
Sun Java™ System

Identity Server
 Federation Management Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817-6362-10

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.
Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.
THIS PRODUCT CONTAINS CONFIDENTIAL INFORMATION AND TRADE SECRETS OF SUN MICROSYSTEMS, INC. USE, DISCLOSURE
OR REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEN PERMISSION OF SUN MICROSYSTEMS, INC.
U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.
This distribution may include materials developed by third parties.
Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the
U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.
Sun, Sun Microsystems, the Sun logo, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, the Duke logo,
the Java Coffee Cup logo, the Solaris logo, the SunTone Certified logo and the Sun ONE logo are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries.
All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.
Legato and the Legato logo are registered trademarks, and Legato NetWorker, are trademarks or registered trademarks of Legato Systems, Inc.
The Netscape Communications Corp logo is a trademark or registered trademark of Netscape Communications Corporation.
The OPEN LOOK and Sun(TM) Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun
holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN
LOOK GUIs and otherwise comply with Sun's written license agreements.
Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct
or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists,
including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.
DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2004 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.
Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l'adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et dans les
autres pays.
CE PRODUIT CONTIENT DES INFORMATIONS CONFIDENTIELLES ET DES SECRETS COMMERCIAUX DE SUN MICROSYSTEMS, INC.
SON UTILISATION, SA DIVULGATION ET SA REPRODUCTION SONT INTERDITES SANS L AUTORISATION EXPRESSE, ECRITE ET
PREALABLE DE SUN MICROSYSTEMS, INC.
Cette distribution peut comprendre des composants développés par des tierces parties.
Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company, Ltd.
Sun, Sun Microsystems, le logo Sun, Java, Solaris, JDK, Java Naming and Directory Interface, JavaMail, JavaHelp, J2SE, iPlanet, le logo Duke, le
logo Java Coffee Cup, le logo Solaris, le logo SunTone Certified et le logo Sun[tm] ONE sont des marques de fabrique ou des marques déposées
de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.
Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux
Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.
Legato, le logo Legato, et Legato NetWorker sont des marques de fabrique ou des marques déposées de Legato Systems, Inc. Le logo Netscape
Communications Corp est une marque de fabrique ou une marque déposée de Netscape Communications Corporation.
L'interface d'utilisation graphique OPEN LOOK et Sun(TM) a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique
pour l'industrie de l'informatique. Sun détient une license non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l'interface d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux
licences écrites de Sun.
Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales,
ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime, directement ou
indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou vers des entites
figurant sur les listes d'exclusion d'exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui font objet d'un
ordre de ne pas participer, d'une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la legislation
americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement interdites.
LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L'ABSENCE DE CONTREFACON.

3

Contents

About This Guide . 7

Audience for This Guide . 7
Identity Server 2004Q2 Documentation Set . 8

Identity Server Core Documentation . 8
Identity Server Policy Agent Documentation . 9

Your Feedback on the Documentation . 10
Documentation Conventions Used in This Guide . 10

Typographic Conventions . 10
Terminology . 11

Related Information . 12
Related Third-Party Web Site References . 13

Chapter 1 Introduction to Identity Federation and the Web Services Framework 15
The Need for Federated Identities . 15
The Liberty Alliance Project . 16
The Circle of Trust . 17
Federation Management Architecture . 18

Identity Federation Framework . 18
Identity Web Services Framework . 19
Identity Service Instance Specifications . 22
Supporting Components . 22

The Federation Management Process . 22
Federation Single Sign-On Process . 23
Pre-Login Process . 23
System Flow . 26

Chapter 2 Creating a Liberty Web Services Environment . 29
Installing Identity Server . 30
Deploying the Service Provider . 30

To Upload the Metadata for the Service Provider . 31

4 Identity Server 2004Q2 • Federation Management Guide

To Configure the Service Provider . 31
To Deploy the Service Provider.WAR File . 31

If Identity Server is installed on Sun Java System Web Server . 32
If Identity Server is installed on Sun Java System Application Server 33

Deploying the Identity Provider . 33
To Upload the Metadata for the Identity Provider . 34
To Configure the Identity Provider . 34
To Deploy the Identity Provider .WAR File . 34

If Identity Server is installed on Sun Java System Web Server . 35
If Identity Server is installed on Sun Java System Application Server 35

(Optional) Configuring a Third Level Domain . 36
To Configure a Third-Level Domain . 36

Verifying a Successful Liberty Setup . 36
To Federate Service Provider and Identity Provider Accounts . 37
To Perform a Single Sign-On . 38
To Perform a Single Logout . 38
To Terminate Account Federation . 38

Deploying a Web Service Consumer . 38
The Web Service Consumer Example . 39
Configuring the Service Provider . 40
Configuring the Identity Provider . 42
Running the Web Service Consumer Sample . 42

To Run the Web Service Client Sample . 43
Interacting with the Personal Profile Service . 44
X.509 Message Authentication . 46

Setup . 46
To test X.509 Message Authentication in discovery service . 46
To test X.509 Message Authentication in Personal Profile Service, . 47
To test SSL (urn:liberty:security:2003-08:TLS:X509), . 47

Chapter 3 Federation Management . 49
Overview of Authentication Domains and Providers . 49
Managing Authentication Domains . 50

To Create An Authentication Domain . 50
To Modify An Authentication Domain . 51
To Delete An Authentication Domain . 51

Managing Entity Descriptors . 51
Creating and Managing Providers . 52

To Create a Container Entity . 52
To Create and Manage a Provider Descriptor . 52

Creating and Managing Affiliates . 57
To Create an Affiliate Entity . 57
To Manage an Affiliate Descriptor . 58

Contents 5

To Add a Contact Person and Organization . 59
Deleting Entity Descriptors . 60

Managing Resource Offerings . 60
To Define Resource Offering . 61

Adding a New Liberty Web Service . 64
An Employee Profile Service Example . 64
Developing the Server-Side Code . 65
Configuring the Service Schema . 65
Setting Up the Back-End Data Store . 67

To Set up the Back-End Data Store . 67
Deploying the Service on the Identity Provider . 68

To Deploy the Service . 68
Deploying the Client on the Service Provider . 69

To Deploy the Client . 69
Running the Web Service Client . 71

Constructing a PAOS Request and Response . 72
To Run the Sample PAOS Program . 73

Chapter 4 Service Configuration Attributes . 75
Discovery Service Attributes . 75
Liberty Personal Profile Service Attributes . 77
SOAP Binding Service Attributes . 80

Chapter 5 Using the Web Services Client APIs . 83
Federation Packages and Global Interfaces . 84
Trusted Authority . 85

Security Token Manager . 85
SOAP Binding . 86

Plugin a new Web Service Provider . 87
Authorization . 88

Creating an SSO Token . 88
Creating a Policy . 88

Discovery Service . 89
Authorizer . 89
DefaultDiscoAuthorizer . 89
ResourceIDMapper . 89
DiscoEntryHandler . 90

Client APIs . 91
Data Services Template . 91

Client APIs . 92
Personal Profile Service . 92

How It Works . 93

6 Identity Server 2004Q2 • Federation Management Guide

Notes on Customizing the Personal Profile Service . 93
Attribute Mapping . 94
Authorization . 94
Containers . 95
Extensions . 96
Rewriting the whole service . 96

Interaction Service . 97
Metadata Specifications . 98

External component dependency . 98
PAOS . 98

PAOS APIs . 99

Glossary . 101

Index . 103

7

About This Guide

The Sun Java™ System Identity Server Federation Management Guide provides
information about the Federated Management module of Identity Server 2004Q2
(formerly Sun™ ONE Identity Server). It includes an introduction to federation
management and Identity Server’s compliance to Liberty Alliance specifications.
Instructions for enabling a Liberty II environment, and summaries of the APIs you
can use to extend the Federation Management framework are also provided in this
guide.

This preface includes the following topics:

• “Audience for This Guide” on page 7

• “Identity Server 2004Q2 Documentation Set” on page 8

• “Documentation Conventions Used in This Guide” on page 10

• “Related Information” on page 12

• “Related Third-Party Web Site References” on page 13

Audience for This Guide
This Federation Management Guide is intended for use by IT administrators and
software developers who implement an integrated identity management and web
access platform using Sun Java System servers and software. It is recommended
that administrators understand the following technologies:

• Lightweight Directory Access Protocol (LDAP)

• Java™ technology

• JavaServer Pages™ (JSP) technology

Identity Server 2004Q2 Documentation Set

8 Identity Server 2004Q2 • Federation Management Guide

• HyperText Transfer Protocol (HTTP)

• HyperText Markup Language (HTML)

• eXtensible Markup Language (XML)

Because Sun Java System Directory Server is used as the data store in an Identity
Server deployment, administrators should also be familiar with the documentation
provided with that product. The latest Directory Server documentation can be
accessed online.

Identity Server 2004Q2 Documentation Set
The Identity Server documentation includes two sets:

• Identity Server Core Documentation

• Identity Server Policy Agent Documentation

Identity Server Core Documentation
The Identity Server documentation set contains the following titles:

• Technical Overview (http://docs.sun.com/doc/817-5706) provides a high-level
overview of how Identity Server components work together to consolidate
identity management and to protect enterprise assets and web-based
applications. It also explains basic Identity Server concepts and terminology.

• Migration Guide (http://docs.sun.com/doc/817-5708) provides details on how
to migrate existing data and Sun Java System product deployments to the latest
version of Identity Server. (For instructions about installing Identity Server and
other products, see the Sun Java Enterprise System 2004Q2 Installation Guide
(http://docs.sun.com/doc/817-5760).

• Administration Guide (http://docs.sun.com/doc/817-5709) describes how to use
the Identity Server console as well as manage user and service data via the
command line.

• Deployment Planning Guide (http://docs.sun.com/doc/817-5707) provides
information on planning an Identity Server deployment within an existing
information technology infrastructure.

Identity Server 2004Q2 Documentation Set

About This Guide 9

• Developer’s Guide (http://docs.sun.com/doc/817-5710) offers information on
how to customize Identity Server and integrate its functionality into an
organization’s current technical infrastructure. It also contains details about the
programmatic aspects of the product and its API.

• Developer’s Reference (http://docs.sun.com/doc/817-5711) provides summaries
of data types, structures, and functions that make up the public Identity Server
C APIs.

• Federation Management Guide (http://docs.sun.com/doc/817-6362) provides
information about Federation Management, which is based on the Liberty
Alliance Project.

• The Release Notes (http://docs.sun.com/doc/817-5712) will be available online
after the product is released. They gather an assortment of last-minute
information, including a description of what is new in this current release,
known problems and limitations, installation notes, and how to report issues
with the software or the documentation.

Updates to the Release Notes and links to modifications of the core documentation
can be found on the Identity Server page at the Sun Java System documentation
web site (http://docs.sun.com/prod/entsys.04q2). Updated documents will be
marked with a revision date.

Identity Server Policy Agent Documentation
Policy agents for Identity Server documents are available on this Web site:

http://docs.sun.com/coll/S1_IdServPolicyAgent_21

Policy agents for Identity Server are available on a different schedule than the
server product itself. Therefore, the documentation set for the policy agents is
available outside the core set of Identity Server documentation. The following titles
are included in the set:

• Web Policy Agents Guide documents how to install and configure an Identity
Server policy agent on various web and proxy servers. It also includes
troubleshooting and information specific to each agent.

• J2EE Policy Agents Guide documents how to install and configure an Identity
Server policy agent that can protect a variety of hosted J2EE applications. It
also includes troubleshooting and information specific to each agent.

Your Feedback on the Documentation

10 Identity Server 2004Q2 • Federation Management Guide

• The Release Notes will be available online after the set of agents is released.
There is generally one Release Notes file for each agent type release. The Release
Notes gather an assortment of last-minute information, including a description
of what is new in this current release, known problems and limitations,
installation notes, and how to report issues with the software or the
documentation.

Updates to the Release Notes and modifications to the policy agent documentation
can be found on the Policy Agents page at the Sun Java System documentation web
site. Updated documents will be marked with a revision date.

Your Feedback on the Documentation
Sun Microsystems and the Identity Server technical writers are interested in
improving this documentation and welcomes your comments and suggestions.
Use the following web-based form to provide feedback to us:

http://www.sun.com/hwdocs/feedback/

Please provide the full document title and part number in the appropriate fields.
The part number can be found on the title page of the book or at the top of the
document, and is usually a seven or nine digit number. For example, the part
number of the Federation Management Guide is 817-6362.

Documentation Conventions Used in This Guide
In the Identity Server documentation, certain typographic conventions and
terminology are used. These conventions are described in the following sections.

Typographic Conventions
This book uses the following typographic conventions:

• Italic type is used within text for book titles, new terminology, emphasis, and
words used in the literal sense.

• Monospace font is used for sample code and code listings, API and language
elements (such as function names and class names), filenames, pathnames,
directory names, HTML tags, and any text that must be typed on the screen.

Documentation Conventions Used in This Guide

About This Guide 11

• Italic serif font is used within code and code fragments to indicate variable
placeholders. For example, the following command uses filename as a variable
placeholder for an argument to the gunzip command:

gunzip -d filename.tar.gz

Terminology
The following terms are used in the Identity Server documentation set:

• Identity Server refers to Identity Server and any installed instances of the
Identity Server software.

• Policy and Management services refers to the collective set of Identity Server
components and software that are installed and running on a dedicated
deployment container such as a web server.

• Directory Server refers to an installed instance of Sun Java System Directory
Server.

• Application Server refers to an installed instance of Sun Java System Application
Server (also known as Sun ONE Application Server.)

• Web Server refers to an installed instance of Sun Java System Web Server (also
known as Sun ONE Web Server).

• Web container that runs Identity Server refers to the dedicated J2EE container
(such as Web Server or Application Server) where the Policy and Management
Services are installed.

• IdentityServer_base represents the base installation directory for Identity Server.
The Identity Server 2004Q2 default base installation and product directory
depends on your specific platform:

❍ Solaris™ systems: /opt/SUNWam

❍ Linux systems: /opt/sun/identity

The product directory is /SUNWam for Solaris systems and /identity for Linux
systems. When you install Identity Server 2004Q2, you can specify a different
directory for /opt on Solaris systems or /opt/sun on Linux systems; however,
do not change the /SUNWam or /identity product directory.

For the base installation directory of the following products, refer to the
documentation for the specific product.

Related Information

12 Identity Server 2004Q2 • Federation Management Guide

• DirectoryServer_base represents the base installation directory for Sun Java
System Directory Server.

• ApplicationServer_base is a variable place holder for the home directory for Sun
Java System Application Server.

• WebServer_base is a variable place holder for the home directory for Sun Java
System Web Server.

Related Information
Useful information can be found at the following locations:

• Directory Server documentation:
http://docs.sun.com/coll/DirectoryServer_04q2

• Web Server documentation:
http://docs.sun.com/coll/S1_websvr61_en

• Application Server documentation
http://docs.sun.com/coll/s1_asseu3_en

• Web Proxy Server documentation:
http://docs.sun.com/prod/s1.webproxys#hic

• Download Center:
http://wwws.sun.com/software/download/

• Technical Support:
http://www.sun.com/service/sunone/software/index.html

• Professional Services:
http://www.sun.com/service/sunps/sunone/index.html

• Sun Enterprise Services, Solaris Patches, and Support:

http://sunsolve.sun.com/

• Developer Information:
http://developers.sun.com/prodtech/index.html

Related Third-Party Web Site References

About This Guide 13

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related
information.

Sun is not responsible for the availability of third-party Web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites
or resources. Sun will not be responsible or liable for any actual or alleged damage
or loss caused by or in connection with the use of or reliance on any such content,
goods, or services that are available on or through such sites or resources.

Related Third-Party Web Site References

14 Identity Server 2004Q2 • Federation Management Guide

15

Chapter 1

Introduction to Identity Federation
and the Web Services Framework

This chapter explains the concept of identity federation, and describes the role of
the Federation Management module in Sun™ Java System Identity Server 2004Q2.

• “The Need for Federated Identities” on page 15

• “The Liberty Alliance Project” on page 16

• “The Circle of Trust” on page 17

• “Federation Management Architecture” on page 18

• “The Federation Management Process” on page 22

The Need for Federated Identities
Consider the many times an individual accesses services on the Internet in a single
day. At work, he uses the company intranet to perform a multitude of
business-related tasks such as reading and sending email, looking up information
in the company phone book and other internal databases, and submitting expense
reports and other business-related online forms. At home after work, he checks his
personal email, then logs into an online news service to check his baseball team’s
standings. He may finalize his travel plans via his travel agent’s website, and then
does some online shopping at his favorite clothing store. Each time he accesses a
service on the Internet, he must log in and identify himself to the service provider.

A local identity refers to the set of attributes or information that identify a user to a
particular service provider. These attributes typically include a name and
password, plus an email address, account number or other identifier. For example,
the individual in our scenario is known to his company’s network as an employee
number, but he is known to his travel agent as Joe Smith. He is known to his online

The Liberty Alliance Project

16 Identity Server 2004Q2 • Federation Management Guide

news service by an account number, and he is known to his favorite clothing store
by a different account number. He uses one email name and address for his
personal email, and a different email name and address for his workplace. Each of
these different user names represents a different local identity.

