D Sun

microsystems

Sun Java™ System

Message Queue 3.5
Java Client Developer’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-6026-10

Service Pack 1

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at

http:// waw. sun. cond pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms. This distribution may include materials developed by third
parties.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, Javadoc, JavaMail, JavaHelp, the
Java Coffee Cup logo and the Sun[tm] ONE logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés a
l'adresse htt p: // wa. sun. coni pat ent s et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.

L'utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, Sun[tm] ONE, JDK, Java Naming and Directory Interface, Javadoc, JavaMail, JavaHelp, le logo
Java Coffee Cup et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et
dans d'autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Ce produit est soumis a la législation américaine en matiére de controle des exportations et peut étre soumis a la réglementation en vigueur dans
d'autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des missiles,
des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris,
mais de maniére non exhaustive, la liste de personnes qui fo nt objet d'un ordre de ne pas participer, d'une facon directe ou indirecte, aux
exportations des produits ou des services qui sont régis par la législation américaine en matiére de contrdle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.

http://www.sun.com/patents
http://www.sun.com/patents

Contents

LISt Of FIQUIeS . ..o e 9
Listof Tables 11
List of Procedures 13
List of Code EXamples 15
Preface 17
Audience for This Guide e 17
Organization of This Guide 18
CONVENLIONSottt e e 19
Text CONVENtIONS oottt 19
Directory Variable Conventions i 20
Other Documentation ReSOUIcest 21
The Message Queue Documentation Set, 22
JaVADIOC .t e 22
Example Client Applications i 23
The Java Message Service (JMS) Specification o il 23
The Java XML Messaging (JAXM) Specificationo o i i, 23
Books on JMS Programmingttt 24
Chapter 1 OVEeIVIEW . ..ottt e e e e e 25
What Is Sun Java System Message Queue?t 25
Product EQItIONS e 27
Platform Edition e 27
Enterprise Edition 28
Message Queue Service Architecture 28

4

The JMS Programming Model 30

JMS Programming Interface 30
MESSAZE . . . v 30
Destination o 33
ConnectioNFactory 33
CONNECHIONo 33
SESSION .\ttt 33
Message Producer i 34
Message CONSUMET vttt ettt 34
Message LiStenert 34

Administered Objects o 34

JMS Client Setup Operationsoiiiiiiii i 35
To Set Up a Client to Produce Messagest 35
To Set Up a Client to Consume Messagesouuiiiiiiiiiiiiiiiiieeeeiinn.. 36

JMS Client Design ISSUesttt 36

Programming Domains 36

JMS Provider Independence i 38

Client Identifiers 39

Reliable MeSSagIngooiit 39
Acknowledgements/Transactionso 40
Persistent Storage 41

Performance Trade-offs 42

Message Consumption: Synchronous and Asynchronous 42

Message Selectioni i 43

Message Order and Priority 43

JMS/J2EE Programming: Message-DrivenBeans i 43
Message-Driven Beans i 44
J2EE Application Server SUPPOrtoiii 46

Chapter 2 Quick Start Tutorial e 47

Setting Up Your Environment 47

Starting and Testing the Message Serveriiiiiiiiiiiiiiiiiiiiiiinn.. 49

ToStarta Broker 50
ToTestaBroker i 50
Developing a Simple Client Application i i 51
Compiling and Running a Client Application i .. 54
To Compile and Run the HelloWorldMessage Application 54
Example Application Code 55

Message Queue 3.5 SP1 « Java Client Developer's Guide

Chapter 3 Using Administered Objects i 57

JNDI Lookup of Administered Objects i 58
Looking Up ConnectionFactory Objects i, 59
To Perform a JNDI Lookup of a ConnectionFactory Object 59
Looking Up Destination Objects i i 60
To Perform a JNDI Lookup of a Destination Object 60
Instantiating Administered Objects 61
Instantiating ConnectionFactory Objects i i 61
To Directly Instantiate and Configure a ConnectionFactory Object 62
Instantiating Destination Objects i i 63
To Directly Instantiate and Configure a Destination Object 63
Starting Client Applications With Overrides o i .. 64
Chapter 4 Configuring the Message Queue Client Runtime 65
Message Production and Consumptiono i 65
Message Production 66
Message ConsumMpPHiONoiii 67
Client Runtime Configurable Properties i i 69
Connection Handling 71
Specifying a Message Server Address ... 71
Connecting to a Message Serveroiiiiiiiii i 73
Automatic Reconnect to a Message Server (Enterprise Edition) 73
Auto-reconnect Behavior e 74
Message Queue 3.0 Connection Handling .. 76
Client Identificationttt e e 77
Message Header Overrides i 78
Reliability And Flow Control i 79
Queue Browser Behavior and Server Sessioniiiiiriiitiiiiie i 82
JMS-Defined Properties SUpport 83
Managing Reliability and Performance 84
Delivery Mode 84
Client Acknowledgement Mode i i 84
Message Flow Metering i 85
Message Flow Limits o i 86
Chapter 5 Message Queue Client Programming Techniques 89
Custom Client Acknowledgement i 89
Message-Based Monitoring API 92
Format of Metrics Messagest 93
Broker MEtriCsottt et e et e e e 94

JVM MELTICS « . oottt e e e e e e e 95
Destination-List Metrics 96
Destination Metrics 97

