
Sun Java System Directory Server
Enterprise Edition 6.3
Deployment Planning Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 820–2760
April 2008

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without
limitation, these intellectual property rights may include one or more U.S. patents or pending patent applications in the U.S. and in other countries.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions
of the FAR and its supplements.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S. and other
countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, the Solaris logo, the Java Coffee Cup logo, docs.sun.com, Java, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and SunTM Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts
of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to
the Xerox Graphical User Interface, which license also covers Sun's licensees who implement OPEN LOOK GUIs and otherwise comply with Sun's written license
agreements.

Products covered by and information contained in this publication are controlled by U.S. Export Control laws and may be subject to the export or import laws in
other countries. Nuclear, missile, chemical or biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export
or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially
designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO
THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2008 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuelle relatifs à la technologie incorporée dans le produit qui est décrit dans ce document. En particulier,
et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plusieurs brevets américains ou des applications de brevet en attente aux Etats-Unis
et dans d'autres pays.

Cette distribution peut comprendre des composants développés par des tierces personnes.

Certaines composants de ce produit peuvent être dérivées du logiciel Berkeley BSD, licenciés par l'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d'autres pays; elle est licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, le logo Solaris, le logo Java Coffee Cup, docs.sun.com, Java et Solaris sont des marques de fabrique ou des marques déposées de
Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques
déposées de SPARC International, Inc. aux Etats-Unis et dans d'autres pays. Les produits portant les marques SPARC sont basés sur une architecture développée par
Sun Microsystems, Inc.

L'interface d'utilisation graphique OPEN LOOK et Sun a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît les efforts de
pionniers de Xerox pour la recherche et le développement du concept des interfaces d'utilisation visuelle ou graphique pour l'industrie de l'informatique. Sun détient
une licence non exclusive de Xerox sur l'interface d'utilisation graphique Xerox, cette licence couvrant également les licenciés de Sun qui mettent en place l'interface
d'utilisation graphique OPEN LOOK et qui, en outre, se conforment aux licences écrites de Sun.

Les produits qui font l'objet de cette publication et les informations qu'il contient sont régis par la legislation américaine en matière de contrôle des exportations et
peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations. Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires,
des missiles, des armes chimiques ou biologiques ou pour le nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou
réexportations vers des pays sous embargo des Etats-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations des produits ou des services qui
sont régis par la legislation américaine en matière de contrôle des exportations et la liste de ressortissants spécifiquement designés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ETAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES OU TACITES
SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE
IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFACON.

080404@19860

Contents

Preface ...13

Part I Overview of Deployment Planning for Directory Server Enterprise Edition23

1 Introduction to Deployment Planning for Directory Server Enterprise Edition25
About Directory Server Enterprise Edition .. 25

Quality of Service Requirements for a Robust Directory Service ... 26
Directory Server Enterprise Edition Components and Their Capabilities 26

Directory Server ... 27
Directory Proxy Server .. 29
Identity Synchronization for Windows ... 29
Directory Editor ... 30
Directory Server Resource Kit .. 30
Directory Server Enterprise Edition Components in a Deployment 31

About Deployment Planning ... 32
Solution Life Cycle ... 32

2 Business Analysis for Directory Server Enterprise Edition ... 35
About Business Analysis ... 35
Defining Directory Server Enterprise Edition Business Requirements .. 35

Part II Technical Requirements ...37

3 Usage Analysis for Directory Server Enterprise Edition ... 39
Usage Analysis Factors ... 39

3

4 Defining Data Characteristics ..41
Determining Data Sources and Ownership ... 41

Identifying Data Sources ... 41
Determining Data Ownership .. 42
Distinguishing Between User and Configuration Data .. 43

Identifying Data From Disparate Data Sources ... 43
Structuring Data With the Directory Information Tree ... 44

DIT Terminology ... 44
Designing the DIT ... 46

Grouping Directory Data and Managing Attributes ... 48
Static, Dynamic, and Nested Groups ... 49
Managed, Filtered, and Nested Roles ... 51
Deciding Between Groups and Roles .. 51
Managing Attributes With Class of Service .. 54

Designing a Directory Schema ... 59
Schema Design Process ... 59
Maintaining Data Consistency ... 60

Other Directory Data Resources ... 60

5 Defining Service Level Agreements ...63
Identifying System Qualities .. 63
Defining Performance Requirements ... 64

Identifying Client Applications .. 64
Determining the Number and Size of Directory Entries ... 65
Determining the Number of Reads .. 65
Determining the Number of Writes .. 66
Estimating the Acceptable Response Time ... 66
Estimating the Acceptable Replication Latency ... 66

Defining Availability Requirements .. 67
Defining Scalability Requirements .. 67
Defining Security Requirements ... 68
Defining Latent Capacity Requirements .. 68
Defining Serviceability Requirements .. 68

Contents

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 20084

6 Tuning System Characteristics and Hardware Sizing .. 69
Host System Characteristics ... 69
Port Numbers ... 70

Directory Server and Directory Proxy Server LDAP and LDAPS Port Numbers 70
Directory Server DSML Port Numbers ... 71
Directory Service Control Center and Common Agent Container Port Numbers 71
Identity Synchronization for Windows Port Numbers ... 72

Hardware Sizing For Directory Service Control Center ... 72
Hardware Sizing For Directory Proxy Server ... 72

Configuring Virtual Memory ... 72
Configuring Worker Threads and Backend Connections .. 73
Disk Space for Directory Proxy Server .. 73
Network Connections for Directory Proxy Server .. 74

Hardware Sizing For Directory Server .. 74
The Tuning Process ... 75
Making Sample Directory Data .. 76
What to Configure and Why .. 77
Simulating Client Application Load .. 83
Directory Server and Processors .. 84
Directory Server and Memory .. 84
Directory Server and Local Disk Space .. 85
Directory Server and Network Connectivity .. 87
Limiting Directory Server Resources Available to Clients .. 88
Limiting System Resources Used By Directory Server .. 91
Basic Directory Server Sizing Example: Disk and Memory Requirements 94

Operating System Tuning For Directory Server .. 102
Operating System Version and Patch Support ... 103
Basic Security Checks .. 103
Accurate System Clock Time .. 104
Restart When System Reboots .. 105
System-Specific Tuning With The idsktune Command ... 105

Physical Capabilities of Directory Server ... 110

7 Identifying Security Requirements ..111
Security Threats ... 112

Contents

5

Overview of Security Methods ... 112
Determining Authentication Methods ... 113

Anonymous Access .. 114
Simple Password Authentication ... 114
Simple Password Authentication Over a Secure Connection .. 115
Certificate-Based Client Authentication ... 115
SASL-Based Client Authentication .. 116
Preventing Authentication by Account Inactivation ... 116
Preventing Authentication by Using Global Account Lockout ... 116
External Authentication Mappings and Services ... 117

Proxy Authorization ... 117
Designing Password Policies .. 118

Password Policy Options ... 118
Password Policies in a Replicated Environment .. 118
Password Policy Migration ... 119

Password Synchronization With Windows ... 119
Determining Encryption Methods .. 120

Securing Connections With SSL .. 120
Encrypting Stored Attributes .. 120

Designing Access Control With ACIs ... 122
Default ACIs ... 123
ACI Scope .. 123
Obtaining Effective Rights Information .. 124
Tips on Using ACIs .. 124

Designing Access Control With Connection Rules .. 125
Designing Access Control With Directory Proxy Server ... 126

How Connection Handlers Work .. 126
Grouping Entries Securely ... 127

Using Roles Securely .. 127
Using CoS Securely .. 127

Using Firewalls ... 128
Running as Non-Root ... 128
Other Security Resources ... 128

Contents

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 20086

8 Identifying Administration and Monitoring Requirements .. 129
Directory Server Enterprise Edition Administration Model ... 129

Remote Administration .. 130
Designing Backup and Restore Policies .. 131

High-Level Backup and Recovery Principles ... 132
Choosing a Backup Method .. 132
Choosing a Restoration Method .. 136

Designing a Logging Strategy ... 138
Defining Logging Policies ... 138

Designing a Monitoring Strategy .. 140
Monitoring Tools Provided With Directory Server Enterprise Edition 141
Identifying Monitoring Areas .. 142

Data Administration With Directory Editor ... 143

Part III Logical Design ..145

9 Designing a Basic Deployment ...147
Basic Deployment Architecture .. 147
Basic Deployment Setup ... 150
Improving Performance in a Basic Deployment ... 150

Using Indexing to Speed Up Searches ... 150
Optimizing Cache for Search Performance .. 151
Optimizing Cache for Write Performance ... 153

10 Designing a Scaled Deployment ...155
Using Load Balancing for Read Scalability ... 155

Using Replication for Load Balancing ... 156
Using Directory Proxy Server for Load Balancing ... 163

Using Distribution for Write Scalability ... 165
Using Multiple Databases ... 166
Using Directory Proxy Server for Distribution .. 167
Using Directory Proxy Server to Distribute Requests Based on Bind DN 168

Distributing Data Lower Down in a DIT .. 169
Logical View of Distributed Data ... 170

Contents

7

Physical View of Data Storage .. 170
Directory Server Configuration for Sample Distribution Scenario 171
Directory Proxy Server Configuration for Sample Distribution Scenario 172
Considerations for Data Growth ... 173

Using Referrals For Distribution ... 173
Using Directory Proxy Server With Referrals .. 174

11 Designing a Global Deployment ...177
Using Replication Across Multiple Data Centers .. 177

Using Multi-Master Replication Over a WAN ... 177
Using Fractional Replication .. 179
Using Prioritized Replication ... 180
Sample Replication Strategy for an International Enterprise ... 180

Using Directory Proxy Server in a Global Deployment .. 181
Sample Distribution Strategy for a Global Enterprise ... 181

12 Designing a Highly Available Deployment ... 185
Availability and Single Points of Failure ... 185

Mitigating SPOFs ... 186
Using Replication and Redundancy for High Availability ... 189

Using Redundant Replication Agreements .. 190
Promoting and Demoting Replicas ... 190
Using Directory Proxy Server as Part of a Redundant Solution ... 190
Using Application Isolation for High Availability ... 191
Sample Topologies Using Redundancy for High Availability .. 191

Using Clustering for High Availability ... 198
Hardware Redundancy .. 199
Monitoring in a Clustered Solution ... 200
System Maintenance .. 200
Directory Server Failover Data Service .. 200
Disaster Recovery ... 200

Contents

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 20088

Part IV Advanced Deployment Topics ... 203

13 Using LDAP-Based Naming With Solaris .. 205
Why Use an LDAP-Based Naming Service? ... 205
Migrating From NIS to LDAP .. 206
Migrating From NIS+ to LDAP ... 207

14 Deploying a Virtual Directory ..209
When to Use a Virtual Directory ... 210
Typical Virtual Directory Scenarios .. 210

Connecting User Identities From Different Data Sources .. 211
Merging New Corporate Data Into an Existing Directory Structure 212

15 Designing a Deployment With Synchronized Data ... 213
Identity Synchronization for Windows Deployment Considerations .. 213

Index ... 215

Contents

9

10

Figures

FIGURE 1–1 Directory Server Enterprise Edition Components .. 31
FIGURE 1–2 Solution Life Cycle ... 33
FIGURE 4–1 Two Root Suffixes in a Single Directory Server .. 45
FIGURE 4–2 One Root Suffix With Multiple Subsuffixes .. 45
FIGURE 4–3 Generating CompanyNameWith Pointer CoS .. 55
FIGURE 4–4 Generating DepartmentNumberWith Indirect CoS .. 56
FIGURE 4–5 Generating Mail Stop and Fax Number With Indirect CoS 57
FIGURE 4–6 Generating Servic-Level Data With Classic CoS ... 58
FIGURE 7–1 Attribute Encryption Logic .. 121
FIGURE 7–2 Directory Proxy Server Connection Handler Logic .. 126
FIGURE 8–1 Directory Server Enterprise Edition Administration Model 131
FIGURE 8–2 Offline Binary Backup ... 134
FIGURE 8–3 Offline Backup to LDIF ... 135
FIGURE 8–4 Offline Binary Restore ... 137
FIGURE 8–5 Offline Restoration From LDIF ... 138
FIGURE 9–1 Basic Directory Server Enterprise Edition Architecture on a Single Machine .148
FIGURE 9–2 Basic Directory Server Enterprise Edition Architecture With Remote Directory

Service Control Center ... 149
FIGURE 10–1 Role of Replicas in a Replication Topology .. 157
FIGURE 10–2 Using Multi-Master Replication for Load Balancing .. 161
FIGURE 10–3 Using Multi-Master Replication for Load Balancing in a Large Deployment .162
FIGURE 10–4 Server Groups in Multi-Master Topologies ... 163
FIGURE 10–5 Using Proportional and Operation-Based Load Balancing in a Scaled

Deployment ... 164
FIGURE 10–6 Directory Tree With Three Subsuffixes .. 166
FIGURE 10–7 Three Subsuffixes Stored in Three Separate Databases 166
FIGURE 10–8 Three Databases Stored on Two Separate Servers ... 167
FIGURE 10–9 Using Directory Proxy Server to Route Requests Based on Bind DN 169
FIGURE 10–10 Logical View of Distributed Data .. 170

11

FIGURE 10–11 Physical View of Data Storage .. 171
FIGURE 10–12 Directory Server Configuration ... 172
FIGURE 10–13 Directory Proxy Server Configuration .. 173
FIGURE 10–14 Using Referrals to Direct Clients to a Specific Server .. 174
FIGURE 10–15 Using Directory Proxy Server With Referrals .. 175
FIGURE 11–1 Using Multi-Master Replication for Load Balancing in Two Data Centers 181
FIGURE 11–2 Distributed Directory Infrastructure .. 182
FIGURE 12–1 Multi-Master Replication in a Single Data Center .. 192
FIGURE 12–2 Single Data Center Sample Recovery Procedure ... 194
FIGURE 12–3 Recovery Replication Agreements For Two Data Centers 196
FIGURE 12–4 Internal High Availability Configuration ... 197
FIGURE 12–5 Using Application Isolation in a Scaled Deployment ... 198
FIGURE 12–6 Sun Cluster Architecture .. 199
FIGURE 12–7 Application Failure and Recovery in a Sun Cluster Architecture 201
FIGURE 12–8 Server Failure and Recovery in a Sun Cluster Architecture 202
FIGURE 14–1 Virtual View of Aggregated Data From Multiple Repositories 211
FIGURE 14–2 Merging User Data From Acquired Directory ... 212

Figures

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200812

Preface

The Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide
contains the information that you need to plan a directory service deployment. This guide
describes the initial decisions that you need to make on issues such as data types, access control,
and sizing. It also provides high-level examples and strategies that you can use for the specific
requirements of your enterprise.

Who Should Use This Book
This guide is primarily intended for deployment architects and business planners responsible
for the analysis and design of directory service deployments. This guide is also useful for system
integrators and other people responsible for the design and implementation of enterprise
applications.

Before You Read This Book
This guide assumes that you are familiar with the basic concepts of LDAP directory servers and
that you have read these documents:

■ Sun Java System Directory Server Enterprise Edition 6.3 Release Notes
■ Sun Java System Directory Server Enterprise Edition 6.3 Evaluation Guide

How This Book Is Organized
This guide is based on a solution life cycle that describes the various phases of deployment
planning.

Part I provides an introduction to Directory Server Enterprise Edition and explains the steps
involved in planning a deployment (solution life cycle).

Part II describes the technical requirements analysis that must be performed before you can
begin drawing up a logical deployment architecture. Technical requirements analysis requires
an understanding of the business domain, business objectives, and the underlying system
technology.

13

Part III describes how to create logical architectures for Directory Server Enterprise Edition
deployments. It also provides sample logical architectures based on typical Directory Server
Enterprise Edition deployment scenarios.

Part IV discusses specialized deployment topics including the use of LDAP-based naming
services on the Solaris Operating System, Identity Synchronization for Windows, and the
deployment of a virtual directory.

Directory Server Enterprise Edition Documentation Set
This Directory Server Enterprise Edition documentation set explains how to use Sun Java
System Directory Server Enterprise Edition to evaluate, design, deploy, and administer
directory services. In addition, it shows how to develop client applications for Directory Server
Enterprise Edition. The Directory Server Enterprise Edition documentation set is available at
http://docs.sun.com/coll/1224.4.

For an introduction to Directory Server Enterprise Edition, review the following documents in
the order in which they are listed.

TABLE P–1 Directory Server Enterprise Edition Documentation

Document Title Contents

Sun Java System Directory Server Enterprise
Edition 6.3 Release Notes

Contains the latest information about Directory Server Enterprise Edition,
including known problems.

Sun Java System Directory Server Enterprise
Edition 6.3 Documentation Center

Contains links to key areas of the documentation set.

Sun Java System Directory Server Enterprise
Edition 6.3 Evaluation Guide

Introduces the key features of this release. Demonstrates how these features
work and what they offer in the context of a fictional deployment that you can
implement on a single system.

Sun Java System Directory Server Enterprise
Edition 6.3 Deployment Planning Guide

Explains how to plan and design highly available, highly scalable directory
services based on Directory Server Enterprise Edition. Presents the basic
concepts and principles of deployment planning and design. Discusses the
solution life cycle, and provides high-level examples and strategies to use when
planning solutions based on Directory Server Enterprise Edition.

Preface

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200814

http://docs.sun.com/coll/1224.4

TABLE P–1 Directory Server Enterprise Edition Documentation (Continued)
Document Title Contents

Sun Java System Directory Server Enterprise
Edition 6.3 Installation Guide

Explains how to install the Directory Server Enterprise Edition software. Shows
how to select which components to install, configure those components after
installation, and verify that the configured components function properly.

For instructions on installing Directory Editor, go to
http://docs.sun.com/coll/DirEdit_05q1.

Make sure you read the information in Sun Java System Directory Server
Enterprise Edition 6.3 Release Notes concerning Directory Editor before you
install Directory Editor.

Sun Java System Directory Server Enterprise
Edition 6.3 Migration Guide

Provides migration instructions from the earlier versions of Directory Server,
Directory Proxy Server, and Identity Synchronization for Windows.

Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide

Provides command-line instructions for administering Directory Server
Enterprise Edition.

For hints and instructions on using the Directory Service Control Center,
DSCC, to administer Directory Server Enterprise Edition, see the online help
provided in DSCC.

For instructions on administering Directory Editor, go to
http://docs.sun.com/coll/DirEdit_05q1.

For instructions on installing and configuring Identity Synchronization for
Windows, see Part II, “Installing Identity Synchronization for Windows,” in
Sun Java System Directory Server Enterprise Edition 6.3 Installation Guide.

Sun Java System Directory Server Enterprise
Edition 6.3 Developer’s Guide

Shows how to develop directory client applications with the tools and APIs that
are provided as part of Directory Server Enterprise Edition.

Sun Java System Directory Server Enterprise
Edition 6.3 Reference

Introduces the technical and conceptual foundations of Directory Server
Enterprise Edition. Describes its components, architecture, processes, and
features. Also provides a reference to the developer APIs.

Sun Java System Directory Server Enterprise
Edition 6.3 Man Page Reference

Describes the command-line tools, schema objects, and other public interfaces
that are available through Directory Server Enterprise Edition. Individual
sections of this document can be installed as online manual pages.

Sun Java System Directory Server Enterprise
Edition 6.3 Troubleshooting Guide

Provides information for defining the scope of the problem, gathering data,
and troubleshooting the problem areas using various tools.

Sun Java System Identity Synchronization for
Windows 6.0 Deployment Planning Guide

Provides general guidelines and best practices for planning and deploying
Identity Synchronization for Windows

Preface

15

http://docs.sun.com/coll/DirEdit_05q1
http://docs.sun.com/coll/DirEdit_05q1

Related Reading
The SLAMD Distributed Load Generation Engine is a JavaTM application that is designed to
stress test and analyze the performance of network-based applications. It was originally
developed by Sun Microsystems, Inc. to benchmark and analyze the performance of LDAP
directory servers. SLAMD is available as an open source application under the Sun Public
License, an OSI-approved open source license. To obtain information about SLAMD, go to
http://www.slamd.com/. SLAMD is also available as a java.net project. See
https://slamd.dev.java.net/.

Java Naming and Directory Interface (JNDI) technology supports accessing the Directory
Server using LDAP and DSML v2 from Java applications. For information about JNDI, see
http://java.sun.com/products/jndi/. The JNDI Tutorial contains detailed descriptions and
examples of how to use JNDI. This tutorial is at
http://java.sun.com/products/jndi/tutorial/.

Directory Server Enterprise Edition can be licensed as a standalone product, as a component of
Sun Java Enterprise System, as part of a suite of Sun products, such as the Sun Java Identity
Management Suite, or as an add-on package to other software products from Sun. Java
Enterprise System is a software infrastructure that supports enterprise applications distributed
across a network or Internet environment. If Directory Server Enterprise Edition was licensed
as a component of Java Enterprise System, you should be familiar with the system
documentation at http://docs.sun.com/coll/1286.3.

Identity Synchronization for Windows uses Message Queue with a restricted license. Message
Queue documentation is available at http://docs.sun.com/coll/1307.2.

Identity Synchronization for Windows works with Microsoft Windows password policies.

■ Information about password policies for Windows 2003 is available in the Microsoft
documentation online.

■ Information about the Microsoft Certificate Services Enterprise Root certificate authority is
available in the Microsoft support documentation online.

■ Information about configuring LDAP over SSL on Microsoft systems is available in the
Microsoft support documentation online.

Redistributable Files
Directory Server Enterprise Edition does not provide any files that you can redistribute.

Preface

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200816

http://www.slamd.com/
https://slamd.dev.java.net/
http://java.sun.com/products/jndi/
http://java.sun.com/products/jndi/tutorial/
http://docs.sun.com/coll/1286.3
http://docs.sun.com/coll/1307.2
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/directory/activedirectory/stepbystep/strngpw.mspx
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/directory/activedirectory/stepbystep/strngpw.mspx
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B247078
http://support.microsoft.com/default.aspx?scid=kb%3Ben-us%3B321051

Default Paths and Command Locations
This section explains the default paths used in the documentation, and gives the locations of
commands on different operating systems and deployment types.

Default Paths
The table in this section describes the default paths that are used in this document. For complete
descriptions of the files installed, see the following product documentation.

■ Chapter 14, “Directory Server File Reference,” in Sun Java System Directory Server Enterprise
Edition 6.3 Reference

■ Chapter 25, “Directory Proxy Server File Reference,” in Sun Java System Directory Server
Enterprise Edition 6.3 Reference

■ Appendix A, “Directory Server Resource Kit File Reference,” in Sun Java System Directory
Server Enterprise Edition 6.3 Reference

TABLE P–2 Default Paths

Placeholder Description Default Value

install-path Represents the base installation
directory for Directory Server
Enterprise Edition software.

The software is installed in directories
below this base install-path. For
example, Directory Server software is
installed in install-path/ds6/.

When you install from a zip distribution using
dsee_deploy(1M), the default install-path is the current
directory. You can set the install-path using the -i option
of the dsee_deploy command. When you install from a
native package distribution, such as you would using the
Java Enterprise System installer, the default install-path is
one of the following locations:
■ Solaris systems - /opt/SUNWdsee/.
■ Red Hat systems - /opt/sun/.
■ Windows systems - C:\Program

Files\Sun\JavaES5\DSEE.

instance-path Represents the full path to an instance
of Directory Server or Directory Proxy
Server.

The documentation uses /local/ds/
for Directory Server and /local/dps/

for Directory Proxy Server.

No default path exists. Instance paths must nevertheless
always be found on a local file system.

The following directories are recommended:

/var on Solaris systems

/global if you are using Sun Cluster

serverroot Represents the parent directory of the
Identity Synchronization for Windows
installation location

Depends on your installation. Note the concept of a
serverroot no longer exists for Directory Server.

Preface

17

TABLE P–2 Default Paths (Continued)
Placeholder Description Default Value

isw-hostname Represents the Identity
Synchronization for Windows
instance directory

Depends on your installation

/path/to/cert8.db Represents the default path and file
name of the client’s certificate database
for Identity Synchronization for
Windows

current-working-dir/cert8.db

serverroot/isw-hostname/
logs/

Represents the default path to the
Identity Synchronization for Windows
local logs for the System Manager,
each connector, and the Central
Logger

Depends on your installation

serverroot/isw-hostname/
logs/central/

Represents the default path to the
Identity Synchronization for Windows
central logs

Depends on your installation

Command Locations
The table in this section provides locations for commands that are used in Directory Server
Enterprise Edition documentation. To learn more about each of the commands, see the relevant
man pages.

TABLE P–3 Command Locations

Command Java ES, Native Package Distribution Zip Distribution

cacaoadm Solaris -

/usr/sbin/cacaoadm

Solaris -

install-path/dsee6/
cacao_2/usr/sbin/cacaoadm

Red Hat -

/opt/sun/cacao/bin/cacaoadm

Red Hat, HP-UX -

install-path/dsee6/
cacao_2/cacao/bin/cacaoadm

Windows -

install-path\share\
cacao_2\bin\cacaoadm.bat

Windows -

install-path\
dsee6\cacao_2\bin\cacaoadm.bat

Preface

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200818

TABLE P–3 Command Locations (Continued)
Command Java ES, Native Package Distribution Zip Distribution

certutil Solaris -

/usr/sfw/bin/certutil

install-path/dsee6/bin/certutil

Red Hat -

/opt/sun/private/bin/certutil

dpadm(1M) install-path/dps6/bin/dpadm install-path/dps6/bin/dpadm

dpconf(1M) install-path/dps6/bin/dpconf install-path/dps6/bin/dpconf

dsadm(1M) install-path/ds6/bin/dsadm install-path/ds6/bin/dsadm

dsccmon(1M) install-path/dscc6/bin/dsccmon install-path/dscc6/bin/dsccmon

dsccreg(1M) install-path/dscc6/bin/dsccreg install-path/dscc6/bin/dsccreg

dsccsetup(1M) install-path/dscc6/bin/dsccsetup install-path/dscc6/bin/dsccsetup

dsconf(1M) install-path/ds6/bin/dsconf install-path/ds6/bin/dsconf

dsee_deploy(1M) Not provided install-path/dsee6/bin/dsee_deploy

dsmig(1M) install-path/ds6/bin/dsmig install-path/ds6/bin/dsmig

entrycmp(1) install-path/ds6/bin/entrycmp install-path/ds6/bin/entrycmp

fildif(1) install-path/ds6/bin/fildif install-path/ds6/bin/fildif

idsktune(1M) Not provided At the root of the unzipped zip distribution

insync(1) install-path/ds6/bin/insync install-path/ds6/bin/insync

ns-accountstatus(1M) install-path/ds6/bin/ns-accountstatus install-path/ds6/bin/ns-accountstatus

ns-activate(1M) install-path/ds6/bin/ns-activate install-path/ds6/bin/ns-activate

ns-inactivate(1M) install-path/ds6/bin/ns-inactivate install-path/ds6/bin/ns-inactivate

repldisc(1) install-path/ds6/bin/repldisc install-path/ds6/bin/repldisc

schema_push(1M) install-path/ds6/bin/schema_push install-path/ds6/bin/schema_push

smcwebserver Solaris, Linux -

/usr/sbin/smcwebserver

This command pertains only to DSCC when it is
installed using native packages distribution.

Windows -

install-path\share\
webconsole\bin\smcwebserver

Preface

19

TABLE P–3 Command Locations (Continued)
Command Java ES, Native Package Distribution Zip Distribution

wcadmin Solaris, Linux -

/usr/sbin/wcadmin

This command pertains only to DSCC when it is
installed using native packages distribution.

Windows -

install-path\share\
webconsole\bin\wcadmin

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–4 Typographic Conventions

Typeface Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 A placeholder to be replaced with a real
name or value

The command to remove a file is rm filename.

AaBbCc123 Book titles, new terms, and terms to be
emphasized (note that some emphasized
items appear bold online)

Read Chapter 6 in the User's Guide.

A cache is a copy that is stored locally.

Do not save the file.

Shell Prompts in Command Examples
The following table shows default system prompts and superuser prompts.

TABLE P–5 Shell Prompts

Shell Prompt

C shell on UNIX and Linux systems machine_name%

C shell superuser on UNIX and Linux systems machine_name#

Preface

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200820

TABLE P–5 Shell Prompts (Continued)
Shell Prompt

Bourne shell and Korn shell on UNIX and Linux systems $

Bourne shell and Korn shell superuser on UNIX and Linux systems #

Microsoft Windows command line C:\

Symbol Conventions
The following table explains symbols that might be used in this book.

TABLE P–6 Symbol Conventions

Symbol Description Example Meaning

[] Contains optional arguments
and command options.

ls [-l] The -l option is not required.

{ | } Contains a set of choices for a
required command option.

-d {y|n} The -d option requires that you use
either the y argument or the n
argument.

${ } Indicates a variable
reference.

${com.sun.javaRoot} References the value of the
com.sun.javaRoot variable.

- Joins simultaneous multiple
keystrokes.

Control-A Press the Control key while you press
the A key.

+ Joins consecutive multiple
keystrokes.

Ctrl+A+N Press the Control key, release it, and
then press the subsequent keys.

→ Indicates menu item
selection in a graphical user
interface.

File → New → Templates From the File menu, choose New.
From the New submenu, choose
Templates.

Documentation, Support, and Training
The Sun web site provides information about the following additional resources:

■ Documentation (http://www.sun.com/documentation/)
■ Support (http://www.sun.com/support/)
■ Training (http://www.sun.com/training/)

Preface

21

http://www.sun.com/documentation/
http://www.sun.com/support/
http://www.sun.com/training/

Third-Party Web Site References
Third-party URLs are referenced in this document and provide additional, related information.

Note – Sun is not responsible for the availability of third-party web sites mentioned in this
document. Sun does not endorse and is not responsible or liable for any content, advertising,
products, or other materials that are available on or through such sites or resources. Sun will not
be responsible or liable for any actual or alleged damage or loss caused or alleged to be caused by
or in connection with use of or reliance on any such content, goods, or services that are available
on or through such sites or resources.

Searching Sun Product Documentation
Besides searching for Sun product documentation from the docs.sun.com web site, you can use
a search engine of your choice by typing the following syntax in the search field:

search-term site:docs.sun.com

For example, to search for Directory Server, type the following:

"Directory Server" site:docs.sun.com

To include other Sun web sites in your search, such as java.sun.com, www.sun.com, and
developers.sun.com, use sun.com in place of docs.sun.com in the search field.

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. To share your comments, go to http://docs.sun.com and click Send Comments.
In the online form, provide the full document title and part number. The part number is a
7-digit or 9-digit number that can be found on the book's title page or in the document's URL.
For example, the part number of this book is 820-2760.

Preface

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200822

http://docs.sun.com

Overview of Deployment Planning for
Directory Server Enterprise Edition
This part provides an introduction to Directory Server Enterprise Edition and explains the
steps involved in planning a deployment (solution life cycle). It contains the following
chapters:

■ Chapter 1, “Introduction to Deployment Planning for Directory Server Enterprise
Edition,” covers the deployment planning process.

■ Chapter 2, “Business Analysis for Directory Server Enterprise Edition,” covers business
requirements.

For more information about the deployment planning process, see the Sun Java Enterprise
System Deployment Planning Guide.

P A R T I

23

24

Introduction to Deployment Planning for
Directory Server Enterprise Edition

This chapter provides an overview of Sun Java System Directory Server Enterprise Edition, and
describes at a high level the deployment planning process.

This chapter covers the following topics:

■ “About Directory Server Enterprise Edition” on page 25
■ “Directory Server Enterprise Edition Components and Their Capabilities” on page 26
■ “About Deployment Planning” on page 32
■ “Solution Life Cycle” on page 32

About Directory Server Enterprise Edition
Directory Server Enterprise Edition provides secure, highly available, scalable directory services
for storing and managing identity data. Directory Server Enterprise Edition is the foundation of
an enterprise identity infrastructure. It enables mission-critical enterprise applications and
large-scale extranet applications to access consistent and reliable identity data.

Directory Server Enterprise Edition provides a central repository for storing and managing
identity profiles, access privileges, application and network resource information. Directory
Server Enterprise Edition integrates smoothly into multi-platform environments. It also
provides secure, on-demand synchronization of passwords, users, and groups with Microsoft
Active Directory.

Prior to Directory Server Enterprise Edition, Sun provided these functions in four separate
product offerings including Directory Server, Directory Proxy Server, Directory Server
Resource Kit and Identity Synchronization for Windows. These and other products are now
components of one comprehensive, integrated solution.

1C H A P T E R 1

25

Quality of Service Requirements for a Robust
Directory Service
The more users and applications in an enterprise, the more critical is the need for a robust
directory service. Directory Server Enterprise Edition addresses the challenges faced by a
rapidly changing and expanding enterprise by providing the following quality of service
requirements:

■ Availability. A measure of how often the system's resources and services are accessible to
end users, often expressed as the uptime of the system.

■ Scalability. The ability to add capacity, and users, to a deployed system over time. Scalability
typically involves adding resources to the system but should not require changes to the
deployment architecture.

■ Security. A complex combination of factors that describe the integrity of a system and its
users. Security includes authentication and authorization of users, security of data, and
secure access to the deployed system.

■ Interoperability. The ease with which the system operates in conjunction with other
systems.

■ Serviceability. The ease with which a deployed system can be maintained. Maintenance
tasks include monitoring the system, repairing problems that arise, and upgrading hardware
and software components.

This chapter briefly describes how the components of Directory Server Enterprise Edition fill
the quality of service requirements. The requirements are discussed in detail in the remainder of
this guide.

Directory Server Enterprise Edition Components and Their
Capabilities

Directory Server Enterprise Edition includes these separate components:

■ “Directory Server” on page 27
■ “Directory Proxy Server” on page 29
■ “Identity Synchronization for Windows” on page 29
■ “Directory Editor” on page 30
■ “Directory Server Resource Kit” on page 30

Each of these components addresses one or more of the quality of service requirements
described previously. This section describes the components and illustrates how they fit
together to provide a robust directory service.

Directory Server Enterprise Edition Components and Their Capabilities

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200826

Directory Server
Directory Server provides a scalable, high-performance data store for identity information.
Directory Server supports the Lightweight Directory Access Protocol (LDAP) v3 and the
Directory Service Markup Language (DSML) v2 natively for standards-based access. With
LDAP and DSML over HTTP or SOAP (Simple Object Access Protocol), clients anywhere on a
network are able to securely search and update directory data objects. Clients are also able to
receive changes made by other applications and to authenticate users or applications even
through firewalls.

Directory Server and Security
Directory Server provides several security features to achieve compliance with information
security policies. These features ensure that only users with proper authorization have access to
information.
■ Macro-level, dynamic access control instructions (ACIs). Provide a means for defining

access down to the level of an LDAP attribute. Access control policies can be defined once,
and then reused across the directory tree. Macro ACIs can be used to optimize the number
of ACIs in the directory, thereby reducing the complexity of the security framework.

■ Role-based access. Enables you to provide access that is based on information in a user's
entry. Roles are defined and administered like groups, but roles provide more efficient
grouping mechanisms for applications. Roles can be used in ACIs to control access to data.
They can also be used by Class of Service (CoS), a capability of Directory Server to create
virtual attributes that can apply to many entries at the same time. These virtual attributes
reduce storage requirements on entries. They also allow a single change to update an
unlimited number of related entries.

■ Get Effective Rights control. Provides a means for determining what access a user has to a
set of information. Administrators who maintain access policies for the directory service
can tighten security by auditing the permissions of directory users and applications. This
capability can also be used to build applications with adaptive interfaces that are based on
the user's rights.

■ Encryption mechanisms. Protect data on the disk and during transfer through
communications channels. Directory Server also supports fractional replication and data
hiding based on access. These mechanisms can be used to comply with European Union and
other international privacy regulations.

■ Multiple password policies. Can be defined on a per-user basis or targeted to certain
groups. These policies help to ensure that users change passwords on a regular basis and that
unauthorized access to an account is blocked.

Directory Server and Availability
Directory Server natively supports a variety of access protocols and offers a highly flexible,
scalable replication environment that helps to ensure availability in distributed environments.

Directory Server Enterprise Edition Components and Their Capabilities

Chapter 1 • Introduction to Deployment Planning for Directory Server Enterprise Edition 27

Directory Server replication prevents a single point of failure for applications that are using
these protocols to access identity data. Directory Server supports a theoretically unlimited
number of masters and read-only consumers in a replicated environment across both local and
wide area networks. Special features of the replication protocol allow for optimizations when
replicating data over high-latency networks. For more information, see “Using Replication and
Redundancy for High Availability” on page 189.

On Solaris platforms, Directory Server supports clustering, a pre-packaged high availability
hardware and software solution. For more information, see “Using Clustering for High
Availability” on page 198.

Directory Server and Scalability
Directory Server provides for both vertical and horizontal growth without major deployment
redesign. This level of scalability becomes increasingly critical as deployment grows.

Depending on the hardware, Directory Server can provide sustained search performance of
20,000 entries per second on a single machine and horizontal scalability to several thousand
searches per second. For information about how to deploy Directory Server for read scalability,
see Chapter 10, “Designing a Scaled Deployment.”

The requirement to store and update information constantly increases with the expansion of
use across the organization. Update performance of Directory Server is close to relational
database-write performance. For information about how to deploy Directory Server for write
scalability, see Chapter 10, “Designing a Scaled Deployment.”

Directory Server provides linear CPU scalability to up to 28 CPUs for “read from cache”
operations. It allows access to maximum memory capacity and delivers high performance that
accommodates large directories on a single system for maximum hardware benefit.

Directory Server and Serviceability
Directory Server provides a comprehensive set of management tools for administering
individual servers as well as the entire directory service.

A centralized, web-based administration console can be used to configure and manage multiple
Directory Servers. The interface includes all the tools required for effective, day-to-day server
administration and service from configuration to monitoring. In addition, the dsadm and
dsconf command-line utilities can be used dynamically while the servers are running. These
management features mean that most management operations can be performed while the
directory is online, thus maximizing availability.

Management flexibility simplifies the deployment of the directory service into many different
environments. The command-line utilities make remote management as easy as if the service
were in a local data center.

Directory Server Enterprise Edition Components and Their Capabilities

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200828

Directory Proxy Server
Directory Proxy Server is an LDAP application-layer protocol gateway. It is designed to deliver
enhanced directory access control, schema compatibility, and high availability.

Directory Proxy Server and Availability
With features such as configurable load balancing, failover, and failback, Directory Proxy
Server ensures that systems have access to required data.

Directory Proxy Server works with Directory Server to ensure reliability and to protect against
denial-of-service attacks. Directory Proxy Server automatically routes requests appropriately
and provides secure firewall-like services for Directory Server.

To prevent a single point of failure for mission-critical applications, Directory Proxy Server
detects outages and routes traffic around affected areas, effectively load balancing requests
across systems. When the affected areas are restored to operation, Directory Proxy Server
detects the restored servers automatically.

For more information, see “Using Directory Proxy Server as Part of a Redundant Solution” on
page 190.

Directory Proxy Server and Security
Directory Proxy Server accommodates large numbers of users who are accessing the directory
and minimizes the security risks associated with providing this level of access. Security features
enable administrators to determine where a request is coming from, whether the request is
allowed, and what type of authentication is required. In the event of a search request, Directory
Proxy Server can also ensure that the request meets minimum requirements.

Directory Proxy Server uses groups to define how to identify an LDAP client and what
restrictions to enforce on clients that match a particular group. Groups can be defined using a
variety of criteria.

To protect private directory information from unauthorized access, Directory Proxy Server can
configure a fine-grained access control policy on LDAP directories. Such a policy can include
controlling who can perform different types of operations on different parts of directories.
Directory Proxy Server can be configured to prevent certain kinds of operations typically
performed by web trawlers and robots in search of information.

