
Administrator’s Guide
Sun™ ONE Web Proxy Server

Version 3.6 SP3 for Windows

817-3880-10
August 2003

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license
agreement and applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Sun, Sun Microsystems, the Sun logo, Solaris, Sun[tm] ONE and the Sun[tm] ONE logo are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Netscape is a trademark or registered trademark of Netscape Communications Corporation in the United States and other countries.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject
to the export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end
users, whether direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities
identified on U.S. export exclusion lists, including, but not limited to, the denied persons and specially designated nationals lists is
strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE
LEGALLY INVALID.

Copyright © 2002 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Droits du gouvernement américain, utlisateurs gouvernmentaux - logiciel commercial. Les utilisateurs gouvernmentaux sont soumis
au contrat de licence standard de Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR [(Federal Acquisition
Regulations) et des suppléments à celles-ci.

Cette distribution peut comprendre des composants développés pardes tierces parties.

Sun, Sun Microsystems, le logo Sun, Solaris, Sun[tm] ONE et le logo Sun[tm] ONE sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.

Netscape est une marque de Netscape Communications Corporation aux Etats-Unis et dans d'autres pays.

Les produits qui font l'objet de ce manuel d'entretien et les informations qu'il contient sont régis par la législation américaine en
matière de contrôle des exportations et peuvent être soumis au droit d'autres pays dans le domaine des exportations et importations.
Les utilisations finales, ou utilisateurs finaux, pour des armes nucléaires, des missiles, des armes biologiques et chimiques ou du
nucléaire maritime, directement ou indirectement, sont strictement interdites. Les exportations ou réexportations vers des pays sous
embargo des États-Unis, ou vers des entités figurant sur les listes d'exclusion d'exportation américaines, y compris, mais de manière
non exclusive, la liste de personnes qui font objet d'un ordre de ne pas participer, d'une façon directe ou indirecte, aux exportations
des produits ou des services qui sont régi par la législation américaine en matière de contrôle des exportations et la liste de
ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L'ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES
EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y
COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE
UTILISATION PARTICULIERE OU A L'ABSENCE DE CONTREFAÇON.

3

Contents

Chapter 1 Introduction . 17
What iPlanet Web Proxy Server Provides . 17
What’s in This Book? . 19
Conventions Used in This Book . 19
Contacting Sun Microsystems Technical Support . 20

Chapter 2 Starting the Administration
and Proxy Servers . 21
Starting and Stopping the Administration Server . 21

Starting the Administration Server . 21
Stopping the Administration Server . 22

Using the Server Administration Page . 22
Starting and Stopping iPlanet Web Proxy Server . 23

Starting the Proxy Server . 24
Using the Server Administration Page . 24
Using the Control Panel . 24

Stopping the Proxy Server . 24
Using the Server Administration Page . 24
Using the Control Panel . 25

Creating a New Proxy Server Instance . 25

Chapter 3 Managing Your Server . 27
Overview . 27
Using the Server Manager . 27

Chapter 4 Managing Templates and Resources . 31
What is a Template? . 31

Understanding Regular Expressions . 32
Understanding Wildcard Patterns . 34

Creating Templates . 34

4 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Viewing and Removing Templates . 35
Removing Resources . 35
Online Forms for Controlling Resources . 36

Chapter 5 Configuring Server Preferences . 37
Starting and Stopping the Proxy Server . 37
Viewing Server Settings . 37
Restoring and Viewing Backup Configuration Files . 38
Changing System Specifics . 39

Server Port . 39
Server User . 40
Authentication password . 40
DNS . 40
ICP . 41
Proxy Array . 41
Parent Array . 41
Remote Access . 41
Java IP Address Checking . 41
Proxy Timeout . 42

Creating MIME Types . 42
Allowing or Blocking Arbitrary Methods . 43
WebDAV Support . 43

Chapter 6 Controlling Access to Your Server . 45
How Does Access Control Work? . 46

Access Control Files . 46
ACL File Syntax . 47

Restricting Access . 51
Denying Access to a Resource . 53
Allowing Access to a Resource . 54

Chapter 7 Proxying and Routing URLs . 57
Enabling Proxying for a Resource . 57
Configuring Routing for a Resource . 58
Chaining Proxy Servers . 59
Routing Through a SOCKS Server . 61
Sending the Client’s IP Address to the Server . 61
Using Remote Access . 62

Configuring Remote Access . 63
Enabling Remote Access . 63

Mapping URLs to Other URLs . 64
Creating a URL Mapping . 64

5

Editing Existing Mappings . 66
Redirecting URLs . 66

Client Autoconfiguration . 67

Chapter 8 Reverse Proxy . 69
How Reverse Proxying Works . 69

Proxy as a Stand-in for a Server . 69
Proxying for Load Balancing . 71
Setting up a Reverse Proxy . 72

Chapter 9 Using SOCKS v5 . 75
Using a SOCKS Server . 75

Configuring SOCKS v5 . 76
Creating SOCKS v5 Authentication Entries . 77
Editing SOCKS v5 Authentication Entries . 79
Deleting SOCKS v5 Authentication Entries . 79
Moving SOCKS v5 Authentication Entries . 79
Creating SOCKS v5 Connection Entries . 80
Editing SOCKS v5 Connection Entries . 82
Deleting SOCKS v5 Connection Entries . 82
Moving SOCKS v5 Connection Entries . 83
Creating Routing Entries . 83

Creating SOCKS v5 Routing Entries . 83
Creating Proxy Routing Entries . 84

Editing Routing Entries . 85
Deleting Routing Entries . 86
Moving Routing Entries . 86
Enabling SOCKS . 86

Authenticating Through a SOCKS Server Chain . 87

Chapter 10 Caching . 89
How Caching Works . 89
Understanding the Cache Structure . 90
Distributing Files in the Cache . 91
Creating a New Cache . 92
Restructuring the Cache . 94
Setting Cache Specifics . 95

Enabling the Cache . 96
Caching HTTP Documents . 96

Setting the HTTP Cache Refresh Interval . 97
Setting the HTTP Cache Expiration Policy . 97

Caching FTP and Gopher Documents . 98

6 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Setting FTP and Gopher Cache Refresh Intervals . 99
Configuring the Cache . 99

Setting the Cache Default . 100
Caching Pages that Require Authentication . 101
Caching Queries . 101
Setting the Minimum and Maximum Cache File Sizes . 102
Setting the Cache Behavior for Client Aborts . 102

Caching Local Hosts . 103
Using Cache Batch Updates . 103

Creating a Batch Update . 103
Editing or Deleting a Batch Update Configuration . 104

Accessing Cache Manager Information . 105
Expiring and Removing Files from the Cache . 105

Routing through Proxy Arrays . 107
Creating a Proxy Array Member List . 111

Deleting Proxy Array Members . 112
Editing Proxy Array Member List Information . 113

Configuring Proxy Array Members . 113
Enabling Routing through a Proxy Array . 114
Enabling a Proxy Array . 115
Redirecting Requests in a Proxy Array . 116
Generating a PAC File from a PAT File . 116

Manually Generating a PAC File from a PAT File . 116
Automatically Generating a PAC File from a PAT File . 117

Routing Through a Parent Array . 118
Viewing Parent Array Information . 119

Routing Through ICP Neighborhoods . 119
Adding Parents to an ICP Neighborhood . 122
Removing Parents from an ICP Neighborhood . 123
Editing Configurations for Parents in an ICP neighborhood . 123
Adding Siblings to an ICP Neighborhood . 124
Removing Siblings from an ICP Neighborhood . 125
Editing Configurations for Siblings in an ICP Neighborhood . 125
Configuring Individual ICP Neighbors . 125
Enabling ICP . 127
Enabling Routing Through an ICP Neighborhood . 127

Chapter 11 Filtering Content Through the Proxy . 129
Filtering URLs . 129

Creating a Filter File of URLs . 130
Setting Default Access for a Filter File . 130

Restricting Access to Specific Web Browsers . 131
Request Blocking . 132

7

Suppressing Outgoing Headers . 133
Filtering by MIME Type . 133
Filtering out HTML Tags . 134

Chapter 12 Using the Client
Autoconfiguration File . 137
Understanding Autoconfiguration Files . 138

What Does the Autoconfiguration File Do? . 138
Accessing the Proxy as a Web Server . 139

Using the Server Manager Forms to Create an Autoconfiguration File . 140
Creating the Autoconfiguration File Manually . 142

The FindProxyForURL Function . 142
The Function Return Values . 143
JavaScript Functions and Environment . 144

host name-based functions . 145
Related Utility Functions . 148
URL/host-name-based Condition . 149
Time-based Conditions . 149
Example 1: Proxy All Servers Except Local Hosts . 153
Example 2: Proxy Local Servers Outside the Firewall . 153
Example 3: Proxy Only Unresolved Hosts . 154
Example 4: Connect Directly to a Subnet . 154
Example 5: Balance Proxy Load with dnsDomainIs() . 155
Example 6: Balance Proxy Load with shExpMatch() . 156
Example 7: Proxying a Specific Protocol . 156

Chapter 13 Monitoring the Server’s Status . 159
Working with Log Files . 159

Viewing the Error Log File . 159
Viewing an Access Log File . 160
Understanding Access Logfile Syntax . 161
Understanding Status Codes . 164
Setting Access Log Preferences . 167
Working with the Log Analyzer . 169

Transfer Time Distribution Report . 169
Status Code Report . 170
Data Flow Report . 171
Requests and Connections Report . 171
Cache Performance Report . 171
Transfer Time Report . 174
Hourly Activity Report . 174

Running the Log Analyzer from the Server Manager . 175
Archiving Log Files . 177

8 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Monitoring the Server Using SNMP . 178
How Does SNMP Work? . 178
The Proxy Server MIB . 179

Enabling the Subagent . 180
Using the Performance Monitor . 180

Chapter 14 Proxy Error Log Messages . 183
Proxy Error Messages . 183

Catastrophe . 183
Failure . 184
Misconfig . 186
Warning . 186

SOCKS Error Messages . 187

Chapter 15 Tuning Server Performance . 191
Using Timeouts Effectively . 191

Proxy Timeout . 191
Controlling Up-To-Date Checks . 192

Setting the Last-modified Factor . 192
Using DNS Effectively . 192
Using SOCKS Effectively . 193

Worker threads . 193
Accept Threads . 194

Optimizing Cache Architecture . 194

Chapter 16 Proxy Reserved Ports . 195

Chapter 17 Configuring the Proxy Manually . 197
The magnus.conf File . 198
The obj.conf File . 199

The Structure of obj.conf . 199
Directive Syntax . 200
A Sample Object . 201

Required Objects for obj.conf . 202
The Default Object . 203

How the Proxy Server Handles Objects . 203
The mime.types File . 204
The admpw File . 206
The socks5.conf File . 207
The bu.conf File . 208

Object Boundaries . 208
Examples of bu.conf . 209

9

The icp.conf File . 209
The parray.pat File . 210
The parent.pat File . 211
The ras.conf File . 211

Chapter 18 Creating Server Plug-in Functions . 213
What Is the Server Plug-in API? . 213
Writing Plug-in Functions . 214

The Server Plug-in API Header Files . 215
Getting Data from the Server: The Parameter Block . 217
Passing Parameters to Server Application Functions . 217

Parameter-manipulating Functions . 217
Data Structures and Data Access Functions . 218
Application Function Status Codes . 219

Reporting Errors to the Server . 220
Setting an HTTP Response Status Code . 220
Error Reporting . 221

Compiling and Linking Your Code . 222
Loading Your Shared Object . 222
Using Your Plug-in Functions . 222

Appendix A Server Plug-in API Function Definitions . 225
condvar_init (declared in base\crit.h) . 225
condvar_notify (declared in base\crit.h) . 226
condvar_terminate (declared in base\crit.h) . 226
condvar_wait (declared in base\crit.h) . 227
crit_enter (declared in base\crit.h) . 227
daemon_atrestart (declared in netsite.h) . 228
filebuf_buf2sd (declared in base\buffer.h) . 228
filebuf_close (declared in base\buffer.h) . 229
filebuf_getc (declared in base\buffer.h) . 229
filebuf_open (declared in base\buffer.h) . 230
filebuf_open_nostat (declared in base\buffer.h) . 231
FREE (declared in netsite.h) . 232
func_exec (declared in frame\func.h) . 232
func_find (declared in frame\func.h) . 233
http_dump822 (declared in frame\http.h) . 234
http_hdrs2env (declared in frame\http.h) . 234
http_scan_headers (declared in frame\http.h) . 235
http_set_finfo (declared in frame\http.h) . 236
http_start_response (declared in frame\http.h) . 236
http_status (declared in frame\http.h) . 237
http_uri2url (declared in frame\http.h) . 238

10 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

log_error (declared in frame\log.h) . 238
magnus_atrestart (declared in netsite.h) . 239
make_log_time (declared in libproxy\util.h) . 240
MALLOC (declared in netsite.h) . 240
netbuf_buf2sd (declared in base\buffer.h) . 241
netbuf_close (declared in base\buffer.h) . 242
netbuf_getc (declared in base\buffer.h) . 242
netbuf_grab (declared in base\buffer.h) . 243
netbuf_open (declared in base\buffer.h) . 243
net_ip2host (declared in base\net.h) . 244
net_read (declared in base\net.h) . 244
net_socket (declared in base\net.h) . 245
net_write (declared in base\net.h) . 246
param_create (declared in base\pblock.h) . 246
param_free (declared in base\pblock.h) . 247
pblock_copy (declared in base\pblock.h) . 248
pblock_create (declared in base\pblock.h) . 248
pblock_dup (declared in base\pblock.h) . 249
pblock_find (declared in base\pblock.h) . 249
pblock_findlong (declared in libproxy\util.h) . 250
pblock_findval (declared in base\pblock.h) . 250
pblock_free (declared in base\pblock.h) . 251
pblock_nlinsert (declared in libproxy\util.h) . 251
pblock_nninsert (declared in base\pblock.h) . 252
pblock_nvinsert (declared in base\pblock.h) . 252
pblock_pb2env (declared in base\pblock.h) . 254
pblock_pblock2str (declared in base\pblock.h) . 254
pblock_pinsert base\pblock.h) . 255
pblock_remove (declared in base\pblock.h) . 255
pblock_replace_name (declared in libproxy\util.h) . 256
pblock_str2pblock (declared in base\pblock.h) . 257
PERM_FREE (declared in netsite.h) . 257
PERM_MALLOC (declared in netsite.h) . 258
PERM_STRDUP (declared in netsite.h) . 259
protocol_dump822 (declared in frame\protocol.h) . 259
protocol_finish_request (declared in frame\protocol.h) . 260
protocol_handle_session (declared in frame\protocol.h) . 260
protocol_hdrs2env (declared in frame\protocol.h) . 261
protocol_parse_request (declared in frame\protocol.h) . 261
protocol_scan_headers (declared in frame\protocol.h) . 262
protocol_set_finfo (declared in frame\protocol.h) . 263
protocol_start_response (declared in frame\protocol.h) . 263
protocol_status (declared in frame\protocol.h) . 264

11

protocol_uri2url (declared in frame\protocol.h) . 265
protocol_uri2url_dynamic (declared in frame\protocol.h) . 266
REALLOC (declared in netsite.h) . 267
request_create (declared in frame\req.h) . 268
request_free (declared in frame\req.h) . 268
request_header (declared in frame\req.h) . 268
request_stat_path (declared in frame\req.h) . 269
request_translate_uri (declared in frame\req.h) . 270
sem_grab (declared in base\sem.h) . 271
sem_init (declared in base\sem.h) . 271
sem_release (declared in base\sem.h) . 272
sem_terminate (declared in base\sem.h) . 272
sem_tgrab (declared in base\sem.h) . 273
session_create (declared in base\session.h) . 273
session_free (declared in base\session.h) . 274
session_maxdns (declared in base\session.h) . 274
shexp_casecmp (declared in base\shexp.h) . 275
shexp_cmp (declared in base\shexp.h) . 275
shexp_match (declared in base\shexp.h) . 277
shexp_valid (declared in base\shexp.h) . 278
shmem_alloc (declared in base\shmem.h) . 278
shmem_free (declared in base\shmem.h) . 279
STRDUP (declared in netsite.h) . 279
systhread_attach (declared in base\systhr.h) . 280
systhread_current (declared in base\systhr.h) . 281
systhread_getdata (declared in base\systhr.h) . 281
systhread_init (declared in base\systhr.h) . 282
systhread_newkey (declared in base\systhr.h) . 282
systhread_setdata (declared in base\systhr.h) . 283
systhread_sleep (declared in base\systhr.h) . 283
systhread_start (declared in base\systhr.h) . 284
systhread_terminate (declared in base\systhr.h) . 284
systhread_timerset (declared in base\systhr.h) . 285
system_errmsg (declared in base\file.h) . 285
system_fclose (declared in base\file.h) . 286
system_flock (declared in base\file.h) . 286
system_fopenRO (declared in base\file.h) . 287
system_fopenRW (declared in base\file.h) . 288
system_fopenWA (declared in base\file.h) . 288
system_fread (declared in base\file.h) . 289
system_fwrite (declared in base\file.h) . 289
system_fwrite_atomic (declared in base\file.h) . 290
system_gmtime (declared in base\file.h) . 291

12 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

system_localtime (declared in base\file.h) . 292
system_ulock (declared in base\file.h) . 292
system_unix2local (declared in base\file.h) . 293
util_can_exec (declared in base\util.h) . 293
util_chdir2path (declared in base\util.h) . 294
util_does_process_exist (declared in libproxy\util.h) . 295
util_env_create (declared in base\util.h) . 295
util_env_find (declared in base\util.h) . 296
util_env_free (declared in base\util.h) . 296
util_env_replace (declared in base\util.h) . 297
util_env_str (declared in base\util.h) . 297
util_get_current_gmt (declared in libproxy\util.h) . 298
util_get_int_from_aux_file (declared in libproxy\cutil.h) . 298
util_get_long_from_aux_file (declared in libproxy\cutil.h) . 299
util_get_string_from_aux_file (declared in libproxy\cutil.h) . 299
util_getline (declared in base\util.h) . 300
util_host name (declared in base\util.h) . 301
util_is_mozilla (declared in base\util.h) . 301
util_is_url (declared in base\util.h) . 302
util_itoa (declared in base\util.h) . 302
util_later_than (declared in base\util.h) . 303
util_make_gmt (declared in libproxy\util.h) . 303
util_make_local (declared in libproxy\util.h) . 304
util_move_dir (declared in libproxy\util.h) . 304
util_move_file (declared in libproxy\util.h) . 305
util_parse_http_time (declared in libproxy\util.h) . 305
util_put_string_to_aux_file (declared in libproxy\cutil.h) . 306
util_sh_escape (declared in base\util.h) . 307
util_snprintf (declared in base\util.h) . 307
util_sprintf (declared in base\util.h) . 308
util_strcasecmp (declared in base\systems.h) . 309
util_strncasecmp (declared in base\systems.h) . 309
util_uri_check (declared in libproxy\util.h) . 310
util_uri_escape (declared in base\util.h) . 310
util_uri_is_evil (declared in base\util.h) . 311
util_uri_parse (declared in base\util.h) . 312
util_uri_unescape (declared in base\util.h) . 312
util_url_cmp (declared in libproxy\util.h) . 312
util_url_fix_host name (declared in libproxy\util.h) . 313
util_url_has_FQDN (declared in libproxy\util.h) . 314
util_vsnprintf (declared in base\util.h) . 314
util_vsprintf (declared in base\util.h) . 315

13

Appendix B Server Data Structures . 317
The Session Data Structure . 317
The Parameter Block (pblock) Data Structure . 317

The Pb_entry Data Structure . 318
The Pb_param Data Structure . 318

The Client Parameter Block . 318
The Request Data Structure . 319
The Stat Data Structure . 319
The Shared Memory Structure, Shmem_s . 320
The Netbuf Data Structure . 320
The Filebuffer Data Structure . 320
The Cinfo Data Structure . 320
The SYS_NETFD Data Structure . 321
The SYS_FILE Data Structure . 321
The SEMAPHORE Data Structure . 321
The Sockaddr_in Data Structure . 321
The CONDVAR Data Structure . 321
The CRITICAL Data Structure . 322
The SYS_THREAD Data Structure . 322
The CacheEntry Data Structure . 322

Appendix C Proxy Configuration Files . 325
The magnus.conf File . 326

Ciphers . 327
DNS . 327
ErrorLog . 328
LDAPConnPool . 328
LoadObjects . 328
Port . 329
RootObject . 329
Security . 330
ServerName . 330
SSLClientAuth . 330
SSL2 . 331
SSL3 . 331
SSL3Ciphers . 331

The obj.conf File . 332
AddLog . 332

flex-log (starting proxy logging) . 333
AuthTrans . 333

proxy-auth (translating proxy authorization) . 334
Connect . 335
DNS . 336

14 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

dns-config (suggest treating certain host names as remote) . 336
your-dns-function (a plug-in dns function you create) . 338

Error . 339
Init . 340

Init function order in obj.conf . 341
Calling Init functions . 341
flex-init (starting the flex-log access logs) . 342
icp-init (initializes ICP) . 345
init-batch-update (starting batch updates) . 346
init-cache (starting the caching system) . 347
init-proxy (starting the network software for proxy) . 347
init-proxy-auth (specifying the authentication strategy) . 348
init-ras (starting remote access) . 349
load-modules (loading shared object modules) . 350
load-types (loading MIME-type mappings) . 351
pa-init-parent-array (initializing a parent array member) . 351
pa-init-proxy-array (initializing a proxy array member) . 353

NameTrans . 355
assign name (associating templates with path) . 355
map (mapping URLs to mirror sites) . 355
pac-map (mapping URLs to a local file) . 356
pat-map (mapping URLs to a local file) . 357
pfx2dir (replacing path prefixes with directory names) . 357

ObjectType . 358
cache-enable (enabling caching) . 358
cache-setting (specifying caching parameters) . 359
force-type (assigning MIME types to objects) . 361

15

Service . 368
proxy-retrieve (retrieving documents with the proxy) . 368
send-file (sending text file contents to client) . 369
deny-service (denying access to a resource) . 369

The socks5.conf File . 370
Authentication/Ban Host Entries . 371
Routing Entries . 372
Variables and Flags . 372

Available Settings . 372
Proxy Entries . 379
Access Control Entries . 379
Specifying Ports . 380

The bu.conf File . 380
Accept . 381
Connections . 381
Count . 381
Days . 382
Depth . 382
Object boundaries . 382
Reject . 382
Source . 383
Time . 383
Type . 383

The icp.conf File . 384
add_parent (adding parent servers to an ICP neighborhood) . 384
add_sibling (adding sibling servers to an ICP neighborhood) . 385
server (configuring the local proxy in an ICP neighborhood) . 386

The ras.conf File . 388

Glossary . 391

Index . 399

16 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

17

Chapter 1

Introduction

Welcome to Sun™ Open Net Environment (Sun ONE) Web Proxy Server
(formerly, iPlanet Web Proxy Server) and the Internet. iPlanet Web Proxy Server is
a high-performance server software product. It is designed for replicating and
filtering access to web-based content.

What iPlanet Web Proxy Server Provides
The rapid growth of clients (web browsers such as Netscape Navigator) and servers
for the World Wide Web and corporate intranets has opened new opportunities for
sharing information, collaborating, and developing network-oriented applications.
At the same time, for network administrators this growth has raised new issues
about network congestion and security, about how to ensure fast and reliable
service for mission-critical applications, and about how to control access to
restricted network resources. iPlanet Web Proxy Server is designed to address
these problems.

For companies that do business on the Internet or the web, a proxy server can act as
a transparent intermediary between individual clients and the servers that contain
the information the clients want. A proxy server allows an organization or
company to provide controlled Internet access for internal users who would
otherwise be blocked by a security firewall; a proxy server working in reverse can
also let the organization regulate access from external clients, as a refinement to
firewall security protection.

iPlanet Web Proxy Server has an added advantage—it provides
replication-on-demand by intelligently caching frequently accessed documents,
thereby conserving network bandwidth and dramatically increasing response
time. This important feature makes iPlanet Web Proxy Server valuable even for
companies that have full web access.

What’s in This Book?

Chapter 1 Introduction 19

• It provides key server management features such as remote management, SNMP
(Simple Network Management Protocol), advanced logging and reporting,
cluster management of user and group information through
LDAP v3, automatic proxy configuration and proxy scripting, and the server
plug-in API (Application Programming Interface).

• It enables you to set up content filtering by URL, and it provides access control
by user, IP address, host name or domain, and web content.

What’s in This Book?
This book contains information about how the proxy server works and explains
how to start, configure, and maintain it. This book will help you to maintain the
server, understand its internal workings, and customize its functions. The book is
divided into two parts. Part 1 discusses the administration of the proxy server and
the second part explains how to program the server.

For information on how to install the proxy server, see the Sun ONE Web Proxy
Server Installation Guide for your platform.

For information on the administration server that comes with your proxy server,
see Managing Netscape Servers.

Conventions Used in This Book
These conventions are used in this book:

Monospaced font. Monospaced type is used for text that you should type. It is
also used for examples of code and for directories and filenames.

Italic. Italic text is used to introduce new terms and to represent variable
information.

|.

Contacting Sun Microsystems Technical Support

20 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Contacting Sun Microsystems Technical Support
For product-specific Technical Support assistance, please see the Product Support
Page at:

http://www.sun.com/service/sunone/software/index.html

Further information can be found at the following Internet locations:

• Support

http://www.sun.com/service/sunone/software/index.html

• Consulting Services

http://www.sun.com/service/sunps/sunone/index.html

• Developer Information

http://developer.iplanet.com

• Sofware Training

http://www.sun.com/software/training/

• Software

http://www.sun.com/software/

• Product Data Sheet

http://www.sun.com/software/products/web_proxy/ds_web_proxy.html

21

Chapter 2

Starting the Administration
and Proxy Servers

Sun ONE Web Proxy Server’s installation process installs two servers, an
administration server and a proxy server. This chapter explains the different
methods for starting and stopping both of these servers. For information on
installing the proxy server, see the Sun ONE Web Proxy Server Installation Guide.

Starting and Stopping the Administration Server
To start and configure your proxy server, you need to have an administration
server running on your machine. For more information about the administration
server, see Managing iPlanet Servers.

Starting the Administration Server
The administration server starts automatically when you finish installing the proxy
server. However, there may be instances when you need to stop and start it. There
are two ways to start the administration server:

• Click the Administer iPlanet Server icon in the iPlanet program group.

• Go to Control Panel|Services, select Netscape Administration Server 3.5, then
click Start.

Once you have started the administration server, you need to connect to it. Using a
browser that supports frames and JavaScript, such as Netscape Navigator 4.0, enter
the following URL for the administration server:

http://servername.sub_domain.domain:port_number

Using the Server Administration Page

22 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

In the above URL, use the administration server’s port number (not the port
number for the proxy server) that you specified during installation. You will be
prompted for a user name and password. Type the administration server user
name and password you specified during the installation. The Server
Administration page appears. For more information on the Server Administration
page, see “Using the Server Administration Page” on page 24.

Stopping the Administration Server
To stop the administration server,

1. Open the Control Panel|Services applet.

2. Choose iPlanet Administration Server 3.0.

3. Click Stop.

Using the Server Administration Page
When you start the administration server, you see the Server Administration page
screen, as shown in Figure 2-1.

Starting and Stopping iPlanet Web Proxy Server

Chapter 2 Starting the Administration and Proxy Servers 23

Figure 2-1 Server Administration page

From the Server Administration page, you can perform the following tasks:

• Configure the administration server

• Choose a server to configure

• Start and stop a proxy server

• Create a new proxy server instance

• Migrate from an earlier version of the proxy server

• Remove a server

Starting and Stopping iPlanet Web Proxy Server
Once you have started the administration server, you can start your proxy server.
There are several ways to start and stop the proxy server. The following sections
discuss these methods.

Starting and Stopping iPlanet Web Proxy Server

24 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Starting the Proxy Server
You can start the proxy server in one of the following ways:

Using the Server Administration Page
From the Server Administration page, you can start the proxy server by using one
of the following options:

Option 1

Click the On/Off button next to the server you wish to start.

Option 2
1. Click the name of the proxy server you want to start.

2. Choose System Settings|Start/Stop the server.

3. Click Start.

Using the Control Panel
From the control panel:

1. Open the Control Panel|Services applet from the NT main folder

2. Choose the iPlanet Web Proxy Server that you want to start.

3. Click Start.

Stopping the Proxy Server
You can stop a server in one of the following ways:

Using the Server Administration Page
From the Server Administration page screen, you can stop the proxy server by
using one of the following options:

Option 1

Click the On/Off button next to the server you wish to stop.

Creating a New Proxy Server Instance

Chapter 2 Starting the Administration and Proxy Servers 25

Option 2
1. Click the name of the proxy server you want to stop.

2. Choose System Settings|Start/Stop the server.

3. Click Stop.

Using the Control Panel
1. Choose Control Panel|Services applet from NT main folder.

2. Choose the iPlanet Web Proxy Server that you want to stop.

3. Click Stop.

Creating a New Proxy Server Instance
From the Server Administration page, you can create a new instance of proxy
server . To do so, complete the following steps:

1. Click Create New iPlanet Web Proxy Server 3.6 to launch the Web Proxy Server
Installation page.

2. In the Web Proxy Server Installation page, type the following information for
your proxy server:

❍ Server Name: the host name where the proxy server is installed.

❍ Bind Address: the IP address.

❍ Server Port: the port that you want the proxy to listen to.

❍ Server Identifier: a name used in the Server Selector to identify the specific
proxy server.

In addition, specify the following information:

❍ Choose how you want the proxy server to resolve IP addresses. For more
details, see the online help.

❍ Choose the log format you want the proxy to use. For more details, see
Working with Log Files.

NOTE The name you specify for the Server Identifier can contain only letters,
digits, hyphens and underscores, and must begin with a letter.

Creating a New Proxy Server Instance

26 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

❍ Check the protocols you want the proxy to handle.

❍ Choose whether or not you want to cache documents, and specify the
caching-related configuration settings. For more details, see Chapter 10,
“Caching” and the online help.

27

Chapter 3

Managing Your Server

This chapter describes how to manage your iPlanet Web Proxy Server by using the
Server Manager forms.

Once you have installed and started your administration and proxy servers, you
can use the Server Manager forms to configure your proxy server. For information
on installing and starting the administration server and proxy server, see the Sun
ONE Web Proxy Server Installation Guide.

Overview
You can configure the proxy server by using the web-based administration forms
or by editing the configuration files.

The administration server runs a collection of web forms and CGI (Common
Gateway Interface) scripts. The Server Administration page is the main web form
that lets you configure the administration server or choose another server to
configure. The Server Manager forms let you configure the server you select on the
Server Administration page.

Using the Server Manager
The Server Manager is a collection of forms that lets you configure and administer
your proxy server. To access the Server Manager, you choose the server you want
to configure from the Server Administration page. For information on accessing the
Server Administration page, see the Sun ONE Web Proxy Server Installation Guide.
The Server Manager is shown in Figure 3-1. You can use the Server Manager from
any remote computer as long as it has permission to access the administration
server.

Using the Server Manager

28 iPlanet Web Proxy Server Administrator’s Guide • August 2003

To access the Server Administration page and use the Server Manager,

1. Using a browser that supports frames and JavaScript, such as Netscape
Navigator 4.0 or later, enter the URL for the administration server. The URL
has the following format:

http://servername.domain.domain:port_number/

For example, http://atomic.acmecorp.com:1357

Use the port number for the administration server that you specified during
installation; this is not the port number for the proxy server.

2. You’ll be prompted for a user name and password. Type the administration
server user name and password that you specified during installation. The
Server Administration page appears.

3. Click the button containing the name of the proxy server you want to
configure. The Server Manager appears, as shown in Figure 3-1.

NOTE If you are already on the Server Administration page, skip directly to step 3.

Using the Server Manager

Chapter 3 Managing Your Server 29

Figure 3-1 The proxy’s Server Manager main forms

4. To configure specific aspects of your iPlanet Web Proxy Server, click a button
at the top of the form, and then choose a link in the left frame. The form
appears in the frame on the right.

You can return to the Server Administration page by clicking the Admin button in
the upper-right corner of the Server Manager.

NOTE You must save and apply your changes in order for the proxy server
to begin using them. After you submit certain forms, you’ll see a
form that allows you to save and apply your changes. Choosing the
Save option does not restart your proxy server, however, choosing
Save and Apply does restart the server.

Click a button
category to view
its list of links.

Click a link to view
the form that
contains its
options.

Forms appear here with buttons and options you use to configure the
proxy server. After applying the form, you’ll get a confirmation
message.

Using the Server Manager

30 iPlanet Web Proxy Server Administrator’s Guide • August 2003

31

Chapter 4

Managing Templates and Resources

Templates allow you to group URLs together so that you can configure how the
proxy handles them. You can make the proxy behave differently depending on the
URL the client tries to retrieve. For example, you might require the client to
authenticate (type in a user name and password) when accessing URLs from a
specific domain. Or, you might deny access to URLs that point to image files. You
can configure different cache refresh settings based on the file type (keep some files
in the cache longer than others).

What is a Template?
A template is a collection of URLs, called resources. A resource might be a single
URL, a group of URLs that have something in common, or an entire protocol. You
name and create a template and then you assign URLs to that template by using
regular expressions. This means that you can configure the proxy server to handle
requests for various URLs differently. Any URL pattern you can create with
regular expressions can be included in a template. Table 4-1 lists the default
resources and provides some ideas for other templates.

Table 4-1 Resource regular expression wildcard patterns

Regular expression pattern What it configures

ftp://.* All FTP requests

http://.* All HTTP requests

https://.* All secure HTTP requests

http://home\.iplanet\.com.* All documents on the home.iplanet.com web site.

.*\.gif.* Any URL that includes the string .gif

.*\.edu.* Any URL that includes the string .edu

What is a Template?

32 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Understanding Regular Expressions
Sun ONE Web Proxy Server allows you to use regular expressions to identify
resources. Regular expressions specify a pattern of character strings. In the proxy
server, regular expressions are used to find matching patterns in URLs.

Here is an example of a regular expression:

[a-z]*://[^:/]*\.abc\.com.*>

This regular expression would match any documents from the .abc.com domain.
The documents could be of any protocol and could have any file extension.

Table 4-2 contains regular expressions and their corresponding meanings.

http://.*\.edu.* Any URL going to a computer in the .edu domain

Table 4-2 Regular expressions and their meanings

Expressions Meaning

. Matches any single character except a newline.

x? Matches zero or one occurrences of regular expression x.

x* Matches zero or more occurrences of regular expression x.

x+ Matches one or more occurrences of regular expression x.

x{n,m} Matches the character x where x occurs at least n times but no
more than m times.

x{n,} Matches the character x where x occurs at least n times.

x{n} Matches the character x where x occurs exactly n times.

[abc] Matches any of the characters enclosed in the brackets.

[^abc] Matches any character not enclosed in the brackets.

[a-z] Matches any characters within the range in the brackets.

x Matches the character x where x is not a special character.

\x Removes the meaning of special character x.

"x" Removes the meaning of special character x.

Table 4-1 Resource regular expression wildcard patterns

Regular expression pattern What it configures

What is a Template?

Chapter 4 Managing Templates and Resources 33

This example illustrates how you can use some of the regular expressions in
Table 4-2.

[a-z]*://([^.:/]*[:/]|.*\.local\.com).*"

• [a-z]* matches a document of any protocol.

• :// matches a (:) followed by (//).

• [^.:/]*[:/] matches any character string that does not include a (.),(:) or (/), and
is followed by either a (:) or a (/). It therefore matches host names that are not
fully qualified and hosts with port numbers.

• |.*\.local\.com does not match fully qualified domain name host names such
as local.com but does match documents in the .local.com domain.

• .*" matches documents with any file extension.

xy Matches the occurrence of regular expression x followed by
the occurrence of regular expression y.

x|y Matches either the regular expression x or the regular
expression y.

^ Matches the beginning of a string.

$ Matches the end of a string.

(x) Groups regular expressions.

NOTE As noted in Table 4-2, the backslash can be used to escape or
remove the meaning of special characters. Characters such as the
period and question mark have special meanings, and therefore,
must be escaped if they are used to represent themselves. The
period, in particular, is found in many URLs. So, to remove the
special meaning of the period in your regular expression, you
need to precede it with a backslash.

Table 4-2 Regular expressions and their meanings

Expressions Meaning

Creating Templates

34 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Understanding Wildcard Patterns
You can create lists of wildcard patterns that enable you to specify which URLs can
be accessed from your site. Wildcards can be in the form of regular expressions or
shell expressions, depending on usage. As a general rule:

• Use regular expressions for any pattern that matches destination URLs. This
includes <Object ppath=...>, URL filters, and the NameTrans, PathCheck, and
ObjectType functions.

• Use shell expressions for any pattern that matches incoming client or user IDs,
including user names and groups for access control and the IP addresses or
DNS names of incoming users (for example, <Client dns=...>).

You can specify several URLs by using regular expression wildcard patterns.
Wildcards let you filter by domain name or by any URL with a given word in the
URL. For example, you might want to block access to URLs that contain the string
“sex.” To do this, you could specify http://.*sex.* as the regular expression for the
template.

Creating Templates
You can create a template using a regular expression wildcard pattern. You can
then configure aspects that affect only the URLs specified in that template. For
example, you might use one type of caching configuration for .GIF images and
another for plain .HTML files.

To create a template,

1. From the Server Manager, choose Templates|New Templates.

The Create a New Template form appears.

2. In the Template Name field, type a name for the template you’re creating and
click OK.

The name should be something you can easily remember. The Server Manager
prompts you to save and apply your changes. You can save the changes after
you create a regular expression for the template, as described in the remaining
steps.

3. Click Templates|Apply Template.

The Apply a Configuration Template form appears.

Viewing and Removing Templates

Chapter 4 Managing Templates and Resources 35

4. Type a regular expression wildcard pattern that includes all of the URLs you
want to include in your template.

5. From the list, select the name of the new template you just added.

6. Click OK.

Viewing and Removing Templates
You can view the templates created in the Server Manager. To do this, choose
Templates|View Template. The templates are shown in a table that lists the regular
expression for the template and the template name. To edit an existing template,
click the Edit link, which takes you to the Apply form.

You can also remove existing templates. Removing a template deletes all of the
associated configurations for the template. For example, if you have access control
set up for all URLs in the template TEST, removing the TEST template also
removes the access control to the URLs contained in then template.

To remove a template,

1. From the Server Manager, choose Templates|Remove Templates.

2. Choose the template from the Remove list.

3. Click OK.

Removing Resources
You can delete an entire regular expression object and its corresponding
configurations with the Remove an Existing Resource form. For instance, you can
remove the gopher resource so that all settings associated with that resource will be
removed from the proxy server’s configuration files.

To remove a resource,

1. From the Server Manager, choose Templates|Remove Resource. The Remove
an Existing Resource form appears.

2. Select the resource you want to remove by either choosing it from the Remove
pull-down menu or clicking the Regular Expression button, entering a regular
expression, and clicking OK.

3. Click OK.

Online Forms for Controlling Resources

36 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Online Forms for Controlling Resources
This section briefly lists the features that use templates. The features are listed
along with information on how to access the Server Manager forms and where to
find descriptions of the features:

• Accessing a resource (Server Preferences|Restrict Access). See “Restricting
Access” on page 51.

• Accessing specific URLs (Filters|URL Filters). See “Restricting Access” on
page 51.

• Caching (Caching|Configuration). See “Configuring the Cache” on page 99.

• Proxying (Routing|Enable, Disable). See “Enabling Proxying for a Resource”
on page 57.

• Routing (Routing|Routing). See “Configuring Routing for a Resource” on
page 58.

• Setting logging preferences (Status|Log Preferences). See “Setting Access Log
Preferences” on page 167.

• Mapping URLs to mirror sites (URLs|Create Mappings). See “Mapping URLs
to Other URLs” on page 64.

37

Chapter 5

Configuring Server Preferences

This chapter describes the proxy server’s system settings and tells you how to
configure them. System settings affect the entire proxy server. They include
options such as the user account the proxy server uses and the port to which it
listens.

For directions on starting and stopping the server, see “Starting and Stopping the
Proxy Server” on page 37.

Starting and Stopping the Proxy Server
There are several methods by which you can start and stop your proxy server. One
of these methods is to use the Server On/Off form in the Server Manager. Other
methods for starting and stopping your proxy server are discussed in Chapter 2,
“Starting the Administration and Proxy Servers .”

To use the Server On/Off form to start or stop the proxy server,

1. From the Server Manager, choose Server Preferences|On/Off.

2. Click the Server On or Server Off button.

Viewing Server Settings
During installation, you configure some settings for your proxy server. You can
view these and other system settings from the Server Manager. The View Server
Settings form lists all of the settings for your proxy server. This form also tells you
if you have unsaved and unapplied changes, in which case you should save the
changes and restart the proxy server so it can begin using the new configurations.

Restoring and Viewing Backup Configuration Files

38 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

There are two types of settings, technical and content. The proxy server’s technical
settings come from the magnus.conf file, and the content settings come from the
obj.conf file. These files are located in the server root directory in the
subdirectory called proxy-id\config. For more information about the
magnus.conf file and obj.conf files, see Appendix C, “Proxy Configuration
Files.”

To view the settings for your server, in the Server Manager, choose Server
Preferences|View Server Settings. This list explains the server’s technical settings:

• Server Root is the directory where the server binaries are kept. You first
specified this directory during installation.

• Hostname is the URL clients will use to access your server.

• Port is the port on your system to which the server listens for HTTP requests.

• Error log is the name and path of the server’s error log file.

• DNS shows whether DNS is enabled or disabled.

The server’s content settings depend on how you’ve configured your server.
Typically, the proxy lists all templates, URL mappings, and access control. For
individual templates, this form lists the template name, its regular expression, and
the settings for the template (such as cache settings).

Restoring and Viewing Backup Configuration
Files

You can view or restore a backup copy of your configuration files (magnus.conf,
obj.conf, bu.conf, mime.types, and genwork.proxy-id.acl). This feature lets
you go to a previous configuration if you’re having trouble with your current
configuration. For example, if you make lots of changes to the proxy’s
configuration and then the proxy doesn’t work the way you thought it should (for
example, you denied access to a URL but the proxy will service the request), you
can revert to a previous configuration and then redo your configuration changes.

To view a previous configuration,

1. From the Server Manager, choose Server Preferences|Restore Configuration.
The Restore Configuration form appears. The form lists all of the previous
configurations ordered by date and time.

2. Click the View button for the version you want to display. A listing of the
technical and content settings in that configuration appears.

Changing System Specifics

Chapter 5 Configuring Server Preferences 39

To restore a backup copy of your configuration files,

1. From the Server Manager, choose Server Preferences|Restore Configuration.

2. Click Restore for the version you want to restore.

If you want to restore all files to their state at a particular time, click the Restore
to time button on the left-most column of the table (time being the date and time
to which you want to restore).

You can also set the number of backups displayed on the Restore Configuration
form. To set the number of backups displayed,

1. In the Server Manager, choose Server Preferences|Restore Configuration.

2. In the “Set number of sets of backups” field, enter the number of backups you
want to display.

3. Click the Change button.

Changing System Specifics
The System Specifics form lets you set up or change the basic aspects of your
server. The form allows you to change the server port, server user, authentication
password, and proxy timeout for your proxy server. It also allows you to enable
DNS, ICP and proxy arrays. You can also enable or disable DNS from the System
Specifics form.

To change the system specifics options,

1. In the Server Manager, choose System Settings|System Specifics.

2. The System Specifics form appears. Change the options as needed, and then
click OK. The options are described in the following sections.

Make sure you save and apply the changes.

Server Port
The server port specifies the number of the TCP port to which the proxy listens. The
number you choose is used by proxy users when configuring their web browsers to
use the proxy server. Users must specify this server name and port number to get
access through the proxy server.

Changing System Specifics

40 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

The standard Telnet port number is 23, and the standard HTTP port number is 80.
Because the proxy is not a regular HTTP server, you shouldn’t use port 80. Proxies
haven’t been assigned an official, industry-standard port number.

A recommended proxy port number is 8080. When configuring client programs to
use this proxy server, you have to tell them both the host name and the port
number. For example, you would use this line in the proxy preferences dialog box
in Netscape Navigator:

proxy.iplanet.com 8080

If you aren’t sure if the port number you plan to use is available, check in the
/etc/services file on the server machine. Technically, the proxy port number can
be any port from 1 to 65535.

Server User
The server user is the user account that the proxy uses.The user name you enter as
the proxy server user should already exist as a normal user account. When the
server starts, it runs as if it were started by this user.

If you want to avoid creating a new user account, you can choose an account used
by another HTTP server running on the same host.

Authentication password
The authentication password is the password for the server user account. This
password can be up to 14 characters long and is case-sensitive. When changing this
password, you will need to enter it twice.

DNS
A Domain Name Service (DNS) restores IP addresses into host names. When a web
browser connects to your server, the server gets only the client’s IP address, for
example, 198.95.251.30. The server does not have the host name information, such
as www1.iplanet.com. For access logging and access control, the server can resolve
the IP address into a host name. On the System Specifics form, you can tell the
server whether or not to resolve IP addresses into host names.

Changing System Specifics

Chapter 5 Configuring Server Preferences 41

ICP
The Internet Cache Protocol (ICP) is a message-passing protocol that enables caches
to communicate with one another. Caches can use ICP to send queries and replies
about the existence of cached URLs and about the best locations from which to
retrieve those URLs. You can enable ICP on the System Specifics form. For more
information on ICP, see “Routing Through ICP Neighborhoods” on page 119.

Proxy Array
A proxy array is an array of proxies serving as one cache for the purposes of
distributed caching. If you enable the proxy array option on the System Specifics
form, that means that the proxy server you are configuring is a member of a proxy
array, and that all other members in the array are its siblings. For more information
on using proxy arrays, see “Routing through Proxy Arrays” on page 107.

Parent Array
A parent array is a proxy array that a proxy or proxy array routes through. So, if a
proxy routes through an upstream proxy array before accessing a remote server,
the upstream proxy array is considered the parent array. For more information on
using parent arrays with your proxy server, see “Routing Through a Parent Array”
on page 118.

Remote Access
Remote access allows sites that are connected to the Internet via a modem to put a
proxy server between their internal networks and the Internet. The proxy server
must be running on an NT server that is connected to the Internet via a modem and
has an installed and configured RAS server running on it. For more information on
configuring remote access, see “Client Autoconfiguration” on page 67.

Java IP Address Checking
To maintain your network’s security, your client may have a feature that restricts
access to only certain IP addresses. So that your clients can use this feature, the
proxy server provides support for Java IP Address Checking. This support enables
your clients to query the proxy server for the IP address used to retrieve a resource.

Creating MIME Types

42 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

When this feature is enabled, a client can request that the proxy server send the IP
address of the origin server, and the proxy server will attach the IP address in a
header. Once the client knows the IP address of the origin server, it can explicitly
specify that the same IP address be used for future connections.

Proxy Timeout
The proxy timeout is the maximum time between successive network data packets
from the remote server before the proxy server times out the request. This value
applies regardless of whether the client is connected. A reasonable proxy timeout
value is between 0.5 and 3 minutes.

Creating MIME Types
A MIME (Multi-Purpose Internet Mail Extension) type is a standard for
multimedia e-mail and messaging. So that you can filter files depending on their
MIME type, the proxy server provides a form that lets you create new MIME types
for use with your server. The proxy adds the new types to the mime.types file
(described on page 204). See “Filtering by MIME Type” on page 133 for more
information on blocking files based on MIME types.

To add a MIME type,

1. In the Server Manager, choose System Settings|MIME Types.

2. The form that appears shows all the MIME types listed in the proxy’s
mime.types file.

❍ You can edit any MIME type by clicking the link for any part of the MIME
type.

❍ To create a new MIME type, click the New Type button at the bottom of the
form.

NOTE Versions of Netscape Navigator prior to 5.0 do not support this
feature.

Allowing or Blocking Arbitrary Methods

Chapter 5 Configuring Server Preferences 43

3. The form that appears is blank if you’re creating a new type, or it displays the
MIME type you want to edit.

The fields on this form are:

❍ Type is the category of MIME type. This can be type, enc, or lang, where
type is the file or application type, enc is the encoding used for
compression, and lang is the language encoding.

❍ MIME Type defines the content type that appears in the HTTP header. The
receiving client (such as Netscape Navigator) uses the header string to
determine how to handle the file (for example, by starting a separate
application or using a plug-in application). The standard strings are listed
in RFC 1521.

❍ File Suffix refers to the file extensions that map to the MIME type. To
specify more than one extension, separate the entries with a comma. The
file extensions should be unique. That is, you shouldn’t map one file
extension to two MIME types.

4. Click OK to submit the form. Save and apply your changes.

Allowing or Blocking Arbitrary Methods
The proxy can be configured to allow or block arbitrary methods by editing the
obj.conf file found in server-root\proxy-id\config directory.
See “proxy-retrieve (retrieving documents with the proxy)” on page 368 for more
information.

WebDAV Support
The proxy provides support for the Web Distributed Authoring and Versioning
protocol. The methods supported are:

• PROPFIND

• PROPPATCH

• MKCOL

• COPY

• LOCK

WebDAV Support

44 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

• UNLOCK

• DELETE

You can however configure the proxy server to support additional arbitrary
WebDAV methods. See “proxy-retrieve (retrieving documents with the proxy)” on
page 368 for more information.

The response returned by WebDAV requests is the 207 Multi-Status response.

45

Chapter 6

Controlling Access to Your Server

You can restrict access to all of the data served by the proxy server or to the specific
URLs it serves. You can specify that only certain people access specific URLs or
that everyone except those people can see the files. This access restriction applies
only to URLs that your proxy server can send to a client and does not have
anything to do with allowing people to administer or configure your server.

For example, you might allow all clients to access URLs for HTTP but then allow
only restricted access to FTP. You could also restrict URLs based on host names or
domain names, such as if you have a proxy serving many internal web servers but
want only specific people to access a confidential research project stored on one of
the web servers.

If your server has SSL (Secure Sockets Layer) enabled, the user’s name and
password are sent encrypted. Otherwise, names and passwords are sent in clear
text, and can be read if intercepted.

If you want to control who can configure the proxy server itself and who can access
the server configuration files, see Managing Netscape Servers.

When configuring access control for your server, you usually follow this process:

1. Choose an LDAP directory server or a local database.

2. Enter one or more users into the directory or database.

3. Create a resource by choosing the URLs you want to restrict (discussed on
page 51).

4. Specify the default access (everyone allowed or everyone denied) for that
resource (discussed on page 53).

5. Specify which users are exceptions to the default access (discussed on page 53).

For more information on databases, users, and groups, see Managing iPlanet
Servers.

How Does Access Control Work?

46 iPlanet Web Proxy Server Administrator’s Guide • August 2003

How Does Access Control Work?
You can control access to the entire server or to parts of the server (that is,
directories, files, file types). When the server evaluates an incoming request, it
determines access based on a hierarchy of rules called access-control entries
(ACEs), and then it uses the matching entries to determine if the request is allowed
or denied. Each ACE specifies whether or not the server should continue to the
next ACE in the hierarchy. The collection of ACEs is called an access-control list
(ACL).When a request comes in to the server, the server looks in obj.conf for a
reference to an ACL, which is then used to determine access. By default, the server
has one ACL file that contains multiple ACLs.

Access Control Files
When you use access control on your proxy server, the settings are stored in a file
with the extension .acl. These files are known as access control files, or ACL files.
An ACL file is a text file containing access control lists which can be used to control
access to server resources. Each access control list controls a set of access rights and
specifies the clients that have these rights. Clients can be specified by their IP
address, DNS name, user name, group name, or combinations of these attributes.

ACL files also contain information about how to authenticate users, such as what
user database to use and what authentication method to use. ACL files do not
contain any information about the server resources to which they are applied.
ACLs are bound to server resources by directives in the server’s obj.conf file,
which refer to ACLs defined in the ACL file.

Access control files for the proxy server are stored in the directory
server_root\httpacl. The main ACL file name is generated.proxy-id.acl; the
temporary working file is called genwork.proxy-id.acl. If you use the Server
Manager forms to restrict access, you’ll have these two files. However, if you want
to do more complex restrictions, you can create multiple files and reference them
from the magnus.conf file.

You also need to know the syntax and function of ACL files if you plan to
customize access control using the access-control API. See“ACL File Syntax” for
more information on ACL file syntax.

How Does Access Control Work?

Chapter 6 Controlling Access to Your Server 47

ACL File Syntax
All ACL files must follow a specific format and syntax. Some general rules of ACLs
are:

• Spaces, tabs, and newline characters generally are not significant except to
create whitespace.

• Comments begin with a # and end with a newline, and can be placed
anywhere.

• Identifiers, including ACL names, access right names, and user and group
names, can contain letters, digits, hyphens, and underscores, but must begin
with a letter.

• With the exception of user, group, and database names, case is generally not
significant in identifiers or keywords.

An ACL file contains a sequence of ACL definitions. Each of these specifies an ACL
name, a set of access rights to be controlled by the ACL, and a list of ACL
directives. The following is the syntax of an ACL.

Syntax
ACL acl-name acl-rights {

acl-directives
}

Parameters
acl-name is a unique name for the ACL. Typically, this name is generated by the
Server Manager forms.

acl-rights are a list of access right names separated by commas and enclosed in
parentheses. Access right names are specific to a particular type of server. proxy
servers use HTTP and FTP method names as access right names, including GET,
HEAD, POST, and PUT.

acl-directives are a list of ACL directives separated by semicolons. There are two
basic kinds of directives, a realm-directive and an access-directive. All directives
begin with a force-keyword.

• realm-directive

The syntax of a realm-directive is:

force-keyword Authenticate In realm-definition

force keyword is a keyword that has one of the following values:

How Does Access Control Work?

48 iPlanet Web Proxy Server Administrator’s Guide • August 2003

❍ Default means that the effect of the directives is not immediate, and that the
effect may be modified or even nullified by subsequent directives.

❍ Always means that the directive should take action immediately; therefore,
terminating any further ACL evaluation.

realm definition is a string that gets displayed to the user. It has the form:

{

Database db-name;
Method auth-method-name;
}

db-name is the name of an authentication database associated with a realm.
The default for db-name uses the SuiteSpot LDAP settings.

auth-method-name is the name of an authentication method supported by the
server (currently basic or SSL).

• access-directive

An access-directive begins with a force-keyword, followed by either Allow or
Deny. The syntax of an access-directive is:

force-keyword Allow|Deny authorization-list

force keyword is a keyword that has one of the following values:

❍ Default means that the effect of the directives is not immediate, and that the
effect may be modified or even nullified by subsequent directives.

❍ Always means that the directive should take action immediately; therefore,
terminating any further ACL evaluation.

How Does Access Control Work?

Chapter 6 Controlling Access to Your Server 49

authorization-list is the list of users and hosts to which the access-directive
applies. It is actually a list of authorization-spec constructs, separated by
commas.

Each authorization-spec must contain a user-list, and may contain a host-list.
The form of an authorization-spec is:

user-list

or

user-list At host-list

user-list can be a user name, a group name, or a list of user and/or group
names separated by commas and enclosed in parentheses. It can also be one of
the special keywords, anyone or all. The keyword, anyone, indicates that the
user’s identity is not relevant to applying this directive. The keyword, all,
indicates that any authenticated user in the current realm is matched by the
directive.

host-list can be an ip-spec, a dns-spec, or a list of these separated by commas
and enclosed in parentheses. An ip-spec specifies an IP host or network
address, and consists of an IP address in dotted numeric notation, optionally
followed by an IP netmask in dotted numeric notation. A dns-spec can be a
fully-qualified domain name, or a partially-qualified domain name that begins
with *. An dns-spec could be: “doon.mcom.com”, “*.mcom.com”, or “*”.

Example
ACL readers (GET, HEAD) {

Default deny anyone at *;
Default allow anyone at *.mcom.com;
}

In the above example, the name of the ACL is readers and the access rights it
controls are the HTTP methods, GET and HEAD. Within the ACL are ACL
directives which define the users who are denied and allowed GET and HEAD
access. Each of the directives in this example begin with the word Default, which
indicates that, by default, the directive applies to any client matching the criteria
established by the directive. However, if the client also matches the criteria of a
subsequent directive, then the that directive will override the previous directive.

