
Sun Java System Communications
Services 6 2005Q4 Event
Notification Service Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 819–2655
October 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc. This product includes software developed by Computing Services at Carnegie Mellon University
(http://www.cmu.edu/computing/).

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc. Ce produit comprend du logiciel dévelopé par Computing Services à Carnegie Mellon University
(http://www.cmu.edu/computing/).

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

050921@13215

Contents

Preface 13

1 Introduction to Event Notification Service 21
Event Notification Service Overview 21

ENS in Calendar Server 22
ENS in Messaging Server 22
Event References 23
ENS Connection Pooling 24

Event Notification Service Architecture 25
Notify 25
Subscribe 26
Unsubscribe 26
How Calendar Server Interacts with ENS 26
How Messaging Server Interacts with ENS 30

Event Notification Service API Overview 31
ENS C API Overview 32
ENS Java API Overview 32
Building and Running Custom Applications 33

2 Event Notification Service C API Reference 39
Publisher API Functions List 39
Subscriber API Functions List 40
Publish and Subscribe Dispatcher Functions List 41
Publisher API 41

publisher_t 42
publisher_cb_t 42

3

publisher_new_a 43
publisher_new_s 44
publish_a 45
publish_s 46
publisher_delete 46
publisher_get_subscriber 47
renl_create_publisher 47
renl_cancel_publisher 48

Subscriber API 49
subscriber_t 49
subscription_t 50
subscriber_cb_t 50
subscriber_notify_cb_t 51
subscriber_new_a 52
subscriber_new_s 53
subscribe_a 53
unsubscribe_a 54
subscriber_delete 55
subscriber_get_publisher 55
renl_create_subscriber 56
renl_cancel_subscriber 57

Publish and Subscribe Dispatcher API 57
pas_dispatcher_t 58
pas_dispatcher_new 58
pas_dispatcher_delete 59
pas_dispatch 59
pas_shutdown 60

3 Event Notification Service Java (JMS) API Reference 61

Event Notification Service Java (JMS) API Implementation 61
Prerequisites to Use the Java API 61
Sample Java Programs 62
Instructions for Sample Programs 62

Java (JMS) API Overview 64
New Proprietary Methods 65
com.iplanet.ens.jms.EnsTopicConnFactory 65
com.iplanet.ens.jms.EnsTopic 65

Implementation Notes 66

4 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Shortcomings of the Current Implementation 66
Notification Delivery 66
JMS Headers 66
Miscellaneous 67

4 Messaging Server Specific Information 69

Event Notification Types and Parameters 69
Parameters 71
Payload 73
Examples 74

Sample Code 75
� To use the sample code 75
Sample Publisher 75
Sample Subscriber 78

Implementation Notes 80

5 Calendar Server Specific Information 81

Calendar Server Notifications 81
Alarm Notifications 82
Calendar Update Notifications 82
Advanced Topics 84
WCAP appid parameter and X-Tokens 85

ENS Sample Code for Calendar Server 86
Sample Publisher and Subscriber 86
Reliable Publisher and Subscriber 90

A Debugging ENS 97

Environment Variables 97
GAP_DEBUG 98
GAP_LOG_MODULES 98
GAP_LOGFILE 99
XENP_TRACE 99
ENS_DEBUG 99
ENS_LOG_MODULES 100
ENS_LOGFILE 100
ENS_STATS 101
SERVICEBUS_DEBUG 101

5

How to Enable Debug Tracing 101

� To start tracing 101

Sample Debugging Sessions 102

Example 1: For Messaging Server 102

Example 2: For Messaging Server 104

Index 107

6 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Tables

TABLE 1–1 Sample ENS Publish and Subscribe Cycle 29

TABLE 2–1 ENS Publisher API Functions List 39

TABLE 2–2 ENS Subscriber API Functions List 40

TABLE 2–3 ENS Publish and Subscribe Dispatcher Functions List 41

TABLE 4–1 Event Types 69

TABLE 4–2 Mandatory Event Reference Parameters 71

TABLE 4–3 Optional Event Reference Parameters 72

TABLE 4–4 Available Parameters for Each Event Type 73

TABLE 4–5 Payload Configuration Parameters 74

TABLE 5–1 Alarm Notifications 82

TABLE 5–2 Calendar Update Notifications 83

TABLE 5–3 Advanced Topics Parameter 85

TABLE 5–4 Presence of appid and Value of X-Token
X-NSCP-COMPONENT-SOURCE 85

TABLE A–1 Trace Level Values 98

TABLE A–2 GAP_LOG_MODULES Values 99

TABLE A–3 ENS_DEBUG Trace Level Values 99

TABLE A–4 ENS_LOG_MODULES Values 100

7

8 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Figures

FIGURE 1–1 ENS in Calendar Server Overview 27

FIGURE 1–2 Example Event Notification Service Publish and Subscribe Cycle for
Calendar Server 29

FIGURE 1–3 ENS in Messaging Server Overview 31

9

10 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Examples

EXAMPLE 1–1 Makefile.sample File 35

11

12 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Preface

This manual describes the Event Notification Service (ENS) architecture and APIs for
Sun Java™ System Messaging Server and Sun Java™ System Calendar Server. It gives
detailed instructions on the ENS APIs that you can use to customize your server
installation.

Topics covered in this preface include:

� “Who Should Use This Book” on page 13
� “Before You Read This Book” on page 14
� “How This Book Is Organized” on page 14
� “Related Books” on page 14
� “Where to Find This Manual Online” on page 16
� “Related Third-Party Web Site References” on page 16
� “Accessing Sun Resources Online” on page 17
� “Contacting Sun Technical Support” on page 17
� “Typographic Conventions” on page 18
� “Shell Prompts in Command Examples” on page 18
� “Default Paths and File Names” on page 19
� “Sun Welcomes Your Comments” on page 19

Who Should Use This Book
This manual is for programmers who want to customize applications in order to
implement Messaging Server and Calendar Server.

13

Before You Read This Book
This book assumes that you are a programmer with a knowledge of C/C++ and Java
Messaging Service, and that you have a general understanding of the following:

� The Internet and the World Wide Web
� Messaging and calendaring concepts

How This Book Is Organized
This manual contains the following chapters and appendix:

TABLE P–1 How This Book Is Organized

Chapter Description

Chapter 1 Describes the Event Notification Service (ENS)
components, architecture, and Application
Programming Interfaces (APIs).

Chapter 2 Describes the ENS C API.

Chapter 3 Describes the ENS Java API and provides sample code.

Chapter 4 Describes the Messaging Server event references and
provides sample Messaging Server code.

Chapter 5 Describes the Calendar Server event notifications and
provides sample Calendar Server code

Related Books
The http://docs.sun.comSM web site enables you to access Sun technical
documentation online. You can browse the archive or search for a specific book title or
subject.

14 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

http://docs.sun.com

Messaging Server Documents
Use the following URL to see all the Messaging Server documentation:

http://docs.sun.com/coll/1312.1

The following documents are available:

� Sun Java System Messaging ServerAdministration Guide
� Sun Java™ System Messaging Server Administration Reference
� Sun Java™ System Messaging Server MTA Developer’s Reference
� Sun Java™ System Messenger Express Customization Guide

The Messaging Server product suite contains other products such as Sun Java™
System Console, Directory Server, and Administration Server. Documentation for
these and other products can be found at the following URL:

http://docs.sun.com/db/prod/sunone

In addition to the software documentation, see the Messaging Server Software Forum
for technical help on specific Messaging Server product questions. The forum can be
found at the following URL:

http://swforum.sun.com/jive/forum.jsp?forum=15

Calendar Server Documents
Use the following URL to see all the Calendar Server documentation:

http://docs.sun.com/coll/1313.1

The following documents are available:

� Sun Java™ System Calendar Server Administration Guide
� Sun Java™ System Calendar Server Developer’s Guide

Communications Services Documents
Use either one of the following URLs to see the documentation that applies to all
Communications Services products:

http://docs.sun.com/coll/1312.1

or

http://docs.sun.com/coll/1313.1

The following documents are available:

15

http://docs.sun.com/coll/1312.1
http://docs.sun.com/db/prod/sunone
http://swforum.sun.com/jive/forum.jsp?forum=15
http://docs.sun.com/coll/1313.1
http://docs.sun.com/coll/1312.1
http://docs.sun.com/coll/1313.1

� Sun Java™ System Communications Services Release Notes
� Sun Java™ System Communications Services Delegated Administrator Guide
� Sun Java™ System Communications Services Deployment Planning Guide
� Sun Java™ System Communications Services Schema Migration Guide
� Sun Java™ System Communications Services Schema Reference
� Sun Java™ System Communications Services Event Notification Service Guide
� Sun Java™ System Communications Express Administration Guide
� Sun Java™ System Communications Express Customization Guide

Where to Find This Manual Online
You can find the Communications Services Event Notification Service Guide online in PDF
and HTML formats. This book can be found at the following location:

Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide

Related Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related
information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in
this document. Sun does not endorse and is not responsible or liable for any content,
advertising, products, or other materials that are available on or through such sites or
resources. Sun will not be responsible or liable for any actual or alleged damage or
loss caused or alleged to be caused by or in connection with use of or reliance on any
such content, goods, or services that are available on or through such sites or
resources.

16 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Documentation, Support, and Training

Sun Function URL Description

Documentation http://www.sun.com/documentation/ Download PDF and HTML
documents, and order
printed documents

Support and
Training

http://www.sun.com/supportraining/ Obtain technical support,
download patches, and
learn about Sun courses

Accessing Sun Resources Online
For product downloads, professional services, patches and support, and additional
developer information, go to the following:

� Download Centerhttp://wwws.sun.com/software/download/
� Professional

Serviceshttp://www.sun.com/service/sunps/sunone/index.html
� Sun Enterprise Services, Solaris Patches, and

Supporthttp://sunsolve.sun.com/
� Developer

Informationhttp://developers.sun.com/prodtech/index.html

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in the
product documentation, go to http://www.sun.com/service/contacting.

17

http://www.sun.com/documentation/
http://www.sun.com/supportraining/
http://wwws.sun.com/software/download/
http://www.sun.com/service/sunps/sunone/index.html
http://sunsolve.sun.com/
http://developers.sun.com/prodtech/index.html
http://www.sun.com/service/contacting

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–2 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

aabbcc123 Placeholder: replace with a real name or
value

The command to remove a file
is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s
Guide.

Perform a patch analysis.

Do not save the file.

[Note that some emphasized
items appear bold online.]

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–3 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

18 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

TABLE P–3 Shell Prompts (Continued)
Shell Prompt

Bourne shell and Korn shell superuser prompt #

Default Paths and File Names
The following table describes the default paths and file names used in this book.

TABLE P–4 Default Paths and File Names

Term Description

msg_svr_base Represents the base installation directory for Messaging Server.
The default value of the msg_svr_base installation is as follows:

Solaris™ systems: /opt/SUNWmsgsr

Linux systems: /opt/sun/messaging

cal_svr_base Represents the base installation directory for Calendar Server.
The default value of the cal_svr_base installation is as follows:

Solaris™ systems: /opt/SUNWics5

Linux systems: /opt/sun/calendar

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions.

To share your comments, go to http://docs.sun.com and click Send Comments. In the
online form, provide the document title and part number. The part number is a
seven-digit or nine-digit number that can be found on the title page of the book or at
the top of the document. For example, the title of this book is Sun Java System
Communications Services 6 2005Q4 Event Notification Service Guide, and the part number
is 819-2655.

19

20 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

CHAPTER 1

Introduction to Event Notification
Service

This chapter provides an overview of the Event Notification Service (ENS)
components, architecture, and Application Programming Interfaces (APIs).

This chapter contains these sections:

� “Event Notification Service Overview” on page 21
� “Event Notification Service Architecture” on page 25
� “Event Notification Service API Overview” on page 31

Event Notification Service Overview
The Event Notification Service (ENS) is the underlying publish-and-subscribe service
available in the following Sun Java™ System communications products:

� Calendar Server
� Messaging Server

Note – See Appendix C in the Messaging Server Administration Guide for instructions on
enabling and administering ENS in Messaging Server.

ENS acts as a dispatcher used by Sun Java™ System applications as a central point of
collection for certain types of events that are of interest to them. Events are changes to
the value of one or more properties of a resource. In this structure, a URI (Uniform
Resource Identifier) represents an event. Any application that wants to know when
these types of events occur registers with ENS, which identifies events in order and
matches notifications with subscriptions.

Event examples include:

21

� Arrival of new mail to a user’s inbox
� User’s mailbox has exceeded its quota
� Calendar reminders

Specifically, ENS accepts reports of events that can be categorized, and notifies other
applications that have registered an interest in certain categories of events.

ENS provides a server and APIs for publishers and subscribers. A publisher makes an
event available to the notification service; and a subscriber tells the notification service
that it wants to receive notifications of a specific event. See “Event Notification Service
API Overview” on page 31 for more information on the ENS APIs.

ENS in Calendar Server
By default, ENS is enabled in Calendar Server. For Calendar Server you do not need to
do anything else to use ENS.

A user who wants to subscribe to notifications other than the alarms generated by
Calendar Server needs to write a subscriber.

Sample ENS C publisher and subscriber code is bundled with Calendar Server. (See
“ENS Sample Code for Calendar Server” on page 86.) Once Calendar Server is
installed, the code can be found in the following directory:

/opt/SUNWics5/cal/csapi/samples/ens

ENS in Messaging Server
ENS and iBiff (the ENS publisher for Messaging Server, also referred to as the
notification plug-in to Messaging Server) are bundled in Messaging Server and ENS is
enabled. However, the iBiff plug-in file, libibiff, is not automatically loaded at
installation.

To subscribe to notifications, you need to first perform the following two actions on
the Messaging Server host:

� Load the iBiff notification plug-in
� Stop and restart the messaging server

See Appendix C in the Messaging Server Administration Guide for further instructions.

A user who wants to subscribe to Messaging Server notifications needs to write a
subscriber to the ENS API. To do so, the subscriber needs to know what the various
Messaging Server notifications are. See Chapter 4 for that information.

Messaging Server comes bundled with sample ENS C publisher and subscriber code.
See “Sample Code” on page 75 for more information.

22 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Sample Messaging Server code is provided with the product in the following
directory:

msg_server_base/examples

Event References
Event references identify an event handled by ENS. Event references use the following
URI syntax (as specified by RFC 2396):

scheme://authority resource/[?param1=value1¶m2=value2¶m3=value3]

where:

� scheme is the access method, such as http, imap, ftp, or wcap.

For Calendar Server and Messaging Server, the ENS scheme is enp.

� authority is the DNS domain or host name that controls access to the resource.

� resource is the path leading to the resource in the context of the authority. It can be
composed of several path components separated by a slash (“/”).

� param is the name of a parameter describing the state of a resource.

� value is its value. There can be zero or more parameter/value pairs.

In general, all Calendar Server events start with the following:

enp:///ics

The Messaging Server notification plug-in iBiff uses the following scheme and
resource by default:

enp://127.0.0.1/store

Note – Although the event reference has a URI syntax, the scheme, authority, and
resource have no special significance. They are merely used as strings with no further
interpretation in ENS.