Contents 5

6

Configuring Metrics Message Production on the Broker 99

Using the Message-Based Monitoring API i i, 99
Metrics Monitoring Client Code Exampleso i, 101

A Broker Metrics Example 101

A Destination List Metrics Example i i 103

A Destination Metrics Example 106
Client Connection Failover (Auto-reconnect)ttt 108
Enabling Auto-reconnect 109
Auto-reconnect Behaviors 110
Auto-reconnect Limitations 110
Auto-reconnect Configuration Exampleso 111
Single-Broker Auto-reconnect i 111
Parallel Broker Auto-reconnect i 112
Clustered-Broker Auto-reconnect i 112
Other Programming Topics i 113
Managing Memory and Message Sizeiiiiiiiiiiiiiii i 114
Using Secure HTTP Connections (HTTPS) oo 114

In Case of Server or Broker Failure 115
Repairing an HTTPS Tunnel Servlet Connection oioan. 115
Managing Client Threads 115
Synchronous Consumption in Distributed Applications 117
Client Application Deployment Considerations, 118
Chapter 6 Working With SOAP Messagesoiiiiiiiiiiinann.... 119
Whatis SOAP? ... 120
SOAP and the JAVA for XML Messaging API 120
The Transport Layer i e 121

The SOAP Layer 121

The Provider Layer i 122

The Profiles Layer 123

The SOAP MESSAZEottt 124
SOAP Packaging Models i 125
SOAP Messaging in JAV A 127
The SOAP Message ObjJectoui i e 127
Inherited Methods 129
NaMESPACES . . .« v vt 130
Destination, Message Factory, and Connection Objects 133
Endpoint 134
Message Factory 135
CONMNECHIONo 135

Message Queue 3.5 SP1 « Java Client Developer's Guide

Using JAXM Administered Objects i 136

SOAP Messaging Models and Examples i i 138
SOAP Messaging Programming Models o i i 138
Point-to-Point Connections i 138
Provider Connections 140
Working with Attachments 141
To Create and Add an Attachment il 141
Exceptionand Fault Handling i 142
Writing a SOAP Client 142
Writing @a SOAP Serviceouii 145
Disassembling Messagesottt 147
Handling Attachments i 148
Replying to Messagesouuuiiiiiii i 148
Handling SOAP Faults 148
Integrating SOAP and Message QUeueottt 152
Example 1: Deferring SOAP Processing, 153
To Transform the SOAP Message into a J]MS Message and Send the JMS Message 154

To Receive the JMS Message, Transform it into a SOAP Message, and ProcessIt.......... 155
Example 2: Publishing SOAP MeSSagesuuiiiiiiii i, 156
Code Samplest 157
Appendix A Administered Object Attributes 163
ConnectionFactory Administered Object i 163
Destination Administered Objects i 165
Endpoint Administered Objects 166
Appendix B Client Error COAesSttt e e 167
X 179

Contents 7

8 Message Queue 3.5 SP1 « Java Client Developer’'s Guide

Figure 1-1
Figure 1-2
Figure 1-3
Figure 4-1
Figure 4-2
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure 6-10
Figure 6-11

List of Figures

Message Queue System Architecturel 29
JMS Programming Objectst 31
Messaging with MDBs 45
Messaging Operationsc.uiiiiiiiiiiieniiii i 66
Message Delivery to Message Queue Client Runtime 67
SOAP Messaging Layersuuiiiiiiiiiiiiiiiiiia 121
SOAP Interoperability i 123
SOAP Message Without Attachments 125
SOAP Message with Attachments i, 126
SOAP Message ObjJectottt 128
Request-Reply Messagingcouiiiiiiiiiiiiiii i 139
One-Way Messagingt 140
SOAP Message Parts 143
SOAP Fault Element 149
Deferring SOAP Processingoiiiiiiiiiiiiiiiiiiii . 153
Publishing a SOAP MeSSagecuuuiiiiiiiiiiiiiiie i, 156

10 Message Queue 3.5 SP1 « Java Client Developer's Guide

Table 1

Table 2

Table 3

Table 4

Table 1-1
Table 1-2
Table 1-3
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5
Table 4-6
Table 4-7
Table 4-8
Table 4-9
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7

List of Tables

Book CONtentsttt e e 18
Document Conventionsouuie ittt i 19
Message Queue Directory Variables oo 20
Message Queue DocumentationSet i 22
JMS-Defined Message Header i, 31
Message Body Typest 32
JMS Programming Objectst 37
jar File Locationso i 48
jar Files Needed in CLASSPATH i e 48
Location of Message Queue Executables 50
Example Programs i 55
Message Server Address Schemes and Syntax 71
Message Server Address Examples i 72
Connection Factory Attributes: Connection Handling 75
Supported Message Queue 3.0 Connection Handling Attributes 76
Connection Factory Attributes: Client Identification 78
Connection Factory Attributes: Message Header Overrides 79
Connection Factory Attributes: Reliability and Flow Control 80
Connection Factory Attributes: Queue Browser Behavior 82
Connection Factory Attributes: J]MS-defined Properties Support 83
Metrics Topic Destinationsc...iiiiiiiiiiiiina 92
Broker Metrics Message Properties i 94
Data in the Body of a Broker Metrics Message, 94
JVM Metrics Message Properties i 95
Data in the Body of a JVM Metrics Messagecoiuiiiiiiiinnaann. 95
Destination-List Message Properties 96
Data in the Body of a Destination-List Metrics Message 97