The first directive in the previous example denies GET and HEAD access to any
client matching its criteria. The criteria are a user name, anyone, at any host with a
DNS name matching the pattern, “*”. The user name, anyone, is a special name
which places no requirements at all on the user identity of the client. It means that

How Does Access Control Work?

50 iPlanet Web Proxy Server Administrator’s Guide • August 2003

the server does not need to know the identity of the client user, so it will match
unauthenticated clients. The DNS name pattern, “*”, matches any client DNS
name, so the net effect of this directive is that it will match any client, with or
without authentication, from any host name.

By itself, the first directive denies access to anyone and everyone. However, the
second directive allows access to a more selective set of clients, that is, clients with
host names matching the pattern, *.mcom.com. The second directive also identifies
anyone as the allowed user, indicating that the user name of the client is not
relevant.

In summary, what this example does is restrict client access based only on the
client host DNS name, denying access to all client hosts except those with DNS
names ending with .mcom.com. We could have also identified the client hosts
using IP addresses, specifying a netmask to indicate which bits of the IP address
are required to match:

Example
ACL readers (GET, HEAD) {

Default deny anyone at 0.0.0.0 0.0.0.0;
Default allow anyone at
(

198.93.92.0 255.255.255.0, 198.93.93.0 255.255.255.0,
198.93.94.0 255.255.255.0, 198.93.95.0 255.255.255.0,
198.95.249.0 255.255.255.0, 198.95.250.0 255.255.255.0,
205.217.226.0 255.255.255.0, 205.217.228.0 255.255.255.0,
205.217.229.0 255.255.255.0, 205.217.230.0 255.255.255.0,
205.217.231.0 255.255.255.0, 205.217.232.0 255.255.255.0,
205.217.233.0 255.255.255.0, 205.217.234.0 255.255.255.0,
205.217.235.0 255.255.255.0, 205.217.236.0 255.255.255.0,
205.217.237.0 255.255.255.0, 205.217.238.0 255.255.255.0,
205.217.239.0 255.255.255.0, 205.217.240.0 255.255.255.0,
205.217.241.0 255.255.255.0, 205.217.242.0 255.255.255.0,
205.217.243.0 255.255.255.0, 205.217.244.0 255.255.255.0,
205.217.252.0 255.255.255.0, 205.217.254.0 255.255.255.0,
205.217.255.0 255.255.255.0
);

}

Here 0.0.0.0 0.0.0.0 specifies an IP address and a netmask. With no bits set in the
netmask, this specification will match any IP address, and therefore the first
directive will have the effect of denying access to all clients.

Restricting Access

Chapter 6 Controlling Access to Your Server 51

The second directive in the above example allows access to any of the client hosts
in the specified ranges. Notice that the list of IP address and netmask pairs is
specified in parentheses. Because many different ranges of IP addresses are in use
in the domain mcom.com, a list of IP address and netmask pairs must be given in
order to identify the client hosts in this domain.

Example
ACL readers (GET, HEAD) {

Always allow anyone at webmaster.enterprise.com;
Default authenticate in {
Database enterprise.com;
Method SSL;
};
Default deny anyone at *;
Default allow all at *.enterprise.com;
Default deny contractors at *.enterprise.com;
}

ACL directives are evaluated in the order in which they appear in an ACL
definition. The word “Default” at the beginning of an ACL directive indicates that
the effect of the directives is not immediate, and that the effect may be modified or
even nullified by subsequent directives. In some cases, however, it may be
desirable to have a directive which takes effect immediately. As shown in the
previous example, replacing the word “Default” with the word “Always” makes
the directive immediately effective.

This example immediately allows access to any user connecting from the host,
webmaster.enterprise.com, without requiring authentication. When the client host
is webmaster.enterprise.com, the directives following the first one are not
evaluated.

Restricting Access
After you have created the users you want to use in access control (see Managing
Netscape Servers), you use the Restrict Access form to restrict user access to
specified URLs.

To change the access control for part of your server,

1. In the Server Manager, choose Server Preferences|Restrict Access. The Restrict
Access form appears.

Restricting Access

52 iPlanet Web Proxy Server Administrator’s Guide • August 2003

2. Use the drop-down list to choose a regular expression that matches the URLs
you want to configure.

If an expression doesn’t exist, click the Regular Expressions button and create
an expression. For example, to change access to all URLs in the iPlanet domain,
type .*://.*\.iplanet\.com/.* in the field. For more information on
regular expressions, see “Understanding Regular Expressions” on page 32.

3. Turn access control off or on for the selected URLs by clicking either the Turn
off access control or Turn on access control button.

Turning on access control causes more access control settings to appear on
your screen.

4. For both read and write access, set the default accessibility—allow or deny.

Read access allows a user only to view the file. Write access allows the user to
change or delete the file, assuming the user also has access to the file through
your server computer’s operating system. (Technically, read includes these
HTTP methods: GET, HEAD, POST, and INDEX. Write includes PUT,
DELETE, MKDIR, RMDIR, and MOVE.)

When you set these access defaults, they will apply to everyone attempting to
read or write to files or directories in the URLs you specify. For example, you
can allow users read access to the iPlanet domain so they can download
software through your proxy server.

5. Specify which users are the exceptions to the default accessibility for each
access type by clicking the appropriate Permissions button.

If the default access is allow, the Deny Access to a Resource form appears (see
“Denying Access to a Resource” on page 53). If the default access is deny, the
Allow Access to a Resource form appears (see “Allowing Access to a Resource”
on page 54). After using those forms, the Server Manager returns you to the
Restrict Access form.

6. Choose the response a client will see when access is denied. Under the Access
Denied Response heading, click the Respond “Forbidden” button to send a
message to the client saying that access to the requested file is forbidden.
Alternatively, you can click the “Respond with this html file” button and
specify an absolute path and filename of an HTML file to send instead of
sending the generic “Forbidden” message. Whether or not you specify a file,
the server also sends the HTTP error code 404 Not Found.

7. Click the OK button and confirm your changes.

Restricting Access

Chapter 6 Controlling Access to Your Server 53

Denying Access to a Resource
In the Restrict Access form, you set the default read and write access of a resource
(a regular expression of matching URLs). If you set read or write access to allow all
access by default, you can specify exceptions by clicking the Permissions button.
The Deny Access to a Resource form appears.

When determining who is denied access, you can specify users from specified host
names or IP addresses.

First you must specify how host names are processed. If you want to deny users
from only the exact host names you’ll specify, click Include specified names only.
However, if you also want to deny users from alias domains of your specified host
names, click Include aliases of specified names.

To deny users from specific host names or IP addresses, type a comma-separated
list of host names or IP addresses in the text fields. Restricting by host name is more
flexible than restricting by IP address—if a user’s IP address changes, you won't
have to update this list. However, restricting by IP address is more reliable—if a
DNS lookup fails for a connected client, host name restriction cannot be used.

The host name and IP addresses should be specified with a wildcard pattern or a
comma-separated list. The wildcard notations you can use are specialized; you can
only use the * character. Also, for the IP address, the * must replace an entire byte in
the address. That is, 198.95.251.* is acceptable, but 198.95.251.3* is not. When the *
character appears in an IP address, it must be the rightmost character. For example,
198.* is acceptable, but 198.*.251.30 is not.

For host names, the * must also replace an entire component of the name. That is,
*.iplanet.com is acceptable, but *sers.iplanet.com is not. When the * appears in a
host name, it must be the leftmost character. For example, *.iplanet.com is
acceptable, but users.*.com is not.

NOTE If you have enabled access control for your server and you want
to password-protect local files such as the PAC file, add the
following line to the obj.conf file:

Init fn=init-proxy-auth pac-auth=on

Restricting Access

54 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Allowing Access to a Resource
In the Restrict Access form described on page 51, you set the default read and write
access of a resource. If you set read or write access to deny all access by default, you
can specify exceptions by clicking the Permissions button. The Allow Access to a
Resource form appears.

When determining who is allowed access, you can specify two types of users:

• Users from specified host names or IP addresses

• Users (and groups) from your database

You specify both types of users in the Allow Access to a Resource form.

If all types of user authentication are used, the server checks the user’s information
in the following order (if the criteria in either step 1 or step 2 are met, the client
skips the other steps and is allowed access).

1. Is the client’s IP address automatically allowed?

2. Is the client’s host name automatically allowed?

3. Is the client identified (through password) as one of the allowed users from
your database?

4. Is the client’s IP address allowed if the user is one of the allowed users from
your database?

5. Is the client’s host name allowed if the user is one of the allowed users from
your database?

When a request for a URL comes in, the server knows the IP address from which
the request is coming. Once the server has this address, it uses DNS to look up the
host name that corresponds to that IP address.

If you specify from which host names to allow users, decide how you want the host
names processed. If you want to allow only users from the exact host names you
specify, click Include specified names only. However, if you also want to accept
users from alias domains of your specified host names, click Include aliases of
specified names.

To allow users from specific host names or IP addresses, enter a wildcard pattern of
host names or IP addresses in text fields. Restricting by host name is more flexible
than restricting by IP address—if a user’s IP address changes, you won't have to
update this list. In contrast, restricting by IP address is more reliable—if a DNS
lookup fails for a connected client, host name restriction cannot be used.

Restricting Access

Chapter 6 Controlling Access to Your Server 55

Users who are allowed access by virtue of their host name or IP address (as in steps
1 and 2 on page 54) are not prompted for a login name or password. All other users
are asked for that information.

To allow access to the users listed in your database (LDAP directory)Choose the
user database containing the users you want.

1. Choose whether to allow everyone from that database or to allow only certain
groups and users.

2. Using a comma-separated list, specify the groups in the Groups field or the
users in the Users field.

For example, if your database contains Bob, Juan, Margaret, and Joe but you
want only Bob and Margaret to have access to this section, type Bob,Margaret.
If you leave this entry blank, all users from the database are allowed access.

3. To further restrict access, specify any additional host names or IP addresses
from which the users in the database must connect.

These host names and IP Addresses fields can be left blank if your database
users can be from any host names or IP addresses.

4. Specify the message that a user sees when asked for a login name and
password by typing it in the Login Prompt field.

5. Click Done.

6. Be sure to click OK in the Restrict Access form when you have finished
modifying access control for part of your server.

NOTE You can select whether your proxy server will use a directory server
or a local database on the Global Settings page in the administration
server.

Restricting Access

56 iPlanet Web Proxy Server Administrator’s Guide • August 2003

57

Chapter 7

Proxying and Routing URLs

This chapter describes how requests are handled by the proxy server. It also
explains how to enable proxying for specific resources and to configure the proxy
server to route URLs to different URLs or servers.

Enabling Proxying for a Resource
You can turn proxying on or off for resources. Resources can be individual URLs,
groups of URLs with something in common, or an entire protocol. You can control
whether proxying is on for the entire server, for various resources, or for resources
as specified in a template file. This means you can deny access to one or more URLs
by turning off proxying for that resource. This can be a global way to deny or allow
all access to a resource. (You can also allow or deny access to resources by using
URL filters. For more information on URL filters, see “Filtering URLs” on
page 129.)

To enable proxying for a resource,

1. In the Server Manager, choose Routing|Enable, Disable.

2. Select the resource you want to configure by either choosing it from the Editing
pull-down menu or clicking the Regular Expression button, entering a regular
expression, and clicking OK.

3. You can choose a default setting for the resource you specified. You can choose
not to proxy that resource (disable proxying), or you can enable proxying of
that resource.

❍ Use default setting derived from a more general resource means that the
settings for a more general resource that includes this one will be used for
this resource.

Configuring Routing for a Resource

58 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

❍ Enable proxying of this resource means the proxy lets clients access this
resource (provided they pass the other security and authorization checks).
When you enable proxying for a resource, all methods are enabled. The read
methods, including GET, HEAD, PUT, INDEX, POST, and CONNECT
for SSL tunneling, and the write methods, including PUT, MKDIR,
RMDIR, MOVE, and DELETE, are all enabled for that resource. Barring
any other security checks, clients all have read and write access.

❍ Do not proxy this resource means this resource cannot be reached through
the proxy.

4. Click OK.

Configuring Routing for a Resource
You can configure your proxy server to route certain resources using the derived
default configuration or direct connections; or you can configure it to route
through proxy arrays, an ICP neighborhood, another proxy server, or a SOCKS
server. To configure routing for a resource,

1. From the Server Manager, choose Routing|Routing. The Routing
Configuration form appears.

2. Select the resource you want to configure by either choosing it from the Editing
pull-down menu or clicking the Regular Expression button, entering a regular
expression, and clicking OK.

3. Select the radio button for the type of routing you would like for the resource
you are configuring. You can choose one of the following:

❍ Derived default configuration means the proxy server uses a more general
template (that is, one with a shorter, matching regular expression) to
determine if it should use the remote server or another proxy. For example,
if the proxy routes all http://.* requests to another proxy server and all
http://www.* requests to the remote server, you could create a derived
default configuration routing for http://www.iplanet.* requests, which
would then go directly to the remote server because of the setting for the
http://www.* template.

❍ Direct connections means the request will always go directly to the remote
server instead of through the proxy.

Chaining Proxy Servers

Chapter 7 Proxying and Routing URLs 59

❍ Route through a SOCKS server means that requests for the specified
resource will be routed through a SOCKS server. If you choose this option,
you need to specify the name (or IP address) and the port number of the
SOCKS server that the proxy server will route through.

❍ Route through lets you specify whether you would like to route through a
proxy array, ICP neighborhood, parent array, and/or proxy server. If you
choose multiple routing methods here, the proxy will follow the hierarchy
shown on the form (i.e. proxy array, parent array, ICP, another proxy). For
more information on routing through a proxy server, see “Chaining Proxy
Servers” on page 59.

For information on routing through a SOCKS server, see “Routing
Through a SOCKS Server” on page 61. For information on routing through
proxy arrays, parent arrays, or ICP neighborhoods, see Chapter 10.

4. Click OK.

Chaining Proxy Servers
You can have the proxy access another proxy for some resources instead of
accessing the remote server. This means you can chain proxies together. Chaining
is a good way to organize several proxies behind a firewall. Chaining also lets you
build hierarchical caching.

For example, you can chain departmental proxies within an organization to a main
proxy server, as shown in Figure 7-1. In this figure, each proxy server has a small
cache to which a specific group of users has access. Each proxy also has access to
the proxy with the large cache. You can also set up several proxies in your
organization so that each proxy server accesses and caches only specific files, such
as one proxy that services HTTP requests and another that services FTP. Or, you
might have one server that caches all files from the .com domain and another that
caches all other files.

Chaining Proxy Servers

60 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Figure 7-1 Chaining proxies together

To route through another proxy server,

1. From the Server Manager, choose Routing|Routing. The Routing
Configuration form appears.

2. Select the resource you want to route by either choosing it from the Editing
pull-down menu or clicking the Regular Expression button, entering a regular
expression, and clicking OK.

3. In the “Routing through another proxy” section of the form, select the radio
button next to the text “Route through:”.

4. Select the checkbox next to “another proxy”.

5. In the “another proxy” field, enter the name or IP address of the proxy sever
that you want to route through.

6. In the port field, enter the port number for the proxy server you will be routing
though

7. Click OK.

Marketing proxyMIS proxy

Internet

P

Engineering proxy

Routing Through a SOCKS Server

Chapter 7 Proxying and Routing URLs 61

Routing Through a SOCKS Server
If you already have a remote SOCKS server running on your network, you can
configure the proxy to connect to it for specific resources.

To route through a SOCKS server,

1. From the Server Manager, choose Routing|Routing. The Routing
Configuration form appears.

2. Select the resource you want to route by either choosing it from the Editing
pull-down menu or clicking the Regular Expression button, entering a regular
expression, and clicking OK.

3. Under the heading, “Routing through another proxy”, select the radio button
for next to “Route through SOCKS server”.

4. Specify the name (or IP address) and the port number of the SOCKS server that
the proxy server will route through.

5. Click OK.

Sending the Client’s IP Address to the Server
Normally, the proxy server doesn’t send the client’s IP address to remote servers
when making requests for documents. Instead, the proxy acts as the client and
sends its IP address to the remote server. This is good protection if you don’t want
remote servers to know your internal IP addresses.

However, there are times when you might want to pass on the client’s IP address:

• If your proxy is one in a chain of internal proxies.

• If your clients need to access servers that depend on knowing the client’s IP
address. You can use templates to send the client’s IP address only to
particular servers.

NOTE Once you have enabling routing through a SOCKS server, you
should create proxy routes using the SOCKS v5 Routing form.
Proxy routes identify the IP addresses that are accessible through
the SOCKS server your proxy routes through. They also specify
whether that SOCKS server connects directly to the host. For
more information on creating proxy routes, see “Creating
SOCKS v5 Routing Entries” on page 83.

Using Remote Access

62 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

To configure the proxy to send client IP addresses,

1. In the Server Manager, choose Routing|Client IP Address Forwarding.

2. Choose the template you want to use, or choose the entire proxy server to
always send the client’s IP address.

3. Choose an option to turn on IP address forwarding. By default, the proxy
server doesn’t send IP addresses, but if you have several proxies in a chain and
one proxy forwards the IP address to another, the subsequent proxy will also
forward the IP address if its option is set to either default or enabled. Choose
enabled to have the proxy server forward the client’s IP addresses. Choose
blocked to never forward the IP address.

4. You can specify an HTTP header for the proxy to use when forwarding IP
addresses. The normal HTTP header is named Client-ip, but you can send the
IP address in any header you choose.

5. Click OK. Be sure to save and apply your changes.

Using Remote Access
Remote access allows sites that are connected to the Internet via a modem to use a
proxy server between their internal networks and the Internet. The proxy server
must be running on an NT server that is connected to the Internet via a modem and
has an installed and configured RAS server running on it.

To use remote access with your proxy server,

1. Install and configure your RAS server. For instructions on installing and
configuring a RAS server, see the online help for Windows NT.

2. Configure remote access for the proxy server.

3. Enable remote access.

NOTE If you are using remote access and your proxy server is configured
to use an LDAP server, the proxy server cannot start if the LDAP
server is outside the local network.

NOTE SOCKS requests cannot trigger remote access.

Using Remote Access

Chapter 7 Proxying and Routing URLs 63

Configuring Remote Access
To configure remote access for your proxy server,

1. From the proxy server’s Server Manager, choose Routing|Remote Access.

The Remote Access form appears.

2. In the User name field, enter the user name assigned by your Internet Service
Provider that you use to dial out to the Internet.

3. In the Password field, enter the password of the user specified in the User
name field.

4. In the Dial entry field, enter the name of the phonebook entry that you
specified when configuring your RAS server.

5. In the Maximum idle time field, enter the maximum amount of time the remote
connection can be idle.

If the connection remains idle past this time, the proxy server will disconnect
from the remote Internet service provider. A maximum idle time of -1 will keep
the connection open continuously.

6. In the Schedule section of the form, choose the days and times when the proxy
server is allowed to dial out to the Internet.

Use military time to specify the times. To specify a time range, place a hyphen
between the start and end times (i.e. 1000-2400).

7. Click OK.

Enabling Remote Access
To enable remote access,

1. From the Server Manager, choose Server Preferences|System Specifics. The
System Specifics form appears.

2. In the “Enable Remote Access” section of the form, select the Yes radio button.

3. Click OK.

Mapping URLs to Other URLs

64 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Mapping URLs to Other URLs
The Server Manager lets you map URLs to another server, sometimes called a
“mirror” server. When a client accesses the proxy with a mirrored URL, the proxy
retrieves the requested document from the mirrored server and not from the server
specified in the URL. The client is never aware that the request is going to a
different server. You can also redirect URLs; in this case, the proxy returns only the
redirected URL to the client (and not the document), so the client can then request
the new document. Mapping also allows you to map URLs to a file, as in PAC and
PAT mappings.

To map a URL, you specify a URL prefix and where to map it. The following
sections describe the various types of URL mappings.

Creating a URL Mapping
You can create four types of URL mappings:

• Regular mappings map a URL prefix to another URL prefix. For example, you
can configure the proxy to go to a specific URL anytime it gets a request that
begins http://www.iplanet.com.

• Reverse mappings map a redirected URL prefix to another URL prefix. These are
used with reverse proxies when the internal server sends a redirected response
instead of the document to the proxy. See Chapter 8, “Reverse Proxy” for more
information.

• Regular expressions map all URLs matching the expression to a single URL. For
example, you can map all URLs matching .*sex.* to a specific URL (perhaps
one that explains why the proxy server won’t let a user go to a particular URL).
For more information on regular expressions, see “Understanding Regular
Expressions” on page 32.

• Client autoconfiguration maps URLs to a specific .pac file stored on the proxy
server. For more information on autoconfiguration files, see Chapter 12,
“Using the Client Autoconfiguration File.”

• Proxy array table (PAT) maps URLs to a specific .pat file stored on the proxy
server. You should only create this type of mapping from a master proxy. For
more information on PAT files and proxy arrays, see “Routing through Proxy
Arrays” on page 107.

Mapping URLs to Other URLs

Chapter 7 Proxying and Routing URLs 65

Clients accessing a URL are sent to a different location on the same server or on a
different server. This is useful when a resource has moved or when you need to
maintain the integrity of relative links when directories are accessed without a
trailing slash.

For example, suppose you have a heavily loaded web server called hi.load.com
that you want mirrored to another server called mirror.load.com. For URLs that go
to the hi.load.com computer, you can configure the proxy server to use the
mirror.load.com computer.

The source URL prefix must be unescaped, but in the destination (mirror) URL,
only characters that are illegal in HTTP requests need to be escaped.

Warning!
Do not use trailing slashes in the prefixes!

To create a URL mapping,

1. In the Server Manager, choose URLs|Create Mappings.

2. Choose the type of mapping you want to create.

3. Type the URL prefix. For regular and reverse mappings, this should be the part
of the URL you want to substitute.

For regular expression mappings, the URL prefix should be a regular
expression that for all the URLs you want to match. If you also choose a
template for the mapping, the regular expression will work only for the URLs
within the template’s regular expression. For more information on regular
expressions, see “Understanding Regular Expressions” on page 32.

For client autoconfiguration mappings and proxy array table mappings, the
URL prefix should be the full URL the client accesses.

4. Type a map destination. For all mapping types except client autoconfiguration
and proxy array table, this should be the full URL to which to map. For client
autoconfiguration mappings, this value should be the absolute path to the
.pac file on the proxy server’s hard disk. For proxy array table mappings, this
value should be the absolute path to the .pat file on the master proxy’s local
disk.

5. Click OK to create the mapping.

Mapping URLs to Other URLs

66 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Editing Existing Mappings
To change your existing mappings,

1. In the Server Manager, choose URLs|View/Edit Mappings.

The View, Edit, or Remove URL Mappings form appears.

2. You can edit the prefix, the mapped URL, and template that are affected by the
mapping.

3. To remove a mapping, click the mapping you want to change, then click the
Remove link at the top of the form.

4. Click OK to confirm your changes, or click Reset to undo them.

Redirecting URLs
You can configure the proxy server to return a redirected URL to the client instead
of getting and returning the document. With redirection, the client is aware that the
URL originally requested has been redirected to a different URL. The client usually
requests the redirected URL immediately. Netscape Navigator automatically
requests the redirected URL—the user doesn’t have to explicitly request the
document a second time.

URL redirection is useful when you want to deny access to an area because you can
redirect the user to a URL that explains why access was denied.

To redirect one or more URLs,

1. In the Server Manager, choose URLs|Redirections.

2. Enter a source URL. Your source URL can be either a URL prefix or a regular
expression.

If you choose to use a URL prefix as the source, select the radio button next to
the URL prefix field and enter a URL prefix. If you choose to use a regular
expression as the source, you should select the radio button next to the Reg.
expr. field and then enter a regular expression.

NOTE If you use a regular expression as the source URL, you must use
a fixed URL as the URL to which requests will be redirected.

Client Autoconfiguration

Chapter 7 Proxying and Routing URLs 67

3. Enter a URL to redirect to. This URL can either be a URL prefix or a fixed URL.
However, if your source URL is a regular expression, you must use a fixed
URL as the URL to which to redirect.

If you choose to use a URL prefix as the URL to redirect to, select the radio
button next to the URL prefix field and enter a URL prefix. If you choose to use
a fixed URL, select the radio button next to the Fixed URL field and enter a
fixed URL.

4. Click OK to create the mapping.

Client Autoconfiguration
If your proxy server supports many clients, you can use a client autoconfiguration
file to configure all of your Netscape Navigator clients. The autoconfiguration file
contains a JavaScript function that determines which proxy, if any, Navigator uses
when accessing various URLs. For more information on this feature, see Chapter
12, “Using the Client Autoconfiguration File.”

Client Autoconfiguration

68 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

69

Chapter 8

Reverse Proxy

This chapter describes how to use Sun ONE Web Proxy Server as a reverse proxy.
Reverse proxy is the name for certain alternate uses of a proxy server. It can be used
outside the firewall to represent a secure content server to outside clients,
preventing direct, unmonitored access to your server’s data from outside your
company. It can also be used for replication; that is, multiple proxies can be
attached in front of a heavily used server for load balancing. This chapter describes
the alternate ways that iPlanet Web Proxy Server can be used inside or outside a
firewall.

How Reverse Proxying Works
Reverse proxying with Sun ONE Web Proxy Server uses caching features to
provide load balancing on a heavily used server. This model of reverse proxying
differs from conventional proxy usage in that it doesn’t operate strictly on a
firewall.

Proxy as a Stand-in for a Server
If you have a content server that has sensitive information that must remain secure,
such as a database of credit card numbers, you can set up a proxy outside the
firewall as a stand–in for your content server. When outside clients try to access the
content server, they are sent to the proxy server instead. The real content resides on
your content server, safely inside the firewall. The proxy server resides outside the
firewall, and appears to the client to be the content server.

How Reverse Proxying Works

70 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

When a client makes a request to your site, the request goes to the proxy server.
The proxy server then sends the client’s request through a specific passage in the
firewall to the content server. The content server passes the result through the
passage back to the proxy. The proxy sends the retrieved information to the client,
as if the proxy were the actual content server (see Figure 8-1). If the content server
returns an error message, the proxy server can intercept the message and change
any URLs listed in the headers before sending the message to the client. This
prevents external clients from getting redirection URLs to the internal content
server.

In this way, the proxy provides an additional barrier between the secure database
and the possibility of malicious attack. In the unlikely event of a successful attack,
the perpetrator is more likely to be restricted to only the information involved in a
single transaction, as opposed to having access to the entire database. The
unauthorized user can’t get to the real content server because the firewall passage
allows only the proxy server to have access.

Figure 8-1 A reverse proxy appears to be the real content server.

You can configure the firewall router to allow a specific server on a specific port (in
this case, the proxy on its assigned port) to have access through the firewall
without allowing any other machines in or out.

A client computer
on the Internet
sends a request to

the proxy server.The proxy server
appears to be the

content server.

Firewall
Server within
a firewall

The proxy server uses a regular
mapping to forward the client request
to the internal content server.

How Reverse Proxying Works

Chapter 8 Reverse Proxy 71

Proxying for Load Balancing
You can use multiple proxy servers within an organization to balance the network
load among web servers. This model lets you take advantage of the caching
features of the proxy server to create a server pool for load balancing. In this case,
the proxy servers can be on either side of the firewall. If you have a web server that
receives a high number of requests per day, you could use proxy servers to take the
load off the web server and make the network access more efficient.

The proxy servers act as go-betweens for client requests to the real server. The
proxy servers cache the requested documents. If there is more than one proxy
server, DNS can route the requests randomly using a “round-robin” selection of
their IP addresses. The client uses the same URL each time, but the route the
request takes might go through a different proxy each time.

The advantage of using multiple proxies to handle requests to one heavily used
content server is that the server can handle a heavier load, and more efficiently
than it could alone. After an initial start-up period in which the proxies retrieve
documents from the content server for the first time, the number of requests to the
content server can drop dramatically.

Only CGI requests and occasional new requests must go all the way to the content
server. The rest can be handled by a proxy. Here’s an example. Suppose that 90% of
the requests to your server are not CGI requests (which means they can be cached),
and that your content server receives 2 million hits per day. In this situation, if you
connect three reverse proxies, and each of them handles 2 million hits per day,
about 6 million hits per day would then be possible. The 10% of requests that reach
the content server could add up to about 200,000 hits from each proxy per day, or
only 600,000 total, which is far more efficient. The number of hits could increase
from around 2 million to 6 million, and the load on the content server could
decrease correspondingly from 2 million to 600,000. Your actual results would
depend upon your situation.

How Reverse Proxying Works

72 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Figure 8-2 Proxy used for load balancing

Setting up a Reverse Proxy
To set up a reverse proxy, you need two mappings: a regular and a reverse
mapping.

• The regular mapping redirects requests to the content server. When a client
requests a document from the proxy server, the proxy server needs a regular
mapping to tell it where to get the actual document.

Warning!
You shouldn’t use a reverse proxy with a proxy that serves autoconfiguration
files. This is because the proxy could return the wrong result. See Chapter 12
for more information on using autoconfiguration files with a reverse proxy.

• The reverse mapping makes the proxy server trap for redirects from the
content server. The proxy intercepts the redirect and then changes the
redirected URL to map to the proxy server. For example, if the client requests a
document that was moved or not found, the content server will return a
message to the client explaining that it can’t find the document at the requested
URL. In that returned message, the content server adds an HTTP header that
lists a URL to use to get the moved file. In order to maintain the privacy of the
internal content server, the proxy can redirect the URL using a reverse
mapping.

R
ou

nd
-R

ob
in

 D
N

S
All requests go to a
central DNS server,
which routes the

requests to any proxy
server.

Server within

a firewall

Some requests go
directly to the internal
web server.

Reverse proxy

Reverse proxy

Reverse proxy

How Reverse Proxying Works

Chapter 8 Reverse Proxy 73

Suppose you have a web server called http://http.site.com/ and you want to set
up a reverse proxy server for it. You could call the reverse proxy
http://proxy.site.com/.

You would create a regular mapping and a reverse mapping as follows:

1. In the Server Manager, choose URLs|Create Mappings. In the form that
appears, enter information for a single mapping. For example:

Regular mapping:

Source prefix: http://proxy.site.com/

Source destination: http://http.site.com

2. Click OK. Return to the form and create the second mapping:

Reverse mapping:

Source prefix: http://http.site.com

Source destination: http://proxy.site.com/

3. To make the change, click the OK button.

Once you click the OK button, the proxy server adds one or more additional
mappings. To see the mappings, click the link called View/Edit Mappings.
Additional mappings would be in the following format:

from: /

to: http://http.site.com/

These additional automatic mappings are for users who connect to the reverse
proxy as a normal server. The first mapping is to catch users connecting to the
reverse proxy as a regular proxy. Depending on the setup, usually the second
is the only one required, but it doesn’t cause problems in the proxy to have
them both.

NOTE If the web server has several DNS aliases, each alias should have a
corresponding regular mapping. If the web server generates
redirects with several DNS aliases to itself, each of those aliases
should have a corresponding reverse mapping.

How Reverse Proxying Works

74 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

CGI applications still run on the origin server; the proxy server never runs CGI
applications on its own. However, if the CGI script indicates that the result can be
cached (by implying a non-zero time-to-live by issuing a Last-modified or Expires
header), the proxy will cache the result.

Warning!
When authoring content for the web server, keep in mind that the content will be
served by the reverse proxy, too, so all links to files on the web server should be
relative links. There must be no reference to the host name in the HTML files; that
is, all links must be of the form:

/abc/def

as opposed to a fully qualified host name, such as:

http://http.site.com/abc/def

NOTE Virtual multihosting in reverse proxy is not supported on the Windows
platform.

75

Chapter 9

Using SOCKS v5

This chapter explains how to configure and use the SOCKS v5 server that comes
with Sun ONE Web Proxy Server.

Using a SOCKS Server
The SOCKS server is a generic firewall daemon that controls access through the
firewall on a point-to-point basis. The SOCKS server works at the network level
instead of the application level, and therefore has no knowledge of protocols or
methods used for transferring requests. Because the SOCKS server has no
knowledge of protocols, it can be used to pass those protocols which are not
supported by the proxy server, such as telnet. iPlanet Web Proxy Server supports
SOCKS versions 4 and 5.

iPlanet Web Proxy Server comes with a separate SOCKS daemon that understands
the usual socks5.conf file format used by other SOCKS daemons. See “The
socks5.conf File” on page 370 for information on this file format. By default, the
SOCKS daemon features are disabled, but you can enable them through the SOCKS
On/Off form.

Using a SOCKS Server

76 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

You can also use the Routing Configuration form to configure your proxy to route
requests through a SOCKS server. For more information on routing requests
through a SOCKS server, see “Routing Through a SOCKS Server” on page 61.

To use the SOCKS server,

1. Configure SOCKS v5.

2. If SOCKS v5 will be running on a machine with multiple interfaces, create
SOCKS routing entries

3. Create authentication entries.

4. Create connection entries.

5. Enable the SOCKS server.

Configuring SOCKS v5
To configure your SOCKS server,

1. From the Server Manager, choose SOCKS|Configuration. The SOCKS v5
Configuration form appears.

2. In the SOCKS Port field, enter the port number on which the SOCKS server
will listen.

Using a SOCKS Server

Chapter 9 Using SOCKS v5 77

3. Choose the checkbox for the SOCKS options you want to use.

The options are:

❍ disable reverse DNS lookup - disables reverse DNS lookup for your
SOCKS server. Reverse DNS translates IP addresses into host names.
Disabling this feature can conserve network resources.

❍ use client-specific bind port - allows the client to specify the port in a BIND
request. With this option disabled, SOCKS ignores the client’s requested
port and assigns a random port.

❍ allow wildcard as bind IP address - allows the client to specify an IP
address of all zeros (0.0.0.0) in a BIND request. An IP address of all zeros
means that any IP address can connect. With this option disabled, the
client must specify the IP address that will be connecting to the bind port
and the SOCKS server rejects requests to bind to 0.0.0.0.

4. In the Log File field, enter the full pathname of the SOCKS log file.

5. From the Log Level pull-down, choose whether you want the log file to contain
warnings and errors only, all requests, or debugging messages.

6. If you want to disable the automatic logging general SOCKS statistics once an
hour, select the “quench updates” checkbox.

7. Select the radio button to choose an RFC 1413 Ident Policy. Ident allows the
SOCKS server to determine the user name for a client. Generally, this feature
only works when the client is running Unix. The available policies are:

❍ don’t ask - never use Ident to determine the user name for a client. This is
the recommended setting.

❍ ask but don’t require - ask for the user name of all clients, but do not
require it. This option uses Ident for logging purposes only.

❍ require - ask for the user name of all clients and only permit access to those
with valid responses.

8. Click OK.

Creating SOCKS v5 Authentication Entries
SOCKS authentication entries identify the hosts from which the SOCKS daemon
should accept connections and which types of authentication the SOCKS daemon
should use to authenticate these hosts.

Using a SOCKS Server

78 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

To create a SOCKS authentication entry,

1. From the Server Manager, choose SOCKS|Authentication. The SOCKS v5
Authentication Entry form appears.

2. Click the Add button. The SOCKS v5 Authentication Entry form appears.

3. In the Host mask field, enter the IP addresses or host names of the hosts that
the SOCKS server will authenticate. If you enter an IP address, follow the
address with a forward slash and the mask to be applied to the incoming IP
address. The SOCKS server will apply this mask to the IP address to determine
if it is a valid host. There cannot be any spaces in the Host mask entry. If you
do not enter a host mask, the authentication entry will apply to all hosts.

For example, you can enter “155.25.0.0/255.255.0.0” into the Host mask field. If
the host’s IP address is 155.25.3.5, the SOCKS server will apply the mask to the
IP address and determine that the host’s IP address matches the IP address for
which the authentication record applies (155.25.0.0).

4. In the Port range field, enter the ports on the host machines that the SOCKS
server will authenticate. There should not be any spaces in your port range. If
you do not enter a port range, the authentication entry will apply to all ports.

You can use brackets [] to include the ports at each end of the range or
parentheses () to exclude them. For example [1000-1010] means all port
numbers between and including 1000 and 1010. (1000-1010) means all port
numbers between, but not including 1000 and 1010. You can also mix brackets
and parentheses. For instance, (1000-1010] means all numbers between 1000
and 1010, excluding 1000, but including 1010.

5. From the Authentication type pull-down, choose one of the following:

❍ require user password - user name and password are required to access the
SOCKS server

❍ user-password if available - if a user name and password are available,
they should be used to access the SOCKS server; but they are not required
for access

❍ ban - banned from the SOCKS server

❍ none - no authentication is required to access the SOCKS server

Using a SOCKS Server

Chapter 9 Using SOCKS v5 79

6. From the “Insert” pull-down, select the position in the socks5.conf file that you
want the authentication entry to be in. Because you can have multiple
authentication methods, you need to specify the order in which they are
evaluated. Therefore, if the client does not support the first authentication
method listed, the second method will be used instead. If the client does not
support any of the authentication methods listed, the SOCKS server will
disconnect without accepting a request.

7. Click OK.

Editing SOCKS v5 Authentication Entries
To edit a SOCKS v5 authentication entry,

1. From the Server Manager, choose SOCKS|Authentication. The SOCKS v5
Authentication Entry form appears.

2. Select the radio button next to the authentication entry that you want to edit.

3. Click the Edit button. The SOCKS v5 Authentication Entry form appears.

4. Edit the appropriate information.

5. Click OK.

Deleting SOCKS v5 Authentication Entries
To delete a SOCKS v5 authentication entry,

1. From the Server Manager, choose SOCKS|Authentication. The SOCKS v5
Authentication Entry form appears.

2. Select the radio button next to the authentication entry that you want to delete.

3. Click the Delete button.

4. Click OK.

Moving SOCKS v5 Authentication Entries
Because you can have multiple authentication methods, the entries are evaluated in
the order in which they appear in the socks5.conf file. You may want to change
the order in which they are evaluated by moving them.

Using a SOCKS Server

Chapter 9 Using SOCKS v5 81

5. In the Source host mask field, enter the IP address or host names of the hosts
for which the connection control entry applies. If you enter an IP address,
follow it with a forward slash and the mask to be applied to the source’s IP
address. The SOCKS server will apply this mask to the source’s IP address to
determine if it is a valid host. There cannot be any spaces in the host mask
entry. If you do not enter a host mask, the connection entry will apply to all
hosts.

For example, you can enter “155.25.0.0/255.255.0.0” into the host mask field. If
the host’s IP address is 155.25.3.5, the SOCKS server will apply the mask to the
IP address and determine that the host’s IP address matches the IP address for
which the connection control entry applies (155.25.0.0).

6. In the Port range field, enter the ports on the source machines for which the
connection control entry applies. There should not be any spaces in your port
range. If you do not specify a port range, the connection entry will apply to all
ports.

You can use brackets [] to include the ports at each end of the range or
parentheses () to exclude them. For example [1000-1010] means all port
numbers between and including 1000 and 1010. (1000-1010) means all port
numbers between, but not including 1000 and 1010. You can also mix brackets
and parentheses. For instance, (1000-1010] means all numbers between 1000
and 1010, excluding 1000, but including 1010.

7. In the Destination host mask field, enter the IP address or host name for which
the connection entry applies. If you enter an IP address, follow it with a
forward slash and the mask to be applied to the incoming IP address. The
SOCKS server will apply this mask to the IP address of the destination machine
to determine if it is a valid destination host. There cannot be any spaces in the
host mask entry. If you do not enter a destination host mask, the connection
entry applies to all hosts.

For example, you can enter “155.25.0.0/255.255.0.0” into the Destination host
mask field. If the destination host’s IP address is 155.25.3.5, the SOCKS server
will apply the mask to the IP address and determine that the destination host’s
IP address matches the IP address for which the proxy entry applies
(155.25.0.0).

8. In the second Port range field, enter the ports on the destination host machines
for which the connection control entry applies. There should not be any spaces
in your port range. If you do not enter a port range, the connection entry
applies to all ports.

Using a SOCKS Server

82 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

You can use brackets [] to include the ports at each enge of the range or
parentheses () to exclude them. For example [1000-1010] means all port
numbers between and including 1000 and 1010. (1000-1010) means all port
numbers between, but not including 1000 and 1010. You can also mix brackets
and parentheses. For instance, (1000-1010] means all numbers between 1000
and 1010, excluding 1000, but including 1010.

9. In the User group field, enter the group to deny or permit access to. If you do
not specify a group, the connection entry will apply to all users.

10. From the Action pull-down, choose to permit or deny access for the connection
you are creating.

11. From the Insert pull-down, choose the position in the socks5.conf file that you
want the connection entry to be in. Because you can have multiple connection
directives, you need to specify the order in which they are evaluated.

Editing SOCKS v5 Connection Entries
To edit a SOCKS v5 connection entry,

1. From the Server Manager, choose SOCKS|Connections. The SOCKS v5
Connections form appears.

2. Select the radio button next to the connection entry that you want to edit.

3. Click the Edit button. The SOCKS v5 Connections Entry form appears.

4. Edit the appropriate information.

5. Click OK.

Deleting SOCKS v5 Connection Entries
To delete a SOCKS v5 connection entry,

1. From the Server Manager, choose SOCKS|Connections. The SOCKS v5
Connections form appears.

NOTE Most SOCKS applications will request port 0 for bind requests,
meaning they have no port preference. Therefore, the destination
port range for bind should always include port 0.

Using a SOCKS Server

Chapter 9 Using SOCKS v5 83

2. Select the radio button next to the connection entry that you want to delete.

3. Click the Delete button.

4. Click OK.

Moving SOCKS v5 Connection Entries
You may want to change the order of the connection entries in your socks5.conf
file. You can do so by moving the connection entries. To move connection entries,

1. From the Server Manager, choose SOCKS|Connections. The SOCKS v5
Connections form appears.

2. Select the radio button next to the connection entry that you want to edit.

3. Click the Move button. The SOCKS v5 Move Entry form appears.

4. From the Move pull-down, choose the position in the socks5.conf file that
you want the connection entry to be in.

5. Click OK.

Creating Routing Entries
There are two types of routing entries, the proxy routes and the SOCKS v5 routes.
The proxy routes identify the IP addresses that are accessible through another
SOCKS server and whether that SOCKS server connects directly to the host. Proxy
routes are important when you are routing through a SOCKS server. The SOCKS
v5 routes identify which interface the SOCKS daemon should use for particular IP
addresses.

Creating SOCKS v5 Routing Entries
To create a SOCKS v5 route,

1. From the Server Manager, choose SOCKS|Routing. The SOCKS v5 Routing
form appears.

2. Under the Routing section, click the Add button. The SOCKS v5 Routing Entry
form appears.

Using a SOCKS Server

84 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

3. In the Host mask field, enter the IP address or host name for which incoming
and outgoing connections must go through the specified interface. If you enter
an IP address, follow it with a forward slash and the mask to be applied to the
incoming IP address. The SOCKS server will apply this mask to the IP address
to determine if it is a valid host. There cannot be any spaces in the host mask
entry. If you do not enter a host mask, the SOCKS v5 entry applies to all hosts.

For example, you can enter “155.25.0.0/255.255.0.0” into the Host/Mask field.
If the host’s IP address is 155.25.3.5, the SOCKS server will apply the mask to
the IP address and determine that the host’s IP address matches the IP address
for which the routing entry applies (155.25.0.0).

4. In the Port range field, enter the ports for which incoming and outgoing
connections must go through the specified interface. Your port range should
not have any spaces. If you do not specify a port range, the SOCKS v5 entry
applies to all ports.

You can use brackets [] to include the ports at each enge of the range or
parentheses () to exclude them. For example [1000-1010] means all port
numbers between and including 1000 and 1010. (1000-1010) means all port
numbers between, but not including 1000 and 1010. You can also mix brackets
and parentheses. For instance, (1000-1010] means all numbers between 1000
and 1010, excluding 1000, but including 1010.

5. In the Interface/Address field, enter IP address or name of the interface
through which incoming and outgoing connections must pass.

6. From the Insert pull-down, choose the position of this SOCKS v5 routing entry
in your socks5.conf file. Because you can have multiple routing methods, you
need to specify the order in which they are evaluated.

Creating Proxy Routing Entries
To create a proxy route,

1. From the Server Manager, choose SOCKS|Routing. The SOCKS v5 Routing
form appears.

2. Under the Routing section, click the Add button. The SOCKS v5 Proxy Routing
Entry form appears.

3. From the Proxy Type pull-down, choose the type of proxy server you will be
routing through. The choices are:

❍ SOCKS v5

❍ SOCKS v4

Using a SOCKS Server

Chapter 9 Using SOCKS v5 85

❍ direct connection

4. In the Destination host mask field, enter the IP address or host name for which
the connection entry applies.

If you enter an IP address, follow it with a forward slash and the mask to be
applied to the incoming IP address. The SOCKS server will apply this mask to
the IP address of the destination machine to determine if it is a valid
destination host. There cannot be any spaces in the host mask entry. If you do
not enter a destination host mask, the connection entry applies to all hosts.

For example, you can enter “155.25.0.0/255.255.0.0” into the Destination host
mask field. If the destination host’s IP address is 155.25.3.5, the SOCKS server
will apply the mask to the IP address and determine that the destination host’s
IP address matches the IP address for which the proxy entry applies
(155.25.0.0).

5. In the Port range filed, enter the ports on the destination host for which the
proxy entry applies. Your port range should not have any spaces. If you do not
specify a port range, the proxy entry applies to all ports.

You can use brackets [] to include the ports at each end of the range or
parentheses () to exclude them. For example [1000-1010] means all port
numbers between and including 1000 and 1010. (1000-1010) means all port
numbers between, but not including 1000 and 1010. You can also mix brackets
and parentheses. For instance, (1000-1010] means all numbers between 1000
and 1010, excluding 1000, but including 1010.

6. In the Proxy Address field, enter the host name or IP address of the proxy
server to use.

7. In the Port field, enter the port number on which the proxy server will listen for
SOCKS requests.

8. From the Insert pull-down, choose the position of this routing entry in your
socks5.conf file. Because you can have multiple routing methods, you need
to specify the order in which they are evaluated.

9. Click OK.

Editing Routing Entries
To edit a proxy routing entry or a SOCKS v5 routing entry,

1. From the Server Manager, choose SOCKS|Routing. The SOCKS v5 Routing
form appears.

Using a SOCKS Server

86 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

2. Select the radio button next to the routing entry that you want to edit.

3. Click the Edit button.

4. On the form that appears, edit the appropriate information.

5. Click OK.

Deleting Routing Entries
To delete a proxy routing entry or a SOCKS v5 routing entry,

1. From the Server Manager, choose SOCKS|Routing. The SOCKS v5 Routing
form appears.

2. Select the radio button next to the routing entry that you want to edit.

3. Click the Delete button.

Moving Routing Entries
You may want to change the order of the routing entries in your socks5.conf file.
You can do so by moving the routing entries. To move routing entries,

1. From the Server Manager, choose SOCKS|Routing. The SOCKS v5 Routing
form appears.

2. Select the radio button next to the routing entry that you want to move.

3. Click the Move button. The SOCKS v5 Move Entry form appears.

4. From the Move pull-down, choose the position in the socks5.conf file that
you want the routing entry to be in. Because you can have multiple routing
methods, you need to specify the order in which they are evaluated.

5. Click OK.

Enabling SOCKS
To enable your SOCKS server,

1. From the Server Manager, choose SOCKS|On/Off. The SOCKS On/Off form
appears.

2. Click the Server On button.

Authenticating Through a SOCKS Server Chain

Chapter 9 Using SOCKS v5 87

Authenticating Through a SOCKS Server Chain
You can chain SOCKS servers together in the same manner that you chain proxy
servers together. In other words, you can have your SOCKS server route through
another SOCKS server.

To set up SOCKS server chaining,

1. From the Server Manager, choose SOCKS|Routing. The SOCKS v5 Routing
form appears.

2. In the Server Chaining Section, enter your user name and password for
authenticating to chained proxy servers.

3. Click OK.

Authenticating Through a SOCKS Server Chain

88 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

89

Chapter 10

Caching

This chapter describes how iPlanet Web Proxy Server caches documents. It also
describes how you can configure the cache by using the online forms.

How Caching Works
Caching reduces network traffic and offers faster response time for clients who are
using the proxy server instead of going directly to remote servers.

When a client requests a web page or document from the proxy server, the proxy
server copies the document from the remote server to its local cache directory
structure while sending the document to the client.

When a client requests a document that was previously requested and copied into
the proxy cache, the proxy returns the document from the cache instead of
retrieving the document from the remote server again (see Figure 10-1). If the
proxy determines the file is not up to date, it refreshes the document from the
remote server and updates its cache before sending it to the client.

Figure 10-1 Proxy document retrieval

Document sent

from cache
Client

Proxy server

Remote server

Up-to-date check

Document request

Understanding the Cache Structure

90 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Files in the cache are automatically maintained by the Sun ONE Web Proxy Server
Cache Manager. The Cache Manager automatically cleans the cache on a regular
basis to ensure that the cache doesn’t get cluttered with out-of-date documents.

Understanding the Cache Structure
A cache consists of one or more partitions. Conceptually, a partition is a storage
area on a disk that you set aside for caching. If you wish to have your cache span
several disks, you need to configure at least one cache partition for each disk. Each
partition can be independently administered. In other words, you can enable,
disable, and configure a partition independently of all other partitions.

Storing a large number of cached files in a single location can slow performance;
therefore, it is a good idea to create several directories, or sections, in each
partition. Sections are the next level under partitions in the cache structure. You
can have up to 256 sections in your cache across all partitions. The number of cache
sections must be a power of 2 (for example, 1, 2, 4, 8, 16, ..., 256).

The final level in the cache structure hierarchy is the subsection. Subsections are
directories within sections. If you choose to have subsections, you may have up to
256 of them, and the number of subsections must be a power of two. Cached files
are stored in the lowest level in your cache.

Figure 10-2 shows an example cache structure with partitions and sections. In this
figure, the cache directory structure divides the total cache into three partitions.
The first partition contains four cache sections, and the second two partitions each
contain two sections.

For the Windows NT proxy, each cache section is noted by s for section, followed
by two numbers separated by a period. The first of the numbers is the index. For
the section shown as s3.8, the 3 indicates the index of the section. The index varies
from 0 to n-1 where n is the total number of sections in the cache. The second
number is the total number of sections in the cache. Therefore, s3.8 means the
fourth section in a cache that has a total of 8 sections.

Distributing Files in the Cache

Chapter 10 Caching 91

Figure 10-2 Example of a cache structure

In summary, a cache consists of partitions. In those partitions you may have
sections, and within those sections you may have subsections. Cached files are
always stored in the lowest level in your cache. Therefore, if your cache has
subsections within the sections, the cached files are stored in the subsections. If
your cache has sections, but no subsections, the files are stored in the sections.

Distributing Files in the Cache
The proxy server uses a specific algorithm to determine the directory where a
document should be stored. This algorithm ensures equal distribution of
documents in the base directories, so the directories contain a small and nearly
equal number of documents. Equal distribution is important because directories
with large numbers of documents tend to cause performance problems.

The Windows NT proxy server uses a hash function to reduce a URL to 16
characters, which it then uses for the filename of the document it stores in the
cache. If two URLs hash to the same filename, the previously cached URL is
replaced with the more recently accessed one.

NOTE If you are unsure about how many cache sections and subsections to
create for your cache, remember that for good cache performance, it
is wise to plan for approximately 100 and no more than 500 cached
files in each directory.

/c/part-1 /d/part-2 /e/part-3

Disk 1 Disk 2 Disk 3

/s0.8 /s1.8 /s2.8 /s3.8 /s4.8 /s5.8 /s6.8 /s7.8

Creating a New Cache

92 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Creating a New Cache
Before you can create a new cache, you need to understand the cache structure. For
more information on the cache structure, see “Understanding the Cache Structure”
on page 90. You can then prepare for creating a new cache by answering the
following questions:

• What size cache do you need? In other words, what amount of disk space will
you need to set aside for your cache?

• How many sections and subsections will you need in your cache?

• Where is the disk space you have set aside for your cache?

• How much free disk space do you want to have on the disk(s) at all times?

Once you have answered these questions, you can begin creating your new cache.

To create a new cache,

1. In the Server Manager, choose Caching|Partitions. The Cache Partition Table
appears.

2. Click the Add Partition button. The Cache Partition Configuration form
appears.

3. In the Cache Sections pull-down menu at the bottom of the table, choose the
number of sections you want to have in your cache. This is the total number of
sections across all partitions in your cache. Once you have set the cache
sections number, you will not change it for other partitions that you create
unless you restructure your cache.

4. In the Location field, enter the location of your partition. The location is the full
path of the directory where you have set aside disk space for this particular
partition.

5. In the Name field, enter the name of your partition. The name must consist of
alphanumeric characters and can be no longer than 64 characters.

6. In the Max size field, enter the maximum amount of disk space to which this
partition can grow. The largest size you should use is 4GB.

NOTE Sharing a cache between two or more proxy servers may result in a
conflict regarding cache contents. Therefore, you should not use the
same cache for more than one proxy.

Creating a New Cache

Chapter 10 Caching 93

7. In the Min avail field, enter the amount of disk space that you would like to
always have free.

8. In the Lo Section field, enter the index of the first section that will be in the
partition you are configuring. If this is the only partition in your cache, this
number should be zero.

9. In the Hi Section field, enter the index of the last section in the partition you are
configuring. If you would like to have six sections in a small partition cache,
and the lo section number is zero, the hi section number is five. Remember that
in a cache, each section must appear in one and only one partition.

10. If you would like to have directories, or subsections, in the sections in your
cache, use the Directories per Section field to enter the number of directories in
each section.

11. In the Free Space Margin field, enter the amount of disk space over the
minimum available amount that triggers garbage collection in your cache.
Creating a free space margin allows garbage collection to begin before a lack of
disk space requires that new caching requests be denied.

12. In the Maximum Size Trigger field, enter the percentage of the maximum size
that will trigger garbage collection. In other words, enter the percentage of the
maximum cache size that your cache can occupy before garbage collection
occurs.

13. In the Garbage Collection field, enter the amount of disk space (in terms of
percentage of the current size) that you would like the garbage collector to
recover each time it runs.

14. Click OK.

Repeat these steps for all cache partitions that you want to create.

Restructuring the Cache

94 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Restructuring the Cache
Making certain changes to your cache require that you restructure your cache.
These changes include:

❍ Adding partitions

❍ Adding sections

❍ Dramatically increasing the size of your cache

You can restructure your cache using the Cache Partition Configuration form. The
Cache Partition Configuration form consists of several items pertaining to the
structure of your cache. These items include:

Location: the directory where you will be setting aside disk space for this partition

Name: the name of your partition; must consist of alphanumeric characters and can
be no longer than 64 characters

Status: the status of the partition; can be enabled (open) or disabled (closed)

Max size: the amount of disk space that you have set aside for partition growth

Size: the actual amount of disk space that your partition occupies (You cannot
modify this value.)

Min avail: the amount of disk space that you would like always to have free

Avail: the actual amount of disk space that is available in your partition (You
cannot modify this value.)

Lo Section: the index of the first section in a partition

Hi Section: the index of the last section in a partition - section numbers cannot
overlap across partitions

Directories per Section: the number of directories, or subsections, in each section

NOTE Changing the size of your cache is not a cache-restructuring
operation unless the size increase is very large. If the size increase is
large, you should add sections to your cache so that you can keep
the number of files per directory within a reasonable limit for
performance.

Setting Cache Specifics

Chapter 10 Caching 95

Free Space Margin: the amount of disk space over the minimum available amount
that triggers garbage collection in your cache. Creating a free space margin allows
garbage collection to begin before a lack of disk space requires that new caching
requests be denied.

Maximum Size Trigger: the percentage of the maximum size that will trigger
garbage collection. In other words, it is the percentage of the maximum cache size
that your cache can occupy before garbage collection occurs.

Garbage Collection: the amount of disk space that you would like the garbage
collector to recover each time it runs

Cache Sections: the number of sections in your cache.

To restructure your cache,

1. In the Server Manager, choose Caching|Partitions. The Cache Partition Table
appears.

2. Click the name of the partition that you would like to restructure. The Cache
Partition Configuration form appears.

3. Change the values in the table accordingly.

4. Click OK.

5. Restart the proxy.

 Warning!
Changing the cache structure after installation requires that you reformat the
structure and relocate existing files, therefore causing restructuring to be time
consuming. Make sure that all sections in your cache have been assigned to one
and only one partition while restructuring.