Identity federation allows a user to consolidate the many local identities he has
configured among multiple service providers. With one federated identity, the
individual can log in at one service provider’s site and move to an affiliated service
provider site without having to re-authenticate or re-establish his identity. For
example, with a federated identity, the individual might want to access both his
personal email account and his business email account from his workplace, and
move back and forth between the two services without having to log in each time.
Or at home he might want to log in to an online clothing store, then access the
online news service, and communicate with his travel agent. It is a convenience for
the user to be able to access all of these services without having to provide different
user names and passwords at each service site. It is a valuable benefit to the user
when he can do so safely, and knowing that his identity information is secure.

The Liberty Alliance Project was implemented to make this possible.

The Liberty Alliance Project
In 2001 Sun Microsystems joined with other major companies to form the Liberty
Alliance Project, the premier open standards organization for federated identity
and identity-based services. The Liberty Alliance Project develops specifications
and guidelines for implementing complete network identity infrastructures and for
deploying identity-based web services.

The members of the Liberty Alliance Project represent some of the world's most
recognized brand names and service providers, driving products, services and
partnerships across a spectrum of consumer and industrial products, financial
services, travel, retailing, telecommunications and technology. For more
information including listings of Liberty web service products, specifications,
cased studies, and white papers, see the Liberty Alliance Project website:

http://projectliberty.org/

The Circle of Trust

Chapter 1 Introduction to Identity Federation and the Web Services Framework 17

The Circle of Trust
The goal of the Liberty Alliance Project is to enable individuals and organizations
to easily conduct network transactions while protecting the individual’s identity.
This goal can be achieved only when commercial and non-commercial
organizations join together into a circle of trust. In a circle of trust, service providers
agree to join together in order to exchange user authentication information using
Liberty web service technologies. This circle of trust must contain at least one
identity provider, a service that maintains and manages identity information. The
circle of trust also includes service providers that offer web-based services to users;
it also includes users themselves. Once a Circle Of Trust is established, single
sign-on is enabled between all the providers.

The circle of trust is also known as an authentication domain, although it is not a
DNS domain or a domain in the Internet sense of the word. Figure 1-1 illustrates a
user accessing a small business, a service provider that is associated with other
businesses, and agencies in a circle of trust.

Figure 1-1 The circle of trust

Federation Management Architecture

18 Identity Server 2004Q2 • Federation Management Guide

Account Federation occurs when a user chooses to unite distinct service accounts
and identity provider accounts. The user retains individual account information
with each provider in the circle. At the same time, the user establishes a link that
allows the exchange of authentication information between them. Users can choose
to federate any or all identities they might have with the service providers that
have joined this circle. When a user successfully authenticates with one service
provider, she can access any of the her accounts within the circle of trust in a single
session without having to reauthenticate.

Federation Management Architecture
The Identity Server 6.1 release implemented an Identity Federation Framework
(ID-FF) version 1.1 Identity Server 2004Q2 adds new federation features defined in
Identity Federation Framework (ID-FF) 1.2 specifications, including a web service
framework to facilitate deployment of customer Identity Web Services. Client APIs
are provided for web service consumers to communicate with web service
providers.

The following three major components make it possible for identity information to
be exchanged among service providers:

• Identity Federation Framework

• Identity Web Services Framework

• Identity Service Instance Specifications

Identity Federation Framework
The Identity Service Instance Specifications build upon the Web Service
Framework and Federation Framework to provide services. The federation
framework specifies core protocols, schema and concrete profiles that allow
developers to create a standardized, multiple-vender, identity federation network.
These include the following:

Opt-in account linking. Users can choose to federate different service provider
accounts.

Authentication context. Service providers with federated accounts communicate
the type and level of authentication that should be used when the user logs in.

Account linking termination. Users can choose to stop their account federation.

Federation Management Architecture

Chapter 1 Introduction to Identity Federation and the Web Services Framework 19

Identity provider introduction. This feature provides the means for service
providers to discover which identity providers a principal uses. A principal can be
an organization or individual who interacts with the system. This is important
when there are multiple identity providers in an identity federation network.

Name Registration. This feature enables a service provider or identity provider
to register with each other a new name identifier for a principal at any time
following federation.

Single Sign-on and Federation Protocol A protocol that defines the process that
a user at a service provider goes through to authenticate their identity with an
identity provider. It also specifies the means by which a service provider obtains an
Authentication Assertion from an identity provider to allow single sign-on to the
user. There are two types of Single Sign-On which either the identity or service
provider can implement:

• SOAP-based Single Sign On and Federation Protocol, which relies on a SOAP
call from provider to provider. This is primarily the Browser Artifact SSO
profile.

• Form POST-based Single Sign On and Federation Protocol, which rely on an
HTTP form POST to communicate between providers.

Single Log-Out Protocol. TA protocol used to synchronize the session log-out
functionality across all sessions that were authenticated and created by a particular
identity provider. There are two types which either the identity or service provider
can implement:

• SOAP-based Single Log-Out Protocol relies on asynchronous SOAP messaging
calls between providers.

• HTTP Redirect-based Single Log-Out Protocol

Identity Web Services Framework
The Web Services Framework consists of a set of schema, protocols and profiles for
providing a basic identity services, such as identity service discovery and
invocation.

Three parties are required for identity federation in a basic Liberty Web Services
environment: a user agent, a web service consumer, and a web service provider.
Figure 1-2 illustrates the internal architectures of a Liberty Web Services Consumer
and a Web Service Provider.

Federation Management Architecture

20 Identity Server 2004Q2 • Federation Management Guide

Figure 1-2 Liberty II Architecture.

Federation Management Architecture

Chapter 1 Introduction to Identity Federation and the Web Services Framework 21

The Web Service Consumer components and the Web Service Provider
components are newly implemented components in Identity Server 2004Q2. The
components in the bottom layer of the Web Service Provider were implemented in
Identity Server 6.1.These components include Single-Sign On (SS0), the Identity
Server SDK, Service Management Services, SAML, Authentication modules, and a
Policy Service. In Figure 1-2, the Data Service and Identity Service represent
custom services that you can add to the Web Services Framework.

The Web Services Framework consists of a set of schema, protocols and profiles for
providing a basic identity services, such as identity service discovery and
invocation. This framework is new in Liberty II and includes the following:

Discovery Service. An identity service that allows a requester to discover
resource offerings. For more details, see “Discovery Service” on page 89.

SOAP Binding. A set of Java APIs for sending and receiving ID-* messages using
SOAP and XML. “SOAP Binding” on page 86.

Data Services Template. A common data service layer for developing identity
services. Includes common utilities for message error-checking and verification,
and remote client APIs to support customer data service instances. For more
details, see “Data Services Template” on page 91.

Security Mechanisms. Defines a set of authentication mechanism and security
properties which are factored into authorization decisions enforced by the
targeting identity-based web services. Each mechanism contains both peer entity
authentication (null/TLS/CClientTLS) and message authentication
(null/X509/SAML). For more details, see “Running the Web Service Client” on
page 71.

Interaction Service. A protocol for simple interaction of Web Services
Framework participants with a Principal. For more details, see “Interaction
Service” on page 97.

Trusted Authority. APIs for creating security tokens used for authentication and
authorization in Liberty II-enabled services. For more details, see “Trusted
Authority” on page 85.

The Federation Management Process

22 Identity Server 2004Q2 • Federation Management Guide

Identity Service Instance Specifications
The Liberty Service Instance Specifications build upon the Web Services
Framework and Federation Framework to provide services such as contacts,
presence detection or wallet services that depend on network identity. The
following Service Instance Specifications implementations are new in Identity
Server 2004Q2.

Personal Profile Service. An instance of a data-oriented web service which offers
profile information regrading a principal’s personal life. A shopping portal that
offers information such the principal’s account number and shopping preferences
is an example of a personal profile service. See “Personal Profile Service” on
page 92.

Employee Profile Service. Similar to the Personal Profile Service, except that An
instance of a data-oriented web service which offers profile information regarding
a principal’s workplace. An online corporate phone book that provides an
employee name, office building location, and telephone extension number is an
example of an employee profile service. See “Personal Profile Service” on page 92.

Supporting Components
Metadata Service. A library of command-line tools for loading metadata into the
Identity Server data store. For more details, see “Metadata Specifications” on
page 98.

Reverse HTTP Bindings. A protocol and set of APIs for retrieving data from
Identity Server via clients such as cell phones. For more details, see “PAOS” on
page 98.

The Federation Management Process
The Federation Management process begins with authentication. By default,
Identity Server comes with two options for user authentication. The first is the
proprietary Authentication Service; the second is the Liberty-enabled Federation
Management module. With the first option, when a user tries to access a resource
protected by Identity Server, he is redirected to the Authentication Service using an
Identity Server login page. When the user provides credentials, the Authentication
Service verifies his identity, and either allows or denies access.

The Federation Management Process

Chapter 1 Introduction to Identity Federation and the Web Services Framework 23

With Liberty-enabled Federation Management, when a user attempts to access a
resource protected by Identity Server, the authentication process begins with a
search for a valid Identity Server session token. If a session token is found, the user
is granted access to the requested page. The requested page, which belongs to a
member of the circle of trust, contains a link which provides the user an
opportunity to federate his identity. When the user clicks this link, he is directed
through the Federation Single Sign-On Process process. If no session token is
found, the user is directed through the Pre-Login Process.

Federation Single Sign-On Process
When a user signs on to access a protected resource or service, Identity Server
sends a request to the identity provider for authentication confirmation. If the
identity provider sends a positive response, the user gains access to all provider
sites within the circle of trust. If the identity provider sends a negative response,
the user is directed to authenticate again using the Federation Single Sign-On
process.

In federated single sign-on, the user selects an identity provider and then sends his
or her credentials for authentication. Once authentication is complete and access is
granted, the user is redirected to the Identity Server Authentication Service. The
user is automatically granted a session token and redirected to the requested page
which contains a link to allow the user to federate his or her identity. As long as the
session token remains valid, the user can access other services offered by other
service providers in the circle of trust without having to sign on again.

Pre-Login Process
The purpose of the Pre-Login process is to establish a valid user session at the
service provider site. When no Identity Server session token is found, the pre-login
process begins with the search for another type of cookie, a Federation cookie.

If, after the search for an Identity Server session token proves null, a Federation
cookie is found and its value is “no,” an Identity Server login page is displayed and
the user submits credentials to the Authentication Service. When authenticated by
the Identity Server, the user is redirected to the requested page which contains a
link to allow the user to federate their identity. If the user clicks this link, he is
directed through the Federation Single Sign-On Process.

The Federation Management Process

24 Identity Server 2004Q2 • Federation Management Guide

If, after the search for an Identity Server session token proves null, a valid
Federation Cookie is found an its value is “yes,” it means the user has already been
federated but not authenticated by an identity provider within the Circle of Trust.
This is confirmed by sending a request for authentication to the user’s chosen
identity provider.

If no Federation Cookie is found at all, a passive authentication request is sent to
the user’s chosen identity provider. A passive authentication request does not
allow identity provider interaction with the user. When an affirmative response is
received back from the identity provider, the user is redirected to the Identity
Server Authentication Service. There, the user is granted a session token and
redirected to the requested page. When the response from the identity provider is
negative (for example, if the session has timed out), the user is sent to a common
login page where he can choose to do a local login or Federation Single Sign-On.

Figure 1-3 illustrates the differences between the Pre-Login process path and the
Identity Federation path.

The Federation Management Process

Chapter 1 Introduction to Identity Federation and the Web Services Framework 25

Figure 1-3 Liberty-enabled Identity Server Authentication Process Flow

The Federation Management Process

26 Identity Server 2004Q2 • Federation Management Guide

System Flow
Figure 1-4 provides a high-level view of the system flow between various parties in
a Liberty web services environment. In this figure, note the following:

• The browser represents a user agent, a device used by an enterprise user.

• The Service Provider also acts as a Web Service Consumer.

• The Identity Provider hosts the Discovery Server.

• The Personal Profile Service represents a Web Service Provider.

Figure 1-4 The interaction between Liberty II components.

This is what happens on the back end when an employee looks up a colleague’s
phone number in an online corporate phone book:

1. The user's browser, Service Provider and Identity Provider complete the
Federation Single-Sign-On process.

An assertion with an attribute statement containing the Discovery Service
resource offering will be included in the ID-FF AuthnResponse. This is the
information used by any client to contact Discovery Service.

The Federation Management Process

Chapter 1 Introduction to Identity Federation and the Web Services Framework 27

2. The user's browser requests access to services hosted on the Web Service
Consumer.

This requires contacting user's Personal Profile service.

3. The Web Service Consumer sends a discovery lookup query to the Discovery
Service.

The Web Service Consumer determines user's discovery resource offering from
the bootstrap Assertion obtained in Step 1, then sends a discovery lookup
query to the Discovery Service to determine where the user's Personal Profile
instance is hosted.

4. The Discovery service returns a discovery lookup response to the Web Service
Consumer.

The lookup response contains the resource offering for the user's Personal
Profile Service instance.

5. The Web Service Consumer sends a Data Services Template query to the SOAP
end point of the Personal Profile Service instance.

The query asks for the user's personal profile attributes, such as home phone
number. The required authentication mechanism specified in the Personal
Profile Service resource offering must be followed.

6. The Personal Profile Service instance authenticates and validates authorization
or policy, or both, for the requested user or Web Service Consumer, or for both.

If user interaction is required for some attributes, the Interaction Service will be
invoked to query the user for consents or for attribute values. The Personal
Profile Service instance returns a Data Services Template response to the Web
Service Consumer after collecting all required data.

7. The Web Service Consumer processes the Personal Profile Service response,
and then renders service pages containing the colleague’s contact information
to the user's browser.

The Federation Management Process

28 Identity Server 2004Q2 • Federation Management Guide

29

Chapter 2

Creating a Liberty Web Services
Environment

Identity Server provides a collection of sample files, named Sample1, to illustrate
how to configure basic identity federation using one Service Provider and one
Identity Provider. The example demonstrates the basic use of various Liberty
protocols including Account Federation, Single Sign-On, Single Logout, and
Federation Termination.

Instructions for implementing Sample1 are described in the following sections and
should be completed in this sequence:

• “Installing Identity Server” on page 30

• “Deploying the Service Provider” on page 30

• “Deploying the Identity Provider” on page 33

• “(Optional) Configuring a Third Level Domain” on page 36

You will find all Service Provider and Identity Provider files required to implement
the examples in the following locations:

Table 2-1 Sample1 Directories

Directory Name Variable Location

sample1_dir begin_dir/samples/liberty/sample1/

sp1_sample_dir begin_dir/samples/liberty/sample1/sp1/

idp1_sample_dir begin_dir/samples/liberty/sample1/idp1/

30 Identity Server 2004Q2 • Federation Management Guide

Installing Identity Server
The first step in creating a Liberty environment is installing Identity Server on two
separate machines. One Identity Server installation will act as a Service Provider,
and one Identity Server installation will act as an Identity Provider. Follow the
Identity Server installation instructions in the Java Enterprise System Installation
Guide. Table 2-2 summarizes the variable placeholders and default values used in
Sample 1.

Deploying the Service Provider
Before you can deploy the Service Provider, Identity Server must be installed and
running over the HTTP(S) protocol. See “Installing Identity Server” on page 30.

Instructions for deploying the Service Provider are described in the following
sections and should be completed in this sequence:

1. To Upload the Metadata for the Service Provider

2. To Configure the Service Provider

3. To Deploy the Service Provider.WAR File

Table 2-2 Default values in metadata.xml files for Sample1.

Installation Parameter Service Provider Value Identity Provider Value

Machine name machine1 machine2

Solaris Installation Directory IS_Root/SUNWam IS_Root/SUNWam

Windows Installation Directory IS_Root/SunONEIS IS_Root/SunONEIS

Hostname variable SP1 IDP1

Hostname www.sp1.com www.idp1.com

Identity Server Port SERVER_PORT SERVER_PORT

Identity Server Deployment URI amserver amserver

Identity Server root suffix dc=sp1,dc=com
(attribute DN for element
OrganizationRequests)

 dc=idp1,dc=com
(attribute DN for element
OrganizationRequests)

Certificate Alias SP1_SECURITY_KEY IDP1_SECURITY_KEY

metaAlias www.sp1.com www.idp1.com

Metadata filename sp1Metadata.xml idp1Metadata.xml

Chapter 2 Creating a Liberty Web Services Environment 31

To Upload the Metadata for the Service Provider
1. Update the following file with values appropriate to your Identity Server

installation: begin_dir/samples/liberty/sample1/sp1/sp1Metadata.xml

Default values are listed in Table 2-2 on page 30.

2. Load sp1Metadata.xml using following command:

begin_dir/bin/amadmin -u amadmin -w password -t sp1Metadata.xml

To Configure the Service Provider
1. Locate the AMClient.properties file located in this directory:

begin_dir/samples/liberty/sample1/sp1/WEB-INF/classes/

Replace the following tags with values appropriate for your environment:

SERVER_PROTO: Enter HTTPS or HTTP.