Identity Synchronization for Windows
Identity Synchronization for Windows provides basic synchronization of identity data between
Directory Server Enterprise Edition and Microsoft Active Directory.

Directory Server Enterprise Edition Components and Their Capabilities

Chapter 1 • Introduction to Deployment Planning for Directory Server Enterprise Edition 29

Identity Synchronization for Windows fulfills the requirement of interoperability.
Synchronization of key identity data such as passwords eliminates the need for users to modify
passwords several times to accommodate different application authentication mechanisms.

Use of a non intrusive implementation for synchronizing key identity data eliminates the
time-consuming and maintenance-intensive need to install a client component on Active
Directory servers.

Identity Synchronization for Windows enables users to change passwords and other identity
data in either the Windows environment or the web-based application environment. In this
way, Identity Synchronization for Windows maintains synchronization between Active
Directory and Directory Server. Disabled accounts can also be synchronized between Active
Directory and Directory Server. This synchronization ensures conformance of access policies to
applications and data between the Windows desktops and web-based applications.

Directory Editor
Directory Editor is a Java web application that provides efficient, cost-effective management of
directory data.

Directory Editor fulfills the requirement of serviceability by enabling users to manage identity
data within the directory service. Administrators can create a forms-based web interface with
which users can perform everyday tasks. Directory Editor supports extensive customization,
branding, and embedding for the interface. Customization is done using a form-based interface
for configuration rather than writing code. To ensure data security and privacy, built-in
authorization controls limit visibility of menus and actions. In this way, users see only what they
are authorized to see within the application.

Directory Server Resource Kit
The Directory Server Resource Kit provides tools and application programming interfaces
(APIs) for deploying, accessing, tuning, and maintaining Directory Server Enterprise Edition.
These utilities help to implement and maintain more robust LDAP-based solutions.

Performance testing and capacity planning tools help administrators to measure performance
and to perform capacity planning on installations of Directory Server Enterprise Edition.
Debugging and maintenance tools help with troubleshooting as well as daily maintenance of
Directory Server Enterprise Edition. Deployment utilities and tools facilitate the rollout of new
installations of Directory Server Enterprise Edition and migration to new releases. LDAP
productivity tools include sample LDAP applications that were developed using Directory
Server Enterprise Edition.

In addition, Sun has developed SLAMD, a powerful load-generation testing application that
includes all the tests needed to thoroughly performance-test Directory Server Enterprise
Edition applications. SLAMD is available free of charge at http://www.slamd.com.

Directory Server Enterprise Edition Components and Their Capabilities

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200830

http://www.slamd.com

Directory Server Enterprise Edition Components in a
Deployment
The combination of Directory Server Enterprise Edition components that you deploy depends
on the requirements of your organization. The following figure shows a typical deployment
scenario using the components described previously.

LDAP
Directory

Sun
Directory
Server

Microsoft
Active

Directory

Microsoft
Windows
Desktop

Directory
Editor

Directory
Server
Resource Kit

Extranet
LDAP Client(s)

Internal LDAP
Client(s)

LDAP Enabled
Applications

Active Directory

Synchronization

Data Source—
All Vendors

Directory
Services —
ONLY Sun

Directory
Services —
ONLY Sun

Internet

E
n

terp
rise F

irew
all LDAP

Proxy
Server

Directory
Editor

LDIF
File

JDBC
Database

FIGURE 1–1 Directory Server Enterprise Edition Components

Directory Server Enterprise Edition Components and Their Capabilities

Chapter 1 • Introduction to Deployment Planning for Directory Server Enterprise Edition 31

About Deployment Planning
Deployment planning is a critical step in the successful implementation of a Directory Server
Enterprise Edition solution. Each enterprise has its own set of goals, requirements, and
priorities to consider. Successful planning starts with analyzing the goals of an enterprise and
determining the business requirements to meet those goals. The business requirements must
then be converted into technical requirements. The technical requirements can be used as a
basis for designing and implementing a system that meets the goals of the enterprise.

Successful deployment planning is the result of careful preparation, analysis, and design. Errors
and missteps that occur anywhere during the planning process can result in a system that can be
problematic in many ways. Significant problems can arise from a poorly planned system. For
example, the system could under perform or be difficult to maintain, expensive to operate, or
unable to scale.

The principles of deployment planning are discussed in depth in the Sun Java Enterprise System
Deployment Planning Guide. This guide refers to the solution life cycle, which addresses
deployment planning in clearly defined steps.

Solution Life Cycle
The solution life cycle shown in the following figure depicts the steps in the planning, design,
and implementation of an enterprise software solution based on Java Enterprise System. The
life cycle is a useful tool for keeping a deployment project on track. The solution life cycle is
described in detail in the Sun Java Enterprise System Deployment Planning Guide.

About Deployment Planning

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200832

Business Analysis
• Business requirements
• Business constraints

Logical Design

Deployment Design

• Logical architecture
• Deployment scenario

Technical Requirements
• Use-case analysis
• Usage analysis
• Quality of service requirements

• Deployment architecture
• Implementation specifications
• Implementation plans

Operations
• Monitoring
• Maintentance
• Performance tuning
• System enhancements and upgrades

Deployment Implementation
• Hardware setup
• Installation, upgrade, and migration
• Configuration and customization
• Development and integration
• Prototypes and pilots
• Production rollout

FIGURE 1–2 Solution Life Cycle

Solution Life Cycle

Chapter 1 • Introduction to Deployment Planning for Directory Server Enterprise Edition 33

34

Business Analysis for Directory Server
Enterprise Edition

During the business analysis phase of the solution life cycle, you define business goals by
analyzing a business problem. You then identify the business requirements and business
constraints to meet those goals.

This chapter contains the following sections:

■ “About Business Analysis” on page 35
■ “Defining Directory Server Enterprise Edition Business Requirements” on page 35

About Business Analysis
Business analysis starts with stating business goals. You then analyze the business problems that
you must solve and identify the business requirements that must be met to achieve the business
goals. Consider any business constraints that limit your ability to achieve the goals. The analysis
of business requirements and constraints results in a set of business requirements documents.

You use the resulting set of business requirements documents as a basis for deriving technical
requirements in the technical requirements phase. Throughout the solution life cycle, you
measure the success of your planning and of your solution according to the analysis performed
in the business analysis phase.

Defining Directory Server Enterprise Edition Business
Requirements

No simple formula exists to identify business requirements. Business requirements are
determined based on collaboration with the stakeholders requiring an identity management
solution, your own knowledge about the business domain, and applied creative thinking. The
Sun Java Enterprise System Deployment Planning Guide describes the business analysis process

2C H A P T E R 2

35

in detail. It includes factors to consider when defining business requirements and constraints.
This section outlines the business requirements that drive the need for a robust directory
service.

Your enterprise requires a robust directory service in the following situations:

■ You must make critical business information and applications available to a constantly
growing and changing user base.

■ These users include not only internal employees but external users such as customers,
vendors, and other business partners.

A directory service addresses these needs by providing a highly available, scalable, manageable,
integratable, and secure foundation for an effective identity management infrastructure. The
service delivers a set of capabilities to provide a centralized data store for users' identity data and
for supporting data for web services architectures.

By delivering an effective identity management infrastructure, the directory service addresses
the key enterprise requirements associated with serving users and the applications that help
users perform their jobs.

These requirements include the following:

■ Opening up access to large and constantly changing groups of users
■ Increasing security to ensure that information is properly used and shared, and that

sensitive information is protected
■ Providing consistently reliable access and a high quality of service to users and applications
■ Delivering information and services to users efficiently, no matter how business needs

change or user requirements grow

A high-performing directory service that is highly available, reliable, and secure addresses the
primary business drivers : security, quality of service, and cost-efficiency.

Defining Directory Server Enterprise Edition Business Requirements

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200836

Technical Requirements
Technical requirements analysis begins with the business requirements documents that are
created during the business analysis phase of the solution life cycle. Using the business
analysis, you perform a usage analysis. This analysis helps you to determine expected load
conditions and to create use cases that model typical user interaction with the system. The
analysis also helps when creating a set of quality of service requirements. These
requirements define how a deployed solution must perform in areas such as response time,
availability, and security.

This part describes the technical requirements that must be defined for a Directory Server
Enterprise Edition deployment. It is divided into the following chapters:

■ Chapter 3, “Usage Analysis for Directory Server Enterprise Edition,” covers usage
analysis requirements.

■ Chapter 4, “Defining Data Characteristics,” describes how data requirements are
defined.

■ Chapter 5, “Defining Service Level Agreements,” covers quality of service requirements.
■ Chapter 6, “Tuning System Characteristics and Hardware Sizing,” describes Directory

Server Enterprise Edition system requirements.
■ Chapter 7, “Identifying Security Requirements,” covers security requirements.
■ Chapter 8, “Identifying Administration and Monitoring Requirements,” describes the

administration decisions that must be made at design-time.

P A R T I I

37

38

Usage Analysis for Directory Server Enterprise
Edition

Usage analysis involves identifying the users of your system and determining the usage patterns
for those users. In doing so, a usage analysis enables you to determine expected load conditions
on your directory service.

Usage Analysis Factors
Your reasons for offering Sun Java System Directory Server Enterprise Edition as an identity
management solution have a direct effect on how you deploy the server.

During usage analysis, interview users whenever possible. Research existing data on usage
patterns, and interview builders and administrators of previous systems. A usage analysis
should provide you with the data that enables you to determine the service requirements that
are described in Chapter 5, “Defining Service Level Agreements.”

The information that should come out of a usage analysis includes the following:

■ Number and type of client applications. Identify how many client applications your
deployment must support, and categorize those applications, if necessary.

■ Administrative users. Identify users who access the directory to monitor, update, and
support its deployment. Determine any specific administrative usage patterns that might
affect technical requirements, for example, administration of the deployment from outside
the firewall.

■ Usage patterns. Identify how various types of applications access the system, and provide
targets for expected usage.

Answer the following questions, for example:
■ Are there times when usage spikes?
■ What are usual business hours?
■ Are client applications distributed globally?
■ What is the expected duration of application connectivity?

3C H A P T E R 3

39

■ Client application growth. Determine if the number of client applications is fixed or
expected to grow. If you anticipate additional applications, try to create reasonable
projections of the growth.

■ Application transactions. Identify the types of transactions that must be supported.

These transactions can be categorized into use cases, for example:
■ What tasks are performed by the applications?
■ When applications bind to the directory, do they remain bound, or do they typically

perform a few tasks and unbind?
■ Studies and statistical data. Use preexisting studies and other sources to determine

patterns of application behavior. Often, enterprises or industry organizations have research
studies from which you can extract useful information about users and client applications.
Log files for existing applications might contain statistical data that is useful for making
estimates for a system.

For more information about usage analysis, see the Sun Java Enterprise System Deployment
Planning Guide.

Usage Analysis Factors

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200840

Defining Data Characteristics

The type of data in your directory determines how you structure the directory, who can access
the data, and how access is granted. Data types can include, among others, user names, email
addresses, telephone numbers, and information about groups to which users belong.

This chapter explains how to locate, categorize, structure, and organize data. It also explains
how to map data to the Directory Server schema. This chapter covers the following topics:

■ “Determining Data Sources and Ownership” on page 41
■ “Identifying Data From Disparate Data Sources” on page 43
■ “Structuring Data With the Directory Information Tree” on page 44
■ “Grouping Directory Data and Managing Attributes” on page 48
■ “Designing a Directory Schema” on page 59
■ “Other Directory Data Resources” on page 60

Determining Data Sources and Ownership
The first step in categorizing existing data is to identify where that data comes from and who
owns it.

Identifying Data Sources
To identify the data to be included in your directory, locate and analyze existing data sources.

■ Identify organizations that provide information.
Locate all the organizations that manage information essential to your enterprise. Typically,
these organizations include your information services, human resources, payroll, and
accounting departments.

■ Identify tools and processes that are information sources.

4C H A P T E R 4

41

Common sources for information include the following:
■ Networking operating systems, such as Windows, Novell Netware, and UNIX® NIS
■ Email systems
■ Security systems
■ PBX or telephone switching systems
■ Human resources applications

■ Determine how centralizing each piece of data affects the management of data.
Centralized data management might require new tools and new processes. Issues can arise
when centralization requires increasing staff in some organizations and decreasing staff in
others.

Determining Data Ownership
Data ownership refers to the person or organization that is responsible for ensuring that data is
up-to-date. During the data design phase, decide who can write data to the directory. Common
strategies for determining data ownership include the following:

■ Allow read-only access to the directory for everyone except a small group of directory
content managers.

■ Allow individual users to manage strategic subsets of information.
These subsets of information might include their passwords, descriptive information about
themselves, and their role within the organization.

■ Allow a person’s manager to write to some strategic subset of that person’s information, such
as contact information or job title.

■ Allow an organization’s administrator to create and manage entries for that organization.
Organization administrators in effect become your directory content managers.

■ Create roles that give groups of people read or write access privileges.
For example, you might create roles for human resources, finance, or accounting. Allow
each of these roles to have read access, write access, or both to the data needed by the group.
This data might include salary information, government identification number, and home
phone numbers and address.
For more information about roles and grouping entries, see “Grouping Directory Data and
Managing Attributes” on page 48, Chapter 10, “Directory Server Groups, Roles, and CoS,”
in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide and
Chapter 8, “Directory Server Groups and Roles,” in Sun Java System Directory Server
Enterprise Edition 6.3 Reference.

As you determine who can write to the data, you might find that multiple individuals require
write access to the same information. For example, an information systems or directory
management group should have write access to employee passwords. You might also want all

Determining Data Sources and Ownership

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200842

employees to have write access to their own passwords. While you generally must give multiple
people write access to the same information, try to keep this group small and easy to identify.
Small groups help to ensure your data’s integrity.

For information about setting access control for your directory, see Chapter 7, “Directory
Server Access Control,” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide and “How Directory Server Provides Access Control” in Sun Java System
Directory Server Enterprise Edition 6.3 Reference.

Distinguishing Between User and Configuration Data
To distinguish between data used to configure Directory Server and other Java Enterprise
System servers and the actual user data stored in the directory, do the following:

■ Provide different backup strategies for user and configuration data.
■ Provide different high availability standards for user and configuration data.
■ Shut down, restore, and power up configuration servers quickly.
■ Keep configuration servers up while performing maintenance on other Directory Server

instances.

Identifying Data From Disparate Data Sources
When determining data sources, ensure that you include data from other data sources,
including legacy data sources. This data might not be stored in the directory. However,
Directory Server might need to have some knowledge of, or control over, the data.

Directory Proxy Server provides a virtual directory feature that aggregates information, in
real-time, from multiple data repositories. These repositories include LDAP directories, data
that complies with the JDBC specification, and LDIF flat files.

The virtual directory supports complex filters that handle attributes from different data sources.
It also supports modifications that combine attributes from different data sources.

During the data analysis phase, you might find that the same data is required by several
applications, but in a different format. Instead of duplicating this information, it is preferable to
have the applications transform it for their requirements.

Identifying Data From Disparate Data Sources

Chapter 4 • Defining Data Characteristics 43

Structuring Data With the Directory Information Tree
The directory information tree (DIT) provides a way to structure directory data so that the data
can be referred to by client applications. The DIT interacts closely with other design decisions,
including how you distribute, replicate, or control access to directory data.

DIT Terminology
A well-designed DIT provides the following:

■ Simplified directory data maintenance
■ Flexibility in creating replication policies and access controls
■ Support for the applications that use the directory
■ Simplified directory navigation for users

The DIT structure follows the hierarchical LDAP model. The DIT organizes data, for example,
by group, by people, or by geographical location. It also determines how data is partitioned
across multiple servers.

DIT design has an impact on replication configuration and on how you use Directory Proxy
Server to distribute data. If you want to replicate or distribute certain portions of a DIT,
consider replication and the requirements of Directory Proxy Server at design time. Also,
decide at design time whether you require access controls on branch points.

A DIT is defined in terms of suffixes, subsuffixes, and chained suffixes. A suffix is a branch or
subtree whose entire contents are treated as a unit for administrative tasks. Indexing is defined
for an entire suffix, and an entire suffix can be initialized in a single operation. A suffix is also
usually the unit of replication. Data that you want to access and manage in the same way should
be located in the same suffix. A suffix can be located at the root of the directory tree, where it is
called a root suffix.

Because data can only be partitioned at the suffix level, an appropriate directory tree structure is
required to spread data across multiple servers.

The following figure shows a directory with two root suffixes. Each suffix represents a separate
corporate entity.

Structuring Data With the Directory Information Tree

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200844

A suffix might also be a branch of another suffix, in which case it is called a subsuffix. The parent
suffix does not include the contents of the subsuffix for administrative operations. The subsuffix
is managed independently of its parent. Because LDAP operation results contain no
information about suffixes, directory clients are unaware of whether entries are part of root
suffixes or subsuffixes.

The following figure shows a directory with a single root suffix and multiple subsuffixes for a
large corporate entity.

A suffix corresponds to an individual database within the server. However, databases and their
files are managed internally by the server and database terminology is not used.

Chained suffixes create a virtual DIT by referencing suffixes on other servers. With chained
suffixes, Directory Server performs the operation on the remote suffix. The directory then
returns the result as if the operation had been performed locally. The location of the data is
transparent. The client is unaware that the suffix is chained and that the data is retrieved from a
remote server. A root suffix on one server can have subsuffixes that are chained to another
server. In this scenario, the client is aware of a single tree structure.

In the special case of cascading chaining, the chained suffix might reference another chained
suffix on the remote server, and so on. Each server forwards the operation and eventually
returns the result to the server that handles the client’s request.

dc=example,dc=com

ou=people ou=groups

dc=example,dc=org

ou=people ou=groups

FIGURE 4–1 Two Root Suffixes in a Single Directory Server

ou=contractors

ou=people ou=groups

dc=example,dc=com

ou=people ou=groups I=Europe

FIGURE 4–2 One Root Suffix With Multiple Subsuffixes

Structuring Data With the Directory Information Tree

Chapter 4 • Defining Data Characteristics 45

Designing the DIT
DIT design involves choosing a suffix to contain your data, determining the hierarchical
relationship between data entries, and naming the entries in the DIT hierarchy. The following
sections describe the design process in more detail.

Choosing a Suffix
The suffix is the name of the entry at the root of the DIT. If you have two or more DITs that do
not have a natural common root, you can use multiple suffixes. The default Directory Server
installation contains multiple suffixes. One suffix is used to store user data. The other suffixes
are for data that is needed by internal directory operations, such as configuration information
and directory schema.

All directory entries must be located below a common base entry, the suffix. Each suffix name
must be as follows:

■ Globally unique
■ Static, so that the name rarely changes
■ Short, so that entries beneath the suffix are easier to read online
■ Easy for a person to type and remember

It is generally considered best practice to map your enterprise domain name to a Distinguished
Name (DN). For example, an enterprise with the domain name example.com would use a DN of
dc=example,dc=com.

Creating the DIT Structure and Naming Entries
The structure of a DIT can be flat or hierarchical. Although a flat tree is easier to manage, a
degree of hierarchy might be required for data partitioning, replication management, and
access control.

Branch Points and Naming Considerations

A branch point is a point at which you define a new subdivision within the DIT. When deciding
on branch points, avoid potential problematic name changes. The likelihood of a name
changing is proportional to the number of components in the name that can potentially change.
The more hierarchical the DIT, the more components in the names, and the more likely the
names are to change.

Structuring Data With the Directory Information Tree

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200846

Use the following guidelines when defining and naming branch points:

■ Branch your tree to represent only the largest organizational subdivisions in your
enterprise.
Limit branch points to divisions, such as Corporate Information Services, Customer
Support, Sales, and Professional Services. Make sure that your divisions are stable. Do not
perform this kind of branching if your enterprise reorganizes frequently.

■ Use functional or generic names rather than actual organizational names.
Names change and you do not want to have to change your DIT every time your enterprise
renames its divisions. Instead, use generic names that represent the function of the
organization. For example, use Engineering instead of Widget Research and
Development.

■ If you have multiple organizations that perform similar functions, create a single branch
point for that function instead of branching based on divisional lines.
For example, even if you have multiple marketing organizations that are responsible for a
specific product line, create a single Marketing subtree. All marketing entries then belong to
that tree.

■ Try to use only the traditional branch point attributes that are shown in the following table.
Traditional attributes increase the likelihood of retaining compatibility with third-party
LDAP client applications. In addition, traditional attributes are known to the default
directory schema, which simplifies the construction of entries for the branch distinguished
name (DN).

■ Branch according to the type of data stored in the directory.
For example, you might create a separate branch for people, groups, service, and devices.

TABLE 4–1 Traditional DN Branch Point Attributes

Attribute Name Definition

c A country name.

o An organization name. This attribute is typically used to represent a large
divisional branching. The branching might include a corporate division,
academic discipline, subsidiary, or other major branching within the
enterprise. You should also use this attribute to represent a domain name.

ou An organizational unit. This attribute is typically used to represent a smaller
divisional branching of your enterprise than an organization. Organizational
units are generally subordinate to the preceding organization.

st A state or province name.

l A locality, such as a city, country, office, or facility name.

dc A domain component.

Structuring Data With the Directory Information Tree

Chapter 4 • Defining Data Characteristics 47

Be consistent when choosing attributes for branch points. Some LDAP client applications
might fail if the DN format is inconsistent across your DIT. If l (localityName) is subordinate
to o (organizationName) in one part of your DIT, ensure that l is subordinate to o in all other
parts of your directory.

Replication Considerations

When designing a DIT, consider which entries will be replicated to other servers. If you want to
replicate a specific group of entries to the same set of servers, those entries should fall below a
specific subtree. To describe the set of entries to be replicated, specify the DN at the top of the
subtree. For more information about replicating entries, see Chapter 4, “Directory Server
Replication,” in Sun Java System Directory Server Enterprise Edition 6.3 Reference.

Access Control Considerations

A DIT hierarchy can enable certain types of access control. As with replication, it is easier to
group similar entries and to administer the entries from a single branch.

A hierarchical DIT also enables distributed administration. For example, you can use the DIT to
give an administrator from the marketing department access to marketing entries, and an
administrator from the sales department access to sales entries.

You can also set access controls based on directory content, rather than the DIT. Use the ACI
filtered target mechanism to define a single access control rule. This rule states that a directory
entry has access to all entries that contain a particular attribute value. For example, you can set
an ACI filter that gives the sales administrator access to all entries that contain the attribute
ou=Sales.

However, ACI filters can be difficult to manage. You must decide which method of access
control is best suited to your directory: organizational branching in the DIT hierarchy, ACI
filters, or a combination of the two.

Grouping Directory Data and Managing Attributes
The directory information tree organizes entries hierarchically. This hierarchy is a type of
grouping mechanism. The hierarchy is not well suited for associations between dispersed
entries, for organizations that change frequently, or for data that is repeated in many entries.
Directory Server groups and roles offer more flexible associations between entries. The class of
service (CoS) mechanism enables you to manage attributes so that the attributes are shared
between entries. This sharing is done in a way that is invisible to applications.

These entry grouping and attribute management mechanisms are described in detail in Chapter
8, “Directory Server Groups and Roles,” in Sun Java System Directory Server Enterprise
Edition 6.3 Reference and in Chapter 9, “Directory Server Class of Service,” in Sun Java System
Directory Server Enterprise Edition 6.3 Reference.

Grouping Directory Data and Managing Attributes

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200848

This section provides an overview of the grouping mechanisms that is sufficient to design an
administrative strategy. It does not explain how the mechanisms work or how to set them up.

The section is divided into the following topics:

■ “Static, Dynamic, and Nested Groups” on page 49
■ “Managed, Filtered, and Nested Roles” on page 51
■ “Deciding Between Groups and Roles” on page 51
■ “Managing Attributes With Class of Service” on page 54

Static, Dynamic, and Nested Groups
Directory Server distinguishes among the static, dynamic, and nested groups.

Although groups may identify members anywhere in the directory, the group definitions
themselves should be located under an appropriately named node such as ou=Groups. This
makes them easy to find, for example, when defining access control instructions (ACIs) that
grant or restrict access when the bind credentials are members of a group.

Static Groups
Static groups explicitly name their member entries. For example, a group of directory
administrators would name the specific people who formed part of that group, as shown in the
following illustration.

The following LDIF extract shows how the members of this static group would be defined.

dn: cn=Directory Administrators, ou=Groups, dc=example,dc=com

...

member: uid=kvaughan, ou=People, dc=example,dc=com

member: uid=rdaugherty, ou=People, dc=example,dc=com

member: uid=hmiller, ou=People, dc=example,dc=com

Dynamic Groups
Dynamic groups specify a filter and all entries that match the filter are members of the group.
These groups are dynamic because membership is defined each time the filter is evaluated.

Grouping Directory Data and Managing Attributes

Chapter 4 • Defining Data Characteristics 49

Imagine, for example, that all management employees and their assistants were situated on the
3rd floor of your building, and that the room number of each employee commenced with the
number of the floor. If you wanted to create a group containing just the employees on the third
floor, you could use the room number to define just these employees, as shown in the following
illustration.

The following LDIF extract shows how the members of this dynamic group would be defined.

dn: cn=3rd Floor, ou=Groups, dc=example,dc=com

...

memberURL: ldap:///dc=example,dc=com??sub?(roomnumber=3*)

Nested Groups
Nested groups use the DN of another group as the uniqueMember attribute of a static or
dynamic group to place groups inside other groups. Directory Server also supports mixed
groups, that is groups that reference individual entries, static groups, and dynamic groups.

Imagine for example that you wanted a group containing all directory administrators, and all
management employees and their assistants. You could use a combination of the two groups
defined earlier to create one nested group, as shown in the following illustration.

The following LDIF extract shows how the members of this nested group would be defined.

Grouping Directory Data and Managing Attributes

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200850

dn: cn=Admins and 3rd Floor, ou=Groups, dc=example,dc=com

...

member: cn=Directory Administrators, ou=Groups, dc=example,dc=com

member: cn=3rd Floor, ou=Groups, dc=example,dc=com

Nested groups are not the most efficient grouping mechanism. Dynamic nested groups incur an
even greater performance cost. To avoid these performance problems, consider using roles
instead.

Managed, Filtered, and Nested Roles
Roles are an entry grouping mechanism. Roles enable you to determine role membership as
soon as an entry is retrieved from the directory. Each role has members, or entries that possess
the role. As with groups, you can specify role members explicitly or dynamically.

Directory Server supports the following three types of roles:

■ Managed roles. Explicitly assign a role to member entries.
■ Filtered roles. Automatically make entries members if the entries match a specified LDAP

filter. In this way, the role depends on the attributes contained in each entry.
■ Nested roles. Enable you to create roles that contain other roles.

Deciding Between Groups and Roles
The functionality of the groups and roles mechanisms overlap somewhat. Both mechanisms
have advantages and disadvantages. Generally, the roles mechanism is designed to provide
frequently required functionality more efficiently. Because the choice of a grouping mechanism
influences server complexity and determines how clients process membership information, you
must plan your grouping mechanism carefully. To decide which mechanism is more suitable,
you need to understand the typical membership queries and management operations that are
performed.

Grouping Directory Data and Managing Attributes

Chapter 4 • Defining Data Characteristics 51

Advantages of the Groups Mechanism
Groups have the following advantages:

■ Static groups are the only standards-based grouping mechanism. Static groups are therefore
interoperable with most client applications and LDAP servers.

■ Static groups are preferable to roles for enumerating members.

If you only need to enumerate members of a given set, static groups are less costly.
Enumerating members of a static group by retrieving the member attribute is easier than
recovering all entries that share a role. In Directory Server, significant performance
improvements have been made for large multi-valued attributes. Equality matching and
modify operations on these attributes are greatly improved, specifically in relation to static
groups. Membership testing for group entries has also been improved. These improvements
remove some of the previous restrictions on static groups, specifically the restriction on
group size.

Directory Server also provides group membership directly in user entries, with the
isMemberOf operational attribute. This feature applies to static groups only but includes
nested groups. For more information, see “Managing Groups” in Sun Java System Directory
Server Enterprise Edition 6.3 Administration Guide.

■ Static groups are preferable to roles for management operations such as assigning and
removing members.

Static groups are the simplest mechanism for assigning a user to a set or removing a user
from a set. Special access rights are not required to add the user to the group.

The right to create the group entry automatically gives you the right to assign members to
that group. This is not the case for managed and filtered roles. In these roles, the
administrator must also have the right to write the nsroledn attribute to the user entry. The
same access right restrictions also apply indirectly to nested roles. The ability to create a
nested role implies the ability to pull together other roles that have already been defined.

■ Dynamic groups are preferable to roles for use in filter-based ACIs.

If you only need to find all members based on a filter, such as for designating bind rules in
ACIs, use dynamic groups. Although filtered roles are similar to dynamic groups, filtered
roles trigger the roles mechanism and generate the virtual nsRole attribute. If your client
does not need the nsRole value, use dynamic groups to avoid the overhead of this
computation.

■ Groups are preferable to roles for adding or removing sets into or from existing sets.

If you want to add a set to an existing set, or remove a set from an existing set, the groups
mechanism is simplest. The groups mechanism presents no nesting restrictions. The roles
mechanism only allows nested roles to receive other roles.

■ Groups are preferable to roles if flexibility of scope for grouping entries is critical.

Grouping Directory Data and Managing Attributes

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200852

Groups are flexible in terms of scope because the scope for possible members is the entire
directory, regardless of where the group definition entries are located. Although roles can
also extend their scope beyond a given subtree, they can only do so by adding the
scope-extending attribute nsRoleScopeDN to a nested role.

Advantages of the Roles Mechanism
Roles have the following advantages:

■ Roles are preferable to dynamic groups if you want to enumerate members of a set and find
all sets of which a given entry is a member. Static groups also provide this functionality with
the isMemberOf attribute.

Roles push membership information out to the user entry where this information can be
cached to make subsequent membership tests more efficient. The server performs all
computations, and the client only needs to read the values of the nsRole attribute. In
addition, all types of roles appear in this attribute, allowing the client to process all roles
uniformly. Roles can perform both operations more efficiently and with simpler clients than
is possible with dynamic groups.

■ Roles are preferable to groups if you want to integrate your grouping mechanism with
existing Directory Server functionality such as CoS, Password Policy, Account Inactivation,
and ACIs.

If you want to use the membership of a set “naturally” in the server, roles are a better option.
This implies that you use the membership computations that the server does automatically.
Roles can be used in resource-oriented ACIs, as a basis for CoS, as part of more complex
search filters, and with Password Policy, Account Inactivation, and so forth. Groups do not
allow this kind of integration.

Restricting Permissions on Roles
Be aware of the following issues when using roles:

■ The nsRole attribute can only be assigned by the roles mechanism. While this attribute
cannot be assigned or modified by any directory user, it is potentially readable by any
directory user. Define access controls to keep this attribute from being read by unauthorized
users.

■ The nsRoleDN attribute defines managed role membership. You need to decide whether
users can add or remove themselves from the role. To keep from modifying their own roles,
you must define an ACI to that effect.

■ Filtered roles determine membership through filters that are based on the existence or the
values of attributes in user entries. Assign the user permissions of these attributes carefully
to control who can define membership in the filtered role.

Grouping Directory Data and Managing Attributes

Chapter 4 • Defining Data Characteristics 53

Managing Attributes With Class of Service
The Class of Service (CoS) mechanism allows attributes to be shared between entries. Like the
role mechanism, CoS generates virtual attributes on the entries as the entries are retrieved. CoS
does not define membership, but it does allow related entries to share data for coherency and
space considerations. CoS values are calculated dynamically when the values are requested. CoS
functionality and the various types of CoS are described in detail in the Sun Java System
Directory Server Enterprise Edition 6.3 Reference.

The following sections examine the ways in which you can use the CoS functionality as
intended, while avoiding performance pitfalls:

■ “Using CoS When Many Entries Share the Same Value” on page 54
■ “Using CoS When Entries Have Natural Relationships” on page 55
■ “Avoiding Excessive CoS Definitions” on page 58

Note – CoS generation always impacts performance. Client applications that search for more
attributes than they actually need can compound the problem.

If you can influence how client applications are written, remind developers that client
applications perform much better when looking up only those attribute values that they actually
need.

Using CoS When Many Entries Share the Same Value
CoS provides substantial benefits for relatively low cost when you need the same attribute value
to appear on numerous entries in a subtree.

Imagine, for example, a directory for MyCompany, Inc. in which every user entry under
ou=People has a companyName attribute. Contractors have real values for companyName
attributes on their entries, but all regular employees have a single CoS-generated value,
MyCompany, Inc., for companyName. The following figure demonstrates this example with
pointer CoS. Notice that CoS generates companyName values for all permanent employees
without overriding real, not CoS-generated, companyName values stored for contractor
employees. The company name is generated only for those entries for which companyName is an
allowed attribute.

Grouping Directory Data and Managing Attributes

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200854

In cases where many entries share the same value, pointer CoS works particularly well. The ease
of maintaining companyName for permanent employees offsets the additional processing cost of
generating attribute values. Deep directory information trees (DITs) tend to bring together
entries that share common characteristics. Pointer CoS can be used in deep DITs to generate
common attribute values by placing CoS definitions at appropriate branches in the tree.

Using CoS When Entries Have Natural Relationships
CoS also provides substantial data administration benefits when directory data has natural
relationships.

Consider an enterprise directory in which every employee has a manager. Every employee
shares a mail stop and fax number with the nearest administrative assistant. Figure 4–4
demonstrates the use of indirect CoS to retrieve the department number from the manager
entry. In Figure 4–5, the mail stop and fax number are retrieved from the administrative
assistant entry.

Directory Server generates
identical companyName

attribute values for all
permanent employees.

dn: cn=CompanyName,cn=data
companyName: MyCompany, Inc.

Real attribute values for
companyName override CoS

generation on contractor
employee entries.

dn: cn=CompanyNamePtrCos,dc=example,dc=com
cosTemplateDn: cn=CompanyName,cn=data
cosAttribute: companyName

dn: ou=People,dc=example,dc=com

cn: Sue Jacobs
employeeType: Employee
companyName: MyCompany, Inc.

cn: William Holiday
employeeType: Employee
companyName: MyCompany, Inc.

cn: Babs Jensen
employeeType: Contractor
companyName: FlyByNite Corp.

FIGURE 4–3 Generating CompanyNameWith Pointer CoS

Grouping Directory Data and Managing Attributes

Chapter 4 • Defining Data Characteristics 55

In this implementation, the manager’s entry has a real value for departmentNumber, and this
real value overrides any generated value. Directory Server does not generate attribute values
from CoS-generated attribute values. Thus, in the Figure 4–4 example, the department number
attribute value needs to be managed only on the manager's entry. Likewise, for the example
shown in Figure 4–5, mail stop and fax number attributes need to be managed only on the
administrative assistant’s entry.

cn: Sue Jacobs
manager: cn=William Holiday,ou=People,dc=example,dc=com
departmentNumber: 123456

dn: cn=deptNoIndirectCoS,dc=example,dc=com
cosIndirectSpecifier: manager
cosAttribute: departmentNumber

cn: Babs Jensen
manager: cn=Sue Jacobs,ou=People,dc=example,dc=com
departmentNumber: 123456

dn: ou=People,dc=example,dc=com

Sue is manager, her entry
 has a real value stored
 on departmentNumber.

For Bab's entry,
 Directory Server generates

 the departmentNumber
 value using indirect CoS.

FIGURE 4–4 Generating DepartmentNumberWith Indirect CoS

Grouping Directory Data and Managing Attributes

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200856

A single CoS definition entry can be used to exploit relationships such as these for many
different entries in the directory.

Another natural relationship is service level. Consider an Internet service provider that offers
customers standard, silver, gold, and platinum packages. A customer’s disk quota, number of
mailboxes, and rights to prepaid support levels depend on the service level purchased. The
following figure demonstrates how a classic CoS scheme enables this functionality.

dn: cn=faxNoIndirectCoS,dc=example,dc=com
cosIndirectSpecifier: admin
cosAttribute: facsimileTelephoneNumber

dn: cn=mailStopIndirectCoS,dc=example,dc=com
cosIndirectSpecifier: admin
cosAttribute: mailStop

cn: Babs Jensen
facsimileTelephoneNumber: +1 800 555 1212
mailStop: EGNB07

cn: Sue Jacobs
admin: cn=Babs Jensen,ou=People,dc=example,dc=com
facsimileTelephoneNumber: +1 800 555 1212
mailStop: EGNB07

dn: ou=People,dc=example,dc=com

Babs is an administrative
 assistant: the values for

 fax number and mail stop
 on Bab’s entry are real.

For Sue’s entry, Directory
 Server generates the

 values using indirect CoS.

FIGURE 4–5 Generating Mail Stop and Fax Number With Indirect CoS

Grouping Directory Data and Managing Attributes

Chapter 4 • Defining Data Characteristics 57

One CoS definition might be associated with multiple CoS template entries.

Avoiding Excessive CoS Definitions
Directory Server optimizes CoS when one classic CoS definition entry is associated with
multiple CoS template entries. Directory Server does not optimize CoS if many CoS definitions

dn: cn=servLevelClassicCos,dc=example,dc=com
cosTemplateDn: cn=CoS,cn=data
cosSpecifier: serviceLevel
cosAttribute: diskQuota
cosAttribute: noMailboxes
cosAttribute: supportLevel

dn: ou=Customers,dc=example,dc=com

Directory Server generates
disk quotas, numbers of

 mailboxes, and support levels,
 based on the serviceLevel

 value for the customer.

cn: FlyByNite Corp.
serviceLevel: standard
diskQuota: 10 MB
noMailboxes: 5
supportLevel: 8x5

cn: Small Shop Ltd.
serviceLevel: silver
diskQuota: 25 MB
noMailboxes: 10
supportLevel: 12x6

cn: Fast Growth Inc.
serviceLevel: gold
diskQuota: 100 MB
noMailboxes: 25
supportLevel: 24x7

cn: Bulk Mail Industries
serviceLevel: platinum
diskQuota: 2 GB
noMailboxes: unlimited
supportLevel: 24x7 on site

dn: cn=silver,cn=CoS,cn=data
diskQuota: 25 MB
noMailboxes: 10
supportLevel: 12x6

dn: cn=gold,cn=CoS,cn=data
diskQuota: 100 MB
noMailboxes: 25
supportLevel: 24x7

dn: cn=platinum,cn=CoS,cn=data
diskQuota: 2 GB
noMailboxes: unlimited
supportLevel: 24x7 on site

dn: cn=standard,cn=CoS,cn=data
diskQuota: 10 MB
noMailboxes: 5
supportLevel: 8x5

FIGURE 4–6 Generating Servic-Level Data With Classic CoS

Grouping Directory Data and Managing Attributes

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200858

potentially apply. Instead, Directory Server checks each CoS definition to determine whether
the definition applies. This behavior leads to performance problems if you have thousands of
CoS definitions.

This situation can arise in a modified version of the example shown in Figure 4–6. Consider an
Internet service provider that offers customers delegated administration of their customers’
service level. Each customer provides definition entries for standard, silver, gold, and platinum
service levels. Ramping up to 1000 customers means creating 1000 classic CoS definitions.
Directory Server performance would be affected as it runs through the list of 1000 CoS
definitions to determine which apply. If you must use CoS in this sort of situation, consider
indirect CoS. In indirect CoS, customers’ entries identify the entries that define their class of
service allotments.

When you start approaching the limit of having different CoS schemes for every target entry or
two, you are better off updating the real values. You then achieve better performance by reading
real, not CoS-generated values.

Designing a Directory Schema
The directory schema describes the types of data that can be stored in a directory. During
schema design, each data element is mapped to an LDAP attribute. Related elements are
gathered into LDAP object classes. A well-designed schema helps maintain data integrity by
imposing constraints on the size, range, and format of data values. You decide what types of
entries your directory contains and the attributes that are available to each entry.