Setting Cache Specifics
You can enable caching and control which types of protocols your proxy server
will cache by setting the cache specifics. Cache specifics include the following
items:

• Whether your cache is enabled or disabled

• What types of protocols will be cached

• When to refresh a cached document

Setting Cache Specifics

96 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

• Whether the proxy should track the number of times a document is accessed
and report it back to the remote server

To set cache specifics,

1. In the Server Manager, choose Caching|Specifics. The Cache Specifics form
appears.

2. Change the information.

3. Click OK.

The following sections describe the items listed on the Cache Specifics form. These
sections include information that will help you to determine which settings will
best suit your needs.

Enabling the Cache
Caching is an effective way to reduce network traffic for users of the proxy server.
Caching also offers a faster response time for clients by eliminating the need to
retrieve a document from a remote server. Your proxy server will function most
effectively whenever caching is enabled.

You can enable the cache on the Cache Specifics form.

Caching HTTP Documents
Internally, caching HTTP documents differs from caching FTP documents. HTTP
documents offer caching features that documents of the other protocols do not. All
HTTP documents have a descriptive header section that the proxy server uses to
compare and evaluate the document in the proxy cache and the document on the
remote server. When the proxy does an up-to-date check on an HTTP document,
the proxy sends one request to the server that tells the server to return the
document if the version in the cache is out of date. Often, the document hasn’t
changed since the last request and therefore is not transferred. This method of
checking to see if an HTTP document is up-to-date saves bandwidth and decreases
latency.

To reduce transactions with remote servers, the proxy server allows you to set a
Cache Expiration setting for HTTP documents. The Cache Expiration setting tells
the proxy to estimate if the HTTP document needs an up-to-date check before
sending the request to the server. The proxy makes this estimate based on the
HTTP document’s Last-Modified date found in the header.

Setting Cache Specifics

Chapter 10 Caching 97

With HTTP documents, you can also use a Cache Refresh setting. This option
specifies whether the proxy always does an up-to-date check (which would
override an Expiration setting) or if the proxy waits a specific period of time before
doing a check. Table 10-1 shows what the proxy does if both an Expiration setting
and a Refresh setting are specified. Using the Refresh setting decreases latency and
saves bandwidth considerably.

Setting the HTTP Cache Refresh Interval
If you decide that you want your proxy server to cache HTTP documents, you need
to determine whether it should always do an up-to-date check for documents in the
cache or if it should check based on a Cache Refresh setting (up-to-date check
interval). For HTTP documents, a reasonable refresh interval would be four to
eight hours, for example. The longer the refresh interval, the fewer the number of
times the proxy connects with remote servers. Even though the proxy doesn’t do
up-to-date checking during the refresh interval, users can force a refresh by
clicking the Reload button in the client (such as Netscape Navigator); this action
makes the proxy force an up-to-date check with the remote server.

You can set the refresh interval for HTTP documents on either the Cache Specifics
form or the Cache Configuration form. The Cache Specifics form allows you to
configure global caching procedures, and the Cache Configuration form allows
you to control caching procedures for specific URLs and resources. For more
information on using the Cache Specifics form, see “Setting Cache Specifics” on
page 95, and for more information on using the Cache Configuration form, see
“Configuring the Cache” on page 99.

Setting the HTTP Cache Expiration Policy
You can also set up your server to check if the cached document is up-to-date by
using a last-modified factor or explicit expiration information only.

Table 10-1 Using the Cache Expiration and Cache Refresh settings with HTTP

Refresh setting Expiration setting Results

Always do an up-to-date
check

(Not applicable) Always do an up-to-date
check

User-specified interval Use document’s “expires”
header

Do an up-to-date check if
interval expired

Estimate with document’s
Last-Modified header

Smaller value1 of the
estimate and expires header

1. Using the smaller value guards against getting stale data from the cache for documents that change frequently.

Setting Cache Specifics

98 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Explicit expiration information is a header found in some HTTP documents that
specifies the date and time when that file will become outdated. Not many HTTP
documents use explicit Expires headers, so it’s better to estimate based on the
Last-modified header.

If you decide to have your HTTP documents refresh or expire based upon the
Last-modified header, you need to select a fraction to use in the expiration
estimation. This fraction, known as the LM factor, is multiplied by the interval
between the last modification and the time that the last up-to-date check was
performed on the document. The resulting number is compared with the time since
the last up-to-date check. If the number is smaller than the time interval, the
document is not expired. Smaller fractions make the proxy check documents more
often. For example, suppose you have a document that was last changed ten days
ago. If you set the last-modified factor to 0.1, the proxy interprets the factor to mean
that the document is probably going to remain unchanged for one day (10 * 0.1 = 1).
The proxy would, in that case, return the document from the cache if the document
was checked less than a day ago.

In this same example, if the cache refresh setting for HTTP documents is set to less
than one day, the proxy does the up-to-date check more than once a day. The proxy
always uses the value (cache refresh or cache expiration) that requires that it
update the files more frequently.

You can set the expiration setting for HTTP documents on either the Cache
Specifics form or the Cache Configuration form. The Cache Specifics form allows
you to configure global caching procedures and the Cache Configuration form
allows you to control caching procedures, for specific URLs and resources. For
more information on using the Cache Specifics form, see “Setting Cache Specifics”
on page 95, and for more information on using the Cache Configuration form, see
“Configuring the Cache” on page 99.

Caching FTP and Gopher Documents
FTP and Gopher do not include a method for checking to see if a document is
up-to-date. Therefore, the only way to optimize caching for FTP and Gopher
documents is to set a Cache Refresh interval. The Cache Refresh interval is the
amount of time the proxy server waits before retrieving the latest version of the
document from the remote server. If you do not set a Cache Refresh interval, the
proxy will retrieve these documents even if the versions in the cache are
up-to-date.

Configuring the Cache

Chapter 10 Caching 99

Setting FTP and Gopher Cache Refresh Intervals
If you are setting a cache refresh interval for FTP and Gopher, choose one that you
consider safe for the documents the proxy gets. For example, if you store
information that rarely changes, use a high number (several days). If the data
changes constantly, you’ll want the files to be retrieved at least every few hours.
During the refresh time, you risk sending an out-of-date file to the client. If the
interval is short enough (a few hours), you eliminate most of this risk while getting
noticeably faster response time.

You can set the cache refresh interval for FTP and Gopher documents on either the
Cache Specifics form or the Cache Configuration form. The Cache Specifics form
allows you to configure global caching procedures, and the Cache Configuration
form allows you to control caching procedures for specific URLs and resources. For
more information on using the Cache Specifics form, see “Setting Cache Specifics”
on page 95, and for more information on using the Cache Configuration form, see
“Configuring the Cache” on page 99.

Configuring the Cache
You can configure the kind of caching you want for specific resources, using the
Caching Configuration form. You can specify several configuration parameter
values for URLs matching the regular expression pattern that you specify. This
feature gives you fine control of the proxy cache, based on the type of document
cached.

Configuring the cache can include identifying the following items:

• The cache default

• How to cache pages that require authentication

• How to cache queries

• The minimum and maximum cache file sizes

• When to refresh a cached document

NOTE If your FTP and Gopher documents vary widely (some change
often, others rarely), use the Cache Configuration form to create a
separate template for each kind of document (for example, create a
template with resources ftp://.*.gif) and then set a refresh interval
that is appropriate for that resource.

Configuring the Cache

100 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

• The cache expiration policy

• The caching behavior for client interruptions

To configure the cache,

1. In the Server Manager, choose Caching|Configuration. The Caching
Configuration form appears.

2. Select the resource you are editing by either choosing it from the Editing
pull-down menu or by clicking the Regular Expression button, entering a
regular expression, and clicking OK. For more information on regular
expressions, see “Understanding Regular Expressions” on page 32.

3. Change the configuration information.

4. Click OK.

The following sections describe the items listed on the Caching Configuration
form. These sections include information that will help you to determine which
configuration will best suit your needs.

Setting the Cache Default
The proxy server allows you to identify a cache default for specific resources. A
resource is a type of file that matches certain criteria that you specify. For instance,
you may want your server to automatically cache all documents from the domain
company.com. If so, click the Regular Expression button on the top of the
Configuration form and, in the field that appears, enter

[a-z] *://[^/:]\.company\.com.*.

Then click the Cache radio button. Your server automatically caches all cacheable
documents from that domain. For more information on regular expressions, see
“Understanding Regular Expressions” on page 32.

NOTE If you set the cache default for a particular resource to either
Derived configuration or Don’t cache, the cache configuration
options will not appear on the Caching Configuration form.
However, if you choose a cache default of Cache for a resource, you
can specify several other configuration items.

Configuring the Cache

Chapter 10 Caching 101

You can set the cache default for any resource on the Cache Configuration form.
The cache default for HTTP and FTP can also be set on the Cache Specifics form.

Caching Pages that Require Authentication
You can have your server cache files that require user authentication. If you choose
to have your proxy server cache these files, it tags the files in the cache so that if a
user asks for them, it knows that the files require authentication from the remote
server.

Because the proxy server does not know how remote servers authenticate and it
does not know users’ IDs or passwords, it will simply force an up-to-date check
with the remote server each time a request is made for a document that requires
authentication. The user therefore must enter an ID and password to gain access to
the file. If the user have already accessed that server earlier in the Navigator
session, Navigator automatically sends the authentication information without
prompting the user for it.

If you do not enable the caching of pages that require authentication, the proxy
assumes the default, which is to not cache them.

You can set the policy for caching pages that require authentication on the Cache
Configuration form.

Caching Queries

Cached queries only work with HTTP documents.
You can limit the length of queries that are cached, or you can completely inhibit
caching of queries. The longer the query, the less likely it is to be repeated, and the
less useful it is to cache.

NOTE If you set the cache default for a particular resource to either
Derived configuration or Don’t cache, it is not necessary to
configure the cache for that resource. However, if you choose a
cache default of Cache for a resource, you can specify several other
configuration items. For a list of these items, see “Configuring the
Cache” on page 99.

Configuring the Cache

102 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

These caching restrictions apply for queries: the access method has to be GET and
the response must have a Last-modified header. This requires the query engine to
indicate that the query result document can be cached. If the Last-modified header
is present, the query engine should support a conditional GET method (with an
If-modified-since header) in order to make caching effective; otherwise it should
return an Expires header.

If you do not enable the caching of queries, the proxy assumes the default, which is
to not cache them.

You can set the query cache policy on the Cache Configuration form.

Setting the Minimum and Maximum Cache File
Sizes
You can set the minimum and maximum sizes for files that will be cached by your
proxy server. You may want to set a minimum size if you have a fast network
connection. If your connection is fast, small files may be retrieved so quickly that it
is not necessary for the server to cache them. In this instance, you would want to
cache only larger files. You may want to set a maximum file size to make sure that
large files do not occupy too much of your proxy’s disk space.

You can set the minimum and maximum cache file sizes on the Cache
Configuration form.

Setting the Cache Behavior for Client Aborts
If a document is only partly retrieved and the client aborts the data transfer, the
proxy has the ability to finish retrieving the document for the purpose of caching it.
The proxy’s default is to finish retrieving a document for caching if at least 25
percent of it has already been retrieved. Otherwise, the proxy terminates the
remote server connection and removes the partial file. You can raise or lower the
client interruption percentage on the Cache Configuration form.

Caching Local Hosts

Chapter 10 Caching 103

Caching Local Hosts
If a URL requested from a local host lacks a domain name, the proxy server will not
cache it in order to avoid duplicate caching. For example, if a user requests
http://machine/filename.html and http://machine.iplanet.com/filename.html
from a local server, both URLs might appear in the cache. Because these files are
from a local server, they may be retrieved so quickly that it is not necessary to
cache them anyway.

However, if your company has servers in many remote locations, you may want to
cache documents from all hosts to reduce network traffic and decrease the time
needed to access the files.

To enable the caching of local hosts,

1. In the Server Manager, choose Caching|Cache Local Hosts.

2. Select the resource you are editing by either choosing it from the Editing
pull-down menu or by clicking the Regular Expression button and entering the
name of the resource to edit. For more information on regular expressions, see
“Understanding Regular Expressions” on page 32.

3. Click the enabled button.

4. Click OK.

Using Cache Batch Updates
The Cache Batch Update feature allows you to pre-load files in a specified web site
or do an up-to-date check on documents already in the cache whenever the proxy
server is not busy. From the Cache Batch Updates form, you can create, edit, and
delete batches of URLs and enable and disable batch updating.

Creating a Batch Update
You can actively (as opposed to on-demand) cache files by specifying files to be
batch updated. The proxy server allows you to perform an up-to-date check on
several files currently in the cache or pre-load multiple files in a particular web site.

To create a batch update,

1. In the Server Manager, choose Caching|Batch Updates.

The Cache Batch Updates form appears.

Using Cache Batch Updates

104 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

2. Select New and Create from the pull-down menus next to Select a
configuration to edit.

3. Click OK.

A new Cache Batch Update form appears.

4. In the Name section of the form, enter a name for the new batch update entry.

5. In the Source section of the form, click the radio button for the type of batch
update that you want to create. Click the first radio button if you want to
perform an up-to-date check on all documents in the cache. Click the second
radio button if you want to cache URLs recursively starting from the given
source URL.

6. In the Source section fields, identify the documents that you want to use in the
batch update.

7. In the Exceptions section, identify any files that you would like to exclude from
the batch update.

8. In the Resources section, enter the maximum number of simultaneous
connections and the maximum number of documents to traverse.

9. In the Timing section, enter the start and end times for the generation of the
batch update. Only one batch update can be active at any time, so it is best to
not overlap other batch update configurations.

10. Click OK.

Editing or Deleting a Batch Update Configuration
You can edit or delete batch updates using the Cache Batch Updates form. You
may want to edit a batch update if you need to exclude certain files or want to
update the batch more frequently. You may also want to delete a batch update
configuration completely.

To edit or delete a batch update configuration,

1. In the Server Manager, choose Caching|Batch Updates. The Cache Batch
Updates form appears.

NOTE You can create, edit, and delete batch update configurations
without having batch updates turned on. However, if you want
your batch updates to be updated according to the times you set
on the Cache Batch Updates form, you must turn updates on.

Accessing Cache Manager Information

Chapter 10 Caching 105

2. If you want to edit a batch, select the name of that batch and “Edit” from the
pull-down menus next to Select a configuration to edit. If you want to delete a
batch, select the name of that batch and “Delete” from the pull-down menus.

3. Click OK. The Cache Batch Updates form appears.

4. Modify the information as you wish.

5. Click OK.

Accessing Cache Manager Information
You can view the names and attributes of all recorded cached URLs through the
Cache Manager information. Cache Manager information is a list of cached
documents grouped by access protocol and site name. You can limit the URLs you
view in the list by typing a domain name into the Search field. By accessing this
information, you can perform various cache management functions such as
expiring and removing documents from the cache.

To access Cache Manager information,

1. In the Server Manager, choose Caching|Cache Management.

2. Click the Regenerate button to generate a current list of cached URLs.

3. If you would like to view Cache Manager information for a specific URL, enter
a URL or regular expression in the Search field and click the Search button.

4. If you would like to view Cache Manager information grouped by domain
name and host, select a domain name from the list. A list of hosts in that
domain appears. Click on the name of a host and a list of URLs appears.

5. Click on the name of a URL. Detailed information about that URL appears.

Expiring and Removing Files from the Cache
From the Cache Management form you can expire and remove documents from
the cache.

To expire or remove files,

1. In the Server Manager, choose Caching|Cache Management.

2. Click the Regenerate button to generate a current list of cached URLs.

Accessing Cache Manager Information

106 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

3. If you know of a specific URL that you would like to expire or remove, enter
that URL or a regular expression that matches that URL in the Search field and
click the Search button.

If you would like to work with URLs grouped by domain name and host, select
a domain name from the list. A list of hosts in that domain appears. Click on
the name of a host and a list of URLs appears.

4. To expire individual files, select the Ex radio button next to the URLs for those
files and click the Exp/Rem Marked button on the bottom of the form. To
expire all of the files in the list, click the Exp All button on the bottom of the
form.

To remove individual files from the cache, select the Rm radio button next to
the URLs for those files and click the Exp/Rem Marked button on the bottom
of the form. To remove all of the files in the list, click the Rem All button on the
bottom of the form.

5. Click the Regenerate button at the top of the form to regenerate the URL list.

Warning!
Generating a URL database may take a long time. It is possible that Navigator will
time out while this utility is running. While the proxy server is generating a URL
database, any attempt to run a second instance of the database utility will fail.

The database generation utility outputs four files and places them in the
iplanet\server\proxy-id\urldb directory. All fields in the output files are
separated by tabs with one entry per line. The four output files are:

domainlist - A list of domains and the number of sites in each domain

sitelist - A list of sites, the number of URLS in each site, and the total amount of
space in the cache for each site.

urllist - A list of URLs and specified parameters.

urldbinfo - A list of meta information about the urldb.

Unless otherwise noted in the param-list, the output files contain the following
parameters:

• content type

• content length

• times accessed

• last accessed time

Routing through Proxy Arrays

Chapter 10 Caching 107

• last modified time

• expiration time

• last checked time

• transfer duration

Routing through Proxy Arrays
Proxy arrays for distributed caching allow multiple proxies to serve as a single
cache. In other words, each proxy in the array will contain different cached URLs
that can be retrieved by a browser or downstream proxy server. Proxy arrays
prevent the duplication of caches that often occurs with multiple proxy servers.
Through hash-based routing, proxy arrays route requests to the correct cache in the
proxy array.

Proxy arrays also allow incremental scaleability. In other words, if you decide to
add another proxy to your proxy array, each member’s cache is not invalidated.
Only 1/n of the URLs in each member’s cache, where n is the number of proxies in
your array, will be reassigned to other members.

For each request through a proxy array, a hash function assigns each proxy in the
array a score that is based on the requested URL, the proxy’s name and the proxy’s
load factor. The request is then routed to the proxy with the highest score.

Since requests for URLs can come from both clients and proxies, there are two
types of routing through proxy arrays: client to proxy routing and proxy to proxy
routing.

In client to proxy routing, the client uses the Proxy Auto Configuration (PAC)
mechanism to determine which proxy to go through. However, instead of using
the standard PAC file, the client uses a special PAC file which computes the hash
algorithm to determine the appropriate route for the requested URL. Figure 10-3
shows client to proxy routing. For more information about the PAC file, see
Chapter 12, “Using the Client Autoconfiguration File.” The proxy server can
automatically generate the special PAC file from the Proxy Array Membership
Table (PAT) specifications made through the administration interface.

In proxy to proxy routing, proxies use a PAT (Proxy Array Table) file to compute
the hash algorithm instead of the PAC file used by clients. The PAT file is an ASCII
file that contains information about a proxy array, including the proxies’ machine
names, IP addresses, ports, load factors, cache sizes, etc. For computing the hash

Routing through Proxy Arrays

108 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

algorithm at the server, it is much more efficient to use a PAT file than a PAC file
(which is a JavaScript file that has to be interpreted at run-time), however, most
clients do not recognize the PAT file format, and therefore, must use a PAC file.
Figure 10-4 shows proxy to proxy routing.

The PAT file will be created on one proxy in the proxy array - the master proxy.
The proxy administrator must determine which proxy will be the master proxy.
The administrator can change the PAT file from this master proxy server and all
other members of the proxy array can then manually or automatically poll the
master proxy for these changes. You can configure each member to automatically
generate a PAC file from these changes.

You can also chain proxy arrays together for hierarchical routing. If a proxy server
routes an incoming request through an upstream proxy array, the upstream proxy
array is then known as a parent array. A parent array is a proxy array that a proxy
server goes through. In other words, if a client requests a document from Proxy X,
and Proxy X does not have the document, it sends the request to Proxy Array Y
instead of sending it directly to the remote server. So, Proxy Array Y is a parent
array. In Figure 10-4, Proxy Array 1 is a parent array to Proxy Array 2.

All of the proxy servers in a proxy array should be in a single administrative
domain. Two proxy arrays in separate administrative domains can communicate,
however if the requesting proxy can retrieve cached URLs from more than one
proxy array, ICP should be used to determine which array to go to.

Routing through Proxy Arrays

Chapter 10 Caching 109

Figure 10-3 Client to Proxy Routing

Firewall

Master Proxy

Client

If the client does not already have a current copy of the special PAC file, it downloads the file from a
member of the proxy array (usually the master proxy). The hash algorithm for the requested URL is

computed for each proxy in the array using the PAC file and the client then retrieves the requested URL
from whichever proxy has the highest score. In this diagram, Proxy B has the highest score for the URL
requested by the client.

Proxy A Proxy B

PAC

Proxy Array 1

Once the client has a PAC file, it
only needs to download this file
again if the configuration changes.

Generally, clients will download the
PAC file at restart.

PAT

Each member of the proxy array
loads and polls the master proxy

for updates to the PAT file.

Routing through Proxy Arrays

110 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Figure 10-4 Proxy to Proxy Routing

To set up a proxy array,

1. From the master proxy, create the member list. For more information on
creating the member list, see “Creating a Proxy Array Member List” on
page 111.

2. From the master proxy, create a PAT mapping to map the URL “/pat” to the
PAT file. For information on creating a PAT mapping, see “Creating a URL
Mapping” on page 64.

3. Configure each non-master member of the array. For more information on
configuring non-master members, see “Configuring Proxy Array Members” on
page 113.

Firewall

Routing through Proxy Arrays

Chapter 10 Caching 111

4. Enable routing through a proxy array. For more information on enabling
routing through a proxy array, see “Enabling Routing through a Proxy Array”
on page 114.

5. Enable your proxy array. Fore more information on enabling a proxy array, see
“Enabling a Proxy Array” on page 115.

6. Generate a PAC file from your PAT file. You only need to generate a PAC file if
you are using client to proxy routing. For more information on generating a
PAC file from a PAT file, see “Generating a PAC File from a PAT File” on
page 116.

Creating a Proxy Array Member List
You should create and update the proxy array member list from the master proxy
of the array only. You only need to create the proxy array member list once, but
you can modify it at any time. By creating the proxy array member list, you are
generating the PAT file to be distributed to all of the proxies in the array and to any
downstream proxies.

Warning!
You should only make changes or additions to the proxy array member list
through the master proxy in the array. All other members of the array can only
read the member list.

1. From the Server Manager, choose Caching|Proxy Array Configuration. The
Proxy Array Configuration form appears.

2. In the Array name field, enter the name of the array.

3. In the “Reload Configuration Every” field, enter the number of minutes
between each polling for the PAT file.

4. Click OK.

NOTE If your proxy array is going to route through a parent array, you
also need to enable the parent array and configure each member
to route through a parent array for desired URLs. For more
information on parent arrays, see “Routing Through a Parent
Array” on page 118.

NOTE Be sure to click OK before you begin to add members to the
member list.

Routing through Proxy Arrays

112 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

5. Click the Add button. The Proxy Array Member form appears.

6. For each member in the proxy array, enter the following and then click OK:

❍ Name - the name of the proxy server you are adding to the member list

❍ IP Address - the IP address of the proxy server you are adding to the
member list

❍ Port - This is the port on which the member polls for the PAT file.

❍ Load Factor - an integer that reflects the relative load that should be routed
through the member.

❍ Status - the status of the member. This value can be either on or off. If you
disable a proxy array member, the member’s requests will be re-routed
through another member.

Deleting Proxy Array Members
Deleting proxy array members will remove them from the proxy array. You can
only delete proxy array members from the master proxy.

Warning!
You should only make changes or additions to the proxy array member list
through the master proxy in the array. If you modify this list from any other
member of the array, all changes will be lost.

To delete members of a proxy array,

1. From the Server Manager, choose Caching|Proxy Array Configuration. The
Proxy Array Configuration form appears.

2. In the Member List, select the radio button next to the member that you want to
delete.

3. Click the Delete Button.

NOTE Be sure to click OK after you enter the information for each proxy
array member you are adding.

NOTE If you want your changes to take effect and to be distributed to the
members of the proxy array, you need to update the Configuration
ID on the Proxy Array Configuration form and click OK. To update
the configuration ID, you could increase it by one.

Routing through Proxy Arrays

Chapter 10 Caching 113

Editing Proxy Array Member List Information
At any time, you can change the information for the members in the proxy array
member list. You can only edit the proxy array member list from the master proxy.

Warning!
You should only make changes or additions to the proxy array member list
through the master proxy in the array. If you modify this list from any other
member of the array, all changes will be lost.

To edit member list information for any of the members in a proxy array,

1. From the Server Manager, choose Caching|Proxy Array Configuration. The
Proxy Array Configuration form appears.

2. In the Member List, select the radio button next to the member that you want to
edit.

3. Click the Edit Button. The Proxy Array Member form appears.

4. Edit the appropriate information.

5. Click OK.

Configuring Proxy Array Members
You only need to configure each member in the proxy array once, and you must do
so from the member itself. You cannot configure a member of the array from
another member. You also need to configure the master proxy.

1. From the Server Manager, choose Caching|Member Configuration. The Proxy
Array Member Configuration form appears.

2. In the Proxy Array section, indicate whether or not the member needs to poll
for the PAT file by selecting the appropriate radio button. The choices are:

NOTE If you want your changes to take effect and to be distributed to the
members of the proxy array, you need to update the Configuration
ID on the Proxy Array Configuration form and click OK. To update
the configuration ID, you could increase it by one.

NOTE You should follow this process for each member of the array.

Routing through Proxy Arrays

114 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

❍ Non-master member - You should select this option if the member you are
configuring is not the master proxy. Any proxy array member that is not a
master proxy will need to poll for the PAT file in order to retrieve it from
the master proxy.

❍ Master member - You should select this option if you are configuring the
master proxy. If you are configuring the master proxy, the PAT file is local
and does not need to be polled.

3. If, in Step 2, you chose Don’t Poll, Click OK - you are finished with this form. If
you chose Poll for PAT file, continue with Step 4.

4. In the Poll Host field, enter the name of the master proxy that you will be
polling for the PAT file.

5. In the Port field, enter the port at which the master proxy accepts HTTP
requests.

6. In the URL field, enter the URL of the PAT file on the master proxy. If on your
master proxy, you have created a PAT mapping to map the PAT file to the URL
“/pat”, you should enter “/pat” into this URL field.

7. In the Headers File field, enter the full pathname for a file with any special
headers that must be sent with the HTTP request for the PAT file (such as
authentication information). This field is optional.

8. Click OK.

Enabling Routing through a Proxy Array
To enable routing through a proxy array,

1. From the Server Manager, choose Routing|Routing. The Routing
Configuration form appears.

2. Select the resource you want to route by either choosing it from the Editing
pull-down menu or clicking the Regular Expression button, entering a regular
expression, and clicking OK.

3. Select the radio button next to the text “Route through”.

4. Select the checkboxes for proxy array and/or parent array.

Routing through Proxy Arrays

Chapter 10 Caching 115

5. If you choose to route through a proxy array and you want to redirect requests
to another URL, select the redirect checkbox. Redirecting means that if a
member of a proxy array receives a request that it should not service, it tells the
client which proxy to contact for that request.

Warning
Redirect is not currently supported by any clients, so you should not use the
feature at this time.

6. Click OK.

Enabling a Proxy Array
To enable a proxy array,

1. From the Server Manager, choose Server Preferences|System Specifics. The
System Specifics form appears.

2. Select the Yes radio button for the type of array(s) you want to enable - either a
normal proxy array or a parent array.

3. Click OK.

NOTE You can only enable proxy array routing if the proxy server you
are configuring is a member of a proxy array. You can only enable
parent routing if a parent array exists. Both routing options are
independent of eachother.

NOTE If you are not routing through a proxy array, you should make
sure that all clients use a special PAC file to route correctly before
you disable the proxy array option. If you disable the parent
array option, you should have valid alternative routing options
set in the Routing form, such as explicit proxy or a direct
connection.

Routing through Proxy Arrays

116 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Redirecting Requests in a Proxy Array
If you choose to route through a proxy array, you need to designate whether you
want to redirect requests to another URL. Redirecting means that if a member of a
proxy array receives a request that it should not service, it tells the client which
proxy to contact for that request.

Warning
Redirect is not currently supported by any clients, so you should not use the
feature at this time.

Generating a PAC File from a PAT File
Because most clients do not recognize the PAT file format, the clients in client to
proxy routing use the Proxy Auto Configuration (PAC) mechanism to receive
information about which proxy to go through. However, instead of using the
standard PAC file, the client uses a special PAC file derived from the PAT file. This
special PAC file computes the hash algorithm to determine the appropriate route
for the requested URL.

You can manually or automatically generate a PAC file from the PAT file. If you
manually generate the PAC file from a specific member of the proxy array, that
member will immediately re-generate the PAC file based on the information
currently in the PAT file. If you configure a proxy array member to automatically
generate a PAC file, the member will automatically re-generate the file after each
time it detects a modified version of the PAT file.

Manually Generating a PAC File from a PAT File
To manually generate a PAC file from a PAT file,

NOTE If you are not using the proxy array feature for your proxy server,
then you should use the Proxy Client Autoconfiguration form to
generate your PAC file. For more information see Chapter 12,
“Using the Client Autoconfiguration File.”

NOTE The PAC file can only be generated from the master proxy.

Routing through Proxy Arrays

Chapter 10 Caching 117

1. From the Server Manager of the master proxy, choose Caching|Proxy Array
Configuration.

The Proxy Array Configuration form appears.

2. Click the Generate PAC button. The PAC Generation form appears.

3. If you want to use custom logic in your PAC file, in the Custom Logic File field,
enter the name of the file containing the customized logic you would like to
include in the generation of your PAC file. This logic is inserted before the
proxy array selection logic in the FindProxyForURL function. This function is
typically used for local requests which need not go through the proxy array.

If you have already entered the custom logic file on the Member Configuration
form, this field will be populated with that information. You may edit the
custom logic filename if you wish, and the changes you make will transfer to
the Member Configuration form as well.

4. In the Default Route field, enter the route a client should take if the proxies in
the array are not available.

If you have already entered the default route on the Member Configuration
form, this field will be populated with that information. You may edit the
default route if you wish, and the changes you make will transfer to the
Member Configuration form as well.

5. Click OK.

Automatically Generating a PAC File from a PAT File
To automatically generate a PAC file from a PAT file each time a change is
detected,

1. From the Server Manager, choose Caching|Member Configuration. The
Member Configuration form appears.

2. Select the checkbox next to “Auto-generate PAC file”.

3. In the Default Route field, enter the route a client should take if the proxies in
the array are not available.

If you have already entered and saved the default route on the Member
Configuration form, this field will be populated with that information. You
may edit the default route if you wish, and the changes you make will transfer
to the Member Configuration form as well.

Routing through Proxy Arrays

118 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

4. If you want to use custom logic in your PAC file, in the Custom Logic File field,
enter the name of the file containing the customized logic you would like to
include in the generation of your PAC file. This logic is inserted before the
proxy array selection logic in the FindProxyFor URL function.

If you have already entered and saved the custom logic file on the Member
Configuration form, this field will be populated with that information. You
may edit the custom logic filename if you wish, and the changes you make will
transfer to the Member Configuration form as well.

5. Click OK.

Routing Through a Parent Array
You can configure your proxy or proxy array to route through an upstream parent
array instead of going directly to a remote server. To configure a proxy or proxy
array member to route through a parent array,

1. Enable the parent array. For instructions on enabling an array, “Enabling a
Proxy Array” on page 115.

2. Enable routing through the parent array. For instructions on enabling routing
through an array, see “Enabling Routing through a Proxy Array” on page 114.

3. From the Server Manager, choose Caching|Member Configuration. The Proxy
Array Member Configuration form appears.

4. In the Poll Host field in the Parent Array section of the form, enter the host
name of the proxy in the parent array that you will poll for the PAT file. This
proxy is usually the master proxy of the parent array.

5. In the Port field in the Parent Array section of the form, enter the Port number
of the proxy in the parent array that you will poll for the PAT file.

6. In the URL field, enter the URL of the PAT file to be polled.

7. In the URL field, enter the URL of the PAT file on the master proxy. If on your
master proxy, you have created a PAT mapping, you should enter the
mapping into this URL field.

8. In the Headers File field in the Parent Array section of the form, full pathname
for a file with any special headers that must be sent with the HTTP request for
the PAT file (such as authentication information). This field is optional.

9. Click OK.

Routing Through ICP Neighborhoods

Chapter 10 Caching 119

Viewing Parent Array Information
If your proxy array is routing through a parent array, you will need information
about the members of the parent array. This information is sent from the parent
array in the form of a PAT file. The information in this PAT file is displayed on the
Parent Array Configuration form.

To view parent array information,

1. From the Server Manager, choose Caching|Parent Array Configuration. The
Parent Array Configuration form appears.

2. View the information.

Routing Through ICP Neighborhoods
The Internet Cache Protocol (ICP) is an object location protocol that enables caches
to communicate with one another. Caches can use ICP to send queries and replies
about the existence of cached URLs and about the best locations from which to
retrieve those URLs. In a typical ICP exchange, one cache will send an ICP query
about a particular URL to all neighboring caches. Those caches will then send back
ICP replies that indicate whether or not they contain that URL. If they do not
contain the URL, they send back a “MISS”. If they do contain the URL, they send
back a “HIT”.

ICP can be used for communication among proxies located in different
administrative domains. It allows a proxy cache in one administrative domain to
communicate with a proxy cache in another administrative domain. It is effective
for situations in which several proxy servers want to communicate but, cannot all
be configured from one master proxy (as they are in a proxy array). Figure 10-5
shows an ICP exchange between proxies in different administrative domains.

The proxies that communicate with each other via ICP are called neighbors. You
cannot have more than 64 neighbors in an ICP neighborhood. There are two types
of neighbors in an ICP neighborhood, parents and siblings. Only parents can access
the remote server if no other neighbors have the requested URL. Your ICP
neighborhood can have no parents or it can have more than one parent. Any
neighbor in an ICP neighborhood that is not a parent is considered a sibling.
Siblings cannot retrieve documents from remote servers unless the sibling is
marked as the default route for ICP, and ICP uses the default.

You can use polling rounds to determine the order in which neighbors receive
queries. A polling round is an ICP query cycle. For each neighbor, you must assign
a polling round. If you configure all neighbors to be in polling round one, then all
neighbors will be queried in one cycle. In other words, they will all be queried at

Routing Through ICP Neighborhoods

120 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

the same time. If you configure some of the neighbors to be in polling round 2, then
all of the neighbors in polling round one will be queried first and if none of them
return a “HIT”, all round two proxies will be queried. The maximum number of
polling rounds is two.

Since ICP parents are likely to be network bottlenecks, you can use polling rounds
to lighten their load. A common setup is to configure all siblings to be in polling
round one and all parents to be in polling round two. That way, when the local
proxy requests a URL, the request goes to all of the siblings in the neighborhood
first. If none of the siblings have the requested URL, the request goes to the parent.
If the parent does not have the URL, it will retrieve it from a remote server.

Each neighbor in an ICP neighborhood must have at least one ICP server running.
If a neighbor does not have an ICP server running, it cannot answer the ICP
requests from their neighbors. Enabling ICP on your proxy server starts the ICP
server if it is not already running.

Routing Through ICP Neighborhoods

Chapter 10 Caching 121

Figure 10-5 An ICP exchange

To set up ICP, follow these steps:

1. Add parent(s) to your ICP neighborhood. (This step is only necessary if you
want parents in your ICP neighborhood.) For more information on adding
parents to an ICP neighborhood, see “Adding Parents to an ICP
Neighborhood” on page 122.

2. Add sibling(s) to your ICP neighborhood. For more information on adding
siblings to your ICP neighborhood, see “Adding Siblings to an ICP
Neighborhood” on page 124.

Firewall

Proxy E

Engineering domain Marketing domain

Proxy B

Proxy E sends an ICP query for a URL to the proxies in the Marketing domain and

the Engineering domain. The proxies in the Engineering and Marketing domains
then send ICP replies back to Proxy E to indicate whether or not they contain the
requested URL in their caches.

Sales domain

Proxy A

Routing Through ICP Neighborhoods

122 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

3. Configure each neighbor in the ICP neighborhood. For more information on
configuring ICP neighbors, see “Configuring Individual ICP Neighbors” on
page 125.

4. Enable ICP. For information on enabling ICP, see “Enabling ICP” on page 127.

5. If your proxy has siblings or parents in its ICP neighborhood, enable routing
through an ICP neighborhood. For more information on enabling routing
through an ICP neighborhood, see “Enabling Routing Through an ICP
Neighborhood” on page 127.

Adding Parents to an ICP Neighborhood
To add parent proxies to an ICP neighborhood,

1. From the Server Manager, choose Caching|ICP.

The ICP Configuration form appears.

2. In the Parent List section of the form, click the Add Parent button.

The ICP Parent form appears.

3. In the Machine Address field, enter the IP address or host name of the parent
proxy you are adding to the ICP neighborhood.

4. In the ICP Port field, enter the port number on which the parent proxy will
listen for ICP messages.

5. In the Multicast Address field, you can enter the multicast address to which the
parent listens. A multicast address is an IP address to which multiple servers
can listen. Using a multicast address allows a proxy to send one query to the
network that all neighbors who are listening to that multicast address can see;
therefore, eliminating the need to send a query to each neighbor separately.
Using multicast is optional.

6. In the TTL field, enter the number of subnets that the multicast message will be
forwarded to. If the TTL is set to 1, the multicast message will only be
forwarded to the local subnet. If the TTL is 2, the message will go to all subnets
that are one level away, and so on.

NOTE Neighbors in different polling rounds should not listen to the
same multicast address.

Routing Through ICP Neighborhoods

Chapter 10 Caching 123

7. In the Proxy Port field, enter the port for the proxy server on the parent.

8. From the Polling Round pull-down, choose the polling round that you want
the parent to be in. The default polling round is 1. For more information on
polling rounds see page 119.

9. Click OK.

Removing Parents from an ICP Neighborhood
To remove parent proxies from an ICP neighborhood,

1. From the Server Manager, choose Caching|ICP. The ICP Configuration form
appears.

2. Click the radio button next to the parent you want to remove.

3. Click the Remove button.

Editing Configurations for Parents in an ICP
neighborhood
To edit the machine address, port number, multicast address, time to live value,
proxy port number, or polling round value for a parent proxy,

1. From the Server Manager, choose Caching|ICP.

The ICP Configuration form appears.

2. Click the radio button next to the parent you want to edit.

3. Click the Edit button.

4. Modify the appropriate information.

5. Click OK.

NOTE Multicast makes it possible for two unrelated neighbors to send
ICP messages to eachother. Therefore, if you want to prevent
unrelated neighbors from receiving ICP messages from the
proxies in your ICP neighborhood, you should set a low TTL
value in the TTL field.

Routing Through ICP Neighborhoods

124 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Adding Siblings to an ICP Neighborhood
To add sibling proxies to an ICP neighborhood,

1. From the Server Manager, choose Caching|ICP.

The ICP Configuration form appears.

2. In the Sibling List section of the form, click the Add Sibling button.

The ICP Sibling form appears.

3. In the Machine Address field, enter the IP address or host name of the sibling
proxy you are adding to the ICP neighborhood.

4. In the Port field, enter the port number on which the sibling proxy will listen
for ICP messages.

5. In the Multicast Address field, enter the multicast address to which the sibling
listens. A multicast address is an IP address to which multiple servers can
listen. Using a multicast address allows a proxy to send one query to the
network that all neighbors who are listening to that multicast address can see;
therefore, eliminating the need to send a query to each neighbor separately.

6. In the TTL field, enter the number of subnets that the multicast message will be
forwarded to. If the TTL is set to 1, the multicast message will only be
forwarded to the local subnet. If the TTL is 2, the message will go to all subnets
that are one level away.

7. In the Proxy Port field, enter the port for the proxy server on the sibling.

8. From the Polling Round pull-down, choose the polling round that you want
the sibling to be in. The default polling round is 1.

For more information on polling rounds see page 119.

NOTE Neighbors in different polling rounds should not listen to the
same multicast address.

NOTE Multicast makes it possible for two unrelated neighbors to send
ICP messages to eachother. Therefore, if you want to prevent
unrelated neighbors from receiving ICP messages from the
proxies in your ICP neighborhood, you should set a low TTL
value in the TTL field.

Routing Through ICP Neighborhoods

Chapter 10 Caching 125

9. Click OK.

Removing Siblings from an ICP Neighborhood
To remove sibling proxies from an ICP neighborhood,

1. From the Server Manager, choose Caching|ICP.

The ICP Configuration form appears.

2. Click the radio button next to the sibling you want to remove.

3. Click the Remove button.

Editing Configurations for Siblings in an ICP
Neighborhood
To edit the machine address, port number, multicast address, time to live value,
proxy port number, or polling round value for a sibling proxy,

1. From the Server Manager, choose Caching|ICP.

The ICP Configuration form appears.

2. Click the radio button next to the sibling you want to edit.

3. Click the Edit button.

4. Modify the appropriate information.

5. Click OK.

Configuring Individual ICP Neighbors
You will need to configure each neighbor, or local proxy, in your ICP
neighborhood. To configure the local proxy server in your ICP neighborhood,

1. From the Server Manager, choose Caching|ICP.

The ICP Configuration form appears.

2. In the Binding Address field, enter the IP address to which the neighbor server
will bind.

Routing Through ICP Neighborhoods

126 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

3. In the Port field, enter the port number to which the neighbor server will listen
for ICP.

4. In the Multicast Address field, enter the multicast address to which the
neighbor listens. A multicast address is an IP address to which multiple servers
can listen. Using a multicast address allows a proxy to send one query to the
network that all neighbors who are listening to that multicast address can see;
therefore, eliminating the need to send a query to each neighbor separately.

If both a multicast address and bind address are specified for the neighbor, the
neighbor uses the bind address to send replies and uses multicast to listen. If
neither a bind address or a multicast address is specified, the operating system
will decide which address to use to send the data.

5. In the Default Route field, enter the name or IP address of the proxy to which
the neighbor should route a request when none of the neighboring proxies
respond with a “hit”. If you enter the word “origin” into this field, or if you
leave it blank, the default route will be to the origin server.

6. In the second Port field, enter the port number of the default route machine
that you entered into the Default Route field.

7. From the “On no hits, route through:” pull-down, choose the neighbor’s
behavior when none of the siblings in the ICP neighborhood have the
requested URL in their caches. You can choose:

❍ first responding parent - the neighbor will retrieve the requested URL
through the parent that first responds with a “miss”

❍ default - the neighbor will retrieve the requested URL through the machine
specified in the Default Route field.

8. In the Server Count field, enter the number of threads that will service ICP
requests.

9. In the Timeout field, enter the maximum amount of time the neighbor will wait
for an ICP response in each round.

10. Click OK.

NOTE If you choose “first responding parent” from the No Hit
Behavior pull-down discussed in Step 7, the route you enter in
the Default Route field will have no effect. The proxy only uses
this route if you choose the default no hit behavior.

Routing Through ICP Neighborhoods

Chapter 10 Caching 127

Enabling ICP
To enable ICP,

1. From the Server Manager, choose Server Preferences|System Specifics. The
System Specifics form appears.

2. Select the Yes radio button for ICP.

3. Click OK.

Enabling Routing Through an ICP Neighborhood
To enable routing through an ICP neighborhood,

1. From the Server Manager, choose Routing|Routing. The Routing
Configuration form appears.

2. Select the resource you want to route by either choosing it from the Editing
pull-down menu or clicking the Regular Expression button, entering a regular
expression, and clicking OK.

3. Select the radio button next to the text “Route through”.

4. Select the checkbox next to ICP.

5. If you want the client to retrieve a document directly from the ICP neighbor
that has the document instead of going through another neighbor to get it,
select the checkbox next to the text “redirect”.

Warning
Redirect is not currently supported by any clients, so you should not use the
feature at this time.

6. Click OK.

NOTE You only need to enable routing through an ICP neighborhood
if your proxy has other siblings or parents in the ICP
neighborhood. If your proxy is a parent to another proxy and
does not have any siblings or parents of its own, then you only
need to enable ICP for that proxy. You do not need to enable
routing through an ICP neighborhood.

Routing Through ICP Neighborhoods

128 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

129

Chapter 11

Filtering Content Through the Proxy

This chapter describes how to filter URLs so that your proxy server either doesn’t
allow access to the URL or modifies the HTML and JavaScript content it returns to
the client. This chapter also describes how you can restrict access through the
proxy based on the web browser (user agent) that the client is using.

The proxy server lets you use a URL filter file to determine which URLs the server
supports. For example, instead of manually typing in wildcard patterns of URLs to
support, you can create or purchase one text file that contains URLs you want to
restrict. This feature lets you create one file of URLs that you can use on many
different proxy servers.

You can also filter URLs based on their MIME type. For example, you might allow
the proxy to cache and send HTML and GIF files but not allow it to get binary or
executable files because of the risk of computer viruses.

Filtering URLs
You can use a file of URLs to configure what content the proxy server retrieves.
You can set up a list of URLs the proxy always supports and a list of URLs the
proxy never supports.

For example, if you’re an Internet service provider who runs a proxy server with
content appropriate for children, you might set up a list of URLs that are approved
for viewing by children. You can then have the proxy server retrieve only the
approved URLs; if a client tries to go to an unsupported URL, either you can have
the proxy return the default “Forbidden” message or you can create a custom
message explaining why the client could not access that URL.

To restrict access based on URLs, you need to create a file of URLs to allow or
restrict. You can do this through the Server Manager. Once you have the file, you
can set up the restrictions. These processes are discussed in the following sections.

Filtering URLs

130 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Creating a Filter File of URLs
A filter file is a file that contains a list of URLs. The filter files the proxy server uses
are plain text files with lines of URLs in the following pattern:

protocol://host:port/path/filename

You can use regular expressions in each of the three sections: protocol, host:port,
and path/filename. For example, if you want to create a URL pattern for all
protocols going to the iplanet.com domain, you’d have the following line in your
file:

.*://.*\.iplanet\.com/.*

This line works only if you don’t specify a port number. For more information on
regular expressions, see “Understanding Regular Expressions” on page 32.

You can use the Server Manager forms to create a file. If you want to create your
own file without using the Server Manager, you should use the Server Manager
forms to create an empty file, and then add your text in that file or replace the file
with one containing the regular expressions.

To create a file using the Server Manager,

1. In the Server Manager, choose Filters|URL Filters. In the URL Filter Access
Restriction form that appears, choose New Filter from the drop-down list next
to the Create/Edit URL Filter button.

2. Type a name for the filter file in the text box to the right of the drop-down list
and then click the Create/Edit URL Filter button.

The Filter Editor form appears. Use the Filter Content scrollable text box to
enter URLs and regular expressions of URLs. The Reset button clears all the
text in this field. For more information on regular expressions, see
“Understanding Regular Expressions” on page 32.

3. When finished, click OK and confirm your changes.

The proxy server creates the file and returns you to the URL Filter Access
Restriction form. The filter file is created in the proxy-id\conf-bk.

Setting Default Access for a Filter File
Once you have a filter file that contains the URLs you want to use, you can set the
default access for those URLs.

Restricting Access to Specific Web Browsers

Chapter 11 Filtering Content Through the Proxy 131

To set default access for a filter file,

1. In the Server Manager, choose Filters|URL Filters.

2. Choose the template you want to use with the filters.

Typically, you’ll want to create filter files for the entire proxy server, but you
might want one set of filter files for HTTP and another for FTP.

3. Use the URL filter to allow list to choose a filter file that contains the URLs you
want the proxy server to support.

4. Use the URL filter to deny list to choose a filter file that contains the URLs to
which you want the proxy server to deny access.

5. Choose the text you want the proxy server to return to clients who request a
denied URL. You can choose one of two options:

❍ You can send the default “Forbidden” message that the proxy generates.

❍ You can send a text or HTML file with customized text. Type the absolute
path to this file using the text box on the form.

Restricting Access to Specific Web Browsers
You can restrict access to the proxy server based on the type and version of the
client’s web browser. For example, you can specify that all proxy server users must
use Netscape Navigator 3.0. Restriction occurs based on the user-agent header that
all web browsers send to servers when making requests.

To restrict access to the proxy based on the client’s web browser,

1. In the Server Manager, choose Filter|User-Agent.

2. Check the allow only User-agents matching radio button.

3. Type a regular expression that matches the user-agent string for the browsers
you want the proxy server to support.

If you want to specify more than one client, enclose the regular expression in
parentheses and use the | character to separate the multiple entries. For more
information on regular expressions, see “Understanding Regular Expressions”
on page 32.

Request Blocking

132 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Request Blocking
You may want to block file uploads and other requests based on the upload content
type.

To block requests based on MIME type:

1. From the Server Manager, choose Filters|Request Blocking. The Request
Blocking form appears.

2. Click the radio button for the type of request blocking you want. The options
are:

❍ disabled - disables request blocking

❍ multipart MIME (file upload) - blocks all file uploads

❍ MIME types matching regular expression - blocks requests for MIME types
that match the regular expression you enter. For more information on
creating regular expressions, see “Understanding Regular Expressions” on
page 32.

3. Choose whether you want to block requests for all clients or for user-agents
that match a regular expression you enter.

4. Click the radio button for the methods for which you want to block requests.
The options are:

❍ any method with request body - blocks all requests with a request body,
regardless of the method

❍ only for:

POST - blocks file upload requests using the POST method

PUT - blocks file upload requests using the PUT method

❍ methods matching - blocks all file upload requests using the method you
enter

5. Click OK.

Suppressing Outgoing Headers

Chapter 11 Filtering Content Through the Proxy 133

Suppressing Outgoing Headers
You can configure the proxy server to remove outgoing headers from the request
(usually for security reasons). For example, you might want to prevent the from
header from going out because it reveals the user’s email address (although
Netscape Navigator does not send the from header unless specifically configured
to do so). Or, you might want to filter out the user-agent header so external servers
can’t determine what web browsers your organization uses. You may also want to
remove logging or client-related headers that are to be used only in your intranet
before a request is forwarded to the Internet.

This feature doesn’t affect headers that are specially handled or generated by the
proxy itself or that are necessary to make the protocol work properly (such as
If-Modified-Since and Forwarded).

Although it’s not possible to stop the forwarded header from originating from a
proxy, this isn’t a security problem. The remote server can detect the connecting
proxy host from the connection. In a proxy chain, a forwarded header coming from
an inner proxy can be suppressed by an outer proxy. Setting your servers up this
way is recommended when you don’t want to have the inner proxy or client host
name revealed to the remote server.

To suppress outgoing headers,

1. In the Server Manager, choose Filters|Suppress Outgoing Headers.

2. In the form that appears, type a regular expression that matches the headers
you want to suppress. For example, to suppress the from and user-agent
headers, type (from|user-agent). The headers you type are not case-sensitive.
For more information on regular expressions, see “Understanding Regular
Expressions” on page 32.

Filtering by MIME Type
You can configure the proxy server to block certain files that match a MIME type.
For example, you could set up your proxy server to block any executable or binary
files so that any clients using your proxy server can’t download a possible
computer virus.

If you want the proxy server to support a new MIME type, in the Server Manager,
choose System Settings|MIME Types and add the type. See “Creating MIME
Types” on page 42 for more information.

Filtering out HTML Tags

134 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

You can combine filtering MIME types with templates, so that only certain MIME
types are blocked for specific URLs. For example, you could block executables
coming from any computer in the .edu domain.

To filter by MIME type,

1. In the Server Manager, choose Filters|MIME Filters.

2. Choose the template you want to use for filtering MIME types, or make sure
you’re editing the entire server.

3. In the Current filter text box, you can type a regular expression that matches
the MIME types you want to block.

For example, to filter out all applications, you could type (application/.*)
for the regular expression. This is faster than checking each MIME type for
every application type (as described in the following step). The regular
expression is not case-sensitive. For more information on regular expressions,
see “Understanding Regular Expressions” on page 32.

4. Check the MIME types you want to filter. When a client attempts to access a
file that is blocked, the proxy server returns a “forbidden” message.

5. Click OK to submit the form. Be sure to save and apply your changes.

Filtering out HTML Tags
The proxy server lets you specify HTML tags you want to filter out before passing
the file to the client. This lets you filter out objects such as Java applets and
JavaScript embedded in the HTML file. To filter HTML tags, you specify the
beginning and ending HTML tags. Then the proxy substitutes blanks for all text
and objects in those tags before sending the file to the client.

To filter out HTML tags,

1. In the Server Manager, choose Filters|HTML Tag Filters.

2. In the form that appears, choose the template you want to modify. You might
choose HTTP, or you might choose a template that specifies only certain URLs
(such as those from hosts in the .edu domain).

NOTE The proxy stores the original (unedited) file in the cache, if the proxy
is configured to cache that resource.

Filtering out HTML Tags

Chapter 11 Filtering Content Through the Proxy 135

3. Check the filter box for any of the default HTML tags you want to filter. These
are the default tags:

❍ APPLET usually surrounds Java applets.

❍ SCRIPT indicates the start of JavaScript code.

❍ IMG specifies an inline image file.

4. You can enter any HTML tags you want to filter. Type the beginning and
ending HTML tags. For example, to filter out forms, you could type FORM in
the Start Tag box (the HTML tags are not case-sensitive) and /FORM in the End
Tag box. If the tag you want to filter does not have an end tag, such as OBJECT
and IMG, you can leave the End Tag box empty.

5. Click OK to submit the form. You need to save and apply your changes and
restart the proxy before the filtering will begin.

Filtering out HTML Tags

136 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

137

Chapter 12

Using the Client
Autoconfiguration File

If you have multiple proxy servers that support many clients, you can use a client
autoconfiguration file to configure all of your Netscape Navigator clients. The
autoconfiguration file contains a JavaScript function that determines which proxy,
if any, Navigator uses when accessing various URLs.

When Netscape Navigator starts, it loads the autoconfiguration file. Each time the
user clicks a link or types in a URL, the Navigator uses the configuration file to
determine if it should use a proxy and, if so, which proxy it should use. This
feature lets you provide an easy way to configure all copies of Netscape Navigator
in your organization. There are several ways you can get the autoconfiguration file
to your clients.

• You can use the proxy server as a web server that returns the
autoconfiguration file. You point Netscape Navigator to the proxy’s URL.
Having the proxy act as a web server lets you keep the autoconfiguration file in
one place so that when you need to make updates, you need to change only
one file.

• You can store the file on a web server, an FTP server, or any network directory
to which Navigator has access. You configure Navigator to find the file by
giving it the URL to the file, so any general URL will do. If you need to do
complex calculations (for example, if you have large proxy chains in your
organization), you might write a web server CGI program that outputs a
different file depending on who accesses the file.

• You can store the autoconfiguration file locally with each copy of Netscape
Navigator; however, if you need to update the file, you’ll have to distribute
copies of the file to each client.

Understanding Autoconfiguration Files

138 iPlanet Web Proxy Server Administrator’s Guide • August 2003

You can create the autoconfiguration file two ways: you can use a form in the
proxy Server Manager, or you can create the file manually. Directions for creating
the files appear later in this chapter.

Understanding Autoconfiguration Files
Unlike the other files described in this book, the autoconfiguration file is primarily
a feature of Netscape Navigator 2.0 and later versions. However, this feature is
documented in this book because it’s likely that you, as the person administering
the proxy server, will also create and distribute the client autoconfiguration files.

What Does the Autoconfiguration File Do?
The autoconfiguration file is written in JavaScript, a compact, object-based
scripting language for developing client and server Internet applications. Netscape
Navigator interprets the JavaScript file.

When Netscape Navigator is first loaded, it downloads the autoconfiguration file.
The file can be kept anywhere that Navigator can get to it by using a URL. For
example, the file can be kept on a web server. The file could even be kept on a
network file system, provided the Navigator can get to it using a file:// URL.

The proxy configuration file is written in JavaScript. The JavaScript file defines a
single function (called FindProxyForURL) that determines which proxy server, if
any, Navigator should use for each URL. Navigator sends the JavaScript function
two parameters: the host name of the computer from which Navigator is running
and the URL it’s trying to obtain. The JavaScript function returns a value to
Navigator that tells it how to proceed.

The autoconfiguration file makes it possible to specify different proxies (or no
proxy at all) for various types of URLs, various servers, or even various times of the
day. In other words, you can have multiple specialized proxies so that, for
example, one serves the .com domain, another the .edu domain, and yet another
serves everything else. This lets you divide the load and get more efficient use of
your proxies’ disks, because there is only a single copy of any file in the cache
(instead of multiple proxies all storing the same documents).

