AMAgent.propertiesFile 160
am_auth.h C Authentication APl Header File 161
Initial AuthContext XML MESSagevvviiiii i i 170
Authldentifier XML Message ReSPONSec.ooiiiiinnnnnnnn. 171
Second Request Message With Authentication Module Specified 171
Return XML Message With Login Callbacks 171
Response Message With Callback Values 172
Successful Authentication XML Message ..., 173
SamplePrincipal.javaCode i 175
LoginModuleSample.javaCode 178
JAAS LoginModule SampleCode 181
Sample Code For Authentication Post Processing 187
Sample Uses Of SSOTokenManager Codeciiiein... 202
Sample Use Of SSOToKen e 204
Sample Code To Create A Cookie From Session Token 205
Sample Code For SSOToken Event And SSOToken Listener 206
Code Sample For am_sso_initandam cleanup 210

Sample Code For Get, Set, Create, Refresh, Validate, Invalidate, and Destroy
213

Sample Implementation Of SSOToken Listener 216
Organization Subschema of anEntrySpecific.xmt 231
Sample Code Using AMSearchControl 235
Sample Code To Find User Status, 236
Available Search Methods For searchUsers 237
Sample Code For Search Methods iiiiinn.. 239
Search Groups Code Sample i 240
Sample Code ToOCreate AUSErottt 243
Retrieve Service’s Dynamic Templatecoovn. 245
Cont ai ner Def aul t Tenpl ateRol e LDIFEntry 255
Sample LDIF Listing For Mail Service, 256
amClientDetection.PropertiesFile, 258
ServicesConfiguration and Service Element 261
i 18nFi | eNane, i 18nKey and servi ceH erar chy Attributes 262
serviceObjectClass Defined As Global Element 264
At tribut eSchema Element With Attributes 266
DefaultValues In amAut hLDAP. xml 269

Portion Of cr eat eRequest s. xni

Identity Server 2004Q2 « Developer’s Guide

Code Example 7-10
Code Example 7-11
Code Example 7-12
Code Example 7-13
Code Example 7-14
Code Example 7-15
Code Example 7-16
Code Example 7-17
Code Example 7-18
Code Example 7-19
Code Example 7-20
Code Example 7-21
Code Example 7-22
Code Example 7-23
Code Example 7-24
Code Example 7-25
Code Example 7-26
Code Example 8-1

Code Example 8-2

Code Example 9-1

Code Example 9-2

Code Example 9-3

Code Example 10-1
Code Example 10-2
Code Example 10-3
Code Example 11-1
Code Example A-1
Code Example A-2
Code Example B-1

Code Example B-2

Code Example B-3

Code Example B-4

Code Example 12-1
Code Example 12-2

Another Portion Of createRequests. xm 279
SamplePolicy.xml 282
contCr eat eSer vi ceTenpl at eRequests. xm File 283
orgDeleteRequests.Xml 284
orgDeleteServiceTemplateRequests.xmlcuvn.. 285
contModifyPeoplecontainerRequests.xml 286
Portion of Batch Processing File get Requests.xm 287
orgGetNumberOfServiceRequests.xml, 288
orgRegisterServiceRequestsxml 289
schemaAddChoi ceVal uesRequests. xml 290
RemoveDefaultValues ElementCodeo .. 291
AddDefaultValues ElementCode 291
nsaccount | ock Example Attribute L 295
User Account Locked Exampleil8nKey, 295
Retrieve Logging LocationSample, 300
Retrieve User Or Dynamic Attributes 301
Sample Code To Retrieve Attribute Values 301
Public Methods For ProxyPolicyEvaluator 312
PolicyCreator.javat e 324
Sample Authentication Assertion i 336
Sample Code To Get An Attribute Value 340
AuthorizationDecisionQuery Code Sample 344
Flat File Record From amAuthentication.access 351
Sample Policy LOg Records ... 354
Logging API Samples 361
LoginjspWritten INWML e 369
Portion of amSDKStats File ... 382
Changes ToJava Policy File i 385
Proxy User In serverconfigxml i 400
Admin User In serverconfig.xml i 400
serverconfig.xml 403
Configured Failover in serverconfigxml 404
LDAP Definition Entry 419
LDAP Member ENtry e 420

List of Code Examples 27

28 Identity Server 2004Q2 « Developer's Guide

About This Guide

The Sun Java™ System Identity Server Devloper’s Guide offers information on how to
customize Sun Java System ldentity Server (formerly Sun™ ONE ldentity Server)
and integrate its functionality into an organization’s current technical
infrastructure. It also contains details about the programmatic aspects of the
product and its APlIs.

This preface contains the following sections:

Audience for This Guide

Identity Server 2004Q2 Documentation Set
Documentation Conventions Used in This Guide
Related Information

Related Third-Party Web Site References

Audience for This Guide

This Developer’s Guide is intended for use by IT administrators and software
developers who implement an integrated identity management and web access
platform using Sun Java System servers and software. It is recommended that
administrators understand the following technologies:

Lightweight Directory Access Protocol (LDAP)
Java™ technology

JavaServer Pages™ (JSP) technology
HyperText Transfer Protocol (HTTP)
HyperText Markup Language (HTML)

29

Identity Server 2004Q2 Documentation Set

= eXtensible Markup Language (XML)

Because Sun Java System Directory Server is used as the data store in an Identity
Server deployment, administrators should also be familiar with the documentation
provided with that product. The latest Directory Server documentation can be
accessed online:

http://docs. sun. com db/ col | / D rect oryServer _04qg2

ldentity Server 2004Q2 Documentation Set

30

The Identity Server 2004Q2 documentation includes two sets:
= Identity Server 2004Q2 Core Documentation

= Identity Server Policy Agent Documentation

Identity Server 2004Q2 Core Documentation

The Identity Server 2004Q2 documentation set contains the following titles:

e Technical Overview (http://docs. sun. com doc/ 817-5706) provides a high-level
overview of how Identity Server components work together to consolidate
identity management and to protect enterprise assets and web-based
applications. It also explains basic Identity Server concepts and terminology.

= Migration Guide (http://docs. sun. com doc/ 817- 5708) provides details on how
to migrate existing data and Sun Java System product deployments to the latest
version of Identity Server. (For instructions about installing Identity Server and
other products, see the Sun Java Enterprise System 2004Q2 Installation Guide
(http://docs. sun. coni doc/ 817- 5760).

= Administration Guide (http://docs. sun. com doc/ 817- 5709) describes how to use
the Identity Server console as well as manage user and service data via the
command line.

= Deployment Planning Guide (htt p: // docs. sun. com doc/ 817- 5707) provides
information on planning an Identity Server deployment within an existing
information technology infrastructure.

= Developer’s Guide (http://docs. sun. con doc/ 817- 5710) offers information on
how to customize Identity Server and integrate its functionality into an
organization’s current technical infrastructure. It also contains details about the
programmatic aspects of the product and its API.

Identity Server 2004Q2 « Developer’s Guide

Identity Server 2004Q2 Documentation Set

= Developer’s Reference (htt p: //docs. sun. cond doc/ 817-5711) provides summaries
of data types, structures, and functions that make up the public Identity Server
C APls.

= Federation Management Guide (http: // docs. sun. coni doc/ 817- 6362) provides
information about Federation Management, which is based on the Liberty
Alliance Project.

= The Release Notes (htt p: //docs. sun. cont doc/ 817- 5712) will be available online
after the product is released. They gather an assortment of last-minute
information, including a description of what is new in this current release,
known problems and limitations, installation notes, and how to report issues
with the software or the documentation.

Updates to the Release Notes and links to modifications of the core documentation
can be found on the Identity Server page at the Sun Java System 2004Q2
documentation web site (htt p: // docs. sun. cond pr od/ ent sys. 0492). Updated
documents will be marked with a revision date.

Identity Server Policy Agent Documentation
Policy agents for Identity Server documents are available on this Web site:
http://docs. sun. com col | / S1_I dServPol i cyAgent 21

Policy agents for Identity Server are available on a different schedule than the
server product itself. Therefore, the documentation set for the policy agents is
available outside the core set of Identity Server documentation. The following titles
are included in the set:

= Web Policy Agents Guide documents how to install and configure an Identity
Server policy agent on various web and proxy servers. It also includes
troubleshooting and information specific to each agent.

= J2EE Policy Agents Guide documents how to install and configure an Identity
Server policy agent that can protect a variety of hosted J2EE applications. It
also includes troubleshooting and information specific to each agent.

= The Release Notes will be available online after the set of agents is released.
There is generally one Release Notes file for each agent type release. The Release
Notes gather an assortment of last-minute information, including a description
of what is new in this current release, known problems and limitations,
installation notes, and how to report issues with the software or the
documentation.

About This Guide 31

Your Feedback on the Documentation

Updates to the Release Notes and modifications to the policy agent documentation
can be found on the Policy Agents page at the Sun Java System documentation web
site. Updated documents will be marked with a revision date.

Your Feedback on the Documentation

Sun Microsystems and the Identity Server technical writers are interested in
improving this documentation and welcomes your comments and suggestions.
Use the following web-based form to provide feedback to us:

htt p: // waw sun. coml hwdocs/ f eedback/

Please provide the full document title and part number in the appropriate fields.
The part number can be found on the title page of the book or at the top of the
document, and is usually a seven or nine digit number. For example, the part
number of the Developer’s Guide is 817-5710-10 .

Documentation Conventions Used in This Guide

In the Identity Server documentation, certain typographic conventions and
terminology are used. These conventions are described in the following sections.

Typographic Conventions

This book uses the following typographic conventions:

= ltalic type is used within text for book titles, new terminology, emphasis, and
words used in the literal sense.

= Monospace font is used for sample code and code listings, APl and language
elements (such as function names and class names), filenames, pathnames,
directory names, HTML tags, and any text that must be typed on the screen.

= [talic serif font is used within code and code fragments to indicate variable
placeholders. For example, the following command uses filename as a variable
placeholder for an argument to the gunzi p command:

gunzip -d filename.tar. gz

32 Identity Server 2004Q2 « Developer's Guide

Documentation Conventions Used in This Guide

Terminology

The following terms are used in the Identity Server documentation set:

Identity Server refers to Identity Server and any installed instances of the
Identity Server software.

Policy and Management services refers to the collective set of Identity Server
components and software that are installed and running on a dedicated
deployment container such as a web server.

Directory Server refers to an installed instance of Sun Java System Directory
Server.

Application Server refers to an installed instance of Sun Java System Application
Server (also known as Sun ONE Application Server.)

Web Server refers to an installed instance of Sun Java System Web Server (also
known as Sun ONE Web Server).

Web container that runs Identity Server refers to the dedicated J2EE container
(such as Web Server or Application Server) where the Policy and Management
Services are installed.

IdentityServer_base represents the base installation directory for Identity Server.
The Identity Server 2004Q2 default base installation and product directory
depends on your specific platform:

o Solaris™ systems: / opt / SUNVm
o Linuxsystems:/opt/sun/identity

The product directory is / SUNamfor Solaris systems and /i dent i ty for Linux
systems. When you install Identity Server 2004Q2, you can specify a different
directory for / opt on Solaris systems or / opt / sun on Linux systems; however,
do not change the / SU\Wamor /i dent i ty product directory.

For the base installation directory of the following products, refer to the
documentation for the specific product.

DirectoryServer_base represents the base installation directory for Sun Java
System Directory Server.

ApplicationServer_base is a variable place holder for the home directory for Sun
Java System Application Server.

WebServer_base is a variable place holder for the home directory for Sun Java
System Web Server.

About This Guide 33

Related Information

Related Information

Useful information can be found at the following locations:

= Directory Server documentation:
http://docs. sun. com col | / D rect oryServer _04qg2

= Web Server documentation:
http://docs. sun. com col | / S1_websvr61_en

= Application Server documentation
http://docs. sun. com col | /s1_asseu3_en

= Web Proxy Server documentation:
http://docs. sun. con prod/ s1. webpr oxys#hi ¢

= Download Center:
http://wws. sun. con sof t war e/ downl oad/

= Technical Support:
http://ww sun. con servi ce/ sunone/ sof t war e/ i ndex. ht n

= Professional Services:
htt p: // wawv. sun. con ser vi ce/ sunps/ sunone/ i ndex. ht m

= Sun Enterprise Services, Solaris Patches, and Support:
http://sunsol ve. sun. con

= Developer Information:
http://devel opers. sun. com prodt ech/ i ndex. ht n

Related Third-Party Web Site References

34

Third-party URLs are referenced in this document and provide additional, related
information.

Sun is not responsible for the availability of third-party Web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Identity Server 2004Q2 « Developer’s Guide

Chapter 2

Introduction

The Sun Java™ System ldentity Server Developer’s Guide describes the programmatic
and customization details of Identity Server. It includes instructions on how to
augment the application with new services using the eXtensible Markup Language
(XML) files for configuration, the public Java™ application programming
interfaces (APIs) for integration and the JavaServer Pages™ (JSP) for
customization. This introductory chapter contains the following sections:

= “ldentity Server Overview” on page 35
= “Extending Identity Server” on page 40
= “ldentity Server File System” on page 43

« “Client Browser Support” on page 43

ldentity Server Overview

Sun Java System Identity Server integrates identity management with the ability to
create and enforce authentication processes and access to directory data and
corporate resources. These capabilities enable organizations to deploy a
comprehensive system that helps to secure and protect their assets and
information, as well as deliver their web-based applications. Towards this end,
Identity Server contains components and application management utilities or
services.

NOTE An identity is a representation of an object used in a network environment. The
identity, which can be internal (an employee, a printer) or external (a customer, a
vendor), contains a set of attributes that uniquely identifies it. The simplest identity
might contain user name (or object identifier) and password attributes. More
complex identities might contain attributes for a phone number, social security
number, building location, or address.

35

Identity Server Overview

36

Data Management Components

Identity Server provides the following components to simplify the administration
of identities and the management of data:

Service Configuration—provides a solution for customizing and registering
configuration parameters or attributes into a service; the service can then be
integrated into, and managed using, Identity Server. The solution includes a
Document Type Definition (DTD) that defines the structure for creating a
service’s XML file, Java APIs that are used to integrate the XML file into the
deployment and the ldentity Server console which is used to manage the
service.

Identity Management—provides a solution for managing identities. It includes
an API for creating, modifying and removing ldentity-related Objects (users,
roles, groups, containers, organizations, sub-organizations, etc.) as well as an
XML template that defines each object’s Lightweight Directory Access Protocol
(LDAP) attributes. This template allows for the object’s storage in the Sun Java
System Directory Server, the data store for Identity Server.

Policy Management—provides a solution for defining and retrieving access
privilege settings (or policy) to protect an enterprise’s resources. It includes an
API that applications can use to retrieve an identity’s policy. The policy is then
used to determine an identity’s right to access the requested resource.

Federation Management—provides a solution for defining authentication
domains, service providers and identity providers in order to give users the
functionality of federation. Federation allows a user to aggregate multiple
digital identities allowing single sign-on to affiliated sites. This module is
based on the Liberty Alliance Project’s Version 1.1 specifications.

Current Sessions—provides a solution for an Identity Server administrator to
view and manage user session information. It keeps track of session times as
well as allowing the administrator to terminate a session.

Sun Java System Directory Server—provides the storage facility in an Identity
Server deployment. It holds all identity data as well as configured policies. The
majority of the data is stored in the Directory Server using LDAP; certain of it is
stored as XML.

Identity Server 2004Q2 « Developer’s Guide

Identity Server Overview

Identity Server Management Services

When Identity Server is installed, a number of utilities (or services) are installed to
help manage the deployment. A service is actually a grouping of configuration
parameters (or attributes). The attributes can be randomly grouped together for
easy management or specifically grouped together for one purpose. Additional
information on services can be found in Chapter 7, “Service Management,” in this
manual and the Sun Java System Identity Server Administration Guide. The current
installed services include:

= Administration Service—provides properties for the configuration of the
Identity Server as well as attributes to customize the application specific to
each configured organization. Information on the Administration Service
attributes can be found in the Administration Service attributes chapter of the
Sun Java System ldentity Server Administration Guide.

= Authentication Service—provides an interface for gathering user credentials
and issuing single sign-on (session) tokens. It also contains an SDK to write
plug-ins in order to integrate token validation and authentication credential
storage functionality for proprietary authentication servers. For information on
this service, see Chapter 4, “Authentication Service” of this manula and the
chapter on the Authentication Service attributes in the Sun Java System Identity
Server Administration Guide.

= Client Detection Service—allows ldentity Server to detect the client type of an
accessing browser. Information on this service can be found in Chapter 11,
“Client Detection Service,” in this manual and the chapter on the Client
Detection Service attributes in the Sun Java System ldentity Server
Administration Guide.

= Globalization Settings—contains properties to configure Identity Server for
different character sets. More information on this service, see the chapter on
the Globalization Settings attributes in the Sun Java System ldentity Server
Administration Guide.

= Auditing Features—provides a record-keeping functionality. Both file-based
logs and logs stored in a relational database are supported. Information on this
service can be found in Chapter 10, “Auditing Features,” in this manual and
the chapter on the Logging Service attributes in the Sun Java System Identity
Server Administration Guide.

Chapter 2 Introduction 37

Identity Server Overview

< Naming Service—allows client browsers to locate the URL for services in a
deployment that is running more than one ldentity Server ensuring that the
URL returned for the service is the one for the host on which the user session
was created. More information on this service can be found in the Naming
Service attributes chapter of the Sun Java System Identity Server Administration
Guide.

= Password Reset Service—contains properties that can be configured per
organization to implement the Password Reset Service. For information on this
service, see the chapter on the Password Reset Service attributes in the Sun Java
System ldentity Server Administration Guide.

= Platform Service—provides configurable attributes for the Identity Server
deployment. For information on this service, see the chapter on the Platform
Service attributes in the Sun Java System Identity Server Administration Guide.

= Policy Configuration Service—provides properties for configuring the policy
function as well as attributes to configure the Policy Service for each
configured organization. For information on this service, see Chapter 8, “Policy
Management,” in this manual and the chapter on the Policy Configuration
Service attributes in the Sun Java System Identity Server Administration Guide.

= Security Assertion Markup Language (SAML) Service—provides an interface
integrating SAML Service, Simple Object Access Protocol (SOAP) and ht t ps
for sending and receiving security information. This service encrypts data
passed between different security entities. An APl is provided to this end. For
information on this service, see Chapter 9, “SAML Service,” in this manual and
the chapter on the SAML Service attributes in the Sun Java System Identity
Server Administration Guide.

= Session Service—provides attributes to configure session properties for all
authorized sessions in each configured organization. For information on this
service, see Chapter 5, “Single Sign-On And Sessions,” in this manual and the
chapter on the Session Service attributes in the Sun Java System ldentity Server
Administration Guide.

= User Service—provides attributes to configure the user properties for all users
in each configured organization. For information on this service, see Chapter 6,
“ldentity Management,” in this manual or the chapter on the User Service
attributes in the Sun Java System Identity Server Administration Guide.

In addition to its configured services, Identity Server provides a graphical user
interface that allows the application user to manage identity objects, services and
policy information via a web browser. This console is built using the Sun Java
System Application Framework and can be called by all users, from top level
administrator to end users. The console can be customized for each configured

38 Identity Server 2004Q2 « Developer's Guide

Identity Server Overview

organization by modifying and integrating a set of JSP and related files.
Information on console customization can be found in Chapter 3, “The Identity
Server Console,” in this manual. Identity Server also offers data backup, restoration
and other software utilities. Information on these functionalities can be found in
Chapter 12, “Identity Server Utilities,” in this manual. Information on
command-line executables can be found in the Sun Java System Identity Server
Administration Guide.

Managing Access

Identity Server can manage access to its protected resources in either of two ways:
an user can authenticate and access ldentity Server via a web browser or, an
external application can access Identity Server directly, requesting user
authentication information through the use of integrated Identity Server API.

Web Access

When a user requests access to a secure application or page using a web browser,
they must first be authenticated. The request is directed to the Authentication
Service which determines the type of authentication to initiate based on the
method associated with the requestor’s profile. For instance, if the user’s profile is
associated with LDAP authentication, the Authentication Service would send an
HTML form to their web browser asking for an LDAP user name and password.
(More complex types of authentication might include requesting information for
multiple authentication types.) Having obtained the user’s credentials, the
Authentication Service calls the respective provider to verify the credentials. (The
provider in the LDAP example would be the Directory Server.) Once verified, the
service calls the SSO API to generate a Single Sign-On (SSO) or session token which
holds the user’s identity. The API also generates a token 1D, a random identification
string associated with the session token. The session token is then sent back to the
requesting browser in the form of a cookie while the authentication component
directs the user to the requested secure application or page. Additional information
on the Authentication Service can be found in Chapter 4, “Authentication Service,”
in this manual.

NOTE Web access might also include an additional security measure to evaluate a user’'s
access privileges. This includes installed policy agents. Additional information can
be found in the Sun Java System Identity Server Web Policy Agents Guide and J2EE
Policy Agents Guide.

Chapter 2 Introduction 39

Extending Identity Server

Application Access

External applications can access Identity Server to request user information using
the Identity Server SDK. For example, a mail service might store its users’ mailbox
size information in Identity Server and the SDK can be used to retrieve this
information. To process the request, the system running the application must have
the Identity Server SDK installed. Additional information on both the C and Java
APIs can be found throughout this manual in the respective chapters.

Extending ldentity Server

40

One of the architectural goals of Identity Server is to provide an extensible
interface. This interface is defined by the following functions:

1. Custom services can be defined for the deployment using XML.

2. Console templates can be modified and/or customized for each organization
using JSP.

3. Default services can be implemented using a set of Java API.

Service Definition With XML

As discussed in “ldentity Server Overview” on page 35, the application contains a
number of management services. All Identity Server services are written using the
XML. Administrators or service developers can modify the internal XML service
files installed with Identity Server or configure new XML service files to customize
the application based on their need. More information on services and how they
are integrated into the Identity Server deployment can be found in Chapter 7,
“Service Management,” of this manual.

NOTE Identity Server services only manage attribute values that are stored in Sun Java
System Directory Server. They do not implement their behavior or dynamically
generate code to interpret them. It is up to an external application to interpret or
utilize these values.

Identity Server 2004Q2 « Developer’s Guide

Extending Identity Server

Console Customization

The ldentity Server console is used for managing and monitoring identities,
services and protected resources throughout the Identity Server deployment. The
framework uses XML files, JSP templates and Cascading Style Sheets (CSS) to
control the look and feel of the console screens. These files can be duplicated and
then modified to make changes to the design for each configured organization; for
instance, an organization’s logo can be added in place of the Sun logo. The entire
template can also be replaced with an organization’s custom HTML page.
Additional information on customizing the Identity Server console can be found in
Chapter 3, “The Identity Server Console,” of this manual.

Identity Server SDK

The Identity Server SDK contains public interfaces to implement the behavior of
Identity Server’s default or customized services. Both Java and C interfaces are
provided. The packages include:

Identity Management SDK

Identity Server provides the framework to create and manage users, roles, groups,
containers, organizations, organizational units, and sub-organizations. The Java
package name is com i pl anet . am sdk. There are currently no comparable C
interfaces.

Service Management SDK

The service management interfaces can be used by developers to register services
and applications, and manage their configuration data. The Java package name is
com sun. i dentity. sm There are currently no comparable C interfaces.

Authentication Programming Interfaces

Identity Server provides interfaces to extend the functionality of the Authentication
Service in two ways. The API provides interfaces that can be used remotely by
either Java or C applications to utilize the authentication features of Identity
Server. The SPI can be used to plug new authentication modules, written in Java,
into the Identity Server authentication framework.

Chapter 2 Introduction 41

Extending Identity Server

42

Utility API

This API provides a number of Java classes that can be used to manage system

resources. It includes thread management and debug data formatting. The Java
package name iscom i pl anet. am uti | . There are currently no comparable C

interfaces.

Logging API And Logging SPI

The Logging Service records, among other things, access approvals, access denials
and user activity. The Logging API can be used to enable logging for external Java
applications. The package names begin with com sun. i dentity. | og. The
Logging SPI are Java packages that can be used to develop plug-ins for customized
features. The package names begin with com sun. i dentity. | og. spi . There are
currently no comparable C interfaces.

Client Detection API

Identity Server can detect the type of client browser that is attempting to access its
resources and respond with the appropriately formatted pages. The Java package
used for this purpose iscom i pl anet . servi ces. cdm There are currently no
comparable C interfaces.

SSO API

Identity Server provides Java interfaces for validating and managing SSO tokens,
and for maintaining the user’s authentication credentials. All applications wishing
to participate in the SSO solution can use this API. The Java package name is

com i pl anet . sso. The Session Service also includes an API for C applications.

Policy SDK

The Policy API can be used to evaluate and manage Identity Server policies as well
as provide additional functionality for the Policy Service. The Java package names
begin with com sun. i dentity. policy. The Policy Service also includes an API
for C applications.

SAML SDK

Identity Server uses the SAML API to exchange acts of authentication,
authorization decisions and attribute information. The Java package names begin
with com sun. i dentity. sanm . There are currently no comparable C interfaces.

Identity Server 2004Q2 « Developer’s Guide

Identity Server File System

Federation Management API

Identity Server uses the Federation Management API to add functionality based on
the Liberty Alliance Project specifications. The Java package name is
com sun. | i berty. There are currently no comparable C interfaces.

ldentity Server File System

Identity Server installs its packages and files in a directory named SUN\Vam The
complete file system layout for Identity Server can be found in the Sun Java System
Identity Server Deployment Guide.

Client Browser Support

Identity Server 2004Q2 is supported on the following client browsers:
= Netscape™ Communciator 7.0

= Netscape Communicator 6.2.1

= Netscape Navigator™ 4.79

« Microsoft® Internet Explorer 6.0

= Microsoft Internet Explorer 5.5

Chapter 2 Introduction 43

Client Browser Support

44 Identity Server 2004Q2 « Developer's Guide

Chapter 3

The Identity Server Console

The Sun Java™ System Identity Server console is a web-based interface for
creating, managing, and monitoring the identities, web services, and enforcement
policies configured throughout an Identity Server deployment. It is built with Sun
Java System Application Framework, a Java™ 2 Enterprise Edition (J2EE)
framework used to help developers build functional web applications. XML files,
JavaServer Pages™ (JSP) and Cascading Style Sheets (CSS) are used to define the
look of the HTML pages. This chapter explains the console, its pluggable
architecture, and how to customize it. It contains the following sections:

= “Overview” on page 45

e “Customizing The Console” on page 48

= “Console API” on page 59

e “Precompiling The Console JSP” on page 60

= “Console Samples” on page 60

Overview

The Identity Server console is a web interface that allows administrators with
different levels of access to, among other things, create organizations, create (and
delete) users to (and from) those organizations, and establish enforcement policies
that protect and limit access to the organization’s resources. In addition,
administrators can view and terminate current user sessions and manage their
federation configurations (create, delete and modify authentication domains and
providers). Users without administrative privileges, on the other hand, can
manage personal information (name, e-mail address, telephone number, etc.),
change their password, subscibe and unsubscribe to groups, and view their roles.
All of these functionalities are accomplished using a web browser.

45

Overview

NOTE The client web browser accessing the console must support JavaScript, version 1.2
and cookies.

The console ships with four modules: Identity Management (including user and
policy management), Service Configuration, Current Sessions (including session
management) and Federation Management. Customization of these modules and
the Identity Server console can be achieved, in varying degrees, by modifying the
JSP and XML files that define the interface as well as extending the Sun Java
System Application Framework ViewBeans.

NOTE A ViewBean is a Java class written specifically for rendering display. In Identity
Server, each identity object has its own profile ViewBean. For example, the user
profile has the UMJser Pr of i | eVi ewBean.

Console Interface

The console is divided into three frames as pictured in Figure 3-1: Header,
Navigation and Data. The Header frame displays corporate branding information
as well as the first and last name of the currently logged-in user as defined in their
profile. It also contains a set of tabs to allow the user to switch between the
management modules, a hyperlink to the Identity Server Help system, a Search
function and a Logout link. The Navigation frame on the left displays the object
hierarchy of the chosen management module, and the Data frame on the right
displays the attributes of the object selected in the Navigation frame.

46 Identity Server 2004Q2 « Developer's Guide

Overview

Figure 3-1 The Identity Server Console

Ak i
LEVE

Cemrrhi

I LT o b A

e |

g stions (O]
P | f

Pl i i | L Fildu

(Rl T Frmar= |

Generating The Console Interface

When the Identity Server console receives an HTTP(S) request, it first determines
whether the requesting user has been authenticated. If not, the user is redirected to
the Identity Server login page supplied by the Authentication Service. After
successful authentication, the user is redirected back to the console which reads all
of the user’s available roles, and extracts the applicable permissions and behaviors.
The console is then dynamically constructed for the user based on this information.
For example, users with one or more administrative roles will see the
administration console view while those without any administrative roles will see
the end user console view. Roles also control the actions a user can perform and the
identity objects that a user sees. Pertaining to the former, the organization
administrator role allows the user read and write access to all objects within that
organization while a help desk administrator role only permits write access to the
users’ passwords. With regards to the latter, a person with a people container
administrator role will only see users in the relevant people container while the
organization administrator will see all identity objects. Roles also control read and
write permissions for service attributes as well as the services the user can access.

Chapter 3 The Identity Server Console 47

Customizing The Console

Plug-In Modules

An external application can be plugged-in to the console as a module, gaining
complete control of the Navigation and Data frames for its specific functionality. In
this case, a tab with the name of the custom application needs to be added to the
Header frame. The application developer would create the JSPs for both left and
right frames, and all view beans, and models associated with them. Information on
how to define a module tab can be found in “To Add A Module Tab” on page 58.

Accessing The Console

The Naming Service defines URLSs used to access the internal services of ldentity
Server. The URL used to access the Administration Console web application is:

ht t p: / / identity_server_host.domain_name:port/ antonsol e

The first time Administration Console (antonsol e) is accessed, it brings the user to
the Authentication web application (anser ver) for authentication and
authorization purposes. After login, anser ver redirects the user to the configured
success login URL as discussed in “The User Interface Login URL” on page 76 of
Chapter 4, “Authentication Service.” The default successful login URL is
http(s)://identity_server_host.domain_name:port/ anconsol e/ base/ AMAdni nFr ane.

Customizing The Console

48

The Identity Server console uses JSP and CSS to define the look and feel of the
pages used to generate its frames. A majority of the content is generated
dynamically—based on where, and at what, the user is looking. In that regard, the
modification of the content is somewhat restricted. Within the Navigation frame,
the layout of the controls (the view menu), the action buttons, and the table with
current objects in each JSP can be changed. In the Data frame, the content displayed
is dynamically generated based on the XML service file being accessed but the
layout, colors, and fonts are controlled by the adm nst yl e. css style sheet.

Identity Server 2004Q2 « Developer’s Guide

Customizing The Console

The Default Console Files

An administrator can modify the console by changing tags in the JSP and CSS. All
of these files can be found in the

IdentityServer_base/ SUN\VAnT web- apps/ appl i cat i ons/ consol e directory. The
files in this directory provide the default Sun Java System interface. Out of the box,
it contains the following sub-directories:

= base contains JSP that are not service-specific.

= css contains the admi nst yl e. css which defines styles for the console.

< federati on contains JSP related to the Federation Management module.
« htni contains miscellaneous HTML files.

= i mages contains images referenced by the JSP.

= | s contains JavaScript™ files.

= pol i cy contains JSP related to the Policy Service.

= servi ce contains JSP related to the Service Management module.

= sessi on contains JSP related to the Current Sessions (session management)
module.

= user contains JSP related to the Identity Management module.

NOTE Console-related JSP contain HTML and custom library tags. The tags are defined
in tag library descriptor files (. t | d) found in the
IdentityServer_base/ SUNVAM web- apps/ VEEB- | NF directory. Each custom tag
corresponds to a view component in its view bean. While the tags in the JSP can
be removed, new tags can not be added. For more information, see the Sun Java
System Application Framework documentation.

Creating Custom Organization Files

To customize the console for use by a specific organization, the

IdentityServer_base/ SUN\VAnT web- apps/ appl i cat i ons/ consol e directory should
first be copied, renamed and placed on the same level as the default directory. The
files in this new directory can then be modified as needed.

NOTE There is no standard to follow when naming the new directory. The new name can
be any arbitrarily chosen value.

Chapter 3 The Identity Server Console 49

Customizing The Console

50

For example, customized console files for the organization dc=new org, dc=com
might be found in the

IdentityServer_base/ SUNWANT web- apps/ appl i cat i ons/ cust om di rectory
directory.

To Create Custom Organization Files
1. Change to the directory where the default templates are stored:

cd IdentityServer_base/ SUN\Vam web- apps/ appl i cati ons
2. Make a new directory at that level.

The directory name can be any arbitrary value. For this example, it is named
IdentityServer_base/ SUNWANT web- apps/ appl i cat i ons/ custom di rectory/.

3. Copy all the JSP files from the consol e directory into the new directory.

IdentityServer_base/ SUNVAnT web- apps/ appl i cat i ons/ consol e contains the
default JSP for Identity Server. Ensure that any image files are also copied into
the new directory.

4. Customize the files in the new directory.

Modify any of the files in the new directory to reflect the needs of the specific
organization.

5. Modify the AMBase. j sp file.

In our example, this file is found in

IdentityServer_base/ SUNWANT web- apps/ appl i cat i ons/ cust om di rect ory/ ba
st. The line String console = "../consol e"; needs to be changed to
String console = "../new directory name";.The String consol el mages
tag also needs to be changed to reflect a new image directory, if applicable. The
contents of this file are copied in Code Example 3-1.

Code Example 3-1 The AMBase.jsp File

<l--
Copyright © 2002 Sun Mcrosystens, Inc. Al rights reserved.

Use is subject to |icense terns.
>

<% String console = "../consol e";

String consol elrl = console + "/"; _

String consol el mages = consol elrl + "images";
%

Identity Server 2004Q2 « Developer’s Guide

Customizing The Console

6. Change the value of the JSP Directory Name attribute in the Administration
Service to match that of the directory created in Step 2 on page 50.

The JSP Directory Name attribute points the Authentication Service to the
directory which contains an organization’s customized console interface. Using
the console itself, display the services registered to the organization for which
the console changes will be displayed. If the Administration Service is not
visible, it will need to be registered. For information on registering services, see
Chapter 7, “Service Management” in this manual or the Sun Java System
Identity Server Administration Guide.

Once the new set of console files have been modified, the user would need to log
into the organization where they were made in order to see any changes.
Elaborating on our example, if changes are made to the JSP located in the
IdentityServer_base/ SUNVANT web- apps/ appl i cat i ons/ cust om di rect ory
directory, the user would need need to login to that organization using the URL

ht t p: / / server_name.domain_name:port/ service_deploy uri/ Ul / Logi n?or g=custom_directo
ry_organization.

NOTE More information on this login URL and authentication URL parameters can be
found in Chapter 4, “Authentication Service” in this manual.

Alternate Customization Procedure

The console can also be modified by simply replacing the default images in
IdentityServer_base/ SUNVANT web- apps/ appl i cat i ons/ consol e/ i mages, with
new, similarly named images.

Miscellaneous Customizations

Included in this section are procedures for several specific customizations available
to administrators of the Identity Server console.

To Modify The Service Configuration Display

A service is a group of attributes that are managed together by the Identity Server
console. Out-of-the-box, Identity Server loads a number of services it uses to
manage its own features. For example, the configuration parameters of the Logging
Service are displayed and managed in the Identity Server console, while code
implementations within Identity Server use the attribute values to run the service.
There is a defined procedure for adding Identity Server services to the console. For
information on this procedure, see “Defining A Custom Service” on page 249 of

Chapter 3 The Identity Server Console 51

Customizing The Console

52

Chapter 7, “Service Management.” Chapter 7 also contains information on how to
extend existing services, add or remove a service name from the Navigation frame
using the “serviceHierarchy Attribute” and change the default service display
using the “propertiesViewBeanURL Attribute”

To Modify The User Profile View

The ldentity Server console creates a default User Service view based on
information defined in the amJser . xn service file.

NOTE Attributes defined as User attributes in each service’s specific XML file can also be
displayed in the User Service. More information on how this is done can be found in
“Customizing User Pages” on page 298 of Chapter 7, “Service Management” in
this manual.

A modified user profile view with functionality more appropriate to the
organization’s environment can be defined by creating a new ViewBean and/or a
new JSP. For example, an organization might want User attributes to be formatted
differently than the default vertical listing provided. Another customization option
might be to break up complex attributes into smaller ones. Currently, the server
names are listed in one text field as:

protocol://1dentity Server_host.domain:port
Instead, the display can be customized with three text fields:
protocol_chooser_field://server_host_field:port_number_field

A third customization option might be to add JavaScript to the ViewBean to
dynamically update attribute values based on other defined input. The custom JSP
would be placed in the

IdentityServer_base/ SUN\VAnT web- apps/ appl i cat i ons/ consol e/ user directory
and the ViewBean placed in the classpath com i pl anet . am consol e. user. The
value of the attribute User Profile Display Class in the Administration Service

(i pl anet - am admi n- consol e-user- profile-class inthe

amAdm nConsol e. xm service file) would then be changed to the name of the
newly created ViewBean. The default value of this attribute is

com i pl anet. am consol e. user. UMJser Prof i | eVi ewBean. More information on
this procedure can be found in “Console Samples” on page 60.

Identity Server 2004Q2 « Developer’s Guide

Customizing The Console

Display Options For The User Profile Page

There are a number of attributes in the Administration Service that can be selected
to display certain objects on the User Profile page. Display User’s Roles, Display
User’s Groups and User Profile Display Options specify whether to display the
roles assigned to a user, the groups to which a user is a member and the schema
attributes, respectively. More information on these service attributes can be found
in the Sun Java System Identity Server Administration Guide.

To Localize The Console

All textual resource strings used in the console interface can be found in the
amAdm nMbdul eMsgs. properti es file, located in

IdentityServer_base/ SUNWanN | ocal e/ . The default language is English (en_US).
Modifying this file with messages in a foreign language will localize the console.

To Display Service Attributes

Service attributes are defined in XML service files based on the sns. dt d. In order
for a particular service attribute to be displayed in the console, it must be
configured with the any XML attribute. The any attribute specifies whether the
service attribute for which it is defined will display in the Identity Server console.
More information on this attribute can be found in “any Attribute” on page 270 of
Chapter 7, “Service Management” in this manual.

To Customize Interface Colors

All the colors of the console are configurable using the Identity Server style sheet
admi nstyl e. css located in the

IdentityServer_base/ SUNWANT web- apps/ appl i cat i ons/ consol e/ css directory.
For instance, to change the background color for the navigation frame, modify the
BCDY. navFr ane tag; or to change the background color for the data frame, modify
the BCDY. dat aFr ane. The tags take either a text value for standard colors (blue,
green, red, yellow, etc.) or a hexadecimal value (#ff0000, #aadd22, etc.). Replacing
the default with another value will change the background color of the respective
frame after the page is reloaded in the browser. Code Example 3-2 details the tag in
adm nstyl e. css.

Code Example 3-2 BODY. navFr ane Portion of adm nst yl e. css

BODY. navFrane {
color: bl ack;
background: #ffffff;

}

Chapter 3 The Identity Server Console 53

Customizing The Console

54

To Change The Default Attribute Display Elements

The console auto-generates Data frame pages based on the definition of a service’s
attributes in an XML service definition file. As documented in “The sms.dtd
Structure” in Chapter 7, “Service Management” in this manual, each service
attribute is defined with the XML attributes t ype, ui t ype and synt ax. Type
specifies the kind of value the attribute will take. ui t ype specifies the HTML
element displayed by the console. synt ax defines the format of the value. The
values of these attributes can be mixed and matched to alter the HTML element
used by the console to display the values of the attributes. For example, by default,
an attribute of the si ngl e_choi ce type displays its choices as a drop down list in
which only one choice can be selected. This list can also be presented as a set of
radio buttons if the value of the ui t ype attribute is changed to r adi 0. Code
Example 3-3 illustrates this concept.

Code Example 3-3 ui t ype XML Attribute Sample

<AttributeSchema name="test-attribute"

type="si ngl e_choi ce"

syntax="string"

any="di spl ay"

ui type="radi o"

i 18nKey="d105" >

<Choi ceVal ues>
<Choi ceVal ue i 18nKey="u200">Dai | y</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="u201" >Weekl y</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="u202">Mont hl y</ Choi ceVal ue>

</ Choi ceVal ues>

<Def aul t Val ues>

<Val ue>Dai | y</ Val ue>
</ Def aul t Val ues>
</ Attribut eSchena>

Table 3-1 is a listing of the possible values for each attribute, and the corresponding
HTML element that each will display based on the different groupings.

Identity Server 2004Q2 « Developer’s Guide

Customizing The Console

Table 3-1 Service Attribute Values and Corresponding Display Elements

type Value syntax Value uitype Value Element Displayed In Console
single_choice string No value defined pull-down menu choices
I choice 1 *I
radio radio button choices

& Choice 1 © Choice 2 0 Choice 3

Chapter 3 The Identity Server Console 55

Customizing The Console

Table 3-1 Service Attribute Values and Corresponding Display Elements (Continued)
type Value syntax Value uitype Value Element Displayed In Console
Single boolean No value defined checkbox

radio radio button

Y

string No value defined text field

link hyperlink

hyperimk
button clickable button
Button |

password No value defined text field
paragraph No value defined scrolling text field

56 Identity Server 2004Q2 « Developer's Guide

Customizing The Console

Table 3-1 Service Attribute Values and Corresponding Display Elements (Continued)

type Value

syntax Value uitype Value Element Displayed In Console

list

multiple_choice

string No value defined Add/Delete name list

[=

|
Add | Delete |

name_value_list Add/Edit/Delete name list

[~

Add| Edit| Delete |

string No value defined choice list

choice 1 AI

choice 2
choice 3

Chapter 3 The Identity Server Console

57

Customizing The Console

58

To Add A Module Tab

“Plug-In Modules” on page 48 mentions the capability to plug-in external
applications as modules. Once this is accomplished, the module needs to be
accessible via the console by adding a new module tab. Label information for
module tabs are found in the amAdni nMbdul eMsgs. proper ti es console properties
file located in IdentityServer_base/ SUN\VanT | ocal e/ . To add label information for a
new module, add a key and value pair similar to nodul e105_NewTab=M/ New Tab.
Code Example 3-4 illustrates the default pairs in the file.

Code Example 3-4 Module Tab Key And Value Pairs

modul €101 i dentity=ldentity Managenent
modul e102_ser vi ce=Servi ce Configuration
modul e103_sessi on=Qurrent Sessi ons

modul e104_f eder at i on=Feder ati on Managemnent

The module name and and a URL for the external application also need to be
added to the View Menu Entries attribute in the Administration Service (or

i pl anet - am adm n- consol e- vi ew nenu in the amAdm nConsol e. xm service
file). When a module tab in the Header frame is clicked, this defined URL is
displayed in the Navigation frame. For example, to define the display information
for the tab sample, an entry similar to

nmodul e105_NewTab| / antonsol e/ custom_directory/ custom_NavPage would be
added to the View Menu Entries attribute in the Administration Service.

NOTE The console retrieves all the entries from this attribute and sorts them by i18n key.
This determines the tab display order in the Header frame .

After making these changes and restarting Identity Server, a new tab will be
displayed with the name My New Tab. For information on the sample that explains
how to add a new tab, see “Console Samples” on page 60.

To Display Container Objects

In order to create and manage LDAP organizational units (referred to as containers
in the console), the following attributes need to be enabled (separately or together)
in the Administration Service.

Identity Server 2004Q2 « Developer’s Guide

Console API

= Display Containers In Menu—Containers are organizational units as viewed
using the Identity Server console. If this option is selected, the menu choice
Containers will be displayed in the View menu for top-level Organizations,
Sub-Organizations and other containers.

= Show People Containers—People containers are organizational units
containing user profiles. If this option is selected, the menu choice People
Containers will be displayed in the View menu for Organizations, Containers
and Sub-Organizations.

= Show Group Containers—Group containers are organizational units
containing groups. If this option is selected, the menu choice Group Containers
will be displayed in the View menu for Organizations, Containers and Group
Containers.

Viewing any of these display options is also dependent on whether the Enable User
Management attribute is selected in the Administration Service. (This attribute is
enabled by default after a new installation.) More information on these attributes
can be found in the Sun Java System Identity Server Administration Guide.

Console API

The public console API package is named

com i pl anet. am consol e. base. nodel . It contains interfaces that can be used to
monitor and react to events that occur in the console. This listener can be called
when the user executes an action on the console that causes an event. An event can
have multiple listeners registered on it. Conversely, a listener can register with
multiple events. Events that might be used to trigger a listener include:

< Displaying a tab in the Header frame.

= Creating or deleting identity-related objects.

= Modifying the properties of an identity-related object.

= Sending attribute values to the console ViewBean for display purposes.

When a listener is created all the methods of that interface must be implemented
thus, the methods in the AMConsol eLi st ener interface must be implemented. The
AMOonsol eLi st ener Adapt er class provides default implementations of those
methods and can be used instead. Creating a console event listener includes the
following:

1. Write a console event listener class (or implement the default methods in the
AMDonsol eLi st ener Adapt er class).

Chapter 3 The Identity Server Console 59

Precompiling The Console JSP

2. Compile the code.
3. Register the listener in the Administration Service.

Identity Server includes a sample implementation of the ConsoleEventListener. See
“ConsoleEventListener” on page 61 for more information. The Identity Server
Javadocs also contains more detailed information on the listener interfaces and
class.

Precompiling The Console JSP

Each JSP is compiled when it is first accessed. Because of this, there is a delay when
displaying the HTML page on the browser. To avoid this delay, the system
administrator can precompile the JSP by running the following command:

WebServer_install_directory/ ser ver s/ bi n/ htt ps/ bin/j spc -webapp
IdentityServer_base/ SU\VAn web- apps/ appl i cat i ons

where, by default, WebServer_install_directory is / opt / SUN\Wbsvr .

Console Samples

Sample files have been included to help understand how the Identity Server
console can be customized. The samples include instructions on how to:

Modify User Profile Page

This sample modifies the user interface by adding a hyperlink that allows an
existing user to change their configured password. It is in the
ChangeUser Passwor d directory.

Create A Tabbed Identity Management Display

This sample creates a custom user profile which displays the profile with three
tabs. Figure 3-2 contains a screenshot of a tabbed user profile. It is in the
User Prof i | e directory.

60 Identity Server 2004Q2 « Developer's Guide

Console Samples

Figure 3-2 Console With Three Tabs

-ﬁ | sk Wi e D = _“_I
Td » 3 B oaa & @ =
i G s e e s P ey Sw : '
,""H_Iq _ﬁ _11] "|.-\.| e} .p.--l A T i e e (T ST i
Lepeet | Hrip
E_
(PRt D0 T v Danlignries | Do beslm | Fabrsihs Hasgaasi
—
po—- == T——
e T
Ewwl & bt [Tt]
W) e Ercacz e
| Perw. || Miwlem - | Fiar
iz oot [e —— T
T T T
CTE T TR RSN
e ETEE b
perail R
= B
¢ T T e

ConsoleEventListener

This sample displays the parameters passed to AMConsol eLi st ener class in the
anConsol e debug file. It is in the Consol eEvent Li st ener directory.

Add Administrative Function

This sample adds functionality to the Identity Management module that allows an
administrator to move a user from one organization to other. It is in the MoveUser
directory.

Add A New Module Tab

This sample adds a new tab into the Header frame. This tab will connect to an
external application and can be configured using the console. It is in the NewTab
directory.

Chapter 3 The Identity Server Console 61

Console Samples

Create A Custom User Profile View

This sample creates a custom user profile view to replace the default user profile
view. A different user profile view can be created for each configured organization.
A custom class would need to be written that extends the default user profile view
bean. This class would then be registered in the User Profile Display Class attribute
of the Administration Service. There is an example of how to do this in the samples
directory. This sample is in the User Pr of i | e directory.

These samples are located in IdentityServer_base/ SUNVan1 sanpl es/ consol e. Open
the README file in this directory for general instructions. Each specific sample
directory also contains a READVE file with instructions relevant to that sample.

NOTE The console samples are only available when Identity Server is installed on the
Solaris™ operating system.

62 Identity Server 2004Q2 « Developer's Guide

Chapter 4

Authentication Service

The Authentication Service is the point of entry for Sun Java™ System Identity
Server. A user or client application must pass an authentication process before
being allowed access to the console or any resource that is secured by it. This
chapter explains the authentication process, custom authentication modules and
clients, and other related features. It contains the following sections:

= “Overview” on page 63

= “Authentication Service Modules” on page 66

< “Authentication Service User Interface” on page 76

< “Authentication Methods” on page 105

= “Authentication Features” on page 123

= “Authentication DTD Files” on page 133

e “Custom Authentication Modules” on page 145

« “Authentication Programming Interfaces” on page 156

< “Authentication Samples” on page 189

Overview

Identity Server provides secure access to web-based (or non-web-based)
applications and the data that they store. When a user or application attempts to
access a protected resource, it is directed to submit credentials to one (or more)
authentication modules; for instance, the LDAP module requires authentication
against a Sun Java System Directory Server while the SecurID® module requires
authentication against RSA ACE/ Server® software. Gaining access to any of these
resources requires that the requesting entity be given permission based on the

63

Overview

submitted credentials. The Authentication Service is the authority, granting or
denying access upon completion of the required authentication process. After a
successful authentication, the requestor would be directed to the requested
resource or the Identity Server console.

The Authentication Service may be accessed in one of the following ways:

= End users authenticate to ldentity Server via a web browser in order to gain
access to either the Identity Server console OR a protected resource based on a
configured redirection URL.

« Java™ applications authenticate to Identity Server using the Java
Authentication API.

= C applications authenticate to Identity Server usingthe C authentication API.

Authentication Via A Web Browser

A user with a web browser can authenticate to Identity Server using the
Authentication Service User Interface. This interface is accessed by entering the
Authentication Service User Interface login URL in the browser’s location bar.
After entering the URL, the user is prompted to submit verifying credentials based
on the invoked authentication module(s). Once the credentials have been passed
back to Identity Server (assuming successful authentication), the user can gain
access based on their privileges:

= Administrators can access the administration portion of the Identity Server
console to manage their organization’s identity data.

= Users can access their own profiles to modify personal data.

= Auser can access a resource defined as a redirection URL parameter appended
to the login URL. For more information on redirection URLSs, see
“Authentication Methods” on page 105.

= A user can access the resource protected by a policy agent.

NOTE An initial step in the authenticating process is to identify the type of client making
the HTTP('S) request. The URL information is used to retrieve the browser’s
characteristics and, based on these characteristics, the correct authentication
pages are returned; for example, HTML pages. Once the user is validated, the
client type is added to the session token. More information on client detection can
be found in Chapter 11, “Client Detection Service” in this manual.

64 Identity Server 2004Q2 « Developer's Guide

Overview

Authentication Via The Java API

External Java applications can authenticate to Identity Server using the
Authentication API For Java Applications. This API provides interfaces to initiate
the authentication process and communicate authentication credentials to the
Authentication Service; the Identity Server API are based on the Java
Authentication and Authorization Service (JAAS) specification. JAAS are Java
packages that enable services to authenticate and enforce access controls upon
users. They implement a version of the standard Pluggable Authentication Module
(PAM) framework, and support user-based authorization.

NOTE The JAAS packages, starting with j avax. securi ty. aut h, can be found in
the Javadocs for Java 2 Platform, Standard Edition (J2SE), version 1.4.2.

Developers can incorporate the API classes and methods into their Java
applications to allow communication with the Authentication Service. The external
application’s Java request is converted to an XML message format and passed to
Identity Server over HTTP(S) . Once received, the XML message is converted back
into a Java request which can be interpreted by the Authentication Service.

NOTE All request and subsequent return messages are passed in the XML format. The
messages are structured according to the r enot e- aut h. dt d discussed in “The
remote-auth.dtd Structure” on page 138.

The Authentication Service returns login requirement screens based on the
authentication module being accessed. The user returns authentication credentials
and is allowed or denied access based on these credentials. The Java API package is
discussed further in “Authentication APl For Java Applications” on page 157.

Authentication Via The C API

Identity Server also includes an Authentication API for C applications to
authenticate to the Identity Server. This API provides functions to initiate the
authentication process and communicate authentication credentials to the
Authentication Service. After passing the authentication process, a validated
session token is sent back to the C application. The C API are discussed further in
“Authentication API For C Applications” on page 159.

Chapter 4 Authentication Service 65

Authentication Service Modules

Redirection URLS

Upon a successful or failed authentication, Identity Server looks for information on
where to redirect the user. There is an order of precedence in which the application
will look for this information based on the authentication method and whether the
authentication has been successful or has failed. Because these redirection URLS
are based on the method of authentication, this order (and related information) is
detailed in “Authentication Methods” on page 105.

Authentication Service Modules

66

Identity Server is installed with a set of default authentication services. The
following sections describe the installed modules and, where applicable, provide an
image of the module’s login requirement screen. (The login requirement screens
are discussed in more detail in “Authentication Service User Interface” on page 76.)

NOTE See the Sun Java System Identity Server Administration Guide for more
information on how to register the authentication services and modules using the
Identity Server console.

Authentication Configuration Service

The Authentication Configuration Service allows for the configuration of
authentication modules based on roles or organizations. It is also the service where
the Login Succes URL and the Login Failed URL attributes are defined. This is not a
module to which a user can login. More information on this service can be found in
the Authentication Configuration Service Attributes chapter of the Sun Java System
Identity Server Administration Guide.

Core Authentication Service

The Core Authentication Service is the configuration base for all authentication
modules. It must be registered as a service to an organization before any user can
log in using the other authentication modules. It allows the Identity Server
administrator to define default values for an organization’s authentication
parameters. These values can then be picked up if no overriding value is defined in
the chosen authentication module. The default values for the Core Authentication

Identity Server 2004Q2 « Developer’s Guide

Authentication Service Modules

Service are defined in the amAut h. xm file and stored in Directory Server after
installation. This is not a module to which a user can login. More information on
this service can be found in Core Authentication Service Attributes chapter of the
Sun Java System Identity Server Administration Guide.

Anonymous Authentication Module

This module allows a user to log in without specifying a user name and/or
password. Additionally, an Anonymous user can be created. Logging in as
Anonymous is then possible without a password. Anonymous connections are
generally customized by the Identity Server administrator to have limited access to
the server. More information on this module can be found in the Anonymous
Authentication Attributes chapter of the Sun Java System Identity Server Administration
Guide.

Figure 4-1 Anonymous Authentication Login Requirement Screen

SSun

This server uses Anonymous Authentication

Anonymaous
Username

Certificate Authentication Module

This module allows a user to log in through a personal digital certificate (PDC) that
could optionally use the Online Certificate Status Protocol (OCSP) to determine the
state of a certificate. More information on this module can be found in the
Certificate Authentication Attributes chapter of the Sun Java System Identity Server
Administration Guide.

Chapter 4 Authentication Service 67

Authentication Service Modules

Figure 4-2 Certificate-based Authentication Login Requirement Screen

Sun™ Java System Identity Server

HTTP Basic Authentication Module

This module allows login using the HTTP’s basic authentication with no data
encryption. A user name and password are requested via the web browser.
Credentials are validated internally using the LDAP authentication module. More
information on this module can be found in the HTTP Basic Authentication
Attributes chapter of the Sun Java System Identity Server Administration Guide.

68 Identity Server 2004Q2 « Developer's Guide

Authentication Service Modules

Figure 4-3 HTTP Basic Authentication Login Requirement Screen

Netscape: Password

Enter username far Sun Java System [dentity Server at example.com:58080;

User ID: I

Password: H

Ok | Clearl Cancell

Kerberos Authentication

This module is specific to Windows and is also known as the WindowsDesktopSSO
module. The Windows Desktop SSO authentication plug-in module provides a
client (user) with desktop single sign-on. It lets a user who has already
authenticated with a key distribution center be authenticated with Identity Server
without having to provide the login information again. The user should be able to
present the Kerberos token to Identity Server through Simple and Protected
GSS-API Negotiation Mechanism (SPNEGO) protocol.

Following is a detailed description of Windows Desktop SSO authentication
process:

1. The client logs on to the Windows desktop.
2. The client attempts access to a resource that is protected by a policy agent.

3. Because a single sign-on (SSO) token is absent, the request is forwarded to
Identity Server’s Ul layer.

4. The Ul layer returns a negotiation request for a SPNEGO token.

5. The client talks to the Kerberos Distribution Center (KDC) for the Ticket
Granting Service (TGS).

6. The KDC returns a TGS to the client. The client caches the session key and
session ticket from TGS.

7. The client sends a login request to the Identity Server Ul, this time with a
SPNEGO token.

Chapter 4 Authentication Service 69

Authentication Service Modules

70

8. The Identity Server Ul confirms the SPNEGO token and passes the request to
the Windows Desktop SSO module.

Windows Desktop SSO Module Overview

The Windows Desktop SSO module retrieves the Kerberos token, which contains a
session ticket and an authenticator. This module uses the Java™ technology
generic security service, Java bindings for Generic Security Service (JGSS) API and
authenticates the user by performing the steps below:

1. The session ticket (Kerberos ticket) is decrypted using the server key to extract
the session key.

2. The authenticator is decrypted using the extracted session key.

3. Checksum matching is applied to the authenticator, and the timestamp is
checked for validity.

4. |If authentication is successful, a SSO token is returned to the client, and access
is granted. If authentication fails, Identity Server returns an error.

Configuring the Windows Desktop SSO Authentication Module

The following parameters are required for configuring the Windows Desktop SSO
module.

e ServicePrincipal — The principal for authentication to the Kerberos server in the format
of HTTP/ i denti t ySer ver @XDC_donai n.

e Keytab FileName—-Thekeyt ab filegenerated from the Kerberos server for
service authentication.

e Kerberos Realm — The authentication realm.
o Kerberos Server Name — The name of the Kerberos server.

= Authentication Level — The level assigned to this authentication service.

LDAP Authentication Module

This module allows for authentication using LDAP bind, an operation which
associates a user ID password with a particular LDAP entry. The authentication
module enabled after Identity Server is installed is LDAP. More information on
this module can be found in the LDAP Authentication Attributes chapter of the Sun
Java System Identity Server Administration Guide.

Identity Server 2004Q2 « Developer’s Guide

Authentication Service Modules

NOTE An administrator can define different multiple LDAP configurations for an
organization. More information on this can be found in “Multi-LDAP Authentication
Module Configuration” on page 128.

Figure 4-4 LDAP Authentication Login Requirement Screen

G Sun

This server uses LDAP Authenfication

User Narne:

Password:

Membership Authentication Module

Membership authentication is implemented similarly to personalized sites such as
ny. site. comor nmysun. sun. com When this service is enabled, a user can create
an account, personalize it without the aid of an administrator, and access it as a
registered user. More information on this module can be found in the Membership
Authentication Attributes chapter of the Sun Java System Identity Server Administration
Guide.

NOTE The Membership Authentication Module is used in “Configuring The Authentication
Module” on page 147 as a sample module.

Chapter 4 Authentication Service 71

Authentication Service Modules

Figure 4-5 Membership Authentication Login Requirement Screen

@ Sun.

iz

Self Registration Module

User Name:

Password:

NT Authentication Module

This module allows for authentication against a Microsoft Windows® NT server.
More information on this module can be found in the NT Authentication Attributes

chapter of the Sun Java System Identity Server Administration Guide.

NOTE In order to actualize the NT authentication module, Samba 2.2.2 must be
downloaded and installed. Samba is a file and print server for blending Windows
and UNIX® machines together without requiring a separate Windows NT/2000
Server. More information, and the download itself, can be accessed at
http://wws. sun. conl sof t war e/ downl oad/ pr oduct s/ 3e3af 224

.htm .

72 Identity Server 2004Q2 « Developer's Guide

Authentication Service Modules

Figure 4-6 NT Authentication Login Requirement Screen

This server uses NT Authentication

User Name: |

Password: |

RADIUS Authentication Module

This module allows for authentication using an external Remote Authentication
Dial-In User Service (RADIUS) server. More information on this module can be
found in the RADIUS Authentication Attributes chapter of the Sun Java System
Identity Server Administration Guide.

Figure 4-7 RADIUS Authentication Login Requirement Screen

This server uses RADIUS Authentication

RADIUS Id |

RADIUS Password |

Chapter 4 Authentication Service 73

Authentication Service Modules

74

SafeWord Authentication Module

This module allows for authentication using Secure Computing’s SafeWord®
PremierAccess™ server software and SafeWord tokens. More information on this
module can be found in the SafeWord Authentication Attributes chapter of the Sun
Java System ldentity Server Administration Guide.

Figure 4-8 SafeWord Authentication Login Requirement Screen

G Sun

This server uses SafeWord Authentication

Your User Name:

SecurlD Authentication Module

This module allows for authentication using RSA ACE/Server software and RSA
SecurlD authenticators. More information on this module can be found in the
SecurlD Authentication Attributes chapter of the Sun Java System Identity Server
Administration Guide.

Identity Server 2004Q2 « Developer’s Guide

Authentication Service Modules

Figure 4-9 SecurlD Authentication Login Requirement Screen

This server uses SecurlD Authentication

Enter Your Userld |

Enter your Passcade |

UNIX® Authentication Module

This Solaris only module allows for authentication using a user’s UNIX
identification and password. More information on this module can be found in the
Unix Authentication Attributes chapter of the Sun Java System Identity Server
Administration Guide.

Figure 4-10 UNIX Authentication Login Requirement Screen

@ Sun.

i

This server uses Unix Authentcation

User Name: |

Password: |

Chapter 4 Authentication Service 75

Authentication Service User Interface

Authentication Service User Interface

76

The Authentication Service provides a web-based user interface for all
out-of-the-box authentication modules installed in the Identity Server deployment.
This interface provides a dynamic and customizable means for gathering
authentication credentials by displaying the login requirement screens (based on
the invoked authentication module) to a user requesting access. The interface is
built using Sun Java System Application Framework (sometimes referred to as
JATO), a Java 2 Enterprise Edition (J2EE) presentation framework used to help
developers build functional web applications.

NOTE Information on Sun Java System Application Framework 2.0 can be found at
http://docs. sun. coni col | / S1_appf ranme20_en.

The User Interface Login URL

The Authentication Service user interface is accessed by entering a login URL into
the Location Bar of a web browser. This URL is:

ht t p: / / identity_server_host.domain_name:port/ service_deploy_uri/ U / Logi n

NOTE During installation, the service_deploy_uri is configured as anser ver . This default
service deployment URI will be used throughout this document.

The user interface login URL can also be appended with Login URL Parameters to
define specific authentication methods or successful/failed authentication
redirection URLs. Additional information on redirection URLs can be found in
“Authentication Methods” on page 105.

Login URL Parameters

A URL parameter is a name/value pair appended to the end of a URL. The
parameter starts with a question mark (?) and takes the form nane=val ue. A
number of parameters can be combined in one login URL as in

ht t p: / / server_name.domain_name: port/ anser ver/ U/ Logi n?nodul e=LDAP&I ocal e=
j a&got o=ht t p: / / ww. sun. com If more than one parameter exists, they are
separated by an ampersand (&). The combinations though must adhere to the
following guidelines:

Identity Server 2004Q2 « Developer’s Guide

Authentication Service User Interface

= Each parameter can occur only once in one URL. For example,
nmodul e=LDAP&odul e=NT is not computable.

= Both the or g parameter and the donmai n parameter determine the login
organization. In this case, only one of the two parameters should be used in the
login URL. If both are used and no precedence is specified, only one will take
effect.

= The parametersuser, rol e, servi ce, nodul e and aut hl evel are for defining
authentication modules based on their respective criteria. Due to this, only one
of them should be used in the login URL. If more than one is used and no
precedence is specified, only one will take effect.

The following sections describe parameters that, when appended to the The User
Interface Login URL and typed in the Location bar of a web browser, achieve
various authentication functionalities.

TIP To simplify an authentication URL and parameters for distribution throughout an
organization, an administrator might configure an HTML page with a simple URL
that possesses links to the more complicated login URLSs for all configured
authentication methods.

goto Parameter

A got o=successful_authentication_URL parameter overrides the value defined in the
Login Success URL of the Authentication Configuration Service. It will link to the
specified URL when a successful authentication has been achieved. A

got o=logout_URL parameter can also be used to link to a specified URL when the
user is logging out. An example goto on a successful authentication URL might be
ht t p: / / server_name.domain_name: port/ anser ver/ U / Logi n?got o=ht t p: / / www. sun
. conl homepage. ht m . An example got o logout URL might be

ht t p: / / server_name.domain_name: port/ anser ver/ Ul / Logout ?got o=ht t p: / / www. sSu
n. coni | ogout. htni .

NOTE There is an order of precedence in which Identity Server looks for successful
authentication redirection URLs. Because these redirection URLs and their order
are based on the method of authentication, this order (and related information) is
detailed in “Authentication Methods” on page 105.

Chapter 4 Authentication Service 77

Authentication Service User Interface

gotoOnFail Parameter

A got oOnFai | =failed_authentication_URL parameter overrides the value defined in
the Login Failed URL of the Authentication Configuration Service. It will link to
the specified URL if a user has failed authentication. An example got oOnFai | URL
might be

ht t p: / / server_name.domain_name: port/ amrser ver/ U/ Logi n?got oOnFai | =http://w
ww. sun. comauth _fail.htm.

NOTE There is an order of precedence in which Identity Server looks for failed
authentication redirection URLs. Because these redirection URLs and their order
are based on the method of authentication, this order (and related information) is
detailed in “Authentication Methods” on page 105.

org Parameter

The or g=orgName parameter allows a user to authenticate as a user in the specified
organization.

TIP A user who is not already a member of the specified organization will receive an
error message when they attempt to authenticate with the or g parameter. A user
profile, though, can be dynamically created in the Directory Server if all of the
following are TRUE:

* The User Profile attribute in the Core Authentication Service must be set to
Dynami cal |y Created.

e The user must successfully authenticate to the required module.

* The user does not already have a profile in Directory Server.

From this parameter, the correct login page (based on the organization and its
locale setting) will be displayed. If this parameter is not set, the default is the
top-level organization. An example or g URL might be

ht t p: / / server_name.domain_name: port/ anser ver/ U/ Logi n?or g=sun.

NOTE See the Sun Java System Identity Server Administration Guide for information on
how to configure authentication for an organization.

78 Identity Server 2004Q2 « Developer's Guide

Authentication Service User Interface

user Parameter

The user =userName parameter forces authentication based on the module
configured in User Authentication Configuration attribute of the user’s profile. For
example, one user’s profile can be configured to authenticate using the
Certification module while another user might be configured to authenticate using
the LDAP module. Adding this parameter sends the user to their configured
authentication process rather than the method configured for their organization.
An example user URL might be

ht t p: / / server_name.domain_name: port/ anmser ver/ U / Logi n?user=jsmt h.

NOTE See the Sun Java System Identity Server Administration Guide for information on
how to configure authentication for a user.

role Parameter

A r ol e=roleName parameter sends the user to the authentication process configured
for the specified role. A user who is not already a member of the specified role will
receive an error message when they attempt to authenticate with this parameter.
An example r ol e URL might be

ht t p: / / server_name.domain_name: port/ anser ver/ U/ Logi n?r ol e=nanager .

NOTE See the Sun Java System Identity Server Administration Guide for information on
how to configure authentication for a role.

locale Parameter

Identity Server has the capability to display localized screens (translated into
languages other than English) for the authentication process as well as for the
console itself. The | ocal e=localeName parameter allows the specified locale to take
precedence over any other defined locales. The login locale is displayed by the
client after searching for the configuration in the following places, order-specific:

1. Value of locale parameter in Login URL

The value of the | ocal e=localeName parameter takes precedence over all other
defined locales.

2. Locale defined in user’s profile

If there is no URL parameter, the locale is displayed based on the value set in
the User Preferred Language attribute of the user profile.

Chapter 4 Authentication Service 79

Authentication Service User Interface

80

3. Locale defined in the HTTP header
This locale is set by the web browser.
4. Locale defined in Core Authentication Service

This is the value of the Default Auth Locale attribute in the Core
Authentication Service. More information can be found in the Sun Java System
Identity Server Administration Guide..

5. Locale defined in Platform Service

This is the value of the Platform Locale attribute in the Platform Service. More
information can be found in the Sun Java System Identity Server Administration Guide.

6. Operating system locale

The locale derived from this pecking order is stored in the user’s session token and
Identity Server uses it for loading the localized authentication module only. After
successful authentication, the locale defined in the User Preferred Language
attribute of the user’s profile is used. If none is set, the locale used for
authentication will be carried over. An example nodul e URL might be

ht t p: / / server_name.domain_name: port/ anser ver/ U/ Logi n?l ocal e=j a.

NOTE Information on how to localize the screen text and error messages can be found in
“Configuring Authentication Localization Properties” on page 154 and “Configuring
Console Localization Properties” on page 257 of Chapter 7, “Service Management”
in this manual.

module Parameter

The nodul e=moduleName parameter allows authentication via the specified
authentication module. Any of the modules listed in “Authentication Service
Modules” on page 66 can be specified although they must first be registered under
the organization to which the user belongs and selected as one of that
organization’s authentication modules in the Core Authentication Service. An
example nodul e URL might be

ht t p: / / server_name.domain_name: port/ arser ver/ U / Logi n?nodul e=Uni x.

NOTE The authentication module names are case-sensitive when used in a URL
parameter.

Identity Server 2004Q2 « Developer’s Guide

Authentication Service User Interface

service Parameter

The ser vi ce=serviceName parameter allows a user to authenticate via a service’s
configured authentication scheme. Different authentication schemes can be
configured for different services using the Authentication Configuration Service.
For example, an online paycheck application might require authentication using
the more secure Certificate Authentication Module while an organization’s
employee directory application might require only the LDAP Authentication
Module. An authentication scheme can be configured, and named, for each of these
services. An example ser vi ce URL might be

ht t p: / / server_name.domain_name: port/ anser ver/ U / Logi n?ser vi ce=sv1.

NOTE The Authentication Configuration Service is used to define a scheme for
service-based authentication. More information on this module can be found in the
Authentication Configuration Service Attributes chapter of the Sun Java System
Identity Server Administration Guide.

arg Parameter

The ar g=newsessi on parameter is used to end a user’s current session and begin a
new one. The Authentication Service will destroy a user’s existing session token
and perform a new login in one request. This option is typically used in the
Anonymous Authentication module. The user first authenticates with an
anonymous session, and then hits the register or login link. An example ar g URL
might be

ht t p: / / server_name.domain_name: port/ anser ver/ Ul / Logi n?ar g=newsessi on.

authlevel Parameter

An aut hl evel =value parameter tells the Authentication Service to call a module
with an authentication level equal to or greater than the specified authentication
level value. Each authentication module is defined with a fixed integer
authentication level. An example aut hl evel URL might be

ht t p: / / server_name.domain_name: port/ amrser ver/ U/ Logi n?aut hl evel =1.

NOTE The Authentication Level is set in each module’s specific profile. More information
on this module can be found in the Sun Java System |dentity Server Administration
Guide.

Chapter 4 Authentication Service 81

Authentication Service User Interface

82

domain Parameter

This parameter allows a user to login to an organization identified as the specified
domain. The specified domain must match the value defined in the Domain Name
attribute of the organization’s profile. An example domai n URL might be

ht t p: / / server_name.domain_name: port/ anser ver/ U/ Logi n?donai n=sun. com

TIP A user who is not already a member of the specified domain/organization will
receive an error message when they attempt to authenticate with the or g
parameter. A user profile, though, can be dynamically created in the Directory
Server if all of the following points are TRUE:

* The User Profile attribute in the Core Authentication Service must be set to
Dynami cal | y Oreated.

* The user must successfully authenticate to the required module.

* The user does not already have a profile in Directory Server.

iPSPCookie Parameter

The i PSPCooki e=yes parameter allows a user to login with a persistent cookie. A
persistent cookie is one that continues to exist after the browser window is closed.
In order to use this parameter, the organization to which the user is logging in
must have Persistent Cookies enabled in their Core Authentication Service. Once
the user authenticates and the browser is closed, the user can login with a new
browser session and will be directed to console without having to reauthenticate.
This will work until the value of the Persistent Cookie Max Time attribute specified
in the Core Service elapses. An example i PSPCooki e URL might be

ht t p: / / server_name.domain_name: port/ anser ver/ U/ Logi n?or g=exanpl e& PSPCoo
ki e=yes.

IDTokenN Parameters

Identity Server has included this parameter option to enable a user to pass
authentication credentials using a URL or HTML forms. With the | DTokenN=value
parameters, a user can be authenticated without accessing the Authentication
Service User Interface. This process is called Zero Page Login. Zero page login
works only for authentication modules that use one login page. The values of

| DTokenO, | DTokenl, . . ., | DTokenNmap to the fields on the authentication
module’s login page. For example, the LDAP authentication module might use

| DToken1 for the userID information, and | DToken2 for password information. In
this case, the LDAP module IDTokenN URL would be:

ht t p: / / server_name.domain_name: port/ anser ver/ U / Logi n?nmodul e=LDAP& DToken
1=userID& DToken2=password. (modul e=LDAP can be omitted if LDAP is the default

Identity Server 2004Q2 « Developer’s Guide

authentication module.) For Anomymous authentication, the login URL parameter

might be

ht t p: / / server_name.domain_name: port/ anser ver/ U / Logi n?nodul e=Anonynous&l D

Tokenl=anonymousUseriD.

Authentication Service User Interface

NOTE

The token names Logi n. TokenO, Logi n. Token1,. .., Logi n. TokenN

(from previous releases) are still supported but will be deprecated in a future
release. It is recommended to use the new | DTokenN parameters.

File Types Of The User Interface

The Authentication Service User Interface uses JavaServer Pages™, XML for
Authentication Module Configuration Files, JavaScript Files, Cascading Style
Sheets, Image Files, and Localization Properties Files to convey graphical-based
representations of the login requirement screens, logout screens, and error
messages for each authentication module. Table 4-1 lists these file types, how they
are used and in what directory they can be found.

Table 4-1

Authentication Service User Interface File Types

File Extension

Description

Location

.jisp

xm

. CSS

.gif/.jpg

. propertie
s

JavaServer Pages are HTML files
with JATO tags that define Login
and error message pages.

Authentication Module
Configuration Files define login
requirements.

JavaScript Files contains
server-side code for parsing.

Cascading Style Sheets maintain
consistency in color and text.

Image Files to convey the look and
feel of the interface.

Localization Properties Files for
internationalization.

IdentityServer_base/ SUNVam web
- apps/ servi ces/ config/auth
/ def aul t

IdentityServer_base/ SUNVam web
- apps/ servi ces/ config/auth
/ def aul t

IdentityServer_base/ SUNVamM web
-apps/services/js

IdentityServer_base/ SUNVam web
- apps/ servi ces/ css

IdentityServer_base/ SUNVam web
- apps/ servi ces/ | ogi n_i nage
s

IdentityServer_base/ SUNVn | oc
al e

Chapter 4 Authentication Service

Authentication Service User Interface

84

JavaServer Pages

All Authentication Service user interface screens are JavaServer Pages (JSP). Simply
put, JSP are HTML files that contain additional code to generate dynamic content.
More specifically, they contain HTML code to display static text and graphics, as
well as application code to generate information. When the page is displayed in a
web browser, it will contain both the static HTML content and dynamic content
retrieved via the application code. There is one login page common to all the
authentication modules in Identity Server; it is called Logi n. j sp.

NOTE Notwithstanding the above, the Membership authentication module and the
Self-registration authentication module each have their own login pages,
menber shi p. j spandregi ster. | sp, respectively.

The common login page dynamically displays the invoked authentication
module’s required elements at run time. For example, when a user invokes the
LDAP authentication module, the LDAP module header, user name field and
password field are displayed.

CAUTION When modifying JSP pages, all <, & and > characters must be escaped.

JSP Files

Identity Server includes a number of JSP for use by the Authentication Service user
interface. Table 4-2 contains a list of them. They are located in
IdentityServer_base/ SUNVANT web- apps/ ser vi ces/ confi g/ aut h/ def aul t.

Table 4-2 List of Customizable JSP Templates

File Name Purpose

account _expired.jsp Informs the user that their account has expired and should
contact the system administrator.

auth_error_tenplate.jsp Informs the user when an internal authentication error has
occurred.

aut hException. j sp Informs the user that an error has occurred during
authentication.

configuration.jsp Informs the user that there has been a configuration error.

di scl ainer.jsp This is a sample, customizable disclaimer page used in

the Self-registration authentication module.

Exception.jsp Informs the user that an error has occurred.

Identity Server 2004Q2 « Developer’s Guide

Authentication Service User Interface

Table 4-2 List of Customizable JSP Templates (Continued)

File Name

Purpose

i nval i dPCooki eUseri d. j sp

i nval i dPassword. j sp

i nval i d_donain. j sp
Logi n.jsp

| ogi n_deni ed. j sp

login_failed tenplate.js

p
Logout . j sp

maxSessi ons. j sp

nmenber shi p. j sp
Message. j sp

m ssi ngReqFi el d. j sp
nmodul e_deni ed. j sp

nodul e_tenpl ate. j sp

new org.jsp
noConfig.jsp
noConfirmation.|sp

noPasswor d. j sp

noUser Nane. j sp

noUserProfile.jsp

org_i nactive.jsp

Informs the user that a persistent cookie user name does
not exist in the persistent cookie domain.

Informs the user that the password entered does not
contain enough characters.

Informs the user that there is no such domain.
This is a Login/Password template.

Informs the user that no profile has been found in this
domain.

Informs the user that authentication has failed.

Informs the user that they have logged out.

Informs the user that the maximum sessions have been
reached.

A login page for the Self-registration module.

A generic message template for a general error not
defined in one of the other error message pages.

Informs the user that a required field has not been
completed.

Informs the user that the chosen authentication module
has been denied.

A customizable module page.

This page is displayed when a user witha valid session in
one organization wants to login to another organization.

Informs the user that no configuration has been
defined/found for them.

Informs the user that the password confirmation field has
not been entered.

Informs the user that no password has been entered.

Informs the user that no user name has been entered. It
links back to the login page.

Informs the user that no profile has been found. It gives
them the option to try again or select New User and links
back to the login page.

Informs the user that the organization they are attempting
to authenticate to is no longer active.

Chapter 4 Authentication Service 85

Authentication Service User Interface

86

Table 4-2 List of Customizable JSP Templates (Continued)

File Name

Purpose

passwor dM snat ch. j sp
profil eException.|sp

Redirect.jsp
register.jsp

session_tineout.jsp
user Deni ed. j sp
user Exi sts.jsp
user Passwor dSane. j sp

user _i nactive.jsp

wr ongPasswor d. j sp

This page is called when the password and confirming
password do not match.

Informs the user that an error has occurred while storing
the user profile.

This page carries a link to a page that has been moved.
A user self-registration page.

Informs the user that their current login session has timed
out.

Informs the user that they do not possess the necessary
role (for role-based authentication.)

This page is called if a new user is registering with a user
name that already exists.

Called if a new user is registering with a user name field
and password field have the same value.

Informs the user that they are not active.

Informs the user that the password entered is invalid.

Authentication Module Configuration Files

The authentication module configuration file is an XML file that defines the
requirements that each module seeks from a user for authentication. In other
words, this file defines the login registration screens that a user might see when
directed to authenticate (i.e. user name/password screen, change password screen,
etc.). Each authentication module has its own configuration file located in the same
directory as the JavaServer Pages,

IdentityServer_base/ SUNVANT web- apps/ ser vi ces/ confi g/ aut h/ def aul t.
Modifying elements in this file will automatically customize the authentication
module’s interface. The file name follows the format modulename. xni ; for example,
Saf ewsrd. xmi or LDAP. xmi where modulename is the name of the class without the
package name. The syntax of the file itself follows the DTD format described in
“Auth_Module_Properties.dtd” on page 134.

NOTE More information on the authentication module configuration file can be found in
“Configuring The Authentication Module” on page 147.

Identity Server 2004Q2 « Developer’s Guide

XML Files

Authentication Service User Interface

Identity Server defines an authentication module configuration file for each of the
default Authentication Service Modules. The included XML files, located in
IdentityServer_base/ SUN\VAnT web- apps/ ser vi ces/ confi g/ aut h/ def aul t, are:

Table 4-3 List of Authentication Module Configuration Files

File Name

Purpose

Anonynous. xni
Appl i cation. xmi
Cert . xni
HTTPBasi c. xm

LDAP. xmi

Menber shi p. xm

NT. xm
RADI US. xm

Saf eWdrd. xni
Secur | D. xmi

Uni x. xm

For anonymous authentication although there are no
specific credentials required to authenticate.

For Identity Server internal use only. Do not remove or
modify this file.

For certificate-based authentication although there are no
specific credentials required to authenticate.

Defines one screen with a header only as credentials are
requested via the user’'s web browser.

Defines a Login screen, a Change Password screen and
two error message screens (Reset Password and User
Inactive).

Default data interface which can be used to customize for
any domain.

Defines a Login screen.

Defines a Login screen and a RADIUS Password
Challenge screen.

Defines two Login screens: one for User Name and the
next for Password.

Defines five Login screens including UserID and
Passcode, PIN mode, and Token Passcode.

Defines a Login screen and an Expired Password screen.

JavaScript Files

Identity Server includes JavaScript files which are parsed within the Logi n. j sp.
They can be found in IdentityServer_base/ SUN\WANI web- apps/ ser vi ces/ j s. Other,
more customer-specific JavaScript files can be coded and accessed from this

location.

Chapter 4 Authentication Service 87

Authentication Service User Interface

JS Files

The JavaScript files used by the Authentication Service are detailed in Table 4-4.
They can be found in IdentityServer_base/ SUN\WANI web- apps/ ser vi ces/ j s.

Table 4-4 List of JavaScript Files

File Name Purpose

auth.js Used by Logi n. j sp for parsing all module files to display
login requirement screens.

browser Version. s Used by Logi n. j sp to detect the client type.

Cascading Style Sheets

Identity Server uses cascading style sheets (CSS) to define the look and feel of the
user interface. Characteristics like fonts and font weights, background colors and
link colors are specified in the CSS. They are located in IdentityServer_base/ SUNVani
web- apps/ servi ces/ css.

NOTE All JSP background colors, page layouts, and fonts are configurable using the style
sheets located in IdentityServer_base/ web- apps/ ser vi ces/ css.

CSS Files

There are a number of browser-based CSS included with Identity Server. These
CSS, detailed in Table 4-5, can be found in IdentityServer_base/ SUNVANT web- apps/
servi ces/ css.

Table 4-5 List of Cascading Style Sheets

File Name Purpose

Ccss_generic. css Configured for generic web browsers.

css_i ebwi n. css Configured specifically for Microsoft® Internet Explorer v.5
for Windows®.

css_ns4sol . css Configured specifically for Netscape™ Communicator v. 4
for Solaris™.