SERVER_HOST: Enter the fully-qualified hostname for your Identity Server
installation. Example: www.sp1.com

SERVER_PORT: Enter the port number on which Identity Server is running.

SERVICE_DEPLOY_URI: Enter the Identity Service services deployment URI.
The default value is amserver.

META_ALIAS: Enter the metaAlias for SP1. In sp1Metadata.xml, the default
value is www.sp1.com.

2. Create the.war file for SP1.

cd sp1_sample_dir
jar -cvf sp1.war

3. Deploy the sp1.war file.

See the next section.

To Deploy the Service Provider.WAR File
Choose one of the following as appropriate for your environment:

• If Identity Server is installed on Sun Java System Web Server

• If Identity Server is installed on Sun Java System Application Server

32 Identity Server 2004Q2 • Federation Management Guide

If Identity Server is installed on Sun Java System Web Server
1. Before you deploy a web application manually, be sure that the

server_root/bin/https/httpsadmin/bin directory is in your path and that the
IWS_SERVER_HOME environment variable is set to your server_root directory.

2. Enter the following command
wdeploy deploy -u uri_path -i instance -v vs_id [-d directory] war_file

❍ uri_path is the URI prefix for the web application.

❍ instance is the server instance name.

❍ vs_id is the virtual server ID.

❍ directory is the directory to which the application is deployed, or from
which the application is deleted. If not specified for deployment, the
application is deployed to the document root directory.

❍ war_file is the WAR file name.

Example:

3. Restart Web Server.

wdeploy deploy -u /sp1 -i www.sp1.com -v https-www.sp1.com
-d begin_dir/web-apps/sp1 sp1.war

Chapter 2 Creating a Liberty Web Services Environment 33

If Identity Server is installed on Sun Java System Application Server
1. Use the asadmin deploy command to deploy the WAR module. The syntax is

as follows:

For example, in Sample1 the asadmin deploy command deploys a web
application as an individual module:

2. Restart Application Server.

Deploying the Identity Provider
Before you can deploy the Service Provider, Identity Server must be installed and
running over the HTTP protocol. See “Installing Identity Server” on page 30.

The instructions for implementing Sampe1 are described in the following sections
and should be followed in this sequence:

1. To Upload the Metadata for the Identity Provider

2. To Configure the Identity Provider

3. To Upload the Metadata for the Identity Provider

asadmin deploy --user admin_user [--password admin_password] [--passwordfile
password_file] --host hostname

--port adminport [--secure | -s] [--virtualservers virtual_servers]
--type application|ejb|web|connector] [--contextroot contextroot]
[--force=true] [--precompilejsp=false] [--verify=false]
[--name component_name] [--upload=true]

[--retrieve local_dirpath]
[--instance instance_name] filepath

asadmin deploy --user admin --password pswd1234
--host www.sp1.com --port 4848 --type web --contextroot SP1
--instance server1 sp1.war

34 Identity Server 2004Q2 • Federation Management Guide

To Upload the Metadata for the Identity Provider
1. Update the following file as per your Identity Server installation:

begin_dir/samples/liberty/sample1/idp1/sp1Metadata.xml

Default values are listed in Table 2-2 on page 30.

2. Load idp1Metadata.xml using following command.

begin_dir/bin/amadmin -u amadmin -w password -t idp1Metadata.xml

To Configure the Identity Provider
1. Locate the AMClient.properties file located in this directory:

begin_dir/samples/liberty/sample1/idp1/WEB-INF/classes/

Replace the following tags with values appropriate for your environment:

SERVER_PROTO: Enter HTTP or HTTPS

SERVER_HOST: Enter a fully-qualified hostname for your Identity Server
installation. Example: www.idp1.com

SERVER_PORT: Enter the port number where Identity Server is running.

SERVICE_DEPLOY_URI: Enter the Identity Server services deployment URI.
The default value is amserver.

META_ALIAS: Enter the metaAlias for IDP1. In idp1Metadata.xml, the
default value is www.idp1.com.

2. Create the WAR file for IDP1.

cd idp1_sample_dir
jar -cvf idp1.war .

3. Deploy idp1.war.

See the next section, “To Deploy the Service Provider.WAR File.”

To Deploy the Identity Provider .WAR File
Follow the steps for one of the following:

• If Identity Server is installed on Sun Java System Web Server

• If Identity Server is installed on Sun Java System Application Server

Chapter 2 Creating a Liberty Web Services Environment 35

If Identity Server is installed on Sun Java System Web Server
1. Before you can deploy a web application manually, you must make sure that

the server_root/bin/http/httpsadmin/bin directory is in your path and that
the IWS_SERVER_HOME environment variable is set to your server_root
directory.

2. Enter the following command:

wdeploy deploy -u uri_path -i instance -v vs_id [-d directory] war_file

❍ uri_path is the URI prefix for the web application.

❍ instance is the server instance name.

❍ vs_id is the virtual server ID.

❍ directory is the directory to which the application is deployed, or from
which the application is deleted. If not specified for deployment, the
application is deployed to the document root directory.

❍ war_file is the WAR file name.

Example:

wdeploy deploy -u /idp1 -i www.idp1.com -v https-www.idp1.com
-d begin_dir/web-apps/idp1 idp1.war

3. Restart the Web Server.

If Identity Server is installed on Sun Java System Application Server
1. Use the asadmin deploy command to deploy the WAR module. The syntax is

as follows:

For example, the following command deploys a web application as an individual
module:

asadmin deploy --user admin_user [--password admin_password]
[--passwordfile password_file] --host hostname --port adminport
[--secure | -s] [--virtualservers virtual_servers]

[--type application|ejb|web|connector]
[--contextroot contextroot] [--force=true]
[--precompilejsp=false] [--verify=false]

[--name component_name] [--upload=true]
[--retrieve local_dirpath]

[--instance instance_name] filepath

36 Identity Server 2004Q2 • Federation Management Guide

asadmin deploy --user admin --password pswd1234 --host www.sp1.com
--port 4848 --type web --contextroot IDP1 --instance server1 idp1.war

2. Restart Application Server.

(Optional) Configuring a Third Level Domain
The Sample1 application does not require the use of a third level domain. But if
you want to configure third level domain, you can use the following instructions.

To Configure a Third-Level Domain
1. Access the Identity Server administration console.

2. Click the Federation tab.

3. Select Authentication Domain in the View menu, and then click Show.

4. Select sample1Alliance in the left pane.

5. In the right pane, enter the Reader Service URL and Writer Service URL as
appropriate for your common domain services installation.

For example, if common domain services are installed on machine3 with
hostname is www.machine3.com, then for the default installation:

Writer Service URL: http://www.machine3.com:80/amcommon/writer

Reader Service URL: http://www.machine3.com:80/amcommon/transfer

Verifying a Successful Liberty Setup
The following sections provide detailed steps for using basic Liberty protocols to
verify that you’ve successfully implemented Sample1:

• To Federate Service Provider and Identity Provider Accounts.

• To Perform a Single Sign-On

• To Perform a Single Logout

• To Terminate Account Federation

Chapter 2 Creating a Liberty Web Services Environment 37

SP1 has a protected page named index.jsp, and IDP1 has a protected page named
index.jsp. Both protected pages include _head.jsp. The _head.jsp will check for
a valid user session. If a session is invalid, the request is redirected to the Pre-Login
service. The Pre-Login service attempts to perform a single sign-on (SSO). On
first-time access, SSO will fail and the Pre-Login service redirects the request to the
common Login page.

The protected page index.jsp contains the following three links:

Federate: Initiates the federation process.

Logout: Initiates the single logout process.

Terminate Federation: Initiates the federation termination process.

To Federate Service Provider and Identity Provider Accounts
1. Access the following URL in a web browser:

SERVER_PROTO//SERVER_HOST:SERVER_PORT/sp1/index.jsp

Example:

http://www.sp1.com:58080/sp1/index.jsp

2. In the common Login page, click the Local Login link.

You are redirected to the SP1's login page.

3. Log in to SP1.

After successful authentication at SP1, the index.jsp is displayed.

4. Click the Federate link.

The Federate page is displayed.

5. Select the preferred Identity Provider you want to federate with.

In Sample1, select IDP1 as your preferred Identity Provider. IDP1's login page
is displayed.

6. Provide authentication credentials for your IDP1 account.

If the authentication is successful, the Federation Done page is displayed. This
indicates that you have successfully federated your account between SP1 and
IDP1.

Note that if the account is already federated, you will be redirected to the IDP login
page.

Deploying a Web Service Consumer

38 Identity Server 2004Q2 • Federation Management Guide

To Perform a Single Sign-On
1. After successful federation (see previous section, “To Federate Service

Provider and Identity Provider Accounts”), start a new browser session and
access the SP1 protected page:

SERVER_PROTO://SERVER_HOST:SERVER_PORT/sp1/index.jsp

Example:

http://www.sp1.com:58080/sp1/index.jsp

The user is redirected to the IDP1 Login page.

2. Provide authentication credentials for your IDP1 account.

If authentication is successful, the initially accessed SP1 protected page is
displayed without asking for SP1 authentication credentials.

If authentication is not successful, an error message is displayed, and you are
directed to start over.

To Perform a Single Logout
In either the SP1 protected page or the IDP protected page, index.jsp, click the
Logout link.You are logged out from both SP1 and IDP1, and the LogoutDone page
is displayed.

To Terminate Account Federation
1. In either the SP1 protected page or the IDP1 protected page, click the

Terminate Federation link.

The Federation Termination page is displayed.

2. Select a provider to terminate your account federation. For Sample1, select
IDP1.

Upon successful federation termination, the Termination Done page is
displayed.

Deploying a Web Service Consumer
Deploying a web service consumer entails the following:

• Configuring the Service Provider

• Configuring the Identity Provider

Deploying a Web Service Consumer

Chapter 2 Creating a Liberty Web Services Environment 39

• Running the Web Service Consumer Sample

• Interacting with the Personal Profile Service

• X.509 Message Authentication

Sample code for a web service consumer is provided with Identity Server to
illustrate how to deploy and run a Liberty service client on top of the framework
provided by Identity Server. All the files you need to deploy and initiate the service
are located in the following directory:

install-dir/SUNWam/samples/phase2/wsc

The Web Service Consumer Example
This example explains how you use the Discovery Service and Data Service
Template client APIs to implement a web service client to communicate with a web
service provider. In this example, the web service provider is the Personal Profile
service that comes with Identity Server 2004Q2. The example demonstrates the
flow of the Liberty Web Service Framework, and how the security mechanism and
interaction service come into play in the federation process.

Once you’ve deployed and configured both a Service Provider and an Identity
Provider, the Personal Profile service resides in the Identity Provider. Client code
in the form of five .jsp files reside in the Service Provider. All the files you need to
deploy and initiate the service are located in the following directory:

install-dir/SUNWam/samples/phase2/wsc

Table 2-3 summarizes the .jsp files provided with this example.

NOTE Before you can implement this web service consumer example, you must have two
Identity Servers already installed, running, and Liberty-enabled. Complete the
steps in “Creating a Liberty Web Services Environment” on page 29 before you
continue with this web service consumer example.

Table 2-3 JSPs provided in this sample
Name Description

index.jsp Retrieves boot strapping resource offering for
discovery service.

discovery-modify.jsp Adds Resource Offering for a user.

Deploying a Web Service Consumer

40 Identity Server 2004Q2 • Federation Management Guide

Two machines are required for this sample:

There are five parties involved in this sample:

• Liberty Service Provider (SP)

• Liberty Identity Provider (IDP)

• Web Service Consumer (WSC)

• Liberty Discovery Service (DS)

• Liberty ID-SIS Personal Profile Service (ID-SIS-PP)

Configuring the Service Provider
1. Deploy the Liberty Sample1 Service Provider.

Follow the instructions in the section “Deploying the Service Provider” on
page 30.

discovery-query.jsp Sends query to discovery service for service
resource offering.

id-sis-pp-modify.jsp Sends Data Service Modify request to modify user
attributes.

id-sis-pp-query.jsp Sends Data Service Query Request to retrieve user
attributes

Variable Placeholder Host Name Components Deployed on This Host

machine1 www.sp1.com • Service Provider

• Web Service Consumer

machine2 www.idp1.com • Identity Provider

• Discovery Service

• Personal Profile Service

Table 2-3 JSPs provided in this sample
Name Description

Deploying a Web Service Consumer

Chapter 2 Creating a Liberty Web Services Environment 41

2. Change the protocol support for the remote Identity Provider to ID-FF 1.2.

a. Login to Identity Server Administration Console as Top-Level
administrator.

b. Click the Federation Management tab, and then in the View menu, choose
Entity Descriptors.

c. In the Entity ID list, choose the remote Identity Provider entity ID.

d. In the right pane, in the View menu, choose Provider.l

e. Under Provider, click the Edit link.

f. Under the Protocol Support Enum field, choose
urn:liberty:iff:2003-08.

g. Click Save.

3. Replace the following tags and hostnames in discovery-modify.jsp and
index.jsp with values appropriate for your environment.

a. IDP_SERVER_PORT: Enter server port of the Identity Provider host.

b. SERVICE_DEPLOY_URI: Enter the service deployment URI of the
Identity Provider host.

c. www.sp1.com: Enter the host name of the Service Provider machine if it is
different from www.sp1.com.

d. www.idp1.com: Enter host name of Identity Provider machine if different
from www.idp1.com.

4. Deploy the Service Provider .jsp files.

Copy all the five .jsp files to a subdirectory in the document root of the web
container. For example, if the web container is, Sun Java System Web Server 6.1
run following command:

mkdir webserber_install_root/docs/wsc
cp is_install_root/SUNWam/samples/phase2/wsc/*.jsp

webserber_install_root/docs/wsc/

5. Log in to the Identity Server.

6. Create a user named spUser.

This user will be used as a federated user on the Service Provider side.

Deploying a Web Service Consumer

42 Identity Server 2004Q2 • Federation Management Guide

Configuring the Identity Provider
1. Deploy the Liberty Sample1 Identity Provider.

Follow the instructions in the section “Deploying the Identity Provider” on
page 33.

2. Register the Liberty Personal Profile Service.

a. Log in to Identity Server as Top-Level administrator.

b. In the Identity Management page, in the View menu, choose Service.

c. Click Add.

d. In the right pane, in the Available Services menu, choose Liberty Personal
Profile Service.

e. Click OK.

3. Create a user named idpUser with the Liberty Personal Profile Service
enabled.

This user will be used as the federated user on the Identity Provider side. It is
also used for storing the Discovery Service resource offering and Personal
Profile Service attributes.

Running the Web Service Consumer Sample
The following is an overview of what happens when you run the Web Service
Client sample that comes with the product.

1. Complete the Liberty Single-Sign-On Process and obtain Discovery Service
Boot Strapping Resource Offering.

2. Register user's Resource Offering at the Personal Profile Service instance using
Discovery Service Modification.

3. Send Discovery Service Lookup request.

Discovery service returns the discovery lookup response to the Web Service
Consumer. The lookup responses contains the resource offering for the user's
Personal Profile Service instance.

4. Send Data Service Query to the Personal Profile Service Instance to retrieve
user attributes.

Deploying a Web Service Consumer

Chapter 2 Creating a Liberty Web Services Environment 43

5. Send Data Service Modification to the Personal Profile Service Instance to
modify user attributes.

To Run the Web Service Client Sample
1. Federate users spUser and idpUser.

See “Verifying a Successful Liberty Setup” on page 36 for detailed instructions
on federating user accounts, single sign-on, and single logout.

2. As idpUser, perform a single sign-on from the Service Provider to the Identity.

3. Using a browser, go to the following URL:

http://machine1:sever_port/wsc/index.jsp

You will see the boot strapping resource offering for the Discovery Service and
two buttons: "Send Discovery Lookup" and "Add PP Resource Offering."

4. Click "Add PP Resource Offering."

The discovery-modify.jsp page is displayed. The Personal Profile Service
resource offering has been computed based on the bootstrapping Discovery
Service Resource Offering.

5. Click "Send Discovery Update Request.”

The user's Personal Profile resource offering is registered in idpUser on
machine2.

6. Click the "Return to index.jsp" link.

The index.jsp page is displayed; you see the bootstrapping resource offering.

7. Click "Send Discovery Lookup."

The discovery-query.jsp page is displayed.

8. (Optional) If you leave the “ServiceType to look for” field blank, all service
instances will be returned.

You can enter a value in the "ServiceType to look for" field. Values are defined
in the Liberty Web Service Consumer specification. For example,
urn:liberty:idpp:2003-08 indicates a Personal Profile service.

9. Click "Send Discovery Lookup Request."

The Personal Profile resource offering added in Step 4 will be displayed.

Deploying a Web Service Consumer

44 Identity Server 2004Q2 • Federation Management Guide

10. Choose one of the following two options:

❍ To query the Personal Profile Service in machine2 for user attributes:

a. Click "Send PP Query.”

The id-sis-pp-query.jsp page is displayed.

b. In the Authentication Mechanism field, choose
urn:liberty:security:2003-08:null:null.

c. (Optional) You can change the value in the XPath Expression field to a
different XPath expression for attribute selection. The default is
/PP/CommonName.