The predefined schema that is included with Directory Server contains the Internet Engineering
Task Force (IETF) standard LDAP schema. The schema contains additional
application-specific schema to support the features of the server. It also contains Directory
Server-specific schema extensions. While this schema meets most directory requirements, you
might need to extend the schema with new object classes and attributes that are specific to your
directory.

Schema Design Process
Schema design involves doing the following:

■ Mapping your data to the default schema.
To map existing data to the default schema, identify the type of object that each data element
describes then select a similar object class from the default schema. Use the common object
classes, such as groups, people, and organizations. Select a similar attribute from the
matching object class that best matches the data element.

■ Identifying unmatched data.
■ Extending the default schema to define new elements to meet your remaining needs.

Designing a Directory Schema

Chapter 4 • Defining Data Characteristics 59

If data elements exist that do not match the object classes and attributes defined by the
default directory schema, you can customize the schema. You can also extend the schema to
impose additional constraints on the existing schema. For more information, see “About
Custom Schema” in Sun Java System Directory Server Enterprise Edition 6.3 Administration
Guide.

■ Planning for schema maintenance.

Where possible, use the existing schema elements that are defined in the default Directory
Server schema. Standard schema elements help to ensure compatibility with directory-enabled
applications. Because the schema is based on the LDAP standard, it has been reviewed and
agreed to by a large number of directory users.

Maintaining Data Consistency
Consistent data assists LDAP client applications in locating directory entries. For each type of
information that is stored in the directory, select the required object classes and attributes to
support that information. Always use the same object classes and attributes. If you use schema
objects inconsistently, it is difficult to locate information.

You can maintain schema consistency in the following ways:
■ Use schema checking to ensure that attributes and object classes conform to the schema

rules.
For more information about schema checking, see Chapter 12, “Directory Server Schema,”
in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

■ Select and apply a consistent data format.
The LDAP schema allows you to place any data on any attribute value. However, you should
store data consistently in the DIT by selecting a format appropriate for your LDAP client
applications and directory users. With the LDAP protocol and Directory Server, you must
represent data using the data formats specified in RFC 4517.

Other Directory Data Resources
For more information about the standard LDAP schema, and about designing a DIT, see the
following sites:
■ RFC 4510: Lightweight Directory Access Protocol (LDAP): Technical Specification Road

Map
http://www.ietf.org/rfc/rfc4510.txt

■ RFC 4511: Lightweight Directory Access Protocol (LDAP): The Protocol
http://www.ietf.org/rfc/rfc4511.txt

■ RFC 4512: Lightweight Directory Access Protocol (LDAP): Directory Information Models
http://www.ietf.org/rfc/rfc4512.txt

Other Directory Data Resources

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200860

http://www.ietf.org/rfc/rfc4510.txt
http://www.ietf.org/rfc/rfc4511.txt
http://www.ietf.org/rfc/rfc4512.txt

■ RFC 4513: Lightweight Directory Access Protocol (LDAP): Authentication Methods and
Security Mechanisms
http://www.ietf.org/rfc/rfc4513.txt

■ RFC 4514: Lightweight Directory Access Protocol (LDAP): String Representation of
Distinguished Names
http://www.ietf.org/rfc/rfc4514.txt

■ RFC 4515: Lightweight Directory Access Protocol (LDAP): String Representation of Search
Filters
http://www.ietf.org/rfc/rfc4515.txt

■ RFC 4516: Lightweight Directory Access Protocol (LDAP): Uniform Resource Locator
http://www.ietf.org/rfc/rfc4516.txt

■ RFC 4517: Lightweight Directory Access Protocol (LDAP): Syntaxes and Matching Rules
http://www.ietf.org/rfc/rfc4517.txt

■ RFC 4518: Lightweight Directory Access Protocol (LDAP): Internationalized String
Preparation
http://www.ietf.org/rfc/rfc4518.txt

■ RFC 4519: Lightweight Directory Access Protocol (LDAP): Schema for User Applications
http://www.ietf.org/rfc/rfc4519.txt

■ Understanding and Deploying LDAP Directory Services. T. Howes, M. Smith, G. Good.
Macmillan Technical Publishing, 1999

For a complete list of the RFCs and standards supported by Directory Server Enterprise Edition,
see Appendix A, “Standards and RFCs Supported by Directory Server Enterprise Edition,” in
Sun Java System Directory Server Enterprise Edition 6.3 Evaluation Guide.

Other Directory Data Resources

Chapter 4 • Defining Data Characteristics 61

http://www.ietf.org/rfc/rfc4513.txt
http://www.ietf.org/rfc/rfc4514.txt
http://www.ietf.org/rfc/rfc4515.txt
http://www.ietf.org/rfc/rfc4516.txt
http://www.ietf.org/rfc/rfc4517.txt
http://www.ietf.org/rfc/rfc4518.txt
http://www.ietf.org/rfc/rfc4519.txt

62

Defining Service Level Agreements

Service level agreements are technical specifications that determine how the system must
perform under certain conditions. This chapter describes the service requirements that are
specific to Directory Server Enterprise Edition. The chapter includes questions that you need to
ask during the planning phase to ensure that your deployment meets these requirements.

This chapter covers the following topics:

■ “Identifying System Qualities” on page 63
■ “Defining Performance Requirements” on page 64
■ “Defining Availability Requirements” on page 67
■ “Defining Scalability Requirements” on page 67
■ “Defining Security Requirements” on page 68
■ “Defining Latent Capacity Requirements” on page 68
■ “Defining Serviceability Requirements” on page 68

Identifying System Qualities
To identify system qualities, specify the minimum requirements that your directory service
must provide. The following system qualities typically form a basis for quality of service
requirements:

■ Performance. The measurement of response time and throughput with respect to user load
conditions.

■ Availability. A measure of how often a system's resources and services are accessible to end
users, often expressed as the uptime of a system.

■ Scalability. The ability to add capacity and users to a deployed system over time. Scalability
typically involves adding resources to the system without changing the deployment
architecture.

5C H A P T E R 5

63

■ Security.A complex combination of factors that describe the integrity of a system and its
users. Security includes authentication and authorization of users, security of data, and
secure access to a deployed system.

■ Latent capacity. The ability of a system to handle unusual peak loads without additional
resources. Latent capacity is a factor in availability, performance, and scalability.

■ Serviceability. The ease by which a deployed system can be maintained, including
monitoring the system, fixing problems that arise, and upgrading hardware and software
components.

Defining Performance Requirements
Performance requirements should be based on typical models of directory usage. In all
directory deployments, Directory Server supports one or more client applications, and the
requirements of these applications must be assessed. Estimating how much information your
directory contains, and how often that information is accessed, involves identifying these
applications and determining how they use Directory Server.

Identifying Client Applications
The applications that access your directory and the data needs of these applications have a
significant impact on performance requirements. When identifying client applications,
consider the following:

■ What types of client applications are accessing Directory Server?
■ How many users access each of these applications?
■ What kind of operations do these applications perform?
■ What are the usage patterns for these operations?

Common applications that might use your directory include the following:

■ Browser applications, such as white pages. Applications of this type generally access
information such as email addresses, telephone numbers, and employee names.

■ Messaging applications, especially email servers. All email servers require email addresses,
user names, and routing information. Others require more advanced information such as
the place on disk where a user’s mailbox is stored, vacation notification information, and
protocol information.

■ Directory-enabled human resources applications. These applications require more
personal information such as government identification numbers, home addresses, home
telephone numbers, and salary details.

■ Security, web portal, or personalization applications. Applications of this type access
profile information.

Defining Performance Requirements

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200864

When you have identified the information used by each application, you might see that some
types of data are used by more than one application. Performing this kind of exercise during the
planning stage can help you to avoid data redundancy.

Determining the Number and Size of Directory Entries
The number and size of entries that are stored in the directory depend largely on your data
requirements, as described in Chapter 4, “Defining Data Characteristics.”

Consider the following when calculating the number and size of entries:
■ Does the deployment require repeated bulk import initialization?
■ If so, how often are imports performed?
■ How many entries are imported at a time?
■ What types of entries are imported?
■ Must initialization be performed online with the server running?

Determining the Number of Reads
In estimating read traffic, consider the following:
■ How many searches per second are expected?
■ What types of searches are expected?

For example, unique ID searches, wildcard searches, exact match searches.
■ What is the estimated peak search rate?
■ What is the estimated average search rate?
■ How many unindexed searches are expected?

An unindexed search means that the database is searched directly, instead of the index file.
Unindexed searches occur either when the All IDs Threshold is reached within the index file
used for the search, when no index file exists or when the index file is not configured in the
way required by the search.
Unindexed searches are generally more time consuming than indexed searches.

■ Are searches concentrated in a particular data center or geographic region?
If one data receives proportionally more search traffic than other data centers, it might be
worth placing additional, replicated servers in this data center to balance the load.

■ Are searches concentrated at a particular time of day?
■ How many searches are anticipated from within the firewall?
■ How many searches are anticipated from outside the firewall?

If read performance is crucial to your enterprise, see Chapter 10, “Designing a Scaled
Deployment,” for suggestions on deploying a directory service that is scaled for reads.

Defining Performance Requirements

Chapter 5 • Defining Service Level Agreements 65

Determining the Number of Writes
In estimating write traffic, consider the following:

■ How many updates per second are expected?
■ What types of updates are expected?
■ What is the estimated peak update rate?
■ What is the estimated average update rate?
■ Are updates concentrated in a particular data center or geographic region?

If one data receives proportionally more update traffic than other data centers, it might be
worth placing additional writable servers in this data center to distribute the update load.

■ Are updates concentrated at a particular time of day?

If write performance is crucial to your enterprise, see Chapter 10, “Designing a Scaled
Deployment,” for suggestions on deploying a directory service that is scaled for writes.

Estimating the Acceptable Response Time
For each client application, determine the maximum response time that is acceptable. The
acceptable response time might differ for various geographical locations, and for different kinds
of operations.

Estimating the Acceptable Replication Latency
Estimate the level of synchronicity that is required between master replicas and consumer
replicas. The Directory Server replication model is loosely consistent, that is, updates are
accepted on a master without requiring communication with the other replicas in a topology.
At any given time, the contents of each replica might be different. Over time, the replicas
converge until each replica has an identical copy of the data. As part of performance planning,
determine the maximum acceptable time that replicas have to converge.

Directory Server 6.x includes a new prioritized replication feature. This feature enables you to
specify that changes to certain attributes must be replicated as soon as possible. Prioritized
replication might affect your decisions about acceptable replication latency. For more
information, see “Prioritized Replication” in Sun Java System Directory Server Enterprise
Edition 6.3 Reference.

Defining Performance Requirements

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200866

Defining Availability Requirements
Availability implies an agreed minimum up time and level of performance for your directory
service. Failure, in this context, is defined as anything that prevents the directory service from
providing this minimum level of service.

In assessing availability requirements, consider the following:

■ Is your directory service accessed only at particular times of the day?
■ Do you have different availability requirements for read and write operations?
■ Does the service span multiple geographical sites, and if so, do these sites have different

access time requirements?
■ Can your system be shut down for maintenance?

If so, what is the maximum acceptable downtime?
■ Can the system be shut down during migration?
■ What is the cost of downtime to your organization?

For suggestions on deploying a highly available directory service, see Chapter 12, “Designing a
Highly Available Deployment.”

Defining Scalability Requirements
As your directory evolves, the service levels that must be supported might change. To raise the
level of service after a system has been deployed can be difficult. Thus, the initial design must
take future requirements into account.

When defining scalability requirements, consider the following:

■ Is there an anticipated increase in entry volume?
■ How many new users are expected within the next few years?
■ What is the expected growth rate, over the next few years, in terms of data, users, and client

applications?
■ Are any new business processes expected?

Increase CPU estimates to make sure that your deployment does not have to be scaled
prematurely. Look at the anticipated milestones for scaling and projected load increase over
time to make sure that you allow enough latent capacity to reach the milestones.

Defining Scalability Requirements

Chapter 5 • Defining Service Level Agreements 67

Defining Security Requirements
Security requirements warrant separate discussion. These requirements are described in detail
in Chapter 7, “Identifying Security Requirements.”

Defining Latent Capacity Requirements
In determining latent capacity requirements, estimate the peak load conditions for your
directory service. Consider the following:

■ If all client applications were running, what would be the maximum number of concurrent
connections to Directory Server?

■ What would be the load on the remaining servers in your deployment if one or more servers
were to fail?

Defining Serviceability Requirements
Serviceability requirements are discussed in detail in Chapter 8, “Identifying Administration
and Monitoring Requirements.”

Defining Security Requirements

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200868

Tuning System Characteristics and Hardware
Sizing

A Directory Server Enterprise Edition deployment requires that certain system characteristics
be defined at the outset. This chapter describes the system information that you need to address
in the planning phase of your deployment.

This chapter covers the following topics:
■ “Host System Characteristics” on page 69
■ “Port Numbers” on page 70
■ “Hardware Sizing For Directory Service Control Center” on page 72
■ “Hardware Sizing For Directory Proxy Server” on page 72
■ “Hardware Sizing For Directory Server” on page 74
■ “Operating System Tuning For Directory Server” on page 102
■ “Physical Capabilities of Directory Server” on page 110

Host System Characteristics
When identifying the host systems that will be used in your deployment, consider the following:
■ Will the system be dedicated to a single server?
■ Will the system be running other applications, and if so, what will the other applications be?
■ What percentage of the system's resources will these applications require?

When the host systems have been identified, select a host name for each host in the topology.
Make sure that each host system has a static IP address.

Restrict physical access to the host system. Although Directory Server Enterprise Edition
includes many security features, directory security is compromised if physical access to the host
system is not controlled.

If the Directory Server instances do not provide a naming service for the network, or if the
deployment involves remote administration, a naming service and the domain name for the
host must be properly configured.

6C H A P T E R 6

69

Port Numbers
At design time, select port numbers for each Directory Server and Directory Proxy Server
instance. If possible, do not change port numbers after your directory service is deployed in a
production environment.

Separate port numbers must be allocated for various services and components.

■ “Directory Server and Directory Proxy Server LDAP and LDAPS Port Numbers” on page 70
■ “Directory Server DSML Port Numbers” on page 71
■ “Directory Service Control Center and Common Agent Container Port Numbers” on

page 71
■ “Identity Synchronization for Windows Port Numbers” on page 72

Directory Server and Directory Proxy Server LDAP and
LDAPS Port Numbers
Specify the port number for accepting LDAP connections. The standard port for LDAP
communication is 389, although other ports can be used. For example, if you must be able to
start the server as a regular user, use an unprivileged port, by default 1389. Port numbers less
than 1024 require privileged access. If you use a port number that is less than 1024, certain
LDAP commands must be run as root.

Specify the port number for accepting SSL-based connections. The standard port for SSL-based
LDAP (LDAPS) communication is 636, although other ports can be used, such as the default
1636 when running as a regular user. For example, an unprivileged port might be required so
that the server can be started as a regular user.

If you specify a non-privileged port and a server instance is installed on a system to which other
users have access, you might expose the port to a hijack risk by another application. In other
words, another application can bind to the same address/port pair. The rogue application might
then be able to process requests that are intended for the server. The application could also be
used to capture passwords used in the authentication process, to alter client requests or server
responses, or to produce a denial of service attack.

Both Directory Server and Directory Proxy Server allow you to restrict the list of IP addresses
on which the server listens. Directory Server has configuration attributes nsslapd-listenhost
and nsslapd-securelistenhost. Directory Proxy Server has listen-address properties on
ldap-listener and ldaps-listener configuration objects. When you specify the list of
interfaces on which to listen, other programs are prevented from using the same port numbers
as your server.

Port Numbers

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200870

Directory Server DSML Port Numbers
In addition to processing requests in LDAP, Directory Server also responds to requests sent in
the Directory Service Markup Language v2 (DSML). DSML is another way for a client to encode
directory operations. Directory Server processes DSML as any other request, with the same
access control and security features.

If your topology includes DSML access, identify the following:

■ A standard HTTP port for receiving DSML requests. The default port is 80.
■ If SSL is activated, an encrypted (HTTPS) port for receiving encrypted DSML requests. The

default port is 443.
■ A relative URL that, when appended to the host and port, determines the complete URL that

clients must use to send DSML requests

For information about configuring DSML, see “To Enable the DSML-over-HTTP Service” in
Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Directory Service Control Center and Common Agent
Container Port Numbers
Directory Service Control Center, DSCC, is a web application for Sun Java Web Console that
enables you to administer Directory Server and Directory Proxy Server instances through a web
browser. For a server to be recognized by DSCC, the server must be registered with DSCC.
Unregistered servers can still be managed using command-line utilities.

DSCC communicates with DSCC agents located on the systems where servers are installed. The
DSCC agents run inside a common agent container, which routes network traffic to them and
provides them a framework in which to run.

If you plan to use DSCC to administer servers in your topology, identify the following port
numbers.

■ The encrypted HTTPS port for accessing DSCC through Sun Java Web Console on the
system where DSCC is installed. The default port is 6789.

■ The management traffic port for DSCC to access its agents local to the server through the
common agent container, default: 11162, on the system where the server instances are
installed.

■ The port numbers for the DSCC Registry instance, if you plan to replicate the configuration
information. See dsccsetup(1M) for details.

Even if all components are installed on the same system, DSCC still communicates with its
agents through these network ports.

Port Numbers

Chapter 6 • Tuning System Characteristics and Hardware Sizing 71

Identity Synchronization for Windows Port Numbers
If your deployment includes identity synchronization with Microsoft Active Directory, an
available port is required for the Message Queue instance. This port must be available on each
Directory Server instance that participates in the synchronization. The default non-secure port
for Message Queue is 80, and the default secure port is 443.

You must also make additional installation decisions and configuration decisions when
planning your deployment. For details on installing and configuring Identity Synchronization
for Windows, see Part II, “Installing Identity Synchronization for Windows,” in Sun Java System
Directory Server Enterprise Edition 6.3 Installation Guide.

Hardware Sizing For Directory Service Control Center
DSCC runs as a web application inside Sun Java Web Console, which runs inside a web
application container. DSCC also runs its own local instance of Directory Server to store
configuration data.

The minimum requirement to run DSCC is 256 megabytes of memory and 100 megabytes of
free disk space. However, for optimum performance run DSCC on a system with at least one
gigabyte of memory devoted to DSCC and a couple gigabytes of free disk space.

Hardware Sizing For Directory Proxy Server
Directory Proxy Server runs as a multithreaded Java program, and is built to scale across
multiple processors. In general, the more processing power available the better, though you
might find that in practice adding memory, faster disks, or faster network connections can
enhance performance more than additional processors.

Configuring Virtual Memory
Directory Proxy Server uses memory mainly to hold information that is being processed.
Complex aggregations for processing some virtual directory requests against multiple data
sources may temporarily use extra memory. If one of your data sources is an LDIF file,
Directory Proxy Server constructs a representation of that data source in memory. However,
unless you use large LDIF data sources, not a recommended deployment practice, a couple
gigabytes of memory devoted to Directory Proxy Server should suffice. You might want to
increase the Java virtual machine heap size when starting Directory Proxy Server if enough
memory is available. For example, to set the Java virtual machine heap size to 1000 megabytes,
use the following command.

$ dpadm set-flags instance-path jvm-args="-Xmx1000M -Xms1000M -XX:NewRatio=1"

Hardware Sizing For Directory Service Control Center

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200872

This command uses the -XX:NewRatio option, which is specific to the Sun Java virtual machine.
The default heap size is 250 megabytes.

Configuring Worker Threads and Backend
Connections
Directory Proxy Server allows you to configure how many threads the server maintains to
process requests. You configure this using the server property number-of-worker-threads,
described in number-of-worker-threads(5dpconf). As a rule of thumb, try setting this number
to 50 threads plus 20 threads for each data source used. To gauge whether the number is
sufficient, monitor the status of the Directory Proxy Server work queue on cn=Work

Queue,cn=System Resource,cn=instance-path,cn=Application
System,cn=DPS6.0,cn=Installed Product,cn=monitor. If you find that the
operationalStatus for the work queue is STRESSED, this can mean thread-starved connection
handlers are unable to handle new client requests. Increasing number-of-worker-threads may
help if more system resources are available for Directory Proxy Server.

The number of worker threads should also be appropriate for the number of backend
connections. If there are too many worker threads for the number of backend connections,
incoming connections are accepted but cannot be transmitted to the backend connections.
Such a situation is generally problematic for client applications.

To determine whether this situation has arisen, check the log files for error messages of the
following type: "Unable to get backend connections". Alternatively, look at the cn=monitor

entry for load balancing. If the totalBindConnectionsRefused attribute in that entry is not
null, the proxy was unable to process certain operations because there were not enough
backend connections. To solve this issue, increase the maximum number of backend
connections. You can configure the number of backend connections for each data source by
using the num-bind-limit, num-read-limit and num-write-limit properties of the data
source. If you have already reached the limit for backend connections, reduce the number of
worker threads.

If there are not enough worker threads for the number of backend connections, so much work
can pile up in the server's queue that no new connections can be handled. Client connections
can then be refused at the TCP/IP level, with no LDAP error returned. To determine if this
situation has arisen, look at the statistics in the cn=monitor entry for the work queue. In
particular, readConnectionsRefused and writeConnectionsRefused should remain low.
Also, the value of the maxNormalPriorityPeak attribute should remain low.

Disk Space for Directory Proxy Server
By default Directory Proxy Server requires up to one gigabyte of local disk space for access
logging, and another gigabyte of local disk space for errors logging. Given the quantity of
access log messages Directory Proxy Server writes when handling client application requests,

Hardware Sizing For Directory Proxy Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 73

logging can be a performance bottleneck. Typically, however, you must leave logging on in a
production environment. For best performance therefore put Directory Proxy Server logs on a
fast, dedicated disk subsystem. See “Configuring Directory Proxy Server Logs” in Sun Java
System Directory Server Enterprise Edition 6.3 Administration Guide for instructions on
adjusting log settings.

Network Connections for Directory Proxy Server
Directory Proxy Server is a network-intensive application. For each client application request,
Directory Proxy Server may send multiple operations to different data sources. Make sure the
network connections between Directory Proxy Server and your data sources are fast, with
plenty of bandwidth and low latency. Also make sure the connections between Directory Proxy
Server and client applications can handle the amount of traffic you expect.

Hardware Sizing For Directory Server
Getting the right hardware for a medium to large Directory Server deployment involves some
testing with data similar to the data you expect to serve in production, and access patterns
similar to those you expect from client applications. When optimizing for particular systems,
make sure you understand how system buses, peripheral buses, I/O devices, and supported file
systems work. This knowledge helps you take advantage of I/O subsystem features when tuning
these features to support Directory Server. Sun Services
(http://www.sun.com/servicessolutions/) can help you make the right deployment
decisions, including sizing the hardware to your requirements.

This section looks at how to approach hardware sizing for Directory Server. It covers what to
consider when deciding how many processors, how much memory, how much disk space, and
what type of network connections to dedicate to Directory Server in your deployment.

This section covers the following topics:

■ “The Tuning Process” on page 75
■ “Making Sample Directory Data” on page 76
■ “What to Configure and Why” on page 77
■ “Simulating Client Application Load” on page 83
■ “Directory Server and Processors” on page 84
■ “Directory Server and Memory” on page 84
■ “Directory Server and Local Disk Space” on page 85
■ “Directory Server and Network Connectivity” on page 87
■ “Limiting Directory Server Resources Available to Clients” on page 88
■ “Limiting System Resources Used By Directory Server” on page 91
■ “Basic Directory Server Sizing Example: Disk and Memory Requirements” on page 94

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200874

http://www.sun.com/servicessolutions/
http://www.sun.com/servicessolutions/

Note – Unless indicated otherwise, the server properties described in the following sections can
be set with the dsconf command. For more information about using dsconf, see dsconf(1M).

The Tuning Process
To tune performance implies modification of the default configuration to reflect specific
deployment requirements. The following list of process phases covers the key things to think
about when tuning Directory Server.

Define goals
Define specific, measurable objectives for tuning, based on deployment requirements.

Consider the following questions.
■ Which applications use Directory Server?
■ Can you dedicate the entire system to Directory Server?

Does the system run other applications?

If so, which other applications run on the system?
■ How many entries are handled by the deployment?

How large are the entries?
■ How many searches per second must Directory Server support?

What types of searches are expected?
■ How many updates per second must Directory Server support?

What types of updates are expected?
■ What sort of peak update and search rates are expected?

What average rates are expected?
■ Does the deployment call for repeated bulk import initialization on this system?

If so, how often do you expect to import data? How many entries are imported?

What types of entries?

Must initialization be performed online with the server running?

The list here is not exhaustive. Ensure that your list of goals is exhaustive.

Select methods
Determine how you plan to implement optimizations. Also, determine how you plan to
measure and analyze optimizations.

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 75

Consider the following questions.
■ Can you change the hardware configuration of the system?
■ Are you limited to using hardware that you already have, tuning only the underlying

operating system, and Directory Server?
■ How can you simulate other applications?
■ How should you generate representative data samples for testing?
■ How should you measure results?
■ How should you analyze results?

Perform tests
Carry out the tests that you planned. For large, complex deployments, this phase can take
considerable time.

Verify results
Check whether the potential optimizations tested reach the goals defined at the outset of the
process.

If the optimizations reach the goals, document the results.

If the optimizations do not reach the goals, profile and monitor Directory Server.

Profile and monitor
Profile and monitor the behavior of Directory Server after applying the potential
modifications.

Collect measurements of all relative behavior.

Plot and analyze
Plot and analyze the behavior that you observed while profiling and monitoring. Attempt to
find evidence and to discover patterns that suggest further tests.

You might need to go back to the profiling and monitoring phase to collect more data.

Tweak and tune
Apply further potential optimizations suggested by your analysis of measurements.

Return to the phase of performing tests.

Document results
When the optimizations applied reach the goals defined at the outset of the process,
document the optimizations well so the optimizations can be easily reproduced.

Making Sample Directory Data
How much disk and memory space you devote to Directory Server depends on your directory
data. If you already have representative data in LDIF, use that data when sizing hardware for
your deployment. Representative data here means sample data that corresponds to the data you

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200876

expect to use in deployment, but not actual data you use in deployment. Real data comes with
real privacy concerns, can be multiple orders of magnitude larger than the specifications need to
generate representative data, and may not help you exercise all the cases you want to test.
Representative data includes entries whose average size is close to the size you expect to see in
deployment, whose attributes have values similar to those you expect to see in deployment, and
whose numbers are present in proportions similar to those you expect to see in deployment.

Take anticipated growth into account when you are deciding on representative data. It is
advisable to include an overhead on current data for capacity planning.

If you do not have representative data readily available, you can use the makeldif(1) command
to generate sample LDIF, which you can then import into Directory Server. Chapter 4,
“Defining Data Characteristics,” can help you figure out what representative data would be for
your deployment. The makeldif command is one of the Directory Server Resource Kit tools.

For deployments expected to serve millions of entries in production, ideally you would load
millions of entries for testing. Yet loading millions of entries may not be practical for a first
estimate. Start by creating a few sets of representative data, for example 10,000 entries, 100,000
entries, and 1,000,000 entries, import those, and extrapolate from the results you observe to
estimate the hardware required for further testing. When you are estimating hardware
requirements, make provision for data that will be replicated to multiple servers.

Notice when you import directory data from LDIF into Directory Server the resulting database
files (including indexes) are larger than the LDIF representation. The database files, by default,
are located under the instance-path/db/ directory.

What to Configure and Why
Directory Server default configuration settings are defined for typical small deployments and to
make it easy to install and evaluate the product. This section examines some key configuration
settings to adjust for medium to large deployments. In medium to large deployments you can
often improve performance significantly by adapting configuration settings to your particular
deployment.

Directory Server Database Page Size
When Directory Server reads or writes data, it works with fixed blocks of data, called pages. By
increasing the page size you increase the size of the block that is read or written in one disk
operation.

The page size is related to the size of entries and is a critical element of performance. If you
know that the average size of your entries is greater than db-page-size/4–24 (24 is the per page
binary tree internal structure), you must increase the database page size. The database page size
should also match the file system disk block size.

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 77

Directory Server Cache Sizes
Directory Server is designed to respond quickly to client application requests. In order to avoid
waiting for directory data to be read from disk, Directory Server caches data in memory. You
can configure how much memory is devoted to cache for database files, for directory entries,
and for importing directory data from LDIF.

Ideally the hardware on which you run Directory Server allows you to devote enough space to
cache all directory data in physical memory. The data should fit comfortably, such that the
system has enough physical memory for operation, and the file system has plenty of physical
memory for its caching and operation. Once the data are cached, Directory Server has to read
data from and write data to disk only when a directory entry changes.

Directory Server supports 64–bit memory addressing, and so can handle total cache sizes as
large as a 64–bit processor can address. For small to medium deployments it is often possible to
provide enough memory that all directory data can be held in cache. For large deployments,
however, caching everything may not be practical or cost effective.

For large deployments, caching everything in memory can cause side effects. Tools such as the
pmap command, that traverse the process memory map to gather data, can freeze the server
process for a noticeable time. Core files can become so large that writing them to disk during a
crash can take several minutes. Startup times can be slow if the server is shut down abruptly and
then restarted. Directory Server can also pause and stop responding temporarily when it
reaches a checkpoint and has to flush dirty cached pages to disk. When the cache is very large,
the pauses can become so long that monitoring software assumes Directory Server is down.

I/O buffers at the operating system level can provide better performance. Very large buffers can
compensate for smaller database caches.

For a detailed discussion of cache and cache settings, read Chapter 5, “Directory Server Data
Caching,” in Sun Java System Directory Server Enterprise Edition 6.3 Reference. For more
information on tuning cache sizes, read The Basics of Directory Server Cache Sizing
(http://blogs.sun.com/DirectoryManager/resource/ds_cache_sizing.pdf).

Directory Server Indexes
Directory Server indexes directory entry attribute values to speed searches for those values. You
can configure attributes to be indexed in various ways. For example, indexes can help Directory
Server determine quickly whether an attribute has a value, whether it has a value equal to a
given value, and whether it has a value containing a given substring.

Indexes can add to search performance, but they can also impact write performance. When an
attribute is indexed, Directory Server has to update the index as values of the attribute change.

Directory Server saves index data to files. The more indexes you configure, the more disk space
required. Directory Server indexes and data files are found, by default, under the
instance-path/db/ directory.

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200878

http://blogs.sun.com/DirectoryManager/resource/ds_cache_sizing.pdf
http://blogs.sun.com/DirectoryManager/resource/ds_cache_sizing.pdf

For a detailed discussion of indexing and index settings, read Chapter 6, “Directory Server
Indexing,” in Sun Java System Directory Server Enterprise Edition 6.3 Reference.

Directory Server Administration Files
Some Directory Server administration files can potentially become very large. These files
include the LDIF files containing directory data, backups, core files, and log files.

Depending on your deployment, you may use LDIF both to import Directory Server data, and
to serve as auxiliary backup. A standard text format, LDIF allows you to export binary data as
well as strings. LDIF can occupy significant disk space in large deployments. For example, a
directory containing 10 million entries having an average size of 2 kilobytes, would in LDIF
representation occupy 20 gigabytes on disk. You might maintain multiple LDIF files of that size
if you use the format for auxiliary backup.

Binary backup files also occupy space on disk, at least until you move them somewhere else for
safekeeping. Backup files produced with Directory Server utilities consist of binary copies of the
directory database files. Alternatively for large deployments you can put Directory Server in
frozen mode and take a snapshot of the file system. Either way, you must have disk space
available for the backup.

By default Directory Server writes log messages to instance-path/logs/access and
instance-path/logs/errors. By default Directory Server requires one gigabyte of local disk
space for access logging, and another 200 megabytes of local disk space for errors logging.

For a detailed discussion of Directory Server logging, read Chapter 7, “Directory Server
Logging,” in Sun Java System Directory Server Enterprise Edition 6.3 Reference.

Directory Server Replication
Directory Server lets you replicate directory data for availability and load balancing between the
servers in your deployment. Directory Server allows you to have multiple read-write (master)
replicas deployed together.

Internally, the server makes this possible by keeping track of changes to directory data. When
the same data are modified on more than one read-write replica Directory Server can resolve
the changes correctly on all replicas. The data to track these changes, must be retained until they
are no longer needed for replication. Changes are retained for a period of time specified by the
purge delay whose default value is seven days. If your directory data undergoes much
modification, especially of large multi-valued attributes, this data can grow quite large.

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 79

Because the level of growth is dependent on several factors, there is no catch-all formula to
calculate potential data growth. The best approach is to test typical modifications and measure
the growth. The following factors have an effect on data growth as a result of entry modification:

■ The type of entries and the types of attributes that are modified.
Multi-valued attributes cause larger growth. If the attribute values are small, the growth is
more visible.

■ The workload applied to the entry.
Adding and deleting entries causes larger growth. Adding an attribute value causes larger
growth than replacing an attribute value.

■ The number of entries that are modified, and the number of attributes that are modified in
each entry.

■ The size of the database page.
After numerous modifications, certain entries can become larger than the database page
size.

Note that the replication meta-data remains in the entry until the purge delay has passed and
the entry is modified again.

For a detailed discussion of Directory Server replication, read Chapter 4, “Directory Server
Replication,” in Sun Java System Directory Server Enterprise Edition 6.3 Reference.

Directory Server Threads and File Descriptors
Directory Server runs as a multithreaded process, and is designed to scale on multiprocessor
systems. You can configure the number of threads Directory Server creates at startup to process
operations. By default Directory Server creates 30 threads. The value is set using the
dsconf(1M) command to adjust the server property thread-count.

The trick is to keep the threads as busy as possible without incurring undo overhead from
having to handle many threads. As long as all directory data fits in cache, better performance is
often seen when thread-count is set to twice the number of processors plus the expected
number of simultaneous update operations. If only a fraction of a large directory data set fits in
cache, Directory Server threads may often have to wait for data being read from disk. In that
case you may find performance improves with a much higher thread count, up to 16 times the
number of available processors.

Directory Server uses file descriptors to hold data related to open client application
connections. By default Directory Server uses a maximum of 1024 file descriptors. The value is
set using the dsconf command to adjust the server property file-descriptor-count. If you
see a message in the errors log stating too many fds open, you may observe better
performance by increasing file-descriptor-count, presuming your system allows Directory
Server to open additional file descriptors.

The file-descriptor-count property does not apply on Windows.

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200880

Directory Server Growth
Once in deployment Directory Server use is likely to grow. Planning for growth is key for a
successful deployment, in which you continue to provide a consistently high level of service.
Plan for larger, more powerful systems than you need today, basing your requirements in part
on the growth you expect tomorrow.

Sometimes directory services must grow rapidly, even suddenly. This is the case for example
when a directory service sized for one organization is merged with that of another organization.
By preparing for growth in advance and by explicitly identifying your expectations, you are
better equipped to deal with rapid and sudden growth, because you know in advance whether
the expected increase outstrips the capacity you planned.

Top Tuning Tips
Basic recommendations follow. These recommendations apply in most situations. Although
the recommendations presented here are in general valid, avoid the temptation to apply the
recommendations without understanding the impact on the deployment at hand. This section
is intended as a checklist, not a cheat sheet.

1. Adjust cache sizes.
Ideally, the server has enough available physical memory to hold all caches used by
Directory Server. Furthermore, an appropriate amount of extra physical memory is
available to account for future growth. When plenty of physical memory is available, set the
entry cache size large enough to hold all entries in the directory. Use the entry-cache-size
suffix property. Set the database cache size large enough to hold all indexes with the
db-cache-size property. Use the dn-cache-size or dn-cache-count properties to control
the size of the DN cache.

2. Optimize indexing.
a. Remove unnecessary indexes. Add additional indexes to support expected requests.

From time to time, you can add additional indexes that support requests from new
applications. You can add, remove, or modify indexes while Directory Server is running.
Use for example the dsconf create-index and dsconf delete-index commands.
Be careful not to remove system indexes. For a list of system indexes, see “System
Indexes and Default Indexes” in Sun Java System Directory Server Enterprise Edition 6.3
Reference.
Directory Server gradually indexes data after you make changes to the indexes. You can
also force Directory Server to rebuild indexes with the dsconf reindex command.

b. Allow only indexed searches.
Unindexed searches can have a strong negative impact on server performance.
Unindexed searches can also consume significant server resources.
Consider forcing the server to reject unindexed searches by setting the
require-index-enabled suffix property to on.

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 81

c. Adjust the maximum number of values per index key with the all-ids-threshold
property.

3. Tune the underlying operating system according to recommendations made by the
idsktune command. For more information, see idsktune(1M).

4. Adjust operational limits.
Adjustable operational limits prevent Directory Server from devoting inordinate resources
to any single operation. Consider assigning unique bind DNs to client applications
requiring increased capabilities, then setting resource limits specifically for these unique
bind DNs.

5. Distribute disk activity.
Especially for deployments that support large numbers of updates, Directory Server can be
extremely disk I/O intensive. If possible, consider spreading the load across multiple disks
with separate controllers.

6. Disable unnecessary logging.
Disk access is slower than memory access. Heavy logging can therefore have a negative
impact on performance. Reduce disk load by leaving audit logging off when not required,
such as on a read-only server instance. Leave error logging at a minimal level when not using
the error log to troubleshoot problems. You can also reduce the impact of logging by putting
log files on a dedicated disk, or on a lesser used disk, such as the disk used for the replication
changelog.

7. When replicating large numbers of updates, consider adjusting the appropriate replication
agreement properties.
The properties are transport-compression, transport-group-size, and
transport-window-size.

8. On Solaris systems, move the database home directory to a tmpfs file system.
The database home directory, specified by the db-env-path property, indicates where
Directory Server locates database cache backing files. Data files continue to reside by default
under instance-path/db.
With the database cache backing files on a tmpfs file system, the system does not repeatedly
flush the database cache backing files to disk. You therefore avoid a performance bottleneck
for updates. In some cases, you also avoid the performance bottleneck for searches. The
database cache memory is mapped to the Directory Server process space. The system
essentially shares cache memory and memory used to hold the backing files in the tmpfs file
system. You therefore gain performance at essentially no cost in terms of memory space
needed.
The primary cost associated with this optimization is that database cache must be rebuilt
after a restart of the host machine. This cost is probably not a cost that you can avoid,
however, if you expect a restart to happen only after a software or hardware failure. After
such a failure, the database cache must be rebuilt anyway.

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200882

9. Enable transaction batches if you can afford to lose updates during a software or hardware
failure.
You enable transaction batches by setting the server property
db-batched-transaction-count.
Each update to the transaction log is followed by a sync operation to ensure that update data
is not lost. By enabling transaction batches, updates are grouped together before being
written to the transaction log. Sync operations only take place when the whole batch is
written to the transaction log. Transaction batches can therefore significantly increase
update performance. The improvement comes with a trade off. The trade off is during a
crash, you lose update data not yet written to the transaction log.

Note – With transaction batches enabled, you lose up to db-batched-transaction-count -

1 updates during a software or hardware failure. The loss happens because Directory Server
waits for the batch to fill, or for 1 second, whichever is sooner, before flushing content to the
transaction log and thus to disk.

Do not use this optimization if you cannot afford to lose updates.

10. Configure the referential integrity plug-in to delay integrity checks.
The referential integrity plug-in ensures that when entries are modified, or deleted from the
directory, all references to those entries are updated. By default, the processing is performed
synchronously, before the response for the delete operation is returned to the client. You
can configure the plug-in to have the updates performed asynchronously. Use the
ref-integrity-check-delay server property.

Simulating Client Application Load
To measure Directory Server performance, you prepare the server, then subject it to the kind of
client application traffic you expect in production. The better you reproduce the kind of access
patterns client applications that happen in production, the better job you can do sizing the
hardware and configuring Directory Server appropriately.