CSs_ns4wi n. css Configured specifically for Netscape Communicator v.4 for
Windows.

styl es. css Used in JSP pages as a default style sheet.

88 Identity Server 2004Q2 « Developer's Guide

Authentication Service User Interface

Image Files

The default user interface is branded with Sun Microsystems, Inc. logos and
images. Identity Server has included these GIF files in IdentityServer_base/
SUNVaNT web- apps/ ser vi ces/ | ogi n_i mages. These images can be replaced with
images relevant to other organizations. (JPG files can also be used.)

GIF Files

Table 4-6 contains a listing of the GIF images used for the user interface. These files
can be found in IdentityServer_base/ SUNan web- apps/ ser vi ces/ css.

Table 4-6 List of Sun Microsystems Branded GIF Images

File Name Purpose

Identity_Logln.gif Sun Java System Identity Server banner across the
top.

Regi stry_Login.gif No longer used.

banner Txt _regi stryServer.gi f Nolonger used.

| ogo_sun. gi f Sun Microsystems logo in the upper right corner.
spacer. gif A one pixel clear image used for layout purposes.
sunOne.gif Sun Java System logo in the lower right corner.

Localization Properties Files

A localization properties file, also referred to as an i18n (internationalization)
properties file specifies the screen text and error messages that an administrator or
user will see when directed to an authentication module’s attribute configuration
page. Each authentication module has its own properties file that follows the
naming format amAut hmodulename. pr oper ti es; for example,

amAut hLDAP. properti es. They are located in

IdentityServer_base/ SUN\VAN | ocal e/ . The default character set is 1SO-8859-1 so all
values are in English, but Java applications can be adapted to various languages
without code changes by translating the values in the localization properties file.

PROPERTIES Files

Table 4-7 contains a listing of the localization properties files configured for each
module. These files can be found in IdentityServer_base/ SUNVani | ocal e.

Chapter 4 Authentication Service 89

Authentication Service User Interface

90

Table 4-7 List of Localization Properties Files

File Name

Purpose

amAut h. properties
amAut hAnonynous. properties

amAut hAppl i cati on. propertie
s

amAut hCer t . properti es
amAut hConfi g. properti es
amAut hCont ext . properties

amAut hCont ext Local . properti
es

amAut hHTTPBasi c. properties
amAut hLDAP. properti es

amAut hMenber shi p. properties
amAut hNT. properti es

amAut hRadi us. properti es
amAut hSaf eWbr d. properti es
amAut hSecur | D. properti es
amAut hUl . properti es

amAut hUni x. properti es

Defines the parent Core Authentication Service.
Defines the Anonymous Authentication Module.

For Identity Server internal use only. Do not remove or
modify this file.

Defines the Certificate Authentication Module.
Defines the Authentication Configuration Service.

Defines the localized error messages for the
AuthContext Java class. For more information, see
Authentication API For Java Applications.

For Identity Server internal use only. Do not remove or
modify this file.

Defines the HTTP Basic Authentication Module.
Defines the LDAP Authentication Module.
Defines the Membership Authentication Module.
Defines the NT Authentication Module.

Defines the RADIUS Authentication Module.
Defines the SafeWord Authentication Module.
Defines the SecurlD Authentication Module.

Defines labels used in the authentication user
inteface.

Defines the UNIX® Authentication Module.

Customizing The Authentication User Interface

Many of the File Types Of The User Interface can be modified to bring a custom
look and feel to the Authentication Service. The changes can be made on a number
of levels, for example, to reflect authentication to different organizations via
branding or to reflect different types of client applications. More specifically, one
organization might customize their files to reflect their own logo and corporate
colors while another might configure their service applications to have different
authentication methods for security reasons. The JSP and properties files can be

customized at the following levels:

Identity Server 2004Q2 « Developer’s Guide

Authentication Service User Interface

= Top-level Organization—files can be customized for a user authenticating to
the top-level organization.

= Organizations—files can be customized for a user authenticating to any
sub-organization be it sub to the top-level organization or any specific
sub-level organization.

= Locale—files can be customized to display a translated user interface at the
organization level.

= Service—files can be customized for a user authenticating to a specific service.

= Client Type—files can be customized to support multiple clients (web
browsers, wireless browsers, etc.).

The following sections contain the procedure for modifying JSP and properties files
to create a customized Authentication Service user interface.

NOTE Anytime one of the File Types Of The User Interface are modified, the web
application archive (WAR) Ser vi ces. war needs to be redeployed. The first
step is to manually jar the services directory, then undeploy the old WAR and
redeploy the new WAR based on the deployed web container. For information on
how to do this, see Appendix C, “WAR Files.”

To Create New Directories For Custom Console Files

All custom JSP and XML properties files should be stored in directories based on
their level of customization. The JSP and XML properties files stored in
IdentityServer_base/ SUN\VAnT web- apps/ ser vi ces/ confi g/ aut h/ def aul t define
the Authentication Service user interface for the top-level organization configured
during installation. Modifying these files would change the interface that, for
example, amadmi n, the top level administrator user, would see when logged in.

NOTE The directory that contains the Authentication Service user interface files for the
top-level organization is configured during installation as def aul t . This directory
name can be changed to the actual name of the top-level organization for purposes
of consistency with the Identity Server console.

The path to all directories containing customized user interface files begins from
IdentityServer_base/ SUN\VAnT web- apps/ ser vi ces/ confi g/ auth/defaul t/. ...
Assuming this, the generic directory path, depending on the level of customization,
is:

Chapter 4 Authentication Service 91

Authentication Service User Interface

.. . organization_name OR organization_name_locale/any_sub_organization_directories OR
any_sub_organization_directories_locale/any_client_type_directories/any_service_directories

Table 4-8 lists some levels of customization with the corresponding path to the
directory where the modified files would be found.

Table 4-8 Directory Paths Based On Customization Level

Level Custom Directory Path Where Modified Files Live

Top-level Organization JSPs and XML files stored in def aul t

Customization

Top-level Organization JSPs and XML files stored in newly created def aul t _locale
Customization Locale

Sub-level Organization . .. 2nd_level_organization_namel OR

Customization 2nd_level_organization_name_localel/ sub_organization_name2 OR

sub_organization_name_locale2/ . . .

Service Customization . .. 2nd_level_organization_namel OR
2nd_level_organization_name_locale1/ sub_organization_name2 OR
sub_organization_name_locale2/ service_name

Client Type (HTML, WML, . .. 2nd_level_organization_namel OR
etc.) Customization 2nd_level_organization_name_locale1/ sub_organization_name2 OR
sub_organization_name_locale2/ client_type

Table 4-8 defines directory paths based on a simple configuration (customize an
organization’s branding or add WML files for multiple client types). Often, though,
customization projects are not that straightforward. In the case that an organization
wants to customize authentication for itself, a sub-organization and maybe a
service, there is a specific path that these directories must follow. For example, let’s
assume the following:

= Top-level Organization: default
= Sub-organization: Sun
Locales: en (English) and ja (Japanese)
o Sub-organization: SUNONE
Locales: en (English) and ja (Japanese)

Client Types: HTML for web browsers and WML for Nokia and Motorola
cell phones

Service; paycheck

92 Identity Server 2004Q2 « Developer's Guide

Authentication Service User Interface

NOTE The def aul t directory in
IdentityServer_base/ SUNVAM web- apps/ ser vi ces/ confi g/ aut h/ will
be left untouched.

As there are two locales to be configured for Sun, modified files will reside in the
directory based on their respective locale:

1. ldentityServer_base/ SUN\WANT web- apps/ ser vi ces/ confi g/ aut h/ def aul t/ Sun_
en/...

2. ldentityServer_base/ SUN\VAnI web- apps/ ser vi ces/ confi g/ aut h/ def aul t/ Sun_
jal ...

Each of the two defined localized directories will contain the following three
sub-directories storing English and Japanese files for the client types and service:

... SUNONE/ ht ml / paycheck
... SUNONE/ wrl / noki a/ paycheck
... SUNONE/ wl / ot or ol a/ paycheck

NOTE Customization of the authentication screens are only supported at the organization,
sub-organization, client type and service levels. In a search for the correct module
configuration properties files, Identity Server first searches for an
org_name_locale_clienttype directory, an org_name_locale directory, and an org_name
directory, followed by the default_locale_clienttype, default_locale and the default
directories.

To Create A Custom Login Interface

All of the files in the

IdentityServer_base/ SUN\VA web- apps/ ser vi ces/ confi g/ aut h/ def aul t
directory need to be copied into the new directory(s) created in the prior section,
“To Create New Directories For Custom Console Files.” Customizing these files
pertains to the actual interface for the organization as opposed to customizing the
directories which pertains to the custom files storage directory. The authentication
module configuration files are XML files based on the

Aut h_Mbdul e_Properti es. dt d; the syntax of this DTD should be followed when
customizing these files. Modifying elements in these files customize the
authentication interface. More information on modifying this file can be found in
“Configuring The Authentication Module” on page 147. See Table 4-2 for a list of
the available JSP templates.

Chapter 4 Authentication Service 93

Authentication Service User Interface

94

Customizing The Default Login Page

Logi n. j sp and the authentication module configuration files contain certain
elements that can be modified. Strong HTML skills and an understanding of web
servers are a prerequisite for modifying these files.

NOTE Although the JSP contain embedded JATO tags, it is not necessary to understand
the Sun Java System Application Framework in order to customize them. For those
who might be interested, though, an overview of the Application Framework can be
found at http://docs.sun.com/source/817-0447-10/s1lafovew.html.

They are located in

IdentityServer_base/ SUN\VAM web- apps/ ser vi ces/ confi g/ aut h/ defaul t/.

Logi n. j sp is the common login page for all authentication modules, except
Membership (menber shi p. j sp) and self-registration (r egi st er . j sp), which
dynamically displays the required user interface elements from the invoked
authentication module’s credentials file at run time. For example, if the
authentication method is LDAP, the appropriate module header, user name field
and password field will be displayed.

NOTE The processing logic is defined in the JATO ViewBean,
comsun.identity.authentication. U .LoginVi enBean.

styles.css The module header text and prompts used in the Authentication
Service User Interface are formatted based on styles defined in st yl es. css (copied
in Code Example 4-1). 1 ogi nText defines the font formatting for Logi n. j sp. The
style of these text fields can be changed by modifying st yl es. css.

Code Example 4-1 styles.css Style Sheet

a: hover { text-decoration: underline}

footerText { font-famly: Helvetica, Arial, Geneva, sans-serif; font-size:
Ipt;

col or: #333333}

loginText { font-famly: Helvetica, Arial, Ceneva, sans-serif}

mast headLi nks { font-fanmily: Helvetica, Arial, Geneva, sans-serif;
font-size: 9pt;

col or: #4D59AB; text-decoration: none}

mast headUsernane { font-famly: Helvetica, Arial, CGeneva, sans-serif;
font-size:

10pt; col or: #333333; font-weight: bol d}

i nput. buttonblue{ cursor: hand; font-fanmly: verdana, background: #594fbf;

color:

Identity Server 2004Q2 « Developer’s Guide

Authentication Service User Interface

Code Example 4-1 styles.css Style Sheet (Continued)

#ffffff; font-weight: bold; font-size: 10pt; padding: 1px 1px; margin: Opx
Opx;

border: Opx}

doubl eArrow { font-famly: Arial, Helvetica, sans-serif; font-size: 10pt;
font-wei ght: bold; color: #594FBF}

mast headSeparators { font-famly: Helvetica, Arial, Geneva, sans-serif;
color:

#A2A2/A2; text-decoration: none; font-size: 12pt}

Module Header Text Each authentication module contains header text that
displays the name of the module on the interface. In Figure 4-10 on page 75, the
module header text reads This server uses Unix Authentication. This field is defined
as the St at i cText Header in Logi n. j sp.

Code Example 4-2 Module Header Text Definition in Login.jsp

<I'-- display authentication scheme -->
<tr>
<td col span="2" wi dt h="140"> </t d>
<td>
<j ato: content name="Content St ati cText Header" >
<j at o: get Di spl ayFi el dval ue nane=' Stati cText Header'
def aul t Val ue=" Aut henti cation' fireD splayEvents='true'
escape='fal se' />
</j ato: content >
</td>
</tr>

The JATO ViewBean picks up the value for St at i cText Header from the
Authentication Module Configuration Files. If there is no value defined in this file,
the def aul t Val ue defined in Logi n. j sp (Authentication) is picked up.

Code Example 4-3 is the authentication module configuration file for Unix
Authentication, Uni x. xni . The value of header, defined in the Callbacks Element,
is the module header text picked up by the JATO ViewBean. This field can be
customized per module.

Chapter 4 Authentication Service 95

Authentication Service User Interface

96

Code Example 4-3 Unix.xml Authentication Module Configuration File

<! DOCTYPE Modul eProperties PUBLIC "=//i Pl anet//Authentication Mdul e
Properties XM

Interface 1.0 DID//EN'
"jar://comsun/identity/authentication/Auth_Mdul e Properties.dtd">

<Mbdul eProperties nodul eNane="Uni x" version="1.0" >
<Cal | backs I ength="2" order="1" tineout="60" header="This
server uses Unix Authentication" >
<NareCal | back>
<Pronpt> User Nane: </Pronpt>
</ NaneCal | back>
<Passwor dCal | back echoPasswor d="f al se" >
<Pronpt > Password: </ Pronpt>
</ Passwor dCal | back>

</ Cal | backs>
<Cal | backs | engt h="0" order="2" tineout="120" header=" Your password has
expired.

Pl ease contact service desk to reset your password" error="true" />
</ Modul eProperties>

Name Prompt and Input Field Each authentication module contains text to
display next to the first credential input field, generally a prompt for the user’s
name. In the Unix authentication interface (Figure 4-10 on page 75), the name
prompt text reads User Name. The name prompt field is defined by the t xt Pr onpt
in the first table data (t d) tag (under <! ---- text box display ----- >)in

Logi n. j sp as detailed in Code Example 4-4. The input field itself is defined by the
second table data (t d) tag.

Code Example 4-4 Name Prompt And Field Definition in Login.jsp

<j ato: content nane="t ext Box">
<I---- text box display ----- >
<tr>
<formnane="frnxj at o: text name="txtIndex" />" action="hl ank"
onSubnit ="defaul t Subm t(); return fal se;">

<td class="1ogi nText" wi dt h="120">
<l abel for="1DToken<jato:text name="txt|ndex" />">
<jato:text nanme="txtPronpt" defaul tVal ue="User nare:
escape="fal se" />
<j ato: content nane="i sRequi red">
*</ f ont >
</jato: content>
</ | abel >

</td>

Identity Server 2004Q2 « Developer’s Guide

Authentication Service User Interface

Code Example 4-4 Name Prompt And Field Definition in Login.jsp (Continued)

<td class="l ogi nText" wi dt h="20"> </td>
<td cl ass="1 ogi nText ">
<input type="text" nane="|Dloken<jato:text name="txt|ndex" />"
i d="1 DToken<j at 0: t ext name="txt | ndex" />"
val ue="" sijze="20">
</td>
</ formp
</tr>

<tr><td col span="3"> </td></tr>
<l---- end of textBox ---->
</j ato: content >

The JATO ViewBean picks up the actual value for t xt Pr onpt , not from Logi n. j sp
but, from the Authentication Module Configuration Files. If there is no value
defined in this file, the def aul t Val ue defined in Logi n. j sp (User name:) is picked

up.

Code Example 4-3 is the authentication module configuration file for Unix
Authentication, Uni x. xm . The value of pr onpt , defined in the NameCallback
Element, is the text picked up by the JATO ViewBean to define the input field. In
this case, the name prompts are defined similarly: User name: in Logi n. j sp and
User Name: in Uni x. xni . This field can be customized per module.

Password Prompt and Input Field Each authentication module contains text to
display next to the second credential field, generally a prompt for the user’s
password. In the Unix authentication interface (Figure 4-10 on page 75), the
password prompt text reads Password. The password prompt field is defined by the
t xt Pronpt in the first table data (t d) tag (under <! ---- password di spl ay
----- >)in Logi n. j sp as detailed in Code Example 4-5. The input field itself is
defined by the second table data (t d) tag.

Code Example 4-5 Password Prompt And Field Definition in Login.jsp

<j ato: content nane="password">
<l---- password display ---->
<tr>
<formname="frnxjato:text name="txtIndex" />" action="bl ank"
onSubmi t ="defaul t Subnmit(); return fal se;">

<td class="l ogi nText" wi dth="120">
<l abel for="IDloken<jato:text nane="txtl|ndex" />">
<jato:text name="txtPronmpt" defaul t Val ue="Password:"

escape="fal se" />

Chapter 4 Authentication Service 97

Authentication Service User Interface

98

Code Example 4-5 Password Prompt And Field Definition in Login.jsp (Continued)

<j ato: content nanme="i sRequi red">
*</ f ont >
</jato: content>
</ | abel >
</td>

<td class="1ogi nText" wi dt h="20"> </td>
<td class="I ogi nText">
<i nput type="password" name="|DToken<j at o:text name="t xt | ndex" />"
i d="1 DToken<j at 0: t ext nanme="t xt | ndex" />"
val ue="" size="20">
</td>
</fornp
</tr>

<tr><td col span="3"> </td></tr>
<I---- end of password ---->
</jato:content>

The JATO ViewBean picks up the value for t xt Pr onpt from the Authentication
Module Configuration Files. If there is no value defined in this file, the
def aul t Val ue defined in Logi n. j sp (Password:) is picked up.

Code Example 4-3 is the authentication module configuration file for Unix
Authentication, Uni x. xm . The value of pronpt, defined in the PasswordCallback
Element, is the prompt text picked up by the JATO ViewBean. In this case, the
name prompts are the same: Password: in Logi n. j sp and Password: in Uni x. xm .
This field can be customized per module.

Choice Prompt and Value Fields Figure 4-11 on page 118 pictures an interface
where multiple authentication modules are displayed and the user is prompted to
choose one. There are a number of reasons that choices are displayed; for example,
the Membership authentication module defines choices when a user is
self-registering with a user name that already exists. They are then offered a
sample list of other user names from which to choose or given the option to create a
new one. The choice prompt field for Membership authentication is defined by the
t xt Pronpt in the first table data (t d) tag (under <! - --- choi ce val ue di spl ay
----- >) in menber shi p. j sp as detailed in Code Example 4-6. The input field type
is defined by the second table data (t d) tag as radio buttons. This option can be
changed to a check box by switching the input type value of “r adi 0” (in both the
selectedChoice and unselectedChoice tags) with the value “ checkbox” .

Identity Server 2004Q2 « Developer’s Guide

Authentication Service User Interface

Code Example 4-6 Choice Prompt And Value Fields Definition in membership.jsp

<I-- choice value display -->

<tr>

<formnane="frnxj at o: text name="txt|ndex" />" action="bl ank"
onSubnit="defaul t Submt(); return fal se;">

<td class="I ogi nText" >
<l abel for="IDToken<jato:text nane="txtl|ndex" />">
<jato:text nanme="txtPronpt" defaul tVal ue="Radi oButton:"

escape="fal se" />
<j ato: content nane="isRequired">
*
</jato:content>
</ abel >
</td>

<td class="I ogi nText" width="20"> </td>
<td class="Il ogi nText">

<jato:tiledView nane="til edChoi ces"
type="comsun.identity.authentication. U . CallBackChoi ceTil edVi ew'>

<j ato: content nane="sel ect edChoi ce" >
<i nput type="radio"
narme="1 DToken<j at 0: t ext name="t xt Par ent | ndex" />"
i d="1DToken<j at 0: t ext nanme="t xt Par ent | ndex" />"
val ue="<j ato: text nanme="txt I ndex" />"
checked><j at o: text nane="t xt Choi ce" />

</jato:content>

<j ato: content nane="unsel ect edChoi ce" >
<i nput type="radio"
narme="1 DToken<j at 0: t ext name="t xt Par ent | ndex" />"
i d="1DToken<j at 0: t ext nanme="t xt Par ent | ndex" />"
val ue="<j ato: text nanme="txt I ndex" />"
><j ato:text name="txt Choi ce" />

</jato:content>

</jato:tiledVi ew>
</td>
</formp
</[tr>
<tr><td col span="3"> </ td></tr>
<I-- end of choice -->

The JATO ViewBean picks up the value for t xt Pr onpt from the Authentication
Module Configuration Files. If there is no value defined in this file, the
def aul t Val ue defined in nenber shi p. j sp (RadioButton:) is picked up.

Chapter 4 Authentication Service 99

Authentication Service User Interface

100

CAUTION If changing the radio buttons to checkboxes, remember to change the value of
t xt Pronpt in menber shi p. j sp also.

Code Example 4-7 is an extract of the authentication module configuration file for
Membership Authentication, Menber shi p. xni . The value of pr onpt , defined in
the ChoiceCallback Element, is the prompt text picked up by the JATO ViewBean.
In this case, the name prompts are different: RadioButton: in menber shi p. j sp and
A user already exists with the user name you entered. Please choose one of the following
user names, or create your own: in Menber shi p. xni . This field can be customized per
module.

Code Example 4-7 Membership.xml Configuration File Extract

<Cal | backs | ength="2" order="17" tineout="120" header="Sel f
Regi stration" >
<Choi ceCal | back attribute="uid" >
<Pronpt >A user already exists with the user name you entered.
&l t; BR> ; Pl ease choose one of the fol | owing user nanes, or create your
own: </ Pronpt >
<Choi ceVal ues>
<Choi ceVal ue>
<Val ue>O eate My Oan</ Val ue>
</ Choi ceVal ue>
</ Choi ceVal ues>
</ Choi ceCal | back>
<ConfirmationCal | back>
<Qpti onVal ues>
<Qpt i onVal ue>
<Val ue> Submt </ Val ue>
</ Qpti onVal ue>
</ Opti onVal ues>
</ ConfirmationCal | back>
</ Cal | backs>

Logos And Branding Images Custom images can be used for corporate logos
and branding. Any new GIF or JPG images must be placed in

IdentityServer_base/ SUN\VAnT web- apps/ ser vi ces/ | ogi n_i mages. To access this
new image, edit the appropriate section of the authentication module configuration
file. There are a number of places where this can be changed. Code Example 4-8
contains the image source attributes from Menber shi p. xm , the Membership
authentication module configuration file. In this code, | ogo_sun. gi f and

Identity Server 2004Q2 « Developer's Guide

Authentication Service User Interface

Identity_LogIn.gif would be replaced with a custom logo and title, respectively. The
spacer . gi f tags can be deleted or modified as needed. The default Sun
Microsystems logo in the upper left corner and the default Sun Java System
Identity Server title across the top of the interface are pictured in Figure 4-4 on
page 71.

Code Example 4-8 Image Source Attributes in Membership.xml Extract

<l-- branding -->
<tr>
<td width="110"><i ng src="<% ServicelR %/ ogi n_i mages/|ogo_sun.gif"
wi dt h="110"
hei ght ="82" al t="Sun M crosystens Logo"></td>
<td><ing src="<% ServicelR %/ ogin_images/spacer.gif" w dth="9"
hei ght =" 1"
alt=""></td>
<td valign="botton bgcol or ="#ACACAC' wi dt h="100% ><i ng
src="<% Servi ceUR %/l ogin_i mages/Identity_Logln.gif" w dth="300"
hei ght ="30" alt="Sun ONE Identity Server"></td>
</tr>
<tr>
<td col span="3"><i ng src="<% ServiceUR %/ | ogin_i mages/ spacer.gif"
wi dt h="1"
hei ght ="39" al t=""></td>
</tr>

The final image attribute is in Logi n. j sp. Code Example 4-9 can be moved around
the JSP and the image will be displayed wherever in the code it is placed.

Code Example 4-9 Image Source Attribute in Login.jsp

<j at o: content nane="Cont ent | mage" >

<I'-- custonized image defined in properties file -->

<p><i ng nane="I Dl mage"

src="<j at o: get Di spl ayFi el dval ue nane='|nage' />" alt=""></p>
</jato:content>

Code Example 4-9 refers to an image file defined in the authentication module
configuration file. The XML code for this image would be written as:

Chapter 4 Authentication Service 101

Authentication Service User Interface

102

<Cal | backs | ength="3" order="1" timeout="120" header="Sanpl e
Modul e" i mage="M/Qust ol mage. gi f">.

Password Reset Link It is possible put add a link on the LDAP Authentication
module login page to the Password Reset Service. This allows a user to reset their
password prior to authentication. The following line can be placed below the
Submit Button Code in Code Example 4-10.

<a
“hr ef =<consol e_pr ot 0>: // console_host.console_domain:console_port/password_rese
t_URI >Forgot your password?</ a>

Code Example 4-10 Submit Button Code From Login.jsp

<j at o: content nane="Cont ent But t onLogi n">
<l-- Submt button -->

<j ato: content nane="hasButton">

<script |anguage="javascript">
defaul tBtn = '<jato:text name="defaultBtn" />';
</script>

<tr>

<td col span="2"> </t d>

<td align="right">
<tabl e border="0" cell paddi ng="2" cell spaci ng="0">
<tr>

<jato:tiledVi ew nane="til edButtons"
type="com sun.identity.authentication.U.ButtonTiledVi ew' >
<td>
<script language="javascript">
mar kupBut t on(
"<jato:text name="txtButton" />,
"javascript:Logi nSubmt (' <jato:text name="txtButton" />')");

</script>
</td>
</jato:tiledVi ew>
</tr>
</tabl e>
</td>
<[tr>
<l---- end of hasButton ---->

</j ato: content >

<j ato: content nane="hasNoButton">
<tr>
<td col span="2"> </t d>
<td align="right">
<script language="javascript">

Identity Server 2004Q2 « Developer's Guide

Authentication Service User Interface

Code Example 4-10 Submit Button Code From Login.jsp (Continued)

mar kupBut t on(
'<jato:text name="Ibl Subnmit" />",
"javascript:Logi nSubmt (' <jato:text name="I|bl Submt" />)");

</script>
</td>
<[tr>
<l---- end of hasNoButton ---->

</jato:content>

<I---- end of ContentButtonLogin ---->
</j ato: content >

Log In Button The following modifications can be made to the default Log In
button displayed on each authentication interface screen. The button color and/or
background can be customized in any of the following stylesheets located in
IdentityServer_base/ SUN\VAnT web- apps/ ser vi ces/ css.

= css_i ebw n. css defines styles for Netscape 6 and Internet Explorer 5.
= css_ns4sol . css defines styles for Netscape 4 on Solaris.

= css_ns4wi n. css defines styles for Netscape 4 on Windows.

= css_generi c. css defines styles for all other browsers.

Code Example 4-11 is extracted from css_ns4sol . css. To change the background
color, in the appropriate style sheet, change the color values for

. but t on- cont ent - enabl ed { background-col or: #CCC, } and for
a.button-link:link, a.button-link:visited { color: #000;
background-col or: #COCC, text-decoration: none; }.

Code Example 4-11 css_ns4sol.css Extraction

[* BUTTONS */

/* Regul ar Button - Enabled */

. button-frane-enabl ed { background-col or: #000; }

.button-content-enabl ed { background-col or: #0CC }

.button-1ink-enabl ed-text { color: #000; margin: 4px Opx; font-weight: bold;

a.button-link:link, a button-link:visited { color: #000; background-col or:

#COCC,
text-decoration: none; }
a.button-link:active { color: #000; background-col or: #999; text-decoration:

none; }

Chapter 4 Authentication Service 103

Authentication Service User Interface

104

Code Example 4-11 css_ns4sol.css Extraction (Continued)

/* Regular Button - D sabled */

. button-frane-disabl ed { background-col or: #999; }

. button-content-di sabl ed { background-col or: #CCC, }
.button-link-disabled-text { color: #999; margin: 4px Opx; font-weight:
bol d; }

By default, the login button reads Log | n. To change this text on a global level, the
amAut hUl . properti es file, the authentication service’s console localization
properties file, would be modified.

NOTE amAut hUl . properti es is defined in “Configuring Authentication Localization
Properties” on page 154. More information can be found in “Configuring Console
Localization Properties” on page 257 of Chapter 7, “Service Management,” in this
manual.

Code Example 4-12 is an extraction from amAut hUl . properti es. Notice the
default value is Logl n=Log | n. For an example, the value Log | n can be changed
to Submi t .

Code Example 4-12 amAuthUl.properties Extract

Subm t =Submi t

Logl n=Log In
NewUser =New User
Reset =Reset Form
Cancel =Cancel
Agree=Agr ee

D sagr ee=Di sagr ee
Yes=Yes

No=No

Cont i nue=Cont i nue

Identity Server 2004Q2 « Developer's Guide

Authentication Methods

The button text can also be changed per module. If each authentication module
needs to display different text, each authentication module configuration file needs
to be modified with a ConfirmationCallback Element. The value for the Callbacks
length can be increased, if necessary. Code Example 4-17 on page 149 is the
authentication module configuration file for Membership, Menber shi p. xm . It
contains an example of the Confirmation Callback.

Authentication Methods

The Authentication Service provides different ways in which authentication can be
applied. These different authentication methods can be accessed by specifying
Login URL Parameters, or through the Authentication Programming Interfaces.
Access using parameters and a URL is discussed in “The User Interface Login
URL” on page 76. Access via the API is discussed in “Authentication Programming
Interfaces” on page 156.

NOTE Specific information on how to assign an authentication method using the Identity
Server console can be found in the Sun Java System Identity Server Administration
Guide.

The following sections detail the different authentication methods with configured
login URLs and redirection URL order of precedence for each. The authentication
methods are:

= Organization-based Authentication

= Role-based Authentication

= Service-based Authentication

= User-based Authentication

= Authentication Level-based Authentication
= Module-based Authentication

For each of these methods, the user can either pass or fail the authentication. Once
the determination has been made, each method follows this procedure. Step 1
through Step 3 follows a successful authentication; Step 4 follows both successful
and failed authentication.

Chapter 4 Authentication Service 105

Authentication Methods

Identity Server confirms whether the authenticated user(s) is defined in the
Directory Server data store and whether the profile is active.

The User Profile attribute in the Core Authentication Service can be defined as
Requi r ed, Dynani cal | y Confi gured or I gnor ed. Following a succesful
authentication, Identity Server confirms whether the authenticated user(s) is
defined in the Directory Server data store and, if the User Profile value is
Requi r ed, confirms that the profile is active. (This is the default case.) If the
User Profile is Dynami cal | y Confi gur ed, the Authentication Service will
create the user profile in the Directory Server data store. If the User Profile is
set to | gnor e, the user validation will not be done.

Execution of the Authentication Post Processing SPI is accomplished.

The Core Authentication Service contains an Authentication PostProcessing
Class attribute which may contain the authentication post-processing class
name as its value. AMPost Aut hPr ocessl nt er f ace is the post-processing
interface. It can be executed on either successful or failed authentication or on
logout. More information on this interface can be found in “Implementing
Authentication Post Processing” on page 185.

The following properties are added to, or updated in, the session token and the
user’s session is activated.

o O gani zati on—This is the DN of the organization to which the user
belongs.

o Principal —This is the DN of the user.

o Principal s—This is a list of names to which the user has authenticated.
(This property may have more then one value defined as a pipe separated
list.)

o Userl d—This is the user’s DN as returned by the module, or in the case of
modules other than LDAP or Membership, the user name. (All
Pri nci pal s must map to the same user. The UserID is the user DN to
which they map.)

o User Token—This is a user name. (All Pri nci pal s must map to the same
user. The UserToken is the user name to which they map.)

o Host—This is the host name or IP address for the client.
o aut hLevel —This is the highest level to which the user has authenticated.

o Aut hType—This is a pipe separated list of authentication modules to which
the user has authenticated (i.e.: nodul el |nodul e2 | nodul e3).

o client Type—This is the device type of the client browser.

106 Identity Server 2004Q2 « Developer's Guide

Authentication Methods

o Local e—This is the locale of the client.
o Char Set —This is the determined character set for the client.

o Rol e—Applicable for role-based authentication only, this is the role to
which the user belongs.

o Servi ce—Applicable for service-based authentication only, this is the
service to which the user belongs.

o logi nURL—This is the client’s login URL.

4. ldentity Server looks for information on where to redirect the user after either a
successful or failed authentication.

URL redirection can be to either an Identity Server page or a URL. The
redirection is based on an order of precedence in which Identity Server looks
for redirection based on the authentication method and whether the
authentication has been successful or has failed. This order is detailed in the
URL redirection portions of the following authentication methods sections.

Organization-based Authentication

This method of authentication allows a user to authenticate to an organization or
sub-organization. It is the default method of authentication for Identity Server. The
authentication method for an organization is set by registering the Core
Authentication Service to the organization and defining the Organization
Authentication Configuration attribute. More information on how this is done can
be found in the Authentication Options chapter of the Sun Java System Identity Server
Administration Guide.

Organization-based Authentication Login URLs

The organization for authentication can be specified in the The User Interface
Login URL by defining the org Parameter or the domain Parameter. The
organization of a request for authentication is determined from the following, in
order of precedence:

1. The donai n parameter.
2. The or g parameter.

3. The value of the DNS Al i as Nanes (Organization alias names) attribute in the
Administration Service.

Chapter 4 Authentication Service 107

Authentication Methods

108

After calling the correct organization, the authentication module(s) to which the
user will authenticate are retrieved from the Organization Authentication
Configuration attribute in the Core Authentication Service. The login URLs used to
specify and initiate organization-based authentication are:

e http://server_name.domain_name: port/ anserver/ U/ Logi n
e http://server_name.domain_name: port/ anser ver/ Ul / Logi n?domai n=domain_name

= http://server_name.domain_name: port/ anser ver/ U / Logi n?or g=org_name

If there is no defined parameter, the organization will be determined from the
server host and domain specified in the login URL. More information on these
parameters can be found in “Login URL Parameters” on page 76.

Organization-based Authentication Redirection URLS

Upon a successful or failed organization-based authentication, Identity Server
looks for information on where to redirect the user. Following is the order of
precedence in which the application will look for this information.

Successful Organization-based Authentication Redirection URLs

The redirection URL for successful organization-based authentication is detemined
by checking the following places in order of precedence:

1. A URL set by the authentication module.
2. A URL set by a got o Login URL parameter.

3. A URLsetintheclient Type custom files for the
i pl anet - am user - success- ur | attribute of the user’s profile (anJser. xni).

4. A URL setin the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-success- url attribute of the user’s role entry.

5. A URL setintheclient Type custom files for the
i pl anet - am aut h-1 ogi n- success- ur| attribute of the user’s organization
entry.

6. A URLsetintheclient Type custom files for the
i pl anet - am aut h-1 ogi n- success-url attribute as a global default.

7. AURLsetinthei pl anet -am user-success-url attribute of the user’s
profile (anUser . xm).

8. AURLsetinthei pl anet - am aut h- | ogi n- success-ur | attribute of the
user’s role entry.

Identity Server 2004Q2 « Developer's Guide

9.

10.

Authentication Methods

A URL setin thei pl anet - am aut h- | ogi n- success-ur| attribute of the
user’s organization entry.

A URL setin the i pl anet - am aut h-1 ogi n- success-ur | attribute as a global
default.

Failed Organization-based Authentication Redirection URLs

The redirection URL for failed organization-based authentication is detemined by
checking the following places in the following order:

1.
2.
3.

10.

A URL set by the authentication module.
A URL set by a got oOnFai | Login URL parameter.

A URL set in the cl i ent Type custom files for the
i pl anet - am user-failure-url attribute of the user’s entry (anUser . xm).

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-fai | ure-url attribute of the user’s role entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-f ai | ure-url attribute of the user’s organization
entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-f ai | ure-url attribute as a global default.

A URL set for thei pl anet - am user-fai |l ure-url attribute in the user’s entry
(amJser. xmi).

A URL set for the i pl anet - am aut h-1 ogi n-fai | ure-url attribute of the
user’s role entry.

A URL set for the i pl anet - am aut h-1 ogi n-fai | ure-url attribute of the
user’s organization entry.

A URL set for the i pl anet - am aut h-1 ogi n-f ai | ure-url attribute as the
global default.

Role-based Authentication

This method of authentication allows a user to authenticate to a role (either static or
filtered) within an organization or sub-organization.

Chapter 4 Authentication Service 109

Authentication Methods

110

NOTE The Authentication Configuration Service must first be registered to the

organization before it can be registered as an instance to the role. More information
on how this is done can be found in the Authentication Configuration section of
Chapter 7 in the Sun Java System Identity Server Administration Guide.

For authentication to be successful, the user must belong to the role and they must
authenticate to each module defined in the Authentication Configuration Service
instance configured for that role. For each instance of role-based authentication, the
following attributes can be specified:

Conflict Resolution Level—sets a priority level for the Authentication
Configuration Service instance defined for different roles that both may
contain the same user. For example, if Userl is assigned to both Rolel and
Role2, a higher conflict resolution level can be set for Rolel so when the user
attempts authentication Rolel will have the higher priority for success or
failure redirects and post-authentication processes.

Authentication Configuration—defines the authentication modules configured
for the role’s authentication process.

Login Success URL—defines the URL to which a user is redirected on
successful authentication.

Login Failed URL—defines the URL to which a user is redirected on failed
authentication.

Authentication Post Processing Classes—defines the post-authentication
interface. More information can be found in “Implementing Authentication
Post Processing” on page 185.

Role-based Authentication Login URLs

Role-based authentication can be specified in the The User Interface Login URL by
defining a role Parameter. After calling the correct role, the authentication
module(s) to which the user will authenticate are retrieved from the Authentication
Configuration Service instance defined for the role.

The login URLs used to specify and initiate this role-based authentication are:

ht t p: / / server_name.domain_name: port/ anser ver/ Ul / Logi n?r ol e=role_name

ht t p: / / server_name.domain_name: port/ anser ver/ U / Logi n?or g=org_name&r ol e=
role_name

Identity Server 2004Q2 « Developer's Guide

Authentication Methods

If there is no configured org Parameter, the organization to which the role belongs
will be determined from the server host and domain specified in the login URL
itself. More information on these parameters can be found in “Login URL
Parameters” on page 76.

Role-based Authentication Redirection URLS

Upon a successful or failed role-based authentication, Identity Server looks for
information on where to redirect the user. Following is the order of precedence in
which the application will look for this information.

Successful Role-based Authentication Redirection URLSs

The redirection URL for successful role-based authentication is detemined by
checking the following places in the following order:

1. A URL set by the authentication module.
2. A URL set by a got o Login URL parameter.

3. AURLsetintheclient Type custom files for the
i pl anet - am user - success-ur | attribute of the user’s profile (amUser . xnt).

4. A URL setinthe cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n- success-url attribute of the role to which the user
has authenticated.

5. A URL setintheclient Type custom files for the
i pl anet - am aut h-1 ogi n- success- url attribute of another role entry of the
authenticated user. (This option is a fallback if the previous redirection URL
fails.)

6. A URL setintheclient Type custom files for the
i pl anet - am aut h-1 ogi n- success-ur| attribute of the user’s organization
entry.

7. A URLsetintheclient Type custom files for the
i pl anet - am aut h-1 ogi n- success-url attribute as a global default.

8. AURLsetinthei pl anet -am user-success-url attribute of the user’s
profile (anUser . xm).

9. AURLsetinthei pl anet - am aut h-1 ogi n- success- ur | attribute of the role
to which the user has authenticated.

10. A URL setinthei pl anet - am aut h-1 ogi n-success-url| attribute of another
role entry of the authenticated user. (This option is a fallback if the previous
redirection URL fails.)

Chapter 4 Authentication Service 111

Authentication Methods

112

11.

12.

A URL setin thei pl anet - am aut h- | ogi n- success-ur | attribute of the
user’s organization entry.

A URL setin the i pl anet - am aut h-1 ogi n- success-ur | attribute as a global
default.

Failed Role-based Authentication Redirection URLs

The redirection URL for failed role-based authentication is detemined by checking
the following places in the following order:

1.
2.
3.

10.

11.

12.

A URL set by the authentication module.
A URL set by a got o Login URL parameter.

A URL set in the cl i ent Type custom files for the
i pl anet -amuser-failure-url attribute of the user’s profile (amUser . xnt).

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-fai |l ure-url attribute of the role to which the user
has authenticated.

A URL set in the cl i ent Type custom files for the

i pl anet - am aut h-1 ogi n-fai | ure-url attribute of another role entry of the
authenticated user. (This option is a fallback if the previous redirection URL
fails.)

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-f ai | ure-url attribute of the user’s organization
entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-fai | ure-url attribute as a global default.

A URL setinthei pl anet -am user-fail ure-url attribute of the user’s
profile (amUser . xm).

A URL setinthei pl anet - am aut h-1 ogi n-f ai | ure-url attribute of the role
to which the user has authenticated.

A URL setinthei pl anet - am aut h-1 ogi n-f ai | ure-url attribute of another
role entry of the authenticated user. (This option is a fallback if the previous
redirection URL fails.)

A URL setinthei pl anet - am aut h-1 ogi n-f ai | ure-ur | attribute of the
user’s organization entry.

A URL setinthei pl anet -am aut h-1 ogi n-fai | ure-url attribute as a global
default.

Identity Server 2004Q2 « Developer's Guide

Authentication Methods

Service-based Authentication

This method of authentication allows a user to authenticate to a specific service or
application registered to an organization or sub-organization. The service is
configured as a Service Instance within the Authentication Configuration Service
and is associated with an Instance Name. For authentication to be successful, the
user must authenticate to each module defined in the Authentication
Configuration Service instance configured for the service. For each instance of
service-based authentication, the following attributes can be specified:

= Authentication Configuration—defines the authentication modules configured
for the service’s authentication process.

= Login Success URL—defines the URL to which a user is redirected on
successful authentication.

= Login Failed URL—defines the URL to which a user is redirected on failed
authentication.

= Authentication Post Processing Classes—defines the post-authentication
interface. More information can be found in “Implementing Authentication
Post Processing” on page 185.

Service-based Authentication Login URLS

Service-based authentication can be specified in the The User Interface Login URL
by defining a service Parameter. After calling the service, the authentication
module(s) to which the user will authenticate are retrieved from the Authentication
Configuration Service instance defined for the service.

The login URLs used to specify and initiate this service-based authentication are:
e http://server_name.domain_name: port/ anser ver/ U / Logi n?ser vi ce=service_name

= http://server_name.domain_name: port/ anser ver/ U / Logi n?or g=org_name&ser vi
ce=service_name

If there is no configured or g parameter, the organization will be determined from
the server host and domain specified in the login URL itself. More information on
these parameters can be found in “Login URL Parameters” on page 76.

Service-based Authentication Redirection URLS

Upon a successful or failed service-based authentication, Identity Server looks for
information on where to redirect the user. Following is the order of precedence in
which the application will look for this information.

Chapter 4 Authentication Service 113

Authentication Methods

114

Successful Service-based Authentication Redirection URLS

The redirection URL for successful service-based authentication is detemined by
checking the following places in the following order:

1.
2.
3.

10.

11.

12.

A URL set by the authentication module.
A URL set by a got o Login URL parameter.

A URL set in the cl i ent Type custom files for the
i pl anet - am user - success-ur | attribute of the user’s profile (amUser . xni).

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-success-url attribute of the service to which the
user has authenticated.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-success-url attribute of the user’s role entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n- success- ur| attribute of the user’s organization
entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n- success-url attribute as a global default.

A URL setin thei pl anet - am user - success- ur | attribute of the user’s
profile (amUser . xm).

A URL set in thei pl anet - am aut h-| ogi n- success-ur| attribute of the
service to which the user has authenticated.

A URL set in thei pl anet - am aut h-| ogi n- success-ur| attribute of the
user’s role entry.

A URL set in thei pl anet - am aut h-| ogi n- success-ur| attribute of the
user’s organization entry.

A URL setin thei pl anet - am aut h-| ogi n- success-ur | attribute as a global
default.

Failed Service-based Authentication Redirection URLS

The redirection URL for failed service-based authentication is detemined by
checking the following places in the following order:

1.

2.

A URL set by the authentication module.
A URL set by a got o Login URL parameter.

Identity Server 2004Q2 « Developer's Guide

10.

11.

12.

Authentication Methods

A URL set in the cl i ent Type custom files for the
i pl anet -am user-failure-url attribute of the user’s profile (anJser. xni).

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-fai |l ure-url attribute of the service to which the
user has authenticated.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-fai | ure-url attribute of the user’s role entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-f ai | ure-url attribute of the user’s organization
entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-fai | ure-url attribute as a global default.

A URL setinthei pl anet -am user-fail ure-url attribute of the user’s
profile (amUser . xm).

A URL setinthei pl anet - am aut h-1 ogi n-f ai | ure-ur | attribute of the
service to which the user has authenticated.

A URL setinthei pl anet - am aut h-1 ogi n-f ai | ure-ur | attribute of the
user’s role entry.

A URL setinthei pl anet - am aut h-1 ogi n-f ai | ure-ur | attribute of the
user’s organization entry.

A URL setinthei pl anet - am aut h-1 ogi n-fai | ure-url attribute as a global
default.

User-based Authentication

This method of authentication allows a user to authenticate to an authentication
process configured specifically for them. The process is configured as a value of the
User Authentication Configuration attribute in the user’s profile. For
authentication to be successful, the user must authenticate to each module defined.

User-based Authentication Login URLs

User-based authentication can be specified in the The User Interface Login URL by
defining a user Parameter. After calling the correct user, the authentication
module(s) to which the user will authenticate are retrieved from the User
Authentication Configuration instance defined for them.

Chapter 4 Authentication Service 115

Authentication Methods

116

The login URLs used to specify and initiate this role-based authentication are:
e http://server_name.domain_name: port/ anser ver/ U/ Logi n?user =user_name

= http://server_name.domain_name: port/ anser ver/ U / Logi n?or g=org_name&user =
user_name

If there is no configured org Parameter, the organization to which the role belongs
will be determined from the server host and domain specified in the login URL
itself. More information on these parameters can be found in “Login URL
Parameters” on page 76.

User Alias List Attribute

On receiving a request for user-based authentication, the Authentication Service
first verifies that the user is a valid user and then retrieves the Authentication
Configuration data for them. In the case where there is more then one valid user
profile associated with the value of the user Login URL parameter, all profiles must
map to the specified user. The User Alias Attribute

(i pl anet -am user-al i as-1i st) in the User profile is where other profiles
belonging to the user can be defined. If mapping fails, the user is denied a valid
session. The exception would be if one of the users is a Super Admin whereby the
user mapping validation is not done and the user is given Super Admin rights.

User-based Authentication Redirection URLs

Upon a successful or failed user-based authentication, Identity Server looks for
information on where to redirect the user. Following is the order of precedence in
which the application will look for this information.

Successful User-based Authentication Redirection URLS

The redirection URL for successful user-based authentication is detemined by
checking the following places in order of precedence:

1. A URL set by the authentication module.
2. A URL set by a got o Login URL parameter.

3. A URLsetintheclient Type custom files for the
i pl anet - am user - success- ur | attribute of the user’s profile (anJser. xni).

4. A URL setin the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n- success- url attribute of the user’s role entry.

5. A URLsetintheclient Type custom files for the
i pl anet - am aut h-1 ogi n- success-ur| attribute of the user’s organization
entry.

Identity Server 2004Q2 « Developer's Guide

10.

Authentication Methods

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n- success-url attribute as a global default.

A URL setinthei pl anet - am user - success- ur | attribute of the user’s
profile (anUser . xm).

A URL set in thei pl anet - am aut h-| ogi n- success-ur | attribute of the
user’s role entry.

A URL setin thei pl anet - am aut h- | ogi n- success-ur| attribute of the
user’s organization entry.

A URL setin thei pl anet - am aut h-| ogi n- success- ur | attribute as a global
default.

Failed User-based Authentication Redirection URLs

The redirection URL for failed user-based authentication is detemined by checking
the following places in the following order:

1.
2.
3.

10.

A URL set by the authentication module.
A URL set by a got oOnFai | Login URL parameter.

A URL set in the cl i ent Type custom files for the
i pl anet - am user-failure-url attribute of the user’s entry (anlser . xm).

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-fai | ure-url attribute of the user’s role entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-f ai | ure-url attribute of the user’s organization
entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-fai | ure-url attribute as a global default.

A URL set for thei pl anet - am user - f ai | ure-url attribute in the user’s entry
(amUser. xmi).

A URL set for the i pl anet - am aut h-1 ogi n-fai | ure-url attribute of the
user’s role entry.

A URL set for the i pl anet - am aut h- 1 ogi n-fai | ure-url attribute of the
user’s organization entry.

A URL set for the i pl anet - am aut h- 1 ogi n-fai | ure-url attribute as the
global default.

Chapter 4 Authentication Service 117

Authentication Methods

118

Authentication Level-based Authentication

This method of authentication allows an administrator to specify the security level
of the modules to which identities can authenticate. Each authentication module
has a separate Authentication Level attribute and the value of this attribute can be
defined as any valid integer. With Authentication Level-based authentication, the
Authentication Service displays a module login page with a menu containing the
authentication modules that have authentication levels equal to or greater then the
value specified in the Login URL parameter. Users can select a module from the
presented list. Figure 4-11 illustrates this list of modules based on authentication
level. Once the user selects a module, the remaining process is based on
Module-based Authentication as discussed on page 121.

Figure 4-11 Authentication Level-based Authentication Login Screen

S Sun

ONT

SafeWord

HTTPBasic

Anonymous
Authentication Membership
Menu Unix
Cert
SecurlD
LDAP

RADIUS

Identity Server 2004Q2 « Developer's Guide

Authentication Methods

Authentication Level-based Authentication Login URLs

Authentication level-based authentication can be specified in The User Interface
Login URL by defining a authlevel Parameter. After calling the login screen with
the relevant list of modules, the user must choose one with which to authenticate.
The login URLs used to specify and initiate authentication level-based
authentication are:

e http://server_name.domain_name: port/ anser ver/ U / Logi n?aut hl evel =authentica
tion_level

e http://server_name.domain_name: port/ anser ver/ U / Logi n?or g=org_name&aut hl
evel =authentication_level

If there is no configured or g parameter, the organization to which the user belongs
will be determined from the server host and domain specified in the login URL
itself. More information on these parameters can be found in “Login URL
Parameters” on page 76.

Authentication Level-based Authentication Redirection URLs

Upon a successful or failed authentication level-based authentication, Identity
Server looks for information on where to redirect the user. Following is the order of
precedence in which the application will look for this information.

Successful Authentication Level-based Authentication Redirection URLS

The redirection URL for successful authentication level-based authentication is
detemined by checking the following places in order of precedence:

1. A URL set by the authentication module.
2. A URL set by a got o Login URL parameter.

3. AURLsetintheclient Type custom files for the
i pl anet - am user - success-ur | attribute of the user’s profile (amUser . xnt).

4. A URL setinthe cli ent Type custom files for the
i pl anet - am aut h-1 ogi n-success-url attribute of the user’s role entry.

5. AURLsetintheclient Type custom files for the
i pl anet - am aut h-1 ogi n- success-url attribute of the user’s organization
entry.

6. A URL setintheclient Type custom files for the
i pl anet - am aut h-1 ogi n- success-url attribute as a global default.

7. A URLsetinthei pl anet -am user - success-url attribute of the user’s
profile (amUser . xm).

Chapter 4 Authentication Service 119

Authentication Methods

120

10.

A URL setin thei pl anet - am aut h- | ogi n- success-ur | attribute of the
user’s role entry.

A URL set in the i pl anet - am aut h-| ogi n- success-ur| attribute of the
user’s organization entry.

A URL setin the i pl anet - am aut h-1 ogi n- success-ur | attribute as a global
default.

Failed Authentication Level-based Authentication Redirection URLS

The redirection URL for failed authentication level-based authentication is
detemined by checking the following places in the following order:

1.

2.

3.

10.

A URL set by the authentication module.
A URL set by a got oOnFai | Login URL parameter.

A URL set in the cl i ent Type custom files for the
i pl anet - am user-fail ure-url attribute of the user’s entry (anUser . xm).

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-fai | ure-url attribute of the user’s role entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-f ai | ure-url attribute of the user’s organization
entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-f ai | ure-url attribute as a global default.

A URL set for thei pl anet - am user-fai |l ure-url attribute in the user’s entry
(amJser. xmi).

A URL set for the i pl anet - am aut h-1 ogi n-fai |l ure-url attribute of the
user’s role entry.

A URL set for the i pl anet - am aut h-1 ogi n-fai | ure-url attribute of the
user’s organization entry.

A URL set for the i pl anet - am aut h-1 ogi n-f ai | ure-url attribute as the
global default.

Identity Server 2004Q2 « Developer's Guide

Authentication Methods

Module-based Authentication

This method of authentication allows a user to specify the module to which they
will authenticate. The specified module must be registered to the organization or
sub-organization that the user is accessing. This is configured in the Organization
Authentication Modules attribute of the organization’s Core Authentication
Service. On receiving this request for module-based authentication, the
Authentication Service verifies that the module is correctly configured as noted,
and if the module is not defined, the user is denied access.

NOTE See the Sun Java System Identity Server Administration Guide for more
information on how to register the authentication services and modules using the
Identity Server console.

Module-based Authentication Login URLSs

Module-based authentication can be specified in The User Interface Login URL by
defining a module Parameter. The login URLs used to specify and initiate
module-based authentication are:

e http://server_name.domain_name: port/ anser ver / U / Logi n?nodul e=authentication
_module_name

= http://server_name.domain_name: port/ anser ver/ U / Logi n?or g=org_name&nodul
e=authentication_module_name

If there is no configured or g paramter, the organization to which the user belongs
will be determined from the server host and domain specified in the login URL
itself. More information on these parameters can be found in “Login URL
Parameters” on page 76.

Module-based Authentication Redirection URLs

Upon a successful or failed module-based authentication, Identity Server looks for
information on where to redirect the user. Following is the order of precedence in
which the application will look for this information.

Successful Module-based Authentication Redirection URLs

The redirection URL for successful module-based authentication is detemined by
checking the following places in order of precedence:

1. A URL set by the authentication module.

2. A URL set by a got o Login URL parameter.

Chapter 4 Authentication Service 121

Authentication Methods

122

10.

A URL set in the cl i ent Type custom files for the
i pl anet - am user - success- ur | attribute of the user’s profile (anJser. xni).

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-success-url attribute of the user’s role entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n- success-ur| attribute of the user’s organization
entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n- success-url attribute as a global default.

A URL setinthei pl anet - am user - success- ur | attribute of the user’s
profile (amUser . xm).

A URL setin thei pl anet - am aut h- | ogi n- success-ur | attribute of the
user’s role entry.

A URL setin thei pl anet - am aut h-| ogi n- success-ur| attribute of the
user’s organization entry.

A URL setin the i pl anet - am aut h-1 ogi n- success-ur | attribute as a global
default.

Failed Module-based Authentication Redirection URLs

The redirection URL for failed module-based authentication is detemined by
checking the following places in the following order:

1.
2.
3.

A URL set by the authentication module.
A URL set by a got oOnFai | Login URL parameter.

A URL set in the cl i ent Type custom files for the
i pl anet - am user-failure-url attribute of the user’s entry (anUser . xm).

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-fai | ure-url attribute of the user’s role entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-f ai | ure-url attribute of the user’s organization
entry.

A URL set in the cl i ent Type custom files for the
i pl anet - am aut h-1 ogi n-f ai | ure-url attribute as a global default.

A URL set for thei pl anet - am user-fai |l ure-url attribute in the user’s entry
(amJser. xmi).

Identity Server 2004Q2 « Developer's Guide

Authentication Features

8. A URL set for the i pl anet - am aut h-1 ogi n-fai |l ure-url attribute of the
user’s role entry.

9. AURLsetfortheipl anet-am aut h-1ogi n-fail ure-url attribute of the
user’s organization entry.

10. A URL set for the i pl anet - am aut h-1 ogi n-f ai | ure-url attribute as the
global default.

Authentication Features

This section defines a number of features that can be enabled and/or configured.
They include the following:

= Account Locking

= Authentication Module Chaining

< Fully Qualified Domain Name Mapping

= Persistent Cookie

< Multi-LDAP Authentication Module Configuration
= Session Upgrade

= Validation Plug-in Interface

e JAAS Shared State

Account Locking

The Authentication Service provides a feature where a user will be locked out from
authenticating after n failures. This feature is turned off by default, but can be
enabled using the Identity Server console.

NOTE Only modules that throw an Invalid Password Exception can leverage the
Account Locking feature.

The Core Authentication Service contains attributes for enabling and customizing
this feature including (but not limited to):

= Login Failure Lockout Mode which enables account locking.

Chapter 4 Authentication Service 123

Authentication Features

e Login Failure Lockout Count which defines the number of tries that a user
may attempt to authenticate before being locked out. This count is valid per
user ID only; the same user ID needs to fail for the given count after which that
user ID would be locked out.

= Login Failure Lockout Interval defines (in minutes) the amount of time in
which the Login Failure Lockout Count value must be completed before a user
is locked out.

= Email Address to Send Lockout Notification specifies an email address to
which user lockout notifications will be sent.

= Warn User After N Failure specifies the number of authentication failures that
can occur before a warning message will be displayed to the user. This allows
an administrator to set additional login attempts after the user is warned about
an impending lockout.

e Login Failure Lockout Duration defines (in minutes) how long the user will
have to wait before attempting to authenticate again after lockout.

« Lockout Attribute Name defines which LDAP attribute in the user’s profile
will be set to i nact i ve for Physical Locking.

= Lockout Attribute Value defines to what the LDAP attribute specified in
Lockout Attribute Name will be set: i nacti ve or acti ve.

Email notifications are sent to administrators regarding any account lockouts.
(Account locking activities are also logged.) For more information on the account
locking attributes, see theSun Java System Identity Server Administration Guide.

NOTE For special instructions when using this feature on a Microsoft® Windows 2000
operating system, see “Simple Mail Transfer Protocol (SMTP)” in Appendix A,
“AMConfig.properties File,” in this manual.

Identity Server supports two types of account locking are supported: Physical
Locking and Memory Locking. These are defined in the next sections.

Physical Locking

This is the default locking behavior for Identity Server. The locking is initiated by
changing the status of a LDAP attribute in the user’s profile to inactive. The
Lockout Attribute Nane attribute defines the LDAP attribute used for locking
purposes. See the Sun Java System Identity Server Administration Guide for more
information on configuring physical locking.

124 Identity Server 2004Q2 « Developer's Guide

Authentication Features

NOTE An aliased user is one that is mapped to an existing LDAP user profile by
configuring the User Alias List Attribute (i pl anet - am user-al i as-1i st in
anmUser . xml) in the LDAP profile. Aliased users can be verified by adding
i pl anet -am user-al i as-1i st to the Alias Search Attribute Name field in
the Core Authentication Service. That said, if an aliased user is locked out, the
actual LDAP profile to which the user is aliased will be locked. This pertains only to
physical lockout with authentication modules other than LDAP and Membership.

Memory Locking

Memory locking is enabled by changing the Logi n Fai |l ure Lockout Duration
attribute to a value greater then 0. The user’s account is then locked in memory for
the number of minutes specified. The account will be unlocked after the time
period has passed. Following are some special considerations when using the
memory locking feature:

= If Identity Server is restarted, all accounts locked in memory are unlocked.

= Ifauser’s account is locked in memory and the administrator changes the
account locking mechanism to physical locking (by setting the lockout
duration back to 0), the user’s account will be unlocked in memory and the
lock count reset.

= After memory lockout, when using authentication modules other than LDAP
and Membership, if the user attempts to login with the correct password, a
User does not have profile in this organization error. is returned rather than a User
is not active. error.

NOTE If the Failure URL attribute is set in the user’s profile, neither the lockout warning
message nor the message indicating that their account has been locked will not be
displayed; the user will be redirected to the defined URL.

Authentication Module Chaining

One or more authentication modules can be configured so a user must pass
authentication credentials to all of them. This is referred to as authentication
chaining. Authentication chaining in Identity Server is achieved using the JAAS
framework integrated in the Authentication Service. Module chaining is
configured under the Authentication Configuration Service. Each registered
module is assigned one of the following four values:

= Required—Authentication to this module is required to succeed before the
user can proceed down the chain.

Chapter 4 Authentication Service 125

Authentication Features

126

< Requisite—The LoginModule is required to succeed. If it succeeds,
authentication continues down the LoginModule list. If it fails, control
immediately returns to the application (authentication does not proceed down
the LoginModule list).

= Sufficient—The LoginModule is not required to succeed. If it does succeed,
control immediately returns to the application (authentication does not
proceed down the LoginModule list). If it fails, authentication continues down
the LoginModule list.

= Optional—The LoginModule is not required to succeed. If it succeeds or fails,
authentication still continues to proceed down the LoginModule list.

Once authentication to all modules in the chain is successful, control is returned to
the Authentication Service (from the JAAS framework) which validates all the user
IDs used to authenticate and maps them to one user. The mapping is achieved by
configuring the User Al i as Li st attribute in the user’s profile. A valid session
token is issued to the user if all the maps are correct; if not, the user is denied a
valid session token. The following properties would represent the single
authenticated user to which the other users are aliased:

= Principal (would contain the DN of the user in the case that the user has one)
= UserToken

e Userld

Additional Notes

= With Dynamic Profile creation enabled if all user ids do not map to the same
user and if one of the user ids exists in the local directory server then other user
ids will be added to the user alias list attribute of the existing user.

NOTE « In authentication chaining, if all user IDs do not map to one single user, the
failure redirection URL will be picked up from the last failed authentication
module or none if all individual modules succeed (with different user ID). If
case of user-based authentication, no matter what user ID is given in the
authentication page, the failure redirection URL will always be picked up from
the user parameter in the login URL.

« With Dynamic Profile creation enabled, if all user ids do not map to the same
use, and if one of the user ids exists in the local directory server, then
additional user ids will be added to the existing user’s user alias list attribute.

Identity Server 2004Q2 « Developer's Guide

Authentication Features

Fully Qualified Domain Name Mapping

Fully Qualified Domain Name (FQDN) mapping enables the Authentication
Service to take corrective action in the case where a user may have typed in an
incorrect URL (such as specifying a partial host name or IP address to access
protected resources). FQDN mapping is enabled by modifying the

com sun. i dentity. server.fqgdnMap attribute in the AMConf i g. pr operti es file.
The format for specifying this property is:

com sun. i dentity. server. f gdnMap][invalid-name] =valid-name

The value invalid-name would be a possible invalid FQDN host name that may be
typed by the user, and valid-name would be the actual host name to which the filter
will redirect the user. Any number of mappings can be specified (as illustrated in
Code Example 4-13) as long as they conform to the stated requirements. If this
property is not set, the user would be sent to the default server name configured in
the com i pl anet . am ser ver. host =server_name property also found in the
AMonf i g. properti es file.

Code Example 4-13 FQDN Mapping Attribute In AMConf i g. properti es

comsun.identity.server.fqdnMap[i sserver]=i sserver. nydonai n. com
comsun.identity.server.fqdnMap[isserver.nydomai n] =i sserver. nydomai n. com
comsun.identity.server.fqdnMap[IPaddress] =i sserver. nydonai n. com

Possible Uses For FQDN Mapping

This property can be used for creating a mapping for more than one host name
which may be the case if applications hosted on a server are accessible by more
than one host name. This property can also be used to configure ldentity Server to
not take corrective action for certain URLs. For example, if no redirect is required
for users who access applications by using an IP address, this feature can be
implemented by specifying a map entry such as:

com sun.identity. server. fqdnVap[IP address] =IP address.

CAUTION If more than one mapping is defined, ensure that there are no overlapping values in
the invalid FQDN name. Failing to do so may result in the application becoming
inaccessible.

Chapter 4 Authentication Service 127

Authentication Features

128

Persistent Cookie

A persistent cookie is one that continues to exist after the web browser is closed,
allowing a user to login with a new browser session without having to
reauthenticate. The name of the cookie is defined by the

com i pl anet . am pcooki e. nanme property in AMoonf i g. pr oper ti es; the default
value is DPr oPCooki e. The cookie value is a 3DES-encrypted string containing the
userDN, organization name, authentication module name, maximum session time,
idle time, and cache time. To enable persistent cookies:

1. Turnon the Persi st ent Cooki e Mdde in the Core Authentication Service.

2. Configure a time value for the Per si st ent Cooki e Maxi num Ti ne attribute in
the Core Authentication Service.

3. Append the iPSPCookie Parameter with a value of yes to The User Interface
Login URL.

Once the user authenticates using this URL, if the browser is closed, they can
open a new browser window and will be redirected to the console without
reauthentication. This will work until the time defined in Step 2 elapses.

Persistent Cookie Mode can be turned on using the Authentication SPI method:

AML_ogi nMbdul e. set Per si st ent Cooki eOn() .

Multi-LDAP Authentication Module Configuration

As a form of failover or to configure multiple values for an attribute when the
Identity Server console only provides one value field, an administrator can define
multiple LDAP authentication module configurations under one organization.
Although these additional configurations are not visible from the console, they
work in conjunction with the primary configuration if an initial search for the
requesting user’s authorization is not found. For example, one organization can
define a search through LDAP servers for authentication in two different domains
or it can configure multiple user naming attributes in one domain. For the latter,
which has only one text field in the console, if a user is not found using the primary
search criteria, the LDAP module will then search using the second scope.
Following are the steps to configure additional LDAP configurations.

Identity Server 2004Q2 « Developer's Guide

Authentication Features

To Add An Additional LDAP Configuration

1. Write an XML file including the complete set of attributes and new values
needed for second(or third) LDAP authentication configuration.

The available attributes can be referenced by viewing the amAut hLDAP. xni
located in et ¢/ opt / SU\Vant conf i g/ xni . This XML file created in this step
though, unlike the anmAut hLDAP. xn , is based on the structure of the

amadm n. dt d as defined in Chapter 7, “Service Management,” in this manual.
Any or all attributes can be defined for this file. Code Example 4-14 is an
example of a subconfiguration file that includes values for all attributes
available to the LDAP authentication configuation.

Code Example 4-14 Sample XML File To Add An LDAP SubConfiguration

<?xm version="1.0" encodi ng="| SO 8859- 1" ?>
<l--
Copyright (c) 2002 Sun Mcrosystens, Inc. Al rights reserved.
Use is subject to license terns.
-->
<! DOCCTYPE Request s
PUBLIC "-//iPlanet//Sun ONE ldentity Server 6.0 Admn CLI DID//EN'
"jar://coniplanet/anm adm n/cli/amAdmi n. dtd"
>
<l--
Bef ore addi ng subConfiguration | oad the schema with
d obal Configuration defined and repl ace corresponding
servi ceNarme and subConfiglDin this sanple file CR | oad
servi ceConfi gurationRequests. xm before |oading this sanple
-->
<Request s>
<QOrgani zat i onRequest s DN="dc=i pl anet, dc=con' >
<AddSubConf i gurati on subConfi gNane = "ssc"
subConfigld = "serverconfig"
priority = "0" serviceNane="i Pl anet AMAut hLDAPSer vi ce" >

<Attribut eVal uePai r >
<Attribute nane="ipl anet - am aut h- | dap- server"/>
<Val ue>newal ue</ Val ue>

</ Attribut eVal uePai r>

<Attribut eVal uePai r >
<Attribute nane="ipl anet - am aut h- | dap- server"/>
<Val ue>vbr ao. red. i pl anet. com 389</ Val ue>

</ Attribut eVal uePai r>

<Attribut eVal uePai r >
<Attribute nanme="ipl anet - am aut h- | dap- base-dn"/ >
<Val ue>dc=i pl anet, dc=conx/ Val ue>

</ Attribut eVal uePai r>

<Attribut eVal uePai r >
<Attribute nane="pl anet - am aut h-1 dap- bi nd-dn"/>
<Val ue>cn=ani dapuser, ou=DSAME User s, dc=i pl anet, dc=conx/ Val ue>

</ Attribut eVal uePai r>

<Attribut eVal uePai r >

Chapter 4 Authentication Service 129

Authentication Features

Code Example 4-14 Sample XML File To Add An LDAP SubConfiguration (Continued)

<Attribute nane="ipl anet - am aut h- | dap- bi nd- passwd"/ >
<Val ue>pl ai n text passwor d</Val ue>

</ Attribut eVal uePai r>

<Attribut eval uePair>
<Attribute name="ipl anet - am aut h- | dap- user-naning-attribute"/>
<Val ue>ui d</ Val ue>

</ Attribut eVal uePai r>

<Attribut eval uePair>
<Attribute name="ipl anet - am aut h- | dap- user-search-attributes"/>
<Val ue>ui d</ Val ue>

</ Attribut eVal uePai r>

<Attribut eval uePair>
<Attribute nane="ipl anet - am aut h- | dap- sear ch- scope"/ >
<Val ue>SUBTREE</ Val ue>

</ Attribut eVal uePai r>

<Attribut eval uePair>
<Attribute nane="ipl anet - am aut h- | dap- ssl - enabl ed"/ >
<Val ue>f al se</ Val ue>

</ Attribut eVal uePai r>

<Attribut eval uePair>
<Attribute nanme="ipl anet - am aut h-| dap-ret urn-user-dn"/>
<Val ue>t r ue</ Val ue>

</ Attribut eVal uePai r>

<Attribut evVal uePair>
<Attribute nanme="ipl anet - am aut h- | dap- aut h-1 evel "/ >
<Val ue>0</ Val ue>

</ Attribut eVal uePai r>

<Attribut evVal uePair>
<Attribute nanme="ipl anet - am aut h- | dap- ser ver - check"/ >
<Val ue>15</ Val ue>

</ Attribut eVal uePai r>

</ AddSubConfi gur at i on>

</ Or gani zat i onRequest s>
</ Request s>

2. Copy the plain text password as the value for the iplanet-am-auth-ldap-bind-passwd
in the XML file created in Step 1.

The value of this attribute is formatted in bold in Code Example 4-14 on
page 129.

3. Load the XML file using the amadm n command line tool.
./amadm n -u amadm n -w administrator_password -v -t name_of XML_file.

Be aware that this second LDAP configuration can not be seen or modified using
the Identity Server console.

130 Identity Server 2004Q2 « Developer's Guide

Authentication Features

TIP There is a sample available for multi-LDAP configuration. See the
servi ceAddMul ti pl eLDAPConfi gur ati onRequest s. xm command
line template in
/ IdentityServer_base/ SUN\Vam sanpl es/ adm n/ cl i / bul k- ops/ .
Instructions can be found in Readne. ht m at
/ IdentityServer_base/ SUN\V sanpl es/ adm n/cli /.

Session Upgrade

The Authentication Service allows for the upgrading of a valid session token based
on a second, successful authentication performed by the same user to one
organization. If a user with a valid session token attempts to authenticate to a
resource secured by his current organization and this second authentication
request is successful, the session is updated with the new properties based on the
new authentication. If the authentication fails, the user’s current session is returned
without an upgrade. If the user with a valid session attempts to authenticate to a
resource secured by a different organization, the user will receive a message asking
whether they would like to authenticate to the new organization. The user can, at
this point, maintain the current session or attempt to authenticate to the new
organization. Successful authentication will result in the old session being
destroyed and a new one being created.

During session upgrade, if a login page times out, redirection to the original
success URL will occur. Timeout values are determined based on:

= The page timeoutvalue set for each module (default is 1 minute)

e comiplanet.aminvali dvaxSessi onTi ne property in
AMonf i g. properti es (default is 10 minutes)

e ipl anet - am nmax- sessi on-ti me (default is 120 minutes)

The values of com i pl anet . am i nval i dMaxSessi onTi neout and

i pl anet - am max- sessi on-ti ne should be greater than the page timeout value, or
the valid session information during session upgrade will be lost and URL
redirection to the previous successful URL will fail.

Chapter 4 Authentication Service 131

Authentication Features

Validation Plug-in Interface

An Administrator can write username or password validation logic suitable to
their organization, and plug this into the Authentication Service. (This
functionality is supported only by the LDAP and Membership authentication
modules.) Before authenticating the user or changing the password, Identity Server
will invoke this plugin. If the validation is successful, authentication continues; if it
fails, an authentication failed page will be thrown. The plugin extends the

com i pl anet . am sdk. AMJer Passwor dVal i dat i on class which is part of the
Service Management SDK. Information on this SDK can be found in the

com i pl anet . am sdk package in the Identity Server Javadocs and in Chapter 7,
“Service Management,” in this manual. The steps below document how to write
and configure a validation plugin for Identity Server.

1. The new plugin class will extend the
com i pl anet . am sdk. AMJser Passwor dVal i dat i on class and implement the
val i dateUser |1 D() and val i dat ePasswor d() methods. AMExcept i on should
be thrown if validation fails.

2. Compile the plugin class and place the . cl ass file in the desired location.
Update the classpath so that it is accessible by the Identity Server during
runtime.

3. Login to the Identity Server console as top-level administrator. Click on the
Service Management tab, and get to the attributes for the Administration
Service. Type the name of the plugin class (including the package name) in the
User I D & Password Validation Plugin d ass field.

4. Logout and login.

JAAS Shared State

The JAAS shared state provides sharing of both user ID and password between
authentication modules. Options are defined for each authentication module for:

« Organization

e User
e Service
e Role

Upon failure, the module prompts for its required credentials. After failed
authentication, the module stops running, or the logout shared state clears.

132 Identity Server 2004Q2 « Developer's Guide

Authentication DTD Files

Enabling JAAS Shared State
To configure the JAAS shared state:

e Usethei pl anet - am aut h- shar edst at e- enabl ed option.

= The usage for the shared state option is:
iplanet-am-auth-shared-state-enabled=true

= The default for this option is true.

Upon failure, the authentication module will prompt for the required credentials as
per thet r yFi r st Pass option behavior suggested in the JAAS specification.

JAAS Shared State Store Option
To configure the JAAS shared state store option:

e Usethei pl anet - amaut h- st or e- shar ed- st at e- enabl ed option.

= The usage for the store shared state option is:
iplanet-am-auth-shared-state-enabled=true

= The default for this option is false.

After a commit, an abort or a logout, the shared state will be cleared.

Authentication DTD Files

The Authentication Service uses document type definition (DTD) files to define the
structure for the XML files it uses. The DTDs are located in

IdentityServer_base/ SUN\VanT dt d and, for use within the Authentication Service,
include:

e Auth_Modul e_Properti es. dt d—defines the structure for XML files used by
each authentication module to specify the properties for their particular
Authentication Service interface. These files are detailed in “Authentication
Module Configuration Files” on page 86. Information on this document can be
found in “Auth_Module_Properties.dtd” on page 134.

= renot e-aut h. dt d—defines the structure for XML files used by the
“Authentication Programming Interfaces” on page 156. Information on this
document can be found in “The remote-auth.dtd Structure” on page 138.

NOTE Other DTD files are discussed in Chapter 7, “Service Management,” in this manual.

Chapter 4 Authentication Service 133

Authentication DTD Files

Auth_Module_Properties.dtd

The Aut h_Mbdul e_Properti es. dt d defines the structure for the XML-based
“Authentication Module Configuration Files.” It provides definitions to initiate,
construct and send the required authentication interface to the user. The DTD is
located in IdentityServer_base/ SUNVanT dt d. An explanation of the elements defined
by the Aut h_Modul e_Properti es. dt d follows. Each element includes required
and/or optional XML attributes.

ModuleProperties Element

ModuleProperties is the root element of the authentication module configuration file.
It must contain at least one Callbacks sub-element. The required XML attributes of
ModuleProperties are nodul eNane which takes a value equal to the name of the
module and ver si on which takes a value equal to the version number of the
authentication module configuration file itself. Code Example 4-15 below is the
LDAP. xm file that defines the screens for the LDAP authentication module. Note
the ModuleProperties element on the first line of code.

Code Example 4-15 LDAP.xml

<Modul eProperties nodul eNane="LDAP' version="1.0" >
<Cal | backs | ength="2" order="1" tineout="120"
header =" LDAP Aut hentication" >
<NaneCal | back>
<Pronpt> User Nane: </Pronpt>
</ NarreCal | back>
<Passwor dCal | back echoPasswor d="f al se" >
<Pr onpt > Password: </ Pronpt>
</ Passwor dCal | back>
</ Cal | backs>
<Cal | backs | ength="4" order="2" tinmeout="120"
header =" Change Password" >
<Passwor dCal | back echoPasswor d="f al se" >
<Pr onpt >#REPLACE#&8I t ; BR&qgt ; A d Password </ Pronpt >
</ Passwor dCal | back>
<Passwor dCal | back echoPasswor d="fal se" >
<Pronpt > New Password </ Pronpt >
</ Passwor dCal | back>
<Passwor dCal | back echoPasswor d="f al se" >
<Pronmpt > Confirm Password </ Pronpt >
</ Passwor dCal | back>
<ConfirmationCal | back>
<(pt i onVal ues>
<Qpt i onVal ue>
<Val ue> Submt </Val ue>
</ pti onVal ue>
<Opti onVal ue>
<Val ue> Cancel </Val ue>

134 Identity Server 2004Q2 « Developer's Guide

Authentication DTD Files

Code Example 4-15 LDAP.xml (Continued)

</ Opti onVal ue>
</ Opti onVal ues>
</ ConfirmationCal | back>
</ Cal | backs>
<Cal | backs | ength="0" order="3" tineout="120"
header =" Your password has expired."
error="true" >
</ Cal | backs>
</ Modul eProperties>

Callbacks Element

The Callbacks element is used to define the information a module needs to gather
from the client requesting authentication. Each Callbacks element signifies a
separate screen that can be called during the authentication process. It can contain
one or more of four sub-elements: NameCallback, PasswordCallback, ChoiceCallback or
ConfirmationCallback. The required XML attributes of Callbacks are:

= | engt h—takes a value equal to the number of callback requests for the defined
element.

« order—takes a value equal to the number this particular screen would be in
the sequence of callbacks. (The value of or der starts with the number ‘1)

The optional XML attributes are:

= timeout —takes a value equal to the amount of time in seconds before the
request for information times out. It ensures that the user responds in a timely
manner. If greater than the timeout value, a timeout page will be sent.

= tenpl at e—defines the file (JSP or HTML) used as a display template for this
screen.

= i mage—defines a custom image to be displayed on the screen at a specific
location.

= header —defines text information that can be displayed in the browser
window for this screen.

< error—takesatrue orfal se value which defines whether the error message
generated by the authentication module will be used.

Chapter 4 Authentication Service 135

Authentication DTD Files

136

Code Example 4-15 on page 134 defines three screen callback elements that can be
called by the LDAP Authentication module. The first asks the requestor for a name
and password. The second is an optional screen that allows the requestor to change
their password. The final screen sends a message informing the user that it is time
to reset their password.

NOTE The Callbacks element can also be used for error handling. An error message can
be sent to the user interface using the header and error attributes and formatting
the element as:

<Cal | backs | ength="0" order="n" tineout="120"

header =" Your password has expired. Please contact the
servi ce desk to reset your password." error="true" />

Or one of the pre-defined error JSPs, located in IdentityServer_base/ SUNVan
web- apps/ servi ces/ confi g/ aut h/ def aul t, can be sent by formatting
the element as:

<Cal | backs | ength="0" order="n" tineout="120"
t enpl at e="jsp_name" />

NamecCallback Element

The NameCallback element is used to request data from the user; for example, a user
identification. It can contain one sub-element, Prompt, which defines the text that
precedes the input field. The optional XML attributes are i sRequi r ed and
attribut e.i sRequi r ed takes a value of t r ue or f al se and defines whether the
element is required information. (A value of t r ue displays an asterisk next to the
text defined in Prompt.) at t ri but e takes a character value of the corresponding
LDAP attribute of this value.

PasswordCallback Element

The PasswordCallback element is used to request password data to be entered by the
user. It can contain one sub-element, Prompt, which defines the text that precedes
the input field. The XML attributes are echoPasswor d, i sRequi r ed and

at tri but e. echoPasswor d is required, takes a value of t r ue or f al se and defines
whether the password should be displayed on the screen. i sRequi r ed is optional,
takes a value of t rue or f al se and defines whether the element is required
information. (A value of t r ue displays an asterisk next to the text defined in
Prompt.) at t ri but e is also optional and takes a character value of the
corresponding LDAP attribute of this value.

Identity Server 2004Q2 « Developer's Guide

Authentication DTD Files

ChoiceCallback Element

The ChoiceCallback element is used when the application user must choose from
multiple values. It can contain two sub-elements: Prompt or ChoiceValues. Prompt
defines the text that precedes the input field. ChoiceValues defines the values from
which the user may choose. The XML attributes are

mul ti pl eSel ecti onsAl | owed, i sRequi redand attri bute.

mul ti pl eSel ecti onsAl | owed is a required attribute and takes a value of t r ue or
f al se. It defines whether the user can choose a number of values or only one from
the available choices. i sRequi r ed is optional and takes a value of t r ue or f al se.
(A value of t r ue displays an asterisk next to the text defined in Prompt.) at t ri but e
is also optional and takes a character value of the corresponding LDAP attribute of
this value.

ConfirmationCallback Element

The ConfirmationCallback element is used to send button information to the
authentication interface (such as text which needs to be rendered on the module’s
screen) as well as receive the button information (such as which button is clicked
by the user). In future versions of Identity Server, this element will support
additional features. It can contain one sub-element, OptionValues, which provides a
list of text information. There are no XML attributes.

NOTE When a custom authentication module XML service file is configured without the
ConfirmationCallback, button properties are picked up from the global i18n
authentication properties file, amAut hUl . pr operti es.

Prompt Element

The Prompt element is used to set the text that will display beside a text input field
on the browser screen. It has no sub-elements or XML attributes.

ChoiceValues and ChoiceValue Element

The ChoiceValues element provides a list of choices from which the user can select.
It must contain at least one sub-element of the type ChoiceValue which defines one
choice. ChoiceValue must contain the sub-element Value. ChoiceValues has no XML
attributes but ChoiceValue can contain the XML attribute i sDef aul t. i sDef aul t
specifies if the defined value is selected when the choices are displayed; it takes a
value of true or f al se.

Chapter 4 Authentication Service 137

Authentication DTD Files

138

OptionValues and OptionValue Element

The OptionValues element provides a list of text information for buttons that need
to be rendered on the login screen. It must contain at least one sub-element of the
type OptionValue which defines one button text value. OptionValue must contain
the sub-element Value. OptionValues has no XML attributes but OptionValue can
contain the XML attribute i sDef aul t . i sDef aul t specifies if the defined value is
selected when the choices are displayed,; it takes a value of t r ue or f al se.

Value Element

The Value element is used by the client to return a value provided by the requestor
back to the Identity Server. It has no sub-elements or XML attributes.

The remote-auth.dtd Structure

Authentication requests and responses are sent to and received by the
Authentication Java API or non-Java applications using an XML structure. The
structure of these messages is defined in the r enot e- aut h. dt d. The Identity
Server console receives these XML-based messages which provide definitions to
initiate the collection of credentials and perform authentication. It is located in the
IdentityServer_base/ SUN\Van dt d directory. An explanation of the elements defined
by the r enot e- aut h. dt d follows. More information can be found in the file itself.