Autoconfiguration files also support proxy failover, so if a proxy server is
unavailable, Navigator will transparently switch to another proxy server.

Understanding Autoconfiguration Files

Chapter 12 Using the Client Autoconfiguration File 139

Accessing the Proxy as a Web Server
You can store one or more autoconfiguration files on the proxy server and have the
proxy server act as a web server whose only documents are autoconfiguration files.
This lets you, the proxy administrator, maintain the proxy autoconfiguration files
needed by the clients in your organization. It also lets you keep the files in a central
location, so if you have to update the files, you do it once and all Netscape
Navigator clients automatically get the updates.

You keep the proxy autoconfiguration files in the
server root/proxy-id/pac/ directory (for example,
C:\iplanet\Server\proxy-proxy1\pac for Windows NT). In Netscape
Navigator, you enter the URL to the proxy autoconfiguration file by choosing
Options|Network Preferences and then typing the URL to the file in the Proxies
tab. The URL for the proxy has this format:

http://proxy.domain:port/URI

For example, the URL could be http://proxy.iplanet.com. You don’t need to
specify a URI (part of the URL following the host:port combination); however, if
you do use a URI, you can then use a template to control access to the various
autoconfiguration files. For example, if you create a URI called /test that contains
an autoconfiguration file called /proxy.pac, you can create a template with the
resource pattern http://proxy.mysite.com:8080/test/.*. You can then use that
template to set up access control specifically to that directory.

You can create multiple autoconfiguration files and have them accessed through
different URLs. Table 12-1 lists some example URIs and the URLs the clients would
use to access them.

Table 12-1 Sample URIs and corresponding URLs

Using the Server Manager Forms to Create an Autoconfiguration File

140 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Using the Server Manager Forms to Create an
Autoconfiguration File

To create an autoconfiguration file using the Server Manager forms,

1. In the Server Manager choose Routing|Client Autoconfiguration.

The form that appears lists any autoconfiguration files you have on your
proxy’s computer. You can click the autoconfiguration file to edit it. The
remaining steps tell you how to create a new file.

2. Type an optional URI (the path portion of a URL) that clients will use when
getting the autoconfiguration file from the proxy.

For example, type / to let clients access the file as the proxy’s main document
(similar to an index.html file for a web server); clients would then use only
the domain name when accessing the proxy for the autoconfiguration file. You
can use multiple URIs and create separate autoconfiguration files for each URI.

3. Type a name for the autoconfiguration file using the .pac extension.

If you have one file, you might call it simply proxy.pac (pac is short for proxy
autoconfiguration). All autoconfiguration files are ASCII text files with a single
JavaScript function (see“Creating the Autoconfiguration File Manually” on
page 142 for more information on the syntax of the files).

4. Click OK. Another form appears.

Use this form to create an autoconfiguration file. The items on the form are
followed in order by the client. These are the items on the form:

• Never go direct to remote server tells Navigator to always use your proxy.

• You can specify a second proxy server to use in case your proxy server isn’t
running.

• Go direct to remote server when lets you bypass the proxy server on certain
occasions. Navigator determines those occasions in the order the options are
listed on the form:

❍ Connecting to non-fully qualified host names tells Navigator to go to a
server directly when the user specifies only the computer name. For
example, if there’s an internal web server called winternal.mysite.com,
the user might type only http://winternal instead of the fully qualified
domain name. In this case, Navigator goes directly to the web server
instead of to the proxy.

Using the Server Manager Forms to Create an Autoconfiguration File

Chapter 12 Using the Client Autoconfiguration File 141

❍ Connecting to a host in domain lets you specify up to three domain names
that Navigator can access directly. When specifying the domains, begin
with the dot character. For example, you could type .iplanet.com.

❍ Connecting to a resolvable host makes Navigator go directly to the server
when the client can resolve the host. This option is typically used when
DNS is set to resolve only local (internal) hosts. The clients would use a
proxy server when connecting to servers outside of the local network.

Warning
The above option causes the client to consult DNS for every request. It therefore,
negatively impacts the performance witnessed by the client. Because of the
performance impact, you should avoid using this option.

❍ Connecting to a host in subnet makes Navigator go directly to the server
when the client accesses a server in a particular subnet. This option is
useful when an organization has many subnets in a geographical area. For
example, some companies might have one domain name that applies to
subnets around the world, but each subnet is specific to a particular region.

Warning
The above option causes the client to consult DNS for every request. It therefore,
negatively impacts the performance witnessed by the client. Because of the
performance impact, you should avoid using this option.

❍ Except when connecting to hosts lets you specify exceptions to the rule of
going directly to a server. For example, if you type.iplanet.com as a
domain to which to go directly, you could make an exception for going to
home.iplanet.com. This tells Navigator to use your proxy when going to
home.iplanet.com but go directly to any other server in the iplanet.com
domain.

❍ Secondary failover proxy specifies a second proxy to use if your proxy
server isn’t running.

❍ Failover direct tells Navigator to go directly to the servers if your proxy
server isn’t running. If you specify a secondary failover proxy, Navigator
tries the second proxy server before going directly to the server.

5. Click OK to create the autoconfiguration file.

The file is stored in the directory server-root\proxy-id\pac. You’ll get a
confirmation message saying the file was created correctly. Repeat the
preceding steps to create as many autoconfiguration files as you need.

Creating the Autoconfiguration File Manually

142 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Once you create your autoconfiguration file, make sure you either tell all the
people using your proxy server to point to the correct autoconfiguration file or
configure the copies of Navigator yourself.

Creating the Autoconfiguration File Manually
This section describes how you can manually create autoconfiguration files.

See the Sun documentation site (http://docs.sun.com) for information on JavaScript.
The proxy autoconfiguration file is written using client-side JavaScript. Each file
contains a single JavaScript function called FindProxyForURL that determines
which proxy server, if any, Navigator should use for each URL. Navigator sends
the JavaScript function two parameters: the host name of the destination origin
server and the URL it’s trying to obtain. The JavaScript function returns a value to
Navigator that tells it how to proceed. The following section describes the function
syntax and the possible return values.

The FindProxyForURL Function
For more information on writing JavaScript, see the JavaScript Guide that comes
with most versions of Netscape Navigator. The syntax of the FindProxyFor URL
function is:

function FindProxyForURL(url, host)
{

...
}

For every URL Netscape Navigator accesses, it sends the url and host parameters
and calls the function in the following way:

ret = FindProxyForURL(url, host);

Parameters
url is the full URL being accessed in Netscape Navigator.

host is the host name extracted from the URL that is being accessed. This is only for
convenience; it is the same string as between :// and the first : or / after that. The
port number is not included in this parameter. It can be extracted from the URL
when necessary.

ret (the return value) is a string describing the configuration.

Creating the Autoconfiguration File Manually

Chapter 12 Using the Client Autoconfiguration File 143

The Function Return Values
The autoconfiguration file contains the function FindProxyForURL. As
parameters, this function uses the client host name and the URL it’s accessing. The
function returns a single string that tells Navigator how to proceed. If the string is
null, no proxies should be used. The string can contain any number of the building
blocks shown in Table 12-2, separated by semicolons:

If Netscape Navigator encounters an unavailable proxy server, Navigator will
automatically retry the previously unresponsive proxy after 30 minutes, then after
one hour, and so on, at 30-minute intervals. This means that if you temporarily
shut down a proxy server, your clients will resume using the proxy no later than 30
minutes after it was restarted.

If all of the proxies are down and the DIRECT return value isn’t specified, Netscape
Navigator will ask the user if it should temporarily ignore proxies and attempt
direct connections instead. Navigator will ask if proxies should be retried after 20
minutes, then again in another 20 minutes, and so on at20-minute intervals.

In the following example, the return value tells Netscape Navigator to use the
proxy called w3proxy.iplanet.com on port 8080, but if that proxy is unavailable,
Navigator uses the proxy called mozilla.iplanet.com on port 8080:

PROXY w3proxy.iplanet.com:8080; PROXY mozilla.iplanet.com:8080

In the next example, the primary proxy is w3proxy.iplanet.com:8080; if that proxy
is unavailable, Navigator uses mozilla.iplanet.com:8080. If both proxies are
unavailable, then Navigator goes directly to the server (and after 20 minutes,
Navigator asks the user if it should retry the first proxy):

Table 12-2 FindProxyForURL return values

Return values Resulting action of Netscape Navigator

DIRECT Make connections directly to the server without going
through any proxies.

PROXY host:port Use the specified proxy and port number. If multiple values
are separated by semicolons, the first proxy is used. If that
proxy fails, then the next proxy is used, and so on.

SOCKS host:port Use the specified SOCKS server. If there are multiple values
separated by semicolons, the first proxy is used. If that
proxy fails, then the next proxy is used, and so on.

Creating the Autoconfiguration File Manually

144 iPlanet Web Proxy Server Administrator’s Guide • August 2003

PROXY w3proxy.iplanet.com:8080; PROXY mozilla.iplanet.com:8080;
DIRECT

JavaScript Functions and Environment
JavaScript has several predefined functions and environmental conditions that are
useful with proxying. Each of these functions checks whether or not a certain
condition is met and then returns a value of true or false. The related utility
functions are an exception because they return a DNS host name or IP address. You
can use these functions in the main FindProxyForURL function to determine what
return value to send to Netscape Navigator. See the examples later in this chapter
for ideas on using these functions.

Each of the functions or environmental conditions is described in this section. The
functions and environmental conditions that apply to Netscape Navigator
integration with the proxy are:

host name-based conditions:

❍ dnsDomainIs()

❍ isInNet()

❍ isPlainhost name()

❍ isResolvable()

❍ localHostOrDomainIs()

Related utility functions:

❍ dnsDomainLevels()

❍ dnsResolve()

❍ myIpAddress()

URL/host name-based condition:

❍ shExpMatch()

Time-based conditions:

❍ dateRange()

❍ timeRange()

❍ weekdayRange()

Creating the Autoconfiguration File Manually

Chapter 12 Using the Client Autoconfiguration File 145

host name-based functions
The host name-based functions let you use the host name or IP address to
determine which proxy, if any, to use.

dnsDomainIs(host, domain)
The dnsDomainIs() function detects whether or not the URL host name belongs to
a given DNS domain. This function is useful when you are configuring Netscape
Navigator not to use proxies for the local domain as illustrated in examples 1 and 2
on page 153.

This function is also useful when you are using multiple proxies for load balancing
in situations where the proxy that receives the request is selected from a group of
proxies based on which DNS domain the URL belongs to. For example, if you are
load balancing by directing URLs containing .edu to one proxy and those
containing .com to another proxy, you can check the URL host name using
dnsDomainIs().

Parameters
host is the host name from the URL.

domain is the domain name to test the host name against.

Returns
true or false

Examples
The following statement would be true:
dnsDomainIs("www.iplanet.com", ".iplanet.com")

The following statements would be false:
dnsDomainIs("www", ".iplanet.com")
dnsDomainIs("www.mcom.com", ".iplanet.com")

isInNet(host, pattern, mask)
The isInNet() function enables you to resolve a URL host name to an IP address
and test if it belongs to the subnet specified by the mask. This is the same type of IP
address pattern matching that SOCKS uses. See example 4 on page 154.

Parameters
host is a DNS host name or IP address. If a host name is passed, this function will
resolve it into an IP address.

pattern is an IP address pattern in the dot-separated format

Creating the Autoconfiguration File Manually

146 iPlanet Web Proxy Server Administrator’s Guide • August 2003

mask is the IP address pattern mask that determines which parts of the IP address
should be matched against. A value of 0 means ignore; 255 means match. This
function is true if the IP address of the host matches the specified IP address
pattern.

Returns
true or false

Examples
This statement is true only if the IP address of the host matches exactly
198.95.249.79:
isInNet(host, "198.95.249.79", "255.255.255.255")

This statement is true only if the IP address of the host matches 198.95.*.*:
isInNet(host, "198.95.0.0", "255.255.0.0")

isPlainhost name(host)
The isPlainhost name() function detects whether or not the host name in the
requested URL is a plain host name or a fully qualified domain name. This function
is useful if you want Netscape Navigator to connect directly to local servers as
illustrated in examples 1 and 2 on page 153.

Parameters
host is the host name from the URL (excluding port number) only if the host name
has no domain name (no dotted segments).

Returns
true if host is local; false if host is remote

Example
isPlainhost name("host")

If host is something like www, then it returns true; if host is something like
www.iplanet.com, it returns false.

isResolvable(host)
If the DNS inside the firewall recognizes only internal hosts, you can use the
isResolvable() function to test whether or not a host name is internal or external to
the network. Using this function, you can configure Netscape Navigator to use
direct connections to internal servers and to use the proxy only for external servers.
This is useful at sites where the internal hosts inside the firewall are able to resolve
the DNS domain name of other internal hosts, but all external hosts are
unresolvable. The isResolvable() function consults DNS, attempting to resolve the
host name into an IP address. See example 3 on page 154.

Creating the Autoconfiguration File Manually

Chapter 12 Using the Client Autoconfiguration File 147

Parameters
host is the host name from the URL. This tries to resolve the host name and returns
true if it succeeds.

Returns
true if it can resolve the host name, false if it cannot

Example
isResolvable("host")

If host is something like www and can be resolved through DNS, then this function
returns true.

localHostOrDomainIs(host, hostdom)
The localHostOrDomainIs() function specifies local hosts that might be accessed
by either the fully qualified domain name or the plain host name. See example 2 on
page 153.

The localHostOrDomainIs() function returns true if the host name matches the
specified host name exactly or if there is no domain name part in the host name
that the unqualified host name matches.

Parameters
host is the host name from the URL.

hostdom is the fully qualified host name to match.

Returns
true or false

Examples
The following statement is true (exact match):

localHostOrDomainIs("www.iplanet.com", "www.iplanet.com")

The following statement is true (host name match, domain name not specified):

localHostOrDomainIs("www", "www.iplanet.com")

The following statement is false (domain name mismatch):

localHostOrDomainIs("www.mcom.com", "www.iplanet.com")

The following statement is false (host name mismatch):

localHostOrDomainIs("home.iplanet.com", "www.iplanet.com")

Creating the Autoconfiguration File Manually

148 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Related Utility Functions
The related utility functions enable you to find out domain levels, the host on
which Netscape Navigator is running, or the IP address of a host.

dnsDomainLevels(host)
The dnsDomainLevels() function finds the number of DNS levels (number of dots)
in the URL host name.

Parameters
host is the host name from the URL.

Returns
number (integer) of DNS domain levels.

Examples
dnsDomainLevels("www")
returns 0.

dnsDomainLevels("www.iplanet.com")
returns 2.

dnsResolve(host)
The dnsResolve() function resolves the IP address of the given host (typically from
the URL). This is useful if the JavaScript function has to do more advanced pattern
matching than can be done with the existing functions.

Parameters
host is the host name to resolve. Resolves the given DNS host name into an IP
address, and returns it in the dot-separated format as a string.

Returns
dotted quad IP address as a string value

Example
The following example would return the string 198.95.249.79.
dnsResolve("home.iplanet.com")

myIpAddress()
The myIpAddress() function is useful when the JavaScript function has to behave
differently depending on what host on which Netscape Navigator is running. This
function returns the IP address of the computer that is running Navigator.

Creating the Autoconfiguration File Manually

Chapter 12 Using the Client Autoconfiguration File 149

Returns
dotted quad IP address as a string value

Example
The following example returns the string 198.95.249.79 if you are running
Navigator on the computer home.iplanet.com.

myIpAddress()

URL/host-name-based Condition
You can match host names or URLs for load balancing and routing.

shExpMatch(str, shexp)
The shExpMatch() function matches either the URL host names or the URLs
themselves. The main use of this function is for load balancing and intelligent
routing of URLs to different proxy servers.

Parameters
str is any string to compare (for example, the URL or the host name).

shexp is a shell expression against which to compare.

This expression is true if the string matches the specified shell expression. See
example 6 on page 156.

Returns
true or false

Examples
The first example returns true; the second returns false.

shExpMatch("http://home.iplanet.com/people/index.html",
".*/people/.*")

shExpMatch("http://home.iplanet.com/people/yourpage/index.html",
".*/mypage/.*")

Time-based Conditions
You can make the FindProxyForURL function behave differently depending on the
date, time, or day of the week.

Creating the Autoconfiguration File Manually

150 iPlanet Web Proxy Server Administrator’s Guide • August 2003

dateRange (day, month, year...)
The dateRange() function detects a particular date or a range of dates, such as
April 19th, 1996 through May 3rd, 1996. This is useful if you want the
FindProxyForURL function to act differently depending on what day it is, such as
if maintenance down time is regularly scheduled for one of the proxies.

The date range can be specified several ways:

dateRange(day)
dateRange(day1, day2)
dateRange(mon)
dateRange(month1, month2)
dateRange(year)
dateRange(year1, year2)
dateRange(day1, month1, day2, month2)
dateRange(month1, year1, month2, year2)
dateRange(day1, month1, year1, day2, month2, year2)
dateRange(day1, month1, year1, day2, month2, year2, gmt)

Parameters
day is an integer between 1 and 31 for the day of month.

month is one of the month strings:
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

year is an integer for the full year number (for example, 1996).

gmt is either the string GMT, which makes time comparisons occur in Greenwich
Mean Time, or is left blank so that times are assumed to be in the local time zone.
The GMT parameter can be specified in any of the call profiles, always as the last
parameter. If only a single value is specified (from each category: day, month,
year), the function returns a true value only on days that match that specification. If
two values are specified, the result is true from the first time specified through the
second time specified.

Examples:
This statement is true on the first day of each month, local time zone.
dateRange(1)

This statement is true on the first day of each month, Greenwich Mean Time.
dateRange(1, "GMT")

This statement is true for the first half of each month.
dateRange(1, 15)

This statement is true on the 24th of December each year.
dateRange(24, "DEC")

Creating the Autoconfiguration File Manually

Chapter 12 Using the Client Autoconfiguration File 151

This statement is true on the 24th of December, 1995.
dateRange(24, "DEC", 1995)

This statement is true during the first quarter of the year.
dateRange("JAN", "MAR")

This statement is true from June 1st through August 15th, each year.
dateRange(1, "JUN", 15, "AUG")

This statement is true from June 1st, 1995, until August 15th, 1995.
dateRange(1, "JUN", 1995, 15, "AUG", 1995)

This statement is true from October 1995 through March 1996.
dateRange("OCT", 1995, "MAR", 1996)

This statement is true during the entire year of 1995.
dateRange(1995)

This statement is true from the beginning of 1995 until the end of 1997.
dateRange(1995, 1997)

timeRange (hour, minute, second...)
The timeRange function detects a particular time of day or a range of time, such as
9 p.m. through 12 a.m. This is useful if you want the FindProxyForURL function to
act differently depending on what time it is.

timeRange(hour)
timeRange(hour1, hour2)
timeRange(hour1, min1, hour2, min2)
timeRange(hour1, min1, sec1, hour2, min2, sec2)

Parameters
hour is the hour from 0 to 23. (0 is midnight, 23 is 11:00 p.m.)

min is the number of minutes from 0 to 59.

sec is the number of seconds from 0 to 59.

gmt is either the string GMT for GMT time zone, or not specified for the local time
zone. This parameter can be used with each of the parameter profiles and is always
the last parameter.

Returns
true or false

Examples
This statement is true from noon to 1:00 p.m.
timerange(12, 13)

Creating the Autoconfiguration File Manually

152 iPlanet Web Proxy Server Administrator’s Guide • August 2003

This statement is true noon to 12:59 p.m. GMT.
timerange(12, "GMT")

This statement is true from 9:00 a.m. to 5:00 p.m.
timerange(9, 17)

true between midnight and 30 seconds past midnight.
timerange(0, 0, 0, 0, 0, 30)

weekdayRange(wd1, wd2, gmt)
The weekdayRange() function detects a particular weekday or a range of
weekdays, such as Monday through Friday. This is useful if you want the
FindProxyForURL function to act differently depending on the day of the week.

Parameters
wd1 and wd2 are any one of these weekday strings:
SUN MON TUE WED THU FRI SAT

gmt is either GMT for Greenwich Mean Time, or is left out for local time.

Only the first parameter, wd1, is mandatory. Either wd2, gmt, or both can be left
out.

If only one parameter is present, the function returns a true value on the weekday
that the parameter represents. If the string GMT is specified as a second parameter,
times are taken to be in GMT otherwise the times are in your local time zone.

If both wd1 and wd2 are defined, the condition is true if the current weekday is
between those two weekdays. Bounds are inclusive. The order of parameters is
important; “MON”, “WED” is Monday through Wednesday, but “WED”, “MON”
is from Wednesday to the Monday of the next week.

Examples
The following is true Monday through Friday (local time zone).
weekdayRange("MON", "FRI")

The following is true Monday through Friday, in Greenwich Mean Time.
weekdayRange("MON", "FRI", "GMT")

The following is true on Saturdays, local time.
weekdayRange("SAT")

The following is true on Saturdays, in Greenwich Mean Time.
weekdayRange("SAT", "GMT")

The following is true Friday through Monday (the order is important)
weekdayRange("FRI", "MON")

Creating the Autoconfiguration File Manually

Chapter 12 Using the Client Autoconfiguration File 153

Example 1: Proxy All Servers Except Local Hosts
In this example, Netscape Navigator connects directly to all hosts that aren’t fully
qualified and the ones that are in the local domain. Everything else goes through
the proxy called w3proxy.iplanet.com:8080.

function FindProxyForURL(url, host)
{

if (isPlainhost name(host) ||
dnsDomainIs(host, ".iplanet.com") ||
dnsDomainIs(host, ".mcom.com"))
return "DIRECT";

else
return "PROXY w3proxy.iplanet.com:8080; DIRECT";

}

Example 2: Proxy Local Servers Outside the Firewall
This example is like the previous one, but it uses the proxy for local servers that are
outside the firewall. If there are hosts (such as the main web server) that belong to
the local domain but are outside the firewall and are only reachable through the
proxy server, those exceptions are handled using the localHostOrDomainIs()
function:

function FindProxyForURL(url, host)
{

if ((isPlainhost name(host) ||
dnsDomainIs(host, ".iplanet.com")) &&
!localHostOrDomainIs(host, "www.iplanet.com") &&
!localHostOrDoaminIs(host, "merchant.iplanet.com"))

return "DIRECT";
else

return "PROXY w3proxy.iplanet.com:8080; DIRECT";
}

This example uses the proxy for everything except local hosts in the iplanet.com
domain. The hosts www.iplanet.com and merchant.iplanet.com also go through
the proxy.

The order of the exceptions increases efficiency: localHostOrDomainIs() functions
get executed only for URLs that are in the local domain, not for every URL. In
particular, notice the parentheses around the or expression before the and
expression.

NOTE If the proxy goes down, connections become direct automatically.

Creating the Autoconfiguration File Manually

154 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Example 3: Proxy Only Unresolved Hosts
This example works in an environment where internal DNS is set up so that it can
resolve only internal host names, and the goal is to use a proxy only for hosts that
aren’t resolvable:

function FindProxyForURL(url, host)
{

if (isResolvable(host))
return "DIRECT";

else
return "PROXY proxy.mydomain.com:8080";

}

This example requires consulting the DNS every time, so it should be grouped with
other rules so that DNS is consulted only if other rules do not yield a result:

function FindProxyForURL(url, host)
{

if (isPlainhost name(host) ||
dnsDomainIs(host, ".mydomain.com") ||
isResolvable(host))
return "DIRECT";

else
return "PROXY proxy.mydomain.com:8080";

}

Example 4: Connect Directly to a Subnet
In this example all the hosts in a given subnet are connected to directly others go
through the proxy:

function FindProxyForURL(url, host)
{

if (isInNet(host, "198.95.0.0", "255.255.0.0"))
return "DIRECT";

else

return "PROXY proxy.mydomain.com:8080";
}

You can minimize the use of DNS in this example by adding redundant rules in the
beginning:

function FindProxyForURL(url, host)
{

if (isPlainhost name(host) ||
dnsDomainIs(host, ".mydomain.com") ||
isInNet(host, "198.95.0.0", "255.255.0.0"))

Creating the Autoconfiguration File Manually

Chapter 12 Using the Client Autoconfiguration File 155

return "DIRECT";
else

return "PROXY proxy.mydomain.com:8080";
}

Example 5: Balance Proxy Load with dnsDomainIs()
This example is more sophisticated. There are four proxy servers, with one of them
acting as a hot stand-by for the others, so if any of the remaining three goes down,
the fourth one takes over. The three remaining proxy servers share the load based
on URL patterns, which makes their caching more effective (there is only one copy
of any document on the three servers, as opposed to one copy on each of them).
The load is distributed as shown in Table 12-3:

All local accesses should be direct. All proxy servers run on port 8080. You can
concatenate strings by using the + operator in JavaScript.

function FindProxyForURL(url, host)
{

if (isPlainhost name(host) || dnsDomainIs(host, ".mydomain.com"))
return "DIRECT";

else if (dnsDomainIs(host, ".com"))
return "PROXY proxy1.mydomain.com:8080; " +

"PROXY proxy4.mydomain.com:8080";

else if (dnsDomainIs(host, ".edu"))
return "PROXY proxy2.mydomain.com:8080; " +

"PROXY proxy4.mydomain.com:8080";

else
return "PROXY proxy3.mydomain.com:8080; " +

"PROXY proxy4.mydomain.com:8080";
}

Table 12-3 balance proxy load

Proxy Purpose

#1 .com domain

#2 .edu domain

#3 all other domains

#4 hot stand-by

Creating the Autoconfiguration File Manually

156 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Example 6: Balance Proxy Load with shExpMatch()
This example is essentially the same as example 5, but instead of using
dnsDomainIs(), this example uses shExpMatch().

function FindProxyForURL(url, host)
{

if (isPlainhost name(host) || dnsDomainIs(host, ".mydomain.com"))
return "DIRECT";

else if (shExpMatch(host, "*.com"))
return "PROXY proxy1.mydomain.com:8080; " +

"PROXY proxy4.mydomain.com:8080";
else if (shExpMatch(host, "*.edu"))

return "PROXY proxy2.mydomain.com:8080; " +
"PROXY proxy4.mydomain.com:8080";

else
return "PROXY proxy3.mydomain.com:8080; " +

"PROXY proxy4.mydomain.com:8080";
}

Example 7: Proxying a Specific Protocol
You can set a proxy to be for a specific protocol. Most of the standard
JavaScript functionality is available for use in the FindProxyForURL() function. For
example, to set different proxies based on the protocol, you can use the substring()
function:

function FindProxyForURL(url, host)
{

if (url.substring(0, 5) == "http:") {
return "PROXY http-proxy.mydomain.com:8080";

}
else if (url.substring(0, 4) == "ftp:") {

return "PROXY ftp-proxy.mydomain.com:8080";
}
else if (url.substring(0, 7) == "gopher:") {

return "PROXY gopher-proxy.mydomain.com:8080";
}
else if (url.substring(0, 6) == "https:" ||

url.substring(0, 6) == "snews:") {
return "PROXY security-proxy.mydomain.com:8080";

}
else {

return "DIRECT";
}

}

You can also accomplish this using the shExpMatch() function; for example:

Creating the Autoconfiguration File Manually

Chapter 12 Using the Client Autoconfiguration File 157

...
if (shExpMatch(url, "http:*")) {

return "PROXY http-proxy.mydomain.com:8080;
}

...

Creating the Autoconfiguration File Manually

158 iPlanet Web Proxy Server Administrator’s Guide • August 2003

159

Chapter 13

Monitoring the Server’s Status

You can monitor your server’s status in realtime by using the Simple Network
Management Protocol (SNMP). SNMP is an Internet network management protocol
used to monitor network devices. You can also monitor your server by recording
and viewing log files.

Working with Log Files
Server log files record your server’s activity. You can use these logs to monitor
your server and help you when troubleshooting. The error log file, located in server
root\proxy-id\logs, lists all the errors the server has encountered. The access log,
also located in proxy-id\logs in the server root directory, records information
about requests to the server and responses from the server. You can specify what is
included in the access log file from the Server Manager. Use the log analyzer to
generate server statistics. You can back up server error and access log files by
archiving them.

Viewing the Error Log File
The error log file contains errors the server has encountered since the log file was
created; it also contains informational messages about the server, such as when the
server was started. Incorrect user authentication is also recorded in the error log.

To view the error log file from the Server Manager,

1. In the Server Manager, choose Server Status|View Error Log.

2. If you want to see more or less than 25 lines of the error log, use the Number of
errors to view field to enter the number of lines you’d like to see.

Working with Log Files

160 iPlanet Web Proxy Server Administrator’s Guide • August 2003

3. If you’d like to filter the error messages for a particular word, type the word in
the “Only show entries with” field.

Make sure the case for your entry matches the case of the word for which
you’re searching. (For example, if you want to see only error messages that
contain “warning,” type warning.)

This is an example of an error log:

[13/Feb/1996:16:56:51] info: successful server startup
[20/Mar/1996 19:08:52] warning: for host wiley.a.com trying to
GET /report.html, append-trailer reports: error opening
/usr/ns-home/docs/report.html(No such file or directory)
[30/Mar/1996 15:05:43] security: for host arrow.a.com trying to
GET /, basic-ncsa reports: user jane password did not match
database /usr/ns-home/authdb/mktgdb

In this example, the first line is an informational message—the server started up
successfully. The second log entry shows that the client wiley.a.com requested the
file report.html, but the file wasn’t in the primary document directory on the
server. The third log entry shows that the password entered for the user jane was
incorrect.

Viewing an Access Log File
You can view the server’s active and archived access log files from the Server
Manager.

To view an access log,

1. In the Server Manager, choose Server Status|View Access Log.

2. Choose the access log file you want to see.

Active log files for resources and archived log files appear in the list.

3. To limit how much of the access log you’ll see, type the number of lines you
want to see in the Number of entries field.

4. If you’d like to filter the access log entries for a particular word, type the word
in the Only show entries with field.

Make sure the case for your entry matches the case of the word for which
you’re searching. (For example, if you want to see only access log entries that
contain “POST,” type POST.)

This is a sample of an access log in the common logfile format:

Working with Log Files

Chapter 13 Monitoring the Server’s Status 161

wiley.a.com - - [16/Feb/1996:21:18:26 -0800] “GET / HTTP/1.0” 200
751
wiley.a.com - - [17/Feb/1996:1:04:38 -0800] “GET
/docs/grafx/icon.gif HTTP/1.0” 204 342
wiley.a.com - - [20/Feb/1996:4:36:53 -0800] “GET /help HTTP/1.0” 401
571
arrow.a.com - john [29/Mar/1996:4:36:53 -0800] “GET /help HTTP/1.0”
401 571

Table 13-1 describes the last line of the sample access log.

Understanding Access Logfile Syntax
There are three predetermined logfile formats:

• Common

• Extended

• Extended-2

Common
Common format is the most basic of the log formats.

Syntax
host - usr [time] “req” s1 c1

Table 13-1 The last line of the sample access log file has several components.

Access Log field Example

host name or IP address of
client

arrow.a.com. In this case, the host name is shown because
DNS is enabled; if DNS were disabled, the client’s IP
address would appear.

RFC 931 information - (RFC 931 identity—not implemented)

User name john (user name entered by the client for authentication)

Date/time of request 29/Mar/1996:4:36:53 -0800

Request GET /help

Protocol HTTP/1.0

Status code 401

Bytes transferred 571

Working with Log Files

162 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Fields
host is the client’s DNS host name. If reverse DNS lookup is not enabled on your
proxy, host is the client’s IP address.

- is the RFC 931 style remote identity. (This parameter is not supported unless you
are running your proxy as a SOCKS server.)

usr is the name of the user authenticated to the proxy.

time is the time and date of the request.

req is the first HTTP request line as it came into the proxy.

s1 is the proxy’s HTTP response status code to the client.

c1 is the content-length sent to the client by the proxy.

Extended
Extended format is more detailed than common format because it includes all of
the fields of the common format as well as some additional fields.

Syntax
host - usr [time] “req” s1 c1 s2 c2 b1 b2 h1 h2 h3 h4 xt

Fields
The following are the fields that the extended format includes that the common
format does not include:

s2 is the remote server’s HTTP response status code to the proxy whenever the
proxy makes a request in part of the client.

c2 is the content-length received from the remote server by the proxy.

b1 is the size of the client’s HTTP request message body. (In other words, it is
POST-data that will be forwarded to the remote server. This data will also be
passed to the remote server if no error occurs.)

b2 is the size of the proxy’s HTTP request message body. It is the amount of data in
the body that was sent to the remote server. (This data is the same as b1 if no error
occurs.)

h1 is the size of the client’s HTTP request header to the proxy.

h2 is the size of the proxy server’s response header to the client.

h3 is the size of the proxy server’s request header to the remote server.

h4 is the size of the remote server’s HTTP response header to the proxy.

Working with Log Files

Chapter 13 Monitoring the Server’s Status 163

xt is the total transfer time, in seconds.

Extended-2
Extended-2 format is the most detailed log format because it includes all of the
fields of the extended format as well as some additional fields.

Syntax
host - usr [time] “req” s1 c1 s2 c2 b1 b2 h1 h2 h3 h4 xt route cs ss cs

Fields
The following are the fields that the extended-2 format includes that the other two
formats do not include:

route is the route used to retrieve the resource. The route field can hold one of the
following:

• DIRECT means that the resource was retrieved directly.

• PROXY(host:port) means that the resource was retrieved through a proxy
server at a specified host and port.

• SOCKS(host:port) means that the resource was retrieved through a SOCKS
server at a specified host and port.

cs is the client finish status. This field specifies if the request to the client was
successfully carried out to completion, interrupted by the client clicking the Stop
button in Navigator, or aborted by an error condition. The cs field can hold one of
the following:

• - means that the request was never started.

• FIN means that the request was completed successfully.

• INTR means that the request was interrupted by the client or terminated by a
proxy or server time out.

ss is the remote server finish status. This field specifies if the request to the remote
server was successfully carried out to completion, interrupted by the client clicking
the Stop button in Navigator, or aborted by an error condition. The ss field can
hold one of the following:

• - means that the request was never started.

• FIN means that the request was completed successfully.

• INTR means that the request was interrupted by the client or terminated by the
proxy.

• TIMEOUT means that the request was timed out by the proxy.

Working with Log Files

164 iPlanet Web Proxy Server Administrator’s Guide • August 2003

cs is the cache finish status. This field specifies whether the cache file was written,
refreshed, or returned by an up-to-date check. The cs field can hold one of the
following:

• - means that the resource was not cacheable.

• WRITTEN means that the cache file was created.

• REFRESHED means that the cache file was updated or refreshed.

• NO-CHECK means that the cache file was returned without an up-to-date
check.

• UP-TO-DATE means that the cache file was returned with an up-to-date check.

• HOST-NOT-AVAILABLE means that the remote server was not available for
an up-to date check, so the cache file was returned without a check.

• CL-MISMATCH means that the cache file write was aborted due to a
content-length mismatch.

• ERROR means that the cache file write was aborted due to any error other than
the above. These errors include a client interruption and a server timeout.

Understanding Status Codes
Table 13-2 lists and defines all of the status codes specified in the HTTP/1.1 RFC
2068. For more detailed descriptions of the codes, see the HTTP/1.1 specification,
RFC 2068.

NOTE The 1xx status codes are not supported by HTTP/1.0.

Table 13-2 Status codes.

Code Description

100 Continue - The client can continue its request.

101 Switching Protocols - The server has complied with the client’s request to
switch protocols.

200 OK - The request was successful.

201 Created - The request was successful and a new resource was created as a
result.

202 Accepted - The request was accepted for processing.

Working with Log Files

Chapter 13 Monitoring the Server’s Status 165

203 Non-Authoritative Information - The meta-information in the entity-header
is from a local or third-party copy.

204 No Content - The server serviced the request but there is no information to
return.

205 Reset Content - The request was successful and the user agent should clear
the input form for further input.

206 Partial Content - The server serviced a (byte) range request for the resource.

300 Multiple Choices - The requested resource could be one of multiple
resources.

301 Moved Permanently - The requested resource has permanently moved to a
new location.

302 Moved Temporarily - The requested resource has temporarily moved to a
new location.

303 See Other - The response to the request is under a different URI and can be
retrieved with a GET request.

304 Not Modified - The requested resource has not been modified since it was
last requested.

305 Use Proxy - The requested resource must be accessed through a proxy server.

400 Bad Request - The server cannot read the request because its syntax is
incorrect.

401 Unauthorized - The server must authenticate the user before servicing the
request.

402 Payment Required - This code is reserved but not yet defined in detail in the
HTTP/1.1 specification.

403 Forbidden - The server refused to service the request.

404 Not Found - The server cannot find the requested resource.

405 Method Not Allowed - The method specified in the Request-Line is not
permitted for the requested resource.

406 Not Acceptable - The requested resource can only generate response entities
that have unacceptable content characteristics according to the accept
headers sent in the request.

407 Proxy Authentication Required - The proxy server must authenticate the user
before servicing the request.

Table 13-2 Status codes.

Code Description

Working with Log Files

166 iPlanet Web Proxy Server Administrator’s Guide • August 2003

408 Request Timeout - The client did not make its request within the amount of
time the server will wait for requests.

409 Conflict - The server could not service the request due to a current conflict
with the requested resource.

410 Gone - The requested resource is no longer available on the server.

411 Length Required - The server will not service the request without a
Content-Length specified in the request.

412 Precondition Failed - A precondition specified in one or more of the
request-header fields failed.

413 Request Entity Too Large - The server will not service the request because the
requested resource is too large.

414 Request-URI Too Long - The server will not service the request because the
requested URL is too long.

415 Unsupported Media Type - The server will not service the request because
the format of the request is not supported by the requested resource for the
requested method.

500 Internal Server Error - The server could not service the request because of an
unexpected internal error.

501 Not Implemented - The sever cannot service the request because it does not
support the request method.

502 Bad Gateway - The proxy server received an invalid response from the
content server or another proxy server in a proxy chain.

503 Service Unavailable - The server could not service the request because it was
temporarily overloaded or undergoing maintenance.

504 Gateway Timeout - The proxy server did not receive a response from a
chained proxy server or the origin content server within an acceptable
amount of time.

505 HTTP Version Not Supported - The server does not support the HTTP
version specified in the request.

Table 13-2 Status codes.

Code Description

Working with Log Files

Chapter 13 Monitoring the Server’s Status 167

Setting Access Log Preferences
During installation, an access log file named access was created for the server. You
can customize access logging for your server by specifying whether or not to log
accesses, whether or not the server should record domain names or IP addresses
and what format the log file should be in.

Server access logs can be in common logfile format, extended log format,
extended-2 log format, a format that includes only specified information, or a
custom format of your own design. For more information about these logfile
formats, see “Understanding Access Logfile Syntax” on page 161.

To set access logging preferences,

1. From the Server Manager, choose Server Status|Log Preferences.

2. Use the template to which you’d like to apply custom logging.

If you are configuring the logging preferences for your entire server, continue
following the numbered steps below. If you are configuring the logging
preferences for specific resources, continue with step number 3 and then skip
to step number 8.

3. Select whether or not to log client accesses.

4. Type the full path for the log file.

By default, the log files are kept in the logs directory in the server root
directory.

5. Choose whether or not to record domain names or IP addresses in the log.

6. Choose which format the log file should be: common, extended, extended-2,
only specified information (Only log radio button), or custom.

If you click Only log, the following flexible log format items are available:

❍ Client host name—The host name (or IP address if DNS is disabled) of the
client requesting access.

❍ Authenticate user name—If authentication was necessary, you can have
the authenticated user name listed in the access log.

❍ System date—The date and time of the client request.

❍ Full request—The exact request the client makes.

❍ Status—The status code the server returned to the client.

❍ Content length—The length, in bytes, of the document sent to the client.

Working with Log Files

168 iPlanet Web Proxy Server Administrator’s Guide • August 2003

❍ HTTP header, “referer”—The referer tells you the page the client used
previously to access the current page. For example, if a user is looking at
the results from a text search query, the referer is the page from which the
user accessed the text search engine. Referers allow the server to create a
list of backtracked links.

❍ HTTP header, “user-agent”—The user-agent information, which includes
the type of browser the client is using, its version, and what operating
system it’s running on, comes from the user-agent field in the HTTP
header information the client sends to the server.

❍ Method—The request method used.

❍ URI—Universal Resource Identifier is the path part of a URL. For example,
for http://www.a.com:8080/special/docs, the URI is /special/docs.

❍ Query string of the URI—Anything after the question mark in a URI. For
example, for http://www.a.com:8080/special/docs?find_this, the query
string of the URI is find_this.

❍ Protocol—The transport protocol and version used.

❍ Cache finish status—The method by which a document is placed in the
cache. It can be written, refreshed, or returned by an up-to-date check.

❍ Status code from server—The status code returned from the server.

❍ Route to proxy—The route used to retrieve the resource. The document
can be retrieved directly, through a proxy, or through a SOCKS server.

❍ Transfer time—The length of time of the transfer, in seconds or
milliseconds.

❍ Header length from server response—The length of the header from the
server response.

❍ Request header size from proxy to server—The size of the request header
from the proxy to the server.

❍ Response header size sent to client—The size of the response header sent
to the client.

❍ Request header size received from client—The size of the request header
received from the client.

❍ Content-length from proxy to server request—The length, in bytes, of the
document sent from the proxy to the server.

Working with Log Files

Chapter 13 Monitoring the Server’s Status 169

❍ Content-length received from client—The length, in bytes, of the document
received from the client.

❍ Content-length from server response—The length, in bytes, of the
document from the server.

❍ Unverified user from client—The user name given to the remote server
during authentication.

7. If you choose a custom format, type it in the Custom format field.

8. Click OK.

Working with the Log Analyzer
Use the log analyzer to generate statistics about your server, such as a summary of
activity, most commonly accessed URLs, times during the day when the server is
accessed most frequently, and so on. You can run the log analyzer from the Server
Manager, as described in “Running the Log Analyzer from the Server Manager” on
page 175.

If you use the extended or extended-2 logging format, the log analyzer generates
several reports within the output file in addition to the information that you
designate to be reported. The following sections describe these reports.

Transfer Time Distribution Report
The transfer time distribution report shows the time it takes your proxy server to

Working with Log Files

170 iPlanet Web Proxy Server Administrator’s Guide • August 2003

< 1 sec [64.4%] ..
< 2 sec [33.3%]
< 3 sec [2.7%] .
< 4 sec [1.7%] .
< 5 sec [0.6%]
< 6 sec [0.4%]
< 7 sec [0.2%]
< 8 sec [0.0%]
< 9 sec [0.0%]

By percentage finished:

< 1 sec [64.4%] ..
< 2 sec [97.7%]
< 3 sec [100.4%] ...

Status Code Report
The status code report shows which and how many status codes the proxy server
received from the remote server and sent to the client. The status code report also
provides explanations for all of these status codes. The following is a sample status
code report.

Code From remote To client Explanation

200 338 [70.7%] 352 [73.6%] OK

302 33 [6.9%] 36 [7.5%] Redirect

304 90 [18.8%] 99 [20.7%] Not modified

404 3 [0.6%] 3 [0.6%] Not found

407 5 [1.0%] Proxy authorization
required

500 2 [0.4%] Internal server error

504 6 [1.3%] Gateway timeout

Working with Log Files

Chapter 13 Monitoring the Server’s Status 171

Data Flow Report

The data flow report shows the data flow (the number of bytes transferred) from
the client to the proxy, the proxy to the client, the proxy to the remote server, and
the remote server to the proxy. For each of these scenarios, the report shows how
much data was transferred in the form of headers and content. The data flow
report also shows the data flow from the cache to the client. The following is a
sample data flow report.

Requests and Connections Report
The requests and connections report shows the number of requests the proxy
server receives from clients, the number of connections the proxy makes to a
remote server (initial retrievals, up-to-date checks, and refreshes), and the number
of remote connections the proxy server avoids by using cached documents. The
following is a sample requests and connections report.

- Total requests............. 478

- Remote connections......... 439

- Avoided remote connects.... 39 [8.2%]

Cache Performance Report
The cache performance report shows the performance of the clients’ cache, the
proxy server’s cache, and the direct connections.

Headers Content Total

- Client ->
Proxy............

0 MB 0 MB 0 MB

- Proxy -> Client........... 0 MB 2 MB 3 MB

- Proxy -> Remote........... 0 MB 0 MB 0 MB

- Remote ->
Proxy............

0 MB 2 MB 2 MB

Approx.

- Cache -> Client........... 0 MB 0 MB 0 MB

Working with Log Files

172 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Client Cache

For the client’s cache, the report shows:

• client and proxy cache hits: a client cache hit in which the proxy server and the
client both have a copy of the requested document and the remote server is
queried for an up-to-date check with respect to the proxy’s copy and the
client’s request is then evaluated with respect to the proxy’s copy. The cache
performance report shows the number of requests of this type that the proxy
serviced and the average amount of time it took to service these requests.

• proxy shortcut no-check: a client cache hit in which the proxy server and the
client both have a copy of the requested document and the proxy server tells
the client (without checking with the remote server) that the document in the
client’s cache is up-to-date. The cache performance report shows the number of
requests of this type that the proxy serviced and the average time it took to
service these requests.

• client cache hits only: a client cache hit in which only the client has a cached
copy of the requested document. In this type of request, the proxy server
directly tunnels the client’s If-modified-since GET header. The cache
performance report shows the number of requests of this type that the proxy
serviced and the average time it took to service these requests.

• total client cache hits: the total number of client cache hits and the average
amount of time it took to service these requests.

Proxy Cache
A proxy cache hit occurs when a client requests a document from a proxy server
and the proxy server already has the document in its cache. For the proxy server’s
cache hits, the report shows:

• proxy cache hits with check: a proxy cache hit in which the proxy server
queries the remote server for an up-to-date check on the document. The cache
performance report shows the number of requests of this type that the proxy
serviced and the average time it took to service these requests.

NOTE A client cache hit occurs when a client performs an up-to-date check
on a document and the remote server returns a 304 message telling
the client that the document was not modified. An up-to-date check
initiated by a client indicates that the client has its own copy of the
document in the cache.

Working with Log Files

Chapter 13 Monitoring the Server’s Status 173

• proxy cache hits without check: a proxy cache hit in which the proxy server
does not query the remote server for an up-to-date check on the document. The
cache performance report shows the number of requests of this type that the
proxy serviced and the average time it took to service these requests.

• pure proxy cache hits: a proxy cache hit in which the client does not have a
cached copy of the requested document. The cache performance report shows
the number of requests of this type that the proxy serviced and the average
time it took to service these requests.

Proxy Cache Hits Combined
For the proxy cache hits combined, the report shows:

• total proxy cache hits: the total number of hits to the proxy server’s cache and
the average amount of time it took to service these requests.

Direct Transactions
Direct transactions are those that go directly from the remote server to the proxy
server to the client without any cache hits. For the direct transactions, the report
shows:

• retrieved documents: documents retrieved directly from the remote server.
The cache performance report shows the number of requests of this type that
the proxy serviced, the average time it took to service these requests, and the
percentage of total transactions.

• other transactions: transactions that are returned with a status code other than
200 or 304. The cache performance report shows the number of requests of this
type that the proxy serviced and the average time it took to service these
requests.

• total direct traffic: requests (both failed requests and successfully retrieved
documents) that went directly from the client to the remote server. The cache
performance report shows the number of requests of this type that the proxy
serviced, the average time it took to service these requests, and the percentage
of total transactions.

The following is a sample cache performance report.

CLIENT CACHE:

- Client & proxy cache hits... 86 reqs [18.0%] 0.21 sec/req
- Proxy shortcut no-check........ 13 reqs [2.7%] 0.00 sec/req
- Client cache hits only.....
- TOTAL client cache hits.......... 99 reqs [20.7%] 0.18 sec/req

PROXY CACHE:

Working with Log Files

174 iPlanet Web Proxy Server Administrator’s Guide • August 2003

- Proxy cache hits w/check........ 4 reqs [0.8%] 0.50 sec/req
- Proxy cache hits w/o check.. 10 reqs [2.1%] 0.00 sec/req
- Pure proxy cache hits...... 14 reqs [2.9%] 0.14 sec/req

PROXY CACHE HITS COMBINED:

- TOTAL proxy cache hits....... 113 reqs [23.6%] 0.18 sec/req

DIRECT TRANSACTIONS:

- Retrieved documents..313 reqs [65.5%] 0.90 sec/req 2 MB
- Other transactions.. 52 reqs [10.9%] 7.79 sec/req
- TOTAL direct traffic..365 reqs [76.4%] 1.88 sec/req 2 MB

Transfer Time Report
The transfer time report shows the information about the time it takes for the proxy
server to process a transaction. This report shows values for the following
categories:

average transaction time: the average of all transfer times logged

average transfer time without caching: the average of transfer times for
transactions which are not returned from the cache (200 response from remote
server).

average with caching, without errors: the average of transfer times for all
non-error transactions (2xx and 3xx status codes).

average transfer time improvement: the average transaction time minus the
average transfer time with caching, without errors.

The following is a sample transfer time report.

- Average transaction time... 1.48 sec/req
- Ave xfer time w/o caching.. 0.90 sec/req
- Ave w/caching, w/o errors.. 0.71 sec/req
- Ave xfer time improvement.. 0.19 sec/req

Hourly Activity Report
For each analyzed hour, the hourly activity report shows:

• the load average

• the number of cache hits with no up-to-date check to the remote server

• the number of hits to the proxy server’s cache with an up-to-date check to the
remote sever that proves that the document is up-to-date and the document is
in the client cache

Working with Log Files

Chapter 13 Monitoring the Server’s Status 175

• the number of hits to the proxy server’s cache with an up-to-date check to the
remote sever that proves that the document is up-to-date and the document is
not in the client cache

• the number of hits to the proxy server’s cache with an up-to-date check to the
remote server that caused part of the document to be updated.

• the number of hits to the proxy server’s cache with an up-to-date check to the
remote server that returned a new copy of the requested document with a 200
status code.

• the number of requests for which documents are directly retrieved from the
remote server without any hits to the proxy server’s cache

Running the Log Analyzer from the Server
Manager
To run the log analyzer from the Server Manager,

1. In the Server Manager, choose Server Status|Generate Report.

2. Type the name of your server; this name appears in the generated report.

3. Choose whether or not the report will appear in HTML or plain text format.

4. Select the log file you want to analyze.

5. If you want to save the results in a file, type an output filename in the Output
file field.

If you leave the field blank, the report results print to the screen. For large log
files, you should save the results to a file because printing the output to the
screen might take a long time.

6. Select whether or not to generate totals for certain server statistics. The
following totals can be generated:

❍ Total hits—The total number of hits the server received since access
logging was enabled.

❍ 304 (Not Modified) status codes—The number of times a local copy of the
requested document was used, rather than the server returning the page.

❍ 302 (Redirects) status codes—The number of times the server redirected to
a new URL because the original URL moved.

Working with Log Files

176 iPlanet Web Proxy Server Administrator’s Guide • August 2003

❍ 404 (Not Found) status codes—The number of times the server couldn’t
find the requested document or the server didn’t serve the document
because the client was not an authorized user.

❍ 500 (Server Error) status codes—The number of times a server-related error
occurred.

❍ Total unique URLs—The number of unique URLs accessed since access
logging was enabled.

❍ Total unique hosts—The number of unique hosts who have accessed the
server since access logging was enabled.

❍ Total kilobytes transferred—The number of kilobytes the server
transferred since access logging was enabled.

7. Choose to generate general statistics.

❍ Top number of one-second periods—You can specify the number of
one-second periods that had the highest number of requests.

❍ Top number of one-minute periods—You can specify the number of
one-minute periods that had the highest number of requests.

❍ Top number of one-hour periods—You can specify the number of
one-hour periods that had the highest number of requests.

❍ Top number of users—You can specify the maximum number of users that
accessed your server, provided that you included this as an item to log
when you enabled access logging.

❍ Top number of referers—You can specify the number of referers that
appear in your log analysis, provided that you included this as an item to
log when you enabled access logging.

❍ Top number of user agents—You can specify the number of user agents
that appear in your log analysis, provided that you included this as an item
to log when you enabled access logging.

❍ Top number of miscellaneous logged items—You can specify the number
of items that appear in your log, provided you included this as an item to
log when you enabled access logging. These miscellaneous items include
the request method, the URI, and the URI query.

8. Select whether or not to generate a list of server access statistics. You can
generate a list of the following:

Working with Log Files

Chapter 13 Monitoring the Server’s Status 177

❍ Most commonly accessed URLs—You can have the log analyzer show the
most commonly accessed URLs or URLs that were accessed more than a
specified number of times.

❍ Hosts most often accessing your server—You can have the log analyzer
show the hosts most often accessing your server or hosts that have
accessed your server more than a specified number of times.

9. Specify the order in which you want to see the results.

10. Click OK.

Archiving Log Files
You can archive the access and error log files and have the server create new ones.

When you archive log files, the server renames the current log files and then creates
new log files with the original names. You can back up or archive (or delete) the old
log files, which are saved with the original filename appended with the date the file
was archived. For example, access becomes access.24-Apr.

You can archive log files immediately or have the server archive them at a specific
time on specific days. The information about when to archive log files is stored in
the cron.conf file in the adminserv\config directory in the server root directory;
the server’s cron configuration options are stored in ns-cron.conf in the
adminserv\config directory.

To archive log files,

1. From the Server Manager, choose Server Status|Archive Log.

2. Click Archive if you want to archive the log files immediately. Or, if you want
archiving to occur at a specific time on specific days, click the Rotate log at
button, choose times from the list, and select the days for archiving to occur.

3. Click OK.

4. Shut down and restart the administration server.

NOTE Before running the log analyzer, you should archive the server logs.

NOTE If you chose to archive your server logs at specific times on specific
days, step 4 is necessary in order for archiving to take place.

Monitoring the Server Using SNMP

178 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Monitoring the Server Using SNMP
You can monitor your server in real-time by using the Simple Network Management
Protocol (SNMP). SNMP is a protocol used to exchange data about network activity.
With SNMP, data travels between a managed device and a network management
station (NMS) where users remotely manage the network.

A managed device is anything that runs SNMP (for example, hosts, or routers).
Your proxy server is a managed device. An NMS is usually a powerful workstation
with one or more network management applications installed. A network
management application graphically shows information about managed devices
(which device is up or down, which and how many error messages were received,
and so on).

Every managed device contains an SNMP agent that gathers information regarding
the network activity of the device. This agent is known as the subagent. Each Sun
ONE server (except the administration server) has a subagent.

Another SNMP agent exchanges information between the subagent and NMS. This
agent is called the master agent. A master agent runs on the same host machine as
the subagents it talks to. You can have multiple subagents installed on a host
machine. All of these subagents can communicate with the master agent.

Values for various variables that can be queried are kept on the managed device
and reported to the NMS as necessary. Each variable is known as a managed object,
which is anything the agent can access and send to the NMS. All managed objects
are defined in a management information base (MIB), which is a database with a
tree-like hierarchy. The top level of the hierarchy contains the most general
information about the network. Each branch underneath is more specific and deals
with separate network areas.

How Does SNMP Work?
SNMP exchanges network information in the form of protocol data units (PDUs).
PDUs contain information about various variables stored on the managed device.
These variables, also known as managed objects, have values and titles that are
reported to the NMS as necessary. Communication between an NMS and managed
device can take place in one of two forms:

NMS-initiated communication: NMS-initiated communication is the most
common type of communication between an NMS and a managed device. In this
type of communication, the NMS either requests information from the managed
device or changes the value of a variable stored on the managed device.

Monitoring the Server Using SNMP

Chapter 13 Monitoring the Server’s Status 179

These are the steps that make up an NMS-initiated SNMP session:

1. The NMS searches the server’s MIB to determine which managed devices and
objects need to be monitored.

2. The NMS sends a PDU to the managed device’s subagent through the master
agent. This PDU either requests information from the managed device or tells
the subagent to change the values for variables stored on the managed device.

3. The subagent for the managed device receives the PDU from the master agent.

4. If the PDU from the NMS is a request for information about variables, the
subagent gives information to the master agent and the master agent sends it
back to the NMS in the form of another PDU. The NMS then displays the
information textually or graphically.

If the PDU from the NMS requests that the subagent set variable values, the
subagent sets these values.

Managed device-initiated communication: This type of communication occurs
when the managed device needs to inform the NMS of an event that has occurred.
A managed device such as a terminal would initiate communication with an NMS
to inform the NMS of a shut down or start up. Communication initiated by a
managed device is also known as a “trap”.