11

12

Table 5-8
Table 5-9
Table 5-10
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table A-1
Table A-2
Table A-3
Table B-1

Destination Metrics Message Propertieso, 97
Data in the Body of a Destination Metrics Message 98
Starter Checklist for the Message Queue Administrator 118
Inherited Methodso oottt 129
SOAP Administered Object Information, 136
JAXMServlet Methodst e 146
SOAP Faultcode Valuesuuuii it e 150
Connection Factory Attributes i 163
Destination Attributes 165
Endpoint Attributes 166
Message Queue Client Error Codes oo 167

Message Queue 3.5 SP1 « Java Client Developer's Guide

List of Procedures

To Set Up a Client to Produce Messages, 35
To Set Up a Client to Consume MesSagesuuutiiiiutit i, 36
TOStart @ BroKert e 50
ToTest a BroKero e e 50
To Compile and Run the HelloWorldMessage Application................. 54
To Perform a JNDI Lookup of a ConnectionFactory Object 59
To Perform a JNDI Lookup of a Destination Object 60
To Directly Instantiate and Configure a ConnectionFactory Object 62
To Directly Instantiate and Configure a Destination Object 63
To Create and Add an Attachment i i 141
To Transform the SOAP Message into a J]MS Message and Send the JMS Message 154
To Receive the JMS Message, Transform it into a SOAP Message, and ProcessIt 155

13

14 Message Queue 3.5 SP1 ¢ Java Client Developer's Guide

Code Example 3-1
Code Example 3-2
Code Example 3-3
Code Example 5-1
Code Example 5-2
Code Example 5-3
Code Example 5-4
Code Example 5-5
Code Example 5-6
Code Example 5-7
Code Example 5-8
Code Example 5-9
Code Example 5-10
Code Example 5-11
Code Example 5-12
Code Example 6-1
Code Example 6-2
Code Example 6-3
Code Example 6-4
Code Example 6-5
Code Example 6-6
Code Example 6-7
Code Example 6-8

List of Code Examples

Looking Up a ConnectionFactory Object 60
Instantiating a ConnectionFactory Object 62
Instantiating a Destination Object, 63
Syntax for acknow edgeThi sMessage() Method 90
Example of Custom Client Acknowledgement Code 91
Example of Subscribing to a Broker Metrics Topic 101
Example of Processing a Broker Metrics Message 102
Example of Subscribing to the Destination List Metrics Topic........... 103
Example of Processing a Destination List Metrics Message 104
Example of Extracting Destination Information From a Hashtable 105
Example of Subscribing to a Destination Metrics Topic 106
Example of Processing a Destination Metrics Message 107
Example of Command to Configure a Single Broker 111
Example of Command to Configure Parallel Brokers 112
Example of Command to Configure a Broker Cluster.................. 113
Explicit Namespace Declarationso a 131
Adding an Endpoint Administered Object 137
Looking up an Endpoint Administered Object 137
Skeleton Message CONSUMETc.uuiiiniiinineeaiiieenaan, 145
A Simple Ping Message Serviceoiiiiiiiiiiiiii 146
Processinga SOAPMessagecoooiiiiiiiiiiiii .. 147
Sending a JMS Message with a SOAP Payload 157
Receiving a JMS Message with a SOAP Payload 160

15

16 Message Queue 3.5 SP1 « Java Client Developer's Guide

Preface

This book provides information about concepts and procedures for developing
Java™ messaging applications (Java clients) that work with Sun Java™ System
Message Queue (formerly Sun™ ONE Message Queue).

This preface contains the following sections:
¢ “Audience for This Guide” on page 17

¢ “Organization of This Guide” on page 18
¢ “Conventions” on page 19

e “Other Documentation Resources” on page 21

Audience for This Guide

This guide is meant principally for developers of Java applications that exchange
messages using a Message Queue messaging system.

These applications use the Java Message Service (JMS) Application Programming
Interface (API), and possibly the Java XML Messaging (JAXM) AP to create, send,
receive, and read messages. As such, these applications are JMS client and /or
JAXM client applications, respectively. The J]MS and JAXM specifications are open
standards.

This Message Queue Java Client Developer’s Guide assumes that you are familiar with
the JMS APIs and with JMS programming guidelines. Its purpose is to help you
optimize your JMS client applications by making best use of the features and
flexibility of a Message Queue messaging system.

This book assumes no familiarity, however, with the JAXM APIs or with JAXM
programming guidelines. This material is described in Chapter 6, “Working With
SOAP Messages,” and only assumes basic knowledge of XML.

17

Organization of This Guide

Organization of This Guide

This guide is designed to be read from beginning to end. The following table
briefly describes the contents of each chapter:

18

Table 1 Book Contents

Chapter

Description

Chapter 1, “Overview”

Chapter 2, “Quick Start
Tutorial”

Chapter 3, “Using
Administered Objects”

Chapter 4, “Configuring the
Message Queue Client
Runtime”

Chapter 5, “Message
Queue Client
Programming Techniques”

Chapter 6, “Working With
SOAP Messages”

Appendix A, “Administered
Object Attributes”

Appendix B, “Client Error
Codes”

A high level overview of Message Queue and of JMS concepts and
programming issues.