Directory Server Resource Kit provides the authrate(1), modrate(1), and searchrate(1)
commands you can use for basic tests. These commands let you measure the rate of binds,
modifications, and searches your directory service can support.

You can also simulate, measure, and graph complex, realistic client access using SLAMD. The
SLAMD Distributed Load Generation Engine (SLAMD) is a Java application that is designed to
stress test and analyze the performance of network-based applications. It was originally
developed by Sun Microsystems, Inc. to benchmark and analyze the performance of LDAP
Directory Servers. SLAMD is available as an open source application under the Sun Public

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 83

License, an OSI-approved open source license. To obtain information about SLAMD, go to
http://www.slamd.com/. SLAMD is also available as a java.net project. See
https://slamd.dev.java.net/.

Directory Server and Processors
As a multithreaded process built to work on systems with multiple processors, Directory Server
performance scales linearly in most cases as you devote more processors to it. When running
Directory Server on a system with many processors, consider using the dsconf command to
adjust the server property thread-count, which is the number of threads Directory Server
starts to process server operations.

In specific directory deployments, however, adding more processors might not significantly
impact performance. When handling demanding performance requirements for searching,
indexing, and replication, consider load balancing and directory proxy technologies as part of
the solution.

Directory Server and Memory
The following factors significantly affect the amount of memory needed:

■ Directory Server database cache, entry cache, and import cache settings
■ Peak replication load
■ Peak client application load
■ Server settings for file-descriptor-count and thread-count

■ Overhead for the operating system, other applications running on the system, and system
administration activity

To estimate the memory size required to run Directory Server, estimate the memory needed for
a specific Directory Server configuration on a system loaded as in production, including
application load generated for example using the Directory Server Resource Kit commands or
SLAMD.

Before you measure Directory Server process size, give the server some time after startup to fill
entry caches as during normal or peak operation. If you have space to put everything in cache
memory, you can speed this warm up period for Directory Server by reading every entry in the
directory to fill entry caches. If you do not have space to put everything in cache memory,
simulate client access for some time until the cache fills as it would with a pattern of normal or
peak operation.

With the server in an equilibrium state, you can use utilities such as pmap on Solaris or Linux, or
the Windows Task Manager to measure memory used by the Directory Server process,

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200884

http://www.slamd.com/
https://slamd.dev.java.net/

ns-slapd on UNIX systems, slapd.exe on Windows systems. For more information, see the
pmap(1) man page. Measure process size both during normal operation and peak operation
before deciding how much memory to use.

Make sure to add to your estimates the amount of memory needed for system administration,
and for the system itself. Operating system memory requirements can vary widely depending
on the system configuration. Therefore, estimating the memory needed to run the underlying
operating system must be done empirically. After tuning the system, monitor memory use to
your estimate. You can use utilities such as the Solaris vmstat and sar commands, or the Task
Manager on Windows to measure memory use.

At a minimum, provide enough memory so that running Directory Server does not cause
constant page swapping, which negatively affects performance. Utilities such as MemTool,
unsupported and available separately for Solaris systems, can be useful in monitoring how
memory is used by and allocated to running applications.

If the system cannot accommodate additional memory, yet you continue to observe constant
page swapping, reduce the size of the database and entry caches. Although you can throttle
memory use with the heap-high-threshold-size and heap-low-threshold-size server
settings, consider the heap threshold mechanism as a last resort. Performance suffers when
Directory Server must delay other operations to free heap memory.

On Red Hat Linux systems, you can adjust the /proc/sys/vm/swappiness parameter to tune
how aggressively the kernel swaps out memory. High swappiness means that the kernel will
swap out a large amount and low swappiness means that the kernel will try not to use swap
space at all. Decreasing the swappiness setting may therefore result in improved Directory
performance as the kernel holds more of the server process in memory longer before swapping
it out. If the system is dedicated to a single Directory Server instance, set the swappiness to zero.
If the system runs several heavy processes or multiple concurrent instances of Directory Server,
consider testing the Directory performance with various swappiness settings.

Directory Server and Local Disk Space
Disk use and I/O capabilities can have great impact on performance. The disk subsystem can
become an I/O bottleneck, especially for a deployment that supports large numbers of
modifications. This section recommends ways to estimate overall disk capacity for a Directory
Server instance.

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 85

Note – Do not install Directory Server or any data it accesses on network disks.

Directory Server software does not support the use of network-attached storage through NFS,
AFS, or SMB. All configuration, database, and index files must reside on local storage at all
times, even after installation. Log files can be stored on network disks.

The following factors significantly affect the amount of local disk space needed:

■ Number of directory entries
■ Average sizes of entries
■ Server database page size setting when directory data is imported

To adjust the database page size, set the nsslapd-db-page-size attribute. For more
information, see “Directory Server Database Page Size” on page 77.

■ Number of indexes maintained on directory data
■ Size of stored LDIF, backups, logs, and core files

When you have set up indexes, adjusted the database page size, and imported directory data,
you can estimate the disk capacity required for the instance by reading the size of the
instance-path/ contents, and adding the size of expected LDIF, backups, logs, and core files.
Also estimate how much the sizes you measure are expected to grow, particularly during peak
operation. Make sure you leave a couple of gigabytes of extra space for the errors log in case
you need to increase the log level and size for debugging purposes.

Getting an estimation of the disk required for directory data can be done in some cases by
extrapolation. If it is not practical to load Directory Server with as much data as you expect in
production, extrapolate from smaller sets of sample data as suggested in “Making Sample
Directory Data” on page 76. When the amount of directory data you use is smaller than in
production, you must extrapolate for other measurements, too.

The following factors determine how fast the local disk must be:

■ Level of updates sustained, including the volume of replication traffic
■ Whether directory data are mainly in cache or on disk
■ Log levels used for access and error logging, and whether the audit log is enabled
■ Whether directory data, logs, and the transaction log (for updates) can be placed on separate

disk subsystems
■ Whether backups are performed with Directory Server online or offline

Disks used should not be saturated under normal operating circumstances. You can use tools
such as the Solaris iostat command to isolate potential I/O bottlenecks.

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200886

To increase disk throughput distribute files across disk subsystems. Consider providing
dedicated disk subsystems for transaction logs (dsconf set-server-prop
db-log-path:/transaction/log/path), databases (dsconf create-suffix --db-path

/suffix/database/path suffix-name), and log files (dsconf set-log-prop path:/log/file/path).
In addition consider putting database cache files on a memory-based file system such as a
Solaris tmpfs file system, where files are swapped to disk only if available memory is exhausted
(for example, dsconf set-server-prop db-env-path:/tmp). If you put database cache files on
a memory-based file system, make sure the system does not run out of space to keep that entire
file system in memory.

To further increase throughput use multiple disks in RAID configuration. Large, non volatile
I/O buffers and high-performance disk subsystems such as those offered in Sun StorEdgeTM

products can greatly enhance Directory Server performance and uptime. On Solaris 10 systems,
using ZFS can also improve performance.

Directory Server and Network Connectivity
Directory Server is a network-intensive application. You can estimate theoretical maximum
throughput using the following formula. Notice that this formula does not account for
replication traffic.

max. throughput = max. entries returned/second x average entry size

Imagine that a Directory Server must respond to a peak of 5000 searches per second and that the
server returns one entry per search. The entries have an average size of 2000 bytes. The
theoretical maximum throughput would be 10 megabytes, or 80 megabits, not counting
replication. 80 megabits are likely to be more than a single 100-megabit Ethernet adapter can
provide. To improve network availability for a Directory Server instance, equip the system with
a faster connection, or with multiple network interfaces. Directory Server can listen on multiple
network interfaces within the same process.

Note – The preceding example assumes that the client application requests all attributes when
reading or searching the directory. Generally, you should design client applications so that they
request only the required attributes.

If you intend to cluster Directory Servers on the same network for load balancing purposes,
make sure the network infrastructure can support the additional load generated for replication.
If you plan multi-master replication over a wide area network, test your configuration to make
sure the connection provides sufficient throughput with minimum latency and near-zero
packet loss. High latency and packet loss both slow replication. In addition, avoid a topology
where replication traffic goes through a load balancer.

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 87

Limiting Directory Server Resources Available to
Clients
The default configuration of Directory Server can allow client applications to use more
Directory Server resources than are required.

The following uses of resources can hurt directory performance:

■ Opening many connections then leaving them idle or unused
■ Launching costly and unnecessary unindexed searches
■ Storing enormous and unplanned for binary attribute values

In some deployment situations, you should not modify the default configuration. For
deployments where you cannot tune Directory Server, use Directory Proxy Server to limit
resources, and to protect against denial of service attacks.

In some deployment situations, one instance of Directory Server must support client
applications, such as messaging servers, and directory clients such as user mail applications. In
such situations, consider using bind DN based resource limits to raise individual limits for
directory intensive applications. The limits for an individual account can be adjusted by setting
the attributes nsSizeLimit, nsTimeLimit, nsLookThroughLimit, and nsIdleTimeout on the
individual entry. For information about how to control resource limits for individual accounts,
see “Setting Resource Limits For Each Client Account” in Sun Java System Directory Server
Enterprise Edition 6.3 Administration Guide.

Table 6–1 describes the parameters that set the global values for resource limits. The limits in
Table 6–1 do not apply to the Directory Manager user, therefore, ensure client applications do
not connect as the Directory Manager user.

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200888

TABLE 6–1 Tuning Recommendations For Resources Devoted to Client Applications

Tuning Parameter Description

Server property

idle-timeout

Sets the time in seconds after which Directory Server closes an idle
client connection. Here idle means that the connection remains
open, yet no operations are requested. By default, no time limit is
set.

You set this server property with the dsconf set-server-prop
command.

Some applications, such as messaging servers, may open a pool of
connections that remain idle when traffic is low, but that should
not be closed. Ideally, you might dedicate a replica to support the
application in this case. If that is not possible, consider bind DN
based individual limits.

In any case, set this value high enough not to close connections
that other applications expect to remain open, but set it low
enough that connections cannot be left idle abusively. Consider
setting it to 7200 seconds, which is 2 hours, for example.

Attribute

nsslapd-ioblocktimeout on dn: cn=config

Sets the time in milliseconds after which Directory Server closes a
stalled client connection. Here stalled means that the server is
blocked either sending output to the client or reading input from
the client.

You set this attribute with the ldapmodify command.

For Directory Server instances particularly exposed to denial of
service attacks, consider lowering this value from the default of
1,800,000 milliseconds, which is 30 minutes.

Server property

look-through-limit

Sets the maximum number of candidate entries checked for
matches during a search.

You set this server property with the dsconf set-server-prop
command.

Some applications, such as messaging servers, may need to search
the entire directory. Ideally, you might dedicate a replica to
support the application in this case. If that is not possible,
consider bind DN based, individual limits.

In any case, consider lowering this value from the default of 5000
entries, but not below the threshold value of search-size-limit.

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 89

TABLE 6–1 Tuning Recommendations For Resources Devoted to Client Applications (Continued)
Tuning Parameter Description

Attribute

nsslapd-maxbersize on dn: cn=config

Sets the maximum size in bytes for an incoming ASN.1 message
encoded according to Basic Encoding Rules, BER. Directory
Server rejects requests to add entries larger than this limit.

You set this attribute with the ldapmodify command.

If you are confident you can accurately anticipate maximum entry
size for your directory data, consider changing this value from the
default of 2097152, which is 2 MB, to the size of the largest
expected directory entry.

The next largest size limit for an update is the size of the
transaction log file, nsslapd-db-logfile-size, which by default
is 10 MB.

Server property

max-threads-per-connection-count

Sets the maximum number of threads per client connection.

You set this server property with the dsconf set-server-prop
command.

Some applications, such as messaging servers, may open a pool of
connections and may issue many requests on each connection.
Ideally, you might dedicate a replica to support the application in
this case. If that is not possible, consider bind DN based,
individual limits.

If you anticipate that some applications may perform many
requests per connection, consider increasing this value from the
default of 5, but do not increase it to more than 10. Typically do
not specify more than 10 threads per connection.

Server property

search-size-limit

Sets the maximum number of entries Directory Server returns in
response to a search request.

You set this server property with the dsconf set-server-prop
command.

Some applications, such as messaging servers, may need to search
the entire directory. Ideally, you might dedicate a replica to
support the application in this case. If that is not possible,
consider bind DN based, individual limits.

In any case, consider lowering this value from the default of 2000
entries.

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200890

TABLE 6–1 Tuning Recommendations For Resources Devoted to Client Applications (Continued)
Tuning Parameter Description

Server property

search-time-limit

Sets the maximum number of seconds Directory Server allows for
handling a search request.

You set this server property with the dsconf set-server-prop
command.

Some applications, such as messaging servers, may need to
perform very large searches. Ideally, you might dedicate a replica
to support the application in this case. If that is not possible,
consider bind DN based, individual limits.

In any case, set this value as low as you can and still meet
deployment requirements. The default value of 3600 seconds,
which is 1 hour, is larger than necessary for many deployments.
Consider using 600 seconds, which is 10 minutes, as a starting
point for optimization tests.

Limiting System Resources Used By Directory Server
Table 6–2 describes the parameters that can be used to tune how a Directory Server instance
uses system and network resources.

TABLE 6–2 Tuning Recommendations For System Resources

Tuning Parameter Description

Attribute

nsslapd-listenhost on dn: cn=config

Sets the hostname for the IP interface on which Directory Server
listens. This attribute is multivalued.

You set this attribute with the ldapmodify command.

Default behavior is to listen on all interfaces. The default behavior
is adapted for high volume deployments using redundant
network interfaces for availability and throughput.

Consider setting this value when deploying on a multihomed
system, or when listening only for IPv4 or IPv6 traffic on a system
supporting each protocol through a separate interface. Consider
setting nsslapd-securelistenhost when using SSL.

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 91

TABLE 6–2 Tuning Recommendations For System Resources (Continued)
Tuning Parameter Description

Server property

file-descriptor-count

Sets the maximum number of file descriptors Directory Server
attempts to use.

You set this server property with the dsconf set-server-prop
command.

The default value is the maximum number of file descriptors
allowed for a process on the system at the time when the Directory
Server instance is created. The maximum value corresponds to
the maximum number of file descriptors allowed for a process on
the system. Refer to your operating system documentation for
details.

Directory Server uses file descriptors to handle client connections,
and to maintain files internally. If the error log indicates Directory
Server sometimes stops listening for new connections because not
enough file descriptors are available, increasing the value of this
attribute may increase the number of client connections Directory
Server can handle simultaneously.

If you have increased the number of file descriptors available on
the system, set the value of this attribute accordingly. The value of
this property should be less than or equal to the maximum
number of file descriptors available on the system.

Attribute

nsslapd-nagle on dn: cn=config

Sets whether to delay sending of TCP packets at the socket level.

You set this attribute with the ldapmodify command.

Consider setting this to on if you need to reduce network traffic.

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200892

TABLE 6–2 Tuning Recommendations For System Resources (Continued)
Tuning Parameter Description

Attribute

nsslapd-reservedescriptors on dn: cn=config

Sets the number of file descriptors Directory Server maintains to
manage indexing, replication and other internal processing. Such
file descriptors become unavailable to handle client connections.

You set this attribute with the ldapmodify command. Consider
increasing the value of this attribute from the default of 64 if all of
the following are true.
■ Directory Server replicates to more than 10 consumers or

Directory Server maintains more than 30 index files.

■ Directory Server handles a large number of client
connections.

■ Messages in the error log suggest Directory Server is running
out of file descriptors for operations not related to client
connections.

Notice that as the number of reserved file descriptors increases,
the number of file descriptors available to handle client
connections decreases. If you increase the value of this attribute,
consider increasing the number of file descriptors available on the
system, and increasing the value of file-descriptor-count.

If you decide to change this attribute, for a first estimate of the
number of file descriptors to reserve, try setting the value of
nsslapd-reservedescriptors according to the following
formula.

20 +

4 * (number of databases) +

(total number of indexes) +

(value of nsoperationconnectionslimit) *

(number of chaining backends) +

ReplDescriptors +

PTADescriptors +

SSLDescriptors

Here ReplDescriptors is number of supplier replica plus 8 if
replication is used. PTADescriptors is 3 if the Pass Through
Authentication, PTA, plug-in is enabled, and 0 otherwise.
SSLDescriptors is 5 if SSL is used, and 0 otherwise.

The number of databases is the same as the number of suffixes for
the instance, unless the instance is configured to use more than
one database per suffix. Verify estimates through empirical
testing.

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 93

TABLE 6–2 Tuning Recommendations For System Resources (Continued)
Tuning Parameter Description

Attribute

nsslapd-securelistenhost on dn: cn=config

Sets the hostname for the IP interface on which Directory Server
listens for SSL connections. This attribute is multivalued.

You set this attribute with the ldapmodify command.

Default behavior is to listen on all interfaces. Consider this
attribute in the same way as nsslapd-listenhost.

Server property

max-thread-count

Sets the number of threads Directory Server uses.

You set this server property with the dsconf set-server-prop
command. Consider adjusting the value of this property if any of
the following are true.
■ Client applications perform many simultaneous,

time-consuming operations such as updates or complex
searches.

■ Directory Server supports many simultaneous client
connections.

Multiprocessor systems can sustain larger thread pools than single
processor systems. As a first estimate when optimizing the value
of this attribute, use two times the number of processors or 20
plus the number of simultaneous updates.

Consider also adjusting the maximum number of threads per
client connection, max-threads-per-connection-count. The
maximum number of these threads handling client connections
cannot exceed the maximum number of file descriptors available
on the system. In some cases, it may prove useful to reduce, rather
than increase, the value of this attribute.

Verify estimates through empirical testing. Results depend not
only on the particular deployment situation but also on the
underlying system.

Basic Directory Server Sizing Example: Disk and
Memory Requirements
This section provides an example that shows initial steps in sizing Directory Server disk and
memory requirements for deployment. The system used for this example was selected by
chance and because it had sufficient processing power and memory to complete the sizing tasks
quickly. It does not necessarily represent a recommended system for production use. You can it
however to gain insight into how much memory and disk space might be required for
production systems.

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200894

System Characteristics
The following system information was observed using the Solaris Management Console (smc).
■ 2 AMD64 CPUs (2.2 gigahertz)
■ Solaris 10 Operating System
■ 4 gigabytes physical memory
■ 40 gigabytes swap
■ Physical memory in use before Directory Server installation: 700 megabytes
■ Physical memory free before Directory Server installation: 3400 megabytes
■ CPU usage: 1%
■ Local disk: one partition formatted UFS with logging

For this example, the system was dedicated to Directory Server. No other user was logged in,
and only the default system processes were running.

Preparing a Directory Server Instance
After unpacking the zip distribution, install Directory Server software on local disk space.

$./dsee_deploy install -c DS -i /local

For convenience set environment variables as shown.

$ export PATH=/local/ds6/bin:/local/dsrk6/bin:/local/dsee6/bin:${PATH}

$ export DIRSERV_PORT=1389

$ export LDAP_ADMIN_PWF=~/.pwd

After installing the software and setting environment variables, create a Directory Server
instance using default ports for LDAP and LDAPS, respectively.

$ dsadm create -p 1389 -P 1636 /local/ds

Choose the Directory Manager password:

Confirm the Directory Manager password:

$ du -hs /local/ds

610K /local/ds

Until you create a suffix, the Directory Server instance uses less than one megabyte of disk
space.

$ dsadm start /local/ds

Server started: pid=8046

$ dsconf create-suffix dc=example,dc=com

Certificate "CN=hostname, CN=1636, CN=Directory Server,

O=Sun Microsystems" presented by the server is not trusted.

Type "Y" to accept, "y" to accept just once, "n" to refuse, "d" for more

details: Y

$ du -hs /local/ds

53M /local/ds

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 95

For this example, make no additional changes to the default Directory Server configuration
except those shown explicitly.

Populating the Suffix With 10,000 Sample Directory Entries
Using the makeldif command with the example files provided as part of Directory Server
Resource Kit, you can create sample LDIF files from one kilobyte to one megabyte in size. See
“To Install Directory Server Enterprise Edition 6.3 From Zip Distribution” in Sun Java System
Directory Server Enterprise Edition 6.3 Installation Guide for an example showing how to use the
makeldif command.

The entries in these files are smaller than you would expect in a real deployment.

$ du -h /var/tmp/*

57M /var/tmp/100k.ldif

5.7M /var/tmp/10k.ldif

573M /var/tmp/1M.ldif

An example entry from these files is shown in the following LDIF.

dn: uid=Aartjan.Aalders,ou=People,dc=example,dc=com

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

givenName: Aartjan

sn: Aalders

cn: Aartjan Aalders

initials: AA

uid: Aartjan.Aalders

mail: Aartjan.Aalders@example.com

userPassword: trj49xeq

telephoneNumber: 935-748-6699

homePhone: 347-586-0252

pager: 906-399-8417

mobile: 452-898-9034

employeeNumber: 1000004

street: 64197 Broadway Street

l: Lawton

st: IN

postalCode: 57924

postalAddress: Aartjan Aalders$64197 Broadway Street$Lawton, IN 57924

description: This is the description for Aartjan Aalders.

Begin sizing by importing the content of 10k.ldif, which occupies 5.7 megabytes on disk.

$ dsadm stop /local/ds

Server stopped

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200896

$ dsadm import -i /local/ds /var/tmp/10k.ldif dc=example,dc=com

...

With default indexing the content of 10k.ldif increases the size of the instance files by 72
megabytes - 53 megabytes, or 19 megabytes.

$ du -hs /local/ds

72M /local/ds

If you index five more attributes, size increases by about seven megabytes.

$ dsconf create-index dc=example,dc=com employeeNumber street st \

postalCode description

$ dsconf reindex dc=example,dc=com

...

example: Finished indexing.

Task completed (slapd exit code: 0).

$ du -hs /local/ds

79M /local/ds

Observing memory size with the default cache settings, and nothing loaded from the suffix into
entry cache yet, the server process occupies approximately 170 megabytes of memory with a
heap size of about 56 megabytes.

$ dsadm start /local/ds

Server started: pid=8482

$ pmap -x 8482

...

Address Kbytes RSS Anon Locked Mode Mapped File

0000000000437000 61348 55632 55380 - rw--- [heap]

...

---------------- ---------- ---------- ---------- ----------

total Kb 178444 172604 76532 -

As you then prime the cache and examine output from the pmap command again, the heap
grows by about 10 megabytes, and so does the total size of the process.

$ ldapsearch -D cn=Directory\ Manager -w - -p 1389 -b dc=example,dc=com \

objectclass=* > /dev/null

Enter bind password:

$ pmap -x 8482

...

Address Kbytes RSS Anon Locked Mode Mapped File

...

0000000000437000 70564 65268 65024 - rw--- [heap]

...

---------------- ---------- ---------- ---------- ----------

total Kb 187692 182272 86224 -

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 97

The numbers are comparable for default indexing.

$ dsconf delete-index dc=example,dc=com employeeNumber street st \

postalCode description

$ dsconf reindex dc=example,dc=com

...

example: Finished indexing.

Task completed (slapd exit code: 0).

$ dsadm stop /local/ds

Server stopped

$ dsadm start /local/ds

Server started: pid=8541

$ ldapsearch -D cn=Directory\ Manager -w - -p 1389 -b dc=example,dc=com \

objectclass=* > /dev/null

Enter bind password:

$ pmap -x 8541

...

Address Kbytes RSS Anon Locked Mode Mapped File

...

0000000000437000 70564 65248 65004 - rw--- [heap]

...

---------------- ---------- ---------- ---------- ----------

total Kb 187680 182240 86192 -

For only 10,000 entries, do not change the default cache sizes.

$ dsconf get-server-prop | grep cache

db-cache-size : 32M

import-cache-size : 64M

$ dsconf get-suffix-prop dc=example,dc=com | grep entry-cache-size

entry-cache-size : 10M

The small default entry cache was no doubt filled completely after priming, even with only
10,000 entries. To see the size for a full entry cache, set a large entry cache size, import the data
again, and prime the cache.

$ dsconf set-suffix-prop dc=example,dc=com entry-cache-size:2G

$ dsadm stop /local/ds

Server stopped

$ dsadm import -i /local/ds /var/tmp/10k.ldif dc=example,dc=com

...

$ dsadm start /local/ds

Server started: pid=8806

$ ldapsearch -D cn=Directory\ Manager -w - -p 1389 -b dc=example,dc=com \

objectclass=* > /dev/null

Enter bind password:

$ pmap -x 8806

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 200898

...

Address Kbytes RSS Anon Locked Mode Mapped File

...

0000000000437000 116644 109996 109780 - rw--- [heap]

Here 10,000 entries occupy approximately 55 megabytes of entry cache memory (110 - 55).

Populating the Suffix With 100,000 Sample Directory Entries
As you move to 100,000 entries, you have more directory data to fit into database and entry
caches. Initially, import 100,000 entries and examine the size required on disk for this volume of
directory data.

$ dsadm import -i /local/ds /var/tmp/100k.ldif dc=example,dc=com

...

$ du -hs /local/ds

196M /local/ds

Directory data contained in the database for our example suffix, dc=example,dc=com, now
occupy about 142 megabytes.

$ du -hs /local/ds/db/example/

142M /local/ds/db/example

You can increase the size of the database cache to hold this content. If you expect the volume of
directory data to grow over time, you can set the database cache larger than currently necessary.
You can also set the entry cache size larger than necessary. Entry cache grows as the server
responds to client requests, unlike the database cache, which is allocated at startup.

$ dsconf set-server-prop db-cache-size:200M

$ dsconf set-suffix-prop dc=example,dc=com entry-cache-size:2G

$ dsadm stop /local/ds

Server stopped

$ dsadm start /local/ds

Server started: pid=8640

$ pmap -x 8640

...

Address Kbytes RSS Anon Locked Mode Mapped File

...

0000000000437000 61348 55404 55148 - rw--- [heap]

...

---------------- ---------- ---------- ---------- ----------

total Kb 491984 485736 174620 -

This shows the server instance has a relatively small heap at startup, but that the database cache
memory has been allocated. Process size is nearing half a gigabyte.

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 99

$ ldapsearch -D cn=Directory\ Manager -w - -p 1389 -b dc=example,dc=com \

objectclass=* > /dev/null

Enter bind password:

$ pmap -x 8640

...

Address Kbytes RSS Anon Locked Mode Mapped File

...

0000000000437000 610212 604064 603840 - rw--- [heap]

...

---------------- ---------- ---------- ---------- ----------

total Kb 1040880 1034428 723360 -

Heap size now reflects the entry cache being filled. It has increased by roughly 550 megabytes
for 100,000 small directory entries, whose LDIF occupied 57 megabytes on disk.

With five extra indexes, the process size is about the same. The database cache size has not
changed.

$ dsconf create-index dc=example,dc=com employeeNumber street st \

postalCode description

$ dsadm stop /local/ds

Server stopped

$ dsadm import -i /local/ds /var/tmp/100k.ldif dc=example,dc=com

...

$ dsadm start /local/ds

Server started: pid=8762

$ ldapsearch -D cn=Directory\ Manager -w - -p 1389 -b dc=example,dc=com \

objectclass=* > /dev/null

Enter bind password:

$ pmap -x 8762

...

Address Kbytes RSS Anon Locked Mode Mapped File

...

0000000000437000 610212 603832 603612 - rw--- [heap]

...

---------------- ---------- ---------- ---------- ----------

total Kb 1040876 1034192 723128 -

The database is somewhat larger, however. The additional indexes increased the size of the
database from 142 megabytes to 163 megabytes.

$ du -hs /local/ds/db/example/

163M /local/ds/db/example

Populating the Suffix With 1,000,000 Sample Directory Entries
As you move from 100,000 entries to 1,000,000 entries, you no longer have enough space on a
system with 4 gigabytes of physical memory to include all entries in the entry cache. You can
begin by importing the data and examining the size it occupies on disk.

Hardware Sizing For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008100

$ dsadm import -i /local/ds /var/tmp/1M.ldif dc=example,dc=com

...

$ du -hs /local/ds/db/example/

1.3G /local/ds/db/example

Assuming you expect approximately 25% growth in directory data size during the lifetime of
the instance, set the database cache size to 1700 megabytes.

$ dsadm start /local/ds

Server started: pid=9060

$ dsconf set-server-prop db-cache-size:1700M

$ dsadm stop /local/ds

Server stopped

$ dsadm start /local/ds

Server started: pid=9118

$ pmap -x 9118

...

Address Kbytes RSS Anon Locked Mode Mapped File

...

0000000000437000 65508 55700 55452 - rw--- [heap]

...

---------------- ---------- ---------- ---------- ----------

total Kb 1882448 1034180 76616 -

Given a database cache this large and only 4 gigabytes of physical memory, you cannot fit more
than a fraction of entries into the entry cache for the suffix. Here, set entry cache size to one
gigabyte, and then prime the cache to see the change in the process heap size.

$ dsconf set-suffix-prop dc=example,dc=com entry-cache-size:1G

$ ldapsearch -D cn=Directory\ Manager -w - -p 1389 -b dc=example,dc=com \

objectclass=* > /dev/null

Enter bind password:

$ pmap -x 9118

...

Address Kbytes RSS Anon Locked Mode Mapped File

...

0000000000437000 1016868 1009852 1009612 - rw--- [heap]

...

---------------- ---------- ---------- ---------- ----------

total Kb 2883268 2477064 1080076 -

Total process size is over 2.8 gigabytes.

$ prstat -p 9118

PID USERNAME SIZE RSS STATE PRI NICE TIME CPU PROCESS/NLWP

9118 myuser 2816M 2374M sleep 59 0 0:03:26 0.5% ns-slapd/42

Extrapolating from earlier entry cache sizes, you can expect to use 5.5 or 6 gigabytes for entry
cache alone if you had enough physical memory.

Hardware Sizing For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 101

Examining the directory database size with five additional indexes, you find adding indexes has
increased the size of the database by about 200 megabytes.

$ dsconf create-index dc=example,dc=com employeeNumber street st \

postalCode description

$ dsadm stop /local/ds

Server stopped

$ dsadm import -i /local/ds /var/tmp/1M.ldif dc=example,dc=com

...

$ du -hs /local/ds/db/example

1.5G /local/ds/db/example

Summary of Observations
Table 6–3 records what was observed in this example. It includes neither server process size, nor
default database cache file size.

Note – Your observations made through empirical testing for your deployment are likely to
differ significantly from those shown here.

TABLE 6–3 Sizing Summary

Number of Entries LDIF File Size
Disk with Default
Indexes

Disk with Five
Additional Indexes Database Cache Entry Cache

01 n/a n/a n/a n/a n/a

10,000 5.7 megabytes 19 megabytes 26 megabytes 32 megabytes 55 megabytes

100,000 57 megabytes 142 megabytes 163 megabytes 200 megabytes 550 megabytes

1,000,000 573 megabytes 1300 megabytes 1500 megabytes 1700 megabytes
(default
indexing)

n/a

1 The suffix has been created, but is empty.

In an actual deployment, you may have significantly larger entries and more indexed attributes.
Do your own empirical testing and tuning before ordering hardware.

Operating System Tuning For Directory Server
Default system settings do not necessarily result in top directory service performance. This
section addresses how to tune the operating system for top performance.

■ “Operating System Version and Patch Support” on page 103
■ “Basic Security Checks” on page 103

Operating System Tuning For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008102

■ “Accurate System Clock Time” on page 104
■ “Restart When System Reboots” on page 105
■ “System-Specific Tuning With The idsktune Command” on page 105

Operating System Version and Patch Support
See Sun Java System Directory Server Enterprise Edition 6.3 Release Notes for an updated list of
supported operating systems.

You want to maintain overall system security. You also want to ensure proper Directory Server
operation. You therefore install the latest recommended system patches, service packs, or fixes.
See Sun Java System Directory Server Enterprise Edition 6.3 Release Notes for an updated list of
the latest patches to apply for your platform.

Basic Security Checks
The recommendations in this section do not eliminate all risk. Instead, the recommendations
are intended as a short checklist to help you limit typical security risks.
■ Isolate and firewall the system. If at all possible, isolate the system where Directory Server

runs from the public Internet with a network firewall.
■ Do not allow dual boot. Do not run other operating systems on the system that runs a

production Directory Server. Other systems can permit access to files, which you should not
allow.

■ Use strong passwords. Use a root password at least eight characters long. The password
should include punctuation or other non-alphabetic characters.
You can use the Strong Password Check server plug-in to refuse weak passwords. The
dsconf server property pwd-strong-check-enabled can be used to turn the plug-in on.
If you choose to use longer operating system passwords, you might have to configure the
way passwords are handled by the system. See your operating system documentation for
instructions.

■ Use a safe user and group ID for the server. For security reasons, do not run Directory Server
with super user privileges.
You can, for example, use the UNIX commands groupadd and useradd to create a user and
group without login privileges. You can then run the server as this user and group.
For example, to add a group that is named servers, do the following.

groupadd servers

To add a user named server1 as a member of the group servers, use the following
command.

Operating System Tuning For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 103

useradd -g servers -s /bin/false -c "server1"

A particular deployment can call for sharing Directory Server files with other servers, such
as a messaging server. In such a deployment, consider running the servers with the same
user, group ID.

■ Use the core facility. To facilitate debugging, you can allow processes running with this
user, group ID to dump core. Use a utility such as the Solaris command coreadm. For
example, you can enable Directory Server to generate core files by allowing setuid
processes to do so, and updating the coreadm configuration:

coreadm -e proc-setid

coreadm -u

When scripting server startup, you can add the following line to your startup script. The line
allows Directory Server to generate core files of the form core.ns-slapd.pid, where pid is
the process ID.

coreadm -p core.%f.%p $$

■ Disable unnecessary services. For top performance with less risk, dedicate the system to
Directory Server. As explained elsewhere in this guide, do not run Directory Service Control
Center on the same system. When you run additional services, especially network services,
you negatively affect server performance and scalability. You can also thereby increase
security risks.
Disable as many network services as possible. Directory Server does not require file sharing
and other services. Disable services such as IP Routing, Mail, NetBIOS, NFS, RAS, Web
Publishing, and Windows Network Client services. Consider disabling telnet, and ftp.
As with many network services, telnet and ftp pose security risks. These two services are
particularly dangerous, because the commands transmit user passwords in clear text over
the network. Work around the need for telnet and ftp by using clients such as Secure
Shell, ssh, and Secure FTP, sftp, instead. See your operating system documentation for
details on disabling network services.
If the Directory Server instance does not provide the naming service for the network,
consider enabling a naming service for the system. Directory Server then uses the naming
service for example when resolving ACIs.

Accurate System Clock Time
Ensure the system clock is reasonably in sync with other systems. Good clock synchronization
facilitates replication. Good synchronization also facilitates correlation of date and time stamps
in log files between systems. Consider using a Network Time Protocol, NTP, client to set the
correct system time.

Operating System Tuning For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008104

Restart When System Reboots
You can enable a server instance to restart at system boot time by using the dsadm command.
For example, use the dsadm enable-service command on Solaris 10 and Windows systems.
On other systems, use the dsadm autostart command. If you did not install from native
packages, refer to your operating system documentation for help ensuring the server starts at
system boot time.

When possible, stop Directory Server with the dsadm command, or from DSCC. If the Directory
Server is stopped abruptly during system shutdown, there is no way to guarantee that all data
has been written to disk correctly. When Directory Server restarts, it must therefore verify the
database integrity. This process can take some time.

Furthermore, consider using a logging option with your file system. File system logging
generally both improves write performance, and also decreases the time required to perform a
file system check. The system must check the file system when the file system is not cleanly
unmounted during a crash. Also, consider using RAID for storage.

System-Specific Tuning With The idsktuneCommand
The idsktune(1M) utility that is provided with the product can help you diagnose basic system
configuration shortcomings. The utility offers recommendations for tuning the system to
support high performance directory services. The utility does not actually implement any of the
recommendations. The recommendations should be implemented by a qualified system
administrator.

When you run the utility as root, idsktune gathers information about the system. The utility
displays notices, warnings, and errors with recommended corrective actions. The idsktune
command checks the following.

■ Operating system and kernel versions are supported for this release.
■ Available memory, and available disk space meet minimum requirements for typical use.
■ System resource limits meet minimum requirements for typical use.
■ Required patches are installed.

Tip – Fix at minimum all ERROR conditions before installing Directory Server software on a
system intended for production use.

Individual deployment requirements can exceed minimum requirements. You can provide
more resources than the resources identified as minimum system requirements by the
idsktune utility.

Operating System Tuning For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 105

Consider local network conditions and other applications before implementing specific
recommendations. Refer to the operating system documentation for additional tips on tuning
network settings.

File Descriptor Settings
Directory Server uses file descriptors when handling concurrent client connections. A low
maximum number of file descriptors that are available for the server process can thus limit the
number of concurrent connections. Recommendations that concern the number of file
descriptors therefore relate to the number of concurrent connections Directory Server can
handle.

On Solaris systems, the number of file descriptors available is configured through the
rlim_fd_max parameter. Refer to the operating system documentation for further instructions
on modifying the number of available file descriptors.

Transmission Control Protocol (TCP) Settings
Specific network settings depend on the platform. On some systems, you can enhance Directory
Server performance by modifying TCP settings.

Note – First deploy your directory service, then consider tuning these parameters, if necessary.

This section discusses the reasoning behind idsktune recommendations that concern TCP
settings, and provides a method for tuning these settings on Solaris 10 systems.

Inactive Connections

Some systems allow you to configure the interval between transmission of keepalive packets.
This setting can determine how long a TCP connection is maintained while inactive and
potentially disconnected. When set too high, the keepalive interval can cause the system to use
unnecessary resources to keep connections for clients that have become disconnected. For most
deployments, set this parameter to a value of 600 seconds. This value, which is 600,000
milliseconds, or 10 minutes, allows more concurrent connections to Directory Server.

When set too low, however, the keepalive interval can cause the system to drop connections
during transient network outages.

On Solaris systems, this time interval is configured through the tcp_keepalive_interval
parameter.

Operating System Tuning For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008106

Outgoing Connections

Some systems allow you to configure how long a system waits for an outgoing connection to be
established. When set too high, establishing outgoing connections to destination servers such as
replicas not responding quickly can cause long delays. For Intranet deployments on fast,
reliable networks, you can set this parameter to a value of 10 seconds to improve performance.
Do not, however, use such a low value on networks with slow, unreliable, or WAN connections,
however.

On Solaris systems, this time interval is configured through the tcp_ip_abort_cinterval
parameter.

Retransmission Timeout

Some systems allow you to configure the initial time interval between retransmission of packets.
This setting affects the wait before retransmission of an unacknowledged packet. When set too
high, clients can be kept waiting on lost packets. For Intranet deployments on fast, reliable
networks, you can set this parameter to a value of 500 milliseconds to improve performance. Do
not, however, use such a low value on networks with round trip times of more than 250
milliseconds.

On Solaris systems, this time interval is configured through the
tcp_rexmit_interval_initial parameter.

Sequence Numbers

Some systems allow you to configure how the system handles initial sequence number
generation. For extranet and Internet deployments, set this parameter so initial sequence
number generation is based on RFC 1948 to prevent sequence number attacks. In such
environments, other TCP tuning settings mentioned here are not useful.

On Solaris systems, this behavior is configured through the tcp_strong_iss parameter.

Operating System Tuning For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 107

Tuning TCP Settings on Solaris 10 Systems

On Solaris 10 systems, the simplest way to tune TCP settings is to create a simple SMF service as
follows:

■ Create an SMF profile for Directory Server tuning.
■ Edit the following xml file according to your environment and save the file as

/var/svc/manifest/site/ndd-nettune.xml.