Calendar Server Event Reference Example
The following is an example event reference URI to subscribe to all event alarms with
a calendar ID of jac:

enp:///ics/alarm?calid=jac

Chapter 1 • Introduction to Event Notification Service 23

Note – This URI is not meant to be used by end users.

Messaging Server Event Reference Example
The following is an example event reference that requests a subscription to all NewMsg
events for a user whose user ID is blim:

enp://127.0.0.1/store?evtType=NewMsg&mailboxName=blim

When using ENS with Messaging Server, the user ID you specify is case sensitive.

Note – This URI is not meant to be used by end users.

ENS Connection Pooling
The connection pooling feature of ENS enables a pool of subscribers to receive
notifications from a single event reference. For every event, ENS chooses one
subscriber from the pool to send the notification to. Thus, only one subscriber in the
pool receives the notification. The ENS server balances sending of notifications among
the subscribers. This enables the client to have a pool of subscribers that work together
to receive all notifications from a single event reference.

For example, if notifications are being published to the event reference
enp://127.0.0.1/store, a subscriber will normally subscribe to this event
reference to receive notifications. To have a pool of subscribers receive all the
notifications to this event reference, each subscriber in the pool only needs to subscribe
to the event reference enp+pool://127.0.0.1/store instead. The ENS server
chooses one subscriber from the pool to send the notification to.

Note – The publisher still sends notifications to the simple event reference, in the
example above enp://127.0.0.1/store, that is, the publisher has no knowledge
of the subscriber pool.

Multiple Pool Extension
Connection pooling can support multiple pools of subscribers. That is, you can have
two pools of subscribers, each pool receiving all the notifications from the event
reference. The syntax of the event reference for the subscriber is:

enp+pool[.poolid]://domain/event

24 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

where poolid is a string using only base64 alphabet. (See RFC1521, Table 1, for what the
base64 alphabet contains.) So, for example, to have two pools of subscribers to the
event reference enp://127.0.0.1/store, each pool could subscribe to the
following event references:

enp+pool.1://127.0.0.1/store– for first pool of subscribers
enp+pool.2://127.0.0.1/store– for second pool of subscribers

Event Notification Service Architecture
On the Solaris platform, ENS runs as a daemon, enpd, along with other daemons in
various calendar or messaging server configurations, to collect and dispatch events
that occur to properties of resources. On Windows platforms, ENS runs as a service,
enpd.exe.

For ENS, an event is a change that happens to a resource, while a resource is an entity
such as a calendar or inbox. For example, adding an entry to a calendar (the resource)
generates an event, which is stored by ENS. This event can then be subscribed to, and
a notification would then be sent to the subscriber.

The ENS architecture enables the following three things to occur:

� Notification - This is a message that describes an event occurrence. Sent by the
event publisher, it contains a reference to the event, as well as any additional
parameter/value pairs added to the URI, and optional data (the payload) used by
the event consumers, but opaque to the notification service. Whoever is interested
in the event can subscribe to it.

� Subscription - This is a message sent to subscribe to an event. It contains an event
reference, a client-side request identifier, and optional parameter/value pairs
added to the URI. The subscription applies to upcoming events (that is, a
subscriber asks to be notified of upcoming events).

� Unsubscription - This message cancels (unsubscribes) an existing subscription. An
event subscriber tells ENS to stop relaying notifications for the specified event.

Notify
ENS notifies its subscribers of an event by sending a notification. Notify is also
referred to as “publish.” A notification can contain the following items:

� An event reference (which, optionally, can contain parameter/value pairs)

� Optional application-specific data (“opaque” for ENS, but the publisher and
subscriber agree apriori to the format of the data)

Chapter 1 • Introduction to Event Notification Service 25

The optional application-specific data is referred to as the “payload.”

There are two kinds of notifications:

� Unreliable notification - Notification sent from an event publisher to a notification
server. If the publisher does not know nor care about whether there are any
consumers, or whether they get the notification, this request does not absolutely
need to be acknowledged. However, a publisher and a subscriber, who are
mutually aware of each other, can agree to set up a reliable event notification link
(RENL) between themselves. In this case, once the subscriber has processed the
publisher’s notification, it sends an acknowledgment notification back to the
publisher.

� Reliable notification - Notification sent from a server to a subscriber as a result of
a subscription. This type of notification should be acknowledged. A reliable
notification contains the same attributes as an unreliable notification.

See “Publisher API” on page 41 for more information.

Subscribe
ENS receives a request to be notified of events. The request sent by the event
subscriber is a subscription. The subscription is valid during the life of the session, or
until it is cancelled (unsubscribed).

A subscription can contain the following items:

� An event reference (which, optionally, can contain parameter/value pairs)
� A request identifier

See “Subscriber API” on page 49 for more information.

Unsubscribe
ENS receives a request to cancel an existing subscription. See “Subscriber API”
on page 49 for more information.

How Calendar Server Interacts with ENS
Figure 1–1 shows how ENS interacts with Calendar Server through the alarm queue
and two daemons, csadmind and csnotifyd.

26 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

csadmind csnotifyd

Notifications NotificationsSubscribe

Subscription
Store

(In memory)

Alarm
Queue

ENS
enpd

FIGURE 1–1 ENS in Calendar Server Overview

Calendar Server Alarm Queue
ENS is an alarm dispatcher. This decouples alarm delivery from alarm generation. It
also enables the use of multiple delivery methods, such as email and wireless
communication. The csadmind daemon detects events by sensing changes in the state
of the alarm queue. The alarm queue’s state changes every time an alarm is placed in
the queue. An alarm is queued when a calendar event generates an alarm. The
following URIs represent these kind of events:

for events:

enp:///ics/eventalarm?calid=calid&uid=uid&rid=rid&aid=aid

for todos (tasks):

enp:///ics/todoalarm?calid=calid&uid=uid&rid=rid&aid=aid

where:

� calid is the calendar ID.

� uid is the event/todo (task) ID within the calendar.

� rid is the recurrence id for a recurring event/todo (task).

� aid is the alarm ID within the event/todo (task). In case there are multiple alarms,
the aid identifies the correct alarm.

Chapter 1 • Introduction to Event Notification Service 27

The publisher csadmind dequeues the alarms and sends notifications to enpd. The
enpd daemon then checks to see if anyone is subscribed to this kind of event and
sends notifications to the subscriber, csnotifyd, for any subscriptions it finds. Other
subscribers to alarm notifications (reminders) can be created and deployed within an
Calendar Server installation. These three daemons interacting together implement
event notification for Calendar Server.

Calendar Server Daemons
Calendar Server includes two daemons that communicate to the ENS daemon, enpd:

� csadmind

The csadmind daemon contains a publisher that submits notifications to the
notification service by sending alarm events to ENS. It manages the Calendar
Server alarm queue. It implements a scheduler, which lets it know when an alarm
has to be generated. At such a point, csadmind publishes an event. ENS receives
and dispatches the event notification.

To ensure alarm transfer reliability, csadmind requires acknowledgment for
certain events or event types. (See “Alarm Transfer Reliability” on page 28.) The
csadmind daemon uses Reliable Event Notification Links (RENLs) to accomplish
acknowledgment.

� csnotifyd

The csnotifyd daemon is the subscriber that expresses interest in particular
events (subscribes), and receives notifications about these subscribed-to events
from ENS, and sends notice of these events and todos (tasks) to its clients by email.

Though the ability to unsubscribe is part of the ENS architecture, csnotifyd does
not bother to unsubscribe to events for the following two reasons: there is no need
to unsubscribe or resubscribe during normal runtime; and due to the temporary
nature of the subscriptions store (it is held in memory), all subscriptions are
implicitly unsubscribed when the connection to ENS is shutdown.

The csnotifyd daemon subscribes to enp:///ics/alarm/. The todo (task) or
event is specified in a parameter.

Alarm Transfer Reliability
To ensure that no alarm ever gets lost, csadmind and csnotifyd use the RENL
feature of ENS for certain types of alarms. For these alarms, csadmind requests an
end-to-end acknowledgment for each notification it sends, while csnotifyd, after
successfully processing it, generates a notification acknowledgment for each RENL
alarm notifications it receives.

For these RENL alarms, should the network, the ENS daemon, or csnotifyd fail to
handle a notification, csadmind will not receive any acknowledgment, and will not
remove the alarm from the alarm queue. The alarm will, therefore, be published again
after a timeout.

28 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Calendar Server Example
A typical ENS publish and subscribe cycle for Calendar Server resembles the
following:

1. The event subscriber, csnotifyd, expresses interest in an event (subscribes).

2. The event publisher, csadmind, detects events and sends notification (publishes).

3. ENS publishes the event to the subscriber.

4. The event subscriber cancels interest in the event (unsubscribes). This step happens
implicitly when the connection to ENS is shut down.

Figure 1–2 illustrates this cycle and Table 1–1 provides the narrative for the figure.

ENS
enpd

Publish
(relayed)

Event Publisher
csadmind

Event Subscriber
csnotifyd

3

Subscribe1

Publish2
Unsubscribe4

FIGURE 1–2 Example Event Notification Service Publish and Subscribe Cycle for Calendar
Server

TABLE 1–1 Sample ENS Publish and Subscribe Cycle

Action ENS Response

1. The csnotifyd daemon sends a subscription
request to ENS.

ENS stores the subscription in the subscriptions
database.

2. The csadmind daemon sends a notification
request to ENS.

ENS queries the subscriptions database for
subscriptions matching the notification.

3. The csnotifyd daemon receives a notification
from ENS.

When ENS receives a notification from a publisher, it
looks up its internal subscription table to find
subscriptions matching the event reference of the
notification. Then for each subscription, it relays a
copy of the notification to the subscriber who owns
this subscription.

4. Currently, csnotifyd does not bother sending
cancellation requests to ENS.

Because the subscriptions store is in memory only
(not in a database), all subscriptions are implicitly
unsubscribed when the connection to ENS is
shutdown.

Chapter 1 • Introduction to Event Notification Service 29

How Messaging Server Interacts with ENS
Figure 1–3 shows how ENS interacts with Messaging Server. In this figure, each oval
represents a process, and each rectangle represents a host computer running the
enclosed processes.

The ENS server delivers notifications from the Messaging Server notification plug-in
to ENS clients (that is, iBiff subscribers). There is no guarantee of the order of
notification prior to the ENS server because the events are coming from different
processes (MTA, stored, and imapd).

Notifications flow from the iBiff plug-in in the MTA, stored, and imap processes to
ENS enpd. The ENS client subscribes to the ENS, and receives notifications. When
iBiff is enabled, Messaging Server publishes the notifications with the iBiff plug-in, but
no Messaging Server services subscribe to these notifications. A customer-provided
ENS subscriber or client should be written to consume the notifications and do
whatever is necessary. That is, Messaging Server itself does not depend on or use the
notifications for its functions, and this is why ENS and iBiff are not enabled by default
when you install Messaging Server.

The Messaging Server architecture enforces that a given set of mailboxes is served by a
given host computer. A given mailbox is not served by multiple host computers. There
are several processes manipulating a given mailbox but only one computer host
serving a given mailbox. Thus, to receive notifications, end-users only need to
subscribe to the ENS daemon that serves the mailbox they are interested in.

Messaging Server enables you to have either one ENS server for all mailboxes—that is,
one ENS server for all the computer hosts servicing the message store—or multiple
ENS servers, perhaps one ENS server per computer host. The second scenario is more
scalable. Also, in this scenario, end users must subscribe to multiple ENS servers to get
the events for mailboxes they are interested in.

Thus, the architecture requires an ENS server per computer host. The ENS servers and
the client processes do not have to be co-located with each other or with messaging
servers.

30 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Message
Store

ENS
Client

ENS
enpd

ENS
Client

ENS
Client

stored iBiff

imapd iBiff

mshttpd iBiff

popd iBiff

MTA iBiff

FIGURE 1–3 ENS in Messaging Server Overview

Event Notification Service API Overview
This section provides an overview of the two APIs for ENS, a C API and a Java API,
which is a subset of the Java Messaging Service (JMS) API. Two sample Java
subscribers are provided using the JMS API.

Chapter 1 • Introduction to Event Notification Service 31

For detailed information on the Java (JMS) API, see Chapter 3. For JMS
documentation, use the following URL:

http://java.sun.com/products/jms/docs.html

For detailed information on the ENS C API, see Chapter 2.

ENS C API Overview
ENS implements the following three APIs:

� Publisher API

A publisher sends notification of a subscribed-to event to ENS, which then
distributes it to the subscribers. Optionally, in Calendar Server, the application can
request acknowledgment of receipt of the notification. To do this, a Reliable Event
Notification Link (RENL) is necessary. An RENL has a publisher, a subscriber, and
a unique ID, which identify notifications that are subject to acknowledgment. The
publisher informs the application of the receipt of an acknowledgment by invoking
the end2end_ack callback passed to publish_a. Currently, only Calendar Server
supports RENL.

� Subscriber API

A subscriber is a client to the notification service which expresses interest in
particular events. When the notification service receives a notification about one of
these events from a publisher, it relays the notification to the subscriber.

A subscriber may also unsubscribe, which cancels an active subscription.

In Calendar Server, to enable an RENL, the subscriber declares its existence to ENS,
which then transparently generates notification acknowledgment on behalf of the
subscriber application. The subscriber can revoke the RENL at any time.

� Publish and Subscribe Dispatcher API

When an asynchronous publisher is used, ENS needs to borrow threads from a
thread pool in order to invoke callbacks. The application can either choose to create
its own thread pool and pass it to ENS, or it can let ENS create and manage its own
thread pool. In either case, ENS creates and uses a dispatcher object to instantiate
the dispatcher used (pas_dispatcher_t).

GDisp (libasync) is the dispatcher supported.

ENS Java API Overview
The Java API for ENS uses a subset of the standard JMS API, with the addition of two
new proprietary methods:

� com.iplanet.ens.jms.EnsTopicConnFactory
� com.iplanet.ens.jms.EnsTopic

32 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

http://java.sun.com/products/jms/docs.html

The following list of JMS object classes is used in the Java API for ENS:

� javax.jms.TopicSubscriber
� javax.jms.TopicSession
� javax.jms.TopicPublisher
� javax.jms.TopicConnection
� javax.jms.TextMessage
� javax.jms.Session
� javax.jms.MessageProducer
� javax.jms.MessageConsumer
� javax.jms.Message
� javax.jms.ConnectionMetaData
� javax.jms.Connection

Note – The Java API for ENS does not implement all the JMS object classes. When
customizing, use only the object classes found on this list.

Building and Running Custom Applications
To assist you in building your own custom publisher and subscriber applications,
Messaging Server and Calendar Server include sample code. This section tells you
where to find the sample code, where the APIs’ include (header) files are located, and
where the libraries are that you need to build and run your custom programs.

Note – This section applies to the C API only.