These are the steps that make up a managed device-initiated SNMP session:

1. An event occurs on the managed device.

2. The subagent informs the master agent of the event.

3. The master agent sends a PDU to the NMS to inform the NMS of the event.

4. The NMS displays the information textually or graphically.

For information on setting up and configuring your server to use SNMP, see
Managing Netscape Servers.

The Proxy Server MIB
Each Sun ONE server has its own MIB (management information base). The proxy
server’s MIB is a file called ns-proxy.mib. This MIB contains the definitions for
various variables pertaining to network management for the proxy server. These
variables are known as managed objects. Using the proxy server MIB and network
management software, such as HP OpenView, you can monitor your web server
like all other devices on your network.

Using the Performance Monitor

180 iPlanet Web Proxy Server Administrator’s Guide • August 2003

The proxy server MIB has an object identifier of iplanet 1 (i.e. http OBJECT
IDENTIFIER : := { iplanet 1 }) and is located in the server-root\plugins\snmp
directory.

You can see administrative information about your web server and monitor the
server in real-time using the proxy server MIB.

Enabling the Subagent

NT Only
Before you can monitor your server with SNMP, you need to enable the subagent
that comes with your server. The subagent will then be able to communicate with
the master agent built into the Windows NT operating system. You can enable the
subagent via the Server Manager.

To enable the SNMP subagent,

1. From the Server Manager, choose Server Status|SNMP Subagent
Configuration.

The SNMP Configuration form appears.

2. Type the name of the system that has the master agent installed on it.

3. Type a description.

4. Type your organization name.

5. Type the proxy server’

Using the Performance Monitor

Chapter 13 Monitoring the Server’s Status 181

The Performance Monitor is located in the Administrative Tools program group
and can be activated by selecting the item. To view the proxy server’s current
activity with the Performance Monitor, simply select Sun ONE Web Proxy Server
as the chart object, select the counters you wish to view, and add them to the chart.

Using the Performance Monitor

182 iPlanet Web Proxy Server Administrator’s Guide • August 2003

183

Chapter 14

Proxy Error Log Messages

This chapter defines some of the errors the proxy commonly reports. They are
listed alphabetically by the words of the message. The errors are categorized also
by severity.

The categories of severity for proxy server error log messages are:

• Catastrophe is a fatal error, a software crash, or other serious error that causes
the client to receive no service, partial service, or totally invalid service.

• Failure means something failed, the proxy handled the error, but the error may
still cause the proxy to function improperly or to fail to process a request.

• Inform is an informational log entry.

• Misconfig means something was misconfigured in a configuration source such
as magnus.conf or obj.conf.

• Warning flags something that could be a normal operational error, but may
also be a more serious error such as misconfiguration (e.g., host unreachable).

Proxy Error Messages
The following errors are those that commonly appear in the proxy server’s error
log and the Windows NT Event Viewer.

Catastrophe
Service Startup Failure

Thee Watchdog service (ns-proxy.exe) failed to start.

Proxy Error Messages

184 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Proxy Startup Error: Could not start

The proxy server failed to start.

Error creating new accept request
Error getting accept socket
Error in accept!

The proxy server failed to accept client connections.

pool-create-block: out of memory
pool-create: out of memory
pool-malloc: out of memory

The proxy server is out of memory.

Failure
bu-init: process creation failed
bupdate: OpenProcess failed
bupdate: thread creation failed
bupdate: WaitForMultipleObjects failed

The proxy server failed when spawning the batch update process.

Cache partition init failed (partition name): cannot create working directory.
failed to open registry key key name.
failed to set value for registry key key name.
failed to rename dir directory name
failed to rename reconfig cache dir directory name (error code: error).
failed while reading cache configuration; key: key name
failed while saving cache configuration; key: key name

The proxy server experienced a cache administration or configuration problem
which was generated by reconfiguring the cache.

cache_insert: unable to create cache entry

The proxy server failed to add a new item to the cache.

Client aborted connection

A client connection was aborted by the user. Usually the user aborts the connection
by pressing stop, but the connection could be aborted due to other reasons.

Failed to send MoveLog Event to rotate app
Could not open event to signal rotate application

Proxy Error Messages

Chapter 14 Proxy Error Log Messages 185

The proxy server experienced a failure while talking to the access log rotation
process. (These failures may happen if the server is not running when you try to
rotate the log.)

Error allocating request read buffer
error: could not get socket
error: could not set socket option
Error creating new request
Error creating new session structure
Error during async read
Error issuing async read request
Error issuing read on accept socket
Error reading headers
Error reading request

The proxy server experienced an error while processing a request. Usually these
errors are restricted to a single request. If you get many of these, there may be a
network problem.

Failed to terminate server threads
Failed to wait for termination of main

The proxy server failed to shut down.

filter timeout; filter failed to finish response

A filter plugin didn’t complete.

regex error: specific error (regex: regular expression)

The proxy server experienced an error while parsing a regular expression.

Spurious connect-side event encountered

The proxy server received an unexpected event during a connection to a remote
server.

UrlDbAgent: could not open dir directory name
UrlDbAgent: could not create async monitor.
UrlDbAgent: ReadDirectoryChangesW failed
UrlDbAgent: could not create dir directory name
UrlDbAgent: could not find urldb path.

The Cache Management system failed.

Proxy Error Messages

186 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Misconfig
bu-init: invalid port parameter.
bu-init: must specify conf-file and instance.

The Batch Update configurations are invalid.

flex-log cannot find log named log name
invalid format for flex-log: log name

The Access Log configurations are invalid.

init-proxy: invalid timeout parameter

The Proxy Timeout value is invalid. (The proxy timeout value is set with the
init-proxy directive in the obj.conf file.)

Warning
ConnectSideIo timed out for url: URL
CreateIoCompletionPort failed for file: file name
CreateIoCompletionPort on connect socket failed
File upload failed for url (Transmit File): URL
Host connect error!
Host connect timed out!
Host resolution error!
Read on connect socket failed for url: URL
Write on connect socket failed for url: URL

The proxy server experienced an error while communicating with a remote server.

partition partition name already exists in cache.
failed to cleanup cache dir directory name

The proxy server experienced a cache administration error.

Disk i/o timed out for url: URL
Error: directory directory name is missing from section section name
Error: no second level directories found in section section name
Error: no sections found in cache directory name
Error: section section is missing from cache directory name
Error: unexpected directory directory name encountered...
Error: unexpected section section name encountered...
Failed to close cache file file name
Initiating garbage collection due to lack of space on disk in cache partition partition
name

SOCKS Error Messages

Chapter 14 Proxy Error Log Messages 187

last-modified in future (not caching): URL
Memory cache size Kilobytes is greater than available physical memory (physical
memory size).
Not storing Content-type value (mime type) because it is longer than
MAX_CONTENT_TYPE_LEN (maximum size).
Resetting max open files from number to number (max allowed 10000).
Warning: cleanup could not delete file file name
Warning: unexpected file encountered in cache file name.

The proxy server experienced a cache runtime error.

flex log buffer overflow- greater than maximum size characters
Truncating log to maximum tokens tokens

The proxy server experienced an access logging error.

SOCKS Error Messages
The SOCKS log file contains both error and access messages. The following are the
error messages that may appear in this log.

fatal: error in config file

The configuration file had one or more errors (listed earlier in the log file) that
made it futile to start up the SOCKS server

fatal: can’t create listening socket

A TCP socket could not be created.

fatal: can’t bind to socks port

Another application or daemon is using the SOCKS port.

fatal: can’t listen at socket

An internal error occurred during startup.

error: unknown request type 0x0D from host name:port number

Someone tried to use the SOCKS server for something that does not use the SOCKS
protocol.

error: auth: can’t open password file /etc/filename !

The specified password file does not exist.

error: illegal route: route

SOCKS Error Messages

188 iPlanet Web Proxy Server Administrator’s Guide • August 2003

The route specified in the configuration file isn’t a valid IP address or interface.

error: unknown field in config: text

Something in the configuration file unrecognized.

error: can’t open config file ’/etc/filename’

The SOCKS server cannotcannot open the specified configuration file.

error: ldap: can’t authenticate to server (specific reason)

The bind DN or password was rejected by the LDAP server.

error: ldap: can’t connect to servername:port

The specified LDAP server did not answer.

error: ldap: failed LDAP close (specific reason)

The SOCKS server could not close the connection to the LDAP server

error: ldap: server is down -- turning off LDAP auth

The LDAP server has vanished and ns-sockd cannot get in touch with it. ns-sockd
will try to contact the LDAP server every few minutes, and once it is contacted, will
enable LDAP authentication.

warning: ident: request from host name:port number is some text

The RFC 1413 ident response from that client was some text, not the user name

warning: auth: user user name tried to auth as user name

The user tried to authenticate as a user name even though the ident response was
another user name

warning: socks4 request from host name:port number can’t authenticate

The configuration file specifies that user name/password authentication is
required for this connection. However, the client is using SOCKS4 and cannot
authenticate that way. Thus, the client’s request is denied and the SOCKS server
logs a warning.

warning: request from host name:port number arrived via bad route!

A request arrived from the wrong interface meaning that someone is spoofing an
IP address, or the route information in the configuration file is wrong.

warning: request from host name:port number failed ident check

SOCKS Error Messages

Chapter 14 Proxy Error Log Messages 189

The client did not send the required ident response, so the connection was
dropped.

warning: passwd file: line number is bad

The format of the SOCKS5 password file is incorrect at or near the specified line.

SOCKS Error Messages

190 iPlanet Web Proxy Server Administrator’s Guide • August 2003

191

Chapter 15

Tuning Server Performance

This chapter explains how to tune your server’s performance using the online
forms as well as the configuration files. It also provides recommendations for
performance tuning. By tuning your server’s performance parameters, you can
optimize the speed and efficiency of your proxy server.

Using Timeouts Effectively
Timeouts have a significant impact on server performance. Setting the optimal
timeout for your proxy server will help to conserve network resources.

Proxy Timeout
The proxy timeout tells the server how long to wait before aborting an idle
connection. A high proxy timeout value commits a valuable proxy process to a
potentially dead client for a long time. A low timeout value will abort CGI scripts
that take a long time to produce their results, i.e. a database query gateway.

To determine the best proxy timeout for your server, you should consider these
issues:

• Will your proxy be handling many database queries or CGI scripts?

• Will your proxy server be handling a small enough amount of requests that it
can spare a process at any given time?

If you answered yes to the above questions, then you may decide to set a high
proxy timeout value. The highest proxy timeout value recommended is 1 hour.
You can view or modify the proxy timeout value on the System Specifics form. You
can access this form by choosing Server Preferences|System Specifics from the
Server Manager.

Controlling Up-To-Date Checks

192 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Controlling Up-To-Date Checks
For the sake of performance, it is not recommended that you configure your proxy
server to check if a cached document is up-to-date each time that document is
requested. Frequent up-to-date checks may unnecessarily consume network
resources. Therefore, you may not want to have your server perform up-to-date
checks all of the time. To improve the server’s performance while ensuring that a
document is up-to-date, choose a reasonable document lifetime in conjunction with
the last-modified factor. For more information on the last-modified factor, see
“Setting the Last-modified Factor” on page 192.

An up-to-date check range between 8 and 24 hours is recommended.

For more information on controlling up to date checks, see Chapter 10, “Caching.”

Setting the Last-modified Factor
The last-modified factor is a fraction which is multiplied by the interval between a
document’s last modification and the time that the last up-to-date check was
performed on the document. The resulting number is compared with the time since
the last up-to-date check. If the number is smaller than the time interval, the
document is not expired. The last-modified factor allows you to ensure that
recently changed documents are checked more often than old documents.

A recommended last-modified factor would be between 0.1 and 0.2. For more
information on setting the last-modified factor, see Chapter 10, “Caching.”

Using DNS Effectively
DNS (Domain Name Service) is the system used to associate standard IP addresses
with host names. This system can tie up valuable proxy resources if not configured
wisely. To optimize the performance of DNS:

• Do not log client DNS names

You can disable client DNS name logging by choosing Server Status|Log
Preferences from the Server Manager and deselecting the radio button for
recording client domain names. For more information on logging client
domain names, see “Setting Access Log Preferences” on page 167.

Using SOCKS Effectively

Chapter 15 Tuning Server Performance 193

• Log only client IP addresses

You can enable client IP address logging by choosing Server Status|Log
Preferences from the Server Manager and selecting the radio button for
recording client IP addresses. For more information on logging client IP
addresses, see “Setting Access Log Preferences” on page 167.

• Disable reverse DNS

Reverse DNS translates an IP address into a host name. You can disable reverse
DNS by choosing Server Preferences|System Specifics from the Server
Manager and selecting the “No” radio button for Enable DNS.

• Avoid access control based on client host names.

Use clients’ IP addresses instead, if possible. You can configure access control
by choosing Server Preferences|Restrict Access from the Server Manager. For
more information on access control, see Chapter 6, “Controlling Access to Your
Server.”

Using SOCKS Effectively
Using the socks5.conf file, you can determine the number of worker and accept
threads your SOCKS server uses. These numbers will influence the performance of
your SOCKS server.

Worker threads
Worker threads perform authentication and access control for new SOCKS
connections. If the SOCKS request is granted, the worker thread passes the
connection to the I/O thread which passes the data outside the firewall.

If the SOCKS server is too slow, you should increase the number of worker threads.
If it is unstable, decrease the number of worker threads. When changing the
number of worker threads, you should start at the default number and increase or
decrease as necessary.

The default number of worker threads is 40, and the typical number of worker
threads falls between 20 and 150. The absolute maximum number of worker
threads is 512, however, having more than 150 tends to be wasteful and unstable.

Optimizing Cache Architecture

194 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Accept Threads
Accept threads sit on the SOCKS port listening for new SOCKS requests. They pick
up the connections to the SOCKS port and hand each new connection to a worker
thread.

If the SOCKS server is dropping connections, you should increase the number of
accept threads. If it is unstable, decrease the number of accept threads. When
changing the number of accept threads, you should start at the default number and
increase or decrease as necessary.

The default number of accept threads is 40, and the typical number of accept
threads falls between 20 and 60. The absolute maximum number of accept threads
is 512, however, having more than 60 tends to be wasteful and unstable.

Optimizing Cache Architecture
You can improve the performance of your server by architecting your cache wisely.
Some suggestions to keep in mind when architecting your cache are:

• Distribute the load

• Use multiple proxy cache partitions

• Use multiple disk drives

• Use multiple disk controllers

Proper cache setup is critical to the performance of your proxy server. The most
important rule to remember when laying out your proxy cache is to distribute the
load. Caches should be set up with approximately 1 GB per partition and should be
spread across multiple disks and multiple disk controllers. This type of
arrangement will provide faster file creation and retrieval than is possible with a
single, larger cache. For more information on setting up your cache, see “Caching”
on page 89.

The Cache Batch Update feature in Sun ONE Web Proxy Server allows you to
proactively download content from a specified web site or perform scheduled
up-to-date checks on documents already in the cache. This gives you the ability to
cache content in large quantities at times when traffic on the server is low. Use
batch updates to download the most commonly accessed sites at the end of each
business day for quick access the following morning. You can use the log files to
help determine which sites are frequently accessed. For more information on batch
updates, see “Using Cache Batch Updates” on page 103.

195

Chapter 16

Proxy Reserved Ports

To avoid protocol spoofing by rouge/misconfigured URLs, Sun ONE Web Proxy
Server does not allow clients to connect on certain reserved ports.

If using an HTTP URL, the client may not configure the URL to use the following
ports:

1, 7, 9, 11, 13, 15, 17, 19, 20, 21, 23, 25, 37, 42, 43, 53, 70, 77, 79, 87, 95, 101, 102, 103,
104, 109, 110, 111, 113, 115, 117, 119, 135, 143, 389, 512, 513, 514, 515, 526, 530, 531,
532,540, 556, 601, 6000

If using an FTP URL, the client may not configure the URL to use the following
ports:

1, 7, 9, 11, 13, 15, 17, 19, 20, 23, 25, 37, 42, 43, 53, 70, 77, 79, 80, 87, 95, 101, 102, 103,
104, 109, 110, 111, 113, 115, 117, 119, 135, 143, 389, 512, 513, 514, 515, 526, 530, 531,
532, 540, 556, 601, 6000

The SOCKS server may not be configured to use the following ports:

1, 7, 9, 11, 13, 15, 17, 19, 20, 21,23, 25, 37, 42,43, 53, 70, 77, 79, 80, 87, 95, 101, 102, 103,
104, 109, 110, 111, 113, 115, 117, 119, 135, 143, 389, 512, 513, 514, 515, 526, 530, 531,
532, 540, 556, 601, 6000, 0

If the client attempts to connect on any of the above ports, the proxy server will
deny the connection and return the following error:

“Access to the port number given has been disabled for security reasons.”

196 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

197

Chapter 17

Configuring the Proxy Manually

This chapter describes the configuration files that iPlanet Web Proxy Server uses.
These are the files that you’re changing when you use iPlanet Web Proxy Server
Manager online forms. You can also configure iPlanet Web Proxy Server manually
by editing the files directly.

You might need to configure iPlanet Web Proxy Server manually for various
reasons. If you accidentally lock your hosts out of the administrative forms or
forget your administrative password, you’ll have to change information manually
in the proxy’s configuration files. Perhaps more importantly, you will probably
need to develop an understanding of what your configuration files do for you, so
that you can write scripts to automate configuration functions that you might want
in addition to those available in the online forms. This is especially useful if, for
example, you are using many proxy servers or your URL lists require frequent or
high-volume updates.

Before you can edit any of the configuration files, you must have permission to
read and write to the files.

The files that you use to configure the proxy are in the
server_root\proxy-id\config directory. Here’s a brief description of each file:

• magnus.conf is the server’s main technical configuration file. It controls
aspects of the server operation not related to specific resources or documents,
such as host name and port.

• obj.conf is the server’s object configuration file. It controls access to the
proxy server and determines how documents are proxied and cached.

• mime.types is the file the server uses to convert file name extensions such as
.GIF into a MIME type like image/gif.

The magnus.conf File

198 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

• admpw is the administrative password file. Its format is user:password. The
password is DES-encrypted, just like /etc/passwd. This file, as opposed to the
other configuration files, is located in the server root\admin-serv\config
directory.

• socks5.conf is a file that contains the SOCKS server configuration. The
SOCKS daemon is a generic firewall daemon that controls point-to-point access
through the firewall. If you use SOCKS, the SOCKS server configuration file is
the server-root\proxy-id\config\socks5.conf file. This file is described on
page 207.

• bu.conf is an optional file that contains batch update directives. You can use
these to update many documents at once. You can time batch updates; for
example, you can have them occur during off-peak hours to minimize the
effect on the efficiency of the server.

• icp.conf is the Internet Cache Protocol (ICP) configuration file. It identifies
the information about the parent and sibling servers in a proxy array that uses
ICP.

• parray.pat is the Proxy Array Table file. The PAT file is an ASCII file used in
proxy to proxy routing. It contains information about a proxy array; including
the members’ machine names, IP addresses, ports, load factors, cache sizes, etc.
For more information on the syntax of the parray.pat file, see “The parray.pat
File” on page 210.

• parent.pat is the Proxy Array Table file that contains information about an
upstream proxy array. For more information on the syntax of the parent.pat
file, see “The parent.pat File” on page 211.

• ras.conf is an optional file that contains information about how your proxy
server uses remote access.

The magnus.conf File
The technical configuration file, magnus.conf, controls all global server operations.
All of the items in the magnus.conf file apply to the entire proxy server, as
opposed to affecting only one URL or set of URLs. The obj.conf file handles URLs
(also called resources).

Every command line in the file has this format:

Directive Value

Directive identifies an aspect of server operation. This string is not case-sensitive.

The obj.conf File

Chapter 17 Configuring the Proxy Manually 199

Value is a number or label you give the directive. Its format depends on the
directive. Unlike the Directive string, this string is usually case-sensitive.

Directive lines should not contain white spaces at the beginning of the line or more
than one space between the directive and value. Comment lines begin with a #
character with no leading white space. If you operate on the configuration files
with the Server Manager, when it writes the files out again it does not write
comment lines.

The directives in magnus.conf are explained in detail in Appendix C, “Proxy
Configuration Files.”

The obj.conf File
The iPlanet Web Proxy Server object configuration file, obj.conf, uses objects to
control how the server performs access control, routes URLs, and initializes server
subsystems.

Configuration objects (also called resources) are settings that tell the proxy how to
treat URLs. URLs matching a specified wildcard pattern belong to the same
configuration object (or resource). This object grouping can then be used to control,
in fine detail, the behavior of the proxy server.

Using this object-grouping scheme, you can specify single resources with their
complete URL, whole “directories” with the path followed by /.*, and various
other groups such as .*\.html. You can then configure the settings you want to use
for that object (for example, caching or denying access based on the server’s host
name or a string in a URL).

The Structure of obj.conf
The obj.conf file must have specific objects in it (the objects are described on
page 202). You can add other objects to this file. To specify an object, use this
format:

<Object ppath=reg-exp>

Directives

...

<Client dns=shell-exp>

Directives

The obj.conf File

200 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

...

</Client>

</Object>

Although <Client> lines are not required, you can have as many as needed.

If you want to control access at the URL level, you can use regular expression
patterns to control which URLs are grouped in the object. You can then specify one
or more directives to control what the proxy server does when it encounters any
URL matching the regular expression pattern specified with ppath.

You can also set options for specific client hosts. This is a powerful feature. Unlike
other proxy servers that simply control whether a host can or cannot access a URL,
you can make the proxy act differently depending on which user or host is
requesting the URL.

Directive Syntax
Each directive line (regardless of where it appears in obj.conf) has this format:

Directive fn=function [parameter1=value1]...[parameterN=valueN]

Directive identifies an aspect of server operation. This string is not case-sensitive
and must appear at the beginning of a line.

Function is a function and parameters given to the directive. Its format depends on
the directive.

Directive lines cannot contain spaces at the beginning of the line or extra spaces
between the directive and value. You shouldn’t use trailing spaces after the value
because they might confuse the server. Long lines can be continued by starting the
next line with white space. White space is any keystroke that leaves space on the
screen, such as space bar, tab, carriage return, line feed, or vertical tab. Comment
lines begin with a # character with no leading white space. If you operate on the
configuration files with the Server Manager, when it writes the files out again it
does not write comment lines.

Caution!
If you are using the Administration forms, you shouldn’t use continuation lines in
the obj.conf file. Instead, put each directive entirely on a single line. If you are
absolutely sure you will never use the Administration forms to edit the obj.conf
file, you can use the \ character.

The obj.conf File

Chapter 17 Configuring the Proxy Manually 201

A Sample Object
The following sample object applies to all HTTP URLs (the pattern is http://.*).
When the proxy receives a request for an HTTP document, it scans the URL for the
string play (as specified in PathCheck); if it finds that string in the URL, it doesn’t
retrieve the document from the remote server, and it denies service to the client.

<Object ppath="http://.*">
PathCheck fn=deny-service

path=".*play.*"
ObjectType fn=cache-setting

max-uncheck=14400
lm-factor=0.1

Service fn=proxy-retrieve
</Object>

This object also caches all HTTP documents and refreshes the documents if they are
older than four hours or if they need refreshing as determined by the date they
were last modified. The Service directive tells the proxy to retrieve the HTTP
documents by default. The following code is an example of an obj.conf file on a
Unix system:

iPlanet Communications Corporation - obj.conf
You can edit this file, but comments and formatting changes
might be lost when the admin server makes changes.
Init fn="flex-init" format.access="%Ses->client.ip% - %Req->vars.auth-user%
[%SYSDATE%]
\"%Req->reqpb.proxy-request%\" %Req->srvhdrs.status% %Req->vars.p2c-cl%"
access=""
Init fn="load-types" mime-types="mime.types"
Init fn="init-proxy" timeout="1200"
Init fn="init-cache" status="on"
<Object name="default">
NameTrans from="file:" fn="map" to="ftp:"
NameTrans from="\ns-icons" fn="pfx2dir" dir="" name="file"
PathCheck fn="url-check"
PathCheck fn="check-acl" acl="proxy-TEST_formgen-READ-ACL_allow-1970"
PathCheck fn="check-acl" acl="proxy-TEST_formgen-WRITE-ACL_deny-1970"
Service fn="deny-service"
AddLog fn="flex-log" name="access"
</Object>
<Object name="file">
PathCheck fn="unix-uri-clean"
PathCheck index-names="index.html" fn="find-index"
ObjectType fn="type-by-extension"
ObjectType fn="force-type" type="text/plain"
Service fn="send-file"
</Object>

The obj.conf File

202 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

<Object ppath="ftp://.*">
ObjectType fn="cache-enable"
ObjectType fn="cache-setting" max-uncheck="21600"
Service fn="proxy-retrieve"
</Object>
<Object ppath="http://.*">
ObjectType fn="cache-enable"
ObjectType lm-factor="0.100" fn="cache-setting" max-uncheck="3600"
Service fn="proxy-retrieve"
</Object>
<Object ppath="https://.*">
Service fn="proxy-retrieve"
</Object>
<Object ppath="gopher://.*">
ObjectType fn="cache-enable"
ObjectType fn="cache-setting" max-uncheck="14400"
Service fn="proxy-retrieve"
</Object>
<Object ppath="connect://.*:443">
Service fn="connect" method="CONNECT"
</Object>
<Object ppath="connect://.*:563">
Service fn="connect" method="CONNECT"
</Object>

Required Objects for obj.conf
Certain objects must be in the obj.conf file to make the Administration forms

The obj.conf File

Chapter 17 Configuring the Proxy Manually 203

The Default Object
The default object contains the required directives. Named objects are objects
identified by <Object name=...> in the object configuration file. To control the
behavior of the entire server, you would modify the setting for the default object.
This object must contain all of the name-translation directives for the server, and it
should contain any global configuration changes. Here is an example of a default
object for a proxy server running on Windows NT:

<Object name=default>
NameTrans fn=map from=file: to=ftp:
NameTrans fn=pfx2dir from=\ns-icons
dir="\iplanet\server\proxy1\ns-icons" name=file
Service fn=deny-service
AddLog fn=flex-log
</Object>

• The first NameTrans directive takes care of URLs that use “file:” by changing
them to “ftp:” URLs. If you have any mappings to mirror sites, put them after
this mapping.

• The next NameTrans directive maps the ns-icons URL into its directory. These
are the only legal uses for the pfx2dir function, which doesn’t belong to the
actual proxy configuration (you’ll get errors if you try to use it anywhere else).

• The deny-service function ensures that by default access isn’t granted. (Access
isn’t granted by default even if you forget this function, but the error message
is less descriptive and it is classified as a misconfiguration.)

• The flex-log function takes care of proxy access logging, whether it is in
flexible, common, extended, or extended-2 log format. This function can have
the additional iponly=1 parameter, which inhibits reverse DNS lookups and
logs only the IP address of the requesting client.

How the Proxy Server Handles Objects
Sun ONE servers, (the HTTP server and the proxy) respond to an information
request by following certain steps. Each step in the process is done once for all
objects, then another step is done for all objects, and so on. The process steps that
the server performs are:

1. Authorization translation. Translate any authorization information given by the
client into a user and group. If necessary, decode the message to get the actual
request. Also, proxy authorization is available.

The mime.types File

204 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

2. Name translation. Before anything else is done, a URL can be translated into a
file-system-dependent name (an administration URL), a redirection URL, or a
mirror site URL, or it might be kept intact and retrieved as is (the normal case
for proxy).

3. Path checks. Perform various tests on the resulting path, largely used to make
sure that it’s safe for the given client to retrieve the document (only for local
access).

4. Object type determination. Determine the MIME type information for the given
document. MIME types can be registered document types such as text/html
and image/gif, or they can be internal document identification types. Internal
types always begin with magnus-internal/ and are used to select a server
function to use to decode the document (only used for local access; the proxy
system calls these routines automatically when necessary).

5. Service selection. Select the internal server function that should be used to send
the result back to the client. This function can be the normal proxy service
routine, or local file blast.

6. Logging selection.Determine whether to log the transaction or not.

These steps map directly to several configuration directives allowed for each
object. Another configuration directive, send-error, controls how the server
responds to the client when it encounters an error.

The directives in obj.conf are explained in detail in Appendix C, “Proxy
Configuration Files.”

The mime.types File
The mime.types file tells the server how to convert files with certain extensions
(such as .gif) into a MIME type (such as image/gif). MIME files are compact files
and transfer quickly. Also, MIME is needed by browsers (like Netscape Navigator);
without MIME they can’t tell the difference between an HTML page and a graphics
file.

The mime.types file contains the global file extensions for all proxy servers. The
first line in the file identifies the file format and must read:

#--iPlanet Communications Corporation MIME Information

This code is a sample mime.types file:

The mime.types File

Chapter 17 Configuring the Proxy Manually 205

#--iPlanet Communications Corporation MIME Information
Don’t delete the above line. It identifies this file’s type.
#
This is a simple MIME types file for iPlanet Web Proxy Server. Most
of the MIME types are already compiled in the proxy. Types that
are part of the Administration forms (HTML and GIF) must appear
here, or they won’t be known to the part of the server that
manages the Administration interface calls.
#
Icons (internal-gopher-...) are references to iPlanet's
internal icons. If a client doesn't support these icons, the
proxy will provide them.
type=application/oda exts=oda
type=application/pdf exts=pdf
type=application/x-mif exts=mif
type=application/x-dvi exts=dvi
type=application/x-hdf exts=hdf
type=application/x-netcdf exts=nc,cdf
type=application/x-texinfo exts=texinfo,texiicon=internal-gopher-text
type=application/zip exts=zip
type=application/x-tar exts=tar
type=application/x-macbinary exts=bin
type=application/x-stuffit exts=sit
type=image/gif exts=gif icon=internal-gopher-image
type=image/jpeg exts=jpeg,jpg,jpeicon=internal-gopher-image
type=image/x-xwindowdump exts=xwd icon=internal-gopher-image
type=text/html
exts=htm,html,shtml icon=internal-gopher-text
type=text/plain exts=txt icon=internal-gopher-text
type=text/richtext exts=rtx icon=internal-gopher-text
type=text/tab-separated-values exts=tsv icon=internal-gopher-text
type=text/x-setext exts=etx icon=internal-gopher-text
type=application/x-tar enc=x-gzip exts=tgz
enc=x-gzip exts=gz
enc=x-compress exts=z

Parameters

The admpw File

206 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

icon is the name of the icon the browser displays; the icons are shown in
Figure 17-1. Netscape Navigator keeps these images internally. If you use a
browser that doesn’t have these icons, iPlanet Web Proxy Server delivers them.

Figure 17-1 Internal icons for MIME types

Warning
If you set the .pac MIME type to anything other than
application/x-ns-proxy-autoconfig, the proxy autoconfiguration feature will
not work.

The admpw File
The admpw file contains the administration password. If you forget your password,
there is no way to find out what it was. You must encrypt a new one and replace
the old version with it. The file has the format user:password.

If you forget your administration password, you can edit the admpw file and delete
the password section (everything after the semicolon). When you go to the
administration server, you don’t need to enter a new password, but you should
immediately go to Access Control in the iPlanet Web Proxy Server Manager and set
a new one.

The socks5.conf File

Chapter 17 Configuring the Proxy Manually 207

Warning!
Because you can replace the Administration password, it is very important to keep
secure the proxy’s account and to ensure that only that proxy account full
(read/write) access to the server root directory. This way, only someone running as
root or with the proxy’s user account can enter the server root\admin-serv\config
directory and edit the file.

The socks5.conf File
The SOCKS daemon is a generic firewall daemon that controls point-to-point
access through the firewall. By default, the SOCKS daemon features are disabled.
The iPlanet Web Proxy Server supports SOCKS versions 4 and 5.

The proxy uses the file socks5.conf to control access to the SOCKS proxy server
and its services. Each line defines what the proxy does when it gets a request that
matches the line.

When the SOCKS daemon receives a request, it checks the request against the lines
in the socks5.conf file. When it finds a line that matches the request, the request is
permitted or denied based on the first word in the line (permit or deny). Once it
finds a matching line, the daemon ignores the remaining lines in the file. If there
are no matching lines, the request is denied. You can also specify actions to take if
the client’s identd or user ID is incorrect by using #NO_IDENTD: or #BAD_ID as
the first word of the line. Each line can be up to 1023 characters long.

Although the SOCKS daemon doesn’t know if a host is internal to its network, it
does know which host is the requestor and which is the destination (it uses this for
access control). This means SOCKS daemon provides access from external hosts
into your internal networks in addition to the normal internal-to-external proxy
functionality.

The bu.conf File

208 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

The bu.conf File
The optional bu.conf file contains batch update directives. You can use these to
update many documents at once. You can time these updates to occur during
off-peak hours to minimize the effect on the efficiency of the server. The format of
this file is described in this section. For more information on batch updating and
starting the batch update function, see “init-batch-update (starting batch updates)”
on page 346 of Appendix C.

Object Boundaries
All of the batch update directives must be in Object boundaries.

The pairs of Object boundaries indicate the individual configurations in the
bu.conf file. If you give a unique name to each occurrence, you can specify these
boundaries any number of times.

Where you see italicized text in the directive syntax examples, substitute your own
information in place of the italicized text.

Syntax
<Object name=object_name>

...

</Object>

NOTE Use caution with the external-to-internal functionality. If you don’t
need external to internal access, you should specifically deny such
connections. For example, if 198.95 is your internal network, use the
following as the first lines in socks5.conf to protect your internal
hosts from external access attempts:

auth 198.95. - -

ban - -

These lines will allow anyone on the 198.95 intranet to authenticate
using any type of authentication, and will ban all other hosts from
the server.

For information on the syntax of socks5.conf, see “The socks5.conf
File” on page 370.

The icp.conf File

Chapter 17 Configuring the Proxy Manually 209

The directives in bu.conf are explained in detail in Appendix C, “Proxy
Configuration Files”

Examples of bu.conf
Here are some examples of code in a bu.conf file for a proxy server running on
Windows NT:

This example code updates the entire cache every evening:

<Object name="default">
Source internal
Count 300
Days Sun Mon Tue Wed Thu Fri Sat
Time 20:00 - 3:00
<Object>

This example code tells the proxy to get all of iPlanet’s web site and everything to
which it points, including the first ten levels of indirection, between 11 p.m. and
6 a.m. starting Saturday and Sunday nights. It also indicates to allocate a high
number of resources to the task, asking for 16 connections.

<Object name="greedy">
Source http://www.iplanet.com/ Depth 10
Type inline
Type text/html
Connections 16
Count 5000
Time 23:00-6:00
Days Sat Sun
<Object>

The icp.conf File
This file is used to configure the Internet Cache Protocol (ICP) feature of your
server. There are three functions in the icp.conf file, and each can be called as
many times as necessary. Each function should be on a separate line. The three
functions are add_parent, add_sibling, and server.

NOTE The following example is for illustrative purposes and is not
recommended due to the size of iPlanet’s site.

The parray.pat File

210 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

For more information on this file and the functions within it, see “The icp.conf File”
on page 384 of Appendix C, “Proxy Configuration Files.”

The parray.pat File
The parray.pat (PAT) file describes each member in the proxy array of which the
proxy you are administering is a member. The PAT file is an ASCII file used in

The parent.pat File

Chapter 17 Configuring the Proxy Manually 211

statetime is the amount of time the member has been in its current state.

status specifies whether the member is enabled or disabled.

❍ on means that the member is on.

❍ off means that the member is off. If the member is off, its requests will be
routed through another member of the array.

loadfactor is an integer that reflects the number of requests that should be routed
through the member.

cachesize is the size of the member’s cache.

Example
Proxy Array Information/1.0
ArrayEnabled: 1
ConfigID: 1
ArrayName: parray
ListTTL: 10

proxy1 200.29.186.77 8080 http://pat iPlanetProxy/3.6 0 on 100 512
proxy2 187.21.165.22 8080 http://pat iPlanetProxy/3.6 0 on 100 512

The parent.pat File
The parent.pat file is the Proxy Array Table file that contains information about
an upstream proxy array. This file has the same syntax as the parray.pat file.

The ras.conf File
The ras.conf file is used to configure the remote access feature of your proxy
server. This file contains information that the proxy server needs in order to dial
out to the Internet via a modem. For more information on the syntax of the ras.conf
file , see “The ras.conf File” on page 388.

Example
UserName user1
Password pwd
Domain
DialEntry RASEntry
DialoutThreshold 15
Schedule mon:1200-2400;wed:1200-2400;fri:1200-2400

The ras.conf File

212 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

213

Chapter 18

Creating Server Plug-in Functions

This chapter describes how to create and compile your plug-in functions using the
Sun ONE Web Proxy Server plug-in application programming interface (API) and
how to use the functions you create.

Before creating plug-in functions, you should be familiar with the server
configuration files and the built-in functions.

What Is the Server Plug-in API?
The server plug-in API is a set of functions and header files that help you create
functions to use with the directives in server configuration files. The Sun ONE Web
Proxy Server uses this API to create the functions for the directives used in both
magnus.conf (the server configuration file) and obj.conf (the object configuration
file).

The server uses this API, so by becoming familiar with the API, you can learn how
the server works. This means you can override the server functionality, add to it, or
customize your own functions. For example, you can create functions that use a
custom database for access control or functions that create custom log files with
special entries.

These steps are a brief overview of the process for creating your own plugin
functions:

 For NT, you compile your code to create a dynamic link library (.dll file).For an
NT proxy server, tell the server to load your .dll file in obj.conf.Before you write
your functions, you should understand how the server handles requests.

Writing Plug-in Functions

214 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Writing Plug-in Functions
This section describes how to begin writing your plug-in functions. It also
describes the header files you need to include in your code. See “Compiling and
Linking Your Code” on page 222 for additional information.

The server root directory has a subdirectory called nsapi that contains sample
code, the header files, and a makefile. You should familiarize yourself with the
code and samples. This documentation is written as a starting point for exploring
that code. Figure 18-1 shows the hierarchy of the server plug-in API header files.

• The nsapiexamples directory contains C files with examples for each class of
function you can create.

• The nsapiinclude directory contains all the header files you need to include
when writing your plug-in functions.

Figure 18-1 The hierarchy of server plug-in API header files

The server and its header files are written in ANSI C. On some systems you must
have an import list that specifies all global variables and functions you need to
access from the server binary.

...

...

conf.h

buffer.h

netsite.h

include

nsapi.

examples

frame

base

...
cacheaccess.h (NT)

libproxy

Writing Plug-in Functions

Chapter 18 Creating Server Plug-in Functions 215

The Server Plug-in API Header Files
This section describes the header files you can include when writing your plug-in
functions. This section is intended as a starting point for learning the functions
included in the header files.

Most of the header files are stored in two directories:

• nsapiincludebase contains header files that deal with low-level,
platform-independent functions such as memory, file, and network access.

• nsapiincludeframe contains header files of functions that deal with server-
and HTTP-specific functions such as handling access to configuration files and
dealing with HTTP.

One header file, netsite.h, is stored in the nsapiinclude directory.

Table 18-1 Header files in the base directory

Header File Description

buffer.h Contains functions that buffer I/O (input/output)
for a file or a socket descriptor.

cinfo.h Contains functions for object typing, specifically
mapping files to MIME types.

crit.h Contains functions for managing critical sections,
an abstraction that facilitates the management of
threaded servers.

daemon.h Contains functions called from other header files.
It also contains functions that manage group
processes that run the server.

ereport.h Contains functions that handle low-level errors.

file.h Contains functions to handle file I/O.

net.h Contains functions for I/O with the client software
over the network.

pblock.h Contains functions that manage parameter passing and
server internal variables. It also contains
functions to get values from a user via the server.

pool.h Contains routines that manage memory pools.

regexp.h Contains functions that support regular expressions.

Writing Plug-in Functions

216 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

sem.h Contains semaphores in platform-independent ways
(they prevent two processes from doing the same
thing).

session.h Contains session data structures for IP addresses,
security, and so on.

shexp.h Contains functions to customize wildcard patterns
through parsed data.

shmem.h Contains functions that support shared memory.

systems.h Contains functions that handle systems information.

systhr.h Contains functions that support the abstract
threading mechanism.

util.h Contains utility functions.

conf.h Contains functions to access magnus.conf (for
example, to get port numbers or internal global
variables).

func.h Contains data structures. This file is rarely used.

http.h Contains functions for the HTTP protocol. Most of
these functions are called from functions in
protocol.h.

log.h Contains functions for logging errors.

object.h Contains functions for reading obj.conf. You’ll
rarely use these functions.

objset.h Contains functions for reading obj.conf. You’ll
rarely use these functions.

protocol.h Contains functions that perform protocol-specific
actions.

req.h Contains request data structures.

util.h Contains proxy utility functions.

cacheaccess
.h (NT
only)

Contains functions that provide access to the cache.

netsite.h Contains miscellaneous functions and some vital
definitions. Be sure to include this in all your .c
files, to make sure that the necessary definitions
(#defines) are established.

Table 18-1 Header files in the base directory

Header File Description

Writing Plug-in Functions

Chapter 18 Creating Server Plug-in Functions 217

Getting Data from the Server: The Parameter
Block
The server stores variables in name-value pairs. The parameter block, or pblock, is
a hash table keyed on the name string. The pblock maps these name strings onto
their value character strings.

Basically, your plug-in functions use parameter blocks to get, change, add, and
remove name-value pairs of data. In order to use the functions to do these actions,
you need to know a bit about how the hash table is formed and how the data
structures are managed.

The pb_param structure is used to manage the name-value pairs for each client
request. The pb_entry structure creates linked lists of pb_param structures. See
“The Session Data Structure,” on page 317 for more information.

Passing Parameters to Server Application
Functions
All server application functions (regardless of class) are described by this
prototype:

int function(pblock *pb, Session *sn, Request *rq);

pb is the parameter block containing the parameters given by the site administrator
for this function invocation.

Caution!
The pb parameter should be considered read-only, and any data modification
should be performed on copies of the data. Doing otherwise is unsafe in threaded
server architectures and will yield unpredictable results in multiprocess server
architectures.

Parameter-manipulating Functions
When adding, removing, editing, and creating name-value pairs, you use the
following functions. This list might seem overwhelming, but you’ll use only a
handful of these functions in your plug-in functions.

The param_create function creates a parameter with the given name and value. If
the name and value aren’t null, they are copied and placed in the new pb_param
structure.

Writing Plug-in Functions

218 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

The param_free function frees a given parameter if it’s non-NULL. It is also useful
for error checking before using the pblock_remove function.

The pblock_create function creates a new parameter block with a hash table of a
chosen size.

The pblock_free function frees a given parameter block and any entries inside it.

The pblock_find function finds the name-value entry with the given name in a
given parameter block.

The pblock_findval function finds the value portion of a name-value entry with a
given name in a given parameter block and returns its value.

The pblock_remove function behaves like the pblock_find function, but when it
finds the given parameter block, it removes it.

The pblock_nninsert and pblock_nvinsert functions both create a new parameter
with a given name and value and insert it in a given parameter block. The
pblock_nninsert function requires that the value be an integer, but the
pblock_nvinsert function accepts a string.

The pblock_pinsert function inserts a parameter in a parameter block.

The pblock_str2pblock function scans the given string for parameter pairs in the
format name=value or name=“value”.

The pblock_pblock2str function places all of the parameters in the given
parameter block in the given string. Each parameter is of the form name=“value”
and is separated by a space from any adjacent parameter.

Data Structures and Data Access Functions
The data structures are Session (see “The Session Data Structure,” on page 317) and
Request (see “The Request Data Structure” on page 319). The data access function is
request_header.

The Request->vars parameter block contains the server’s working variables. The
set of active variables is different depending on which step of the request the server
is processing.

The Request->reqpb parameter block contains the request parameters that are sent
by the client:

• method is the HTTP method used to access the object. Valid HTTP methods are
currently GET, HEAD, and POST.

Writing Plug-in Functions

Chapter 18 Creating Server Plug-in Functions 219

• uri is the URI for which the client asks. The uri is the part of the URL following
the host:port combination. This uri is unescaped by the server using URL
translations.

• protocol identifies the protocol the client is using.

• clf-request is the full text of the first line of the client’s request. This is used for
logging purposes.

The Request->headers parameter block contains the client’s HTTP headers. HTTP
sends any number of headers in this form (RFC 822):

Name: value

If more than one header has the same name, then they are concatenated with
commas:

Name: value1, value2

The parameter block is keyed on the fully lowercase version of the name string
without the colon.

The Request_header Function
The request_header function finds the parameter block that contains the client’s
HTTP headers.

#include "framereq.h"

int request_header(char *name, char **value, Session *sn, Request
*rq);

The name parameter should be the lowercase header name string for which to look,
and value is a pointer to your char * that should contain the header. If no header
with the given name is sent, value is set to NULL.

The Request->srvhdrs parameter block is the set of HTTP headers for the server to
send back. This parameter block can be modified by any function.

The last three entries in the Request structure should be considered transparent to
application code because they are used by the server’s base code.

After the server has a path for the file it intends to return, application functions
should use the request_stat_path function to obtain stat information about the file.
This avoids multiple, unnecessary calls to the stat function.

Application Function Status Codes
When your plug-in function is done working with the name-value pairs, it must
return a code that tells the server how to proceed with the request.

Writing Plug-in Functions

220 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Reporting Errors to the Server
When problems occur, server application functions should set an HTTP response
status code to give the client an idea of what went wrong. The function should also
log an error in the error log file.

There are two ways of reporting errors: setting a response status code and
reporting an error.

Setting an HTTP Response Status Code
The protocol_status function sets the status to the code and reason string. If the
reason is NULL, the server attempts to match a string with the given status code
(see Table 18-2). If the server can’t find a string, it uses “Unknown error.”

#include "frame/protocol.h"
void protocol_status(Session *sn, Request *rq, int n, char *r);

Generally, protocol_status will be called with a NULL reason string, and one of the
following status codes defined in the protocol.h file. If no status is set or the code
is set as NULL, the default is PROTOCOL_SERVER_ERROR.)

Table 18-2 Status codes used with protocol_status

Status code Definition

PROTOCOL_BAD_REQUEST The request was unintelligible. Used primarily in
the framework library.

PROTOCOL_FORBIDDEN The client is explicitly forbidden to access the
object and should be informed of this fact.

PROTOCOL_NOT_FOUND The server was unable to locate the item
requested.

PROTOCOL_NOT_IMPLEMENTED The client has asked the server to perform an
action that it knows it cannot do. Generally, you
would use this to indicate your refusal to
implement an HTTP feature.

PROTOCOL_NOT_MODIFIED If the client gave a conditional request, such as
an HTTP request with the if-modified-since
header, this indicates that the client should use
its local copy of the data.

PROTOCOL_OK Normal status; the request will be fulfilled
normally. This should be set only by
Service-class functions.

Writing Plug-in Functions

Chapter 18 Creating Server Plug-in Functions 221

Error Reporting
When errors occur, it’s customary to report them in the server’s error log file. To do
this, your plug-in functions should call log_error. This logs an error and then
returns to tell you if the log records successfully (a return value of 0 means success;
-1 means failure).

#include "frame/log.h"

int log_error(int degree, char *func, Session *sn, Request *rq,
char *fmt, ...);

You can give log_error any printf() style string to describe the error. If an error
occurs after a system call, use the following function to translate an error number
to an error string:

#include "base/file.h"
char *system_errmsg(SYS_FILE fd);

PROTOCOL_REDIRECT The client should be directed to a new URL, which
your function should insert into the rq->vars
parameter block as url.

PROTOCOL_SERVER_ERROR Some sort of server-side error has occurred.
Possible causes include misconfiguration,
resource unavailability, and so on. Any error
unrelated to the client generally falls under
this rather broad category.

PROTOCOL_UNAUTHORIZED The client did not give sufficient authorization
for the action it was trying to perform. A
WWW-authenticate header should be present in the
rq->srvhdrs parameter block that indicates to the
client the level of authorization it needs to
perform its action.

NOTE The fd parameter is vestigial and might need to be changed for
operating systems other than Unix and Windows NT. Therefore, it is
best to set fd to zero.

Table 18-2 Status codes used with protocol_status

Status code Definition

Compiling and Linking Your Code

222 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Compiling and Linking Your Code
You can compile your code with any ANSI C compiler. However, the makefile in
the \nsapi\include directory (pexample.mak) is provided for Visual C++ 4.2.

For Windows NT, you use Microsoft Visual C++ 2.0 to compile a DLL. You must
create a file that lists each function you want to export to the server. You also need
the file httpd.lib, which gives you the locations needed to link your library.

Loading Your Shared Object
After you’ve compiled your code, you need to tell the server to load the shared
object and its functions so that you can begin using your plug-in functions in
obj.conf.

When the server starts, it uses obj.conf to get its configuration information. To tell
the server to load your shared object and functions in the dynamic link library, you
add this line to obj.conf:

Init fn=load-modules shlib=[path]filename.dll
funcs="function1,function1,...,functionN”

This initialization function opens the given dynamic link library and loads the
functions function1, function2, and so on. You then use the functions function1 and
function2 in the server configuration files (either magnus.conf or obj.conf).
Remember to use the functions only with the directives for which you wrote them,
as described in the following section.

Using Your Plug-in Functions
When you have compiled and arranged for the loading of your functions, you need
to provide for their execution. All functions are called as follows:

Directive fn=function [name1=value1] ... [nameN=valueN]

• Directive identifies the class of function that is being called. Functions should
not be called from the wrong directive!

• fn=function identifies the function to be called using the function’s unique
character-string name.

These two parameters are mandatory. After this, there may be an arbitrary number
of function-specific parameters, each of which is a name-value pair.

Using Your Plug-in Functions

Chapter 18 Creating Server Plug-in Functions 223

You specify your function in the directive for which it was written. For example,
the following line uses an AddLog-class plug-in function called myaddlog that
adds an entry to a log file called mylogfile. The plug-in function accepts another
parameter that defines how much information to log.

AddLog fn=myaddlog name="mylogfile" type="maxinfo"

Using Your Plug-in Functions

224 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

225

Appendix A

Server Plug-in API Function
Definitions

This chapter lists all the public functions and macros of the Server plug-in
Applications Programming Interface (server plug-in API) in alphabetical order.
Each description identifies the name of the function, its header file, its syntax, its
parameters, an example of its use, and a list of related functions. Descriptions of the
data structures that are not common to the C programming environment can be
found in Appendix B, “Server Data Structures.”

condvar_init (declared in base\crit.h)
The condvar_init function is a critical-section function that initializes and returns a
new condition variable associated with a specified critical-section variable. You can
use the condition variable to manage the prevention of interference between two
threads of execution.

Syntax
#include <base\crit.h>
CONDVAR condvar_init(CRITICAL id);

Returns
A newly allocated condition variable (CONDVAR).

Parameters
CRITICAL id is a critical-section variable.

See also
condvar_notify, condvar_terminate, condvar_wait, crit_init.

condvar_notify (declared in base\crit.h)

226 iPlanet Web Proxy Server Administrator’s Guide • August 2003

condvar_notify (declared in base\crit.h)
The condvar_notify function is a critical-section function that awakens any threads
that are blocked on the given critical-section variable. Use this function to awaken
threads of execution of a given critical section. First, use crit_enter to gain
ownership of the critical section. Then use the returned critical-section variable to
call condvar_notify to awaken the threads. Finally, when condvar_notify returns,
call crit_exit to surrender ownership of the critical section.

Syntax
#include <base\crit.h>
void condvar_notify(CONDVAR cv);

Returns
void

Parameters
CONDVAR cv is a condition variable.

See also
condvar_init, condvar_terminate, condvar_wait, crit_enter, crit_exit, crit_init.

condvar_terminate (declared in base\crit.h)
Critical-section function that frees a condition variable. Use this function to free a
previously allocated condition variable.

WARNING
Terminating a condition variable that is in use can lead to unpredictable results.

Syntax
#include <base\crit.h>
void condvar_terminate(CONDVAR cv);

Returns
void

Parameters
CONDVAR cv is a condition variable.

See also
condvar_init, condvar_notify, condvar_wait, crit_init.

condvar_wait (declared in base\crit.h)

Appendix A Server Plug-in API Function Definitions 227

condvar_wait (declared in base\crit.h)
Critical-section function that blocks on a given condition variable. Use this function
to wait for a critical section (specified by a condition variable argument) to become
available. The calling thread is blocked until another thread calls condvar_notify
with the same condition variable argument. The caller must have entered the
critical section associated with this condition variable before calling condvar_wait.

Syntax
#include <base\crit.h>
void condvar_wait(CONDVAR cv);

Parameters
CONDVAR cv is a condition variable.

Returns
void

See also
condvar_init, condvar_notify, condvar_terminate, crit_init.

crit_enter (declared in base\crit.h)
Critical-section function that attempts to enter a critical section. Use this function to
gain ownership of a critical section. If another thread already owns the section, the
calling thread is blocked until the first thread surrenders ownership by calling
crit_exit.

Syntax
#include <base\crit.h>
void crit_enter(CRITICAL crvar);

Returns
void

Parameters
CRITICAL

daemon_atrestart (declared in netsite.h)

228 iPlanet Web Proxy Server Administrator’s Guide • August 2003

daemon_atrestart (declared in netsite.h)
The daemon_atrestart function lets you register a callback function named by fn to
be used when the server receives a restart signal. Use this function when you need
a callback function to deallocate resources allocated by an initialization function.
The daemon_atrestart function is a generalization of the magnus_atrestart
function.

Syntax
#include <netsite.h>
void daemon_atrestart(void (*fn)(void *), void *data);

Returns
void

Parameters
void (* fn) (void *) is the callback function.

void *data is the parameter passed to the callback function when the server is
restarted.

Example
/* Close log file when server is restarted */
daemon_atrestart(brief_terminate, NULL);
return REQPROCEED;

See also
http_start_response.

filebuf_buf2sd (declared in base\buffer.h)
The filebuf_buf2sd function sends a file buffer to a socket and returns the number
of bytes sent.

Use this function to send the contents of a file to a server.

Syntax
#include <base\buffer.h>
int filebuf_buf2sd(filebuf *buf, SYS_NETFD sd);

Returns
• The number of bytes sent to the socket, if successful

• The constant IO_ERROR if the file buffer could not be sent

filebuf_close (declared in base\buffer.h)

Appendix A Server Plug-in API Function Definitions 229

Parameters
filebuf *buf is the name of the file buffer.

SYS_NETFD sd is the platform-independent identifier of the socket.

Example
if(filebuf_buf2sd(buf, sn->csd) == IO_ERROR)

ret = REQ_EXIT;
filebuf_close(buf);

See also

filebuf_open (declared in base\buffer.h)

230 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Use filebuf_getc to sequentially read one character from the file buffer.

Syntax
#include <base\buffer.h>
netbuf_getc(netbuf b);

Returns
• An integer representation of the character retrieved

• The constant IO_EOF or IO_ERROR upon an end of file or error

Parameters
netbuf b is the name of the file buffer.

See also
filebuf_close, netbuf_getc, netbuf_open

filebuf_open (declared in base\buffer.h)
The filebuf_open function opens a new file buffer and returns a pointer to the
buffer. Use this function to read through a file using a buffer. This function
provides more efficient file access because using the function guarantees use of
buffered file I/O in environments where it is not supported by the operating
system.

Syntax
#include <base\buffer.h>
filebuf *filebuf_open(SYS_FILE fd, int sz);

Returns
• A pointer to a new buffer structure to hold the data, if one was created

• NULL if no buffer could be opened

Parameters
SYS_FILE fd is the platform-independent file descriptor.

int sz is the size, in characters, to be used for the buffer.

filebuf_open_nostat (declared in base\buffer.h)

Appendix A Server Plug-in API Function Definitions 231

Example
buf = filebuf_open(fd, &finfo);
if (!buf){

system_fclose(fd);
goto done;

}

See also
filebuf_close, filebuf_open_nostat, netbuf_open

filebuf_open_nostat (declared in base\buffer.h)
The filebuf_open_nostat function opens a new file buffer and returns a new buffer
structure. This function accomplishes the same purpose as the filebuf_open
function but is more efficient because it does not need to call the stat function.

Syntax
#include <base\buffer.h>
#include <sys/stat.h>
filebuf* filebuf_open_nostat(SYS_FILE fd, int sz, struct stat
*finfo);

Returns
• A pointer to a new buffer structure to hold the data, if one was created

• NULL if no buffer could be opened

Parameters
SYS_FILE fd is the platform-independent file descriptor.

int sz is the file descriptor to be opened.

struct stat *finfo is the file descriptor to be opened. Before calling the
filebuf_open_nostat function, you must call the stat function for the file, so that
the parameter returned by the stat function (specified by finfo) has been
established.