A tutorial that acquaints you with the Message Queue development
environment using a simple example JMS client application.

Describes how to use Message Queue administered objects in both
a provider- independent and provider-specific way.

Explains features of the Message Queue client runtime and how
they can be used to optimize client applications.

Covers a number of topics that illustrate how to write client
applications that use Message Queue-specific features.

Explains how you send and receive SOAP messages with and
without Message Queue support.

Summarizes and documents administered object attributes.

Provides reference information for error codes returned by the
Message Queue client runtime when it raises a JMS exception.

Message Queue 3.5 SP1 « Java Client Developer's Guide

Conventions

Conventions

This section provides information about the conventions used in this document.

Text Conventions

Table 2

Document Conventions

Format

Description

italics

nmonospace

(]

ALL CAPS

Key+Key

Key-Key

Italicized text represents a placeholder. Substitute an appropriate
clause or value where you see italic text. Italicized text is also used
to designate a document title, for emphasis, or for a word or phrase
being introduced.

Monospace text represents example code, commands that you
enter on the command line, directory, file, or path names, error
message text, class names, method names (including all elements
in the signature), package names, reserved words, and URLs.

Square brackets to indicate optional values in a command line
syntax statement.

Text in all capitals represents file system types (GIF, TXT, HTML
and so forth), environment variables (IMQ_HOME), or
abbreviations (JSP).

Simultaneous keystrokes are joined with a plus sign: Ctrl+A means
press both keys simultaneously.

Consecutive keystrokes are joined with a hyphen: Esc-S means
press the Esc key, release it, then press the S key.

Preface 19

Conventions

20

Directory Variable Conventions

Message Queue makes use of three directory variables; how they are set varies
from platform to platform. Table 3 describes these variables and summarizes how
they are used on the Solaris™, Windows, and Linux platforms.

Table 3~ Message Queue Directory Variables

Variable Description

| MQ_HOMVE This is generally used in Message Queue documentation to refer to
the Message Queue base directory (root installation directory):

* On Solaris, there is no root Message Queue installation
directory. Therefore, | M) HOVE is not used in Message Queue
documentation to refer to file locations on Solaris.

» On Solaris, for Sun Java™ System Application Server
(formerly Sun™ ONE Application Server), the root Message
Queue installation directory is /i ng, under the Application
Server base directory.

* On Windows, the root Message Queue installation directory is
set by the Message Queue installer (by default, as C. \ Program
Fi | es\ Sun\ MessageQueue3).

* On Windows, for Sun Java System Application Server, the root
Message Queue installation directory is /i ng, under the
Application Server base directory.

* On Linux, there is no root Message Queue installation directory.
Therefore, | M) HOVE is not used in Message Queue
documentation to refer to file locations on Linux.

| MQ_VARHOVE This is the / var directory in which Message Queue temporary or
dynamically-created configuration and data files are stored. It can
be set as an environment variable to point to any directory.

e On Solaris, | MY VARHOVE defaults to the / var/ i ng directory.

* On Solaris, for Sun Java System Application Server,
| MQ_VARHOME defaults to the | M) HOVE/ var directory.

e On Windows | M) VARHOME defaults to the | M) HOME\ var
directory.

* On Windows, for Sun Java System Application Server,
| MQ_VARHOME defaults to the | M) HOVE\ var directory.

e On Linux, | M) VARHOVE defaults to the / var/ opt /i ng directory.

Message Queue 3.5 SP1 « Java Client Developer's Guide

Other Documentation Resources

Table 3 ~ Message Queue Directory Variables (Continued)

Variable

Description

| MQ_JAVAHOME

This is an environment variable that points to the location of the
Java runtime (JRE) required by Message Queue executables:

On Solaris, | MY JAVAHOVE defaults to the /usr/j 2seljre
directory, but a user can optionally set the value to wherever
the required JRE resides.

On Windows, | M) JAVAHOME defaults to | M) HOVE\j re, but a
user can optionally set the value to wherever the required JRE
resides.

On Linux, Message Queue first looks for the Java runtime in the
[usr/javalj 2sdkVersion directory, and then looks in the

[usr/javalj 2reVersion directory, but a user can optionally set
the value of | MQ_JAVAHOME to wherever the required JRE
resides.

In this guide, | MY HOMVE, | M) VARHOME, and | MQ JAVAHOME are shown without
platform-specific environment variable notation or syntax (for example, $| M) HOVE
on UNIX). Path names generally use UNIX directory separator notation (/).

Other Documentation Resources

In addition to this guide, Message Queue provides additional documentation

resources.

Preface 21

Other Documentation Resources

The Message Queue Documentation Set

The documents that comprise the Message Queue documentation set are listed in
Table 4 in the order in which you would normally use them.

Table 4 Message Queue Documentation Set

Document Audience Description
Message Queue Installation Guide Developers and Explains how to install Message
administrators Queue software on Solaris, Linux, and
Windows platforms.
Message Queue Release Notes Developers and Includes descriptions of new features,
administrators limitations, and known bugs, as well
as technical notes.
Message Queue Java Client Developers Provides a quick-start tutorial and
Developer’s Guide programming information for

developers of Java client programs
using the Message Queue
implementation of the JMS and
SOAP/JAXM specifications.