Location of Sample Code

Calendar Server

Calendar Server includes four simple sample programs to help you get started. The
code for these samples resides in the following directory:

cal_server_base/cal/csapi/samples/ens

Messaging Server

Messaging Server 5.1 and higher contains sample programs to help you learn how to
receive notifications. These sample programs are located in the following directory:

msg_server_base/examples

Chapter 1 • Introduction to Event Notification Service 33

Location of Include Files

Calendar Server

The include (header) files for the publisher and subscriber APIs are: publisher.h,
suscriber.h, and pasdisp.h (publish and subscribe dispatcher). They are located
in the CSAPI include directory. The default include path is:

cal_server_base/cal/csapi/include

Messaging Server

The default include path for Messaging Server is:

msg_server_base/bin/msg/enssdk/include

Dynamically Linked/Shared Libraries

Calendar Server

Your custom code must be linked with the dynamically linked library libens, which
implements the publisher and subscriber APIs. On some platforms all the
dependencies of libens must be provided as part of the link directive. These
dependencies, in order, are:

1. libgap
2. libcyrus
3. libyasr
4. libasync
5. libnspr3
6. libplsd4
7. libplc3

Calendar Server uses these libraries; therefore, they are located in the server’s bin
directory. The default libens path is:

/opt/cal_server_base/cal/bin

Note – For Windows, in order to build publisher and subscriber applications, you also
need the archive files (.lib files) corresponding to all the earlier mentioned libraries.
These are located in the CSAPI library directory, lib. The default lib path is:

drive:\ProgramFiles\iPlanet\CalendarServer5\cal\
csapi\lib

34 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Messaging Server

The libraries for Messaging Server are located in the following directory:

msg_server_base/bin/msg/lib

Refer to msg_server_base/bin/msg/enssdk/examples/Makefile.sample to
help determine what libraries are needed.This makefile contains instructions on how
to compile and run the apub and asub programs. This file also describes what
libraries are needed, and what the LD_LIBRARY_PATH should be. The following
listing shows a sample makefile.sample file.

EXAMPLE 1–1 Makefile.sample File

#
Sample makefile
#
your C compiler
CC = gcc

LIBS
Your library path should include <msg_server_base>/bin/msg/lib
LIBS = -lens -lgap -lxenp -lcyrus -lchartable -lyasr -lasync

all: apub asub

apub: apub.c
$(CC) -o apub -I ../include apub.c $(LIBS)

asub: asub.c
$(CC) -o asub -I ../include asub.c $(LIBS)

run:
@echo ’run <msg_server_base>/start-ens’
@echo run asub localhost 7997
@echo run apub localhost 7997

Chapter 1 • Introduction to Event Notification Service 35

Note – The Windows distribution includes the following additional files:

msg_server_base\bin\msg\enssdk\examples

bin\msg\enssdk\examples\libens.lib

bin\msg\enssdk\examples\libgap.lib

bin\msg\enssdk\examples\libxenp.lib

bin\msg\enssdk\examples\libcyrus.lib

bin\msg\enssdk\examples\libchartable.lib

bin\msg\enssdk\examples\libyasr.lib

bin\msg\enssdk\examples\libasync.lib

bin\msg\enssdk\examples\asub.dsw

bin\msg\enssdk\examples\apub.dsp

bin\msg\enssdk\examples\asub.dsp

To build on Windows platforms:

1. A sample VC++ workspace is provided in asub.dsw. It has two projects in it:
asub.dsp and apub.dsp.

The required .lib files to link is in the same directory as asub.c and apub.c.

2. To run, it requires that the following DLLs are in your path.

libens.dll
libgap.dll
libxenp.dll
libcyrus.dll
libchartable.dll
libyasr.dll
libasync.dll

The simplest way to accomplish this is to include msg_server_base in\msg\lib
in your PATH.

36 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Runtime Library Path Variable

Calendar Server

In order for your custom programs to find the necessary runtime libraries, which are
located in the /opt/SUNWics5/cal/bin directory, make sure your environment’s
runtime library path variable includes this directory. The name of the variable is
platform dependent:

� SunOS and Linux: LD_LIBRARY_PATH
� Windows: PATH
� HPUX: SHLIB_PATH

Messaging Server

For Messaging Server, you need to set your LD_LIBRARY_PATH to
msg_server_base/bin/msg/lib.

Chapter 1 • Introduction to Event Notification Service 37

38 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

CHAPTER 2

Event Notification Service C API
Reference

This chapter details the ENS C API; it is divided into three main sections:

� “Publisher API” on page 41
� “Subscriber API” on page 49
� “Publish and Subscribe Dispatcher API” on page 57

Publisher API Functions List
This chapter includes a description of the following Publisher functions, listed in Table
2–1:

TABLE 2–1 ENS Publisher API Functions List

Function Description

“publisher_t” on page 42 Definition for a publisher.

“publisher_cb_t” on page 42 Generic callback function acknowledging an
asynchronous call.

“publisher_new_a” on page 43 Creates a new asynchronous publisher.

“publisher_new_s” on page 44 Creates a new synchronous publisher.

“publish_a” on page 45 Sends an asynchronous notification to the
notification service.

“publish_s” on page 46 Sends a synchronous notification to the
notification service.

“publisher_delete” on page 46 Terminates a publish session.

39

TABLE 2–1 ENS Publisher API Functions List (Continued)
“publisher_get_subscriber” on page Creates a subscriber using the publisher’s

credentials.

“renl_create_publisher” on page 47 Creates an RENL, which enables the
invocation of end2end_ack.

“renl_cancel_publisher” on page 48 Cancels an RENL.

Subscriber API Functions List
This chapter includes a description of following Subscriber functions, listed in Table
2–2:

TABLE 2–2 ENS Subscriber API Functions List

Function Description

“subscriber_t” on page 49 Definition of a subscriber.

“subscription_t” on page 50 Definition of a subscription.

“subscriber_cb_t” on page 50 Generic callback function acknowledging an
asynchronous call.

“subscriber_notify_cb_t” on page 51 Synchronous callback; called upon receipt of a
notification.

“subscriber_new_a” on page 52 Creates a new asynchronous subscriber.

“subscriber_new_s” on page 53 Creates a new synchronous subscriber.

“subscribe_a” on page 53 Establishes an asynchronous subscription.

“unsubscribe_a” on page 54 Cancels an asynchronous subscription.

“subscriber_delete” on page 55 Terminates a subscriber.

“subscriber_get_publisher” on page 55 Creates a publisher using the subscriber’s
credentials.

“renl_create_subscriber” on page 56 Creates the subscription part of the RENL.

“renl_cancel_subscriber” on page 57 Cancels an RENL.

40 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Publish and Subscribe Dispatcher
Functions List
This chapter includes a description of the following Publish and Subscribe Dispatcher
functions, listed in Table 2–3:

TABLE 2–3 ENS Publish and Subscribe Dispatcher Functions List

Function Description

“pas_dispatcher_t” on page 58 Definition of a publish and subscribe
dispatcher.

“pas_dispatcher_new” on page 58 Creates a dispatcher.

“pas_dispatcher_delete” on page 59 Destroys a dispatcher created with
pas_dispatcher_new.

“pas_dispatch” on page 59 Starts the dispatch loop of an event
notification environment.

“pas_shutdown” on page 60 Stops the dispatch loop on an event
notification environment started with
pas_dispatch.

Publisher API
The Publisher API consists of one definition and nine functions:

� “publisher_t” on page 42
� “publisher_cb_t” on page 42
� “publisher_new_a” on page 43
� “publisher_new_s” on page 44
� “publish_a” on page 45
� “publish_s” on page 46
� “publisher_delete” on page 46
� “publisher_get_subscriber” on page 47
� “renl_create_publisher” on page 47
� “renl_cancel_publisher” on page 48

Chapter 2 • Event Notification Service C API Reference 41

publisher_t

Purpose.
A publisher.

Syntax
typedef struct enc_struct publisher_t;

Parameters
None.

Returns
Nothing.

publisher_cb_t

Purpose.
Generic callback function invoked by ENS to acknowledge an asynchronous call.

Syntax
typedef void (*publisher_cb_t) (void *arg, int rc, void *data);

Parameters

arg Context variable passed by the caller.

rc The return code.

42 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

data For an open, contains a newly created context.

Returns
Nothing.

publisher_new_a

Purpose
Creates a new asynchronous publisher.

Syntax
void publisher_new_a (pas_dispatcher_t *disp,

void *worker,
const char *host,
unsigned short port,
publisher_cb_t cbdone,
void *cbarg);

Parameters

disp P&S thread pool context returned by pas_dispatcher_new.

worker Application worker. If not NULL, grouped with existing workers created
by ENS to service this publisher session. Used to prevent multiple threads
from accessing the publisher data at the same time.

host Notification server host name.

port Notification server port.

Chapter 2 • Event Notification Service C API Reference 43

cbdone The callback invoked when the publisher has been successfully created, or
could not be created.

There are three Parameters to cbdone:
� cbarg

The first argument.
� A status code.

If non-zero, the publisher could not be created; value specifies cause of
the failure.

� The new active publisher.

cbarg First argument of cbdone.

Returns
Nothing. It passes the new active publisher as third argument of cbdone callback.

publisher_new_s

Purpose
Creates a new synchronous publisher.

Syntax
publisher_t *publisher_new_s (pas_dispatcher_t *disp,

void *worker,
const char *host,
unsigned short port);

Parameters

disp P&S thread pool context returned by pas_dispatcher_new.

worker Application worker. If not NULL, grouped with existing workers created by
ENS to service this publisher session. Used to prevent multiple threads from
accessing the publisher data at the same time.

host Notification server host name.

port Notification server port.

44 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Returns
A new active publisher (publisher_t).

publish_a

Purpose
Sends an asynchronous notification to the notification service.

Syntax
void publish_a (publisher_t *publisher,

const char *event_ref,
const char *data,
unsigned int datalen,
publisher_cb_t cbdone,
publisher_cb_t end2end_ack,
void *cbarg,
unsigned long timeout);

Parameters

publisher_t The active publisher.

event_ref The event reference. This is a URI identifying the modified resource.

data The event data. The body of the notification message. It is opaque to the
notification service, which merely relays it to the events’ subscriber.

datalen The length in bytes of the data.

cbdone The callback invoked when the data has been accepted or deemed
unacceptable by the notification service. What makes a notification
acceptable depends on the protocol used. The protocol may choose to use
the transport acknowledgment (TCP) or use its own acknowledgment
response mechanism.

end2end_ack The callback function invoked after acknowledgment from the consumer
peer (in an RENL) has been received. Used only in the context of an
RENL.

cbarg The first argument of cbdone or end2end_ack when invoked.

Chapter 2 • Event Notification Service C API Reference 45

timeout The length of time to wait for an RENL to complete.

Returns
Nothing.

publish_s

Purpose
Sends a synchronous notification to the notification service.

Syntax
int publish_s (publisher_t *publisher,

const char *event_ref,
const char *data,
unsigned int datalen);

Parameters

publisher The active publisher.

event_ref The event reference. This is a URI identifying the modified resource.

data The event data. The body of the notification message. It is opaque to the
notification service, which relays it to the events’ subscriber.

datalen The length in bytes of the data.

Returns
Zero if successful; a failure code if unsuccessful. If an RENL, the call does not return
until the consumer has completely processed the notification and has successfully
acknowledged it.

publisher_delete

Purpose
Terminates a publish session.

46 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Syntax
void publisher_delete (publisher_t *publisher);

Parameters

publisher The publisher to delete.

Returns
Nothing.

publisher_get_subscriber

Purpose
Creates a subscriber using the credentials of the publisher.

Syntax
struct subscriber_struct * publisher_get_subscriber(publisher_t *publisher);

Parameters

publisher The publisher whose credentials are used to create the subscriber.

Returns
The subscriber, or NULL if the creation failed. If the creation failed, use the
subscriber_new to create the subscriber.

renl_create_publisher

Purpose
Declares an RENL, which enables the end2end_ack invocation. After this call
returns, the end2end_ack argument is invoked when an acknowledgment
notification matching the specified publisher and subscriber is received.

Chapter 2 • Event Notification Service C API Reference 47

Syntax
void renl_create_publisher (publisher_t *publisher,

const char *renl_id,
const char *subscriber,
publisher_cb_t cbdone,
void *cbarg);

Parameters

publisher The active publisher.

renl_id The unique RENL identifier. This allows two peers to be able to set up
multiple RENLs between them.

subscriber The authenticated identity of the peer.

cbdone The callback invoked when the RENL is established.

cbarg The first argument of cbdone, when invoked.

Returns
Nothing.

renl_cancel_publisher

Purpose
This cancels an RENL. This does not prevent more notifications being sent, but should
a client acknowledgment be received, the end2end_ack argument of publish will no
longer be invoked. All RENLs are automatically destroyed when the publisher is
deleted. Therefore, this function does not need to be called to free RENL-related
memory before deleting a publisher.

Syntax
void renl_cancel_publisher (renl_t *renl);

48 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Parameters

renl The RENL to cancel.

Returns
Nothing.

Subscriber API
The Subscriber API includes two definitions and ten functions:

� “subscriber_t” on page 49
� “subscription_t” on page 50
� “subscriber_cb_t” on page 50
� “subscriber_notify_cb_t” on page 51
� “subscriber_new_a” on page 52
� “subscriber_new_s” on page 53
� “subscribe_a” on page 53
� “unsubscribe_a” on page 54
� “subscriber_delete” on page 55
� “subscriber_get_publisher” on page 55
� “renl_create_subscriber” on page 56
� “renl_cancel_subscriber” on page 57

subscriber_t

Purpose
A subscriber.

Syntax
typedef struct enc_struct subscriber_t;

Parameters
None.

Chapter 2 • Event Notification Service C API Reference 49

Returns
Nothing.

subscription_t

Purpose
A subscription.

Syntax
typedef struct subscription_struct subscription_t;

Parameters
None.

Returns
Nothing.

subscriber_cb_t

Purpose
Generic callback function invoked by ENS to acknowledge an asynchronous call.

Syntax
typedef void (*subscriber_cb_t) (void *arg,

int rc,
void *data);

50 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Parameters

arg Context variable passed by the caller.

rc The return code.

data For an open, contains a newly created context.

Returns
Nothing

subscriber_notify_cb_t

Purpose
Subscriber callback; called upon receipt of a notification.

Syntax
typedef void (*subscriber_notify_cb_t) (void *arg,

char *event,
char *data,
int datalen);

Parameters

arg Context pointer passed to subscribe (notify_arg).

event The event reference (URI). The notification event reference matches the
subscription, but may contain additional information called event attributes,
such as a uid.

data The body of the notification. A MIME object.

datalen Length of the data.

Returns
Zero if successful, non-zero otherwise.

Chapter 2 • Event Notification Service C API Reference 51

subscriber_new_a

Purpose
Creates a new asynchronous subscriber.

Syntax
void subscriber_new_a (pas_dispatcher_t *disp,

void *worker,
const char *host,
unsigned short port,
subscriber_cb_t cbdone,
void *cbarg);

Parameters

disp Thread dispatcher context returned by pas_dispatcher_new.

worker Application worker. If not NULL, grouped with existing workers created by
ENS to service this subscriber session. Used to prevent multiple threads from
accessing the subscriber data at the same time. Only usable if the caller creates
and dispatches the GDisp context.

host Notification server host name or IP address.

port Subscription service port number.

cbdone The callback invoked when the subscriber session becomes active and
subscriptions can be issued.