❍ To modify a user's Personal Profile attributes:

a. Choose one of the following:

• Click “Send PP Modify.”

The id-sis-pp-modify.jsp page is displayed and it sends a Modify
request to the Personal Profile Service in machine2.

• Click “Send PP Query.”

The id-sis-pp-query.jsp page is displayed and it sends a Query
request to the Personal Profile Service in machine2.

b. In the Authentication Mechanism field, choose
urn:liberty:security:2003-08:null:null.

c. (Optional) You can modify the XPath Expression field for attribute
selection. The default is /PP/CommonName/AnalyzedName/FN. Then modify
the Value to include new values for the attribute.

Interacting with the Personal Profile Service
Follow these instructions to verify that you’ve successfully implemented the
Personal Profile Service and can perform basic interactions with it.

1. Log in to Identity Server on machine2 as Top-Level administrator. This is the
Service Provider.

2. Create a policy for the Personal Profile service that requires user interaction for
Query and Modify operations.

a. In the console, click the Identity Management tab.

Deploying a Web Service Consumer

Chapter 2 Creating a Liberty Web Services Environment 45

b. In the View menu, choose Policies, and then click New.

• In the Type menu, choose Normal policy.

• Enter the Name for this policy, and then click OK to create the policy.

c. In the View menu for this policy, choose Rules, and then click Add.

d. In the Service menu, choose "Liberty Personal Profile Service, " and then
click "Next".

• In the Rule Name field, enter a name that will be meaningful to you.

• In the Resource Name field, enter an asterisk (*).

• Select the Modify or Query checkbox, or you can select them both.

• In the Value menu, select one of the following:

Interact for Consent: Select this option if you want to ask the user for
consent.
Interact for Value: Select this option if you want to ask the user to
provide values for the query response or the modify result.

• Click OK.

• Click Save to save the rule.

e. In the View menu for this policy, choose Subjects and then click Add.

• In the Type field, choose Authenticated Users, and then, click Next.

• In the Name field, enter a name for the subject.

• Click OK.

• Click Save to save the subject.

3. Enable policy evaluation for Personal Profile Service query and modify
operations.

a. In the Identity Server console, click the Service Configuration tab.

b. In the Service menu, choose “Liberty Personal Profile Service.”

c. Check the two boxes labeled "is Query Policy Eval Required" and "is
Modify Policy Eval Required."

d. Click Save to save the configuration.

Deploying a Web Service Consumer

46 Identity Server 2004Q2 • Federation Management Guide

4. To run the sample, follow the instructions in the section “Running the Web
Service Consumer Sample” on page 42.

You can change the policy defined in Step 2 to see different behavior for user
interaction.

X.509 Message Authentication
The following sections provides steps setting up X.509 Message Authentication,
and for verifying that you’ve authentication work properly in your Sample1
deployment

Setup
1. For machine1 and machine2, follow the instructions in the SAML xmlsig sample

to set up the JKS signing key store:

is_install_root/SUNWam/samples/saml/xmlsig

2. Edit /etc/opt/SUNWam/config/AMConfig.properties to reflect the key store,
password and cert alias.

3. In machine1, which is the Service Provider, locate the following file:

/etc/opt/SUNWam/config/AMConfig.properties.

Set the com.sun.identity.liberty.ws.wsc.certalias property to the alias of
the signing certification.

To test X.509 Message Authentication in discovery service
1. Log in to Identity Server as Top-Level administrator.

2. Click the Service Configuration, then choose Discovery Service.

3. In the Discovery Service page, under “Resource Offering for Bootstrapping
Resources,”click Edit.

4. In the Edit Resources Offering page, change the Authentication Mechanism
from urn:liberty:security:2003-08:null:null to
urn:liberty:security:2003-08:null:X509.

5. Click Save.

Deploying a Web Service Consumer

Chapter 2 Creating a Liberty Web Services Environment 47

To test X.509 Message Authentication in Personal Profile Service,
1. Run the sample service. Follow the steps in the section “Running the Web

Service Consumer Sample” on page 42.

2. Perform a Personal Profile service query or modify operation.

Choose urn:liberty:security:2003-08:null:X509 as the Authentication
Mechanism.

To test SSL (urn:liberty:security:2003-08:TLS:X509),
1. Import the Ceritificate Authority (CA) for the Web Server on the Identity

Provider (machine2) to the Web Server certificate database on the Service
Provider (machine1).

2. Run the sample service.

Follow the steps in the section “Running the Web Service Consumer Sample”
on page 42.

Deploying a Web Service Consumer

48 Identity Server 2004Q2 • Federation Management Guide

49

Chapter 3

Federation Management

Once you’ve created a Liberty web service environment, you can modify service
configurations or add new services to the system. This chapter provides
instructions for modifying authentication domains, entity descriptors, and
resource offerings. An Employee Profile Service sample is included to illustrate
how you use the Federation APIs to create a new service and enable it for
federation management.

Topics in this chapter include:

• “Overview of Authentication Domains and Providers” on page 49

• “Managing Authentication Domains” on page 50

• “Managing Entity Descriptors” on page 51

• “Managing Resource Offerings” on page 60

• “Adding a New Liberty Web Service” on page 64

• “Constructing a PAOS Request and Response” on page 72

Overview of Authentication Domains and
Providers

The Federation Management module provides an interface for creating, modifying,
and deleting authentication domains, remote providers and hosted providers. The
following steps demonstrate a basic Federation Management model:

1. Create an authentication domain.

2. Create one or more hosted providers that belong to the created authentication
domain.

Managing Authentication Domains

50 Identity Server 2004Q2 • Federation Management Guide

3. Create one or more remote providers that belong to the created authentication
domain. You must also include the metadata for the remote providers.

4. Establish a trusted relationship between the providers. A hosted provider can
choose to trust a subset of providers, either hosted or remote, that belong to the
same authentication domain.

The following sections explain how to create and configure authentication
domains, remote providers, and hosted providers.

Managing Authentication Domains
This section describes how to create, modify, and delete authentication domains.

To Create An Authentication Domain
1. Choose Authentication Domain from the View menu in the Federation

Management module.

2. Click New in the Navigation pane.

The Create Authentication Domain is displayed in the Data pane.

3. In the Create Authentication Domain window, enter the name of the
Authentication Domain.

4. Enter a value for the description of the Authentication Domain.

5. Enter a value for the Writer Service URL.

Writer Service URL specifies the location of the Writer service that writes the
cookie from the Common Domain. For example, if example.com is the common
domain, the URL could be:

http://example.com:8080/common/writer

6. Enter a value for the Reader Service URL.

The Reader Service URL specifies the location of the service that reads the
cookie from the Common Domain. For example, if example.com is the common
domain, the URL could be:

http://example.com:8080/common/transfer

7. Choose a status of active or inactive.

Managing Entity Descriptors

Chapter 3 Federation Management 51

The default is active. This can be changed at any time during the life of the
Authentication Domain by selecting the Properties icon. Choosing inactive
disables Liberty communication within authentication domain, with respect to
the current installation of Identity Server.

8. Click OK.

The new Authentication Domain displays in the Navigation pane.

To Modify An Authentication Domain
1. Click on the Properties arrow next to the Authentication Domain you wish to

modify.

The properties of the Authentication Domain display in the Data pane.

2. Modify the properties of the Authentication Domain.

3. Click Save.

To Delete An Authentication Domain
Deleting an authentication domain does not delete the providers that belong to it. If
providers belong to an authentication domain that has been deleted, they remain
part of the authentication domain until they are explicitly removed. Additional
providers can not be added to an authentication domain that has been deleted.

1. Choose Authentication Domains from the View menu in the Federation
Management module.

All created Authentication Domains display in the Navigation pane.

2. Check the box next to the name of the Authentication Domain to be deleted.

3. Click Delete.

Managing Entity Descriptors
This section describes how to create, modify and delete entity descriptors. There
are two types of entity descriptors you can define; a container entity (which can
contain identity and service provider descriptors) and affiliate entities.

NOTE There is no warning message when performing a delete.

Managing Entity Descriptors

52 Identity Server 2004Q2 • Federation Management Guide

Once you have created an entity descriptor (of either type), you can add
information for a contact person for that entity and a description of the
organization to which the person belongs. The contact person is generally
responsible for technical details concerning federation within his or her
organization.

Creating and Managing Providers
Creating a provider descriptor through the Identity Server console is a two-step
process. First, you create an container entity. Next, you create the provider
descriptor associated with that entity.

Once the provider descriptor is defined, you can modify any of the provider’s
attributes by selecting Provider from the View menu located in the Navigation
pane.

To Create a Container Entity
1. Choose Entity Descriptors from the View menu in the Federation Management

module.

2. Click New. The Create Provider window is displayed.

3. Enter a value for the Entity ID.

The Entity ID should specify the URL identifier of the entity. It must be unique
across all entities.

4. Enter a description of the entity.

5. Select Provider from the Type option.

6. Click OK.

To Create and Manage a Provider Descriptor
1. Choose Entity Descriptors from the View menu in the Federation Management

module.

2. Select the Entity that will contain the provider.

NOTE The contact person and organization concepts only exist within
Federation Management, and have no correlation to the
organization and user Identity Server object types.

Managing Entity Descriptors

Chapter 3 Federation Management 53

3. Select Provider from the View menu in the Navigation pane.

4. Click the New Provider button to display the first page of the New Provider
Wizard.

5. Select the provider type and enter information into the common provider
attribute fields. The fields are as follows:

Provider ID. The Provider ID should specify the URL identifier of the
provider. It must be unique across all remote and hosted providers.

Description. Enter a description of the provider.

Provider is of Type Identity. Decide if the provider is to be defined as an
identity provider. By default, all providers are service providers. If selected,
the Identity Provider option will additionally define the provider as an identity
provider.

Provider is Hosted (Local). If selected, the provider is a hosted provider. By
default (not selected), the provider is a remote provider.

Valid Until. This field allows you to enter the expiration date for the metadata
pertaining to the provider. Use the following format:

yyyy-mm-dd hh:mm:ss.SZ

For example, 2004-12-31 12:30:00.0-0800

Cache Duration. This field defines the duration period for the metadata to be
cached and uses the xs:duration format.

Protocol Support Enum. This field defines the protocol release supported by
the entity. urn:liberty:iff:2003-08 refers to Identity Federation Framework
(ID-FF) 1.2 and urn:liberty:iff:2002-12 refers to Federation Identity
Framework (ID-FF) 1.1.

Security Key. The Security Key defines the Security Certificate alias. The
certificates are stored in the JKS keystore against an alias. This alias (the
Security Key) is used to fetch the required certificate.

Key Use.This field defines allowed key usage. You can choose encryption or
signing.

Key Size. This field constrains the length of keys used by the consumer when
interacting with another entity.

Encryption Method. This field defines the encryption preferences URI.

Server Name Identifier Mapping Binding. This field defines the SAML
authority binding at the identity provider to which identifier mapping queries

Managing Entity Descriptors

54 Identity Server 2004Q2 • Federation Management Guide

are sent.

Additional Meta Locations. This field specifies the location of other relevant
metedata about the provider.

6. Click Next.

7. Enter the information for the communications and service provider attributes.
The fields are as follows:

Communication URLs

SOAP Endpoint URL. This field specifies the location for the receiver of SOAP
requests. This is used to communicate on the back-channel (non-browser
communication) through SOAP.

Single Logout Service URL. The Single Logout Service URL is used by a
service provider or identity provider to send and receive logout requests.

Single Logout Return URL. This specifies the URL to which logout requests
are redirected after processing.

Federation Termination Service URL. This field specifies the URL to which
federation termination requests are sent.

Federation Termination Return URL. This field specifies the URL to which
federation termination requests are redirected after processing.

Name Registration Service URL. This field uses the Name Registration
protocol that is used by a service provider to register its own Name Identifier
while communicating to an identity provider. Registration occurs only after a
federation session is established. This field defines the service URL used by a
service provider to register a Name Identifier with an identity provider.

Name Registration Return URL. This field uses the Name Registration
protocol that is used by a service provider to register its own Name Identifier
while communicating to an identity provider. Registration occurs only after a
federation session is established. The Name Registration Return URL is the
URL to which the identity provider sends back the status of the registration.

Communication Profiles

Federation Termination Profile. You can choose SOAP or HTTP/Redirect.
This field specifies if the SOAP or HTTP/Redirect profile is to be used to notify
of federation termination. This can be changed at any time during the life of the
provider.

Single Logout Profile. You can choose SOAP or HTTP Redirect. This field
specifies if SOAP or HTTP Redirect is to be used to notify a logout event. This

Managing Entity Descriptors

Chapter 3 Federation Management 55

can be changed at any time during the life of the provider.

Name Registration Profile. You can choose SOAP or HTTP/Redirect. This
field specifies if the SOAP or HTTP/Redirect profile is to be used for name
registration. This can be changed at any time during the life of the provider.

Server Relationship Term Notification URL. This field defines a URI
describing the profiles that the entity supports for relationship termination.

Single Sign-on/Federation Profile. This field specifies the profile used by the
hosted provider for sending authentication requests. Identity Server provides
the following protocols:

❍ Browser Post - specifies a front-channel (http POST-based) protocol.

❍ Browser Artifact - Backchannel (non-browser) SOAP-based protocol.

❍ LECP - Liberty Enabled Client Proxy.

Assertion Consumer URL. This field defines the provider end-point to which a
provider will send SAML assertions.

Assertion Consumer URL ID. This ID is required if Protocol Support Enum is
urn:liberty:iff:2002-12.

Set Assertion Consumer Service URL as Default. This option sets the
Assertion Consumer URL as the default.

Sign Authentication Request. This option, if enabled, specifies that the
provider send signed authentication and federation requests. The identity
provider will not process unsigned requests originated from the service
provider.

Name Registration After Federation. If enabled, this option allows for a
service provider to participate in name registration after it has been federated.
Name registration is a profile by which service providers specify a principal’s
name identifier that an identity provider will use when communicating to the
service provider.

8. If the provider you are creating is a local provider, enter data for the Identity
Server Configuration. If the provider is not local, skip this step. The fields are:

Provider URL. This field defines the URL of the local provider.

Alias. This field allows you to enter an alias name for the local provider.

Authentication Type. Remote/Local - This field specifies if the hosted
provider should contact an identity provider for authentication upon receiving
an authentication request (Remote), or if authentication should be done by the

Managing Entity Descriptors

56 Identity Server 2004Q2 • Federation Management Guide

hosted provider itself (Local).

Default Authentication Context. This field specifies the authentication context
to be used if the identity provider does not receive it as part of a service
provider request. It also specifies the authentication context used by the service
provider when an unknown user tries to access a protected resource. The
default values are:

❍ Previous-Session

❍ Time-Sync-Token

❍ Smartcard

❍ MobileUnregistered

❍ Smartcard-PKI

❍ MobileContract

❍ Password

❍ Password-ProtectedTransport

❍ MobileDigitalID

❍ Software-PKI

Force Authentication at Identity Provider. This option indicates if the identity
provider must reauthenticate (even during a live session) when an
authentication request is received.

Request Identity Provider to be Passive. If selected, this option specifies that
the identity provider must not interact with the principal and must interact
with the user

Organization DN. This field specifies the storage location of the DN of the
organization if each hosted provider chooses to manage users across different
organizations leading to a hosted model.

Liberty Version URI. This field specifies the version of the Liberty
specification.

Name Identifier Implementation. This field allows the option for a service
provider to participate in name registration. Name registration is a profile by
which service providers specify a principal’s name identifier that an identity
provider will use when communicating to the service provider.

Provider Home Page URL. This field specifies the home page of the provider.

Single Sign-on Failure Redirect URL. This field specifies the home page of the

Managing Entity Descriptors

Chapter 3 Federation Management 57

provider.

Assertion Interval. This field specifies the validity interval for the assertion
issued by an identity provider. A principal will remain authenticated by the
identity provider until the assertion interval expires.

Cleanup Interval. This field specifies the interval of time to clear assertions
that are stored in the identity provider.

Artifact Timeout. This field specifies the timeout of a identity provider for
assertion artifacts.

Assertion Limit. This field specifies the number of assertions an identity
provider can issue, or the number of assertions that can be stored.

9. Click Next.

Enter the values for the organization and contact person. For more
information, see To Add a Contact Person and Organization.

10. Click Next.

11. Select the authentication domains to which the provider will belong.

Use the direction arrows to move a selected authentication domain into the
Available list. Click Save. This will assign the provider to the authentication
domain. A provider can belong to one or more authentication domains,
however a provider without any authentication domains specified can not
participate in Liberty communications. Click Save.

12. Click Finish.

Creating and Managing Affiliates
In the Identity Server console, you create an affiliate through the New Entity page.
Once the affiliate descriptor is defined, you can modify any of the affiliate’s
attributes and manage the members of the affiliation by selecting Affiliates from
the View menu located in the Navigation pane.

To Create an Affiliate Entity
1. Choose Entity Descriptors from the View menu in the Federation Management

module.

2. Click New.

3. Enter a value for the Entity ID.

Managing Entity Descriptors

58 Identity Server 2004Q2 • Federation Management Guide

The Entity ID should specify the URL identifier of the entity. It must be unique
across all entities.