AuthContext Element

AuthContext is the root element of the XML-based message. It must contain a
Request or Response sub-element. The required XML attributes of AuthContext are
ver si on which takes a value equal to the version number of the DTD.

Request Element

The Request element is used by the client to initialize and pass user credentials to
the Authentication Service. It may contain one or more of the following
sub-elements: NewAuthContext, QueryInformation, Login, SubmitRequirements, Logout
or Abort. The required XML attribute of Request is aut hl dent i fi er which takes a
value equal to a unique random number set by the Authentication Service that is
used to keep track of the authentication session. Table 4-9 shows the Request
sub-elements and the possible Responses for each.

Identity Server 2004Q2 « Developer's Guide

Authentication DTD Files

Table 4-9 Request Sub-Elements And Possible Responses

Request Possible Responses

NewAuthContext LoginStatus or Exception

Querylnformation QueryResult or Exception

Login GetRequirements, LoginStatus or Exception
SubmitRequirements GetRequirements, LoginStatus or Exception
Logout LoginStatus or Exception

Abort LoginStatus or Exception

NewAuthContext Element

The NewAuthContext element initiates the authentication process by initializing the
Authentication Service and creating a session token for each request. It contains no
sub-elements. The required XML attribute of NewAuthContext is or gNane which
takes a value equal to the name of the organization or sub-organization for which
the process is being defined.

QueryInformation Element

The Querylnformation element is used by the remote client to get information about
the authentication modules supported by the Identity Server or the organization. It
contains no sub-elements. The required XML attribute of QueryInformation is

r equest edl nf or mat i on which takes a value equal to the defined authentication
module plug-ins configured for the organization or sub-organization.

Login Element

The Login element is used to initialize the authentication session. It will have an
Empty sub-element, or can have an IndexTypeNamePair. The IndexTypeNamePair
element can be used to specify the defined authentication type and value. It has no
required XML attributes.

SubmitRequirements Element

The SubmitRequirements element is used by the remote client to submit the
identity’s authentication credentials to the Identity Server. It has a Callbacks
sub-element and no required XML attributes.

Logout Element

The Logout element is used by the remote client to indicate that user wants to
logout. It has an Empty sub-element and no required XML attributes.

Chapter 4 Authentication Service 139

Authentication DTD Files

140

Abort Element

The Abort element is used by the remote client to indicate that the user wants to
end the login process. It has an Empty sub-element and no XML attributes.

Response Element

The Response element is used by the Authentication Service to ask the remote client
to gather user credentials or to inform the remote client on the success or failure of
the login as well as any errors that might have occurred. It may contain one or
more of the following sub-elements: QueryResult, GetRequirements, LoginStatus or
Exception. The required XML attribute of Response is aut hl dent i fi er which takes
a value equal to a unique random number set by the Authentication Service and
used to keep track of the authentication session.

QueryResult Element

The QueryResult element is used by Identity Server to send query information
requested by the remote client. It must contain a Value sub-element. The required
XML attribute of QueryResult is r equest edl nf or mat i on which takes a value equal
to the authentication module plug-ins configured for an organization or
sub-organization.

GetRequirements Element

The GetRequirements element is used by the Identity Server to request
authentication credentials from the client. It has a Callbacks sub-element and no
required XML attributes.

LoginStatus Element

The LoginStatus element is used by the Identity Server to indicate the status of the
authentication process. It will have an Empty sub-element if a Subject or Exception
sub-element is not defined. The XML attributes are st at us, ssoToken, successURL
or f ai | ur eURL; the latter three are optional. If the LoginStatus is successful, the
sub-element Subject will be returned with the authenticated user names. The
attribute ssoToken will have the session token status set to i npr ogr ess when a
new AuthContext is created, to success when a login has been successful, to

f ai | ed when a login has not been successful and conpl et ed when the user logs
out. The successURL attribute represents the URL that the identity will be
redirected to upon successful authentication and f ai | ur eURL represents the URL
that the identity will be redirected to upon failed authentication.

Identity Server 2004Q2 « Developer's Guide

Authentication DTD Files

Exception Element

The Exception element is used by the Identity Server to inform the client about an
exception that occurred during the login process. It has an Empty sub-element and
four optional XML attributes: message which takes a value equal to that of the
exception message, t okenl d which takes a value equal to that of the user ID of the
failed authentication, er r or Code which takes a value equal to that of the error
message code and t enpl at eNanme which takes a value equal to the name of the JSP
template which will be used for this particular exception.

IndexTypeNamePair Element

The IndexTypeNamePair element identifies the defined authentication method that
will be used to validate the client. It has the IndexName sub-element. The required
XML attribute is | ndexType which takes a value equal to that of the generic level at
which the authentication method has been defined: aut hLevel , r ol e, user,

nmodul el nst ance and ser vi ce. See “Authentication Methods” on page 105 for
more information.

IndexName Element

The IndexName element identifies the specific name of the value specified by the

I ndexType attribute in the IndexTypeNamePair Element. The authentication
method can be defined at the organization level, the role level, the user level, the
authentication-level level or the service level, or the module level. The | ndexType
attribute defines aut hLevel , r ol e, user, nodul el nst ance and servi ce. The

I ndexNane element takes a value equal to that of the name of the level at which the
authentication method has been defined. For example, if | ndexType is user or

rol e then, | ndexNanme might be j oe or admi ni st rat or, respectively. IndexName
has no sub-elements and no XML attributes.

Subject Element

The Subject element identifies a collection of one or more identities. It has no
sub-elements and no XML attributes.

Callbacks Element

The Callbacks element is used to request and transfer user credentials between the
remote client and Identity Server. Identity Server constructs callback objects for
information gathering. The client program collects the credentials by prompting
the user and returns the callback objects with the required data. The Callbacks
element may contain one or more of the following sub-elements: NameCallback,
PasswordCallback, ChoiceCallback, ConfirmationCallback, TextInputCallback,
TextOutputCallback, LanguageCallback, PagePropertiesCallback and CustomCallback.
The required XML attribute is | engt h which takes a value equal to that of a token.

Chapter 4 Authentication Service 141

Authentication DTD Files

142

NameCallback Element

The NameCallback element is used to obtain the name of the user (or service) that is
requesting authentication. It may contain one or more of the following
sub-elements: Prompt or Value. It has no required XML attributes.

PasswordCallback Element

The PasswordCallback element is used to obtain the password of the user (or service)
that is requesting authentication. It may contain one or more of the following
sub-elements: Prompt or Value. The required XML attribute is echoPasswor d which
takes a value of t r ue or f al se. The default value of f al se indicates that there will
be no password confirmation.

ChoiceCallback Element

The ChoiceCallback element is used when the user must choose from a selection of
values. It may contain one or more of the following sub-elements: Prompt,
ChoiceValue or SelectedValues. The required XML attribute is

mul ti pl eSel ecti onsAl | owed which takes a value of t r ue or f al se. The default
value of f al se indicates that the user can not choose more than one from the
selection.

ConfirmationCallback Element

The ConfirmationCallback element is used by the Identity Server to request a
confirmation from the user. It may contain one or more of the following
sub-elements: Prompt, OptionValues, SelectedValue, and DefaultOptionValue. The
required XML attributes are nessageType (which defines the type of message,
either information, warning or the default, error), and opt i onType which specifies
the type of confirmation (ok_cancel ,yes_no_cancel , unspeci f i ed or the default,
yes_no).

TextinputCallback Element

The TextInputCallback element is used to get text information from the user. It may
contain one or more of the following sub-elements; Prompt or Value. There are no
required XML attributes.

TextOutputCallback Element

The TextOutputCallback element is used when the user must choose from a selection
of values. It may contain the sub-element Value. The required XML attribute is
nmessageType which defines the type of message, either information, warning or
the default, error.

Identity Server 2004Q2 « Developer's Guide

Authentication DTD Files

LanguageCallback Element

The LanguageCallback element is used by the Identity Server to obtain the user’s
locale information. It must contain the Locale sub-element. There are no required
XML attributes.

PagePropertiesCallback Element

The PagePropertiesCallback element contains all GUI-related information. It may
contain any of the following sub-elements: ModuleName, HeaderValue, ImageName,
PageTimeOutValue, or TemplateName. The required XML attribute isi sError Stat e
which takes a value of t r ue or f al se. The default value is f al se which indicates
that this page is not an error page.

CustomCallback Element

The CustomCallback element is used to define user-defined callbacks. It may contain
the AttributeValuePair sub-element. The required XML attribute is the cl assNane
which takes a value equal to that of the Callback name.

ModuleName Element

The ModuleName element is takes a value equal to the name of the authentication
module. It contains no sub-elements and no XML attributes.

HeaderValue Element

The HeaderValue element is takes a value equal to the header that will be displayed.
It contains no sub-elements and no XML attributes.

ImageName Element

The ImageName element is takes a value equal to the name of the image to be
displayed. It contains no sub-elements and no XML attributes.

PageTimeOutValue Element

The PageTimeOutValue element is the page time-out value in seconds. It contains no
sub-elements and no XML attributes.

TemplateName Element

The TemplateName element is takes a value equal to the name of the template to be
rendered. It contains no sub-elements and no XML attributes.

Chapter 4 Authentication Service 143

Authentication DTD Files

144

AttributeValuePair Element

The AttributeValuePair element contains the attribute and values for a Callback. It
must contain the Attribute sub-element and it can contain the Value sub-element.
There are no required XML attributes.

Attribute Element

The Attribute element defines the Callback parameter. It contains no sub-elements.
The required XML attribute is name which takes a value equal to the name of the
Callback parameter.

Value Element

The Value element is used by the remote client to return a value, provided by the
user (or service), back to the Identity Server. It must contain at least one Value
sub-element. There are no required XML attributes.

Prompt Element

The Prompt element is used by Identity Server to request the remote client to
display the prompt. It contains no sub-elements and there are no required XML
attributes.

Locale Element

The Locale element contains the value of the locale that will be used for
authentication. It contains no sub-elements. The optional XML attributes are

| anguage (which represents the language code), count ry (which represents the
country code) and var i ant (which represents the variant code).

ChoiceValues Element

The ChoiceValues element provides a list of choices. It must contain at least one the
ChoiceValue sub-element. There are no required XML attributes.

ChoiceValue Element

The ChoiceValues element provides a single choice. It must contain at least one
Value sub-element. The required XML attribute isi sDef aul t which takes a value
of yes or no. The default value of no specifies if the value has to be selected by
default when displayed.

SelectedValues Element

The SelectedValues element provides a list of values selected by the user. It must
contain at least one Value sub-element. There are no required XML attributes.

Identity Server 2004Q2 « Developer's Guide

Custom Authentication Modules

SelectedValue Element

The SelectedValue element provides a value selected by the user. It must contain at
least one Value sub-element. There are no required XML attributes.

OptionValue Element

The SelectedValues element provides a single user-defined option value. It must
contain at least one Value sub-element. There are no required XML attributes.

DefaultOptionValue Element

The DefaultOptionValue element is the default option value. The default value
depends on whether user-defined values or predefined values are used in the
callback. If user-defined values are used, the default value will be an index in the
OptionValues element; if predefined, it will be one of the predefined option values.
It must contain at least one Value sub-element. There are no required XML
attributes.

Custom Authentication Modules

The Authentication Service allows an organization to write and plug-in custom
modules for authentication providers not currently implemented by Identity
Server. The first step is to code the module in Java using the Service Programming
Interfaces. Instructions on how to do this and which classes to use can be found in
“Implementing A Custom Authentication Module” on page 174.

NOTE To write a custom authentication module, knowledge of the JAAS API is necessary,
especially for defining the module’s configuration properties. For more information,
see the Java Authentication And Authorization Service Developer’s Guide at
http://java. sun. coni security/ jaas/doc/api.htn .Additional
information can be found atht t p: // j ava. sun. com product s/ j aas/ .

Integrating A Custom Authentication Module

The following steps describe the procedure to integrate a custom authentication
module into the Identity Server deployment. In detailing this procedure, it also
explains what files are needed in order to make the integration work. For
information on how to implement a custom module, see “Service Programming
Interfaces” on page 173.

Chapter 4 Authentication Service 145

Custom Authentication Modules

146

Create an authentication module configuration file.

An authentication module configuration file specifies, at a minimum, the
information required from an identity (user, service, or application) for
authentication. It is located in

IdentityServer_base/ SUNVanT web- apps/ ser vi ces/ confi g/ aut h/ def aul t. The
required credentials might include, but are not limited to, user name and
password. Based on this file, the Authentication Service will dynamically
generate the login screens. Additional information on the file itself can be
found in “Authentication Module Configuration Files” on page 86.
Information on how to create it can be found in “Configuring The
Authentication Module” on page 147.

TIP

Creating the authentication module configuration file first allows time to plan the
module requirements as each Callbacks Element defined corresponds to a login
state. When an authentication process is invoked, a Cal | back() is generated
from the module for each state. For more information, see
“Auth_Module_Properties.dtd” on page 134 and “Implement The LoginModule
Interface” on page 177.

Create a localization properties file for the new module.

The localization properties file defines language-specific screen text for the
attribute names of the module. Itis located in the directory IdentityServer_base/
SUNVanNT | ocal e/ . Information on this file can be found in “Configuring
Authentication Localization Properties” on page 154. Additional information
on how to modify its contents can be found in “Configuring Console
Localization Properties” on page 257 of Chapter 7, “Service Management,” in
this manual.

Create an XML service file for the new authentication module and import it
into Identity Server.

The XML service file is written and imported to allow the management of the
authentication module’s parameters using the console. The name of the XML
service file follows the format amAut hmodulename. xm (for example,

amAut hSaf eWor d. xml or amAut hLDAP. xm). The file is located in / et ¢/ opt /
SUNVani confi g/ xm . Information on the steps to create and import an XML
service file can be found in Chapter 7, “Service Management,” in this manual.

Identity Server 2004Q2 « Developer's Guide

Custom Authentication Modules

4. Modify attributes in the Core Authentication Service.

The new module needs to be recognized by the Identity Server framework.
Information on how this is done can be found in “Modifying The Core
Authentication Service” on page 155. Additional information on these
attributes can be found in the Core Authentication Attributes chapter of the
Sun Java System Identity Server Administration Guide.

5. Restart Identity Server.

Configuring The Authentication Module

The authentication module configuration file is an XML file that defines the
requirements that each module seeks for authentication. In other words, this file
defines the screens that a user might see when directed to authenticate (i.e.: user
name screen, password screen, change password screen, etc.). Modifying elements
in this file will automatically and dynamically customize the authentication
interface. The name of this file follows the format modulename. xni ; for example,

Saf eWor d. xmi or LDAP. xnl . (modulename is the same name as the class without the
package.) Each authentication module has its own configuration file, located in
IdentityServer_base/ SUNVANT web- apps/ ser vi ces/ confi g/ aut h/ def aul t.

NOTE An authentication module configuration file needs to be created and stored for each
custom module, as discussed, even if the module itself has no requirements for
authentication.

If there is more than one organization in the Identity Server deployment, each
organization should have its own authentication directory named
IdentityServer_base/ SUNVANT web- apps/ ser vi ces/ confi g/ aut h/ def aul t / org_nam
e. If an organization has more than one locale, the files are stored separately, in
directories appended with a locale, as in IdentityServer_base/ SUNVani web- apps/
servi ces/ confi g/ aut h/ def aul t/ org_name_locale. Additionally, with service
authentication, there might be an authentication directory under the organization’s
tree that corresponds to the service. More information on this directory hierarchy
can be found in “To Create New Directories For Custom Console Files” on page 91.

NOTE Customization of the authentication screens are only supported at the organization,
sub-organization and service levels. In a search for the correct module
configuration properties files, Identity Server first searches the org_name_locale
directory, followed by the org_name, the default_locale and the default directories.

Chapter 4 Authentication Service 147

Custom Authentication Modules

148

Elements Of The Authentication Module Configuration File

Each login page in the authentication module is defined by a Callback element
which is generally a request for authentication information.

NOTE To understand more on how these authentication module configuration files are
defined and constructed, refer to “Auth_Module_Properties.dtd” on page 134.

Code Example 4-16 defines two login pages: the first asks for a first and last name
while the second asks for a password. The order in which the pages are displayed
to the user are defined in the or der attribute of the Callbacks element. All login
requests begin with the Callback defined as 1. From that point, the module takes
control of the login process and decides on the next page for display based on user
interaction.

Code Example 4-16 Sample Authentication Module Configuration File

<Mbdul eProperties nodul eNane="Logi nMbdul eSanpl e" versi on="1.0" >
<Cal | backs | ength="2" order="1" tineout="60"
header="This is a sanple | ogi n page" >
<NaneCal | back>
<Pronpt> User Nane </ Pronpt>
</ NameCal | back>
<NaneCal | back>
<Pronpt> Last Nane </ Pronpt >
</ NaneCal | back>
</ Cal | backs>
<Cal | backs | ength="1" order="2" tineout="60"
header="You made it to page 2" >
<Passwor dCal | back echoPassword="f al se" >
<Pronpt> Enter any password </ Pronpt>
</ Passwor dCal | back>
</ Cal | backs>
</ Modul eProperti es>

In the sample module configuration shown above, page one has two requests for
information, the first is for User Name and the second is for Last Name. When the
user responds, the information is sent back to the module, where the module writer
validates it and returns the next page. Page two has one request for a user
password. When the user responds, the password is returned. If the module writer
throws an exception, an Aut henti cati on fail ed. page is sent to the user. If no
exception is thrown, the user will be redirected to their default page based on the
information on redirection URLs in “Authentication Methods” on page 105.

Identity Server 2004Q2 « Developer's Guide

Custom Authentication Modules

Customizing Membership.xml

The Membership Authentication Module contains a self-registration functionality.
Membership authentication is implemented for users to configure personalized
portals. The user can create an account, personalize it without the aid of an
administrator, and access it as a registered user. Code Example 4-17 contains
Menber shi p. xm , the authentication module configuration file for the Membership
Authentication module. Modifying this file allows an administrator to add
customer-specific user profile data fields onto the self-registration page. In

Menber shi p. xm , Callbacks 1 through 15 pertain to the Membership portion of the
module; users who have already registered for personalized site profiles can login
with a user name and password. Callback 16 and up refer to the Self-Registration
portion; users can register and a profile will be created. The customization example
begun after Code Example 4-17 refers to Callback 16 and customizing the
self-registration functionality.

Code Example 4-17 Membership.xml Configuration File

<Mbdul eProperties nodul eNane="Menber shi p" version="1.0" >

<Cal | backs | ength="3" order="1" timeout="120" header="Sel f Registration

Modul " t enpl at e=" nenber shi p. j sp" >
<NareCal | back>
<Pronpt> User Nane: </Pronpt>
</ NaneCal | back>
<Passwor dCal | back echoPasswor d="f al se" >
<Pronpt > Password: </ Pronpt>
</ Passwor dCal | back>
<ConfirmationCal | back>
<Qpti onVal ues>
<Qpt i onVal ue>
<Val ue> Log In </Val ue>
</ Qpti onVal ue>
<Qpti onVal ue>
<Val ue> New User </Val ue>
</ Opti onVal ue>
</ Opti onVal ues>
</ ConfirmationCal | back>
</ Cal | backs>

<Cal | backs | ength="4" order="2" timeout="240" header="Password Expiring

Pl ease Changed& t; BR > ; #REPLACE#&I t ; BR/ > ;" >

<Passwor dCal | back echoPassword="fal se" >
<Pronpt> CQurrent Password: </ Pronpt>

</ Passwor dCal | back>

<Passwor dCal | back echoPassword="f al se" >
<Pronpt > New Password: </ Pronpt>

</ Passwor dCal | back>

<Passwor dCal | back echoPassword="fal se" >
<Pronpt > Confirm New Password: </ Pronpt>

</ Passwor dCal | back>

Chapter 4 Authentication Service 149

Custom Authentication Modules

150

Code Example 4-17 Membership.xml Configuration File (Continued)

<ConfirmationCal | back>
<Qpti onVal ues>
<Qpt i onVal ue>
<Val ue> Submt </Val ue>
</ Qpti onVal ue>
<Qpti onVal ue>
<Val ue> Cancel </Val ue>
</ Opti onVal ue>
</ Opti onVal ues>
</ ConfirnationCal | back>
</ Cal | backs>

<Cal | backs | ength="0" order="3" tineout="120"
t enpl at e="w ongPassword. j sp" />

<Cal | backs | ength="0" order="4" tineout="120"
tenpl ate="noUserProfile.jsp" />

<Cal | backs | ength="0" order="5" tinmeout="120" tenpl ate="nolker Nare. j sp"
/>

<Cal | backs | ength="0" order="6" tinmeout="120" tenpl at e="noPassword. jsp"
/>

<Cal | backs | ength="0" order="7" tineout="120"
tenpl at e="noConfirmation.jsp" />

<Cal | backs | ength="0" order="8" tineout="120"
t enpl at e="passwor dM smat ch. j sp" />

<Cal | backs | ength="0" order="9" tineout="120"
tenpl ate="configuration.jsp" />

<Cal | backs | engt h="0" order="10" tinmeout="120" tenpl at e="user Exi sts.j sp"
/>

<Cal | backs | ength="0" order="11" ti neout="120"
tenpl at e="profil eException.jsp" />

<Cal | backs | ength="0" order="12" tineout="120"
t enpl at e="m ssi ngRegFi el d. j sp" />

<Cal | backs | ength="0" order="13" tineout="120"
t enpl at e="user Passwor dSare. j sp" />

<Cal | backs | ength="0" order="14" timeout="120"
tenpl at e="i nval i dPassword. j sp" />

<Cal | backs | engt h="0" order="15" ti meout ="120" header="Your password has
expired. Please contact service desk to reset your password" error="true" />

Identity Server 2004Q2 « Developer's Guide

Custom Authentication Modules

Code Example 4-17 Membership.xml Configuration File (Continued)

<Cal | backs | ength="8" order="16" tinmeout="300" header="Sel f
Regi stration" tenplate="register.jsp" >
<NaneCal | back isRequired="true" attribute="uid" >
<Pronpt> User Nane: </Pronpt>
</ NaneCal | back>
<Passwor dCal | back echoPassword="fal se" i sRequi red="true"

attribut e="user Password" >
<Pronpt > Password: </ Pronpt>
</ Passwor dCal | back>
<Passwor dCal | back echoPassword="fal se" isRequired="true" >
<Pronpt > Confirm Password: </Pronpt>
</ Passwor dCal | back>
<NaneCal | back i sRequired="true" attribute="givennane" >
<Pronpt> First Name: </Pronpt>
</ NaneCal | back>
<NaneCal | back isRequired="true" attribute="sn" >
<Pronpt> Last Nane: </Pronpt>
</ NameCal | back>
<NaneCal | back i sRequired="true" attribute="cn" >
<Pronpt> Ful | Nane: </Pronpt>
</ NaneCal | back>
<NaneCal | back attribute="mail" >
<Pronpt> Enai |l Address: </Pronpt>
</ NameCal | back>
<ConfirmationCal | back>
<Qpti onVal ues>
<Qpti onVal ue>
<Val ue> Regi ster </Val ue>
</ Opti onVal ue>
<Qpt i onVal ue>
<Val ue> Cancel </Val ue>
</ Opti onVal ue>
</ Opti onVal ues>
</ ConfirmationCal | back>
</ Cal | backs>

<Cal | backs | ength="2" order="17" tineout="120" header="Sel f
Regi stration" >
<Choi ceCal | back attribute="uid" >
<Pronpt >A user already exists with the user name you entered.
&l t; BR> ; Pl ease choose one of the fol | owing user nanes, or create your
own: </ Pronpt >
<Choi ceVal ues>
<Choi ceVal ue>
<Val ue>Qreate My Oan</ Val ue>
</ Choi ceVal ue>
</ Choi ceVal ues>
</ Choi ceCal | back>
<ConfirmationCal | back>
<Qpti onVal ues>
<Qpti onVal ue>
<Val ue> Submt </Val ue>
</ Opti onVal ue>
</ Opti onVal ues>

Chapter 4 Authentication Service 151

Custom Authentication Modules

152

Code Example 4-17 Membership.xml Configuration File (Continued)

</ ConfirmationCal | back>
</ Cal | backs>

<Cal | backs | engt h="1" order="18" tineout="120" tenpl at e="di scl ai ner.j sp"

<Confi rmationCal | back>
<Qpti onVal ues>
<Qpt i onVal ue>
<Val ue> Agree </ Val ue>
</ Qpti onVal ue>
<Qpti onVal ue>
<Val ue> Di sagree </Val ue>
</ Opti onVal ue>
</ Opti onVal ues>
</ ConfirmationCal | back>
</ Cal | backs>
</ Modul eProperties>

The first Prompts (all defined in Callbacks 16) are required fields in the
Self-Registration module. They are User Name, Password, Confirm Password, First
Name, Last Name, and Full Name. Each Callback contains the attribute/value pair,
i sRequi red="t rue". E-mail Address is, by default, not a field the user is required
to fill in but that can be changed by adding isRequired="true" as an attribute of that
particular Name Callback. To add a field for the user to fill in a telephone number,
Menber shi p. xm should be modifed with the Name Callback defined in Code
Example 4-18.

Code Example 4-18 Telephone Number Name Callback

<NameCal | back isRequired="true"attribute="tel ephonenunber">
<Pronpt > Tel : </ Pronpt >
</ NameCal | back>

Add user data fields which are normally requested as part of a user profile. By
default, attributes from the following LDAP objectClasses can be easily added: t op,
per son, or gani zat i onal Person, i net Or gPer son, i pl anet - am user - servi ce,

i net user . Figure 4-12 is the Self-Registration Login Requirement Screen after the
telephone number field has been added to Menber shi p. xni . Identity Server and
the deployment container should be restarted after modifying Menber shi p. xni .

Identity Server 2004Q2 « Developer's Guide

Custom Authentication Modules

Figure 4-12 Self-Registration Login Requirement Screen

S Sun

flelds marked with the * are required for registration.

Self Registration

User Name: * |

Password: * |

Confirm |
Password: * :

First Name: * |

Last Name: * |

Full Name: * |

Email Address: |

Tel: * I

‘ Register H Cancel H Reset Form

Chapter 4 Authentication Service 153

Custom Authentication Modules

Configuring Authentication Localization
Properties

A localization properties file specifies the screen text and messages that an
administrator or user will see when directed to an authentication module’s service
attribute configuration page. Each authentication module has its own localization
properties file that follows the naming format amAut hmodulename. pr operti es; for
example, amAut hLDAP. properti es. They are located in

IdentityServer_base/ SUN\VA | ocal e/ . The default character set is ISO-8859-1
(English). Following are some concepts behind the configuration of this file.

= The data following the equal (=) sign in each key/value pair could be
translated to a specific language as necessary and copied into the
corresponding locale directory. In Code Example 4-19, the alphanumeric keys
(a1, a2, etc.) map to fields defined by the i 18nKey attribute in the
amAut hLDAP. xmi service configuration file.

= The alphanumeric keys determine the order in which the fields are displayed
in the Identity Server console. The keys are taken in the order of their ASCII
characters (al is followed by al0, followed by a2, followed by b1). For example,
if an attribute needs to be displayed at the top of the service attribute page, the
alphanumeric key should have a value of al. The second attribute could then
have a value of either a10, a2 or b1, and so forth.

For reference, Code Example 4-19 is a portion of the file amAut hLDAP. properti es.

Code Example 4-19 Portion of amAut hLDAP. properti es

Pl nval i d=Current Password Entered Is Invalid
PasswdSane=Passwor d shoul d not be sane

PasswdM nChar s=Password shoul d be at |east 8 characters
al=Primary LDAP Server and Port

a2=Secondary LDAP Server and Port

a3=DN to Start User Search

a4=DN for Root User bind

ab=Password for Root User Bind

a6=User Naming Attribute

a7=User Entry Search Attribute

Additional information on this file and how to modify its contents can be found in
“Configuring Console Localization Properties” on page 257 of Chapter 7, “Service
Management,” in this manual.

154 Identity Server 2004Q2 « Developer's Guide

Custom Authentication Modules

Modifying The Core Authentication Service

Some attributes in the Core Authentication Service need to be extended in order for
the Authentication Service to recognize any newly created authentication module.

NOTE amAut h. xm , located in / et ¢/ opt / SUNWANT conf i g/ x| defines the
Core Authentication Service. When making these changes directly to the XML file,
the old file has to be removed and the newly modified one reloaded using the
amadm n command line tool. More information on the command line tool can be
found in the Sun Java System Identity Server Administration Guide.

Pluggable Auth Module Classes Attribute

This global attribute specifies the Java classes of the authentication modules
available within the Identity Server deployment. By default, this includes the
modules listed in “Authentication Service Modules” on page 66. To define a new
authentication module, this field takes a value equal to the full class name
(including package) of the new module. This modification can also be made in the
i pl anet - am aut h- aut hent i cat or s attribute of amAut h. xm . Code Example 4-20
illustrates the default values for this attribute.

Code Example 4-20 i pl anet - am aut h- aut hent i cat or s Attribute

<AttributeSchema name="i pl anet - am aut h- aut henti cat or s"
type="list"
synt ax="string"
i 18nKey="a117">
<Def aul t Val ues>
<Val ue>com sun. i dentity. aut henti cati on. nodul es. radi us. RADI US</ Val ue>
<Val ue>com sun. i dentity. aut henti cation. nodul es. | dap. LDAP</ Val ue>
<Val ue>com sun. i dentity. aut henti cati on. nodul es. nenber shi p. Menber shi p</ Val ue
>
<Val ue>com sun. i dentity. aut henti cation. nodul es. uni x. Uni x</ Val ue>
<Val ue>com sun. i dentity. aut henti cati on. nodul es. anonynous. Anonynous</ Val ue>
<Val ue>com sun. i dentity. aut hentication. nodul es. cert. Cert </ Val ue>
<Val ue>com sun. i dentity. aut henti cation. nodul es. appl i cati on. Appl i cati on</ Val

ue>
<Val ue>com sun. i dentity. aut henti cati on. nodul es. saf ewor d. Saf eWr d</ Val ue>
<Val ue>com sun. i dentity. aut henti cation. nodul es. securi d. Secur | D</ Val ue>
<Val ue>com sun. i dentity. aut henti cati on. nodul es. htt pbasi c. HTTPBasi c</ Val ue>
<Val ue>com sun. i dentity. aut henti cation. nodul es. nt. NT</ Val ue>
</ Def aul t Val ues>
</ Attribut eSchema>

Chapter 4 Authentication Service 155

Authentication Programming Interfaces

Organization Authentication Modules Attribute

This organization-type attribute lists the authentication modules available to the
organizations. An administrator can choose the authentication method for their
organization from this list. The default authentication method is LDAP. This
modification can also be made in the i pl anet - am aut h- al | owed- nodul es
attribute of amAut h. xm . Code Example 4-21 illustrates the default values for this
attribute.

Code Example 4-21 i pl anet - am aut h- al | owed- nodul es Attribute

<Attribut eSchema name="i pl anet - am aut h- al | owed- nodul es"
type="mul tipl e_choi ce"
syntax="string"
i 18nKey="a101">
<Choi ceVal ues>
<Choi ceVal ue i 18nKey="LDAP"' >LDAP</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="RAD US'>RADI US</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="Menber shi p" >Menber shi p</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="Uni x" >Uni x</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="Anonymous" >Anonymous</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="Cert">Cert </ Choi ceVal ue>
<Choi ceVal ue i 18nKey="Saf eWr d" >Saf eWr d</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="Secur | D'>Secur | D</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="NT">NT</ Choi ceVal ue>
<Choi ceVal ue i 18nKey="HTTPBasi ¢" >HTTPBasi c</ Choi ceVal ue>
</ Choi ceVal ues>
<Def aul t Val ues>
<Val ue>LDAP</ Val ue>
</ Def aul t Val ues>
</ Attribut eSchenma>

Authentication Programming Interfaces

156

Identity Server provides programming interfaces to extend the functionality of the
Authentication Service in two ways. The Authentication Programming Interfaces
provides interfaces that can be used remotely by either Java or C applications to
utilize the authentication features of Identity Server. The Service Programming
Interfaces can be used to plug new authentication modules, written in Java, into the
Identity Server authentication framework.

Exception Handling When using either the Authentication SPI (AM_ogi nMbdul e
class) or Authentication API (Aut hCont ext class), Aut hLogi nExcept i on should be
used for exception handling instead of Logi nExcept i on. Aut hLogi nExcept i on
has the capability for handling localized message information and exception
chaining. See the JavaDocs for more details.

Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Application Programming Interfaces

Identity Server provides both a Java Authentication APl and a C Authentication
API for writing authentication clients that remote applications can use to gain
access to the Authenticate Service for authentication purposes. This
communication between the APl and the Authentication Service occurs by sending
XML messages over HTTP(S) . The r enot e- aut h. dt d is the template used in
formatting the XML request messages sent to Identity Server and for parsing the
XML return messages received by the external application. “The remote-auth.dtd
Structure” on page 138 details the document data for informational purposes; it can
also be accessed in from IdentityServer_base/ SUN\Vani dt d.

NOTE If contacting the Authentication Service directly through its URL
(ht t p: // identity_server_host.domain_name:port/ service_deploy_uri/au
t hser vi ce) without the API, a detailed understanding of r enot e- aut h. dt d
will be needed for generating and interpreting the messages passed between the
client and server. Sample response and return XML messages can be found in
“XML Messages” on page 170.

Authentication API For Java Applications

As briefly mentioned in “Authentication Via The Java API” on page 65, external
Java applications can authenticate users with the Identity Server Authentication
Service by using the Authentication API for Java. The API are organized in a
package called com sun. i denti ty. aut henti cati on and can be executed locally
or remotely. The classes and methods defined in this package may be incorporated
into a Java application to allow communication with the Authentication Service.
They are used to initiate the authentication process and communicate
authentication credentials to the specific modules within the Authentication
Service.

Using The Authentication APl For Java

The first step necessary for an external Java application to authenticate to Identity
Server is to create a new Aut hCont ext object

(com sun.identity. aut henticati on. Aut hCont ext). The Aut hCont ext class is
defined for each authentication request as it initiates the authentication process.
Since Identity Server can handle multiple organizations, Aut hCont ext is
initialized, at the least, with the name of the organization to which the requestor is
authenticating. Once an Aut hCont ext object has been created, the | ogi n() method
is called indicating to the server what method of authentication is desired. One of
the following two methods can be used. Code Example 4-22 can be used
specifically for Organization-based Authentication.

Chapter 4 Authentication Service 157

Authentication Programming Interfaces

Code Example 4-22 Method For Organization-based Authentication

public void | ogin()
t hrows Aut hLogi nExcepti on

Code Example 4-23 can be used to define any type of authentication method.

Code Example 4-23 Method For Defining Authentication Method

public void | ogin(lndexType type, String i ndexNane)
t hrows Aut hLogi nExcepti on

I ndexNane is the value of the authentication method. | ndexType can have any of
the following values:

e Aut hCont ext . | ndexType. ROLE defines Role-based Authentication.
< Aut hCont ext . | ndexType. SERVI CE defines Service-based Authentication.
e Aut hCont ext . | ndexType. USER defines User-based Authentication.

e AuthCont ext. | ndexType. LEVEL defines Authentication Level-based
Authentication.

e AuthCont ext . | ndexType. MCDULE_| NSTANCE defines Module-based
Authentication.

The get Requi renent s() method then calls the objects that will be populated by
the user. Depending on the parameters passed with the instantiated Aut hCont ext
object and the two method calls, Identity Server responds to the client request with
the correct login requirement screens. For example, if the requested user is
authenticating to an organization configured for LDAP authentication only, the
server will respond with the LDAP login requirement screen to supply a user name
and a password. The client must then loop by calling the hasMr eRequi r errent s()
method until the required credentials have been entered. Once entered, the
credentials are submitted back to the server with the method call

subni t Requi renent s() . The final step is for the client to make a get St at us()
method call to determine if the authentication was successful. If successful, the
caller obtains a session token for the user; if not, a Logi nExcept i on is thrown.

158 Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

NOTE Because the Authentication Service is built on the JAAS framework, the
Authentication API can also invoke any authentication modules written purely with
the JAAS API.

Java Authentication API Samples

Identity Server provides two sample programs to demonstrate how to use the
Authentication API for Java. They can be found in
IdentityServer_base/ SUNWANI sanpl es/ aut henti cati on/.

Certificate Authentication Sample The

IdentityServer_base/ SUN\VAnT sanpl es/ aut hent i cati on/ Cert directory provides a
sample source code file, Cert Logi n. j ava, and ar eadne. ht mi file that illustrates a
Java application which utilizes digital certificates for authentication.

LDAP Authentication Sample The

IdentityServer_base/ SUN\VAT sanpl es/ aut hent i cat i on/ LDAP directory provides a
sample source code file, LDAPLogi n. j ava, and ar eadne. ht m file that illustrates a
Java application which authenticates to the LDAP module. This sample can be
easily modified to authenticate to other existing or customized authentication
modules.

Authentication API For C Applications

As briefly mentioned in “Authentication Via The C API” on page 65, C applications
can authenticate users with the Identity Server Authentication Service by using the
Authentication API for C. C applications authenticate to Identity Server using these
interfaces in much the same way as the “Authentication API For Java
Applications.” The C application contacts the Authentication Service to initiate the
authentication process, and the Authentication Service responds with a set of
requirements. The client application submits authentication credentials back to the
Authentication Service and receives further authentication requirements back until
there are no more to fulfill. After all requirements have been sent, the client makes
one final call to determine if authentication has been successful or has failed. The C
API can be found in / IdentityServer_base/ SUN\VANT agent s. This directory also
includes a C APl sanpl es directory.

CAUTION Previous releases of Identity Server contained C libraries in
IdentityServer_base/ | i b/ capi . The capi directory is being deprectated, and
is curently available for backward compatability. It will be removed in the next
release, and therefore it is highly recommended that existing application paths to
this directory are changed and new applications do not access it. Paths include
RPATH, LD LI BRARY _PATH, PATH, compiler options, etc.)

Chapter 4 Authentication Service 159

Authentication Programming Interfaces

160

Using The Authentication API For C

The sequence of calls necessary to authenticate to ldentity Server begins with the
function call am aut h_creat e_aut h_cont ext . This call will return an

Aut hCont ext structure used for the rest of the authentication calls. Once an

Aut hCont ext structure has been initialized, the am aut h_I ogi n function is called.
This indicates to the Authentication Service that an authentication is desired.
Depending on the parameters passed when creating the Aut hCont ext structure
and making the am aut h_| ogi n function call, the Authentication Service will
determine the login requirements with which to respond. For example, if the
requested authentication is to an organization configured for LDAP authentication
(and no authentication module chaining is involved), the server will respond with
the requirements to supply a user name (which corresponds to the NameCallback
element in The remote-auth.dtd Structure) and a password (which corresponds to
the PasswordCallback element in The remote-auth.dtd Structure). The client loops
on function call am aut h_has_nore_r equi renent s, and in this specific case there
will be two, and fills in the needed information and submits this back to the server
with function call am_auth_submit_requirements. The final step is to make
function call am aut h_get _st at us to determine if the authentication was
successful or not.

C Authentication APl Sample

Identity Server provides a sample program to demonstrate how an external C
application can use the API to authenticate a user via Identity Server. The sample
can be found in IdentityServer_base/ SUN\VAnT agent s/ sanpl es/ conmon/ . By
default, the C Authentication sample looks in

IdentityServer_base/ SUN\VA agent s/ conf i g for a properties file named

AVAgent . properties.

C Authentication Sample Properties Code Example 4-24 lists the properties that
are needed by the C Authentication API; some of these are defined in

AVAgent . properti es and some are not. Those that are not can be added to the file
so they needn’t be identified for each function call. For example,

com sun. am aut h. or gNane, which identifies the organization from which
authentication is desired, can be added to AMAgent . pr operti es.

Code Example 4-24 AMAgent.properties File

SOME PRCPERTI ES LI STED ARE NOT PRE-EXI STING | N THE PROPERTI ES FI LE

the identity server namng service url

com sun. am nam ngURL=ht t p: / / ser ver exanpl e. donai n. com 58080/ anser ver/ nam ngs
ervice

the directory to use for |ogging

com sun. am | ogFi | e=/ hore/ ui d/ | ogs/ aut h-1 og

Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Code Example 4-24 AMAgent.properties File (Continued)

the logging level, all:5 being the highest and all:3 being medi um
comsun. am | ogLevel s=al | : 5

the directory containing the certificate and key databases
com sun. am ssl Cert D r=/ horre/ | evel / certdir

the prefix of the cert7.db and key3.db files, if any

com sun. am cert DoPrefi x=

the password to the key3.db file

com sun. am cert DBPasswor d=11111111

true to trust SSL certificates not in the client cert7.db
com sun. am trust Server Certs=true

the nick name of the client certificate in the cert7.db
comsun. am aut h. certificateA i as=Cert-N ckname

the identity server organization desired for authentication
com sun. am aut h. or gNane=dc=sun, dc=com

C Authentication APl Header File The C Authentication API header file,
am aut h. h, can be found in IdentityServer_base/ SUN\WANT agent s/ i ncl ude. It
contains the function prototypes for the function calls available in the C
Authentication API. It has been reproduced in Code Example 4-25 for
informational purposes.

Code Example 4-25 am_auth.h C Authentication API Header File

[* -*- Mode: C-*- */
/*

¥

#ifndef _AMAUTH H
#define _ AMAUTHH

#i ncl ude <stdlib. h>

#i ncl ude <am h>

#i ncl ude <am properties. h>
#i ncl ude <amstring_set. h>

AM BEG N_EXTERN C
typedef struct amauth_context *amauth_context_t;

/*
* Different types of authentication paraneters.
*/

typedef enumamauth_idx {
AM AUTH | NDEX_AUTH LEVEL = 0,
AM AUTH_| NDEX_ROLE,
AM AUTH_| NDEX_USER,
AM AUTH_| NDEX_MODULE._| NSTANCE,

Chapter 4 Authentication Service 161

Authentication Programming Interfaces

162

Code Example 4-25

am_auth.h C Authentication APl Header File (Continued)

} amaut h_i ndex_t;
/ *
*/

/*

| *
*/

NarreCal | back,

/*

| *
*/

AM AUTH_| NDEX_SERVI CE

* Enureration of authentication statuses.

typedef enum am auth_status {
AM AUTH_STATUS_SUCCESS = 0,
AM AUTH_STATUS_FAI LED,
AM AUTH_STATUS_NOT_STARTED,
AM AUTH_STATUS_| N_PROGRESS,
AM AUTH_STATUS_COVPLETED

} amauth_status_t;

* Language | ocal e structure.
*/

typedef struct amauth_locale {
const char *| anguage;
const char *country;
const char *variant;

} amauth_locale_t;

* Enuneration of types of callbacks.

typedef enum am aut h_cal | back_t ype {
Choi ceCal | back = 0,
Confi rmati onCal | back,
LanguageCal | back,

Passwor dCal | back,
Text | nput Cal | back,
Text Qut put Cal | back

} amaut h_cal | back_type_t;

* Choi ce cal | back structure.
x|

typedef struct am auth_choi ce_cal | back {
const char *pronpt;
bool ean_t al |l ow nultipl e_sel ections;
const char **choi ces;
size_t choi ces_si ze;
size_t defaul t_choi ce;
const char **response; /* selected indexes */
size_t response_si ze;
} amaut h_choi ce_cal | back_t;

* Confirmation call back structure.
typedef struct amauth_confirmation_call back_info {

const char *pronpt;
const char *message_type;

Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Code Example 4-25 am_auth.h C Authentication APl Header File (Continued)

const char *option_type;

const char **options;

size_t options_size;

const char *defaul t_option;

const char *response; /* selected index */
} amauth_confirmation_cal | back_t;

/ *
* Language cal | back structure.
*/
typedef struct am auth_| anguage_cal | back_info {
amauth_local e_t *locale;
amauth_local e_t *response; /* |ocale */
} am aut h_| anguage_cal | back_t;

/*

* Name cal | back structure.

*

/

typedef struct am auth_nane_cal | back_info {
const char *pronpt;
const char *defaul t _nare;
const char *response; /* name */

} am aut h_nane_cal | back_t;

/*

* Password cal | back structure.

*/

typedef struct amauth_password_cal | back_info {
const char *pronpt;
bool ean_t echo_on;
const char *response; /* password */

} amaut h_password_cal | back_t;

/*

* Text Input callback structure.

*

/

typedef struct amauth_text input_call back_info {
const char *pronpt;
const char *default_text;
const char *response; /* text */

} amauth_text _input_cal | back_t;

/*
* Text Qutput call back structure.
*/

typedef struct amauth_text output_cal |l back_info {
const char *nessage;
const char *nessage_type;

} amauth_text _output_cal | back_t;

/
Primary call back structure. The callback type field
represents which type of callback this instance of callback
is representing. Based on the type, the user nust use the
appropriate nenber of the union.

* X ok ok

Chapter 4 Authentication Service 163

Authentication Programming Interfaces

164

Code Example 4-25 am_auth.h C Authentication APl Header File (Continued)

*
/
typedef struct amauth_cal | back {
am aut h_cal | back_type_t cal | back_t ype;
uni on amauth_cal | back_info {
am aut h_choi ce_cal I'back_t choi ce_cal | back;
amaut h_confirmation_cal | back_t confirmation_call back;
am aut h_| anguage_cal I back_t |anguage_cal | back;
am aut h_nane_cal I back_t name_cal | back;
am aut h_| password cal | back_t password cal | back;
amauth_text_input_call back_t text_input_call back
amaut h_text _output _cal | back_t text output_call back
} cal | back_info;
} amauth_cal | back_t;

/*

* Initialize the authentication nodul es.

*

* Paraneters:

* auth_init_params The property handle to the property file
* which contains the properties to initialize the

* authentication library.

*

* Returns:

* AM SUCCESS

* If the initialization of the library is successful.
*

* AM NO MEMORY

* If unable to allocate nemory during initialization.
*

* AM | NVALI D_ARGUMENT

* If auth_init_parans is NULL.

*

* (Qhers (Please refer to amtypes.h)

* If the error was due to other causes.

*/

AM EXPCRT am st atus_t
amauth_init(const amproperties_t auth_init_parans);

/
Create a new auth context and returns the handl e.

Par anet er s:
auth_ctx Pointer to the handle of the auth context.

org_name Organi zation nane to authenticate to.
May be NULL to use value in property file.

cert _ni ck_nane
The alias of the certificate to be used if
the client is connecting securely. My be
NULL i n case of non-secure connection.

url Service URL, for exanple:
"http://pride.red.iplanet.com 58080/ anserver".
May be NULL, in which case the namng service

E I S I I S R

Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Code Example 4-25 am_auth.h C Authentication APl Header File (Continued)

* URL property is used.

*

* Returns:

* AM SUCCESS

* If auth context was successfully created.

*

* AM NO_ MEMIRY

* If unable to allocate menory for the handle.
*

* AMI NVALI D_ARGUMVENT

* If the auth_ctx parameter is NULL.

*

* AMAUTH CTX_| N T_FAI LURE

* If the authentication initialization failed.
*/

AM EXPCRT am st atus_t

am aut h_creat e_aut h_cont ext (am aut h_context _t *aut h_ctx,
const char *org_nane,
const char *cert_ni ck_nane,
const char *url);

/*

* Destroys the given auth context handl e.

*

* Paraneters:

* auth_ctx Handle of the auth context to be destroyed.
*

* Returns:

* AM SUCCESS

* If the auth context was successful |y destroyed.
*

* AM I NVALI D_ARGUVENT

* If the auth_ctx parameter is NULL.

*

*/

AM EXPCRT am st atus_t
am aut h_destroy_auth_cont ext (am auth_context _t auth_ctx);

If the login process was successfully conpl et ed.

AM | NVALI D_ARGUVENT
If the auth_ctx or value parameter is NULL.

/*

* Starts the login process given the index type and its val ue.
*

* Paraneters:

* auth_ctx Handle of the auth context.

*

* auth_idx Index type to be used to initiate the |ogin process.
*

* val ue Val ue corresponding to the index type.

*

* Returns:

* AM SUCCESS

*

*

*

*

*

Chapter 4 Authentication Service 165

Authentication Programming Interfaces

166

Code Example 4-25 am_auth.h C Authentication APl Header File (Continued)

* AM FEATURE_UNSUPPCRTED
* If the auth_idx paranmeter is invalid.

*

*/

AM EXPCRT am st atus_t

amauth_| ogi n(am auth_context _t auth_ctx, amauth_index_t auth_idx,
const char *val ue);

Logout the user.

Par anet er s:
auth_ctx Handle of the auth context.

Ret ur ns:
AM SUCCESS
If the |l ogout process was successfully conpl eted.

R R R

AM | NVALI D_ARGUVENT
If the auth_ctx parameter is NULL.

*
*/
AM EXPCRT am st at us_t
am aut h_| ogout (am auth_context _t auth_ctx);

/
Abort the authentication process.

Par aret er s:
auth_ctx Handle of the auth context.

Ret ur ns:
AM SUCCESS
If the abort process was successfully conpl et ed.

AM | NVALI D_ARGUMENT
If the auth_ctx parameter is NULL.

R I T R

*/
AM EXPCRT am st atus_t
am aut h_abort (am aut h_context _t auth_ctx);

/*

* Checks to see if there are requirenents to be supplied to

* conpl ete the login process. This call is invoked after

* invoking the login() call. If there are requirenents to

* be supplied, then the caller can retrieve and submt the

* requirements in the formof callbacks.

*

* The nunber of cal | backs nay be retrieved with a call to

* am aut h_num cal | backs() and each cal | back nmay be retrieved
* with a call to amauth_get callback(). Once the requirenents
* for each callback are set, amauth_submt_requirements() is
* cal |l ed.

*

Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Code Example 4-25 am_auth.h C Authentication APl Header File (Continued)

* Repeat until done.

*

* Paraneters:

* auth_ctx Handle of the auth context.

*

* Returns:

* B TRE

* If there are nore requirenents.
* B FALSE

* If there are no nore requirenents.
*

*/

AM EXPCRT bool ean_t
am aut h_has_nore_requi rement s(am aut h_context _t auth_ctx);

/
Gets the nunber of call backs.

Par aret er s:
auth_ctx Handle of the auth context.

EE I

Ret ur ns:
Nunber of cal |l backs.

*

*/
AM EXPCRT si ze_t
am aut h_num cal | backs(am aut h_context _t auth_ctx);

/*

* Gets the n-th cal | back structure.

*

* Paraneters:

* auth_ctx Handle of the auth context.

*

* index The index into the call back array.
*

* Returns:

* Returns a pointer to the amauth_cal |l back_t structure
* whi ch the caller needs to popul ate.

*

*/

AM EXPCRT am auth_cal | back_t *
am aut h_get _cal | back(am auth_context t auth_ctx, size t index);

If the submtted requirenents were processed
successful ly.

/*

* Subnmits the responses popul ated in the callbacks to the server.
*

* Paraneters:

* auth_ctx Handle of the auth context.
*

* Returns:

* AM SUCCESS

*

*

*

Chapter 4 Authentication Service 167

Authentication Programming Interfaces

Code Example 4-25 am_auth.h C Authentication APl Header File (Continued)

* AM AUTH FAI LURE

* If the authentication process failed.
*

* AM | NVALI D_ARGUMENT

* If the auth_ctx parameter is NULL.

*

*/

AM EXPCRT am st atus_t
am aut h_submt _requi rement s(am aut h_context _t auth_ctx);

/
Get the status of the authentication process.

Par aret er s:
auth_ctx Handle of the auth context.

Ret ur ns:

AM AUTH_STATUS_FAI LED
The 1 ogi n process has fail ed.

AM AUTH_STATUS NOT_STARTED,
The 1 ogin process has not started.

AM AUTH_STATUS_| N_PROGRESS,
The login is in progress.

AM AUTH_STATUS COVPLETED,
The user has been | ogged out.

AM AUTH_STATUS_SUGCESS
The user has | ogged in.

R I I T R I . S

*/
AM EXPCRT am auth_status_t
am aut h_get _stat us(am aut h_context _t auth_ctx);

/*

* Cet the sso token id of the authenticated user.

*

* Paraneters:

* auth_ctx Handle of the auth context.

*

* Returns:

* A zero termnated string representing the sso token,
* NULL if there was an error or the user has not
* successful ly 1ogged in.

*

*/

AM EXPCRT const char *
am auth_get _sso_token_id(amauth_context t auth_ctx);

/*
* CGets the organi zation to which the user is authenticated.

168 Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Code Example 4-25 am_auth.h C Authentication APl Header File (Continued)

*

* Paraneters:

* auth_ctx Handle of the auth context.

*

* Returns:

* A zero termnated string representing the organization,
* NULL if there was an error or the user has not

* successful Iy 1ogged in.

*

*/

AM EXPCRT const char *
am aut h_get _organi zati on_name(am auth_context _t auth_ctx);

/
Gets the authentication nmodul e/ s instances (or plugins)
configured for an organi zation, or sub-organizati on nane that
was set during the creation of the auth context.

Supply the address of a pointer to a structure

of type amstring_set_t. Mdul e instance names are

returned in amstring_set_t. Free the nenory

allocated for this set by calling amstring_set_destroy().

Returns NULL if the nunber of nodul es configured is zero.

Par anet er s:

auth_ctx Handl e of the auth context.

nmodul e_i nst_names_ptr Address of a pointer to amstring_set _t.
Ret ur ns:

AM SUCCESS

If the submtted requirenents were processed
successful ly.

AM AUTH_FAI LURE
If the authentication process failed.

AM | NVALI D_ARGUVENT
If the auth_ctx parameter is NULL.

E I I I I R R R I S T I R

AM SERVI CE_NOT_| NI TI ALI ZED
If the auth service is not initialized.

*

*/
AM EXPCRT am st atus_t
am aut h_get _nodul e_i nst ance_names(am aut h_context _t auth_ctx,
amstring_set_t** nodul e_inst_nanes_ptr);

AM END EXTERN C
#endi f

Chapter 4 Authentication Service

169

Authentication Programming Interfaces

170

Authentication Option For Other Applications

Applications written in a language other than Java or C can exchange
authentication information with Identity Server using the XML/HTTP(s) interface.
Using the URL

ht t p: / / server_name.domain_name: port/ service_deploy_uri/ aut hser vi ce, an application
can open a connection using the HTTP POST method and exchange XML messages
with the Authentication Service. The structure of the XML messages is defined by
“The remote-auth.dtd Structure” on page 138. In order to access the Authentication
Service in this manner, the client application must contain the following:

= A means of producing valid XML compliant with the r enot e- aut h. dt d.

e HTTP 1.1 compliant client implementation to send XML-configured
information to Identity Server.

e HTTP 1.1 compliant server implementation to receive XML-configured
information from Identity Server.

< An XML parser to interpret the data received from Identity Server.

XML Messages

The following code examples illustrate how customers might configure the XML
messages posted to the Authentication Service.

NOTE Although the client application need only write XML based on the
r enot e- aut h. dt d, when these messages are sent they include additional
XML code produced by the Authentication API. This additional XML code is not
illustrated in the following examples.

Code Example 4-26 illustrates the initial XML message sent to the Identity Server. It
opens a connection and asks for authentication requirements regarding the
exanpl eor g organization to which the user will login.

Code Example 4-26 Initial AuthContext XML Message

<?xm version="1.0" encodi ng="UTF-8"?>

<Aut hCont ext versi on="1.0">

<Request authldentifier="0">

<NewAut hCont ext or gNanme="dc=exanpl eor g, dc=con >
</ NewAut hCont ext >

</ Request >

</ Aut hCont ext >

Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Code Example 4-27 illustrates the successful response from Identity Server that
contains the aut hl denti fi er, the session identifier for the initial request.

Code Example 4-27 Authldentifier XML Message Response

<?xm version="1.0" encodi ng="UTF-8"?>

<Aut hCont ext version="1.0">

<Response

aut hl denti fi er="AQ CSWMRLY4Sf cwnVdbgTX+OWyWEPI W bloVb5esqDl kay=">
<Logi nSt atus status="in_progress">

</ Logi nSt at us>

</ Response>

</ Aut hCont ext >

Code Example 4-28 illustrates the client response message back to Identity Server.
It specifies the type of authentication module needed by the user to log in.

Code Example 4-28 Second Request Message With Authentication Module Specified

<?xm version="1.0" encodi ng="UTF-8"?>

<Aut hCont ext version="1.0">

<Request aut hl dentifier="AQ CoWM2LY4Sf cwnVdbgTX+9WyWEP W bloVb5esqDl kaY=">
<Logi n>

<I ndexTypeNanePai r i ndexType="rodul el nst ance" >

<I ndexNane>LDAP</ | ndexNane>

</ ndexTypeNanePai r >

</ Logi n>

</ Request >

</ Aut hCont ext >

Code Example 4-29 illustrates the return message from Identity Server which
specifies the authentication module’s login requirements. In this case, the LDAP
requirements include a user name and password. Note the page time out value of
120 seconds.

Code Example 4-29 Return XML Message With Login Callbacks

<?xm version="1.0" encodi ng="UTF-8"?>
<Aut hCont ext version="1.0">
<Response

aut hl denti fi er="AQ CoWMRLY4Sf cwVdbgTX+OVeyWEPI W bloVb5esqDl kaY=">

Chapter 4 Authentication Service 171

Authentication Programming Interfaces

172

Code Example 4-29 Return XML Message With Login Callbacks (Continued)

<Cet Requi r ement s>

<Cal | backs | ength="3">

<PagePropertiesCal | back isErrorState="fal se">
<Modul eNanme>LDAP</ Mbdul eNarre>

<Header Val ue>Thi s server uses LDAP Aut henti cati on</ Header Val ue>
<I mageNane></ | rageNane>

<PageTi meQut >120</ PageTi meCut >

<Tenpl at eNanme></ Tenpl at eNane>

<PageSt at e>1</ PageSt at e>

</ PagePr opertiesCal | back>

<NaneCal | back>

<Pronpt >User Nane: </Pronpt>

</ NarmeCal | back>

<Passwor dCal | back echoPasswor d="f al se">
<Pronpt > Password: </Pronpt>
</ Passwor dCal | back>

</ Cal | backs>

</ Get Requi r enent s>
</ Response>

</ Aut hCont ext >

Code Example 4-30 illustrates the client responses to the call for login
requirements. They specify amadmi n as the user and 11111111 for the password.

Code Example 4-30 Response Message With Callback Values

<?xm version="1.0" encodi ng="UTF-8"?>

<Aut hCont ext versi on="1.0">

<Request aut hldentifier="AQ CGWM2LY4Sf cwnvdbg TX+OWeyWEP W bloVb5esqDl kaY=">
<Subm t Requi r ement s>

<Cal | backs | ength="3">

<NaneCal | back>

<Pronpt >User Nane: </ Pronpt >
<Val ue>anmadm n</ Val ue>

</ NaneCal | back>

<Passwor dCal | back echoPasswor d="f al se">
<Pr onpt >Passwor d: </ Pronpt >

<Val ue>11111111</ Val ue>

</ Passwor dCal | back>

</ Cal | backs>

</ Subni t Requi r enent s>

</ Request >

</ Aut hCont ext >

Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Code Example 4-31 illustrates that a successful authentication has occurred. As the
value of <Subj ect > uses the Java serialization, it can not be used by non-Java client
applications. It’s value is retreived by all applications from the session token.

Code Example 4-31 Successful Authentication XML Message

<?xm version="1.0" encodi ng="UTF-8"?>
<Aut hCont ext version="1.0">
<Response

aut hl denti fi er="AQ CSWMRLY4Sf cwnVdbgTX+OWyWEPI W bloVb5esqDl kay=">
<Logi nSt atus st at us="success"

ssoToken="AQ COWM2LYASf cwivVdbgTX+9W yWEP! W b1loVb5esqD kaY="

successURL="http://torpedo. red.i pl anet.com /antonsol ">
<Subj ect >AQ CneczChuel Z5TqDIKKC | AepxqC@P23g40TnNMUJY/ / | | 2S4KD1/ gENS4uLwWDCH

|1 yFSt hxoKLM/NDH

h2vwAvr Dnpsom)vnbgnJJ90DS+28nj G Dv+l v8Fql Vhhbxr ct bi | UECHYKOFzXnXj PYi zdCm W
XJ+9DJ8T2HbYI Dxn9U6e VNAMPq3uVb/ RFUEr ENEMIPU7Pn\WG ¢12SZr e4ZEcw8TI 45NKN d/ NZ
ZD97bcqL5gEV7 SVHspH dZKno9vA86aEkvMs9P53Ri Jt r usHNLFKE 9+4JqSr dcVLKMzIVAr 3z5E
ohwHh9/ hzd7hguc 6619z 71 gk T7WEpve/ EBRAenOny3HgHY7Bg7i 3Aky X6 YSkoAncdVXMImMMb7
Ov5eBgy Bzs8Pp5/ 3dALX wAOTYj xshk6Y6LA6 TAQROgRFwY nC1RILGECRr t 33knY\VyB1l Jy

JxT8ut PKy DOEKFRHh57N KThFhBKc1l Gcd@@cr H f pXawx 6 YouQyQBWEdsqV@1 ahY4+ gbBTPnG
DyZkKz9yy27ZKVj DROSHAku8el vEWBE40XTJI3gF/ mbwCGh3cypr ahLgRXboy8eoEQ 3ubQrirzMy

+bh+Nr sRf zf FV50CcpJE6DY v YR 4z OruKk 3FbGH NUIzAAor 920V/ Opr t YeS58ZPWBC7gwxI NaW
OxdMQ/+pgE3NZVM p5CGeZl SI MBQ XD49n4t qopSl soK+ei wPCDKxp992+6/ uJhhVHHBI 0Qzuy 6
CcDM

dCIDG/nMVENVQUZVKi 3+t b92f QbW xMiCabNnz 3j Tl Kk2uhnB59j qOhr a8gHHX nnu4ebj Zj zf

Rdk@3Godi TMOHDNQATH vT1PBXgor Tf UMa4Zj pt vzFul HSI 4eQags4Z8FAX2QAr 8XGHRkhBwox

r hj Yi CDBpkNnpEi FNhWATT3bwk AUFht 0Dg6836kwHf xeLXKAz3T6qyNQz T+l ar SXUxrt / Tl j wDP

R3vg4G-4RzbH WAIWQ US/ 9Qe/ N3aegEEEvXxPvo9f W</ Subj ect >
</ Logi nSt at us>

</ Response>

</ Aut hCont ext >

Service Programming Interfaces

Identity Server provides the capability to plug new, Java-based authentication
modules into its framework allowing proprietary authentication providers to be
managed using the Identity Server console. Custom authentication modules must
first be created using Java and, once created, can be added to the list of available
authentication modules.

NOTE For instructions on other files needed to plug-in a custom authentication module,
see “Integrating A Custom Authentication Module” on page 145.

Chapter 4 Authentication Service 173

Authentication Programming Interfaces

174

New authentication modules are added by using the

com i pl anet . aut henti cati on. spi package. The SPI implements the JAAS

Logi nMbdul e, and provides additional methods to access the Authentication
Service and module configuration properties files. Because of this architecture, any
custom JAAS authentication module will work within the Authentication Service.

NOTE This guide does not document the JAAS. For more information on these APIs, see
the Java Authentication And Authorization Service Developer's Guide. Additional
information can be found at ht t p: // j ava. sun. com product s/ j aas/ .

Implementing A Custom Authentication Module

Custom authentication modules extend the

com sun. i dentity. aut henticati on. spi . AMLogi nModul e class. The class must
also implement the i nit (), process() and get Pri nci pal () methods in order to
communicate with the authentication module configuration files. The callbacks are
then dynamically generated based on this file. Other methods that can be defined
include set Logi nFai | ur eURL and set Logi nSuccessURL which defines URLSs to
send the user to based on a failed or successful authentication, respectively.

NOTE To make use of the account locking feature with custom authentication modules,
the | nval i dPasswor dExcept i on exception should be thrown when the
password is invalid. For more information on account lockout, see “Account
Locking” on page 123.

Identity Server contains a sample exercise for integrating a custom authentication
module with files that have already been created. This sample documents the
procedure to integrate an authentication module into the Identity Server
deployment. All the files needed to compile, deploy and run the sample
authentication module can be found in the

IdentityServer_base/ SUN\VAnT sanpl es/ aut hent i cat i on/ provi der s directory. The
instruction file is the Readne. ht ni file in the same directory. The following
sections will use files from this sample as example code.

Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Implement The Principal Class

After following the procedures in “Configuring The Authentication Module” on
page 147, the next step is to write a Principal class which implements

java. security. Principal ; in the sample, the constructor takes the username as
an argument and represents the authenticated user. If authentication is successful,
the module will return this principal to the Authentication Service which extracts
information for inclusion into the session token. Code Example 4-32 illustrates this
implementation with the Sanpl ePri nci pal . j ava code.

Code Example 4-32 SamplePrincipal.java Code

package comi pl anet.am sanpl es. aut henti cati on. provi ders;
inport java.io.lCException;

i nport javax.security.auth.*;
i nport javax.security.auth.login.*;
i nport | avax.security.auth. call back. *;

i nport java.security.Principal;

public class Sanpl ePrincipal inplenents Principal, java.io.Serializable {

/**
* @erial
*/

private String nang;

public Sanpl ePrincipal (String nane) {
if (nane == null)
throw new Nul | Poi nt er Exception("illegal null input");

thi s. nane = nane;

/**

* Return the LDAP username for this <code>Sanpl ePrinci pal </ code>.
*

* <p>
*

* @eturn the LDAP usernane for this <code>Sanpl ePri nci pal </ code>
*/

public String getNane() {
return nane;

/**

* Return a string representation of this
*<code>Sanpl ePri nci pal </ code>.

* <p>

*

Chapter 4 Authentication Service 175

Authentication Programming Interfaces

Code Example 4-32 SamplePrincipal.java Code (Continued)

* @eturn a string representation of this
* <code>Sanpl ePri nci pal </ code>.
*/

public String toString() {

return("SanplePrincipal: " + nane);
}
/**
* Conpares the specified (hject with this
* <code>Sanpl ePri nci pal </ code> for equality. Returns true if
* the given object is also a <code>Sanpl ePri nci pal </ code>
* and the two Sanpl ePrincipal s have the same user nane.
*
* <p>
*
* @aramo (hject to be conpared for equality with this
* <code>Sanpl ePri nci pal </ code>.
*
* @eturn true if the specified Chject is equal equal to this
* <code>Sanpl ePri nci pal </ code>.
*/
publ i c bool ean equal s(Chj ect 0) {
if (o ==null)
return fal se;
if (this == o)
return true;
if (!(o instanceof SanplePrincipal))
return fal se;
Sanpl ePrinci pal that = (Sanpl ePrincipal)o;
if (this.getName().equal s(that.getName()))
return true;
return fal se;
}
/**
* Return a hash code for this <code>Sanpl ePri nci pal </ code>.
*
* <p>
*
* @eturn a hash code for this <code>Sanpl ePrinci pal </ code>.
*/
public int hashCode() {
return nane. hashCode();
}

176 Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Implement The LoginModule Interface

Following the implementation of the Principal Class,

com sun. i dentity. aut henti cati on. spi . AMLogi nModul e must be subclassed
and theinit(), process(), and get Pri nci pal () methods called.

AM_ogi nMbdul e is an abstract class that provides the methods to access Sun Java
System ldentity Server services and the authentication module configuration file.
(AM_ogi nMbdul e implements the JAAS Logi nhbdul e.)

public void init(Subject subject, Map sharedState, Map options); init() isan
abstract method used to initialize the Logi nModul e with the relevant information.
If the Logi nMbdul e does not understand some of the data stored in the

shar edSt at e or opt i ons parameters, it will be ignored. This method is called by
AM_ogi nMbdul e after the module has been instantiated, and prior to any calls to its
other public methods. The method implementation should store away the
provided arguments for future use. The i ni t () method may peruse the provided
shar edSt at e to determine what additional authentication states were provided by
other LoginModules; it may also traverse through the provided options to
determine what configurations were defined to affect the LoginModule’s behavior.
It may save option values in variables for future use.

public int process(javax.security.auth.callback.Callback]] callbacks, int state)
The process() method is called to authenticate a Subject. This method
implementation performs the actual authentication. For example, it may prompt
for a user name and password, and attempt to verify the password against a
database. If the LoginModule requires some form of user interaction (retrieving a
user name and password, for example), it should be accomplished here.
(LoginModules should remain independent of the different types of user
interaction.) The process() method should invoke the handl e method of the
javax.security.auth.callback to perform the user interaction and set the appropriate
results (user name, password, etc.). The AMLogi nModul e will then internally pass
an array of appropriate Callbacks (a NaneCal | back for the user name, a

Passwor dCal | back for the password, et. al.) to the Authentication User Interface
which will perform the requested user interaction and set the appropriate values in
the Callbacks. Consider the following steps when writing the pr ocess() method.

1. Perform the authentication.
2. Ifthe authentication is successful, save the principal data.
3. Return -1 if the authentication succeeds.

4. Throw alogi nExcepti on (such as AuthLoginException) or return the relevant
state specified in the authentication module configuration file if the
authentication fails.

Chapter 4 Authentication Service 177

Authentication Programming Interfaces

5. If multiple states are available to the user, the Callback array from a previous
state may be retrieved by using the get Cal | back(i nt state) method. The
underlying login module keeps the Cal | back[] from the previous states until
the login process is completed.

6. If amodule writer needs to substitute dynamic text in the next state, the writer
could use the get Cal | back() method to get the Cal | back[] for the next state
and modify the output text or prompt. Calling r epl aceCal | back() will
update the Callback array. This allows a module writer to dynamically
generate challenges, passwords or user IDs.

NOTE Each authentication session creates a new instance of the LoginModule class. The
reference to the class will be released once the authentication session has either
succeeded or failed. It is important to note that any static data or reference to any
static data in LoginModule must be thread-safe.

public Principal getPrincipal(); This method should be called only once at the
end of a successful authentication session. A login session is deemed successful
when all pages in the authentication module’s credentials file have been sent and
the module has not thrown an exception. This method retrieves the authenticated
token string that the user will be known by in the Identity Server environment.

Code Example 4-33 illustrates the LoginModuleSample.java code.

Code Example 4-33 LoginModuleSample.java Code

package comi pl anet.am sanpl es. aut henti cati on. provi ders;

inport java.util.Map;

i nport | avax.security. auth. Subject;

i nport javax.security.auth. cal | back. Cal | back;

i nport | avax.security. auth. cal | back. NaneCal | back;

i nport javax.security.auth. cal | back. Passwor dCal | back;

i nport javax.security.auth.login.Logi nExcepti on;

inport comsun.identity.authentication.spi.AMogi nMdul e;
inport comsun.identity.authentication.spi.AuthLogi nExcepti on;

public class Logi nModul eSanpl e ext ends AM.ogi nModul e {

private String userTokenld;

private String userNang;

private String |astNang;

private java.security.Principal userPrincipal = null;

public Logi nMdul eSanpl e() throws Logi nException{
Systemout . printl n("Logi nMdul eSanpl e()");

178 Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Code Example 4-33 LoginModuleSample.java Code (Continued)

public void init(Subject subject, Map sharedState, Map
options) {
Systemout. println("Logi nMdul eSanpl e initialization");

public int process(Callback[] callbacks, int state) throws
Aut hLogi nException {
int currentState = state;

if (currentState == 1) {
user Nane = ((NanmeCal | back) cal | backs[0]). get Nare() ;
last Nane = ((NaneCal | back)

cal | backs[1]). get Nane();

if (userNane.equal s("") || |astNarme.equal s("")) {
t hrow new Aut hLogi nExcept i on("nanmes nust not
be enpty");
return 2;
} elseif (currentState == 2) {
Systemout. println("Replace TExt first: " +
user Nane +
" last: " + lastNane);
Il set #REPLACE# text in next state
Cal | back[] cal | backs2 = get Cal | back(3);
String nsg =
((NameCal | back) cal | backs2[0]). get Pronpt () ;
int i = nsg.indexCf ("#REPLACE#") ;

String newMsg = nsg.substring(0, i) + userNane +
nsg. substring(i+9);
repl aceCal | back(3, 0, new NanmeCal | back(newMsg));
Il set #REPLACE# in password cal | back
msg =
((Passwor dCal | back) cal | backs2[1]) . get Pronpt () ;
i = msg.indexOr ("#REPLACEH") ;
newMsg = nsg.substring(0, i) + |astNane +
nmsg. substring(i +9);
repl aceCal | back(3, 1, new PasswordCal | back(newMsg,
false));
return 3;
} elseif (currentState == 3) {
int len = call backs. | ength;
for (int i=0; i<len; i++) {
if (callbacks[i] instanceof NameCallback) {
Systemout.println("Callback Pronpt-> " +
((NameCal | back)
cal | backs[i]).getPronmpt());
} else if (callbacks[i] instanceof
Passwor dCal | back) {
Systemout. println("Callback Pronpt-> " +
((Passwor dCal | back)

cal I backs[i]).getPronpt());

Chapter 4 Authentication Service 179

Authentication Programming Interfaces

Code Example 4-33 LoginModuleSample.java Code (Continued)

return 4,
} elseif (currentState == 4) {
int len = call backs. | ength;
for (int i=0; i<len; i++) {
if (callbacks[i] instanceof NaneCallback) {
Systemout. println("Cal | back Val ue-> " +
((NarmeCal | back)

cal | backs[i]).getName());
} else if (callbacks[i] instanceof

Passwor dCal | back) {
Systemout. println("Cal | back Val ue-> " +
((Passwor dCal | back)

cal | backs[i]). getPassword());

user Tokenl d = user Narre;
/] return -1 for login successful
return -1;

throw new Aut hLogi nException("lnvalid state : " +
currentState);

}

public java.security.Principal getPrincipal() {

if (userPrincipal !'=null) {
return userPrincipal ;

} else if (userTokenld !'=null) {

user Princi pal = new Sanpl ePri nci pal (user Tokenl d);

return userPrincipal ;

} else {
return null;

Implementing A Pure JAAS Module

Identity Server supports pure JAAS pluggable authentication modules. Pure JAAS
modules extend the JAAS Logi nMbdul e rather than AMLogi nMbdul e. Details on
how to write a JAAS module can be found in the LoginModule Developer’s Guide.
A pure JAAS module is plugged in to the Authentication framework using the
Authentication API as detailed in “Implementing A Custom Authentication
Module” on page 174. Code Example 4-34 is a sample of how the code can be

written.

180 Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Code Example 4-34 JAAS LoginModule Sample Code

package com sun.identity.authentication. nodul es. sanpl ¢;
inport java.util.*;
inport java.io.lCException;
inport javax.security.auth.*;
inport javax.security.auth. call back. *;
inport javax.security.auth.login.*;
inport javax.security.auth.spi.*;
inport comiplanet.amutil.*;

/**
* <p> Thi s sanpl e Logi nMbdul e aut henti cates users with password.
* <p> This Logi nMdul e only recogni zes one user: testUser
* <p> testUser's password is: testPassword
* <p> If testlser successfully authenticates itself,
* a <code>Sanpl ePri nci pal </ code> with the testUser's user nane
* is added to the Subject.
* <p> Thi s Logi nMbdul e recogni zes the debug option.
* |f set totrue in the login Configuration,
* debug messages will be output to the output stream Systemout.
*/
public class Sanpl eLogi nModul e i npl ement s Logi nhodul e {
/] initial state
private Subject subject;
private Cal | backHandl er cal | backHandl er;
private Map sharedState;
private Map options;
private comiplanet.amutil.Debug debug;
/'l configurabl e option
/1 the authentication status
private bool ean succeeded = fal se;
private bool ean conmit Succeeded = fal se;
/'l usernane and password
private String usernang;
private char[] password,;
/] testUser's Sanpl ePrinci pal
private Sanpl ePrincipal userPrincipal;
/**
* |nitialize this <code>Logi nMdul e</ code>.
* <p>
* (@aram subj ect the <code>Subj ect </ code> to be authenti cat ed.
* (@aram cal | backHandl er a <code>Cal | backHandl er </ code> for
* communi cating with the end user (pronpting for user names and
* passwords, for exanple). <p>
*
* (@aram sharedState shared <code>Logi nMdul e</ code> state. <p>
*
* @aramoptions options specified in the login
* <code>Confi guration</code> for this particul ar
* <code>Logi nMvdul e</ code>.
*/

Chapter 4 Authentication Service 181

Authentication Programming Interfaces

Code Example 4-34 JAAS LoginModule Sample Code (Continued)

public void initialize(Subject subject, CallbackHandl er

cal | backHandl er,
Map sharedState, Map options) {

debug =

comiplanet.amutil . Debug. get | nst ance(" Sanpl eLogi nMbdul e") ;
thi s.subject = subject;
this. cal | backHandl er = cal | backHandl er;
this.sharedState = sharedSt at e;
this.options = options;

/] initialize any configured options
debug. message(" Sanpl eLogi nMbdul e - initialize");

}

/**
* Authenticate the user by pronpting for a user name and password.
* <p>
* @eturn true in all cases since this <code>Logi nMdul e</ code>
* shoul d not be ignored.
* @xception Fail edLogi nException if the authentication fails. <p>
* @xception Logi nException if this <code>Logi nMdul e</ code>
*

is unable to performthe authentication.

public bool ean login() throws Logi nException {
/1 pronpt for a user name and password
if (callbackHandl er == null) {
t hr ow new Logi nException("Error: no Cal | backHandl er
available " +
"to garner authentication infornation fromthe

user");

}

Cal | back[] call backs = new Cal | back[5] ;

cal | backs[0] = new NaneCal | back("user name: ");

cal | backs[1] = new Passwor dCal | back("password: ",
fal se);

LanguageCal | back |l = new LanguageCal | back();

Text Qut put Cal | back toc = new Text Qut put Cal | back

(Text Qut put Cal | back. | NFCRVATI ON “This is Sanpl e

Logi n Modul e");

java.util.Local e | ocal e = new
java.util.Local e("zh","TW);

Text I nput Cal | back tic = new Text | nput Cal | back("Ent er
your nane","abc");

tic.setText ("fdfdfdfd");

I'l.setLocal e(l ocal e);
cal | backs[2]
cal | backs[3]
cal | backs| 4]

toc;
tic;

try {

182 Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Code Example 4-34 JAAS LoginModule Sample Code (Continued)

cal | backHandl er. handl e(cal | backs);
usernane = ((NaneCal | back) cal | backs[0]) . get Narre() ;
char[] tnpPassword =

((Passwor dCal | back) cal | backs[1]). get Passwor d();

java.util.Local e I = ((LanguageCal | back)
cal | backs[2]). get Local e();

String input = ((TextlnputCallback)

cal | backs[4]). getPrompt();

debug. message("usernane is .. + usernane);
if (I '=null) {
debug. message("locale is .. :" +1.toString());

}

if (input '=null) {
debug. message("User has entered" + input);

return true;
} catch (java.io.lCException ioe) {
t hrow new Logi nException(ioe.toString());
} catch (UnsupportedCal | backException uce) {
throw new Logi nException("Error: " +

uce. get Cal I back().toString() +

not available to garner authentication
information " +
"fromthe user");
} catch (Exception ex) {
ex. print StackTrace();
t hrow new Logi nException(ex.toString());

*
*

<p> This method is called if the Logi nContext's

overal | authentication succeeded

(the relevant REQU RED, REQU SITE, SUFFIC ENT and CPTI ONAL
Logi nMbdul es succeeded) .

<p> If this LoginMdul ' s own authentication attenpt

succeeded (checked by retrieving the private state saved by the
<code>l ogi n</ code> nethod), then this nethod associates a
<code>Sanpl ePri nci pal </ code>

with the <code>Subject</code> | ocated in the

<code>Logi nMbdul e</ code>. |f this Logi nMbdul e's own
authentication attenpted failed, then this nmethod renoves

any state that was originally saved.

<p>
@xception Logi nException if the coomt fails.

@eturn true if this Logi nMbdul e's own |ogin and conm t
attenpts succeeded, or false otherw se.

EE R S R R R

*
-

Chapter 4 Authentication Service 183

Authentication Programming Interfaces

184

Code Example 4-34 JAAS LoginModule Sample Code (Continued)

public bool ean comit() throws Logi nException {
Sanpl ePrinci pal principal = new Sanpl ePri nci pal ("abc");

i f (debug. nessageEnabl ed()) {
debug. message("comit.... SUCCESSFUE .." +

principal.toString());
if (principal '=null &%
I'subj ect. get Princi pal s(). contains(principal))

subj ect . get Pri nci pal s().add(principal);
debug. mnessage ("Done added user to principal");

return true;

*
*

<p> This nethod is called if the Logi nContext's

overal | authentication fail ed.

(the relevant REQU RED, REQU SI TE, SUFFI O ENT and CPTI ONAL
Logi nMbdul es di d not succeed).

<p> If this Logi nMdul ' s own authentication attenpt
succeeded (checked by retrieving the private state saved by the
<code>l ogi n</ code> and <code>conmit </ code> et hods),
then this nethod cleans up any state that was originally saved.

@xception Logi nException if the abort fails.

@eturn false if this Logi nMbdul €' s own | ogin and/or conmit
attenpts failed, and true otherw se.

L T T

*
~

public bool ean abort() throws Logi nException {
return true;
}

/**

* Logout the user.
*

* <p> This method renoves the <code>Sanpl ePri nci pal </ code>
* that was added by the <code>commit </ code> et hod.
*

* @xception Logi nException if the | ogout fails.
*

* @eturn true in all cases since this <code>Logi nMdul e</ code>
* shoul d not be ignored.
*/
public bool ean I ogout () throws Logi nException {
return true;

Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Implementing Authentication Post Processing

The Authention SPI includes the AMPost Aut hPr ocessl nt er f ace which can be

implemented for post-processing tasks. The AMPostProcessinterface Javadocs are

available at:

IdentityServer_base/ SUN\Vni docs/ comd sun/ i denti ty/ aut henti cati on/ spi / AMPost

Aut hProcessl nt er f ace. ht ni

AMPost Aut hPr ocessl nt er f ace can be implemented for post authentication

processing on authentication success, failure and logout. The SP1 is configurable at
the organization , service and role levels. The Authentication Service invokes the

post processing SPI methods on successful, failed authentication and logout.
The AMPost Processl nt erface class has 3 methods:

= onlLoginSuccess

e onLoginFailure

= onLogout

onLoginSuccess

This method should be implemented for post-processing after a successful
authentication. Authentication Service will invoke this method on successful
authentication.

Method signature is:

public void onLogi nSuccess(Map request Par anmsMap,
Ht t pSer vl et Request request,
Ht t pSer vl et Response response,
SSOToken ssoToken)

throws Aut henticati onExcepti on;
public void onLogi nSuccess(Mp request Par anmsMap,

Ht t pSer vl et Request request,
Ht t pSer vl et Response response,
SSOToken ssoToken)

throws Aut henticati onExcepti on;

Chapter 4 Authentication Service

185

Authentication Programming Interfaces

186

where
o request Map is a map containing H t pSer vl et Request parameters
o request HtpServl et Request object
o response HtpServl et Response obj ect

comsun. identity.authentication.spi.AuthenticationException isthrownon
error.

onLoginFailure

This method should be implemented for post processing after a failed
authentication. Authentication Service will invoke this method on failed
authentication.