There are three parameters to cbdone:
� cbarg

The first argument.
� A status code.

If non-zero, the subscriber could not be created; value specifies cause of
the failure.

� The new active subscriber (subscriber_t).

cbarg First argument of cbdone.

Returns
Nothing. It passes the new active subscriber as third argument of cbdone callback.

52 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

subscriber_new_s

Purpose
Creates a new synchronous subscriber.

Syntax
subscriber_t *subscriber_new_s (pas_dispatcher_t *disp,

const char *host,
unsigned short port);

Parameters

disp Publish and subscribe dispatcher returned by pas_dispatcher_new.

worker Application worker. If not NULL, grouped with existing workers created by
ENS to service this publisher session. Used to prevent multiple threads from
accessing the publisher data at the same time. Only usable if the caller creates
and dispatches the GDisp context.

host Notification server host name or IP address.

port Subscription service port number.

Returns
A new active subscriber (subscriber_t).

subscribe_a

Purpose
Establishes an asynchronous subscription.

Syntax
void subscribe_a (subscriber_t *subscriber,

const char *event_ref,
subscriber_notify_cb_t notify_cb,

Chapter 2 • Event Notification Service C API Reference 53

void *notify_arg,
subscriber_cb_t cbdone,
void *cbarg):

Parameters

subscriber The subscriber.

event_ref The event reference. This is a URI identifying the event’s source.

notify_cb The callback invoked upon receipt of a notification matching this
subscription.

notify_arg The first argument of notify_arg. May be called at any time, by any
thread, while the subscription is still active.

cbdone Called when an unsubscribe completes. It has three Parameters:
� cbarg (see below).
� Status code.
� A pointer to an opaque subscription object.

cbarg The first argument of cbdone.

Returns
Nothing.

unsubscribe_a

Purpose
Cancels an asynchronous subscription.

Syntax
void unsubscribe_a (subscriber_t *subscriber,

subscription_t *subscription,
subscriber_cb_t cbdone,
void *cbarg);

54 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Parameters

subscriber The disappearing subscriber.

subscription The subscription to cancel.

cbdone Called when an unsubscribe completes. It has three parameters:
� cbarg (see below).
� Status code.
� A pointer to an opaque subscription object.

cbarg The first argument of cbdone.

Returns
Nothing.

subscriber_delete

Purpose
Terminates a subscriber.

Syntax
void subscriber_delete (subscriber_t *subscriber);

Parameters

subscriber The subscriber to delete.

Returns.
Nothing

subscriber_get_publisher

Purpose
Creates a publisher, using the credentials of the subscriber.

Chapter 2 • Event Notification Service C API Reference 55

Syntax
struct publisher_struct *subscriber_get_publisher (subscriber_t
*subscriber);

Parameters

subscriber The subscriber whose credentials are used to create the publisher.

Returns
The publisher, or NULL if creation failed. In case the creation fails, use the
publisher_new.

renl_create_subscriber

Purpose
Creates the subscription part of an RENL.

Syntax
renl_t *renl_create_subscriber (subscription_t *subscription,

const char *renl_id,
const char *publisher);

Parameters

subscription The subscription.

renl_id The unique RENL identifier. This allows two peers to be able to set up
multiple RENLs between them.

publisher The authenticated identity of the peer.

Returns
The opaque RENL object.

56 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

renl_cancel_subscriber

Purpose
This cancels an RENL. It does not cancel a subscription. It tells ENS not to
acknowledge any more notifications received for this subscription. It destroys the
RENL object, the application may no longer use this RENL. All RENLs are
automatically destroyed when the subscription is canceled. Therefore, this function
does not need to be called to free RENL-related memory before deleting a subscriber.

Syntax
void renl_cancel_subscriber (renl_t *renl);

Parameters

renl The RENL to cancel.

Returns
Nothing.

Publish and Subscribe Dispatcher API
The Publish and Subscribe Dispatcher API includes one definition and four functions:

� “pas_dispatcher_t” on page 58
� “pas_dispatcher_new” on page 58
� “pas_dispatcher_delete” on page 59
� “pas_dispatch” on page 59
� “pas_shutdown” on page 60

Note – The only thread dispatcher supported is GDisp (libasync).

Chapter 2 • Event Notification Service C API Reference 57

pas_dispatcher_t

Purpose
A publish and subscribe dispatcher.

Syntax
typedef struct pas_dispatcher_struct pas_dispatcher_t;

Parameters
None.

Returns
Nothing.

pas_dispatcher_new

Purpose
Creates or advertises a dispatcher.

Syntax
pas_dispatcher_t *pas_dispatcher_new (void *disp);

Parameters

dispcx The dispatcher context. If NULL,to start dispatching notifications, the application
must call pas_dispatch.

If not NULL, the dispatcher is a libasync dispatcher.

Returns
The dispatcher to use when creating publishers or subscribers (pas_dispatcher_t).

58 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

pas_dispatcher_delete

Purpose
Destroys a dispatcher created with pas_dispatcher_new.

Syntax
void pas_dispatcher_delete (pas_dispatcher_t *disp);

Parameters

disp The event notification client environment.

Returns
Nothing.

pas_dispatch

Purpose
Starts the dispatch loop of an event notification environment. It has no effect if the
application uses its own thread pool.

Syntax
void pas_dispatch (pas_dispatcher_t *disp);

Parameters

disp The new dispatcher.

Returns
Nothing.

Chapter 2 • Event Notification Service C API Reference 59

pas_shutdown

Purpose
Stops the dispatch loop of an event notification environment started with
pas_dispatch. It has no effect if an application-provided dispatcher was passed to
pas_dispatcher_new.

Syntax
void pas_shutdown (pas_dispatcher_t *disp);

Parameters

disp The dispatcher context to shutdown.

Returns
Nothing.

60 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

CHAPTER 3

Event Notification Service Java (JMS)
API Reference

This chapter describes the implementation of the Java (JMS) API in ENS and the Java
API itself.

This chapter contains these sections:

� “Event Notification Service Java (JMS) API Implementation” on page 61
� “Java (JMS) API Overview” on page 64
� “Implementation Notes” on page 66

Event Notification Service Java (JMS)
API Implementation
The ENS Java API is included with Messaging Server and Calendar Server. The Java
API conforms to the Java Message Service specification (JMS).

ENS acts as a provider to Java Message Service. Thus, it provides a Java API to ENS.
The software consists of the base library plus a demo program.

Prerequisites to Use the Java API
To use the Java API, you need to load the ENS plug-in. For instructions on loading the
ENS plug-in, see Appendix C in the Messaging Server Administration Guide. By default,
ENS is already enabled.

In addition, you need to install the following software, which is not provided with
either Messaging Server or Calendar Server:

� Java Development Kit (JDK) 1.2 or later

61

� Java Message Service 1.0.2a or later (tested with 1.0.2a)

You can download this software from:

http://java.sun.com.

Sample Java Programs
The Messaging Server sample programs, JmsSample and JBiff, are stored in the
following directory:

msg_server_base/bin/msg/enssdk/java/com/iplanet/ens/samples

JmsSample is a generic ENS sample program. JBiff is Messaging Server specific.

For JBiff, you will need the following additional items:

� Java Mail jar file (tested with JavaMail 1.2)
� Java Activation Framework (required by JavaMail, tested with JAF1.0.1)

You can download these items from:

http://java.sun.com.

Instructions for Sample Programs
This section contains instructions for compiling and running the two sample
programs:

� “JmsSample Program” on page 62
� “JBiff Sample Program” on page 63

JmsSample Program

� To compile the JmsSample program

1. Set your CLASSPATH to include the following:

ens.jar file - ens.jar

(For Messaging Server, the ens.jar is located in the
msg_server_base/java/jars/ directory.)

Java Message Service - full-path/jms1.0.2/jms.jar

Steps

62 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

2. Change to the msg_server_base/bin/msg/enssdk/java directory.

3. Run the following command:

javac com/iplanet/ens/samples/JmsSample.java

� To run the JmsSample program:

1. Change to the msg_server_base/bin/msg/enssdk/java directory.

2. Run the following command:

java com.iplanet.ens.samples.JmsSample

3. You are prompted for three items:

� ENS event reference (for example, for Messaging Server:
enp://127.0.0.1/store)

� ENS hostname
� ENS port (typically 7997)

4. Publish events.

For Messaging Server, the two ways to publish events are:

� You can use the apub C sample program for ENS. See “Sample Code” on page
75

� If you have enabled ENS, configure iBiff to publish Messaging Server related
events.

For Calendar Server, events are published by the Calendar Server.

JBiff Sample Program

� To compile the JBiff program

1. Set your CLASSPATH to include the following:

ens.jar file - ens.jar

(For Messaging Server, the ens.jar is located in the
msg_server_base/java/jars/ directory.)

Java Message Service - full-path/jms1.0.2/jms.jar

JavaMail - full-path/javamail-1.2/mail.jar

Java Activation Framework - full-path/jaf-1.0.1/activation.jar

Steps

Steps

Chapter 3 • Event Notification Service Java (JMS) API Reference 63

2. Change to the msg_server_base/bin/msg/enssdk/java directory.

3. Run the following command:

javac com/iplanet/ens/samples/JBiff.java

� To run the JBiff sample program:
To run the JBiff sample program, you need to load the ENS (iBiff) plug-in. See
Appendix C in the Messaging Server Administrator’s Guide for instructions.

Note – The demo is currently hardcoded to use the ENS event reference
enp://127.0.0.1/store. This is the default event reference used by the iBiff
notification plug-in.

1. Change to the msg_server_base/bin/msg/enssdk/java directory.

2. Run the following:

java com.iplanet.ens.samples.JBiff

3. The program prompts for your userid, hostname, and password.
The code assumes that the ENS server and the IMAP server are running on
hostname. The userid and password are the IMAP username and password to
access the IMAP account.

The two test programs are ENS subscribers. You receive events from iBiff when
email messages flow through Messaging Server. Alternately you can use the apub
C sample program to generate events. See “Sample Code” on page 75 for more
information.

Java (JMS) API Overview
The Java API for ENS uses a subset of the standard Java Messaging Service (JMS) API
(http://java.sun.com/products/jms/docs.html), with the addition of two
new proprietary methods:

� com.iplanet.ens.jms.EnsTopicConnFactory
� com.iplanet.ens.jms.EnsTopic

JMS requires the creation of a TopicConnectionFactory and a Topic, which is
provided by the two ENS proprietary classes.

For more information on the standard JMS classes and methods, see the JMS
documentation at:

Before You
Begin

Steps

64 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html

http://java.sun.com/products/jms/docs.html

New Proprietary Methods
The two proprietary method classes are EnsTopicConnFactory and EnsTopic.

com.iplanet.ens.jms.EnsTopicConnFactory

About the method
The method is a constructor that returns a javax.jms.TopicConnectionFactory.
Instead of using a JNDI-style lookup to obtain the TopicConnectionFactory
object, this method is provided.

Syntax
public EnsTopicConnFactory (String name,

String hostname,
int port,
OutputStream logStream)

throws java.io.IOException

Arguments

Arguments Type Explanation

name String The client ID for the javax.jms.Connection

hostname String The hostname for the ENS server.

port int The TCP port for the ENS server.

logStream OutputStream Where messages are logged (cannot be null).

com.iplanet.ens.jms.EnsTopic

About this method
The method is a constructor that returns a javax.jms.Topic. Instead of using a
JNDI-style lookup to obtain the javax.jms.Topic, this method is provided.

Chapter 3 • Event Notification Service Java (JMS) API Reference 65

http://java.sun.com/products/jms/docs.html

Syntax
public EnsTopic (String eventRef)

Arguments

Arguments Type Explanation

eventRef String The ENS event reference.

Implementation Notes
This section describes items to be aware of when implementing the ENS Java API.

Shortcomings of the Current Implementation
The current implementation of the Java API does not supply an initial provider
interface.

JMS Topic Connection Factory and ENS Destination are called out explicitly. These are
com.iplanet.ens.jms.EnsTopicConnFactory and
com.iplanet.ens.jms.EnsTopic. ENS does not use JNDI to get the
TopicConnectionFactory and Topic objects.

Notification Delivery
The notification is delivered as a javax.jms.TextMessage. The parameter/values
of the ENS event reference are provided as property names to the TextMessage. The
payload is provided as the data of the TextMessage.

JMS Headers
� JMSDeliveryMode is always set to NON_PERSISTENT (that is, no storing of

message for future delivery).

� JMSRedelivered is always set to false.

� JMSMessageID is set to an internal id. Specifically it is not set to the SMTP
MessageID in the header of the email message for Messaging Server.

66 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

� The payload is always a javax.jms.TextMessage. It corresponds to the ENS
payload.

� JMSDestination is set to the full event reference (that is, it includes the
parameter/values specific to this notification).

� JMSCorrelationID - Set to an internal sequence number.

� JMSTimestamp - Set to the time the message was sent.

� For Messaging Server and iBiff, this corresponds to the timestamp parameter.
� This is unused in Calendar Server.

� JMSType — The type of notification.

� For Messaging Server and iBiff, this corresponds to the evtType parameter.
� This is unused in Calendar Server.

� Additional properties:

� Each parameter/value in the even reference becomes a property in the header.
All property values are of type String.

� Unused headers are: JMSExpiration, JMSpriority, JMSReplyTo.

Miscellaneous
� MessageSelectors are not implemented.

� JMS uses the concept of durable and non-durable subscribers. A durable subscriber
is a feature where notifications are guaranteed to be sent to subscribers even when
they are offline, or if something catastrophic occurs, such as the ENS server going
down after receiving the notification from the publisher but before delivering it to
the subscriber.

� Non-durable subscribers are implemented.

� You can also use durable subscribers, however, the full functionality of being a
durable subscriber is not implemented.

� This aspect of being a durable subscriber is implemented: the publisher is
acknowledged only after the subscriber receives a message.

� This aspect of being a durable subscriber is not implemented: the message is
not persistent, and delivery is not made to offline subscribers (after they come
back online). In particular, JMSRedelivered is always set to false.

Chapter 3 • Event Notification Service Java (JMS) API Reference 67

68 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

CHAPTER 4

Messaging Server Specific Information

This chapter describes the Messaging Server specific items you need to use the ENS
APIs.

This chapter contains these sections:

� “Event Notification Types and Parameters” on page 69
� “Sample Code” on page 75
� “Implementation Notes” on page 80

Event Notification Types and Parameters
For Messaging Server, there is only one event reference, which can be composed of
several parameters. There are various types of event notifications. Table 4–1 lists the
event types supported by Messaging Server and gives a description of each:

TABLE 4–1 Event Types

Event Types Description

DeleteMsg Messages marked as “Deleted” are removed from the mailbox.
This is the equivalent to IMAP expunge.

Login User logged in from IMAP, HTTP, or POP.

Logout User logged out from IMAP, HTTP, or POP.

NewMsg New message was received by the system into the user’s
mailbox. Can have a payload of message headers and body.

69

TABLE 4–1 Event Types (Continued)
Event Types Description

OverQuota Operation failed because the user’s mailbox exceeded one of the
quotas (diskquota, msgquota). The MTA channel holds the
message until the quota changes or the user’s mail box count
goes below the quota. If the message expires while it is being
held by the MTA, it will be expunged.