Example
buf = filebuf_open_nostat(fd, FILE_BUFFERSIZE, &finfo);
if (!buf){

system_fclose(fd);
goto done;

}

FREE (declared in netsite.h)

232 iPlanet Web Proxy Server Administrator’s Guide • August 2003

See also
filebuf_close, filebuf_open

FREE (declared in netsite.h)
The FREE macro is a platform-independent substitute for the C library routine
free. It deallocates the space previously allocated by MALLOC or STRDUP to a
specified pointer.

Syntax
#include <netsite.h>
FREE(ptr);

Returns
void

Parameters
ptr is a (void) pointer to an object. If the pointer is not one created by MALLOC or
STRDUP, the behavior is undefined.

Example
if(alt) {

pb_param *pp = pblock_find("ppath", rq->vars);
/* Trash the old value */
FREE(pp->value);
/* Dup it because the library will later free this pblock */
pp->value = STRDUP(alt);
return REQ_PROCEED;

}
/* Else do nothing */
return REQ_NOACTION;

See also
MALLOC, REALLOC, STRDUP

func_exec (declared in frame\func.h)
The func_exec function executes the function named by the fn entry in a specified
parameter block, for a specified Session and a specified Request. If the function
name is not found, the func_exec function creates a LOG_MISCONFIG message for
the missing function parameter.

func_find (declared in frame\func.h)

Appendix A Server Plug-in API Function Definitions 233

You can use this function to execute a server application function (SAF) by
identifying it in the parameter block.

Syntax
#include <frame\func.h>
int func_exec(pblock *pb, Session *sn, Request *rq);

Returns
• The value returned by the executed function.

• The constant REQ_ABORTED if no function was executed

Parameters
pblock *pb is the parameter block containing the function.

Session *sn identifies the Session structure.

Request *rq identifies the Request structure.

The Session and Request parameters can be the same as the ones passed to your
function.

See also
log_error

func_find (declared in frame\func.h)
The func_find function returns a pointer to the function specified by name. If no
pointer exists, the function returns NULL.

Syntax
#include <frame\func.h>
FuncPtr func_find(char *name);

Returns
• A pointer to the chosen function, suitable for dereferencing.

• NULL if the function could not be found.

Parameters
char *name is the name of the function.

http_dump822 (declared in frame\http.h)

234 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Example
/* this block of code does the same thing as func_exec */

char *afunc = pblock_findval("afunction", pb);
FuncPtr afnptr = func_find(afunc);
if(afnptr) return (afnptr)(pb, sn, rq);

See also
func_exec

http_dump822 (declared in frame\http.h)
Utility function that prints headers into a buffer and returns it.

The http_dump822 function prints headers from the parameter block named by pb
into a buffer named by t, with the size and position specified by tsz and pos,
respectively.

Use this function to serialize the headers so that they can be sent, for example, in a
mail message.

Syntax
#include <frame\http.h>
char *http_dump822(pblock *pb, char *t, int *pos, int tsz);

Returns
The buffer, reallocated if necessary, and modifies pos to denote a new position in
the buffer.

See also
http_handle_session, http_scan_headers, http_start_response, protocol_status

http_hdrs2env (declared in frame\http.h)
Utility function that converts a parameter block entry into an enviroment.

The http_hdrs2env function takes the entries in the parameter block named by pb
and converts them to an environment.

Note that each entry is converted to uppercase text with the prefix HTTP_.

A hyphen (-) or double hyphen (--) in the text is automatically converted into an
underscore (_), or double underscore (_ _), respectively.

Use this function to create an environment that a program can later use.

http_scan_headers (declared in frame\http.h)

Appendix A Server Plug-in API Function Definitions 235

Syntax
#include <frame\http.h>
char **http_hdrs2env(pblock *pb);

Returns
A pointer to the new environment.

See also
http_handle_session, http_scan_headers, http_start_response, protocol_status

http_scan_headers (declared in frame\http.h)
Utility function that scans HTTP headers from a network buffer and places them in
a parameter block.

Scans HTTP headers from the network buffer named by buf, and places them in the
parameter block named by headers.

The Session structure named by sn contains a pointer to a netbuf called inbuf. If the
parameter buf is NULL, the function automatically uses inbuf.

Folded lines are joined and the linefeeds are removed (but not the whitespace). If
there are any repeat headers, they are joined and the two field bodies are separated
by a comma and space. For example, multiple mail headers are combined into one
header and a comma is used to separate the field bodies.

The parameter t defines a string of length REQ_MAX_LINE. This is an
optimization for the internal code to reduce usage of runtime stack.

Note that sn is an optional parameter that is used for error logs. Use NULL if you
wish.

Syntax
#include <frame\http.h>
int http_scan_headers(Session *sn, netbuf *buf, char *t,
pblock *headers);

Returns
• The constant REQ_PROCEED if the operation succeeded

• The constant REQ_ABORTED if the operation did not succeed

See also
http_handle_session, http_start_response, protocol_status, protocol_scan_headers

http_set_finfo (declared in frame\http.h)

236 iPlanet Web Proxy Server Administrator’s Guide • August 2003

http_set_finfo (declared in frame\http.h)
Utility function that retrieves HTTP information about a file being sent to a client.

The http_set_finfo function retrieves the length and date from the stat structure
named by finfo, for the Session named by sn and the request denoted by rq.

Note that the stat structure contains the information about the file you are sending
back to the client.

Use http_set_finfo only after receiving a start_response from a service class server
application function (SAF).

Syntax
#include <frame\http.h>
int http_set_finfo(Session *sn, Request *rq, struct stat *finfo);

Returns
• The constant REQ_PROCEED if the request can proceed normally

• The constant REQ_ABORTED if the function should treat the request normally,
but not send any output to the client

See also
http_handle_session, http_scan_headers, http_start_response, protocol_status,
protocol_set_finfo

http_start_response (declared in frame\http.h)
Utility function that initiates the HTTP response.

The http_start_response function initiates the HTTP response for the Session
named by sn and the request denoted by rq. If the protocol version is HTTP/0.9, the
function does nothing. If the protocol version is HTTP/1.0, the function sends a
header.

Note that if the return value is REQ_NOACTION, you should not send the data
you were going to send in response to the request. Otherwise, http_start_response
will return REQ_PROCEED.

Use this function to set up HTTP and prepare the server and the client to receive
data.

Syntax
#include <frame\http.h>
int http_start_response(Session *sn, Request *rq);

http_status (declared in frame\http.h)

Appendix A Server Plug-in API Function Definitions 237

Returns
• The constant REQ_PROCEED if the operation succeeded, in which case you

can send the data you were preparing to send

• The constant REQ_NOACTION if the operation succeeded, but the client has
requested that the server not send the data because the client has it in cache.

• The constant REQ_ABORTED if the operation did not succeed.

See also
http_handle_session, http_scan_headers, protocol_status, protocol_start_response

http_status (declared in frame\http.h)
Utility function that sets session status and reason string.

The http_status function sets the session status to indicate whether an error
condition occurred.

If the reason string is NULL, the server attempts to find a reason string for the
given status code. If it finds none, it returns "Unknown reason."

Use this function to check the status of the Session before calling the function
start_response.

The following is a list of valid status codes:

PROTOCOL_OK
PROTOCOL_NO_RESPONSE
PROTOCOL_REDIRECT
PROTOCOL_NOT_MODIFIED
PROTOCOL_BAD_REQUEST
PROTOCOL_UNAUTHORIZED
PROTOCOL_FORBIDDEN
PROTOCOL_NOT_FOUND
PROTOCOL_PROXY_UNAUTHORIZED
PROTOCOL_SERVER_ERROR
PROTOCOL_NOT_IMPLEMENTED

Syntax
#include <frame\http.h>
void http_status(Session *sn, Request *rq, int n, char *r);

Returns
void, but it sets values in the session/request designated by sn/rq for the status
code and the reason string

http_uri2url (declared in frame\http.h)

238 iPlanet Web Proxy Server Administrator’s Guide • August 2003

See also
http_handle_session, http_scan_headers, http_start_response, protocol_status

http_uri2url (declared in frame\http.h)
Utility function that converts URI to URL.

The http_uri2url function takes the given URI prefix and suffix, and creates a
newly-allocated full URL in the form http://(server):(port)(prefix)(suffix).

If you want to skip either the URI prefix or suffix, use NULL as the value for either
parameter. To redirect the client somewhere else, use the function pblock_nvinsert
to create a new entry in the vars in the pblock in your request structure.

Use http_uri2url when you want to convert from URI to URL in order to pass a
fully qualified resource locator to a client.

Syntax
#include <frame\http.h>
char *http_uri2url(char *prefix, char *suffix);

Returns
A new string containing the URL

See also
http_handle_session, http_scan_headers, http_start_response, protocol_status,
protocol_uri2url

log_error (declared in frame\log.h)
The log_error function creates an entry in an error log, recording the date, the
severity, and a specified text.

Syntax
#include <frame\log.h>
int log_error(int degree, char *func, Session *sn, Request *rq,
char *fmt, ...);

Returns
• 0 if the log entry was created.

• -1 if the log entry was not created.

magnus_atrestart (declared in netsite.h)

Appendix A Server Plug-in API Function Definitions 239

Parameters
int degree specifies the severity of the error. It must be one of the following
constants:

LOG_WARN — warning
LOG_MISCONFIG — a syntax error or permission violation
LOG_SECURITY—- an authentication failure or 403 error from a host
LOG_FAILURE — an internal problem
LOG_CATASTROPHE — a non-recoverable server error
LOG_INFORM — an informational message

char *func is the name of the function where the error occurred.

Session *sn identifies the Session structure.

Request *rq identifies the Request structure.

char *fmt specifies the format for the printf function that delivers the message.

... represents a sequence of parameters for the printf function.

Example
if(!groupbuf) {

log_error(LOG_WARN, "send-file", sn, rq,
"error opening buffer from %s (%s)"), path,

system_errmsg(fd));;
return REQ_ABORTED;

}

See also
func_exec

magnus_atrestart (declared in netsite.h)

Note
Use the daemon-atrestart function in place of the obsolete magnus_atrestart
function.

The magnus_atrestart function lets you register a callback function named by fn to
be used when the server receives a restart signal. Use this function when you need
a callback function to deallocate resources allocated by an initialization function.

Syntax
#include <netsite.h>
void magnus_atrestart(void (*fn)(void *), void *data);

make_log_time (declared in libproxy\util.h)

240 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Returns
void

Parameters
void (* fn) (void *) is the callback function.

void *data is the parameter passed to the callback function when the server is
restarted.

Example
/* Close log file when server is restarted */
magnus_atrestart(brief_terminate, NULL);
return REQPROCEED;

make_log_time (declared in libproxy\util.h)
The make_log_time function translates a given time from time_t format to a
character format suitable for access logs. It can also deliver the current time in the
access log format.

Syntax
#include <libproxy\util.h>
char *make_log_time(time_t tt);

Returns
• the character equivalent of the specified time tt, if tt is not 0

• the current local time, in character format if tt is 0

Parameters
time_t tt is a time.

MALLOC (declared in netsite.h)
The MALLOC macro is a platform-independent substitute for the C library routine
malloc. It uses memory pools, creating one for each request, automatically freeing
it after the request has been processed. The data in the Request parameter block is
allocated by MALLOC, not PERM_MALLOC, which provides allocation that
persists beyond the end of the request. If memory pooling has been disabled in the
configuration file, PERM_MALLOC and MALLOC both obtain their memory from
the system heap.

netbuf_buf2sd (declared in base\buffer.h)

Appendix A Server Plug-in API Function Definitions 241

Syntax
#include <netsite.h>
MALLOC(size)

Returns
A pointer to space for an object of size size.

Parameters
size (an int) is the number of bytes to allocate.

Example
/* Initialize hosts array */

 num_hosts = 0;
 hosts = (char **) MALLOC(1 * sizeof(char *));
 hosts[0] = NULL;

See also
PERM_MALLOC, REALLOC, FREE, PERM_FREE, STRDUP, PERM_STRDUP

netbuf_buf2sd (declared in base\buffer.h)
The netbuf_buf2sd function sends a buffer to a socket. You can use this function to
send data from IPC pipes to the client.

Syntax
#include <base\buffer.h>
int netbuf_buf2sd(netbuf *buf, SYSNETFD sd, int len);

Returns
• The number of bytes transferred to the socket, if successful

• The constant IO_ERROR if unsuccessful

Parameters
netbuf *buf is the buffer to send.

SYS_NETFD sd is the platform-independent socket identifier.

int len is the buffer length.

See also
filebuf_buf2sd, netbuf_close, netbuf_grab, netbuf_open

netbuf_close (declared in base\buffer.h)

242 iPlanet Web Proxy Server Administrator’s Guide • August 2003

netbuf_close (declared in base\buffer.h)
The netbuf_close function deallocates a network buffer and closes its associated
files. Use this function when you need to deallocate the network buffer and close
the socket.

You should never close the netbuf parameter in a Session structure.

Syntax
#include <base\buffer.h>
void netbuf_close(netbuf *buf);

Returns
void

Parameters
netbuf *buf is the buffer to close.

See also
filebuf_close, netbuf_grab, netbuf_open

netbuf_getc (declared in base\buffer.h)
The netbuf_getc function retrieves a character from the cursor position of the
network buffer specified by b.

Syntax
#include <base\buffer.h>
netbuf_getc(netbuf b);

Returns
• The integer representing the character, if one was retrieved

• The constant IO_EOF or IO_ERROR, for end of file or error

Parameters
netbuf b is the buffer from which to retrieve one character.

See also
filebuf_getc, netbuf_grab, netbuf_open

netbuf_grab (declared in base\buffer.h)

Appendix A Server Plug-in API Function Definitions 243

netbuf_grab (declared in base\buffer.h)
The netbuf_grab function assigns a size to the array in the network buffer named
by buf. The size of the array is specified by sz, which is the number of bytes from
the buffer’s associated object.

The buffer processes the allocation and deallocation of the array.

This function is used by the function netbuf_buf2sd.

Syntax
#include <base\buffer.h>
int netbuf_grab(netbuf *buf, int sz);

Returns
• The number of bytes actually read (from 1through sz), if the assignment was

successful

• The constant IO_EOF or IO_ERROR, for end of file or error

Parameters
netbuf *buf is the buffer into which to read.

int sz is the array size for the buffer to allocate.

See also

netbuf_close, netbuf_open

netbuf_open (declared in base\buffer.h)
The netbuf_open function opens a new network buffer and returns it. You can use
netbuf_open to create a netbuf structure and start using buffered I/O on a socket.

Syntax
#include <base\buffer.h>
netbuf* netbuf_open(SYS_NETFD sd, int sz);

Returns
A new netbuf structure (network buffer)

Parameters
SYS_NETFD sd is the platform-independent socket identifier.

net_ip2host (declared in base\net.h)

244 iPlanet Web Proxy Server Administrator’s Guide • August 2003

int sz is the number of characters to allocate for the network buffer.See also
filebuf_open, netbuf_close, netbuf_grab

net_ip2host (declared in base\net.h)
The net_ip2host function transforms a textual IP address into a fully qualified
domain name and returns it.

Syntax
#include <base\net.h>
char *net_ip2host(char *ip, int verify);

Returns
• A new string containing the fully qualified domain name, if the transformation

was accomplished.

• NULL if the transformation was not accomplished.

Parameters
char *ip is the IP address as a character string in dotted-decimal notation:
nnn.nnn.nnn.nnn

int verify, if nonzero, specifies that the function should verify the fully qualified
domain name. Though this requires an extra query, you should use it when
determining access control.

See also
net_sendmail

net_read (declared in base\net.h)
The net_read function reads bytes from a specified socket into a specified buffer.
The function waits to receive data from the socket until either at least one byte is
available in the socket or the specified time has elapsed.

Syntax
#include <base\net.h
int net_read (SYS_NETFD sd, char *buf, int sz, int timeout);

Returns
• The number of bytes read, which will not exceed the maximum size, sz.

net_socket (declared in base\net.h)

Appendix A Server Plug-in API Function Definitions 245

• A negative value if an error has occurred, in which case errno is set to the
constant ETIMEDOUT if the operation did not complete before timeout seconds
elapsed.

Parameters
SYS_NETFD sd is the platform-independent socket descriptor.

char *buf is the buffer to receive the bytes.

int sz is the maximum number of bytes to read.

int timeout is the number of seconds to allow for the read operation before
returning. The purpose of timeout is not to return because not enough bytes were
read in the given time but to limit the amount of time devoted to waiting until
some data arrives.

See also
net_socket, net_write

net_socket (declared in base\net.h)
The net_socket function opens a connection to a socket, creating a new socket
descriptor. The socket is not connected to anything, and is not listening to any port.
A function must use net_connect to make a connection, and net_accept to listen.

Syntax
#include <base\net.h>
SYS_NETFD net_socket (int domain, int type, int protocol);

Returns
The platform-independent socket descriptor (SYS_NETFD) associated with the
socket.

Parameters
int domain must be the constant AF_INET.

int type must be the constant SOCK_STREAM.

int protocol must be the constant IPPROTO_TCP.

See also
net_read, net_write

net_write (declared in base\net.h)

246 iPlanet Web Proxy Server Administrator’s Guide • August 2003

net_write (declared in base\net.h)
The net_write function writes a specified number of bytes to a specified socket into
a specified buffer. It returns the number of bytes written.

Syntax
#include <base\net.h>
int net_write (SYS_NETFD sd, char *buf, int sz);

Returns
The number of bytes written, which may be less than the requested size if an error
occurred.

Parameters
SYS_NETFD sd is the platform-independent socket descriptor.

char *buf is the buffer containing the bytes.

int sz is the number of bytes to write.

Example
/* Start response by giving boundary string */
if(net_write(sn->csd, FIRSTMSG, strlen(FIRSTMSG)) == IO_ERROR)

return REQ_EXIT;

See also
net_socket

param_create (declared in base\pblock.h)
The param_create function creates a parameter block structure containing a
specified name and value. If the name or value is not NULL, the pair is copied and
placed into the new parameter block structure; otherwise the pair is created with
name and value both. Use this function to prepare a parameter block structure to
be used in calls to parameter block routines such as pblock_pinsert.

Syntax
#include <base\pblock.h>
pb_param *param_create(char *name, char *value);

Returns
A new parameter block structure.

param_free (declared in base\pblock.h)

Appendix A Server Plug-in API Function Definitions 247

Parameters
char *name is the string containing the name portion of the name-value pair.

char *value is the string containing the value portion of the name-value pair.

Example
pblock *pb = pblock_create(4);
pb_param *newpp = param_create("hello","world");
pblock_pinsert(newpp, pb);

See also
param_free

param_free (declared in base\pblock.h)
The param_free function frees the parameter specified by pp. Use the param_free
function for error checking after removing the function using pblock_remove.

Syntax
#include <base\pblock.h>
int param_free(pb_param *pp);

Returns
• 1 if the parameter was freed

• 0 if the parameter was NULL

Parameters
pb_param *pp is the name portion of a name-value pair stored in a pblock.

Example
int check(pblock *pb)
{

 if(param_free(pblock_remove("hello", pb)))
return 1; /* signal that we removed it */

else
return 0; /* We didn’t remove it. */

}

See also
param_create, pblock_remove

pblock_copy (declared in base\pblock.h)

248 iPlanet Web Proxy Server Administrator’s Guide • August 2003

pblock_copy (declared in base\pblock.h)
The pblock_copy function copies the contents of one parameter block into another.

Syntax
#include <base\pblock.h>
void pblock_copy(pblock *src, pblock *dst);

Returns
void

Parameters
pblock *src is the source parameter block.

pblock *dst is the destination parameter block.

Both entries are newly allocated so that the original parameter block may be freed,
or the new parameter block changed, without affecting the other parameter block.

See also
pblock_create, pblock_dup, pblock_free, pblock_find, pblock_remove, pblock_nvinsert

pblock_create (declared in base\pblock.h)
The pblock_create function creates a new parameter block. The system maintains
an internal hash table for fast name-value pair lookups.

Syntax
#include <base\pblock.h>
pblock *pblock_create(int n);

Returns
The newly allocated parameter block.

Parameters
int n is the size of the hash table (number of name-value pairs) for the parameter
block.

See also
pblock_copy, pblock_dup, pblock_find, pblock_free, pblock_nvinsert, pblock_remove,
pblock_str2pblock

pblock_dup (declared in base\pblock.h)

Appendix A Server Plug-in API Function Definitions 249

pblock_dup (declared in base\pblock.h)
The pblock_dup function duplicates a parameter block. It is equivalent to a
sequence of pblock_create and pblock_copy.

Syntax
#include <base\pblock.h>
pblock pblock_dup(pblock *src);

Returns
The newly allocated parameter block.

Parameters
pblock *src is the source parameter block.

See also
pblock_create, pblock_free, pblock_find, pblock_remove, pblock_nvinsert

pblock_find (declared in base\pblock.h)
The pblock_find function finds a specified name-value pair entry in a parameter
block and retrieves the name and structure of the parameter block. If you want
only the value of the parameter block, use only the function pblock_findval to get
the actual value in the name-value pair.

Note that this function is implemented as a macro.

Syntax
#include <base\pblock.h>
pb_param *pblock_find(char *name, pblock *pb);

Returns
• A parameter block structure, if one was found

• NULL if no parameter block was found

Parameters
char *name is the name of a name-value pair.

pblock *pb is the parameter block to be searched.

See also
pblock_copy, pblock_findval, pblock_free, pblock_nvinsert, pblock_remove,
pblock_str2pblock

pblock_findlong (declared in libproxy\util.h)

250 iPlanet Web Proxy Server Administrator’s Guide • August 2003

pblock_findlong (declared in libproxy\util.h)
The pblock_findlong function finds a specified name-value pair entry in a
parameter block, and retrieves the name and structure of the parameter block. Use
pblock_findlong if you want to retrieve the name, structure, and value of the
parameter block. However, if you want only the name and structure of the
parameter block, use the pblock_find function. Do not use these two functions in
conjunction.

Syntax
#include <libproxy\util.h>
long pblock_findlong(char *name, pblock *pb);

Returns
• A long containing the value associated with the name

• -1 if no match was found

Parameters
char *name is the name of a name-value pair.

pblock *pb is the parameter block to be searched.

See also
pblock_nlinsert

pblock_findval (declared in base\pblock.h)
The pblock_findval function finds a specified name-value pair entry in a
parameter block. Use pblock_findval if you want to retrieve the name, structure,
and value of the parameter block. However, if you want just the name and
structure of the parameter block, use only the macro pblock_find.

Syntax
#include <base\pblock.h>
char *pblock_findval(char *name, pblock *pb);

Returns
• A string containing the value associated with the name

• NULL if no match was found

Parameters
char *name is the name of a name-value pair.

pblock_free (declared in base\pblock.h)

Appendix A Server Plug-in API Function Definitions 251

pblock *pb is the parameter block to be searched.

Example
See pblock_nvinsert.

See also
pblock_copy, pblock_find, pblock_free, pblock_nvinsert, pblock_remove, pblock_str2pblock

pblock_free (declared in base\pblock.h)
The pblock_free function frees a specified parameter block and any entries inside
it. If you want to save a variable in the parameter block, remove the variable using
the function pblock_remove and then save the resulting pointer.

Syntax
#include <base\pblock.h>
void pblock_free(pblock *pb);

Returns
void

Parameters
pblock *pb is the parameter block to be freed.

See also
pblock_copy, pblock_create, pblock_find, pblock_nvinsert, pblock_remove,
pblock_str2pblock

pblock_nlinsert (declared in libproxy\util.h)
The pblock_nlinsert function creates a new parameter structure with a given name
and long numeric value and inserts it into a specified parameter block. The name
and value parameters are also newly allocated.

Syntax
#include <libproxy\util.h>
pb_param *pblock_nlinsert(char *name, long value, pblock *pb);

Returns
The newly allocated parameter block structure

pblock_nninsert (declared in base\pblock.h)

252 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Parameters
char *name is the name by which the name-value pair is stored.

long value is the long (or integer) value being inserted into the parameter block.

pblock *pb is the parameter block into which the insertion occurs.

See also
pblock_findlong

pblock_nninsert (declared in base\pblock.h)
The pblock_nninsert function creates a new parameter structure with a given
name and a numeric value and inserts it into a specified parameter block. The
name and value parameters are also newly allocated.

Syntax
#include <base\pblock.h>
pb_param *pblick_nninsert(char *name, int value, pblock *pb);

Returns
The new parameter block structure

Parameters
char *name is the name by which the name-value pair is stored.

int value is the numeric value being inserted into the parameter block.

The pblock_nninsert function requires that the parameter value be an integer.
If the value you assign is not a number, then instead use the function
pblock_nvinsert to create the parameter.

pblock *pb is the parameter block into which the insertion occurs.

See also
pblock_copy, pblock_create, pblock_find, pblock_free, pblock_nvinsert, pblock_remove,
pblock_str2pblock

pblock_nvinsert (declared in base\pblock.h)
The pblock_nvinsert function creates a new parameter structure with a given
name and character value and inserts it into a specified parameter block. The name
and value parameters are also newly allocated.

pblock_nvinsert (declared in base\pblock.h)

Appendix A Server Plug-in API Function Definitions 253

You could use this function when an error condition is encountered, in order to
insert an error into the parameter block argument and to tell initialization routines
in the server that an error occurred.

Syntax
#include <base\pblock.h>
pb_param *pblock_nvinsert(char *name, char *value, pblock *pb);

Returns
The newly allocated parameter block structure

Parameters
char *name is the name by which the name-value pair is stored.

char *value is the string value being inserted into the parameter block.

pblock *pb is the parameter block into which the insertion occurs.

Example
int brief_init(pblock *pb, Session *sn, Request *rq)
{
/* find "find" value in the parameter blcock */

 char *fn = pblock_findval("file", pb);
/* if "file" is not found, insert an "error" value

asking to supply a filename*/
if(!fn) {

pblock_nvinsert("error",
"brief-init: please supply a filename", pb);

return REQ_ABORTED;
}
/* open a file in write/append mode*/
logfd = system_fopenWA(fn);
if(logfd == SYS_ERROR_FD) {

pblock_nvinsert("error",
"brief-init: please supply a filename", pb);

return REQ_ABORTED;
}

See also
pblock_copy, pblock_create, pblock_find, pblock_free, pblock_nninsert, pblock_remove,
pblock_str2pblock

pblock_pb2env (declared in base\pblock.h)

254 iPlanet Web Proxy Server Administrator’s Guide • August 2003

pblock_pb2env (declared in base\pblock.h)
The pblock_pb2env function copies a specified parameter block into a specified
environment. The function creates one new environment entry for each
name-value pair in the parameter block. Use this function to send pblock entries to
a program that you are going to execute.

Syntax
#include <base\pblock.h>
char **pblock_pb2env(pblock *pb, char **env);

Returns
A pointer to the array of name-value pairs.

Parameters
pblock *pb is the parameter block to be copied.

char **env is the environment into which the parameter block is to be copied.

See also
pblock_copy, pblock_create, pblock_find, pblock_free, pblock_nvinsert, pblock_remove,
pblock_str2pblock

pblock_pblock2str (declared in base\pblock.h)
The pblock_pblock2str function copies all parameters of a specified parameter
block into a specified string. The function allocates additional non-heap space for
the string if needed.

Use this function to stream the parameter block for archival and other purposes.

Syntax
#include <base\pblock.h>
char *pblock_pblock2str(pblock *pb, char *str);

Returns
The new version of the str parameter. If str was NULL, this is a new string;
otherwise it is a reallocated string. In either case, it is allocated in the pool of
memory established for the current request.

Parameters
pblock *pb is the parameter block to be copied.

pblock_pinsert base\pblock.h)

Appendix A Server Plug-in API Function Definitions 255

char *str is the string into which the parameter block is to be copied. It must have
been allocated by MALLOC or REALLOC, not by PERM_MALLOC or
PERM_REALLOC (which allocate from the heap).

Each name-value pair in the string is separated from its neighbor pair by a space
and is in the format name="value".

See also
pblock_copy, pblock_create, pblock_find, pblock_free, pblock_nvinsert, pblock_remove,
pblock_str2pblock

pblock_pinsert base\pblock.h)
This function can be used instead of the function pblock_nvinsert. Both functions
insert an error into the parameter block argument to tell initialization routines in
the server that an error occurred. However, pblock_pinsert is more convenient if
you want to insert several parameter structures.

Syntax
#include <base\pblock.h>
void pblock_pinsert(pb_param *pp, pblock *pb);

Returns
void

Parameters
pb_param *pp is the parameter to insert.

pblock *pb is the parameter block.

See also
pblock_copy, pblock_create, pblock_find, pblock_free, pblock_nvinsert, pblock_remove,
pblock_str2pblock

pblock_remove (declared in base\pblock.h)
The pblock_remove function removes a specified name-value entry from a
specified parameter block.

Note that this function is implemented as a macro. Furthermore, if you use this
macro your code must eventually call param_free in order to deallocate the
memory used by the parameter structure.

pblock_replace_name (declared in libproxy\util.h)

256 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Syntax
#include <base\pblock.h>
pb_param *pblock_remove(char *name, pblock *pb);

Returns
• The removed parameter block structure, if it was found

• NULL if no parameter block was found

Parameters
char *name is the name portion that identifies the name-value pair to be removed.

pblock *pb is the from which the name-value entry is to be removed.

See pblock_free.

See also
pblock_copy, pblock_create, pblock_find, pblock_free, pblock_nvinsert, pblock_str2pblock

pblock_replace_name (declared in libproxy\util.h)
The pblock_replace_name function replaces the name of a name-value pair,
retaining the value.

Syntax
#include <libproxy\util.h>
void pblock_replace_name(char *oname,char *nname, pblock *pb);

Returns
void

Parameters
char *oname is the old name of a name-value pair.

char *nname is the new name for the name-value pair.

pblock *pb is the parameter block to be searched.

See also
pblock_remove

pblock_str2pblock (declared in base\pblock.h)

Appendix A Server Plug-in API Function Definitions 257

pblock_str2pblock (declared in base\pblock.h)
The pblock_str2pblock function scans a string for parameter pairs, adds the value
to a parameter block, and returns the number of parameters added.

Syntax
#include <base\pblock.h>
int pblock_str2pblock(char *str, pblock *pb);

Returns
• The number of parameters pair added to the parameter block, if any

• -1 if an error occurred

Parameters
char *str is the string to be scanned.

The name-value pairs in the string can have the format name=value or
name="value".

All backslashes (\) must be followed by a literal character. If string values are
found with no unescaped = signs (no name=), it assumes the names 1, 2, 3, and
so on, depending on the string position (zero doesn’t count). For example, if
pblock_str2pblock finds "some" "strings" "together", the function treats the
strings as if they appeared in the name-value pairs as 1="some" 2 ="strings"
3="together".

pblock *pb is the parameter block into which all name-value pairs are to be stored.

See also
pblock_copy, pblock_create, pblock_find, pblock_free, pblock_nvinsert, pblock_remove,
pblock_pblock2str

PERM_FREE (declared in netsite.h)
The PERM_FREE macro is a platform-independent substitute for the C library
routine free. It deallocates the persistent space previously allocated by
PERM_MALLOC or PERM_STRDUP to a specfied pointer. If memory pooling has
been disabled in the configuration file, PERM_FREE and FREE both return
memory to the system heap.

Syntax
#include <netsite.h>
PERM_FREE(ptr);

PERM_MALLOC (declared in netsite.h)

258 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Returns
void

Parameters
ptr is a (void) pointer to an object. If the pointer is not one created by
PERM_MALLOC or PERM_STRDUP, the behavior is undefined.

See also
FREE, MALLOC, REALLOC, STRDUP, PERM_MALLOC, PERM_STRTUP

PERM_MALLOC (declared in netsite.h)
The PERM_MALLOC macro is a platform-independent substitute for the C library
routine malloc. It provides allocation of memory that persists after the request that
was being processed has been completed. If memory pooling has been disabled in
the configuration file, PERM_MALLOC and MALLOC both obtain their memory
from the system heap.

Syntax
#include <netsite.h>
PERM_MALLOC(size)

Returns
A pointer to space for an object of size size.

Parameters
size (an int) is the number of bytes to allocate.

Example
/* Initialize hosts array */

 num_hosts = 0;
 hosts = (char **) PERM_MALLOC(1 * sizeof(char *));
 hosts[0] = NULL;

See also
MALLOC, REALLOC, FREE, PERM_FREE, STRDUP, PERM_STRDUP

PERM_STRDUP (declared in netsite.h)

Appendix A Server Plug-in API Function Definitions 259

PERM_STRDUP (declared in netsite.h)
The PERM_STRDUP macro is a platform-independent substitute for the common
Unix library routine strdup. It creates a new copy of a string in memory that
persists after the request that was being processed has been completed. If memory
pooling has been disabled in the configuration file, PERM_STRDUP and STRDUP
both obtain their memory from the system heap.

The strdup routine is functionally equivalent to

char *newstr = (char *) malloc(strlen(str) + 1);
strcpy(newstr, str);

Syntax
#include <netsite.h>
PERM_STRDUP(ptr);

Returns
A pointer to the new string.

Parameters
ptr is a pointer to a string.

See also
MALLOC, FREE, REALLOC

protocol_dump822 (declared in frame\protocol.h)
The protocol_dump822 function prints headers from a specified parameter block
into a specific buffer, with a specified size and position. Use this function to
serialize the headers so that they can be sent, for example, in a mail message.

Syntax
#include <frame\protocol.h>
char *protocol_dump822(pblock *pb, char *t, int *pos, int tsz);

Returns
The buffer, reallocated if necessary

The function also modifies pos to denote a new position in the buffer.

Parameters
pblock *pb is the parameter block structure.

char *t is the name of the buffer.

protocol_finish_request (declared in frame\protocol.h)

260 iPlanet Web Proxy Server Administrator’s Guide • August 2003

int *pos is the position within the buffer at which the headers are to be inserted.

int *tsz is the size of the buffer.

See also
protocol_handle_session, protocol_scan_headers, protocol_start_response, protocol_status

protocol_finish_request (declared in frame\protocol.h)
The protocol_finish_request function finishes a specified request. For HTTP, the
function just closes the socket.

Syntax
#include <frame\protocol.h>
void protocol_finish_request(Session *sn, Request *rq);

Returns
void

Parameters
Session *sn is the Session that generated the request.

Request *rq is the Request to be finished.

See also
protocol_handle_session, protocol_scan_headers, protocol_start_response, protocol_status

protocol_handle_session (declared in frame\protocol.h)
The protocol_handle_session function processes each request generated by a
specified session.

Syntax
#include <frame\protocol.h>
void protocol_handle_session(Session *sn);

Parameters
Session *sn is the that generated the requests.

See also
protocol_scan_headers, protocol_start_response, protocol_status

protocol_hdrs2env (declared in frame\protocol.h)

Appendix A Server Plug-in API Function Definitions 261

protocol_hdrs2env (declared in frame\protocol.h)
The protocol_hdrs2env function converts the entries in a specified parameter block
and converts them to an environment. Use this function to create an environment
that a program can later use.

Syntax
#include <frame\protocol.h>
char **protocol_hdrs2env(pblock *pb);

Returns
A pointer to the new environment.

Parameters
pblock *pb is the parameter block.

See also
protocol_handle_session, protocol_scan_headers, protocol_start_response, protocol_status

protocol_parse_request (declared in frame\protocol.h)
Parses the first line of an HTTP request.

Syntax
#include <frame\protocol.h>
int protocol_parse_request(char *t, Request *rq, Session *sn);

Returns
• The constant REQ_PROCEED if the operation succeeded

• The constant REQ_ABORTED if the operation did not succeed

Parameters
char *t defines a string of length REQ_MAX_LINE. This is an optimization for the
internal code to reduce usage of runtime stack.

NOTE Note that each entry is converted to uppercase text with the prefix
HTTP_.

A hyphen (-) or double hyphen(--) in the text is automatically
converted into an underscore (_), or double underscore (_ _),
respectively.

protocol_scan_headers (declared in frame\protocol.h)

262 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Request *rq is the request to be parsed.

Session *sn is the session that generated the request.

See also
protocol_scan_headers, protocol_start_response, protocol_status

protocol_scan_headers (declared in frame\protocol.h)
Scans HTTP headers from a specified network buffer, and places them in a
specified parameter block.

Folded lines are joined and the linefeeds are removed (but not the whitespace). If
there are any repeat headers, they are joined and the two field bodies are separated
by a comma and space. For example, multiple mail headers are combined into one
header and a comma is used to separate the field bodies.

Syntax
#include <frame\protocol.h>
int protocol_scan_headers(Session *sn, netbuf *buf, char *t,
pblock *headers);

Returns
• The constant REQ_PROCEED if the operation succeeded

• The constant REQ_ABORTED if the operation did not succeed

Parameters
Session *sn is the session that generated the request. The structure named by sn
contains a pointer to a netbuf called inbuf. If the parameter buf is NULL, the
function automatically uses inbuf.

Note that sn is an optional parameter that is used for error logs. Use NULL if you
wish.

netbuf *buf is the network buffer to be scanned for HTTP headers.

char *t defines a string of length REQ_MAX_LINE. This is an optimization for the
internal code to reduce usage of runtime stack.

pblock *headers is the parameter block to receive the headers.

See also
protocol_handle_session, protocol_start_response, protocol_status

protocol_set_finfo (declared in frame\protocol.h)

Appendix A Server Plug-in API Function Definitions 263

protocol_set_finfo (declared in frame\protocol.h)
The protocol_set_finfo function retrieves the content-length and last-modified
date from a specified stat structure, for a specified Session and the Request
generated by that Session. Use protocol_set_finfo only after receiving a
start_response from a service-class server application function (SAF).

Syntax
#include <frame\protocol.h>
int protocol_set_finfo(Session *sn, Request *rq, struct stat
*finfo);

Returns
• The constant REQ_PROCEED if the Request can proceed normally

• The constant REQ_ABORTED if the function should treat the Request
normally but not send any output to the client

Parameters
Session *sn is the Session that generated the Request.

Request *rq is the Request.

stat *finfo is the stat structure for the file.

The stat structure contains the information about the file you are sending back
to the client. The full description of the stat structure should be available from
the documentation for your system. For the basic elements of the stat structure,
see “The Stat Data Structure,” on page 319.

See also
protocol_handle_session, protocol_scan_headers, protocol_start_response, protocol_status

protocol_start_response (declared in frame\protocol.h)
The protocol_start_response function initiates the HTTP response for a specified
Session and Request. If the protocol version is HTTP/0.9, the function does
nothing, because that version has no concept of status. If the protocol version is
HTTP/1.0, the function sends a status line followed by the response headers. Use
this function to set up HTTP and prepare the client and server to receive the body
(or data) of the response.

Syntax
#include <frame\protocol.h>
int protocol_start_response(Session *sn, Request *rq);

protocol_uri2url (declared in frame\protocol.h)

Appendix A Server Plug-in API Function Definitions 265

PROTOCOL_NOT_FOUND
PROTOCOL_PROXY_UNAUTHORIZED
PROTOCOL_SERVER_ERROR
PROTOCOL_NOT_IMPLEMENTED

Syntax
#include <frame\protocol.h>
void protocol_status(Session *sn, Request *rq, int n, char *r);

Returns
void, but sets values in the Session/Request designated by sn/rq for the status
code and the reason string

Parameters
Session *sn is the Session that generated the Request.

Request *rq is the Request that is being checked on.

int n is the value to which to set the status code.

char *r is the reason string.

Example

if((t = pblock_findval("path-info", rq->vars))) {
 protocol_status(sn, rq, PROTOCOL_NOT_FOUND, NULL);
 log_error(LOG_WARN, "send-images", sn, rq,

"%s%s not found", path, t);
 return REQ_ABORTED;

}

See also
protocol_handle_session, protocol_scan_headers, protocol_start_response

protocol_uri2url (declared in frame\protocol.h)
The protocol_uri2url function takes strings containing the given URI prefix and
URI suffix and creates a newly allocated fully qualified URL in the form
http://(server):(port)(prefix)(suffix).

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the
value for either parameter. To redirect the client somewhere else, use the function
pblock_nvinsert to create a new entry in the vars in the pblock in your Request
structure.

protocol_uri2url_dynamic (declared in frame\protocol.h)

266 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Syntax
#include <frame\protocol.h>
char *protocol_uri2url(char *prefix, char *suffix);

Returns
A new string containing the URL

Parameters
char *prefix is the prefix.

char *suffix is the suffix.

See also
protocol_handle_session, protocol_scan_headers, protocol_start_response, protocol_status

protocol_uri2url_dynamic (declared in
frame\protocol.h)

The protocol_uri2url function takes strings containing the given URI prefix and
URI suffix and creates a newly allocated fully qualified URL in the form
http://(server):(port)(prefix)(suffix).

If you want to omit either the URI prefix or suffix, use "" instead of NULL as the
value for either parameter. To redirect the client somewhere else, use the function
pblock_nvinsert to create a new entry in the vars in the pblock in your Request
structure.

The protocol_uri2url_dynamic function is exactly like the protocol_uri2url
function, but should be used whenever the Session and Request structures are
available. This ensures that the URL that it constructs refers to the host that the
client specified.

Syntax
#include <frame\protocol.h>
char *protocol_uri2url(char *prefix, char *suffix, Session *sn,
Request *rq);

Returns
A new string containing the URL

Parameters
char *prefix is the prefix.

char *suffix is the suffix.

REALLOC (declared in netsite.h)

Appendix A Server Plug-in API Function Definitions 267

Session *sn is the Session that generated the Request.

Request *rq is the Request that is being processed.

See also
protocol_handle_session, protocol_scan_headers, protocol_start_response, protocol_status

REALLOC (declared in netsite.h)
The REALLOC macro is a platform-independent substitute for the C library
routine realloc. It changes the size of a specfied object that was originally created
by MALLOC or STRDUP. The contents of the object remain unchanged up to the
minimum of the old and new sizes. If the new size is larger, the new space is
uninitialized.

WARNING
Calling REALLOC for a block that was allocated with PERM_MALLOC will not
work.

Syntax
#include <netsite.h>
REALLOC(ptr, size);

Returns
A pointer to the new space if the Request could be satisfied.

Parameters
ptr is a (void) pointer to an object. If the pointer is not one created by MALLOC or
STRDUP, the behavior is undefined.

size (an int) is the number of bytes to allocate.

Example
while(fgets(buf, MAX_ACF_LINE, f)) {
/* Blast linefeed that stdio leaves on there */

uf[strlen(buf) - 1] = ’\0’;
hosts = (char **) REALLOC(hosts, (num_hosts + 2) * sizeof(char

*));
hosts[num_hosts++] = STRDUP(buf);
hosts[num_hosts] = NULL;

}

See also
MALLOC, FREE, STRDUP

request_create (declared in frame\req.h)

268 iPlanet Web Proxy Server Administrator’s Guide • August 2003

request_create (declared in frame\req.h)
The request_create function is a utility function that creates a new request
structure.

Syntax
#include <frame\req.h>
Request *request_create(void);

Returns
A Request structure

Parameters
No parameter is required.

See also
request_free, request_header

request_free (declared in frame\req.h)
The request_free function frees a specified request structure.

Syntax
#include <frame\req.h>
void request_free(Request *req);

Returns
void

Parameters
Request *rq is the Request structure to be freed.

See also
request_header

request_header (declared in frame\req.h)
The request_header function finds the parameter block containing the client’s
HTTP headers. You can use this function to access a parameter block indirectly,
thereby avoiding multiple and unnecessary calls. In addition, request_header
allows you to access the parameter block headers in your copy of the request
structure.

request_stat_path (declared in frame\req.h)

Appendix A Server Plug-in API Function Definitions 269

Syntax
#include <frame\req.h>
int request_header(char *name, char **value, Session *sn, Request
*rq);

Returns
A REQ return code, such as REQ_ABORTED to signal that an error occurred, or
REQ_PROCEED to signal that all went well

Parameters
char *name is the name of the header.

char **value is the address where the function will place the value of the specified
header. If none is found, the function stores a NULL.

Session *sn is the Session identifier for the server application function call that
generated the Request.

Request *rq is the Request identifier for a server application function call.

The sn and rq parameters can also be used to identify a specific Request in
asynchronous operations as well as for other internal housekeeping purposes.

Example
See shexp_cmp.

See also
request_create, request_free

request_stat_path (declared in frame\req.h)
The request_stat_path function returns the file information structure for a
specified path, if none is specified, the path entry in the vars pblock in a specified
Request structure. If the resulting filename points to a file that the server can read,
request_stat_path returns a new file information structure. This structure contains
information on the size of the file, when it was last accessed, and when it was last
changed.

You can use request_stat_path to retrieve information on the file you are currently
accessing (instead of calling stat directly), because this function keeps track of other
calls.

Syntax
#include <frame\req.h>
struct stat *request_stat_path(char *path, Request *rq);

request_translate_uri (declared in frame\req.h)

270 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Returns
• NULL if the file is not valid or the server cannot read it. In this case, it also

leaves an error message describing the problem in the Request structure
denoted by rq.

• The file information structure for the file named by the path parameter.

If you receive a valid file information structure, you should not free this structure.

Parameters
char *path is the string containing the name of the path. If the value of path is
NULL, the function uses the path entry in the vars pblock in the Request structure
denoted by rq.

Request *rq is the Request identifier for a server application function call.

Example
if((!(fi = request_stat_path(path, rq))) ||
((fd = system_fopenRO(path)) == IO_ERROR))

See also
request_create, request_free, request_header

request_translate_uri (declared in frame\req.h)
The request_translate_uri function performs virtual-to-physical mapping on a
specified URI during a specified Session. Use this function when you want to
determine which file will be sent back if a given URI is accessed.

Syntax
#include <frame\req.h>
char *request_translate_uri(char *uri, Session *sn);

Returns
• A path string, if it performed the mapping

• NULL if it could not perform the mapping

Parameters
char *uri is the name of the URI.

Session *sn is the Session identifier for the server application function call.

See also
request_create, request_free, request_header

sem_grab (declared in base\sem.h)

Appendix A Server Plug-in API Function Definitions 271

sem_grab (declared in base\sem.h)
The sem_grab function requests exclusive access to a specified semaphore. If
exclusive access is unavailable, the caller blocks execution until exclusive access
becomes available. Use this function to ensure that only one server processor
thread performs an action at a time.

Syntax
#include <base\sem.h>
int sem_grab(SEMAPHORE id);

Returns
• -1 if an error occurred

• 0 to signal success

Parameters
SEMAPHORE id is the unique identification number of the requested semaphore.

See also
sem_init, sem_release, sem_terminate, sem_tgrab

sem_init (declared in base\sem.h)
The sem_init function creates a semaphore with a specified name and unique
identification number. Use this function to allocate a new semaphore that will be
used with the functions sem_grab and sem_release. Call sem_init from an init
class function to initialize a static or global variable that the other classes will later
use.

Syntax
#include <base\sem.h>
SEMAPHORE sem_init(char *name, int number);

Returns
The constant SEM_ERROR if an error occurred.

Parameters
SEMAPHORE *name is the name for the requested semaphore. The filename of the
semaphore should be a file accessible to the process.

int number is the unique identification number for the requested semaphore.

sem_release (declared in base\sem.h)

272 iPlanet Web Proxy Server Administrator’s Guide • August 2003

See also
sem_grab, sem_release, sem_terminate

sem_release (declared in base\sem.h)
The sem_release function releases the process’s exclusive control over a specified
semaphore. Use this function to release exclusive control over a semaphore created
with the function sem_grab.

Syntax
#include <base\sem.h>
int sem_release(SEMAPHORE id);

Returns
• -1 if an error occurred

• 0 of no error occurred

Parameters
SEMAPHORE id is the unique identification number of the semaphore.

See also
sem_grab, sem_init, sem_terminate

sem_terminate (declared in base\sem.h)
The sem_terminate function deallocates the semaphore specified by id. You can
use this function to deallocate a semaphore that was previously allocated with the
function sem_init.

Syntax
#include <base\sem.h>
void sem_terminate(SEMAPHORE id);

Returns
void

Parameters
SEMAPHORE id is the unique identification number of the semaphore.

See also
sem_grab, sem_init, sem_release

sem_tgrab (declared in base\sem.h)

Appendix A Server Plug-in API Function Definitions 273

sem_tgrab (declared in base\sem.h)
The sem_tgrab function tests and requests exclusive use of a semaphore. Unlike
the somewhat similar sem_grab function, if exclusive access is unavailable the
caller is not blocked but receives a return value of -1. Use this function to ensure
that only one server processor thread performs an action at a time.

Syntax
#include <base\sem.h>
int sem_grab(SEMAPHORE id);

Returns
• -1 if an error occurred or if exclusive access was not available

• 0 exclusive access was granted

Parameters
SEMAPHORE id is the unique identification number of the semaphore.

See also
sem_grab, sem_init, sem_release, sem_terminate

session_create (declared in base\session.h)
The session_create function creates a new Session structure for the client with a
specified socket descriptor and a specified socket address. It returns a pointer to
that structure.

Syntax
#include <base\session.h>
Session *session_create(SYS_NETFD csd, struct sockaddr_in *sac);

Returns
• A pointer to the new Session if one was created

• NULL if no new Session was created

Parameters
SYS_NETFD csd is the platform-independent socket descriptor.

sockaddr_in *sac is the socket address.

See also
session_maxdns

session_free (declared in base\session.h)

274 iPlanet Web Proxy Server Administrator’s Guide • August 2003

session_free (declared in base\session.h)
The session_free function frees a specified Session structure. The session_free
function does not close the client socket descriptor associated with the Session.

Syntax
#include <base\session.h>
void session_free(Session *sn);

Returns
void

Parameters
Session *sn is the Session to be freed.

See also
session_create, session_maxdns

session_maxdns (declared in base\session.h)
The session_maxdns function resolves the IP address of the client associated with a
specified Session into a host name. It returns a string. You can use session_maxdns
to change the numeric IP address into something more readable. Use
session_maxdns instead of the function session_dns if you want to be sure that the
host name is associated with the IP address of the client.

This function is implemented as a macro.

Syntax
#include <base\session.h>
char *session_maxdns(Session *sn);

Returns
• A string containing the host name

• NULL if no host name was associated with the IP address

Parameters
Session *sn is the Session identifier for the server application function call.

shexp_casecmp (declared in base\shexp.h)

Appendix A Server Plug-in API Function Definitions 275

shexp_casecmp (declared in base\shexp.h)
The shexp_casecmp function validates a specified shell expression and compares it
with a specified string. It returns one of three possible values representing match,
no match, and invalid comparison. In contrast with the shexp_cmp function, the
comparison is not case-sensitive.

Use this function if you have a shell expression like *.iplanet.com and you want to
make sure that a string matches it, such as foo.iplanet.com.

Syntax
#include <base\shexp.h>
int shexp_casecmp(char *str, char *exp);

Returns
• 0 if a match was found

• 1 if no match was found

• -1 if the comparison resulted in an invalid expression

Parameters
char *str is the string to be compared.

char *exp is the shell expression (possibly containing wildcard characters) against
which to compare.

See also
shexp_cmp, shexp_match

shexp_cmp (declared in base\shexp.h)
The shexp_cmp function validates a specified shell expression and compares it
with a specified string. It returns one of three possible values representing match,
no match, and invalid comparison. In contrast with the shexp_casecmp function,
the comparison is case-sensitive.

Use this function if you have a shell expression like *.iplanet.com and you want to
make sure that a string matches it, such as foo.iplanet.com.

Syntax
#include <base\shexp.h>
int shexp_cmp(char *str, char *exp);

shexp_cmp (declared in base\shexp.h)

276 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Returns
• 0 if a match was found

• 1 if no match was found

• -1 if the comparison resulted in an invalid expression

Parameters
char *str is the string to be compared.

char *exp is the shell expression (possibly containing wildcard characters) against
which to compare.

Example
#include "base\util.h" /* is_mozilla */
#include "frame\protocol.h" /* protocol_status */
#include "base\shexp.h" /* shexp_cmp */
int https_redirect(pblock *pb, Session *sn, Request *rq)
{

/* Server Variable */
char *ppath = pblock_findval("ppath", rq->vars);
/* Parameters */
char *from = pblock_findval("from", pb);
char *url = pblock_findval("url", pb);
char *alt = pblock_findval("alt", pb);
/*
/* Check usage */
if((!from) || (!url)) {
log_error(LOG_MISCONFIG, "https-redirect", sn, rq,

"missing parameter (need from, url)");
return REQ_ABORTED;

}
/* Use wildcard match to see if this path is one to redirect */
if(shexp_cmp(ppath, from) != 0)

return REQ_NOACTION; /* no match */
/* The only way to check for SSL capability is to check UA */

if(request_header("user-agent", &ua, sn, rq) == REQ_ABORTED)
return REQ_ABORTED;
/* The is_mozilla fn checks for Mozilla version 0.96 or greater

*/
f(util_is_mozilla(ua, "0", "96")) {

/* Set the return code to 302 Redirect */
protocol_status(sn, rq, PROTOCOL_REDIRECT, NULL);

/* The error handling fns use this to set Location: */
pblock_nvinsert("url", url, rq->vars);
return REQ_ABORTED;

}

shexp_match (declared in base\shexp.h)

Appendix A Server Plug-in API Function Definitions 277

/* No match. Old client. */
/* If there is an alternate document specified, use it. */
if(alt) {

pb_param *pp = pblock_find("ppath", rq->vars);
/* Trash the old value */
FREE(pp->value);
/* Dup it because the library will later free this pblock */
pp->value = STRDUP(alt);
return REQ_PROCEED;

}
/* Else do nothing */
return REQ_NOACTION;

}

See also
shexp_casecmp, shexp_match

shexp_match (declared in base\shexp.h)
The shexp_match function compares a specified prevalidated shell expression
against a specified string. It returns one of three possible values representing
match, no match, and invalid comparison. In contrast with the shexp_casecmp
function, the comparison is case-sensitive.

The shexp_match function doesn’t perform validation of the shell expression;
instead the function assumes that you have already called shexp_valid.

Use this function if you have a shell expression like *.iplanet.com and you want to
make sure that a string matches it, such as foo.iplanet.com.

Syntax
#include <base\shexp.h>
int shexp_match(char *str, char *exp);

Returns
• 0 if a match was found

• 1 if no match was found

• -1 if the comparison resulted in an invalid expression

Parameters
char *str is the string to be compared.

char *exp is the prevalidated shell expression (possibly containing wildcard
characters) against which to compare.

shexp_valid (declared in base\shexp.h)

278 iPlanet Web Proxy Server Administrator’s Guide • August 2003

See also
shexp_casecmp, shexp_cmp

shexp_valid (declared in base\shexp.h)
The shexp_valid function validates a specified shell expression named by exp. Use
this function to validate a shell expression before using the function shexp_match
to compare the expression with a string.

Syntax
#include <base\shexp.h>
int shexp_valid(char *exp);

Returns
• The constant NON_SXP if exp is a standard string

• The constant INVALID_SXP if exp is a shell expression but invalid

• The constant VALID_SXP if exp is a valid shell expression

Parameters
char *exp is the prevalidated shell expression (possibly containing wildcard
characters) to be used later in a shexp_match comparison.

See also
shexp_casecmp, shexp_match, shexp_cmp

shmem_alloc (declared in base\shmem.h)
The shmem_alloc function allocates a region of shared memory of the given size,
using the given name to avoid conflicts between multiple regions in the program.
The size of the region will not be automatically increased if its boundaries are
overrun; use the shmem_realloc function for that.

This function must be called before any daemon workers are spawned in order for
the handle to the shared region to be inherited by the children.

Because of the requirement that the region must be inherited by the children, the
region cannot be reallocated with a larger size when necessary.

Syntax
#include <base\shmem.h>
shmem_s *shmem_alloc(char *name, int size, int expose);

shmem_free (declared in base\shmem.h)

Appendix A Server Plug-in API Function Definitions 279

Returns
A pointer to a new shared memory region.

Parameters
char *name is the name for the region of shared memory being created. The value of
name must be unique to the program that calls the shmem_alloc function or
conflicts will occur.

int size is the number of characters of memory to be allocated for the shared
memory.

int expose is either zero or nonzero. If nonzero, then on systems that support it, the
file that is used to create the shared memory becomes visible to other processes
running on the system.