4. Enter a description of the entity.

5. Select Affiliate from the Type option.

6. Enter the Affiliate ID.

The Affiliate ID should specify the URL identifier of the affiliate. It must be
unique across all entities. This field is required.

7. Enter the Affiliate Owner ID.

The Affiliate OwnerID is the Provider ID of the owner or parent operator of the
affiliate, from which additional metadata can be received. This field is
required.

8. Click OK.

To Manage an Affiliate Descriptor
1. Choose Entity Descriptors from the View menu in the Federation Management

module.

2. Select the Entity that will contain the Affiliate.

3. Select Affiliates from the View menu in the Navigation pane.

4. Modify the affiliate attribute fields. The fields are as follows:

Valid Until. This field allows you to enter the expiration date for the metadata
pertaining to the affiliate in the following format:

yyyy-mm-dd hh:mm:ss.SZ

For example, 2004-12-31 12:30:00.0-0800

Cache Duration. This field defines the duration period for the metadata to be
cached and uses the xs:duration format.

Security Key. The Security Key defines the Security Certificate alias. The
certificates are stored in the JKS keystore against an alias. This alias (the
Security Key) is used to fetch the required certificate.

Key Use.This field defines allowed key usage. You can choose encryption or
signing.

Key Size. This field constrains the length of keys used by the consumer when
interacting with another entity.

Managing Entity Descriptors

Chapter 3 Federation Management 59

Encryption Method. This field defines the encryption preferences URI.

Affiliate Members. This field allows you to define one or more providers that
will be members of the affiliation. The providers that are displayed are
pre-defined in existing container entity descriptors.

Use the direction arrows to move a selected provider into the Available list.
Click Save. This will assign the provider to the authentication domain. A
provider can belong to one or more affiliates.

5. Click Save.

To Add a Contact Person and Organization
1. Choose Entity Descriptors from the View menu in the Federation Management

module.

2. Click the Properties arrow next to the entity you wish to modify.

3. In the Data pane, choose General from the View menu (this is the default
view).

4. Enter a general description of the contact person and organization.

5. Enter a date in the Valid Until field.

This field allows you to enter the expiration date for the metadata pertaining to
the contact person. Use the following format:

yyyy-mm-dd hh:mm:ss.SZ

For example, 2004-12-31 12:30:00.0-0800

6. Enter a value for the Cache Duration.

This field defines the duration period for the metadata to be cached and uses
the xs:duration format.

7. Enter the following fields in the Contact Person section:

First Name. The first name of the contact person.

Last Name. The last name of the contact person.

Type. The contact type. This can be one of the following:

• Technical

• Administrative

Managing Resource Offerings

60 Identity Server 2004Q2 • Federation Management Guide

• Billing

• Other

Company. The contact person’s company name.

Liberty Principal Identifier. The name identifier that points to an online
instance of the contact person’s personal information profile (PIP).

Email. The email address of the contact person.

Telephone.The telephone number of the contact person.

8. Enter the following fields in the Organization section (all fields are
mandatory):

Name. The name of the entity’s organization.

Display Name. The name of the organization that is displayed to the principal.

URL. The URL of the organization. This URL is used by a user agent to direct a
principal for additional information on the entity.

9. Click Save.

Deleting Entity Descriptors
1. Choose Entity Descriptors from the View menu in Federation Management.

All created entities display in the Navigation pane.

2. Check the boxes of the entity descriptor you want to delete.

3. Click Delete.

Managing Resource Offerings
A resource offering is the association of a resource and a service instance.
Typically, a single service instance will serve many resources. For example, a
personal profile service provider will serve multiple profiles to a single service
instance. It would be impractical to have a separate protocol endpoint for each
profile.

NOTE There is no warning message when performing a delete.

Managing Resource Offerings

Chapter 3 Federation Management 61

The Discovery Service is an identity service that allows requestors to discover
resource offerings. In Identity Server, resource offerings can be stored and
managed in three different ways:

• User Discovery Resource Offering - This is a resource offering associated with
particular user. To access the User Discovery Resource offering, select Users in
the Identity Management module, and choose Resource Offerings from the
View menu in the Navigation pane.

• Dynamic Resource Offering - This is a resource offering associated with and
organization or role.

• Resource Offering for Bootstrapping Mode - This resource offering is accessed
through the Discovery Service in the Service Configuration module. The
resource offering is sent to the service provider or web service client (WSC) in
the Single Sign-on assertion during Single Sign-on.

To Define Resource Offering

1. Enter a value for the Resource ID Attribute.

This field defines an identifier for a Resource ID value.

2. Enter the Resource ID Value.

This field defines the URI used to identify a particular resource. It must not be
a relative URI and should contain a domain name which is owned by the
provider that is hosting the resource. If a resource is exposed through multiple
Resource Offering elements, all of those resource offering elements should
have the same Resource ID value.

Example of a Resource ID value:

http://profile-provider.com/profiles/14m0B82k15csaUxs

urn:libery:isf:implied-resource

3. Enter a description of the resource offering in the Abstract field.

NOTE Steps 1 and 2 only apply to User Discover Resource Offering.

NOTE The following steps apply to all resource offering mechanisms.

Managing Resource Offerings

62 Identity Server 2004Q2 • Federation Management Guide

4. Enter the Service Instance.

This field defines an active web service at a distinct endpoint.

5. Enter the Service Type.

This field contains the URI that defines the type of service that service instance
implements. For example:

urn:liberty:id-sis-pp:2003-08

6. Enter the Provider ID.

This field contains the URI of the provider of this service instance. For example:

http://profile-provider.com

7. Define the Service Description.

For each resource offering profile, at least one service description must be
defined. The service description fields are as follows:

Security Mechanism ID.This field lists all available security mechanisms that
the service instance supports, which define how a web service client
authenticates to the web service provider. Select the security mechanisms you
wish to add and click the Add button. To arrange the priority of the list, select
the mechanism and use the Move Up and Move Down buttons.

Brief SoapHttp Description. If selected (default), this provides inline the
information necessary to invoke basic SOAP-over-HTTP-based service
instances, without using Web Service Description Language (WSDL).

End Point. This field contains the URI of the SOAP-over-HTTP endpoint. The
URI scheme must be HTTP or HTTPS. For example:

https://soap.profile-provider.com/soap

SOAP Action. This field contains the equivalent of the wsdlsoap:soapAction
attribute of the wsdlsoap:operation element in a WSDL-based description.

WSDL Reference. This field references an external concrete WSDL resource.

Service Namespace. This field references a wsdl:service element with the
WSDL resource, such that ServiceNameRef is equal to the wsdl:name attribute
of the proper wsdl: service element.

Service Local Part. This field provides the local part of the qualified name of
the service namespace URI.

Managing Resource Offerings

Chapter 3 Federation Management 63

8. Enter the Resource Offering Options.

This field lists the options available for the resource offering to provide hints to
a potential requestor whether certain data or operations are available to a
particular offering. If no option is specified, the service instance does not
advertise any available options.

9. Choose the resource offering Directives. The directives are as follows:

Authorize Requester. This directive is specified for discovery service provider
to include a SAML assertion containing a ResourceAccessStatement in any
future QueryResponse message.

Authenticate Session Context. This directive is specified for discovery service
provider to include a SAML assertion containing a SessionContextStatement
in any future QueryResponse message.

AuthenticateRequester. This directive must be used with any descriptions,
including the security mechanisms from LibertySecMech which uses SAML
for message authentication.

EncryptResourceID. This directive specifies that the discovery service must
not reveal the unencrypted resource ID to the clients. Currently, this directive
is not supported, so the resource ID will not be encrypted when this directive is
selected. If you wish to associate a directive with one or more description
elements in the resource offering, select the checkbox in front of that
Description ID. If none of the Description IDs are selected, the directive is
applied to all description elements provided in the resource offering.

10. Click Save.

Adding a New Liberty Web Service

64 Identity Server 2004Q2 • Federation Management Guide

Adding a New Liberty Web Service
Adding a Liberty web service to Identity Server entails the following:

• Developing the Server-Side Code

• Configuring the Service Schema

• Setting Up the Back-End Data Store

• Deploying the Service on the Identity Provider

• Deploying the Client on the Service Provider

• Running the Web Service Client

Sample code for an Employee Profile service is provided with Identity Server to
illustrate how to implement and deploy a new data service instance in Identity
Server. The sample implements a Liberty Employee Profile service.

An Employee Profile Service Example
For deploying and running of this sample, you will need two Identity Server
installations. One serves as Liberty Service Provider (SP), and one serves as Liberty
Identity Provider (IDP). The Employee Profile service will be located in Identity
Provider, and client code in the forms of jsp files will be located in SP.

The sample provides five .jsp files.

Table 3-1 Two machines required for this sample
Variable Placeholder Host Name Deployed on this host

machine1 www.sp1.com • Service Provider

• Web Service Client (.jsp files)

machine2 www.idp1.com • Identity Provider

• Discovery Service

• Employee Profile Service

Table 3-2 JSPs provided in this sample
Name Description

 index.jsp Retrieves boot strapping resource offering for discovery service.

discovery-modify.jsp Adds Resource Offering for a user.

Adding a New Liberty Web Service

Chapter 3 Federation Management 65

Developing the Server-Side Code
Since the Employee Profile service is a data service, when you develop its
server-side code, you must extend DSTRequestHandler and implement its
processDSTRequest() method to process query and modify requests.

Identity Server provides sample code to demonstrate how you would develop and
deploy a new service. The Employee Profile service sample code is already written
and resides in the following directory:

IdentityServer_base/samples/phase2/sis-ep/src/ep

Identity Server's back-end data store is used in this sample to store the requested
Employee Profile data. The code for getting and setting the data is included in the
Service Management APIs. See “Defining A Custom Service” in the Identity Server
Developer’s Guide.

Configuring the Service Schema
The xsd file which defines the Employee Profile service schema is the starting
point for developing the Employee Profile service server-side code.

discovery-query.jsp Sends query to discovery service for service resource offering.

id-sis-ep-modify.jsp Sends Data Service Modify request to modify user attributes.

id-sis-ep-query.jsp Sends Data Service Query Request to retrieve user attributes

NOTE This sample does not provide instructions for implementing every aspect of a
complete service. For this example, note the following:

• Authorization is not enabled.

• The only authentication mechanism supported is
urn:liberty:security:2003-08:null:null

• SSL/X509 and SAML tokens are not supported.

• Uses simple-minded select string parsing instead of using XPATH API

• A few attributes such as LInternalJobTitle, LOU, LCN, LAltCN and
LLegalName not supported.

Table 3-2 JSPs provided in this sample
Name Description

Adding a New Liberty Web Service

66 Identity Server 2004Q2 • Federation Management Guide

1. Invoke the jaxb compiler on xsd files.

The Employee Profile service and the related schema files are gathered under
IdentityServer_base/SUNWam/samples/phase2/sis-ep/xsd.

a. Be sure that the jaxb compiler xjc is available somewhere in your
environment. If it is not available, download JWSDP 1.3 from Sun's web
site.

http://java.sun.com

b. To make sure your are using the correct xjc.sh path inside the script
invoke_xjc.sh (which is under
IdentityServer_base/SUNWam/samples/phase2/sis-ep/bin), run the
following command:

jar tvf install_dir/SUNWam/lib/am_services.jar | grep
"impl/runtime"

Based on the result, in the script invoke_xjc.sh, replace the package name
behind the option -use-runtime.

c. Be sure that JAVA_HOME environment variable in xjc.sh is set; it should
point to a JDK version equal to or higher than 1.4.

d. Invoke the script invoke_xjc.sh:

IdentityServer_base/SUNWam/samples/phase2/sis-ep/bin/
invoke_xjc.sh

A number of Java files are generated from the xsd files and are placed under
IdentityServer_base/SUNWam/samples/phase2/sis-ep/xsd/gen.

2. Compile the generated Java files.

a. If necessary, modify the INSTALL_DIR variable in script
IdentityServer_base/SUNWam/samples/phase2/sis-ep/

bin/compile_gen.sh.

b. Run the following command:

IdentityServer_base/SUNWam/samples/phase2/sis-ep/
bin/compile_gen.sh

A number of class files are generated and placed under
IdentityServer_base/SUNWam/samples/phase2/sis-ep/classes. The
IdentityServer_base/SUNWam/samples/phase2/sis-ep/classes directory is
soft-linked from install_dir/SUNWam/lib which is already on the web container's
class path.

Adding a New Liberty Web Service

Chapter 3 Federation Management 67

3. Develop the Employee Profile service code. (See the introduction to
“Developing the Server-Side Code” on page 65.)

4. Compile the EP service code.

cd IdentityServer_base/SUNWam/samples/phase2/sis-ep/src
make

The generated class files are placed under
IdentityServer_base/SUNWam/samples/phase2/sis-ep/classes, together with
the class files compiled from the generated jaxb Java files.

5. Set up the back-end data store.

See the following section.

Setting Up the Back-End Data Store
For more information about the back end data store and service management,
see the Identity Server Administration Guide.

To Set up the Back-End Data Store
1. Load the Employee Profile LDIF file. This is the Directory Server schema.

a. # cd IdentityServer_base/SUNWam/samples/phase2/sis-ep/bin

b. Modify load_ldif.sh.

Provide the values that are appropriate for your deployment for the
following parameters: installation directory, host name, directory server
port and password.

c. Run the load_ldif.sh script:

./load_ldif.sh

This loads the Directory Server schema defined in
IdentityServer_base/SUNWam/samples/phase2/sis-ep/ldif/ep.ldif into
the Directory Server. The attribute names used in ep.ldif are the ones
used in EmployeeProfile.java in
IdentityServer_base/SUNWam/samples/phase2/sis-ep/src/ep.

2. Load the Employee Profile service management schema.

Adding a New Liberty Web Service

68 Identity Server 2004Q2 • Federation Management Guide

a. In IdentityServer_base/SUNWam/samples/phase2/sis-ep/
bin, modify load_xml.sh.

Change the amadmin password. Change the installation directory, if
necessary.

b. Run the following command:

./load_xml.sh

This loads the Identity Server service management schema that is defined
in IdentityServer_base/SUNWam/samples/phase2/sis-ep/

xml/amLibertyEmployeeProfile.xml into the Identity Server and
ultimately into Directory Server.

Note that the attribute names in amLibertyEmployeeProfile.xml are the
same as those in ep.ldif.

Deploying the Service on the Identity Provider

To Deploy the Service
1. Configure the SOAP Receiver to recognize EPRequestHandler.

a. Log in to Identity Server as Top-Level administrator.

b. Click the Service Configuration tab, and then select SOAP Binding.

c. In the right pane, add key=idep|class=ep.EPRequestHandler to the
RequestHandler List.

Note that ep.EPRequestHandler is the class name for
IdentityServer_base/SUNWam/samples/phase2/sis-ep/

src/ep/EPRequestHandler.java which extends DSTRequestHandler.
Also note that idep will be part of the URI used to invoke the Employee
Profile service.

d. In /etc/opt/SUNWam/config/AMConfig.properties, add ep.jaxb to the
property com.sun.identity.liberty.ws.jaxb.packageList.

This is to let the SOAP binding layer knows about the Employee Profile
service jaxb package which is new to the Identity Server platform.

2. Register the Employee Profile service to the default organization.

a. Log in to Identity Server As Top-Level administrator.

b. In the Identity Management tab, in the View menu, choose Services.

Adding a New Liberty Web Service

Chapter 3 Federation Management 69

c. Click Add.

d. In the right pane, select "Liberty Employee Profile Service,” and then click
OK.

3. Create a user. For this example, name the user idpUser.

Select "Liberty Employee Profile Service" in the "Available Services" list
creating idpUser (otherwise EP modify will fail).

If idpUser exists already (from deploying the Web Service Client sample, for
example), then just add the "Liberty Employee Profile Service" for this user.

This user will be used as the federated user on the Identity Provider side, also
for storage of Discovery Service resource offering and Employee Profile service
attributes. Deploy liberty sample1 IDP to set up a runnable liberty scenario.

4. Deploy the Identity Provider.

Follow the instructions in the section “Deploying the Identity Provider” on
page 33. If this is done already, when running the Web Service Client sample,
for example, then skip this step.

5. Restart the web container in which Identity Server is running.

Deploying the Client on the Service Provider

To Deploy the Client
1. Deploy the Service Provider.

Follow the instruction in the section “Deploying the Identity Provider” on
page 33. If this is already done, for example if you have already run the Web
Service Client sample, then skip this step.

2. Change protocol support of the remote Identity Provider to ID-FF 1.2.

a. Log in to Identity Server as Top-Level administrator.

b. Click the Federation Management tab, and then in the View menu choose
Entity Descriptors.

c. Click the remoteIDP entity ID from the list.

d. In the right pane, in the view menu, choose Provider.

e. Click the Edit link under Provider.

Adding a New Liberty Web Service

70 Identity Server 2004Q2 • Federation Management Guide

f. In the "Protocol Support Enum" field, choose urn:liberty:iff:2003-08.

g. Click Save.