PurgeMsg Message expunged (as a result of an expired date) from the
mailbox by the server process imexpire. This is a server side
expunge, whereas DeleteMsg is a client side expunge. This is not
a purge in the true sense of the word.

ReadMsg Message in the mailbox was read (in the IMAP protocol, the
message was marked Seen).

TrashMsg Message was marked for deletion by IMAP or HTTP. The user
may still see the message in the folder, depending on the mail
client’s configuration. The messages are to be removed from the
folder when an expunge is performed.

UnderQuota Quota went back to normal from OverQuota state.

UpdateMsg Message was appended to the mailbox (other than by NewMsg).
for example, the user copied an email message to the mailbox.
Can have a payload of message headers and body.

The following applies to the above supported event types:

� For NewMsg and UpdateMsg, message pay load is turned off by default to prevent
overloading ENS. For information on how to enable the payload, see “Payload”
on page 73. No other event types support a payload.

� Event notifications can be generated for changes to the INBOX alone, or to the
INBOX and all other folders. The following configuration variable allows for INBOX
only (value = 0), or for both the INBOX and all other folders (value = 1):

local.store.notifyplugin.noneInbox.enable

The default setting is for INBOX only (value = 0).

Note – There is no mechanism to select folders; all folders are included when the
variable is enabled (value = 1).

� The NewMsg notification is issued only after the message is deposited in the user
mailbox (as opposed to “after it was accepted by the server and queued in the
message queue”).

� Every notification carries several pieces of information (called parameters)
depending on the event type, for example, NewMsg indicates the IMAP uid of the
new message. For details on the parameters each event type takes, see Table 4–4.

70 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

� Events are not generated for POP3 client access.

� All event types can be suppressed by issuing XNOTNOTIFY. For example, an IMAP
script used for housekeeping only (the users are not meant to be notified) might
issue it to suppress all events.

Parameters
iBiff uses the following format for the ENS event reference:

enp://127.0.0.1/store?param=value¶m1=value1¶m2=value2

The event key enp://127.0.0.1/store has no significance other than its
uniqueness as a string. For example, the hostname portion of the event key has no
significance as a hostname. It is simply a string that is part of the URI. However, the
event key is user configurable. The list of iBiff event reference parameters is listed in
Table 4–2 and Table 4–3 that follow.

The second part of the event reference consists of parameter-value pairs. This part of
the event reference is separated from the event key by a question mark (?). The
parameter and value are separated by an equals sign (=). The parameter-value pairs
are separated by an ampersand (&). Note that there can be empty values, for which the
value simply does not exist.

Table 4–2 describes the mandatory event reference parameters that need to be
included in every notification.

TABLE 4–2 Mandatory Event Reference Parameters

Parameter Data Type Description

evtType string Specifies the event type.

hostname string The hostname of the machine that generated the
event.

mailboxName string Specifies the mailbox name in the message store.
The mailboxName has the format uid@domain,
where uid is the user’s unique identifier, and
domain is the domain the user belongs to. The
@domain portion is added only when the user
does not belong to the default domain (i.e. the user
is in a hosted domain).

pid integer ID of the process that generated the event.

process string Specifies the name of the process that generated
the event.

Chapter 4 • Messaging Server Specific Information 71

TABLE 4–2 Mandatory Event Reference Parameters (Continued)
Parameter Data Type Description

timestamp 64-bit integer Specifies the number of milliseconds since the
epoch (midnight GMT, January 1, 1970).

Table 4–3 describes optional event reference parameters, which might be seen in the
event depending on the event type (see Table 4–4).

TABLE 4–3 Optional Event Reference Parameters

Parameter Data Type Description

client IP address The IP address of the client logging in or out.

diskQuota signed 32-bit integer Specifies the disk space quota in kilobytes. The
value is set to -1 to indicate no quotas.

diskUsed signed 32-bit integer Specifies the amount of disk space used in
kilobytes.

hdrLen unsigned 32-bit
integer

Specifies the size of the message header. Note that
this might not be the size of the header in the
payload, because it might have been truncated.

imapUid unsigned 32-bit
integer

Specifies the IMAP uid parameter.

lastUid unsigned 32-bit
integer

Specifies the last IMAP uid value that was used.

numDel unsigned 32-bit
integer

Specifies the number of messages marked as
deleted in the mailbox.

numMsgs unsigned 32-bit
integer

Specifies the number of total messages in the
mailbox.

numMsgsMax signed 32-bit integer Specifies the quota for the maximum number of
messages. The value is set to -1 to indicate no
quotas.

numSeen unsigned 32-bit
integer

Specifies the number of messages in the mailbox
marked as seen (read).

size unsigned 32-bit
integer

Specifies the size of the message. Note that this
may not be the size of payload, since the payload
is typically a truncated version of the message.

uidValidity unsigned 32-bit
integer

Specifies the IMAP uid validity parameter.

72 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Note – Subscribers should allow for undocumented parameters when parsing the
event reference. This allows for future compatibility when new parameters are added.

Table 4–4 shows the parameters that are available for each event type. For example, to
see which parameters apply to a TrashMsg event, look in the column header for
“ReadMsg, TrashMsg” and then note that these events can use numDel, numMsgs,
numSeen, and userValidity.

TABLE 4–4 Available Parameters for Each Event Type

Parameter
NewMsg,
UpdateMsg

ReadMsg,
TrashMsg

DeleteMsg,
PurgeMsg

Login,
Logout

OverQuota,
UnderQuota

client No No No Yes No

diskQuota No No No No Yes

diskUsed No No No No Yes

hdrLen Yes No No No No

imapUid Yes No Yes No No

lastUid No No Yes No No

numDel No Yes No No No

numMsgs Yes Yes Yes No Yes

numMsgsMax No No No No Yes

numSeen No Yes No No No

size Yes No No No No

uidValidity Yes Yes Yes No No

userid No No No Yes No

Payload
ENS allows a payload for two event types: NewMsg, and UpdateMsg; the other event
types do not carry a payload. The payload portion of these two notifications can
contain any of the following data:

� No header or body data (default setting)
� Message header data only
� Message body data only
� Both message header and body data

The amount and type of data sent as the payload of the ENS event is determined by
the configuration parameters found in Table 4–5.

Chapter 4 • Messaging Server Specific Information 73

TABLE 4–5 Payload Configuration Parameters

Configuration Parameter Description

local.store.notifyplugin.maxBodySize Specifies the maximum size (in bytes) of
the body that will be transmitted with
the notification. Default setting is zero
(0).

local.store.notifyplugin.maxHeaderSize Specifies the maximum size (in bytes) of
the header that will be transmitted with
the notification. Default setting is zero
(0).

Note that both parameters are set to zero as the default so that no header or body data
is sent with ENS notifications.

Examples
The following example shows a NewMsg event reference (it is actually a single line that
is broken up to several lines for readability):

enp://127.0.0.1/store?evtType=NewMsg×tamp=1047488403000&
hostname=eman&process=imta&pid=476&mailboxName=testuser&numMsgs=16
&uidValidity=1046993605&imapUid=62&size=877&hdrLen=814

In this example, for the DeleteMsg event. Messages marked as deleted by IMAP or
HTTP were expunged. The user would not see the message in the folder any more.

enp://127.0.0.1/store?evtType=DeleteMsg×tamp=1047488588000&
hostname=eman&process=imapd&pid=419&mailboxName=testuser&
numMsgs=6&uidValidity=1046993605&imapUid=61&lastUid=62

And a third example shows a ReadMsg event. Message was marked as Seen by IMAP
or HTTP.

enp://127.0.0.1/store?evtType=ReadMsg×tamp=1047488477000&
hostname=eman&process=imapd&pid=419&mailboxName=testuser&
uidValidity=1046993605&numSeen=11&numDel=9&numMsgs=16

74 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Sample Code
The following two code samples illustrate how to use the ENS API. The sample code is
provided with the product in the following directory:

msg_server_base/examples

� To use the sample code

1. Before running the makefile, set your library search path to include the
directory:

msg_server_base/lib

2. Compile the code using the Makefile.sample.

3. Run apub and asub as follows in separate windows:

apub localhost 7997

asub localhost 7997

Whatever is typed into the apub window should appear on the asub window. If
you use the default settings, all iBiff notifications should appear in the asub
window.

4. Remove the msg_server_base/lib path from your library search path.

Note – If you do not remove this from the library search path, you will not be able
to stop and start the directory server.

Sample Publisher
This sample code provides a simple interactive asynchronous publisher.

/*
* Copyright 2000 by Sun Microsystems, Inc.
* All rights reserved
*/
/*
*
* apub
* --

Steps

Chapter 4 • Messaging Server Specific Information 75

* a simple interactive asynchronous publisher
* --
*
* This simplistic program publishes events using the hard-coded
* event reference
* enp://127.0.0.1/store
* and the data entered at the prompt as notification payload.
* Enter "." to end the program.
*
* If you happen to run the corresponding subscriber, asub, on the
* same notification server, you will notice the sent data printed
* out in the asub window.
* Syntax:
* $ apub <host> <port>
* where
* <host> is the notification server hostname
* <port> is the notification server IP port number
*/
#include <stdlib.h>
#include <stdio.h>#include "pasdisp.h"
#include "publisher.h"
static pas_dispatcher_t *disp = NULL;
static publisher_t *_publisher = NULL;
static int _shutdown = 0;
static void _read_stdin();

static void _exit_usage()
{

printf("\nUsage:\napub host port\n");
exit(5);

}
static void _exit_error(const char *msg)
{

printf("%s\n", msg);
exit(1);

}
static void _call_shutdown()
{

_shutdown = 1;
pas_shutdown(disp);

}
static void _open_ack(void *arg, int rc, void *enc)
{

_publisher = (publisher_t *)enc;
(void *)arg;

if (!_publisher) {
printf("Failed to create publisher with status %d\n", rc);
_call_shutdown();
return;

}
_read_stdin();
return;

}
static void _publish_ack(void *arg, int rc, void *ignored)
{

76 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

(void *)ignored;
free(arg)
if (rc != 0) {

printf("Publish failed with status %d\n", rc);
_call_shutdown();
return;

}
_read_stdin();
return;

}
static void _read_stdin()
{

static char input[1024];
printf("apub> ");
fflush(stdout);
while (!_shutdown) {

if (!fgets(input, sizeof(input), stdin)) {
continue;

} else {
char *message;
unsigned int message_len;
input[strlen(input) - 1] = 0; /* Strip off the \n */
if (*input == ’.’ && input[1] == 0) {

publisher_delete(_publisher);
_call_shutdown();
break;

}
message = strdup(input);
message_len = strlen(message);
publish(_publisher, "enp://127.0.0.1/store",

message, message_len,
_publish_ack, NULL, (void *)message, 0);

return;
}

}
return;

}
main(int argc, char **argv)
{

unsigned short port = 7997;
char host[256];
if (argc < 2) _exit_usage();
if (*(argv[1]) == ’0’) {

strcpy(host, "127.0.0.1");
}else {

strcpy(host, argv[1]);
}
if (argc > 2) {

port = (unsigned short)atoi(argv[2]);
}
disp = pas_dispatcher_new(NULL);
if (disp == NULL) _exit_error("Can’t create publisher");
publisher_new_a(disp, NULL, host, port, _open_ack, disp);
pas_dispatch(disp);
_shutdown = 1;

Chapter 4 • Messaging Server Specific Information 77

pas_dispatcher_delete(disp);
exit(0);

}

Sample Subscriber
This sample code provides a simple subscriber.

/*
* Copyright 1997 by Sun Microsystems, Inc.
* All rights reserved
*
*/
/*
*
* asub
* --
* a simple subscriber
* --
*
* This simplistic program subscribes to events matching the
* hard-coded event reference:
* enp://127.0.0.1/store
* It subsequently received messages emitted by the apub processes
* if any are being used, and prints the payload of each received
* notification to stdout.
*
* Syntax
* $ asub <host> <port>
* where
* <host> is the notification server hostname
* <port> is the notification server IP port number
*/
#include <stdlib.h>
#include <stdio.h>
#include "pasdisp.h"
#include "subscriber.h"
static pas_dispatcher_t *disp = NULL;
static subscriber_t *_subscriber = NULL;
static subscription_t *_subscription = NULL;
static renl_t *_renl = NULL;
static void _exit_usage()
{

printf("\nUsage:\nasub host port\n");
exit(5);

}
static void _exit_error(const char *msg)
{

printf("%s\n", msg);
exit(1);

}
static void _subscribe_ack(void *arg, int rc, void *subscription)
{

78 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

(void)arg;
if (!rc) {

_subscription = subscription;
printf("Subscription successful\n");
subscriber_keepalive(_subscriber, 30000);

}else {
printf("Subscription failed - status %d\n", rc);
pas_shutdown(disp);

}
}
static void _unsubscribe_ack(void *arg, int rc, void *ignored)
{
(void *)ignored;

(void *)arg;
if (rc != 0) {

printf("Unsubscribe failed - status %d\n", rc);
}
subscriber_delete(_subscriber);
pas_shutdown(disp);

}
static int _handle_notify(void *arg, char *url, char *str, int len)
{

(void *)arg;
printf("[%s] %.*s\n", url, len, (str) ? str : "(null)");
return 0;

}
static void _open_ack(void *arg, int rc, void *enc)
{

_subscriber = (subscriber_t *)enc;
(void *)arg;
if (rc) {

printf("Failed to create subscriber with status %d\n", rc);
pas_shutdown(disp);
return;

}
subscribe(_subscriber, "enp://127.0.0.1/store",

_handle_notify, NULL,
_subscribe_ack, NULL);

return;
}
static void _unsubscribe(int sig)
{

(int)sig;
unsubscribe(_subscriber, _subscription, _unsubscribe_ack, NULL);

}
main(int argc, char **argv)
{

unsigned short port = 7997;
char host[256];
if (argc < 2) _exit_usage();
if (*(argv[1]) == ’0’) {

strcpy(host, "127.0.0.1");
}else {

strcpy(host, argv[1]);
}

Chapter 4 • Messaging Server Specific Information 79

if (argc > 2) {
port = (unsigned short)atoi(argv[2]);

} disp = pas_dispatcher_new(NULL);
if (disp == NULL) _exit_error("Can’t create publisher");
subscriber_new_a(disp, NULL, host, port, _open_ack, NULL);
pas_dispatch(disp);
pas_dispatcher_delete(disp);

exit(0);
}

Implementation Notes
The current implementation does not provide security on events that can be
subscribed to. Thus, a user could register for all events, and portions of all other users’
mail. Because of this it is strongly recommended that the ENS subscriber be on the
“safe” side of the firewall at the very least.

80 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

CHAPTER 5

Calendar Server Specific Information

This chapter describes the Calendar Server specific items you need to use the ENS
APIs.

This chapter contains these sections:

� “Calendar Server Notifications” on page 81

� “Alarm Notifications” on page 82
� “Calendar Update Notifications” on page 82
� “Advanced Topics” on page 84
� “WCAP appid parameter and X-Tokens” on page 85

� “ENS Sample Code for Calendar Server” on page 86

Calendar Server Notifications
There are two parts to the format of an Calendar Server notification:

� The event reference– A URL identifying the event.