See also
shmem_free

shmem_free (declared in base\shmem.h)
The shmem_free function deallocates (frees) the specified region of memory.

Syntax
#include <base\shmem.h>
void *shmem_free(shmem_s *region);

Returns
void

Parameters
shmem_s *region is a shared memory region to be released.

See also
shmem_allocate

STRDUP (declared in netsite.h)
The STRDUP macro is a platform-independent substitute for the common Unix
library routine strdup. It creates a new copy of a string.

systhread_attach (declared in base\systhr.h)

280 iPlanet Web Proxy Server Administrator’s Guide • August 2003

The strdup routine is functionally equivalent to this:

char *newstr = (char *) MALLOC(strlen(str) + 1);
strcpy(newstr, str);

Syntax
#include <netsite.h>
STRDUP(ptr);

Returns
A pointer to the new string.

Parameters
ptr is a pointer to a string.

Example
while(fgets(buf, MAX_ACF_LINE, f)) {
/* Blast linefeed that stdio leaves on there */

uf[strlen(buf) - 1] = ’\0’;
hosts = (char **) REALLOC(hosts, (num_hosts + 2) * sizeof(char

*));
hosts[num_hosts++] = STRDUP(buf);
hosts[num_hosts] = NULL;

}

See also
MALLOC, FREE, REALLOC

systhread_attach (declared in base\systhr.h)
The systhread_attach function makes an existing thread a platform-independent
thread.

Syntax
#include <base\systhr.h>
SYS_THREAD systhread_attach(void);

Returns
A SYS_THREAD pointer to the platform-independent thread.

Parameters
void

systhread_current (declared in base\systhr.h)

Appendix A Server Plug-in API Function Definitions 281

See also
systhread_current, systhread_getdata, systhread_init, systhread_newkey,
systhread_setdata, systhread_sleep,systhread_start, systhread_terminate, systhread_
timerset

systhread_current (declared in base\systhr.h)
The systhread_current function returns a pointer to the current thread.

Syntax
#include <base\systhr.h>
SYS_THREAD systhread_current(void);

Returns
A SYS_THREAD pointer to the current thread

Parameters
void

See also
systhread_getdata, systhread_newkey, systhread_setdata, systhread_sleep,systhread_start,
systhread_terminate, systhread_ timerset

systhread_getdata (declared in base\systhr.h)
The systhread_getdata function gets data that is associated with a specified key in
the current thread

Syntax
#include <base\systhr.h>
void *systhread_getdata(int key);

Returns
• A pointer to the data that was earlier used with the systhread_setkey function

from the current thread, using the same value of key.

• NULL if the call did not succeed, for example if the systhread_setkey function
was never called with the specified key during this session.

Parameters
int key is the value associated with the stored data by a systhread_setdata function.
Keys are assigned by the systhread_newkey function.

systhread_init (declared in base\systhr.h)

282 iPlanet Web Proxy Server Administrator’s Guide • August 2003

See also
systhread_current, systhread_newkey, systhread_setdata, systhread_sleep,systhread_start,
systhread_terminate, systhread_ timerset

systhread_init (declared in base\systhr.h)
The systhread_init function initializes the threading system.

Syntax
#include <base\systhr.h>
void systhread_init(char *name);

Returns
void

Parameters
char *name is a name to be assigned to the program for debugging purposes.

See also
systhread_attach, systhread_current, systhread_getdata, systhread_newkey,
systhread_setdata, systhread_sleep,systhread_start, systhread_terminate, systhread_
timerset

systhread_newkey (declared in base\systhr.h)
The systhread_newkey function allocates a new integer key (identifier) for
thread-private data. Use this key to identify a variable that you want to localize to
the current thread, then use the systhread_setdata function to associate a value
with the key.

Syntax
#include <base\systhr.h>
int systhread_newkey(void);

Returns
An integer key.

Parameters
void

systhread_setdata (declared in base\systhr.h)

Appendix A Server Plug-in API Function Definitions 283

See also
systhread_current, systhread_getdata, systhread_setdata, systhread_sleep, systhread_start,
systhread_terminate, systhread_ timerset

systhread_setdata (declared in base\systhr.h)
The systhread_setdata function associates data with a specified key number for the
current thread. Keys are assigned by the systhread_newkey function.

Syntax
#include <base\systhr.h>
void systhread_start(int key, void *data);

Returns
void

Parameters
int key is the priority of the thread.

void *data is the pointer to the string of data to be associated with the value of key.

See also
systhread_current, systhread_getdata, systhread_newkey, systhread_sleep, systhread_start,
systhread_terminate, systhread_ timerset

systhread_sleep (declared in base\systhr.h)
The systhread_sleep function puts the calling thread to sleep for a given time.

Syntax
#include <base\systhr.h>
void systhread_sleep(int milliseconds);

Returns
void

Parameters
int milliseconds is the number of milliseconds the thread is to sleep.

See also
systhread_current, systhread_getdata, systhread_newkey, systhread_setdata,
systhread_start, systhread_terminate, systhread_ timerset

systhread_start (declared in base\systhr.h)

284 iPlanet Web Proxy Server Administrator’s Guide • August 2003

systhread_start (declared in base\systhr.h)
The systhread_start function creates a thread with the given priority, allocates a
stack of a specified number of bytes, and calls a specified function with a specified
argument.

Syntax
#include <base\systhr.h>
SYS_THREAD systhread_start(int prio, int stksz, void (*fn)(void *),
void *arg);

Returns
• A new SYS_THREAD pointer if the call succeeded

• The constant SYS_THREAD_ERROR if the call did not succeed.

Parameters
int prio is the priority of the thread. Priorities are system-dependent.

int stksz is the stack size in bytes. If stksz is zero, the function allocates a default
size.

void (*fn)(void *) is the function to call.

void *arg is the argument for the fn function.

See also
systhread_current, systhread_getdata, systhread_newkey, systhread_setdata,
systhread_sleep, systhread_terminate, systhread_ timerset

systhread_terminate (declared in base\systhr.h)
The systhread_terminate function terminates a specified thread.

Syntax
#include <base\systhr.h>
void systhread_terminate(SYS_THREAD thr);

Returns
void

Parameters
SYS_THREAD thr is the thread to terminate.

systhread_timerset (declared in base\systhr.h)

Appendix A Server Plug-in API Function Definitions 285

See also
systhread_current, systhread_getdata, systhread_newkey, systhread_setdata,
systhread_sleep, systhread_start, systhread_ timerset

systhread_timerset (declared in base\systhr.h)
The systhread_timerset function starts or resets the interrupt timer interval for a
thread system.

Note
Because most systems don’t allow the timer interval to be changed, this should be
considered a suggestion, rather than a command.

Syntax
#include <base\systhr.h>
void systhread_timerset(int usec);

Returns
void

Parameters
int usec is the time, in microseconds

See also
systhread_current, systhread_getdata, systhread_newkey, systhread_setdata,
systhread_sleep,systhread_start, systhread_terminate

system_errmsg (declared in base\file.h)
The system_errmsg function returns the last error that occurred from the most
recent system call. This function is implemented as a macro that returns an entry
from the global array sys_errlist. Use this macro to help with I/O error diagnostics.

Syntax
#include <base\file.h>
char *system_errmsg(int para1);

Returns
A string containing the text of the latest error message that resulted from a system
call.

system_fclose (declared in base\file.h)

286 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Parameters
int para1 is reserved and should always have the value zero.

See also
system_fclose, system_fread, system_fopenRO, system_fwrite

system_fclose (declared in base\file.h)
The system_fclose function closes a specified file descriptor. The system_fclose
function must be called for every file descriptor opened by any of the
system_fopen functions.

Syntax
#include <base\file.h>
int system_fclose(SYS_FILE fd);

Returns
• 0 if the close succeeded

• The constant IO_ERROR if the close failed

Parameters
SYS_FILE fd is the platform-independent file descriptor.

Example
static SYS_FILE logfd = SYS_ERROR_FD;
// this function closes global logfile
void brief_terminate()
{

system_fclose(logfd);
logfd = SYS_ERROR_FD;

}

See also
system_errmsg, system_fread, system_fopenRO, system_fwrite

system_flock (declared in base\file.h)
The system_flock function locks the specified file against interference from other
processes. Use system_flock if you do not want other processes using the file you
currently have open. Overusing file locking can cause performance degradation
and possibly lead to deadlocks.

system_fopenRO (declared in base\file.h)

Appendix A Server Plug-in API Function Definitions 287

Syntax
#include <base\file.h>
int system_flock(SYS_FILE fd);

Returns
• The constant IO_OK if the lock succeeded

• The constant IO_ERROR if the lock failed

Parameters
SYS_FILE fd is the platform-independent file descriptor.

See also
system_fclose, system_fread, system_fopenRO, system_fwrite, system_ulock

system_fopenRO (declared in base\file.h)
The system_fopenRO function opens the file identified by path in read-only mode
and returns a valid file descriptor. Use this function to open files that will not be
modified by your program. In addition, you can use system_fopenRO to open a
new file buffer structure using filebuf_open.

Syntax
#include <base\file.h>
SYS_FILE system_fopenRO(char *path);

Returns
• The system-independent file descriptor (SYS_FILE) if the open succeeded

• 0 if the open failed

Parameters
char *path is the filename.

See also
system_fclose, system_fread, system_fopenRW, system_fopenWA, system_fwrite,
system_ulock

system_fopenRW (declared in base\file.h)

288 iPlanet Web Proxy Server Administrator’s Guide • August 2003

system_fopenRW (declared in base\file.h)
The system_fopenRW function opens the file identified by path in read-write mode
and returns a valid file descriptor. If the file already exists, system_fopenRW does
not truncate it. Use this function to open files that will be read from and written to
by your program.

Syntax
#include <base\file.h>
SYS_FILE system_fopenRW(char *path);

Returns
• The system-independent file descriptor (SYS_FILE) if the open succeeded

• 0 if the open failed

Parameters
char *path is the filename.

Example
/* If any errors, just skip it. */
if(stat(pathname, &finfo) == -1)

break;

fd = system_fopenRO(pathname);
if(fd == SYS_ERROR_FD)

break;

See also
system_fclose, system_fread, system_fopenRO, system_fopenWA, system_fwrite,
system_ulock

system_fopenWA (declared in base\file.h)
The system_fopenWA function opens the file identified by path in append mode
and returns a valid file descriptor. Use this function to open those files to which
your program will append data.

Syntax
#include <base\file.h>
SYS_FILE system_fopenWA(char *path);

Returns
• The system-independent file descriptor (SYS_FILE) if the open succeeded

system_fread (declared in base\file.h)

Appendix A Server Plug-in API Function Definitions 289

• 0 if the open failed

Parameters
char *path is the filename.

See also
system_fclose, system_fread, system_fopenRO, system_fopenRW, system_fwrite,
system_ulock

system_fread (declared in base\file.h)
The system_fread function reads a specified number of bytes from a specified file
into a specified buffer. It returns the number of bytes read. Before system_fread
can be used, you must open the file using any of the system_fopen functions,
except system_fopenWA.

Syntax
#include <base\file.h>
int system_fread(SYS_FILE fd, char *buf, int sz);

Returns
The number of bytes read, which may be less than the requested size if an error
occurred or the end of the file was reached before that number of characters was
obtained.

Parameters
SYS_FILE fd is the platform-independent file descriptor.

char *buf is the buffer to receive the bytes.

int sz is the number of bytes to read.

See also
system_fclose, system_fopenRO, system_fopenRW, system_fopenWA, system_fwrite,
system_ulock

system_fwrite (declared in base\file.h)
The system_fwrite function writes a specified number of bytes from a specified
buffer into a specified file. Before system_fwrite can be used, you must open the
file using any of the system_fopen functions, except system_fopenRO.

system_fwrite_atomic (declared in base\file.h)

290 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Syntax
#include <base\file.h>
int system_fwrite(SYS_FILE fd, char *buf, int sz);

Returns
• The constant IO_OK if the write succeeded

• The constant IO_ERROR if the write failed

Parameters
SYS_FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.

int sz is the number of bytes to write to the file.

See also
system_fclose, system_fopenRO, system_fopenRW, system_fopenWA,
system_fwrite_atomic, system_ulock

system_fwrite_atomic (declared in base\file.h)
The system_fwrite_atomic function writes a specified number of bytes from a
specified buffer into a specified file. The function also locks the file prior to
performing the write and then unlocks it when done, thereby avoiding interference
between simultaneous write actions. Before system_fwrite_atomic can be used,
you must open the file using any of the system_fopen functions.

Syntax
#include <base\file.h>
int system_fwrite_atomic(SYS_FILE fd, char *buf, int sz);

Returns
• The constant IO_OK if the write/lock succeeded

• The constant IO_ERROR if the write/lock failed

Parameters
SYS_FILE fd is the platform-independent file descriptor.

char *buf is the buffer containing the bytes to be written.

int sz is the number of bytes to write to the file.

system_gmtime (declared in base\file.h)

Appendix A Server Plug-in API Function Definitions 291

Example
logmsg = (char *)

MALLOC(strlen(ip) + 1 + strlen(method) + 1 + strlen(uri) + 1 +
1);
len = util_sprintf(logmsg, "%s %s %s\n", ip, method, uri);
/* The atomic version uses locking to prevent interference */
system_fwrite_atomic(logfd, logmsg, len);
FREE(logmsg);

See also
system_fclose, system_fopenRO, system_fopenRW, system_fopenWA, system_fwrite,
system_ulock

system_gmtime (declared in base\file.h)
The system_gmtime function is a thread-safe version of the standard gmltime
function.

Syntax
#include <base\file.h>
struct tm *system_gmtime(const time_t *tp, const struct tm *res);

Returns
a pointer to a calendar time (tm) structure containing the GMT time. Depending on
your system, the pointer may point to the data item represented by the second
parameter, or it may point to a statically allocated item. For portability, do not
assume either situation.

Parameters
time_t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (tm) structure.

Example
time_t tp;
struct tm res, *resp;
...
tp = time(NULL);
resp = system_gmtime(&tp, &res);

See also
system_localtime

system_localtime (declared in base\file.h)

292 iPlanet Web Proxy Server Administrator’s Guide • August 2003

system_localtime (declared in base\file.h)
The system_localtime function is a thread-safe version of the standard localtime
function.

Note that this function is implemented as a macro.

Syntax
#include <base\file.h>
struct tm *system_localtime(const time_t *tp, const struct tm *res);

Returns
a pointer to a calendar time (tm) structure containing the local time. Depending on
your system, the pointer may point to the data item represented by the second
parameter, or it may point to a statically allocated item. For portability, do not
assume either situation.

Parameters
time_t *tp is an arithmetic time.

tm *res is a pointer to a calendar time (tm) structure.

Example
time_t tp;
struct tm res, *resp;
...
tp = time(NULL);
resp = system_localtime(&tp, &res);

See also
system_gmtime

system_ulock (declared in base\file.h)
The system_ulock function unlocks the specified file that has been locked by the
function system_lock. For more information about locking, see system_flock.

Syntax
#include <base\file.h>
int system_ulock(SYS_FILE fd);

Returns
• The constant IO_OK if the unlock succeeded

• The constant IO_ERROR if the unlock failed

system_unix2local (declared in base\file.h)

Appendix A Server Plug-in API Function Definitions 293

Parameters
SYS_FILE fd is the platform-independent file descriptor.

See also
system_fclose, system_flock, system_fopenRO, system_fopenRW, system_fopenWA,
system_fwrite

system_unix2local (declared in base\file.h)
The system_unix2local function converts a specified Unix-style pathname to a
local pathname named by lp. Use this function when you have a filename in the
Unix format (such as one containing forward slashes) and you are running
Windows NT. You can use system_unix2local to convert the Unix filename into
the format that Windows NT accepts.

Syntax
#include <base\file.h>
char *system_unix2local(char *path, char *lp);

Returns
A pointer to the local path string

Parameters
char *path is the Unix-style pathname to be converted.

char *lp is the local pathname.

You must allocate the parameter lp, and it must contain enough space to hold
the local pathname.

See also
system_fclose, system_flock, system_fopenRO, system_fopenRW, system_fopenWA,
system_fwrite

util_can_exec (declared in base\util.h)
The util_can_exec function checks that a specified file can be executed, returning
either a 1 (executable) or a 0. The function checks to see if the file can be executed
by the user with the given user and group ID.

The util_can_exec function is available only under Unix.

Use this function before executing a program using the exec system call.

util_chdir2path (declared in base\util.h)

294 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Syntax
#include <base\util.h>
int util_can_exec(struct stat *finfo, uid_t uid, gid_t gid);

Returns
• 1 if the file is executable

• 0 if the file is not executable

Parameters
stat *finfo is the stat structure associated with a file.

uid_t uid is the Unix user ID.

gid_t gid is the Unix group ID. Together with uid, this determines the permissions
of the Unix user.

See also
util_env_create, util_getline, util_host name

util_chdir2path (declared in base\util.h)
The util_chdir2path function changes the current directory to a specified directory,
which should point to a file.

When running under Windows NT, use a semaphore to ensure that more than one
thread does not call this function at the same time.

Use util_chdir2path when you want to make file access a little quicker, because
you do not need to use a full path with this function.

Syntax
#include <base\util.h>
int util_chdir2path(char *path);

Returns
• 0 if the directory was changed

• -1 if the directory could not be changed

Parameters
char *path is the name of a directory.

The parameter must be a writable string because it isn’t permanently modified.

util_does_process_exist (declared in libproxy\util.h)

Appendix A Server Plug-in API Function Definitions 295

See also
util_env_create, util_getline, util_host name

util_does_process_exist (declared in libproxy\util.h)
The util_does_process_exist function verifies that a given process ID is that of an
executing process.

Syntax
#include <libproxy/til.h>
int util_does_process_exist (int pid)

Returns
• nonzero if the pid represents an executing process

• 0 if the pid does not represent an executing process

Parameters
int pid is the process ID to be tested.

See also
util_url_fix_host name, util_uri_check

util_env_create (declared in base\util.h)
The util_env_create function creates and allocates the environment specified by
env, returning a pointer to the environment. If the parameter env is NULL, the
function allocates a new environment. Use util_env_create to create an
environment when executing a new program.

Syntax
#include <base\util.h>
char **util_env_create(char **env, int n, int *pos);

Returns
A pointer to an environment.

Parameters
char **env is the existing environment or NULL.

int n is the maximum number of environment entries that you want in the
environment.

util_env_find (declared in base\util.h)

296 iPlanet Web Proxy Server Administrator’s Guide • August 2003

int *pos is an integer that keeps track of the number of entries used in the
environment.

See also
util_env_replace, util_env_str, util_env_free, util_env_find

util_env_find (declared in base\util.h)
The util_env_find function locates the string denoted by a name in a specified
enviroment and returns the associated value. Use this function to find an entry in
an environment.

Syntax
#include <base\util.h>
char *util_env_find(char **env, char *name);

Returns
• The value of the string, if one was found

• NULL if the string was not found

Parameters
char **env is the environment.

char *name is the name of a name-value pair.

See also
util_env_replace, util_env_str, util_env_free, util_env_create

util_env_free (declared in base\util.h)
The util_env_free function frees a specified environment. Use this function to
deallocate an environment that you created using the function util_env_create.

Syntax
#include <base\util.h>
void util_env_free(char **env);

Returns
void

util_env_replace (declared in base\util.h)

Appendix A Server Plug-in API Function Definitions 297

Parameters
char **env is the environment to be freed.

See also
util_env_replace, util_env_str, util_env_find, util_env_create

util_env_replace (declared in base\util.h)
The util_env_replace function replaces the occurrence of the variable denoted by a
name in a specified environment with a specified value. Use this function to change
the value of a setting in an environment.

Syntax
#include <base\util.h>
void util_env_replace(char **env, char *name, char *value);

Returns
void

Parameters
char **env is the environment.

char *name is the name of a name-value pair.

char *value is the new value to be stored.

See also
util_env_str, util_env_free, util_env_find, util_env_create

util_env_str (declared in base\util.h)
The util_env_str function creates an environment entry and returns it. This
function does not check for nonalphanumeric symbols in the name (such as the
equal sign "="). You can use this function to create a new environment entry.

Syntax
#include <base\util.h>
char *util_env_str(char *name, char *value);

Returns
A newly allocated string containing the name-value pair

util_get_current_gmt (declared in libproxy\util.h)

298 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Parameters
char *name is the name of a name-value pair.

char *value is the new value to be stored.

See also
util_env_replace, util_env_free, util_env_find, util_env_create

util_get_current_gmt (declared in libproxy\util.h)
The util_get_current_gmt function obtains the current time, represented in terms
of GMT (Greenwich Mean Time).

Syntax
#include <libproxy\util.h>
time_t util_get_current_gmt(void);

Returns
the current GMT

Parameters
No parameter is required.

See also
util_make_local

util_get_int_from_aux_file (declared in libproxy\cutil.h)
The util_get_int_from_aux_file function obtains an integer from a specified file.

Syntax
#include <libproxy\cutil.h>
int util_get_int_from_file(char *root, char *name);

Returns
an integer from the file.

Parameters
char *root is the name of the directory containing the file to be read.

char *name is the name of the file to be read.

util_get_long_from_aux_file (declared in libproxy\cutil.h)

Appendix A Server Plug-in API Function Definitions 299

See also
util_get_long_from_aux_file, util_get_string_from_aux_file, util_get_int_from_file,
util_get_long_from_file, util_get_string_from_file, util_put_int_to_file,
util_put_long_to_file, uutil_put_string_to_aux_file, util_put_string_to_file

util_get_long_from_aux_file (declared in
libproxy\cutil.h)

The util_get_long_from_file function obtains a long from a specified file.

Syntax
#include <libproxy\cutil.h>
long util_get_long_from_file(char *root,char *name);

Returns
a long integer from the file.

Parameters
char *root is the name of the directory containing the file to be read.

char *name is the name of the file to be read.

See also
util_get_int_from_aux_file, util_get_string_from_aux_file, util_get_int_from_file,
util_get_long_from_file, util_get_string_from_file, util_put_int_to_file,
util_put_long_to_file, uutil_put_string_to_aux_file, util_put_string_to_file

util_get_string_from_aux_file (declared in
libproxy\cutil.h)

The util_get_string_from_aux_file function obtains a single line of text from a
specified file and returns it as a string.

Syntax
#include <libproxy\cutil.h>
char *util_get_string_from_file(char *root, char *name, char *buf,
int maxsize);

Returns
a string containing the next line from the file.

util_getline (declared in base\util.h)

300 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Parameters
char *root is the name of the directory containing the file to be read.

char *name is the name of the file to be read.

char *buf is the string to use as the file buffer.

int maxsize is the maximum size for the file buffer.

See also
util_get_int_from_aux_file, util_get_long_from_aux_file, util_get_int_from_file,
util_get_long_from_file, util_get_string_from_file, util_put_int_to_file,
util_put_long_to_file, uutil_put_string_to_aux_file, util_put_string_to_file

util_getline (declared in base\util.h)
The util_getline function scans the specified buffer to find an LF- or
CRLF-terminated string. The function stores the string in another specified buffer,
and NULL-terminates it. Finally, the function returns a value that signals whether
the operation stored anything in the buffer or encountered an error and whether it
reached the end of the file.

Use this function to scan lines out of a text file, such as a configuration file.

Syntax
#include <base\util.h>
int util_getline(filebuf *buf, int lineno, int maxlen, char *l);

Returns
• 0 if the scan was successful, with the scanned line (less its terminator) in l

• 1 if the scan reached an end of file, with the scanned line (less its terminator) in
l

• -1 if the scan resulted in an error, with the error description in l

Parameters
filebuf *buf is the buffer to be scanned.

int lineno is used for error diagnostics to include the line number in the error
message. The caller is responsible for making sure the line number is accurate.

int maxlen is the maximum number of characters that can be written into l.

char *l is the buffer into which to store the string. The user is responsible for
allocating and deallocating l.

util_host name (declared in base\util.h)

Appendix A Server Plug-in API Function Definitions 301

See also
util_can_exec, util_env_create, util_host name

util_host name (declared in base\util.h)
The util_host name function retrieves the local host name and returns it as a string.
If the function cannot find a fully qualified domain name, it returns NULL. You can
reallocate or free this string. Use this function to determine the name of the system
you are on.

Syntax
#include <base\util.h>}
char *util_host name(void);

Returns
• If a fully qualified domain name was found, a string containing that name

• NULL if the fully qualified domain name was not found

Parameters
No parameter is required.

See also
util_can_exec, util_env_create, util_getline

util_is_mozilla (declared in base\util.h)
The util_is_mozilla function checks whether a specified user-agent is a Netscape
browser of at least a specified revision level, returning a 1 if it is and 0 otherwise.
The function uses strings to specify the revision level to avoid ambiguities like 1.56
> 1.5.

Syntax
#include <base\util.h>
int util_is_mozilla(char *ua, char *major, char *minor);

Returns
• 1 if the user-agent is a Netscape browser

• 0 if the user-agent is not a Netscape browser

util_is_url (declared in base\util.h)

302 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Parameters
char *ua is the user-agent.

char *major is the major release number (to the left of the decimal point).

char *minor is the minor release number (to the right of the decimal point).

Example
See the example under shexp_cmp

See also
util_is_url, util_later_than

util_is_url (declared in base\util.h)
The util_is_url function checks whether a string is a URL, returning 1 if it is and 0
otherwise.

Syntax
#include <base\util.h>
int util_is_url(char *url);

Returns
• 1 if the string specified by url is a URL

• 0 if the string specified by url is not a URL

Parameters
char *url is the string to be examined.

See also
util_is_mozilla, util_later_than

util_itoa (declared in base\util.h)
The util_itoa function converts a specified integer to a string and returns the length
of the string. Use this function to create a textual representation of a number.

Syntax
#include <base\util.h>
int util_itoa(int i, char *a);

util_later_than (declared in base\util.h)

Appendix A Server Plug-in API Function Definitions 303

Returns
The length of the string created in a

Parameters
int i is the integer to be converted.

char *a is the ASCII string that represents the value. The user is responsible for the
allocation and deallocation of a, which should be at least 32 bytes long.

See also
util_sh_escape

util_later_than (declared in base\util.h)
The util_later_than function compares the date specified in a time structure
against a date specified in a string. If the date in the string is later than or equal to
the one in the time structure, the function returns 1. Use this function to handle
RFC 822, 850, and ctime formats.

Syntax
#include <base\util.h>
int util_later_than(struct tm *lms, char *ims);

Returns
• 1 if the date represented by ims is the same as or later than that represented by

the lms

• 0 if the date represented by ims is earlier than that represented by the lms

Parameters
tm *lms is the time structure containing a date.

char *ims is the string containing a date.

See also
util_is_mozilla, util_is_url, util_itoa

util_make_gmt (declared in libproxy\util.h)
The util_make_gmt function converts a given local time to GMT (Greenwich Mean
Time), or obtains the current GMT.

util_make_local (declared in libproxy\util.h)

304 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Syntax
#include <libproxy\util.h>
time_t util_make_gmt(time_t t);

Returns
• the GMT equivalent to the local time t, if t is not 0

• the current GMT if t is 0

Parameters
time_t t is a time.

See also
util_make_local, util_get_current_gmt

util_make_local (declared in libproxy\util.h)
The util_make_local function converts a given GMT to local time.

Syntax
#include <libproxy\util.h>
time_t util_make_local(time_t t);

Returns
the local equivalent to the GMT t

Parameters
time_t t is a time.

See also
util_make_gmt, util_get_current_gmt

util_move_dir (declared in libproxy\util.h)
The util_move_dir function moves a directory, preserving permissions, creation
times, and last-access times. It attempts to do this by renaming, but if that fails (for
example, if the source and destination are on two different file systems), it copies
the directory.

Syntax
#include <libproxy\util.h>
int util_move_dir (char *src, char *dst);

util_move_file (declared in libproxy\util.h)

Appendix A Server Plug-in API Function Definitions 305

Returns
• 0 if the move failed

• nonzero if the move succeeded

Parameters
char *src is the fully qualified name of the source directory.

char *dst is the fully qualified name of the destination directory.

See also
util_move_file

util_move_file (declared in libproxy\util.h)
The util_move_dir function moves a file, preserving permissions, creation time,
and last-access time. It attempts to do this by renaming, but if that fails (for
example, if the source and destination are on two different file systems), it copies
the file.

Syntax
#include <libproxy\util.h>
int util_move_file (char *src, char *dst);

Returns
• 0 if the move failed

• nonzero if the move succeeded

Parameters
char *src is the fully qualified name of the source file.

char *dst is the fully qualified name of the destination file.

See also
util_move_dir

util_parse_http_time (declared in libproxy\util.h)
The util_parse_http_time function converts a given HTTP time string to time_t
format.

util_put_string_to_aux_file (declared in libproxy\cutil.h)

306 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Syntax
#include <libproxy\util.h>
time_t util_parse_http_time(char *date_string);

Returns
the time_t equivalent to the GMT t

Parameters
time_t t is a time.

See also
util_make_gmt, util_get_current_gmt

util_put_string_to_aux_file (declared in
libproxy\cutil.h)

The util_put_string_to_aux_file function writes a single line containing a string to
a file specified by directory name and file name.

Syntax
#include <libproxy\cutil.h>
int util_put_string_to_aux_file(char *root, char *name, char *str);

Returns
• non-zero if the operation succeeded

• 0 if the operation failed

Parameters
char *root is the name of the directory where the file is to be written.

char *name is the name of the file is to be written.

char *str is the string to write.

See also
util_get_int_from_file, util_get_long_from_file, util_put_int_to_file,
util_put_long_to_file, util_put_string_to_file

util_sh_escape (declared in base\util.h)

Appendix A Server Plug-in API Function Definitions 307

util_sh_escape (declared in base\util.h)
The util_sh_escape function parses a specified string and places a backslash (\) in
front of any shell-special characters, returning the resultant string. Use this
function to ensure that strings from clients won’t cause a shell to do anything
unexpected.

Syntax
#include <base\util.h>
char *util_sh_escape(char *s);

Returns
A newly allocated string

Parameters
char *s is the string to be parsed.

See also
util_uri_escape

util_snprintf (declared in base\util.h)
The util_snprintf function formats a specified string, using a specified format, into
a specified buffer using the printf-style syntax and performs bounds checking. It
returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
run-time library of your compiler.

Syntax
#include <base\util.h>
int util_snprintf(char *s, int n, char *fmt, ...);

Returns
The number of characters formatted into the buffer.

Parameters
char *s is the buffer to receive the formatted string.

int n is the maximum number of bytes allowed to be copied.

char *fmt is the format string. The function handles only %d and %s strings; it does
not handle any width or precision strings.

... represents a sequence of parameters for the printf function.

util_sprintf (declared in base\util.h)

308 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Example
Similar to the example for util_sprintf.

See also
util_sprintf, util_vsnprintf, util_vsprintf

util_sprintf (declared in base\util.h)
The util_sprintf function formats a specified string, using a specified format, into a
specified buffer using the printf-style syntax without bounds checking. It returns
the number of characters in the formatted buffer.

Because util_sprintf doesn’t perform bounds checking, use this function only if
you are certain that the string fits the buffer. Otherwise, use the function
util_snprintf. For more information, see the documentation on the printf function
for the run-time library of your compiler.

Syntax
#include <base\util.h>
int util_sprintf(char *s, char *fmt, ...);

Returns
The number of characters printed.

Parameters
char *s is the buffer to receive the formatted string.

char *fmt is the format string. The function handles only %d and %s strings; it does
not handle any width or precision strings.

... represents a sequence of parameters for the printf function.

Example
int brief_log(pblock *pb, Session *sn, Request *rq)
{
char *method = pblock_findval("method", rq->reqpb);

char *uri = pblock_findval("uri", rq->reqpb);
char *ip = pblock_findval("ip", sn->client);
/* Temp vars */
char *logmsg;
int len;
logmsg = (char *)

MALLOC(strlen(ip) + 1 + strlen(method) + 1
+ strlen(uri) + 1 + 1);

len = util_sprintf(logmsg, "%s %s %s\n", ip, method, uri);

util_strcasecmp (declared in base\systems.h)

Appendix A Server Plug-in API Function Definitions 309

/* The atomic version uses locking to prevent interference */
system_fwrite_atomic(logfd, logmsg, len);
FREE(logmsg);
return REQ_PROCEED;

}

See also
util_snprintf, util_vsnprintf, util_vsprintf

util_strcasecmp (declared in base\systems.h)
The util_strcasecmp function performs a comparison of two alphanumeric strings
and returns a -1, 0, or 1 to signal which is larger or that they are identical. The
function’s comparison is not case-sensitive.

Syntax
#include <base\systems.h>
int util_strcasecmp(const char *s1, const char *s2);

Returns
• 1 if s1 is greater than s2

• 0 if s1 is equal to s2

• -1 if s1 is less than s2

Parameters
char *s1 is the first string.

char *s2 is the second string.

See also
util_strncasecmp

util_strncasecmp (declared in base\systems.h)
The util_strncasecmp function performs a comparison of the first n characters in
the alphanumeric strings and returns a -1, 0, or 1 to signal which is larger or that
they are identical. The function’s comparison is not case-sensitive.

Syntax
#include <base\systems.h>
int util_strncasecmp(const char *s1, const char *s2, int n);

util_uri_check (declared in libproxy\util.h)

310 iPlanet Web Proxy Server Administrator’s Guide • August 2003

Returns
• 1 if s1 is greater than s2

• 0 if s1 is equal to s2

• -1 if s1 is less than s2

Parameters
char *s1 is the first string.

char *s2 is the second string.

int n is the number of initial characters to compare.

See also
util_strcasecmp

util_uri_check (declared in libproxy\util.h)
The util_uri_check function checks that a URI has a format conforming to the
standard.

At present, the only URI it checks for is a URL. The standard format for a URL is

protocol://user:password@host:port/url-path

where user:password, :password. :port, or /url-path can be omitted.

Syntax
#include <libproxy\util.h>
int util_uri_check (char *uri);

Returns
• 0 if the URI does not have the proper form.

• nonzero if the URI has the proper form.

Parameters
char *uri is the URI to be tested.

util_uri_escape (declared in base\util.h)
The util_uri_escape function converts any special characters in a specified string
into the URI format, and returns the escaped string. Use util_uri_escape before
sending the URI back to the client.

util_uri_is_evil (declared in base\util.h)

Appendix A Server Plug-in API Function Definitions 311

Syntax
#include <base\util.h>
char *util_uri_escape(char *d, char *s);

Returns
The string (possibly newly allocated) with escaped characters replaced.

Parameters
char *d is a string. If d is not NULL, the function copies the formatted string into d
and returns it. If d is NULL, the function allocates a properly sized string and
copies the formatted special characters into the new string, then returns it.

The util_uri_escape function does not check bounds for the parameter d.
Therefore, d should be at least three times as large as s.

char *s is the string containing the unescaped form of the URI.

See also
util_uri_is_evil, util_uri_parse, util_uri_unescape

util_uri_is_evil (declared in base\util.h)
The util_uri_is_evil function checks a specified URI and returns 1 if it contains ../
or //. Use this function to make sure that a URI given by a client won’t do
anything unexpected.

Syntax
#include <base\util.h>
int util_uri_is_evil(char *t);

Returns
• 1 if the URI contains ../ or //

• 0 if the URI does not contain ../ or //

Parameters
char *t is the URI to be checked.

See also
util_uri_escape, util_uri_parse

util_uri_parse (declared in base\util.h)

312 iPlanet Web Proxy Server Administrator’s Guide • August 2003

util_uri_parse (declared in base\util.h)
The util_uri_parse function removes /../, /./, and // in a specified URI. You can
use this function to convert a URI’s bad sequences into valid ones. First use the
function util_uri_is_evil to determine whether the function has a bad sequence.

Syntax
#include <base\util.h>
void util_uri_parse(char *uri);

Returns
void

Parameters
char *uri is the URI to be converted.

See also
util_uri_is_evil, util_uri_unescape

util_uri_unescape (declared in base\util.h)
The util_uri_unescape function converts the encoded characters of a specified URI
into special characters in place.

Syntax
#include <base\util.h>
void util_uri_unescape(char *uri);

Returns
void

Parameters
char *uri is the URI to be converted.

See also
util_uri_escape, util_uri_is_evil, util_uri_parse

util_url_cmp (declared in libproxy\util.h)
The util_url_cmp function compares two URLs. It is analogous to the strcmp()
library function of C.

util_url_fix_host name (declared in libproxy\util.h)

Appendix A Server Plug-in API Function Definitions 313

Syntax
#include <libproxy\util.h>
int util_url_cmp (char *s1, char *s2);

Returns
• -1 if the first URL, s1, is less than the second, s2

• 0 if they are identical

• 1 if the first URL, s1, is greater than the second, s2

Parameters
char *s1 is the first URL to be tested.

char *s2 is the second URL to be tested.

See also
util_url_fix_host name, util_uri_check

util_url_fix_host name (declared in libproxy\util.h)
The util_url_fix_host name function converts the host name in a URL to lowercase
and removes redundant port numbers.

Syntax
#include <libproxy\util.h>
void util_url_fix_host name(char *url);

Returns
void (but changes the value of its parameter string)

The protocol specifier and the host name in the parameter string are changed to
lowercase. The function also removes redundant port numbers, such as 80 for
HTTP, 70 for gopher, and 21 for FTP.

Parameters
char *url is the URL to be converted.

See also
util_url_cmp, util_uri_check.

util_url_has_FQDN (declared in libproxy\util.h)

314 iPlanet Web Proxy Server Administrator’s Guide • August 2003

util_url_has_FQDN (declared in libproxy\util.h)
The util_url_has_FQDN function returns a value to indicate whether a specified
URL references a fully qualified domain name.

Syntax
#include <libproxy\util.h>
int util_url_has_FQDN(char *url);

Returns
• 1 if the URL has a fully qualified domain name

• 0 if the URL does not have a fully qualified domain name

Parameters
char *url is the URL to be examined.

util_vsnprintf (declared in base\util.h)
The util_vsnprintf function formats a specified string, using a specified format,
into a specified buffer using the vprintf-style syntax and performs bounds
checking. It returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
run-time library of your compiler.

Use this function if you want a vsprintf syntax that takes a standard arg format.
For more information, see the documentation on the vsprintf function for the
runtime library of your compiler.

Syntax
#include <base\util.h>
int util_vsnprintf(char *s, int n, register char *fmt, va_list
args);

Returns
The number of characters printed

Parameters
char *s is the buffer to receive the formatted string.

int n is the maximum number of bytes allowed to be copied.

register char *fmt is the format string. The function handles only %d and %s
strings; it does not handle any width or precision strings.

util_vsprintf (declared in base\util.h)

Appendix A Server Plug-in API Function Definitions 315

va_list args is an STD arg variable obtained from a previous call to va_start.

See also
util_sprintf, util_vsprintf

util_vsprintf (declared in base\util.h)
The util_vsprintf function formats a specified string, using a specified format, into
a specified buffer using the vprintf-style syntax without bounds checking. It
returns the number of characters in the formatted buffer.

For more information, see the documentation on the printf function for the
run-time library of your compiler.

Use this function if you want a vsprintf syntax that takes a standard arg format.
For more information, see the documentation on the vsprintf function for the
run-time library of your compiler.

Syntax
#include <base\util.h>
int util_vsprintf(char *s, register char *fmt, va_list args);

Returns
The number of characters printed

Parameters
char *s is the buffer to receive the formatted string.

register char *fmt is the format string. The function handles only %d and %s
strings; it does not handle any width or precision strings.

va_list args is an STD arg variable obtained from a previous call to va_start.

See also
util_snprintf, util_vsnprintf

util_vsprintf (declared in base\util.h)

316 iPlanet Web Proxy Server Administrator’s Guide • August 2003

317

Appendix B

Server Data Structures

The server plug-in API uses many data structures. All their definitions are
gathered here for your convenience.

The Session Data Structure
A session is the time between the opening and the closing of the connection
between the client and the server. The Session data structure holds variables that
apply session wide, regardless of the requests being sent, as shown in this code. It
is defined in the base/session.h file.

typedef struct {
/* Information about the remote client */

pblock *client;

/* The socket descriptor to the remote client */
SYS_NETFD csd;
/* The input buffer for that socket descriptor */
netbuf *inbuf;

/* Raw socket information about the remote */
/* client (for internal use) */

struct in_addr iaddr;
} Session;

The Parameter Block (pblock) Data Structure
The parameter block is the hash table that holds pb_entry structures. Its contents
are transparent to most code. It is defined in the base/pblock.h file.

#include "base/pblock.h"

The Client Parameter Block

318 iPlanet Web Proxy Server Administrator’s Guide • August 2003

typedef struct {
int hsize;
struct pb_entry **ht;

} pblock;

The Pb_entry Data Structure
The pb_entry data structure is a single element in the parameter block. It is defined
in the base/pblock.h file.

struct pb_entry {
pb_param *param;
struct pb_entry *next;

};

The Pb_param Data Structure
The pb_param data structure represents a name-value pair, as stored in a pb_entry.
It is defined in the base/pblock.h file.

typedef struct {
char *name,*value;

} pb_param;

The Client Parameter Block
The Session->client parameter block structure, defined in the
base/session.h file, contains two entries:

• The IP entry is the IP address of the client machine.

• The DNS entry is the DNS name of the remote machine. This member must be
accessed through the session_dns function call:

/*
* session_dns returns the DNS host name of the client for this
* session and inserts it into the client pblock. Returns NULL if
* unavailable.
*/

char *session_dns(Session *sn);

The Client Parameter Block

Appendix B Server Data Structures 319

The Request Data Structure
Under HTTP protocol, there is only one request per session. The Request structure
contains the variables that apply to the request in that session (for example, the
variables include the client’s HTTP headers). It is declared in the frame/req.h file.

typedef struct {
/* Server working variables */
pblock *vars;

/* The method, URI, and protocol revision of this request */
block *reqpb;
/* Protocol specific headers */
int loadhdrs;
pblock *headers;

/* Server’s response headers */
pblock *srvhdrs;

/* The object set constructed to fulfill this request */
httpd_objset *os;

/* The stat last returned by request_stat_path */
char *statpath;
struct stat *finfo;

} Request;

The Stat Data Structure
When the program calls the stat() function for a given file, the system returns a
structure that provides information about the file. The specific details of the
structure must be obtained from your own implementation, but the basic outline of
the structure is as follows:

struct stat {
dev_t st_dev;/* device of inode */
inot_tst_ino;/* inode number */
shortst_mode;/* mode bits */
shortst_nlink;/* number of links to file /*
shortst_uid;/* owner’s user id */
shortst_gid;/* owner’s group id */
dev_tst_rdev;/* for special files */
off_tst_size;/* file size in characters */

The Client Parameter Block

320 iPlanet Web Proxy Server Administrator’s Guide • August 2003

time_tst_atime;/* time last accessed */
time_tst_mtime;/* time last modified */
time_tst_ctime;/* time inode last changed*/

}.

The elements that are most significant for server plug-in API activities are st_size,
st_atime, st_mtime, and st_ctime.

The Shared Memory Structure, Shmem_s
typedef struct {
void *data; /* the data */

HANDLE fdmap;
int size; /* the maximum length of the data */
char *name; /* internal use: filename to unlink if exposed */
SYS_FILE fd; /* internal use: file descriptor for region */

} shmem_s;

The Netbuf Data Structure
The netbuf data structure is a platform-independent network-buffering structure
that maintains such members as buffer address, position in buffer, current file size,
maximum file size, and so on. Details of its structure vary between
implementations. It is defined in buffer.h.

The Filebuffer Data Structure
The filebuffer data structure is a platform-independent file-buffering structure that
maintains such members as buffer address, file position, current file size, and so
on. Details of its structure vary between implementations. It is defined in
buffer.h.

The Cinfo Data Structure
The cinfo data structure records the content information for a file. It is defined in
cinfo.h.

The Client Parameter Block

Appendix B Server Data Structures 321

typedef struct {
char *type;/* Identifies what kind of data is in the file*/
char *encoding;/* Identifies any compression or other content*/-

/* independent transformation that’s been applied*/
/* to the file, such as uuencode)*/

char *language;/* Identifies the language a text document is in.
*/
} cinfo;

The SYS_NETFD Data Structure
The SYS_NETFD data structure is a platform-independent socket descriptor.
Details of its structure vary between implementations.

The SYS_FILE Data Structure
The SYS_FILE data structure is a platform-independent file descriptor. Details of
its structure vary between implementations.

The SEMAPHORE Data Structure
The SEMAPHORE data structure is a platform-independent implementation of
semaphores. Details of its structure vary between implementations. It is defined in
sem.h.

The Sockaddr_in Data Structure
The socaddr_in data structure is a platform-dependent socket address. For NT
proxies, you can find more information in WINSOCK.H.

The CONDVAR Data Structure
The CONDVAR data structure is a platform-independent implementation of a
condition variable. Details of its structure may vary between implementations. It is
defined in crit.h.

The Client Parameter Block

322 iPlanet Web Proxy Server Administrator’s Guide • August 2003

The CRITICAL Data Structure
The CRITICAL data structure is a platform-independent implementation of a
critical-section variable. Details of its structure may vary between
implementations. It is defined in crit.h.

The SYS_THREAD Data Structure
The SYS_THREAD data structure is a platform-independent implementation of a
system-thread variable. Details of its structure may vary between implementations.
It is defined in systhr.h.

The CacheEntry Data Structure
The CacheEntry data structure is populated by various cache access functions, and
contains information about the cache resources.

typedef struct _CacheEntry {

unsigned version /* cache meta data version*/

char* url; /* must be allocated by the caller; if
null, url_size gives size */

unsigned url_size; /* in: size of the allocated string;
out: actual size if url is null */

char* filepath; /* must be allocated by the caller; if
null, filepath_size gives size */

unsigned filepath_size; /* in: size of the allocated string;
out: actual size if filepath is null
*/

char* content_type; /* must be allocated by the caller; if
null,content_type_size gives size */

unsigned content_type_siz
e;

/* in: size of the allocated string;
out:actual size if content_type is
null */

unsigned content_offset; /* offset of content in the file */

unsigned
long

content_length; /* content length */

The Client Parameter Block

Appendix B Server Data Structures 323

time_t last_modified; /* last modified time (GMT, 0 if
unspecified)*/

time_t expiration; /* expiration time (GMT, 0 if
unspecified) */

unsigned
long

transfer_duratio
n_ms;

/* transfer duration in milliseconds
*/

time_t last_checked; /* last validation time (GMT) */

int server_auth; /* whether server authentication is
needed */

time_t last_accessed; /* last accessed time (GMT) */

int times_accessed; /* number of times resource is served
using current instance in cache */

unsigned version; /* cache metadata version */

char* url; /* must be allocated by the caller; if
null, url_size gives size */

unsigned url_size; /* in: size of the allocated string;
out: actual size if url is null */

char* filepath; /* must be allocated by the caller; if
null, filepath_size gives size */

unsigned filepath_size; /* in: size of the allocated string;
out: actual size if filepath is null */

char* content_type; /* must be allocated by the caller; if
null,content_type_size gives size */

unsigned content_type_siz
e;

/* in: size of the allocated string;
out:actual size if content_type is null
*/

unsigned content_offset; /* offset of content in the file */

unsigned
long

content_length; /* content length */

time_t last_modified; /* last modified time (GMT, 0 if
unspecified)*/

time_t expiration; /* expiration time (GMT, 0 if
unspecified) */

The Client Parameter Block

324 iPlanet Web Proxy Server Administrator’s Guide • August 2003

unsigned
long

transfer_duratio
n_ms;

/* transfer duration in milliseconds */

time_t last_checked; /* last validation time (GMT) */

int server_auth; /* whether server authentication is
needed */

time_t last_accessed; /* last accessed time (GMT) */

int times_accessed; /* number of times resource is served
using current instance in cache */

} CacheEntry;

325

Appendix C

Proxy Configuration Files

This appendix describes the directives and functions in the configuration files that
iPlanet Web Proxy Server uses. You can configure iPlanet Web Proxy Server
manually by editing the files directly.

The files that you use to configure the proxy are in a directory called
server-root\proxy-id\config in your server root directory. Here’s a brief
description of each file described in this appendix:

• magnus.conf is the server’s main technical configuration file. It controls
aspects of the server operation not related to specific resources or documents,
such as host name and port.

• obj.conf is the server’s object configuration file. It controls access to the proxy
server, and determines how documents are proxied and cached.

• socks5.conf is a file that contains the SOCKS server configuration. The
SOCKS daemon is a generic firewall daemon that controls point-to-point access
through the firewall.

• bu.conf is an optional file that contains batch update directives. You can use
these to update many documents at once. You can time batch updates; for
example, you can have them occur during off-peak hours to minimize the
effect on the efficiency of the server.

• icp.conf is the Internet Cache Protocol (ICP) configuration file. It identifies
the information about the parent and sibling servers in a proxy array that uses
ICP.

• ras.conf is an optional file that contains information about how your proxy
server uses remote access.

The magnus.conf File

326 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Other files that affect the proxy are explained elsewhere in this book:

• mime.types is the file the server uses to convert filename extensions such as
.GIF into a MIME type like image/gif. This file is described in Chapter 17,
“Configuring the Proxy Manually.”

• admpw is the administrative password file. Its format is user:password. The
password is DES-encrypted just like /etc/passwd. This file is described in
Chapter 17, “Configuring the Proxy Manually.” The admpw file is located in the
server-root\admin-serv\config directory.

• autoconfig is a file in Netscape Navigator 2.0 JavaScript software that enables
you to specify when to use the proxy. This file is described in Chapter 12,
“Using the Client Autoconfiguration File.”

• parray.pat is the Proxy Array Table file. The PAT file is an ASCII file used in
proxy to proxy routing. It contains information about a proxy array; including
the members’ machine names, IP addresses, ports, load factors, cache sizes, etc.
For more information on the syntax of the parray.pat file, see “The parray.pat
File” on page 210.

• parent.pat is the Proxy Array Table file that contains information about an
upstream proxy array. For more information on the syntax of the parent.pat
file, see “The parent.pat File” on page 211.

The magnus.conf File
For each directive, this section provides the directive’s characteristics, including
the directive name, description, format for the value string, default value if the
directive is omitted, and how many times the directive can be in the file. The
directives are:

• Ciphers specifies which ciphers are enabled for your server.

• DNS specifies if the server does DNS lookups on clients who access the server.

• ErrorLog specifies the directory where the server logs its errors.

• LDAPConnPool specifies the number of persistent connections to the LDAP
directory.

• LoadObjects specifies a startup object configuration file.

• Port defines the TCP port to which the server listens.

• RootObject defines the default server object.

The magnus.conf File

Appendix C Proxy Configuration Files 327

• Security specifies whether SSL is enabled or disabled.

• ServerName defines the proxy host name.

• SSL3Ciphers specifies which encryption schemes are enabled.

• User specifies the proxy’s Unix user account.

Ciphers
The Ciphers directive specifies the ciphers enabled for your server.

Syntax
Ciphers +rc4 +rc4export -rc2 -rc2export +idea +des +desede3

A + means the cipher is active, and a - means the cipher is inactive.

Valid ciphers are rc4, rc4export, rc2, rc2export, idea, des, desede3. Any cipher
with export as part of its name is not stronger than 40 bits.

DNS
The DNS directive specifies whether the server performs DNS lookups on clients
accessing the server. When a client connects to your server, the server knows the
client’s IP address but not its host name (for example, it knows the client as
198.95.251.30, rather than its host name www.a.com). The server will resolve the
client’s IP address into a host name for operations like access control, CGI, error
reporting, and access logging.

If your server responds to many requests per day, you might want (or need) to stop
host name resolution; doing so can reduce the load on the DNS or NIS server.

Syntax
DNS [on|off]

Default
DNS host name resolution is on as a default.

The magnus.conf File

328 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

ErrorLog
The ErrorLog directive specifies the directory where the server logs its errors. You
can also use the syslog facility. If errors are reported to a file (instead of syslog),
then the file and directory in which the log is kept must be writable by whatever
user account the server runs as.

Syntax
ErrorLog logfile

logfile can be a full path and filename or the keyword SYSLOG (which must be in
all capital letters).

LDAPConnPool
The LDAPConnPool Directive specifies the number of persistent connections to
maintain to the LDAP directory server. Creating these connections and binding to
the directory on each one is an expensive operation. This setting establishes a
reasonably sized pool of connections that will be shared among the proxy’s request
handler threads. Increase this value to allow more connections and to improve
proxy performance if your directory server is not overloaded. Decrease the value if
your directory server is very busy.

The default value for LDAPConnPool is 5.

LoadObjects
The LoadObjects directive specifies one or more object configuration files to use on
startup; these files tell the server the kinds of URLs to proxy and cache. If any User
directive is in the magnus.conf file, it must appear before the LoadObjects
directive.

Although you can have more than one object configuration file, the proxy’s
administration forms work with only one file and assume that it is in the server
root in server-root\proxy-id\config\obj.conf. If you use the online forms (or
plan to), don’t put the obj.conf file in any other directory and don’t rename it.

Syntax
LoadObjects filename

filename is either the full pathname or a relative pathname. Relative pathnames
are resolved from the directory specified with the -d command line flag. If no -d
flag is given, the server looks in the current directory.

The magnus.conf File

Appendix C Proxy Configuration Files 329

Port
The Port directive controls to which TCP port the server listens. If you choose a
port number less than 1024, the server must be started as root or superuser. The
port you choose also affects how the proxy users configure their browsers (they
must specify the port number when accessing the proxy server). There should be
only one Port directive in magnus.conf.

There are no official port numbers for proxy servers, but two commonly used
numbers are 8080 and 8000.

Syntax
Port number

number is a whole number between 0 and 65535.

Default
Port 8080

RootObject
The RootObject directive tells the server which object loaded from an object file is
the server default. The default object is expected to have all of the name translation
directives for the server; any server behavior that is configured in the default object
affects the entire server.

If you specify an object that doesn’t exist, the server doesn’t report an error until a
client tries to retrieve a document.

Syntax
RootObject name

name is the name of an object defined in one of the object files loaded with a
LoadObjects directive.

Default
There is no default if you do not specify a root object name; even if it is the
“default” named object, you must specify “default.” The administration forms
assume you will use the default named object. Don’t deviate from this convention
if you plan to use the online forms.

The magnus.conf File

330 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Security
The Security directive tells the server whether encryption (Secure Sockets Layer
version 2 or version 3 or both) is enabled or disabled.

If Security is set to on, and both SSL2 and SSL3 are enabled, then the server tries
SSL3 encryption first. If that fails, the server tries SSL2 encryption.

Syntax
Security on|off

Default
By default, security is off.

ServerName
The ServerName directive tells the server what to put in the host name section of
any URLs it sends back to the client. This affects redirections that you have set up
using the online forms. Combined with the port number, this name is what all
clients use to access the server.

You can have only one ServerName directive in magnus.conf.

Syntax
ServerName host

host is a fully qualified domain name such as myhost.iplanet.com.

Default
If ServerName isn’t in magnus.conf, the proxy server attempts to derive a host
name through system calls. If they don’t return a qualified domain name (for
example, they get myhost instead of myhost.iplanet.com), the proxy server won’t
start, and you’ll get a message telling you to set this value manually, meaning put a
ServerName directive in your magnus.conf file.

SSLClientAuth
The SSLClientAuth directive causes SSL3 client authentication on all requests.

Syntax
SSL3ClientAuth on|off

The magnus.conf File

Appendix C Proxy Configuration Files 331

on directs that SSL3 client authentication be performed on every request,
independent of ACL-based access control.

SSL2
The SSL2 directive tells the server whether Secure Sockets Layer, version 2
encryption is enabled or disabled. The Security directive dominates the SSL2
directive; if SSL2 encryption is enabled but the Security directive is set to off, then
it is as though SSL2 were disabled.

Syntax
SSL2 on|off

Default
By default, security is off.

SSL3
The SSL3 directive tells the server whether Secure Sockets Layer, version 3 security
is enabled or disabled. The Security directive dominates the SSL3 directive; if SSL3
security is enabled but the Security directive is set to off, then it is as though SSL3
were disabled.

Syntax
SSL3 on|off

Default
By default, security is off.

SSL3Ciphers
The SSL3Ciphers directive specifies the SSL3 ciphers enabled for your server.

Syntax
SSL3Ciphers +rc4 +rc4export -rc2 -rc2export +idea +des +desede3

A + means the cipher is active, and a - means the cipher is inactive.