Method signature is:

public void onLogi nFai | ure(Map request Par amsMap,
H t pSer vl et Request request,
Ht t pSer vl et Response response)

throws Aut henticati onExcepti on;

where
o request Map is a map containing H t pSer vl et Request parameters
o request H t pServl et Request object
o response HtpServl et Request object

com sun. identity.authentication.spi.AuthenticationException isthrown on
error.

onLogout

This method should be implemented for post-processing on a logout request.
Authentication Service will invoke this method on logout.

Identity Server 2004Q2 « Developer's Guide

Authentication Programming Interfaces

Method signature is:

public void onLogout (H t pServl et Request request,
Ht t pSer vl et Response response,
SSOToken ssoToken)

throws Aut henticati onExcepti on;

where

o request HttpServletRequest object is a map containing
Ht t pSer vl et Request parameters

o response HtpServl et Response object
o ssoToken authenticated user's single sign on token

comsun.identity.authentication.spi AuthenticationException isthrownon
error.

A post-processing task might include adding attributes to a user’s session after
successful authentication, sending notification to an administrator after failed
authentication, or general clean-up after logout (for example: clearing cookies or
logging out other system components). The Core Authentication Service contains
the Authentication PostProcessing Class attribute which contains the
authentication post-processing class name as its value. Custom post processing
interfaces can also be implemented. Code Example 4-35 is sample code that uses
the post-processing interface to adding the property TEST1 and its value
TESTVALUEL to the user’s session token.

Code Example 4-35 Sample Code For Authentication Post Processing

/I package com sun.identity.authentication.spi;

inport comsun.identity.authentication.spi.*;
inport comiplanet.sso. *;

inport java.util.*;

i nport | avax.servlet.*;

i nport javax.servlet.http.*;

i nport comiplanet.services. util. Debug;

/

*

The <code>AMPost Aut hProcessl nt erf ace</ code> interface needs to
be i nplenented by services and applications to do post

aut henti cation processing.

The post processing can be per CRGAN ZATION or SERVICE or ROLE

* % X F

Chapter 4 Authentication Service 187

Authentication Programming Interfaces

188

Code Example 4-35 Sample Code For Authentication Post Processing (Continued)

*/

public class Sanpl eSet upSessi on i npl enents AMPost Aut hProcessl nter f ace
{

private static Debug debug = Debug. get | nst ance("sanpl eSessi onSet up");

/** Post processing on successful authentication.
* @aram request ParansMap - map contai ns HtpServl et Request pararmeters
* @aram ssoToken - user's session
* @xception Authentication Exception when there is an error
*
/

public void onLogi nSuccess(Map request Par ansMap,
H t pServl et Request request,
H t pSer vl et Response response,
SSOroken ssoToken)
throws AuthenticationException

debug. message(" Sanpl eSet upSessi on: onLogi nSuccess cal | ed");
try {
ssoToken. set Property("TEST1", "TESTVALUEL");
} catch (Exception ex) {
debug. message(" Sanpl eSet upSessi on: onLogi nSuccess exception while
setting
property :"+ex);

}

/** Post processing on failed authentication.
* @aram request ParansMap - nmap contains HtpServl et Request paraneters
* @xception AuthenticationException when there is an error
*/

public void onLogi nFai | ure(Map request Par ansMap,
H t pServl et Request req,
H t pSer vl et Response res)
throws Authenticati onException

debug. message(" Sanpl eSet upSessi on: onLogi nFai l ure call ed");

/** Post processing on Logout.
* @aramrequest ParanshMap - map contains Ht pServl et Request paraneters
* @param H t pServl et Request - Servlet request
* @aram H t pServl et Response - Servlet response
* @aram ssoToken - user's session
*/

public void onLogout (Ht pServl et Request req,
H t pSer vl et Response res,
SSOroken ssoToken)
throws Aut henti cationException

debug. message(" Sanpl eSet upSessi on: onLogout cal | ed");

Identity Server 2004Q2 « Developer's Guide

Authentication Samples

Code Example 4-35 Sample Code For Authentication Post Processing (Continued)

}
}

AMPost Pr ocessl nt er f ace samples and readme file are available on UNIXat
IdentityServer_base/ SUNVni sanpl es/ aut henti cati on/ spi / post process.,

or on Linux at

IdentityServer_base/ sun/ i dentity/ sanpl es/ aut henti cati on/ spi/ post process.
The readme file contains the information on how to compile the SPI class, and also
includes configuration details.

Authentication Samples

Authentication Service samples have been provided and can be found in the
IdentityServer_base/ SUN\VAnT sanpl es/ aut hent i cat i on directory. They include:

= Certificate Authentication Sample
< LDAP Authentication Sample

< MSISDN (Wireless) Module

= SPI Sample

< JDBC Authentication Sample

< JCDI Authentication Sample

Certificate Authentication Sample

The IdentityServer_base/ SUNVanT sanpl es/ aut hent i cati on/ Cert directory
provides a sample source code file, Cert Logi n. j ava file that illustrates a Java
application which utilizes digital certificates for authentication. The instruction file
is the readne. ht m file in the same directory.

Chapter 4 Authentication Service 189

Authentication Samples

190

LDAP Authentication Sample

The ldentityServer_base/ SUNVanT sanpl es/ aut hent i cat i on/ LDAP directory
provides a sample source code file, LDAPLogi n. j ava file that illustrates a Java
application which authenticates to the LDAP module. This sample can be easily
modified to authenticate to other existing or customized authentication modules.
The instruction file is the r eadne. ht ni file in the same directory.

MSISDN (Wireless) Module

This sample details the steps to integrate a custom login module based on the
Mobile Station Integrated Services Digital Network (MSISDN). This module will
make it possible to perform non-interactive authentication based upon the unique
ID of a particular handset. All the files needed to compile, deploy and run the
module can be found in the

IdentityServer_base/ SUN\VAM sanpl es/ aut hent i cati on/ nsi sdn directory. The
instruction file is the Readne. ht ni file in the same directory.

SPI Sample

This sample details the steps to integrate a sample login module into the Identity
Server deployment. All the files needed to compile, deploy and run the sample
authentication module can be found in the

IdentityServer_base/ SUN\VAnT sanpl es/ aut hent i cat i on/ provi der s directory. The
instruction file is the Readne. ht ni file in the same directory.

JDBC Authentication Sample

Java database connetivity (JDBC) technology provides authentication of users
against an external database such as Oracle, MySQL, or Pointbase databases. This
module leverages container-provided connection pools and has a pluggable
password transform that translates encryption for varying password formats. This
module also provides for configuration of the SQL statement that is used to
retrieve a password from the database.

The JDBC technology authentication sample is located in the
IdentityServer_base/ sanpl es/ aut henti cati on/ spi/j dbc
directory. The JDBC sample provided with Identity Server is not an officially
supported authentication module in this release.

Identity Server 2004Q2 « Developer's Guide

Authentication Samples

JCDI Authentication Sample

The JCDI Authentication module provides for authentication of Java Card
(Certificate and Serial Number) using
com sun. jndi. |l dap. LdapCtxFactory.

The JCDI authentication sample demonstrates the use of Java Card authentication
with Identity Server. The sample has two components:

< Remote client
« Server JCDI authentication module

The remote client component is located in the following directory:
identityproduct/ sanpl es/ aut henti cati on/ api /| cdi

The server JCDI authentication module is located in the following directory:
identityproduct/ sanpl es/ aut henti cati on/ spi/j cdi

The JCDI sample provided with Identity Server is not an officially supported
authentication module in this release.

Chapter 4 Authentication Service 191

Authentication Samples

192 Identity Server 2004Q2 « Developer's Guide

Chapter 5

Single Sign-On And Sessions

The Session Service is a key component of the Sun Java™ System Identity Server
single sign-on (SSO) solution that enables users to authenticate once yet access
multiple resources. In other words, successive attempts by a user to access
protected resources will not require them to provide authentication credentials for
each attempt. This chapter explains the Session Service, the SSO solution, and the
SSO APIs. It contains the following sections:

e “Overview”

= “Cookies and Sessions” on page 196

= “Session Structure” on page 196

e “Cross-Domain Support For SSO” on page 198
= “SSO API” on page 201

e “SSO Samples” on page 219

Overview

A user wanting to access resources protected by Identity Server must first pass
validating credentials through the Authentication Service. A successful
authentication gives the user authorization to access the protected resources, based
on their assigned access privileges or policy. If a user wants to access several
resources protected by Identity Server, the Session Service provides proof of
authorization so there is no need to re-authenticate; this is single sign-on. As
different DNS domains generally have common users who need to gain access to
their services in a single session, Identity Server supports a cross-domain single
sign-on functionality.

193

Overview

NOTE In an Identity Server deployment, all Identity Server instances must be located in

one primary cookie domain. The deployment may have multiple instances for
high-availability but they may not be located in multiple DNS domains.

The Session Service provides the functionality to maintain information about an
authenticated user’s session across all applications participating in a single sign-on.
It is responsible for:

Generating session identifiers.

Maintaining a master copy of the session’s state information.

Implementing the time-dependent behavior of sessions.

Implementing the session’s life cycle events (i.e.; logout, session destruction).
Generating the session’s life cycle event notifications.

Implementing session failover facilities.

NOTE The Sun Java System ldentity Server Deployment Guide contains a detailed

section explaining the complete life cycle of a user session.

Session Service Concepts

The following concepts are closely tied together when discussing the Session
Service and SSO. To understand the differences between them, consider the
following definitions and how they will be used in this chapter.

Session

A session is a data structure held in the Identity Server memory that contains
session information about an authenticated user.

Session ID

A session identifier (ID) is an opaque, globally unique string that programmatically
identifies a specific session instance. With the session ID, a resource is able to
retreive session information.

194 Identity Server 2004Q2 « Developer's Guide

Overview

SSOToken

An SSOToken is a data structure, defined by the SSO API, that represents a
snapshot of the session local to the particular application’s memory.

Single Sign-On Process

The next sections describe the process that occurs when a user attempts to gain
access to a resource protected by Identity Server.

Contacting A Protected Resource

When a user attempts to access a protected resource via a web browser, a policy
agent installed on the server that hosts the resource intercepts the request and,
inspects it to see if it contains a Session ID. If none exists, the request is redirected
to Identity Server where the Session Service creates a Session for the requesting
user. Initially, the session is in an invalid state and does not contain user identity
information. It does though contain the aforementioned randomly-generated
session ID to represent the user’s session. Once the session/session ID is created,
the Authentication Service sets a cookie with the session ID only and sends it to the
client browser. Simultaneously, a login page is generated by the Authentication
Service and returned to the user based upon their configured method of
authentication (LDAP, RADIUS, etc.).

NOTE For more information on the different methods of authentication, see
“Authentication Methods” on page 105 in Chapter 4, “Authentication Service,” of
this manual.

Providing User Credentials

The user, having received the login page (as well as the session ID) fills in the
appropriate credentials based on the type of authentication. After entering their
credentials, the data is sent to the authentication provider (LDAP server, RADIUS
server, etc.) for verification. Once the provider has successfully verified the
credentials, the user is authenticated. The user’s specific session information is
retrieved (using the session ID) and the session state is set to valid. The user can
now be redirected to the resource they were attempting to access.

NOTE In reality, the user can only be redirected to the resource if their assigned policy
permits it. More information on the Policy Service can be found in Chapter 8,
“Policy Management,” of this manual.

Chapter 5 Single Sign-On And Sessions 195

Cookies and Sessions

Cookies and Sessions

Session

A cookie is an information packet generated by a web server and passed to a web
browser. It maintains information about the user’s habits with regards to the web
server by which it has been generated. It does not imply that the user is
authenticated. Cookies are domain-specific; for example, a cookie generated by
DomainA cannot be used in DomainB. Cookies will only be passed to a server in
the domain for which the cookie is set. Conversely, servers may only set a cookie in
their own domain.

In an Identity Server deployment, the cookie contains the Session ID, an encrypted
string generated by the Session Service. With the session ID, a protected resource
can get access to the Session where the user’s session information is stored. This
information is then used for session validation.

NOTE Details on the attributes stored in the session token can also be found in
“Authentication Methods” on page 105 in Chapter 4, “Authentication Service,” of
this manual.

Structure

When a user is successfully authenticated they are assigned a valid session. This
session contains a number of attributes and properties that define the user’s
identity and some time-dependent behaviours (for example, the maximum time before
the session expires). The following sections detail these attributes.

NOTE The values of most of these attibutes and properties are set by services other than
the Session Service (primarily, the Authentication Service). The Session Service
only provides storage for session information and enforces some of the
time-dependent behaviour.

Fixed Attributes

The session token contains the following fixed attributes concerning the
authenticated user:

= | D—This is the Session ID, a randomly-generated session identifier.
= (i entDomai n—This is the DNS domain in which the client is located.

e dientlD—This is the user DN or the application’s principal name.

196 Identity Server 2004Q2 « Developer's Guide

Session Structure

= Type—This is the user or application type.
= State—This is the state of the session: valid, invalid, destroyed or inactive.

« maxl dl eTi me—This is the maximum time in minutes without activity before the
session will expire and the user must reauthenticate.

e naxSessi onTi me—This is the maximum time in minutes before the session
expires and the user must reauthenticate.

« maxCachi ngTi ne—This is the maximum time in minutes before the client
contacts Identity Server to refresh cached session information.

e |atest AccessTi me—This is the last time the user has accessed the resource.

e creationTi me—This is the time at which the session token was set to a valid
state.

Protected And Custom Properties

The session token also contains an extensible set of properties that are divided into
two subsets: protected (or core) properties and custom properties. Protected
properties are set by Identity Server. Custom properties are set remotely by any
application that knows the Session ID.

Protected Properties
The current protected properties are;

= (QOganizati on—This is the DN of the organization to which the user belongs.
e Princi pal —This is the DN of the user.

e Princi pal s—This is a list of names to which the user has authenticated. (This
property may have more then one value defined as a pipe separated list.)

e |kerld—This is the user’'s DN as returned by the module, or in the case of
modules other than LDAP or Membership, the user name. (All Pri nci pal s
must map to the same user. The UserID is the user DN to which they map.)

e ker Token—This is a user name. (All Pri nci pal s must map to the same user.
The UserToken is the user name to which they map.)

e Host —This is the host name or IP address for the client.

= authLevel —This is the highest level to which the user has authenticated.

Chapter 5 Single Sign-On And Sessions 197

Cross-Domain Support For SSO

< AuthType—This is a pipe separated list of authentication modules to which the
user has authenticated (i.e. nodul el] nodul e2] nodul e3).

= Rol e—Applicable for role-based authentication only, this is the role to which
the user belongs.

= Servi ce—Applicable for service-based authentication only, this is the service to
which the user belongs.

e | ogi nURL—This is the client’s login URL.
e Host nane—This is the host name of the client.

= cooki eSupport —This attribute contains a value of true if the client browser
supports cookies.

= authl nst ant —This is a string that specifies the time at which the authentication
took place.

e SessionTi nedQut —This attribute contains a value of true if the session has
timed out.

Custom Properties

The custom properties currently used are:
= client Type—This is the device type of the client browser.
« Local e—This is the locale of the client.

e Char Set —This is the determined character set for the client.

Cross-Domain Support For SSO

198

Identity Server supports cross-domain SSO. A user authenticated to Identity Server
in one DNS domain can access resources in another, integrated DNS domain. This
cross-domain functionality is achieved using the Cross-Domain Controller servlet
in Identity Server and Policy Agents installed in web containers. The Controller
communicates with the policy agent that resides on servers where the protected
resources are kept.

NOTE The Authentication Service handles SSO requests while the Cross-Domain
Controller servlet handles cross-domain SSO requests.

Identity Server 2004Q2 « Developer's Guide

Cross-Domain Support For SSO

Policy Agents

A policy agent polices the web container on which a protected resource lives by
enforcing a user’s assigned policies. They are an integral part of the cross-domain
SSO functionality. Two types of policy agents are supported by Identity Server: the
web agent and the J2EE/Java agent. The web agent enforces URL-based policy
while the J2EE/Java agent enforces J2EE-based security and policy. Both types are
available for installation separately from Identity Server and can be downloaded.
Additional information can be found in the Sun Java System Identity Server Web
Policy Agents Guide and J2EE Policy Agents Guide . General information on the
Policy Service can be found in Chapter 8, “Policy Management,” of this manual.

Cross-Domain Controller

The Cross-Domain Controller is a servlet responsible for redirecting user requests.
The default URL for it is

http(s)://identity_server_host.domai n_name: port/anserver/cdcser vl et
. There are three scenarios where the Controller comes into play:

1. Ifarequest for a protected resource contains no session ID, the agent redirects
the user to the Controller which, in turn, redirects the user to the appropriate
Authentication Service module. Assuming the user is authenticated, this
scenario would then follow the path outlined in either Step 2 or Step 3.

NOTE The authentication process itself is discussed in Chapter 4, “Authentication
Service,” of this manual.

2. Ifarequest for a protected resource already contains a session ID set in a
cookie for the same DNS domain in which the resource is deployed, the agent
retrieves it and sends an XML/HTTP request to the Naming, Session and
Policy Services to retrieve the identity, session and policy information for the
requesting user. The user is allowed or denied access to the resource based on
this information.

3. Ifarequest for a protected resource does not contain a session ID set in a cookie
for the same DNS domain in which the resource is deployed (i.e.: it carries a
session ID set in a different DNS domain from the one in which the Identity
Server is deployed), the agent redirects the request to the Controller with a
Liberty AuthnRequest in the query string. The Controller then finds the session
ID, extracts it from the cookie, places it in a Liberty AuthnResponse and sends
it back to the agent. The agent finds the session ID, extracts it from the

Chapter 5 Single Sign-On And Sessions 199

Cross-Domain Support For SSO

200

AuthnResponse, sets it in a cookie for the new domain, and sends an
XML/HTTP request to the Naming, Session and Policy Services to retrieve the
identity, session and policy information for the requesting user. The user is
allowed or denied access to the resource based on this information.

NOTE The Liberty AuthnRequest and AuthnResponse are part of the Federation
Management Protocols. For more information, see the Identity Server Federation
Management Guide.

A Cross-Domain SSO Scenario

In one scenario, the Identity Server instance for DomainA is its authentication
provider. A user authenticates to Identity Server in DomainA and, after
authentication, the session is set for DomainA. ServerB, on the other hand, is
protected by a policy agent talking to an Identity Server in DomainB.

NOTE This is just one scenario; it is not obligatory to have an installed instance of Identity
Server in both domains to use the cross-domain feature.

The ldentity Server instance in DomainB recognizes the DomainA instance as an
authentication provider. If UserA, after authenticating to DomainA, requests a
resource on ServerB, the policy agent for DomainB checks for a session ID and will
find that there is none (authorizing access to DomainB, that is). The agent then
redirects the request to the Cross-Domain Controller running with the Identity
Server instance in DomainB. The servlet, following the path outlined in Step 3 on
page 199, finds the session ID from DomainA, extracts it from the cookie, places it
in a Liberty AuthnResponse and sends it back to the agent. The agent finds the
session ID and sets a cookie for DomainB using the session ID. The agent then
sends an XML/HTTP request to the Naming, Session and Policy Services deployed
in DomainB. Since the instance of Identity Server in DomianB recognizes the
instance of Identity Server in DomainA as an authentication provider, DomainB
retrieves identity, session and policy information for the requesting user from
DomainA. The user is then allowed or denied access to the resource based on this
information.

NOTE Identity Server uses a combination of URL parameters and cookies to implement
cross-domain SSO. If a cookie is set in DomainA, the cookie value is carried over
to DomainB using the URL parameters, and a new cookie can be set for DomainB
with the same cookie name and value.

Identity Server 2004Q2 « Developer's Guide

SSO API

Enabling Cross-Domain Single Sign-On

As described, in order to exchange session information across two different
domains, Policy Agents and the Cross-Domain Controller communicate with each
other. By default, Identity Server is installed with the servlet. Policy agents, on the
other hand, are installed separately. When installing the agent, the option to
configure it for CDSSO must be selected. The cookie domain for the agent must be
configured after installation. This is done by editing the AMAgent . pr oper ti es file.
The com sun. am pol i cy. agent s. cooki eDomai nLi st property must be set with
the domain in which the agent is installed. If the field is left blank, the cookie
domain will be set to the FQDN of the web server on which the agent is installed.
Additional information on enabling cross-domain single sign-on can be found in
the Web Policy Agents Guide and the J2EE Policy Agents Guide.

SSO API

The Session Service provides Java and C API to allow external applications to
participate in the SSO functionality. All Identity Server services (except for
Authentication) require a valid session (programmatically referred to as SSOToken)
to process a HTTP request. External applications wishing to use the SSO
functionality must also use the SSOToken to authenticate the user’s identity. With
the SSO API, an external application can retrieve it and, in turn, the user’s identity,
session and policy information. The application then uses this information to
determine whether to provide user access to a protected resource.

After successfully authenticating to Identity Server, a user carries their Session 1D
with them using browser cookies or URL query parameters. Now, each time a user
requests access to a protected application, the application needs to verify their
identity. Assume a user authenticates to htt p: / / www. or gA. comi St or e
successfully and later tries to access ht t p: / / www. or gA. com Updat el nf o, a service
that is SSO-enabled. Rather than having the second application authenticate the user
again, it can use the API and the user’s session to determine if the user is already
authenticated. If the methods determine that the user has already been
authenticated (and the session is still valid), access to this page can be achieved.
Otherwise, the user would be prompted to authenticate again. The SSO API can
also be used to create or destroy a SSOToken, or to listen for SSOToken events. (An
event might be a SSOToken timing out because the user has reached the their
maximum time limit.) Following are both the Java API Overview and C API
Overview.

Chapter 5 Single Sign-On And Sessions 201

SSO API

Java API Overview

In Java, the main classes of the SSO API are SSOTokenManager , SSOToken and
SSOrokenLi st ener . The SSOTokenManager class is used to get, destroy, validate,
and refresh a session token which is represented by the SSOToken class. The
SSOrokenLi st ener class allows the application to be notified when a SSOToken
has become invalid, for example when a session has timed out.

SSOTokenManager Class

The SSOTokenManager class contains the methods needed to get, validate, destroy
and refresh session tokens. SSOTokenManager is implemented using the singleton
design pattern. In order to obtain an instance of SSOTokenManager , the
SSOrokenManager . get | nst ance() method must be called. An instance of
SSOrokenManager can then be used to instantiate an SSOToken object using one of
the overloaded forms of the cr eat eSSOToken() method.

The dest r oyToken() method would be called to invalidate and delete a token
when its session has ended. The i sVal i dToken() and val i dat eToken() methods
can be called to verify whether a token is valid, or authenticated. i sVal i dToken()
returns true or false depending on whether the token is valid or invalid,
respectively. val i dat eToken() throws an exception only when the token is
invalid; nothing happens if the token is valid. The r ef r eshSessi on() method
resets the idle time of the session. Code Example 5-1 illustrates one way in which
the SSOTokenManager class can be used.

Code Example 5-1 Sample Uses Of SSOTokenManager Code

try {
/* get an instance of the SSOTokenManager */

SSOTokenManager ssoManager = SSOTokenManager . get | nst ance() ;

/* The request here is the HtpServl et Request. Get
/* SSOToken for session associated with this request. */
SSOToken ssoToken = ssoManager . cr eat eSSOToken(request);

/* use isValid nmethod to check if token is valid or not.

* This nethod returns true for valid token, fal se otherw se. */
if (ssolvanager i sVal i dToken(ssoToken)) {

/* If token is valid, this information may be enough for
* sonme applications to grant access to the requested
* resource. Avalid user represents a user who is
* already authenticated. An application can further
* utilize user identity information to apply
* personalization |ogic.
*/
els
/*

} else {

Token is not valid, redirect the user |ogin page. */

}

202 Identity Server 2004Q2 « Developer's Guide

SSO API

Code Example 5-1 Sample Uses Of SSOTokenManager Code (Continued)

/* Aternative: use of validateToken method to check
* if tokenis valid */
try {
ssoManager . val i dat eToken(ssoToken);
/* handl e token is valid */
} catch (SSCException e) {
/* handl e token is invalid */

}

/*refresh session. idle time should be 0 after refresh. */
ssoManager . r ef reshSessi on(ssoToken) ;

} catch (SSCeException e) {
/* An error has occurred. Do error handling here. */

}

SSOTokenlID Interface
The SSOTokenl Dinterface is used to identify the SSOToken object.

CAUTION The string value of SSOTokenl Dis globally unique and must only be known to the
client browser, Identity Server and the application code. Exposing it to unauthorized
users or applications can lead to a security breach by allowing a malicious attacker
to impersonate a user.

SSOToken Interface

The SSOToken interface represents a single sign-on token returned from the
SSOrokenManager . cr eat eSSOToken() method, and contains information such as
the authenticated principal name, authentication method, and session information
(session idle time, maximum session time, etc.). The SSOToken interface has
methods to get predefined session information, such as get Aut hType() for the
authentication type, as well as a method get Propert y() to get any information
about the session, predefined or otherwise (for example, information set by the
application). The method set Propert y() can be used by the application to set
application-specific information in the session. The addSSOTokenLi st ener ()
method can be used to set a listener to be invoked when the session state has
become invalid.

CAUTION The methods get Ti meLeft () andget | dl eTi me() return values in
seconds while the methods get MaxSessi onTi ne() and
get Max| dl eTi ne() return values in minutes.

Chapter 5 Single Sign-On And Sessions 203

SSO API

204

Code Example 5-2 shows an example of SSOToken code.

Code Example 5-2 Sample Use Of SSOToken

/* get http request output streamfor output */
Servl et Qut put Stream out = response. get Qut put Strean();

/* get the sso token fromhttp request */
SSOrokenManager ssoManager = SSOTokenManager . get | nst ance();
SSOToken ssoToken = ssoManager . cr eat eSSOToken(request);

/* get the sso token ID fromthe sso token */
SSOrokenl D ssoTokenl D = ssoToken. get Tokenl () ;
out.println("The SSO Token IDis "+ssoTokenl D.toString());

/* use validate method to check if the token is valid */
try {

ssoManager . val i dat eToken(ssoToken) ;

out.println("The SSO Token validated.");
} catch (SSCException e) {

out.println("The SSO Token failed to validate.");

/* use isValid nethod to check if the token is valid */
if (!ssoManager.isValidToken(token)) {
out.println("The SSO Token is not valid.");
} else {
/* get sone values fromthe SSO Token */
java.security.Principal principal = ssoToken.getPrincipal();
out.println("Principal name is "+principal.getName());
String aut hType = ssoToken. get Aut hType();
out.println("Authentication type is "+authType);
int authLevel = ssoToken. get Aut hLevel ();
out.println("Authentication level is "+authLevel);
long idleTinme = ssoToken. get | dl eTine();
out.printin("ldle time is "+idleTine);
I ong maxldl eTi me = ssoToken. get Max! dl eTi ne();
out.printin("Max idle time is "+maxldleTine);
I ong maxTi me = token. get MaxSessi onTi me() ;
out.println("Max session time is "+maxTine);
String host = ssoToken. get Host Nane() ;
out.println("Host name is "+host);
/* host nanme is a predefined information of the session,
/* and can al so be obtained the fol |l owi ng way */
String hostProperty = ssoToken. get Property("HOST");
out.println("Host property is "+hostProperty);
/* set application specific information in session */
String appPropertyName = "appProperty";
String appPropertyVal ue = "appVal ue";
ssoToken. set Propert y(appPropertyNane, appPropertyVal ue);
/* now get the app specific information back */
String appVal ue = ssoToken. get Property(appPropertyNane);
i f (appVal ue. equal s(appPropertyVal ue)) {
out.println("Property "+appPropertyName+", val ue
"+appPropertyVal ue+" verified to be set.");

Identity Server 2004Q2 « Developer's Guide

SSO API

Code Example 5-2 Sample Use Of SSOToken (Continued)

} else {
out.println("ALERT: Setting property "+appPropertyNane+"
failed'");

}
}

A code sample using the get Tokenl Dmethod is illustrated in Code Example 5-3.
With this code, a cookie is created from an SSOToken in order to make SSO work
for protected resources not residing on the same server as lIdentity Server.

Code Example 5-3 Sample Code To Create A Cookie From Session Token

/] Get SSOroken string

String strToken = null;

strToken = get SSOToken(). get Tokenl D().toString();
/] Set it to response as cookies

String s = strToken;

String ssotokencooki enane = "i Planet DirectoryPro”;
String ssot okencooki edomain = ". nydomai n. com tw';
String ssotokencooki epath = "/";

String gt = "/wel comepage.jsp";

Cooki e cooki e = new Cooki e(ssot okencooki enane, s) ;
cooki e. set Domai n(ssot okencooki edonai n) ;

cooki e. set Pat h(ssot okencooki epat h) ;

r esponse. addCooki e(cooki e) ;

response. sendRedi rect (gt);

SSOTokenEvent

The SSOTokenEvent interface represents a token event. An event is, for example,
when a session has been idle for over a maximum idle time limit, or when a session
has reached its maximum allowed time.

SSOTokenListener

The SSOTokenLi st ener interface represents a token notification object. An
implementation of the SSOTokenLi st ener interface must be written, then
registered with the SSOTokenManager to be invoked when a token event occurs.

Chapter 5 Single Sign-On And Sessions 205

SSO API

The SSOTokenLi st ener interface provides a mechanism to notify applications
when a session token has become invalid due to, for instance, the session reaching
maximum idle time or the maximum session time. Applications wishing to be
notified must write an implementation of the SSOTokenLi st ener interface, then
register the implementation through the SSOToken. addSSOTokenLi st ener
method. When the SSOToken state has become invalid, the SSOTokenLi st ener
implementation’s ssoTokenChanged method will be invoked with a
SSOrokenEvent object containing the event type, time, and SSOToken object with
the new SSOToken state and other properties of the SSOToken.

Code Example 5-4 Sample Code For SSOToken Event And SSOToken Listener

public class Sanpl eTokenLi stener inpl ements SSOTokenLi st ener {
public void ssoTokenChanged(SSOTokenEvent event) {
try {
SSOToken token = event. get Token();
int type = event.get Type();
long time = event.getTinme();
SSOrokenl D i d = token. get Tokenl) ;
Systemout.printin("Token id: " + id.toString() + "is not valid
anynore");
/* redirect user to login */
} é;aié'h'(Exception e) {
Systemout. println(e.get Message());

}

}

public Sanpl eTest Routine {
SSCTokenNanager ssoManager = SSOTokenManager . get | nst ance() ;
SSOroken ssoToken = SSOManager . cr eat eSSOToken(request);

SSOTokenLi st ener sanpl eLi stener = new Sanpl eTokenLi st ener () ;
ssoToken. addSSOTokenLi st ener (sanpl eLi st ener) ;

Sample SSO Java Files

Identity Server provides three groups of sample Java files. With these samples, a
developer can create a session token in several ways:

1. W.ith the SSO Servlet Sample, a session token can be created for an application
that runs on the Identity Server server.

2. With the Remote SSO Sample, a session token can be created for an application
that runs on a server other than the Identity Server server.

206 Identity Server 2004Q2 < Developer's Guide

SSO API

3. With the Command Line SSO Sample, a session token can be created by a
session ID string and passed through the command line.

The sample files are located in the IdentityServer_base/ SUN\Vni sanpl es/ sso
directory.

SSO Servlet Sample

This sample can be used to create a token for an application that resides on the
same server as the Identity Server application. The files used for this sample are:

= Readmre. htni

e Sanpl eTokenLi st ener. j ava

e SSOrokenSanpl eServl et.java

The instructions in Readne. ht m can be followed to run this code.

Remote SSO Sample

This sample can be used to create a token for an application that resides on a
different server from the one on which the Identity Server application lives. The
files used for this sample are:

e renote. htni

e SSOrokenFr onRenot eServl et. j ava

e SSOrokenSanpl eServl et. java

The instructions in r enot e. ht M can be followed to run this code.

Command Line SSO Sample

This sample illustrates how to validate a user from the command line using a
session ID string. The files used for this sample are:

e ssocli.txt
e CommandLi neSSQ. j ava
e SSOrokenSanpl e. j ava

The instructions in ssocl i . t xt can be followed to run this code.

Chapter 5 Single Sign-On And Sessions 207

SSO API

C API Overview

The C API are provided in the SU\Vantompackage which comes with Identity
Server or any of its downloadable agents. The package includes header files,
libraries and samples.

CAUTION Previous releases of Identity Server contained C libraries in
IdentityServer_base/ | i b/ capi . The capi directory is being deprectated, and
is curently available for backward compatability. It will be removed in the next
release, and therefore it is highly recommended that existing application paths to
this directory are changed and new applications do not access it. Paths include
RPATH, LD LI BRARY _PATH, PATH, compiler options, etc.)

C SSO Include Files

Include files for the C SSO APl are am sso. hand am noti fy. h. am sso. h must be
included for any SSO routines. am not i f y. h must be included for parsing
notification messages from the server and calling SSO listeners.

C SSO Properties

Certain properties must be read in and passed to am sso_i ni t (), the routine
which initializes C API. Because of this, am sso_i ni t () must be called before any
other SSO interface. The default properties file used is AMAgent . pr operti es,
located in IdentityServer_base/ SUN\WANT confi g/ . The following properties must be
set;

e The com sun. am nam ngURL property specifies the URL for the Naming
Service. This service is used to find the URL of the Session Service for the given
SSOroken ID. This property must be set as:

com sun. am nam ngURL =
ht t ps: // nyhost . nydomai n. com 58080/ anser ver / nam ngser vi ce

e Thecom sun.am noti fi cati onEnabl ed and com sun. am noti fi cati onURL
properties specify whether notification is enabled, and if enabled, a URL where
the application can listen for messages from Identity Server. These properties
must be set as:

com sun. am noti fi cati onEnabl ed=t r ue

208 Identity Server 2004Q2 « Developer's Guide

SSO API

NOTE Ifcom sun. am not i fi cati onEnabl ed is not found in the properties file,

the default is false.

com sun. am noti fi cati onURL=ht t ps:// nmyhost . nydomai n. com 8000/ nyU
RL

The com sun. am sso. cacheEnt ryLi f eTi me property specifies how long, in
minutes, a session token can live in cache before it should be removed. This
property must be set as:

com sun. am sso. cacheEnt ryLi f eTi me=5

If not set, the default is 3 minutes.

The com sun. am sso. checkCachel nt er val property specifies how often, in
minutes, the cache should be checked for entries that have reached the cache
entry life time. This property must be set as:

com sun. am sso. checkCachel nt erval =5

The com sun. am sso. maxThr eads specify the maximum number threads the
SSO API should invoke for handling notifications. The API maintains a thread
pool and invokes a thread for each notification. If the maximum number of
threads has been reached, the notification will wait until a thread is available. If
not specified the default maximum number of threads is 10. This property
must be set as:

com sun. am sso. maxThreads = 5

The com sun. am cooki eEnabl ed property specifies whether the session ID
found in the cookie is URL encoded. If true, it will be URL decoded before sent
to Identity Server for any session operation. This property must be set as:

com sun. am cooki eEncoded = true|fal se

More information on properties in the AMAgent . proper ti es file can be found in
the Web Policy Agents Guide and the J2EE Policy Agents Guide.

C SSO interfaces

The C SSO interfaces consist of the following routines. A detailed description of the
input and output parameters for each interface is in the header files.

Initialization and Cleanup
Get, Validate, Refresh And Destroy SSO Token

Get Session Information Interfaces

Chapter 5 Single Sign-On And Sessions 209

SSO API

= Get And Set Property Interfaces
= Listener And Notify Interfaces

Initialization and Cleanup

To use the C SSO API, the am sso_i ni t () routine needs to be called before any
other routines. This interface initializes the internal SSO module. At the end of all
SSO routines, am cl eanup() should be called to cleanup the internal SSO module.
Code Example 5-5 on page 210 is a code sample for these interfaces.

am_sso_init() initializes internal data structures for talking to the Session Service.
It takes a properties input parameter that contains name /value pairs from a
configuration or properties file, and returns a status on the success or failure of the
initialization. The properties used by the C SSO API are covered in “C SSO
Properties” on page 208.

am_cleanup() cleans up all internal data structures created by am sso_ini t,
amauth_init,orampolicy_init.amcl eanup() needs to be called only once
when using any of the Identity Server C API interfaces (authentication, SSO or

policy).

Code Example 5-5 Code Sample For am_sso_init and am_cleanup

#i ncl ude <am sso. h>

int min() {
am properties_t *properties;
amstatus_t status;

/* create a properties handle */

status = amproperties_create(&properties);

if (status !'= AM SUCCESS) {
printf("amproperties_create failed.\n");
exit(l);

/* load properties froma properties file */
status = amproperties_| oad(properties, "./nyPropertiesFile");
if (status !'= AM SUCCESS) {

printf("amproperties_|load failed.\n");

exit(1);

/* initialize SSO nmodul e */

status = amsso_init(properties);

if (status !'= AM SUCCESS) {
printf("amsso_init failed.\n");
return 1;

}

/* login through auth modul e, and do auth functions.

210 Identity Server 2004Q2 < Developer's Guide

SSO API

Code Example 5-5 Code Sample For am_sso_init and am_cleanup (Continued)

*

*/
/* do sso functions
*

*/

/* done - cleanup. */

status = am cl eanup();

if (status !'= AM SUCCESS) {
printf("amcleanup failed!'\n");
return 1,

/* free menory for properties */
status = am properties_destroy(properties);
if (status !'= AM SUCCESS) {
printf("Failed to free properties.\n");
return 1,

/* exit program successfully. */
return O;

Get, Validate, Refresh And Destroy SSO Token

A user needs to be authenticated to get the token ID for their login session. A token
can be obtained with the token ID and the am sso_creat e_sso_t oken_handl e
interface. This interface checks to see if the token is in its local cache and, if not,
goes to the server to get the session information associated with the token ID and
caches it. If the reset flag is set to t r ue, this interface will refresh the idle time of the
token on the server. Here is the interface of am sso_creat e_sso_t oken_handl e:

e amstatus_t
am sso_create_sso_token_handl e(am sso_token_handle t *
sso_token_handl e ptr, const char *sso_token_id, boolean_t
refresh_token);

Once a token handle is obtained, the caller can check if the session is valid with the
am sso_i s_val i d_t oken interface. The am sso_t oken_val i dat e interface will
flush the token handle in the local cache (if any) and go to the server to fetch the
latest session information. The am sso_r ef resh_t oken will also flush the token
handle in the local cache (if any) and go to the server to fetch the session
information. In addition, it will reset the idle time of the session on the server. Here
are the token-related interfaces:

Chapter 5 Single Sign-On And Sessions 211

SSO API

e bool ean_t am sso_is_valid token(amsso_token_handl e_t
sso_t oken_handl e);

e amstatus_t am sso_validate_t oken(am sso_token_handl e_t
sso_t oken_handl e) ;

e amstatus_t amsso_refresh_t oken(am sso_t oken_handl e_t
sso_t oken_handl e) ;

When caller is done with a token handle, it must be freed by calling
am sso_destroy_sso_t oken_handl e to prevent memory leak. Here is that
interface:

e am_status_tam_sso_destroy sso _token_handle(am_sso_token_handle_t
sso_token_handle);

The session associated with the token can be invalidated or ended with

am sso_i nval i dat e_t oken. Although this ends the session for the user, the
proper way to log out is through am aut h_| ogout . Using the former interface to
end a session will result in authentication resources associated with the session to
remain on the server unnecessarily until the session has timed out. Here is the
interface for am sso_i nval i dat e_t oken:

e amstatus_t amsso_invalidate token(am sso_token_handl e _t
sso_t oken_handl e) ;

Get Session Information Interfaces

The following interfaces make it convenient to get server-defined information (or
properties) about the session associated with a token. This can include the session
idle time, max session time, etc.

e const char * amsso _get sso_token_id(const
am sso_t oken_handl e t sso_token_handl e);

e const char * amsso_get auth_type(const
am sso_t oken_handl e t sso_token_handl e);

e unsigned | ong am sso_get auth_| evel (const
am sso_t oken_handl e t sso_token_handl e);

e time t am sso_get _idle_time(const
am sso_t oken_handl e_t sso_t oken_handl e) ;

e time t am sso_get _max_idl e_tine(const
am sso_t oken_handl e_t sso_t oken_handl e) ;

e time_t am sso_get _tine_| eft(const
am sso_t oken_handl e_t sso_t oken_handl e) ;

212 Identity Server 2004Q2 < Developer's Guide

SSO API

e time_ t am sso_get max_sessi on_ti me(const
am sso_t oken_handl e t sso_token_handl e);

e const char * amsso_get_princi pal (const
am sso_t oken_handl e_t sso_t oken_handl e) ;

e amstring_set_t amsso_get princi pal _set(const
am sso_t oken_handl e_t sso_t oken_handl e) ;

e const char * am sso _get host (const am sso_token_handl e_t
sso_t oken_handl e) ;

Get And Set Property Interfaces

The get and set property interfaces allows an application to get any property
(server or application defined) and to set any property in a session. Note that

am sso_set _property will update the sso_t oken_handl e with the latest session
properties from Identity Server, including the new property that was set. In
addition, if the property that is given in pr op_nane is a protected property,

am sso_set _property will return success, however the value given will not be set
as it is a property protected by Identity Server. These interfaces are:

e const char * amsso_get property(const am sso_t oken_handl e_t
sso_t oken_handl e, const char *prop_nane);

e amstatus_t amsso_set_property(amsso_token_handl e_t
sso_t oken_handl e, const char *prop_nane, const char
*prop_val ue);

Code Example 5-6 is a sample of the SSO get, set, create, refresh, validate,
invalidate, and destroy interfaces.

Code Example 5-6 Sample Code For Get, Set, Create, Refresh, Validate,
Invalidate, and Destroy Interfaces

/* initialize sso as in previous sanple */

amstatus_t status = NULL;

am sso_t oken_handl e_t sso_handl e = NULL;
char *session_status = NULL;
amstring_set t principal _set = NULL;

/* create sso token handl e */
status = am sso_create_sso_t oken_handl e(&so_handl e, sso_t oken_id,
fal se);
I f (status !'= AM SUCCESS) {
printf("Failed getting sso token handle for sso token id %.\n",
sso_token_i d);
return 1;

Chapter 5 Single Sign-On And Sessions 213

SSO API

Code Example 5-6 Sample Code For Get, Set, Create, Refresh, Validate,
Invalidate, and Destroy Interfaces (Continued)

}

/* check if sessionis valid */

session_status = amsso_is_valid_token(sso_handle) ? "Valid" :
"Invalid";

printf("Session state is %\n", session_status);

/* check if session is valid using validate. This al so updates the
handle with info fromthe server */
status = am sso_val i dat e_t oken(sso_handl e) ;
if (status == AM SUCCESS) ({
printf("Session state is valid.\n");
} else if (status == AM I NVALID SESS| {
printf("Session status is invalid.\n");

} else {
printf("Error validating sso token.\n");
return 1,

}

/* get info on the session */
printf("SSO Token IDis %.\n", amsso_get sso_token_i d(sso_handle));
printf("Auth type is %.\n", amsso_get_auth_type(sso_handle));
printf("Auth level is %.\n", amsso_get auth_| evel (sso_handle));
printf("ldle timeis %l.\n", amsso_get_idle_tine(sso_handle));
printf("Max Idle tine is %.\n", amsso get _nax_idle_tine(sso_handl e));
printf("Tine left is %l.\n", amsso_get _tine_|left(sso_handle));
printf("Max session tinme is %l \n",
am sso_get _nmax_sessi on_time(sso_handl e));

printf("Principal is %.\n", amsso_get_principal (sso_handle));
printf("Host is %.\n", amsso_get host(sso_handle));
principal _set = amsso_get _principal _set(sso_handl e);
if (principal_set == NULL) {

printf("ERROR Principal set is NULLI\n");
}else {

printf("Principal set size %l.\n", principal _set->size);

for (i =0; i < principal_set->size; i++) {

printf("Principal [%] = %.\n", i,
princi pal _set->strings[i]);
}

am string_set_destroy(principal_set);

}

/* get "HOST" property on the session. Sane as amsso_get_host (). */
printf("Host is 9%.\n", amsso_get property(sso_handle, "HOST"));

/* set a application defined property and get it back */
status = am sso_set _property(sso_handl e, "AppPropName",
" AppPr opVal ue");
if (status !'= AM SUCCESS) {
printf("Error setting property.\n");
return 1,

214 Identity Server 2004Q2 < Developer's Guide

SSO API

Code Example 5-6 Sample Code For Get, Set, Create, Refresh, Validate,
Invalidate, and Destroy Interfaces (Continued)

printf("AppPropName value is %.\n", amsso_get_property(sso_handl e,
" AppPr opNare”) ;

/* refresh token, idle time should be O after refresh */
status = amsso_refresh_token(sso_handl e);
if (status !'= AM SUCCESS) {

printf("Error refreshing token !'\n");

return 1,

}
printf("After refresh, idle timeis %l.\n",
am sso_get _idle_tine(sso_handle));

/* end this session abruptly. amauth_logout() is the right way to end
session */
status = amsso_inval i date_t oken(sso_handl e) ;
if (status !'= AM SUCCESS) ({
printf("Error invalidating token.\n");
return 1,

/* we're done with sso token handle. free menory for sso handle. */
status = am sso_destroy_sso_t oken_handl e(sso_handl e) ;
if (status !'= AM SUCCESS) {

printf("Failed to free sso token handle.\n");

return 1;

/* call amcleanup, and other cleanup routines as in previous sanple */

Listener And Notify Interfaces

Applications can be notified when a session has become invalid, possibly because it
has been idle over a time limit, or it has reached the maximum session time. This is
done by implementing a listener function of type

am sso_t oken_| i stener _func_t, which takes a SSO token handle, event type,
event time, application-defined arguments handle, and a boolean argument to
indicate whether the listener function should be called in the calling thread or
dispatched to a thread from the internal thread pool managed by the C SDK. This
listener function must be registered to be invoked when the session has ended and
notification must be enabled for an application to receive notifications. Notification
is enabled by setting the property com sun. am not i fi cati onEnabl ed to true, and
by providing a URL where the application is receiving HTTP messages from
Identity Server. The URL where the application is receiving messages from the
Identity Server is expected to take any message from the server (as an XML string)

Chapter 5 Single Sign-On And Sessions 215

SSO API

and passittoamnnotify().amnotify() will parse the message and invoke
session listeners or policy listeners depending on whether the message is a session
or policy notification. Code Example 5-7 is a sample implementation of SSOToken
listener and how to register it.

Code Example 5-7 Sample Implementation Of SSOToken Listener

voi d sanpl e_listener_func(
am sso_t oken_handl e_t sso_token_handl e,
const am sso_t oken_event _type_t event _type,
const time_t event_tine,
voi d *opaque)

if (sso_token_handle !'= NULL) {
const char *sso_token_id =

am sso_get _sso_t oken_i d(sso_t oken_handl e) ;
bool ean_t is_valid = amsso_is_valid_token(sso_token_handle);
printf("sso token id is %.\n",
sso_token_i d==NULL?"NULL": sso_token_id);
printf("session state is %.\n",
is valid =BTRE ? "valid":"invalid");
printf("event type %l.\n", event_type);
printf("event tine %l.\n", event_tine);

el se {

printf("Error: sso token handle is null!");
if (opaque)

*(int *)opaque = 1;
return;

}
int min(int argc, char *argv[]) {

amstatus_t status;
char *sso_token_id = argv[1];
int |istener_func_done = 0;

/* initialize sso as in previous sanples */

/* get sso token handl e */
status = am sso_create_sso_t oken_handl e(&so_handl e, sso_t oken_id,

fal se);

/* register listener function. notification nust be enabled, if not,
status AM NOTI F_NOT_ENABLED wi | | be returned. */
status = am sso_add_sso_token_|istener(sso_handl e, sanple_listener_func,
&l i stener_func_done, B TRUE);
if (status !'= AM SUCCESS) {
printf("Failed to register sanple listener function.\n");
return 1,

216 Identity Server 2004Q2 < Developer's Guide

C SSO Sample

SSO API

A sample for the C SSO API is provided in the SU\vantompackage. The README
file in the samples directory contains information on each sample including
compile instructions and how to run the samples for testing. The sample for C SSO
isam sso_test.c. Theusage isam sso _test -u [user] -p [password] [-f

properties file] [-]

| ogfi | €] . ldentity Server must be available with LDAP

authentication to test the sample. See the README file and the sample itself for more

information.

Java versus C API

The following table provides a side by side comparison of the Java and C SSO API.

Table 5-1 Comparison Between Java And C SSO API
Java Interface C Interface
SSOTokenManager am_status_t

SSOTokenManager.getinstance()
SSOToken

SSOTokenManager.createSSOToken(S
tring tokenld)

boolean

SSOTokenManager.isValidToken(SSO
Token token)

void

SSOTokenManager.validateToken(SSO
Token token)

void

SSOTokenManager.destroyToken(SSO
Token token)

void

SSOTokenManager.refreshSession(SS
OToken token)

Principal
SSOToken.getPrincipal()

am_sso_init(am_properties_t properties)
am_status_t

am_sso_create_sso_token_handle(
am_sso_token_handle_t *sso_token_handle_ptr,
const char *sso_token_id, am_bool_t reset_idle_timer)

boolean_t

am_sso_is_valid_token(const
am_sso_token_handle_t sso_token_handle)

am_status_t

am_sso_validate_token(const
am_sso_token_handle_t sso_token_handle)

am_status_t

am_sso_invalidate_token(const
am_sso_token_handle_t sso_token_handle)

am_status_t

am_sso_refresh_session(am_sso_token_handle_t
sso_token_handle)

char *

am_sso_get_principal(const am_sso_token_handle_t
sso_token_handle)

Chapter 5 Single Sign-On And Sessions

217

SSO API

Table 5-1 Comparison Between Java And C SSO API (Continued)

Java Interface C Interface

int unsigned long

SSOToken.getAuthLevel() am_sso_get_auth_level(const
am_sso_token_handle_t sso_token_handle)

String char *

SSOToken.getAuthType() am_sso_get_auth_type(const
am_sso_token_handle_t sso_token_handle)

String char *

SSOToken.getHostName() am_sso_get_host(const am_sso_token_handle_t

sso_token_handle)
long time_t

SSOToken.getldleTime() am_sso_get_max_idle_time(const
am_sso_token_handle_t sso_token_handle)

long time_t

SSOToken.getMaxIdleTime() am_sso_get_max_idle_time(const
am_sso_token_handle_t sso_token_handle)

SSOTokenlID char *

SSOToken.getTokenlD() am_sso_get_sso_token_id(const
am_sso_token_handle_t sso_token_handle)

String char *

SSOToken. getProperty(java.lang.String am_sso_get_property(const am_sso_token_handle_t

name) sso_token_handle, const char *property_name)

void am_status_t

SSOToken.setProperty(String name, am_sso_set_property(am_sso_token_handle_t

String value) sso_token_handle, const char *name, const char
*value)

void am_status_t

SSOToken.addSSOTokenListener(am_sso_add_sso_token_listener(am_sso_token_han

SSOTokenListener listener) dle_t sso_token_handle, const

am_sso_token_listener_func_t listener, void *args,
boolean_t dispatch_in_sep_thread)

String am_status_t

SSOToken.getProperty(“principals"); am_sso_get_principal_set(am_sso_token_handle_t
sso_handle)

N/A am_status_t

am_sso_destroy_sso_token_handle(am_sso_token_h
andle_t sso_handle)

218 Identity Server 2004Q2 « Developer's Guide

SSO Samples

Table 5-1 Comparison Between Java And C SSO API (Continued)

Java Interface C Interface

N/A void

am_cleanup()

Non-Web-Based Applications

Identity Server provides the SSO API primarily for web-based applications,
although it can be extended to any non-web-based applications with limitations.
With non-web-based applications, their are two possible ways to use the API.

1. The application has to obtain the Identity Server cookie value and pass it into
the SSO client methods to get to the session token. The method used for this
process is application-specific.

2. Command line applications, such as amadm n, can be used. In this case, session
tokens can be created to access the Directory Server directly. There is no
session created, making the Identity Server access valid only within that
process or VM.

SSO Samples

Identity Server provides the files necessary to compile and run a sample SSO
application. There are three ways in which this can be done;

< Compiling and running a SSO application local to Identity Server.
= Installing and running the SSO SDK from a remote client.
= Running the SSO application from the command line.

More specific information on these samples can be found in “Sample SSO Java
Files” on page 206.

Chapter 5 Single Sign-On And Sessions 219

SSO Samples

220 Identity Server 2004Q2 « Developer's Guide

Chapter 6

|ldentity Management

The Identity Management module of Sun Java™ System contains an XML template
file and application programming interfaces (APIs) that provide the functionality
to, among other operations, create, delete and manage identity entries in the Sun
Java System Directory Server used for data storage. This chapter offers information
on these identity-related features. It contains the following sections:

= “Overview” on page 221

« “ldentity-related Objects” on page 222

e “Object Templates And ums.xml” on page 226
« “amEntrySpecific.xml” on page 230

= “ldentity Management SDK” on page 231

= “ldentity Management Samples” on page 245

Overview

The Identity Management module allows for the management of Identity-related
Objects using the Identity Server console or command line tools. These objects, that
are created and managed via ldentity Server, are actually stored as LDAP entries in
Directory Server. To bridge the gap between the two products, Identity Server
provides interfaces that are used to create and delete identity-related objects as
well as get, add, modify, or remove their attributes.

221

Identity-related Objects

|dentity-

Identity Server Console

All aspects of the Identity Server console are covered in Chapter 3, “The Identity
Server Console,” of this manual and the Sun Java System Identity Server
Administration Guide.

ums.xmi

This file defines a set of templates that contain the configuration information needed
to set up each identity-related object created with Identity Server as an LDAP entry
in the Directory Server data store. More information on uns. xm can be found in
“Object Templates And ums.xml” on page 226.

Identity Management Software Development Kit
(SDK)

The SDK is used to integrate the management functions of Identity Server into
external applications or services. More information on the SDK can be found in
“ldentity Management SDK” on page 231.

related Objects

Identity Server defines and manages the following identity-related objects:
= Organizations
= Containers
o Organizational Units (referred to as containers in the console)
v People Containers
o Group Containers
e Users
= Groups
o Static Groups
o Assignable Groups (Dynamic)

222 Identity Server 2004Q2 « Developer's Guide

Identity-related Objects

o Filtered Groups
= Roles

o Static Roles

o Filtered Roles

These identity-related objects are not LDAP objects as defined in the Directory
Server schema. These objects are configured using an Identity Server schema,
managed using the ldentity Server application and only stored in Directory Server.
In other words, an identity-related object in Identity Server does not necessarily
correspond to its LDAP counterpart in Directory Server. But, because they are
stored in Directory Server, these Identity Server objects must be mapped to the
existing Directory Server schema. Thus, Identity Server object entries are appended
with marker object classes.

Marker Object Classes

An identity-related object stored in Directory Server is identified as such through
the use of special marker object classes appended to its LDAP entry. These object
classes are defined in the Identity Server schema, ds_r enot e_schera. | di f,
located in IdentityServer_base/ SUNWaNT | di f. When a marker object class is added to
a Directory Server entry, Identity Server is able to access and manage that entry
using its console or command line tools. For example, an enterprise’s existing
directory schema may use organizational unit as its root rather than the default
organization; by adding the Identity Server organization marker object class,
sunManagedQr gani zat i on, to the LDAP entries of the organizational unit, Identity
Server can manage it as the organization’s root. It is through the use of marker
object classes that Identity Server can manage most existing directory structures.
The marker object classes are:

e sunManagedOr gani zati on

* iplanet-am nanaged- or g- unit

* iplanet-am nmanaged- peopl e-cont ai ner
* i planet-am nanaged- gr oup- cont ai ner
* iplanet-am nanaged- person

* iplanet-am nanaged-static-group

* i planet-am nanaged- gr oup

e i planet - am nanaged- assi gnabl e- gr oup

Chapter 6 Identity Management 223

Identity-related Objects

* iplanet-amnanaged-filtered-group
* iplanet-amnanaged-rol e
 iplanet-amnanaged-filtered-role

For information on how to configure an existing directory tree within Identity
Server, see the Sun Java System ldentity Server Migration Guide.

Identity-related Objects As LDAP Entries

Following is a discussion of the Identity Server objects and how they map to LDAP
entries in Directory Server.

Organizations

Represented by the marker object class sunManagedQr gani zat i on, organization is
the root entry of an Identity Server tree. It generally maps to an LDAP
or gani zati on or or gani zat i onal Uni t object class.

Containers
Functionally, there are three types of containers in Identity Server.

Organizational Units

Represented by the marker object class i pl anet - am managed- or g- uni t, an
organizational unit is referred to as a container in the Identity Server console. It
generally maps to the LDAP or gani zat i onal Uni t object class and can contain
sub-organizations, other containers, roles, groups, and users.

People Containers

Represented by the marker object classi pl anet - am nanaged- peopl e- cont ai ner,
a people container is an organizational unit which is a parent for user entries. It
generally maps to the LDAP or gani zat i onal Uni t object class and can contain
sub-people containers and users.

Group Containers

Represented by the marker object class i pl anet - am managed- gr oup- cont ai ner,
a group container is an organizational unit which is a parent for any number of
group entries. It generally maps to the LDAP or gani zat i onal Uni t object class
and can only contain groups and other group containers.

224 Identity Server 2004Q2 « Developer's Guide

Identity-related Objects

Users

Represented by the markerobject class i pl anet - am nanaged- per son, a user is the
representation of a person. It maps to an LDAP i net Or gPer son. It is a leaf node
that may not contain other entries.

Groups

Functionally, there are three types of groups in ldentity Server. Assignable Groups
(Dynamic) (by default) and Static Groups are configured using the Membership By
Subscription option in the console. Filtered Groups are configured by choosing the
Membership By Filter option in the console.

Assignable Groups (Dynamic)

Represented by the marker object classi pl anet - am nanaged- assi gnabl e- gr oup,
an assignable group is one in which an administrator wants to explicitly add the
user to a group. For example, Larry wants to give Ramona permission to look at his
employees’ telephone numbers so he adds her to the ReadPhoneNumbers group.
In Directory Server, member entries contain the menber of LDAP attribute

(i net Adm n object class) and the group membership is dynamically established.

NOTE Assignable groups are referred to as Dynamic when seen in the console as,
technically, they are created with an LDAP filter albeit a static one.

Static Groups

Represented by the marker object class i pl anet - am nmanaged- st ati c- group, a
static group is one in which members are added by appending the

gr oupCOF Uni queNanes object class to the LDAP group entry itself. It can contain
users, filtered groups or other static sub-groups. This type of group can be enabled
using the Administration Service in the console. By default, it is disabled and all
groups created are of the type “Assignable Groups (Dynamic).”

Filtered Groups

Represented by the marker object class i pl anet - am managed-fil t er ed- group, a
filtered group is created through the use of an LDAP filter. All user entries are
funneled through the filter and dynamically assigned to the group. The filter
would look for a specified attribute in an entry and return those entries that contain
the attribute as a member of the group.

Chapter 6 Identity Management 225

Object Templates And ums.xml

Roles

Functionally, there are two types of roles in Identity Server. Roles can only be
created in organizations, suborganizations and generic containers; they can not be
configured in people containers.

Static Roles

Represented by the marker object class i pl anet - am managed-r ol e, a static role is
a role entry in which the members are added by appending the
gr oupCF Uni queNanes object class to the role entry itself. It can contain users.

Filtered Roles

Represented by the marker object class i pl anet - am managed-filtered-rol e, a
filtered role is created through the use of an LDAP filter. All user entries are
funneled through the filter and dynamically assigned to the role. The filter would
look for a specified attribute in an entry and return those entries that contain the
attribute as a member of the role.

Object Templates And ums.xml

226

The uns. xnl provides a set of parameters, or templates, that contain the LDAP
configuration information for all Identity-related Objects managed using Identity
Server. The templates are used to create LDAP entries for the identity-related
objects so they can be stored in Directory Server. In addition, the templates are
used for the dynamic generation of roles and the construction of object searches.
The file can be found in the IdentityServer_base/ SUNWANT conf i g/ uns directory; it is
based on the sns. dt d which is defined in Chapter 7, “Service Management,” of
this manual.

NOTE These templates can be modified by administrators to alter the behavior of the Java
interfaces. But, if uns. Xxm is modified and reloaded, there will be inconsistencies
between the entries created prior to the modifications and the newer ones.

Structure Of ums.xml

The uns. xni defines three types of templates: Structure, Creation and Search.
Structure templates define the Directory Server information tree attributes for the
object. Creation templates define an LDAP template for the object being created.
Search templates define guidelines for performing searches using LDAP.

Identity Server 2004Q2 « Developer's Guide

Object Templates And ums.xml

Structure Templates

Structure templates define the form an Identity Server object will take within the
Directory Server information tree. In other words, these templates define the child
nodes (roles, groups, containers) that are created IN ADDITION to the creation of
the object itself. There are six attributes that need to be defined for each object’s
structure.

« cl ass—This attribute represents the name of the Java class that will
implement the object. This attribute is fixed and should never be modified.

= name—This attribute defines the Relative Distinguished Name (RDN) for the
object. RDN is "ou=People" or "ch=ContainerDefaultTemplateRole". For the
core structure templates such as Organization or OrganizationaUnit, the value
defined at run time (when you create Org's or containers from console or CLI).
Thats why you don't see the RDN value for the core ones. Where as for others
such as PeopleContainer & DefaultOrgRole, you see the RDN's. You can
specify the RDN values for the PeopleContainers, Groups that can be created.
A note of caution that the naming attribute specified in the RDN, for example
ou from ou=Groups should match the naming attribute defined in the Group
Creation template. For example, an organization has o=or g as its naming
attribute while a people container uses ou=Peopl e.

= chi | dNode—This attribute specifies the child nodes (roles, groups, containers)
that will be created in tandem with the object. The value is the name of the
structure template for the respective object.

= tenpl at e—This attribute specifies the name of the Creation template used to
create this object.

e filter—This attribute is not currently used.

= priority—Forinternal use only, the value of this attribute should always
remain 0.

Creation Templates

Every identity object that Identity Server creates has a corresponding creation
template which defines the LDAP schema for the object. It specifies which object
classes and attributes are mandatory or optional and which default values, if any,
should be set. This conforms to the actual LDAP entry in the Directory Server.
There are six attributes that need to be defined for each object’s template.

= name—This attribute defines the type of object that the template will create. It is
also the name of the template itself. This attribute should not be modified.

Chapter 6 Identity Management 227

Object Templates And ums.xml

= javacl ass—This attribute defines the name of the Java class used to
instantiate the object. This attribute should not be modified.

= requi red—This attribute defines the required LDAP object classes and
attributes for the object.

= optional —This attribute defines the optional LDAP object classes and
attributes for the object.

« val i dat ed—This attribute is reserved for future use.

< nam ngatt ri but e—This attribute specifies the LDAP attribute used to name
the object. For instance, the Basic User creation template has as its
nam ngat t ri but e the value of the LDAP attribute, ui d.

Search Templates

Search templates are used to define how searches for identity-related objects are
performed in Directory Server. This template defines a default search filter and the
attributes returned in the search. For example, a search filter is constructed which
defines and specifies which attributes and values are to be retrieved from the
Directory Server.

= name—This attribute defines the name of the search template.
= searchfilter—This attribute defines the value the search will look for.

= attrs—This attribute specifies the LDAP attributes that need to be returned.

NOTE For a listing of interfaces applicable to each identity-related objects, see
“amEntrySpecific.xml” on page 230.

Modifying ums.xml

Any LDAP attributes or object classes not already present in the Directory Server
LDAP schema must be added to the uns. xm file in order for them to be
recognized by the Identity Server. In most cases, the attributes that service
developers might want to add may already exist in the i net or gper son and the

i net user object classes. If, for example, a custom mail service is being added with,
specifically, an enpl oyeeNunber attribute, the uns. xm file does not need to be
modified because this attribute already exists in the i net or gper son object class.
Generally, the uns. xni file does not need to be modified. Some circumstances
where this file would need to be modified are:

= if Identity Server is being installed against a legacy DIT.

228 Identity Server 2004Q2 « Developer's Guide

Object Templates And ums.xml

= if new object classes are being added to users or organizations.
= if service developers want to change the default organizations or roles.
= if service developers need to change an entry’s naming attribute.

Additional information on when and how to modify the uns. xm file is covered in
the section on installing against a legacy DIT in the Sun Java System Identity Server
Migration Guide.

CAUTION It is recommended that the unms. Xxm configuration file be backed up before any
modifications are made.

Adding Custom Object Classes

If a service developer wants to add new or customized object classes to the

Directory Server for Identity Server’s use, they would need to modify the templates
in the urms. xni file. The DAI Service would then need to be deleted from Directory
Server and the modified ums.xml reloaded using the amadm n command line tool.

Once uns. xm has been modified, the new object classes and attributes must be
defined in an XML service file which would then be imported into Identity Server
using the procedures described in Chapter 7, “Service Management,” of this
manual. This configures Identity Server to manage the new object classes from the
console.

NOTE unsExi sti ng. xm contains objectclasses and user object class tags which will
be replaced after installation and is used when installing Identity Server with an
existing directory server information tree.

DAI Service

When Identity Server is installed, the uns. xm file is stored in Directory Server as
the Directory Access Instructions (DAI) service. The DAI service is only available
for modification through the Directory Server; it is not available through the
Identity Server console or command line interface. The Identity Server SDK gets
the configuration information from this directory tree node, when needed, to create
an identity-related object or perform a search. Any attribute specified in the

urs. xm can be set for a created object. If uns. xn is modified, the DAI Service
would need to be deleted from Directory Server and reloaded using the amadmi n
command line tool. To delete the DAI Service from Directory Server, delete the
DAI branch (ou=DAl , ou=ser vi ces, root-suffix) or use the anadni n command line

Chapter 6 Identity Management 229

amEntrySpecific.xml

tool with the -r option. To reload uns. xni , use amadni n and the -s option. (The
administrator user and password options will also be used for both.) For more
detailed information on the command line tools, see the Sun Java System Identity
Server Administration Guide .

NOTE When using the amadm n command line tool to reload uns. xm , the full DN of
the amadm n user must be used as a parameter. If not, the LDAP Authentication
Service will not be able to find the adminsitrator in its search for the user DN. For
example, instead of usingamadm n -u amadmn -w 11111111 -s ums.xml
file path, the input command would be:

amadmin -u
" ui d=amadm n, ou=peopl e, dc=exanpl e_or g, dc=conl’ -w
11111111 - s ums.xml file path

amEntrySpecific.xml

The purpose of the anEnt rySpeci fi c. xn service file is to define attributes from
an existing directory to display on the Identity Server console’s functional pages
for all Identity-related Objects. These functional pages are as follows;

« Create—The Create page is displayed when the administrator clicks New.

= Properties—The Properties Page is displayed when the Properties icon (an
arrow in a box) next to an object is clicked.

= Search—The Search link is in the top left frame of the Identity Server console.

Each object can have its own schema definition in the anEnt r ySpeci fi c. xm file
which is based on the sns. dt d as described in Chapter 7, “Service Management,”
of this manual.

NOTE Dynamic attributes are not supported in anEnt rySpeci fi c. xn .

If a service developer wants to customize the console’s functional pages with
attributes that are not default to the Identity Server tree, they would modify the
ankEnt rySpeci fi c. xm file. For example, to display an attribute on the group
page, the new attribute needs to be added to the anEnt r ySpeci fi c. xm file. Any
object with customized attributes in the Directory Server would need to have those
attributes reflected in the anEnt r ySpeci fi c. xm file also. (Most often, a service
developer would only be customizing the organization pages.) Code Example 6-1
is the organization attribute subschema that defines the display of an

230 Identity Server 2004Q2 < Developer's Guide

Identity Management SDK

organization’s Organization Status and its choice values. Note that based on the
information in“any Attribute” on page 270, this Organization Status attribute will
be displayed on the Search page and is not an attribute requiring a value for
creation.

Code Example 6-1 Organization Subschema of anEnt r ySpeci fi c. xm

<SubSchena nane="QCr gani zati on">
<AttributeSchema name="i net domai nst at us"
type="si ngl e_choi ce"
synt ax="string"
any="optional |filter"
i 18nKey="02">
<Choi ceVal ues>
<Choi ceVal ue>Act i ve</ Choi ceVal ue>
<Choi ceVal ue>l nact i ve</ Choi ceVal ue>
</ Choi ceVal ues>
</ Attribut eSchena>
</ SubSchena>

If the t ype attribute is not specified in anEnt rySpeci fi c. xni , the defaults will be
used. A default setting means that only the name of the entry will display on the
object function pages in the Identity Server console.

All the attributes listed in the schema definitions in the anEnt r ySpeci fi c. xm file
are displayed when the abstract type object pages are displayed. If the attribute is
not listed in a schema definition in the anEnt rySpeci fi c. xm file, the Identity
Server console will not display the attribute.

NOTE The User service is not configured in the anEnt r ySpeci fi c. xm file butin its
own anJser . xm file.

ldentity Management SDK

The Identity Server SDK contains an API for identity management. These interfaces
can be used by developers to integrate management functions into external
applications or services that will be managed by Identity Server. The API functions
to create or delete identity-related objects as well as get, modify, add or delete the
object’s attributes. The com i pl anet . am sdk package contains all the interfaces
and classes necessary to perform these operations in Directory Server.

Chapter 6 Identity Management 231

Identity Management SDK

232

Interfaces

Below are brief explanations of the Identity Management API.

NOTE All operations performed using the API open and close LDAP connections via a
connection pool. The connection pool size can be set in the serverconfig.xml file.
For more information, see Appendix B, “serverconfig.xml File,” in this manual.

AMAssignableDynamicGroup

The AMAssi gnabl eDynam c¢G oup interface provides the methods used to manage
“Assignable Groups (Dynamic).” This class extends the base AMX oup interface.
Associated with this object are the following uns. xm templates that define its
behavior at runtime. The creation template used is the
BasicAssignableDynamicGroup; and the search template used is the
BasicAssignableDynamicGroupSearch. It does not have a pre-defined structural
template.

AMCallback

AMCal | Back is a plug-in class that needs to be extended by external applications in
order to do special pre/post-processing for the creation, deletion and modification
operations for users, organizations, roles and groups.

AMConstants

AMConst ant s is the base interface for all identity-related objects. It is used to define
constants for use with the SDK (constants associated with searches, etc.).

AMDynamicGroup

The AMDynam c¢G oup interface provides the methods used to manage dynamic
groups. This class extends the base AMX oup interface. Associated with this object
are the following urms. xml templates that define its behavior at runtime. The
creation template used is named BasicDynamicGroup; and the search template used
is named as BasicDynamicGroupSearch. It does not have a pre-defined structural
template.

AMEventListener

The AMEvent Li st ener interface that can be used to monitor and react to events.
This listener can be called when an identity-related object is removed, renamed or
modified. It must be implemented using the following procedure:

Identity Server 2004Q2 « Developer's Guide

Identity Management SDK

1. Implement the AVEvent Li st ener interface.
2. Get an instance of the object to which AMEvent Li st ener will listen.

For example, get an AMJser object and add the listener:
AMJser . addEvent Li st ener ().

3. When an event changes something in this object, the listener will be called.

CAUTION Identity Server does not currently support attaching an event listener to template
creation code.

AMFilteredRole

The AMFi | t er edRol e interface provides the methods used to manage “Filtered
Roles.” Associated with this object are the following uns. xm templates that define
its behavior at runtime. The creation template used is BasicFilteredRole; and the
search template used is BasicFilteredRoleSearch. It does not have a pre-defined
structural template.

AMGroup

The AM3 oup interface provides the methods used to manage groups. This is the
basic class for all derived groups, such as static groups, dynamic groups and
assignable dynamic groups. No default templates are defined for this class.

AMGroupContainer

The AMa oupCont ai ner interface provides the methods used to manage “Group
Containers.” Associated with this object are the following uns. xm templates that
define its behavior at runtime. The structural template used by this class is
GroupContainer; the creation template used is BasicGroupContainer, and the search
template is BasicGroupContainerSearch.

AMObiject

AMDj ect provides basic methods to manage identity-related objects. Since thisis a
generic class, it does not have any templates (as defined in “Object Templates And
ums.xml” on page 226) associated with it.

Chapter 6 Identity Management 233

Identity Management SDK

234

AMOrganization

The AMX gani zat i on interface provides the methods used to manage
“Organizations.” Associated with this interface are the following uns. xn
templates that define its behavior at runtime. The structural template used by this
class is Organization; the creation template used is BasicOrganization, and the search
template is BasicOrganizationSearch.

NOTE The AMOr gani zat i on interface contains methods that can be used to search
through identity-related objects in Directory Server. More information can be found
in “Search Methods In The SDK” on page 237.

AMOrganizationalUnit

The AMX gani zat i onal Uni t interface provides the methods used to manage
“Organizational Units.” Associated with this object are the following urs. xni
templates that define its behavior at runtime. The structural template used by this
class is OrganizationalUnit; the creation template used is BasicOrganizationalUnit,
and the search template is BasicOrganizationalUnitSearch.

AMPeopleContainer

The AMPeopl eCont ai ner interface provides the methods used to manage “People
Containers.” Associated with this object are the following uns. xm templates that
define its behavior at runtime. The structural template used by this class is
PeopleContainer; the creation template used is BasicPeopleContainer, and the search
template is BasicPeopleContainerSearch.

AMRole

The AMRol e interface provides the methods used to manage “Roles.” Associated
with this object are the following uns. xm templates that define its behavior at
runtime. The creation template used is BasicManagedRole; and the search template
used is BasicManagedRoleSearch. It does not have a pre-defined structural template.

AMSearchControl

The AMBear chCont r ol class provides a way to customize search behavior.
Common behaviors are time limit, result limit and virtual list view.

Identity Server 2004Q2 « Developer's Guide

Identity Management SDK

Code Example 6-2 Sample Code Using AMSearchControl

SSOrokenManager nanager = SSOTokenManager . get | nst ance();

SSOroken token = manager . cr eat eSSOToken(new

Aut hPri nci pal ("ui d=anadni n, ou=Peopl e, dc=exanpl e, dc=coni), "11111111");
suo = get Sanpl eUser Qper at i ons(t oken) ;

ansc = new AMBt or eConnect i on(t oken);

/] Systemout. println(suo. createUser(ansc));

AVBear chControl ant = new AMBear chControl ();

anc. set Ti meQut (2000) ;

anct. set Sear chScope (AMOonst ant's. SCOPE_CNE) ;

AMVPeopl eCont ai ner anp =

ansc. get Peopl eCont ai ner (" ou=peopl e, dc=exanpl e, dc=cont') ;

Set userset = (anp.searchUsers(ant, "(uid=u*)")).getSearchResults();
(bj ect users[] = userset.toArray();

Systemout. println((String)users[0Q]);

Systemexit(0);

AMStaticGroup

The AMVBt at i cG oup interface provides the methods used to manage “Static
Groups.” This class extends the base AM& oup interface. The name of the creation
template used with this class is BasicGroup; and the search template used is
BasicGroupSearch. It does not have a pre-defined structural template.

AMStoreConnection

The AMBt or eConnect i on class provides the means to establish a connection to the
data store Directory Server and provides methods to create, remove and get
different types of identity-related objects. A SSOToken is required in order to
instantiate a AM5t or eConnect i on object.

AMTemplate

The AMTenpl at e interface represents a service template associated with AMbj ect .
Identity Server distinguishes between virtual and entry attributes. As defined for
Sun Java System Directory Server, a virtual attribute is an attribute not physically
stored in an LDAP entry but still returned with it as a result of a LDAP search.
Virtual attributes are analogous to inherited attributes. An entry attribute is a
non-inherited attributes.

NOTE More information on virtual attributes can be found in “Virtual Attribute” on
page 419 of Appendix E, “Directory Server Concepts,” in this manual.

Chapter 6 Identity Management 235

Identity Management SDK

236

For AMOr gani zat i on, AMO gani zat i onal Uni t and AMRol e, virtual attributes can
be grouped in a template on a per-service basis; there may be one service template
for each service for any given AMbj ect . Such templates determine the service
attributes inherited by the users within the scope of this object. The templates are:
DYNAM C _TEMPLATE and ORGANI ZATI ON_TEMPLATE. DYNAM C TEMPLATE are
implemented using CoS; ORGANI ZATI ON_TEMPLATE does not have virtual attributes
or LDAP attributes.

Template Priority

When an object inherits more than one template for the same service (by virtue of
being in the scope of two or more objects with service templates), the conflict is
resolved through template priorities. (This conflict will only occur with services
that contain “Dynamic Attributes.”) The priority is defined by the value of the
“cosQualifier Attribute” as discussed in Chapter 7, “Service Management,” of this
manual. (The comparison values are def aul t, overri de, and rer ge- schenes.)
The priority level for a service template is set when then template is created using
the Identity Server console. The levels are Highest, Higher, High, Medium, Low,
Lower, and Lowest. Templates with higher priorities will be favored over
templates with lower priorities when def aul t is the value of cosQual i fi er. In the
case where two or more templates are being considered for inheritance of an
attribute value, and they have the same (or no) priority, the result is merged. If the
value is overri de, the priority level of the template takes precedence over any
priority specified in the user profile. Merge-schemes signifies that the priority
values will not be used, but a merged list of attribute values from all templates will
be assigned. Templates which do not have an explicitly assigned priority are
considered to have the lowest priority possible, or no priority.

AMUser

The AMJser interface provides the methods used to manage “Users.” Associated
with this object are the following uns. xm templates that define its behavior at
runtime. The creation template used is BasicUser; and the search template used is
BasicUserSearch. It does not have a pre-defined structural template.

Default Implementation Of AMUser

There is a default implementation of AMJser . Assuming an SSOToken and a user
DN, the code to find the user status is illustrated in Code Example 6-3.

Code Example 6-3 Sample Code To Find User Status

AMVBt or eConnecti on conn = new AVBt oreConnection (ssoToken) ;
AMXker user = conn. get User (userDN) ;
if (user.isActivated()) {

Identity Server 2004Q2 « Developer's Guide

Identity Management SDK

Code Example 6-3 Sample Code To Find User Status (Continued)

} else {

o

AMUserPasswordValidation

AMJker Passwor dVal i dat i on is an interface to plugin external modules to validate
user names and passwords. The methods of this class must be overridden by the
implementation plugin modules. The modules will be invoked whenever a useriD
or password value is being added or modified using Identity Server console, the
amadm n CLI or the SDK directly.

Search Methods In The SDK

The SDK provides a variety of methods to conduct searches throughout the
organizational tree. They are provided within the AMOrganization interface.
Criteria is needed by the API to perform a search. Typically, the criteria is a LDAP
search filter string, the scope of the search (one level or sub-tree), and where the
search will begin (the base DN). The SDK provides the APIs to conduct searches
and obtain results for all identity objects.

NOTE The SDK always includes the objectclass used to search so it is not required to
explicitly include the filter. For example if searching for users, the SDK will include
the default user search filter provided in the BasicUserSearch search template in
the ums.xml.

This section specifically discusses one of the search methods: sear chUser s. (For
information on all of the search methods, refer to the Identity Server Javadocs.)
Code Example 6-4 is the set of different search methods available for sear chUser s.

Code Example 6-4 Available Search Methods For searchUsers

public Set searchUsers(String wildcard, int |evel)
throws AMException, SSCException;

public Set searchUsers(String wildcard, Map avPairs, int |evel)
throws AMException, SSCException;

Chapter 6 Identity Management 237

Identity Management SDK

238

Code Example 6-4 Available Search Methods For searchUsers

publ i c AVBearchResults searchUsers(String w ldcard, Map avPairs,

AlBear chControl searchControl)
throws AMException, SSCException;

publ i c AVBearchResults searchUsers(String wldcard,
AVBear chCont rol searchControl)
throws AMException, SSCException

public AvBearchResults searchUsers(String w ldcard,
AVBear chControl searchControl, String avfilter)
throws AMException, SSCException;

Search Method Parameters
Here are brief descriptions of some of the search method parameters.

AMSearchControl

This class provides a way to specify detailed search criteria such as the scope of the
search, the maximum results, time out value, etc. It must be implemented for all
searches to set these criteria.

wildCard

This parameter can be used to specify the wild card used for naming attributes. For
example, if searching for all users whose naming attributes (uid or cn) start with
"Ma", then the wild card could be Ma*.

avPair

This parameter is a map of attribute/value pairs that need to be added to a search
filter. The key of the map is the attribute name and the value is a set of values. The
SDK will construct a filter from this avPai r map. Each of the pairs in the map will
be OR ("]") and not AND (&) to construct the filter.

avFilter

In most cases it will be sufficient to OR the attributes, but this parameter provides
flexibility for applications to pass their own search filter to meet search criteria.
Such filters could be a complex LDAP search fiter as in the following example:

(&(obj ect cl ass=i pl anet - am nanaged- per son) ((cust onEnpl oyeeNuner =12*)
&(cust onDepart ment =3459932)))

This example illustrates when two conditions (the employee number and
department number) need to be met. For this purpose, AND (&) is used.

Identity Server 2004Q2 « Developer's Guide

Identity Management SDK

NOTE The methods that return aj ava. uti | . Set will throw an exception if the search
fails as a result of exceeding the search limit or the time limit. In such cases, even
partial results of the failed search will not be returned. To obtain the partial results
in such cases, the methods that return an AMSear chResul t s object must be
used. The error code can be verified by using the class methods to check if the
search was successful.

searchUsers Sample Code

Code Example 6-5 demonstrates how to search for all users in an organization (DN:
dc=exanpl e, dc=com) who belong to department 3459932 and whose user hames
end with smith.