� The payload– The data describing the event. Three different payload formats are
supported: binary, text/calendar, and text/XML.

There are two types of calendar notifications:

� “Alarm Notifications” on page 82– relay reminders
� “Calendar Update Notifications” on page 82– distribute changes to the calendar

database

81

Alarm Notifications
Alarm notifications relay reminders. They are published by the csadmind daemon
whenever it wants to send a reminder. The default subscriber for these alarms in
Communications Services is the csnotifyd daemon. Notifications consumed by
csnotifyd have a binary payload and are acknowledged (reliable).

Additionally, the server can be configured to generate one additional notification for
each reminder, which can be consumed by a third party notification infrastructure.

Table 5–1 shows the configuration variables that enable these notifications.

TABLE 5–1 Alarm Notifications

ics.conf Default Value Descripton

caldb.serveralarams.
binary.url

enp:///ics/
alarm

Used by csadmind and csnotifyd to
send SMTP reminders.

caldb.serveralarms.
binary.enable

yes Enable or disable the default alarm
(binary) transport provided by the
Calendar Server product.

caldb.serveralarms.url
NULL ENS topic URL for custom

implementation. If this is NULL,
then no formatted messages will be
published. The ics.conf value
will be set to enp:///ics/alarm.

caldb.serveralarms.
contenttype

text/xml Content MIME type of formatted
message.

caldb.berkeleydb.
alarmretrytime

300 Retry interval in seconds for failed
deliveries. Specify zero (0) to
disable retry.

Event URL parameters are the same for either one:

� calid - Calendar ID
� uid - Component, either event or todo (task) ID
� rid - Recurrence ID
� aid - Alarm ID
� comptype - An event or a todo (task)
� URI

Calendar Update Notifications
Calendar update notifications distribute changes to the calendar database. They are
published by the cshttpd or csdwpd daemons whenever a change is made to the
database (if the notification is enabled for this type of change).

82 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

There are eleven types of notifications. Table 5–2 lists each type of calendar update
notification, it’s ics.conf parameters, and their default values.

TABLE 5–2 Calendar Update Notifications

Types ics.conf Parameters Default Value

Attendee
refresh
actions

caldb.berkeleydb.ensmsg.refreshevent

caldb.berkeleydb.ensmsg.refreshevent.
url

caldb.berkeleydb.ensmsg.refreshevent.
contenttype

no

enp:///ics/caleventrefresh

text/xml

Attendee
reply action caldb.berkeleydb.ensmsg.replyevent

caldb.berkeleydb.ensmsg.replyevent.
url

caldb.berkeleydb.ensmsg.replyevent.
contenttype

no

enp:///ics/caleventreply

text/xml

Calendar
creation caldb.berkeleydb.ensmsg.createcal

caldb.berkeleydb.ensmsg.createcal.
url

yes

enp:///ics/calendarcreate

Calendar
deletion caldb.berkeleydb.ensmsg.deletecal

caldb.berkeleydb.ensmsg.deletecal.
url

yes

enp:///ics/calendardelete

Calendar
modification caldb.berkeleydb.ensmsg.modifycal

caldb.berkeleydb.ensmsg.modifycal.
url

yes

enp:///ics/calendarmodify

Event
creation caldb.berkeleydb.ensmsg.

createevent

caldb.berkeleydb.ensmsg.
createevent.url

yes

enp:///ics/caleventcreate

Event
modification caldb.berkeleydb.ensmsg.

modifyevent

caldb.berkeleydb.ensmsg.
modifyevent.url

yes

enp:///ics/caleventmodify

Chapter 5 • Calendar Server Specific Information 83

TABLE 5–2 Calendar Update Notifications (Continued)
Types ics.conf Parameters Default Value

Event
deletion caldb.berkeleydb.ensmsg.

deleteevent

caldb.berkeleydb.ensmsg.
deleteevent.url

yes

enp:///ics/caleventdelete

Todo (task)
creation caldb.berkeleydb.ensmsg.

createtodo

caldb.berkeleydb.ensmsg.
createtodo.url

yes

enp:///ics/caltodocreate

Todo (task)
modification caldb.berkeleydb.ensmsg.

modifytodo

caldb.berkeleydb.ensmsg.
modifytodo.url

yes

enp:///ics/caltodomodify

Todo (task)
deletion caldb.berkeleydb.ensmsg.

deletetodo

caldb.berkeleydb.ensmsg.
deletetodo.url

yes

enp:///ics/caltododelete

Event URL parameters include:

� calid - Calendar ID
� uid - Component, either event or todo (task) ID
� rid - Recurrence ID

Advanced Topics
Normally, ENS notifications for attendee replies and organizer refreshes are published
to the caldb.berkeleydb.ensmsg.modifyevent topic along with other
modifications. By setting the ics.conf parameter
caldb.berkeleydb.ensmsg.advancedtopics to “yes” (the default is “no”), the
ENS notifications can be published to separate modify, reply and refresh topics. This
allows the consumer of the notification to understand more precisely what type of
transaction triggered the notification.

Table 5–3 shows the topics ENS publishes notifications to depending on the setting of
the ics.conf parmeter caldb.berkeleydb.ensmsg.advancedtopics.

84 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

TABLE 5–3 Advanced Topics Parameter

Value of Advanced Topics
Parameter Topics to Which ENS Publishes Attendee Notifications

yes
caldb.berkeleydb.ensmsg.modifyevent
caldb.berkeleydb.ensmsg.refreshevent
caldb.berkeleydb.ensmsg.replyevent

no
caldb.berkeleydb.ensmsg.modifyevent

WCAP appid parameter and X-Tokens
When ENS sends out notifications of modifications made to existing events, it returns
two X-Tokens with the notification, X-NSCP-COMPONENT-SOURCE and
X-NSCP-TRIGGERED-BY.

The contents of the X-NSCP-COMPONENT-SOURCE X-Token varies depending on
who originated the event and the absence or presence of the appid parameter in the
original WCAP command that requested the event.

If the appid parameter is present in the original WCAP command, ENS returns its
value in the X-NSCP-COMPONENT-SOURCE X-Token.(Only certain commands take
the appid parameter. See the Calendar Server Programmer’s Manual for further
information on the appid parameter.) Using this mechanism, applications can “tag”
ENS notifications in order to detect which ones it originated. The value of the appid
command is a character string of the application’s choosing. If the appid parameter is
missing, standard values are assigned to the X-Token depending on the origin, see
Table 5–4 that follows for the standard values).

The X-Token, X-NSCP-TRIGGERED-BY holds the name (uid) of the organizer or
attendee that triggered the notification regardless of the absence or presence of the
appid parameter.

Table 5–4 shows the effect of the presence of the appid parameter in WCAP
commands on the value of the X-Token X-NSCP-COMPONENT-SOURCE.

TABLE 5–4 Presence of appid and Value of X-Token X-NSCP-COMPONENT-SOURCE

appid Present? Value of X-Token X-NSCP-COMPONENT-SOURCE (with Request Origin)

no WCAP (default)

CALENDAR EXPRESS (from UI)

ADMIN (from Admin tools)

yes Value of appid

Chapter 5 • Calendar Server Specific Information 85

ENS Sample Code for Calendar Server
Calendar Server ships with a complete ENS implementation. If you wish to customize
it, you may use the ENS APIs to do so. The following four code samples, a simple
publisher and subscriber pair, and a reliable publisher and subscriber pair, illustrate
how to use the ENS API. The sample code is provided with the product in the
following directory:

/opt/SUNWics5/cal/csapi/samples/ens

Sample Publisher and Subscriber
This sample code pair establishes a simple interactive asynchronous publisher and
subscriber.

Publisher Code Sample
/*
* Copyright 2000 by Sun Microsystems, Inc.
* All rights reserved
*
* apub : simple interactive asynchronous publisher using
*
* Syntax:
* apub host port
*/
#include <stdlib.h>
#include <stdio.h>

#include "pasdisp.h"
#include "publisher.h"

static pas_dispatcher_t *disp = NULL;
static publisher_t *_publisher = NULL;
static int _shutdown = 0;

static void _read_stdin();

static void _exit_usage()
{

printf("\nUsage:\napub host port\n");
exit(5);

}
static void _exit_error(const char *msg)
{

printf("%s\n", msg);

86 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

exit(1);
}
static void _call_shutdown()
{

_shutdown = 1;
pas_shutdown(disp);

}
static void _open_ack(void *arg, int rc, void *enc)
{

_publisher = (publisher_t *)enc;
(void *)arg;
if (!_publisher)
{

printf("Failed to create publisher with status %d\n", rc);
_call_shutdown();
return;

}
_read_stdin();
return;

}
static void _publish_ack(void *arg, int rc, void *ignored)
{

(void *)ignored;
free(arg);
if (rc != 0)
{

printf("Publish failed with status %d\n", rc);
_call_shutdown();
return;

}
_read_stdin();
return;

}
static void _read_stdin()
{

static char input[1024];
printf("apub> ");
fflush(stdout);
while (!_shutdown)
{

if (!fgets(input, sizeof(input), stdin))
{

continue;
} else {

char *message;
unsigned int message_len;
input[strlen(input) - 1] = 0; /* Strip off the \n */
if (*input == ’.’ && input[1] == 0)
{

publisher_delete(_publisher);
_call_shutdown();
break;

}
message = strdup(input);
message_len = strlen(message);

Chapter 5 • Calendar Server Specific Information 87

publish(_publisher, "enp://siroe.com/xyz",message,
message_len,
_publish_ack, NULL, (void *)message, 0);

return;
}

}
return;

}
main(int argc, char **argv)
{

unsigned short port = 7997;
char host[256];
if (argc < 2) _exit_usage();
if (*(argv[1]) == ’0’)
{

strcpy(host, "127.0.0.1");
} else {

strcpy(host, argv[1]);
}
if (argc > 2)
{

port = (unsigned short)atoi(argv[2]);
}
disp = pas_dispatcher_new(NULL);
if (disp == NULL) _exit_error("Can’t create publisher");
publisher_new_a(disp, NULL, host, port, _open_ack, disp);
pas_dispatch(disp);
_shutdown = 1;
pas_dispatcher_delete(disp);
exit(0);

}

Subscriber Code Sample
/*
* Copyright 2000 by Sun Microsystems, Inc.
* All rights reserved
*
* asub : example asynchronous subscriber
*
* Syntax:
* asub host port
*/
#include <stdlib.h>
#include <stdio.h>

#include "pasdisp.h"
#include "subscriber.h"

static pas_dispatcher_t *disp = NULL;
static subscriber_t *_subscriber = NULL;
static subscription_t *_subscription = NULL;
static renl_t *_renl = NULL;

88 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

static void _exit_usage()
{

printf("\nUsage:\nasub host port\n");
exit(5);

}
static void _exit_error(const char *msg)
{

printf("%s\n", msg);
exit(1);

}
static void _subscribe_ack(void *arg, int rc, void *subscription)
{

(void)arg;
if (!rc)
{

_subscription = subscription;
printf("Subscription successful\n");

} else {
printf("Subscription failed - status %d\n", rc);
pas_shutdown(disp);

}
}
static void _unsubscribe_ack(void *arg, int rc, void *ignored)
{

(void *)ignored;
(void *)arg;
if (rc != 0)
{

printf("Unsubscribe failed - status %d\n", rc);
}
subscriber_delete(_subscriber);
pas_shutdown(disp);

}
static int _handle_notify(void *arg, char *url, char *str, int len)
{

(void *)arg;
printf("[%s] %.*s\n", url, len, (str) ? str : "(null)");
return 0;

}
static void _open_ack(void *arg, int rc, void *enc)
{

_subscriber = (subscriber_t *)enc;
(void *)arg;
if (rc)
{

printf("Failed to create subscriber with status %d\n", rc);
pas_shutdown(disp);
return;

}
subscribe(_subscriber, "enp://siroe.com/xyz",

_handle_notify, NULL,
_subscribe_ack, NULL);

return;
}

Chapter 5 • Calendar Server Specific Information 89

static void _unsubscribe(int sig)
{

(int)sig;
unsubscribe(_subscriber, _subscription, _unsubscribe_ack, NULL);

}
main(int argc, char **argv)
{

unsigned short port = 7997;
char host[256];
if (argc < 2) _exit_usage();
if (*(argv[1]) == ’0’)
{

strcpy(host, "127.0.0.1");
} else {

strcpy(host, argv[1]);
}
if (argc > 2)
{

port = (unsigned short)atoi(argv[2]);
}
disp = pas_dispatcher_new(NULL);
if (disp == NULL) _exit_error("Can’t create publisher");
subscriber_new_a(disp, NULL, host, port, _open_ack, NULL);
pas_dispatch(disp);
pas_dispatcher_delete(disp);
exit(0);

}

Reliable Publisher and Subscriber
This sample code pair establishes a reliable asynchronous publisher and subscriber.