<?xml version="1.0"?>
<!DOCTYPE service_bundle SYSTEM "/usr/share/lib/xml/dtd/ service_bundle.dtd.1">
<!--

ident "@(#)ndd-nettune.xml 1.0 04/09/21 SMI"
-->

<service_bundle type=’manifest’ name=’SUNWcsr:ndd’>

<service

name=’network/ndd-nettune’

type=’service’

version=’1’>

<create_default_instance enabled=’true’ />

<single_instance />

<dependency

name=’fs-minimal’

type=’service’

grouping=’require_all’

restart_on=’none’>

<service_fmri value=’svc:/system/filesystem/minimal’ />

</dependency>

<dependency

name=’loopback-network’

grouping=’require_any’

restart_on=’none’

type=’service’>

<service_fmri value=’svc:/network/loopback’ />

</dependency>

<dependency

name=’physical-network’

grouping=’optional_all’

restart_on=’none’

type=’service’>

Operating System Tuning For Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008108

<service_fmri value=’svc:/network/physical’ />

</dependency>

<exec_method

type=’method’

name=’start’

exec=’/lib/svc/method/ndd-nettune’

timeout_seconds=’3’ />

</exec_method>

<exec_method

type=’method’

name=’stop’

exec=’:true’

timeout_seconds=’3’ >

</exec_method>

<property_group name=’startd’ type=’framework’>

<propval name=’duration’ type=’astring’ value=’transient’ />

</property_group>

<stability value=’Unstable’ />

<template>

<common_name>

<loctext xml:lang=’C’>

ndd network tuning

</loctext>

</common_name>

<documentation>

<manpage title=’ndd’ section=’1M’

manpath=’/usr/share/man’ />

</documentation>

</template>

</service>

</service_bundle>

■ Before you import the ndd-nettune.xml configuration, verify that the syntax is correct. You
can do this by running the following command:

$ svccfg validate /var/svc/manifest/site/ndd-nettune.xml

■ Import the configuration by running the following command:

$ svccfg import /var/svc/manifest/site/ndd-nettune.xml

For more information see the svccfg(1M) man page.

Operating System Tuning For Directory Server

Chapter 6 • Tuning System Characteristics and Hardware Sizing 109

■ Copy the following shell script into /lib/svc/method/ndd-nettune.

#!/sbin/sh

#

ident "@(#)ndd-nettune.xml 1.0 01/08/06 SMI"

. /lib/svc/share/smf_include.sh

. /lib/svc/share/net_include.sh

Make sure that the libraries essential to this stage of booting can be found.

LD_LIBRARY_PATH=/lib; export LD_LIBRARY_PATH

echo "Performing Directory Server Tuning..." >> /tmp/smf.out

/usr/sbin/ndd -set /dev/tcp tcp_conn_req_max_q 1024

/usr/sbin/ndd -set /dev/tcp tcp_keepalive_interval 600000

/usr/sbin/ndd -set /dev/tcp tcp_ip_abort_cinterval 10000

/usr/sbin/ndd -set /dev/tcp tcp_ip_abort_interval 60000

Reset the library path now that we are past the critical stage

unset LD_LIBRARY_PATH

■ Run svcadm to enable nettune (for more information, see the svcadm(1M) man page).
■ Run svcs -x (for more information see the svcs(1) man page).

Physical Capabilities of Directory Server
Following are the physical capabilities of Directory Server that specify its scalability:

■ Process size. Depending on the operating system, the 32-bit versions of Directory Server
supports 2GB – 4GB process size. The process size on 64-bit versions of Directory Server is
defined by the amount of physical memory available on the machine. It is tested with 128GB
process size.

■ Number of LDAP entries. The total number of LDAP entries that can be created on a single
server instance is 2^32 -1, that is, 4G entries.

■ Size of each entry. The size of a single record in LDAP server is 4GB as per the DB itself. The
size of an entry also depends on maximum size of the LDAP request (maxbersize). Its
maximum value is 2 GB.

■ Number of LDAP connections. The number of LDAP connections depends on the number
of file descriptors that a process can open. Note that too many open connections tend to
degrade performances.

■ Size of LDAP Server (Berkery DB). The size of an LDAP server is defined by the size of your
filesystem.

Physical Capabilities of Directory Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008110

Identifying Security Requirements

How you secure data in Directory Server Enterprise Edition has an impact on all other areas of
design. This chapter describes how to analyze your security needs and explains how to design
your directory service to meet those needs.

This chapter covers the following topics:

■ “Security Threats” on page 112
■ “Overview of Security Methods” on page 112
■ “Determining Authentication Methods” on page 113
■ “Proxy Authorization” on page 117
■ “Designing Password Policies” on page 118
■ “Password Synchronization With Windows” on page 119
■ “Determining Encryption Methods” on page 120
■ “Designing Access Control With ACIs” on page 122
■ “Designing Access Control With Directory Proxy Server” on page 126
■ “Grouping Entries Securely” on page 127
■ “Using Firewalls” on page 128
■ “Running as Non-Root” on page 128
■ “Other Security Resources” on page 128

7C H A P T E R 7

111

Security Threats
The most typical threats to directory security include the following:

■ Eavesdropping. Information remains intact, but its privacy is compromised. For example,
someone could learn your credit card number, record a sensitive conversation, or intercept
classified information.

■ Unauthorized access. This threat includes unauthorized access to data through
data-fetching operations. Unauthorized users might also gain access to reusable client
authentication information by monitoring the access of others. The Directory Server
Enterprise Edition authentication methods, password policies, and access control
mechanisms provide effective ways of preventing unauthorized access.

■ Tampering. Information in transit is changed or replaced and then sent on to the recipient.
For example, someone could alter an order for goods or change a person’s resume.

This threat includes unauthorized modification of data or configuration information. If
your directory cannot detect tampering, an attacker might alter a client’s request to the
server. The attacker might also cancel the request or change the server’s response to the
client. The Secure Socket Layer (SSL) protocol and similar technologies can solve this
problem by signing information at either end of the connection.

■ Impersonation. Information passes to a person who poses as the intended recipient.

Impersonation can take two forms, spoofing and misrepresentation.
■ Spoofing. A person or computer impersonates someone else. For example, a person can

pretend to have the mail address jdoe@example.com, or a computer can identify itself as
a site called www.example.com when it is not.

■ Misrepresentation. A person or organization misrepresents itself. For example, suppose
the site www.example.com pretends to be a furniture store when it is really just a site that
takes credit-card payments but never sends any goods.

■ Denial of service. An attacker uses the system resources to prevent these resources from
being used by legitimate users.

In a denial of service attack, the attacker’s goal is to prevent the directory from providing
service to its clients. Directory Server Enterprise Edition provides a way of preventing denial
of service attacks by setting limits on the resources that are allocated to a particular bind DN.

Overview of Security Methods
A security policy must be able to prevent sensitive information from being modified or
retrieved by unauthorized users, but easy enough to administer.

Security Threats

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008112

Directory Server Enterprise Edition provides the following security methods:

■ Authentication. Provides a means for one party to verify another’s identity. For example, a
client gives a password to Directory Server during an LDAP bind operation. As part of the
authentication process, password policies define the criteria that a password must satisfy to
be considered valid, for example, age, length, and syntax. Account inactivation disables a
user account, group of accounts, or an entire domain so that all authentication attempts are
automatically rejected.

■ Encryption. Protects the privacy of information. When data is encrypted, the data is
scrambled in a way that only the recipient can decode. The Secure Sockets Layer (SSL)
maintains data integrity by encrypting information in transit. If encryption and message
digests are applied to the information being sent, the recipient can determine that the
information was not tampered with during transit. Attribute encryption maintains data
integrity by encrypting stored information.

■ Access control. Tailors the access rights that are granted to different directory users, and
provides a means of specifying required credentials or bind attributes.

■ Auditing. Enables you to determine if the security of your directory has been compromised.
For example, you can audit the log files maintained by your directory.

These security tools can be used in combination in your security design. You can also use other
features of the directory, such as replication and data distribution, to support your security
design.

Determining Authentication Methods
Directory Server Enterprise Edition supports the following authentication mechanisms:

■ “Anonymous Access” on page 114
■ “Simple Password Authentication” on page 114
■ “Simple Password Authentication Over a Secure Connection” on page 115
■ “Certificate-Based Client Authentication” on page 115
■ “SASL-Based Client Authentication” on page 116

The same authentication mechanism applies to all users, whether the users are people or
LDAP-aware applications.

Apart from the authentication mechanisms described above, this section also includes the
following information about authentication:

■ “Preventing Authentication by Account Inactivation” on page 116
■ “Preventing Authentication by Using Global Account Lockout” on page 116
■ “External Authentication Mappings and Services” on page 117

Determining Authentication Methods

Chapter 7 • Identifying Security Requirements 113

Anonymous Access
Anonymous access is the simplest form of directory access. Anonymous access makes data
available to any directory user, regardless of whether the user has authenticated.

Anonymous access does not allow you to track who is performing searches or what kind
searches are being performed, only that someone is performing searches. When you allow
anonymous access, anyone who connects to your directory can access the data. If you allow
anonymous access to data, and attempt to block a user or group from that data, the user can
access the data by binding to the directory anonymously.

You can restrict the privileges of anonymous access. Usually, directory administrators allow
anonymous access only for read, search, and compare privileges. You can also limit access to a
subset of attributes that contain general information such as names, telephone numbers, and
email addresses. Do not allow anonymous access to sensitive data, such as government
identification numbers, home telephone numbers and addresses, and salary information.

Anonymous access to the root DSE (base DN "") is required. Access to the root DSE enables
applications to discover the capabilities of the server, the supported security mechanisms, and
the supported suffixes.

Simple Password Authentication
If anonymous access is not set up, a client must authenticate to Directory Server to access the
directory contents. With simple password authentication, a client authenticates to the server by
providing a simple, reusable password.

The client authenticates to Directory Server through a bind operation in which the client
provides a distinguished name and credentials. The server locates the entry that corresponds to
the client DN, then checks whether the client's password matches the value stored with the
entry. If the password matches, the server authenticates the client. If the password does not
match, the authentication operation fails and the client receives an error message.

Note – The drawback of simple password authentication is that the password is transmitted in
clear text, which can compromise security. If a rogue user is listening, that user can impersonate
an authorized user.

Simple password authentication offers an easy way of authenticating users. However, you need
to restrict the use of simple password authentication to your organization’s intranet. This kind
of authentication does not offer the level of security that is required for transmissions between
business partners over an extranet or for transmissions with customers on the Internet.

Determining Authentication Methods

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008114

Simple Password Authentication Over a Secure
Connection
A secure connection uses encryption to make data unreadable to third parties while the data is
sent over the network between Directory Server and its clients. Clients can establish secure
connections in either of the following ways:

■ Binding to the secure port by using the Secure Socket Layer (SSL)
■ Binding to an insecure port with anonymous access, then sending the Start TLS control to

begin using Transport Layer Security (TLS)

In either case, the server must have a security certificate, and the client must be configured to
trust this certificate. The server sends its certificate to the client to perform server
authentication, using public-key cryptography. This results in the client knowing that it is
connected to the intended server and that the server is not being tampered with.

Then, for privacy, the client and server encrypt all data transmitted through the connection.
The client sends the bind DN and password on the encrypted connection to authenticate the
user. All further operations are performed with the identity of the user. The operations might
also be performed with a proxy identity if the bind DN has proxy rights to other user identities.
In all cases, the results of operations are encrypted when these results are returned to the client.

Certificate-Based Client Authentication
When establishing encrypted connections over SSL or TLS, you can also configure the server to
require client authentication. The client must send its credentials to the server to confirm the
identity of the user. The user's certificate, not the DN, is used to determine the bind DN. Client
authentication protects against user impersonation and is the most secure type of connection.

Certificate-based client authentication operates at the SSL, TLS layer only. To use a
certificate-based authentication ID with LDAP, you must use SASL EXTERNAL authentication
after establishing the SSL connection.

You can configure certificate-based client authentication by using the dsconf
get-server-prop command. See dsconf(1M) for more information.

Determining Authentication Methods

Chapter 7 • Identifying Security Requirements 115

SASL-Based Client Authentication
Client authentication during an SSL or TLS connection can also use the Simple Authentication
and Security Layer (SASL), a generic security interface, to establish the identity of the client.
Directory Server Enterprise Edition supports the following mechanisms through SASL:

■ DIGEST-MD5. This mechanism authenticates clients by comparing a hashed value sent by
the client with a hash of the user's password. However, because the mechanism must read
user passwords, all users wanting to be authenticated through DIGEST-MD5 must have
{CLEAR} passwords in the directory.

■ GSSAPI. The General Security Services API (GSSAPI) is available only on the Solaris
Operating System. It allows Directory Server to interact with the Kerberos V5 security
system to identify a user. The client application must present its credentials to the Kerberos
system, which in turn validates the user's identity to Directory Server.

■ EXTERNAL. This mechanism authenticates a user in LDAP based on the credentials
specified by an external security layer, such as SSL or TLS.

For more information, see “Using SASL DIGEST-MD5 in Clients” in Sun Java System Directory
Server Enterprise Edition 6.3 Administration Guide and “Using Kerberos SASL GSSAPI in
Clients” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Preventing Authentication by Account Inactivation
You can temporarily prevent authentication by inactivating a user account or a set of accounts.
When the account is inactivated, the user cannot bind to Directory Server, and authentication
operations fail. For more information, see “Manually Locking Accounts” in Sun Java System
Directory Server Enterprise Edition 6.3 Administration Guide.

Preventing Authentication by Using Global Account
Lockout
In this version of Directory Server, authentication failures with a password are monitored and
replicated. This enables rapid, global account lockout after a specified number of authentication
attempts with an invalid password. Global account lockout is supported in any of the following
cases:

■ Client applications bind to a single server in the topology only
■ The topology does not include any read-only consumers
■ Directory Proxy Server is used to control all bind traffic

Imagine a situation where all bind attempts are not directed to the same server, and the client
application performs bind attempts on multiple servers faster than lockout data can be
replicated. In the worst-case scenario, the client would be allowed the specified number of

Determining Authentication Methods

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008116

attempts on each server where the client attempted to bind. This situation would be unlikely if
the client application were driven by input from a human user. However, an automated client
built to attack a topology could exploit this deployment choice.

Prioritized replication can be used to minimize the impact of asynchronous replication latency
on intrusion detection. However, you might require account lockout immediately after the
specified number of failed bind attempts. In this situation, you must use Directory Proxy Server
to route all bind attempts on a particular entry to the same master replica. For information
about how to configure Directory Proxy Server to do this, see “Operational Affinity Algorithm
for Global Account Lockout” in Sun Java System Directory Server Enterprise Edition 6.3
Reference.

To retain a strictly local lockout policy in a replicated topology, you must maintain
compatibility with the 5.2 password policy. In this situation, the policy in effect must not be the
default password policy. Local lockout can also be achieved by restricting binds to read-only
consumers.

For detailed information about how global account lockout works, see “Global Account
Lockout” in Sun Java System Directory Server Enterprise Edition 6.3 Reference.

External Authentication Mappings and Services
Directory Server provides user account host mapping, which associates a network user account
with a Directory Server user account. This feature simplifies the management of both user
accounts. Host mapping is required for users who are externally authenticated.

Proxy Authorization
Proxy authorization is a special form of access control. Proxy authorization or proxy
authentication is when an application is forced to use a specific username/password
combination to gain access to the server.

With proxy authorization, an administrator can request access to Directory Server by assuming
the identity of a regular user. The administrator binds to the directory with his own credentials
and is granted the rights of the regular user. This assumed identity is called the proxy user. The
DN of that user is called the proxy DN. The proxy user is evaluated as a regular user. Access is
denied if the proxy user entry is locked or inactivated or if the password has expired.

An advantage of the proxy mechanism is that you can enable an LDAP application to use a
single bind to service multiple users who are accessing Directory Server. Instead of each user
having to bind and authenticate, the client application binds to Directory Server and uses proxy
rights.

For more information, see Chapter 7, “Directory Server Access Control,” in Sun Java System
Directory Server Enterprise Edition 6.3 Administration Guide.

Proxy Authorization

Chapter 7 • Identifying Security Requirements 117

Designing Password Policies
A password policy is a set of rules that govern how passwords are administered in a system.
Directory Server supports multiple password policies, as well as a default password policy.

Several elements of the password policy are configurable, enabling you to design a policy that
suits the security requirements of your organization. Configuration of the password policy is
described in Chapter 8, “Directory Server Password Policy,” in Sun Java System Directory Server
Enterprise Edition 6.3 Administration Guide. The individual attributes available for configuring
password policies are described in the pwpolicy(5dssd) man page.

This section is divided into the following topics:

■ Password policy options
■ Password policies in a replicated environment
■ Password policy migration

Password Policy Options
The following password policy options are provided:

■ A default password policy is applied. The parameters of this default policy can be changed.
■ An additional, specialized password policy can be applied to a particular user.
■ An additional, specialized password policy can be applied to a set of users by using the CoS

and Roles functionality. Password policies cannot be applied to static groups.

Password Policies in a Replicated Environment
Configuration information for the default password policy is not replicated. Instead, it is part of
the server instance configuration. If you modify the default password policy, the same
modifications must be made on each server in the topology. If you need a password policy that
is replicated, you must define a specialized password policy under a part of the directory tree
that is replicated.

All password information that is stored in the user entry is replicated. This information
includes the current password, password history, password expiration dates and so forth.

Designing Password Policies

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008118

Consider the following impact of password policies in a replicated environment:

■ A user with an impending password expiration receives a warning from every replica to
which the user binds before changing his password.

■ When a user changes his password, the new password might take a while to be updated on
all replicas. A situation could arise where a user changes his password and then immediately
rebinds to one of the consumer replicas with the new password. In this case, the bind could
fail until the replica receives the updated password. This situation can be alleviated using
prioritized replication to force password changes to be replicated first.

Password Policy Migration
The Directory Server Enterprise Edition password policy configuration settings differ from the
password policy configuration settings provided with the 5.x version of Directory Server. If
your topology includes servers that run different versions of Directory Server, see “New
Password Policy” in Sun Java System Directory Server Enterprise Edition 6.3 Migration Guide for
information about how to migrate password policy settings.

Password Synchronization With Windows
Identity Synchronization for Windows synchronizes user account information, including
passwords, between Directory Server and Windows. Both Windows Active Directory and
Windows NT are supported. Identity Synchronization for Windows helps build a scalable and
security-enriched password synchronization solution for small, medium, and large enterprises.

This solution provides the following:

■ Synchronization of account creation, modification, inactivation, and deletion between
Active Directory, Windows NT, and Directory Server

■ Integration with disparate and proprietary directory sources to synchronize native
password changes

For more information about using Identity Synchronization for Windows in your deployment,
see the Sun Java System Identity Synchronization for Windows 6.0 Deployment Planning Guide.

Password Synchronization With Windows

Chapter 7 • Identifying Security Requirements 119

Determining Encryption Methods
Encryption helps to protect data in transit, as well as stored data. This section describes the
following methods of data encryption:
■ “Securing Connections With SSL” on page 120
■ “Encrypting Stored Attributes” on page 120

Securing Connections With SSL
Security design involves more than an authentication scheme for identifying users and an
access control scheme for protecting information. You must also protect the integrity of
information between servers and client applications while it is being sent over the network.

To provide secure communications over the network, you can use both the LDAP and DSML
protocols over the Secure Sockets Layer (SSL). When SSL is configured and activated, clients
connect to a dedicated secure port where all communications are encrypted after the SSL
connection is established. Directory Server and Directory Proxy Server also support the Start
Transport Layer Security (Start TLS) control. Start TLS allows the client to initiate an encrypted
connection over the standard LDAP port.

For an overview of SSL and TLS in Directory Server, see Chapter 2, “Directory Server Security,”
in Sun Java System Directory Server Enterprise Edition 6.3 Reference.

Encrypting Stored Attributes
Attribute encryption concerns the protection of stored data. This section describes the attribute
encryption functionality, and covers the following topics:
■ “What Is Attribute Encryption?” on page 120
■ “Attribute Encryption Implementation” on page 121
■ “Attribute Encryption and Performance” on page 122

What Is Attribute Encryption?
Directory Server Enterprise Edition provides various features to protect data at the access level,
including password authentication, certificate-based authentication, SSL, and proxy
authorization. However, the data stored in database files, backup files, and LDIF files must also
be protected. The attribute encryption feature prevents users from accessing sensitive data
while the data is stored.

Attribute encryption enables certain attributes to be stored in encrypted form. Attribute
encryption is configured at the database level. Thus, after an attribute is encrypted, the attribute
is encrypted in every entry in the database. Because attribute encryption occurs at the attribute
level (not the entry level), the only way to encrypt an entire entry is to encrypt all of its
attributes.

Determining Encryption Methods

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008120

Attribute encryption also enables you to export data to another database in an encrypted
format. The purpose of attribute encryption is to protect sensitive data only when the data is
being stored or exported. Therefore, the encryption is always reversible. Encrypted attributes
are decrypted when returned through search requests.

The following figure shows a user entry being added to the database, where attribute encryption
has been configured to encrypt the salary attribute.

Attribute Encryption Implementation
The attribute encryption feature supports a wide range of encryption algorithms. Portability
across different platforms is ensured. As an additional security measure, attribute encryption
uses the private key of the server’s SSL certificate to generate its own key. This key is then used to
perform the encryption and decryption operations. To be able to encrypt attributes, a server

dn: uid=CDaniels,ou=People,dc=example,
dc=COM
changetype: add
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectClass: inetorgperson
sn: Daniels
cn: Charlene Daniels
uid: CDaniels
salary: $64,000

Entry in Database

uid=CDaniels,ou=People, dc=example,dc=COM
uid=CDaniels
givenName=Charlene
objectClass= op
objectClass=person
objectClass=organizationalPerson
objectClass=inetorgperson
sn=Daniels
cn=Charlene Daniels
salary={DES}2qX28AERbpL8e+Ss2ElnZ4crUb

uid=CDaniels,ou=People, dc=example,dc=COM
uid=CDaniels
givenName=Charlene
objectClass=top
objectClass=person
objectClass=organizationalPerson
objectClass=inetorgperson
sn=Daniels
cn=Charlene Daniels
salary=$64,000

ldapmodify ldapsearch

Database

FIGURE 7–1 Attribute Encryption Logic

Determining Encryption Methods

Chapter 7 • Identifying Security Requirements 121

must be running over SSL. The SSL certificate and its private key are stored securely in the
database and protected by a password. This key database password is required to authenticate to
the server. The server assumes that whoever has access to this key database password is
authorized to export decrypted data.

Note that attribute encryption only protects stored attributes. If you are replicating these
attributes, replication must be configured over SSL to protect the attributes during transport.

If you use attribute encryption, you cannot use the binary copy feature to initialize one server
from another server.

Attribute Encryption and Performance
While attribute encryption offers increased data security, this feature does impact performance.
Use attribute encryption only to encrypt particularly sensitive attributes.

Sensitive data can be accessed directly through index files. Thus, you must encrypt the index
keys corresponding to the encrypted attributes, to ensure that the attributes are fully protected.
Indexing already has a performance impact, without the added cost of encrypting index keys.
Therefore, configure attribute encryption before data is imported or added to the database for
the first time. This procedure ensures that encrypted attributes are indexed as such from the
outset.

Designing Access Control With ACIs
Access control enables you to specify that certain clients have access to particular information,
while other clients do not. You implement access control using one or more access control lists
(ACLs). ACLs consist of a series of access control instructions (ACIs) that either allow or deny
permissions to specified entries and their attributes. Permissions include the ability to read,
write, search, proxy, add, delete, compare, import and export.

By using an ACL, you can set permissions for the following:

■ The entire directory
■ A particular subtree of the directory
■ Specific entries in the directory
■ A specific set of entry attributes
■ Any entry that matches a given LDAP search filter

In addition, you can set permissions for a specific user, for all users that belong to a group, or for
all users of the directory. You can also define access for a network location, such as an IP address
or a DNS name.

This section provides an overview of the Directory Server access control mechanism. For
detailed information about configuring access control and ACIs, see Chapter 7, “Directory

Designing Access Control With ACIs

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008122

Server Access Control,” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide. For information about the architecture of the access control mechanism,
see “How Directory Server Provides Access Control” in Sun Java System Directory Server
Enterprise Edition 6.3 Reference.

Default ACIs
The default behavior of Directory Server is to deny access unless there is a specific ACI that
grants access. therefore, if no ACIs are defined, all access to the server is denied.

When you install Directory Server or when you add a new suffix, several default ACIs are
defined automatically in the root DSE. These ACIs can be modified to suit your security
requirements.

For details on the default ACIs and how to modify them, see “How Directory Server Provides
Access Control” in Sun Java System Directory Server Enterprise Edition 6.3 Reference.

ACI Scope
Directory Server 6.x includes two major changes to ACI scope.
■ Ability to specify the scope of an ACI. In Directory Server 5.x, you could not specify the

scope of an ACI. ACIs automatically applied to the entry that contained the ACI and all of its
subtree. Therefore, it was necessary to use deny ACIs in several cases. Deny ACIs can be
difficult to manage, particularly when a deny ACI and an allow ACI apply to a single entry.
In Directory Server 6.x, you can specify the scope of an ACI, that is, you can use allow ACIs
to control access. Although, deny-based access control might sometimes be unavoidable or
simpler to configure, the use of deny ACIs is generally discouraged. For information about
how to specify the scope of an ACI, see Chapter 7, “Directory Server Access Control,” in Sun
Java System Directory Server Enterprise Edition 6.3 Administration Guide.

■ Root ACIs now apply to the root entry and its entire subtree. In Directory Server 5.x, ACIs
located in the root DSE applied to the root entry only and not its children. ACIs placed in
any other entry applied to the entry that contained the ACI and all of its subtree. In
Directory Server Enterprise Edition ACIs placed in the root entry are treated like ACIs
placed anywhere else.
The new root ACIs have an obvious security advantage. Administrators no longer have to
bind as the Directory Manager to perform certain operations. Administrators can now be
forced to bind by using strong authentication such as SSL. When configuring ACIs that are
intended to apply only to the root entry, the scope of the ACI must now specifically be set to
base.

The change in ACI scope has implications for migration. If you are migrating to Directory
Server 6.x from a 5.x version of Directory Server, see “Changes to ACIs” in Sun Java System
Directory Server Enterprise Edition 6.3 Migration Guide.

Designing Access Control With ACIs

Chapter 7 • Identifying Security Requirements 123

Obtaining Effective Rights Information
The access control model provided by Directory Server can grant access to users through many
different mechanisms. However, this flexibility can make your security policy fairly complex.
Several parameters can define the security context of a user, including IP address, machine
name, time of day, and authentication method.

To simplify the security policy, Directory Server enables you to request and list the effective
access rights that a given user has to specified directory entries and attributes. For more
information, see “Viewing Effective Rights” in Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide.

Tips on Using ACIs
The following tips can simplify your directory security model and improve directory
performance:
■ Minimize the number of ACIs in your directory, and use macro ACIs where possible.

Although Directory Server can evaluate over 50,000 ACIs, managing a large number of ACI
statements can be difficult. Excessive ACIs can also have a negative impact on memory
consumption.

■ Balance allow and deny permissions.
The default rule is to deny access to any user who has not been specifically granted access.
However, you can reduce the number of ACIs by using one ACI that allows access close to
the root of the tree and using a small number of deny ACIs close to the leaf entries. This
approach can prevent excessive allow ACIs close to the leaf entries.

■ Identify the smallest set of attributes on any given ACI.
If you allow or deny access to a subset of attributes on an object, determine whether the
smallest list is the set of attributes that are allowed or the set of attributes that are denied.
Then express your ACI so that you are managing the smallest list.
For example, the people object class contains dozens of attributes. To allow a user to update
just a few attributes, write your ACI so that it allows write access for just those few attributes.
To allow a user to update all but one or two attributes, create the ACI so that it denies write
access for those one or two attributes.

■ Use LDAP search filters cautiously.
Search filters do not directly name the object for which you are managing access. Search
filters can therefore result in unexpected results especially as your directory becomes more
complex. If you use search filters in ACIs, run an ldapsearch operation with the same filter.
This action will ensure that you know what the results of the changes mean to your
directory.

■ Do not duplicate ACIs in different parts of your directory tree.

Designing Access Control With ACIs

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008124

Look for overlapping ACIs. Imagine that you have an ACI at your directory root point that
allows a group write access to the commonName and givenName attributes. Imagine also that
you have another ACI that allows the same group write access to just the commonName
attribute. In this scenario, consider reworking your ACIs so that only one attribute grants
write access for the group.
As your directory grows more complicated, accidental overlapping of ACIs becomes
increasingly common. If you avoid ACI overlap, security management becomes easier and
the total number of ACIs in your directory is reduced.

■ Name your ACIs.
While naming ACIs is optional, giving each ACI a short, meaningful name makes managing
your security model easier.

■ Use standard attributes in user entries to determine access rights.
As far as possible, use information that is already part of standard user entries to define
access rights. If you must create special attributes, consider creating the attributes as part of
a role or Class of Service (CoS) definition. For more information about roles and CoS, see
Chapter 8, “Directory Server Groups and Roles,” in Sun Java System Directory Server
Enterprise Edition 6.3 Reference and Chapter 9, “Directory Server Class of Service,” in Sun
Java System Directory Server Enterprise Edition 6.3 Reference.

■ Group ACIs as closely together as possible.
Limit ACI placement to your directory root point and to major directory branch points. If
you organize ACIs into groups, the total list of ACIs is easier to manage and the total
number of ACIs can be kept to a minimum.

■ Avoid using double negatives, such as deny write if the bind DN is not equal to cn=Joe.
Although this syntax is acceptable to the server, the syntax can be confusing for an
administrator.

Designing Access Control With Connection Rules
Connection rules enable you to prevent selected clients from establishing connections to
Directory Server. The purpose of connection rules is to prevent a denial-of-service attack
caused by malicious or poorly designed clients that connect to Directory Server and flood the
server with requests.

Connection rules are established at the TCP level by defining TCP wrappers. For more
information about TCP wrappers, see “Client-Host Access Control Through TCP Wrapping”
in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Designing Access Control With Connection Rules

Chapter 7 • Identifying Security Requirements 125

Designing Access Control With Directory Proxy Server
Directory Proxy Server connection handlers provide a method of access control that enables
you to classify incoming client connections. In this way, you can restrict the operations that can
be performed based on how the connection has been classified.

You can use this functionality, for example, to restrict access to clients that connect from a
specified IP address only. The following figure shows how you can use Directory Proxy Server
connection handlers to deny write operations from specific IP addresses.

How Connection Handlers Work
A connection handler consists of a list of criteria and a list of policies. Directory Proxy Server
determines a connection's class membership by matching the origination attributes of the
connection with the criteria of the class. When the connection has been matched to a class,
Directory Proxy Server applies the policies that are contained in that class to the connection.

LDAP Client
198.214.11.106

Directory Proxy Server

Directory Server

Connection Handlers

LDAP Client
198.214.11.15

Write Access Denied

Write Access Granted

FIGURE 7–2 Directory Proxy Server Connection Handler Logic

Designing Access Control With Directory Proxy Server

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008126

Connection handler criteria can include the following:

■ Client physical address
■ Domain name or host name
■ Client DN pattern
■ Authentication method
■ SSL

The following policies can be associated with a connection handler:

■ Administrative limits policy. Enables you to set certain limits on, for example, the number
of open connections from clients of a specific class.

■ Content adaptation policy. Enables you to restrict the kind of operations a connection can
perform, for example, attribute renaming.

■ Data distribution policy. Enables you to use a specific distribution scheme for a
connection.

For more information about Directory Proxy Server connection handlers and how to set them
up, see Chapter 20, “Connections Between Clients and Directory Proxy Server,” in Sun Java
System Directory Server Enterprise Edition 6.3 Reference.

Grouping Entries Securely
Roles and CoS require special consideration with regard to security.

Using Roles Securely
Not every role is suitable for use within a security context. When creating a role, consider how
easily it can be assigned to and removed from an entry. Sometimes, users should be able to add
themselves to or remove themselves from a role. However, in some security contexts such open
roles are inappropriate. For more information, see “Directory Server Roles” in Sun Java System
Directory Server Enterprise Edition 6.3 Reference.

Using CoS Securely
Access control for reading applies to both the real attributes and the virtual attributes of an
entry. A virtual attribute generated by the Class of Service (CoS) mechanism is read like a
normal attribute. Virtual attributes should therefore be given read protection in the same way.
However, to make the CoS value secure, you must protect all of the sources of information the
CoS value uses: the definition entries, the template entries, and the target entries. The same is
true for update operations. Write access to each source of information must be controlled to

Grouping Entries Securely

Chapter 7 • Identifying Security Requirements 127

protect the value that is generated from these sources. For more information, see Chapter 9,
“Directory Server Class of Service,” in Sun Java System Directory Server Enterprise Edition 6.3
Reference.

Using Firewalls
Firewall technology is typically used to filter or block network traffic to and from an internal
network. If LDAP requests are coming from outside a perimeter firewall, you need to specify
what ports and protocols are allowed to pass through the firewall.

The ports and protocols that you specify depend on your directory architecture. As a general
rule, the firewall must be configured to allow TCP and UDP connections on ports 389 and 636.

Host-based firewalls can be installed on the same server that is running Directory Server. The
rules for host-based firewalls are similar to the rules for perimeter defense firewalls.

Running as Non-Root
You can create and run server instances as a non-root user. By running server instances as a
non-root user, you limit any potential damage that an exploit could cause. Furthermore,
servers running as non-root users are subject to access control mechanisms on the operating
system.

Other Security Resources
For more information about designing a secure directory, see the following resources:

■ Sun Developer Security Resources
http://developers.sun.com/techtopics/security/index.html

■ Understanding and Deploying LDAP Directory Services. T. Howes, M. Smith, G. Good,
Macmillan Technical Publishing, 1999

■ SecurityFocus.com http://www.securityfocus.com/
■ Computer Emergency Response Team (CERT) Coordination Center http://www.cert.org/

Using Firewalls

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008128

http://developers.sun.com/techtopics/security/index.html
http://www.securityfocus.com/
http://www.cert.org/

Identifying Administration and Monitoring
Requirements

Directory Server Enterprise Edition administration has changed significantly since the 5.x
version of Directory Server. These changes are described in detail in the Sun Java System
Directory Server Enterprise Edition 6.3 Administration Guide.

This chapter provides an overview of these changes and describes the administrative decisions
that you must make in the planning phase of your deployment:

■ “Directory Server Enterprise Edition Administration Model” on page 129
■ “Designing Backup and Restore Policies” on page 131
■ “Designing a Logging Strategy” on page 138
■ “Designing a Monitoring Strategy” on page 140
■ “Data Administration With Directory Editor” on page 143

Directory Server Enterprise Edition Administration Model
Directory Server Enterprise Edition gives the administrator more control over instance creation
and administration. This control is achieved by using two new commands, dsadm and dsconf.
These commands provide all the functionality previously supplied by the directoryserver
command plus additional functionality.

The dsadm command enables the administrator to create, start, and stop a Directory Server
instance. This command combines all operations that require file system access to the Directory
Server instance. The command must be run on the machine that hosts the instance. It does not
perform any operation that requires LDAP access to the instance or access to an agent.

In the new administration model, a Directory Server instance is no longer tied to a ServerRoot.
Each Directory Server instance is a standalone directory that can be manipulated in the same
manner as an ordinary standalone directory.

The dsconf command combines the administration operations that require write access to
cn=config. The dsconf command is an LDAP client. It can only be executed on an active

8C H A P T E R 8

129

Directory Server instance. The command can be run remotely, enabling administrators to
configure multiple instances from a single remote machine.

Directory Proxy Server provides two comparable commands, dpadm and dpconf. The dpadm
command enables the administrator to create, start, and stop a Directory Proxy Server instance.
The dpconf command enables the administrator to configure Directory Proxy Server by using
LDAP and to access the Directory Server configuration through Directory Proxy Server.

In addition to these command-line utilities, Directory Server Enterprise Edition is integrated
into the Java Web Console. The Console enables Directory Server Enterprise Edition and other
Sun products to be managed from a centralized user interface. Directory Service Control Center
(DSCC) is a service of the Java Web Console that is specifically for managing Directory Servers
and Directory Proxy Servers. DSCC provides the same functionality as the command-line
utilities, as well as wizards that enable you to configure several servers simultaneously. In
addition, DSCC provides a replication topology drawing tool that enables you to monitor
replication topologies graphically. This tool simplifies replication monitoring by providing a
real-time view of individual masters, hubs, and consumers, and the replication agreements
between them.

Remote Administration
The Directory Server Enterprise Edition administration model, described in the previous
section, also enables remote administration of any Directory Server or Directory Proxy Server
in the topology. Servers can be administered remotely using both the command-line utilities
and the Java Web Console.

The dsadm and dpadm utilities cannot be run remotely. These utilities must be installed and run
on the same machine as the server instance that is being administered. For details of the
functionality provided with dsadm and dpadm, see the dsadm(1M) and dpadm(1M) man pages.

The dsconf and dpconf utilities can be run remotely. For details of the functionality provided
with dsconf and dpconf, see the dsconf(1M) and dpconf(1M) man pages.

The following figure illustrates how the new administration model facilitates remote
administration. This illustration shows that the console and configuration commands can be
installed and run remotely from the Directory Server and Directory Proxy Server instances. The
administration commands must be run locally to the instances.

Directory Server Enterprise Edition Administration Model

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008130

Designing Backup and Restore Policies
In any failure situation that involves data corruption or data loss, it is imperative that you have a
recent backup of your data. Avoid reinitializing servers from other servers where possible. For
information about how to back up data, seeChapter 9, “Directory Server Backup and Restore,”
in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

This section provides an overview of what to consider when planning a backup and recovery
strategy.

Firewall

Directory
Control Center

server1.example.com

dscfg

Console
Agent

dpadm

dpcfg

HTML Client HTML Client

LDAP
Client

LDAP
Client

Console
Agent

dsadm

server2.example.com server3.example.com

LDAP LDAP JMX JMX LDAP LDAP

DS
Instance

Files

DPS
Instance

Files

Directory
Server

daemon

Directory
Proxy Server

daemon

FIGURE 8–1 Directory Server Enterprise Edition Administration Model

Designing Backup and Restore Policies

Chapter 8 • Identifying Administration and Monitoring Requirements 131

High-Level Backup and Recovery Principles
Apply the following high-level principles when designing a backup strategy:

■ Identify the data that must be backed up.

For Directory Server Enterprise Edition this data includes the following:
■ Shared binaries and plug-ins
■ Certificate database files
■ Configuration files
■ Log files and the change log database
■ Schema files
■ User data

■ Ensure that your backup and recovery strategy includes the hardware, operating system,
and software components.

■ Decide whether you will keep binary backups or LDIF backups.
A general recommendation is that you keep both. For more information, see “Choosing a
Backup Method” on page 132 and “Choosing a Restoration Method” on page 136.

■ Build automation around backup and recovery tools, and ensure that automatic scripts are
maintained.
This strategy avoids unnecessary delays if you have to restore from a backup in an
emergency.

■ Determine a retention and rotation strategy.
This strategy includes how often you perform backups and how long you keep them. When
determining retention and rotation of backups, be aware of the purge delay and its impact
on backups in a replicated topology. As modifications occur on a supplier, changes are
recorded in the change log. Without a method of emptying the change log, its size would
continue to increase until the change log consumed all available disk space. By default,
changes are purged every seven days. This period is known as the purge delay. When a
change has been purged, the change can no longer be replicated. For this reason, make sure
that databases are backed up at least as often as the purge delay.

■ Use the backup and recovery tools provided with Directory Server Enterprise Edition rather
than merely performing a system backup and recovery.

Choosing a Backup Method
Directory Server Enterprise Edition provides two methods of backing up data: binary backup
and backup to an LDIF file. Both of these methods have advantages and limitations, and
knowing how to use each method will assist you in planning an effective backup strategy.

Designing Backup and Restore Policies

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008132

Binary Backup
Binary backup produces a copy of the database files, and is performed at the file-system level.
The output of a binary backup is a set of binary files containing all entries, indexes, the change
log, and the transaction log. A binary backup does not contain configuration data.