Code Example 6-5 Sample Code For Search Methods

/] Note obtain a valid token of a principal who has privileges to
/'l performthis operation.
SSOroken token = get SSOToken();

/] Create an AMBtoreConnection and obtain an AMX gani zation

/'l instance for dc=exanple, dc=com

ANVBt or eConnecti on ant = new ANMBt or eConnecti on(t oken) ;

AMX gani zation anmrg = ant. get O gani zati on("dc=exanpl e, dc=con') ;

/1 Construct the search filter

/] Need to retrieve all usernanes ending with snmth
String wildCard = "*smth"

Map avPair = new HashMap();

Set departnent Val ue = new HashSet ();

depart ment Val ue. add(" 3459932") ;

avPai r. put ("cust onmDepart nent”, departnent Val ue);

Il Set the search control

AVBear chControl = new A\VBear chControl ();

Il Sub tree search

sear chControl . set Sear chScope(AMConst ant s. SCOPE_SUB) ;
/1 Time out 3000 mlliseconds.

searchControl . set Ti meQut (3000);

/1 Wuld like to get only first 100 results
searchControl . set MaxResul t s(100) ;

/1 Performthe search
AVBear chResul ts results = anrg. sear chUsers(wi |l dcard, avPair,
searchControl);

/] Check if any time out or size limt errors occured.
if (results.getErrorCode == AVBear chResul ts. SUCCESS) {

/'l Process the results
} else {

Il Verify the error condition and take appropriate action
}

Chapter 6 Identity Management 239

Identity Management SDK

240

Here the filter to conduct the search will look like:

(&(ui d=*smi t h) (obj ect cl ass=i net or gper son) ((cust orrer Depar t nent =" 3459
932")))

To add an additional department, one more value can be added to the search as in:

(&(ui d=*smi t h) (obj ect cl ass=i net or gper son) ((cust orrer Depar t nent =" 3459
932")| (cust oner Depart ment =" 3459933")))

Search Groups Sample Code
Code Example 6-6 uses interfaces from the com i pl anet . am sdk package to

search groups.

Code Example 6-6 Search Groups Code Sample

try {
Set orgSetl = new HashSet ();
Set orgSet2 = new HashSet ();
Set orgSet3 = new HashSet ();
Set orgSet4 = new HashSet ();

AVBear chResul ts results = nul | ;
AvBear chControl ctl = new AvBearchControl (); //use default val ues
String DN = "ou=Q@ oups, dc=i dpl, dc=coni’;
AMX gani zational Unit org = conn. get O gani zati onal Unit (DN);
if (org.isExists()) {
/lget all groups in this QU
orgSet1 = org. get Assi gnabl eDynani cG oups(AMConst ant s. SOOPE_SUB) ;
/I get Assignabl e Dynam ¢ G oups
orgSet 2 = org. get Dynam c@ oups(AMConst ant s. SCOPE_SUB) ; //get Dynam ¢
QG oups
orgSet3 = org. get Stati cQG oups(AMonst ants. SCOPE SUB); //get Static
QG oups

//set up the avPairs for the search on attribute within group
Map avPairs = new HashMap();
Set set = new HashSet (1);
set.add("true");
avPai rs. put ("i pl anet - am gr oup- subscri babl e", set);
results = org. searchAssi gnabl eDynam cQG oups("*", avPairs, ctl);

[lreturns all subscribabl e groups
orgSet4 = results. get SearchResul ts();

}
[IPrint the results
return "Assignable Dynamic Goups: " + orgSetl.toString() +
"Dynanic Goups: " + orgSet2.toString() +
"Static Qoups: " + orgSet3.toString() +
"Qoup with subscribable=true:" + orgSet4.toString();
} catch (Exception ex) {
ex. print StackTrace();

Identity Server 2004Q2 « Developer's Guide

Identity Management SDK

Code Example 6-6 Search Groups Code Sample

return "got errors";

}

Email Notification And The SDK

anProfil e. properti es is the localization file for the SDK. All strings that may be
visible via an error message or a feature are stored in this file as key=val ue pairs.
The file itself is located in IdentityServer_base/ SUN\Vant | ocal e. Although all of the
properties are not discussed in this section, there are some worth noting that
pertain to email notification. The Administration Service has a number of
notification attributes: User Creation, User Deletion and User Modification
notification lists. When a user profile is created, deleted or modified, a notification
email will be sent to the addresses listed as values of these attributes. To modify the
message that is sent, the following key=val ue pairs in anProf i | e. properties
need to be modified.

= 490=The user creation email subject can be defined with this key. The default is
WARNI NG user creation notice.

= 491=The user deletion email subject can be defined with this key. The default is
WARNI NG user del etion notice.

= 492=The user modification email subject can be defined with this key. The
default is WARNI NG user nodi fication noti ce.

= 493=The user creation email body text can be defined with this key. The default
isuser is created: followed by the DN of the user.

e 494=The user deletion email body text can be defined with this key. The
defaultisuser is del eted: followed by the DN of the user.

= 495=The user modification email body text can be defined with this key. The
defaultisuser is nodified: user DN. attribute is changed: attribute
old_value: original_value new value: modified_value

= 497=The entity from which the email comes is defined with this key. The
default is Identity-Server.

More information on the Administration Service and the notification attributes
themselves can be found in the Sun Java System ldentity Server Administration Guide.

Chapter 6 Identity Management 241

Identity Management SDK

Caching And The SDK

Caching in the Identity Management SDK is used for storing all AMDbj ect
attributes (i.e., attributes of identity-related objects) that are retrieved from
Directory Server. The cache does not hold AMj ect directly, only its attributes. All
attributes retrieved from Directory Server using the methods

AMbj ect. get Attri butes(), AMbj ect.get Attribute(String nane) or

AMDoj ect . get Attri but es(set Attri but eNanmes) will be cached. Table 6-1
contains a listing of the recorded cache properties.

Table 6-1 Recorded Cache Properties

Information Name What is recorded

Number of requests during Number of get requests during the specified interval

this interval

Number of cache hits Number of hits during the specified interval

during this interval

Hit ratio for this interval Hit ratio for the specified interval

Total number of requests Overall number of get requests since a server re-start

since server start

Total number of cache hits Overall number of hits since a server re-start
since server start

Overall Hit ratio Overall hit ratio since a server re-start

Total Cache Size The total size of the cached information

Cache properties can be configured by modifying attributes in the
AMonf i g. proper ti es file. For more information see “SDK Caching” on page 384
of Appendix A, “AMConfig.properties File,” in this manual.

Installing The SDK Remotely

It is possible for an external application to perform management functions on the
Directory Server without installing the full Identity Server application at the
external location. By installing the SU\Vansdk package using the pkgadd utility (or
the installer), the Identity Management SDK can be installed on a non-ldentity
Server machine. For more details on the Identity Management SDK only
installation option, refer to the Java Enterprise System Installation Guide.

242 Identity Server 2004Q2 « Developer's Guide

Identity Management SDK

NOTE If the SUNVANs dK package is installed remotely and Identity Server is running in
SSL mode, a certificate database needs to be created. Create the database using
the Sun Java System Web Server command line tool cert uti | or the Web
Server console and then copy the database to the remote machine. For more
information, see the Sun Java System Web Server documentation set.

Management Function Samples

Following are several samples that illustrate identity management functions using
the Identity Management SDK.

NOTE Identity Server can authenticate and authorize against directories other than Sun
Java System Directory Server (for example, Microsoft™ Active Directory), but
Identity Server can not perform management functions against these directories
such as creating users or deleting organizations.

Creating Objects

Typically, three steps are involved in creating an object with the SDK. The
following three steps are specific to creating users but can be modified for any
object.

To Create A User
1. Get AVBt or eConnect i on object to connect to the data store.

2. From the AMSt or eConnect i on, get AMPeopl eCont ai ner object where the users
will be created.

3. In AMPeopl eCont ai ner object, create users.

Code Example 6-7 Sample Code To Create A User

/**
* This nethod will describe the SDK usage for creating a user.
* |t uses AVBtoreConnection to get the organization object

* |t also uses the Set Paraneters to store the different

* attributes of the user. It throws

* an AMException if it's unble to create it and we throw

* message "unable to create" to the GJ by catching the same

*
/

public String createlUser (HtpServl et Request req, Set paraneters,
AMVBt or eConnecti on conn) {
try {

Chapter 6 Identity Management 243

Identity Management SDK

Code Example 6-7 Sample Code To Create A User (Continued)

Map userAttributeMap = new HashMap();

if (paraneters.contains("uid")) {
uid = req.get Parameter ("uid");
storeUserAttributes("uid", uid, userAttributeMap);

i f(parameters. contains("firstnane")) {
firstName = req. getParanmeter("firstname");
storeUser Attributes("givennane", firstNane,

user Attri but eMap) ;
}

i f(parameters. contai ns("lastname")) {
| ast Name = req. get Paramet er ("1 ast name") ;
storeUser Attributes("sn", |astName, userAttributeMap);

i f (pararet ers. contai ns("password")) {
passWrd = req. get Paramet er (" user Passwor d") ;
storeUser Attribut es("user Password", pass\Wrd,

user At tri but eMap) ;
}

Map user Mapl = new HashMap();

user Mapl. put (ui d, userAttributeMap);

String orgDN = req. get Paranet er (" or gNane") ;

String dn = "ou=People" + "," + orgD\

AMPeopl eCont ai ner anpc = conn. get Peopl eCont ai ner (dn) ;
anpc. creat eUser s(user Mapl) ;

userDN = "uid=" + uid +"," + dn;

/*

* This is to keep the context of the user
*/

cont ext User = conn. get User (user DN) ;
return showCr eat eUser Success();
} catch (Exception ex) {
ex. print StackTrace();
return "Unable to create";

To Create An Organization
1. Get AMBt or eConnect i on object to connect to the data store.

2. From the AMSt or eConnect i on, get AMOr gani zat i on object for the top level
organization.

3. In AMX gani zat i on object, create sub-organization.

NOTE or g. cr eat eUser s creates users directly under the organization. In order to
create users in a people container, use the AMPeopl eCont ai ner object.

244 |dentity Server 2004Q2 « Developer's Guide

Identity Management Samples

Retrieve Templates

Code Example 6-8 retrieves a service’s dynamic templates by opening a connection
to Directory Server with AVBt or eConnect i on. It retrieves a service’s dynamic
template by defining the DN of the top organization (t opor g. con) as well as the
string attribute of the specific service to be retrieved.

Code Example 6-8 Retrieve Service’s Dynamic Template

/] instantiate a store connector from SSO Token
AVBt or eConnection ansc = new AMBt or eConnect i on(ssoToken) ;
Il retrieve top | evel organization by DN
AMX gani zation org = ansc. get O gani zati on("dc=t opor g, dc=cont) ;
Il retrieve Dynamc type AMIenpl ate for i Pl anet AMBessi onService
AMTlenpl ate tenplate = org. get Tenpl at e("i Pl anet AMBessi onSer vi ce",
AMTenpl at e. DYNAM C_TEMPLATE) ;
/'l retrieve attributes
String maxSessionTine =
tenpl ate. get StringAttribute("iplanet-am sessi on- max-session-tine");

TIP As an alternative to creating a new XML service file, amJser . xm can be
modified. In this case, unregister the old anlJser service file, modify it and
re-register the modified file. Attribute/value pairs need to be integrated into the
amJser . properti es file for newly-defined internationalization keys.
uns. X does not need to be modified for this option.

ldentity Management Samples

Identity Server contains samples that illustrate user management functions. These
include a sample to add an attribute to the user profile and one to illustrate how to
create organizations, users, roles, and services using the SDK. They can be found in
IdentityServer_base/ SUNVAnI sanpl es/ um

Chapter 6 Identity Management 245

Identity Management Samples

Adding User Attributes

This sample explains how to add new attributes to the User profile so that those
new attributes can be managed via the user page in the Identity Server console.
There are 2 ways this can be achieved: modify the existing anlser . xnl , or create a
new XML service file and import it into Identity Server.

Creating Objects With The SDK

This sample contains sample Java code that can be generated and run to create
some identity-related objects including an organization, roles and users. The
defined Sanpl eQ gQper at i ons. j ava creates an organization, gets the registered
services, and adds them. Sanpl eUser Cper at i ons. j ava and

Sanpl eRol eQper at i ons. j ava can also be used for their respective purposes.

246 Identity Server 2004Q2 « Developer's Guide

Chapter 7

Service Management

Sun Java™ System ldentity Server provides a mechanism for the definition and
management of services and their configuration data. Both eXtensible Markup
Language (XML) files and Java™ interfaces are used for this purpose. This chapter
provides information on how to define a service, the structure of the XML files and
the service management application programming interfaces (API). It contains the
following sections:

= “Overview” on page 247

< “Defining A Custom Service” on page 249
e “DTD Files” on page 259

e “XML Service Files” on page 292

= “Service Management SDK” on page 300

Overview

A service is a group of attributes that are managed together by the Identity Server
console. The attributes can be the configuration parameters of a software module or
they might just be related information with no connection to a software
application. As an example of the first scenario, after creating a payroll module, a
developer can create an XML service file that might include attributes to define an
employee name, an hourly pay rate and an income tax rate. This XML file is then
integrated into the Identity Server deployment so that these three attributes and
their corresponding values can be stored in, and managed from, the Sun Java
System Directory Server data store and Identity Server console, respectively.

247

Overview

Identity Server provides the necessary tools for administrators to define, integrate
and manage groups of attributes as a service. Creating a service for management
using the Identity Server console involves preparing an XML service file,
configuring an LDAP Data Interchange Format (LDIF) file with any new object
classes and importing both, the XML service file and the new LDIF schema, into the
Directory Server. Administrators can then register, customize and manage the
service using the Identity Server console. More specific information on this process
can be found in “Defining A Custom Service” on page 249.

NOTE Throughout this chapter, the term attribute is used to illustrate two concepts. An
Identity Server or service attribute refers to the configuration parameters of a
defined service. An XML attribute refers to the parameters that qualify an XML
element in an XML service file.

XML Service Files

XML service files enable Identity Server to manage attributes that are stored in
Directory Server. It is important to remember that Identity Server does not
implement any behavior or dynamically generate any code to interpret the
attributes; it can only set or get the attribute values. Out-of-the-box though,
Identity Server loads a number of services it uses to manage the attributes of its
own features; it manages and uses these values. For example, the Logging
attributes are displayed and managed in the Identity Server console, while code
implementations within the Identity Server use these configured attributes to
record the operations of the application. All XML service files are located in

/ et c/ opt / SUN\VanT confi g/ xml . For more specific information on the XML files
used in service management, see “XML Service Files” on page 292.

NOTE Any application with LDAP attributes can have its data managed using the Identity
Server console by configuring a custom XML service file and loading it into the
Directory Server. For more information, see “Defining A Custom Service” on
page 249.

Document Type Definition Structure Files

The format of an XML file is based on a structure defined in a DTD file. In general,
a DTD file defines the elements and qualifying attributes needed to write a
well-formed and valid XML document. Identity Server exposes the DTD files that
are used to define the structure for the different types of XML files it uses. The

248 Identity Server 2004Q2 « Developer's Guide

Defining A Custom Service

DTDs are located in IdentityServer_base/ SUN\VanT dt d. This chapter primarily
concerns itself with sis. dt d, the file that defines the structure for all XML service
files. Additional information on Identity Server DTDs can be found in “DTD Files”
on page 259.

NOTE Knowledge of XML is necessary to understand DTD elements and how they are
integrated into Identity Server. When creating an XML file, it might be helpful to
print out the relevant DTD and a corresponding sample XML file.

Service Management SDK

Identity Server also provides a service management SDK that gives application
developers the interfaces necessary to register and un-register services as well as
manage schema and configuration information. These interfaces are bundled in a
package called com sun. i dentity. sm More information on the SDK can be found
in “Service Management SDK” on page 300.

Defining A Custom Service

To define a service for management using ldentity Server, the developer must
create an XML service file as well as configure an LDIF file for any object classes
not already defined in Directory Server. Both, the XML service file and the new
LDIF schema, must then be imported into Directory Server. Once imported, the
service can be registered to an organization using Identity Server and its attributes
managed and customized by the Identity Server administrator. The following steps
detail the procedure used to define a service. The sections following the procedure
explain each step in more detail.

1. Create an XML service file containing a group of attributes.

This XML service file must conform to the sns. dt d. A simple way to create a
new XML service file would be to copy and modify an existing one. More
information on creating an XML service file can be found in “Creating A
Service File” on page 251. An explanation of the DTD syntax can be found in
“The sms.dtd Structure” on page 261.

Chapter 7 Service Management 249

Defining A Custom Service

Extend the LDAP schema in Directory Server using | dapnodi fy, if necessary.

Loading an LDIF file into Directory Server will add any newly defined or
modified LDAP object classes and attributes to the directory tree. This step is
only necessary when defining dynamic, policy and user attributes. (Using
Identity Server-specific object classes and attributes do not require that
changes be made to the LDAP schema.) Instructions on extending the LDAP
schema can be found in “Extending The Directory Server Schema” on

page 255. Additional information on identity-related objects and the Identity
Server schema can be found in Chapter 6, “Identity Management,” of this
manual and the Sun Java System Identity Server Deployment Planning Guide,
respectively. The Sun Java System Directory Server documentation contains
information on the LDAP schema.

Import the XML service file into Directory Server using amadmni n.

Information on importing an XML service file and the anadm n command line
utility can be found in “Importing The XML Service File” on page 257 and the
Sun Java System Identity Server Administration Guide, respectively.

Configure a localization properties file and copy it into the
IdentityServer_base/ SU\ani | ocal e directory.

The localization properties file must be created with accurate i 18nKey fields.
These console names map to fields defined in the XML service file. If no
localization properties file exists, Identity Server will display the actual
attribute names. More information on the localization properties file can be
found in “Configuring Console Localization Properties” on page 257 and
“Localization Properties Files” on page 89 of Chapter 4, “Authentication
Service,” in this manual.

Update the anEnt r ySpeci fi c. xmi or anmser. xn files, if necessary.

The anEnt rySpeci fi c. xn file defines the attributes that will display on the
Create, Properties and Search pages specific to each of the Identity Server
abstract objects. The amJser . xmi file can be modified to add User attributes to
the User Service. (Alternately, User attributes can be defined in the actual XML
service file in which case, anmser . xm would not need to be modified.)
Information on abstract objects and updating anEnt r ySpeci fi c. xm can be
found in Chapter 6, “Identity Management,” of this manual. Information on
modifying amJser . xm can be found in “Modifying A Default XML Service
File” on page 294.

250 Identity Server 2004Q2 < Developer's Guide

Defining A Custom Service

6. Register the service using Identity Server console.

After importing the service into Directory Server, it can be registered to an
organization and the attributes managed through the Identity Server console.
Information on how this can be done is in the Service Configuration chapter in
the Sun Java System lIdentity Server Administration Guide. Information on how to
register the service using the command line can be found in “Registering The
Service” on page 259.

Creating A Service File

The information in this section corresponds to Step 1 on page 249, creating an XML
service file. The XML service file defines the attributes of an Identity Server service.
It must follow the structure defined in the sns. dt d which enforces the service
developer to combine attributes into one of five groups, allowing the developer to
differentiate between those attributes applicable to, for example, a service instance
or a user. The DTD syntax can be found in “The sms.dtd Structure” on page 261.

Service File Naming Conventions

When creating a new XML service file, there are some naming conventions that
must be followed.

= The name of a service (other than an authentication module service) as defined
in the XML service file can be any string as long as it is unique.

< The name of an authentication module service as defined in the XML service
file must be in the form i Pl anet AMAut hmodule_nameService.)

< Any defined authentication level attribute must be configured as
i pl anet - am aut h- module_name- aut h- | evel .

Service Attributes

The sns. dt d requires the service developer to define attributes into one of five
groups. These groups differentiate between those attributes applicable to, for
example, the Identity Server deployment as a whole, a specific service or a single
user.

Global Attributes

Global attributes are defined for the entire Identity Server installation and are
common to all data trees, service instances and integrated applications within the
configuration. Global attributes can not be applied to users, roles or organizations
as their purpose is to configure ldentity Server itself. Server names, port numbers,

Chapter 7 Service Management 251

Defining A Custom Service

252

service plug-ins, cache size, and maximum number of threads are examples of
global attributes that are configured with one value. For example, when Identity
Server performs logging functions, the log files are written into a directory. The
location of this directory is defined as a global attribute in the Logging Service and
all Identity Server logs, independent of their purpose, are written to it. Identity
Server administrators can modify these default values using the console. Global
attributes are stored in Directory Server using specially-defined LDAP attributes so
the LDAP schema does not need to be extended to add a new global attribute.

NOTE If a service has only global attributes, it can not be registered to an organization nor
can a service template be created. An example of this would be the Platform
Service.

Organization Attributes

Organization attributes are defined and assigned at the organization level.
Attributes for an Authentication Service are a good example. When the
Authentication Service is registered, attributes are configured depending on the
organization to which it is registered. The LDAP Server and the DN To Start
User Sear ch would be defined at the organization level as this information is
dependent on the address of an organization’s LDAP server and the structure of
their directory tree, respectively. Organization attributes are stored in Directory
Server using specially-defined LDAP attributes so the LDAP schema does not need
to be extended to add a new organization attribute.

NOTE Organization attributes are not inherited by sub-organizations. Only dynamic
attributes can be inherited. For additional information, see “Attribute Inheritance” on
page 254.

Dynamic Attributes

Dynamic attributes are inheritable attributes that work at the role and organization
levels as well as the sub-organization and organizational unit levels. Services are
assigned to organizations and roles which, in general, have access to any service
assigned to its parent organization. Dynamic attributes are inherited by users that
possess a role or belong to the organization. Because dynamic attributes are
assigned to roles or organizations instead of set in a user entry, they are virtual
attributes inherited by users using the concept of Class of Service (CoS). When these
attributes change, the administrator only has to change them once, in the role or
organization, instead of a multitude of times in each user entry.

Identity Server 2004Q2 « Developer's Guide

Defining A Custom Service

NOTE Dynamic attributes are modeled using class of service (CoS) and roles. For
information on these features, see Appendix E, “Directory Server Concepts,” in this
manual or refer to the Sun Java System Directory Server documentation.

An example of a dynamic attribute might be the address of a common mail server.
Typically, an entire building might have one mail server so each user would have a
mail server attribute in their entry. If the mail server changed, every mail server
attribute would have to be updated. If the attribute was in a role that each user in
the building possessed, only the attribute in the role would need to be updated.
Another example might be the organization’s address. Dynamic attributes are
stored within the Directory Server as LDAP objects, making it feasible to use
traditional LDAP tools to manage them. A Directory Server LDAP schema needs to
be defined for these attributes.

Policy Attributes

Policy attributes specify the access control actions (or privileges) associated with a
service. They become a part of the rules when rules are added to a policy. Examples
include canFor war dEmai | Addr ess and canChangeSal ar yl nf or mat i on. The
actions specified by these attributes can be associated with a resource if the

| sResour ceNaneAl | owed element is specified in the attribute definition. For
example, in the web agent XML service file, am\¢bAgent . xm , GET and PCST are
defined as policy attributes with an associated URL resource as

| sResour ceNaneAl | owed is specified.

NOTE Out of the box, only the Policy Configuration Service uses policy attributes although
they can be defined for any number of services.

User Attributes

User attributes are defined for a single user. User attributes are not inherited from
the role, organization, or sub-organization levels. They are typically different for
each user, and any changes to them would affect only the particular user. User
attributes could be an office telephone number, a password or an employee ID. The
values of these attributes would be set in the user entry and not in a role or
organization. For example, if 70 attributes are user-defined and an organization has
two million users, each attribute is stored two million times. This, of course, only
occurs if the service is assigned to the user and a value is set for them. User
attributes can be a part of any service but, for convenience, Identity Server has

Chapter 7 Service Management 253

Defining A Custom Service

254

grouped a number of the most widely-used attributes into a service defined by the
amJser . xm service file. User attributes are stored within the Directory Server as
LDAP objects, making it feasible to use traditional LDAP tools to manage them. A
Directory Server LDAP schema needs to be defined for these attributes.

NOTE When defining user attributes in an XML service file (other than anUser . xm) ,
the service must be assigned to the user for the user attributes to be displayed on
their User Profile page. In addition, the User Profile Display Option in the
Administration Service must be set to Conbi ned. For more information, see the
Sun Java System ldentity Server Administration Guide.

Attribute Inheritance

After creating and loading an XML service file, an administrator can assign the
service’s attributes by registering it and creating a service template. Then, when a
user possesses a role or belongs to an organization to which the service is
registered, they inherit the dynamic attributes of the role or the service,
respectively. Inheritance only occurs, though, when the service possessed is
explicitly assigned to the user. A user can inherit attributes from multiple roles or
parent organizations.

TIP Service templates created for a parent organization contain attributes that trickle
down to sub-organizations. Therefore it is not necessary to create templates for
sub-organizations unless the attribute values are being customized. Creating a
large number of service templates will have a performance impact.

ContainerDefaultTemplateRole Attribute

Dynamic attributes are used in an XML service file if an administrator wants to
define a particular attribute as one which is inherited by all identity objects to
which the service is registered. After uploading the XML service file and
registering the service to an organization or role, all users in the sub-trees of the
organization or role will inherit the dynamic attributes. To accomplish this,
Identity Server uses classic CoS and role templates (as described in Appendix E,
“Directory Server Concepts”). Cont ai ner Def aul t Tenpl at eRol e is a default
filtered role configured for each organization in which the LDAP object class

i pl anet - am managed- per son is the default filter. Every user in Identity Server is
a member of i pl anet - am managed- per son so every user in the organization
possesses Cont ai ner Def aul t Tenpl at eRol e. Identity Server creates a separate
CoS template for each registered service which points to the service’s dynamic
attributes. Because of this, any user who has Cont ai ner Def aul t Tenpl at eRol e (all
of them, by default) will inherit the dynamic attributes of the service. The LDIF
entry for Cont ai ner Def aul t Tenpl at eRol e is illustrated in Code Example 7-1.

Identity Server 2004Q2 « Developer's Guide

Defining A Custom Service

Code Example 7-1 Cont ai ner Def aul t Tenpl at eRol e LDIF Entry

dn: cn=Cont ai ner Def aul t Tenpl at eRol e, o=exanpl e

obj ectd ass: top

obj ect d ass: nsconpl exrol edefinition

objectd ass: nsfilteredrol edefinition

obj ectd ass: nsrol edefinition

obj ect d ass: | dapsubentry

nsRol eFi | ter: (objectclass=ipl anet - am managed- per son)

Modifying Inheritance

The nsRol eFi | t er attribute (as displayed in Code Example 7-1 may be modified
to allow objects other than users to inherit from Cont ai ner Def aul t Tenpl at eRol e.
Formatting its value as, for example,

(] (obj ect cl ass=i pl anet - am nanaged- per son) (obj ect cl ass=or gani zat i on)
) allows users and organizations to inherit the dynamic attributes. Any valid filter
syntax can be used although typically it would be limited to attributes or
objectclasses in the user entries. In addition, the relevant objectclass from the LDAP
attributes must also be added to the entry.

Extending The Directory Server Schema

The information in this section corresponds to Step 2 on page 250, extending the
LDAP schema in Directory Server. When configuring an XML service file for
Identity Server, it might also be necessary to modify the Directory Server schema.
First, any customized dynamic, policy or user attributes defined in an Identity
Server service that are not already defined in the Directory Server schema need to
be associated with an LDAP object class. Then the attribute(s) and object class(es)
need to be added to the LDAP schema using the | dapnodi f y command line tool
and an LDIF file as input.

NOTE The order in which the LDAP schema is extended or the XML service file is loaded
into Directory Server is not important.

To Extend The Directory Server LDAP Schema

1. Create an LDIF file to define any new or modified LDAP object classes and
attributes.

Chapter 7 Service Management 255

Defining A Custom Service

256

Change to the Identity Server bi n directory.
cd IdentityServer_base/ SUNVn1 bi n
Run | dapnodi f y using the LDIF file as input.

The syntax is | dapnodi fy - D userid_of_DSmanager -w password - f
path_to_LDIF_file. By default, userid_of_DSmanager is cn=D r ect ory Manager . If
the LDIF was created correctly, the result of this command would be to modify
the entry cn=schena.

NOTE After extending the schema, it is not necessary to restart the Directory Server but,

as | dapnodi fy is server-specific, the schema needs to be extended on all
configured servers. Information on how this is done can be found in the Sun Java
System Directory Server documentation.

Run | dapsear ch to ensure that the schema has been created.

The syntax is| dapsearch -b cn=schema -s base - D userid_of_DSmanager - w
password (obj ectclass=*) | grep -i servicenane. If the LDIF was created
correctly, the result of this command would be a listing of the object classes as
illustrated in Code Example 7-2.

Code Example 7-2 Sample LDIF Listing For Mail Service

obj ectd asses: (1.2. NEW
NAME ' am sanpl e- mai | - servi ce'
DESC ' Sanpl eMai | Service' SUP top AUXI LI ARY
MAY (amsanpl e-mai | -service-status $
am sanpl e-mai | -root-fol der $
am sanpl e- nai | - sent messages-fol der $
am sanpl e-nmai | -i ndent-prefix $
amsanpl e-nai | -initial -headers $
am sanpl e-nmai | -i nactivity-interval $
am sanpl e-nai | -auto-1oad $
am sanpl e- mai | - header s- per page $
amsanpl e-nmai | -quota $
am sanpl e-mai | -nax-attach-len $
am sanpl e- nai | - can- save- addr ess- book- on- server)
X-ORIAN "user defined)
attributeTypes: (11.24.1.996.1
NAMVE ' am sanpl e- mai | - servi ce- st at us’
DESC ' Sanpl eMai | Service Attribute’
SYNTAX 1.3.6.1.4.1.1466. 115.121. 1. 15
X-ORIA N "user defined)

Identity Server 2004Q2 « Developer's Guide

Defining A Custom Service

Adding Identity Server Object Classes To Existing Users

If a new service is created and the service’s users already exist, the service’s object
classes need to be added to the user’s LDAP entries. To do this, Identity Server
provides migration scripts for performing batch updates to already-existing user
entries. No LDIF file need be created. These scripts and the procedures are
described in the Sun Java System Identity Server Migration Guide. Alternatively,
registered services can be added to each user by selecting the service on their
Properties page although, for an organization with many users, this would be
time-consuming.

CAUTION ltis not recommended to use | dapnodi f y to extend the schema.

Importing The XML Service File

The information in this section corresponds to Step 3 on page 250, importing an
XML service file into Identity Server. This step is important as it serves to populate
Directory Server and Identity Server with the newly defined service attributes.

1. Change to the Identity Server install directory:
cd IdentityServer_base/ SUNVnT bi n

2. Run following command line application: . / amadni n - -runasdn
DN_of_directory_server_administrator - - passwor d
password_directory_server_administrator - -ver bose --schema xml_service_file_path.

More information on the amadm n command line tool can be found in the Sun
Java System Identity Server Administration Guide

NOTE If changing an existing service, the original XML service file must be deleted before
importing the newly modified XML service file. Information on this function can be
found in the Sun Java System Directory Server documentation.

Configuring Console Localization Properties

The information in this section corresponds to Step 4 on page 250, configuring a
localization properties file. A localization properties file specifies the locale-specific
screen text that an administrator or user will see when directed to a service’s
attribute configuration page.

Chapter 7 Service Management 257

Defining A Custom Service

258

NOTE For certain services, this file also localizes error messages, Java exceptions and
email notification specifics. This section though concerns itself only with
service-related values. Additional information can be found in “Localization
Properties Files” on page 89 of Chapter 4, “Authentication Service,” in this manual.

The localization properties files are located in the

IdentityServer_base/ SUNVaNI | ocal e directory. They are generally named using the
format anservice_name. pr oper ti es. Code Example 7-3 is the localization
properties file for the Client Detection service named

anC i ent Det ecti on. properties.

Code Example 7-3 amClientDetection.Properties File

attr descriptions nsgs

#

i pl anet-am cl i ent - det ecti on-servi ce-description=0ient Detection
al00=Aient Types

al0l=Default Qient Type

al02=Cient Detection d ass

al03=Cient Detection Enabl ed

al100. | i nk=Edi t

unknown_key=r equested key is not available in the property

nul | _key=null key passed to getProperty

nul'| _client Type=client type is null

unknown_cl i ent Type=r equest ed cl i ent Type doesn't exist
update_error=notification received between setproperty and store. Need to do
setproperty again.

The localization properties files consist of a series of key=value pairs. The value of
each pair will be displayed on the service’s Properties page in the Identity Server
console. The keys (al, a2, etc.) map to the i 18nKey fields defined for each attribute
in a service in the XML service file. The keys also determine the order in which the
fields are displayed on screen as the keys are displayed in the order of their ASCII
characters (al is followed by al0, followed by a2, followed by bl). For example, if
an attribute needs to be displayed at the top of the service attribute page, the
alphanumeric key should have a value of al. The second attribute could then have
a value of either a10, a2 or b1, and so forth.

TIP If a localization properties file is modified, Identity Server needs to be restarted to
see the changes. If importing a new localization properties file, Identity Server does
not need to be restarted.

Identity Server 2004Q2 « Developer's Guide

DTD Files

Localizing With Two Languages

When one instance of Identity Server is localized with two languages, the
localization properties files still go into the same directory. Each file name would
be appended with a suffix to match the locale. For example, if French localization
packages are added, the file name would be anservice_ name_fr. properti es. If
Spanish localization packages are added, that properties file name would be
anservice_name_es. properti es.

NOTE Information on downloading and installing localized versions of Identity Server can
be found at ht t p: / / wws. sun. coni sof t war e/ downl oad/
inter_ecomhtn.

Updating Files For Abstract Objects

For information corresponding to Step 5 on page 250, updating the

anmEnt r ySpeci fi c. xni , see Chapter 6, “Identity Management,” of this manual. For
information corresponding to Step 5, updating the amJser . xni , see “XML Service
Files” on page 292.

Registering The Service

The information in this section corresponds to Step 6 on page 251, registering a
new service to an identity object. The preferred way to register a service is to use
the Identity Server console. Information on how this is done can be found in the
Sun Java System Identity Server Administration Guide. An alternate process to register
a service is to use the anAdni n. dt d, batch processing templates and the command
line. Information can be found in “The amAdmin.dtd Structure” on page 271 and
“Batch Processing With XML Templates” on page 296.

NOTE To register a service, ensure that Identity Server is properly binding to the Directory
Server.

DTD Files

Identity Server contains numerous DTD files to define the structures for the XML
files used in Identity Server . The DTDs are located in
IdentityServer_base/ SUNWANI dt d and include:

Chapter 7 Service Management 259

DTD Files

e Auth_Mdul e_Properties. dt d—defines the structure for XML files used by
each authentication module to specify the properties for the Authentication
Service interface. Information on this document can be found in
“Authentication Programming Interfaces” on page 156 in Chapter 4,
“Authentication Service,” of this manual.

e amAdm n. dt d—which defines the structure for XML files used to perform
batch LDAP operations on the directory tree using the command line tool
amAdmi n. Information on this document can be found in “The amAdmin.dtd
Structure” on page 271.

= anm/ébAgent . dt d—defines the structure for XML files used to handle requests
from, and send responses to, web agents. This file is deprecated and remains
for purposes of backward compatibility.

e policy. dt d—defines the structure for XML files used to store policies in
Directory Server. Information on this document can be found in the Identity
Server Administration Guide.

= renot e-aut h. dt d—defines the structure for XML files used by the
Authentication Service’s remote Authentication API. Information on this
document can be found in “The remote-auth.dtd Structure” on page 138 of
Chapter 4, “Authentication Service,” of this manual.

< server-confi g. dt d—defines the structure for ser ver confi g. xmi which
details ID, host and port information for all server and user types. Information
on this document can be found in Appendix B, “serverconfig.xml File,” in this
manual.

e sns. dt d—which defines the structure for XML service files. Information on
this document can be found in “The sms.dtd Structure” on page 261.

< web-app_2_2. dt d—defines the structure for XML files used by the Identity
Server deployment container to deploy J2EE applications. The corresponding
XML file is called a deployment descriptor which specifies container options and
describes specific configuration requirements to be resolved by the deployer.

CAUTION None of the DTD files should be modified. The APIs and their internal parsing
functions are based on the installed definitions. Any alterations to the DTD files will
hinder the operation of Identity Server.

260 Identity Server 2004Q2 < Developer's Guide

DTD Files

The sms.dtd Structure

The sns. dt d defines the data structure for all XML service files. It is located in the
IdentityServer_base/ SUNWANT dt d directory. The sns. dt d enforces the developer to
define each service attribute as one of five types which are then stored and
managed differently. For instance, some of the attributes are applicable to an entire
Identity Server installation (such as a port number or server name), while others
are applicable only to individual users (such as a password). The attribute types
are Global, Organization, Dynamic, Policy, and User. More information on these
types can be found in “Service Attributes” on page 251.

An explanation of the main elements defined by the sns. dt d follows. Each element
includes a number of XML attributes which are also explained. Explanations of the
remaining elements can be found in the sns. dt d file itself. Identity Server
currently supports only about some of the elements contained in sns. dt d; this
section discusses only those elements.

NOTE Customized attribute names in XML service files should be written in lower case as
Identity Server converts all attribute names to lower case when reading from the
Directory Server.

ServicesConfiguration Element

ServicesConfiguration is the root element of the XML service file. It allows for the
definition of multiple services per one XML file. Its immediate sub-element is the
Service Element. Code Example 7-4 on page 261 illustrates the ServicesConfiguration
element as defined in the anC i ent Det ect i on. xm service file located in

/ et c/ opt/ SUNWam confi g/ xm .

Code Example 7-4 ServicesConfiguration and Service Element

<Servi cesConf i gurati on>
<Servi ce nanme="i Pl anet AMO i ent Det ecti on” version="1.0">
<Schena. . . >

Service Element

The Service element defines the schema for one given service. A number of different
services can be defined in one XML file using this element, although this is not
recommended. Currently, Identity Server supports the following sub-elements:
Schema Element (which defines the service’s attributes as either Global,

Chapter 7 Service Management 261

DTD Files

Organization, Dynamic, User or Policy) and Configuration. The required XML
attributes for the Service element are the name of the service, such as
iPlanetAMLogging, and the version number of the XML service file itself. Code
Example 7-4 on page 261 also illustrates the Service element, its attributes and the
opening Schema tag.

Schema Element

The Schema element is the parent of the family of elements that define the service’s
attributes and their default values. The sub-elements can be the Global Element,
Organization Element, Dynamic Element, User Element or Policy Element. The
required XML attributes of the Schema element include the serviceHierarchy
Attribute, the i18nFileName Attribute, the i18nKey Attribute, and the
propertiesViewBeanURL Attribute.

serviceHierarchy Attribute

When a new service is configured, its name will be dynamically displayed in the
Navigation frame of the console based on the value of this attribute. The value is a
"/" separated string. Each "/" portion of the string represents a level in the
hierarchy. Code Example 7-5 on page 262 illustrates the ser vi ceHi er ar chy
attribute as defined in an i ent Det ecti on. xni . i Pl anet AMJ i ent Det ecti on is
the name of the service. The name used for display in the console, though, is
defined by the i 18nKey (or i18nKey Attribute), and retrieved from the service’s
localization file defined by the i18nFileName Attribute. In this example, the value
of i pl anet -amcl i ent - det ecti on-servi ce-descri pti on will be found in

anmd i ent Det ecti on. properties and its value displayed. The service name will
be displayed below the Identity Server Configuration header in the left frame of the
Service Configuration module. To prevent a service from displaying in the console,

either remove the ser vi ceHi er ar chy attribute or setit’'s valueto"", as in
servi ceH erarchy="".
NOTE DSAMEConf i g as used in Code Example 7-5 and all XML service files refers to

the Identity Server Configuration header. The use of DSAME is a holdover from the
previous name of Identity Server. This is defined in the

amAdm nMbdul eMsgs. properti es file located in
IdentityServer_base/ SUN\Van | ocal e.

Code Example 7-5 i 18nFi | eNane, i 18nKey and ser vi ceH er ar chy Attributes

<Schema
servi ceH erar chy="/ DSAVEConf i g/ i Pl anet AMJ i ent Det ect i on"

262 Identity Server 2004Q2 « Developer's Guide

DTD Files

Code Example 7-5 i 18nFi | eNane, i 18nKey and ser vi ceH er ar chy Attributes

i 18nFi | eNane="and i ent Det ecti on"
i 18nKey="i pl anet - am cl i ent - det ect i on- servi ce-descri pti on">

i18nFileName Attribute

The i 18nFi | eNane attribute refers to the localization properties files. It takes a
value equal to the name of the localization properties file for the defined service
(minus the . pr operti es file extension). For example, Code Example 7-5 defines
the name of the properties file as an i ent Det ect i on.

i18nKey Attribute

The value of the % 18nl ndex attribute maps to the final, localized name of the
service to be displayed in the Identity Server console as it is defined in the
localization properties file.

NOTE The % 18nl ndex attribute is defined as an entity at the top of the sns. dt d. In
the configured XML service files, % 18nl ndex is replaced by i 18nKey and its
corresponding value.

For example, Code Example 7-5 refers to the value of the
iplanet-am-client-detection-service-description attribute as defined in

and i ent Det ecti on. properti es. This value is the name of the service as it will
be displayed in the Identity Server console; in this case, Client Detection is the
name defined in and i ent Det ecti on. properties. (Remember, the value of the
defined attribute might not be in English.) More information on the localization
properties file can be found in Chapter 4, “Authentication Service,” of this manual.

NOTE If the i 18nKey value is blank (i 18nKey=""), the Identity Server console will
not display the attribute.

propertiesViewBeanURL Attribute

The default display for a service is a simple table showing the attribute name and
its value. The pr operti esVi enBeanURL attribute provides the URL to the Java
bean used by the console to generate this display. It is possible to override the
default display by creating a new class and defining the URL to this class as a value
of this attribute. If no value is specified, the display is created by the console.

Chapter 7 Service Management 263

DTD Files

Service Attribute Elements

The next five elements are sub-elements of the “Schema Element” on page 262;
they are the declarations of the service’s Identity Server attributes. When defining a
service, each attribute must be defined as either a Global Element, an Organization
Element, a Dynamic Element, a User Element, or a Policy Element. Any
configuration of these elements (all of them or none of them) can be used
depending on the service. Each attribute defined within these elements is itself
defined by an AttributeSchema Element.

Global Element

The Global element defines Identity Server attributes that are modifiable on a
platform-wide basis and applicable to all instances of the service in which they are
defined. They can define information such as port number, cache size, or number
of threads, but Global elements also define a service’s LDAP object classes. For
additional information, see “Global Attributes” on page 251.

serviceObjectClasses Attribute. The ser vi ceCbj ect A asses attribute is a global
attribute defined in an XML service file that contains either dynamic or user
elements (attributes). The value of this attribute is an object class set in the LDAP
entries (stored in Directory Server) for users whom are registered to the service. It
allows any user with this object class to be dynamically assigned the service’s
dynamic or user attributes, if any exist.

CAUTION Ifthe servi ceCbj ect A asses attribute is not specified and the service has
defined dynamic or user attributes, an object class violation is called when an
administrator tries to create a user under that organization, and assign this service.

Multiple values can be defined for the ser vi ce(oj ect A asses attribute. For
example, if a service is created with two attributes each from three other services,
the servi ce(bj ect A asses attribute would need to list all three object classes as
Def aul t Val ues. Code Example 7-6 illustrates a ser vi ce(hj ect A asses attribute
with a defined object class from anQ i ent Det ecti on. xm .

Code Example 7-6 serviceObjectClass Defined As Global Element

<d obal >
<Attribut eSchema nanme="servi ceChj ect O asses"
type="Ilist"
synt ax="string"
i 18nKey="">
<Def aul t Val ues>
<Val ue>i pl anet -am cl i ent - det ect i on- servi ce</ Val ue>

264 Identity Server 2004Q2 « Developer's Guide

DTD Files

Code Example 7-6 serviceObjectClass Defined As Global Element

<d obal >
</ Def aul t Val ues>
</ Attribut eSchema>
</ d obal >

Organization Element

The Organization element defines Identity Server attributes that are modifiable per
organization or sub-organization. For example, a web hosting environment using
Identity Server would have different configuration data defined for each
organization it hosts. A service developer would define different values for each
organization attribute per organization. These attributes are only accessible using
the Identity Server SDK. For additional information, see “Organization Attributes”
on page 252.

Dynamic Element

The Dynamic element defines Identity Server attributes that can be inherited by all
user objects. Examples of Dynamic elements would be user-specific session
attributes, a building number, or a company mailing address. Dynamic attributes
use the Directory Server features, CoS and roles. For additional information, see
“Dynamic Attributes” on page 252.

User Element

The User element defines Identity Server attributes that exist physically in the user
entry. User attributes are not inherited by roles or organizations. Examples include
password and employee identification number. They are applied to a specific user
only. For additional information, see “User Attributes” on page 253.

Policy Element

The Policy element defines Identity Server attributes intended to provide actions
(or privileges). This is the only attribute element that uses the Act i onScherma
element to define its parameters as opposed to the At t ri but eSchena element.
Generally, privileges are GET, PCST, and PUT; examples of privileges might include
canChangeSal aryl nf or mat i on and canFor war dEmai | Addr ess. For additional
information, see “Policy Attributes” on page 253.

Chapter 7 Service Management 265

DTD Files

SubSchema Element

The SubSchena element can specify multiple sub-schemas of global information for
different defined applications. For example, logging for a calendar application
could be separated from logging for a mail service application. The required XML
attributes of the SubSchema element include nane which defines the name of the
sub-schema, i nheri t ance which defines whether this schema can be inherited by
one or more nodes on the directory tree, mai nt ai nPri ori ty which defines
whether priority is to be honored among its peer elements, and “i18nKey
Attribute” on page 263.

NOTE The SubSchenmna element is used only in the anEnt rySpeci fi c. xm file. It
should not be used in any external XML service files.

AttributeSchema Element

The AttributeSchema element is a sub-element of the five schema elements
discussed in “Service Attribute Elements” on page 264 as well as the SubSchema
element described in “SubSchema Element” on page 266. It defines the structure
for each configurable parameter (or attribute) of a service. The sub-elements that
gualify the AttributeSchema can include | sOpti onal ?, I sServi cel denti fi er?,

| sResour ceNaneAl | owed?, | sSt at usAt tri but e?, Choi ceVal ues?,

Bool eanVal ues?, Def aul t Val ues?, or Condi ti on. The XML attributes that define
each portion of the attribute value are the “name Attribute”, the “type Attribute”,
the “uitype Attribute”, the “syntax Attribute”, the “cosQualifier Attribute”,
rangeStart, rangeEnd, m nVal ue, maxVal ue, val i dat or, the “any Attribute”, the
“propertiesViewBeanURL Attribute” on page 263 and, the “i18nKey Attribute” on
page 263. Code Example 7-7 on page 266 illustrates an AttributeSchema element
taken from amser . xni , its attributes and their corresponding values. Note that
this example attribute is a Dynamic attribute.

Code Example 7-7 At tri but eSchema Element With Attributes

<Dynani c>
<AttributeSchema nane="i pl anet - am user - | ogi n- st at us"

t ype="si ngl e_choi ce"
syntax="string"
any="di spl ay"
i 18nKey="d105" >
<Choi ceVal ues>

<Choi ceVal ue i 18nKey="u200">Act i ve</ Choi ceVal ue>

<Choi ceVal ue i 18nKey="u200">I nacti ve</ Choi ceVal ue>
</ Choi ceVal ues>

<Def aul t Val ues>

266 Identity Server 2004Q2 < Developer's Guide

DTD Files

Code Example 7-7 At t ri but eSchena Element With Attributes (Continued)

<Val ue>Act i ve</ Val ue>
</ Def aul t Val ues>
</AttributeSchena>

name Attribute

This required XML attribute defines the a name for the attribute. Any string format
can be used but attribute names must be in lower-case. Code Example 7-7 on
page 266 defines it with a value of iplanet-am-user-login-status.

type Attribute

This attribute specifies the kind of value the attribute will take. The default value
for type is | i st but it can be defined as any one of the following:

= singl e specifies that the user can define one value.

= |i st specifies that the user can define a list of values.

= singl e_choi ce specifies that the user can choose a single value from a list of
options. A default value must be defined from the list.

e nultiple_choice specifies that the user can choose multiple values from a
list of options. A default value must be defined from the list.

ChoiceValues Sub-Element. If the t ype attribute is specified as either

si ngl e_choi ceormul ti pl e_choi ce, the ChoiceValues sub-element must also be
defined in the At t ri but eSchema element. Depending on the type specified, the
administrator or user would choose either one or more values from the choices
defined. The possible choices are defined in the ChoiceValues sub-element,
ChoiceValue. Code Example 7-7 on page 266 defines the t ype as si ngl e_choi ce;
the Choi ceVal ues attribute defines the list of options as Act i ve and | nacti ve
with the DefaultValue as Act i ve.

syntax Attribute

The synt ax attribute defines the format of the value. The default value for syntax is
st ri ng but, it can be defined as any one of the following:

= bool ean specifies that the value is either true or false.
= string specifies that the value can be any string.

= passwor d specifies that user must enter a password, which will be encrypted.

Chapter 7 Service Management 267

DTD Files

= dn specifies that the value is a LDAP Distinguish Name.

< emai | specifies that the value is an email address.

= url specifies that the value is a URL address.

= nureri c specifies that the value is a number.

= percent specifies that the value is a percentage.

= nunber specifies that the value is a number.

= deci mal _nunber specifies that the value is a number with a decimal point.
= nunber _r ange specifies that the value is a range of numbers.

= deci mal _r ange specifies that the value is a range of numbers that might
include a decimal figure.

NOTE If creating policy, note that the policy schema only supports boolean, string,
password, dn, email, numeric, percent, number, decimal_number, and
number_range. It does not support paragraph, encrypted_password,
decimal_range, xml, and date (some of which are not defined above).

uitype Attribute

This attribute specifies the HTML element that will be displayed in the Identity
Server console. Possible values include r adi o, | i nk, but t on, or nane_val ue_|i st.
No value defined for this attribute displays a default element based on the
information in Table 3-1 on page 55 of Chapter 3, “The Identity Server Console.”

NOTE The “type Attribute”specifies the kind of value an attribute will take. The “syntax
Attribute” defines the format of that value. The “uitype Attribute” specifies the HTML
element. The values of these attributes can be mixed and matched to alter the
console display. See “To Change The Default Attribute Display Elements” on
page 54 of Chapter 3, “The Identity Server Console,” in this manual for information
on how these attributes work together.

DefaultVValues Sub-Element. Defining a syntax might also necessitate defining a

value for the DefaultValue sub-element. A default value will then be displayed in

the Identity Server console; this default value can be changed for each organization
when creating a new template for the service.

CAUTION Default values of User attributes are not inherited by users when the service is
assigned using the Identity Server console.

268 Identity Server 2004Q2 « Developer's Guide

DTD Files

For example, all instances of the LDAP Authentication Service use the port
attribute so a default value of 389 is defined in the XML service file. Once
registered, this value can be modified for each organization using the Identity
Server console. (The default value is also used by integrated applications when a
service template has not been registered to an organization.) Code Example 7-8 on
page 269 from amAut hLDAP. xm illustrates this scenario.

Code Example 7-8 DefaultValues In amAut hLDAP. xm

<Qr gani zati on>

<Attribut eSchema name="i pl anet - am aut h- | dap- ser ver"
type="list"
synt ax="string"
i 18nKey="a101">
<Def aul t Val ues>

<Val ue>i dentity_server_host.com 389</ Val ue>

</ Def aul t Val ues>

</ Attribut eSchena>

cosQualifier Attribute

This attribute defines how Identity Server resolves conflicting dynamic attribute
values assigned to the same user object. The value of cosQual i fi er will appear as
a qualifier to the cosAt t ri but e in the LDAP entry of the CoS definition.

NOTE The priority level is defined by the Conflict Resolution Level attribute. More
information on this attribute can be found in the Sun Java System Identity Server
Administration Guide.

The value of cosQual i fi er can be defined as:

< defaul t indicates that if there are two conflicting attributes assigned to the
same user object, the one with the highest priority takes precedence. For more
information on CoS conflicts, see Appendix E, “Directory Server Concepts,” in
this manual.

= overri de indicates that the CoS template value defined at the service itself
overrides any priority value defined in the user entry; that is, CoS takes
precedence over a defined user entry value.

Chapter 7 Service Management 269

DTD Files

mer ge- schenes indicates that if there are two CoS templates assigned to the
same user, then they are merged so that the values are combined and the user
gets an aggregation of the CoS template values. For example , if there are
multiple templates for a particular service that contains dynamic attributes and
they are applied to a user (based on the user’s roles), a merged list of attributes
will be returned. mer ge- schenes works only for dynamic (or COS) type
attributes.

If the cosQual i fi er attribute is not defined, the default behavior is for the user
entry value to override the CoS value in the organization or role. The default value
isdef aul t. (The oper ati onal value is reserved for future use.)

any Attribute

The any attribute specifies whether the attribute for which it is defined will display
in the Identity Server console. It has six possible values that can be multiply
defined using the “|” (pipe) construct;

di spl ay specifies that the attribute will display on both the administrator and
end user profile pages. The attribute is read/write for administrators and end
users. The attribute will display on the Create page with an asterisk signifying
it as a required field.

adm nDi spl ay specifies that the attribute will display on the administrator
profile page only. It will not appear on the end user page; the attribute is
read/write for administrators only.

user Readnl y specifies that the attribute is read/write for administrators but
is read only for end users. It is displayed on the end user profile pages as a
non-editable label.

r equi r ed specifies that a value for the attribute is required in order for the
object to be created. The attribute will display on the Create page with an
asterisk signifying it as a required field.

opti onal specifies that a value for the attribute is not required in order for the
object to be created. The attribute will display on the Create page without an
asterisk signifying it as an optional field.

filter specifies that the attribute will display on the Advanced Search page.

The requi red or opti onal keywordsandthefilter and di spl ay keyword can
be specified with a pipe symbol separating the options (any=r equi r ed| di spl ay or
any=opt i onal | di spl ay| fil ter). If the any attribute is set to di spl ay, the
qualified attribute will display in Identity Server console when the properties for
the Create page are displayed. If the any attribute is set to r equi r ed, an asterisk
will display in that attribute’s field, thus the administrator or user is required to

270 Identity Server 2004Q2 « Developer's Guide

DTD Files

enter a value for the object to be created in Identity Server console. If the any
attribute is set to opt i onal , it will display on the Create page, but users are not
required to enter a value in order for the object to be created. If the any attribute is
settofilter,the qualified attribute will display as a criteria attribute when Search
is clicked from the User page.

NOTE Setting the any attribute to " " (any="") will prevent the attribute to
which it refers from being displayed in the console.

The amAdmin.dtd Structure

The amAdni n. dt d defines the data structure for an XML file which can be used to
perform batch operations on the directory tree using the amAdm n command line
tool. The file reflects the structure of the Identity Server SDK and is located in the
IdentityServer_base/ SUN\Van dt d directory. Possible command line operations
include reads and gets on the attributes as well as creations and deletions of
Identity Server objects (roles, organizations, users, people containers, and groups).

NOTE XML files that are created based on the amAdmi n. dt d are used as input with the
anmAdni n command line tool. More information on this tool can be found in the
Sun Java System ldentity Server Administration Guide.

The following sections explain the elements and attributes of the amAdm n. dt d
using the sample XML templates installed with Identity Server for illustration.
These samples can be found in

IdentityServer_base/ SUN\VA sanpl es/ adm n/ cli / bul k- ops.

Requests Element

The Requests element is the root element of the XML file. It must contain at least one
sub-element to define the object(s) (Organization, Container, People Container,
Role and/or Group, et. al.) upon which the configured actions can be performed.
The Requests element must contain at least one of the following sub-elements:

* (Ogani zati onRequest s
 SchemaRequest s

* ServiceConfigurationRequests
e Contai ner Request s

e Peopl eCont ai ner Request s

Chapter 7 Service Management 271

DTD Files

* Rol eRequests
* QG oupRequests
e UserRequests
+ ListAccts

To enable batch processing, the root element can take more than one of these
sub-element requests.

CAUTION If multiple sub-elements are specified, they must occur in the order in which they
appear in the amAdmi n. dt d. For example, a Or eat eUser cannot come before
a Cr eat eRol e in the same OrganizationRequests element.

Code Example 7-9 illustrates the Requests element tag and its corresponding
OrganizationRequests sub-element which details the creation of two roles, two
groups, a suborganization, a container, and a people container in the organization
with the LDAP Distinguished Name (DN), dc=exanpl e, dc=com

Code Example 7-9 Portion Of cr eat eRequest s. xm

'<i?équest s>
<QOrgani zat i onRequest s DN="dc=exanpl e, dc=coni' >

<Oreat eSubQr gani zat i on creat eDN="SubOr g1"/ >
<COreat eCont ai ner creat eDN="Cont ai ner1"/>
<O eat ePeopl eCont ai ner creat eDN="Peopl e2"/ >
<Oreat eRol e creat eDN="Manager Rol "/ >

<Oreat eRol e creat eDN="Enpl oyeeRol "/ >
<Oreat eQ oup creat eDN="Cont ract or s@ oup"/ >
<Oreat eG oup creat eDN="Enpl oyees@ oup"/ >

</ Or gani zat i onRequest s>

272 Identity Server 2004Q2 « Developer's Guide

OrganizationRequests Element

The OrganizationRequests element defines actions that can be performed on
Organization objects. The required XML attribute for this element is the LDAP DN
of the organization on which the configured requests will be performed. This
element can have one or more sub-elements. (Different OrganizationRequests

elements can be defined in one file to modify more than one organization.) Code
Example 7-9 defines a myriad of objects to be created under the top level
organization, dc=example,dc=com. The sub-elements of OrganizationRequests include:

Cr eat eSubOr gani zati on
O eat eCont ai ner

Cr eat ePeopl eCont ai ner
Cr eat e@ oupCont ai ner
O eateRol e

Cr eat eUser

Cr eat eG oup
CreatePolicy

Regi st er Servi ces

Modi f ySubCOr gani zat i on
Modi f yServi ceTenpl at e
AddSer vi ceTenpl at eAttri but eVal ues
RenmoveServi ceTenpl at eAt t ri but eVal ues
Get Servi ceTenpl at e
Del et eServi ceTenpl at e
Modi f yPeopl eCont ai ner
Modi fyRol e

Get SubCr gani zat i ons
Get Peopl eCont ai ners
CGet Rol es

Cet G oups

Get User s

Creat eServi ceTenpl ate

Unr egi st er Servi ces

Chapter 7

DTD Files

Service Management

273

DTD Files

* CetRegi steredServi ceNanes
e Cet Nunber O Servi ces

* DeleteRoles

e Del ete@ oups

e DeletePolicy

» Del et ePeopl eCont ai ners

e Del et eSubOrgani zati ons

e AddSubConfiguration

o Del eteSubConfiguration

* (eateAuthenticati onDomain
* (O eateHost edProvi der

* (O eateRenoteProvi der

o Del eteAuthenti cati onDomai n
o Del eteProvider

* GetProvider

* CGetAuthenticationDomain

e« Modi f yHost edPr ovi der

e« Modi f yRenot eProvi der

« ModifyAuthenticati onDomai n

ContainerRequests Element

The ContainerRequests element defines actions that can be performed on Container
objects. The required XML attribute for this element is the LDAP DN of the
container on which the configured requests will be performed. This element can
have one or more sub-elements. (Different ContainerRequests elements can be
defined in one file to modify more than one container.) The syntax for this element
is basically the same as that of the OrganizationRequests element illustrated in Code
Example 7-9 on page 272. The sub-elements of ContainerRequests can include:

*+ (O eateSubCont ai ner

O eatePeopl eCont ai ner
e Create@ oupCont ai ner
+ CeateRole

274 Identity Server 2004Q2 « Developer's Guide

DTD Files

* OeateGoup

e CreateServiceTenpl ate

e ModifyServiceTenpl ate

e AddServi ceTenpl at eAttri but eVal ues
 RenoveServiceTenpl at eAt tri but eVal ues
e GetServiceTenpl ate

 Modi f ySubCont ai ner

« Modi f yPeopl eCont ai ner

+ MdifyRol e

¢ Cet SubCont ai ners

e GetPeopl eCont ai ners

e CetRoles
e CetGoups
e Cetlsers

* COeatelser
 RegisterServices

« Unregi sterServices

e« DeleteServiceTenpl ate
 GetRegi steredServi ceNares
¢ Get Nunmber O Servi ces

* DeleteRoles

o Del eteG oups

* Del et ePeopl eCont ai ners

* Del et eSubCont ai ners

PeopleContainerRequests Element

The PeopleContainerRequests element defines actions that can be performed on
People Container objects. The required XML attribute for this element is the LDAP
DN of the people container on which the configured requests will be performed.
This element can have one or more sub-elements. (Different

Chapter 7 Service Management 275

DTD Files

PeopleContainerRequests elements can be defined in one document to modify more
than one people container.) The syntax for this element is basically the same as that
of the OrganizationRequests element illustrated in Code Example 7-9 on page 272.
The sub-elements of PeopleContainerRequests can include:

* Creat eSubPeopl eCont ai ner
 Modi f yPeopl eCont ai ner

* COeatelser

« ModifyUser

¢ Get Nunmber O User s

e GetUsers

e Get SubPeopl eCont ai ners

* Deletelsers

e Del et eSubPeopl eCont ai ners

RoleRequests Element

The RoleRequests element defines actions that can be performed on roles. The
required XML attribute for this element is the LDAP DN of the role on which the
configured requests will be performed. This element can have one or more
sub-elements. (Different RoleRequests elements can be defined in one document to
modify more than one role.) The syntax for this element is the same as that of the
OrganizationRequests element illustrated in Code Example 7-9 on page 272. The
sub-elements of RoleRequests can include;

e CreateServiceTenpl ate
e ModifyServiceTenpl ate
e GetServiceTenpl ate

¢ CGet Nunber O User s

e GetUsers

* RenoveUsers

e AddUsers

276 Identity Server 2004Q2 « Developer's Guide

DTD Files

GroupRequests Element

The GroupRequests element defines actions that can be performed on Group objects.
The required XML attribute for this element is the LDAP DN of the group on which
the configured requests will be performed. This element can have one or more
sub-elements. (Different GroupRequests elements can be defined in one document to
modify more than one group.) The syntax for this element is the same as that of the
OrganizationRequests element illustrated in Code Example 7-9 on page 272. The
sub-elements of GroupRequests can include:

e CreateSubG oup
e Get SubG oups
e Get Nunmber O User s

e CetlUsers
« Modi fySubG oups
e« AddUsers

. RenovelUser s

e Del et eSubG oups

UserRequests Element

The UserRequests element defines actions that can be performed on User objects.
The required XML attribute for this element is the LDAP DN of the user on which
the configured requests will be performed. This element can have one or more
sub-elements. (Different UserRequests elements can be defined in one document to
modify more than one user.) The syntax for this element is the same as that of the
OrganizationRequests element illustrated in Code Example 7-9 on page 272. The
sub-elements of UserRequests can include:

 RegisterServices

« Unregi sterServices

ServiceConfigurationRequests Element

The ServiceConfigurationRequests element defines actions that can be performed on a
specific service. The required XML attribute for this element is serviceName; it
specifies the service on which the configured requests will be performed. This
element can have one or more sub-elements. The syntax for this element is the
same as that of the OrganizationRequests element illustrated in Code Example 7-9 on
page 272. The sub-elements of ServiceConfigurationRequests can include:

e AddSubConfiguration

Chapter 7 Service Management 277

DTD Files

o Del eteSubConfiguration
o« DeleteAl ServiceConfiguration

AddSubConfiguration Element

The AddSubConfiguration element adds a secondary schema to an existing service.
The AttributeVValuePair Element must be defined for each attribute configured in
the subconfiguration. The required XML attributes are subConf i gNare,

subConfi gl D priorityand servi ceNane.

NOTE Attributes defined for a subconfiguration are validated against attributes defined in
a subschema based on sms.dtd. A subconfiguration is defined for an organization,
choosing from attributes globally defined in the subschema. For more information,
see “SubSchema Element.”

DeleteSubConfiguration Element

The DeleteSubConfiguration element deletes an existing secondary schema from a
service. The required XML attributes are subConf i gNarre and ser vi ceNarre which
takes a string value.

DeleteAllServiceConfiguration Element

The DeleteAllServiceConfiguration element deletes all configurations relating to a
service and removes them from the data store. The required XML attribute is
user At t which specifies whether to delete the user attributes related to the service.

AttributeValuePair Element

The AttributeValuePair element can be a sub-element of many of the batch
processing requests. It can have two sub-elements, Attribute and Value, neither of
which may have sub-elements. Code Example 7-10 illustrates that a sub-people
container, ou=SubPeopl e2, ou=People2,dc=example,dc=com, and a user, dpUser , will
be created with the attributes of the two objects defined as per the attribute/value
pairs.

Attribute Element

The Attribute element must be paired with a Value element. The Attribute element
itself contains no other elements. The required XML service attribute for the
Attribute element is narme which is equal to the name of the attribute that is being
processed. Any string format can be used without spaces.

278 Identity Server 2004Q2 « Developer's Guide

DTD Files

Value Element

The Value element defines the value of the Attribute element. More than one Value
element can be specified for an Attribute. The Value element contains no other
elements and it contains no XML service attributes.

Code Example 7-10 Another Portion Of cr eat eRequest s. xm

'<i3éopl eCont ai ner Request s DN=" ou=Peopl e2, dc=exanpl e, dc=con' >

<O eat eSubPeopl eCont ai ner cr eat eDN=" SubPeopl 2" >
<Attri but eVal uePai r >
<Attribute nane="description"/>
<Val ue>SubPeopl e descri ption</ Val ue>
</ AttributeVal uePai r>
</ O eat eSubPeopl eCont ai ner >

<(reat elser creat eDN="dpUser" >
<Attri but eVal uePai r>
<Attribute nane="cn"/>
<Val ue>dpUser </ Val ue>
</ AttributeVal uePair>
<Attri but eVal uePai r>
<Attribute nane="sn"/>
<Val ue>dpUser </ Val ue>
</ AttributeVal uePair>
<Attri but eVal uePai r>
<Attribute nanme="user Password"/>
<Val ue>12345678</ Val ue>
</ AttributeVal uePair>
</ Creat elser>

CreateObject Elements

The CreateSubOrganization, CreateContainer, CreatePeopleContainer, CreateRole,
CreateGroup, CreateServiceTemplate, CreateUser, CreateSubContainer, CreateSubGroup,
CreateSubPeopleContainer elements create a sub-organization, container, people
container, role, group, service template, user, sub-container, sub-group, and
sub-people container, respectively. The object is created in the DN that is defined in
the <Object>Requests element under which the particular Create<Object> element is
being defined. AttributeValuePair Elements may be defined (or not). The required
XML attribute for each element is cr eat eDN it takes the DN of the object to be
created. Code Example 7-10 on page 279 illustrates an example of
CreateSubPeopleContainer and CreateUser. The DN is defined in the
PeopleContainerRequests element as ou=Peopl e2, dc=exanpl e, dc=com

Chapter 7 Service Management 279

DTD Files

NOTE CreateGroup/CreateSubGroup and CreateRole each have an additional attribute:
groupType and r ol eType, respectively. gr oupType defines whether it is a
static group, a filtered group or an assignable (dynamic) group. r ol eType defines
whether it is a static role or a filtered role.

CreatePolicy Element

The CreatePolicy element creates one or more policy attributes. It takes the Policy
element as a sub-element; cr eat eDNis the required XML attribute which takes the
DN of the organization where the policy will be created. This and the following
nested elements are illustrated in Code Example 7-11 on page 282. This file is
Sanpl ePol i cy. xm | part of the policy sample application located in
IdentityServer_base/ SUN\WANI sanpl es/ pol i cy.

NOTE The following policy elements are the elements extracted from anmAdm n. dt d for
inclusion into the pol i cy. dt d. More information can be found in the Identity
Server Administration Guide.

Policy Element. The Policy sub-element defines the permissions or rules of the
policy and to whom/what the rule applies or the subject. It also defines whether or
not the policy is a referral (delegated) policy and whether there are any restrictions
(or conditions) to the policy. It may contain one or more of the following
sub-elements: Rule, Conditions, Subjects, or Referrals. The required XML attributes
are nane which specifies the name of the policy and r ef err al Pol i cy which
identifies whether or not the policy is a delegated one.

Rule Element. The Rule sub-element defines the specific permission of the policy
and can take three sub-elements. The required XML attribute is narme which defines
a name for the rule. The three sub-elements are:

e ServiceName Element

The ServiceName element defines the name of the service to which the policy
applies. This element represents the service type. It contains no other elements.
The value is exactly as that defined in the service’s XML file (based on the
sns. dt d) . The XML service attribute for the ServiceName element is the name
of the service (which takes a string value).

e ResourceName Element

280 Identity Server 2004Q2 « Developer's Guide

DTD Files

The ResourceName element defines the object that will be acted upon. The
policy has been specifically configured to protect this object. It contains no
other elements. The XML service attribute for the ResourceName element is the
name of the object. Examples of a ResourceName might be

htt p: / / waww. sunone. com 8080/ i nages on a web server or

| dap: // sunone. com 389/ dc=i pl anet, dc=comon a directory server. A more
specific resource might be

sal ary://ui d=j smt h, ou=peopl e, dc=i pl anet , dc=comwhere the object
being acted upon is the salary information of John Smith.

e AttributeValuePair Element

The AttributeValuePair sub-element defines the action names and
corresponding action values of the rule. For additional information, see
“AttributeValuePair Element” on page 278.

Subjects Element. The Subjects sub-element identifies a collection of objects to
which the policy applies; this overview collection is chosen based on membership
in a group, ownership of a role or individual users. It takes the Subject sub-element.
The XML attributes it can be defined with are name which defines a name for the
collection, descri pti on which takes a description and i ncl udeType which
defines whether the collection is as defined or its inverse (i.e.: the policy applies to
users who are NOT members of the subject).

Subject Element. The Subject sub-element identifies a collection of objects to
which the policy applies; this collection pinpoints more specific objects from the
collection defined by the Subjects element. Membership can be based on roles,
group membership or simply a listing of individual users. It takes as a sub-element
the AttributeValuePair Element. Its required XML attribute is t ype which
identifies a generic collection of objects from which the specifically defined subjects
are taken. Other XML attributes include narme which defines a name for the
collection and i ncl udeType which defines whether the collection is as defined or
its inverse (i.e.: the policy applies to users who are NOT members of the subject).

Referrals Element. The Referrals sub-element identifies a collection of policy
assignments. It takes the Referral sub-element. The XML attributes it can be defined
with are nanme which defines a name for the collection and descri pti on which
takes a description. (Code Example 7-11 is not an example of a referral policy so
there is not a Referrals element definition.)

Chapter 7 Service Management 281

DTD Files

Referral Element. The Referral sub-element identifies a specific policy assignment.
It takes as a sub-element the AttributeValuePair Element. Its required XML
attribute is t ype which identifies a generic collection of assignments from which
the specifically defined referrals are taken. It can also include the nane attribute
which defines a name for the collection. (Code Example 7-11 is not an example of a
referral policy so there are no Referral elements definition.)

Conditions Element. The Conditions sub-element identifies a collection of policy
restrictions (time range, authentication level, et.al.). It must contain one or more of
the Condition sub-element. The XML attributes it can be defined with are nane
which defines a name for the collection and descri pti on which takes a
description.

Condition Element. The Condition sub-element identifies a specific policy
restriction (time range, authentication level, et.al.). It takes as a sub-element the
AttributeValuePair Element. Its required XML attribute is t ype which identifies a
generic collection of restrictions from which the specifically defined conditions are
taken. It can also include the nane attribute which defines a name for the collection.

NOTE The Condition element might be used to configure policy for different URIs on the
same domain. For example, ht t p: // or g. exanpl e. com hr can only be
accessed by or g. exanpl e. net from 9 am to 5 pm yet
http://org. exanpl e. cont fi nance can be accessed by
or g. exanpl e2. net from 5 am to 11 pm. By defining an IP Condition
attribute/value pair together with a SimpleTime Condition attribute/value pair and
specifying ht t p: / / or g. exanpl e. coni hr/ *. j sp as the resource, the
policy would apply to all the JSPs under ht t p: / / or g. exanpl e. coni hr.

Code Example 7-11 SamplePolicy.xml

<Request s>
<Organi zat i onRequest s DN="dc=i pl anet, dc=con' >

<Creat ePol i cy createDN="dc=i pl anet, dc=coni >
<Pol i cy nane="Pol i cyOne" referral Policy="fal se" >
<Rul e nanme="dsdasd">
<Servi ceNane nane="Sanpl e\ebSer vi ce" />
<Resour ceNanme nane="http://ww sun. coni public" />
<Attribut eVal uePai r>
<Attribute name="CET" />
<Val ue>al | ow</ Val ue>
</ AttributeVal uePair>
<Attribut eVal uePai r>
<Attribute nane="DELETE' />
<Val ue>al | ow</ Val ue>
</ AttributeVal uePair>
<Attribut eVal uePai r >

282 Identity Server 2004Q2 « Developer's Guide

DTD Files

Code Example 7-11 SamplePolicy.xml (Continued)

<Attribute name="PUT" />
<Val ue>al | ow</ Val ue>
</ AttributeVal uePair>
<Attribut eVal uePai r >
<Attribute name="PCST" />
<Val ue>al | ow</ Val ue>
</ AttributeVal uePair>
</ Rul e>
<Subj ect s name="Subj ect s1" description="">
<Subj ect name="subj ect1" type="Crganization">
<Attribut evVal uePai r>
<Attribute name="Val ues"/>
<Val ue>dc=i pl anet, dc=conx/ Val ue>
<Val ue>o=ni cp, dc=i pl anet, dc=conx/ Val ue>
</ AttributeVal uePair>
</ Subj ect >
</ Subj ect s>
<Condi ti ons name="Conditionsl" description="">
<Condi ti on nanme="condi tionl" type="Sanpl eCondition">
<Attribut eVal uePai r >
<Attribute name="user NanmeLengt h"/><Val ue>5</ Val ue>
</ Attri but eVal uePai r >
</ Condi tion>
</ Condi ti ons>
</ Pol i cy>
</ OreatePolicy>

</ Or gani zat i onRequest s>
</ Request s>

CreateServiceTemplate Element

The CreateServiceTemplate element creates a service template for the organization
defined under the second-level Requests element. There are no sub-elements; the
CreateServiceTemplate element itself must be empty. The required XML attribute is
ser vi ceNarre which takes a string value. Code Example 7-12 illustrates a User
service template being registered to ou=Containerl,dc=example,dc=com.

Code Example 7-12 contCr eat eSer vi ceTenpl at eRequest s. xm File

éi?équest s>
<Cont ai ner Request s DN="ou=Cont ai ner 1, dc=exanpl e, dc=con' >

<Qr eat eSer vi ceTenpl at e>
<Servi ce_Nane>i Pl anet AMJser Servi ce</ Servi ce_Nane>
</ Oreat eServi ceTenpl at e>

Chapter 7 Service Management 283

DTD Files

Code Example 7-12 contCr eat eSer vi ceTenpl at eRequest s. xm File

</ Cont ai ner Request s>
</ Request s>

DeleteObject Elements

The DeleteSubOrganizations, DeletePeopleContainers, DeleteGroups, DeleteRoles,
DeleteSubContainers, DeleteSubGroups, DeleteSubPeopleContainers, and DeleteUsers
elements delete a sub-organization, people container, group, role, sub-container,
sub-group, sub-people container and user, respectively. The object is deleted from
the DN that is defined in the <Object>Requests element under which the particular
Delete<Object> element is being defined. DeleteSubOrganizations, DeleteUsers,
DeleteGroups, DeleteSubContainers, DeletePeopleContainers, DeleteSubGroups,
DeleteSubPeopleContainers and DeleteRoles take a sub-element DN; only six of the
listed elements have the XML attribute deleteRecursively. (DeleteUsers and
DeleteRoles do not have this option; they have no qualifying XML attribute.) If
deleteRecursively is set to false, accidental deletion of all sub-trees can be avoided; it’s
default value is false. The DNsub-element takes a character value equal to the DN of
the object to be deleted. Code Example 7-13 illustrates an example of some of these
concepts. The DN is defined in the OrganizationRequests element as

dc=exanpl e, dc=com

Code Example 7-13 orgDeleteRequests.xml

'<i?équest s>
<QOrgani zat i onRequest s DN="dc=exanpl e, dc=coni' >

<Del et eRol es>
<DN>cn=Manager Rol e, dc=exanpl e, dc=conmx/ D\>
<DN>cn=Enpl oyeeRol e, dc=exanpl e, dc=conx/ DN>
</ Del et eRol es>

<Del et eG oups del et eRecursi vel y="true">
<DN>cn=Enpl oyeesG oup, dc=exanpl e, dc=conx/ DN>
<DN>cn=Cont r act or s@ oup, dc=exanpl e, dc=conx/ D\>
</ Del et eG oups>

<Del et ePeopl eCont ai ners del et eRecur si vel y="true" >
<DN>ou=Peopl e1, dc=exanpl e, dc=conx/ DN\>
</ Del et ePeopl eCont ai ner s>

<Del et eSubCr gani zat i ons del et eRecur si vel y="true" >
<DN>o=sun. com dc=exanpl e, dc=conx/ DN>
</ Del et eSubCr gani zat i ons>

284 Identity Server 2004Q2 « Developer's Guide

DTD Files

Code Example 7-13 orgDeleteRequests.xml (Continued)

</ Or gani zat i onRequest s>
</ Request s>

DeletePolicy Element

The DeletePolicy element takes the sub-element PolicyName. The PolicyName
element has no sub-elements; it must be empty. It has a required XML attribute
name which takes a character value equal to the name of the policy. The DeletePolicy
element itself takes a required XML attribute: del et eDN It takes a value equal to
the DN of the policy to be deleted.

DeleteServiceTemplate Element

The DeleteServiceTemplate element deletes the specified service template. There are
no sub-elements; the DeleteServiceTemplate element itself must be empty. The
required XML attributes are ser vi ceNanme which takes a string value and
schemaType which defines the attribute group (Global, Organization, Dynamic,
User or Policy). Code Example 7-14 illustrates the deletion of the Membership
Authentication Service from dc=exanpl e, dc=com

Code Example 7-14 orgDeleteServiceTemplateRequests.xml

<Request s>
<Qrgani zat i onRequest s DN="dc=exanpl e, dc=coni >

<Del et eServi ceTenpl at e servi ceNanme="i Pl anet AMAut hMenber shi pSer vi ce"
schemaType="or gani zati on"/ >

</ Or gani zat i onRequest s>
</ Request s>

ModifyObject Elements

The ModifySubOrganization, ModifyPeopleContainer, ModifySubContainer, ModifyRole,
and ModifySubGroups elements change the specified object. AttributeVValuePair
Elements can be defined for the listed elements. The required XML attribute is
nmodi f yDNwhich takes the DN of the object to be modified. Code Example 7-15
illustrates how the people container’s description can be modified.

Chapter 7 Service Management 285

DTD Files

Code Example 7-15 contModifyPeoplecontainerRequests.xml

<Request s>
<Cont ai ner Request s DN="dc=sun, dc=coni >

<Modi f yPeopl eCont ai ner
modi f yDN=" ou=Test , ou=Test 1, ou=Peopl el, dc=sun, dc=com' >
<Attribut eVal uePai r >
<Attribute nane="Description"/>
<Val ue>Sun ONE ldentity Server Modify</Val ue>
</AttributeVal uePair>
</ Modi f yPeopl eCont ai ner >

</ Cont ai ner Request s>
</ Request s>

ModifyServiceTemplate Element

The ModifyServiceTemplate element changes a specified service template.
AttributeValuePair Element must be defined for ModifyServiceTemplate to change
the values. The required XML attributes are ser vi ceNanme which takes a string
value, schemaType which defines the attribute group (Global, Organization,
Dynamic, User or Policy) and r ol eTenpl at e. A search level attribute can also be
defined. It takes a value of either SCOPE_ONE or SCOPE_SUB. SCOPE_QONE will
retrieve just the groups at that node level; SCOPE_SUB gets groups at the node level
and all those underneath it.

GetObject Elements

The GetSubOrganizations, GetUsers, GetSubGroups, GetGroups, GetSubContainers,
GetRoles, GetPeopleContainers and GetSubPeopleContainers elements get the specified
object. A DN may be defined as a sub-element (or not). If none is specified, ALL of
the specified objects at all levels will be returned within the organization that is
defined in the <Object>Requests element under which the particular Get<Object>
element is being defined. The required XML attribute for all but GetGroups and
GetRoles is DNsOnl y and takes at r ue or f al se value. (This attribute is explained in
more detail in DNs Only Attribute.) The required XML attribute of GetGroups and
GetRoles is | evel which takes a value of either SCOPE_ONE or SCOPE_SUB.
SCCPE_ONE will retrieve just the groups at that node level; SCOPE_SUB gets groups
at the node level and all those underneath it. Code Example 7-16 illustrates how
these elements can be modeled. The top-level DN is defined in the
OrganizationRequests element as o=i sp.

286 Identity Server 2004Q2 < Developer's Guide

DTD Files

DNs Only Attribute
For all objects using the DNsOnl y attribute, the Get elements work as stated below:

= |fthe element has the required XML attribute DNsOnl y set to true and no
sub-element DN is specified, only the DNs of the objects asked for will be
returned.

= [fthe element has the required XML attribute DNsOnl y set to false and no
sub-element DN is specified, the entire object (a DN with attribute/value pairs)
will be returned.

= If sub-element DNs are specified, the entire object will always be returned
whether the required XML attribute DNsOnl y is set to true or false.

Code Example 7-16 Portion of Batch Processing File get Request s. xni

'<R'equest s>
<Organi zati onRequest s DN="o=i sp" >

<CGet SubCr gani zati ons DNsOnl y="f al se" >
<DN\>o=exanpl el. com o=i sp</ D\>
<DN>o=exanpl e2. com o=i sp</ D\>

</ Get SubQr gani zat i ons>

<Get Peopl eCont ai ners DNsOnl y="f al se">
<DN>ou=Peopl e, o=exanpl el. com o=i sp</ DN\>
<DN\>ou=Peopl e, o=exanpl e2. com o=i sp</ D\>
</ Get Peopl eCont ai ner s>

<CGet Rol es | evel ="SUB_TREE'/ >
<Get G oups | evel ="SUB TREE'/ >
<CGet Users DNsOnl y="fal se">

<DN>cn=puser, ou=Peopl e, o=exanpl el. com o=i sp</ D\>
<[Get User s>

</ Or gani zat i onRequest s>

GetService Elements

The GetRegisteredServiceNames and GetNumberOfServices elements retrieve
registered services and total number of registered services, respectively. The
organization from which this information is retrieved is specified in the
OrganizationRequests element. All three elements have no sub-elements or
attributes; the elements themselves must be empty. Code Example 7-17 illustrates
the GetNumberOfServices element.

Chapter 7 Service Management 287

DTD Files

Code Example 7-17 orgGetNumberOfServiceRequests.xml

<Request s>

<Qrgani zat i onRequest s DN="dc=exanpl e, dc=coni >
<Cet Nunber Of Ser vi ces/ >

</ Or gani zat i onRequest s>

</ Request s>

ActionServiceTemplate Element

The GetServiceTemplate and DeleteServiceTemplate elements get or delete a service
template for the organization defined under the OrganizationRequests element,
respectively. There are no sub-elements; the elements themselves must be empty.
The required XML attributes are ser vi ceNane which takes a string value and
schenaType.