Reliable Publisher Sample
/*
* Copyright 2000 by Sun Microsystems, Inc.
* All rights reserved
*
* rpub : simple *reliable* interactive asynchronous publisher.
* It is designed to be used in combination with rsub,
* the reliable subscriber.
*
* Syntax:
* rpub host port
*/
#include <stdlib.h>
#include <stdio.h>

#include "pasdisp.h"
#include "publisher.h"

90 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

static pas_dispatcher_t *disp = NULL;
static publisher_t *_publisher = NULL;
static int _shutdown = 0;
static renl_t *_renl;
static void _read_stdin();

static void _exit_usage()
{

printf("\nUsage:\nrpub host port\n");
exit(5);

}
static void _exit_error(const char *msg)
{

printf("%s\n", msg);
exit(1);

}
static void _call_shutdown()
{

_shutdown = 1;
pas_shutdown(disp);

}
static void _renl_create_cb(void *arg, int rc, void *ignored)
{

(void *)arg;
(void *)ignored;
if (!_publisher)
{

printf("Failed to create RENL - status %d\n", rc);
_call_shutdown();
return;

}
_read_stdin();
return;

}
static void _publisher_new_cb(void *arg, int rc, void *enc)
{

_publisher = (publisher_t *)enc;
(void *)arg;
if (!_publisher)
{

printf("Failed to create publisher - status %d\n", rc);
_call_shutdown();
return;

}
renl_create_publisher(_publisher, "renl_id", NULL,

_renl_create_cb,NULL);
return;

}
static void _recv_ack(void *arg, int rc, void *ignored)
{

(void *)ignored;
if (rc < 0)
{

printf("Acknowledgment Timeout\n");

Chapter 5 • Calendar Server Specific Information 91

} else if (rc == 0) {
printf("Acknowledgment Received\n");

}
fflush (stdout);
_read_stdin();
free(arg);
return;

}
static void _read_stdin()
{

static char input[1024];
printf("rpub> ");
fflush(stdout);
while (!_shutdown)
{

if (!fgets(input, sizeof(input), stdin))
{

continue;
} else {

char *message;
unsigned int message_len;
input[strlen(input) - 1] = 0; /* Strip off the \n */
if (*input == ’.’ && input[1] == 0)
{

publisher_delete(_publisher);
_call_shutdown();
break;

}
message = strdup(input);
message_len = strlen(message);

/* five seconds timeout */
publish(_publisher, "enp://siroe.com/xyz",

message, message_len,
NULL, _recv_ack, message, 5000);

return;
}

}
return;

}
main(int argc, char **argv)
{

unsigned short port = 7997;
char host[256];
if (argc < 2) _exit_usage();
if (*(argv[1]) == ’0’)
{

strcpy(host, "127.0.0.1");
} else {

strcpy(host, argv[1]);
}
if (argc > 2)
{

port = (unsigned short)atoi(argv[2]);
}

92 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

disp = pas_dispatcher_new(NULL);
if (disp == NULL) _exit_error("Can’t create publisher");
publisher_new_a(disp, NULL, host, port, _publisher_new_cb,

NULL);
pas_dispatch(disp);
_shutdown = 1;
pas_dispatcher_delete(disp);
exit(0);

}

Reliable Subscriber Sample
/*
* Copyright 2000 by Sun Microsystems, Inc.
* All rights reserved
*
* asub : example asynchronous subscriber
*
* Syntax:
* asub host port
*/
#include <stdlib.h>
#include <stdio.h>

#include "pasdisp.h"
#include "subscriber.h"

static pas_dispatcher_t *disp = NULL;
static subscriber_t *_subscriber = NULL;
static subscription_t *_subscription = NULL;
static renl_t *_renl = NULL;

static void _exit_usage()
{

printf("\nUsage:\nasub host port\n");
exit(5);

}
static void _exit_error(const char *msg)
{

printf("%s\n", msg);
exit(1);

}
static void _subscribe_ack(void *arg, int rc, void *subscription)
{

(void)arg;
if (!rc)
{

_subscription = subscription;
printf("Subscription successful\n");
_renl = renl_create_subscriber(_subscription, "renl_id", NULL);

} else {
printf("Subscription failed - status %d\n", rc)
pas_shutdown(disp);

Chapter 5 • Calendar Server Specific Information 93

}
}
static void _unsubscribe_ack(void *arg, int rc, void *ignored)
{

(void *)ignored;
(void *)arg;
if (rc != 0)
{

printf("Unsubscribe failed - status %d\n", rc);
}
subscriber_delete(_subscriber);
pas_shutdown(disp);

}
static int _handle_notify(void *arg, char *url, char *str, int len)
{

(void *)arg;
printf("[%s] %.*s\n", url, len, (str) ? str : "(null)");
return 0;

}
static void _open_ack(void *arg, int rc, void *enc)
{

_subscriber = (subscriber_t *)enc;
(void *)arg;
if (rc)
{

printf("Failed to create subscriber with status %d\n", rc);
pas_shutdown(disp);
return;

}
subscribe(_subscriber, "enp://siroe.com/xyz",_handle_notify,

NULL,_subscribe_ack, NULL);
return;

}
static void _unsubscribe(int sig)
{

(int)sig;
unsubscribe(_subscriber, _subscription, _unsubscribe_ack, NULL);

}
main(int argc, char **argv)
{

unsigned short port = 7997;
char host[256];

if (argc < 2) _exit_usage();
if (*(argv[1]) == ’0’)
{

strcpy(host, "127.0.0.1");
} else {

strcpy(host, argv[1]);
}
if (argc > 2)
{

port = (unsigned short)atoi(argv[2]);
}
disp = pas_dispatcher_new(NULL);

94 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

if (disp == NULL) _exit_error("Can’t create publisher");
subscriber_new_a(disp, NULL, host, port, _open_ack, NULL);
pas_dispatch(disp);
pas_dispatcher_delete(disp);
exit(0);

}

Chapter 5 • Calendar Server Specific Information 95

96 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

APPENDIX A

Debugging ENS

This appendix contains instructions for obtaining trace information that can be
valuable for debugging problems with any program that uses the ENS API. This
includes all servers that send notifications through enpd, csadmind, csnotifyd, the
iBiff plug-in, stored, imapd. Trace information can be obtained by setting several
environment variables.

This appendix is divided into the following topics:

� “Environment Variables” on page 97
� “How to Enable Debug Tracing” on page 101
� “Sample Debugging Sessions” on page 102

Environment Variables
Tracing can be done at both the GAP (generic request and reply protocol layer) and
ENP (publish and subscribe protocol layer) levels. Also, service bus traces can be set.
The default is for no logging or tracing.

The following environment variables can be set for GAP tracing:

� “GAP_DEBUG” on page 98
� “GAP_LOG_MODULES” on page 98
� “GAP_LOGFILE” on page 99 (Calendar Server only)

The following environment variables can be set for ENP tracing:

� “XENP_TRACE” on page 99
� “ENS_DEBUG” on page 99
� “ENS_LOG_MODULES” on page 100
� “ENS_LOGFILE” on page 100 (Calendar Server only)
� “ENS_STATS” on page 101

97

The following environment variable can be set for service bus tracing:
“SERVICEBUS_DEBUG” on page 101.

GAP_DEBUG
The value is a positive integer which indicates the trace level. Each higher trace level
includes the output from the levels below it. For example, if you set the trace level to
7, level 1-6 traces are also included. The default value for this variable is 4, but since
GAP_LOG_MODULES defaults to zero (0), no logging is done.

While it is possible to set the variable to any integer value greater than 7 and less than
100, the effect will be the same as setting it to 7.

Table A–1 lists the trace levels for the variable GAP_DEBUG:

TABLE A–1 Trace Level Values

Trace Level Trace Level Name Description

0 N/A No output except emergency messages

1 NSLOG_ALERT Alert messages

2 NSLOG_CRIT Critical messages

3 NSLOG_ERR Software error conditions

4 NSLOG_WARNING Default; warning messages (user error conditions)

5 NSLOG_NOTICE Normal but significant conditions

6 NSLOG_INFO Informational messages

7 NSLOG_DEBUG Debug messages

100 NSLOG_TRACE Full trace

GAP_LOG_MODULES
Use this variable to obtain trace information specific to one or more functional
modules in the GAP code. This variable is a bit map. That is, each bit set in the
variable turns on tracing for a particular module.

More than one module can be specified at once. To specify multiple modules, add the
individual values of the modules you want. For example, if you want to trace both the
connection layer and the transaction modules, you set the value of this variable to 10;
to get all modules, set the value to 15.

Table A–2 lists the values for the variable GAP_LOG_MODULES:

98 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

TABLE A–2 GAP_LOG_MODULES Values

Value Value Name Description

0 N/A Default; no modules logged.

1 GAPLOG_CONNECTION Connection layer– socket input output calls

2 GAPLOG_SESSION Session layer– session setup and closing

4 GAPLOG_TRANSACTION Transaction creation– continuation and termination

8 GAPLOG_DISPATCHER Thread dispatcher code– GDisp tracing

GAP_LOGFILE
This variable is used for Calendar Server only. This variable tells the system where to
output GAP tracing. To send the output to a log file, set the variable to a text file name.
The default (variable set to zero) sends GAP tracing to standard out.

XENP_TRACE
Use this variable to generate encoded data traces. Any non-zero value activates the
trace.

ENS_DEBUG
Use this variable to trace functional (unencoded) client or server request responses.

The value is a positive integer which indicates the trace level. Each higher trace level
includes the output from the levels below it. For example, if you set the trace level to
4, level 1-3 traces are also included.

While it is also possible to set the variable to any integer between 7 and 100, the effect
will be the same as setting it to 7. That is, anything less than 100 but greater than 6 is
treated the same.

Table A–3 lists the trace level values for the ENS_DEBUG variable:

TABLE A–3 ENS_DEBUG Trace Level Values

Trace Level Trace Level Name Desciption

0 N/A No output except emergency messages

Appendix A • Debugging ENS 99

TABLE A–3 ENS_DEBUG Trace Level Values (Continued)
Trace Level Trace Level Name Desciption

1 NSLOG_ALERT Alert messages

2 NSLOG_CRIT Critical messages

3 NSLOG_ERR Software error conditions

4 NSLOG_WARNING Warning messages (user error conditions)

5 NSLOG_NOTICE Normal but significant conditions

6 NSLOG_INFO Informational messages

7 NSLOG_DEBUG Debug messages

100 NSLOG_TRACE Full trace

ENS_LOG_MODULES
Use this variable to obtain trace information specific to one or more functional
modules in the ENS code. This variable is a bit map. That is, each bit set in the variable
turns on tracing for a particular module.

More than one module can be specified at once. To specify multiple modules, add the
individual values of the modules you want. For example, if you want to trace both the
server and the RENL modules, you set the value of this variable to 10; to get all
modules, set the value to 31.

Table A–4 lists the values for the variable ENS_LOG_MODULES:

TABLE A–4 ENS_LOG_MODULES Values

Values Value Names Description

0 N/A Default; no modules logged.

1 ENSLOG_CLIENT_API Client API generated transactions

2 ENSLOG_SERVER Server generated transactions

4 ENSLOG_UPUB Publisher transactions

8 ENSLOG_RENL Reliable event notifications

16 ENSLOG_STORE ENS message store transactions

ENS_LOGFILE
This variable is used for Calendar Server only. This variable tells the system where to
output ENS tracing. To send the output to a log file, set the variable to a text file name.
The default (variable set to zero) sends ENS tracing to standard out.

100 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

ENS_STATS
To have statistics printed periodically, set this variable to a non-zero value.

SERVICEBUS_DEBUG
Service Bus is a process monitoring system based on ENS, and is used in ENS. Any
non-zero value causes service bus traces to be sent to standard out. There is no logfile
variable for service bus. To send the traces to a log file, temporarily redefine standard
out to a text file name. During this time, all standard out messages will appear in the
text file you create.

How to Enable Debug Tracing
The following procedure describes how to enable debug tracing.

� To start tracing

1. If ENS is running, stop enpd.

To start and stop enpd, you must be in the bin directory.

For example:

� For Calendar Server on Unix, /opt/SUNWics/cal/bin.

� For Calendar Server on Windows, C:\Program Files\Sun ONE Calendar
Server\..\.cal\bin.

Note – You can enable debugging for specific services by stopping only that service,
for example stop csnotifyd, instead of the entire ENS server.

2. Set all variables to the desired value.

For Unix:

� Bourne shell

variable_name=value; export variable_name

For example:

Steps

Appendix A • Debugging ENS 101

GAP_DEBUG=2; export GAP_DEBUG

� C shell

setenv variable_name value

For example:

setenv GAP_DEBUG 2

For Windows:

set variable_name=value

For example,

set GAP_DEBUG=2

3. If you want the traces to print to a log file, set the appropriate logfile variables
(for END_LOGFILE, or GAP_LOGFILE) or temporarily redefine standard out to a
text file.

4. Restart ENS– start enpd

If you only disabled one service rather than the whole ENS server, you start that
service only, for example start csnotifyd.

Sample Debugging Sessions
The following are sample debugging sessions on the Messaging Server and Calendar
Server.

Each example has three parts:

� Set Environment Variables
� Sample Trace Output
� Short Commentary

Example 1: For Messaging Server

Set Environment Variables
setenv LD_LIBRARY_PATH msg_svr_base/lib/
stop-ens
setenv SERVICEBUS_DEBUG 1
setenv ENS_DEBUG 1

102 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

setenv ENS_LOG_MODULES 1
setenv GAP_DEBUG 1
setenv GAP_LOG_MODULES 1
setenv XENP_TRACE 1
setenv ENS_STATS 1
msg_svr_base/bin/enpd

Sample Trace Output
1 | servbus 3451633705 [26321]: Starting Service Bus
2 | servbus 3451636227 [26321]: Service Bus subscriber created
successfully
3 | servbus 3451636286 [26321]: Service Bus Ready
4 | XENP -> len=36 servbus:///monitor/ens|subs|00010000
5 | XENP -> len=60 servbus:///service/ens&pid=26321
&state=running|ntfy|00000000
6 | XENP <- len=36 servbus:///monitor/ens|subs|00010000
7 | XENP <- len=4 PACK
8 | XENP <- len=60 servbus:///service/ens&pid=26321
&state=running|ntfy|00000000
9 |secs: pub: pub/s: pub/s(i): ntfy: ntfy/s :ntfy/s(i):
10 | 5 : 1: 0 : 0 : 0 : 0 : 0 :
11 |10 : 1: 0 : 0 : 0 : 0 : 0 :
12 | XENP <-
len=232enp://127.0.0.1/store?evtType=NewMs&mailboxName=ServiceAdmin&
timestamp=1027623669000&process=2637&hostname=ketu&numMsgs=14&size=621
&uidValidity=1025118712&imapUid=14&hdrLen=547&qUsed=16&qMax=-1&
qMsgUsed=15&qMsgMax=-1|ntfy|00000000
13 | 15 : 2: 0 : 0 : 0 : 0 : 0 :
14 | 20 : 2: 0 : 0 : 0 : 0 : 0 :
15 | 25 : 2: 0 : 0 : 0 : 0 : 0 :
16 | 30 : 2: 0 : 0 : 0 : 0 : 0 :
17 | 35 : 2: 0 : 0 : 0 : 0 : 0 :
18 | 40 : 2: 0 : 0 : 0 : 0 : 0 :
19 | 45 : 2: 0 : 0 : 0 : 0 : 0 :
20 | 51 : 2: 0 : 0 : 0 : 0 : 0 :
21 | 56 : 2: 0 : 0 : 0 : 0 : 0 :
22 | 61 : 2: 0 : 0 : 0 : 0 : 0 :
23 | 66 : 2: 0 : 0 : 0 : 0 : 0 :
24 | 71 : 2: 0 : 0 : 0 : 0 : 0 :
25 | 76 : 2: 0 : 0 : 0 : 0 : 0 :
26 |secs: pub: pub/s: pub/s(i): ntfy: ntfy/s :ntfy/s(i):
27 | 81 : 2: 0 : 0 : 0 : 0 : 0 :
28 | 86 : 2: 0 : 0 : 0 : 0 : 0 :
29 | 91 : 2: 0 : 0 : 0 : 0 : 0 :
30 | 96 : 2: 0 : 0 : 0 : 0 : 0 :
31 |101: 2: 0 : 0 : 0 : 0 : 0 :
32 |106: 2: 0 : 0 : 0 : 0 : 0 :
33 |111: 2: 0 : 0 : 0 : 0 : 0 :
34 |116: 2: 0 : 0 : 0 : 0 : 0 :
35 |121: 2: 0 : 0 : 0 : 0 : 0 :
36 |126: 2: 0 : 0 : 0 : 0 : 0 :
37 |131: 2: 0 : 0 : 0 : 0 : 0 :

Appendix A • Debugging ENS 103

38 |136: 2: 0 : 0 : 0 : 0 : 0 :
39 |141: 2: 0 : 0 : 0 : 0 : 0 :
40 |146: 2: 0 : 0 : 0 : 0 : 0 :
41 |151: 2: 0 : 0 : 0 : 0 : 0 :
42 |^C
43 | XENP -> len=60 servbus:///service/ens&pid=26321
&state=stopped|ntfy|00000000
44 |servbus 3466881202 [26321]: Service Bus going away
45 |servbus 3466881542 [26321]: Failed to create subscriber- error-1