3. Replace the tags and hosts in discovery-modify.jsp and index.jsp.

All the JSP files are under
IdentityServer_base/SUNWam/samples/phase2/sis-ep/

jsp/. Use the Data Services Template client API and Discovery client API
for sending query or modify requests and for receiving query or modify
responses.

❍ Replace IDP_SERVER_PORT with the server port of Identity Provider host.

❍ Replace SERVICE_DEPLOY_URI with the service deployment URI of the
Identity Provider host.

❍ Replace www.sp1.com with host name of the Service Provider host if
necessary.

❍ Replace www.idp1.com with host name of Identity Provider host if
necessary.

4. Deploy the JSP files.

Copy all the five JSP files to a sub directory of the document root of the web
container.

For example, if you are using Sun Java System Web Server 6.1, run following
command:

mkdir webserber_install_dir/docs/wsc

cp is_install_dir/SUNWam/samples/phase2/ep/*.jsp
webserber_install_dir/docs/ep/

5. Create a user named spUser.

This user will be used as federated user on the Service Provider side.

6. Restart the web container in which Identity Server is running.

Adding a New Liberty Web Service

Chapter 3 Federation Management 71

Running the Web Service Client
Before you can run the Web Service Client, you must deploy a Service Provider and
an Identity Provider. If you have not done this yet, see “Creating a Liberty Web
Services Environment” on page 29 for detailed instructions.

1. Federate users spUser and idpUser.

See “Creating a Liberty Web Services Environment” on page 29. Follow the
instructions for federating user accounts, performing single sign-on, and
performing single logout.

2. As idpUser, perform a single sign-on again from the Service Provider to the
Identity Provider.

3. In a browser, connect to http://machine1:sever_port/ep/index.jsp.

You will see the bootstrapping resource offering for Discovery Service and two
two buttons: "Send Discovery Lookup" and "Add PP Resource Offering."

4. Click "Add PP Resource Offering."

The discovery-modify.jsp page is displayed. The Employee Service resource
offering has been computed based on the bootstrapped Discovery Service
Resource Offering.

5. Click "Send Discovery Update Request.",

The user's Employee Profile resource offering will be registered in idpUser on
machine2.

6. Click the "Return to index.jsp" link.

This will bring you back to the index.jsp page with the bootstrapped resource
offering.

7. Click "Send Discovery Lookup."

The discovery-query.jsp page is displayed.

8. (Optional) If you leave the “ServiceType to look for” field blank, all service
instances will be returned.

You can enter a value in the "ServiceType to look for" field. Values are defined
in the Liberty Web Service Consumer specification.

9. Click "Send Discovery Lookup Request."

The Employee Profile resource offering added in Step 4 will be displayed.
Choose one of the following two options:

Constructing a PAOS Request and Response

72 Identity Server 2004Q2 • Federation Management Guide

❍ To query Employee Profile Service in machine2 for user attributes, click
"Send EP Query."

The id-sis-ep-query.jsp page is displayed.

In the Authentication Mechanism field, choose
urn:liberty:security:2003-08:null:null. You can change the "XPath
Expression" field to a different XPath expression for attribute selection. The
default is /EP/EmployeeID.

❍ To modify the user's employee profile attributes, click "Send PP Modify."
The id-sis-ep-modify.jsp page is displayed. The modify request is sent
to the Employee Profile Service in machine2.

In the Authentication Mechanism field, choose
urn:liberty:security:2003-08:null:null. You can modify the "XPath
Expression" field for attribute selection. The default is /EP/EmployeeID.
You can modify the Value field with new values for the attribute.

Constructing a PAOS Request and Response
Identity Server provides client PAOS APIs and a sample stand-alone Java
application to demonstrate how to set up and invoke a PAOS service interaction
between a client and a server. In a real-world deployment, the server-side code
would be developed by a service provider.

All the files required to use the sample are located here:

IdentityServer_base/SUNWam/samples/phase2/paos

The sample is based on the following scenario: a cell phone user subscribes to a
news service offered by his cell phone’s manufacturer. The news service
automatically pushes stocks and weather information to the user’s cell phone at
regular intervals. In this scenario, the manufacturer is the news service provider
and the individual cell phone user is the client or consumer.

Constructing a PAOS Request and Response

Chapter 3 Federation Management 73

To Run the Sample PAOS Program
1. Set the environment variables.

❍ These environment variables will be used for running the make and gmake
commands, and for using the run command. The Makefile and run
command are in the same directory where the sample files are located:

IdentitySever_base/SUNWam/samples/phase2/paos

❍ Set the JAVA_HOME variable to your installation of JDK. The JDK version
should be newer than JDK 1.3.1

2. In the directory IdentityServer_base/SUNWam/samples/phase2/paos, run
gmake or make.

3. Copy the PAOSClientServlet.class file to the IdentityServer_base/SUNWam/lib
directory. Alternatively, you can make a soft-link in that directory back to this
class.

4. Register the Sample servlet.

In the file IdentityServer_base/SUNWam/web-apps/services/WEB-INF/web.xml,
insert these lines just after the last /servlet tag:

Insert the following lines just after the last </servlet-mapping> tag:

5. Restart the server.

6. Modify the run script to reflect your particular installation.

<servlet>
 <servlet-name>PAOSClientServlet</servlet-name>
 <description>PAOSClientServlet</description>
 <servlet-class>PAOSClientServlet</servlet-class>
 </servlet>

<servlet-mapping>
 <servlet-name>PAOSClientServlet</servlet-name>
 <url-pattern>/PAOSClientServlet</url-pattern>
 </servlet-mapping>

Constructing a PAOS Request and Response

74 Identity Server 2004Q2 • Federation Management Guide

7. Run PAOSServer:

./run

You will see the output from the PAOSServer program. You can also see the output
from PAOSClientServlet program in the Web Server's log file. For example, for
Sun Java System Web Server, in the Web Server instance directory, look in the log
subdirectory for the errors file.

75

Chapter 4

Service Configuration Attributes

This chapter provide summaries of service configuration attributes that come with
Identity Server. The chapter contains the following topics:

• “Discovery Service Attributes” on page 75

• “Liberty Personal Profile Service Attributes” on page 77

• “SOAP Binding Service Attributes” on page 80

Discovery Service Attributes
The Discovery Service attributes are global attributes. The values applied to them
are applied across the Identity Server configuration and are inherited by every
configured organization. (They cannot be applied directly to roles or organizations,
as the goal of global attributes is to customize the Identity Server application). The
Discovery Service attributes are:

• Provider ID

• Supported Authentication Mechanisms

• Supported Directives

• Do Policy Evaluation for DiscoveryLookup

• Do Policy Evaluation for DiscoveryUpdate

• Class for Authorizer Plugin

• Class for Discovery Service Entry Handler Plugin

• Classes For Resource ID Mapper Plugin

• Generate Session Context Statement for Bootstrapping

Discovery Service Attributes

76 Identity Server 2004Q2 • Federation Management Guide

• Resource Offerings for Bootstrapping

Provider ID
This attribute defines the unique identifier used for this Discovery Service. For
example:

http://example.com:58080/amserver/Liberty/disco

Supported Authentication Mechanisms
This attribute specifies the authentication mechanisms supported by the Discovery
Service. By default, all of the mechanisms are selected. If an authentication
mechanism is not selected, and a WSC sends a request using that authentication
mechanism, the request will be rejected without passing it to the corresponding
WSP.

Supported Directives
This attribute allows you to select the directives that are supported by the
Discovery Service. If a service provider wants to insert an entry with an
unsupported directive, the request will fail.

Do Policy Evaluation for DiscoveryLookup
If selected, the service will perform a policy evaluation for the DiscoveryLookup
operation. By default, the option is not selected.

Do Policy Evaluation for DiscoveryUpdate
If selected, the service will perform a policy evaluation for the DiscoveryUpdate
operation. By default, this option is not selected.

Class for Authorizer Plugin
This attribute defines the classname and classpath used for policy evaluation.

Class for Discovery Service Entry Handler Plugin
This attribute defines the classname and classpath used to set or retrieve
DiscoEntries.

Liberty Personal Profile Service Attributes

Chapter 4 Service Configuration Attributes 77

Classes For Resource ID Mapper Plugin
This attribute contains a list of entries that are used to generate the Resource ID for
a resource offering configured for an organization or role. The entries contain a
key/value pair (separated by “|”) in the following format:

providerID=providerID|classname_classpath

To add a new request handler, click the add button. The key and value parameters
are required.

Generate Session Context Statement for Bootstrapping
This option specifies whether to generate a SessionContextStatement for
bootstrapping. SessoinConxtext in the SessionContextStatement is needed by the
Discovery Service to support the AuthenicateSessionContext directive. By
default, this option is not selected.

Resource Offerings for Bootstrapping
This attribute defines the service’s resource offering for bootstrapping. After Single
Sign-on (SSO), this resource offering and its associated credentials will be sent to
the client in the SSO assertion. Only one resource offering is allowed for
bootstrapping. If you have not defined a resource offering, click New. If you wish
to edit an existing resource offering, click the Edit link. For more information
defining a resource offering, see “Managing Resource Offerings” on page 60.

Liberty Personal Profile Service Attributes
The Liberty Personal Profile service attributes are global attributes. The values
applied to them are applied across the Sun Java System Identity Server
configuration and are inherited by every configured organization. (They can not be
applied directly to roles or organizations as the goal of global attributes is to
customize the Identity Server application.)

The Liberty Personal Profile Service Attributes are:

• Resource ID Mapper

• Authorizer

• Attribute Mapper

• Provider ID

• Name Scheme

Liberty Personal Profile Service Attributes

78 Identity Server 2004Q2 • Federation Management Guide

• Namespace Prefix

• Supported Containers

• PPLDAP Attribute Map List

• Require Query PolicyEval

• Require Modify PolicyEval

• Extension Container Attributes

• Extension Attributes Namespace Prefix

Resource ID Mapper
This attribute specifies the mutual implementation of a resourceID to the User DN.

Authorizer
This attribute defines the default implementation of the Personal Profile Service
service authorization.

Attribute Mapper
This attribute defines the mapping between a Liberty Personal Profile service
attribute to a user attribute. Format:

LibertyPersonalProfileAttribute=IdentityServerAttribute

For example:

AltCN=SunIdentityServerPPCommonNameAltCN

Provider ID
This attribute defines the unique identifier used for this Liberty Personal Profile
Service. For example:

http://example.com:58080/amserver/Liberty/idpp

Name Scheme
This attribute defines the naming scheme that will be used for the Liberty Personal
Profile Service common name. For example, you can specify first and last name, or
first, middle and last name.

Liberty Personal Profile Service Attributes

Chapter 4 Service Configuration Attributes 79

Namespace Prefix
This attribute specifies the namespace prefix to be used for Liberty Personal Profile
Service XML protocol messages. NameSpace is used to differentiate the elements
that come from different XML schemas. Namespace prefix is a prefix to the element
and will be useful to define XML metadata from different XML schema
namespaces.

Supported Containers
This attribute defines the list of supported Personal Profile containers. To add a
container, click the Add button. Enter the key value pair in the provided fields and
click OK.

PPLDAP Attribute Map List
This attribute list specifies the mapping for the Personal Profile attributes defined
in the Liberty II specification to the Identity Server Personal Profile service
attributes.

For example, in the mapping scheme,
JobTitle=sunIdentityServerPPEmploymentIdentityJobTitle,
sunIdentityServerPPEmploymentIdentityJobTitle is the Identity Server attribute
that maps to the Liberty Protocol’s JobTitle attribute.

Require Query PolicyEval
If selected, this option requires a policy evaluation to be performed for Personal
Profile service queries.

Require Modify PolicyEval
If selected, this option requires a policy evaluation to be performed for Personal
Profile service modifications.

Extension Container Attributes
This attribute specifies the list of extension container attributes for the Personal
Profile service.

Extension Attributes Namespace Prefix
This attribute defines the namespace prefix for the extensions defined in Extension
Container Attributes.

SOAP Binding Service Attributes

80 Identity Server 2004Q2 • Federation Management Guide

SOAP Binding Service Attributes
The SOAP Binding Service attributes are global attributes. The values applied to
them are carried across the Sun Java System Identity Server configuration and
inherited by every configured organization. (They can not be applied directly to
roles or organizations as the goal of global attributes is to customize the Identity
Server application.)

The SOAP Binding Service attributes are as follows:

• Request Handler List

• Web Service Authenticator

• Supported Authentication Mechanisms

Request Handler List
This attribute stores information about a Web Service Provider (WSP) deployed in
Identity Server. It lists entries that contain a key/value pair (separated by “|”). For
example:

key=disco|class=com.example.identity.liberty.ws.disco.DiscoveryService|soa
pActions=sa1 sa2 sa2

To add a new request handler, click the add button. The key and class parameters
are required. The parameters are:

key. This defines the second part of the URI path for the SOAP endpoint of the
WSP. The first part is defined as Liberty by the SOAP services. For example, if
you define disco as the key, the SOAP endpoint for the Discovery service is:

protocol://hostname:port/deloy_uri/Liberty/disco

class. This parameter specifies the name of the implementation class for the
WSP. The Liberty SOAP layer provides a handler interface to be implemented
by each WSP to process the requested message and then return a response.

soapActions. This is an optional parameter that specifies supported
SOAPActions. If this parameter is not specified, all SOAPActions are
supported. If a Web Service Consumer (WSC) sends a request with an
unsupported SOAPAction, the request will be rejected by the SOAP layer
without passing it one to the corresponding WSP.

SOAP Binding Service Attributes

Chapter 4 Service Configuration Attributes 81

Web Service Authenticator
This attribute defines the implementation class for the WebServiceAuthenicator
interface, which authenticates and generates a credential for a Web Service
Consumer (WSC), based on the request.

Supported Authentication Mechanisms
This attribute specifies the authentication mechanisms supported by the SOAP
endpoint. By default, all of the mechanisms are selected. If an authentication
mechanism is not selected, and a WSC sends a request using that authentication
mechanism, the request will be rejected by the SOAP layer without passing it to the
corresponding WSP.

SOAP Binding Service Attributes

82 Identity Server 2004Q2 • Federation Management Guide

83

Chapter 5

Using the Web Services Client APIs

Sun ™ Java System Identity Server 2004Q2 provides a Federation Management
framework for creating, discovering, and consuming identity services. This chapter
provides engineering notes and summaries of Java classes and APIs that you can
use to extend the framework. The SOAP-based invocation framework includes the
following components and core identity services:

• “Trusted Authority” on page 85

• “SOAP Binding” on page 86

• “Authorization” on page 88

• “Discovery Service” on page 89

• “Data Services Template” on page 91

• “Personal Profile Service” on page 92

• “Interaction Service” on page 97

• “Metadata Specifications” on page 98

• “PAOS” on page 98

Federation Packages and Global Interfaces

84 Identity Server 2004Q2 • Federation Management Guide

Federation Packages and Global Interfaces
Table Table 5-1 summarizes the public APIs you can use to deploy Liberty II
components or extend the core services. For detailed API reference that includes
classes, methods and their syntax and parameters, see the Javadocs at
/opt/SUNWam/docs/am_public_javadocs.jar.

Table 5-2 summarizes classes used by all Liberty service components, and
interfaces common to all Liberty services. All of these are Included in package
com.sun.identity.liberty.ws.common.

Table 5-1 Summary of Liberty II Web Services Packages

Package Name Description

com.sun.identity.liberty.ws.common.wsse Provides an interface for Web Service Security X.509 Certificate Token
Profile. See “Authorization” on page 88.

com.sun.identity.liberty.ws.disco Provides interfaces to manage liberty discovery service. See
“Discovery Service” on page 89.

com.sun.identity.liberty.ws.disco.plugins Provides interfaces to manage liberty discovery service. See
“Discovery Service” on page 89.

com.sun.identity.liberty.ws.dst Provides interface to manage liberty ID-WSF Data Service Template.
See “Data Services Template” on page 91.

com.sun.identity.liberty.ws.interaction Provides classes to support Liberty Interaction RequestRedirect
Profile. See “Interaction Service” on page 97.

com.sun.identity.liberty.ws.interfaces Provides interfaces common to all liberty services.

com.sun.identity.liberty.ws.paos Provides classes for web application to construct and process PAOS
request and response.“PAOS” on page 98.

com.sun.identity.liberty.ws.security Provides interface to manage liberty ID-WSF security
mechanisms.“Security Token Manager” on page 85.

Table 5-2 Common Liberty II Classes and Interfaces

Class or Interface Name Description

LogUtil Included in package com.sun.identity.liberty.ws.common.

Status Class that represents a common status object. Included in package
com.sun.identity.liberty.ws.common.

Authorizer Interface for identity service to check authorization of a WSC. Included in
package com.sun.identity.liberty.ws.common.interfaces.

Trusted Authority

Chapter 5 Using the Web Services Client APIs 85

Trusted Authority
The Trust Authority component provides APIs for creating security tokens used
for authentication and authorization in accordance with the ID-WSF Security
Mechanisms Specification. Both WSS X509 and SAML tokens are supported.

Security Token Manager
This is the entry class for the security package
com.sun.identity.liberty.ws.security. You can call methods in this class to
generate X509 and SAML tokens for message authentication or authorization. It is
designed as a provider model, so different implementations can be plugged in if
the default implementation does not meet your requirements.