Binary backup is performed using one of the following commands:

■ dsadm backup must be run offline, that is, when the Directory Server instance is stopped.
The command must be run on the local server containing the Directory Server instance.

■ dsconf backup can be run online and remote to the Directory Server instance.

Binary backup has the following advantages:

■ All suffixes can be backed up at the same time.
■ Binary backup is significantly faster than a backup to LDIF.
■ The replication change log is backed up.

Binary backup has one limitation. Restoration from a binary backup can be performed only on
a server with an identical configuration.

This limitation implies the following:

■ Both machines must use the same hardware and the same operating system, including any
service packs or patches.

■ Both machines must have the same version of Directory Server installed, including binary
format (32 bits or 64 bits), service packs and patch levels.

■ Both servers must have the same directory tree that is divided into the same suffixes. The
database files for all suffixes must be copied together Individual suffixes cannot be copied.

■ Each suffix must have the same indexes configured on both servers, including virtual list
view (VLV) indexes. The database files for the suffixes must have the same name.

■ Each server must have the same suffixes configured as replicas. If fractional replication is
configured, fractional replication must be configured identically on all master servers.

■ Attribute encryption must not be used on either server.

At a minimum, you need to perform a regular binary backup on each set of coherent machines.
Coherent machines are machines that have an identical configuration, as defined previously.

Note – Because restoration from a local backup is easier, perform a binary backup on each
server.

These abbreviations are used in the remaining diagrams in this chapter:

M = master replica

Designing Backup and Restore Policies

Chapter 8 • Identifying Administration and Monitoring Requirements 133

RA = replication agreement

The following figure assumes that M1 and M2 have an identical configuration and that M3 and
M4 have an identical configuration. In this scenario, a binary backup would be performed on
M1 and on M3. In the case of failure, M1 or M2 could be restored from the binary backup of M1
(db1). M3 or M4 could be restored from the binary backup of M3 (db2). M1 and M2 could not
be restored from the binary backup of M3. M3 and M4 could not be restored from the binary
backup of M1.

For details on how to use the binary backup commands, see “Binary Backup” in Sun Java System
Directory Server Enterprise Edition 6.3 Administration Guide.

Backup to LDIF
Backup to LDIF is performed at the suffix level. The output of a backup to LDIF is a formatted
LDIF file, which is a copy of the data contained in the suffix. As such, this process takes longer
than a binary backup.

Backup to LDIF is performed using one of the following commands:

■ dsadm export must be run offline, that is, when the Directory Server instance is stopped.
This command must be run on the local server containing the Directory Server instance.

■ dsconf export can be run online and remote to the Directory Server instance.

M3 M4

M1 M2

dsadm backup

dsadm backup

RA RA

RA

RA

RA

db1

db2

FIGURE 8–2 Offline Binary Backup

Designing Backup and Restore Policies

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008134

Note – Replication information is backed up unless you use the -Q option when running these
commands.

The dse.ldif configuration file is not backed up in a backup to LDIF. To enable you to restore a
previous configuration, back this file up manually.

Backup to LDIF has the following advantages:

■ Backup to LDIF can be performed from any server, regardless of its configuration.
■ Restoration from an LDIF backup can be performed on any server, regardless of its

configuration.

Backup to LDIF has one limitation. In situations where rapid backup and restoration are
required, backup to LDIF might take too long to be viable.

You need to perform a regular backup by using backup to LDIF for each replicated suffix, on a
single master in your topology.

In the following figure, dsadm export is performed for each replicated suffix, on one master
only (M1).

For information about how to use the backup to LDIF commands, see “Backing Up to LDIF” in
Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

M3 M4

M1 M2

dsadm export

dsadm export

dc=us,dc=example,dc=com

dc=uk,dc=example,dc=com

RA RA

RA

RA

RA

FIGURE 8–3 Offline Backup to LDIF

Designing Backup and Restore Policies

Chapter 8 • Identifying Administration and Monitoring Requirements 135

Choosing a Restoration Method
Directory Server Enterprise Edition provides two methods of restoring data: binary restore and
restoration from an LDIF file. As with the backup methods, both of these methods have
advantages and limitations.

Binary Restore
Binary restore copies data at the database level. Binary restore is performed using one of the
following commands:

■ dsadm restore must be run offline, that is, when the Directory Server instance is stopped.
This command must be run on the local server containing the Directory Server instance.

■ dsconf restore can be run online and remote to the Directory Server instance.

Binary restore has the following advantages:

■ All suffixes can be restored at the same time.
■ The replication change log is restored.
■ Binary restore is significantly faster than restoring from an LDIF file.

Binary restore has the following limitations:

■ Restoration can be performed only on a server with an identical configuration, as defined in
“Binary Backup” on page 133. For more information about restoring data with the binary
restore feature, see “Binary Restore” in Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide.

■ If you are not aware that your database was corrupt when you performed the binary backup,
you risk restoring a corrupt database. Binary backup creates an exact copy of the database.

Binary restore is the preferred restoration method if the machines have an identical
configuration and time is a major consideration.

The following figure assumes that M1 and M2 have an identical configuration and that M3 and
M4 have an identical configuration. In this scenario, M1 or M2 can be restored from the binary
backup of M1 (db1). M3 or M4 can be restored from the binary backup of M3 (db2).

Designing Backup and Restore Policies

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008136

Restoration From LDIF
Restoration from an LDIF file is performed at the suffix level. As such, this process takes longer
than a binary restore. Restoration from LDIF can be performed using one of the following
commands:

■ dsadm import must be run offline, that is, when the Directory Server instance is stopped.
This command must be run on the local server containing the Directory Server instance.

■ dsconf import can be run online and remote to the Directory Server instance.

Restoration from an LDIF file has the following advantages:

■ This command can be performed on any server, regardless of its configuration.
■ A single LDIF file can be used to deploy an entire directory service, regardless of its

replication topology. This functionality is particularly useful for the dynamic expansion and
contraction of a directory service according to anticipated business needs.

Restoration from an LDIF file has one limitation. In situations where rapid restoration is
required, this method might take too long to be viable. For more information about restoring
data from an LDIF file, see “Importing Data From an LDIF File” in Sun Java System Directory
Server Enterprise Edition 6.3 Administration Guide.

In the following figure, dsadmin import is performed for each replicated suffix, on one master
only (M1).

M3 M4

M1 M2
dsadm restore

dsadm restore

RA RA

RA

RA

RA

dsadm restore

dsadm restore

db1

db2

FIGURE 8–4 Offline Binary Restore

Designing Backup and Restore Policies

Chapter 8 • Identifying Administration and Monitoring Requirements 137

Designing a Logging Strategy
Logging is managed and configured at the individual server level. While logging is enabled by
default, it can be reconfigured or disabled according to the requirements of your deployment.
Designing a logging strategy assists with planning hardware requirements. For more
information, see “Hardware Sizing For Directory Server” on page 74.

This section describes the logging facility of Directory Server Enterprise Edition.

Defining Logging Policies
Each Directory Server in a topology stores logging information in three files:

■ Access log. Lists the clients that connect to the server and the operations requested.
■ Error log. Provides information about server errors.
■ Audit log. Gives details about modifications to suffixes and to the configuration.

Each Directory Proxy Server in a topology stores logging information in two files:

■ Access log. Lists the clients that connect to Directory Proxy Server and the operations
requested.

■ Error log. Contains server error messages.

M3 M4

M1 M2

dsadm import

dsadm import

RA RA

RA

RA

RA

dc=us,dc=example,dc=com

dc=uk,dc=example,dc=com

FIGURE 8–5 Offline Restoration From LDIF

Designing a Logging Strategy

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008138

You can manage the log files for both Directory Server and Directory Proxy Server in these
ways:

■ Defining log file creation policies
■ Defining log file deletion policies
■ Manually creating and deleting log files
■ Defining log file permissions

Defining Log File Creation Policies
A log file creation policy enables you to periodically archive the current log and start a new log
file. Log file creation policies can be defined for Directory Server and Directory Proxy Server
from the Directory Control Center or using the command-line utilities.

When defining a log file creation policy, consider the following:

■ How many logs do you want to keep?
When this number of logs is reached, the oldest log file in the folder is deleted before a new
log is created. If this value is set to 1, the logs are not rotated and grow indefinitely.

■ What is the maximum size, in Megabytes, for each log file?
When a log file reaches this maximum size or the maximum age defined in the next item, the
file is archived. A new log file is started.

■ How often should the current log file be archived?
The default is every day.

■ At what time of day should log files be rotated?
Time-based rotation makes operations like log analysis and trending easier, because each
log file covers the same time period.

Log file rotation can also be based on a combination of criteria. For example, you can specify
that logs be rotated at 23h30 only if the file size is greater than 10 Megabytes.

For details on how to set up a log file creation policy, see “Configuring Logs for Directory
Server” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Defining Log File Deletion Policies
A log file deletion policy enables you to automatically delete old archived logs. Log file deletion
policies can be defined for Directory Server and Directory Proxy Server from the Directory
Service Control Center or using the command-line utilities. A log file deletion policy is not
applied unless you have defined a log file creation policy. Log file deletion will not work if you
have just one log file. The server evaluates and applies the log file deletion policy at the time of
log rotation.

Designing a Logging Strategy

Chapter 8 • Identifying Administration and Monitoring Requirements 139

When defining a log file deletion policy, consider the following:

■ What is the maximum size of the combined archived logs?
When the maximum size is reached, the oldest archived log is automatically deleted.

■ What is the minimum free disk space that should be available?
When the free disk space reaches this minimum value, the oldest archived log is
automatically deleted.

■ What is the maximum age of log files?
When a log file reaches this maximum age, the log file is automatically deleted.

For details on how to set up a log file deletion policy, see “Configuring Logs for Directory
Server” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Manually Creating and Deleting Log Files
Manual file rotation and forced log rotation do not apply to Directory Proxy Server.

If you do not want to define automatic creation and deletion policies for Directory Server, you
can create and delete log files manually. In addition, Directory Server provides a task that
enables you to rotate any log immediately, regardless of the defined creation policy. This
functionality might be useful if, for example, an event occurs that needs to be examined in more
detail. The immediate rotation function causes the server to create a new log file. The previous
file can therefore be examined without the server appending logs to this file.

For information about how to rotate logs manually and how to force log rotation, see “Rotating
Directory Server Logs Manually” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

Defining Permissions on Log Files
In 5.x version of Directory Server, log files could only be read by the directory manager.
Directory Server Enterprise Edition enables server administrators to define the permissions
with which log files are created. For information about how to define log file permissions, see
“Configuring Logs for Directory Server” in Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide.

Designing a Monitoring Strategy
An effective monitoring and event management strategy is crucial to a successful deployment.
Such a strategy defines which events should be monitored, which tools to use, and what action
to take should an event occur. If you have a plan for commonplace events, possible outages and
reduced levels of service can be prevented. This strategy improves the availability and quality of
service of your directory.

Designing a Monitoring Strategy

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008140

To design a monitoring strategy, do the following:

■ Select the appropriate monitoring tools. See “Monitoring Tools Provided With Directory
Server Enterprise Edition” on page 141.

■ Identify the key areas to be monitored in the directory architecture.
These areas are frequently the same as the sizing and tuning attributes. See “Identifying
Monitoring Areas” on page 142.

■ Define what triggers an event or alarm condition when monitoring the key performance
measure.
This strategy implies defining an acceptable level of performance or operation for each
performance measure.

■ Determine what action should be taken when an alarm condition occurs.

Monitoring Tools Provided With Directory Server
Enterprise Edition
This section provides a summary of the monitoring tools that are available in Directory Server
Enterprise Edition as well as additional tools that can be used to monitor server activity.

The monitoring areas described in “Identifying Monitoring Areas” on page 142 can be
monitored using one or more of these tools.

■ Command-line tools. Include operating system-specific tools to monitor performance such
as disk usage, LDAP tools such as ldapsearch to collect server statistics stored in the
directory, third-party tools, or custom shell or Perl scripts.

■ Directory Server and Directory Proxy Server logs. Include the access, audit, and error logs.
These logs can be monitored manually or parsed using custom scripts to extract monitoring
information that is relevant to your deployment. The Directory Server Resource Kit
provides a log analyzer tool, logconv, that enables you to analyze the access logs. The log
analyzer tool extracts usage statistics and counts the occurrences of significant events. For
more information about this tool, see logconv(1). For information about viewing and
configuring log files, see Chapter 15, “Directory Server Logging,” in Sun Java System
Directory Server Enterprise Edition 6.3 Administration Guide.

■ Directory Service Control Center (DSCC). Is a graphical user interface that enables you to
monitor directory operations in real time. DSCC provides general server information,
including a resource summary, current resource usage, connection status, and global
database cache information. It also provides general database information, such as the
database type, status, and entry cache statistics. Cache information and information relative
to each index file within the database is also provided. In addition, DSCC provides
information relative to the connections and the operations performed on each chained
suffix.

Designing a Monitoring Strategy

Chapter 8 • Identifying Administration and Monitoring Requirements 141

■ Replication monitoring tools. Include the command-line tools, repldisc, insync and
entrycmp.

These tools enable you to do the following:
■ Monitor the state of synchronization between a master replica and one or more

consumer replicas
■ Compare the same entry on two or more different replicas so that you can assess

replication status
■ Depict your complete replication topology, which is particularly beneficial when dealing

with complex directory deployments

For more information, see repldisc(1), insync(1) and entrycmp(1).

You can also monitor replication status by using the DCC. For more information about
monitoring replication, see “Getting Replication Status” in Sun Java System Directory Server
Enterprise Edition 6.3 Administration Guide.

■ Simple Network Management Protocol (SNMP). Is the standard mechanism for global
network control and monitoring, and enables network administrators to centralize network
monitoring activity.
For information about monitoring using an SNMP agent, see Chapter 16, “Directory Server
Monitoring,” in Sun Java System Directory Server Enterprise Edition 6.3 Administration
Guide.

■ Java ES Monitoring Framework. Enables monitoring of performance and other statistics
through JMX. For more information, see “Directory Server and CMM/JMX” in Sun Java
System Directory Server Enterprise Edition 6.3 Reference.

Identifying Monitoring Areas
What you monitor, and to what extent, depends on your specific deployment. In general,
however, include the following elements in your monitoring strategy:

■ Server activity such as resource usage, server status, and connection information
■ Database activity such as cache, transactions, locks, and log information
■ Disk status including available disk space and threshold information
■ Replication activity including status (whether or not replication is running), and the state

of synchronization
■ Indexing efficiency including unindexed searches, search filters, and frequently used

indexes
■ Security status including failed bind attempts, open connections, and effective rights

Designing a Monitoring Strategy

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008142

Data Administration With Directory Editor
The Directory Editor component of Directory Server Enterprise Edition is a Java web
application that enables you to manage directory data by using a web browser. Directory Editor
provides all users with remote access to directory data without having to install any client
software.

Directory Editor offers the following functionality:

■ Enables administrators and end users to create and edit directory users, groups, and
containers.

■ Supports several concurrent users, depending on the application server and underlying
hardware.

■ Supports large enterprise directory installations.
■ Enables customization, branding, and embedding of the interface.

Customization dynamically adapts to the Directory Server schema.
■ Enables customization through the configuration of forms, rather than by direct

programming.
■ Supports SSL-encrypted transmissions between the client browser and Directory Server.
■ Limits access to menus and functions, based on roles.

Roles are scanned to match group names. Roles have access to certain capabilities, which are
high-level actions such as Browse, Configure, Debug, Edit, Create, and Search.

■ Limits access to the data based on the existing ACIs in Directory Server. It is not necessary to
define ACIs that are specific to Directory Editor.

■ Enables paged display of large volumes of data, based on the virtual list view (VLV) index.

For details on installing, configuring, and using Directory Editor, see the Directory Editor
Documentation Collection (http://docs.sun.com/app/docs/coll/DirEdit_05q1).

Data Administration With Directory Editor

Chapter 8 • Identifying Administration and Monitoring Requirements 143

http://docs.sun.com/app/docs/coll/DirEdit_05q1
http://docs.sun.com/app/docs/coll/DirEdit_05q1

144

Logical Design
A logical architecture identifies the components of a Directory Server Enterprise Edition
deployment, and shows interrelationships between the components. Typically, use cases
developed during the technical requirements phase indicate which components the
deployment requires. However, the required components can often be derived directly
from the business requirements.

This part provides sample logical architectures that are based on typical Directory Server
Enterprise Edition deployment scenarios. The information in this part flows from a basic,
single-server deployment to more complex deployments that span multiple data centers.
The architectures discussed in the later chapters of this part build on the simpler
architectures discussed in the earlier chapters.

This part includes the following chapters:

■ Chapter 9, “Designing a Basic Deployment,” describes a basic Directory Server
Enterprise Edition deployment.

■ Chapter 10, “Designing a Scaled Deployment,” describes a deployment scaled to meet
additional service requirements.

■ Chapter 11, “Designing a Global Deployment,” covers deployment considerations for
deployments across multiple data centers.

■ Chapter 12, “Designing a Highly Available Deployment,” describes deployments
designed to meet availability requirements.

P A R T I I I

145

146

Designing a Basic Deployment

In the simplest Directory Server Enterprise Edition deployment, your directory service
requirements can be fulfilled by a single Directory Server, installed on one machine, in a single
data center. Such a scenario might occur in a small organization or if, you are running Directory
Server for demonstration or evaluation purposes. Note that the technical requirements
discussed in the previous chapters apply equally to all deployments.

This chapter describes a basic deployment, involving a single Directory Server. The chapter
covers the following topics:

■ “Basic Deployment Architecture” on page 147
■ “Basic Deployment Setup” on page 150
■ “Improving Performance in a Basic Deployment” on page 150

Basic Deployment Architecture
A basic Directory Server Enterprise Edition deployment includes the following elements:

■ Directory Server instance files
■ Directory Server daemon
■ dsadm and dsconf command-line utilities
■ Directory Service Control Center (DSCC), if GUI access is required
■ Console Agent, if DSCC is used

These elements can all be installed on a single machine. The following figure illustrates the
high-level architecture of a basic Directory Server Enterprise Edition deployment.

9C H A P T E R 9

147

In this scenario, internal LDAP and DSML clients can be configured to access Directory Server
directly. External HTML clients can be configured to access DSCC over a firewall.

Although all of the components described previously can be installed on a single machine, this
is unlikely in a real deployment. A more typical scenario would be the installation of DSCC and
the dsconf command-line utility on separate remote machines. All Directory Server hosts
could then be configured remotely from these machines. The following figure illustrates this
more typical scenario.

Firewall

Directory
Control Center

dsconf

HTML Client

LDAP
Client

DSML
Client

Console
Agent dsadm

server1.example.com

LDAP LDAP LDAP JMX

Directory
Server

daemon

DS
Instance

Files

FIGURE 9–1 Basic Directory Server Enterprise Edition Architecture on a Single Machine

Basic Deployment Architecture

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008148

The Directory Server instance stores server and application configuration settings, as well as
user information. Typically, server and application configuration information is stored in one
suffix of Directory Server while user and group entries are stored in another suffix. A suffix
refers to the name of the entry in the directory tree, below which data is stored.

Directory Service Control Center (DSCC) is a centralized, web-based user interface for all
servers, and is the Directory component of Java Web Console. DSCC locates all servers and
applications that are registered with it. DSCC displays the servers in a graphical user interface,
where you can manage and configure the servers. The Directory Service Control Center might
not be required in a small deployment because all functionality is also provided through a
command-line interface.

In the chapters that follow, it is assumed that the Directory Service Control Center is installed
on a separate machine. This aspect of the topology is not referred to again in the remaining
chapters.

Firewall

HTML Client

LDAP
Client

DSML
Client

Console
Agentdsadm

server3.example.com

server1.
example.com

LDAP

Directory Server
Daemon

DS
Instance

Files

dsconf

server2.example.com

Directory
Control Center

LDAP JMX

FIGURE 9–2 Basic Directory Server Enterprise Edition Architecture With Remote Directory Service Control
Center

Basic Deployment Architecture

Chapter 9 • Designing a Basic Deployment 149

Basic Deployment Setup
Complete installation information is provided in the Sun Java System Directory Server
Enterprise Edition 6.3 Installation Guide. The purpose of this section is to provide a clear picture
of the elements that make up a basic deployment and how these elements work together.

This section lists the main tasks for setting up the basic deployment described in the previous
section.

■ Install the required shared components, including the security packages.
■ Install Directory Server, the Console Agent, and the command-line interface.
■ If you want to manage the server by using the command-line utilities, do the following:

■ Create and start a standalone Directory Server instance by using the dsadm command.
■ Create and configure a suffix in the new instance, by using the dsconf command.

■ If you want to manage the server through a graphical user interface, do the following:
■ Initialize the Directory Service Control Center.
■ Create a Directory Server instance by using the Directory Service Control Center.
■ Create and configure a suffix in the new instance by using the Directory Service Control

Center.

Improving Performance in a Basic Deployment
In even the most basic deployment, you might want to tune Directory Server to improve
performance in specific areas. The following sections describe basic tuning strategies that can be
applied to a simple single-server deployment. These strategies can be applied to each server in
larger, more complex deployments, for improved performance across the topology.

Using Indexing to Speed Up Searches
Indexes speed up searches by effectively reducing the number of entries a search has to check to
find a match. An index contains a list of values. Each value is associated with a list of entry
identifiers. Directory Server can look up entries quickly by using the lists of entry identifiers in
indexes. Without an index to manage a list of entries, Directory Server must check every entry
in a suffix to find matches for a search.

Basic Deployment Setup

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008150

Directory Server processes each search request as follows:

1. Directory Server receives a search request from a client.

2. Directory Server examines the request to confirm that the search can be processed.

If Directory Server cannot perform the search, it returns an error to the client and might
refer the search to another instance of Directory Server.

3. Directory Server determines whether it manages one or more indexes that are appropriate
to the search.
■ If Directory Server manages indexes that are appropriate to the search, the server looks

in all of the appropriate indexes for candidate entries. A candidate entry is an entry that
might be a match for the search request.

■ If Directory Server does not manage an index appropriate to the search, the server
generates the set of candidate entries by checking all of the entries in the database.

When Directory Server cannot use indexes, this process consumes more time and
system resources.

4. Directory Server examines each candidate entry to determine whether the entry matches the
search criteria.

5. Directory Server returns matching entries to the client application as it finds the entries.

You can optimize search performance by doing the following:

■ Preventing Directory Server from performing searches on non-indexed entries
■ Ensuring that cache sizes are appropriately tuned
■ Limiting the length of an index

For a comprehensive overview of how indexes work, see Chapter 6, “Directory Server
Indexing,” in Sun Java System Directory Server Enterprise Edition 6.3 Reference. For information
about defining indexes, see Chapter 13, “Directory Server Indexing,” in Sun Java System
Directory Server Enterprise Edition 6.3 Administration Guide.

Optimizing Cache for Search Performance
For improved search performance, cache as much directory data as possible in memory. By
preventing the directory from reading information from disk, you limit the disk I/O bottleneck.
Different possibilities exist for doing this, depending on the size of your directory tree, the
amount of memory available, and the hardware used. Depending on the deployment, you might
choose to allocate more or less memory to entry and database caches to optimize search
performance. You might alternatively choose to distribute searches across Directory Server
consumers on different servers.

Improving Performance in a Basic Deployment

Chapter 9 • Designing a Basic Deployment 151

Consider the following scenarios:

■ “All Entries and Indexes Fit Into Memory” on page 152
■ “Sufficient Memory For 32-Bit Directory Server” on page 152
■ “Insufficient Memory” on page 153

All Entries and Indexes Fit Into Memory
In the optimum case, the database cache and the entry cache fit into the physical memory
available. The entry caches are large enough to hold all entries in the directory. The database
cache is large enough to hold all indexes and entries. In this case, searches find everything in
cache. Directory Server never has to go to file system cache or to disk to retrieve entries.

Ensure that database cache can contain all database indexes, even after updates and growth.
When space runs out in the database cache for indexes, Directory Server must read indexes
from disk for every search request, severely impacting throughput. You can monitor paging and
cache activity with DSCC or through the command line.

Appropriate cache sizes must be determined through empirical testing with representative data.
In general, the database cache size can be calculated as (total size of database files) x

1.2. Start by allocating a large amount of memory for the caches. Then exercise and monitor
Directory Server to observe the result, repeating the process as necessary. Entry caches in
particular might use much more memory than you allocate to these caches.

Sufficient Memory For 32-Bit Directory Server
Imagine a system with sufficient memory to hold all data in entry and database caches, but no
support for a 64-bit Directory Server process. If hardware constraints prevent you from
deploying Directory Server on a Solaris system with 64-bit support, size caches appropriately
with respect to memory limitations for 32-bit processes. Then leave the remaining memory to
the file system cache.

As a starting point when benchmarking performance, size the entry cache to hold as many
entries as possible. Size the database cache relatively small such as 100 Mbytes without
completely minimizing it, but letting file system cache hold the database pages.

Note – File system cache is shared with other processes on the system, especially file-based
operations. Thus, controlling file system cache is more difficult than controlling other caches,
particularly on systems that are not dedicated to Directory Server.

The system might reallocate file system cache to other processes.

Avoid online import in this situation because import cache is associated with the Directory
Server process.

Improving Performance in a Basic Deployment

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008152

Insufficient Memory
Imagine a system with insufficient memory to hold all data in entry and database caches. In this
case, avoid causing combined entry and database cache sizes to exceed the available physical
memory. This might result in heavy virtual memory paging that could bring the system to a
virtual halt.

For small systems, start benchmarking by devoting available memory to entry cache and
database caches, with sizes no less than 100 Mbytes each. Try disabling the file system cache by
mounting Solaris UFS file systems with the -o forcedirectio option of the mount_ufs
command. For more information, see the mount_ufs(1M) man page. Disabling file system cache
can prevent the file system cache from using memory needed by Directory Server.

For large Directory Servers running on large machines, maximize the file system cache and
reduce the database cache. Verify and correct assumptions through empirical testing.

Optimizing Cache for Write Performance
In addition to planning a deployment for write scalability from the outset, provide enough
memory for the database cache to handle updates in memory. Also, minimize disk activity. You
can monitor the effectiveness of the database cache by reading the hit ratio in the Directory
Service Control Center.

After Directory Server has run for some time, the caches should contain enough entries and
indexes that disk reads are no longer necessary. Updates should affect the database cache in
memory, with data from the large database cache in memory being flushed only infrequently.

Flushing data to disk during a checkpoint can be a bottleneck. The larger the database cache
size, the larger the bottleneck. Storing the database on a separate RAID system, such as a Sun
StorEdgeTM disk array, can help improve update performance. You can use utilities such as
iostat on Solaris systems to isolate potential I/O bottlenecks. For more information, see the
iostat(1M) man page.

The following table shows database and log placement recommendations for systems with 2, 3,
and 4 disks.

TABLE 9–1 Isolating Databases and Logs on Different Disks

Disks Available Recommendations

2 ■ Place the Directory Server database on one disk.

■ Place the transaction log, the access, audit, and error logs and the retro
change log on the other disk.

Improving Performance in a Basic Deployment

Chapter 9 • Designing a Basic Deployment 153

TABLE 9–1 Isolating Databases and Logs on Different Disks (Continued)
Disks Available Recommendations

3 ■ Place the Directory Server database on one disk.

■ Place the transaction log on the second disk.

■ Place the access, audit, and error logs and the retro change log on the
third disk.

4 ■ Place the Directory Server database on one disk.
■ Place the transaction log on the second disk.
■ Place the access, audit, and error logs on the third disk.
■ Place the retro change log on the fourth disk.

Improving Performance in a Basic Deployment

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008154

Designing a Scaled Deployment

The basic deployment described in Chapter 9, “Designing a Basic Deployment,” assumes that a
single Directory Server is enough to satisfy the read and write requirements of your
organization. Organizations that have large read or write requirements, that is, several clients
attempting to access directory data simultaneously, need to use a scaled deployment.

Generally, the number of searches a Directory Server instance can perform per second is
directly related to the number and speed of the server's CPUs, provided there is sufficient
memory to cache all data. Horizontal read scalability can be achieved by spreading the load
across more than one server. This usually means providing additional copies of the data so that
clients can read the data from more than one source.

Write operations do not scale horizontally because a write operation to a master server results
in a write operation to every replica. The only way to scale write operations horizontally is to
split the directory data among multiple databases and place those databases on different servers.

This chapter describes the different ways of scaling a Directory Server Enterprise Edition
deployment to handle more reads and writes. The chapter covers the following topics:

■ “Using Load Balancing for Read Scalability” on page 155
■ “Using Distribution for Write Scalability” on page 165
■ “Using Referrals For Distribution” on page 173

Using Load Balancing for Read Scalability
Load balancing increases performance by spreading the read load across multiple servers. Load
balancing can be achieved using replication, Directory Proxy Server, or a combination of the
two.

10C H A P T E R 1 0

155

Using Replication for Load Balancing
Replication is the mechanism that automatically copies directory data and changes from one
directory server to another directory server. With replication, you can copy a directory tree or
subtree that is stored in its own suffix between servers.

Note – You cannot copy the configuration or monitoring information subtrees.

By replicating directory data across servers, you can reduce the access load on a single machine,
improving server response time and providing read scalability. Replicating directory entries to a
location close to your users also improves directory response time. Replication is generally not a
solution for write scalability.

Basic Replication Concepts
The replication mechanism is described in detail in Chapter 4, “Directory Server Replication,”
in Sun Java System Directory Server Enterprise Edition 6.3 Reference. The following section
provides basic information that you need to understand before reviewing the sample topologies
described later in this chapter.

Master, Consumer, and Hub Replicas

A database that participates in replication is defined as a replica.

Directory Server distinguishes between three kinds of replicas:

■ Master or read-write replica. A read-write database that contains a master copy of the
directory data. A master replica can process update requests from directory clients. A
topology that contains more than one master is called a multi-master topology.

■ Consumer replica. A read-only database that contains a copy of the information in the
master replica. A consumer replica can process search requests from directory clients but
refers update requests to master replicas.

■ Hub replica. A read-only database (like a consumer replica) that is stored on a Directory
Server that supplies one or more consumer replicas.

The following figure illustrates the role of each of these replicas in a replication topology.

Using Load Balancing for Read Scalability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008156

Note – The previous figure is for illustration purposes only and is not necessarily a
recommended topology. Directory Server6.x supports an unlimited number of masters in a
multi-master topology. A master-only topology is recommended in most cases.

Suppliers and Consumers

A Directory Server that replicates to other servers is called a supplier. A Directory Server that is
updated by other servers is called a consumer. The supplier replays all updates on the consumer
through specially designed LDAP v3 extended operations. In terms of performance, a supplier
is therefore likely to be a demanding client application for the consumer.

A server can be both a supplier and a consumer, as in the following situations:

■ In multi-master replication, a master replica is mastered on two different Directory Servers.
Each server acts as a supplier and a consumer of the other server.

■ When the server contains a hub replica, the server receives updates from a supplier and
replicates the changes to consumers.

A server that plays the role of a consumer only is called a dedicated consumer.

ConsumerConsumer

Master

Hub

Replication

LDAP
Application

LDAP
Read

Request

LDAP
Application

and
Response

LDAP
Write

Request and Referral

FIGURE 10–1 Role of Replicas in a Replication Topology

Using Load Balancing for Read Scalability

Chapter 10 • Designing a Scaled Deployment 157

For a master replica, the server must do the following:
■ Respond to update requests from directory clients
■ Maintain historical information and a change log
■ Initiate replication to consumers

The server that contains the master replica is responsible for recording any changes made to the
master replica and for replicating these changes to consumers.

For a hub replica, the server must do the following:
■ Respond to read requests
■ Refer update requests to the servers that contain a master replica
■ Maintain historical information and a change log
■ Initiate replication to consumers

For a consumer replica, the server must do the following:
■ Respond to read requests
■ Maintain historical information
■ Refer update requests to the servers that contain a master replica

Multi-Master Replication

In a multi-master replication configuration, data can be updated simultaneously in different
locations. Each master maintains a change log for its replica. The changes that occur on each
master are replicated to the other servers.

Multi-master configurations have the following advantages:
■ Automatic write failover occurs when one master is inaccessible.
■ Updates can be made on a local master in a geographically distributed environment.

Multi-master replication uses a loose consistency replication model. This means that the same
entries may be modified simultaneously on different servers. When updates are sent between
the two servers, any conflicting changes must be resolved. Various attributes of a WAN, such as
latency, can increase the chance of replication conflicts. Conflict resolution generally occurs
automatically. A number of conflict rules determine which change takes precedence. In some
cases conflicts must be resolved manually. For more information, see “Solving Common
Replication Conflicts” in Sun Java System Directory Server Enterprise Edition 6.3 Administration
Guide.

The number of masters that are supported in a multi-master topology is theoretically unlimited.
The number of consumers and hubs is also theoretically unlimited. However, the number of
consumers to which a single supplier can replicate depends on the capacity of the supplier
server. You can use the SLAMD Distributed Load Generation Engine (SLAMD) to assess the
capacity of the supplier server. For information about SLAMD, and to download the SLAMD
software, see http://www.slamd.com (http://www.slamd.com/).

Using Load Balancing for Read Scalability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008158

http://www.slamd.com/

Unit of Replication
The smallest unit of replication is the suffix. The replication mechanism requires one suffix to
correspond to one database. You cannot replicate a suffix, or namespace, that is distributed over
two or more databases using custom distribution logic. The unit of replication applies to both
consumers and suppliers, which means that you cannot replicate two suffixes to a consumer
that holds only one suffix.

Change Log
Every server that acts as a supplier maintains a change log. A change log is a record that
describes the modifications that have occurred on a master replica. The supplier replays these
modifications to its consumers. When an entry is modified, renamed, added, or deleted, a
change record that describes the LDAP operation is recorded in the change log.

Replication Agreement
Directory Server uses replication agreements to define how replication occurs between two
servers. A replication agreement describes replication between one supplier and one consumer.

A replication agreement identifies the following:

■ The suffix to replicate
■ The consumer server to which the data is pushed
■ The times during which replication can occur
■ The bind DN and credentials that the supplier must use to bind to the consumer
■ How the connection is secured, SSL or client authentication, for example
■ Information about the replication status for this particular agreement
■ Information about replication filtering

Replication Priority
In versions of Directory Server prior to Directory Server 6.x, updates were replicated in
chronological order. In this version of the product, updates can be prioritized for replication.
Priority is a boolean feature, it is on or off. There are no levels of priority. In a queue of updates
waiting to be replicated, updates with priority are replicated before updates without priority. In
a queue of updates waiting to be replicated, updates with priority are replicated before updates
without priority.

The priority rules are configured according to the following parameters:

■ The identity of the client
■ The type of update
■ The entry or subtree that was updated
■ The attributes changed by the update

For more information, see “Prioritized Replication” in Sun Java System Directory Server
Enterprise Edition 6.3 Reference.

Using Load Balancing for Read Scalability

Chapter 10 • Designing a Scaled Deployment 159

Assessing Initial Replication Requirements
A successful replicated directory service requires comprehensive testing and analysis in a
production environment. However, the following basic calculation enables you to start
designing a replicated topology. The sections that follow use the result of this calculation as the
basis of the replicated topology design.

▼ To Determine Initial Replication Requirements

Estimate the maximum number of searches per second that are required at peak usage time.
This estimate can be called Total searches.

Test the number of searches per second that a single host can achieve.
This estimate can be called Searches per host. Note that this should be evaluated with
replication enabled.

The number of searches that a host can achieve is affected by several variables. Among these are
the size of the entries, the capacity of the host, and the speed of the network. A number of third
party performance testing tools are available to assist you in conducting these tests. The
SLAMD Distributed Load Generation Engine (SLAMD) is an open source Java application
designed for stress testing and performance analysis of network-based applications. SLAMD
can be used effectively to perform this part of the replication assessment. For information about
SLAMD, and to download the SLAMD software, see http://www.slamd.com
(http://www.slamd.com/).

Calculate the number of hosts that are required.
Number of hosts = Total searches / Searches per host

Load Balancing With Multi-Master Replication in a Single Data Center
Replication can balance the load on Directory Server in the following ways:

■ By spreading search activities across several servers
■ By dedicating specific servers to specific tasks or applications

Generally, if the Number of hosts calculated in “Assessing Initial Replication Requirements”
on page 160 is about 16, or not significantly larger, your topology should include only master
servers in a fully connected topology. Fully connected means that every master replicates to
every other master in the topology.

Note – The Number of hosts is approximate and depends on the hardware and other details of
the deployment.

1

2

3

Using Load Balancing for Read Scalability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008160

http://www.slamd.com/
http://www.slamd.com/

The following figure assumes that the Number of hosts is two. LDAP operations are divided
between two master servers, based on the type of client application. This strategy reduces the
load that is placed on each server and increases the total number of operations that can be
served by the deployment.

For a similar scenario in a global deployment, see “Using Multi-Master Replication Over a
WAN” on page 177.

Load Balancing With Replication in Large Deployments
If your deployment requires a Number of hosts significantly larger than 16, you might need to
add dedicated consumers to the topology.

The following figure assumes that the Number of hosts is 24 and, for simplicity, shows only a
portion of the topology. (The remaining 10 servers would have an identical configuration, with
a total of 8 masters and 16 consumers.

Master B
Example.com

Master A
Example.com

Replication Agreement 2

Replication Agreement 1

Corporate
Applications

Client
Applications

FIGURE 10–2 Using Multi-Master Replication for Load Balancing

Using Load Balancing for Read Scalability

Chapter 10 • Designing a Scaled Deployment 161

A change log can be enabled on any of these consumers if you need to do the following:

■ Promote the consumer to a master in the event of an outage
■ Perform a binary initialization from a master to any one of the consumers

If the Number of hosts is several hundred, you might want to add hubs to the topology. In such
a case, there should be more hubs than masters, with up to 10 hubs for each master. Each hub
should handle replication to only 20 consumers at most.

No topology should have the same number of hubs as masters, or the same number of hubs as
consumers.

Using Server Groups to Simplify Multi-Master Topologies
When the Number of hosts is large, the use of server groups can simplify the topology and
improve resource usage. In a topology with 16 masters, the use of four server groups, each
containing four masters, is easier to manage than 16 fully meshed masters.

Setting up a such a topology involves the following steps:

■ Configure the 16 masters, without any replication agreements.
■ Create four server groups and include four masters in each group.
■ Set up replication agreements between all the masters in a single group.
■ Set up replication agreements between the first master of each group, the second master of

each group, and so forth.

The following figure shows the resulting topology.

C C CC C C C C C C

M3 M4 M2M1

FIGURE 10–3 Using Multi-Master Replication for Load Balancing in a Large Deployment

Using Load Balancing for Read Scalability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008162

Using Directory Proxy Server for Load Balancing
Directory Proxy Server can use multiple servers to distribute the load of a single source of data.
Directory Proxy Server can also ensure that if one of the servers is unavailable, the data remains
available. Apart from distributing data, Directory Proxy Server provides operation-based load
balancing. That is, the server is able to route client operations to a specific Directory Server,
based on the type of operation.

Directory Proxy Server supports operation-based load balancing, and a variety of load
balancing algorithms that determine how the workload is shared between Directory Servers.
For a detailed description of each of these algorithms, see Chapter 16, “Directory Proxy Server
Load Balancing and Client Affinity,” in Sun Java System Directory Server Enterprise Edition 6.3
Reference.

Master
A1

Master
A2

Master
A3

Master
A4

Group A
Master

B1
Master

B2

Master
B3

Master
B4

Group B

Master
C1

Master
C2

Master
C3

Master
C4

Group C
Master

D1
Master

D2

Master
D3

Master
D4

Group D

FIGURE 10–4 Server Groups in Multi-Master Topologies

Using Load Balancing for Read Scalability

Chapter 10 • Designing a Scaled Deployment 163

The following figure illustrates how the proportional algorithm is used to balance read load
across two servers. Operation-based load balancing routes all writes to Master 1, unless that
server fails. On failure all reads and writes are routed to Master 2.