Message Queue C Client Developers Provides programming and reference

Developer’s Guide documentation for developers of C
client programs using the C interface
(C-API) to the Message Queue

service.
Message Queue Administration Administrators, also Provides background and information
Guide recommended for needed to perform administration
developers tasks using Message Queue

administration tools.

JavaDoc

JMS and Message Queue API documentation in JavaDoc format is provided at the
following location:

Platform Location

Solaris [usr/share/javadoc/ i ng/index. ht m
Linux [opt/ing/javadoc/index. htm/
Windows | M) HOWE j avadoc/ i ndex. ht n

22 Message Queue 3.5 SP1 « Java Client Developer's Guide

Other Documentation Resources

This documentation can be viewed in any HTML browser such as Netscape or
Internet Explorer. It includes standard JMS API documentation as well as Message
Queue-specific APIs for Message Queue administered objects (see Chapter 3,
“Using Administered Objects”).

Example Client Applications

A number of example applications that provide sample Java client application code
are included in the following directories:

Platform Location

Solaris [usr/ deno/ i no/
Linux [opt /i ngy/ dero/
Windows | MQ_HOMVE\ deno\

See the README file located in that directory and in each of its subdirectories.

The Java Message Service (JMS) Specification

The JMS specification can be found at the following location:
http://java. sun. con product s/ j ns/ docs. ht m

The specification includes sample client code.

The Java XML Messaging (JAXM) Specification

The JAXM specification can be found at the following location:
http://java. sun. com xm / downl oads/ j axm ht n

The specification includes sample client code.

Preface 23

http://java.sun.com/products/jms/docs.html
http://java.sun.com/xml/downloads/jaxm.html

Other Documentation Resources

Books on JMS Programming

For background on using the JMS API, you can consult the following
publicly-available books:

* Java Message Service by Richard Monson-Haefel and David A. Chappell,
O'Reilly and Associates, Inc., Sebastopol, CA

* Professional JMS by Scott Grant, Michael P. Kovacs, Meeraj Kunnumpurath,
Silvano Maffeis, K. Scott Morrison, Gopalan Suresh Raj, Paul Giotta, and James
McGovern, Wrox Press Inc., ISBN: 1861004931

* Practical Java Message Service by Tarak Modi, Manning Publications, ISBN:
1930110138

24 Message Queue 3.5 SP1 « Java Client Developer's Guide

Chapter 1

Overview

This chapter provides an overall introduction to Sun Java™ System Message
Queue (formerly Sun™ ONE Message Queue) and to JMS concepts and
programming issues of interest to developers.

The chapter covers the following topics:

¢ “What Is Sun Java System Message Queue?” on page 25

¢ “Product Editions” on page 27

¢ “Message Queue Service Architecture” on page 28

e “The JMS Programming Model” on page 30

e “JMS Client Design Issues” on page 36

e “JMS/]J2EE Programming: Message-Driven Beans” on page 43

What Is Sun Java System Message Queue?

The Message Queue product is a standards-based solution for reliable,
asynchronous messaging for distributed applications. Message Queue is an
enterprise messaging system that implements the Java™ Message Service (JMS)
open standard: in fact it serves as the JMS Reference Implementation. However
Message Queue is also a full-featured JMS provider with enterprise-strength
features.

The JMS specification describes a set of messaging semantics and behaviors, and an
application programming interface (API), that provide a common way for Java
language applications to create, send, receive, and read messages in a distributed
environment (see “The JMS Programming Model” on page 30). In addition to
supporting Java messaging applications, Message Queue also provides a C
language interface to the Message Queue service (the Message Queue C-API).

25

What Is Sun Java System Message Queue?

26

With Sun Java System Message Queue software, processes running on different
platforms and operating systems can connect to a common Message Queue service
to send and receive information. Application developers are free to focus on the
business logic of their applications, rather than on the low-level details of how their
applications reliably communicate across a network.

Message Queue has features that exceed the minimum requirements of the JMS
specification. Among these features are the following:

Centralized administration. Provides both command-line and GUI tools for
administering a Message Queue service and managing application-dependent
entities, such as destinations, transactions, durable subscriptions, and security.
Message Queue also supports remote monitoring of the Message Queue service.

Scalable message service. Allows you to service increasing numbers of Message
Queue clients (components or applications) by balancing the load among a number
of Message Queue message server components (brokers) working in tandem
(multi-broker cluster).

Client connection failover. Automatically restores a failed client connection to a
Message Queue message server.

Tunable performance. Lets you increase performance of the Message Queue
service when less reliability of delivery is acceptable.

Multiple transports. Supports the ability of Message Queue clients to
communicate with the Message Queue message server over a number of different
transports, including TCP and HTTP, and using secure (SSL) connections.

JNDI support. Supports both file-based and LDAP implementations of the Java
Naming and Directory Interface (JNDI) as object stores and user repositories.

SOAP messaging support. Supports creation and delivery of SOAP
messages—messages that conform to the Simple Object Access Protocol (SOAP)
specification— via JMS messaging. SOAP allows for the exchange of structured
XML data between peers in a distributed environment. See the Chapter 6,
“Working With SOAP Messages” for more information.

See the Message Queue Administration Guide for documentation of JMS
compliance-related issues.