Table Table 5-3 summarizes the Liberty security APIs included in
com.sun.identity.liberty.ws.security. For detailed API reference, including
methods and their syntax and parameters, see the Javadocs at
/opt/SUNWam/docs/am_public_javadocs.jar.

ResourceIDMapper Interface Used to map between an userID and the ResourceID associated with it.
Included in package com.sun.identity.liberty.ws.common.interfaces.

Table 5-3 Security APIs

Class Name Description

 SecurityTokenProvider A provider interface for managing WSS security tokens.

 ProxySubject Represents the identity of a proxy, the confirmation key and confirmation
obligation the proxy must possess and demonstrate for authentication purpose

 ResourceAccessStatement Conveys information regarding the accessing entities and the resource for which
access is being attempted

 SecurityAssertion Provides an extension to Assertion class to support ID-WSF
ResourceAccessStatement and SessionContextStatement

 SecurityTokenManager A final class that provides interfaces to manage Web Service Security (WSS)
Tokens.

 SessionContext Represents session status of an entity to another system entity.

 SessionContextStatement An element that conveys session status of an entity to another system entity
within the body of an <saml:assertion> element.

 SessionSubject Represents a liberty subject with associated session status.

Table 5-2 Common Liberty II Classes and Interfaces (Continued)

Class or Interface Name Description

SOAP Binding

86 Identity Server 2004Q2 • Federation Management Guide

SOAP Binding
The SOAP Binding component is designed to be a generic transport layer for
handling SOAP messages.

Table 5-4 Summarizes the APIs for SOAP binding. For detailed API reference,
including methods and their syntax and parameters, see the Javadocs at
/opt/SUNWam/docs/am_public_javadocs.jar.

A client-side API is provided so that any web server client can talk to the server's
SOAP end point. A server-side hook, the RequestHandler interface, is provided so
that any web service provider can easily be plugged into the Liberty Identity web
service framework.

 BinarySecurityToken The class BinarySecurityToken provides interface to parse and create X.509
Security Token depicted by Web Service Security: X.509

 WSSEConstants .

Table 5-4 APIs for SOAP binding.

Class Name Description

Message Used by web service client and server to construct a request or response.

CorrelationHeader Represents the Correlation element defined in the SOAP binding schema.

ConsentHeader Represents the Consent element defined in the SOAP binding schema.

UsageDirectiveHeader This is the default constructor.

Client Provides web service clients with a method to send requests using a SOAP connection
to web service servers.

SOAPReceiver Defines a SOAP Receiver which supports SOAP over HTTP binding.

RequestHandler This interface must be implemented by web service in order to receive requests from a
client.

Table 5-3 Security APIs (Continued)

Class Name Description

SOAP Binding

Chapter 5 Using the Web Services Client APIs 87

Plugin a new Web Service Provider
1. The web service provider needs to implement the RequestHandler interface,

which will be called to do service specific processing.

2. The web service provider need to register the RequestHandler in the SOAP
service together with a second level URI. SOAP service registers the top level
servlet mapping URI in web.xml: <servlet>

For example, a personal profile service provider could register idpp URI with the
SOAP service. Registration is done through Identity Server administration console
by adding the key/handler class mapping to the SOAP service Request Handler
List field:

key=idpp|class=com.sun.identity.liberty.ws.idpp.PPRequestHandler

Code Example 5-1 New Web Service Provider

/**
* The RequestHandler interface needs to be implemented
* by web services in order to receive request from client.
*/
public interface RequestHandler {
/**
* Generates a response according to the request
* @param request request message object
* @return response message
*/
 public Message
 processRequest(
 Message request
)
}

 <servlet-name>WSSOAPReceiver</servlet-name>

<servlet-class>com.sun.identity.liberty.ws.soapbinding.SOAPReceiver</servl
et-class>
</servlet>
<servlet-mapping>
 <servlet-name>WSSOAPReceiver</servlet-name>
 <url-pattern>/Liberty/*</url-pattern>
</servlet-mapping>

Authorization

88 Identity Server 2004Q2 • Federation Management Guide

If the SOAP service receives any requests to the /Liberty/idpp URI, the registered
ID-SIS-PP RequestHandler will be invoked to process the request, and return will
be sent as response to the requester.

Authorization
When a web service consumer contacts a web service provider, the consumer may
convey both sender identity and invocation identity. The web service provider
must make an authorization decision based on one or both identities. Identity
Server depends on the policy framework to perform access evaluation.

Creating an SSO Token
Identity Server framework requires an SSO token in order to perform policy
evaluation. The SSO token is created in the SOAP layer. Any web service provider
can use the SSO token to perform policy evaluation.

SOAP creates the SSO token after successful peer and/or message authentication.
The subject of the certification used in peer or message authentication, or in both,
will be set as the subject of the SSO token. An SPI interface is defined to create an
SSO token based on the SOAP message and/or HTTP servlet request.The Sender
Identity, Authentication Mechanism, and SOAP Message properties will be set in
the SSO token.

Creating a Policy
You must create a policy for the identity service. See the Identity Server
Administration Guide for detailed steps for creating a policy. Specify the policy
subject, roles, and so forth that you want to use for authorization to be enforced.

Table 5-5 summarizes the Security Token APIs included in
com.sun.identity.liberty.ws.common.wsse. For detailed API reference, including
methods and their syntax and parameters, see the Javadocs at
/opt/SUNWam/docs/am_public_javadocs.jar.

Table 5-5 Binary Security Token APIs

Class Name Description

 BinarySecurityToken The class BinarySecurityToken provides interface to parse and create X.509
Security Token depicted by Web Service Security: X.509

 WSSEConstants .

Discovery Service

Chapter 5 Using the Web Services Client APIs 89

Discovery Service
A Discovery Service describes and discovers identity services. By default, a
Discovery service is implemented as one of the identity web services in Identity
Server. Discovery Service provides four interfaces:

• Authorizer

• DefaultDiscoAuthorizer

• ResourceIDMapper

• DiscoEntryHandler

Authorizer
The class com.sun.identity.liberty.ws.interfaces.Authorizer is an interface
to enable Identity service to check authorization of a Web Service Client.

DefaultDiscoAuthorizer
The com.sun.identity.liberty.ws.disco.plugins.DefaultDiscoAuthorizer is
the Discovery Service default implementation. This implementation uses the policy
service defined in sunIdentityServerDiscoveryService. In this policy definition,
a policy resource uses the form:

ServiceType + RESOURCE_SEPERATOR + ProviderID.

Example:

urn:liberty:id-sis-pp:2003-08;http://example.com.

Policy credentials are SSOToken for Authentication Users or Web Service
Clients. The actions are DiscoConstants.ACTION_LOOKUP or
DiscoConstants.ACTION_UPDATE.

You can write a policy plugin to process and use the information passed in
through the environment variable. Or you can define a complete new policy
service and implement your own Authorizer plugin.

ResourceIDMapper
The class com.sun.identity.liberty.ws.interfaces.ResourceIDMapper is an
interface that is used to map a userID to the ResourceID associated with it.

A different implementation of the interface may be developed by different service
provider. The implementation classes should be given to the provider that hosts
Discovery Service. The mapping between the providerID and the implementation
class can be configured through the "Class for ResourceID Mapper Plugin" field in
Discovery Service.

Discovery Service

90 Identity Server 2004Q2 • Federation Management Guide

Discovery Service provides two implementations for this interface.
com.sun.identity.liberty.ws.disco.plugins.Default64ResourceIDMapper
assumes the format of ResourceID is:

providerID + "/" + the Base64 encoded userIDs

In this example,
com.sun.identity.liberty.ws.disco.plugins.DefaultHexResourceIDMapper
assumes the format of ResourceID is:

providerID + "/" + the hex string of userID.

DiscoEntryHandler
The class com.sun.identity.liberty.ws.disco.plugins.DiscoEntryHandler is
an interface that is used to get and set DiscoEntries for a user. A default
implementation is provided for this Discovery Service. If you want to handle
DiscoEntry differently, implement this interface and set the implementing class to
DiscoEntryHandler Plugins Class field in Discovery Service.

Discovery Service provides three implementations for this interface.

UserDiscoEntryHandler. This implementation gets or modifies discovery entries
stored at the user's entry in the attribute named sunIdentityServerDiscoEntries.
The resource offering is saved in a user entry. UserDiscoEntryHandler is used in
business-to-consumer scenarios such as the Personal Profile service.

DynamicDiscoEntryHandler. This implementation gets discovery entries stored
at the dynamic template in attribute named
sunIdentityServerDynamicDiscoEntries. Modification method is not supported
and always returns false. The resource offering is saved in an organization or a
role. DynamicDiscoEntryHandler is used in business-to-business scenarios such as
the Employee Profile service.

UserDynamicDiscoEntryHandler. This implementation gets a union of the
discovery entries stored at the user entry in attribute named
sunIdentityServerDiscoEntries and entries stored at the dynamic template in
attribute named sunIdentityServerDynamicDiscoEntries. It modifies discovery
entries stored at the user entry in the attribute named
sunIdentityServerDiscoEntries. UserDynamicDiscoEntryHandler is used in both
business-to-consumer and business-to-business scenarios.

Data Services Template

Chapter 5 Using the Web Services Client APIs 91

Client APIs
Table 5-6 summarizes the Discovery Service client APIs included in
com.sun.identity.liberty.ws.disco. For detailed API reference, including
methods and their syntax and parameters, see the Javadocs at
/opt/SUNWam/docs/am_public_javadocs.jar.

Data Services Template
The Data Services Template is designed to be a base layer that can be extended by
any data services instance. An example of a data service a personal profile service
such as a online corporate directory. When you want to contact a colleague, you
conduct a search based on the individual’s name, and the service returns
information associated with your colleague’s identity. The information may
include the individual’s office location and phone number, as well as other data
such as his job title and department name.

Table 5-6 Discovery Service Client APIs

Class Name Description

 Description Represents a Description Type of a service instance.

 Directive Represents a discovery service DirectiveType element.

 DiscoveryClient Provides methods to send Discovery Service query and modify.

 EncryptedResourceID Represents an Encryption Resource ID element for the Discovery Service.

InsertEntry Represents a Insert Entry for Discovery Modify request.

 Modify Represents a discovery modify request.

 ModifyResponse Represents a discovery response for modify request.

 Query Represents a discovery Query object.

 QueryResponse Represents a response for a discovery query request.

 RemoveEntry Represents a remove entry element for the discovery modify request.

 RequestedService Enables the requester to specify that all the resource offerings returned must be
offered via a service instance complying with one of the specified service type.

ResourceID Represents a discovery service resource ID

ResourceOffering Associates a resource with a service instance that provides access to that
resource

ServiceInstance Describes a web service at a distinct protocol endpoint.

DiscoEntryHandler An interface used to get and set DiscoEntries for a user. Contained in the
com.sun.identity.liberty.ws.disco.plugins package.

Personal Profile Service

92 Identity Server 2004Q2 • Federation Management Guide

The Data Services client APIs for the template provide the building blocks for
implementing a data service on top of the Identity Services framework. The
template defines how to query and modify data stored in a data service, and
provides some common attributes for the data services. From the implementation
point of view, all the data identity services must be built on top of the template.
The Data Service Template provides the data model and the message interfaces for
all data services.

Client APIs
Table 5-7 summarizes the Data Services client APIs included in
com.sun.identity.liberty.ws.dst. For detailed API reference, including methods and
their syntax and parameters, see the Javadocs at
/opt/SUNWam/docs/am_public_javadocs.jar.

Personal Profile Service
A Personal Profile service (ID-PP) is a data-oriented identity web service hosted by
an attribute provider for web service clients. It is designed to make public the user
personal profiles in the World Wide Web. Examples of personal profile services
used in a company are the corporate calendar or phone book which provide
information associated with an employee’s individual identity.

Identity Server provides a framework for developing identity web services, and
also provides a built-in personal profile service that you can deploy.

Table 5-7 Data Service Client APIs

Class Name Description

DSTClient Provides common functions for the Data Service Templates query and modify
option.

DSTData Provides a wrapper for any data entry.

DSTModification Represents a Data Services Template modification operation.

DSTModify Represents a Data Services Template modify request.

DSTModifyResponse Represents a Data Services Template response for DST modify request.

DSTQuery Represents a Data Services Template query request.

DSTQueryItem The wrapper for one query item for Data service.

DSTQueryResponse Represents a Data Services Template query response.

DSTException Represents an error while processing Data Service Templates query or modify
requests.

Personal Profile Service

Chapter 5 Using the Web Services Client APIs 93

Before the Web Service Client posts a query or a modify request, the Personal
Profile service for a specific resource must be registered with Discovery Service.
This is done by updating a resource offering for a specific resource. The invocation
of the personal profile starts when a web services client posts a query or a modify
request to the Personal Profile service on behalf of the user.

How It Works
1. A web services consumer posts either a query or a modify request to the

Personal Profile service by keeping appropriate credentials based on the
security profile that it is using to communicate.

2. The client's SOAPRequest is received by the SOAPReceiver provided by the
SOAP binding framework. The SOAP framework authenticates the web
services client and invokes the corresponding service.

3. The Personal Profile service handler parses the request and evaluates the
authorization for each item in the request. Policy enforcement is done by
making use of Identity Server Policy framework. The processing of each
request is subject to the processing rules specified by the Liberty Data
Template specification.

4. The Personal Profile service responds to query and modify requests. For query
requests, the service builds a personal profile container (as defined by the
specification). This is an xml blob based on the Query Select expression. The
Personal Profile attribute values are extracted from the data store by making
use of the attribute mapper. The attribute mapper is defined by the service xml
definition, and these values will be used while building the xml container.

The Personal Profile service then applies xpath queries on the xml blob and
gives us the resultant xml data node. For modify requests, it parses the
Modifiable Select expression and updates the new data from the new data
node in the request.

5. Finally, the Personal Profile service builds a service response and adds
credentials (if they are required), then sends it back to the web services client.

Notes on Customizing the Personal Profile
Service
This Personal Profile service is completely customizable and provides multiple
levels of customization that you can implement to meet your company’s needs.
These include:

Personal Profile Service

94 Identity Server 2004Q2 • Federation Management Guide

• Attribute Mapping

• Authorization

• Containers

• Extensions

• Rewriting the whole service

Attribute Mapping
Each Personal Profile attribute defined by the Liberty Personal Profile service has a
one-to-one Identity Server Personal Profile service attribute. However, we do not
need to use the same attributes, instead, we could specify attribute mappings with
any other user attributes. These attribute mappings are defined as a global attribute
in the personal profile service xml definition.

In the following example, Liberty informalName is mapped to a user's uid which is
defined by IDService:

Authorization
The authorization component is a plug-in to the Personal Profile service and is
defined by the service as a global attribute. The plug-in implementation must
implement the Authorizer interface as defined by API.

The following the default plug-in implementation:

<AttributeSchema name="sunIdentityServerPPDSAttributeMapList"
 type="list"
 syntax="string"
 i18nKey="p108">
 <DefaultValues>
 <Value>CN=sunIdentityServerPPCommonNameCN</Value>
 <Value>FN=sunIdentityServerPPCommonNameFN</Value>
 <Value>MN=sunIdentityServerPPCommonNameMN</Value>
 <Value>SN=sunIdentityServerPPCommonNameSN</Value>
 <Value>InformalName=uid</Value>
 </AttributeSchema>

<AttributeSchema name="sunIdentityServerPPDSAttributeMapList"
 type="list"
 syntax="string"
 i18nKey="p108">
 <DefaultValues>
 <Value>CN=sunIdentityServerPPCommonNameCN</Value>
 <Value>FN=sunIdentityServerPPCommonNameFN</Value>

Personal Profile Service

Chapter 5 Using the Web Services Client APIs 95

The default authorization plug-in uses the Identity Server policy framework and
defines four different policy action values for the query and modify operations:

• Allow

• Deny

• Interact For Consent

• Interact For Value.

The resource values for the rules are similar to x-path expressions defined by the
Personal Profile service. For example, a rule can be defined as follows:

Here, the subjects can be defined as web services clients.

The policy enforcement can be turned off globally by a boolean flag defined by the
service xml file.

Containers
The Liberty Personal Profile specification defines all the Personal Profile attributes
as container leaf attributes so that they can be easily referencable. Identity Server
defines each Personal Profile container as a pluggable entity. The service can also
limit the number of personal profile containers that it would like to support by
defining them as a global service attribute value.

Each container implements a container interface IDPPContainer. For example,
CommonName is a Personal Profile container. The container is defined as follows.

 <Value>MN=sunIdentityServerPPCommonNameMN</Value>
 <Value>SN=sunIdentityServerPPCommonNameSN</Value>
 <Value>InformalName=uid</Value>
 </AttributeSchema>

/PP/CommonName/AnalyzedName/FN Query Interact for consent
/PP/CommonName/* Modify Interact for value
/PP/InformalName Query Deny

public class IDPPCommonName implements IDPPContainer {
 //////////////
}

<AttributeSchema name="sunIdentityServerPPDSAttributeMapList"

Personal Profile Service

96 Identity Server 2004Q2 • Federation Management Guide

Note that container implementations are not configurable through Service
Configuration.