ActionServiceTemplateAttributeValues Element

The AddServiceTemplateAttributeValues and RemoveServiceTemplateAttributeValues
elements get or delete attribute values defined in a service template for the
organization defined under the OrganizationRequests element, respectively.
AttributeValuePair Element must be defined for each attribute to be added or
removed. The required XML attributes are ser vi ceNane which takes a string
value, r ol eTenpl at e and schenmaType which defines the attribute group (Global,
Organization, Dynamic, User or Policy). A search level attribute can also be
defined. It takes a value of either SCOPE_ONE or SCOPE_SUB. SCOPE_QONE will
retrieve just the groups at that node level; SCOPE_SUB gets groups at the node level
and all those underneath it.

ActionServices Elements

The RegisterServices and UnregisterServices elements perform the requested action
on the service defined in the OrganizationRequests element. All elements take a
sub-element Service_Name but have no XML attribute. The Service_Name element
takes a character value equal to the name of the service. One or more Service_Name
sub-elements can be specified.

288 Identity Server 2004Q2 « Developer's Guide

DTD Files

Service Action Caveats

= The XML service file for the service must be loaded using the command line
interface amadm n before a service can be acted upon.

= If no Service_Name element is specified or, in the case of UnregisterServices, the
service was not previously registered, the request is ignored.

= If no Service_Name element is specified, the request will be ignored.

Code Example 7-18 illustrates how the RegisterServices element is modeled.

Code Example 7-18 orgRegisterServiceRequests.xml

<Request s>
<Qrgani zat i onRequest s DN="dc=sun, dc=coni >

<Regi st er Servi ces>
<Servi ce_Nane>sanpl eMai | Servi ce</ Servi ce_Name>
</ Regi st er Servi ces>
</ Or gani zat i onRequest s>

</ Request s>

SchemaRequests Element

The SchemaRequests element consists of all requests to be performed on the XML
file that defines a particular service. It has two required XML attributes:
serviceName takes a value equal to the name of the service where the schema lives,
and SchemaType defines the attribute group (Global, Organization, Dynamic, User
or Policy). The “i18nFileName Attribute” on page 263 or a SubSchema (which
specifies the complete hierarchy of the subschema separated by a “/””) can also be
defined.

NOTE See “Service File Naming Conventions” on page 251 for information on how the
name is defined.

This element can have one or more sub-elements. (Different SchemaRequests
elements can be defined in one document to modify more than one service.) The
sub-elements of SchemaRequests can include:

» RenoveDef aul t Val ues

» RenoveParti al Def aul t Val ues

Chapter 7 Service Management 289

DTD Files

* AddDef aul t Val ues
 Modi fyDef aul t Val ues

* Get ServiceDefaul tVal ues
* AddChoi ceVal ues

* RenoveChoi ceVal ues

e MdifyType

e MdifyU Type

e Modi fyi 18nKey

« ModifySynt ax

e AddPropertiesVi enBean
 AddStart Range

* AddEndRange

* AddSubSchema

* AddAttri buteSchena

* RenoveSubSchema

* RenoveAttribut eScherma

Code Example 7-19 illustrates the opening of the Requests element tag and its
corresponding SchemaRequests sub-element. The file is adding the choice Deleted to
the Default User Status drop-down menu in the User Service.

Code Example 7-19 schermaAddChoi ceVal uesRequest s. xmi

<Request s>
<SchenaRequest s servi ceNarme="i Pl anet AMker Ser vi ce"
SchemaType="dynani c"
i 18nKey="">
<AddChoi ceVal ues>
<Attri but eVal uePai r >
<Attribute name="ipl anet - am user-| ogi n-status"/>
<Val ue>Act i ve</ Val ue>
<Val ue>l nact i ve</ Val ue>
<Val ue>Del et ed</ Val ue>

</ AttributeVal uePair>
</ AddChoi ceVal ues>

</ SchemaRequest s>
</ Request s>

290 Identity Server 2004Q2 < Developer's Guide

DTD Files

RemoveDefaultValues Element

The RemoveDefaultValues element removes the default values from the service
specified in the parent SchemaRequests element. It takes a sub-element of Attribute
that specifies the service attribute which contains the values to be removed. The
Attribute sub-element itself must be empty; it takes no sub-element. There is no
required XML attribute. The syntax for this element is the same as that illustrated
in Code Example 7-20.

Code Example 7-20 RemoveDefaultValues Element Code

<Request s>
<SchenmaRequest s servi ceName="i Pl anet AMJker Ser vi ce"
SchemaType="dynani c" >
<RenoveDef aul t Val ues>
<Attribute nane="preferredl anguage"/ >
</ RemoveDef aul t Val ues>
</ SchemaRequest s>
</ Request s>

AddDefaultValues and ModifyDefaultValues Elements

The AddDefaultValues and ModifyDefaultValues elements add or change the default
values from the specified schema, respectively. They take an AttributeValuePair
Element which specifies the name of the attribute and the new default value; one or
more attribute/value pairs can be defined. Code Example 7-21 illustrates how the
AddDefaultValues element can be modeled.

Code Example 7-21 AddDefaultValues Element Code

<Request s>

<SchenmaRequest s servi ceName="i Pl anet AMJker Ser vi ce"
SchemaType="dynani c" >

<AddDef aul t Val ues>

<Attribut eVal uePair>
<Attribute nane="i pl anet - am user - aut h- modul es"/ >
<Val ue>Cert </ Val ue>
</ Attri but eVal uePai r>

</ AddDef aul t Val ues>
</ SchemaRequest s>
</ Request s>

Chapter 7 Service Management 291

XML Service Files

GetServiceDefaultValues Element

The GetServiceDefaultValues element retrieves the default values from the schema
specified in the parent SchemaRequests element. There are no sub-elements; the
GetServiceDefaultValues element itself must be empty. There is also no required
XML attribute.

Federation Management Elements

The following elements consist of requests that can be performed on Identity
Server configured federations. They are:

= CreateAuthenticationDomain
= DeleteAuthenticationDomain
= GetAuthenticationDomain

< ModifyAuthenticationDomain
= CreateRemoteProvider

= CreateHostedProvider

= DeleteProvider

= GetProvider

= IDPAuthContextinfo

= SPAuthContextinfo

e AuthMethodQueryString

< ModifyRemoteProvider

< ModifyHostedProvider

= ListAccts

For more information on these elements, see the DTD file itself located in the
IdentityServer_base/ SUNVan dt d directory.

XML Service Files

Identity Server uses XML files to define service attributes as well as perform batch
processing operations. This section contains information on the XML files included
with Identity Server and how they are used.

292 Identity Server 2004Q2 « Developer's Guide

XML Service Files

Default XML Service Files

Identity Server installs services to manage the configurations of its components.
The attributes for these services are managed using the Identity Server console; in
addition, Identity Server provides code implementations to use them. These
default XML service files are based on the sis. dt d and are located in

et c/ opt / SUN\vani conf i g/ xnl . They include:

e amAdni nConsol e. xm —Defines attributes for the Administration service.
< anmAut h. xm —Defines attributes for the Core Authentication service.

= amAut hAnonynous. xm —Defines attributes for the Anonymous
Authentication service.

e amAut hCert . xnl —Defines attributes for the Certificate-based Authentication
service.

= amAut hConfi g. xm —Defines configuration attributes for the Authentication
service.

e amAut hHTTPBasi c. xml —Defines attributes for the HTTP Basic Authentication
service.

e amiut hLDAP. xml —Defines attributes for the LDAP Authentication service.

< amAut hMenber shi p. xm —Defines attributes for the Membership-based
Authentication service.

= amAut hNT. xni —Defines attributes for the Windows-based NT Authentication
service.

e amAut hRadi us. xml —Defines attributes for the Radius Authentication service.

e amiut hSaf eWwr d. xml —Defines attributes for the SafeWord Authentication
service.

e amiut hSecur | D. xm —Defines attributes for the SecurlD Authentication
service.

e amAut hUni x. xm —Defines attributes for the Unix Authentication service.

e amAut henti cati onDonai nConfi g. xm —Defines attributes for the
Authentication Configuration service.

< and i ent Dat a. xm —Defines client types for the Client Detection service.

e and i ent Det ecti on. xm —Defines attributes for the Client Detection service.

Chapter 7 Service Management 293

XML Service Files

= ankntrySpeci fic. xm —Defines attributes for the displaying attributes on the
Create, Properties and Search pages for a custom service.

= anDSS. xm —Defines attributes for the Certificate Security service.

e anGlINSetti ngs. xml —Defines attributes for the Globalization Settings
service.

= anloggi ng. xm —Defines attributes for the Logging service.

< anmNam ng. xm —Defines attributes for the Naming service.

= anPasswor dReset . xmi —Defines attributes for the Password Reset service.

« anPl at f or m xm —Defines attributes for the Platform service.

= anPol i cy. xmi —Defines attributes for the Policy service.

< anPol i cyConfi g. xm —Defines configuration attributes for the Policy service.

« anProvi der Confi g. xm —Defines attributes for Federation Management
service.

e anBSAM.. xm —Defines attributes for the SAML service.
« anBessi on. xm —Defines session attributes for single sign-on.
e aniker. xm —Defines attributes for the User service.

= anm/ébAgent . xmi —Defines attributes for the policy agents.

Modifying A Default XML Service File

Administrators can display and manage any attribute in the Identity Server console
using XML service files. The new attribute(s) would need to be added to an existing
XML service file. Alternately, they can be grouped into a new service by creating a
new XML service file although the simplest way to add an attribute is just to extend
an existing one. For example, an administrator wants to manage the

nsaccount | ock attribute which will give users the option of locking the account it
defines. To manage it through Identity Server, nsaccount | ock must be defined in
a service. One option would be to add it to the amJser . xni service,

i Pl anet AMJser Ser vi ce. This is the service that, by default, includes many
common attributes from the i net O gPer son and i net User object classes.
Following is an example of how to add the nsaccount | ock attribute to the

amJser . xm service file.

1. Add the code illustrated in Code Example 7-22 to the SubSchema nane=User
element in IdentityServer_base/ SUN\Vam conf i g/ xm / amJser . xm .

294 Identity Server 2004Q2 < Developer's Guide

Code Example 7-22 nsaccount | ock Example Attribute

XML Service Files

<Attribut eSchema nanme="nsaccount| ock"
type="si ngl e_choi ce"
syntax="string"
any="filter"
i sChangeabl eByUser ="yes"
i 18nKey="u13">
<Choi ceVal ues>

<Val ue>t r ue</ Val ue>

<Val ue>f al se</ Val ue>
</ Choi ceVal ues>
<Def aul t Val ues>

<Val ue>f al se</ Val ue>

</ Def aul t Val ues>
</ Attribut eSchena>

2. Update the IdentityServer_base/ SUN\WaNT | ocal e/ en_US/ anmser. properti es
file with the new i 18nKey tag ul3 as illustrated in Code Example 7-23

(including the text to be used for display).

Code Example 7-23 User Account Locked Example i18nKey

ﬁié:liser Account Locked

3. Remove the service

ou=i Pl anet AMJser Ser vi ce, ou=ser vi ces, dc=sun, dc=comusing the

command line tool anadmni n.

For information on the amadm n command line syntax, see Sun Java System

Identity Server Administration Guide.

tool amadmi n.

Reload the modified XML service file, amJser . xni , using the command line

For information on the amadm n command line syntax, see Sun Java System

Identity Server Administration Guide.

Chapter 7

Service Management 295

XML Service Files

NOTE When modifying a default XML service file, be sure to also modify the Directory
Server by extending the LDAP schema, if necessary. For more information, see
“Defining A Custom Service” on page 249.

Batch Processing With XML Templates

The - - dat a or -t option of amadmi n is used to perform batch processing via the
command line. Batch processing XML templates have been installed and can be
used to help an administrator to:

= Create, delete and read roles, users, organizations, groups, people containers
and services.

= Getroles, people containers, and users.
« Get the number of users for groups, people containers, and roles.
= Import, register and unregister services.

= Get registered service names or the total number of registered services for an
existing organization.

= Execute requests in multiple XML files.

The preferred way to perform most of these functions is to use the Identity Server
console. The batch processing templates have been provided for ease of use with
bulk updates although they can also be used for single configuration updates. This
section provides an overview of the batch processing templates which can be
modified to perform batch updates in the Directory Server.

NOTE Only XML files can be used as input for the amadm n tool. If an administrator
wants to populate the directory tree with user objects, or perform batch reads (gets)
or deletes, the necessary XML input files, based on the amAdmi n. dt d or
sms. dt d, must be written.

XML Templates

All of the batch processing XML templates perform operations on the DIT; they
create, delete, or get attribute information on user objects. These XML templates
follow the structure defined by the amAdmi n. dt d and are located in
IdentityServer_base/ SUN\VanI sanpl es/ admi n/ cl i / bul k- ops. The batch processing
XML templates provided with ldentity Server include:

= cont O eat eRol eRequest s. xm —Creates a role for a container object.

296 Identity Server 2004Q2 < Developer's Guide

XML Service Files

cont O eat eSer vi ceTenpl at eRequest s. xm —Creates a service template for
a container object.

cont Modi f yPeopl econt ai ner Request s. xmi —Modifies a people container
object.

cont Modi f yRol eRequest s. xml —Modifies a role assigned to a container
object.

cont Modi f ySubcont ai ner Request s. xmi —Modifies a sub-container object.
cr eat eRequest s. xm —Creates a multitude of objects.
del et eG oupRequest s. xni —Deletes the sub-group of a group container.

get Request s. xm —Passes information about a multitude of objects in a
specific organization.

or gCr eat eSer vi ceTenpl at eRequest s. xm —Creates service templates for
anorganization.

or gDel et eRequest s. xm —Deletes a multitude of objects under a specific
organization.

or gDel et eSer vi ceTenpl at eRequest s. xm —Deletes a service template
under a specific organization.

or gGet Nunber O Ser vi ceRequest s. xml —Passes a listing of an organization’s
total number of registered services.

or gGet Regi st er edSer vi ceRequest s. xml —Passes a listing the names of an
organization’s registered services.

or ghodi f yRequest s. xm —Changes values for identity-related objects in an
organization.

or ghodi f ySer vi ceTenpl at eRequest s. xmi —Changes values for the
registered service template of an organization.

or gRegi st er Servi ceRequest s. xm —Registers services for an organization.

or gunRegi st er Ser vi ceRequest s. xm —Unregisters services for an
organization.

pcDel et eRequest s. xm —Deletes attributes for a people container object.

pcModi f yUser Request s. xm —Modifies user attributes in a people container
object.

rol eOr eat eSer vi ceTenpl at eRequest s. xnl —Creates a service template for
arole.

Chapter 7 Service Management 297

XML Service Files

« rol eModi fyServi ceTenpl at eRequest s. xm —Changes values for the
registered service template of a role.

e schemaAddChoi ceVal uesRequest s. xm —Adds a selection of values to an
existing service’s attribute from which the user can choose.

= schemaAddDef aul t Val uesRequest . xmi —Adds a default value to an existing
service’s attribute.

= schemaDel et eChoi ceVal ueRequest . xml —Deletes a value from an existing
service’s attribute choices.

= schenmaDel et eDef aul t Val ueRequest . xm —Deletes a default value from an
existing service’s attribute.

= schemaGet Ser vi ceDef aul t Val ueRequest . xnmi —Retrieves a default value
from an existing service’s attribute.

< schemaModi f yDef aul t Val ueRequest . xm —Changes the default value of an
existing service’s attribute.

NOTE The final XML templates (ser vi ceConf i gur at i onRequest s. xm ,
servi ceAddSubConf i gur ati onRequest s. xni , and
servi ceDel et eSubConfi gur at i onRequest s. xm) follow the
sms. dt d format and are used for service sub-configurations. One use for these
can be found in “Multi-LDAP Authentication Module Configuration” on page 128 of
Chapter 4, “Authentication Service,” in this manual.

Modifying A Batch Processing XML Template

Any of the templates discussed above can be modified to best suit the desired
operation. Choose the file that performs the request, modify the elements and
attributes according to the service and use the amadmmi n executable to upload the
changes to Directory Server.

NOTE Be aware that creations of roles, groups, and organizations is a time-intensive
operation.

Customizing User Pages

The User profile page and what attributes it displays will vary, depending on what
the service developer defines. By default, every attribute in the amser . xni file
that has an i 18nKey attribute specified and the any attribute set to display

(any=di spl ay) will display in the Identity Server console. Alternately, if an

298 Identity Server 2004Q2 « Developer's Guide

XML Service Files

attribute is specified to be of type User in another XML service file, the Identity
Server console will also display it if the service is assigned to the user. Thus, User
display pages in the Identity Server console can be modified to add new attributes
in either of two ways:

= The User attribute schema definition in the specific XML service file can be
modified.

= A new User schema attribute definition can be added to the User service (the
amser . xm service file).

For information on modifying XML service files, see “Modifying A Default XML
Service File” on page 294.

NOTE Any service can describe an attribute that is for a user only. The anser . xm
file is just the default placeholder for user attributes that are not tied to a particular
service.

Creating Users Using A Modified Directory Server Schema

There might be a need to modify the Directory Server LDAP schema in order to
create users with new object classes. The procedure follows:

1. Modify the Directory Server LDAP schema with the new object classes and
attributes.

For more information on how to do this, see the Sun Java System Directory
Server documentation.

2. Write a new XML service file which contains the definitions for the new object
classes and attributes.

When writing this file, the object classes should be defined under the Global
element and the attributes should be defined under the User element. More
information can be found in Chapter 7, “Service Management.”

3. Write a new authentication module credentials file and put it in the
IdentityServer_base/ SUNVaNT | i b directory.

This file contains the attribute-value pairs for the internationalization keys
used in the file created in Step 2. More information can be found in
“Configuring The Authentication Module” on page 147 of Chapter 4,
“Authentication Service,” in this manual.

NOTE Alternately, the path to the module configuration properties file can be put in the
classpath of the web container’s JVM.

Chapter 7 Service Management 299

Service Management SDK

4. Load the XML service file using the amadm n command line interface.

More information on this tool can be found in the Sun Java System Identity
Server Administration Guide.

5. Register the new service to the desired organization using the Identity Server
console.

For more details about registering a new service, refer to the Sun Java System
Identity Server Administration Guide.

6. Select the new service to create a user with the additional object classes.

When creating new user there is an option to select the newly configured
service.

Service Management SDK

300

The ldentity Server provides a Java API for service management. These interfaces
can be used by developers to register services and applications, and manage their
configuration data. The interfaces and methods can be found in
comsun.identity.sm

ServiceSchemaManager Class

The Ser vi ceSchenaManager class in the com sun. i denti ty. smpackage provides
interfaces to manage a service’s schema. It must implement Ser vi ceSchena which
represents a single schema element in the service.

Retrieve Logging Location

Code Example 7-24 uses the Ser vi ceSchemaManager class to retrieve the
i pl anet - am | oggi ng- 1 ocat i on attribute value from the Logging Service at the
following DN: ou=i Pl anet AM_oggi ngSer vi ce, ou=servi ces, 0=i sp.

Code Example 7-24 Retrieve Logging Location Sample

kkkkkkkkk

SSOrokenManager nanager = SSOTokenManager . get | nst ance();

SSOroken token = manager . cr eat eSSOToken(new

Aut hPri nci pal (" ui d=anadmi n, ou=Peopl e, dc=or g, dc=cont), "11111111");
Servi ceSchemaManager ssm = new Ser vi ceSchenmaManager ('t oken,

"i Pl anet AMLoggi ngServi ce", "1.0");

Servi ceSchema ss = ssm get @ obal Schenma() ;

Identity Server 2004Q2 « Developer's Guide

Service Management SDK

Code Example 7-24 Retrieve Logging Location Sample

Map p = ss.getAttributeDefaults();

kkhkkhkkkkkkkkkk

Retrieve User Or Dynamic Attributes

Code Example 7-25 uses the Ser vi ceSchemaManager to define the Ser vi ceSchema
user attributes. AMJser . get At tri but es(..) is then called to obtain the
attribute/value pairs.

Code Example 7-25 Retrieve User Or Dynamic Attributes

Servi ceSchemaManager ssm = new Ser vi ceSchenmaManager (servi ceNane, t oken);
Servi ceSchema sm = ssm get Schema(SchenaType. USER) ;
if (sm!=null) {

Set userAttributes = ss.getAttribut eSchenaNares();

/1 Since USER or DYNAM C attributes are stored as |dap attributes you
can call..

amUser.get Attributes(userAttributes);
}

Retrieve Attribute Values

Code Example 7-26 illustrates one way to retrieve attribute values from a service.

Code Example 7-26 Sample Code To Retrieve Attribute Values

package comi pl anet.am sanpl es. sdk;

inport java.io.?*;

inport java.net.*;

inport java.util.?*;

i nport comi pl anet. sso. *;

i nport comi pl anet.am sdk. *;

inport comsun.identity.authentication.internal.*;
inport comsun.identity.sm?*;

i nport javax.servlet.*;

i nport javax.servlet.http.*;

public class Sanpl eUser Operations {
SSOroken token = nul | ;

Chapter 7 Service Management 301

Service Management SDK

302

Code Example 7-26 ~ Sample Code To Retrieve Attribute Values (Continued)

/**

* This user will be used for further sanple operations on the
* sane obj ect
*/

private static AMker contextUser = null;

private static String pass\Wrd = nul | ;

private static String uid = null;

private static String | astNamre = nul | ;

private static String firstNane = null;

String userDN = nul | ;

private static Map scuCbj Map = new HashMap();

public static AVBtoreConnection amsc = null;
public static Sanpl eUser Qperations suo;

[IHere we will try to get the value of the organization type
[lattribute "iplanet-am auth-1dap-bind-dn" of the service
/1"i Pl anet AMAut hLDAPSer vi ce" for the organi zation
/DN "dc=i pl anet, dc=con'.
public static void main(String args[]) {
try {
SSOrokenManager nanager = SSOTokenManager . get | nstance();
/11f possible create the token using the tokneid or httprequest.
SSOToken token = nanager . cr eat eSSOToken(new
Aut hPri nci pal ("ui d=amadni n, ou=Peopl e, dc=i pl anet, dc=coni’), "11111111");
suo = get Sanpl eUser Qper ati ons(t oken);
ansc = new AVBt or eConnect i on(t oken);
Servi ceConfi gManager scm = new Servi ceConf i gManager (t oken,
"i Pl anet AMAut hLDAPSer vi ce", "1.0");
String orgName = "dc=i pl anet, dc=conf’;
Servi ceConfig sc = scm get O gani zati onConfi g(orgNane, null);
Map np = sc.getAttributes();
Iterator itr =
((HashSet) np. get ("i pl anet - am aut h- | dap- bi nd-dn")).iterator();
Systemout.printin("bind dn for the org -" + orgNane + "-is-"
(String)itr.next());
Systemexit(0);
} catch (Exception e) {
Systemout . println("Exception Message: " + e.get Message());
e.printStackTrace();

}
/* Basic Constructor */
public Sanpl eUser Qper at i ons(SSOToken t oken) {

this.token = token;
scuChj Map. put (token, this);

/* Use the same object for nultiple operations */

+

Identity Server 2004Q2 « Developer's Guide

Service Management SDK

Code Example 7-26 ~ Sample Code To Retrieve Attribute VValues (Continued)

public static Sanpl eUser Qperations get Sanpl eUser Qper at i ons(SSOToken
t oken) {
Sanpl eUser Qper ati ons scuChj =
(Sanpl eUser Oper at i ons) scuChj Map. get (t oken);
if (scuCj ==null) {
scuChj = new Sanpl elUser Qper ati ons(token);

return scuCvj;

/
* This nmethod will describe the SDK usage for creating a user.

* |t uses AMBtoreConnection to get the organization object

* |t uses the Set Paraneters to store the different attributes of
* the user. This method is used for conmand |ine.

* |t throws an AVException if unable to create it and we throw

* message "unable to create" to the GQJ by catching the same

*/
public String createUser (AVBt oreConnection conn) {
try {
Map user AttributeMap = new HashMap();

uid = "user",
storeUser Attributes("uid", uid, userAttributeMp);
firstName = "user";
storeUser Attributes("givennane", firstNane,
user At tri buteMap);
| ast Nane = "one";
storeUser Attributes("sn", |astName, userAttributeMap);
passWrd = "userone";
storeUser Attri but es("user Password", pass\Wrd,

user Attri but eMap) ;

Map user Mapl = new HashMap();
user Mapl. put (ui d, userAttributeMap);

/**
* Provide the DN according to the DT
*/
String dn = "ou=Peopl e, o=i pl anet . com o=i sp";
AMPeopl eCont ai ner anpc = conn. get Peopl eCont ai ner (dn) ;
anpc. creat eUser s(user Mapl) ;
userDN = "uid=" + uid +"," + dn;
/*
* This is to keep the context of the user
*/
cont ext User = conn. get User (user DN) ;
return "Successfully added the user: " + uid,;
} catch (Exception ex) {
ex. print StackTrace();
return "Unable to create";
}
/**

* This nmethod will describe the SDK usage for creating a user.

Chapter 7 Service Management 303

Service Management SDK

304

Code Example 7-26 ~ Sample Code To Retrieve Attribute Values (Continued)

* |t uses AMBtoreConnection to get the organization object
* |t uses the Set Paranmeters to store the different attributes of
* the user.
* |t throws an AVException if unable to create it and we throw
* message "unable to create" to the GJ by catching the same
*
/

public String createUser (HtpServl et Request req, Set paraneters,

AMBt or eConnect i on
conn) {
try {
Map userAttributeMap = new HashMap();
if (paraneters.contains("uid")) {
uid = req.get Parameter ("uid");
storeUserAttributes("uid", uid, userAttributeMp);

i f(parameters. contains("firstnane")) {
firstName = req. getParameter("firstname");
storeUser Attributes("givennane", firstNane,

user At tri but eMap) ;
}

i f(paramet ers. contains("lastname")) {
| ast Nanme = req. get Paranet er ("I ast nane");
storeUser Attributes("sn", |astName, userAttributeMap);

i f (paramet ers. contai ns("password")) {
passWrd = req. get Paranet er (" user Passwor d") ;
storeUser Attribut es("user Password", pass\Wrd,

user At tri but eMap) ;
}

Map user Mapl = new HashMap();

user Mapl. put (ui d, userAttributeMap);

String orgDN = req. get Paranet er (" or gNane") ;

String dn = "ou=People" + "," + orgD\

AMPeopl eCont ai ner anpc = conn. get Peopl eCont ai ner (dn) ;
anpc. creat eUser s(user Mapl) ;

userDN = "uid=" + uid +"," + dn;

/*

* This is to keep the context of the user
*/

cont ext User = conn. get User (user DN) ;
return showCr eat eUser Success();

} catch (Exception ex) {
ex. print StackTrace();

return "Unable to create";

/**
* This nmethod describes the SDK usage for modifying the user.
*
/
public String modi fyUser (HtpServl et Request req) {
HashMap rodi fyMap = new HashMap() ;

Identity Server 2004Q2 « Developer's Guide

Service Management SDK

Code Example 7-26 ~ Sample Code To Retrieve Attribute VValues (Continued)

| ast Name = req. get Paranet er ("I ast name") ;
storelUserAttributes("sn", |astNane, nodifyMap);
firstName = req. get Paranmeter ("firstname");

storeUser Attributes("gi vennane", firstNane, nodifyMap);
passWord = req. get Paranet er ("user password");

storeUser Attribut es("user Password", passWrd, nodifyMap);

try {
cont ext User. set Attri but es(nodi f yMap) ;

context User. store();
return showhModi f yUser Success();
} catch (Exception ex) {
Systemout . println("Exception occured");

return "Unable to nodify";

/**

* This nmethod describes the SDK usage for deleting the user.
*/

public String deleteUser() {
try {
cont ext User. del et e(fal se);
return "Del eted successful ly";
} catch (Exception ex) {
Systemout . println("Exception occured");

return "Unable to del ete";

}
/* This method is for the QU purposes */

public String showCeateUser() {

StringBuffer sb = new StringBuffer();

sbh. append(" <HTNL>") ;

sb. append("<

sbh. append(" </ I-EAD>")

sh. append(" <BODY>") ;

sbh. append(" <FORM name=\"al l attributes\" METHCD=POST
ACTI ONR\ "/ anser ver / sdksanpl e\ ">") ;

sbh. append(" <TABLE>") ;

sb. append("<TR>");

sh. append(" <TD ALI G\N=LEFT VALI GN=M DDLE>Logi n | D</ B></ TD>") ;

sb. append(" <TD VALI G\eM DDLE><I NPUT TYPE=\"text\" NAMVE=\"uid\"
VALUE=\ "\ "
SI ZE=32 MAXLENGTH=64></ TD><TD>Under O gani zati on</ B></ TD>");

sb. append(" <TD VALI G\=M DDLE><I NPUT TYPE=\"text\" NAVE=\"orgNane\"
VALUE=\ "\ "
S| ZE=32 NAXLENGTH=64></ TD>") ;

sb. append("</ TR>");

sb. append("<TR>");

sh. append(" <TD ALI G\N=LEFT VALI GN=M DDLE>First Name</ B></ TD>") ;

sbh. append(" <TD VALI G\=M DDLE><I NPUT TYPE=\"text\" NAME=\"firstnane\"

Chapter 7 Service Management 305

Service Management SDK

306

Code Example 7-26 ~ Sample Code To Retrieve Attribute Values (Continued)

VALUE=\"\" S| ZE=32 MAXLENGTH=64></ TD>");
sb. append("</ TR>");
sb. append("<TR>");
sb. append("<TD ALI G\=LEFT VALI G\eM DDLE>Last Nane</ B></ TD>");
sb. append(" <TD VALl G\=M DDLE><I NPUT TYPE=\"text\" NAVE=\"| ast nare\ "
VALUE=\ "\ "
S| ZE=32 MAXLENGTH=64></ TD>");
sb. append("</ TR>");
sb. append("<TR>");
sh. append(" <TD ALI G\FLEFT VALI G\=M DDLE>Passwor d</ B></ TD>") ;
sbh. append("<TD VALI G\=M DDLE><I NPUT TYPE=\"passwor d\ "

NAME=\ " user passwor d\ "
VALUER\"\" Sl ZE=12></ TD>");
sb. append("</ TR>");
sb. append("<TR>");
sb. append("<TD ALI G\ELEFT VALI G\eM DDLE>Confirm
Passwor d</ B></ TD>") ;
sbh. append(" <TD VALI G\=M DDLE><I NPUT TYPE=\"passwor d\ "
NAME=\ " passwor dagai n\ "
VALUER\"\" Sl ZE=12></ TD>") ;
sb. append("</ TR>");
(1<TR"):
("<TD><i nput type=SUBM T NAME=\"usersubm t\">");
("</ TD></ TR");
sbh. append(" </ TABLE>") ;
("</ FORW");
("</ BCDY>");
("</HTM>");
return sh.toString();

}

private void storeUserAttributes(String attribute, String val ue, Map

user Map) {
Set userSet = new HashSet ();
user Set . add(val ue);
user Map. put (attribute, userSet);

/* This method is for the QU purposes */

private String showCr eat eUser Success() {
StringBuffer sb = new StringBuffer();
sbh. append(" <HTM.>") ;
sh. append(" <HEAD>") ;
sbh. append(" </ HEAD>")
sh. append(" <BODY>") ;
sb append(" Oreat ed Successfully");
b. append(" <FORM narme=\" user successful \ " METHOD=POST
ACTI ONR " /anserver/sdksanpl e\">");
sh. append(" <TABLE>") ;
sb. append("<TR>");
sb. append(" <TD><i nput type=SUBM T NAME=\"nodi f yuser\"

VALUE=\" Modi fy\">") ;

sbh. append(" </ TD></ TR>") ;

Identity Server 2004Q2 « Developer's Guide

Service Management SDK

Code Example 7-26 ~ Sample Code To Retrieve Attribute VValues (Continued)

}

}

/* This method is for the QU purposes */
public String showhbdi fyUser() {

ACTI ONR\ "/ anser ver / sdksanpl e\ ">") ;

VALUE=\"");

sh. append(firstName + "\" Sl ZE=32 MAXLENGTH=64></ TD>");

sb. append("</ TR>");

sb. append("<TR>");

sbh. append(" <TD ALI G\FLEFT VALI G\=M DDLE>Last Nane</ B></ TD>");

sb. append(" <TD VALI G\=M DDLE><I NPUT TYPE=\"text\" NAME=\"I| astnane\"
VALUE=\"");

sb. append(| ast Name + "\" S| ZE=32 MAXLENGTH=64></ TD>");

sb. append("</ TR>");

sb. append("<TR>");

sh. append(" <TD ALI G\FLEFT VALI G\=M DDLE>Passwor d</ B></ TD>") ;

NAME=\ " user passwor d\ "
VALUE=\ "

/* This method is for the QU purposes */
private String showhodi fyUser Success() {

sh. append(" </ TABLE>")
sbh. append(" </ FCRW>"

sh. append(" </ BCDY>"
sbh. append(" </ HTM.>"
return sbh.toStri ng(

————

StringBuffer sb = new StringBuffer();

sbh. append(" <HTM.>") ;

sh. append(" <HEAD>") ;

sbh. append(" </ HEAD>") ;

sh. append(" <BODY>") ;

sb. append("uid:" + uid);

sb. append(" <FORM name=\ " shownodi f y\" METHCD=PCST

sh. append(" <TABLE>") ;

sb. append("<TR>");

sh. append(" <TD ALI G\ELEFT VALI G\=M DDLE>Fi r st Nane</ B></ TD>") ;
sbh. append(" <TD VALI G\=M DDLE><I NPUT TYPE=\"text\" NAME=\"fi rstnane\"

sbh. append(" <TD VALI G\=M DDLE><I NPUT TYPE=\"passwor d\ "

")
sh. append(passVV)rd + "\" Sl ZE=12></ TD>");

sb. append("</ TR>");
sb. append("<TR>");
sb. append(" <TD><i nput type=SUBM T NAME=\"nodi f yuser submi t\">");
sbh. append(" </ TD></ TR>") ;

sh. append(" </ TABLE>") ;

sbh. append(" </ FCRW>"

sh. append(" </ BCDY>"

sbh. append(" </ HTM.>"
return sh.toString(

):
)i
)
);

Stri ngBuffer sb = new StringBuffer();
sbh. append(" <HTM_>);
sb. append(" <HEAD>") ;
sbh. append(" </ HEAD>")

Chapter 7 Service Management 307

Service Management SDK

308

Code Example 7-26

Sample Code To Retrieve Attribute Values (Continued)

sb. append("
sbh. append("
sb. append("
ACTI ON=\ "/ anser ver /
sb. append("
sbh. append("
sb. append("
VALUE=\ " Del et e\ ">")
sb. append("
sbh. append("
sb. append("
sbh. append("
sb. append("
return sb.t

}
[* This nethod is f

sb. append("
sbh. append("
sb. append("
sbh. append("
sb. append("
ACTI ON=\ "/ anser ver /
sb. append("
sbh. append("
sb. append(
sh. append(
sb. append("
sh. append(
sb. append(
sh. append(
return sh.t

"</ FORW>"
"</ BADY>"
n </ HTM_>H

<BODY>") ;
Modi fied Successful ly");

<FORM nane=\ "nodi f yuser successful \ " NMETHOD=PCST
sdksanpl e\ ">");

<TABLE>");

<TR'):;

<TD><i nput type=SUBM T NAME=\"del et euser subm t\"
</ TD></ TR");

</ TABLE>");

</ FORMA")
</ BADY>")
</ HTM.>") ;
ostring();

or the GJ purposes */

public String showbel et eUser () {
StringBuffer sb = new StringBuffer();

<HTM.>");

<HEAD>") ;

</ HEAD>") ;

<BCDY>");

<FORM nane=\ "showdel et e\" METHOD=POST
sdksanpl e\ ">");

<TABLE>");

<TR'):;

"<TD><i nput type=SUBM T NAME=\"del et euser submi t\">");
"</ TD></ TR");

</ TABLE>") ;

~————

oSt ring(

Identity Server 2004Q2 « Developer's Guide

Chapter 8

Policy Management

Sun Java™ System ldentity Server includes a Policy Management feature that
allows you to define, manage, and enforce policies that control access to protected
resources. It allows administrators to configure and administer these conditions for
applications, resources, and identities managed within the Identity Server
deployment. This chapter explains the Policy Management feature and its
architecture. It contains the following sections:

= “Policy SDK” on page 309

= “Extending the Policy Management Feature” on page 317

Policy SDK

The Policy SDK provides Java and C APIs to allow external applications to
participate in its functionality. With the SDK, applications can determine privileges
and manage policies.

The Sun Java™ System ldentity Server Developer’s Reference provides summaries of
data types, structures, and functions that make up the public Identity Server C
APIs. You will find the Javadocs for Identity Server Java APIs in this location:

IdentityServer_base/ SUN\Vm docs/ am publ i ¢c_j avadocs. j ar

Java SDK For Policy

The crux of the Policy Service is the Java SDK. It defines the following packages:

e comsun.identity. policy providesthe APIs for administering (creating,
deleting, modifying) and evaluating policies. It is used by the Identity Server
console and/or the command line interface.

309

Policy SDK

e comsun.identity.policy.interfaces provides source interfaces used to
implement custom subjects, conditions, referrals and resource comparators.

e comsun.identity. policy.client are APIs used by remote Java
applications that need to evaluate policies and get policy decisions.

TIP AMConf i g. properti es must be copied from Identity Server to a client
machine as well as the respective jars to run test code in a remote environment.
Some properties (like the notification url for remote client) need to be modified for
their functionality to work.

Policy API For Java

The com sun. identity. policy package provides the classes and methods to
manage, administer and evaluate policies. They can be used by the Identity Server
console or the amadm n command line interface tool. Select classes and methods are
discussed in this section.

Policy Evaluation Classes

The following information introduces some of the classes that can be used to
evaluate configured policies for access to a protected resource.

PolicyEvaluator Class com sun.identity. policy. Pol i cyEval uat or can be
integrated into Java applications to evaluate policy privileges and provide policy
decisions. This class provides support for both boolean and non-boolean type
policies. A Pol i cyEval uat or is created by calling the constructor with a service
name. Public methods of this class include:

= i sA | oned—evaluates the policy associated with the given resource and
returns a boolean value indicating whether the policy evaluation resulted in an
allow or deny.

¢ Returns a boolean value of:
« true if access is allowed.

« fal seifaccessis denied.

NOTE A boolean false value overrides a boolean true value. Once an action is determined
to have a false value, other values are not evaluated.

o Arguments:

310 Identity Server 2004Q2 « Developer's Guide

Policy SDK

com i pl anet . sso. SSOToken: The SSOToken associated with the
principal for which the policy will be evaluated.

java.lang. String resourceNare: A string representing the
requested resource.

java.lang. String acti onNane: The action for which the policy will
be evaluated. In a typical web application scenario, the action could be
GET or POST.

java.util.Myp envParanet ers: A map containing environment
parameters that may be needed to successfully evaluate the associated
policies.

v Exceptions:

Throws com i pl anet . sso. SSCExcept i on if the given session token is
not valid or has expired.

Throws com sun. i dentity. policy. PolicyExcepti on if the result
could not be computed for any reason other than a token problem.

get Pol i cyDeci si on—eVvaluates the policy and ascertains privileges for
non-boolean decisions. It returns a decision that gives a user permission to
perform a specific action on a specific resource. This method can also check
permissions for multiple actions.

o Returnscom sun.identity. policy. PolicyDecision.

o Arguments:

com i pl anet . sso. SSOToken: The SSO token associated with the
principal for which the policy will be evaluated.

java.lang. String resourceName: A string representing the
requested resource.

java.util.Set actionNane: A collection of actions for which the
policy will be evaluated.

java.util.Mp envParanet ers: A map containing environment
parameters that may be needed to successfully evaluate the associated
policies.

o Exceptions:

Throws com i pl anet . sso. SSCExcept i on if the given session token is
not valid or expired.

Chapter 8 Policy Management 311

Policy SDK

»+ Throwscom sun.identity. policy.PolicyException if the result
could not be computed for any reason other than a token problem.

= get Resour ceResul t —obtains the policy and ascertains privileges for
non-boolean decisions. Possible values for the scope of this method are sel f
and subt r ee. sel f gets the policy decision for the specified resource only.
subt r ee includes the policy decisions for all resources (defined in the policies)
which are sub-resources of the specified resource.

To illustrate, the Pol i cyEval uat or class can be used to display the links for a list
of resources to which an authenticated user has access. The get Resour ceResul t
method would be used to get the list of resources. The r esour ceNane parameter
would be htt p: // host . domai n: port which would return all the resources to
which the user has access on that server. These resources are returned as a

Pol i cyDeci si on based on the user’s defined policies. If the user is allowed to
access resources on different servers, this method needs to be called for each server.

NOTE Not all resources that have policy decisions are accessible to the user. The
Act i onDeci si on(s) contained in policy decisions carry this information.

ProxyPolicyEvaluator Class

com sun. i dentity. policy.ProxyPolicyEval uat or allows a privileged user
(top level administrator, organization administrator, policy administrator, or
organization policy administrator) to get policy privileges and evaluate policy
decisions for any user in their respective scope of administration.

com sun. i dentity. policy.ProxyPol i cyEval uat or Fact ory is the singleton
class used to get Pr oxyPol i cyEval uat or instances.

Code Example 8-1 Public Methods For ProxyPolicyEvaluator

*

/
Eval uates a sinple privilege of boolean type. The privil ege
indicates if the user identified by the principal Name

can performspecified action on the specified resource.

@ar am princi pal Nane principal name for whomto

conpute the privil ege.

@ar am r esour ceNane nane of the resource

for which to conpute policy result.

@ar am act i onNarme name of the action the user is trying to
performon the resource

@aramenv run time environnent paraneters

@eturn the result of the evaluation as a bool ean val ue

R I R R I

@hrows PolicyException exception formpolicy framework

312 Identity Server 2004Q2 « Developer's Guide

Policy SDK

Code Example 8-1 Public Methods For ProxyPolicyEvaluator (Continued)

* @hrows SSCException if sso token is invalid

*

*/

public bool ean i sAll owed(String principal Nanme, String resourceNane,
String actionName, Map env) throws PolicyException, SSCExcepti on;

/**

* Gets policy decision for the user identified by the

* principal Nane for the given resource

*

* @aram princi pal Nane principal name for whomto conpute the
* policy decision

* @aram resourceName name of the resource for which to

* conput e policy decision

* @aramenv run time environnment parameters

*

* @eturn the policy decision for the principal for the given
* resource

* @hrows PolicyException exception formpolicy framework

* @hrows SSCException if sso token is invalid

*

*/

public PolicyDecision getPolicyDecision(String principal Nang,
String resourceNane, Map env)
throws PolicyException, SSCException;

*

CGets protected resources for a user identified by the
princi pal Nane. Conditions defined in the policies

are ignored while conputing protected resources.

Only resources that are subresources of the given
root Resource or equal to the given rootResource woul d
be ret urned.

If all policies applicable to a resource are

only referral policies, no ProtectedResource woul d be
returned for such a resource.

@ar am princi pal Nane princi pal name for whom

to conpute the privilege.

@ar am r oot Resource only resources that are subresources
of the given rootResource or equal to the given

root Resource woul d be returned. |f

<code>Pol i cyEval uat or. ALL_RESOURCES</ code>

i s passed as root Resource, resources under

all root resources of the service

type are considered while conputing protected

r esour ces.

@eturn set of protected resources. The set contains
Pr ot ect edResour ce obj ect s.

@hrows PolicyException exception formpolicy framework
@hrows SSCException if sso token is invalid
@ee ProtectedResource

E R T I I I . T . I

-~

Chapter 8 Policy Management 313

Policy SDK

Code Example 8-1 Public Methods For ProxyPolicyEvaluator (Continued)

public Set getProtectedResourcesl gnoreConditions(String principal Nane,
String root Resource) throws PolicyException, SSCException

PolicyEvaluator Class com sun.identity.policy.client.PolicyEval uator
evaluates policies and provides policy decisions for remote applications which do
not have a direct access to Directory Server (for example, if there is a firewall). The
com sun.identity.policy.client. PolicyEval uat or definedin
“PolicyEvaluator Class” on page 310 requires direct LDAP access to policies stored
in Directory Server. This class

com sun. identity.policy.client. PolicyEval uator isimplemented using
XML over HTTP(s). It stores a cache of policy decisions for faster responses and
maintains the cache in sync with the Policy Service on the instance of Identity
Server using the notification and polling mechanism.

NOTE The PolicyEvaluator class can be used in a deployment container running ldentity
Server, or in a stand alone Java Virtual Machine (JVM) running the Identity Server
SDK. Respective to the JVM, a property must be defined to point to
server confi g. xm which, in turn, points to Directory Server. This is done by
launching the JVM with the following argument:
-D
"com i pl anet. coreservi ces. confi gpat h=/ et c/ opt / SUNVanm
confi g/ uns"

Policy Management Classes

The following classes can be used by system administrators to manage policies in
Identity Server. The interfaces for this functionality are also found in the
com sun. i dentity. pol i cy package.

PolicyManager com sun.identity. policy. PolicyManager is the top level
administrator class for policy management, providing methods that allow an
administrator to create, modify or delete an organization’s policies. The

Pol i cyManager can be obtained by passing a privileged user’s session token or by
passing a privileged user’s session token with an organization name. Some of this
class’s more widely used methods include:

= get Pol i cyNanes - retrieves all named policies created for the organization for
which the policy manager was instantiated. This method can also take a
pattern (filter) as an argument.

= getPol i cy - retrieves a policy when given the policy’s name.

314 Identity Server 2004Q2 < Developer's Guide

Policy SDK

« addPol i cy - adds a policy to the specified organization. If a policy with the
same name already exists, it will be overwritten.

= renovePol i cy - removes a policy from the specified organization.

Policy comsun.identity. policy.Policy represents a policy definition with
all its intended parts (rules, subjects, referrals and conditions). The policy object is
saved in the data store only when the st or e method is called or if the addPol i cy
or r epl acePol i cy methods from the Pol i cyManager class are invoked. This class
contains methods to add, remove, replace or get any of the parts of a policy
definition.

PolicyEvent com sun.identity. policy.PolicyEvent represents a happening
in a policy that could potentially change the current access status. For example, a
policy event would be created and passed to the registered policy listeners
whenever there is a change in a policy rule. This class works with the

Pol i cyLi st ener class in the com sun.identity. policy.interface package.

Policy Plugin API For Java

The following classes are used by service developers and policy administrators
who need to provide additional policy features as well as support for legacy
policies. The package for these classes iscom sun. i denti ty. policy.interfaces.
The interfaces include:

ResourceName

Resour ceNane provides methods to determine the hierarchy of the resource names
for a determined service type. For example, these methods can check to see if two
resources names are the same or if one is a sub-resource of the other.

Subject

Subj ect defines methods that can determine if an authenticated user (possessing
an SSOToken) is a member of the given subject.

Referral

Ref erral defines methods used to delegate the policy definition or evaluation of a
selected resource (and its sub-resources) to another organization or policy server.

Condition

Condi ti on provides methods used to constrain a policy; for example, time of day
or IP address. This interface allows the pluggable implementation of the
conditions.

Chapter 8 Policy Management 315

Policy SDK

PolicyListener

Pol i cyLi st ener defines an interface to register for policy events when a policy is
added, removed or changed. It is used by the policy service to send notifications
and by listeners to review policy change events.

C Library For Policy

Identity Server also provides a library of policy evaluation APIs to enable
integration of the policy functionality into for C applications. The C library
provides a comprehensive set of interfaces that query policy results of an
authenticated user for a given action on a given resource. The result of the policy
evaluation is called an action value and may not always be binary (allow/deny or
yes/no); action values can also be non-boolean. For example, John Smith has a
mailbox quota of 100MB. 100 is the value defined by a policy. As policy evaluation
results in string values only, the policy evaluation returned is 100 numeric not
100MB. It is up to the application developer to define metrics for the values
obtained appropriately.

CAUTION Previous releases of Identity Server contained C libraries in
IdentityServer_base/ | i b/ capi . The capi directory is being deprecated, and
is currently available for backward compatibility. It will be removed in the next
release, and therefore it is highly recommended that existing application paths to
this directory are changed and new applications do not access it. Paths include
RPATH, LD LI BRARY _PATH, PATH, compiler options, etc.)

As the first step of policy implementation, the API abstracts how a resource is
represented by mandating that any resource be represented in a string format. For
example, on a web server, resources may be represented as URLs. The policy
evaluation engine cares only about the relative relevance of one resource to other.
There are five relative relevances defined between two resources, namely: exact
match, no match, subordinate match, superior match or exact pattern match. Having
represented the resources in string format, the service developer must provide
interfaces that establish the relevant relationship between resources.

NOTE Exact pattern match is a special case where resources may be represented
collectively as patterns. The information is abstracted from the policy service and
the comparison operation must take a boolean parameter to trigger a pattern
matched comparison. During the caching of policy information, the policy engine
does not care about patterns, whereas during policy evaluation, the comparisons
are pattern sensitive.

316 Identity Server 2004Q2 « Developer's Guide

Extending the Policy Management Feature

The service developer must also provide a method to extract the root of the given
resource. For example, in a URL, the

pr ot ocol : // identity_server_host.domain_name: port portion represents the root. The
three functions (has_patt erns, get _resour ce_r oot and conpare_url s) are
specializations of resource representations. The set of characteristics needed to
define a resource is called a resource trait. Resource traits are taken as a parameter
during service initialization in the am resour ce_trai ts_t structure. Using the
resource traits, the policy service constructs a resource graph for policy evaluation.
In a web server policy sense, the relation between all the resources in the system
spans out like a tree with the pr ot ocol : / / identity_server_host.domain_name: port/
being the root of the tree.

NOTE The policy management system is generic and makes no assumptions about any
particular policy definition requirement.

Policy Evaluation API for C

Two opaque data structures are defined: am map_t and am properties_t.

am map_t provides a key to multiple value mapping and am properties_t
provides a key to single value mapping. am properti es_t provides the additional
functionality of loading a configuration file and getting values of specific data
types. These are simple data structures that are only used for information exchange
to and from the policy evaluation interfaces.

Extending the Policy Management Feature

Out of the box, Identity Server provides the URL Policy Agent service for policy
enforcement. However, you can use the Policy API to extend the functionality of
the default policy service. Through the API, you can create a new policy service to
fit your needs.

Identity Server provides a collection of sample files to illustrate how to use the
Policy API. This section explains how to use the samples to develop and add
custom subjects, conditions and referrals to existing policy, to programatically
construct new policies, and to develop and run policy evaluation programs.In
order to successfully execute the policy samples, the following tasks must be
completed in order:

1. Compiling the Policy Samples
2. Adding the Policy Service to Identity Server

Chapter 8 Policy Management 317

Extending the Policy Management Feature

3. Developing Custom Subjects, Conditions and Referrals

4. Creating Policies for the Service

5. Developing and Running Policy Evaluation Programs

The samples and all associated files are located in the following directories:
| dentityServer_base/SUNVANT sanpl es/ pol i cy (Solaris)
IdentityServer_base/ i dent i ty/ sanpl es/ pol i cy (Linux)

NOTE Throughout the rest of this chapter, only the Solaris directory information will be
given. Please note that the directory structure for Linux is different.For more
information, please see “Terminology” on page 33.

Compiling the Policy Samples

Before you can use the files included with the samples, you must compile them. To
compile the samples:

1. Update the following variables in the Makefi | e:
BASE - Set this variable to refer IdentityServer_base/ SUN\VAmM

JAVA HOME - Set this variable to your installation location of JDK. The JDK
version should be higher than JDK 1.3.1.

CLASSPATH - Set this variable to refer to all of the j ar files

2. Compile the samples by running gmake al I .

Adding the Policy Service to Identity Server

Before you use the API to customize the interface, you must add the

Sanpl eWebSer vi ce. xm file to Identity Server. For information on adding new
policy services, see the “Policy Management” chapter of the Identity Server
Administration Guide.

318 Identity Server 2004Q2 « Developer's Guide

Extending the Policy Management Feature

Developing Custom Subjects, Conditions and
Referrals

The Policy API provides a means to customize a policy service interface, which
provides the variables that define the policy itself. This sample shows how to
customize the subject, condition and rule interfaces for Sanpl eWebSer vi ce.

The interfaces used to implement the customization are as follows:

« Sanpl eSubj ect . j ava - Implements the Subject interface. This subject applies to
all authenticated users who have valid SSOTokens.

= Sanpl eCondi ton. java - Implements the Condition interface. This condition
makes the policy applicable to users whose name length is grater or equal to
the length spcified in the condition.

< Sanpl eReferral . java - Implements the Referral interface. This referral
retrieves the referral policy decision from the SampleReferral.properties file.
This file is located in the same directory as the rest of the sample files.

The subject, condition and referral implementations need to be added to

i Pl anet AMPol i cyServi cea and i Pl anet AMPol i cyConf i gServi ce services in order
to make them available for policy definitions. (These services are loaded into
Identity Server during installation.) To add the sample implementations to the
policy framework, you must first modify the i Pl anet AMPol i cy service and

i Pl anet AMPol i cyConfi g service. The policy samples provide a modified XML file
for use with each service. The i Pl anet AMPol i cySer vi cea service uses

anPol i cy. xm and the i Pl anet AMPol i cyConf i gServi ce uses

anPol i cyConfi g. xm .

The following XML attribute values in anPol i cyConfi g. xm must be changed to
reflect your installation before they are loaded to Identity Server;

e iplanet-ampolicy-config-I|dap-server

e iplanet-ampolicy-config-I|dap-base-dn

e iplanet-ampolicy-config-Idap-bind-dn

e iplanet-ampolicy-config-Idap-bind-password.

When setting the i pl anet - am pol i cy- confi g- | dap- bi nd- passwor d attribute, the
encrypted value must be used. The anpasswor d command can be used to generate
encrypted password (for more information, see “The ampassword Command Line
Tool” in the Identity Server Administration Guide”). Alternatively, they can be set
to correct values when the policy configuration service is registered for the
organizations.

Chapter 8 Policy Management 319

Extending the Policy Management Feature

320

To Load the Modified Services

1.

Back up i Pl anet AVPol i cy and i Pl anet AMPol i cyConfi g services using the
db2l di f utility. For example:

cd DirectoryServer_base/ sl apd- host nanme

db2l dif -n userRoot -s
"ou=i Pl anet AMPol i cySer vi ce, ou=ser vi ces, root _suffi x"

db2l di f -n userRoot -s
"ou=i Pl anet AMPol i cyConfi gServi ce, ou=servi ces, root _suffix"

Remove the existing i Pl anet AMPol i cy and i Pl anet AMPol i cyConfi g services
by running the following commands:

IdentityServer_base/ SUNVAn1 bi n/ amadni n
--runasdn "ui d=amAdnm n, ou=Peopl e, default_org,root_suffix"
--password passwor d
--del eteservice i Pl anet AVPol i cyServi ce
IdentityServer_base/ SUNVAn1 bi n/ amadni n

n

--runasdn "ui d=amAdni n, ou=Peopl e, <def aul t _or g>, r oot_suffix"
- - passwor d password
--del eteservice iPl anet AWPolicyConfigService

Add the modified services back to the server. The XML attributes values must
be modified to your installation before running these commands):

I dentityServer_base/ SUNVN bi n/ anadm n
--runasdn "ui d=amAdni n, ou=Peopl e, default_org, root_suffix"
- - password passwor d

- - schema IdentityServer_base/ SUNVan sanpl es/ pol i cy/ anPol i cy. xm

I dentityServer_base/ SUNVN bi n/ anmadm n

n

--runasdn "ui d=amAdni n, ou=Peopl e, def aul t _org, root _suf fi x"
- - password passwor d

--scherma
I dentityServer_base/ SUN\Van sanpl es/ pol i cy/ anPol i cyConfi g. xm

The original services XML files for these two services are located in
IdentityServer_base/ SUNVANT confi g/ xmi .

Identity Server 2004Q2 « Developer's Guide

Extending the Policy Management Feature

4. Change the properties files with the following commands:
cd IdentityServer_base/ SUN\n | ocal e
nv anPol i cy. properties anPolicy. properties. bak
nv anPol i cy_en. properties anPol i cy_en. properti es. bak
nv anPol i cyConfi g. properties anPol i cyConfig. properties. bak
nv anPol i cyConfi g_en. properties anPol i cyConfig_en. properti es. bak
cp ldentityServer_base/ SU\ni sanpl es/ pol i cy/ anPol i cy. properties
cp ldentityServer_base/ SU\éni sanpl es/ pol i cy/ anPol i cy_en. properties
cp ldentityServer_base/ SU\éni sanpl es/ pol i cy/ anPol i cyConfi g. properties

cp
I dentityServer_base/ SUN\n sanpl es/ pol i cy/ anPol i cyConfi g_en. properties

5. To deploy the sample plugins copy Sanpl eSubj ect . cl ass,
Sanpl eCondi ti on. cl ass and Sanpl eRef erral . cl ass from the sample
directory to IdentityServer_base/ SUNVAnNT | i b.

6. Restart Identity Server.

7. Login into Identity Server console and register policy configuration service to
the organization. (For more information, see the “Policy Management” chapter
of the Identity Server Administration Guide.)

You can also use amadni n tool to register policy configuration service to
organizations.

8. Enter the LDAP Bind password for the LDAP Bind User.

The sample subject, condition and referral implementations are now available
for policy management through the Identity Server console or the amadni n tool.

Creating Policies for the Service

After you add the Sanpl eWebSer vi ce service to Identity Server and develop the
custom interfaces, you need to create a policy for the service. Identity Server
provides the following sample policy definitions for the Sanpl eVebSer vi ce:

« SamplePolicy.xml - Defines a normal policy.
= SamplereferralPolicy.xml - Defines a referral policy.

For information on adding new policy services, see the “Policy Management”
chapter of the Identity Server Administration Guide.

Chapter 8 Policy Management 321

Extending the Policy Management Feature

Developing and Running Policy Evaluation
Programs

The Policy API provides a Policy Evaluation API that allows you to write a policy
evaluation program to ensure that the policy service, and the policy definitions that
the service contains, function properly.

The Policy Evaluation API has one java class, Pol i cyEval uat or, and the package
for this class is com sun. i dentity. policy. Pol i cyEval uat or. Based on this class,
Identity Server provides a sample policy evaluation program called

Pol i cyEval uati on. j ava.

The sample policy evaluation program uses the Pol i cyEval uat i on. properties
file, in which you specify the input for the evaluation program such as service
name, action names, condition environment parameters, user name, user password
and so forth. The following properties can be set as input to the evaluation
program:

= Set the value of pe. servi cenane to the service name (Sanpl eVebSer vi ce).

= Set the pe. r esoucenarre to the resource name against which you want to
evaluate the policy.

= Specify the action names in the pe. act i onnanes. Separate the action names
with "". If you want to get all the action values, you can simply leave the
pe. act i onnanes blank.

= Set other required properties like pe. user nane, pe. passwor d.

= Set the optional properties pe. aut hl evel , pe. aut hschene, pe. requesti p,
pe. dnsnane, pe.tine if you use the corresponding conditions in your policy
definitions.

NOTE Before you run the policy evaluation program, make sure that you have set up the
policy definitions.

To Run the Policy Evaluation Program
1. Setthe environment variable LD LI BRARY_PATHto / usr/1i b/ nps/ secvl.

2. Run the evaluation sample program, use the gnake command.

The policy decision from the policy evaluation program is displayed on the
terminal.

322 Identity Server 2004Q2 « Developer's Guide

Extending the Policy Management Feature

Constructing Policies Programmatically

The Policy API provides Policy Management API that allows you to
programatically create, add, update and remove policies. Identity Server provides
a sample program, Pol i cyCr eat or . j ava, which demonstrates how to construct
policies and add them to the policy store. For your reference, the

Pol i cyCreat or. j ava code is listed at the end of this section.

In this sample, the following two policies are created:

« policyl- Normal policy, which contains one subject of each subject type and
one condition of each condition type that are provided by Identity Server out
of box

« refpolicyl- Referral policy.

To Run PolicyCreator.java

1. Compile sample Java programs. See “Compiling the Policy Samples” on
page 318 for more information.

2. Set the environment variable LD LI BRARY PATHto /usr/1i b/ nps/secvl.

In the Identity Server console, create a suborganization called or g1, a user called
user 1, a group called groupl and role called r ol el. Make sure that all of these
identity objects are created in your top-level organization. For more information on
creating these objects, see the ldentity Server Administration Guide.

3. Set the values of following properties in the Pol i cyEval uat i on. properties
file:

o pe.orgnane - DN of the top level organazation.

o pe.usernane - userid to authenticate.

o pe.password - password to use to authenticate.
4. Use the following command to create the policies:

gmake createPolicies

5. Inthe Identity Server console, verify that pol i cyl and r ef pol i cy1 were added.

PolicyCreator.java
The following section lists the Pol i cyCreat or. j ava code.

Chapter 8 Policy Management 323

Extending the Policy Management Feature

324

Code Example 8-2 PolicyCreator.java

import com sun.identify.policy.PolicyManager;
inport comsun.identity.policy.Referral TypeManager;
i nport comsun.identity. policy.Subject TypeManager;

inport comsun.identity.policy.Conditi
inport comsun.identity.policy.Policy;
inport comsun.identity.policy.Rule;

onTypeManager ;

inport comsun.identity.policy.interfaces. Referral;
inport comsun.identity.policy.interfaces. Subject;
inport comsun.identity.policy.interfaces.Condition;
inport comsun.identity.policy.PolicyException;

i nport comi pl anet.sso. SSOToken;
i nport comi pl anet.sso. SSCExcepti on;

inport java.util.Set;
inport java.util.HashSet;
inport java.util.Map;
inport java.util.HashMap;

public class PolicyCeator {

public static final String DNS_NAME="DnsNare";

public static final String DNS VALUE="*.red.ipl anet. cont;
public static final String START_TIME="StartTi me";

public static final String START_TI ME_VALUE="08: 00";
public static final String END TI ME="EndTi me";

public static final String END _TI ME_ VALUE="21: 00";

public static final String AUTH LEVEL="Aut hLevel ";

public static final String AUTH LEVEL VALUE="0";

public static final String AUTH SCHEME="Aut hSchene";
public static final String AUTH SCHEME VALUE="LDAP';

private String orgDN
private SSOToken ssoToken;
private PolicyManager pm

private PolicyCeator() throws Pol
Basel il s. | oadProperties();

i cyException, SSCException {

orgDN = Baseli | s. get Property(" pe. orgnanme");

Systemout.printIn("orgDN = "

+ orgbN);

}

ssoToken = Baseli | s. get Token();
pm = new Pol i cyManager (ssoToken, orgDN);

public static void main(String[] args) {

try {
Pol i cyCreat or pc = new PolicyCreator();

pc. addRef erral Pol i cy();
pc. addNor mal Pol i cy();
Systemexit(0);

} catch(Exception e) {
e. print StackTrace();

Identity Server 2004Q2 « Developer's Guide

Extending the Policy Management Feature

inport comsun.identity.policy.PolicyManager;

private voi d addNormal Pol i cy() throws PolicyException, SSCException

Systemout.printin("CGeating normal policy in org:" + orgDN;

Pol i cyManager pm = new Pol i cyManager (ssoToken, or gDN);

Subj ect TypeManager st m = pm get Subj ect TypeManager () ;

Condi ti onTypeManager ctm = pm get Condi ti onTypeManager () ;

Policy policy = new Policy("

Map actions = new HashMap

Set val ues = new HashSet (

val ues. add("al l ow');

actions. put ("CeT", val ues);

String resourceName = "http://nyhost.com 80/ hello.htm";

Rule rule = new Rul e("rul el", "i Pl anet AMAébAgent Servi ce",
resour ceNane, actions);

pol i cy. addRul e(rul e);

("policyl", "policyl description");
1);
)

<

Subj ect subj ect = stm get Subj ect (" O gani zation");
Set subj ect Val ues = new HashSet (1);

subj ect Val ues. add(or gDN) ;

subj ect . set Val ues(subj ect Val ues) ;

pol i cy. addSubj ect (" organi zation", subject);

subj ect = stm get Subj ect ("LDAPUsers");

subj ect Val ues = new HashSet (1);

String userDN = "ui d=user 1, ou=peopl e" + "," + orgDN
subj ect Val ues. add(userDN) ;

subj ect . set Val ues(subj ect Val ues) ;

pol i cy. addSubj ect ("I dapusers”, subject);

subj ect = st m get Subj ect (" LDAPG oups");

subj ect Val ues = new HashSet (1);

String groupDN = "cn=groupl, ou=groups" + "," + orgDN\
subj ect Val ues. add(gr oupDN) ;

subj ect . set Val ues(subj ect Val ues) ;

pol i cy. addSubj ect ("I dapgr oups", subject);

subj ect = stm get Subj ect (" LDAPRol es");
subj ect Val ues = new HashSet (1);

String rol eDN = "cn=rolel" + "," + orgDN\
subj ect Val ues. add(rol eDN);

subj ect . set Val ues(subj ect Val ues) ;

pol i cy. addSubj ect ("I daprol es", subject);

subj ect = stm get Subj ect ("1 dentityServerRol es");
subj ect Val ues = new HashSet (1);

roleDN = "cn=rolel" + "," + orgDN

subj ect Val ues. add(rol eDN);

subj ect . set Val ues(subj ect Val ues) ;

pol i cy. addSubj ect ("is-rol es", subject);

Chapter 8 Policy Management

325

Extending the Policy Management Feature

326

import com sun.identity.policy.PolicyMVanager;
Condi tion condition = ctmgetCondition("lPCondition");
Map conditionProperties = new HashMap(1);
Set propertyVal ues = new HashSet(1);
propert yVal ues. add(DNS_VALUE) ;
condi ti onProperties. put (DNS_NAME, propertyVal ues);
condi tion. set Properties(conditionProperties);
pol i cy. addCondi tion("i p_condition", condition);

condition = ctmget Condition("Sinpl eTi neCondi tion");
condi tionProperties = new HashMap(1);

propertyVal ues = new HashSet (1);

pr oper t yVal ues. add(START_TI ME_VALUE) ;

condi ti onProperties. put (START_TI ME, propertyVal ues);
propertyVal ues = new HashSet (1);

proper t yVal ues. add(END_TI ME_VALUE) ;

condi ti onProperties. put (END_TI ME, propertyVal ues);
condi tion. set Properties(conditionProperties);

pol i cy. addCondi tion("time_condition", condition);

condition = ctm get Condi tion("AuthLevel Condition");
condi tionProperties = new HashMap(1);

propertyVal ues = new HashSet (1);

pr oper t yVal ues. add(AUTH_LEVEL_VALUE) ;

condi ti onProperties. put (AUTH LEVEL, propertyVal ues);
condi tion. set Properties(conditionProperties);

pol i cy. addCondi tion("auth_l evel condition", condition);

condition = ctm get Condi tion("Aut hScheneCondi tion");
condi tionProperties = new HashMap(1);

propertyVal ues = new HashSet (1);

pr oper t yVal ues. add(AUTH_SCHEME_VALLE) ;

condi ti onProperties. put (AUTH SCHEME, propertyVal ues);
condi tion. set Properties(conditionProperties);

pol i cy. addCondi ti on("aut h_scherme_condition", condition);

pm addPol i cy(policy);

Systemout.printin("Geated normal policy");

}

private voi d addReferral Policy()
throws PolicyException, SSCException {
Systemout.printIn("Creating referral policy for orgl");
Ref erral TypeManager rtm = pm get Ref erral TypeManager () ;
String subQgDN = "o=orgl" + "," + orgDN

Policy policy = new Policy("refpolicyl®, "ref to orgl" true);

Map actions = new HashMap(1);
Rule rule = new Rul e("rul el",
"i Pl anet AMAébAgent Servi ce", "http: //nyhost.com 80/ orgl", actions);
pol i cy. addRul e(rul e);
Referral referral = rtmgetReferral ("SubO gReferral");

Identity Server 2004Q2 « Developer's Guide

Extending the Policy Management Feature

inport comsun.identity.policy.PolicyManager;

Set referral Val ues = new HashSet (1);

referral Val ues. add(subQrgDN) ;

referral . setVal ues(referral Val ues);

policy.addReferral ("ref to orgl" , referral);

pm addPol i cy(policy);

Systemout.printin("Ceated referral policy for orgl");

Chapter 8 Policy Management 327

Extending the Policy Management Feature

328 Identity Server 2004Q2 « Developer's Guide

Chapter 9

SAML Service

Sun Java™ System ldentity Server uses the Security Assertion Markup Language
(SAML) for exchanging security information. SAML defines an eXtensible Markup
Language (XML) framework to achieve inter-operability across different vendor
platforms that provide SAML assertions. This chapter explains SAML and defines
how it is used within Identity Server. It contains the following sections:

= “Overview” on page 329

e “SAML Component Details” on page 331
e “amSAML.xmI” on page 338

e “SAML SDK” on page 339

= “SAML Samples” on page 345

Overview

SAML is an open-standard protocol that uses an XML framework to exchange
security information between an authority and a trusted partner site. The security
information concerns itself with authentication status, access authorization
decisions and subject attributes. The Organization for the Advancement of
Structured Information Standards (OASIS) drives the development of the SAML
specifications. The latest SAML information and specifications can be found at the
Oasis Security Services Technical Committee home page.

SAML security information is expressed in the form of an assertion about a subject.
A subject is an entity in a particular domain, either human or machine, with which
the security information concerns itself. (A person identified by an email address is
a subject as might be a printer.) An assertion is a package of verified security
information that supplies one or more statements concerning a subject’s
authentication status, access authorization decisions or attributes. Assertions are

329

Overview

issued by a SAML authority. (An authority is a platform or application that has
been integrated with the SAML SDK, allowing it to relay security information.) The
assertions are received by partner sites defined within the authority as trusted.
SAML authorities use different sources to configure the assertion information
including external data stores or assertions that have already been received and
verified. Figure 9-1 illustrates how the SAML Service interacts with the other
Identity Server components.

Figure 9-1 SAML Interaction Within Identity Server

Applications Authority
[] ® A ® A
Aun|facy
Browser Auserlion I
witersicanont ety
Chuer]
T TARGET act eery
Asseftion
Assegiion
L 5
¥ ® Y @

SAML SAML SAML
Post Profile Awvare Servlet SOAP Receiver
Serviet
v
SAML SDE

The lighter colored boxes are components of the SAML service.

The SAML Service allows Identity Server to work in the following ways:

= Users can authenticate against Identity Server and access trusted partner sites
without having to reauthenticate. (This is a single sign-on process independent
of the proprietary Identity Server process discussed in Chapter 5, “Single
Sign-On And Sessions,” of this manual.)

= ldentity Server acts as a policy decision point (PDP), allowing external
applications to access user authorization information for the purpose of
granting or denying access to their resources.

330 Identity Server 2004Q2 « Developer's Guide

SAML Component Details

= ldentity Server acts as both an attribute authority (allowing trusted partner
sites to query a subject’s attributes) and an authentication authority (allowing
trusted partner sites to query a subject’s authentication information.)

= Two parties in different security domains can validate each other for the
purpose of performing business transactions.

e The SAML SDK can be used to build Authentication, Authorization Decision
and Attribute Assertions.

= The SAML Service provides pluggable XML-based digital signature signing
and verifying.

NOTE Although the Federation Management module integrates aspects of the SAML
specifications, it is independent of the Identity Server SAML Service as described
in this chapter.

Accessing The SAML Service

The SAML Service can be accessed using a web browser or the SAML SDK. An end
user would authenticate to Identity Server using a web browser and, when
authorized to do so, access URLs from trusted partner sites. Developers, on the
other hand, would integrate the API into their applications to enable them to
exchange security information with Identity Server. For example, a Java
application can use the SAML API to accomplish single sign-on. After obtaining a
SSOroken from Identity Server, the application can call the doWbArti f act ()
method of the SAMLA i ent class which will send a SOAP request for authorization
information to Identity Server and, if applicable, redirect the application to the
destination site.

SAML Component Details

The following sections explain specific details of the components of the SAML
Service. They include;

= Profile Types
= Assertion Types

e SAML SOAP Receiver

Chapter 9 SAML Service 331

SAML Component Details

332

Profile Types

A set of rules describing how to embed and extract SAML assertions is called a
profile. The profile describes how the assertions can be combined with other objects
by an authority, transported from the authority and, subsequently, processed at the
trusted partner site. Identity Server supports two profiles that use HTTP: the Web
Browser Artifact Profile and the Web Browser POST profile. Either of these profiles
can be used in the case of single sign-on between two SAML-enabled entities,
allowing an already authenticated user to access resources from a trusted partner
site. Each profile has its benefits that include:

= Because Web Browser POST profile does not require the SOAP, it is more
firewall-friendly and involves less steps and server side processing.

= Web Browser Artifact Profile requires less processing overhead because there
is no assertion signing as there is in Web Browser POST profile.

= Web Browser Artifact Profile works without Javascript-enabled browsers.

NOTE The profile methods can be initiated through a web browser or the SAML API. More
information on the APl method can be found in “SAML SDK” on page 339.

Web Browser Artifact Profile

The Web Browser Artifact Profile defines interaction between three parties: a user
equipped with a web browser, an authority site, and a trusted partner site. When
an authenticated user attempts to access a trusted partner site (generally by
clicking a link), they are directed to a transfer service at the authority site. In
Identity Server, the transfer service is the SAML Aware Servlet. The base of the
transfer URL is

ht t p(s):// identity_server_host.domain_name: port/ server_deploy_uri/ SAMLAwar eSer vl e
t; it is appended with the URL of the location to which the user is requesting access
(?TARGET=URL_of _dest i nati on). The SAML Aware Servlet then provides the
following functions as part of the Web Browser Artifact Profile:

1. Itcompares the SAML Service’s configured list of Trusted Partner Sites against
the user’s TARGET location.

Only targets configured in the Trusted Partner Sites attribute of the SAML
Service can access the SAML Service. Configured targets specify a domain
and/or a port number. More information on this attribute can be found in the
Sun Java System ldentity Server Administration Guide.

Identity Server 2004Q2 « Developer's Guide

SAML Component Details

Assuming the TARGET location was found in the list of Trusted Partner Sites,
the SAML Aware Servlet looks for and validates the session token from the
inbound request.

Without a valid session token, Identity Server will not create an assertion.
The SAML Aware Servlet then creates an artifact and a corresponding assertion.

An artifact is carried as part of the URL and points to an assertion and its
source; it is not, and does not contain, the security information itself. The
assertion contains the security information and is built from the user’s session
information and optional attribute information from the

si teAttribut eMapper class. (More information on the

siteAttribut eMapper can be found in “com.sun.identity.saml.plugins” on
page 341.) The assertion can be signed.

NOTE The need to send an artifact rather than the assertion itself is dictated by the

restrictions on URL size imposed by many web browsers.

It redirects the user’s browser to the Artifact Receiver URL with a query string
containing the artifact and the original TARGET location.

The Artifact Receiver URL is based on mapping configurations defined in the
SAML Service. More information on this can be found in the SAML Service
Attributes chapter of the Sun Java System Identity Server Administration Guide.

NOTE In Identity Server, the Artifact Receiver URL and the SAML Aware Servlet are one

and the same. Other SAML implementations might not integrate the two servlets.

5.

6.

At the Artifact Receiver URL, the artifact is extracted from the query string to
find the SOAP Receiver URL.

The SAML SDK extracts the source ID from the artifact and uses it to find the
SOAP Receiver URL in the SAML Service configuration. “SAML SOAP
Receiver” on page 336 has more information on the use of SOAP, a
communications specification integrating XML and HTTPS.

A SAML request containing the artifact is then sent to the SOAP Receiver URL
at the trusted partner site requesting the assertion to which the artifact points.

The Artifact Receiver URL uses SOAP binding to request the assertion.

The SOAP Receiver URL accepts the returned artifact query from the trusted
partner site and responds by sending the correct assertion in a SOAP response.

Chapter 9 SAML Service 333

SAML Component Details

334

8. The assertion is processed, mapping the user account information from the
trusted partner site to the target site’s user account.

The user is either granted or denied access to the trusted partner site. If access
is granted a SSOToken is generated, a cookie is set to the browser and the user
is redirected to the TARGET location.

NOTE A sample has been provided to test the Web Browser Artifact Profile
function. “SAML Samples” on page 345 has more information.

Web Browser POST Profile

The Web Browser POST Profile allows security information to be supplied to a
trusted partner site using the HTTP POST method (and without the use of an
artifact). It consists of two interactions: the first between a user with a web browser
and the Identity Server, and the second between the same user and a trusted
partner site.

When an authenticated user attempts to access a trusted partner site using a web
browser (usually by clicking a link), they are redirected to a transfer service in the
authority site. In Identity Server, the transfer service is the SAML Post Profile
Servlet. The base of the transfer URL is

ht t p(s):// identity_server_host.domain_name: port/ server_deploy_uri/ SAMLPCSTPr of i | e
Servl et ; it is appended with the URL of the location to which the user is
requesting access (?TARGET=URL_of _dest i nati on). The SAML POST Profile
Servlet provides functions for the two POST Profile interactions. In the first
interaction between the user and Identity Server:

1. Identity Server obtains the TARGET location from the request and retrieves the
trusted partner site URL from the SAML Service.

Again, only targets configured in the Trusted Partner Sites attribute of the
SAML Service can access the SAML Service. More information on this can be
found in the SAML Service Attributes chapter of the Sun Java System Identity
Server Administration Guide.

2. It generates an assertion using the Asserti onManager class of the SAML SDK.

“com.sun.identity.saml” on page 339 contains information on the
Asserti onManager class.

3. Itforms, signs and Base64 encodes a SAM_Response containing the assertion.

4. It generates an HTML form, containing both the SAM_Response and the
TARGET as parameters, and posts the form as an HTTP response back to the
user’s browser.

Identity Server 2004Q2 « Developer's Guide

SAML Component Details

5. The user’s browser is then directed to the location based on this information.
In the second interaction between the user and the trusted partner site:

1. The trusted partner site obtains the TARGET and SAM_Response from the
request.

2. It Base64 decodes the SAMLResponse.

3. It verifies the signature on the SAMLResponse and obtains and verifies the
SAML response itself.

It also verifies the assertion inside the SAM_.Response and enforces single-sign
on policy.

4. |t obtains or creates an SSOToken and redirects the authenticated user to the
TARGET location.

The POST profile function is provided by either of two means: an HTTP request
using the SAMLPCSTPr of i | eSer vl et, or an SAMLd i ent API call [doWebPost ()]
to a Java application.

NOTE A sample has been provided to test the Web Browser POST Profile function.
“SAML Samples” on page 345 has more information.

Single Use Policy With POST Profile

According to the SAML specifications, the trusted partner site MUST ensure a
single-use policy for SSO assertions communicated by the Web POST Profile. Thus,
the SAMLPOSTPr of i | eSer vl et maintains a store of SSO assertion IDs and the time
they expire. When an assertion is received, the servlet first checks for an entry in
the map. If one exists, the servlet returns an error. If not, the assertion ID and
expiration time is saved to the map. The POSTA eanUpThr ead removes expired
assertion IDs periodically.

Assertion Types

SAML assertions are represented as XML constructs based on a schema located at
ht t p: / / www. oasi s-open. org/ commi tt ees/ security/ docs/cs-sstc-schena-a
ssertion-01. xsd. The SAML specification provides for several types of assertions
that are also defined in the SAML Service:

Chapter 9 SAML Service 335

SAML Component Details

336

= An authentication assertion declares that the specified subject has been
authenticated by a particular means at a particular time. In Identity Server, the
Authentication Service is the authentication authority. Code Example 9-1
illustrates a sample authentication assertion.

Code Example 9-1 Sample Authentication Assertion

<?xm version="1.0" encodi ng="UTF-8" ?>
<sam : Assertion xm ns: sam ="urn: oasi s: names: t ¢c: SAML: 1. 0: assertion"
Maj or Ver si on="1"
M nor Ver si on="0" Assertionl D="random 182726" |ssuer="sunser ver. exanpl e. conf
| ssuel nst ant ="2001- 11- 05T17: 23: 00GMI- 02: 00" >
<sani : Aut henti cati onSt at emrent

Aut hent i cat i onMet hod="ur n: oasi s: nanes: t ¢c: SAM.: 1. 0: am passwor d"
Aut henti cati onl nst ant ="2001- 11- 05T17: 22: 00GMVI- 02: 00" >

<sani : Subj ect >

<sani : Nanel dentifier NameQualifier="exanpl e. cont >John

Doe</ sam : Nanel denti fier>

</ sam : Subj ect >

</sani: Aut henti cati onSt at enent >

</sani: Assertion>

= An attribute assertion declares that the specified subject is associated with the
specified attribute. In Identity Server, the Identity Management module is the
attribute authority.

= An authorization decision assertion declares that the specified subject’s request
for access to a specified resource has been granted or denied. In Identity Server,
the Policy Service is the authorization authority.

One assertion may contain many different statements made by the authority.

SAML SOAP Receiver

Assertions are exchanged between Identity Server and inquiring parties using the
request and r esponse XML-based protocol defined in the SAML specification.
These SAML assertions are then integrated into a standard communication
protocol for transport purposes.

NOTE Identity Server uses SOAP, a message communications specification integrating
XML and HTTPS, to transport requests and responses in its “Web Browser Artifact
Profile” on page 332.

Identity Server 2004Q2 « Developer's Guide

SAML Component Details

SOAP hinding defines how SAML r equest and r esponse message exchanges are
integrated into SOAP exchanges. The SAML SOAP Receiver is a servlet that
processes the message. It receives a SOAP message, extracts the SAML request and
responds with another SOAP message containing the requested assertion. It
responds to queries for authentication, attributes or authorization decisions as well
as those that include an assertion identifier reference or artifact by returning
assertions.

NOTE The access URL for the SAML SOAP Receiver is
htt p(s)://identity_server_host.domain_name: port/ server_deploy_uri/ SAMLSOA
PRecei ver . The SAML SOAP Receiver only supports the POST method.

SOAP Messages

SOAP messages consist of three parts: an envelope, header data and a message
body. (The SAML r equest /r esponse elements are enclosed in the message body.)
A client, acting as a SAML requestor, transmits a <Request > element within the
body of a SOAP message to an entity acting as a SAML Receiver. In answer, the
SAML Receiver MUST return either a <Response> element within the body of
another SOAP message or a SOAP fault code (or error message).

NOTE The SAML requestor and the SAML Receiver MUST NOT include more than one
SAML request or response per SOAP message or any additional XML elements in
the SOAP body.

A SAML Request may contain queries for any of the following: authentication
status, authorization decisions, attribute information and one or more assertion
identifier references or artifacts. A SAML Response is sent back to the requesting
party for every Request received.

NOTE The SAML SDK and the Java API for XML Messaging (JAXM) are used to
construct SOAP messages and send them to the SOAP Receiver.