Short Commentary
The following comments apply to the lines of the preceding trace output:

Line Number Comment

1 - 8 Printed upon startup

9 - 11 and 13 - 41 Periodic statistics print out

12 A message is sent

42 Control-c stopped operation. This was done to end the sample
only. Not recommended for stopping processes normally.

Example 2: For Messaging Server

Set Environment Variables
1 | (293 root) setenv ENS_DEBUG 99
2 | (294 root) setenv ENS_LOG_MODULES 63
3 | (295 root) msg_svr_base/bin/enpd
Sample Trace Output
4 | ENS 3588422667 [26400]: LOGIN 2
5 | ENS 3588423361 [26400]: _enp_session_open_cb : new session id=2 created
6 | ENS 3588423380 [26400]: recorded new subscription : 0001;
servbus:///monitor/ens
7 | ENS 3588423395 [26400]: subscribe
(event=servbus:///monitor/ens, sid=2) = 0
8 | ENS 3588423403 [26400]:publish
(event=servbus:///service/ens&pid=26400&state=running, sid=2)
9 | ENS 3588423414 [26400]:publish
(event=servbus:///service/ens&pid=26400&state=running, sid=2) = 0
10 | ENS 3588423825 [26400]: _ens_recv_request_cb: sid=2
op=1 id=00010000
11 | ENS 3588423842 [26400]: simple|store_req
(servbus:///monitor/ens#2) =2,servbus:///monitor/ens

104 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

12 | ENS 3588423848 [26400]: simple|store_evt
(servbus:///monitor/ens#2) = 2,servbus:///monitor/ens
13 | ENS 3588423853 [26400]: SUBS 2 servbus:///monitor/ens
00010000
14 | ENS 3588424389 [26400]: _ens_recv_request_cb: sid=2
op=2 id=00000000
15 | ENS 3588424395 [26400]: NTFY 2 servbus:///service/ens
&pid=26400&state=running
16 | ENS 3588424409 [26400]:ens_notify
(event=servbus:///service/ens&pid=26400&state=running,
id=00000000,sid=2):no match
17 | ENS 3588503451 [26400]: LOGIN 3
18 | ENS 3588504099 [26400]: LOGIN 4
19 | ENS 3588504938 [26400]: LOGIN 5
20 | ENS 3588505284 [26400]: LOGIN 6
21
22 | ENS 3591631839 [26400]: LOGIN 7
23 | ENS 3591637445 [26400]: _ens_recv_request_cb: sid=7
op=2 id=00000000
24 | ENS 3591637452 [26400]: NTFY 7 enp://127.0.0.1/store?evtType=NewMsg
&mailboxName=ServiceAdmin×tamp=1027625056000&process=2646
&hostname=ketu&numMsgs=19&size=621&uidValidity=1025118712
&imapUid=19&hdrLen=547&qUsed=19&qMax=-1&qMsgUsed=20&qMsgMax=-1
25 | ENS 3591637467 [26400]:ens_notify
(event=enp://127.0.0.1/store?evtType=NewMsg
&mailboxName=ServiceAdmin×tamp=1027625056000&process=2646
&hostname=ketu&numMsgs=19&size=621&uidValidity=1025118712
&imapUid=19&hdrLen=547&qUsed=19&qMax=-1&qMsgUsed=20
&qMsgMax=-1, id=00000000, sid=7): no match
26 |
27 | ENS 3595049771 [26400]: session closing 7
28 | ^CENS 3596193757 [26400]:publish
(event=servbus:///service/ens&pid=26400&state=stopped, sid=2)
29 | ENS 3596193782 [26400]:publish
(event=servbus:///service/ens&pid=26400&state=stopped, sid=2) = 0
30 | ENS 3596193987 [26400]: pas_dispatcher_delete : clean up
starting
31 | ENS 3596194018 [26400]: _enp_session_closing_cb : closing
session id=2
32 | ENS 3596194024 [26400]: destroying subscription :0001;
servbus:///monitor/ens
33 | ENS 3596194041 [26400]: pas_dispatcher_delete : 0 client(s) have
been bumped
34 | ENS 3596194065 [26400]: session closing 2
35 | ENS 3596194075 [26400]: simple|remov_evt
(2, servbus:///monitor/ens)
36 | ENS 3596194107 [26400]: session closing 3
37 | ENS 3596194216 [26400]: session closing 4
38 | ENS 3596194281 [26400]: session closing 5
39 | ENS 3596195039 [26400]: session closing 6

Appendix A • Debugging ENS 105

Short Commentary
The following comments apply to the lines of the preceding trace output:

Line Number Comment

1 - 20 Initialization

22-26 Sent email message

27 Printed asynchronously

28 Control-c stopped operation. This was done to end the sample
only. Not recommended for stopping processes normally.

29-39 enpd exiting

106 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

Index

A
alarm transfer reliability, 28
APIs

ENS
publish and subscribe dispatcher, 57-60
publisher, 41-49
subscriber, 49-57

C
Communications Services, documentation, 15
configuration parameters, general, 73
custom applications, building and

running, 33-37

D
debugging ENS, 101-102
debugging tips, 97-101
documentation

overview, 14-16
where to find Communications Services

documentation, 15
where to find Messaging Server

documentation, 15

E
enabling ENS (iBiff), 22
enabling traces, 101-102

ENS
code samples

publisher, 86-95
daemons

csadmind, 39
csnotifyd, 39

debugging tips, 97-101
enabling traces, 101-102
environment variables

ENS_DEBUG, 99-100
ENS_LOG_MODULES, 100
ENS_LOGFILE, 100
GAP_DEBUG, 98
GAP_LOG_MODULES, 98-99
GAP_LOGFILE, 99
SERVICEBUS_DEBUG, 101
XENP_TRACE, 99

publish and subscribe dispatcher API, 57-60
publisher API, 41-49
RENL definition, 41-49
subscriber API, 49-57
subscriber_new_a function, 52

ENS APIs
functions list

publish and subscribe dispatcher, 57
publisher, 41
subscriber, 49

publish and subscribe dispatcher functions
pas_dispatch, 59
pas_dispatcher_delete, 59
pas_dispatcher_new, 58
pas_dispatcher_t definition, 58
pas_shutdown, 60

107

ENS APIs (Continued)
publisher functions

publish_a, 45-46
publish_s, 46
publisher_cb_t, 42-43
publisher_delete, 46-47
publisher_new_a, 43-44
publisher_new_s, 44-45
publisher_t, 42
renl_cancel_publisher, 48-49
renl_create_publisher, 47-48

subscriber functions
renl_cancel_subscriber, 57
renl_create_subscriber, 56
subscribe_a, 53-54
subscriber_cb_t, 50-51
subscriber_delete, 55
subscriber_new_a, 52
subscriber_new_s, 53
subscriber_notify_cb_t, 51
subscriber_t, 49-50
subscription_t, 50
unsubscribe_a, 54-55

ENS C API overview, 32
ENS connection pooling, 24-25
ENS Java API, overview, 32-33
environment variables, for ENS tracing, 97-101
Event Notification Service

API overview, 31-37
architecture, 25-31
enabling in Messaging Server, 22
how Calendar Server interacts with, 26-30
how Messaging Serer interacts with, 30-31
in Calendar Server, 22
in Messaging Server, 22-23
overview, 21-25

event references
Calendar Server example, 23-24
Messaging Server example, 24
overview, 23-24

I
iBiff notification plug-in, 22, 23
include files, location of, 34

L
libibiff, 22
Linux, default base directory for, 19

M
Messaging Server

and ENS, 22-23
documentation, 15
enabling ENS, 22

N
notification

overview, 25
reliable, 26
unreliable, 26

P
pas_dispatch function (ENS), 59
pas_dispatcher_delete function (ENS), 59
pas_dispatcher_new function (ENS), 58
pas_dispatcher_t definition (ENS), 58
pas_shutdown function (ENS), 60
publish_a function (ENS), 45-46
publish and subscribe dispatcher functions

(ENS)
list, 57
pas_dispatch, 59
pas_dispatcher_delete, 59
pas_dispatcher_new, 58
pas_dispatcher_t definition t, 58
pas_shutdown, 60

publish_s function (ENS), 46
publisher_cb_t function (ENS), 42-43
publisher_delete function (ENS), 46-47
publisher_new_a function (ENS), 43-44
publisher_new_s function (ENS), 44-45
publisher_t function (ENS), 42

108 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

R
Reliable Event Notification Link (RENL)

(ENS), 32, 41-49
renl_cancel_publisher function (ENS), 48-49
renl_cancel_subscriber function (ENS), 57
renl_create_publisher function (ENS), 47-48
renl_create_subscriber function (ENS), 56
runtime library path variable, 37

S
sample code, location of, 33
shared libraries

Calendar Server, 34-37
Messaging Server, 35-37

Solaris
patches, 17
support, 17

subscribe_a function (ENS), 53-54
subscriber_cb_t function (ENS), 50-51
subscriber_delete function (ENS), 55
subscriber_new_a function (ENS), 51, 52
subscriber_new_s function (ENS), 53
subscriber_t function (ENS), 49-50
subscription, overview, 25
subscription_t function (ENS), 50
Sun Java™, 22, 27-28, 28, 29-30
support, Solaris, 17
System Calendar Server

alarm queue, 27-28
and ENS, 22
daemons, 28
ENS example, 29-30

U
unsubscribe_a function (ENS), 54-55
unsubscription, overview, 25

109

110 Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide • October 2005

	Sun Java System Communications Services 6 2005Q4 Event Notification Service Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	Messaging Server Documents
	Calendar Server Documents
	Communications Services Documents

	Where to Find This Manual Online
	Related Third-Party Web Site References
	Documentation, Support, and Training
	Accessing Sun Resources Online
	Contacting Sun Technical Support
	Typographic Conventions
	Shell Prompts in Command Examples
	Default Paths and File Names
	Sun Welcomes Your Comments

	Introduction to Event Notification Service
	Event Notification Service Overview
	ENS in Calendar Server
	ENS in Messaging Server
	Event References
	Calendar Server Event Reference Example
	Messaging Server Event Reference Example

	ENS Connection Pooling
	Multiple Pool Extension

	Event Notification Service Architecture
	Notify
	Subscribe
	Unsubscribe
	How Calendar Server Interacts with ENS
	Calendar Server Alarm Queue
	Calendar Server Daemons
	Alarm Transfer Reliability
	Calendar Server Example

	How Messaging Server Interacts with ENS

	Event Notification Service API Overview
	ENS C API Overview
	ENS Java API Overview
	Building and Running Custom Applications
	Location of Sample Code
	Calendar Server
	Messaging Server

	Location of Include Files
	Calendar Server
	Messaging Server

	Dynamically Linked/Shared Libraries
	Calendar Server
	Messaging Server

	Runtime Library Path Variable
	Calendar Server
	Messaging Server

	Event Notification Service C API Reference
	Publisher API Functions List
	Subscriber API Functions List
	Publish and Subscribe Dispatcher Functions List
	Publisher API
	publisher_t
	Purpose.
	Syntax
	Parameters
	Returns

	publisher_cb_t
	Purpose.
	Syntax
	Parameters
	Returns

	publisher_new_a
	Purpose
	Syntax
	Parameters
	Returns

	publisher_new_s
	Purpose
	Syntax
	Parameters
	Returns

	publish_a
	Purpose
	Syntax
	Parameters
	Returns

	publish_s
	Purpose
	Syntax
	Parameters
	Returns

	publisher_delete
	Purpose
	Syntax
	Parameters
	Returns

	publisher_get_subscriber
	Purpose
	Syntax
	Parameters
	Returns

	renl_create_publisher
	Purpose
	Syntax
	Parameters
	Returns

	renl_cancel_publisher
	Purpose
	Syntax
	Parameters
	Returns

	Subscriber API
	subscriber_t
	Purpose
	Syntax
	Parameters
	Returns

	subscription_t
	Purpose
	Syntax
	Parameters
	Returns

	subscriber_cb_t
	Purpose
	Syntax
	Parameters
	Returns

	subscriber_notify_cb_t
	Purpose
	Syntax
	Parameters
	Returns

	subscriber_new_a
	Purpose
	Syntax
	Parameters
	Returns

	subscriber_new_s
	Purpose
	Syntax
	Parameters
	Returns

	subscribe_a
	Purpose
	Syntax
	Parameters
	Returns

	unsubscribe_a
	Purpose
	Syntax
	Parameters
	Returns

	subscriber_delete
	Purpose
	Syntax
	Parameters
	Returns.

	subscriber_get_publisher
	Purpose
	Syntax
	Parameters
	Returns

	renl_create_subscriber
	Purpose
	Syntax
	Parameters
	Returns

	renl_cancel_subscriber
	Purpose
	Syntax
	Parameters
	Returns

	Publish and Subscribe Dispatcher API
	pas_dispatcher_t
	Purpose
	Syntax
	Parameters
	Returns

	pas_dispatcher_new
	Purpose
	Syntax
	Parameters
	Returns

	pas_dispatcher_delete
	Purpose
	Syntax
	Parameters
	Returns

	pas_dispatch
	Purpose
	Syntax
	Parameters
	Returns

	pas_shutdown
	Purpose
	Syntax
	Parameters
	Returns

	Event Notification Service Java (JMS) API Reference
	Event Notification Service Java (JMS) API Implementation
	Prerequisites to Use the Java API
	Sample Java Programs
	Instructions for Sample Programs
	JmsSample Program
	To compile the JmsSample program
	To run the JmsSample program:

	JBiff Sample Program
	To compile the JBiff program
	To run the JBiff sample program:

	Java (JMS) API Overview
	New Proprietary Methods
	com.iplanet.ens.jms.EnsTopicConnFactory
	About the method
	Syntax
	Arguments

	com.iplanet.ens.jms.EnsTopic
	About this method
	Syntax
	Arguments

	Implementation Notes
	Shortcomings of the Current Implementation
	Notification Delivery
	JMS Headers
	Miscellaneous

	Messaging Server Specific Information
	Event Notification Types and Parameters
	Parameters
	Payload
	Examples

	Sample Code
	To use the sample code
	Sample Publisher
	Sample Subscriber

	Implementation Notes

	Calendar Server Specific Information
	Calendar Server Notifications
	Alarm Notifications
	Calendar Update Notifications
	Advanced Topics
	WCAP appid parameter and X-Tokens

	ENS Sample Code for Calendar Server
	Sample Publisher and Subscriber
	Publisher Code Sample
	Subscriber Code Sample

	Reliable Publisher and Subscriber
	Reliable Publisher Sample
	Reliable Subscriber Sample

	Debugging ENS
	Environment Variables
	GAP_DEBUG
	GAP_LOG_MODULES
	GAP_LOGFILE
	XENP_TRACE
	ENS_DEBUG
	ENS_LOG_MODULES
	ENS_LOGFILE
	ENS_STATS
	SERVICEBUS_DEBUG

	How to Enable Debug Tracing
	To start tracing

	Sample Debugging Sessions
	Example 1: For Messaging Server
	Set Environment Variables
	Sample Trace Output
	Short Commentary

	Example 2: For Messaging Server
	Set Environment Variables
	Short Commentary

	Index