Extensions
The Liberty Personal Profile service allows you to specify extension attributes that
are not defined by the Liberty specification. These extensions can be specified for
any container or at the container leaf level. The Identity Server Personal Profile
service, however, allows you to specify only the extension attributes at the
container-level extension element. For example, all the extensions should be
defined as follows:

 /PP/Extension/PPISExtension [@name='extensionattribute']

A typical extension query expression for an extension attribute is as follows:

Rewriting the whole service
Personal Profile Service is completely replacable by using the existing web services
framework. Each web service needs to register with the SOAP service by specifying
a handler. The handler extends from the SOAP's request handler.

 /pp:PP/pp:Extension/ispp:PPISExtension[@name='creditcard']
Note: The prefix for the PPISExtension is different., and the schema for the
PP extension is as follows:
<?xml version="1.0" encoding="UTF-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.sun.com/identity/liberty/pp"
 targetNamespace="http://www.sun.com/identity/liberty/pp">
 <xs:annotation>
 <xs:documentation>
 </xs:documentation>
 </xs:annotation>

 <xs:element name="PPISExtension">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:string">
 <xs:attribute name="name" type="xs:string" use="required"/>
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
</xs:schema>

Interaction Service

Chapter 5 Using the Web Services Client APIs 97

The default Personal Profile Service is registered as follows:

Interaction Service
An identity service provider sometimes needs to interact with the owner of the
exposed resources to get the owner's consent or to get additional data. Identity
Server provides a framework to support interactions between web service
providers and resource owners. The framework is based upon the Liberty ID-WSF
Interaction Service.

The Interaction Service specifies two different mechanisms to facilitate interactions
between an identity service provider and a resource owner:

• The identity service provider and web service consumer can cooperate to
redirect the resource owner to the identity service provider and back to the
web service consumer.

• Interaction Service can be hosted as a web service. This service can be offered
by a trusted web service consumer as well as by a dedicated provider that has
a reliable means of communication with the resource owner. The identity
service provider would interact with this interaction service by exchanging
SOAP messages.

Interaction Service provides interfaces:

com.sun.liberty.ws.interaction.wspredirecthandler. points to the URL at which
WSPRedirectHandler servlet is deployed.

com.sun.liberty.ws.interaction.wspstylesheet. points to the URL at which the
XSLT sheet used to format InteractionQuery is available.

<AttributeSchema name="RequestHandlerList"
 type="list"
 syntax="string"
 uitype="name_value_list"
 i18nKey="a101">
 <DefaultValues>

<Value>key=disco|class=com.sun.identity.liberty.ws.disco
.DiscoveryService</Value>

<Value>key=idpp|class=com.sun.identity.liberty.ws.idpp.P
PRequestHandler</Value>
 </DefaultValues>
 </AttributeSchema>

Metadata Specifications

98 Identity Server 2004Q2 • Federation Management Guide

Table 5-8 summarizes the Interaction Service APIs. For detailed API reference,
including methods and their syntax and parameters, see the Javadocs at
/opt/SUNWam/docs/am_public_javadocs.jar.

Metadata Specifications
Due to changes in Liberty Metadata specification, Liberty Service Management
(SM) Configuration schema in Identity Server 6.2 is no longer compatible with that
in Identity Server 6.1. SM versioning will be used to support coexistence of
Identity Server 6.1 and 6.2 running against same Sun Java System directory Server.
Metadata publication via queries through the DNS will not be supported in this
release.

External component dependency
When upgrading from Identity Server 6.1 to 6.2, meta data migration is required to
make it 6.2 compliant.

PAOS
Simple Object Access Protocol (SOAP) is a lightweight protocol for the exchange of
information in a decentralized, distributed environment. SOAP enables the
exchange of messages using a variety of underlying protocols. PAOS is another
name for the implementation of the Liberty Reverse HTTP Binding for SOAP
Specification. The use of PAOS makes possible the exchange of information
between user agent hosted services and remote servers.

In a typical forward SOAP binding, an HTTP client exposes a service via a client
request and a server response. For example, a cell phone user (the client) may
contact his phone service provider (the service) in order to retrieve stocks quotes
and weather information. The service verifies the user’s identity, and responds
with the requested information.

Table 5-8 Interaction Service APIs

Class Name Description

InteractionManager This class provides the interface and implementation for supporting resource
owner interaction.

InteractionUtils Provides some utility methods that work with objects related to interaction

JAXBObjectFactory

PAOS

Chapter 5 Using the Web Services Client APIs 99

In a reverse HTTP SOAP binding, the Service Provider server plays the client role,
and the client plays the server role. Technically, the initial SOAP request from the
server is bound to a server HTTP response. Then the subsequent response is bound
to a client request. This is why Reversed HTTP Binding for SOAP is also known as
PAOS (or “SOAP” spelled backwards).

PAOS APIs
Table 5-9 summarizes the PAOS APIs included in com.sun.identity.liberty.ws.pao.
Note that these APIs are used by PAOS clients which are on the HTTP server side.
For detailed API reference, including methods and their syntax and parameters,
see the Javadocs at /opt/SUNWam/docs/am_public_javadocs.jar.

Note that PAOSRequest is made available from PAOSResponse to provide correlation
if needed by API users.Code Example 5-2 illustrates how to use implement a PAOS
client.

Code Example 5-2 Sample PAOSClientServlet

Table 5-9 Summary of PAOS APIs in com.sun.identity.liberty.ws.paos

Class Name Description

PAOSHeader The PAOSHeader class is used by a web application on HTTP server side to
parse a PAOS header in an HTTP request from the user agent side.

PAOSRequest The PAOSRequest class is used by a web application on HTTP server side to
construct a PAOS request message and send it via an HTTPresponse to the user
agent side.

PAOSResponse The PAOSResponse class is used by a web application on HTTP server side to
receive and parse a PAOS response via an HTTP request from the user agent
side.

public class PAOSClientServlet extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 // use PAOSHeader class to parse the PAOS header
 // to get at least service information
 PAOSHeader paosHeader = null;
 try {
 paosHeader = new PAOSHeader(req);
 } catch (PAOSException pe1) {
 ...
 }

PAOS

100 Identity Server 2004Q2 • Federation Management Guide

 HashMap servicesAndOptions = paosHeader.getServicesAndOptions();

 Set services = servicesAndOptions.keySet();

 // construct PAOSRequest instance
 String thisURL = req.getRequestURL().toString();
 String[] queryItems = { “/IDPP/Demographics/Birthday” };
 PAOSRequest paosReq = null;
 try {
 paosReq = new PAOSRequest(thisURL,
 (String)(services.iterator().next()),
 thisURL,
 queryItems);
 } catch (PAOSException pe2) {
 ...
 }

 // send PAOS request
 paosReq.send(res, true);
 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 // construct a PAOSResponse instance from the HTTP request
 PAOSResponse paosRes = null;
 try {
 paosRes = new PAOSResponse(req);
 } catch (PAOSException pe) {
 ...
 }

 // get the data from the PAOSResponse
 String dataStr = null;
 try {
 dataStr = paosRes.getPPResponseStr();
 } catch (PAOSException paose) {
 ...
 }
 ...
 }
}

101

Glossary

Refer to the Java Enterprise System glossary for a complete list of terms that are
used in this documentation set.

http://docs.sun.com/source/816-6873/index.html

102 Identity Server 2004Q2 • Federation Management Guide

103

Index

SYMBOLS
.war file

creating 31
deploying 34

A
account federation 18
account linking termination 18
affiliate

affiliate entity 57
affiliates

affiliate members 59
descriptor 58
managing 57

Alias field 55
APIs

binary security token 88
client 91, 92
federation management 25
interation service 98
Liberty II Classes and Interfaces 84
PAOS 98, 99
security 85
SOAP binding 86
Web Services Packages 84

Application Server
deploying identity provider 35
deploying service provider 33

Artifact Timeout field 57

Assertion Consumer URL field 55
Assertion Consumer URL ID field 55
Assertion Interval field 57
Assertion Limit field 57
Authenticate Session Context field 63
AuthenticateRequester field 63
authentication context 18
authentication domain

configuring third level 36
creating 50
defined 17
deleting 51
in system flow 49
managing 50
modifying 51

Authentication Type field 55
authorization

overview 88
Authorize Requester field 63
Authorizer

class for plug-in 76
interface 89
plug-in 76

B
back-end data store 67
bootstrapping mode 61
Brief SoapHttp Description field 62

Section C

104 Identity Server 2004Q2 • Federation Management Guide

C
Cache Duration field 53, 58
circle of trust

defined 17
pre-login process 24

Cleanup Interval field 57
Communication Profiles field 54
contact person, adding 59
container entity, creating 52
containers 95

D
data services template

defined 21
in system flow 27

Default Authentication Context field 56
DefaultDiscoAuthorizer implementation 89
DiscoEntryHandler interface 90
Discovery Service 21

attributes 75
interfaces 89

discovery-modify.jsp 39
discovery-query.jsp 40
documentation

overview 8
terminology 11
typographic conventions 10

DynamicDiscoEntryHandler interface 90

E
Employee Profile Service

defined 22
example 64

Encryption Method field 53, 59
EncryptResourceID field 63
End Point field 62
entity descriptor 51

F
Federate link 37
federated identity 16
federation

federation Protocol 19
Single Sign-On process 23

federation management
defined 22
overview 15
pre-login process 23
protocols and APIs 25

Federation Termination Profile field 54
Federation Termination Return URL field 54
Federation Termination Service URL field 54

I
identity

identity federation 16
Identity Federation Framework 18
identity provider 17

configuring 34, 42
default values for sample 30
deploying 33
in system flow 26

identity provider introduction 19
Identity Server, related product information 12
IDP_SERVER_PORT field 41
id-sis-pp-modify.jsp 40
id-sis-pp-query.jsp 40
index.jsp 39
Interact for Consent option 45
Interact for Value option 45
Interaction Service

defined 21
overview 97

Section K

Index 105

K
Key Size field 53, 58
Key Use field 53, 58

L
Liberty Alliance Project 16

single sign-on 23
Liberty Principal Identifier field 60
Liberty Version URI field 56
Logout link 37

M
META_ALIAS field 31, 34
metadata

specification 98
specifications 98
uploading 34

Metadata Service 22

N
name registration 19
Name Registration After Federation option 55
Name Registration field 19
Name Registration Profile field 55
Name Registration Return URL field 54
Name Registration Service URL field 54

O
opt-in account linking 18
Organization DN field 56
organization, adding 59

P
PAOS

defined 98
request and response 72

Personal Profile Service
attributes 77
defined 22
in system flow 26
interacting with 44

pre-login process 23
Protocol Support Enum field 53
provider descriptor, creating 52
Provider Home Page URL field 56
Provider ID

attribute 76
field 53

Provider URL field 55

R
Reader Service URL field 36
Resource ID Mapper

attribute 78
classes for 77

resource offering
defined 60
for bootstrapping 77
in system flow 26

ResourceIDMapper interface 89
Reverse HTTP Binding 98
Reverse HTTP Bindings field 22

S
Sample1 29
Security Key field 53, 58
Security Mechanism ID field 62
Security Mechanisms field 21
Server Relationship Term Notification URL field 55

Section T

106 Identity Server 2004Q2 • Federation Management Guide

SERVER_HOST field 31, 34
SERVER_PORT 34
SERVER_PORT field 31
SERVER_PROTO field 31, 34
Service Instance Specifications 22
Service Local Part field 62
Service Namespace field 62
Service Provider

configuring 40
deploying 69
in system flow 26
installing 30

service provider
defined 17

service schema 65
SERVICE_DEPLOY_URI field 31, 34, 41
Sign Authentication Request field 55
single log-out

defined 19
single logout

performing 38
Single Logout Profile field 54
single log-out protocol 19
Single Logout Return URL field 54
Single Logout Service URL field 54
Single Sign-On 38
single sign-on

and federation protocol 19
federation 23

Single Sign-on Failure Redirect URL field 56
Single Sign-on/Federation Profile field 55
SOAP Action field 62
SOAP binding

APIs 86
defined 21
service attributes 80

SOAP Endpoint URL field 54
Solaris

patches 12
support 12

spUser 41
SSO token 88
support

Solaris 12

T
Terminate Federation 37
terminating account federation 38
Third Level Domain 36
trusted authority

APIs 85
defined 21

U
uploading metadata 34
user agent 19, 26
UserDiscoEntryHandler interface 90
UserDynamicDiscoEntryHandler

implementation 90

W
Web Server

deploying 68
with Identity Server installed 35

Web Service 64
running the client 71

Web Service Consumer
deploying 38
example 39
in framework 19
in system flow 27
running 42

Web Service Provider
adding 87
in system flow 19

Writer Service URL field 36
WSDL Reference field 62

X
X.509 Message Authentication 46

	Identity Server Federation Management Guide
	Contents
	About This Guide
	Audience for This Guide
	Identity Server 2004Q2 Documentation Set
	Identity Server Core Documentation
	Identity Server Policy Agent Documentation

	Your Feedback on the Documentation
	Documentation Conventions Used in This Guide
	Typographic Conventions
	Terminology

	Related Information
	Related Third-Party Web Site References

	Introduction to Identity Federation and the Web Services Framework
	The Need for Federated Identities
	The Liberty Alliance Project
	The Circle of Trust
	Federation Management Architecture
	Identity Federation Framework
	Identity Web Services Framework
	Identity Service Instance Specifications
	Supporting Components

	The Federation Management Process
	Federation Single Sign-On Process
	Pre-Login Process
	System Flow

	Creating a Liberty Web Services Environment
	Installing Identity Server
	Deploying the Service Provider
	To Upload the Metadata for the Service Provider
	To Configure the Service Provider
	To Deploy the Service Provider.WAR File

	Deploying the Identity Provider
	To Upload the Metadata for the Identity Provider
	To Configure the Identity Provider
	To Deploy the Identity Provider .WAR File

	(Optional) Configuring a Third Level Domain
	To Configure a Third-Level Domain

	Verifying a Successful Liberty Setup
	To Federate Service Provider and Identity Provider Accounts
	To Perform a Single Sign-On
	To Perform a Single Logout
	To Terminate Account Federation

	Deploying a Web Service Consumer
	The Web Service Consumer Example
	Configuring the Service Provider
	Configuring the Identity Provider
	Running the Web Service Consumer Sample
	To Run the Web Service Client Sample

	Interacting with the Personal Profile Service
	X.509 Message Authentication
	Setup
	To test X.509 Message Authentication in discovery service
	To test X.509 Message Authentication in Personal Profile Service,
	To test SSL (urn:liberty:security:2003-08:TLS:X509),

	Federation Management
	Overview of Authentication Domains and Providers
	Managing Authentication Domains
	To Create An Authentication Domain
	To Modify An Authentication Domain
	To Delete An Authentication Domain

	Managing Entity Descriptors
	Creating and Managing Providers
	To Create a Container Entity
	To Create and Manage a Provider Descriptor

	Creating and Managing Affiliates
	To Create an Affiliate Entity
	To Manage an Affiliate Descriptor

	To Add a Contact Person and Organization
	Deleting Entity Descriptors

	Managing Resource Offerings
	To Define Resource Offering

	Adding a New Liberty Web Service
	An Employee Profile Service Example
	Developing the Server-Side Code
	Configuring the Service Schema
	Setting Up the Back-End Data Store
	To Set up the Back-End Data Store

	Deploying the Service on the Identity Provider
	To Deploy the Service

	Deploying the Client on the Service Provider
	To Deploy the Client

	Running the Web Service Client

	Constructing a PAOS Request and Response
	To Run the Sample PAOS Program

	Service Configuration Attributes
	Discovery Service Attributes
	Provider ID
	Supported Authentication Mechanisms
	Supported Directives
	Do Policy Evaluation for DiscoveryLookup
	Do Policy Evaluation for DiscoveryUpdate
	Class for Authorizer Plugin
	Class for Discovery Service Entry Handler Plugin
	Classes For Resource ID Mapper Plugin
	Generate Session Context Statement for Bootstrapping
	Resource Offerings for Bootstrapping

	Liberty Personal Profile Service Attributes
	Resource ID Mapper
	Authorizer
	Attribute Mapper
	Provider ID
	Name Scheme
	Namespace Prefix
	Supported Containers
	PPLDAP Attribute Map List
	Require Query PolicyEval
	Require Modify PolicyEval
	Extension Container Attributes
	Extension Attributes Namespace Prefix

	SOAP Binding Service Attributes
	Request Handler List
	Web Service Authenticator
	Supported Authentication Mechanisms

	Using the Web Services Client APIs
	Federation Packages and Global Interfaces
	Trusted Authority
	Security Token Manager

	SOAP Binding
	Plugin a new Web Service Provider

	Authorization
	Discovery Service
	Client APIs

	Data Services Template
	Client APIs

	Personal Profile Service
	How It Works
	Notes on Customizing the Personal Profile Service
	Attribute Mapping
	Authorization
	Containers
	Extensions
	Rewriting the whole service

	Interaction Service
	Metadata Specifications
	PAOS
	PAOS APIs

	Glossary
	Index