Protecting The SOAP Receiver

The Identity Server administrator has the option of protecting the SAML SOAP
Receiver using authentication. The available methods are:

= NOAUTH
= BASICAUTH

Chapter 9 SAML Service 337

amSAML.xml

- SSL
= SSLWITHBASICAUTH

This option is configured in the Trusted Partner Sites attribute of the SAML Service
in the form:

Sour cel D=source_id_of site] SOAPUr | =url_of_site| Aut hType=chosen_auth_option| Us
er =user_id

NOTE The value user =user_id is used only with the Basic Authentication and SSL With
Basic Authentication options.

The default authentication type is NOAUTH. If SSL authentication is to be
specified, it is configured in the SOAPUr | field with the ht t ps URL prefix. More
information on the Trusted Partner Sites and other SAML Service attributes can be
found in the SAML Attributes chapter of the Sun Java System ldentity Server
Administration Guide.

amSAML.xml

anmBAML. xm is the XML service file that defines the attributes for the SAML
Service. All of the attributes in the SAML Service can be managed through either
the Identity Server console or the XML service file except two. These attributes can
only be managed through anSAM.. xm using the anadnmi n command line interface.

e iplanet-amsanl -cl eanup-i nt erval is used to specify how often the
internal thread is run in order to cleanup expired assertions from the internal
data store. The default is 180 seconds.

e iplanet-amsanl -asserti on-max- nunber is used to specify the maximum
number of assertions the server can hold at one time. No new assertion will be
created if the maximum number is reached. The default value is 0 which means
there is no limit.

To change the values of these attributes, the anSAM_. xmi service file needs to be
modified, the old anSAML. xm service file needs to be deleted, and the newly
modified file reloaded using amadmni n. Information on how to use amadm n can be
found in The amadmin Command Line Tool chapter of the Sun Java System Identity
Server Administration Guide. Information on the other SAML Service attributes can
also be found in the Sun Java System Identity Server Administration Guide.

338 Identity Server 2004Q2 « Developer's Guide

SAML SDK

SAML SDK

Identity Server contains a SAML SDK made up of several Java packages.
Administrators can use these packages to integrate the SAML functionality and
XML messages into their applications and services. The SDK supports all types of
assertions and operates with the Identity Server authorities to process external
SAML requests and generate SAML responses. The packages include:

e comsun.identity. sanl

e comsun.identity.sam.assertion
e comsun.identity.sanl.comon

e comsun.identity.sam.plugins

e comsun.identity.sani . protocol

e comsun.identity.sam .xmsig

com.sun.identity.saml

This package contains the Asserti onManager and SAM.O i ent classes. The
Asserti onManager provides interfaces and methods to create and get assertions,
authentication assertions and assertion artifacts; it is the connection between the
SAML specification and the Identity Server. Some of the methods included are;

e createAsserti on—creates an assertion with an authentication statement
based on an Identity Server SSO Token ID.

e createAssertionArtifact—creates an artifact that references an assertion
based on an Identity Server SSO Token ID.

= getAsserti on—returns an assertion based on the given parameter (given
artifact, assertion ID or query).

The SAMLA i ent provides methods to execute either the Artifact or POST profile
from within an application as opposed to a web browser. Its methods include:

= getAssertionByArtifact—returns an assertion for a corresponding artifact.
e doWbPOST—is designed to do the SAML web-browser POST profile.

e doWebArtifact —is designed to do the SAML web-browser profile with
artifact.

Chapter 9 SAML Service 339

SAML SDK

com.sun.identity.saml.assertion

This package contains the classes needed to create, manage, and integrate, an XML
assertion into an application. For example, Code Example 9-2 illustrates how to use
the Attribute class and get At t ri but eVal ue method to get the value of an
attribute. From an Assertion, call the get St at enent () method to retrieve a set of
statements. If a statement is an Att ri but eSt at enent, call the get Att ri but e()
method to get a list of attributes. From there, call get At t ri but eVal ue() toretrieve
the AttributeValue.

Code Example 9-2 Sample Code To Get An Attribute Value

/] get statenent in the assertion

Set set = assertion.getStatenent();

/lassume there is one AttributeStatenent

//shoul d check nul | & i nst anceof

AttributeStatement statement = (AttributeStatenent) set.iterator().next();
List attributes = statement.getAttribute();

/] assune there is at least one Attribute

Attribute attribute = (Attribute) attributes.get(0);

List values = attribute.getAttributeVal ue();

com.sun.identity.saml.common

This package defines classes common to all SAML elements including site_ID,
issuer name and server host. It also contains all SAML-related exceptions.

CAUTION The date format, yyyy- MAdd' T' HH mm ss' +/ - ' HH nm, which was used in
JDK 1.3.1 with IS 6.0 is no longer supported in IS 6.1. The correct format in JDK
1.4.1 for use in Identity Server 6.1 is:

yyyy-MWhdd' T' HH nm ss' +/ - HHm

or

yyyy-Midd' T' HH mm ss' GV ' +/-' HH nm

For example, the following are correct:

2003-04-22T01:20:02 -0001 (with a space before the zone sign)
2003-04-22T01:20:02GMT-00:01

2003-04-22T01:20:02-0001

340 Identity Server 2004Q2 < Developer's Guide

SAML SDK

com.sun.identity.saml.plugins

Identity Server provides four SPIs, three of them with default implementations.
The implementations of these SPIs can be altered, or brand new ones written, based
on the specifications of a particular customized service. These can then be used to
integrate the SAML Service into the custom service. Currently, the APIs include the
Account Mapper, Act i onMapper, Attri but eMapper and SiteAttri but eMapper.

Account Mapper is used to map external partner site user accounts to Identity
Server user accounts for purposes of single sign-on. A default account mapper
implementation is provided. If a site-specific account mapper is not
configured, this default mapper is used.

NOTE The default account mapper class is

comsun.identity.sani. pl ugin. Def aul t Account Mapper.

For example, assume the single sign-on is configured from site A to site B, then
a site-specific account mapper can be developed and added to site B’s Trusted
Partner Sites listing in this format:

sour cei d=site_A source_id | account mapper =class_name_of site
specific_account_mapper |

When site B processes the assertion received through either SAML profile, it
finds out the source ID of the originating site and locates the account mapper
corresponding to that site.

NOTE Turning on the Debug Service in AMConf i g. properti es file, would log

additional information concerning the account mapper. For example, was it loaded
or what is the user name and organization to which it has been mapped.
Information on this can be found in Appendix A, “AMConfig.properties File,” in this
manual.

Attribut eMapper isusedinthe Attri but eQuery case. When a site receives an
Attri but eQuery, this mapper is called to obtain the SSOToken or an Assertion
containing Aut hent i cati onSt at enent from the query. It is also used to
convert the attribute in the query to an attribute Identity Server understands. A
default attribute mapper is provided. A site-specific attribute mapper can be
developed in this format:

sour cei d=site_source_id |
at t ri but emapper =class_name_of_site_specific_attribute_mapper | . . .

Chapter 9 SAML Service 341

SAML SDK

< ActionMapper is used to get SSO information and to map partner actions to
Identity Server authorization decisions. A default action mapper
implementation is provided. If a site-specific action mapper is not supplied,
this default mapper is used. A site-specific action mapper can be developed in
this format:

sour cei d=site_source_id |
act i onmapper =class_name_of site_specific_action_mapper] . . .

e SiteAitribut eMapper is also used for SSO. The default functionality of
Identity Server is that when no mapper is specified and an assertion is created,
either through the web browser Artifact or POST profiles, it only contains
Aut henti cati onSt at enent (s). If a site wants to include
Attribut eStatenent(s), itcan use this SPI to obtain the attributes. It creates
Attribut eStat enent (s) from those attributes, and puts them inside the
assertion. A site attribute mapper can be developed in this format:

sour cei d=site’s source ID |
siteattribut emapper =class_name_of site_ specific_siteattribute_mapper] . . .

NOTE The default behavior is that no attribute statements are returned unless specified in
the plug-in.

com.sun.identity.saml.protocol

This package contains classes that parse the request and response XML messages
used to exchange assertions and their authentication, attribute or authorization
information.

AuthenticationQuery

The Aut hent i cat i onQuery class represents an authentication query. An
application sends a SAML request with an Aut hent i cati onQuery inside. The
Subject of the Aut hent i cat i onQuer y must contain a SubjectConfirmation element.
In this element, ConfirmationMethod needs to be set to ur n: com sun: i denti ty,
and SubjectConfirmationData needs to be set to the SSOToken id of the Subject. If
the Subject contains a Nameldentifier, then the info in the Nameldentifier should
be the same as the one in the SSOToken.

342 Identity Server 2004Q2 < Developer's Guide

SAML SDK

AttributeQuery

The At t ri but eQuery class represents a query concerning an identity’s attributes.
An application sends a SAML request with an At t ri but eQuery inside. The
application develops an At t ri but eMapper to obtain either a SSOToken ID or an
Assertion containing an AuthenticationStatement from the query and the mapper
is then used to retrieve the attributes for the Subject. If no At t ri but eMapper for the
guerying site is found, then the Def aul t Att ri but eMapper will be used. To use the
Def aul t At t ri but eMapper, the application should put either the SSOToken ID or
an assertion containing an AuthenticationStatement in the

Subj ect Confi r mat i onDat a element of the Subject in the query. If an SSOToken ID
is used, then the ConfirmationMethod must be set to ur n: com sun: i dentity:. If
an assertion is used, then this assertion should be issued by the Identity Server
instance processing the query or a server that is trusted by the Identity Server
instance processing the query.

NOTE In Def aul t At t ri but eMapper , itis possible to query a subject's attributes
using another subject's SSOToken as long as the SSOToken has the privilege of
retrieving those attributes.

For a query using the Def aul t At t ri but eMapper , any matching attributes found in
the Identity Management module will be returned. If no AttributeDesignator is
specified in the AttributeQuery, all attributes from the services defined under the
user Servi ceNaneLi st in anSAM.. pr operti es will be returned.

user Servi ceNaneLi st ’s value is user service names separated by a comma.

AuthorizationDecisionQuery

The Aut hori zat i onDeci si onQuery class represents a query concerning an
identity’s authority to access protected resources. An application sends a SAML
request with an Aut hori zat i onDeci si onQuery inside. The application develops
an Act i onMapper to obtain an SSOToken ID. The mapper is then used to retrieve
the authentication decisions for the actions defined in the query.

If no Acti onMapper for the querying site is found in the configuration, a

Def aul t Act i onMapper will be used. To use the Def aul t Acti onMapper , the
application should put the SSOToken ID in the SubjectConfirmationData element
of the Subject in the query. If SSOToken ID is used, then the ConfirmationMethod
must be set to ur n: com sun: i dentity:. If a Nameldentifier is present, then the
info in the SSOToken must be the same as the one in the Nameldentifier.

Chapter 9 SAML Service 343

SAML SDK

NOTE The Def aul t Act i onMapper handles actions in action namespace
urn: oasi s: nanes: tc: SAML: 1. 0: ghpp only. The
i Pl anet AMAébAgent Ser vi ce is used to serve the policy decisions for this
action namespace.

The application may also pass in the authentication information through the
Evidence element in the query. The Evidence could be an AssertionlDReference or
an assertion containing an AuthenticationStatement issued by the Identity Server
instance processing the query, or an assertion issued by a server that is trusted by
the Identity Server instance processing the query. The Subject in the
AuthenticationStatement as the evidence should be the same as the one in the

query.

NOTE Policy conditions can be passed in through AttributeStatements of Assertion(s)
inside the Evidence of the query. If the value of an attribute contains TEXT node
only, then the condition is set as
attri buteName=at tri but eVal ueSt ri ng; otherwise, the condition is set
asattributenanme=attributeVal ueEl enent.

AuthorizationDecisionQuery Sample

There are many ways to form an authorization decision query and have the
decision assertion returned. Code Example 9-3 illustrates one way to do it.

Code Example 9-3 AuthorizationDecisionQuery Code Sample

/] testing getAssertion(authZQuery): no SC, with ni, wth

/'l evidence(AssertionlDRef, authN, for this ni):
String nameQualifier = "dc=ipl anet, dc=con;
String pNane = "ui d=anadni n, ou=peopl e, dc=i pl anet, dc=coni’;
Narel dentifier ni = new Narel dentifier(pNanme, naneQualifier);
Subj ect subj ect = new Subj ect(ni);
String actionNamespace = "urn:test";
/'l policy should be added to this resource with these
/'l actions for the subject
Action actionl = new Action(acti onNanespace, "CET");
Action action2 = new Action(actionNanespace, "POST");
List actions = new ArrayList();
actions. add(actionl);
actions. add(action2);
String resource = "http://ww sun.com 80";
evi Set = new HashSet ();
/] this assertion should contain authentication assertion for
/1 this subject and should be created by a trusted server
evi Set . add(evi Asserti onl DRef 3) ;
evi dence = new Evi dence(evi Set);

344 Identity Server 2004Q2 « Developer's Guide

SAML Samples

Code Example 9-3 AuthorizationDecisionQuery Code Sample (Continued)

aut hzQuery = new Aut hori zat i onDeci si onQuery(evi Subj ect1, actions,
evi dence, resource);
try {

assertion = amget Assertion(aut hzQuery, destlD);
} catch (SAM.Exception e) {

out.printIn("--failed. Exception:" + e);

com.sun.identity.saml.xmlsig

All SAML assertions, requests and responses may be sighed using this signature
API. This is an SPI in which the interfaces can be implemented and proprietary
XML/signature implementations can be plugged in. This package contains the
classes needed to sign and verify. By default, the keystore provided with the JDK is
used and the key type is DSA. The configuration properties for this functionality
are in AMConfig.properties. Information on these properties can be found in
“SAML” on page 388 of Appendix A, “AMConfig.properties File.” See “SAML
Samples” for information on the signature functionality.

SAML Samples

There are several samples that can be accessed from the Identity Server installation.
They are located in IdentityServer_base/ SUN\VanT sanpl es/ sanm . These samples
illustrate how the SAML service can be used in different ways. They include:

= Asample that serves as the basis for using the SAML client API. This sample is
located in IdentityServer_base/ SUN\WANT sanpl es/ sani / cli ent.

= Asample that illustrates how to form a Query, and write an At t ri but eMapper
as well as how to send and process a SOAP message using the SAML SDK.
This sample is located in IdentityServer_base/ SUNVan1 sanpl es/ sam / query.

= Asample application for achieving SSO using either the Web Browser Artifact
or the Web Browser POST profiles. This sample is located in
IdentityServer_base/ SUN\VanT sanpl es/ sam / sso.

= Asample that illustrates how to use the XMLSIG API. It details how to
configure for XML signing and is located in
IdentityServer_base/ SUN\VAnT sanpl es/ sam / xn si g.

Chapter 9 SAML Service 345

SAML Samples

A README file is included with each sample with information and instructions on
how to use it.

346 Identity Server 2004Q2 « Developer's Guide

Chapter 10

Auditing Features

Sun Java™ System ldentity Server provides a Logging Service to record
information such as user activity, traffic patterns, and authorization violations. The
Logging API allow external applications to take advantage of the Logging Service.
In addition, the debug files allow administrators to troubleshoot their installation.
This chapter explains these auditing features. It contains the following sections:

= “Logging Service Overview” on page 347
e “Log Files” on page 349

e “Logging Features” on page 355

< “Logging API” on page 359

= “Logging SPI” on page 362

= “Debug Files” on page 363

Logging Service Overview

The Logging Service enables all Identity Server services to record information that
might be useful to the administrator in one centralized location. The information
may include access denials and approvals, authorization violations and code
exceptions. Logging allows administrators to analyze user activity, ldentity Server
traffic patterns and authorization violations. As with all Identity Server services,
the Logging Service uses a global service configuration file, named

anloggi ng. xni , to define its attributes (such as maximum log size and log
location, or whether the log information is written to a flat file or a relational
database). The default location for all log files is/ var / opt / SUN\WANT | ogs.

347

Logging Service Overview

NOTE This default log directory can be reconfigured after installation by modifying the Log
Location attribute in the Logging Service. More information can be found in the
Logging Service Attributes chapter in the Sun Java System Identity Server
Administration Guide.

Logging Architecture

Java applications use the Logging API to access the Logging Service. These
interfaces may reside on a remote server or on the same server as Identity Server.
An application accesses the Logging Service by calling the Logging API. (If remote,
the API uses a XML over HTTP layer to send the logging request to the Logging
Service.) The Identity Server SDK loads the configuration data (stored in Directory
Server) into the Logging Service when Identity Server starts up or when any
logging configuration data is changed via the console. This data includes the log
message format, log file name, maximum log size, and the number of history files.
Any exception message will be logged, based on the configuration values.

Figure 10-1 illustrates the architecture of the Logging Service.

Figure 10-1 Logging Service Architecture
Application

Logging API
{on remote server)

Logging
Configuration
from Directory
Server

348 Identity Server 2004Q2 « Developer's Guide

Log Files

amLogging.xml

The Logging Service holds the attributes and values for the logging function. These
attributes and values are defined in the anlLoggi ng. xm service file located in

/ et c/ opt / SUN\VanT confi g/ xml . These values are applied across the Identity
Server deployment and inherited by every configured organization. The structure
of anLoggi ng. xni is defined by the sns. dt d. Information on this document can be
found in “The sms.dtd Structure” on page 261 of Chapter 7, “Service
Management.” Specific information on the Logging Service attributes can be found
in the Logging Service Attributes chapter in the Sun Java System Identity Server
Administration Guide.

Log Files

The log files record a number of events for each of the services it monitors. These
files should be checked by the administrator on a regular basis. The default
directory for the log files is/ var / opt / SUN\WANI | ogs.

NOTE The log file directory can be configured in the Logging Service via the Identity
Server console.

Recorded Events

The Logging Service logs information passed to the LogRecor d class by the client.
Out-of-the-box, the contents of the LogRecor d that will be logged are:

Time
This record is the date (YYYY- Mt DD) and time (HH: MM SS) at which the log
message was recorded.

Data

This record details the description of the user activity, errors or other useful
information which the application wants to log.

Chapter 10 Auditing Features 349

Log Files

ModuleName

This record is the name of the Identity Server service or application being logged.
Additional information on the value of this field can be found in “Adding Log
Data” on page 360.

Domain
This field records the Identity Server domain to which the user belongs.

Log Level

This record corresponds to the Java 2 Platform, Standard Edition (J2SE) version 1.4
log level of the log record.

Login ID
This field is the ID of the user attempting to access the application. The information
(the user to whom the log information belongs) is taken from the session token.

IP Address

This field records the IP address from which the operation was performed.

Logged By

This field is the user who writes the log record. The information is taken from the
session token passed during | ogger . | og(| ogRecord, ssoToken).

Host Name
This field is the host name from which the operation was performed.

Additional fields can also be logged. The new field names must first be added to
the anlLoggi ng. xm service file and the modified service file then reloaded into the
Directory Server. The new values for these fields would then be included in the
LogRecord Class passed to the Logging Service. More information on how to
modify and load an XML service file can be found in “Defining A Custom Service”
on page 249 of Chapter 7, “Service Management.”

NOTE Only the flat file format can accommodate new logging fields. Other formats might
contain steps not documented here. An example would be the database table
where a new column must also be added to the table.

350 Identity Server 2004Q2 < Developer's Guide

Log Files

Log File Formats

Identity Server can record events in flat text files or a relational database. (The JDK
SPI allows extending existing handlers or adding new ones.)

Flat File Format

The default flat file format is the W3C Extended Log Format (ELF). In leveraging
this format, the Logging Service records the default logging fields in each log
record. Code Example 10-1 illustrates an authentication log record formatted for a
flat file. In order, the fields for these values are TIME, DATA, MODULENAME,
DOMAIN, LOGLEVEL, LOGINID, IPADDR, LOGGEDBY, and HOSTNAME.

Code Example 10-1 Flat File Record From amAuthentication.access

"08-07-2003 07:58: 26" "Logi n Success service->adni nconsol eservice" LDAP
dc=exanpl e, dc=com | NFO ui d=amAdni n, ou=Peopl e, dc=exanpl e, dc=com
129. 149. 247. 58 "cn=dsaneuser, ou=DSAME User s, dc=exanpl e, dc=con

cachelnwk. SFBay. Sun. COM

Relational Database Format

For Java applications using a relational database to log messages, the message is
stored in a database table. Identity Server uses Java Database Connectivity (JDBC)
to access the data. Oracle® and MySQL databases are currently supported.

NOTE JDBC technology is an API for accessing tabular data source using Java. It
provides connectivity to a wide range of SQL databases, and access to other
tabular data sources, such as spreadsheets or flat files.

Table 10-1 contains the schema for a relational database.

Table 10-1 Relational Database Log Format

Column Name Data Type Description

TI ME VARCHAR2(30) Date of the log in the format YYYY- MM DD
HH MM SS.

DATA VARCHAR2(1024) The log message itself.

MCODUL ENAME VARCHAR2(255) The name of the Identity Server service invoking the
log record.

Chapter 10 Auditing Features 351

Log Files

Table 10-1 Relational Database Log Format (Continued)

Column Name Data Type Description

DOVAI N VARCHAR2(255) Identity Server domain of the user.

LOA_EVEL VARCHAR2(255) JDK 1.4 log level of the log record.

LOAND VARCHAR2(255) Login ID of the user who performed the logged
operation.

| PADDR VARCHAR2(255) IP Address of the machine from which the logged
operation was performed.

LOGGEEDBY VARCHAR2(255) Login ID of the user who writes the log record.

HOSTNAVE VARCHAR2(255) Host name of machine from which the logged

operation was performed.

Oracle Database

In order to log to an Oracle database, the Log Location attribute in the Identity
Server Logging Service and the driver variable in the database itself need to be
modified. Using the Identity Server console, change the value of the Log Location
attribute to:

j dbc: oracl e: t hi n: @ostname: 1521: database_name
In the database itself, change the value for the driver to:
oracl e.jdbc.driver.Oacl eDriver

MySQL Database

In order to log to an MySQL database, the Log Location attribute in the Identity
Server Logging Service and the driver variable in the database itself need to be
modified.

NOTE There is a limitation in the data length for MySQL JDBC logging as MySQL does
not support data of more than 255 characters.

Using the Identity Server console, change the value of the Log Location attribute to:
j dbc: nysql : / / hostname:port/ database_name
In the database itself, change the value for the driver to:

com nysql . jdbc. Dri ver

352 Identity Server 2004Q2 < Developer's Guide

Log Files

CAUTION When MySQL is installed on Solaris or other Unix platforms and modifications are
made to the Logging Service, logging into the MySQL database shows the warning
message Syntax error or access violation.

Java Enterprise System Installation Logs

Events recorded during installation are stored in/ var/ sadnii nstal | /| ogs. As
Identity Server is installed via Java Enterprise System (JES), the events are recorded
by the JES installer. The four installation logs are:

- Java_Enterprise_System_Config_Log
« Java Enterprise_System_Summary_Report_install
« Java _Enterprise_System_install

= Java Enterprise_System_shared_component_install

Identity Server Service Logs

There are two different types of service log files: access and error. Access log files
record general auditing information concerning the deployment (successful or
failed authentications, new federations, etc.). Error log files record errors that occur
within the application. Flat log files are appended with the . error or. access
extension; database column names end with _ERRORor _ACCESS. For example, a
flat file logging console events would be named anConsol e. access while a
database column logging the same events would be called AMCONSOLE _ACCESS. The
following sections describe the log files recorded by the Logging Service.

Session Logs

The Logging Service records the following events for the Session Service:
e Login

* Logout

e Session Idle TinmeQut

e Session Max Ti meQut

e Failed To Login

* Session Reactivation

Chapter 10 Auditing Features 353

Log Files

* Session Destroy

The session logs are prefixed with anSSO.

Console Logs

The ldentity Server console logs record the creation, deletion and modification of
identity-related objects, policies and services including, among others,
organizations, organizational units, users, roles, policies and groups. It also records
modifications of user attributes including passwords and the addition or removal
of users to or from roles and groups. The console logs are prefixed with anConsol e.

Authentication Logs

The Authentication component logs user logins and logouts. The authentication
logs are prefixed with amAut hent i cati on.

Federation Logs

The Federation component logs federation-related events including, but not
limited to, the creation of an Authentication Domain and the creation of a Hosted
Provider. The federation logs are prefixed with Feder at i on.

Policy Logs

The Policy component records policy-related events including, but not limited to,
policy administration (policy creation, deletion and modification) and policy
evaluation. The policy logs are prefixed with anPol i cy. Code Example 10-2 on
page 354 is a collection of sample records that might appear in the policy logs.

Code Example 10-2 Sample Policy Log Records

#Fields: time Data Modul eNarre Domai n LogLevel Logi nI D
| PAddr LoggedBy Host Nane

"08-07-2003 11:08: 19" "Ceated policy test successfully in
Organi zati on dc=i pl anet, dc=cont anPol i cy. access "Not Avail abl e"
I NFO ui d=anAdm n, ou=Peopl e, dc=i pl anet, dc=com / 192. 18. 120. 236

ui d=amAdni n, ou=Peopl e, dc=i pl anet, dc=com 192. 18. 120. 236

"08-07-2003 11:08:55" "Modified policy test successfully in
Organi zation dc=i pl anet, dc=cont anPol i cy. access "Not Avail abl e"
| NFO ui d=amAdm n, ou=Peopl e, dc=i pl anet, dc=com / 192. 18. 120. 236
ui d=amAdmi n, ou=Peopl e, dc=i pl anet, dc=com 192. 18. 120. 236

"08-07-2003 11:09: 05" "Renoved policy test successfully in
Organi zati on dc=i pl anet, dc=cont anPol i cy. access "Not Avail abl e"
I NFO ui d=anmAdm n, ou=Peopl e, dc=i pl anet, dc=com / 192. 18. 120. 236

ui d=amAdni n, ou=Peopl e, dc=i pl anet, dc=com 192. 18. 120. 236

354 Identity Server 2004Q2 « Developer's Guide

Logging Features

Code Example 10-2 Sample Policy Log Records (Continued)

"08-07-2003 11:15:43" "Policy Evaluation result of Policy test in
Organi zation dc=i pl anet, dc=com for service i Pl anet AMbAgent Servi ce,
resource http://noonshadow. red.ipl anet.com 80/*. htni and action nanes
[GET, PCST] is GET=[allow\\n." anPolicy.access "Not Available" | NFO
ui d=amAdmi n, ou=Peopl e, dc=i pl anet, dc=com / 192. 18. 120. 236

ui d=amAdni n, ou=Peopl e, dc=i pl anet, dc=com 192. 18. 120. 236

Agent Logs

The policy agent logs are responsible for logging exceptions regarding log
resources that were either allowed or denied to a user. The agent logs are prefixed
with amAgent . amAgent logs reside on the agent server only. Agent events are
logged on the Identity Server machine in the Authentication Logs. For more
information on this function, see the correct documentation for the policy agent in
guestion.

SAML Logs

The SAML component records SAML-related events including, but not limited to,
assertion and artifact creation or removal, response and request details, and SOAP
errors. The session logs are prefixed with anSAM..

amAdmin Logs

The command line logs record event errors that occur during operations using the
command line tools. These include, but are not limited to, loading a service
schema, creating policy and deleting users. The command line logs are prefixed
with amAdm n. More information can be found in “Command Line Logging” on
page 356.

Logging Features

The Logging Service has a number of special features which can be enabled for
additional functionality. They include To Enable Secure Logging, Command Line
Logging and Remote Logging.

Chapter 10 Auditing Features 355

Logging Features

To Enable Secure Logging

This optional feature adds additional security to the logging function. Secure
Logging enables detection of unauthorized changes to, or tampering of, the
security logs. No special coding is required to leverage this feature. Secure Logging
is accomplished by using a pre-registered certificate configured by the system
administrator. This Manifest Analysis and Certification (MAC) is generated and
stored for every log record. A special “signature” log record is periodically inserted
that represents the signature for the contents of the log written to that point. The
combination of the two records ensures that the logs have not been tampered with.
Secure Logging can be enabled by performing the following steps:

1. Create a certificate with the name Logger and install it in the deployment
container running ldentity Server.

Refer to the documentation that comes with the deployment container for
details.

2. Turnon Secure Logging in the Logging Service configuration using the
Identity Server console and save the change.

The administrator can also modify the default values for the other attributes in
the Logging Service.

3. Create a file in the IdentityServer_base/ SUN\Vam conf i g directory that contains
the certificate database password and name it . wt pass.

NOTE The file name and the path to it is configurable in the AMConfig.properties file. For
more information see the “Certificate Database” on page 385 of Appendix A,
“AMConfig.properties File.”

Ensure that the deployment container user is the only administrator with read
permissions to this file for security reasons.

4. Restart the server after making these changes.

Command Line Logging

The amadn n command line tool has the ability to create, modify and delete
identity objects (organizations, users, and roles, for example) in Directory Server.
This tool can also load, create, and register service templates. The Logging Service
can record these command line actions by invoking the -t option. If the

com i pl anet . am | ogst at us property in AMConf i g. properti es is enabled

356 Identity Server 2004Q2 < Developer's Guide

Logging Features

(ACTIVE) then a log record will be created. (This property is enabled by default.)
The command line logs are prefixed with amAdni n. More information can be found
in Chapter 8, “The amadmin Command Line Tool” in the Sun Java System Ildentity
Server Administration Guide.

Remote Logging

Identity Server supports remote logging. This allows a client using the Identity
Server SDK to create log records on an instance of Identity Server deployed on a
remote machine.

Using Remote Logging
Remote logging can be initiated in any of the following scenarios:
< When the logging URL in the Naming Service of one Identity Server instance

points to a remote instance and there is a trust relationship configured between
the two, logs will be written to the remote Identity Server instance.

< When the Identity Server SDK is installed against a remote ldentity Server
instance and a client (or a simple Java class) running on the SDK server uses
the logging APIs, the logs will be written to the remote Identity Server
machine.

= When logging APIs are used by ldentity Server agents.

Enabling Remote Logging
To enable remote logging, ensure that the following information is regarded.

= Ifusing Sun Java System Web Server, the following environment variables
need to be set in the server. xm configuration file.

a. java.util.logging. manager=com sun. i dentity.| og. LogManager

b. java.util.logging.config.file=/IldentityServer base/ SUNwani | i b/ LogC
onfig. properties

o Ifthe Java™ 2 Platform, Standard Edition being used is 1.4 or later, this is
accomplished by invoking the following at the command line:

java -cp

/ IdentityServer_base/ SUNVANT | i b/ am | oggi ng. j ar : / IdentityServer_base/ S
UNVan | i b/ xer cesl npl . j ar: / IdentityServer_base/ SUNVand | i b/ xm Par s

er APl s. j ar: / ldentityServer_base/ SUNVani | i b/ j aas. j ar: / IdentityServer_
base/ SUNVanT | i b/ xm Par ser APl s. j ar: / IdentityServer_base/ SUNVani | i b

Chapter 10 Auditing Features 357

Logging Features

/servl et.jar:/ IdentityServer_base/ SUN\VaN | ocal e: / IdentityServer_base/
SUNVANT | i b/ am ser vi ces. j ar: / IdentityServer_base/ SUN\Vani | i b/ am sd
k. j ar:/ IdentityServer_base/ SUN\Van | i b/ j ss311. | ar:/ IdentityServer_base
/ SUNvant 1i b: .

-Oava. util .l oggi ng. manager =com sun. i dentity. | og. LogManager

-D ava. util .l oggi ng. config. fil e=/ ldentityServer_base/ SUNwant | i b/
LogConfi g. properties <l ogTestd ass>

o IftheJava 2 Platform, Standard Edition being used is earlier than 1.4, this is
accomplished by invoking the following at the command line:

j ava

- Xboot cl asspat h/ a: / IdentityServer_base/ SUN\Van | i b/ j dk_| oggi ng. j a
r -cp

/ IdentityServer_base/ SUNVANT | i b/ am | oggi ng. j ar : / IdentityServer_base/ S
UNVan | i b/ xer cesl npl . j ar: / IdentityServer_base/ SUNVand | i b/ xm Par s
er APl s. j ar: / ldentityServer_base/ SUNVani | i b/ j aas. j ar: / IdentityServer_
base/ SUNVnT | i b/ xm Par ser APl s. j ar: / IdentityServer_base/ SUNVani | i b
[servl et . jar:/ ldentityServer_base/ SUNVani | ocal e: / IdentityServer_base/
SUNVanT | i b/ am ser vi ces. j ar: / IdentityServer_base/ SUNVani | i b/ am sd
k. j ar:/ IdentityServer_base/ SUN\Van | i b/ j ss311. j ar: / IdentityServer_base
/ SUNVan | i b: .

-Oava. util .l oggi ng. manager =com sun. i denti ty. | og. LogManager

-D ava. util .l oggi ng. config. fil e=/ldentityServer_base/ SUNwant | i b/
LogConfi g. properties <logTestd ass>

= Ensure that the following parameters are configured in
LogConfi g. properti es located in IdentityServer_base/ SUN\VaNT | i b.

a. iplanet-aml oggi ng-renote-handl er=com sun.identity.| og.handl er
s. Renot eHandl er

b. iplanet-aml oggi ng-renote-formatter=comsun.identity.!|og.handl
ers. Renot eFormatt er

c. iplanet-amloggi ng-renote-buffer-size=1

Remote logging supports buffering on the basis of the number of log
records. This value defines the log buffer size by the number of records.
Once the buffer is full, all buffered records will be flushed to the server.

d. iplanet-amlogging-buffer-tine-in-seconds=3600

This value defines the time-out period in which to invoke the log
buffer-cleaner thread.

358 Identity Server 2004Q2 « Developer's Guide

Logging API

e. iplanet-amlogging-tinme-buffering-status=0CFF

This value defines whether log buffering (and the buffer-cleaner thread) is
enabled or not. By default this feature is turned off.

Logging API

The Logging API provides log management tools for all Identity Server services as
well as providing a set of Java classes for external applications to create, retrieve,
submit, or delete log information. The Identity Server Logging API extend the core
logging API in the Java™ 2 Standard Edition Development Kit (JDK) 1.4. Only the
Logger and LogRecor d classes are enhanced. They are contained in the package
comsun.identity. | og.

TIP An overview of the JDK 1.4 logging function can be found at
http://java. sun.conij2se/ 1. 4.1/ docs/ gui de/util/l oggi ng/
overvi ew. ht M The Javadocs for the JDK 1.4 logging API themselves can be
found at
http://java. sun.conij2se/ 1. 4.1/ docs/api/java/util/l oggi
ng/ package- summary. htm .

Setting Environment Variables

The following shared library environment variables need to be set in the executable
for an application that is using the Logging Service.

e -D'java.util.loggi ng. manager=com sun.identity.|og. Loghanager"

e -D'java.util.logging.config.class=comsun.identity.|og.slis.LogCon
fi gReader"

NOTE See “Enabling Remote Logging” on page 357 for instructions.

If SSL is enabled for Identity Server, the following parameter also needs to be
added:

« -D'java. protocol . handl er. pkgs=com i pl anet. servi ces. com

Chapter 10 Auditing Features 359

Logging API

Logger Class

This Logger class provides the methods for applications to use in creating log files
and writing log information to them.

= The get Logger () method returns a logger object and simultaneously creates a
log record (LogRecor d) in the designated logging location.

< Thel og() method records a single piece of log information or a LogRecord. It
allows an application to submit a logging message to a predetermined log.

o Logger. | og(l ogRecord, String credential) had been added to call
the authorization hook. The credential is accepted as a ssoToken string.
The default authorization hook checks validitity of the ssoToken. Data is
not logged at all if this check fails.

o Logger. | og(l ogRecor d) simply calls Logger (| ogRecord, String
cred) with credential value of null. And thus the default authorization
check does not allow logging when an application uses this interface.

LogRecord Class

The LogRecor d class provides the means to represent the information that needs to
be logged. Each instance represents a single piece of log information or | ogRecord
that comes from the application. The ssoToken is passed to the | ogRecord
constructor and used to populate the log fields discussed in “Recorded Events” on
page 349. The session token passed during the | ogger . | og(| ogRecord,
ssoToken) log request is used to authorize the user. The user can only log with a
valid ssoToken.

Adding Log Data

The following sections illustrate ways to use the Logging API for adding log file
information.

Adding ModuleName Data

The ModuleName value can be added to a log file using the

| ogRecor d. addLogl nf o(key, val ue) API. If a module name is not added, the
name of the log will be used to populate this field. For example, authentication
information is logged in the amAut hent i cat i on. access file using an internal
session token (" dsameuser” ssoToken). If user Joe123 attempts to authenticate,
the LoginID will be Joel23, and the LoggedBy user will be dsameuser.

360 Identity Server 2004Q2 < Developer's Guide

Logging API

NOTE The LoggedBy entry is populated from the SSOToken passed during
| ogger. | og(l ogRecord, ssoToken) call

If the authentication module information (such as LDAP, Membership, etc.) is not
added by the APIs, amut hent i cat i on. access will be the value of the
Modul eNane field.

Adding Log Level Data
A LogLevel is passed in the LogRecor d constructor using the following code:

LogRecord(Level level, String nsg)
While using the logging APls, any JDK 1.4 defined log levels can be passed.

Caching Log Records

Identity Server supports log record caching both locally and remotely based on the
configurable buffering properties discussed in “Remote Logging” on page 357.
Caching is supported for either type of log file although not when secure logging is
enabled.

Flushing Log Records
Identity Server provides Logger . f | ush() to expunge all the cached log records.

Sample Logging Code

Code Example 10-3 provides sample code to illustrate one way in which the
logging API can be used to write Identity Server records.

Code Example 10-3 Logging APl Samples

Logger |ogger = Logger. getLogger (" Sanpl eLogFile");
Il Creates the file or table in the LogLocation specified in the
amLoggi ng. xm and returns the Logger object.

LogRecord | r = new LogRecord(Level .| NFO "Sanpl eData", ssoToken);
Il Creates the LogRecord filling details fromssoToken.

| ogger. | og(lr, ssoToken);
[/l Wites the info into the backend file, db or renote server.

Chapter 10 Auditing Features 361

Logging SPI

Logging SPI

The Logging SPI are Java packages that can be used to develop plug-ins for
customized features. The SPI are organized in the com sun. i denti ty. | og. spi
package. More information on the SPI can be found in the Javadocs located at
IdentityServer_base/ SUN\Van docs.

Log Verifier Plugin

If secure logging is enabled, the log files are verified periodically to detect any
attempt of tampering. If tampering is detected, the action taken can be customized
by following the steps below.

1. Implementthe com sun.identity.log.spi.lVerifierQutput interface
with the desired functionality.

2. Add the implementing class in the classpath of Identity Server.

3. Modify the property i pl anet - am | oggi ng-veri fi er-action-cl ass in the
/ et c/ opt/ SUN\VANT confi g/ xm / anLoggi ng. xm file with the name of the
new class.

Log Authorization Plugin

The Logging Service allows a class to be plugged in that will determine whether a
LogRecor d is logged or discarded based on the authorization of the owner of the
session token performing the event.

NOTE The | Aut hori zer interface accepts a SSOToken and the log record being
written.

There are several ways to accomplish this. For example:

1. Get the applicable role or DN of the user from the SSOToken and check it
against a pre-configured (or hardcoded) list of roles/users that are allowed
access. The administrator must configure a role and assign all policy agents
and entities (for example, applications) that can possibly log to Identity Server
to this role.

362 Identity Server 2004Q2 < Developer's Guide

Debug Files

2. Instantiate a Pol i cyEval uat or and call
Pol i cyEval uat or. i sAl | owed(ssot oken, | ognane) ;. Thisentails defininga
policy XML to model log access and registering it with Identity Server.

In general:

1. Implementthe com sun.identity.log.spi.|Authorizer interface with the
desired functionality.

2. Add the implementing class in the classpath of Identity Server.

3. Modify the property i pl anet - am | oggi ng- aut hz- cl ass in the
/ et c/ opt/ SUN\Vant confi g/ xml / amLoggi ng. xm file with the name of the
new class.

NOTE The Identity Server Javadocs can be accessed from any browser by copying the
complete IdentityServer_base/ SUNWAN docs/ directory into the
IdentityServer_base/ SUNVANT publ i c_ht ml directory and pointing the
browser to
ht t p: / / identity_server_host.domain_name: port/ docs/ i ndex. ht i .

Debug Files

The debug files are not a feature of, nor generated by, the Logging Service. They
are written using different APIs which are independent of the logging APIs. Debug
files are stored in / var/ opt / SU\Vani debug. This location, along with the level of
the debug information, is configurable in the AMConf i g. pr opert i es file, located in
the IdentityServer_base/ SUN\WANT | i b/ directory. For more information on the debug
properties, see Appendix A, “AMConfig.properties File.”

Debug Levels

There are several levels of information that can be recorded to the debug files. The
debug level is set using the com i pl anet . servi ces. debug. | evel property in
AMConfi g. properti es.

1. Off—No debug information is recorded.

2. Error—This level is used for production. During production, there should be
no errors in the debug files.

3. Warning—Currently, using this level is not recommended.

Chapter 10 Auditing Features 363

Debug Files

4. Message—This level alerts to possible issues using code tracing. Most Identity
Server modules use this level to send debug messages.

CAUTION Warning and Message levels should not be used in production. They cause severe
performance degradation and an abundance of debug messages.

Debug Output Files

A debug file does not get created until a module writes to it. Therefore, in the
default err or mode no debug files may be generated. The debug files that get
created on a basic login with the debug level set to message include:

= amAuth

< amAuthConfig

= amAuthContextLocal
= amAuthLDAP

= amCallback

= amClientDetection

= amConsole

< amFileLookup

= amlSS

= amlLog

< amLoginModule

< amLoginViewBean

< amNaming

= amProfile

= amSDK

= amSSOProvider

= amsSessionEncodeURL

e amThreadManager

364 Identity Server 2004Q2 « Developer's Guide

Debug Files

The most often used files are the amSDK, amProfile and all files pertaining to
authentication. The information captured includes the date, time and message type
(Error, Warning, Message).

Using Debug Files

The debug level, by default, is set to er r or . The debug files might be useful to an
administrator when they are:

= Writing a custom authentication module.

= Writing a custom application using the Identity Server SDKs. The anProfil e
and anSDK debug files capture this information.

= Troubleshooting access permissions while using the console or SDK. The
anPr of i | e and anBDK debug files also capture this information.

= Troubleshooting SSL.

= Troubleshooting the LDAP authentication module. The amAut hLDAP debug file
captures this information.

The debug files should go hand in hand with any troubleshooting guide we might
have in the future. For example when SSL fails, someone might turn on debug to
message and look in the amJSS debug file for any specific cert errors.

Multiple Identity Server Instances And Debug
Files

Identity Server contains the ammul ti serveri nstal | script that can be used to
configure numerous instances of the server. If the multiple server instances are
configured to use different debug directories, each individual instance has to have
both read and write permissions to the debug directories. More information on the
ammul ti serverinstal | script can be found in the Sun Java System Identity Server
Administration Guide.

Chapter 10 Auditing Features 365

Debug Files

366 Identity Server 2004Q2 < Developer's Guide

Chapter 11

Client Detection Service

The Sun Java™ System Identity Server Authentication Service has the capability of
being accessed from many client types, whether HTML-based, WML-based or
other protocols. In order for this function to work, ldentity Server must be able to
identify the client type. The Client Detection Service is used for this purpose. This
chapter offers information on the service, and how it can be used to recognize the
client type. It contains the following sections:

= “Overview” on page 367
e “Client Data” on page 370
« “Client Detection API” on page 372

Overview

The ldentity Server Authentication Service has the capability to process requests
from multiple browser type clients. Thus, the service can be used to authenticate
users attempting to access applications based in HTML, WML or other protocols.

CAUTION The Identity Server console though can not be accessed from any client type
except HTML.

The client detection API can be used to determine the protocol of the requesting
client browser and retrieve the correctly formatted pages for the particular client
type.

NOTE Out of the box, Identity Server only defines client data for supported HTML client
browsers. A list of supported browsers can be found in Chapter 2, “Introduction”
under the section “Client Browser Support” on page 43.

367

Overview

Client Detection Process

Since any user requesting access to Identity Server must first be successfully
authenticated, browser type client detection is accomplished within the
Authentication Service. When a client’s request is passed to Identity Server, it is
directed to the Authentication Service. Within this service, the first step in user
validation is to identify the browser type using the User - Agent field stored in the
HTTP request.

NOTE The User - Agent field contains product tokens which contains information about
the browser type client originating the HTTP request. The tokens are a standard
used to allow communicating applications to identify themselves. The format is
sof tware/ version |ibrary/ version.

The User - Agent information is then matched to browser type data defined and
stored in the anQ i ent Dat a. xni file.

CAUTION User-Agent information is defined in amClientData.xml but this information is stored
in Directory Server under Client Detection Service.

Based on this Client Data, correctly formatted browser pages are sent back to the
client for authentication (for example, HTML or WML pages). Once the user is
validated, the client type is added to the session token (as the key cl i ent Type)
where it can be retrieved and used by other Identity Server services. (If there is no
matching client data, the default type is returned.)

NOTE The userAgent must be a part of the client data configured for all browser type
clients. It can be a partial string or the exact product token.

Enabling Client Detection

By default, the client detection capability is disabled; this then assumes the client to
be of the generi cHTM. type (i.e. Identity Server will be accessed from a HTML
browser). The preferred way to enable the Client Detection Service is to use the
Identity Server console and select the option in the Client Detection Service itself.
For more information, see the Sun Java System Identity Server Administration Guide.

368 Identity Server 2004Q2 « Developer's Guide

Overview

To enable client detection using the anQ i ent Det ecti on. xni , the

i pl anet -am cl i ent - det ect i on- enabl ed attribute must be set to t r ue.
and i ent Det ecti on. xm must then be deleted from Directory Server and reloaded
using anmAdni n. The following procedure illustrates the complete enabling process.

1.

A w0 D

Import client data XML file using the amadnm n command
/ IdentityServer_base/ SUN\VanT bi n/ amadmi n -u amadmin_DN -w
amadmin_password -t name_of XML_file

This step is only necessary if the client data is not already defined in

amClientData.xml. The XML file is based on the “The sms.dtd Structure” on

page 261 of Chapter 7, “Service Management.”

Restart Identity Server.

Login to Identity Server console.

Go to Service Configuration and click the ClientDetectionproperties.
Enable Client Detection.

Make sure the imported data can be viewed with Identity Server console.
Click on the Edit button next to the Client Data attribute.

Create a directory for new client type and add customized JSPs.

Create a new directory in

/ IdentityServer_base/ SUN\VanT web- apps/ ser vi ces/ confi g/ aut h/ def aul t/ and
add JSPs for the new client type. Code Example 11-1 on page 369 is a login

page written for a WML browser.

Code Example 11-1 Login.jsp Written In WML

<?xm version="1.0"?>

<! DOCTYPE wii PUBLIC "-//WAPFCRUM / DTD WML 1. 1//EN'
"http://ww. wapforumorg/DTDY wid _1. 1. xm ">

<I'-- Copyright Sun Mcrosystens, Inc. Al Rghts Reserved -->

<wml >

<head>

<met a http-equi v="Cache- Control " content ="nax-age=0"/>
</ head>

<card id="aut hnenu" title="Usernane">
<do type="accept" |abel ="Enter">

<go met hod="get" href="/wirel ess">
<postfiel d name="TOKEND" val ue="$user nane"/ >

Chapter 11 Client Detection Service

369

Client Data

Code Example 11-1 Login.jsp Written In WML

<postfield name="TOKENL" val ue="$password"/>
</ go>

</ do>

<p>

Enter usernane:

<input type="text" nane="password"/>
</ p>

<p>

Enter passwor d:

<input type="text" nane="usernane"/>
</ p>

</ card>

</ wni >

Client Data

In order to detect client types, Identity Server needs to recognize their identifying
characteristics. These characteristics identify the features of all supported types
and are defined in the anQ i ent Dat a. xn service file. The full scope of client data
available is defined as a schema in anQ i ent Dat a. xni . The configured Identity
Server client data available for HTML-based browsers is defined as
sub-configurations of the overall schema: genericHTML and its parent HTML.

NOTE Parent profiles (or styles, as they are referred to in the Identity Server console) are
defined with properties that are common to its configured child devices. This allows
for the dynamic inheritance of the parent properties to the child devices making the
device profiles easier to mange.

HTML

HTM. is a base style containing properties common to HTML-based browsers. It
might have several branches including web-based HTML (or genericHTML),
cHTML (Compact HTML) and others. All configured devices for this style could
inherit these properties which include:

= parent | d—identifies the base profile. The default value is HTM..

= client Type—an arbitrary string which uniquely identifies the client. The
default value is HTM..

= filePat h—is used to locate the client type files (templates and JSP files). The
default value is htni .

370 Identity Server 2004Q2 « Developer's Guide

Client Data

= cont ent Type—defines the content type of the HTTP request. The default value

istext/htni.

e generi cHTM.—defines a client that will be treated as HTML. The default value
istrue.

NOTE This attribute does not refer to the similarly named genericHTML style.

= cooki eSuppor t —defines whether cookies are supported by the client browser.
The default value is t r ue which sets a cookie in the response header. The other
two values could be Fal se which sets the cookie in the URL and Nul | which
allows for dynamic cookie detection. In the first request, the cookie is set in
both the response header and the URL; the actual mode is then detected and
set from the subsequent request.

NOTE Although the Client Detection Service supports a cookieless mode, Identity Server
console does not. Therefore, enabling this function will not allow login to the
console. This feature is provided for wireless applications and others that will
support it.

= CcppAccept - Char set —defines the character encoding used by ldentity Server to
send a response to the browser. The default value is UTF- 8.

genericHTML

gener i cHTM. is a configured device that inherits properties from the HTML style as
well as defining its own properties. It refers to a HTML browser (Netscape
Navigator™, Microsoft® Internet Explorer, or Mozilla™). Its properties include:

= parent | d—identifies the base profile for the configured device. The default
value is HTM..

= client Type—an arbitrary string which uniquely identifies the client. The
default value is generi cHTM..

= user Agent —a search filter used to compare/match the user agent defined in
the HTTP header. The default value is Mozi | | a/ 4. 0.

Chapter 11 Client Detection Service 371

Client Detection API

= CcppAccept - Char set —defines the character encoding set supported by the
browser. The default values are
UTF- 8; 1 SO 8859- 1; | SO 8859- 2; | SO 8859- 3; | SO 8859- 4; | SO 8859- 5; | SO 8859- 6
; 1 SO 8859- 7; | SO 8859- 8; | SO 8859- 9; | SO 8859- 10; | SO 8859- 14; | SO 8859- 15; S
hift_JI'S; EUG JP; | SO 2022- JP; GB18030; GB2312; Bl G5; EUC- KR | SO 2022- KR, TI S-
620; KA 8-R

NOTE The character set can be configured for any given locale by adding
charset | ocal e=codeset where the code set name is based on the Internet
Assigned Numbers Authority (IANA) standard.

Client Detection API

Identity Server is packaged with a Java APl which can implement the client
detection functionality. The client detection API are in a package called

com i pl anet . servi ces. cdm This package provides the interfaces and classes
needed to retrieve client properties. The client detection procedure would include
defining the client type characteristics (as stated in “Client Data” on page 370) as
well as implementing the client detection API within the external application.

The client detection capability is provided by O i ent Det ect i onl nt er f ace, a
pluggable interface (not an API invoked by a regular application). It provides a
get d i ent Type method. The get A i ent Type method extracts the client data from the
browser’s incoming H t pRequest , matches the user agent information and returns
the d i ent Type as a string. Upon successful authentication, the client type is added
to the user’s session token. The d i ent Det ect i onExcept i on handles any error
conditions.

372 Identity Server 2004Q2 « Developer's Guide

Chapter 12

|ldentity Server Utilities

Sun Java™ System ldentity Server provides scripts to backup and restore data as
well as application programming interfaces (API) that are used by the server itself
or by external applications. This chapter explains the scripts and the API. It
contains the following sections:

= “Utility API” on page 373
e “Password API Plug-Ins” on page 375

Utility API

The utilities package is called com i pl anet . am uti | . It contains utility programs
that can be used by external applications accessing Identity Server. Following is a
summary of the utility API and their functions.

AdminUtils

This class contains the methods used to retrieve TopLevelAdmin DN and
password. The information comes from the server configuration file,
serverconfig. xm , located in / IdentityServer_base/ SUNVAnT conf i g/ uns.

AMClientDetector

The AMO i ent Det ect or interface executes the Client Detection Class configured in
the Client Detection Service to get the client type.

373

Utility AP

AMPasswordUtil

The AMPasswor dU i | interface has two purposes:
1. Encrypting and decrypting any string.

2. Encrypting and decrypting special user passwords such as the password for
dsameuser or proxy user.

NOTE Any remote application using this utility should have the value of the AMConfig
property am encr ypt i on. pwd copied to a properties file on the client side.
This value is generated at installation time and stored in
/ldentityServer_base/SUNVnt | i b/ AMConf i g. pr operti es. More
information on this property can be found in the Encryption section of the
Appendix A, “AMConfig.properties File.”

Debug

Debug allows an interface to file debug and exception information in a uniform
format. It supports different levels of information (in the ascending order): OFF,
ERROR WARNI NG MESSAGE and ON. A given debug level is enabled if it is set to at
least that level. For example, if the debug state is ERROR, only errors will be filed. If
the debug state is WARNI NG only errors and warnings will be filed. If the debug
state is MESSAGE, everything will be filed. MESSAGE and ONare the same level except
MESSACE writes to a file, whereas ONwrites to Syst em out .

NOTE Debugging is an intensive operation and can hurt performance. Java evaluates the
arguments to message() and war ni ng() even when debugging is turned off.
It is recommended that the debug state be checked before invoking any
message() orwar ni ng() methods to avoid unnecessary argument evaluation
and maximize application performance.

Locale

This class is a utility that provides the functionality for applications and services to
internationalize their messages.

374 Identity Server 2004Q2 « Developer's Guide

Password API Plug-Ins

SystemProperties

This class provides functionality that allows single-point-of-access to all related
system properties. First, the class tries to find AMConf i g. cl ass, and then a file,
AMConf i g. properti es, inthe CLASSPATH accessible to this code. The class takes
precedence over the flat file. If multiple servers are running, each may have their
own configuration file. The naming convention for such scenarios is

AMConfi g_server Nane.

ThreadPool

Thr eadPool is a generic thread pool that manages and recycles threads instead of
creating them when a task needs to be run on a different thread. Thread pooling
saves the virtual machine the work of creating new threads for every short-lived
task. In addition, it minimizes the overhead associated with getting a thread started
and cleaning it up after it dies. By creating a pool of threads, a single thread from
the pool can be reused any number of times for different tasks. This reduces
response time because a thread is already constructed and started and is simply
waiting for its next task.

Another characteristic of this thread pool is that it is fixed in size at the time of
construction. All the threads are started, and then each goes into a wait state until a
task is assigned to it. If all the threads in the pool are currently assigned a task, the
pool is empty and new requests (tasks) will have to wait before being scheduled to
run. This is a way to put an upper bound on the amount of resources any pool can
use up. In the future, this class may be enhanced to provide support growing the
size of the pool at runtime to facilitate dynamic tuning.

Password API Plug-Ins

The Password API plug-ins can be used to integrate password functions into
applications. They can be used to generate new passwords as well as notify users
when their password has been changed. These interfaces are Passwor dGener at or
and Not i f yPasswor d, respectively. They can be found in the

com sun. i denti ty. passwor d. pl ugi ns package.

Chapter 12 Identity Server Utilities 375

Password API Plug-Ins

NOTE The Identity Server Javadocs can be accessed from any browser by copying the
complete IdentityServer_base/ SUNWAN docs/ directory into the
IdentityServer_base/ SUNVanT publ i ¢c_ht ml directory and pointing the
browser to ht t p: / / identity_server_host.domain_name: port/ docs/

i ndex. htm .

There are samples (which include sample code) for these API that can be accessed
from the Identity Server installation. They are located in
IdentityServer_base/ SUN\VA sanpl es/ consol e. They include:

Notify Password Sample

This sample details how to build a plug-in in which an administrator can define
their own method of notification when a user has reset a password. Instructions for
this sample are in the Readrre. t xt or Readne. ht ni file located in
IdentityServer_base/ SUN\VAnT sanpl es/ consol e/ Not i f yPasswor d.

Password Generator Sample

This sample details how to build a plug-in which an administrator can define their
own method of random password generation when a user’s password is reset
using the Password Reset Service. Instructions for this sample are in the

Readre. t xt or Readne. ht mi file located in

IdentityServer_base/ SUNWANT sanpl es/ consol e/ Passwor dGener at or .

376 Identity Server 2004Q2 « Developer's Guide

Appendix A

AMConfig.properties File

AMConf i g. properti es is the resource configuration file for the Sun Java™ System
Identity Server. It provides instructions for the Identity Server deployment. This
chapter explains the attributes of AMConf i g. properti es. It contains the following
sections:

= “Overview” on page 377
= “Deployment Properties” on page 378
= “Configuration Properties” on page 381

« “Read-Only Properties” on page 389

Overview

Identity Server is configured by placing application properties in plain text
configuration files. These configuration files contain one property per line and each
has a corresponding value. Properties and their values are case-sensitive.
Indentation of the properties is consistent throughout the file. Lines which begin
with the characters “/*” are comments, and ignored by the application. Comments
are completed with a last line that contains the closing characters “*/”’. The main
configuration file for Identity Server is AMConfi g. properti es located in
IdentityServer_base/ SU\ani | i b. The following sections describe the properties and
default values of AMConf i g. properti es.

NOTE The ldentity Server must be restarted for any modification in
AMConfi g. properti es to take effect.

377

Deployment Properties

Deployment Properties

Following are the deployment-specific attributes configured in
AMConf i g. properti es.

Identity Server

This section describe properties that define the Identity Server application.

Installation
These properties are defined during installation.

com i pl anet. am ser ver . host =identity_server_host.domain_name

The value of this property is the DNS domain name of the machine on which
the Identity Server is located.

com i pl anet. am server. port =58080

The value of this property is the port number used by the Identity Server. The
default is 58080.

com i pl anet. am j dk. pat h=/ IdentityServer_base/ SU\Vani j ava
The value of this property is the path to the JDK used by the Identity Server.

comsun. identity.authentication. super. user=ui d=amAdm n, ou=Peopl e, dc=top_le
vel_org, dc=com

This property identifies the full LDAP DN of the super user configured during
installation of Identity Server; it is amadni n by default. This user must always
log in using LDAP authentication as they will always be authenticated against
the Directory Server. The UID alone is generally used to login but the full DN
as defined in this property can also be used.

Console
These properties are specific to the Identity Server console.

com i pl anet. am consol e. host =identity_server_host.domain_name

The value of this property is the DNS domain name of the machine on which
the Identity Server console is located.

com i pl anet. am consol e. prot ocol =http

378 Identity Server 2004Q2 « Developer’s Guide

Deployment Properties

The value of this property is the protocol used to communicate with the
Identity Server. The defaultis http.

com i pl anet. am consol e. port =58080

The value of this property is the port number of the machine on which the
Identity Server console is located. The default is 58080.

The following directives can be added to the AMConf i g. properti es file to add their
respective functionality to the Identity Server console.

com i pl anet. am consol e. di spl ay. of f =or gs, users, groups

If specified, Identity Server will not perform the initial search for a specified
identity object that is done in the Navigation frame when the view menu is
changed. For example, after a successful login, the default console view is the
organization view. When the view is changed to Users, the Navigation frame is
redrawn to display all users; a search is performed to obtain this information.
With a large number of users, disabling this search can drastically reduce the
time it takes to load the Identity Server console. A filter can then be used to
find the desired users. This option is available for any of the view menu types.
To disable the search, add any of the following values: or gs, or gni t s, users,
pol i ci es, groups, rol es, gr oupCont ai ner s, and peopl eCont ai ners. If more than
one value, they are comma-separated.

CAUTION The service attribute in the Identity Server console that corresponds to this property

is Display Options, an organization attribute in the Administration Service. This
console option takes precedence over any value defined in

com i pl anet . am consol e. di spl ay. of f. If configuring this property in
AMonf i g. properti es, do not configure it using the console (or vice versa).

com i pl anet.am consol e. set. cn=true

If specified, the user common name (cn) will not be displayed in the Create
User screen but it will be generated based on information entered in the First
Name (gi vennane), Initial and Last Name (sn) fields of the User profile page
and displayed as a read-only value on screen.

Cookies
These properties are specific to Identity Server cookies.

com i pl anet . am cooki e. nanme=i Pl anet Di rect oryPro

Appendix A AMConfig.properties File 379

Deployment Properties

The value of this property is the name of the cookie. In an Identity Server
deployment with more than one instance, it is recommended that the value of
this property for one of the instances is changed.

NOTE The cookie name defined as com i pl anet . am cooki e. nane is the Identity
Server cookie and needs to be defined in a sticky load balancing situation. Do not
use the HTTP session cookie as in some cases it is not retained.

< comi pl anet. am pcooki e. name=DPr oPCooki e

The value of this property is the name of the persistent cookie if that function is
enabled.

= com.iplanet.am.cookie.secure=false

This property allows the Identity Server cookie to be set in a secure mode in
which the browser will only return the cookie when a secure protocol like
HTTP(s) is used.

< com.iplanet.am.cookie.encode=COOKIE_ENCODE

This property allows ldentity Server to URLencode the cookie value which
converts characters to ones that are understandable by HTTP.

Miscellaneous
This section is a catch-all for some miscellaneous and self-explanatory values.

e comi pl anet.am daenons=uni x

e comiplanet.aml ocal e=en_US

e comi pl anet.am | ogst at us=ACTI VE

e comi pl anet.am ver si on=6. 1

< comi pl anet. services. confi gpat h=/ et ¢/ opt / SUN\an conf i g/ uns

The value of this property is the path to the serverconfi g. xm file. This file is
discussed in Appendix B, “serverconfig.xml File.”

Directory Server

This section describe the properties for the Directory Server data store.

380 Identity Server 2004Q2 « Developer's Guide

Configuration Properties

Installation
These properties define the Directory Server to which the Identity Server points.

e comiplanet.amdirectory. host =identity_server_host.domain_name

The value of this property is the DNS domain name of the machine on which
the Directory Server is located.

e comiplanet.amdirectory. port=389

The value of this property is the port number of the machine on which the
Directory Server is located. The default is 389.

e comi pl anet.am server. protocol =http

The value of this property is the protocol used to communicate with the
machine on which the Directory Server is located.

Directory Server Tree

The values of these properties are the top-level organization of the Directory Server
tree defined during the installation process.

e comi pl anet. am def aul t O g=dc=top_level_org, dc=com
e comiplanet.amroot suf fi x=dc=top_level_org, dc=com

« comi pl anet. am domai nconponent =dc=top_level org, dc=com

Configuration Properties

There are a number of services configured in AMConf i g. properti es that can not be
configured using the Identity Server console. These back-end services, and several
attributes for other services, are defined in this section.

Debug Service

The Debug Service logs developer information in the case of application errors.
(The Logging Service writes logs to be monitored by the application administrator.)
More information on the Debug Service can be found in “Debug Files” on page 363
of Chapter 10, “Auditing Features.”

e comi pl anet. services. debug. | evel =error

Appendix A AMConfig.properties File 381

Configuration Properties

382

The possible values for this property are: of f | error | warni ng | nessage. They
indicate the level of information recorded in the debug files.

< comi pl anet. servi ces. debug. di rect ory=/ var/ opt / SUN\Vam debug

The value of this property is the output directory for the debug information.
This directory should be writable by the server process.

NOTE In defining values for the Debug Service, remember that trailing spaces are
significant. Also, on a Microsoft® Windows® system, use forward slashes “/” to
separate directories.Finally, spaces in the file name are allowed only on a Windows
system.

Stats Service

The following properties are used to configure the Stats Service for recording
service statistics. This service is used by the Identity Server SDK and the Session
Service. Code Example A-1 is a portion of the stats file to illustrate the information
that is recorded. The file is named anBDKSt at s by default.

Code Example A-1 Portion of amSDKStats File

11/ 26/ 2002 01: 46: 18: 592 PM PST: Thread[Thread- 10, 5, nai n]
SDK Cache Statistics

Interval : 214

Hts during interval: 38

Ht ratio for this interval: 0.17757009345794392

Total nunber of requests: 214

Total nunber of Hts: 38

OQverall Ht ratio: 0.17757009345794392

Total Cache Size: 72

e comiplanet.amstats.interval =3600

The statistics interval should be at least 5 seconds to avoid CPU saturation.
Identity Server will assume that any value less than that is 5 seconds.

e comiplanet.services.stats. directory=/var/opt/ SU\Wani debug

This property specifies the output directory for the statistics files. By default, it
is the same as the debug directory.

e comiplanet.services.stats. state=of f

Identity Server 2004Q2 « Developer’s Guide

Configuration Properties

Possible values for this directive are: of f | file | console.filewill writetoa
file named an8DKSt at s under the directory specified in the

com i pl anet. servi ces. stats. directory property and consol e will write into
the deployment container log files.

NOTE In defining values for the Stats Service, remember that trailing spaces are
significant. On a Windows system, use forward slashes “/” to separate directories.
Spaces in the file name are also allowed on a Windows system.

Notification Service

The Notification Service allows ldentity Server to send notifications to registered
applications when an event has occurred (session destroyed, session timeout, etc.).
This service also allows the single sign-on cache to stay up to date. The notification
is basically a HTTP post message containing the component notification in its body.

e comiplanet.amnotification.url=
htt p: // identity_server_host.domain_name: port/ anserver/noti fi cati onservice

The value of this property is the URI of the Notification Service.

When a notification task comes in, it is processed in the task queue. If it reaches the
maximum length, further incoming requests will be rejected along with a
ThreadPoolException, until the queue has vacancy

e comiplanet.amnotification.threadpool.size=10

This parameter is used to define the session thread pool for notification
handling. It specifies the size of the pool as the total number of threads
allowed.

e comiplanet.amnotification.threadpool.threshol d= 100

This parameter specifies the maximum size of the task queue in the thread
pool. A task is queued when no thread is available. If the number of
unprocessed tasks reaches the value specified, no additional notification tasks
will be accepted until there are vacancies. This value is dependent on the
system memory resource; each task takes about 3k.

Appendix A AMConfig.properties File 383

Configuration Properties

384

SDK Caching

The caching function in Identity Server is memory-based therefore when an
identity-related object is created, deleted or modified, the cache is cleaned up. Each
SDK cache entry stores a set of attributes and values of AMj ect for a user. Because
the size of each object is dependent upon the number of attributes it has, modifying
these properties will affect the performance of Identity Server.

< comi pl anet . am sdk. cache. maxSi ze=10000

This property configures the size of the cache when caching is enabled. The
value refers to the number of objects cached and should be an integer greater
than 0; if not, the default 10000 will be used.

e comi pl anet. am sessi on. maxSessi ons=5000

This property specifies the maximum number of concurrent sessions. Logging
in when the maximum sessions has been met would send a Maximum Sessions
error.

Online Certificate Status Protocol (OCSP)

OCSP is a protocol that specifies the syntax for communication between a server
which holds certificate status and a client which is informed of said status.When a
user attempts to access a server, OCSP sends a request for certificate status
information and receives back a response of current, expired or unknown. If these
properties are set, the certificate in question must be in the deployment container’s
certificate database. If the OCSP URL is set, the OCSP responder nickname must
also be set or both will be ignored. If neither is set, the OCSP responder URL
presented in the user’s certificate will be used. If there is none in the user’s
certificate, no OCSP validation will be performed.

e comsun.identity.authentication.ocsp.responder. url

The value of this directive is the global OCSP responder URL for this instance
of Identity Server, i.e. http://ocsp. exanpl e. coni ocsp.

e comsun.identity.authentication.ocsp.responder.ni ckname

The OCSP responder nickname refers to the Certificate Authority for the
responder. This nickname is used to reference the Certificate Authority in the
certificate itself.

Identity Server 2004Q2 « Developer’s Guide

Configuration Properties

Identity Object Processing

This property has a value equal to the implementation class of the module used for
processing user creates, deletes, and modifies.

e comi pl anet. am sdk. user Ent r yProcessi ngl npl =

Security

This property is used to enable Java security permissions. This permission is used
to protect the Identity Server resources which should only be accessed by trusted
resources. This permission is used to protect the admin DN and password as well
as access to the encryption and decryption methods used to encrypt passwords.
The default value is false. If enabled, modifications must be made to the deployed
web container’s Java policy file. This should be done as detailed in Code

Example A-2.

Code Example A-2 Changes To Java Policy File

grant codeBase "file:{directory where jars are |located}/-" {
comsun.identity.security.|SSecurityPermn ssion "access",
"adm npasswor d, crypt";

b

e comsun.identity.security.checkcal |l er=fal se

SSL

This property is used to enable Secure Socket Layers (SSL). The default is f al se.

e comiplanet.amdirectory.ssl.enabl ed=fal se

Certificate Database

These properties are used by the command line utilities and SDK as well as the
LDAP and Certificate-based authentication modules when initiating SSL
connections to the Directory Server. It is also used when opening HTTP(S)
connections from within the servlet container in the deployment container.

Appendix A AMConfig.properties File 385

Configuration Properties

e comiplanet.amadnin.cli.certdb.dir=/IldentityServer_base/ SUN\Vni servers/ al i a
s

The value of this property is the name of the path to the certificate database.

e comiplanet.amadmn.cli.certdb. prefix=https-identity_server_host.domain_nam
e- identity_server_host-

The value of this property is the certificate database prefix.

e comiplanet.amadnin. cli.certdb. passfile=/IdentityServer_base/ SUN\Vni confi g/
. W pass

The value of this property is the name of the file that contains the password for
the certificate database.

NOTE When installing Identity Server, these values do not point to a configured certificate
database. After creating the certificate database, these values should be reset to
point to the Application Server as follows:

« comiplanet.amadmn.cli.certdb. dir=/install_directory/SUNWappserve
r7/domain/server_instance/config

 comiplanet.amadnin.cli.certdb. prefix=

« comiplanet.amadmn.cli.certdb. passfil e=finstall_directory/SUNWap
pserver7/domain/server_instance/config/ . Wt pass

Identity Server should be restarted after the modifications.

Replication

These two properties are not required to support replication but they may be
helpful in limiting errors due to latency. Enabling them may have a negative
impact on performance but, if replication has significant latency, the retries may be
enough to prevent Entry Not Found errors. For example, assume an ldentity Server
console is pointing to a read-only consumer configured to refer writes to a master.
If a new organization is created, all write requests are referred to the master and
then replicated back to the consumer. If Identity Server reads the organization back
before it has been replicated to the consumer, it will get an Entry Not Found error.

NOTE It is not recommended to run the Identity Server console against a read-only
consumer. The exception to this rule is when operating against user entries whose
creations and modifications do not have the same latency problems as the SDK
has special behavior to prevent such problems for these entries.

386 Identity Server 2004Q2 « Developer's Guide

Configuration Properties

e comiplanet.amreplica.numretries=0

This specifies the number of times to retry. When an Entry Not Found error is
returned to the SDK, it will retry n times where n is the value of this property.

e comiplanet.amreplica. del ay. bet ween. retri es=1000

This property specifies the delay time (in milliseconds) between the number of
retries defined in the key above.

Event And LDAP Connection

These sets of properties are implemented when load balancers are used between
the Identity SDK and the Directory Server. When the SDK performs an operation
which fails, it will retry the operation as long as the exception is one defined in the
| dap. error. codes property. These properties are necessary for failover
configuration when it is accomplished via a load balancer as not all load balancers
return the same error codes.

Event Connection
< comi pl anet.am event. connecti on. numretries=3

This value specifies the number of time to retry an event connection.
< comi pl anet.am event. connecti on. del ay. bet ween. ret ri es=3000

This value specifies the delay time (in milliseconds) between the number of
retries defined in the key above.

< comipl anet.am event. connection.| dap. error. codes.retries=80, 81, 91

This key specifies the LDAPExcept i on errors for which the retries will occur. The
value is any valid LDAP error code.

LDAP Connection

The following keys are used to configure an LDAP connection for the add, delete
modify, read and search methods.

e comiplanet.am| dap. connection.numretri es=3
This value specifies the number of time to retry an LDAP connection.
< comipl anet.am | dap. connecti on. del ay. bet ween. retri es=1000

This value specifies the delay time (in milliseconds) between the number of
retries defined in the key above.

Appendix A AMConfig.properties File 387

Configuration Properties

388

e comiplanet.am | dap. connection. | dap. error. codes. retries=80, 81, 91

This key specifies the LDAPExcept i on errors for which the retries will occur. The
value is any valid LDAP error code.

SAML

These properties identify SAML-related configurations including properties
relating to the Identity Server keystore file.

e comsun.identity.sanl.renoveassertion=fal se

This property indicates if assertions associated with artifacts and now
de-referenced should be removed from the cache. If set to t r ue, assertions will
be removed. Otherwise, the assertion will be kept in memory and removed
only when it is expired itself.

Keystore Properties

Each Identity Server has a keystore file used to store the certificates used for XML
signing and verification. A stored certificate might include a partner site’s
certificate and the public key used by Identity Server to verify SAML responses
and assertions from the partner. The keystore also holds the Identity Server
certificate and the private key it uses to sign assertions. For more information on
generating the keystore, certificate aliases and other functions, read about the

keyt ool , a key and certificate management utility, in the Readne. ht ni and
keystore. ht m files located in the IdentityServer_base/ SUNWan1 sanpl es/ sani/ xm sig
directory.

e comsun.identity.san.xm sig. keyst or e=/ IdentityServer_base/ SUNMN | i b/ keyst o
re.jks

The value of this property is the name and location of the keystore file.
Although, upon installing Identity Server, this property has a default value, the
file itself is not initially generated and the name and location of the file can be
changed.

e comsun.identity.san.xm sig. storepass=/IdentityServer_base/ SUN\Vni confi g/ . s
t or epass

The value of this property is the location of the password to the keystore.

e comsun.identity.sam .xm sig. keypass=/ IdentityServer_base/ SUNVni confi g/ . key
pass

Identity Server 2004Q2 « Developer’s Guide

Read-Only Properties

The value of this property is the location of the password to the private key
which is used to sign the XML document.

e comsun.identity.sam .xm sig.certalias=test

All entries (keys and trusted certificate entries) in the keystore file are accessed
using unique aliases. The value of this property is the certificate alias of the
Identity Server certificate which links to the private key used for signing
assertions.

Miscellaneous Services

The following directives define the URIs for miscellaneous services.
e comiplanet.amprofil e. host =identity_server_host.domain_name

The value of this property is the DNS domain name of the machine on which
the Identity Server (and thus the Profile Service) is located.

e comiplanet.am profile. port=58080

The value of this property is the port number used by the Identity Server (and
thus the Profile Service). The default is 58080.

e comiplanet.am nan ng. url =http://identity_server_host.domain_name: port/ anser v
er/ nam ngservi ce

The value of this property represents the URL where a request by the Identity
Server or a remote single sign-on client will be sent to retrieve the URLSs of
Identity Server internal services. This is the URI for the Naming Service.

Read-Only Properties

The following properties are read-only and should not be modified. Any changes
to these directives may render the Identity Server unusable.

Installation

These properties identify values defined during the installation process.
e comiplanet.aminstalldir=/IdentityServer_base/ SUN\V&m

This value is the base directory for the application.

Appendix A AMConfig.properties File 389

Read-Only Properties

comipl anet.ami nstal | . basedi r =/ IdentityServer_base/ SUNVa web- apps/ ser vi ces
| VEEB- | NF

This value is the base directory for the services.
comi pl anet. am i ASConfi g=f al se

This property defines whether the Sun Java System Identity Server is running
on the Sun Java System Application Server. The value is set during installation
and must not be changed.

com i pl anet. am consol e. renot e=f al se

This property defines whether the console is installed on a remote or local
machine. It is used by the Authentication Service and the console.

Deployment

These properties are used to identify the URIs for specific services and agents.

com i pl anet. am servi ces. depl oynent Descri pt or =/ anser ver
com i pl anet. am consol e. depl oynment Descr i pt or =/ antonsol e

comipl anet.am policy. agents. url . depl oynent Descri pt or =AGENT_DEPLOY LR
I

This last property contains the name of the deployment container. Possible
values here are BEAG6.1, IBM 4.0.5, SIAS7.0, or WS.

com sun. i dentity.webcont ai ner =\WEB_CONTAI NER

NOTE Although the servlet and JSPs are deployment container independent, servlet 2.3

APIrequest . set Char act er Encodi ng() (used to correctly decode incoming
non-English characters) will not work if Identity Server is deployed on Sun Java
System Web Server 6.0 or Sun Java System Application Server 7.0.

Shared Secret

This property is the shared secret for the Authentication Service.

com i pl anet. am servi ce. secr et =AQ CSWM2LY4Sf czLI j 6134gMIXOnkESXi FMy

390 Identity Server 2004Q2 « Developer's Guide

Read-Only Properties

Session Properties

These properties are configurations for the Session Service.

com i pl anet. am sessi on. f ai | over. enabl ed=f al se

This property is used to enable or disable the session failover feature. The
following properties are used when this property is set to t r ue.

o comiplanet.aml ocal server. protocol =http

o comiplanet.aml ocal server. host =identity server_host.domain_name
o comiplanet.aml ocal server. port=58080

com i pl anet. am sessi on. ht t pSessi on. enabl ed=t r ue

When this property is set to true, an HttpSession will be created for the
authenticated user in addition to an ldentity Server session. This property is
also related to session failover.

com i pl anet. am sessi on. i nval i dsessi onnmaxt i ne=3

This property disables a session if it is created and the user does not login
before the time defined. The value is in minutes (for example, 3 minutes is the
default value).

NOTE This value should always be greater than the time-out value in your authentication

module properties file.

com i pl anet. am sessi on. client.pol ling. enabl e=f al se

If set to t r ue, the client cache will invalidate itself after the amount of time
defined in the next property, forcing data to reload.

com i pl anet.am session. client.polling. peri 0od=180
This property defines the default polling period as 180 seconds.
com sun. am sessi on. | oggi ng. enabl eHost LookUp=f al se

This property allows the session server (i.e. Identity Server) to look for the IP
address from the host property and log it. If set to t r ue, a reverse DNS lookup
will be used to obtain the Domain Name from the IP address for logging
purposes. If f al se, the IP address will be used thus, increasing performance.

com i pl anet . am sessi on. pur gedel ay=60

Appendix A AMConfig.properties File 391

Read-Only Properties

This property defines the purge delay period in minutes. After a session times
out, this is the extended time period for which the token will reside in the
Session Service. This can be used by the client application to check if the
session has timed out or not (using the SSO APIs). After this time period, the
session is destroyed. The session token is in the INVALID state during this
extended period.

NOTE The session does not remain for this extended life if the user logs out or the
session is explicitly destroyed by another Identity Server component.

e comiplanet.am nam ng.failover.url =

This property can be used by any remote SDK application that wants failover
in, for example, session validation or getting the service URLSs.

Simple Mail Transfer Protocol (SMTP)

The following directives can be set to any valid SMTP server and port.

< comi pl anet. am snt phost =I ocal host

NOTE Because of how Microsoft® Windows 2000 processes this information, the default
value of this directive, | ocal host , should be replaced by the actual mail server
host name and the Identity Server should be restarted.

e comsun.identity.sm snptpport=25

Authentication

The following sections define properties used by the Authentication Service.

LDAP
e comiplanet.amauth. | dap. creat eUser At trLi st =<attrl,attr2,attr3...>

This property specifies a list of user attributes whose values will be retrieved
from an external Directory Server during LDAP Authentication if the
Authentication Service is configured for dynamically creating users. The new
user created in the local Directory Server will have the values for these
attributes retrieved from the external Directory Server.

392 Identity Server 2004Q2 « Developer's Guide

Read-Only Properties

SecurlD
e securidHel per. port s=58943

The value of this property is a space-separated list used by the SecurlD
Authentication module and hel per(s).

Unix
e uni xHel per. port =58946

The value of this property is used in the Unix Authentication Service.
e uni xHel per. i paddrs=

The value of this property can contain a list of trusted IP addresses. The IP
addresses specified in this list are space-separated and will be read by the
anmser ver SCript and passed to the Unix helper when starting it.

Security

Following are properties that define parameters for security purposes.

SecureRandom
This property specifies the factory class name for Secur eRandonfact ory.

e comiplanet.security. Secur eRandonfact oryl npl =com i pl anet.amutil.JSSS
ecur eRandontact or yI npl

The available implementation classes are:
a. comiplanet.amutil.JSSSecur eRandonfact oryl npl (uses JSS)

b. comiplanet.amutil.SecureRandonfact oryl npl (pure Java)

SocketFactory
This property specifies the factory class name for LDAPSocket Fact ory.

e comiplanet.security.SSLSocket Fact oryl npl =com i pl anet . servi ces. | dap. J
SSSocket Fact ory

Available classes are:
a. comiplanet.services. | dap. JSSSocket Fact ory (uses JSS)

b. netscape.|dap.factory. JSSESocket Factory (pure Java)

Appendix A AMConfig.properties File 393

Read-Only Properties

Encryption
These properties specify encryption information.

e comiplanet.security.encryptor=comiplanet.services.util.JSSEncryptio
n

The value specifies the encrypting class implementation. Available classes are:
a. comiplanet.services.util.JCEEncryption
b. comiplanet.services. util.JSSEncryption.

e amencryption. pwd=BcN2Vaek2TUcs3t vO7uV@bRI r cy/ Koeo

This is the Data Encryption Standard (DES) encryption key password. The
client needs this to decrypt the session ID for token creation. If decryption fails,
the client will not be able to retrieve the protocol, server host and the server
port information to construct the URL needed to search for a service. Do not
change the value of this property without also re-encrypting the passwords in
serverconfig. xm . For information, see Appendix B, “serverconfig.xml File.”

NOTE When installing the Identity Server SDK remotely, the value of this property should
be copied into the installation field labeled The key used for encryption of
passwor ds. For information on how to install the Identity Server SDK remotely,
see the Sun Java System Identity Server Migration Guide.