Message Queue 3.5 SP1 « Java Client Developer's Guide

Product Editions

Product Editions

Sun Java System Message Queue is available in two editions: Platform and
Enterprise—each corresponding to a different feature set and licensed capacity, as
described below. (Instructions for upgrading Message Queue from one edition to
another are in the Message Queue Installation Guide.)

Platform Edition

This edition can be downloaded free from the Sun website and is also bundled with
the Sun Java™ System Application Server platform. The Platform Edition places no
limit on the number of client connections supported by the Message Queue
message server. It comes with two licenses, as described below:

a basic license. This license provides basic JMS support (it’s a full J]MS
provider), but does not include such enterprise features as load balancing
(multi-broker message service), HTTP/HTTPS connections, secure connection
services, scalable connection capability, client connection failover, queue
delivery to multiple consumers, remote message-based monitoring, and C-API
support. The license has an unlimited duration, and can therefore be used in
less demanding production environments.

a 90-day trial enterprise license. This license includes all enterprise features
(such as support for multi-broker message services, HTTP/HTTPS
connections, secure connection services, scalable connection capability, client
connection failover, queue delivery to multiple consumers, remote
message-based monitoring, and C-API support) not included in the basic
license. However, the license has a limited 90-day duration enforced by the
software, making it suitable for evaluating the enterprise features available in
the Enterprise Edition of the product (see “Enterprise Edition”).

NOTE The 90-day trial license can be enabled by starting the Message
Queue service—a broker instance—with the - | i cense command
line option (see the Message Queue Administration Guide) and
passing “t ry” as the license to use:

i mgbrokerd -1icense try

You must use this option each time you start the broker instance,
otherwise it defaults back to the basic Platform Edition license.

Chapter1 Overview 27

Message Queue Service Architecture

Enterprise Edition

This edition is for deploying and running messaging applications in a production
environment. It includes support for multi-broker message services, HTTP/HTTPS
connections, secure connection services, scalable connection capability, client
connection failover, queue delivery to multiple consumers, remote message-based
monitoring, and C-API support. You can also use the Enterprise Edition for
developing, debugging, and load testing messaging applications and components.
The Enterprise Edition has an unlimited duration license that places no limit on the
number of brokers in a multi-broker message service, but is based on the number
of CPUs that are used.

NOTE For all editions of Message Queue, a portion of the product—the
client runtime—can be freely redistributed for commercial use. All
other files in the product cannot be redistributed. The portion that
can be freely redistributed allows a licensee to develop a Java client
application (one which can be connected to a Message Queue
service) that can be sold to a third party without incurring any
Message Queue licensing fees. The third party will either need to
purchase Message Queue to access a Message Queue service or
make a connection to yet another party that has a Message Queue
service installed and running.

Message Queue Service Architecture

28

This section briefly describes the main parts of a Message Queue service. While as a
developer, you do not need to be familiar with the details of all of these parts or
how they interact, a high-level understanding of the basic architecture will help
you understand features of the system that impact client application design and
development.

The main parts of a Message Queue service, shown in Figure 1-1, are the following:

Message Queue server The Message Queue server is the heart of a messaging
system. It consists of one or more brokers which provide delivery services for the
system. These services include connections to clients, message routing and
delivery, persistence, security, and logging. The message server maintains physical
destinations to which clients send messages, and from which the messages are
delivered to consuming clients. The Message Queue server is described in detail in
the Message Queue Administration Guide.

Message Queue 3.5 SP1 « Java Client Developer's Guide

Message Queue Service Architecture

Message Queue client runtime The Message Queue client runtime provides
clients with an interface to the Message Queue service—it supplies clients with all
the JMS programming objects introduced in “The JMS Programming Model” on
page 30. It supports all operations needed for clients to send messages to
destinations and to receive messages from such destinations. The Message Queue
client runtime is described in detail in Chapter 4, “Configuring the Message Queue
Client Runtime.”

Figure 1-1 Message Queue System Architecture

Message Queue
Messaging System

Message Queue
Client

Message Queue
Message Queue Message Server

Client Runtime X |

Administered
Objects

Brokers

N

©)

Object Store

Destinations

Message Queue
Administration

Message Queue administered objects Administered Objects encapsulate
provider-specific implementation and configuration information in objects that are
used by Message Queue clients. Administered objects are generally created and
configured by an administrator, stored in a name service, accessed by clients
through standard JNDI lookup code, and then used in a provider-independent
manner. They can also be instantiated by clients, in which case they are used in a
provider-specific manner. Configuration of the client runtime is performed
through administered object attributes, as described in Chapter 4, “Configuring the
Message Queue Client Runtime.”

Chapter1 Overview 29

The JMS Programming Model

Message Queue administration Message Queue provides a number of
administration tools for managing a Message Queue service. These tools are used
to manage the message server, create and store administered objects, manage
security, manage messaging application resources, and manage persistent data.
These tools are generally used by administrators and are described in the Message
Queue Administration Guide.

The JMS Programming Model

30

This section briefly describes the programming model of the JMS specification. It is
meant as a review of the most important concepts and terminology used in
programming JMS clients.

JMS Programming Interface

In the JMS programming model, JMS clients (components or applications) interact
using a JMS application programming interface (API) to send and receive
messages. This section introduces the objects that implement the JMS API and that
are used to set up a client for delivery of messages (see “JMS Client Setup
Operations” on page 35). The main interface objects are shown in Figure 1-2 and
described in the following paragraphs.