Note that the configuration for load balancing is not recalculated when one server instance fails.
You cannot use proportional load balancing to create a “hot standby” server by setting a server's
load balancing weight to 0.

Imagine, for example, you have three servers A, B, and C. Proportional load balancing has been
configured such that servers A and B each receive 50% of the load. Server C is configured to
have 0% of the load as it is designed to be a standby server only. If server A fails, 100% of the load
will go to server B automatically. Only if server B also fails, will the load be distributed to server
C. So, either the instance participates in load balancing all the time, always ready to take part of
the load, or all primary instances have to fail before that server will take any load.

Directory
Proxy
Server

LDAP Client

Directory Server
Master 1

Directory Server
Master 2

LDAP Client LDAP Client

Writes
Reads 30% Reads 70%

Replication agreement

LDAP traffic

FIGURE 10–5 Using Proportional and Operation-Based Load Balancing in a Scaled Deployment

Using Load Balancing for Read Scalability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008164

You can achieve something like a hot standby by using the saturation load balancing algorithm
and applying a low weight to the standby server. Although the server is not a true standby
server, you can configure the algorithm such that requests are distributed to this server only if
the primary servers are under heavy load. Effectively if one primary server is disabled, the load
on the other primary servers increases to the extent that requests must be distributed to the
standby server.

Using Distribution for Write Scalability
Write operations are resource intensive. When a client requests a write operation, the follow
sequence of events occurs on the database:

■ The backend database is locked
■ The entry is locked in the database cache
■ The access control check plug-in is called
■ Any backend pre-operation plug-ins are called
■ The database transaction begins
■ The database files are updated
■ The old entry cache is replaced with new data
■ The database transaction is committed
■ Any backend post-operation plug-ins are called
■ The backend database is unlocked

Because of this complex procedure, an increased number of writes can have a dramatic impact
on performance.

As an enterprise grows, more client applications require rapid write access to the directory.
Also, as more information is stored in a single Directory Server, the cost of adding or modifying
entries in the directory database increases. This is because indexes become larger and it takes
longer to manipulate the information that the indexes contain.

In some cases, the service level agreements might only be achieved by having all the data cached
in memory. However, the data might be too large to fit on a single memory machine

When the volume of directory data increases to this extent, you need to break up the data so that
it can be stored in multiple servers. One approach is to use a hierarchy to divide the
information. By separating the information into multiple branches based on some criteria, each
branch can be stored on a separate server. Each server can then be configured with chaining or
referrals to enable clients to access all the information from a single point.

In this kind of division, each server is responsible for only a part of the directory tree. A
distributed directory works in a similar way to the Domain Name Service (DNS). The DNS
assigns each portion of the DNS namespace to a particular DNS server. In the same way, you
can distribute your directory namespace across servers while maintaining, from a client
standpoint, a single directory tree.

Using Distribution for Write Scalability

Chapter 10 • Designing a Scaled Deployment 165

A hierarchy-based distribution mechanism has certain disadvantages. The main problem is that
this mechanism requires that the clients know exactly where the information is. Alternatively,
the clients must perform a broad search to find the data. Another problem is that some
directory-enabled applications might not have the capability to deal with the information if it is
broken up into multiple branches.

Directory Server supports hierarchy-based distribution in conjunction with the chaining and
referral mechanisms. However, a distribution feature is also provided with Directory Proxy
Server, which supports smart routing. This feature enables you to decide on the best
distribution mechanism for your enterprise.

Using Multiple Databases
Directory Server stores data in high-performance, disk-based LDBM databases. Each database
consists of a set of files that contains all of the data that is assigned to this set. You can store
different portions of your directory tree in different databases. Imagine, for example, that your
directory tree contains three subsuffixes, as shown in the following figure.

The data of the three subsuffixes can be stored in three separate databases as shown in the
following figure.

When you divide your directory tree among databases, the databases can be distributed across
multiple servers. This strategy generally equates to several physical machines, which improves
performance. The three databases in the preceding illustration can be stored on two servers as
shown in the following figure.

dc=Example,dc=com

ou=people ou=groups ou=services

FIGURE 10–6 Directory Tree With Three Subsuffixes

DB1

ou=people,dc=Example,dc=com

DB2

ou=groups,dc=Example,dc=com

DB3

ou=services,dc=Example,dc=com

FIGURE 10–7 Three Subsuffixes Stored in Three Separate Databases

Using Distribution for Write Scalability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008166

When databases are distributed across multiple servers, the amount of work that each server
needs to do is reduced. Thus, the directory can be made to scale to a much larger number of
entries than would be possible with a single server. Because Directory Server supports dynamic
addition of databases, you can add new databases as required, without making the entire
directory unavailable.

Using Directory Proxy Server for Distribution
Directory Proxy Server divides directory information into multiple servers but does not require
that the hierarchy of the data be altered. An important aspect of data distribution is the ability
break up the data set in a logical manner. However, distribution logic that works well for one
client application might not work as well for another client application.

For this reason, Directory Proxy Server enables you to specify how data is distributed and how
directory requests should be routed. For example, LDAP operations can be routed to different
directory servers based on the directory information tree (DIT) hierarchy. The operations can
also be routed based on operation type or on a custom distribution algorithm.

Directory Proxy Server effectively hides the distribution details from the client application.
From the clients' standpoint, a single directory addresses their directory queries. Client requests
are distributed according to a particular distribution method. Different routing strategies can
be associated with different portions of the DIT, as explained in the following sections.

Routing Based on the DIT
This strategy can be used to distribute directory entries based on the DIT structure. For
example, entries in the subtree o=sales,dc=example,dc=com can be routed to Directory Server
A, and entries in the subtree o=hr,dc=example,dc=com can be routed to Directory Server B.

Routing Based on a Custom Algorithm
In some cases, you might want to distribute entries across directory servers without using the
DIT structure. Consider, for example, a service provider who stores entries that represent
subscribers under ou=subscribers,dc=example,dc=com. As the number of subscribers grows,
there might be a need to distribute them across servers based on the range of the subscriber ID.

Server A

DB2DB1

Server B

DB3

FIGURE 10–8 Three Databases Stored on Two Separate Servers

Using Distribution for Write Scalability

Chapter 10 • Designing a Scaled Deployment 167

With a custom routing algorithm, subscriber entries with an ID in the range 1-10000 can be
located in Directory Server A, and subscriber entries with an ID in the range 10001-infinity can
be located in Directory Server B. If the data on server B grows too large, the distribution
algorithm can be changed so that entries with an ID starting from 2000 can be located on a new
server, Server C.

You can implement your own routing algorithm using the Directory Proxy Server
DistributionAlgorithm interface.

Using Directory Proxy Server to Distribute Requests
Based on Bind DN
In this scenario, an enterprise distributes customer data between three master servers based on
geographical location. Customers that are based in the United Kingdom have their data stored
on a master server in London. French customers have their data stored on a master server in
Paris. The data for Japanese customers is stored on a master server in Tokyo. Customers can
update their own data through a single web-based interface.

Users can update their own information in the directory using a web-based application. During
the authentication phase, users enter an email address. email addresses for customers in the UK
take the form *@uk.example.com. For French customers, the email addresses take the form
*@fr.example.com, and for Japanese customers, *@ja.example.com. Directory Proxy Server
receives these requests through an LDAP-enabled client application. Directory Proxy Server
then routes the requests to the appropriate master server based on the email address entered
during authentication.

This scenario is illustrated in the following figure.

Using Distribution for Write Scalability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008168

Distributing Data Lower Down in a DIT
In many cases, data distribution is not required at the top of the DIT. However, entries further
up the tree might be required by the entries in the portion of the tree that has been distributed.
This section provides a sample scenario that shows how to design a distribution strategy in this
case.

james@uk.example.com maria@fr.example.com keiko@ja.example.com

Directory Server

London

Directory Server

Paris

Directory Server

Tokyo

*@uk.example.com *@fr.example.com *@ja.example.com

http httphttp

Directory
Proxy
Server

LDAP Client

Web Application

FIGURE 10–9 Using Directory Proxy Server to Route Requests Based on Bind DN

Distributing Data Lower Down in a DIT

Chapter 10 • Designing a Scaled Deployment 169

Logical View of Distributed Data
Example.com has one subtree for groups and a separate subtree for people. The number of
group definitions is small and fairly static, while the number of person entries is large, and
continues to grow. Example.com therefore requires only the people entries to be distributed
across three servers. However, the group definitions, their ACIs, and the ACIs located at the top
of the naming context are required to access all entries under the people subtree.

The following illustration provides a logical view of the data distribution requirements.

Physical View of Data Storage
The ou=people subtree is split across three servers, according to the first letter of the sn
attribute for each entry. The naming context (dc=example,dc=com) and the ou=groups
containers are stored in one database on each server. This database is accessible to entries under
ou=people. The ou=people container is stored in its own database.

The following illustration shows how the data is stored on the individual Directory Servers.

dc=example,dc=com

ou=groups,dc=example,dc=com

ACIs

ACIs ou=people,dc=example,dc=com

sn=Q-Zsn=I-Psn=A-H

FIGURE 10–10 Logical View of Distributed Data

Distributing Data Lower Down in a DIT

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008170

Note that the ou=people container is not a subsuffix of the top container.

Directory Server Configuration for Sample
Distribution Scenario
Each server described previously can be understood as a distribution chunk. The suffix that
contains the naming context and the entries under ou=groups, is the same on each chunk. A
multi-master replication agreement is therefore set up for this suffix across each of the three
chunks.

For availability, each chunk is also replicated. At least two master replicas are therefore defined
for each chunk.

The following illustration shows the Directory Server configuration with three replicas defined
for each chunk. For simplification, the replication agreements are only shown for one chunk,
although they are the same for the other two chunks.

dc=example,dc=com

ou=groups,
 dc=example,
 dc=com

ou=people,dc=example,
dc=com

sn=A-H

dc=example,dc=com

ou=groups,
 dc=example,
 dc=com

ou=people,dc=example,
dc=com

sn=I-P

dc=example,dc=com

ou=groups,
 dc=example,
 dc=com

ou=people,dc=example,
dc=com

sn=Q-Z

FIGURE 10–11 Physical View of Data Storage

Distributing Data Lower Down in a DIT

Chapter 10 • Designing a Scaled Deployment 171

Directory Proxy Server Configuration for Sample
Distribution Scenario
Client access to directory data through Directory Proxy Server is provided through data views.
For information about data views see Chapter 17, “Directory Proxy Server Distribution,” in Sun
Java System Directory Server Enterprise Edition 6.3 Reference.

For this scenario, one data view is required for each distributed suffix, and one data view is
required for the naming context (dc=example,dc=com) and the ou=groups subtrees.

The following illustration shows the configuration of Directory Proxy Server data views to
provide access to the distributed data.

dc=example,dc=com

ou=groups,
 dc=example,
 dc=com

ou=people,dc=example,
dc=com

dc=example,dc=com

ou=groups,
 dc=example,
 dc=com

ou=people,dc=example,
dc=com

Replication

dc=example,dc=com

ou=groups,
 dc=example,
 dc=com

ou=people,dc=example,
dc=com

sn=Q-Z

dc=example,dc=com

ou=groups,
 dc=example,
 dc=com

ou=people,dc=example,
dc=com

sn=I-P

dc=example,dc=com

ou=groups,
 dc=example,
 dc=com

ou=people,dc=example,
dc=com

sn=A-H

FIGURE 10–12 Directory Server Configuration

Distributing Data Lower Down in a DIT

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008172

Considerations for Data Growth
Distributed data is split according to a distribution algorithm. When you decide which
distribution algorithm to use, bear in mind that the volume of data might change, and that your
distribution strategy must be scalable. Do not use an algorithm that necessitates complete
redistribution of data.

A numeric distribution algorithm based on uid, for example, can be scaled fairly easily. If you
start with two data segments of uid=0-999 and uid=1000–1999, it is easy to add third segment
of uid=2000–2999 at a later stage.

Using Referrals For Distribution
A referral is information returned by a server that tells a client application which server to
contact to proceed with an operation request. If you do not use Directory Proxy Server to
manage distribution logic, you must define the relationships between distributed data in
another way. One way to define relationships is using referrals.

dc=example,dc=com

ou=groups,
 dc=example,
 dc=com

ou=people,dc=example,
dc=com

sn=A-H

dc=example,dc=com

ou=groups,
 dc=example,
 dc=com

ou=people,dc=example,
dc=com

sn=I-P

dc=example,dc=com

ou=groups,
 dc=example,
 dc=com

ou=people,dc=example,
dc=com

sn=Q-Z

dc=example,dc=com
Data View 1

Data View 2
ou=people,

dc=example,dc=com
sn=A-H

Data View 3
ou=people,

dc=example,dc=com
sn=I-P

Data View 4
ou=people,

dc=example,dc=com
sn=Q-Z

FIGURE 10–13 Directory Proxy Server Configuration

Using Referrals For Distribution

Chapter 10 • Designing a Scaled Deployment 173

Directory Server supports three ways of configuring how and when referrals are returned:

■ Default referrals. The directory returns a default referral when a client application presents
a DN for which the server does not have a matching suffix.

■ Suffix referrals. When an entire suffix has been taken offline for maintenance or security
reasons, the server returns the referrals defined by that suffix. Read-only replicas of a suffix
also return referrals to the master server when a client requests a write operation.

■ Smart referrals. These referrals are stored on entries within the directory. Smart referrals
point to Directory Servers that have knowledge of the subtree whose DN matches the DN of
the entry that contains the smart referral.

The following figure illustrates how referrals are used to direct clients from the UK to the
appropriate server in a global topology. In this scenario, the client application must be able to
connect to all the servers in the topology (at the TCP/IP level), to enable it to follow the referral.

Using Directory Proxy Server With Referrals
You can use Directory Proxy Server in conjunction with the referral mechanism to achieve the
same result. The advantage of using Directory Proxy Server in this regard is that the load and
complexity of client applications is reduced. Client applications are only aware of the Directory
Proxy Server URL. If the distribution logic is changed, for any reason, this change is transparent
to client applications.

The following figure illustrates how the scenario described previously can be simplified with the
use of Directory Proxy Server. Client applications always connect to the Proxy Server, which
handles the referrals itself.

Directory Server

UK

LDAP Client

Directory Server

France

Request@uk Referral

FIGURE 10–14 Using Referrals to Direct Clients to a Specific Server

Using Referrals For Distribution

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008174

Directory Server

UK

Directory
Proxy
Server

LDAP Client

Directory Server

France

LDAP Client LDAP Client

Request@uk Referral

FIGURE 10–15 Using Directory Proxy Server With Referrals

Using Referrals For Distribution

Chapter 10 • Designing a Scaled Deployment 175

176

Designing a Global Deployment

In a global deployment, access to directory services is required in more than one geographical
location, or data center. This chapter provides strategies for effectively deploying Directory
Server Enterprise Edition across multiple data centers. The strategies ensure that the quality of
service requirements identified in Chapter 5, “Defining Service Level Agreements,” are not
compromised.

This chapter covers the following topics:
■ “Using Replication Across Multiple Data Centers” on page 177
■ “Using Directory Proxy Server in a Global Deployment” on page 181

Using Replication Across Multiple Data Centers
One of the goals of replication is to enable geographic distribution of the LDAP service.
Replication enables you to have identical copies of information on multiple servers and across
more than one data center. Replication concepts are outlined in Chapter 10, “Designing a
Scaled Deployment,” in this guide, and described in detail in Chapter 4, “Directory Server
Replication,” in Sun Java System Directory Server Enterprise Edition 6.3 Reference. This chapter
focuses on the replication features that are used in a global deployment.

Using Multi-Master Replication Over a WAN
Directory Server supports multi-master replication over a WAN. This feature enables
multi-master replication configurations across geographical boundaries in international,
multiple data center deployments.

Generally, if the Number of hosts calculated in “Assessing Initial Replication Requirements”
on page 160 is less than 16, or not significantly larger, your topology should include only master
servers in a fully connected topology, that is, every master replicates to every other master in the
topology. In a multi-master replication over WAN configuration, all Directory Server instances

11C H A P T E R 1 1

177

separated by a WAN must not be running versions prior to Directory Server 5.2. For a
multi-master topology with more than 4 masters, Directory Server 6.x is required.

The replication protocol provides full asynchronous support, as well as window, grouping, and
compression mechanisms. These features make multi-master replication over a WAN viable.
Replication data transfer rates will always be less than what the available physical medium
allows in terms of bandwidth. If the update volume between replicas cannot physically be made
to fit into the available bandwidth, tuning will not prevent replicas from diverging under heavy
update load. Replication delay and update performance are dependent on many factors,
including but not limited to modification rate, entry size, server hardware, average latency and
average bandwidth.

Internal parameters of the replication mechanism are optimized by default for WANs.
However, if you experience slow replication due to the factors mentioned above, you may wish
to empirically adjust the window size and group size parameters. You may also be able to
schedule your replication to avoid peak network times, thus improving your overall network
usage. Finally, Directory Server supports the compression of replication data to optimize
bandwidth usage.

When you replicate data over a WAN link, some form of security to ensure data integrity and
confidentiality is advised. For more information on security methods available in Directory
Server, see Chapter 2, “Directory Server Security,” in Sun Java System Directory Server
Enterprise Edition 6.3 Reference.

Group and Window Mechanisms
Directory Server provides group and window mechanisms to optimize replication flow. The
group mechanism enables you to specify that changes are sent in groups, rather than
individually. The group size represents the maximum number of data modifications that can be
bundled into a single update message. If the network connection appears to be the bottleneck
for replication, increase the group size and check replication performance again. For
information on configuring the group size, see “Configuring Group Size” in Sun Java System
Directory Server Enterprise Edition 6.3 Administration Guide.

The window mechanism specifies that a certain number of update requests are sent to the
consumer, without the supplier having to wait for an acknowledgement from the consumer
before continuing. The window size represents the maximum number of update messages that
can be sent without immediate acknowledgement from the consumer. It is more efficient to
send many messages in quick succession instead of waiting for an acknowledgement after each
one. Using the appropriate window size, you can eliminate the time replicas spend waiting for
replication updates or acknowledgements to arrive. If your consumer replica is lagging behind
the supplier, increase the window size to a higher value than the default, such as 100, and check
replication performance again before making further adjustments. When the replication
update rate is high and the time between updates is therefore small, even replicas connected by a

Using Replication Across Multiple Data Centers

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008178

LAN can benefit from a higher window size. For information on configuring the window size,
see “Configuring Window Size” in Sun Java System Directory Server Enterprise Edition 6.3
Administration Guide.

Both the group and window mechanisms are based on change size. Therefore, optimizing
replication performance with these mechanisms might be impractical if the size of your changes
varies considerably. If the size of your changes is relatively constant, you can use the group and
window mechanisms to optimize incremental and total updates.

Replication Compression
In addition to the grouping and window mechanisms, you can configure replication
compression on Solaris and Linux platforms. Replication compression streamlines replication
flow, which substantially reduces the incidence of bottlenecks in replication over a WAN.
Compression of replicated data can increase replication performance in specific cases, such as
networks with sufficient CPU but low bandwidth, or when there are bulk changes to be
replicated. You can also benefit from replication compression when initializing a remote replica
with large entries. Do not set this parameter in a LAN (local area network) where there is wide
network bandwidth, because the compression and decompression computations will slow
down replication.

The replication mechanism uses the Zlib compression library. Empirically test and select the
compression level that gives you best results in your WAN environment for your expected
replication usage.

For more information on configuring replication compression, see “Configuring Replication
Compression” in Sun Java System Directory Server Enterprise Edition 6.3 Administration Guide.

Using Fractional Replication
A global topology (with data centers in different countries) might require restricting replication
for security or compliance reasons. For example, legal restrictions might state that specific
employee information cannot be copied outside of the U.S.A. Or, a site in Australia might
require Australian employee details only.

The fractional replication feature enables only a subset of the attributes that are present in an
entry to be replicated. Attribute lists are used to determine which attributes can and cannot be
replicated. Fractional replication can only be applied to read-only consumers.

For detailed information about how fractional replication works, see “Fractional Replication” in
Sun Java System Directory Server Enterprise Edition 6.3 Reference. For information about how to
configure fractional replication, see “Fractional Replication” in Sun Java System Directory
Server Enterprise Edition 6.3 Administration Guide.

Using Replication Across Multiple Data Centers

Chapter 11 • Designing a Global Deployment 179

Using Prioritized Replication
Prioritized replication can be used when there is a strong business requirement to have tighter
consistency for replicated data on specific attributes. In 5.x version of Directory Server, updates
were replicated in the order in which they were received. With prioritized replication, you can
specify that updates to certain attributes take precedence when they are replicated to other
servers in the topology.

Prioritized replication provides the following benefits:

■ Improved security. Prioritized replication is used by default for account lockout. Imagine
for example that an employee leaves your organization, and you lock the employee's
account. To ensure that the employee cannot log in to a remote server to which the account
lockout has not been replicated, account lockout changes are replicated before other
changes are replicated.

■ Improved consistency. Directory Server replication is loosely consistent. With prioritized
replication, you can assure stronger consistency for certain attributes that are considered
important in your organization.

Sample Replication Strategy for an International
Enterprise
In this scenario, an enterprise has two major data centers, one in London and the other in New
York, separated by a WAN. The scenario assumes that the network is very busy during normal
business hours.

In this scenario, the Number of hosts has been calculated to be eight. A fully connected, 4-way
multi-master topology is deployed in each of the two data centers. These two topologies are also
fully connected to each other. For ease of comprehension, not all replication agreements
between the two data centers are shown in the following diagram.

The replication strategy for this scenario includes the following:

■ Master copies of directory data are held on servers in both data centers.
■ A multi-master replication topology is deployed between the data centers to provide high

availability and write-failover across the deployment.
■ Replication across the WAN link is scheduled so that it occurs only during off-peak hours to

optimize bandwidth.
■ To increase performance, client applications are directed to local servers. Clients in the U.S.

read from and write to masters in the New York data center. Clients in the UK read from
and write to masters in the London data center.

Using Replication Across Multiple Data Centers

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008180

Using Directory Proxy Server in a Global Deployment
In a global enterprise, a centralized data model can cause scalability and performance issues.
Directory Proxy Server can be used in such a situation to distribute data efficiently and to route
search and update requests appropriately.

Sample Distribution Strategy for a Global Enterprise
In the architecture shown here, a large financial institution has its headquarters in London. The
organization has data centers in London, New York, and Hong Kong. Currently, the vast
majority of the data that is available to employees resides centrally in legacy RDBMS
repositories in London. All access to this data from the financial institution’s client community
is over the WAN.

The organization is experiencing scalability and performance problems with this centralized
model and decides to move to a distributed data model. The organization also decides to deploy
an LDAP directory infrastructure at the same time. Because the data in question is considered
“mission critical” it must be deployed in a highly available, fault-tolerant infrastructure.

An analysis of client application profiles has revealed that the data is customer-based.
Therefore, 95 percent of the data accessed by a geographical client community is specific to that

M8

M6

M7

M5
LDAP Clients

LONDON

LDAP Clients

LDAP Clients

LDAP Clients
M4

M2

M3

M1

NEW YORK

Replication Agreement

FIGURE 11–1 Using Multi-Master Replication for Load Balancing in Two Data Centers

Using Directory Proxy Server in a Global Deployment

Chapter 11 • Designing a Global Deployment 181

community. Clients in Asia rarely access data for a customer in North America, although this
does happen infrequently. The client community must also update customer information from
time to time.

The following figure shows the logical architecture of the distributed solution.

Given the profile of 95 percent local data access, the organization decides to distribute the
directory infrastructure geographically. Multiple directory consumers are deployed in each
geographical location: Hong Kong, New York, and London. London consumers are not shown
in the diagram for ease of understanding. Each of these consumers is configured to hold the
customer data specific to the location. Data for European and Middle East customers is held in
the London consumers. Data for North and South American customers is held in the New York
consumers. Data for Asian and Pacific Rim customers is held in the Hong Kong consumers.

With this deployment, the overwhelming data requirement of the local client community is
located in the community. This strategy provides significant performance improvements over
the centralized model. Client requests are processed locally, reducing network overhead. The
local directory servers effectively partition the directory infrastructure, which provides
increased directory server performance and scalability. Each set of consumer directory servers

Asia
LDAP

Client(s)

N and S
America
LDAP

Client(s)

Hardware
Load Balancer

WAN

WAN

WAN

Directory
Proxy Server

Local Searches
Read-only
Servers in
Hong Kong

Read-write
Server in
London

Updated Referrals
and Distributed

Referrals

Referred Updated and
Configuration Information

Directory
Proxy Server

Hardware
Load Balancer

Directory
Proxy Server

Local Searches
Read-only
Servers in
New York

Updated Referrals
and Distributed

Referrals

Distributed
Referrals

Distributed
Referrals

Directory
Proxy Server

FIGURE 11–2 Distributed Directory Infrastructure

Using Directory Proxy Server in a Global Deployment

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008182

is configured to return referrals if a client submits an update request. Referrals are also returned
if a client submits a search request for data that is located elsewhere.

Client LDAP requests are sent to Directory Proxy Server through a hardware load balancer. The
hardware load balancer ensures that clients always have access to at least one Directory Proxy
Server. The locally deployed Directory Proxy Server initially routes all requests to the array of
local directory servers that hold the local customer data. The instances of Directory Proxy
Server are configured to load balance across the array of directory servers. This load balancing
provides automatic failover and failback.

Client search requests for local customer information are satisfied by a local directory.
Appropriate responses are returned to the client through Directory Proxy Server. Client search
requests for geographically “foreign” customer information are initially satisfied by the local
directory server by returning a referral back to Directory Proxy Server.

This referral contains an LDAP URL that points to the appropriate geographically distributed
Directory Proxy Server instance. The local Directory Proxy Server processes the referral on
behalf of the local client. The local Directory Proxy Server then sends the search request to the
appropriate distributed instance of Directory Proxy Server. The distributed Directory Proxy
Server forwards the search request on to the distributed Directory Server and receives the
appropriate response. This response is then returned to the local client through the distributed
and the local instances of Directory Proxy Server.

Update requests received by the local Directory Proxy Server are also satisfied initially by a
referral returned by the local Directory Server. Directory Proxy Server follows the referral on
behalf of the local client. However, this time the proxy forwards the update request to the
supplier directory server located in London. The supplier Directory Server applies the update to
the supplier database and sends a response back to the local client through the local Directory
Proxy Server. Subsequently, the supplier Directory Server propagates the update down to the
appropriate consumer Directory Server.

Using Directory Proxy Server in a Global Deployment

Chapter 11 • Designing a Global Deployment 183

184

Designing a Highly Available Deployment

High availability implies an agreed minimum “up time” and level of performance for your
directory service. Agreed service levels vary from organization to organization. Service levels
might depend on factors such as the time of day systems are accessed, whether or not systems
can be brought down for maintenance, and the cost of downtime to the organization. Failure, in
this context, is defined as anything that prevents the directory service from providing this
minimum level of service.

This chapter covers the following topics:

■ “Availability and Single Points of Failure” on page 185
■ “Using Replication and Redundancy for High Availability” on page 189
■ “Using Clustering for High Availability” on page 198

Availability and Single Points of Failure
Directory Server Enterprise Edition deployments that provide high availability can quickly
recover from failures. With a high availability deployment, component failures might impact
individual directory queries but should not result in complete system failure. A single point of
failure (SPOF) is a system component which, upon failure, renders an entire system unavailable
or unreliable. When you design a highly available deployment, you identify potential SPOFs
and investigate how these SPOFs can be mitigated.

SPOFs can be divided into three categories:

■ Hardware failures, for example, server crashes, network failures, power failures, or disk
drive crashes

■ Software failures, for example, Directory Server or Directory Proxy Server crashes
■ Database corruption

12C H A P T E R 1 2

185

Mitigating SPOFs
You can ensure that failure of a single component does not cause an entire directory service to
fail by using redundancy. Redundancy involves providing redundant software components,
hardware components, or both. Examples of this strategy include deploying multiple, replicated
instances of Directory Server on separate hosts, or using redundant arrays of independent disks
(RAID) for storage of Directory Server databases. Redundancy with replicated Directory
Servers is the most efficient way to achieve high availability.

You can also use clustering to provide a highly available service. Clustering involves providing
pre-packaged high availability hardware and software. An example of this strategy is deploying
Sun Cluster hardware and software.

Deciding Between Redundancy and Clustering
The remainder of this chapter describes in more detail the use of redundancy and clustering to
ensure high availability. This section summarizes the advantages and disadvantages of each
solution.

Advantages and Disadvantages of Redundancy

The more common approach to providing a highly available directory service is to use
redundant server components and replication. Redundant solutions are usually less expensive
and easier to implement than clustering solutions. These solutions are also generally easier to
manage. Note that replication, as part of a redundant solution, has numerous functions other
than availability. While the main advantage of replication is the ability to split the read load
across multiple servers, this advantage causes additional overhead in terms of server
management. Replication also offers scalability on read operations and, with proper design,
scalability on write operations, within certain limits. For an overview of replication concepts,
see Chapter 4, “Directory Server Replication,” in Sun Java System Directory Server Enterprise
Edition 6.3 Reference.

During a failure, a redundant system might provide poorer availability than a clustering
solution. Imagine, for example, an environment in which the load is shared between two
redundant server components. The failure of one server component might put an excessive load
on the other server, making this server respond more slowly to client requests. A slow response
might be considered a failure for clients that rely on quick response times. In other words, the
availability of the service, even though the service is operational, might not meet the availability
requirements of the client.

Advantages and Disadvantages of Clustering

The main advantage of a clustered solution is automatic recovery from failure, that is, recovery
without user intervention. Disadvantages of clustering are complexity and inability to recover
from database corruption.

Availability and Single Points of Failure

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008186

In a clustered environment, the cluster uses the same IP address for Directory Server and
Directory Proxy Server, regardless of which cluster node is actually running the service. That is,
the IP address is transparent to the client application. In a replicated environment, each
machine in the topology has its own IP address. In this case, Directory Proxy Server can be used
to provide a single point of access to the directory topology. The replication topology is
therefore effectively hidden from client applications. To increase this transparency, Directory
Proxy Server can be configured to follow referrals and search references automatically.
Directory Proxy Server also provides load balancing and the ability to switch to another
machine when one fails.

How Redundancy and Clustering Handle SPOFs

In terms of the SPOFs that are described at the beginning of this chapter, redundancy and
clustering handle failure in the following ways:

■ Single hardware failure. In a clustered environment, this kind of failure has no impact on
the directory service. Only multiple hardware failures impact the service in a cluster.
A single hardware failure is fatal to a machine that is not in a clustered environment.
Therefore, even if you have redundant hardware, manual intervention is required to repair
the failure.

■ Directory Server or Directory Proxy Server failure. In a clustered environment, the server
is automatically restarted. Software failure must occur multiple times in quick succession to
trigger the service group to switch to another node in the cluster. This handling of a software
failure is also true in a redundant environment.

■ Database corruption. A cluster cannot survive this kind of failure. Depending on the
architecture, a redundant solution should be able to survive database corruption.

Redundancy at the Hardware Level
This section provides basic information about hardware redundancy. Many publications
provide comprehensive information about using hardware redundancy for high availability. In
particular, see “Blueprints for High Availability” published by John Wiley & Sons, Inc.

Hardware SPOFs can be broadly categorized as follows:

■ Network failures
■ Failure of the physical servers on which Directory Server or Directory Proxy Server are

running
■ Load balancer failures
■ Storage subsystem failures
■ Power supply failures

Availability and Single Points of Failure

Chapter 12 • Designing a Highly Available Deployment 187

http://www.amazon.com/exec/obidos/tg/detail/-/0471430269/qid=1105613280/sr=8-1/ref=sr_8_xs_ap_i1_xgl14/002-6680176-0680863?v=glances=booksn=507846

Failure at the network level can be mitigated by having redundant network components. When
designing your deployment, consider having redundant components for the following:

■ Internet connection
■ Network interface card
■ Network cabling
■ Network switches
■ Gateways and routers

You can mitigate the load balancer as an SPOF by including a redundant load balancer in your
architecture.

In the event of database corruption, you must have a database failover strategy to ensure
availability. You can mitigate against SPOFs in the storage subsystem by using redundant server
controllers. You can also use redundant cabling between controllers and storage subsystems,
redundant storage subsystem controllers, or redundant arrays of independent disks.

If you have only one power supply, loss of this supply could make your entire service
unavailable. To prevent this situation, consider providing redundant power supplies for
hardware, where possible, and diversifying power sources. Additional methods of mitigating
SPOFs in the power supply include using surge protectors, multiple power providers, and local
battery backups, and generating power locally.

Failure of an entire data center can occur if, for example, a natural disaster strikes a particular
geographic region. In this instance, a well-designed multiple data center replication topology
can prevent an entire distributed directory service from becoming unavailable. For more
information, see “Using Replication and Redundancy for High Availability” on page 189.

Redundancy at the Software Level
Failure in Directory Server or Directory Proxy Server can include the following:

■ Excessive response time
■ Write overload

■ Maximized file descriptors
■ Maximized file system
■ Poor storage configuration
■ Too many indexes

■ Read overload
■ Cache issues
■ CPU constraints
■ Replication issues

■ Synchronicity
■ Replication propagation delay

Availability and Single Points of Failure

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008188

■ Replication flow
■ Replication overload

■ Large wildcard searches

These SPOFs can be mitigated by having redundant instances of Directory Server and Directory
Proxy Server. Redundancy at the software level involves the use of replication. Replication
ensures that the redundant servers remain synchronized, and that requests can be rerouted with
no downtime. For more information, see “Using Replication and Redundancy for High
Availability” on page 189.

Using Replication and Redundancy for High Availability
Replication can be used to prevent the loss of a single server from causing your directory service
to become unavailable. A reliable replication topology ensures that the most recent data is
available to clients across data centers, even in the case of a server failure. At a minimum, your
local directory tree needs to be replicated to at least one backup server. Some directory
architects say that you should replicate three times per physical location for maximum data
reliability. In deciding how much to use replication for fault tolerance, consider the quality of
the hardware and networks used by your directory. Unreliable hardware requires more backup
servers.

Do not use replication as a replacement for a regular data backup policy. For information about
backing up directory data, see “Designing Backup and Restore Policies” on page 131 and
Chapter 9, “Directory Server Backup and Restore,” in Sun Java System Directory Server
Enterprise Edition 6.3 Administration Guide.

LDAP client applications are usually configured to search one LDAP server only. Custom client
applications can be written to rotate through LDAP servers that are located at different DNS
host names. Otherwise, LDAP client applications can only be configured to look at a single DNS
host name for Directory Server. You can use Directory Proxy Server, DNS round robins, or
network sorts to provide failover to backup Directory Servers. For information about setting up
and using DNS round robins or network sorts, see your DNS documentation. For information
about how Directory Proxy Server is used in this context, see “Using Directory Proxy Server as
Part of a Redundant Solution” on page 190.

To maintain the ability to read data in the directory, a suitable load balancing strategy must be
put in place. Both software and hardware load balancing solutions exist to distribute read load
across multiple replicas. Each of these solutions can also determine the state of each replica and
to manage its participation in the load balancing topology. The solutions might vary in terms of
completeness and accuracy.

To maintain write failover over geographically distributed sites, you can use multiple data
center replication over WAN. This entails setting up at least two master servers in each data
center, and configuring the servers to be fully meshed over the WAN. This strategy prevents

Using Replication and Redundancy for High Availability

Chapter 12 • Designing a Highly Available Deployment 189

loss of service if any of the masters in the topology fail. Write operations must be routed to an
alternative server if a writable server becomes unavailable. Various methods can be used to
reroute write operations, including Directory Proxy Server.

The following sections describe how replication and redundancy are used to ensure high
availability:

■ “Using Redundant Replication Agreements” on page 190
■ “Promoting and Demoting Replicas” on page 190
■ “Using Directory Proxy Server as Part of a Redundant Solution” on page 190
■ “Using Application Isolation for High Availability” on page 191
■ “Sample Topologies Using Redundancy for High Availability” on page 191

Using Redundant Replication Agreements
Redundant replication agreements enable rapid recovery in the event of failure. The ability to
enable and disable replication agreements means that you can set up replication agreements
that are used only if the original replication topology fails. Although this intervention is
manual, the strategy is much less time consuming than waiting to set up the replication
agreement when it is needed. The use of redundant replication agreements is explained and
illustrated in “Sample Topologies Using Redundancy for High Availability” on page 191.

Promoting and Demoting Replicas
Promoting or demoting a replica changes its role in the replication topology. In a very large
topology that contains dedicated consumers and hubs, online promotion and demotion of
replicas can form part of a high availability strategy. Imagine, for example, a multi-master
replication scenario, with two hubs configured for additional load balancing and failover. If one
master goes offline, you can promote one of the hubs to a master to maintain optimal read-write
availability. When the master replica comes back online, a simple demotion back to a hub
replica returns you to the original topology.

For more information, see “Promoting or Demoting Replicas” in Sun Java System Directory
Server Enterprise Edition 6.3 Administration Guide.

Using Directory Proxy Server as Part of a Redundant
Solution
Directory Proxy Server is designed to support high availability directory deployments. The
proxy provides automatic load balancing as well as automatic failover and fail back among a set
of replicated Directory Servers. Should one or more Directory Servers in the topology become
unavailable, the load is proportionally redistributed among the remaining servers.

Using Replication and Redundancy for High Availability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008190

Directory Proxy Server actively monitors the Directory Servers to ensure that the servers are
still online. The proxy also examines the status of each operation that is performed. Servers
might not all be equivalent in throughput and performance. If a primary server becomes
unavailable, traffic that is temporarily redirected to a secondary server is directed back to the
primary server as soon as the primary server becomes available.

Note that when data is distributed, multiple disconnected replication topologies must be
managed, which makes administration more complex. In addition, Directory Proxy Server
relies heavily on the proxy authorization control to manage user authorization. A specific
administrative user must be created on each Directory Server that is involved in the
distribution. These administrative users must be granted proxy access control rights.

Using Application Isolation for High Availability
Directory Proxy Server can also be used to protect a replicated directory service from failure due
to a faulty client application. To improve availability, a limited set of masters or replicas is
assigned to each application.

Suppose a faulty application causes a server shutdown when the application performs a specific
action. If the application fails over to each successive replica, a single problem with one
application can result in failure of the entire replicated topology. To avoid such a scenario, you
can restrict failover and load balancing of each application to a limited number of replicas. The
potential failure is then limited to this set of replicas, and the impact of the failure on other
applications is reduced.

Sample Topologies Using Redundancy for High
Availability
The following sample topologies show how redundancy is used to provide continued service in
the event of failure.

Using Replication for Availability in a Single Data Center
The data center that is illustrated in the following figure has a multi-master topology with three
masters. In this scenario, the third master is used only for availability in thdse event of failure.
Read and write operations are routed to Masters 1 and 2 by Directory Proxy Server, unless a
problem occurs. To speed up recovery and to minimize the number of replication agreements,
recovery replication agreements are created. These agreements are disabled by default but can
be enabled rapidly in the event of a failure.

Using Replication and Redundancy for High Availability

Chapter 12 • Designing a Highly Available Deployment 191

Single Data Center Failure Matrix

In the scenario depicted in Figure 12–1, various components might become unavailable. These
potential points of failure and the related recovery actions are described in this table.

TABLE 12–1 Single Data Center Failure Matrix

Failed Component Action

Master 1 Read and write operations are rerouted to Masters 2 and 3 through
Directory Proxy Server while Master 1 is repaired. The recovery replication
agreement between Master 2 and Master 3 is enabled so that updates to
Master 3 are replicated to Master 2.