IP Address Checking

This property specifies whether the IP address of the client will be checked in
SSCToken creations and validations.

e comi pl anet.am client| PCheckEnabl ed=f al se

Remote Policy API

These properties are defined for the Remote Policy API to use with policy agents.
e comsun.identity.agents. app. usernane=Ur | AccessAgent

This property specifies the username for the Application authentication
module.

e comsun.identity.agents.server.log.file.name=anRenot ePol i cylLog

394 Identity Server 2004Q2 « Developer's Guide

Read-Only Properties

This property specifies the name of the file to use for logging remote policy
messages. The directory where this file is located is defined in Logging Service
settings.

comsun.identity. agents. cache. si ze=1000

This property specifies the size of the cache created on the server where the
policy agent resides.

comsun. identity.agents. polling.interval =3

The polling interval is the duration of time for refreshing the cache
comsun. identity.agents.notification.enabl ed=fal se

This property enable or disables notifications for remote policy API.
comsun.identity.agents.notification.url=

This property defines the notification URL for remote policy API.
comsun. identity.agents.|ogging.|evel =NONE

This property controls the granularity of logging for the remote policy API.
The valid values are ALLOW DENY, BOTH and NO\E. The default value is NONE.

comsun. identity.agents. use.wil dcard=true

This property indicates whether to use wildcard for resource name
comparison.

comsun.identity. agents. header. attribut es=cn, ou, o, nai | , enpl oyeenunber
,C

This property defines the attributes to be returned by policy evaluator. The
specification is of the format a[,...] where a is the attribute in the data store that
will be fetched.

com sun. identity. agents. resource. conparator.class=comsun.identity.po
I'i cy. plugins. Prefi xResour ceNane

comsun.identity.agents.resource.w | dcard=*
comsun. identity.agents.resource.deliniter=/
comsun.identity.agents.resource. caseSensitive=fal se

This is to indicate whether case sensitivity is turned on or off during policy
evaluation. The default value is f al se or off.

comsun.identity.agents.true.val ue=al | ow

Appendix A AMConfig.properties File 395

Read-Only Properties

This value is ignored if the application does not access the method
Pol i cyEval uat or. i sAl | owed.

Policy

This property defines weights for policy subjects, rules and conditions. These
weights influence the order in which these components are evaluated. The value is
three integers delimited by ": ". These integers indicate the proportional CPU cost
for evaluating the three components, respectively.

e comsun.identity.policy.Policy.policy evaluation_weights=10: 10: 10

Federation

These properties configure information for the Federation Management module.
e comsun.identity.federation.fedCooki eNanme=f edCooki e

This property defines the name of the federation cookie.
e comsun.identity.federation. services.signi nginh=fal se

This property defines whether federation requests and responses will be
signed before sending. It also defines whether federation requests and
responses that are received will be verified for signature validity. The default is
fal se.

FQDN Map

The Fully Qualified Domain Name (FQDN) Map is a simple map that enables the
Authentication Service to take corrective action in the case where a user may have
typed in an incorrect URL either by specifying partial hostname or IP address to
access a protected resource.

Valid values must comply with the syntax of this property which represent invalid
FQDN values mapped to correct counterparts. The valid format for specifying
these maps is:

comsun. i dentity. server. fgdnMap[invalid_name] =valid_name

where invalid_name is a possible invalid FQDN host name that may be used by the
user, and valid_name is the FQDN host name to which the filter will redirect the user.

396 Identity Server 2004Q2 « Developer’s Guide

Read-Only Properties

CAUTION Ensure that there are no invalid or overlapping values for the same invalid FQDN
name.

This property can also be used for creating a mapping for more than one host
name. This may be the case when applications hosted on a server are accessible by
more than one host name. It may also be used to configure Identity Server to NOT
take corrective action for certain hostname URLs. For example, if no corrective
action (such as a redirect) is desired for users who access application resources
using a raw IP address, the map entry would look like:

comsun. i dentity.server.fqdnMap[IP_address] =IP_address

Any number of values may be specified as long as they are valid and conform to
the above stated requirements.

Examples of FQDN mapping might be:
e comsun.identity.server.fqdnMap[isserver] =i sserver.nydonai n. com

e comsun.identity.server.fqdnMap[isserver. nydonai n] =i sserver. nmydonai n.
com

e comsun.identity.server.fqgdnMap[IP_address] =i sserver. nydonai n. com

e comsun.identity.server.fqgdnMap[invalid_name] =valid_name

Encryption Key

The value of this property is the password used to generate a symmetric key to
encrypt and decrypt other sensitive data including the shared secret.

am encrypt i on. pwd=r o/ Li N3pOQxMxxt vbwf +owRFyz DYwx RTw

Appendix A AMConfig.properties File 397

Read-Only Properties

398 Identity Server 2004Q2 « Developer's Guide

Appendix B

serverconfig.xml File

The file serverconfi g. xm provides configuration information for the Sun Java™
System Identity Server regarding the Sun Java System Directory Server that is used
as its data store. This chapter explains the elements of the file and how to configure
it for failover, how can you have multiple instances, how can you undeploy the
console and remove console files from a server. It contains the following sections:

= “Overview” on page 399
= “server-config Definition Type Document” on page 401

« “Failover Or Multimaster Configuration” on page 404

Overview

serverconfig.xm is located in / IdentityServer_base/ SU\ani conf i g/ uns. It contains
the parameters used by the Identity SDK to establish the LDAP connection pool to
Directory Server. No other function of the product uses this file. Two users are
defined in this file: user 1 is a Directory Server proxy user and user 2 is the Directory
Server administrator.

Proxy User

The Proxy User can take on any user’s privileges (for example, the organization
administrator or an end user). The connection pool is created with connections
bound to the proxy user. Identity Server creates a proxy user with the DN of
cn=puser, ou=DSAME User s, dc=exanpl e, dc=com This user is used for all queries
made to Directory Server by lldentity Server. It benefits from a proxy user ACI
already configured in the Directory Server and, therefore, can perform actions on

399

Overview

behalf of a user when necessary. It maintains an open connection through which all
gueries are passed (retrieval of service configurations, organization information,
etc.). The proxy user password is always encrypted. Code Example B-1 illustrates
where the encrypted password is located in serverconfig. xni .

Code Example B-1 Proxy User In serverconfig.xml

<User nane="User1" type="proxy">

<Di r D\>

cn=puser, ou=DSAME User s, dc=exanpl e, dc=com
</ D r DN\N>

<Di r Passwor d>

AQ Ckc3ql r CeZr pexyeolL4cdeX hdvv9aCzz

</ D r Passwor d>

</ User >

Admin User

dsaneuser is used for binding purposes when the Identity Server SDK performs
operations on Directory Server that are not linked to a particular user (for example,
retrieving service configuration information). Proxy User performs these
operations on behalf of dsaneuser, but a bind must first validate the dsaneuser
credentials. During installation, Identity Server creates cn=dsaneuser, ou=DSAVE
Wser s, dc=exanpl e, dc=com Code Example B-1 illustrates where the encrypted
dsameuser password is found in serverconfig. xni .

Code Example B-2 Admin User In serverconfig.xml

<User nane="User2" type="adm n">

<Di r D\>

cn=dsameuser , ou=DSAME User s, dc=exanpl e, dc=com
</ D r DN>

<D r Passwor d>

AQ Ckec3ql r CeZr pexyeolL4cdeXi hdvv9aCzz

</ Di r Passwor d>

</ User >

400 Identity Server 2004Q2 « Developer’s Guide

server-config Definition Type Document

server-config Definition Type Document

server-confi g. dt d defines the structure for serverconfi g. xni . It is located in
IdentityServer_base/ SU\Vani dt d. This section defines the main elements of the DTD.
Code Example B-3 on page 403 is an example of the serverconfi g. xni file.

iIPlanetDataAccessLayer Element

iPlanetDataAccessLayer is the root element. It allows for the definition of multiple
server groups per XML file. Its immediate sub-element is the ServerGroup
Element. It contains no attributes.

ServerGroup Element

ServerGroup defines a pointer to one or more directory servers. They can be master
servers or replica servers. The sub-elements that qualify the ServerGroup include
Server Element, User Element, BaseDN Element and MiscConfig Element. The
XML attributes of ServerGroup are the name of the server group, and minConnPool
and maxConnPool which define the minimum (1) and maximum (10) connections
that can be opened for the LDAP connection pool. More than one defined
ServerGroup element is not supported.

NOTE Identity Server uses a connection pool to access Directory Server. All connections
are opened when Identity Server starts and are not closed. They are reused.

Server Element

Server defines a specific Directory Server instance. It contains no sub-elements. The
required XML attributes of Server are a user-friendly name for the server, the host

name, the port number on which the Directory Server runs, and the type of LDAP
connection that must be opened (either simple or SSL).

NOTE For an example of automatic failover using the Server element, see “Failover Or
Multimaster Configuration” on page 404.

Appendix B serverconfig.xml File 401

server-config Definition Type Document

User Element

User contains sub-elements that define the user configured for the Directory Server
instance. The sub-elements that qualify User include DirDN and DirPassword. It’s
required XML attributes are the name of the user, and the type of user. The values
for type identify the user’s privileges and the type of connection that will be opened
to the Directory Server instance. Options include:

= auth—defines a user authenticated to Directory Server.

= proxy—defines a Directory Server proxy user. See “Proxy User” on page 399
for more information.

< rebind—defines a user with credentials that can be used to rebind.

< admin—defines a user with Directory Server administrative privileges. See
“Admin User” on page 400 for more information.

DirDN Element
DirDN contains the LDAP Distinguished Name of the defined user.

DirPassword Element
DirPassword contains the defined user’s encrypted password.

CAUTION ltis important that passwords and encryption keys are kept consistent throughout
the deployment. For example, the passwords defined in this element are also
stored in Directory Server. If the password is to be changed in one place, it must be
updated in both places. Additionally, this password is encrypted using the key
defined in Appendix A, “AMConfig.properties File.” If the encryption key defined in
the am encr ypt i on. pwd property is changed, all passwords in
serverconfig. xm must be re-encrypted using anpasswor d - - encr ypt
password. More information on this encryption utility can be found in the Sun Java
System Identity Server Administration Guide.

BaseDN Element

BaseDN defines the base Distinguished Name for the server group. It contains no
sub-elements and no XML attributes.

402 Identity Server 2004Q2 « Developer’s Guide

server-config Definition Type Document

MiscConfig Element

MiscConfig is a placeholder for defining any LDAP JDK features like cache size. It
contains no sub-elements. It’s required XML attributes are the name of the feature

and its defined value.

Code Example B-3 serverconfig.xml

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<l--
Copyright (c) 2002 Sun Mcrosystens, Inc. Al rights reserved.

Use is subject to |icense terns.

>
<i Pl anet Dat aAccessLayer >

<Server G oup name="defaul t" m nConnPool ="1" maxConnPool =" 10" >

<Server nanme="Server 1" host ="identity_server_host.domain_name"

port="389"
type="Sl MPLE' />
<User nane="User1" type="proxy">
<D r D\>
cn=puser, ou=DSAME User s, dc=exanpl e, dc=com
</ Di r DN>
<D r Passwor d>
AQ Ckc3ql r CeZr pexyeoL4cdeX hdvv9aCzz
</ Di r Passwor d>

</ User >
<User nane="User2" type="adm n">
<D r D\>
cn=dsareuser, ou=DSAME User s, dc=exanpl e, dc=com
</ Di r DN>

<D r Passwor d>
AQ Ckc3ql r CeZr pexyeoL4cdeX hdvv9aCzz

</ Di r Passwor d>

</ User >

<BaseDN>
dc=exanpl e, dc=com

</ BaseD\>

</ Server G oup>
</i Pl anet Dat aAccessLayer >

Appendix B serverconfig.xml File 403

Failover Or Multimaster Configuration

Failover Or Multimaster Configuration

Identity Server allows automatic failover to any Directory Server defined as a
Server Element in server confi g. xmi . More than one server can be configured for
failover purposes or multimasters. If the first configured server goes down, the
second configured server will takeover. Code Example B-4 illustrates
serverconfi g. xm with automatic failover configuration.

Code Example B-4 Configured Failover in serverconfig.xml

<?xm version="1.0" encodi ng="1SO 8859-1" standal one="yes" ?>
<l--
PRCPR ETARY/ CONFI DENTI AL. Use of this product is subject to license terns.
Copyri ght 2002 Sun Mcrosystens, Inc. Al rights reserved.
-->
<i Pl anet Dat aAccesslLayer >
<Server G oup name="defaul t" m nConnPool ="1" maxConnPool =" 10" >
<Server name="Server 1" host ="identity_server_hostl.domain_name" port="389"
type="SI MPLE' />
<Server name="Server2" host ="identity_server_host2.domain_name" port="389"
type="Sl MPLE' />
<Server name="Server 3" host ="identity_server_host3.domain_name" port="390"
type="Sl MPLE' />
<User nane="User1" type="proxy">
<Di r DN\>
cn=puser, ou=DSAME User s, dc=exanpl e, dc=com
</ Di r DN\>
<D r Passwor d>
AQ CoWMRLYASf cy+AQBXghVWhBE92i 78cqf
</ Di r Passwor d>

</ User >
<UWser nane="lser2" type="adm n">
<Di r D\>
cn=dsaneuser, ou=DSAME User s, dc=exanpl e, dc=com
</ Di r DN\>

<D r Passwor d>
AQ CoWMRLYASf cy+AQBXghVWhBE92i 78cqf

</ Di r Passwor d>

</ User >

<BaseD\>
0=i sp

</ BaseD\>

</ Server G oup>
</i Pl anet Dat aAccessLayer >

404 Identity Server 2004Q2 « Developer’s Guide

Appendix C

WAR Files

Sun Java™ System ldentity Server contains a number of web application archive
(WAR) files. These packages contain Java™ servlets and JavaServer Pages™ (JSP)
pages that add functionality to the application. This chapter explains WAR files in
general, their contents in an Identity Server deployment and which files can be
modified. It contains the following sections:

= “Overview” on page 405

e “WARs And Their Contents” on page 407

e “Updating Modified WARs” on page 410

= “Redeploying Modified WARs” on page 410

Overview

The Java 2 Platform, Enterprise Edition (J2EE) platform (on which Identity Server is
built) uses a component model to create full-scale applications. A component is
self-contained functional software code assembled with other components into a
J2EE application. The J2EE application components (which can be deployed
separately on different servers) include:

1. Client components (including dynamic web pages, applets, and a Web
browser) that run on the client machine.

2. Web components (including servlets and JSP) that run within a web container.

3. Business components (code that meets the needs of a particular enterprise
domain such as banking, retail, or finance) that also run within the web
container.

4. Enterprise infrastructure software that runs on legacy machines.

405

Overview

The web components tier in the Identity Server model can be customized based on
each organization’s needs. This appendix concerns itself with this tier.

Web Components

When a web browser executes a J2EE application, it deploys server-side objects
called web components. There are two types of web components: Servlets and
JavaServer Pages (JSP).

= Servlets are small Java programs that dynamically process requests and
construct responses from a web browser; they run within web containers.

= JSP are text-based documents that contain static template data [HTML,
Scalable Vector Graphics (SVG), Wireless Markup Language (WML), or
eXtensible Markup Language (XML)], and elements that construct dynamic
content (in the case of Identity Server, servlets).

When a J2EE application is called, the JSP and corresponding servlets are
constructed by the web browser.

Packaging Web Components

In general, all J2EE components are packaged separately and bundled together into
an Enterprise Archive (EAR) file for application deployment. The Web
Components, in particular, are packaged in web application archives (WAR). Each
WAR contains the servlets and/or JSP, a deployment descriptor, and related
resource files.

NOTE The WAR is the same format as a JavaARchive (JAR). However, an eXtensisible
Markup Language (XML) deployment descriptor file must also be created.

Static HTML files and JSP are stored at the top level of the WAR directory. The
top-level directory contains the WEB-INF sub-directory which contains the
following:

= Server-side classes (Servlets, JavaBean components and related Java class files)
must be stored in the WEB- | NF/ cl asses directory.

= Auxiliary JARs (tag libraries and any utility libraries called by server-side
classes) must be stored in the VEB- | NF/ | i b directory.

406 Identity Server 2004Q2 « Developer’s Guide

WARs And Their Contents

« web.xml—the web component deployment descriptor is stored in the
WEB-INF directory.

= Tag library descriptor files

When modifying the files included in Identity Server WARs, customers are
changing web components and thus, customizing their deployment.

NOTE Be aware of any loss of the customized data during patch or upgrade.

WARs And Their Contents

Identity Server contains a number of WARs that can be modified to customize an
Identity Server deployment. The WARs themselves are located in
IdentityServer_base/ SUWMamand include:

= consol e. war —files pertaining to the Identity Server console application.
= passwor d. war —files pertaining to the Identity Server password reset service.
= services. war—contains files pertaining to Identity Server services.

The following sections detail the files within each WAR that can be modified and
those that SHOULD NOT be modified.

console.war

The following sections detail the modifiable and non-modifiable documents
contained within consol e. war . The path names are based on the directory structure
discussed in Packaging Web Components.

console.war Modifiable Files
These directories contain files that can be modified.

< web.xm and related XML files used for constructructing it are located in
IdentityServer_base/ SUNWAN web- apps/ appl i cati ons/ WEB- | NF/ .

< Modifiable JavaScript files are located in
IdentityServer_base/ SUNVAN web- apps/ appl i cati ons/ consol e/ j s/ .

< Modifiable JSP are located in the following directories dependant upon the
service that deploys them:

Appendix C WAR Files 407

WARs And Their Contents

o ldentityServer_base/ SU\VAN web- apps/ appl i cati ons/ consol e/ aut h/

o ldentityServer_base/ SU\ani web- apps/ appl i cati ons/ consol e/ f eder at i on/
o ldentityServer_base/ SU\ani web- apps/ appl i cati ons/ consol e/ pol i cy/

o ldentityServer_base/ SU\ani web- apps/ appl i cati ons/ consol e/ servi ce/

o ldentityServer_base/ SU\ani web- apps/ appl i cati ons/ consol e/ sessi on/

o ldentityServer_base/ SU\VAN web- apps/ appl i cati ons/ consol e/ user/

= Modifiable image files are located in
IdentityServer_base/ SUNVan web- apps/ appl i cati ons/ consol e/ i mages/ .

= Modifiable stylesheets are located in
IdentityServer_base/ SUNWAnT web- apps/ appl i cati ons/ consol e/ css/ .

console.war Non-Modifiable Files
These directories contain files that SHOULD NOT be modified.

= JARsare located in
IdentityServer_base/ SUNVan web- apps/ appl i cati ons/ WEB- | NF/ [i b/ .

= Tag Library Descriptor (.tld) files are located in
IdentityServer_base/ SUNVanI web- apps/ appl i cati ons/ WEB- | NF/ .

password.war

The following sections detail the modifiable and non-modifiable documents
contained within passwor d. war . The path names are based on the directory
structure discussed in Packaging Web Components.

password.war Modifiable Files
These directories contain files that can be modified.

< web.xm and related XML files used for constructructing it are located in
IdentityServer_base/ SUNVANT web- apps/ passwor d/ VEB- | NF/ .

< Modifiable JSP are located in
IdentityServer_base/ SUNWAN web- apps/ passwor d/ passwor d/ ui /.

< Modifiable image files are located in
IdentityServer_base/ SUNVAn web- apps/ passwor d/ passwor d/ i mages/ .

= Modifiable stylesheets are located in
IdentityServer_base/ SUNVAn web- apps/ passwor d/ passwor d/ css/ .

408 Identity Server 2004Q2 « Developer's Guide

WARs And Their Contents

password.war Non-Modifiable Files
These directories contain files that SHOULD NOT be modified.

Non-modifiable JARs are located in
IdentityServer_base/ SUNVanI web- apps/ passwor d/ VEB- | NF/ 1 b/ .

Non-modifiable tag library descriptor (.tld) files are located in
IdentityServer_base/ SUNWANT web- apps/ passwor d/ VEEB- | NF/ .

services.war

The following sections detail the modifiable and non-modifiable documents
contained within ser vi ces. war . The path names are based on the directory
structure discussed in Packaging Web Components.

services.war Modifiable Files
These directories contain files that can be modified.

web. xni and related XML files used for constructructing it are located in
IdentityServer_base/ SUNVANT web- apps/ ser vi ces/ VEEB- | NF/ .

JavaScript files are located in
IdentityServer_base/ SU\Van web- apps/ servi ces/ j s/ .

JSP are located in the following directories dependant upon the service that
requires the customization:

o ldentityServer_base/ SU\ani web- apps/ ser vi ces/ confi g/ aut h/ def aul t/
o ldentityServer_base/ SU\anT web- apps/ servi ces/ confi g/ f eder ati on/ def aul t/

Image files are located in the following directories dependant upon the service
to which the images apply:

o ldentityServer_base/ SU\ant web- apps/ ser vi ces/ i nages/
o ldentityServer_base/ SU\ni web- apps/ ser vi ces/ f ed_i nages/
o ldentityServer_base/ SU\Van web- apps/ ser vi ces/ | ogi n_i mages/

Stylesheets are located in the following directories dependant upon the service
to which they apply:

o ldentityServer_base/ SU\ant web- apps/ ser vi ces/ css/ .
o ldentityServer_base/ SU\N web- apps/ ser vi ces/ f ed_css/ .

Appendix C WAR Files 409

Redeploying Modified WARs

services.war Non-Modifiable Files
These directories contain files that SHOULD NOT be modified.

< Non-modifiable JARs are located in
IdentityServer_base/ SUNVanI web- apps/ ser vi ces/ WEB- | NF/ 1i b/ .

< Non-modifiable Tag Library Descriptor (.tld) files are located in
IdentityServer_base/ SUNVANT web- apps/ ser vi ces/ VEB- | NF/ .

Updating Modified WARS

Once a file within a WAR is modified, the WAR itself needs to be updated with the
newly modified file. Following is the procedure to update a WAR.

1. cd ldentityServer_base/SUN\Wam
This is the directory in which the WARs are kept.

2. jar -uvf WARfilename.war <path_to_modified_file>
The - uvf option replaces the old file with the newly modified file. For example:
jar -uvf consol e.war newfil e/index. htn

replaces the i ndex. ht mi file in console.war with the i ndex. ht ni file located in
IdentityServer_base/ SU\VAN newfii | e.

3. rmnewfile/index.htni
Delete the modified file.

Redeploying Modified WARS

Once updated, the WARs need be redeployed to their web container. The web
container provides services such as request dispatching, security, concurrency, and
life cycle management. It also gives the web components access to the J2EE APIs.
The following procedures are specific to each particular WAR and web container.
After redeploying the war files, all related servers need to be restarted.

NOTE The BEA WebLogic Server 6.1 and Sun Java System Application Server web
containers do not require WARSs to be exploded. They are deployed as WARs.

410 Identity Server 2004Q2 « Developer’s Guide

Redeploying Modified WARs

BEA WebLogic Server 6.1

The following commands are used on BEA WebL ogic Server 6.1 to redeploy
Identity Server WARs.

NOTE antonsol e, anser ver and anpasswor d are the default console, server and
password deploy URIs, respectively.

To Deploy console.war On WebLogic

java weblogic.deploy -url protocol://server_host:server_port -component
amconsole:WL61 _server_name deploy WL61_admin_password amconsole
IdentityServer_base/SUNWanY console.war

To Deploy services.war on WebLogic

java weblogic.deploy -url protocol://server_host:server_port -component
amserver:WL61 _server_name deploy WL61_admin_password amserver
IdentityServer_base/SUNWanY services.war

To Deploy password.war on WebLogic

java weblogic.deploy -url protocol://server_host:server_port -component
ampassword:WL61 _server_name deploy WL61_admin_password ampassword
IdentityServer_base/SUNVWanY password.war

NOTE For more complete information on the Java utility webl ogi ¢. depl oy and its
options, see the BEA WebLogic Server 6.1 documentation.

Sun Java System Application Server 7.0

The following commands are used on Sun Java System Application Server 7.0 to
redeploy Identity Server WARs.

To Deploy console.war On Sun Java System Application Server
asadmin deploy -u S1IAS_administrator -w S1AS_administrator_password -H
console_server_host -p S1AS_server_port --type web secure_flag --contextroot
console_deploy_uri --name antonsol e --instance S1AS_instance
IdentityServer_base/SUNWanY console.war

Appendix C WAR Files 411

Redeploying Modified WARs

412

To Deploy services.war On Sun Java System Application Server
asadmin deploy -u S1IAS_administrator -w S1AS_administrator_password -H
server_host -p S1AS_server_port --type web secure_flag --contextroot server_deploy_uri
--name amserver --instance S1AS_instance ldentityServer_base/SUNVanyY'services.war

To Deploy password.war on Sun Java System Application Server
asadmin deploy -u S1IAS_administrator -w S1AS_administrator_password -H
console_server_host -p S1AS_administrator_server_port --type web secure_flag
--contextroot password_deploy_uri --name ampassword --instance S1AS_instance
IdentityServer_base/SUNVWanY password.war

NOTE For more complete information on the asadm n deploy command and its options,
see the Sun Java System Application Server 7.0 Developer’s Guide.

IBM WebSphere Application Server

For detailed instructions on how to deploy WARs in an IBM WebSphere
Application Server container, see the documentation at

htt p: // ww« 3. i bm cond sof t war e/ webser ver s/ st udi o/ doc/ v40/ st udi ogui de/ en/ ht m
| / sdsscenariol. htni.

Identity Server 2004Q2 « Developer’s Guide

Appendix D

Notification Service

Sun Java™ System ldentity Server Notification Service allows for session
notifications to be sent to remote web containers. It is necessary to enable this
service for use by SDK applications running remotely from the Identity Server
server itself. This chapter explains how to enable a remote web container to receive
the notifications. It contains the following sections:

= “Overview” on page 413

< “Enabling The Notification Service” on page 414

Overview

The Notification Service allows for session notifications to be sent to web
containers that are running the Identity Server SDK remotely. The notifications
apply to the Session, Policy and Naming Services only. In addition, the remote
application must be running in a web container. The purpose of the notifications
would be:

= Tosync up the client side cache of the respective services.

= Toenable more real time updates on the clients. (Polling is used in absence of
notifications.)

=« No client application changes are required to support notifications.

Note that the notifications can be received only if the remote SDK is installed on a
web container.

413

Overview

Enabling The Notification Service

Following are the steps to configure the remote SSO SDK to receive session
notifications. Setting up clients to receive notifications

414

1. Install Identity Server on Machine 1.

2. Install Sun Java System Web Server on Machine 2.

3. Install the SU\ansdk on the same machine as the Web Server.

For instructions on installing the Identity Server SDK remotely, see the Sun
Java™ Enterprise System 2003Q4 Installation Guide.

4. Ensure that the following are true concerning the machine where the SDK is
installed.

a.

Identity Server 2004Q2 -

Ensure that the right access permissions are set for the
/remote SDK_server/SUNVan | i b and /remote_ SDK_server/SUNan | ocal e
directories on the server where the SDK is installed.

These directories contains the files and jars on the remote server.

Ensure that the following permissions are set in the Grant section of the
server. pol i cy file of the Web Server.

server. pol i cy is in the confi g directory of the Web Server installation.
These permissions can be copied and pasted, if necessary:

perm ssion java.security. SecurityPern ssion
" put Provi der Property. Mzil | a-JSS"

perm ssion java.security. SecurityPern ssion
"insertProvider.Mzilla-JSS';

Ensure that the correct classpath is set in server. xni .

server. xn is also in the confi g directory of the Web Server installation. A
typical classpath would be:

<JAVA | avahorme="/ export/ hone/ ws61/ bi n/ htt ps/j dk"

servercl asspat h="/ export/hone/ ws61/ bin/ https/jar/webserv-rt.jar:
${java. home}/lib/tools.jar:/export/home/ws61/ bin/https/jar/webse
rv-ext.jar:/export/hone/ws61/ bi n/https/jar/webserv-jstl.jar:/exp
ort/home/ ws61/ bi n/ https/jar/nova.jar"

cl asspat hsuf fi x="::/1S _CLASSPATH BEG@ N DELI M //usr/share/li b/ xal
an.jar:/export/ SUNan | i b/ xm sec.jar://usr/share/lib/xerceslnpl.
jar://lusr/share/libl/sax.jar://usr/share/lib/domjar:/export/ SUNW
ami |i b/ domdj.jar:/export/SUNVni i b/jakarta-log4j-1.2.6.jar:/usr

Developer’s Guide

5.

Overview

/share/lib/jaxmapi.jar:/usr/share/lib/saaj-api.jar://usr/share/
l'ib/jaxrpc-api.jar://usr/share/libljaxrpc-inpl.jar:/export/SUNV&
mlib/jaxmruntine. jar:/usr/share/lib/saaj-inpl.jar:/export/SUNW
ami |ib:/export/ SUN\an | ocal e://usr/share/lib/nps/jss3.jar:/expor
t/ SUNVan | i b/ am sdk. j ar:/export/ SUNan | i b/ am servi ces. jar:/expo
rt/SUNVant | i b/ am sso_provider.jar:/export/ SUNn | ib/swec.jar:/e
xport/ SUNVan | i b/ acnecrypt.jar:/export/SUNan lib/iaik ssl.jar:/
[usr/share/libljaxp-api.jar://usr/share/lib/mail.jar://usr/share
/liblactivation.jar:/export/SUNani|ib/servlet.jar:/export/SUNA
m |ib/aml ogging.jar:/usr/share/lib/comons-1ogging.jar:/IS CLAS
SPATH END DELIM " envcl asspat hi gnored="true" debug="f al se"
debugopt i ons="- Xdebug

- Xrunj dwp: t ransport =dt _socket, server =y, suspend=n"

j avacoptions="-g" dynanicrel oadi nterval ="2">

Use the SSO samples installed on the remote SDK server for configuration

purposes.

a. Change to the / remote_SDK_server/ SU\Vani sanpl es/ sso directory.
b. Run gnake.

c. Copy the generated class files from

/ remote_SDK _server/ SUN\Vani sanpl es/ sso to
/remote_SDK_server/ SUNWni | i b/ .

Copy the encryption value of am encrypti on. pwd from the
AMConf i g. properti es file installed with Identity Server to the
AMConf i g. properti es file on the remote server to which the SDK was installed.

The value of am encrypti on. pwd is used for encrypting and decrypting
passwords.

Login into Identity Server as anadmi n.

ht t p: // identity_server_host: 3000/ anconsol e

Appendix D Notification Service 415

Overview

10.
11.

12.

Execute the servlet by entering
htt p: // remote_ SDK_host: 58080/ ser vl et / SSOTokenSanpl eSer vl et into the
browser location field and validating the SSOToken.

SSOTokenSanpl eSer vl et is used for validating a session token and adding a
listener. Executing the servlet will print out the following message:

SSOroken host name: 192.18. 149. 33 SSOTloken Princi pal nane:

ui d=amAdm n, ou=Peopl e, dc=r ed, dc=i pl anet, dc=com Aut henti cati on type
used: LDAP | PAddress of the host: 192.18.149.33 The token id is
AQ CSWMRLYASE cy URnChg7vEgdkb+32T43+RZN30Req/ BGE= Property: Conpany
is - Sun Mcrosystens Property: Country is - USA SSO Token
Validation test Succeeded

Set the property com i pl anet. am noti fi cation. url =in AMonfi g. properties of
the remote machine as follows:

comiplanet.amnotification.url=http://remote_SDK_serve: 58080/ servl et/
com i pl anet. servi ces.commclient. PLLNotificationServl et

Restart the Web Server.
Login into Identity Server as anadmi n.
htt p: // identity_server_host: 3000/ antonsol e

Execute the servlet by entering
http: // remote_SDK_host: 58080/ ser vl et / SSOTokenSanpl eSer vl et into the
browser location field and validating the SSOToken again.

When the machine on which the remote SDK is running receives the
notification, it will call the respective listener when the session state is changed.
Note that the notifications can be received only if the remote SDK is installed
on a web container.

416 Identity Server 2004Q2 « Developer's Guide

Appendix E

Directory Server Concepts

Sun Java™ System ldentity Server uses Sun Java System Directory Server to store
its data. Certain features of the LDAP-based Directory Server are used by Identity
Server to help manage its data. This chapter contains information on these
Directory Server features and how they are used. It contains the following sections:

= “Overview” on page 417
= “Roles” on page 418
= “Access Control Instructions” on page 422

e “Class Of Service” on page 426

Overview

Because Identity Server needs an underlying data store, it has been built to work
with Sun Java System Directory Server. They are complementary in architecture
and design data. Use of Directory Server, though, may not be exclusive to Identity
Server and therefore, needs to be treated as a completely separate deployment. For
more information on Directory Server deployment, see the Sun Java System
Directory Server documentation.

This appendix explains three Directory Server functions that are used by the
Identity Server. A role is an identity grouping mechanism; an access control
instruction (ACI) defines rules to allow or deny access to Directory Server data, and
class of service is an attribute grouping mechanism.

417

Roles

Roles

Roles are a Directory Server entry mechanism similar to the concept of a group. A
group has members; a role has members. A role’s members are LDAP entries that
are said to possess the role. The criteria of the role itself is defined as an LDAP entry
with attributes, identified by the Distinguished Name (DN) attribute of the entry.
Directory Server has a number of different types of roles but Identity Server can
only manage one of them: the managed role.

NOTE The other Directory Server role types can still be used in a directory deployment;
they just can not be managed by Identity Server.

Users can possess one or more roles. For example, a contractor role which has
attributes from the Session Service and the URL Policy Agent Service might be
created. Thus, when new contractors start, the administrator can assign them this
role rather than setting separate attributes in the contractor entry. If the contractor
were then to become a full-time employee, the administrator would just re-assign
the user a different role.

Managed Roles

With a managed role, membership is defined in each member entry and not in the
role definition entry. An attribute which designates membership is placed in each
LDAP entry that possesses the role. This is in sharp contrast to a traditional static

group which centrally lists the members in the group object entry itself.

NOTE By inverting the membership mechanism, the role will scale better than a static
group. In addition, the referential integrity of the role is simplified, and the roles of
an entry can be easily determined.

An administrator assigns the role to a member entry by adding the nsRol eDN
attribute to it. The value of nsRol eDNis the DN of the role definition entry. The
following apply to managed roles:

< Multiple managed roles can be created for each organization or
sub-organization.

= A managed role can be enabled with any number of services.

= Any user that possesses a role with a service will inherit the service attributes
from that role.

418 Identity Server 2004Q2 « Developer’s Guide

Roles

NOTE All Identity Server roles can only be configured directly under organization or
sub-organization entries.

Definition Entry

A role’s definition entry is a LDAP entry in which the role’s characteristic attributes
are defined. These attributes are passed onto the member entry. Below is a sample
LDAP entry that represents the definition entry of a manager role.

Code Example 12-1 LDAP Definition Entry

dn: cn=managerrol e, dc=si r oe, dc=com
obj ectclass: top
obj ectcl ass: LDAPsubentry
obj ectclass: nsRol eDefinition
obj ectcl ass: nsSinpl eRol eDefinition
obj ectcl ass: nsManagedRol eDefinition
cn: managerrol e
description: manager role within conpany

The nsManagedRol eDef i ni ti on object class inherits from the LDAPsubent ry,
nsRol eDef i ni ti on and nsSi npl eRol eDef i ni ti on object classes.

Member Entry

A role’s member entry is a LDAP entry to which the role is applied. An LDAP
entry that contains the attribute nsRol eDNand its value DN indicates that the entry
has the characteristics defined in the value DN entry. In Code Example 12-2 below,
the DN identifies Code Example 12-1 above as the role definition entry:
cn=manager rol e, dc=si r oe, dc=com

Virtual Attribute

When a member entry that contains the nsRol eDN attribute is returned by a
Directory Server search, nsRol eDNwill be duplicated as the nsRol e attribute in the
same entry. nsRol e will carry a value of any managed, filtered or nested roles
assigned to the user (such as Cont ai ner Def aul t Tenpl at eRol e). Code Example 12-2
on page 420 includes this virtual attribute when returned by Directory Server only.

Appendix E Directory Server Concepts 419

Roles

420

Code Example 12-2 LDAP Member Entry

dn: ui d=manager per son, ou=peopl e, dc=si r oe, dc=com
obj ectclass: top
obj ectcl ass: person
obj ect cl ass: 1 netorgperson
ui d: nmanager per son
gn: manager
sn: person
nsRol eD\: cn=nanager r ol e, ou=peopl e, dc=si r oe, dc=com
nsRol e: cn=nanagerr ol e, ou=peopl e, dc=si r oe, dc=com
nsRol e: cn=cont ai ner def aul tt enpl at er ol e, ou=peopl e, dc=si r oe, dc=com
description: nanager person within conpany

How Identity Server Uses Roles

Identity Server uses roles to apply Access Control Instructions. When first
installed, the Identity Server configures ACI that define administrator permissions
to directory data. These ACI are then designated in roles (such as O gani zati on
Adm n Rol e and Organi zati on Hel p Desk Adnin Rol e) which, when assigned to a
user, define the user’s level of access. For a list of roles created for each Identity
Server object configured, see “Access Control Instructions” on page 422.

NOTE Managed groups in Identity Server are modeled almost the same as roles. They
add an attribute to an LDAP entry to make the entry a member of the dynamic

group

Role Creation

When arole is created, it contains the auxiliary LDAP object class
i pl anet - am managed- r ol e. This object class, in turn, contains the following allowed
attributes:

e iplanet-amrol e- managed- cont ai ner - dn contains the DN of the identity-related
object that the role was created to manage.

« iplanet-amrol e-type contains a value used by the Identity Server console for
display purposes. After authentication, the console gets the user’s roles and
checks this attribute for the correct page to display based on which of the
following three values it has:

o 1for top-level administrator only.

o 2 for all other administrators.

Identity Server 2004Q2 « Developer’s Guide

Roles

o 3foruser.

If the user has no administrator roles, the User profile page will display. If the
user has an administrator role, the console will start the user at the top-most
administrator page based on which value is present.

NOTE When Identity Server attempts to process two templates that are set to the same
priority level, Directory Server arbitrarily picks one of the templates to return. For
more information, see the Sun Java System Directory Server documentation.

Role Location

All roles in an organization are viewed from the organization’s top-level. For
example, if an administrator wants to add a user to the administrator role for a
people container, the administrator would go to the organization above the people
container, look for the role based on the people container’s name, and add the user
to the role.

NOTE Alternately, an administrator might go to the user profile and add the role to the
user.

Displaying The Correct Login Start Page

The attribute i pl anet - am user - adm n- st art - dn can be defined for a role or a user; it
would override the i pl anet - am rol e-t ype attribute by defining an alternate
display page URL. Upon a user’s successful authentication:

1. ldentity Server checks the i pl anet - am user - adni n- st art - dn for the user.

This attribute is contained in the User service. If it is set, the user is started at
this point. If not, Identity Server goes to step 2.

NOTE The value of i pl anet - am user - adm n- st art - dn can override the
administrator’s start page. For example, if a group administrator has read access to
the top-level organization, the default starting page of the top-level organization,
taken from i pl anet - am r ol e-t ype, can be overridden by defining
i pl anet - am user - adm n- st art - dn to display the group’s start page.

Appendix E Directory Server Concepts 421

Access Control Instructions

2. Identity Server checks the user for the value of i pl anet - am r ol e- t ype.

If the attribute defines an administrator-type role, the value of

i pl anet - am r ol e- managed- cont ai ner - dn is retrieved and the highest point in
the directory tree is displayed as a starting point. For more information on the
i pl anet-amrol e-type attribute, see “Role Creation” on page 420.

NOTE If the attribute has no value, a search from Identity Server root is performed for all
container-type objects; the highest object in the directory tree that corresponds to
the i pl anet - am r ol e-t ype value is where the user starts. Although rare, this
step is memory-intensive in very large directory trees with many container entries.

Access Control Instructions

422

Control over access to directory information is implemented in Identity Server
using roles. Users inherit access permissions based on their role membership and
parent organization. Identity Server installs pre-configured administrator roles that
define different levels of permission for administrators to access directory
information; these roles are dynamically created when a group, organization,
container or people container object is configured. They are:

e (QOrganization Admn

e (rganization Help Desk Adnin
e @Goup Adnin

o Container Adnin

e Container Help Desk Admn

= Peopl e Container Adm n.

NOTE This section refers to ACls as they are applied to administrative roles only. Policy is
another form of access control which are created and used in Identity Server but
apply to web resources not Directory Server data.

These default roles, when possessed by a user entry, define that user’s level of
access to Directory Server data. For example, when an organization is created, the
Identity Server SDK creates an O gani zati on Adni n role and an Organi zation Hel p
Desk Admi n role. The permissions are read and write access to all entries in the
organization and read access to all entries in the organization, respectively.

Identity Server 2004Q2 « Developer’s Guide

Access Control Instructions

NOTE The Identity Server SDK gets the ACls from the attribute
i pl anet - am adm n- consol e- dynani c- aci - | i st (defined in the
amAdm nConsol e. xni service file) and sets them in the roles after they have
been created.

Defining AClIs

ACIs are defined in the Identity Server console administration XML service file,
amAdm nConsol e. xni . This file contains two global attributes that define ACls for
use in ldentity Server: i pl anet - am adni n- consol e-r ol e- def aul t-aci s and

i pl anet - am adm n- consol e- dynam c-aci -l i st.

iplanet-am-admin-console-role-default-acis

This global attribute defines which Access Permissions are displayed in the Create
Role screen of the Identity Server console. By default, O gani zati on Adni n,

Q gani zation Hel p Desk Adm nand No Permi ssions are displayed. If other default
permissions are desired, they must be added to this attribute.

iplanet-am-admin-console-dynamic-aci-list

This global attribute is where all of the defined administrator-type ACls are stored.
For information on how ACIs are structured, see “Format of Predefined ACIs” on
page 423.

NOTE Because ACls are stored in the role, changing the default permissions in
i pl anet - am adm n- consol e- dynani c- aci - | i st after a role has been
created will not affect it. Only roles created after the modification has been made
will be affected.

Format of Predefined ACls

ACIs defined in Identity Server for use with administrator-type roles follow a
different format than those defined using Directory Server. The format of the
predefined Identity Server ACI is per mi ssi onNane | ACl Description | DN AC ##
D\ AC ## DN AC where:

= pernissi onNane—The name of the permission which generally includes the
object being controlled and the type of access. For example, O gani zat i on
Admi n is an administrator that controls access to an organization object.

Appendix E Directory Server Concepts 423

Access Control Instructions

e AQ Description—A text description of the access the ACI allows.

= DN AC —There can be any number of DN AQ pairs separated by the ## symbols.
The SDK will get and set each pair in the entry named by DN This format also
supports tags which can be dynamically substituted when the role is created.
Without these tags, the DN and ACI would be hard-coded to specific
organizations in the directory tree which would make them unusable as
defaults. For example, if there is a default set of AClIs for every O gani zati on
Admi n, the organization name should not be hard-coded in this role. The
supported tags are ROLENAME, ORGAN ZATI ON, GROUPNAME, and PCNAME. These tags
are substituted with the DN of the entry when the corresponding entry type is
created. See the “Default ACIs” on page 424 for examples of ACI formats.
Additionally, more complete ACI information can be found in the Sun Java
System Directory Server documentation.

NOTE If there are duplicate ACI within the default permissions, the SDK will print a debug
message.
Default ACls

Following are the default ACls installed by Identity Server. They are copied from a
Identity Server configuration whose top-level organization is configured as o=i sp.

 Top Level Adnmin|Access to all entries|o=isp:aci:
(target="Idap:///o=isp")(targetattr="*")(version 3.0; acl "Proxy
user rights"; allow (all) roledn = "lIdap:///ROLENAME';)

e (Organization Admn| Read and Wite access to all organization
entries|o=isp:aci:(target="Idap:///($dn), o=isp")(targetfilter=(!(](
nsrol edn=cn=Top Level Adm n Rol e, 0=i sp) (nsrol edn=cn=Top Level Help
Desk Adnmin Role,o=isp))))(targetattr = "*")(version 3.0; acl
"Qrgani zation Admn Role access allow'; allow (all) roledn =
"l dap: ///cn=Crgani zati on Adm n Rol e, [$dn], o=i sp";) ##o0=i sp: aci :
(target="Idap:///cn=0rgani zati on Adm n
Rol e, ($dn), o=i sp") (targetattr="*")(version 3.0; acl "Organization
Adm n Rol e access deny"; deny (wite,add, del ete, conpar e, proxy)
rol edn = "ldap:///cn=Crgani zati on Adm n Rol e, ($dn), o=i sp";)

* Organization Hel p Desk Adnin| Read access to all organization
entries| CRGANI ZATI O\ aci : (target="1 dap: /// ORGANI ZATI ON') (targetfilt
er=(! (] (nsrol edn=cn=Top Level Adnin Rol e, o=i sp) (nsrol edn=cn=Top
Level Hel p Desk Adnin Rol e, o=i sp) (nsrol edn=cn=0r gani zati on Adm n
Rol e, ORGANI ZATION)))) (targetattr = "*") (version 3.0; acl
"Organi zation Hel p Desk Adnin Rol e access allow'; allow

424 Identity Server 2004Q2 « Developer's Guide

Access Control Instructions

(read, search) roledn = "l dap:/// ROLENAME";) ##ORGANI ZATI ON: aci :
(target="Ildap:/// ORGANI ZATION") (targetfilter=(! (| (nsrol edn=cn=Top
Level Adm n Rol e, o=i sp) (nsrol edn=cn=Cr gani zati on Adm n

Rol e, ORGANI ZATIQN)))) (targetattr = "user Password") (version 3.0; acl
"Organi zation Hel p Desk Adnin Rol e access allow'; allow
(wite)roledn = "I dap:/// ROLENAVE";)

Cont ai ner Adm n|Read and Wite access to all organizational unit
entries|o=isp:aci:(target="Idap:///($dn), o=isp")(targetfilter=(!(](
nsrol edn=cn=Top Level Adnmi n Rol e, o=i sp) (nsrol edn=cn=Top Level Help
Desk Adnmin Role,o=isp))))(targetattr = "*")(version 3.0; acl

"Contai ner Adnin Role access allow'; allow (all) roledn =

"1 dap: ///cn=Cont ai ner Adm n Rol e, [$dn], o=i sp";) 0=i sp: aci :
(target="1dap:///cn=Cont ai ner Adnin

Rol e, ($dn), o=i sp") (targetattr="*")(version 3.0; acl "Container Admn
Rol e access deny"; deny (wite, add, del ete, conpare, proxy) roledn =
"l dap: ///cn=Cont ai ner Adm n Rol e, ($dn), o=i sp";)

Cont ai ner Hel p Desk Admi n| Read access to all organizational unit
entries| CRGANI ZATI O\ aci : (target ="1 dap: /// ORGANI ZATI ON') (targetfilt
er=(! (] (nsrol edn=cn=Top Level Adnin Rol e, o=i sp) (nsrol edn=cn=Top
Level Hel p Desk Adnin Rol e, o=i sp) (nsrol edn=cn=Cont ai ner Adnin

Rol e, ORGANI ZATION)))) (targetattr ="*") (version 3.0; acl "Contai ner
Hel p Desk Admin Role access allow'; allow (read, search) roledn =

"1 dap: /// ROLENAME" ;) ##CRGANI ZATI ON: aci :

(target="ldap:/// ORGANI ZATION') (targetfilter=(! (| (nsrol edn=cn=Top
Level Adm n Rol e, o=i sp) (nsrol edn=cn=Cont ai ner Adm n

Rol e, ORGANI ZATION)))) (targetattr = "userPassword") (version 3.0; acl
"Cont ai ner Hel p Desk Adnin Role access allow'; allow (wite) roledn
= "l dap:/// ROLENAME";)

QG oup Admin|Read and Wite access to all group

menber s| ORGANI ZATI ON: aci : (target="I dap:/// GROJPNAME") (targetattr =
"*") (version 3.0; acl "Goup and peopl e container adnin role";
allow (all) roledn = "l dap:///ROLENAME";) ##CORGANI ZATI ON: aci :
(target="Ildap:/// ORGANI ZATION') (targetfilter=(! (| (! FILTER (| (nsrol e
dn=cn=Top Level Adm n Rol e, o=isp)(nsrol edn=cn=Top Level Hel p Desk
Adm n Rol e, o=i sp) (nsr ol edn=cn=0r gani zati on Adm n

Rol e, ORGANI ZATI ON) (nsr ol edn=cn=Cont ai ner Adni n

Rol e, ORGANI ZATIQN))))) (targetattr !=

"“i pl anet - am web- agent - access-al | owlist ||

i pl anet - am web- agent - access-not -enforced-list ||

Appendix E Directory Server Concepts 425

Class Of Service

i pl anet - am donai n-url -access-al | ow | |

i pl anet - am web- agent - access-deny-1list")(version 3.0;acl "G oup
admn's right to the nenbers"; allow (read, wite,search) roledn =
"1 dap: /// ROLENAME" ;)

Peopl e Cont ai ner Adm n|Read and Wite access to all

user s| CRGANI ZATI ON: aci : (target="1dap:/// PONAME") (targetfilter=(!(](
nsrol edn=cn=Top Level Adnmin Rol e, o=i sp) (nsrol edn=cn=Top Level Help
Desk Adnmin Rol e, o=i sp) (nsrol edn=cn=Cr gani zati on Admin

Rol e, ORGANI ZATI CN) (nsr ol edn=cnh=Cont ai ner Adni n

Rol e, ORGANI ZATIQN)))) (targetattr !=

"i pl anet - am web- agent - access-al l owlist ||

i pl anet - am web- agent - access-not - enforced-1list ||

i pl anet - am donai n-url -access-al | ow | |

i pl anet - am web- agent - access-deny-list") (version 3.0; acl "People
container admn role"; allow (all) roledn = "Idap:///ROLENAVE";)

NOTE Identity Server generates aTop Level Adm nand Top Level Help Desk

Adm n during installation. These roles can not be dynamically generated for any
other identity-type objects but the top-level organization.

Class Of Service

Both dynamic and policy attributes use class of service (CoS), a feature of the
Directory Server that allows attributes to be created and managed in a single
central location, and dynamically added to user entries as the user entry is called.
Attribute values are not stored within the entry itself; they are generated by CoS as
the entry is sent to the client browser. Dynamic and policy attributes using CoS
consist of the following two LDAP entries:

CoS Definition Entry—This entry identifies the type of CoS being used (Classic
CoS). It contains all the information, except the attribute values, needed to
generate an entry defined with CoS. The scope of the CoS is the entire sub-tree
below the parent of the CoS definition entry.

Template Entry—This entry contains a list of the attribute values that are
generated when the target entry is displayed. Changes to the attribute values
in the Template Entry are automatically applied to all entries within the scope
of the CoS.

426 Identity Server 2004Q2 « Developer’s Guide

Class Of Service

The CoS Definition entry and the Template entry interact to provide attribute
information to their target entries; any entry within the scope of the CoS. Only
those services which have dynamic or policy attributes use the Directory Server
CosS feature; no other services do.

NOTE For additional information on the CoS feature, see the Sun Java System Directory
Server documentation.

CoS Definition Entry

CoS definition entries are stored as LDAP subentries under the organization level
but can be located anywhere in the DIT. They contain the attributes specific to the
type of CoS being defined. These attributes name the virtual CoS attribute, the
template DN and, if necessary, the specifier attribute in target entries. By default,
the CoS mechanism will not override the value of an existing attribute with the
same name as the CoS attribute. The CoS definition entry takes the

cosSuper Def i ni ti on object class and also inherits from the following object class
that specifies the type of CoS:

cosClassicDefinition

The cosd assi cDef i ni ti on object class determines the attribute and value that will
appear with an entry by taking the base DN of the template entry from the
cosTenpl at eDNattribute in the definition entry and combining it with the target
entry specifier as defined with the cosSpeci fi er attribute, also in the definition
entry. The value of the cosSpeci fi er attribute is another LDAP attribute which is
found in the target entry; the value of the attribute found in the target entry is
appended to the value of cosTenpl at eDN and the combination is the DN of the
template entry. Template DNs for classic CoS must therefore have the following
structure cn=speci fi er Val ue, baseDN

CoS Template Entry

CoS Template entries are an instance of the cosTenpl at e object class. The CoS
Template entry contains the value or values of the virtual attributes that will be
generated by the CoS mechanism and displayed as an attribute of the target entry.
The template entries are stored under the definition entries.

NOTE When possible, definition and template entries should be located at the same level
for easier management.

Appendix E Directory Server Concepts 427

Class Of Service

Conflicts and CoS

There is the possibility that more than one CoS can be assigned to a role or
organization, thus creating conflict. When this happens, Identity Server will
display either the attribute value based on a pre-determined template priority level
or the aggregate of all attribute values defined in the cosPri ority attribute. For
example, an administrator could create and load multiple services, register them to
an organization, create separate roles within the organization and assign multiple
roles to a particular user. When Identity Server retrieves this user entry, it sees the
CoS object classes, and adds the virtual attributes. If there are any priority conflicts,
it will look at the cosPri ori ty attribute for a priority level and return the
information with the lowest priority number (which is the highest priority level).
For more information on CoS priorities, see “cosQualifier Attribute” on page 269 of
Chapter 7, “Service Management” or the Sun Java System Directory Server
documentation.

NOTE Conflict resolution is decided by the Directory Server before the entry is returned to
Identity Server. Identity Server allows only the definition of the priority level and
CosS type.

428 Identity Server 2004Q2 « Developer's Guide

Glossary

Refer to the Java Enterprise System glossary for a complete list of terms that are
used in this documentation set.

http://docs. sun. con sour ce/ 816- 6873/ i ndex. ht m

429

430 Identity Server 2004Q2 « Developer's Guide

A

access control instructions (ACls) 422
default 424
defined 423
format 423
account locking 123
memory 125
physical 124
ACls 422
default 424
defined 423
format 423
agent-related logs 355
amAdmin.dtd 271
AMConfig.properties 377
authentication 392
certificates 385
configuration directives 381
console 378
cookies 379
debug service 381
deployment 390
deployment directives 378
Directory Server 380
event connection 387
federation 396
FQDN Map 396
installation 378
installation read-only 389
IP address checking 394
LDAP connection 387
notification service 383

Index

overview 377
policy 396
read-only directives 389
remote policy APl 394
replication 386
SAML 388
security read-only 393
session 391
shared secret 390
SMTP 392
stats service 382
amEntrySpecific.xml 230
amLogging.xml 349
amSAML.xml 338
anonymous authentication module 66, 67
APls
authentication 156
C 159
Java 157
non-Java and C options 170
client detection 372
console event listener 59
identity management SDK 231
caching 242
email notification 241
remote installation 242
samples 243
search methods 237
logging 359
sample code 361
password plugins 375
policy SDK
C 316

431

Section A

Java 309 authentication level-based 118
policy evaluation APl 310 module-based 121
policy management API 314 organization-based 107
policy plugin API 315 role-based 109
remote policy service-based 113
in AMConfig.properties 394 user-based 115
SAML SDK 339 module chaining 125
service management SDK 300 modules
SSO 201 anonymous 66, 67
and non-web-based applications 219 authentication configuration 66
C 208 certificate 67
Java 202 configure 147
Java versus C 217 core authentication 66, 155
utility create 145
Java 373 custom 145
architecture HTTP Basic 68
logging 348 LDAP 70
arg login URL parameter 81 membership 71
assertion types NT 72
and SAML 335 RADIUS 73

SafeWord 74
multiple LDAP configurations 128
overview 63
persistent cookies 128

attribute display element customization 54

attribute inheritance 254
and service files 254

auditing 347 redirection URLS
auth_module_properties.dtd 134 authentication level-based 119
authentication 63 organization-based 108
account locking 123 role-based 111
memory 125 service-based 113
physical 124 user-based 116
APIs samples
C 159 certificate authentication 189
Java 157 LDAP authentication 190
non-Java and C options 170 MSISDN wireless authentication 190
authentication module configuration files 148 SPI 190
DTD files session upgrade 131
auth_module_properties.dtd 134 SPIs
remote_auth.dtd 138 JAAS 180
FQDN mapping 127, 396 Java 173
in AMConfig.properties 392 post-processing 185
localization properties files 154 user interface 76
login URLs authentication module configuration files 86
organization-based 107 customization 90
role-based 110 customize default login page 94
service-based 113 file types 83
user-based 115 image files 89
methods 105 JavaScript 87

432 Identity Server 2004Q2 « Developer's Guide

Section C

JSP 84 client browser support 43
localization properties files 89 client data
login URL 76 in client detection 370
login URL parameters 76 client detection 367
style sheets 88 API 372

validation plug-in interface 132 client data 370

XML
authentication module configuration files 87
authentication configuration service 66
authentication level-based authentication 118
authentication level-based redirection URLs 119

overview 367
command line logging 355, 356

configuration directives
in AMConfig.properties 381

configure

authentication module configuration files 86, 148 custom authentication modules 147
authentication modules console

anonymous 66, 67 and naming service 48

authentication configuration 66 API

certificate 67 event listener 59

core authentication 66, 155 customization 48

custom 145 alternate procedure 51

HTTP Basic 68 attribute display elements 54

LDAP 70 creating custom interface 49

membership 71 display container objects 58

NT 72 display service attributes 53

RADIUS 73 interface colors 53

SafeWord 74 localizing the console 53

Unix 75 service configuration display 51
authentication programming interfaces 156 user profile display options 53
authentication-related logs 354 user profile view 52
authlevel login URL parameter 81 default interface files 49

generating the 47
interface 46
localization properties filesconfigure 257

overview 45
C plug-in modules 48
add module tab 58
c . precompiling JSP 60
policy SDK 316 samples 60
cascading style sheets 88 user interface 76
certificate authentication module 67 authentication module configuration files 86
certificates file types 83
database in AMConfig.properties 385 image files 89
in AMConfig.properties 385 JavaScript 87
class of service 426 JSP 84
and dynamic attributes 252 localization properties files 89, 154
conflicts 428 login URL 76
definition entry 427 login URL parameters 76
template entry 427 style sheets 88

Index 433

Section D

XML

authentication module configuration files 87

console properties
in AMConfig.properties 378
console.war 407
console-related logs 354
container objects
displaying 58
ContainerDefaultTemplateRole
and attribute inheritance 254
cookie properties
in AMConfig.properties 379
cookies
and sessions 196
core authentication service 66
modify 155
CoS 426
conflicts 428
definition entry 427
template entry 427
create
custom authentication modules 145
custom console 49
alternate procedure 51
cross-domain
scenario 200
cross-domain controller
and SSO 199
cross-domain SSO 198
enable 201
custom authentication modules 145
configure 147
create 145
custom properties
in session structure 198
customization
authentication user interface 90
console 48
add module tab 58
attribute display elements 54
display container objects 58
display service attributes 53
interface colors 53
localizing 53
service configuration display 51

434 Identity Server 2004Q2 « Developer's Guide

user profile display options 53
creating custom console 49
alternate procedure 51
default login page 94
user profile view 52

D

DAI service 229
debug files 363
debug service
in AMConfig.properties 381
default files
console 49
definition
ViewBean 46
deployment
in AMConfig.properties 390
deployment directives
in AMConfig.properties 378
Directory Server
ACls 422
default 424
defined 423
format 423
class of service 426
conflicts 428
definition entry 427
template entry 427
concepts 417
extend LDAP schema 255
LDAP
adding object classes 257
roles 418
Identity Server and 420
managed roles 418
Directory Server properties
in AMConfig.properties 380
display service attributes 53
documentation
overview 30
terminology 33
typographic conventions 32

domain login URL parameter 82

DTD files
amAdmin.dtd 271
auth_module_properties.dtd 134
remote_auth.dtd 138
server-config.dtd 401
sms.dtd 261

dynamic attributes
and service files 252

E

email notification 241
encryption key 397

event connection
in AMConfig.properties 387

F

failover configuration
in serverconfig.xml 404

federation
in AMConfig.properties 396

federation-related logs 354

fixed attributes
in session structure 196

FQDN Map 396
FQDN mapping
and authentication 127, 396

G

global attributes
and service files 251

goto login URL parameter 77
gotoOnFail login URL parameter 78

Section E

H

HTTP Basic authentication module 68

identity management 221
identity-related object templates 226
identity-related objects

and LDAP 224
marker object classes 223
overview 221
samples 245
SDK 231

caching 242

email notification 241

remote installation 242

search methods 237
SDK samples 243
ums.xml

modify 228
XML

amEntrySpecific.xml 230

Identity Server
client browser support 43
file system 43
overview 35

application management services 37

console customization 41

data management components 36

extending 40

managing access 39

service definition 40
related product information 34

Identity Server Console. See console

Identity Server SDK
overview 41

identity-related object templates 226

identity-related objects
and LDAP 224
marker object classes 223

IDTokenN 82

IDTokenN login URL parameter 82

image files

Index

435

Section J

authentication 89
inheritance

attributes 254
installation logs 353
installation properties

in AMConfig.properties 378
installation read-only

in AMConfig.properties 389
interface colors

customization 53
IP address checking

in AMConfig.properties 394
iPSPCookie login URL parameter 82

J

Java
APIs
client detection 372
utility 373
identity management SDK 231
caching 242
email notification 241
remote installation 242
search methods 237
policy SDK 309
SAML SDK 339
service management SDK 300
SPIs
logging 362
java
policy SDK
policy evaluation APl 310
policy management APl 314
policy plugin API 315
JavaScript files 87
JavaServer Pages. See JSP
JSP 84
console-related definition 49
precompiling console 60

436 Identity Server 2004Q2 « Developer's Guide

K

keystore
in AMConfig.properties 388

L

LDAP
adding object classes 257
LDAP authentication
multiple configurations 128
LDAP authentication module 70
LDAP connection
in AMConfig.properties 387
LDAP schema
extending 255
locale login URL parameter 79
localization
console 53
with two languages 259
localization properties files 89, 154, 257
configure 257
log authorization plugin 362
log files
defined 349
flat file format 351
install logs 353
relational database format 351
MySQL 352
oracle 352
service logs 353
log types
agent-related logs 355
authentication-related logs 354
command line logs 355
console-related logs 354
federation-related logs 354
policy-related logs 354
SAML-related logs 355
SSO-related logs 353
log verifier plugin 362
logging
amLogging.xml 349

API 359
sample code 361

architecture 348

command line 356

log files 349

log types
agent-related logs 355
authentication-related logs 354
command line logs 355
console-related logs 354
federation-related logs 354
policy-related logs 354
SAML-related logs 355
SSO-related logs 353

overview 347

remote logging 357

secure logging 356

SPI 362

Login 76
login URLs

organization-based 107

role-based 110

service-based 113

user-based 115

M

managed roles 418
marker object classes 223
membership authentication module 71
methods
authentication 105
authentication level-based 118
module-based 121
organization-based 107
role-based 109
service-based 113
user-based 115
modify
service configuration display 51
user profile view 52
module chaining
and authentication 125
module login URL parameter 80

Section M

modaule tabs

add 58
module-based authentication 121
MySQL database log files 352

N

naming service

and console 48
notification

email and SDK 241
notification service 413

in AMConfig.properties 383
nsaccountlock attribute 294
NT authentication module 72

O

Oracle database log files 352
org login URL parameter 78
organization attributes
and service files 252
organization-based authentication 107
organization-based login URLs 107
organization-based redirection URLs 108
overview
AMConfig.properties 377
application management services 37
authentication 63
login URL 76
user interface 76
client browser support 43
client detection 367
console 45
console customization 41
cross-domain SSO 198
data management components 36
extending Identity Server 40
identity management 221
Identity Server 35
file system 43

Index

437

Section P

Identity Server SDK 41
logging 347

managing access 39
policy 309

SAML 329

service definition 40
service management 247
SSO 193

SSO concepts 194

SSO process 195

user interface

authentication module configuration files 86

files types 83
image files 89
JavaScript 87
JSP 84
localization properties files 89, 154
login URL parameters 76
style sheets 88
WAR files 405
XML

authentication module configuration files 87

P

password API plugins 375
password.war 408
Persistent 128
persistent cookies
and authentication 128
plug-in modules
console 48
add module tab 58
policy 309
in AMConfig.properties 396
overview 309
remote policy in AMConfig.properties 394
SDK
C 316
Java 309
policy evaluation APl 310
policy management API 314
policy plugin API 315
policy agents

438 Identity Server 2004Q2 « Developer's Guide

and SSO 199

policy attributes
and service files 253

policy evaluation APl 310
policy management APl 314
policy plugin APl 315
policy-related logs 354

post-processing
authentication 185

precompiling console JSP 60

processes
generating the console 47

profile types
and SAML 332
web artifact profile 332
web POST profile 334

protected properties
in session structure 197

R

RADIUS authentication module 73
read-only directives
in AMConfig.properties 389
redeploying WAR files 410
redirection URLs
authentication level-based 119
organization-based 108
role-based 111
service-based 113
user-based 116
register services 259
remote logging 357

remote policy API

in AMConfig.properties 394
remote_auth.dtd 138
replication

in AMConfig.properties 386
role login URL parameter 79
role-based authentication 109
role-based login URLs 110
role-based redirection URLs 111

roles
Identity Server
roles and 420
Identity Server and 420
in Directory Server 418
managed roles 418

S

SafeWord authentication module 74
SAML 329
access to 331
amSAML.xml 338
assertion types 335
in AMConfig.properties 388
overview 329
profile types 332
web artifact profile 332
web POST profile 334
SAML SOAP receiver 336
SOAP messages 337
samples 345
SDK 339
SAML SOAP receiver 336
SOAP messages 337
SAML-related logs 355
samples
authentication
certificate 189
LDAP 190
MSISDN wireless 190
SPI 190
console 60
identity management 245
identity management SDK 243
logging
code 361
notify password 376
password generator 376
SAML 345
SSO 206, 219
command line SSO 207
remote SSO 207
SSO servlet 207

Section S

Search 237
secure logging 356
security read-only
in AMConfig.properties 393
server-config.dtd 401
serverconfig.xml 399
and failover 404
service attributes
and sms.dtd 251
inheritance 254
virtual attributes 252
service files
amSAML.xml 338
attribute inheritance 254
attributes 251
dynamic 252
global 251
organization 252
policy 253
user 253
batch processing
batch processing service files 296
batch processing templates
batch processing templates 296
ContainerDefaultTemplateRole 254
create 251
default 293
importing 257
modify 294
ums.xml 226
user pages
customize 298
service login URL parameter 81
service management 247
DTD files
amAdmin.dtd 271
localization properties files 257
overview 247
SDK 300
service files
create 251
services
defining 249
sms.dtd 261
service-based authentication 113

service-based login URLs 113

Index

439

Section U

service-based redirection URLs 113
services
adding new object classes to LDAP 257
defining 249
Directory Server
extend LDAP schema 255
logs 353
overview
authentication 63
policy 309
registering 259
Session
session structure 196
Session and SSO 193
services.war 409
session
definition 194
in AMConfig.properties 391
structure 196
Session and SSO
concepts 194
process 195
session ID
definition 194
Session Service. See SSO
session upgrade
and authentication 131
sessions
and cookies 196
shared sceret
in AMConfig.properties 390
Simple Mail Transfer Protocol.See SMTP.
Single Sign On. See SSO
sms.dtd 261
SMTP
in AMConfig.properties 392
SOAP messages 337
Solaris
patches 34
support 34
SPIs
authentication
JAAS 180
Java 173
post-processing 185

440 Identity Server 2004Q2 < Developer's Guide

logging 362
SSO 193
API 201
and non-web-based applications 219
C 208
Java 202
Java versus C 217
concepts 194
cookies and sessions 196
cross-domain 198
cross-domain controller 199
policy agents 199
scenario 200
cross-domain SSO
enable 201
overview 193
process overview 195
samples 206, 219
command line SSO 207
remote SSO 207
SSO servlet 207
session structure 196
SSO-related logs 353
SSOToken
definition 195
stats service
in AMConfig.properties 382
style sheets 88
customizing console colors 53
support
Solaris 34

U

ums.xml
DA\ service 229
identity-related object templates 226
modify 228
Unix authentication module 75
updating WAR files 410
user attributes
and service files 253
user interface 76

console 46

customization 90

customize default login page 94
user interface file types 83
user interface login URL 76
user interface login URL parameters 76
user interface. See also console
user login URL parameter 79
user pages

customize 298
user profile display options 53
user-based authentication 115
user-based login URLs 115
user-based redirection URLs 116
utilities 373
utility

API 373

\Y

validation plug-in interface
and authentication 132
ViewBean
definition 46
virtual attributes
and dynamic attributes 252

w

WAR files 405
console.war 407
contents 407
password.war 408
redeploying 410
services.war 409
updating 410

web artifact profile 332

web POST profile 334

Section V

XML
amEntrySpecific.xml 230
amSAML.xml 338
authentication module configuration files 87, 148
default service files 293
modify 294
serverconfig.xml 399
service file
import 257
service files
amLogging.xml 349
attribute inheritance 254
attributes 251, 252, 253
batch processing 296
batch processing templates 296
ContainerDefaultTemplateRole 254
create 251
user pages 298
ums.xml
and identity-related objects 226
modify 228
virtual attributes 252

Index 441

Section X

442 |dentity Server 2004Q2 « Developer's Guide

	Identity Server Developer’s Guide
	Contents
	List of Figures
	List of Tables
	List of Procedures
	List of Code Examples
	About This Guide
	Audience for This Guide
	Identity Server 2004Q2 Documentation Set
	Identity Server 2004Q2 Core Documentation
	Identity Server Policy Agent Documentation

	Your Feedback on the Documentation
	Documentation Conventions Used in This Guide
	Typographic Conventions
	Terminology

	Related Information
	Related Third-Party Web Site References

	Introduction
	Identity Server Overview
	Data Management Components
	Identity Server Management Services
	Managing Access
	Web Access
	Application Access

	Extending Identity Server
	Service Definition With XML
	Console Customization
	Identity Server SDK
	Identity Management SDK
	Service Management SDK
	Authentication Programming Interfaces
	Utility API
	Logging API And Logging SPI
	Client Detection API
	SSO API
	Policy SDK
	SAML SDK
	Federation Management API

	Identity Server File System
	Client Browser Support

	The Identity Server Console
	Overview
	Console Interface
	Generating The Console Interface
	Plug-In Modules
	Accessing The Console

	Customizing The Console
	The Default Console Files
	Creating Custom Organization Files
	To Create Custom Organization Files
	Alternate Customization Procedure

	Miscellaneous Customizations
	To Modify The Service Configuration Display
	To Modify The User Profile View
	Display Options For The User Profile Page
	To Localize The Console
	To Display Service Attributes
	To Customize Interface Colors
	To Change The Default Attribute Display Elements
	To Add A Module Tab
	To Display Container Objects

	Console API
	Precompiling The Console JSP
	Console Samples
	Modify User Profile Page
	Create A Tabbed Identity Management Display
	ConsoleEventListener
	Add Administrative Function
	Add A New Module Tab
	Create A Custom User Profile View

	Authentication Service
	Overview
	Authentication Via A Web Browser
	Authentication Via The Java API
	Authentication Via The C API
	Redirection URLs

	Authentication Service Modules
	Authentication Configuration Service
	Core Authentication Service
	Anonymous Authentication Module
	Certificate Authentication Module
	HTTP Basic Authentication Module
	Kerberos Authentication
	Windows Desktop SSO Module Overview
	Configuring the Windows Desktop SSO Authentication Module

	LDAP Authentication Module
	Membership Authentication Module
	NT Authentication Module
	RADIUS Authentication Module
	SafeWord Authentication Module
	SecurID Authentication Module
	UNIX® Authentication Module

	Authentication Service User Interface
	The User Interface Login URL
	Login URL Parameters
	goto Parameter
	gotoOnFail Parameter
	org Parameter
	user Parameter
	role Parameter
	locale Parameter
	module Parameter
	service Parameter
	arg Parameter
	authlevel Parameter
	domain Parameter
	iPSPCookie Parameter
	IDTokenN Parameters

	File Types Of The User Interface
	JavaServer Pages
	Authentication Module Configuration Files
	JavaScript Files
	Cascading Style Sheets
	Image Files
	Localization Properties Files

	Customizing The Authentication User Interface
	To Create New Directories For Custom Console Files
	To Create A Custom Login Interface

	Authentication Methods
	Organization-based Authentication
	Organization-based Authentication Login URLs
	Organization-based Authentication Redirection URLs

	Role-based Authentication
	Role-based Authentication Login URLs
	Role-based Authentication Redirection URLs

	Service-based Authentication
	Service-based Authentication Login URLs
	Service-based Authentication Redirection URLs

	User-based Authentication
	User-based Authentication Login URLs
	User-based Authentication Redirection URLs

	Authentication Level-based Authentication
	Authentication Level-based Authentication Login URLs
	Authentication Level-based Authentication Redirection URLs

	Module-based Authentication
	Module-based Authentication Login URLs
	Module-based Authentication Redirection URLs

	Authentication Features
	Account Locking
	Physical Locking
	Memory Locking

	Authentication Module Chaining
	Fully Qualified Domain Name Mapping
	Possible Uses For FQDN Mapping

	Persistent Cookie
	Multi-LDAP Authentication Module Configuration
	To Add An Additional LDAP Configuration

	Session Upgrade
	Validation Plug-in Interface
	JAAS Shared State
	Enabling JAAS Shared State
	JAAS Shared State Store Option

	Authentication DTD Files
	Auth_Module_Properties.dtd
	ModuleProperties Element
	Callbacks Element
	NameCallback Element
	PasswordCallback Element
	ChoiceCallback Element
	ConfirmationCallback Element
	Prompt Element
	ChoiceValues and ChoiceValue Element
	OptionValues and OptionValue Element
	Value Element

	The remote-auth.dtd Structure
	AuthContext Element
	Request Element
	Response Element
	IndexTypeNamePair Element
	Subject Element
	Callbacks Element
	ModuleName Element
	HeaderValue Element
	ImageName Element
	PageTimeOutValue Element
	TemplateName Element
	AttributeValuePair Element
	Prompt Element
	Locale Element
	ChoiceValues Element
	ChoiceValue Element
	SelectedValues Element
	SelectedValue Element
	OptionValue Element
	DefaultOptionValue Element

	Custom Authentication Modules
	Integrating A Custom Authentication Module
	Configuring The Authentication Module
	Elements Of The Authentication Module Configuration File
	Customizing Membership.xml

	Configuring Authentication Localization Properties
	Modifying The Core Authentication Service
	Pluggable Auth Module Classes Attribute
	Organization Authentication Modules Attribute

	Authentication Programming Interfaces
	Application Programming Interfaces
	Authentication API For Java Applications
	Authentication API For C Applications
	Authentication Option For Other Applications
	XML Messages

	Service Programming Interfaces
	Implementing A Custom Authentication Module
	Implementing A Pure JAAS Module
	Implementing Authentication Post Processing

	Authentication Samples
	Certificate Authentication Sample
	LDAP Authentication Sample
	MSISDN (Wireless) Module
	SPI Sample
	JDBC Authentication Sample
	JCDI Authentication Sample

	Single Sign-On And Sessions
	Overview
	Session Service Concepts
	Session
	Session ID
	SSOToken

	Single Sign-On Process
	Contacting A Protected Resource
	Providing User Credentials

	Cookies and Sessions
	Session Structure
	Fixed Attributes
	Protected And Custom Properties
	Protected Properties

	Custom Properties

	Cross-Domain Support For SSO
	Policy Agents
	Cross-Domain Controller
	A Cross-Domain SSO Scenario
	Enabling Cross-Domain Single Sign-On

	SSO API
	Java API Overview
	SSOTokenManager Class
	SSOTokenID Interface
	SSOToken Interface
	SSOTokenEvent
	SSOTokenListener
	Sample SSO Java Files

	C API Overview
	C SSO Include Files
	C SSO Properties
	C SSO interfaces
	C SSO Sample

	Java versus C API
	Non-Web-Based Applications

	SSO Samples

	Identity Management
	Overview
	Identity Server Console
	ums.xml
	Identity Management Software Development Kit (SDK)

	Identity-related Objects
	Marker Object Classes
	Identity-related Objects As LDAP Entries
	Organizations
	Containers
	Users
	Groups
	Roles

	Object Templates And ums.xml
	Structure Of ums.xml
	Structure Templates
	Creation Templates
	Search Templates

	Modifying ums.xml
	Adding Custom Object Classes

	DAI Service

	amEntrySpecific.xml
	Identity Management SDK
	Interfaces
	AMAssignableDynamicGroup
	AMCallback
	AMConstants
	AMDynamicGroup
	AMEventListener
	AMFilteredRole
	AMGroup
	AMGroupContainer
	AMObject
	AMOrganization
	AMOrganizationalUnit
	AMPeopleContainer
	AMRole
	AMSearchControl
	AMStaticGroup
	AMStoreConnection
	AMTemplate
	AMUser
	AMUserPasswordValidation

	Search Methods In The SDK
	Search Method Parameters
	searchUsers Sample Code
	Search Groups Sample Code

	Email Notification And The SDK
	Caching And The SDK
	Installing The SDK Remotely
	Management Function Samples
	Creating Objects
	Retrieve Templates

	Identity Management Samples
	Adding User Attributes
	Creating Objects With The SDK

	Service Management
	Overview
	XML Service Files
	Document Type Definition Structure Files
	Service Management SDK

	Defining A Custom Service
	Creating A Service File
	Service File Naming Conventions
	Service Attributes
	Attribute Inheritance

	Extending The Directory Server Schema
	To Extend The Directory Server LDAP Schema
	Adding Identity Server Object Classes To Existing Users

	Importing The XML Service File
	Configuring Console Localization Properties
	Localizing With Two Languages

	Updating Files For Abstract Objects
	Registering The Service

	DTD Files
	The sms.dtd Structure
	ServicesConfiguration Element
	Service Element
	Schema Element
	Service Attribute Elements
	SubSchema Element
	AttributeSchema Element

	The amAdmin.dtd Structure
	Requests Element
	OrganizationRequests Element
	ContainerRequests Element
	PeopleContainerRequests Element
	RoleRequests Element
	GroupRequests Element
	UserRequests Element
	ServiceConfigurationRequests Element
	AttributeValuePair Element
	CreateObject Elements
	DeleteObject Elements
	ModifyObject Elements
	GetObject Elements
	GetService Elements
	ActionServiceTemplate Element
	ActionServiceTemplateAttributeValues Element
	ActionServices Elements
	SchemaRequests Element
	Federation Management Elements

	XML Service Files
	Default XML Service Files
	Modifying A Default XML Service File

	Batch Processing With XML Templates
	XML Templates
	Modifying A Batch Processing XML Template

	Customizing User Pages
	Creating Users Using A Modified Directory Server Schema

	Service Management SDK
	ServiceSchemaManager Class
	Retrieve Logging Location
	Retrieve User Or Dynamic Attributes

	Retrieve Attribute Values

	Policy Management
	Policy SDK
	Java SDK For Policy
	Policy API For Java
	Policy Plugin API For Java

	C Library For Policy
	Policy Evaluation API for C

	Extending the Policy Management Feature
	Compiling the Policy Samples
	Adding the Policy Service to Identity Server
	Developing Custom Subjects, Conditions and Referrals
	To Load the Modified Services

	Creating Policies for the Service
	Developing and Running Policy Evaluation Programs
	To Run the Policy Evaluation Program

	Constructing Policies Programmatically
	To Run PolicyCreator.java
	PolicyCreator.java

	SAML Service
	Overview
	Accessing The SAML Service

	SAML Component Details
	Profile Types
	Web Browser Artifact Profile
	Web Browser POST Profile

	Assertion Types
	SAML SOAP Receiver
	SOAP Messages
	Protecting The SOAP Receiver

	amSAML.xml
	SAML SDK
	com.sun.identity.saml
	com.sun.identity.saml.assertion
	com.sun.identity.saml.common
	com.sun.identity.saml.plugins
	com.sun.identity.saml.protocol
	AuthenticationQuery
	AttributeQuery
	AuthorizationDecisionQuery

	com.sun.identity.saml.xmlsig

	SAML Samples

	Auditing Features
	Logging Service Overview
	Logging Architecture
	amLogging.xml

	Log Files
	Recorded Events
	Time
	Data
	ModuleName
	Domain
	Log Level
	Login ID
	IP Address
	Logged By
	Host Name

	Log File Formats
	Flat File Format
	Relational Database Format

	Java Enterprise System Installation Logs
	Identity Server Service Logs
	Session Logs
	Console Logs
	Authentication Logs
	Federation Logs
	Policy Logs
	Agent Logs
	SAML Logs
	amAdmin Logs

	Logging Features
	To Enable Secure Logging
	Command Line Logging
	Remote Logging
	Using Remote Logging
	Enabling Remote Logging

	Logging API
	Setting Environment Variables
	Logger Class
	LogRecord Class
	Adding Log Data
	Caching Log Records
	Flushing Log Records

	Sample Logging Code

	Logging SPI
	Log Verifier Plugin
	Log Authorization Plugin

	Debug Files
	Debug Levels
	Debug Output Files
	Using Debug Files
	Multiple Identity Server Instances And Debug Files

	Client Detection Service
	Overview
	Client Detection Process
	Enabling Client Detection

	Client Data
	HTML
	genericHTML

	Client Detection API

	Identity Server Utilities
	Utility API
	AdminUtils
	AMClientDetector
	AMPasswordUtil
	Debug
	Locale
	SystemProperties
	ThreadPool

	Password API Plug-Ins
	Notify Password Sample
	Password Generator Sample

	AMConfig.properties File
	Overview
	Deployment Properties
	Identity Server
	Installation
	Console
	Cookies
	Miscellaneous

	Directory Server
	Installation
	Directory Server Tree

	Configuration Properties
	Debug Service
	Stats Service
	Notification Service
	SDK Caching
	Online Certificate Status Protocol (OCSP)
	Identity Object Processing
	Security
	SSL
	Certificate Database
	Replication
	Event And LDAP Connection
	Event Connection
	LDAP Connection

	SAML
	Keystore Properties

	Miscellaneous Services

	Read-Only Properties
	Installation
	Deployment
	Shared Secret
	Session Properties
	Simple Mail Transfer Protocol (SMTP)
	Authentication
	LDAP
	SecurID
	Unix

	Security
	SecureRandom
	SocketFactory
	Encryption

	IP Address Checking
	Remote Policy API
	Policy
	Federation
	FQDN Map
	Encryption Key

	serverconfig.xml File
	Overview
	Proxy User
	Admin User

	server-config Definition Type Document
	iPlanetDataAccessLayer Element
	ServerGroup Element
	Server Element
	User Element
	DirDN Element
	DirPassword Element

	BaseDN Element
	MiscConfig Element

	Failover Or Multimaster Configuration

	WAR Files
	Overview
	Web Components
	Packaging Web Components

	WARs And Their Contents
	console.war
	password.war
	services.war

	Redeploying Modified WARs
	BEA WebLogic Server 6.1
	To Deploy console.war On WebLogic
	To Deploy services.war on WebLogic
	To Deploy password.war on WebLogic

	Sun Java System Application Server 7.0
	To Deploy console.war On Sun Java System Application Server
	To Deploy services.war On Sun Java System Application Server
	To Deploy password.war on Sun Java System Application Server

	IBM WebSphere Application Server

	Notification Service
	Overview

	Directory Server Concepts
	Overview
	Roles
	Managed Roles
	Definition Entry
	Member Entry

	How Identity Server Uses Roles
	Role Creation
	Role Location
	Displaying The Correct Login Start Page

	Access Control Instructions
	Defining ACIs
	iplanet-am-admin-console-role-default-acis
	iplanet-am-admin-console-dynamic-aci-list

	Format of Predefined ACIs
	Default ACIs

	Class Of Service
	CoS Definition Entry
	cosClassicDefinition

	CoS Template Entry
	Conflicts and CoS

	Glossary
	Index