Message

In the Message Queue product, data is exchanged using JMS messages—messages
that conform to the JMS specification. According to the JMS specification, a
message is composed of three parts: a header, properties, and a body.

Properties are optional—they provide values that clients can use to filter messages.
A body is also optional—it contains the actual data to be exchanged.

Message Queue 3.5 SP1 « Java Client Developer's Guide

Figure 1-2 JMS Programming Objects

JMS Client

ConnectionFactory

Connection Message

Sessions

@ MessageProducers

The JMS Programming Model

JMS
Message Service

Message
Routing and
Delivery

Destinations

MessageConsumers

MessageListener

Header

Physical Destinations

A header is required of every message. Header fields contain values used for

routing and identifying messages.

Some header field values are set automatically by Message Queue during the
process of producing and delivering a message, some depend on settings of

message producers specified when the message producers are created in the client,
and others are set on a message by message basis by the client using JMS APIs. The
following table lists the header fields defined (and required) by JMS, as well as how

they are set.

Table 1-1 JMS-Defined Message Header

Header Field Set By: Default

J\VBDest i nation Client, for each message producer or
message

JVBDel i ver yMode Client, for each message producer or Persi st ent
message

JMBExpi rati on Client, for each message producer or time to live is 0
message (no expiration)

JMBPriority Client, for each message producer or 4 (normal)
message

JMSMessagel D Provider, automatically

Chapter 1 Overview

31

The JMS Programming Model

32

Table 1-1 JMS-Defined Message Header (Continued)

Header Field Set By: Default
JNVBTI mest anp Provider, automatically

JVMBRedel i ver ed Provider, automatically

JMsCorrel ationl D Client, for each message

JVBRepl yTo Client, for each message

JMBType Client, for each message

Properties

When data is sent between two processes, other information besides the payload
data can be sent with it. These descriptive fields, or properties, can provide
additional information about the data, including which process created it, the time
it was created, and information that uniquely identifies the structure of each piece
of data. Properties (which can be thought of as an extension of the header) consist
of property name and property value pairs, as specified by JMS client code.

Having registered an interest in a particular destination, consuming clients can
fine-tune their selection by specifying certain property values as selection criteria.
For instance, a client might indicate an interest in Payroll messages (rather than
Facilities) but only Payroll items concerning part-time employees located in New
Jersey. Messages that do not meet the specified criteria are not delivered to the
consumer.

Message Body Types

JMS specifies six classes (or types) of messages that a JMS provider must support,
as described in the following table:

Table 1-2 Message Body Types

Type Description
Message A message without a message body.
StreamMessage A message whose body contains a stream of Java primitive values.

Itis filled and read sequentially.

MapMessage A message whose body contains a set of name-value pairs. The
order of entries is not defined.

TextMessage A message whose body contains a Java string, for example an
XML message.

Message Queue 3.5 SP1 « Java Client Developer's Guide

The JMS Programming Model

Table 1-2 Message Body Types (Continued)

Type Description

ObjectMessage A message whose body contains a serialized Java object.
BytesMessage A message whose body contains a stream of uninterpreted bytes.
Destination

A Destinationis a JMS administered object (see “Administered Objects” on

page 34) that identifies a physical destination in a J]MS message service. A physical
destination is a JMS message service entity to which producers send messages and
from which consumers receive messages. The message service provides the routing
and delivery for messages sent to a physical destination. A Desti nati on
administered object encapsulates provider-specific naming conventions for
physical destinations. This lets clients be provider independent.

ConnectionFactory

A Connect i onFact ory is a JMS administered object (see “Administered Objects” on
page 34) that encapsulates provider-specific connection configuration information.
A client uses it to create a connection over which messages are delivered. J]MS
administered objects can either be acquired through a Java Naming and Directory
Service (JNDI) lookup or directly instantiated using provider-specific classes.

Connection

A Connect i on is a client’s active connection to a JMS message service. Both
allocation of communication resources and authentication of a client take place
when a connection is created. Hence it is a relatively heavy-weight object, and most
clients do all their messaging with a single connection. A connection is used to
create sessions.

Session

A Sessi on is a single-threaded context for producing and consuming messages.
While there is no restriction on the number of threads that can use a session, the
session should not be used concurrently by multiple threads. It is used to create the
message producers and consumers that send and receive messages, and defines a
serial order for the messages it delivers. A session supports reliable delivery
through a number of acknowledgement options or by using transactions. A
transacted session can combine a series of sequential operations into a single
transaction that can span a number of producers and consumers.

Chapter1 Overview 33

The JMS Programming Model

34

Message Producer

A client uses a MessagePr oducer to send messages to a physical destination. A
MessagePr oducer object is normally created by passing a Desti nati on
administered object to a session’s methods for creating a message producer. (If you
create a message producer that does not reference a specific destination, then you
must specify a destination for each message you produce.) A client can specify a
default delivery mode, priority, and time-to-live for a message producer. These
values govern all messages sent by a producer, except when explicitly over-ridden.

Message Consumer

A client uses a MessageConsuner to receive messages from a physical destination. It
is created by passing a Dest i nat i on administered object to a session’s methods for
creating a message consumer. A message consumer can have a message selector
that allows the message service to deliver only those messages that match the
selection criteria. A message consumer can support either synchronous or
asynchronous consumption of messages (see “Message Consumption:
Synchronous and Asynchronous” on page 42).