Directory Server
Master 1

Directory Server
Master 2

Directory Server
Master 3

LDAP Client LDAP Client LDAP Client

Directory
Proxy
Server

Default replication agreement

Recovery replication agreement

LDAP traffic

FIGURE 12–1 Multi-Master Replication in a Single Data Center

Using Replication and Redundancy for High Availability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008192

TABLE 12–1 Single Data Center Failure Matrix (Continued)
Failed Component Action

Master 2 Read and write operations are rerouted to Masters 1 and 3 while Master 2 is
repaired. The recovery replication agreement between Master 1 and Master
3 is enabled so that updates to Master 3 are replicated to Master 1.

Master 3 Because Master 3 is a backup server only, the directory service is not
affected if this master fails. Master 3 can be taken offline and repaired
without interruption to service.

Directory Proxy Server Failure of Directory Proxy Server results in severe service interruption. A
redundant instance of Directory Proxy Server is advisable in this topology.
For an example of such a topology, see “Using Multiple Directory Proxy
Servers” on page 197.

Single Data Center Recovery Procedure

In a single data center with three masters, read and write capability is maintained if one master
fails. This section describes a sample recovery strategy that can be applied to reinstate the failed
component.

The following flowchart and procedure assume that one component, Master 1, has failed. If two
masters fail simultaneously, read and write operations must be routed to the remaining master
while the problems are fixed.

Using Replication and Redundancy for High Availability

Chapter 12 • Designing a Highly Available Deployment 193

Yes

Yes

Yes

No

No

No

Easy repair
(e.g. replace

cable?)

Recent backup
available

Severe time
constraints?

Identify cause
of failure

Make repair

Reinitialize M1
from backup

Restart M1

Check
replication

Redirect
applications

Redirect applications to
M2 and M3 via Directory
Proxy Server

Use the console, the
dsccmon command,
or the insync command
to check that replication
is functioning correctly

Perform total
initialization from

M1 to M2

Online export
from M2 or M3

and import to M1

Stop M1(if not
already stopped)

Restart M1

FIGURE 12–2 Single Data Center Sample Recovery Procedure

Using Replication and Redundancy for High Availability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008194

▼ To Recover on Failure of One Component

If Master 1 is not already stopped, stop it.

Identify the cause of the failure.

■ If the failure is easily repaired, by replacing a network cable, for example, make the repair
and go to Step 3.

■ If the problem is more serious, the failure might take more time to fix.

a. Ensure that any applications that access Master 1 are redirected to point to Master 2 or
Master 3, through Directory Proxy Server.

b. Check the availability of a recent backup.

■ If a recent backup is available, reinitialize Master 1 from the backup and go to Step 3.
■ If a recent backup is not available, do one of the following:

■ Restart Master 1 and perform a total initialization from Master 2 or from Master 3 to
Master 1.
For details on this procedure, see “Initializing Replicas” in Sun Java System Directory
Server Enterprise Edition 6.3 Administration Guide.

■ If performing a total initialization will take too long, perform an online export from
Master 2, or Master 3, and an import to Master 1.

Start Master 1, if it is not already started.

If Master 1 is in read-only mode, set it to read/write mode.

Check that replication is functioning correctly.
You can use DSCC, dsccmon view-suffixes, or the insync command to check replication.

For more information, see “Getting Replication Status” in Sun Java System Directory Server
Enterprise Edition 6.3 Administration Guide, dsccmon(1M), and insync(1).

Using Replication for Availability Across Two Data Centers
Generally in a deployment with two data centers, the same recovery strategy can be applied as
described for a single data center. If one or more masters become unavailable, Directory Proxy
Server automatically reroutes local reads and writes to the remaining masters.

As in the single data center scenario described previously, recovery replication agreements can
be enabled. These agreements ensure that both data centers continue to receive replicated
updates in the event of failure. This recovery strategy is illustrated in Figure 12–3.

1

2

3

4

5

Using Replication and Redundancy for High Availability

Chapter 12 • Designing a Highly Available Deployment 195

An alternative to using recovery replication agreements is to use a fully meshed topology in
which every master replicates its changes to every other master. While fewer replication
agreements might be easier to manage, no technical reason exists for not using a fully meshed
topology.

The only SPOF in this scenario would be the Directory Proxy Server in each data center.
Redundant Directory Proxy Servers can be deployed to eliminate this problem, as shown in
Figure 12–4.

The recovery strategy depends on which combination of components fails. However, after you
have a basic strategy in place to cope with multiple failures, you can apply that strategy if other
components fail.

In the sample topology depicted in Figure 12–3, assume that Master 1 and Master 3 in the New
York data center fail.

In this scenario, Directory Proxy Server automatically reroutes reads and writes in the New
York data center to Master 2 and Master 4. This ensures that local read and write capability is
maintained at the New York site.

M8

M6

M7

M5

LDAP Clients

Directory
Proxy

Server

LONDON

LDAP Clients

LDAP Clients

Directory
Proxy
Server

LDAP Clients

M4

M2

M3

M1

NEW YORK

Default replication agreement

Recovery replication agreement

FIGURE 12–3 Recovery Replication Agreements For Two Data Centers

Using Replication and Redundancy for High Availability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008196

Using Multiple Directory Proxy Servers
The deployment shown in the following figure includes an enterprise firewall that rejects
outside access to internal LDAP services. Client LDAP requests that are initiated internally go
through Directory Proxy Server by way of a network load balancer, ensuring high availability at
the IP level. Direct access to the Directory Servers is prevented, except for the host that is
running Directory Proxy Server. Two Directory Proxy Servers are deployed to prevent the
proxy from becoming an SPOF.

A fully meshed multi-master topology ensures that all masters can be used at any time in the
event of failure of any other master. For simplicity, not all replication agreements are shown in
this diagram.

Using Application Isolation
In the scenario illustrated in the following figure a bug in Application 1 causes Directory Server
to fail. The proxy configuration ensures that LDAP requests from Application 1 are only ever
sent to Master 1 and to Master 3. When the bug occurs, Masters 1 and 3 fail. However,
Applications 2, 3, and 4 are not disabled, because they can still reach a functioning Directory
Server.

Hardware
Load Balancer

Extranet
LDAP Clients

LDAP
Requests

Internet
LDAP Clients

LDAP
Applications

M1

M2

M3

M4

Internet

E
n

terp
rise F

irew
all
Directory

Proxy Server

Directory
Proxy Server

FIGURE 12–4 Internal High Availability Configuration

Using Replication and Redundancy for High Availability

Chapter 12 • Designing a Highly Available Deployment 197

Using Clustering for High Availability
From a physical perspective, a cluster consists of between one and eight servers that work
together as a single entity. The servers work together to provide highly available access to
applications, system resources, and data. Each server can be a symmetric multiprocessor with
multiple CPUs.

A clustering solution can provide high availability for the following:

■ Servers and software
■ Storage subsystem
■ Network adaptor

Clustering does not mitigate all SPOFs in a directory architecture. Failures in the external
network, power generation, and data center must be mitigated outside of a clustering solution.

Using Sun Cluster 3.2 or 3.1 for directory service availability involves installing and configuring
the Sun Cluster HA for Directory Server data service as a failover data service. This strategy
allows Directory Server to fail over safely in a Sun Cluster environment.

The following figure shows the position of the Sun Cluster HA for Directory Server data service
in the Sun Cluster architecture.

M2 M3 M4M1

Client
Application 1

Client
Application 2

Client
Application 3

Client
Application 4

Directory Proxy Server

1,3 2,4 1,4 2,3

FIGURE 12–5 Using Application Isolation in a Scaled Deployment

Using Clustering for High Availability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008198

Hardware Redundancy
The architecture of a Sun Cluster hardware system is designed so that no SPOF can make a
cluster unavailable. Redundant high-speed interconnects, storage system connections, and
public networks ensure that cluster connectivity does not experience single failures.

Clients connect to the cluster through public network interfaces. If a network adapter card has
multiple hardware interfaces, the card can connect to one or more public networks. You can set
up nodes to include multiple network interface cards. The cards are configured so that one card
is active, and the other cards operate as backups.

A cluster file system is a proxy between the kernel on one or more nodes and the underlying file
system and volume manager. The cluster file system runs on a node that has a physical
connection to the disks. For a cluster file system to be highly available, you must attach the disks
to multiple nodes. A local file system that is made into a cluster file system is not highly
available. A local file system implies a file system that is stored on a node's local disk.

A volume manager provides for mirrored or RAID 5 configurations for data redundancy of
multihost disks. You can combine multihost disks with disk mirroring and striping to protect
against both node failure and individual disk failure.

Sun Cluster

Inactive Node

Sun Cluster HA for
DS Data Service

Sun Cluster HA for
DS Data Service

Solaris OS with
Sun Cluster

SoftwareNetwork
Adapter
Failover

Global File
System/
Volume

Management
Start Stop Monitor

Active Node

Solaris OS with
Sun Cluster

Software

Network
Adapter
Failover

Global File
System/
Volume

Management
Start Stop Monitor

Cluster Interconnect (*heartbeat*)

RAID

RAID

FIGURE 12–6 Sun Cluster Architecture

Using Clustering for High Availability

Chapter 12 • Designing a Highly Available Deployment 199

The cluster interconnect is a private network that transfers cluster-private communications and
data service communications between cluster nodes. Redundant NICs, junctions, and cables
protect against network failure.

Monitoring in a Clustered Solution
The cluster continuously monitors all its members. It blocks failed nodes from participating in
the cluster, which prevents any exchange of corrupt data. The cluster also monitors
applications, and it fails over or restarts the applications in case of failures.

Public Network Management, a subsystem of the Sun Cluster software, monitors the active
interface. If the active adapter fails, Network Adapter Failover software is called to fail over the
interface to one of the backup adapters.

The Cluster Membership Monitor (CMM) is a distributed set of agents, with one set per cluster
member or node. The agents exchange messages over the cluster interconnect to ensure full
connectivity among all nodes. When the CMM detects a change in cluster membership because
of a node failure, for example, the CMM reconfigures the cluster. If the CMM detects a critical
problem with a node, the CMM contacts the cluster framework. The cluster framework then
forcibly shuts down the node and removes it from the cluster membership.

System Maintenance
You can minimize planned downtime for system maintenance by moving data and applications
from the component that needs maintenance to another component on the system. When the
maintenance is complete, you can move the data and applications back to the original
component.

Directory Server Failover Data Service
The Directory Server Failover Data Service runs on a single node in a cluster. However, nodes
can have multiple CPUs for scalability. A fault monitor periodically monitors this failover
service.

The Resource Group Manager (RGM) manages data services as resources. When a CMM
changes a cluster's membership, the RGM might request changes to the cluster's online or
offline resources. The RGM starts and stops failover data services.

Disaster Recovery
The following sections describe how a service is recovered if the Directory Server Data Service
fails and if the server fails.

Using Clustering for High Availability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008200

Recovery in the Event of Application Failure
If the fault monitor determines that the Directory Server Data Service has failed, the monitor
initiates action to restart the service. The action that is taken depends on the service's
configuration.

You can configure the failover data service to attempt to restart a failed service on the same
node. Alternatively, the data service can be configured to immediately start a failed service on a
different node. If the data service is configured to attempt to restart on the same node, the fault
monitor contacts the local RGM. The local RGM then attempts to restart the failed service. If
this action fails, the local RGM attempts to start the service on a different node.

If a failed data service cannot be restarted on the same node, the local node's RGM attempts to
locate a version of the service on another node. This action also occurs if the data service is
configured to start on a different node after failure. If the local RGM finds a version of the
service, the local RGM contacts the local CMM and requests that it contact the remote node
over the cluster interconnect. The remote CMM then contacts the local RGM and directs it to
start the service.

The following figure illustrates recovery in the event of application failure.

Sun Cluster

Node 1

Node 4

CMM

CMM RGM Fault
Monitor

The fault monitor
attempts to restart
data service on this
or another node

Node 2

CMM

Node 3

CMM

Failover
Data

Service

FIGURE 12–7 Application Failure and Recovery in a Sun Cluster Architecture

Using Clustering for High Availability

Chapter 12 • Designing a Highly Available Deployment 201

Recovery in the Event of Server Failure
If the server or node on which the Directory Server Data Service is running fails, the service is
migrated to another working node. No user intervention is required. This service uses a failover
resource group, a container that defines the Directory Server instances, and hosts that support
the failover requirements.

The following figure illustrates recovery in the event of server failure.

CMMs dynamically
reconfigure the cluster
and restart the failover
data service.

Sun Cluster

Node 1

Cluster
Membership

Removed

CMM

Node 2

CMM

Node 4

CMM

Node 3

CMM

RGM

Fault
Monitor

Failover
Data

Service

FIGURE 12–8 Server Failure and Recovery in a Sun Cluster Architecture

Using Clustering for High Availability

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008202

Advanced Deployment Topics
This part discusses specialized deployment topics. It includes the following chapters:

■ Chapter 13, “Using LDAP-Based Naming With Solaris,” covers LDAP-Based Naming.
■ Chapter 14, “Deploying a Virtual Directory,” covers the virtualization functionality of

Directory Proxy Server.
■ Chapter 15, “Designing a Deployment With Synchronized Data,” covers deployments

that use Identity Synchronization for Windows.

P A R T I V

203

204

Using LDAP-Based Naming With Solaris

This chapter provides an overview of the LDAP naming service that is provided with the
SolarisTM Operating System (Solaris OS). The naming services supported by the Solaris OS are
described in detail in Part I, “About Naming and Directory Services,” in System Administration
Guide: Naming and Directory Services (DNS, NIS, and LDAP).

This chapter covers the following topics:

■ “Why Use an LDAP-Based Naming Service?” on page 205
■ “Migrating From NIS to LDAP” on page 206
■ “Migrating From NIS+ to LDAP” on page 207

Why Use an LDAP-Based Naming Service?
A naming service stores information in a central place, which enables users, machines, and
applications to communicate across the network. This information can include, for example,
machine (host) names and addresses, user names, passwords, access permissions, group
membership, and printers. Without a central naming service, each machine would have to
maintain its own copy of this information. Naming service information can be stored in files,
maps, or database tables. If you centralize all data, administration becomes easier.

The Solaris OS supports the following naming services:

■ DNS, the Domain Name System
■ /etc files, the original UNIX® naming system
■ NIS, the Network Information Service
■ NIS+, the Network Information Service Plus
■ LDAP, the Lightweight Directory Access Protocol

However, Sun's strategic direction is to move to LDAP-based naming services.

13C H A P T E R 1 3

205

The LDAP naming service has the following advantages over other naming services:

■ Enables you to consolidate information by replacing application-specific databases, which
reduces the number of distinct databases to be managed

■ Allows data to be shared by different naming services
■ Provides a central repository for data
■ Allows for more frequent data synchronization between master servers and replicas
■ Is multi-platform and multi-vendor compatible

The LDAP naming service has the following restrictions:

■ Clients prior to Solaris 8 are not supported.
■ Setting up and managing an LDAP naming service is more complex and requires careful

planning.
■ An NIS client and a Native LDAP client cannot coexist on the same client machine.

The Solaris OS supports LDAP naming in conjunction with Sun Java System Directory Server,
as well as other LDAP directory servers. Although using Sun Java System Directory Server is
recommended, it is not required.

Migrating From NIS to LDAP
Moving from NIS to LDAP is a two-step process that involves data migration and client
migration. The Solaris OS provides the NIS-to-LDAP transition service (N2L service), which
accomplishes both steps.

The N2L service replaces existing NIS daemons on the NIS master server with NIS-to-LDAP
transition daemons. The N2L service also creates an NIS-to-LDAP mapping file on that server.
The mapping file specifies the mapping between NIS map entries and equivalent Directory
Information Tree (DIT) entries in LDAP. An NIS master server that has gone through this
transition is referred to as an N2L server.

The NIS slave servers continue to function in the usual manner. The slave servers periodically
update their data from the N2L server as if the N2L server were a regular NIS master. A script,
inityp2l, assists with the initial setup of these configuration files. When the N2L server has
been established, you can maintain N2L by directly editing the configuration files.

The N2L service supports the following:

■ Import of NIS maps into the LDAP DIT
■ Client access to DIT information with the speed and extensibility of NIS

For details on how to migrate from NIS to LDAP, see Chapter 15, “Transitioning From NIS to
LDAP (Overview/Tasks),” in System Administration Guide: Naming and Directory Services
(DNS, NIS, and LDAP).

Migrating From NIS to LDAP

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008206

Migrating From NIS+ to LDAP
Although you can keep NIS+ data synchronized with LDAP, such synchronization has
previously required an external agent. However, the NIS+ daemon now enables you to use an
LDAP server as a data repository for NIS+ data. This feature enables NIS+ and LDAP clients to
share the same naming service information. The transition from using NIS+ as the main
naming service to using LDAP for the same role is therefore easier.

For details on how to migrate from NIS+ to LDAP, see Chapter 16, “Transitioning From NIS+
to LDAP,” in System Administration Guide: Naming and Directory Services (DNS, NIS, and
LDAP).

Migrating From NIS+ to LDAP

Chapter 13 • Using LDAP-Based Naming With Solaris 207

208

Deploying a Virtual Directory

The virtual directory is an advanced feature of Directory Proxy Server that aggregates
information, in real time, from multiple data repositories. This chapter describes how you can
use a virtual directory in a Directory Server Enterprise Edition deployment.

The architectural concepts of a virtual directory are described in Chapter 18, “Directory Proxy
Server Virtualization,” in Sun Java System Directory Server Enterprise Edition 6.3 Reference.
Procedural information about setting up a virtual directory is provided in Chapter 23,
“Directory Proxy Server Virtualization,” in Sun Java System Directory Server Enterprise
Edition 6.3 Administration Guide.

This chapter covers the following topics:

■ “When to Use a Virtual Directory” on page 210
■ “Typical Virtual Directory Scenarios” on page 210

14C H A P T E R 1 4

209

When to Use a Virtual Directory
Virtual directory features can be deployed if your directory service has any of the following
requirements:

■ Client applications require an aggregated view of entries across multiple data repositories.
For example, you might have several directory servers that contain the same users, but
different data. The virtual directory can be used to create a single view of a user's entry across
all directories. The virtual directory can also provide a single point of administration for
each individual directory.
Types of data repositories that are supported include LDAP directories, Java Database
Connectivity (JDBCTM) compliant sources such as MySQL, and LDIF flat files.

■ Separate data stores are required for user credentials and application specific data.
For example, an application might have specific data that you do not want to be stored in a
corporate directory. The virtual directory enables you to separate the data but make it
appear as one source for applications. This simplifies application development and data
management because applications do not need to know the details of the data infrastructure.
In addition, changes to backend data sources can be abstracted from applications.

■ Your enterprise has acquired another company, or merged with another company.
The virtual directory enables the two company directories to be merged so that they appear
as a single directory. For example, imagine you have two directories, dc=example,dc=com
and dc=acquisition,dc=com. You also have client applications that need both directories
to look like dc=example,dc=com.

■ Client applications require database tables to be displayed in the format of a DIT hierarchy.
■ Read and write operations are required to multiple data repositories.
■ Multiple field join criteria with dissimilar attribute names are required.
■ Client applications require support for multi-valued attributes across directories and

databases from multiple LDAP or JDBC backends.
■ Attribute renaming, DN rewriting, and attribute value rewriting for DN syntax attributes

are required.
■ Multiple client applications require different views of a single data repository.

Typical Virtual Directory Scenarios
This section provides simple scenarios that show how a virtual directory answers specific
business requirements. For more complex sample scenarios, and for details of virtual directory
configuration, see “Sample Virtual Configurations” in Sun Java System Directory Server
Enterprise Edition 6.3 Administration Guide.

When to Use a Virtual Directory

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008210

Connecting User Identities From Different Data
Sources
Example.com stores uses three different data repositories to store user data. Example.com's
Directory Server contains the bulk of the user data. User email addresses are stored in an Active
Directory, and HR data is stored in a MySQL database.

Example.com has several client applications that require a complete view of all user data. The
following diagram illustrates how the virtual directory provides a complete view of a user's
identity to the client application.

Directory Server

LDAP
Client

LDAP
Client

LDAP
Client

Active Directory

Virtual Directory

mail:bjensen@example.com

mail:bjensen@example.com

hrManager:Susan Carter
vacationDays:4
homePhone:512-512-1111

hrManager:Susan Carter
vacationDays:4
homePhone:512-512-1111

givenname:barbara
sn:jensen
cn: Barbara Jensen
telephone:512-512-0000
manager:uid=kvaughan,
 ou=people,dc=example,dc=com

dn:uid=bjensen,ou=people,
 dc=example,dc=com
givenname:barbara
sn:jensen
cn: Barbara Jensen
telephone:512-512-0000
manager:uid=kvaughan,
 ou=people,dc=example,dc=com

HR
Database

FIGURE 14–1 Virtual View of Aggregated Data From Multiple Repositories

Typical Virtual Directory Scenarios

Chapter 14 • Deploying a Virtual Directory 211

Merging New Corporate Data Into an Existing
Directory Structure
In this scenario, Example.com acquires a new company, Acquisition.com. The new company
stores its user data in its own Directory Server. For management purposes, Example.com wants
to retain this directory structure. However, certain client applications need to see the use data
from Acquisition.com as if it were user data from Example.com.

The following diagram illustrates how the virtual directory provides a virtualized merge of the
acquired company's data into the existing directory structure.

Acquisition.com's directory is seen as a separate branch under the ou=people branch. The DNs
of the entry's in Acquisition.com's directory are transformed when they are viewed through the
virtual directory.

Directory Server

LDAP
Client

LDAP
Client

LDAP
Client

Active Directory

Virtual Directory

mail:bjensen@example.com

mail:bjensen@example.com

hrManager:Susan Carter
vacationDays:4
homePhone:512-512-1111

hrManager:Susan Carter
vacationDays:4
homePhone:512-512-1111

givenname:barbara
sn:jensen
cn: Barbara Jensen
telephone:512-512-0000
manager:uid=kvaughan,
 ou=people,dc=example,dc=com

dn:uid=bjensen,ou=people,
 dc=example,dc=com
givenname:barbara
sn:jensen
cn: Barbara Jensen
telephone:512-512-0000
manager:uid=kvaughan,
 ou=people,dc=example,dc=com

HR
Database

FIGURE 14–2 Merging User Data From Acquired Directory

Typical Virtual Directory Scenarios

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008212

Designing a Deployment With Synchronized
Data

Identity Synchronization for Windows is a component of Directory Server Enterprise Edition
that synchronizes user account information, including passwords, between Directory Server
and Windows. Both Windows Active Directory and Windows NT are supported. Identity
Synchronization for Windows helps build a scalable and security-enriched password
synchronization solution for an enterprise of any size.

For complete documentation on Identity Synchronization for Windows, see
http://docs.sun.com/coll/isw_04Q3. If you are planning to use Identity Synchronization for
Windows in your deployment, you must address the issues that are described in this chapter.

Identity Synchronization for Windows Deployment
Considerations

■ Synchronization direction of passwords. If passwords are synchronized from Directory
Server to Active Directory or in both directions, install the High Encryption Pack on
Windows 2000. This installation enables 128-bit SSL, which is required when setting
passwords in Active Directory over LDAP.

■ Synchronizing the creation of new users. If Identity Synchronization for Windows does
not synchronize the creation of new users, you must run the idsync resync command
periodically to establish links between newly created users. Changes to newly created users
are not synchronized until the users are explicitly linked by running idsync resync.

■ Population size. While Identity Synchronization for Windows places no upper limit on the
number of users that can be synchronized, the total number of users impacts the
deployment. The primary impact is on the idsync resync command that must be run
before synchronization is started. If more than 100,000 users are synchronized, run the
idsync resync command in batches. This batch mode ensures optimal performance and
limits the load on Sun Java System Message Queue.

15C H A P T E R 1 5

213

http://docs.sun.com/coll/isw_04Q3

■ Performance requirements. The performance of Identity Synchronization for Windows is
limited more by the synchronization rate than by the total number of users. The only
exception to this requirement is when you run the idsync resync command.

■ Expected peak modification rate. An Identity Synchronization for Windows deployment
with a Core and two connectors that are running on the same system can easily sustain a
modification rate of 10 synchronizations per second. If the required synchronization rate
exceeds this rate, higher performance is achieved by distributing Identity Synchronization
for Windows across multiple machines. For example, the connectors can be installed on a
separate machine from the Identity Synchronization for Windows Core.

■ Number of Windows domains to be synchronized. If more than one Windows domain is
to be synchronized, the activedirectorydomainname attribute or the
USER_NT_DOMAIN_NAME attribute must be synchronized to a Directory Server attribute. This
synchronization is required to resolve ambiguity between Synchronization User List
definitions.

■ Number of Directory Server masters, hubs, and read-only replicas in the deployment. In
a deployment with multiple Directory Servers, the Identity Synchronization for Windows
Directory Server plug-in must be enabled on each master, each hub, and each read-only
replica. When configuring Identity Synchronization for Windows, one Directory Server
master is designated as the preferred master. The Directory Server connector detects and
applies changes at the preferred master while the master is running. If this server is down,
the connector can optionally apply changes at a second master. The Retro Changelog
plug-in must be enabled on the preferred master. This master should be on the same LAN as
the Identity Synchronization for Windows Core.

■ Security. If the Directory Server or the Active Directory connectors connect to Directory
Server or Active Directory over SSL, SSL must be enabled on these servers. If the connectors
are configured to accept only trusted certificates, extra configuration steps must be taken.
These steps import the appropriate Certificate Authority certificates into the connectors’
certificate databases. If SSL is required between the Directory Server plug-in and Active
Directory, SSL must be enabled in Directory Server. In addition, the Certificate Authority
certificate that is used to sign the Active Directory SSL certificate must be imported into the
Directory Server’s certificate database.

For detailed deployment scenarios that incorporate Identity Synchronization for Windows, see
Sun Java System Identity Synchronization for Windows 6.0 Deployment Planning Guide.

Identity Synchronization for Windows Deployment Considerations

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008214

Index

A
access, anonymous, 114
access control instruction (ACI), 122
account lockout, global, 116
ACI., See access control instruction
administration

model, 129, 130
remote, 130

administration model, 129
application isolation, 191
attribute encryption, 120
authentication

certificate-based, 115
preventing, 116
proxy, 117
SASL, 116
simple password, 114

availability, 26, 27, 29, 67
clustering and, 198
replication and, 191
sample topologies, 191

B
backup

binary, 133-134
methods, 132-135
policy, 131
to ldif, 134-135

binary backup, 133-134
branch point, 46

business requirements, 35

C
central log directories, 18
certificate database, default path, 18
change log, 159
class of service, 54
clustering

monitoring, 200
vs redundancy, 186

connection handlers, 126
consumer, 157
consumer replica, 156
CoS, See class of service

D
data

backing up, 133-134, 134-135
consistency, 60
ownership, 42
sources, 41

data administration, Directory Editor, 143
db2bak, 133-134
db2ldif, 134-135
default locations, 17-20
Directory Editor, 143
directory information tree, 44
Directory Server

deployment considerations, 213

215

Directory Server (Continued)
tuning tips, 81-83

disaster recovery, 200
distribution, 165
DIT, 44
dpadm, 130
dpconf, 130
dsadm, 129
dsconf, 129

E
effective rights, 124
encryption, attributes, 120

F
failure, single points of, 185
firewalls, 128
fractional replication, 179

G
groups, 48

advantages, 52

H
hardware redundancy, 199
hardware sizing

Directory Proxy Server, 72-74
Directory Server, 74-102
Directory Service Control Center, 72

High Encryption Pack, 213
hub replica, 156

I
identity synchronization, 213
idsktune, 105-110

indexing, 150
install-path, 17
instance-path, 17
interoperability, 30
ISW, 213
isw-hostname directory, 18

J
Java Naming and Directory Interface, 16

L
latent capacity, 68
LDAP, deployment considerations, 213
local log directory, 18
log files

access, 138
audit, 138
creation, 139
deletion, 139
error, 138
permissions, 140

M
master replica, 156
Message Queue, 16
migration

NIS+ to LDAP, 207
NIS to LDAP, 206

monitoring, 140
areas, 142
tools, 141

N
NIS+ to LDAP, migration, 207
NIS to LDAP, migration, 206
non-root, 128

Index

Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide • April 2008216

P
password policy

design, 118-119
migration, 119
replication and, 118-119

performance requirements, 64
port numbers

DSCC, 71
DSML, 71
Identity Synchronization for Windows, 72
LDAP and LDAPS, 70

proxy authentication, 117
proxy DN, 117

R
recovery procedures, 193
redundancy

Directory Proxy Server and, 190
hardware, 187, 199
replication and, 189
software, 188
vs clustering, 186

referral, 173
replicas, 156

consumer, 156
hub, 156
master, 156
promoting and demoting, 190

replication
compression, 179
fractional, 179
over WAN, 177
requirements, 160

replication agreement, 159
replication latency, 66
restoration

binary, 136
from LDIF, 137

roles, 51
advantages, 53
permissions, 53

S
scalability, 28, 67
schema, design, 59
security, 27, 29, 68

methods, 112
threats, 112

serverroot directory, 17
serviceability, 28
sizing, Directory Server, 74-102
SLAMD Distributed Load Generation Engine, 16, 83
solution life cycle, 32
SSL, 120

enabling, 213
supplier, 157

T
tuning

file descriptors, 106
resource limits, 88-91
system resources, 91-94
TCP, 106-110

V
virtual directory, 209
virtualization, 209

Index

217

218

	Sun Java System Directory Server Enterprise Edition 6.3 Deployment Planning Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Directory Server Enterprise Edition Documentation Set
	Related Reading
	Redistributable Files
	Default Paths and Command Locations
	Default Paths
	Command Locations

	Typographic Conventions
	Shell Prompts in Command Examples
	Symbol Conventions
	Documentation, Support, and Training
	Third-Party Web Site References
	Searching Sun Product Documentation
	Sun Welcomes Your Comments

	Overview of Deployment Planning for Directory Server Enterprise Edition
	Introduction to Deployment Planning for Directory Server Enterprise Edition
	About Directory Server Enterprise Edition
	Quality of Service Requirements for a Robust Directory Service

	Directory Server Enterprise Edition Components and Their Capabilities
	Directory Server
	Directory Server and Security
	Directory Server and Availability
	Directory Server and Scalability
	Directory Server and Serviceability

	Directory Proxy Server
	Directory Proxy Server and Availability
	Directory Proxy Server and Security

	Identity Synchronization for Windows
	Directory Editor
	Directory Server Resource Kit
	Directory Server Enterprise Edition Components in a Deployment

	About Deployment Planning
	Solution Life Cycle

	Business Analysis for Directory Server Enterprise Edition
	About Business Analysis
	Defining Directory Server Enterprise Edition Business Requirements

	Technical Requirements
	Usage Analysis for Directory Server Enterprise Edition
	Usage Analysis Factors

	Defining Data Characteristics
	Determining Data Sources and Ownership
	Identifying Data Sources
	Determining Data Ownership
	Distinguishing Between User and Configuration Data

	Identifying Data From Disparate Data Sources
	Structuring Data With the Directory Information Tree
	DIT Terminology
	Designing the DIT
	Choosing a Suffix
	Creating the DIT Structure and Naming Entries
	Branch Points and Naming Considerations
	Replication Considerations
	Access Control Considerations

	Grouping Directory Data and Managing Attributes
	Static, Dynamic, and Nested Groups
	Static Groups
	Dynamic Groups
	Nested Groups

	Managed, Filtered, and Nested Roles
	Deciding Between Groups and Roles
	Advantages of the Groups Mechanism
	Advantages of the Roles Mechanism
	Restricting Permissions on Roles

	Managing Attributes With Class of Service
	Using CoS When Many Entries Share the Same Value
	Using CoS When Entries Have Natural Relationships
	Avoiding Excessive CoS Definitions

	Designing a Directory Schema
	Schema Design Process
	Maintaining Data Consistency

	Other Directory Data Resources

	Defining Service Level Agreements
	Identifying System Qualities
	Defining Performance Requirements
	Identifying Client Applications
	Determining the Number and Size of Directory Entries
	Determining the Number of Reads
	Determining the Number of Writes
	Estimating the Acceptable Response Time
	Estimating the Acceptable Replication Latency

	Defining Availability Requirements
	Defining Scalability Requirements
	Defining Security Requirements
	Defining Latent Capacity Requirements
	Defining Serviceability Requirements

	Tuning System Characteristics and Hardware Sizing
	Host System Characteristics
	Port Numbers
	Directory Server and Directory Proxy Server LDAP and LDAPS Port Numbers
	Directory Server DSML Port Numbers
	Directory Service Control Center and Common Agent Container Port Numbers
	Identity Synchronization for Windows Port Numbers

	Hardware Sizing For Directory Service Control Center
	Hardware Sizing For Directory Proxy Server
	Configuring Virtual Memory
	Configuring Worker Threads and Backend Connections
	Disk Space for Directory Proxy Server
	Network Connections for Directory Proxy Server

	Hardware Sizing For Directory Server
	The Tuning Process
	Making Sample Directory Data
	What to Configure and Why
	Directory Server Database Page Size
	Directory Server Cache Sizes
	Directory Server Indexes
	Directory Server Administration Files
	Directory Server Replication
	Directory Server Threads and File Descriptors
	Directory Server Growth
	Top Tuning Tips

	Simulating Client Application Load
	Directory Server and Processors
	Directory Server and Memory
	Directory Server and Local Disk Space
	Directory Server and Network Connectivity
	Limiting Directory Server Resources Available to Clients
	Limiting System Resources Used By Directory Server
	Basic Directory Server Sizing Example: Disk and Memory Requirements
	System Characteristics
	Preparing a Directory Server Instance
	Populating the Suffix With 10,000 Sample Directory Entries
	Populating the Suffix With 100,000 Sample Directory Entries
	Populating the Suffix With 1,000,000 Sample Directory Entries
	Summary of Observations

	Operating System Tuning For Directory Server
	Operating System Version and Patch Support
	Basic Security Checks
	Accurate System Clock Time
	Restart When System Reboots
	System-Specific Tuning With The idsktune Command
	File Descriptor Settings
	Transmission Control Protocol (TCP) Settings
	Inactive Connections
	Outgoing Connections
	Retransmission Timeout
	Sequence Numbers
	Tuning TCP Settings on Solaris 10 Systems

	Physical Capabilities of Directory Server

	Identifying Security Requirements
	Security Threats
	Overview of Security Methods
	Determining Authentication Methods
	Anonymous Access
	Simple Password Authentication
	Simple Password Authentication Over a Secure Connection
	Certificate-Based Client Authentication
	SASL-Based Client Authentication
	Preventing Authentication by Account Inactivation
	Preventing Authentication by Using Global Account Lockout
	External Authentication Mappings and Services

	Proxy Authorization
	Designing Password Policies
	Password Policy Options
	Password Policies in a Replicated Environment
	Password Policy Migration

	Password Synchronization With Windows
	Determining Encryption Methods
	Securing Connections With SSL
	Encrypting Stored Attributes
	What Is Attribute Encryption?
	Attribute Encryption Implementation
	Attribute Encryption and Performance

	Designing Access Control With ACIs
	Default ACIs
	ACI Scope
	Obtaining Effective Rights Information
	Tips on Using ACIs

	Designing Access Control With Connection Rules
	Designing Access Control With Directory Proxy Server
	How Connection Handlers Work

	Grouping Entries Securely
	Using Roles Securely
	Using CoS Securely

	Using Firewalls
	Running as Non-Root
	Other Security Resources

	Identifying Administration and Monitoring Requirements
	Directory Server Enterprise Edition Administration Model
	Remote Administration

	Designing Backup and Restore Policies
	High-Level Backup and Recovery Principles
	Choosing a Backup Method
	Binary Backup
	Backup to LDIF

	Choosing a Restoration Method
	Binary Restore
	Restoration From LDIF

	Designing a Logging Strategy
	Defining Logging Policies
	Defining Log File Creation Policies
	Defining Log File Deletion Policies
	Manually Creating and Deleting Log Files
	Defining Permissions on Log Files

	Designing a Monitoring Strategy
	Monitoring Tools Provided With Directory Server Enterprise Edition
	Identifying Monitoring Areas

	Data Administration With Directory Editor

	Logical Design
	Designing a Basic Deployment
	Basic Deployment Architecture
	Basic Deployment Setup
	Improving Performance in a Basic Deployment
	Using Indexing to Speed Up Searches
	Optimizing Cache for Search Performance
	All Entries and Indexes Fit Into Memory
	Sufficient Memory For 32-Bit Directory Server
	Insufficient Memory

	Optimizing Cache for Write Performance

	Designing a Scaled Deployment
	Using Load Balancing for Read Scalability
	Using Replication for Load Balancing
	Basic Replication Concepts
	Master, Consumer, and Hub Replicas
	Suppliers and Consumers
	Multi-Master Replication
	Unit of Replication
	Change Log
	Replication Agreement
	Replication Priority

	Assessing Initial Replication Requirements
	To Determine Initial Replication Requirements

	Load Balancing With Multi-Master Replication in a Single Data Center
	Load Balancing With Replication in Large Deployments
	Using Server Groups to Simplify Multi-Master Topologies

	Using Directory Proxy Server for Load Balancing

	Using Distribution for Write Scalability
	Using Multiple Databases
	Using Directory Proxy Server for Distribution
	Routing Based on the DIT
	Routing Based on a Custom Algorithm

	Using Directory Proxy Server to Distribute Requests Based on Bind DN

	Distributing Data Lower Down in a DIT
	Logical View of Distributed Data
	Physical View of Data Storage
	Directory Server Configuration for Sample Distribution Scenario
	Directory Proxy Server Configuration for Sample Distribution Scenario
	Considerations for Data Growth

	Using Referrals For Distribution
	Using Directory Proxy Server With Referrals

	Designing a Global Deployment
	Using Replication Across Multiple Data Centers
	Using Multi-Master Replication Over a WAN
	Group and Window Mechanisms
	Replication Compression

	Using Fractional Replication
	Using Prioritized Replication
	Sample Replication Strategy for an International Enterprise

	Using Directory Proxy Server in a Global Deployment
	Sample Distribution Strategy for a Global Enterprise

	Designing a Highly Available Deployment
	Availability and Single Points of Failure
	Mitigating SPOFs
	Deciding Between Redundancy and Clustering
	Advantages and Disadvantages of Redundancy
	Advantages and Disadvantages of Clustering
	How Redundancy and Clustering Handle SPOFs

	Redundancy at the Hardware Level
	Redundancy at the Software Level

	Using Replication and Redundancy for High Availability
	Using Redundant Replication Agreements
	Promoting and Demoting Replicas
	Using Directory Proxy Server as Part of a Redundant Solution
	Using Application Isolation for High Availability
	Sample Topologies Using Redundancy for High Availability
	Using Replication for Availability in a Single Data Center
	Single Data Center Failure Matrix
	Single Data Center Recovery Procedure
	To Recover on Failure of One Component

	Using Replication for Availability Across Two Data Centers
	Using Multiple Directory Proxy Servers
	Using Application Isolation

	Using Clustering for High Availability
	Hardware Redundancy
	Monitoring in a Clustered Solution
	System Maintenance
	Directory Server Failover Data Service
	Disaster Recovery
	Recovery in the Event of Application Failure
	Recovery in the Event of Server Failure

	Advanced Deployment Topics
	Using LDAP-Based Naming With Solaris
	Why Use an LDAP-Based Naming Service?
	Migrating From NIS to LDAP
	Migrating From NIS+ to LDAP

	Deploying a Virtual Directory
	When to Use a Virtual Directory
	Typical Virtual Directory Scenarios
	Connecting User Identities From Different Data Sources
	Merging New Corporate Data Into an Existing Directory Structure

	Designing a Deployment With Synchronized Data
	Identity Synchronization for Windows Deployment Considerations

	Index