Message Listener

A client uses a MessagelLi st ener object to consume messages asynchronously. The
MessageListener is registered with a message consumer. A client consumes a
message when a session thread invokes the onMessage() method of the

Messageli st ener object.

Administered Objects

The JMS specification facilitates provider-independent clients by specifying
administered objects that encapsulate provider-specific configuration information.

Two of the objects described in the “The JMS Programming Model” on page 30
depend on how a JMS provider implements a J]MS message service. The connection
factory object depends on the underlying protocols and mechanisms used by the
provider to deliver messages, and the destination object depends on the specific
naming conventions and capabilities of the physical destinations used by the
provider.

Normally these provider-specific characteristics would make client code
dependent on a specific JMS implementation. However, the JMS specification
requires that provider-specific implementation and configuration information be
encapsulated in connection factory and destination objects that can then be
accessed in a standardized, non-provider-specific way.

Message Queue 3.5 SP1 « Java Client Developer's Guide

The JMS Programming Model

Administered objects are created and configured by an administrator, stored in a
name service, and accessed by clients through standard Java Naming and
Directory Service (JNDI) lookup code. Using administered objects in this way
makes client code provider-independent.

The two types of administered objects, connection factories and destinations,
encapsulate provider-specific information, but they have very different uses within
a client. A connection factory is used to create connections to the message server,
while destination objects are used to identify physical destinations.

For more information on administered objects, see Chapter 3, “Using Administered
Objects.”

JMS Client Setup Operations

There is a general approach within the JMS programming model for setting up a
JMS client to produce or consume messages. It uses the JMS programming interface
objects described in the previous section.

The general procedures for producing and consuming messages are introduced
below. The procedures have a number of common steps which need not be
duplicated if a client is both producing and consuming messages.

To Set Up a Client to Produce Messages

1. Use]NDI to find a Connect i onFact ory object. (You can also directly instantiate
a Connect i onFact ory object and set its attribute values.)

2. Use the Connect i onFact ory object to create a Connect i on object.
3. Use the Connect i on object to create one or more Sessi on objects.

4. Use JNDI to find one or more Dest i nat i on objects. (You can also directly
instantiate a Dest i nat i on object and set its name attribute.)

5. Use a Sessi on object and a Dest i nat i on object to create any needed
MessagePr oducer objects. (You can create a MessagePr oducer object without
specifying a Dest i nat i on object, but then you have to specify a Desti nati on
object for each message that you produce.)

At this point the client has the basic setup needed to produce messages.

Chapter1 Overview 35

JMS Client Design Issues

[J To Set Up a Client to Consume Messages

1. Use]JNDI to find a Connect i onFact or y object. (You can also directly instantiate
a Connect i onFact or y object and set its attribute values.)

2. Use the Connect i onFact ory object to create a Connect i on object.
3. Use the Connect i on object to create one or more Sessi on objects.

4. Use JNDI to find one or more Dest i nat i on objects. (You can also directly
instantiate a Dest i nat i on object and set its name attribute.)

5. Use a Sessi on object and a Dest i nat i on object to create any needed
MessageConsuner objects.

6. If needed, instantiate a MessagelLi st ener object and register it with a
MessageConsuner object.

7. Tell the Connect i on object to start delivery of messages. This allows messages
to be delivered to the client for consumption.

At this point the client has the basic setup needed to consume messages.

JMS Client Design Issues

36

This section is a review of a number of JMS messaging issues that impact JMS client
design.

Programming Domains

JMS supports two distinct message delivery models: point-to-point and
publish/subscribe.

Point-to-Point (Queue Destinations) A message is delivered from a producer to
one consumer. In this delivery model, the destination is a queue. Messages are first
delivered to the queue destination, then delivered from the queue, one at a time,
depending on the queue’s delivery policy (see Chapter 2 in the Message Queue
Administration Guide), to one of the consumers registered for the queue. Any
number of producers can send messages to a queue destination, but each message
is guaranteed to be delivered to—and successfully consumed by—only one
consumer. If there are no consumers registered for a queue destination, the queue
holds messages it receives, and delivers them when a consumer registers for the
queue.

Message Queue 3.5 SP1 « Java Client Developer's Guide

JMS Client Design Issues

Publish/Subscribe (Topic destinations) A message is delivered from a producer
to any number of consumers. In this delivery model, the destination is a topic.
Messages are first delivered to the topic destination, then delivered to all active
consumers that have subscribed to the topic. Any number of producers can send
messages to a topic destination, and each message can be delivered to any number
of subscribed consumers. Topic destinations also support the notion of durable
subscriptions. A durable subscription represents a consumer that is registered with
the topic destination but can be inactive at the time that messages are delivered.
When the consumer subsequently becomes active, it receives the messages. If there
are no consumers registered for a topic destination, the topic does not hold
messages it receives, unless it has durable subscriptions for inactive consumers.

These two message delivery models are handled using different API objects—with
slightly different semantics—representing different programming domains, as
shown in Table 1-3.

Table 1-3 JMS Programming Objects

Base Type Point-to-Point Domain Publish/Subscribe
(Unified Domain) Domain

Destination (Queue or Topic)* Queue Topic
ConnectionFactory QueueConnect