Valid ciphers are rsa_rc4_128_md5, rsa3des_sha, rsa_des_sha,
rsa_rc4_40_md5, rsa_rc2_40_md5, and rsa_null_md5. Any cipher with 40 as part
of its name is 40 bits.

The obj.conf File

332 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

The obj.conf File
This section defines the obj.conf directives and describes their characteristics,
including the directive name and description, format for the function string,
default value if the directive is omitted, and how many instances of the directive
can be in the file. The directives are:

• AddLog adds log entries to any log files.

• AuthTrans protects server resources from specific users.

• Connect provides a hook for you to call a custom connection function.

• DNS calls a custom DNS function you specify.

• Error sends customized error messages to clients.

• Init (a special directive) initializes server subsystems.

• NameTrans maps URLs to mirror sites and the local file system.

• ObjectType tags additional information to requests.

• PathCheck checks URLs after NameTrans.

• Service sends data and completes the requests.

AddLog
After the request is finished and the proxy server has stopped sending to and
receiving from the client, the proxy server logs the transaction. The proxy server
records information about every time a client tries to gain access to the content
server through the proxy, and it records information about the client making the
request.

Only one log file may be active at a time. The log file is created with the flex-init
function. Options for the log many only be specified on the default object. All other
objects may only specify status=on or status=off to indicate whether the object
should be logged.

To log only the IP address of the client, and not the DNS name, the AddLog
fn-flex-log function takes one more optional parameter: iponly=1. This optional
parameter saves CPU cycles because the DNS name of the client host doesn’t have
to be resolved by contacting the DNS server:

AddLog fn=proxy-log name=access iponly=1

The obj.conf File

Appendix C Proxy Configuration Files 333

flex-log (starting proxy logging)
The flex-log function is an AddLog function that records request-specific data in
the flexible, common, extended (used by most HTTP servers), or extended-2 log
format. There are a number of free statistics generators for the common format, but
the extended format gives more detailed information about the bytes transferred
and the time elapsed. The extended-2 format provides as much information as the
extended format, with additional kinds of information: the route through which
the document was received as well as the finish status for the remote connection,
the client connection, and the cache.

The log format is specified by the flex-init function call, described in “init-proxy
(starting the network software for proxy),” on page 347.

Syntax
AddLog fn=proxyflex-log

name=name status=on/off

Parameters
name (optional) gives the name of a log file, which must have been given as a
parameter to the flex-init function of the Init directive.

iponly (optional) instructs the server not to look up the host name of the remote
client but to record the IP address instead. The value of iponly can be anything, as
long as it exists; the online forms set iponly="1". iponly is only valid on a default
object.

Example
Log all accesses to the central log file
AddLog fn=flex-log
Log non-local accesses to another log file
<Client ip=*~198.93.9[2345].*>
AddLog fn=flex-log name=nonlocal
</Client>

AuthTrans
AuthTrans is the Authorization Translation directive. Server resources can be
protected so that accessing them requires the client to provide certain information
about the person using the client program. This authorization information is
“encoded” to prevent clients from authorizing themselves as different users.

The obj.conf File

334 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

The server analyzes the authorization of client users in two steps. First, it translates
authorization information sent by the client, and then it requires that such
authorization information be present. This is done in the hope that multiple
translation schemes can be easily incorporated, as well as providing the flexibility
to have resources that record authorization information but do not require it.

If there is more than one AuthTrans directive in an object, all functions will be
applied. The AuthTrans directive has a function called proxy-auth.

proxy-auth (translating proxy authorization)
The proxy-auth function of the AuthTrans directive translates authorization
information provided through the basic proxy authorization scheme. This scheme
is similar to the HTTP authorization scheme but doesn’t interfere with it, so using
proxy authorization doesn’t block the ability to authenticate to the remote server.

This function is usually used with the PathCheck fn=require-proxy-auth function.

Syntax
AuthTrans fn=proxy-auth auth-type=basic

dbm=full path name

AuthTrans fn=proxy-auth auth-type=basic
userfile=full path name
grpfile=full path name

Parameters
auth-type specifies the type of authorization to be used. The type should be
“basic”.

dbm specifies the full path and base filename of the user database in the server’s
native format. The native format is a system DBM file, which is a hashed file format
allowing instantaneous access to billions of users. If you use this parameter, don’t
use the userfile parameter.

userfile specifies the full pathname of the user database in the NCSA-style httpd
user file format. This format consists of name:password lines where password is
encrypted. If you use this parameter, don’t use dbm.

grpfile (optional) specifies the NCSA-style httpd group file to be used. Each line of
a group file consists of group:user1 user2...userN, where each user is separated by
spaces.

Example
A Unix example:

The obj.conf File

Appendix C Proxy Configuration Files 335

AuthTrans fn=proxy-auth auth-type=basic
dbm=/usr/ns-home/proxy-EXAMPLE/userdb/rs

A Windows NT example:

AuthTrans fn=proxy-auth auth-type=basic
userfile=\iplanet\server\proxy-EXAMPLE\.htpasswd
grpfile=\iplanet\server\proxy-EXAMPLE\.grpfile

It is possible to have authentication be performed by a user-provided function by
passing the user-fn parameter to the proxy-auth function.

Syntax
AuthTrans fn=proxy-auth auth-type=basic

user-fn=your function
userdb=full path name

Connect
The Connect directive calls the connect function you specify.

Syntax
Connect fn=your-connect-function

Only the first applicable Connect function is called, starting from the most
restrictive object. Occasionally it is desirable to call multiple functions (until a
connection is established). The function returns REQ_NOACTION if the next
function should be called. If it fails to connect, the return value is REQ_ABORT. If it
connects successfully, the connected socket descriptor will be returned.

The Connect function must have this prototype:

int your_connect_function(pblock *pb, Session *sn, Request *rq);

Connect gets its destination host name and port number from:

rq->host (char *)
rq->port (int)

The host can be in a numeric IP address format.

To use the NSAPI custom DNS class functions to resolve the host name, make a call
to this function:

struct hostent *servact_gethostbyname(char *host name, Session *sn, Request *rq);

Example
This example uses the native connect mechanism to establish the connection:

The obj.conf File

336 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

#include "base/session.h"
#include "frame/req.h"
#include <ctype.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
int my_connect_func(pblock *pb, Session *sn, Request *rq)
{

struct sockaddr_in sa;
int sd;
memset(&sa, 0, sizeof(sa));
sa.sin_family = AF_INET;
sa.sin_port = htons(rq->port);
/* host name resolution */
if (isdigit(*rq->host))

sa.sin_addr.s_addr = inet_addr(rq->host);
else
{

struct hostent *hp = servact_gethostbyname(rq->host, sn, rq);
if (!hp)

return REQ_ABORTED; /* can’t resolv */
memcpy(&sa.sin_addr, hp->h_addr, hp->h_lenght);

}
/* create the socket and connect */

sd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);
if (sd == -1)

return REQ_ABORTED; /* can’t create socket */
if (connect(sd, (struct sockaddr *)&sa, sizeof(sa)) == -1) {

close(sd);
return REQ_ABORTED; /* can’t connect */

}
return sd; /* ok */

}

DNS
The DNS directive calls either the dns-config built-in function or a DNS function
that you specify.

dns-config (suggest treating certain host names as remote)

Syntax
DNS fn=dns-config local-domain-levels=<n>

The obj.conf File

Appendix C Proxy Configuration Files 337

local-domain-levels specifies the number of levels of subdomains that the local
network has. The default is 1.

Sun ONE Web Proxy Server optimizes DNS lookups by reducing the times of
trying to resolve hosts that are apparently fully qualified domain names but which
DNS would otherwise by default still try to resolve relative to the local domain.

For example, suppose you’re in the iplanet.com domain, and you try to access the
host www.xyzzy.com. At first, DNS will try to resolve:

www.xyzzy.com.iplanet.com

and only after that the real fully-qualified domain name:

www.xyzzy.com

If the local domain has subdomains, such as corp.iplanet.com, it would do the
two additional lookups:

www.xyzzy.com.corp.iplanet.com
www.xyzzy.com.iplanet.com

To avoid these extra DNS lookups, you can suggest to the proxy that it treat host
names that are apparently not local as remote, and it should tell DNS immediately
not to try to resolve the name relative to the current domain.

If the local network has no subdomains, you set the value to 0. This means that only
if the host name has no domain part at all (no dots in the host name) will it be
resolved relative to the local domain. Otherwise, DNS should always resolve it as
an absolute, fully qualified domain name.

If the local network has one level of subdomains, you set the value to 1. This means
that host names that include two or more dots will be treated as fully qualified
domain names, and so on.

An example of one level of subdomains would be the iplanet.com domain, with
subdomains:

corp.iplanet.com
engr.iplanet.com
mktg.iplanet.com

This means that hosts without a dot, such as step would be resolved with respect to
the current domain, such as engr.iplanet.com, and so the dns-config function
would try this:

step.engr.iplanet.com

If you are on corp.iplanet.com but the destination host step is on the engr
subdomain, you could say just:

The obj.conf File

338 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

step.engr

instead of having to specify the fully qualified domain name:

step.engr.iplanet.com

your-dns-function (a plug-in dns function you create)
This is a DNS-class function that you define.

Syntax
DNS fn=your-dns-function

Only the first applicable DNS function is called, starting from the most restrictive
object. In the rare case that it is desirable to call multiple DNS functions, the
function can return REQ_NOACTION.

The DNS function must have this prototype:

int your_dns_function(pblock *pb, Session *sn, Request *rq);

The DNS function looks for its parameter host name from:

rq->host (char *)

and it should place the resolved result into:

rq->hp (struct hostent *)

The struct hostent * will not be freed by the caller but will be treated as a pointer to
a static area, as with the gethostbyname call. It is a good idea to keep a pointer in a
static variable in the custom DNS function and on the next call either use the same
struct hostent or free it before allocating a new one.

The DNS function returns REQ_PROCEED if it is successful, and
REQ_NOACTION if the next DNS function (or gethostbyname, if no other
applicable DNS class functions exist) should be called instead. Any other return
value is treated as failure to resolve the host name.

Example
This example uses the normal gethostbyname call to resolve the host name:

#include "base/session.h"
#include "frame/req.h"
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
int my_dns_func(pblock *pb, Session *sn, Request *rq)
{

The obj.conf File

Appendix C Proxy Configuration Files 339

rq->hp = gethostbyname(rq->host);
if (rq->hp)

return REQ_PROCEED;
else

return REQ_ABORTED;

}

Error
At any time during a request, conditions can occur that cause the server to stop
fulfilling a request and to return an error to the client. When this happens, the
server can send a short HTML page to the client, very generically describing the
error.

To help you make error handling more user friendly, the proxy server lets you
intercept certain errors and send a file with your customized error message in place
of the server’s default error message. You can create an HTML file containing the
error message you want to send and associate that message with an error.

Syntax
Error fn=send-error code=code path=path

code is the error code for the default error message, as listed below.

path is the full path to the HTML file containing the message you want to send.

The following are errors returned by the server. Each error has a three-digit HTTP
code that designates it, followed by a short description of the error. The description
might help you write your custom error message, in some of the cases below:

• 401 Unauthorized (for administration forms only). The server requires HTTP
user authorization to allow access to the administration forms, and either the
client provided none or its HTTP authorization was insufficient. You can
customize this error message only when you use Sun ONE Web Proxy Server
as a reverse proxy.

• 403 Forbidden. The server tried to access a file or directory and found that the
user it was running as didn’t have sufficient permission to access the file. You
can customize this error message.

• 404 Not Found. The client asked for a file system path that doesn’t exist or the
server was configured to tell the client that it doesn’t exist. Since message this
is not generated by proxy server, it cannot be customized.

The obj.conf File

340 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

• 407 Proxy Authorization Required. The proxy requires proxy authorization,
and either the client didn’t provide any or it was insufficient. Also, the client
software might not support proxy authorization. Netscape Navigator version
1.1 or newer supports this authorization. This error message can be
customized.

• 500 Server Error. Server errors mean that an error has occurred in the server
that prevents it from finishing the request. Server errors mainly happen
because of misconfiguration or machine resources such as swap space being
exhausted. Since this message is not generated by proxy server, it cannot be
customized.

Example
Error fn=send-error Code=403
path=/usr/ns-home/proxy-EXAMPLE/errors/403.html

Init
Init is a special directive that initializes certain proxy subsystems such as the
networking library, caching module, and access logging. The functions referenced
with the Init directive load data for specific subsystems once on server startup and
keep that data internally until the server is shut down.

Init lines can contain spaces at the beginning of the line and between the directive
and value, but you shouldn’t have spaces after the value because they might
confuse the server. Long lines (although probably not necessary) can be continued
with a backslash (\) continuation character before the line feed.

Caution!
If you are using iPlanet Web Proxy Server Manager online forms, you shouldn’t
use continuation lines in the obj.conf file. Instead, put each Init configuration
entirely on a single line. If you are absolutely sure you will never use the online
forms to edit the obj.conf file, you can use the \ character.

Syntax
Init fn=function-name [parm1=value1]...[parmN=valueN]

function-name identifies the server initialization function to call. These functions
shouldn’t be called more than once.

parm=value pairs are values for function-specific parameters. The number of
parameters depends on the function you use. The order of the parameters doesn’t
matter. The functions of the Init directive listed here are described in detail in the
following sections.

The obj.conf File

Appendix C Proxy Configuration Files 341

• flex-init initializes the flex-log flexible access logging feature

• icp-init initializes the ICP feature.

• init-batch-update initializes the batch update feature.

• init-cache enables and initializes caching.

• init-proxy initializes the networking code used by the proxy.

• init-ras initializes the remote access feature.

• init-urldb initializes the URL database that you specify.

• load-modules tells the server to load functions from a shared object file.

• load-types maps file extensions to MIME types.

Init function order in obj.conf
The Init functions are a series of steps that the server has to follow in order for the
proxy to run. Each function depends on the results of the one before it:

1. Start the proxy.

2. Start the proxy’s cache.

3. Initialize the partitions inside the cache.

4. Initialize the batch update process (which might be updating what’s inside the
partitions).

Calling Init functions
Some functions of the Init directive are crucial to proxy functioning and must be
called once and only once. Others are optional but must be called no more than
once, and some are optional and can be called many times. They are shown in
Table 18-3

NOTE In obj.conf, the order of certain init- functions is crucial. These
functions must occur in the order shown here:

Init fn=init-proxy ...
Init fn=init-cache ...
Init fn=init-partition ...
Init fn=init-batch-update ...

The obj.conf File

342 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

flex-init (starting the flex-log access logs)
The flex-init function initializes the flexible logging system. It opens the log file
whose name is passed as a parameter and establishes a record format that is passed
as another parameter. The log file stays open until the server is shut down, (at
which time all logs are closed and reopened).

You use flex-init to specify a log filename then you use that name with the flex-log
function in the obj.conf file to add a log entry to the file (such as AddLog
fn=flex-log name=loghttp).

If you move, remove, or change the log file without shutting down or restarting the
server, client accesses might not be recorded. To save or back up a log file on a
Windows NT proxy server, you need to rename the file and then restart the server.
The server uses the inode number, but when you do a soft restart, the server first
looks for the filename, and if it doesn’t find the log file, it creates a new one (the
renamed original log file is left for you to use).

Table 18-3 Calling functions of the Init directive.

Function Crucial, call just
once

Optional, call just
once

Optional, call
many times

flex-init X X

icp-init X

init-batch-update X

init-cache X

init-partition X

init-proxy X

init-ras X

load-modules X

load-types X

pa-init-parent-array X

pa-init-proxy-array X

NOTE You can use AddLog to store transactions in more than one log file.

The obj.conf File

Appendix C Proxy Configuration Files 343

Parameters
The flex-init function recognizes two possible parameters: one that names the log
file and one that specifies the components of a record in that file.

The flex-init function recognizes anything contained between percent signs (%) as
the name portion of a name-value pair stored in a parameter block in your
program. (The one exception to this rule is the %SYSDATE% component, which
delivers the current system date.)

Any additional text is treated as literal text, so you can add to the line to make it
more readable. Typical components of the formatting parameter are listed in
Table 18-4. Certain components might contain spaces, so they should be bounded
by escaped quotes (/").

Table 18-4 Options for flex-logging

Flex-log option Component Escaped

Client host name %Ses->client.ip%

Authenticate user name %Req->vars.auth-user%

System date %SYSDATE%

Full request /"%Req->reqpb.proxy-request%/" Yes

Status %Req->srvhdrs.clf-status%

Content length %Req->vars.p2c-cl%

Referer /"%Req->headers.referer%/" Yes

User-agent /"%Req->headers.user-agent%/" Yes

Method %Req->reqpb.method%

URI %Req->reqpb.uri%

Query string of the URI %Req->reqpb.query%

Protocol /"%Req->reqpb.protocol%/" Yes

Accept header %Req->headers.accept%

Date header /"%Req->headers.date%/" Yes

“If Modified Since” header %Req->headers.if-modified-since%

Authorization %Req->headers.authorization%

Cache finish status %Req->vars.cch-status%

Remote server finish status %Req->vars.svr-status%

The obj.conf File

344 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Example
This example for a Unix proxy server initializes flexible logging in to the file
/usr/ns-home/proxy-NOTES/logs/access:

Init fn=flex-init access="" format.access=
"%Ses->client.ip% - %Req->vars.auth-user% [%SYSDATE%]
/"%Req->reqpb.proxy-request%/"
%Req->srvhdrs.clf-status% %Req->vars.p2c-c1%"

This example for a Windows NT proxy server initializes flexible logging in to the
file iplanet\server\proxy-NOTES\logs\access:

Client connection finish
status

%Req->vars.cli-status%

Status code from server %Req->vars.remote-status%

Route to proxy %Req->vars.actual-route%

Transfer time in seconds %Req->vars.xfer-time%

Transfer time in
milliseconds

%Req->vars.xfer-time-total%

Header-length from server
response

%Req->vars.r2p-hl%

Request header size from
proxy to server

%Req->vars.p2r-hl%

Response header size sent
to client

%Req->vars.p2c-hl%

Request header size
received from client

%Req->vars.c2p-hl%

Content-length from proxy
to server request

%Req->vars.p2r-cl%

Content-length received
from client

%Req->headers.content-length%

Content-length from server
response

%Req->vars.r2p-cl%

Unverified user from client %Req->vars.unverified-user%

Table 18-4 Options for flex-logging

Flex-log option Component Escaped

The obj.conf File

Appendix C Proxy Configuration Files 345

Init fn=flex-init access="\iplanet\server\proxy1\logs\access" format.access=
"%Ses->client.ip% - %Req->vars.auth-user% [%SYSDATE%]
/"%Req->reqpb.proxy-request%/"
%Req->srvhdrs.clf-status% %Req->vars-p2c-c1%"

This will log the following items:

1. IP or host name, followed by the three characters " - "

2. the user name, followed by the two characters " ["

3. the system date, followed by the two characters "] "

4. the full request, followed by a single space

5. the full status, followed by a single space

6. the content length

This is the default format, which corresponds to the Common Log Format (CLF).

The first six elements of any log should always be in exactly this format, because a
number of log analyzers expect that as output.

icp-init (initializes ICP)
The icp-init function enables and initializes ICP. ICP (Internet Cache Protocol) is an
object location protocol that enables caches to communicate with one another.
Caches can use ICP to send queries and replies about the existence of cached URLs
and about the best locations from which to retrieve those URLs.

Syntax
Init fn="icp.init"

config_file="file name"
status="on|off"

Parameters
config_file is the name of the ICP configuration file.

status specifies whether ICP is enabled or disabled. Possible values are:

❍ on means that ICP is enabled.

❍ off means that ICP is disabled.

Example
Init fn="icp.init"

config_file="icp.conf"
status="on"

The obj.conf File

346 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

init-batch-update (starting batch updates)
The init-batch-update function starts and specifies a configuration file for batch
updating. Batch updating (or similarly, autoloading) is the process of loading
frequently requested objects into the proxy cache in anticipation of those requests.

Batch updating is useful for a number of tasks. A proxy administrator might want
to perform up-to-date checks during low-usage hours on all the cached objects to
avoid doing these checks when usage is heavier. If a site has heavy daytime usage
but little in the evening, the batch update could run in the evening. The process can
converse with remote servers and update any objects that have been modified.

At larger sites with a network of servers and proxies, you, as the administrator,
might want to use autoloading to “inhale” (pre-load into the cache) a given area of
the web. You provide an initial URL, and the batch process does a recursive
(“worm”) descent across links in the document. Because this function can be a
burden on remote servers, be careful when using it. Measures are taken to keep the
process from performing recursion indefinitely, and the parameters in bu.conf
give you some control of this process. You could also use this functionality to
update proxies to compensate for any unexpected changes in a company-wide
directory index.

Syntax
Init fn=init-batch-update

status=on|off
conf-file="absolute filename"

Parameters
status enables or disables batch updating.

• on means batch updating will be started, and the update function expects to
find a configuration file (otherwise it will abort).

• off means no batch updating or autoloading activity will occur.

conf-file is the pathname to the batch update (autoload) configuration file.

Example
A Unix example:

Init fn=init-batch-update
status=on
conf-file=""

A Windows NT example:

The obj.conf File

Appendix C Proxy Configuration Files 347

Init fn=init-batch-update
status=on
conf-file="\iplanet\server\java-proxy\config\bu.conf"

init-cache (starting the caching system)
The init-cache function enables and initializes the cache and starts the caching
system. Calling this function is crucial if you want to use caching; otherwise it is
optional and must be called only once.

Syntax
For Windows NT version:

Init fn=init-cache
status=on|off

Parameters
status enables or disables caching.

• on enables caching

• off disables caching

 Example
Init fn=init-cache

status=on
dir=/usr/ns-home/cache
ndirs=8

init-proxy (starting the network software for proxy)
The init-proxy function initializes the networking software used by the proxy.
Calling this function in obj.conf is crucial (even though it is called automatically,
you should call it manually as a safety measure).

Syntax
Init fn=init-proxy

timeout=seconds
sig="Some readable name"
anon-pw="e-mail address"
java-ip-check=yes|no

The obj.conf File

348 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Parameters
timeout is the number of seconds of delay allowed between consecutive network
packets received from the remote server. If the delay exceeds the timeout, the
connection is dropped. The default is 120 seconds (2 minutes). This is not the
maximum time allowed for an entire transaction, but the delay between the
packets. For example, the entire transaction can last 15 minutes, as long as at least
one packet of data is received before each timeout period.

sig is the signature (trailer) that the proxy appends to its error messages. By
default, it contains the proxy host name and the port number. If your site does not
want to send that information out or perhaps gives more descriptive names to
proxies, you can use sig to do that.

anon-pw is the email address to send to anonymous FTP servers as the password.
This information can be used by FTP sites to later send notifications to people who
downloaded files from their FTP site. Using this option overrides the default that
the proxy will derive from its current execution environment (which could be, for
example, “nobody@your.site”).

java-ip-check specifies whether Java IP address checking is enabled for your proxy
server. Java IP address checking allows your clients to query the proxy server for
the IP address used to retrieve a resource. When this parameter is set to “yes,” a
client can request that the proxy server send the IP address of the origin server, and
the proxy server will attach the IP address in a header. Once the client knows the IP
address of the origin server, it can explicitly specify that the same IP address be
used for future connections.

Example
Init fn=init-proxy

log-format=extended-2
timeout=120
sig="Main proxy gateway"
anon-pw="webmaster@your.site"

java-ip-check=no

init-proxy-auth (specifying the authentication strategy)
The init-proxy-auth function tells the proxy server whether it should require
authentication from clients as a proxy, or reverse proxy (web server). If the
obj.conf file does not call this function, the server will automatically act as a
proxy requiring authentication.

NOTE Versions of Netscape Navigator prior to 5.0 do not support this
feature.

The obj.conf File

Appendix C Proxy Configuration Files 349

Syntax
Init fn=init-proxy-auth

pac-auth=on|off

Parameters
pac-auth specifies whether local files (PAC files, local icons, etc.) are
password-protected.

• on means that local files are password-protected and require authentication.
This setting has no effect if access control is not enabled for your proxy server.
If you set pac-auth to yes, and proxy authentication is enabled, users will be
prompted for their password twice.

• off means that local files do not require authentication.

Example
Init fn=init-proxy-auth

pac-auth=yes

init-ras (starting remote access)
The init-ras function enables and initializes the remote access feature of Sun ONE
Web Proxy Server. This function only needs to be in the obj.conf file if you are
using remote access.

Syntax
Init fn="init-ras"

ras-conf-file="file name"
instance="server name"

Parameters
ras-conf-file is the name of the remote access configuration file. If your remote
access file is in the config directory, you can just specify the file name. If it is not in
the config directory, you must specify the full path of the file.

instance is the name of the server instance.

Example
Init fn="init-ras"

ras-conf-file="ras.conf"
instance="proxy1"

The obj.conf File

350 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

load-modules (loading shared object modules)
You can use the load-modules function to tell the server to load the functions you
need from the shared object. Calling the load-modules function is crucial to proxy
function.

Unix allows shared libraries, which are archives of multiple functions packed into a
single file (with a .so suffix). If you want to link in functions from shared libraries
you have created, use this function to pass required information to the server. To
do this, you have to tell the main executable where the shared library file resides
and the names of the functions to be loaded (which are indexed by name in the .so
file).

Binaries referring to functions in the shared libraries you specify dynamically load
the individual functions at runtime (without loading the entire library).

To register SAF classes with the server you could use this:

Init fn=load-modules shlib=/your/lib.so funcs=alpha,beta,alpha-beta

where alpha, beta, and alpha-beta represent the functions alpha(), beta(), and
alpha_beta() from the shared library /your/lib.so. Note the correlation between
hyphens and underscores (where the configuration files use hyphens, C code uses
underscores).

You can call those functions as you normally would; for example, to call the C
function alpha_beta() you would use:

Connect fn=alpha-beta

Syntax
Init fn=load-modules

shlib=[path]filename.so
funcs="function1, function2, ..., functionN"

Parameters
shlib is the full path and filename of the shared object library containing the
functions of interest.

funcs is a list of functions in the shared library to be dynamically loaded.

Example
A Unix example:

Init fn=load-modules
shlib=
funcs="func1, func2"

A Windows NT example:

The obj.conf File

Appendix C Proxy Configuration Files 351

Init fn=load-modules
shlib=C:\Iplanet\server\myfolder\func.so
funcs="func1, func2"

load-types (loading MIME-type mappings)
The load-types function scans a file that tells it how to map filename extensions to
MIME types. MIME types are essential for network navigation software like
Netscape Navigator to tell the difference between file types. For example, they are
used to tell an HTML file from a GIF file. See “The mime.types File” on page 204
for more information.

Calling this function is crucial if you use iPlanet Web Proxy Server Manager online
forms or the FTP proxying capability.

Syntax
Init fn=load-types

mime-types="mime.types"

This function loads the MIME type file mime.types from the configuration
directory (the same directory as magnus.conf and obj.conf). This function call is
mandatory and in practice is always as shown in the syntax.

Parameters
mime-types specifies either the full path to the global MIME types file or a
filename relative to the server configuration directory. The proxy server comes
with a default file called mime.types.

local-types is an optional parameter to a file with the same format as the global
MIME types file, but it is used to maintain types that are applicable only to your
server.

Example
Init fn=load-types mime-types=mime.types

Init fn=load-types mime-types=/tp/mime.types \
local-types=local.types

pa-init-parent-array (initializing a parent array member)
The pa-init-parent-array function initializes a parent array member and specifies
information about the PAT file for the parent array of which it is a member.

NOTE The load modules directive should come before the
pa-init-proxy-array function in the obj.conf file.

The obj.conf File

352 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Syntax
Init fn=pa-init-parent-array

set-status-fn=pa-set-member-status
poll="yes|no"
file="absolute filename"
pollhost="host name"
pollport="port number"
pollhdrs="absolute filename"
pollurl="url"
status="on|off"

Parameters
set-status-fn specifies the function that sets the status for the member.

poll

The obj.conf File

Appendix C Proxy Configuration Files 353

Example
The following example tells the member not to poll for the PAT file. This example
would apply to a master proxy.

Init fn=pa-init-parent-array
poll="no"
file="c:/iplanet/server/bin/proxy/pa1.pat"

The following example specifies that the member should poll for a PAT file. This
member is not the master proxy.

Init fn=pa-init-parent-array
poll="yes"
file="c:/iplanet/server/bin/proxy/pa2.pat"
pollhost="proxy1"
pollport="8080"
pollhdrs="c:/iplanet/server/proxy-name/parray/pa2.hdr"
status="on"
set-status-fn=set-member-status
pollurl="/pat"

pa-init-proxy-array (initializing a proxy array member)
The pa-init-proxy-array function initializes a proxy array member and specifies
information about the PAT file for the array of which it is a member.

Syntax
Init fn=pa-init-proxy-array

set-status-fn=pa-set-member-status
poll="yes|no"
file="absolute filename"
pollhost="host name"
pollport="port number"
pollhdrs="absolute filename"
pollurl="url"
status="on|off"

Parameters
set-status-fn specifies the function that sets the status for the member.

poll tells the array member whether or not it needs to poll for a PAT file.

NOTE The load modules directive should come before the
pa-init-proxy-array function in the obj.conf file.

The obj.conf File

354 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

❍ yes means that the member should poll for the PAT file. A member should
only poll for a PAT file if it is not the master proxy. The master proxy has a
local copy of the PAT file, and therefore, does not need to poll for it.

❍ no means that the member should not poll for the PAT file. A member
should not poll for the PAT file if it is the master proxy.

file is the full pathname of the PAT file.

pollhost is the host name of the proxy to be polled for the PAT file. This parameter
only needs to be specified if the poll parameter is set to yes, meaning that the
member is not the master proxy.

pollport is the port number on the pollhost that should be contacted when polling
for the PAT file. This parameter only needs to be specified if the poll parameter is
set to yes, meaning that the member is not the master proxy.

pollhdrs is the full pathname of the file that contains any special headers that must
be sent with the HTTP request for the PAT file. This parameter is optional and
should only be specified if the poll parameter is set to yes, meaning that the
member is not the master proxy.

pollurl is the URL of the PAT file to be polled for. This parameter only needs to be
specified if the poll parameter is set to yes, meaning that the member is not the
master proxy.

status specifies whether the parent array member is on or off.

❍ on means that the member is on.

❍ off means that the member is off.

Example
The following example tells the member not to poll for the PAT file. This example
would apply to a master proxy.

Init fn=pa-init-proxy-array
poll="no"
file="c:/iplanet/server/bin/proxy/pa1.pat"

The following example specifies that the member should poll for a PAT file. This
member is not the master proxy.

Init fn=pa-init-proxy-array
poll="yes"
file="c:/iplanet/server/bin/proxy/pa2.pat"
pollhost="proxy1"
pollport="8080"

The obj.conf File

Appendix C Proxy Configuration Files 355

pollhdrs="c:/iplanet/server/proxy-name/parray/pa2.hdr"
status="on"
set-status-fn=set-member-status
pollurl="/pat"

NameTrans
NameTrans is the name translation directive, which maps URLs to mirror sites and
to the local file system (for the online forms). NameTrans directives should appear
in the root object (the “default” object), although you can put them elsewhere. If an
object has more than one NameTrans directive, the server applies each name
translation function until one succeeds and then modifies the URL to either a
mirror site URL or to a full file system path.

assign name (associating templates with path)
The assign-name function associates the name of a configuration object with a path
specified by a regular expression. It always returns REQ_NOACTION.

Syntax
NameTrans fn=assign-name

from=regular expression
name=named object

Parameters
from specifies a pattern, presented as a regular expression,. that specifies a path to
be affected.

name is the name of the configuration object to associate with the path.

Example
NameTrans fn=assign-name

name=personnel from=/httpd/docs/pers*

map (mapping URLs to mirror sites)
The map function of the NameTrans directive looks for a certain URL prefix in the
URL that the client is requesting. If map finds the prefix, it replaces the prefix with
the mirror site prefix. When you specify the URL, don’t use trailing slashes—they
cause “Not Found” errors.

The obj.conf File

356 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Syntax
NameTrans fn=map

from="site prefix"
to="site prefix"
name="named object"

Parameters
from is the prefix to be mapped to the mirror site.

to is the mirror site prefix.

name (optional) gives a named object from which to derive the configuration for
this mirror site.

Example
Map site http://home.iplanet.com/ to mirror site http://mirror.com
NameTrans fn=map from="http://home.iplanet.com"

to="http://mirror.com"

pac-map (mapping URLs to a local file)
The pac-map function maps proxy-relative URLs to local files that are delivered to
clients who request configuration.

Syntax
NameTrans fn=pac-map

from=URL
to=prefix
name=named object

Parameters
from is the proxy URL to be mapped.

to is the local file to be mapped to.

name (optional) gives a named object (template) from which to derive
configuration.

Example
NameTrans fn=pac-map

from=http://home.iplanet.com
to=index.html
name=file

The obj.conf File

Appendix C Proxy Configuration Files 357

pat-map (mapping URLs to a local file)
The pat-map function maps proxy-relative URLs to local files that are delivered to
proxies who request configuration.

Syntax
NameTrans fn=pat-map

from=URL
to=prefix
name=named object

Parameters
from is the proxy URL to be mapped.

to is the local file to be mapped to.

name (optional) gives a named object (template) from which to derive
configuration.

Example
NameTrans fn=pat-map

from=http://home.iplanet.com
to=index.html
name=file

pfx2dir (replacing path prefixes with directory names)
The pfx2dir function looks for a directory prefix in the path and replaces the prefix
with a real directory name. Don’t use trailing slashes in either the prefix or the
directory.

Syntax
NameTrans fn=pfx2dir

from=prefix
dir=directory
name=named object

Parameters
from is the prefix to be mapped.

dir is the directory that the prefix is mapped to.

name (optional) gives a named object (template) from which to derive
configuration for this mirror site.

The obj.conf File

358 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Example
NameTrans fn=pfx2dir

from=/icons
dir=c:/iplanet/suitespot/ns-icons

ObjectType
The ObjectType directives tag additional information to the requests, such as
caching information and whether another proxy should be used.

If there is more than one ObjectType directive in an object, the directives are
applied in the order they appear. If a directive sets an attribute and a later directive
tries to set that attribute to something else, the first setting is used and the
subsequent one is ignored.

cache-enable (enabling caching)
The cache_enable function tells the proxy that an object is cacheable, based on
specific criteria. As an example, if it appears in the object
<Object ppath="http://.*">, then all the HTTP documents are considered
cacheable, as long as other conditions for an object to be cacheable are met.

Syntax
ObjectType fn=cache-enable

cache-auth=0|1
query-maxlen=number
min-size=number
max-size=number
log-report=feature
cache-local=0|1

Parameters
cache-enable tells the proxy that an object is cacheable. As an example, if it appears
in the object <Object ppath="http://.*">, then all HTTP documents are
considered cacheable (as long as other conditions for an object to be cacheable are
met).

cache-auth specifies whether to cache items that require authentication. If set to 1,
pages that require authentication can be cached also. If not specified, defaults to 0.

query-maxlen specifies the number of characters in the query string (the “?string”
part at the end of the URL) that are still cacheable. The same queries are rarely
repeated exactly in the same form by more than one user, and so caching them is
often not desirable. That’s why the default is 0.

The obj.conf File

Appendix C Proxy Configuration Files 359

min-size is the minimum size, in kilobytes, of any document to be cached. The
benefits of caching are greatest with the largest documents. For this reason, some
people prefer to cache only larger documents.

max-size represents the maximum size in kilobytes of any document to be cached.
This allows users to limit the maximum size of cached documents, so no single
document can take up too much space.

log-report is used to control the feature that reports local cache accesses back to the
origin server so that content providers get their true access logs.

cache-local is used to enable local host caching, that is, URLs without fully
qualified domain names, in the proxy. If set to 1, local hosts are cached. If not
specified, it defaults to 0, and local hosts are not cached.

Example
The following example of cache-enable allows you to enable caching of objects
matching the current resource. This applies to normal, non-query,
non-authenticated documents of any size. The proxy requires that the document
carries either last-modified or expires headers or both, and that the content-type
reported by the origin server (if present) is accurate.

ObjectType fn=cache-enable

The example below is like the first example, but it also caches documents that
require user authentication, and it caches queries up to five characters long. The
cache-auth=1 indicates that an up-to-date check is always required for documents
that need user authentication (this forces authentication again).

ObjectType fn=cache-enable
cache-auth=1
query-maxlen=5

The example below is also like the first example, except that it limits the size of
cache files to a range of 2 KB to 1 MB.

ObjectType fn=cache-enable
min-size=2
max-size=1000

cache-setting (specifying caching parameters)
cache-setting is an ObjectType function that sets parameters used for cache
control. Defaults for these settings are provided through the init-cache function,
described on page 347.

This function is used to explicitly cache (or not cache) a resource, create an object
for that resource, and set the caching parameters for the object.

The obj.conf File

360 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Syntax
ObjectType fn=cache-setting

max-uncheck=seconds
lm-factor=factor
connect-mode=always|fast-demo|never

Parameters
max-uncheck (optional) is the maximum time in seconds, allowed between
consecutive up-to-date checks. If set to 0 (default), a check is made every time the
document is accessed, and the lm-factor has no effect.

lm-factor (optional) is a floating point number representing the factor used in
estimating expiration time (how long a document might be up to date based on the
time it was last modified). The time elapsed since the last modification is
multiplied by this factor, and the result gives the estimated time the document is
likely to remain unchanged. Specifying a value of 0 turns off this function, and then
the caching system uses only explicit expiration information (rarely available).
Only explicit Expires HTTP headers are used. This value has no effect if
max-uncheck is set to 0.

connect-mode specifies network connectivity and can be set to these values:

• always (default) connects to remote servers when necessary.

• fast-demo connects only if the item isn’t found in the cache.

• never no connection to a remote server is ever made; returns an error if the
document is not found in the cache.

term-percent means to keep retrieving if more than the specified percentage of the
document has already been retrieved.

Example
<Object ppath="http://.*">
ObjectType fn=cache-enable
ObjectType fn=cache-setting max-uncheck="7200"
ObjectType fn=cache-setting lm-factor="0.020"
ObjectType fn=cache-setting connect-mode="fast-demo"
Service fn=proxy-retrieve
</Object>

Force check every time
ObjectType fn=cache-setting max-uncheck=0
Check every 30 minutes, or sooner if changed less than
6 hours ago (factor 0.1; last change 1 hour ago would

The obj.conf File

Appendix C Proxy Configuration Files 361

give 6-minute maximum check interval).
ObjectType fn=cache-setting max-uncheck=1800 lm-factor=0.1
Disable caching of the current resource
ObjectType fn=cache-setting cache-mode=nothing

force-type (assigning MIME types to objects)
The force-type function assigns a type to objects that do not already have a MIME
type. This is used to specify a default object type.

Syntax
ObjectType fn=force-type

type=text/plain
enc=encoding
lang=language

Parameters
type is the type to assign to matching files.

enc (optional) is the encoding given to matching files.

lang (optional) is the language assigned to matching paths.

Example
ObjectType fn=force-type

type=text/plain

ObjectType fn=force-type
lang=en_US

http-config (using keep-alive feature)
http-config is an ObjectType function that lets the proxy use the HTTP keep-alive
feature between the client and the proxy server, and between the proxy server and
the remote server.

Syntax
ObjectType fn=http-config a

keep-alive=on|off

Parameters
on enables this keep-alive feature.

off disables the keep-alive feature, and is the default.

The keep-alive feature lets several requests be sent through the same connection.

The obj.conf File

362 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Using this feature could actually degrade performance if the proxy is heavily
loaded and it receives a lot of new requests every second and the network can
establish connections fairly quickly. The reason for this degradation is that every
connection is kept by the server for several seconds after the request processing has
finished, even if the client doesn’t happen to send a new request.

If connections to the proxy server take a long time to establish, or if the connection
simply hangs, this feature should be disabled to reduce the total number of active
connections.

Example
ObjectType fn=http-config keep-alive=on

java-ip-check (checking IP addresses)
The java-ip-check function allows clients to query the proxy server for the IP
address used to rerouted a resource. Because DNS spoofing often occurs with Java
Applets, this feature enables clients to see the true IP address of the origin server.
When this features is enabled, the proxy server attaches a header containing the IP
address that was used for connecting to the destination origin server.

Syntax
ObjectType fn=java-ip-check

status=on|off

Parameters
status specifies whether Java IP address checking is enabled or not. Possible values
are:

❍ on means that Java IP address checking is enabled and that IP addresses
will be forwarded to the client in the form of a document header. On is the
default setting.

❍ off means that Java IP address checking is disabled.

type-by-extension (determining file information)
The type-by-extension function uses file extensions to determine information
about files. (Extensions are strings after the last period in a file name.) This matches
an incoming request to extensions in the mime.types file. The MIME type is added
to the “content-type” header sent back to the client. The type can be set to internal
server types that have special results when combined with function you write
using the server plug-in API.

The obj.conf File

Appendix C Proxy Configuration Files 363

Syntax
ObjectType fn=type-by-extension

Parameters
None.

Example
ObjectType fn=type-by-extension

PathCheck
The PathCheck directives check the URL that is returned after all of the
NameTrans directives finish running. Local file paths (with the administration
forms) are checked for elements such as ../ and //, and then any access restriction is
applied.

If an object has more than one PathCheck directive, all of the directives will be
applied in the order they appear.

check-acl (attaching an ACL to an object)
The check-acl function attaches an Access Control List to the object in which the
directive appears. Regardless of the order of PathCheck directives in the object,
check-acl functions are executed first, and will cause user authentication to be
performed if required by the specified ACL, and will also update the access control
state.

Syntax
PathCheck fn=check-acl

acl="ACL name"
bong-file=path name

Parameters
acl is the name of an Access Control List.

bong-file (optional) is the path name for a file that will be sent if this ACL is
responsible for denying access.

Example
PathCheck fn=check-acl

acl="HRonly"

The obj.conf File

364 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

deny-service (denying client access)
The deny-service function is a PathCheck function that sends a “Proxy Denies
Access” error when a client tries to access a specific path. If this directive appears in
a client region, it performs access control on the specified clients.

The proxy specifically denies clients instead of specifically allowing them access to
documents (for example, you don’t configure the proxy to allow a list of clients).
The “default” object is used when a client doesn’t match any client region in
objects, and because the “default” object uses the deny-service function, no one is
allowed access by default.

Syntax
PathCheck fn=deny-service path=.*someexpression.*

Parameters
path is a regular expression representing the path to check. Not specifying this
parameter is equivalent to specifying *. URLs matching the expression are denied
access to the proxy server.

Example
<Object ppath="http://iplanet/.*">
Deny servicing proxy requests for fun GIFs
PathCheck fn=deny-service path=.*fun.*.gif
Make sure nobody except Iplanet employees can use the object
inside which this is placed.
<Client dns=*~.*.iplanet.com>
PathCheck fn=deny-service
</Client>
</Object>

require-proxy-auth (requiring proxy authentication)
The require-proxy-auth function is a PathCheck function that makes sure that
users are authenticated and triggers a password pop-up window.

Syntax
PathCheck fn=require-proxy-auth

auth-type=basic
realm=realmo8xy-=

The obj.conf File

Appendix C Proxy Configuration Files 365

Parameters
auth-type specifies the type of authorization to be used. The type should be “basic”
unless you are running a Unix proxy and are going to use your own function to
perform authentication.

realm is a string (enclosed in double-quotation marks) sent to the client application
so users can see what object they need authorization for.

auth-user (optional) specifies a list of users who get access. The list should be
enclosed in parentheses with each user name separated by the pipe | symbol.

auth-group (optional) specifies a list of groups that get access. Groups are listed in
the password-type file.

Example
PathCheck fn=require-auth

auth-type=basic
realm="Marketing Plans"
auth-group=mktg
auth-users=(jdoe|johnd|janed)

url-check (checking URL syntax)
The url-check function checks the validity of URL syntax.

Route
The Route directive specifies information about where the proxy server should
route requests.

icp-route (routing with ICP)
The icp-route function tells the proxy server to use ICP to determine the best
source for a requested object whenever the local proxy does not have the object.

Syntax
Route fn=icp-route

redirect=yes|no

Parameters
redirect specifies whether the proxy server will send a redirect message back to the
client telling it where to get the object.

❍ yes means the proxy will send a redirect message back to the client to tell it
where to retrieve the requested object.

The obj.conf File

366 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

❍ no means the proxy will not send a redirect message to the client. Instead it
will use the information from ICP to get the object.

pa-enforce-internal-routing (enforcing internal distributed routing)
The pa-enforce-internal-routing function enables internal routing through a proxy
array. Internal routing occurs when a non PAC-enabled client routes requests
through a proxy array.

Syntax
Route fn="pa_enforce_internal_routing"

redirect="yes|no"

Parameters
redirect specifies whether or not client’s requests will be redirected. Redirecting
means that if a member of a proxy array receives a request that it should not
service, it tells the client which proxy to contact for that request.

Warning
Redirect is not currently supported by any clients, so you should not use the
feature at this time.

pa-set-parent-route (setting a hierarchical route)
The pa-set-parent-route function sets a route to a parent array.

Syntax
Route fn="pa_set_parent_route"

set-proxy-server (using another proxy to retrieve a resource)
The set-proxy-server function directs the proxy server to connect to another proxy
for retrieving the current resource. It also sets the address and port number of the
proxy server to be used.

Syntax
Route fn=set-proxy-server

host name=otherhost name
port=number

Parameters
host name is the name of the host on which the other proxy is running.

port is the port number of the remote proxy.

The obj.conf File

Appendix C Proxy Configuration Files 367

Example
Route fn=set-proxy-server

host name=proxy.iplanet.com
port=8080

set-socks-server (using a SOCKS server to retrieve a resource)
The set-socks-server directs the proxy server to connect to a SOCKS server for
retrieving the current resource. It also sets the address and port number of the
SOCKS server to be used.

Syntax
Route fn=set-socks-server

host name=sockshost name
port=number

Parameters
host name is the name of the host on which the SOCKS server runs.

port is the port on which the SOCKS server listens.

Example
ObjectType fn=set-socks-server

host name=socks.iplanet.com
port=1080

unset-proxy-server (unsetting a proxy route)
The unset-proxy-server function tells the proxy server not to connect to another
proxy server to retrieve the current resource. This function nullifies the settings of
any less specific set-proxy-server functions.

Syntax
Route fn=unset-proxy-server

unset-socks-server (unsetting a SOCKS route)
The unset-socks-server function tells the proxy server not to connect to a SOCKS
server to retrieve the current resource. This function nullifies the settings of any
less specific set-socks-server functions.

Syntax
Route fn=unset-socks-server

The obj.conf File

368 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Service
Once the other directives have done all the necessary checks and translations, the
functions of the Service directive send the data (first receiving it from a remote
server when necessary) and complete the request. Most of the time, the Service
directive connects to a remote server, making the request for the client and then
passing the results back to the client.

Parameters

Service directives support these optional parameters to help determine if the
directive is used:

method specifies a regular expression that indicates which HTTP methods the
client must be using to have the directive applied. Valid HTTP methods include
GET, HEAD, POST, and INDEX (CONNECT through SSL tunneling is also
available). Multiple values are enclosed in parentheses and separated by the pipe
(|) symbol.

type (not with proxy-retrieve) specifies a regular expression that indicates the
MIME types to which to apply the directive. The proxy server defines several
MIME types internally that are used only to select a Service function that translates
the internal type into a form presentable to the client.

If an object has more than one Service directive, the first applicable directive is
used and the rest are ignored.

The obj.conf File

Appendix C Proxy Configuration Files 369

Examples

Normal proxy retrieve
Service fn=proxy-retrieve
Proxy retrieve with POST method disabled
Service fn=proxy-retrieve

method=(POST)
Proxy retrieve allows methods FOO and BAR to pass through
Service fn=proxy-retrieve

allow="FOO,BAR"
Proxy retrieve blocks methods MKCOL,DELETE,LOCK,UNLOCK
Service fn=proxy-retrieve

block="MKCOL,DELETE,LOCK,UNLOCK"

send-file (sending text file contents to client)
The send-file function sends the contents of a plain text file to the client. If this
function finds any extra path information, it doesn’t send the text file to the client.

Syntax

Service fn=send-file
method=GET|HEAD|POST|INDEX|CONNECT...
type=MIME type

Parameters

method lets you specify a retrieval method. By default, all methods are allowed
unless the method parameter is given.

type specifies a regular expression that indicates the MIME types to which to apply
the directive.

Example

Service fn=send-file
method=(GET|HEAD)
type=*~magnus-internal/*

deny-service (denying access to a resource)
The deny-service function is the only function that belongs to two classes:
PathCheck and Service. It prevents access to the requested resource.

NOTE allow takes precedence over block.

The socks5.conf File

370 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

The socks5.conf File
The proxy uses the file server-root\proxy-id\config\socks5.conf to control
access to the SOCKS proxy server SOCKD and its services. Each line defines what
the proxy does when it gets a request that matches the line.

When SOCKD receives a request, it checks the request against the lines in
server-root\proxy-id\config\socks5.conf. When it finds a line that matches the
request, the request is permitted or denied based on the first word in the line
(permit or deny). Once it finds a matching line, the daemon ignores the remaining
lines in the file. If there are no matching lines, the request is denied. You can also
specify actions to take if the client’s identd or user ID is incorrect by using
#NO_IDENTD: or #BAD_ID as the first word of the line. Each line can be up to
1023 characters long.

There are five sections in the socks5.conf file. These sections do not have to
appear in the following order. However, because the daemon uses only the first
line that matches a request, the order of the lines within each section is extremely
important. The five sections of the socks5.conf file are:

• ban host/authentication - identifies the hosts from which the SOCKS deamon
should not accept connections and which types of authentication the SOCKS
daemon should use to authenticate these hosts

• routing - identifies which interface the SOCKS deamon should use for
particular IP addresses

• variables and flags - identifies which logging and informational messages the
SOCKS daemon should use

• proxies - identifies the IP addresses that are accessible through another SOCKS
server and whether that SOCKS server connects directly to the host

• access control - specifies whether the SOCKS daemon should permit or deny a
request

When the SOCKS daemon receives a request, it sequentially reads the lines in each
of these five sections to check for a match to the request. When it finds a line that
matches the request, it reads the line to determine whether to permit or deny the
request. If there are no matching lines, the request is denied.

Each line in this file can be up to 1023 characters long and in order for a line to
match a request, each entry in the line must match.

The socks5.conf File

Appendix C Proxy Configuration Files 371

Authentication/Ban Host Entries
There are two lines in authentication/ban host entries. The first is the
authentication line.

Syntax
auth source-hostmask source-portrange auth-methods

Parameters
source-hostmask identifies which hosts the SOCKS server will authenticate.

source-portrange identifies which ports the SOCKS server will authenticate.

auth-methods are the methods to be used for authentication. You can list multiple
authentication methods in order of your preference. In other words, if the client
does not support the first authentication method listed, the second method will be
used instead. If the client does not support any of the authentication methods
listed, the SOCKS server will disconnect without accepting a request. If you have
more than one authentication method listed, they should be separated by commas
with no spaces in between. Possible authentication methods are:

❍ n (no authentication required)

❍ u (user name and password required)

❍ - (any type of authentication)

The second line in the authentication/ban host entry is the ban host line.

Syntax
ban source-hostmask source-portrange

Parameters
source-hostmask identifies which hosts are banned from the SOCKS server.

source-portrange identifies from which ports the SOCKS server will not accept
requests.

Example
auth 127.27.27.127 1024 u,-
ban 127.27.27.127 1024

The socks5.conf File

372 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Routing Entries

Syntax
route dest-hostmask dest-portrange interface/address

Parameters
dest-hostmask indicates the hosts for which incoming and outgoing connections
must go through the specified interface.

dest-portrange indicates the ports for which incoming and outgoing connections
must go through the specified interface.

interface/address indicates the IP address or name of the interface through which
incoming and outgoing connections must pass. IP addresses are preferred.

Example
route 127.27.27.127 1024 le0

Variables and Flags

Syntax
set variable value

Parameters
variable indicates the name of the variable to be initialized.

value is the value to set the variable to.

Example
set SOCKS5_BINDPORT 1080

Available Settings
The following settings are those that can be inserted into the variables and flags
section of the SOCKS5.conf file. These settings will be taken from the
administration forms, but they can be added, changed, or removed manually as
well.

SOCKS5_BINDPORT
The SOCKS5_BINDPORT setting sets the port at which the SOCKS server will
listen. This setting cannot be changed during rehash.

The socks5.conf File

Appendix C Proxy Configuration Files 373

Syntax
set SOCKS5_BINDPORT port number

Parameters
port number is the port at which the SOCKS server will listen.

Example
set SOCKS5_BINDPORT 1080

SOCKS5_PWDFILE
The SOCKS5_PWDFILE setting is used to look up user name/password pairs for
user name/password authentication. This setting only applies to situations in
which ns-sockd is running separately from the administration server.

Syntax
set SOCKS5_PWDFILE full pathname

Parameters
full pathname is the location and name of the user name/password file.

Example
set SOCKS5_PWDFILE /etc/socks5.passwd

SOCKS5_CONFFILE
The SOCKS5_CONFFILE setting is used to determine the location of the SOCKS5
configuration file.

Syntax
set SOCKS5_CONFFILE full pathname

Parameters
full pathname is the location and name of the SOCKS configuration file.

Example
set SOCKS5_CONFFILE /etc/socks5.conf

SOCKS5_LOGFILE
The SOCKS5_LOGFILE setting is used to determine where to write log entries.

Syntax
set SOCKS5_LOGFILE full pathname

The socks5.conf File

374 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Parameters
full pathname is the location and name of the SOCKS logfile.

Example
set SOCKS-5_LOGFILE /var/log/socks5.log

SOCKS5_NOIDENT
THe SOCKS5_NOIDENT setting disables Ident so that SOCKS does not try to
determine the user name of clients. Most servers should use this setting unless they
will be acting mostly as a SOCKS4 server. (SOCKS4 used ident as authentication.)

Syntax
set SOCKS5_NOIDENT

Parameters
None.

SOCSK5_DEMAND_IDENT
The SOCKS5_DEMAND_IDENT setting sets the Ident level to “require an ident
response for every request”. Using Ident in this way will dramatically slow down
your SOCKS server. If neither SOCKS5_NOIDENT or SOCKS5_DEMAND_IDENT
is set, then the SOCKS server will make an Ident check for each request, but it will
fulfill requests regardless of whether an Ident response is received.

Syntax
set SOCSK5_DEMAND_IDENT

Parameters
None.

SOCKS5_DEBUG
The SOCKS5_DEBUG setting causes the SOCKS server to log debug messages.
You can specify the type of logging your SOCKS server will use.

If it’s not a debug build of the SOCKS server, only number 1 will work.

Syntax
set SOCSK5_DEBUG number

Parameters
number determines the number of the type of logging your server will use.
Possible values are:

❍ 1

The socks5.conf File

Appendix C Proxy Configuration Files 375

❍ 2 - log extensive debugging (especially related to configuration file
settings).

❍ 3 - log all network traffic.

Example
set SOCKS5_DEBUG 2

SOCKS5_USER
The SOCKS5_USER setting sets the user name to use when authenticating to
another SOCKS server.

Syntax
set SOCKS5_USER user name

Parameters
user name is the user name the SOCKS server will use when authenticating to
another SOCKS server.

Example
set SOCKS5_USER mozilla

SOCKS5_PASSWD
The SOCKS5_PASSWD setting sets the password to use when authenticating to
another SOCKS server. It is possible for a SOCKS server to go through another
SOCKS server on its way to the Internet. In this case, if you define SOCKS5_USER,
ns-sockd will advertise to other SOCKS servers that it can authenticate itself with a
user name and password.

Syntax
set SOCKS5_PASSWD password

Parameters
password is the password the SOCKS server will use when authenticating to
another SOCKS server.

Example
set SOCKS5_PASSWD m!2@

SOCKS5_NOREVERSEMAP
The SOCKS5_NOREVERSEMAP setting tells ns-sockd not to use reverse DNS.
Reverse DNS translates IP addresses into host names. Using this setting can
increase the speed of the SOCKS server.

The socks5.conf File

376 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

If you use domain masks in the configuration file, the SOCKS server will have to
use reverse DNS, so this setting will have no effect.

Syntax
set SOCKS5_NOREVERSEMAP

Parameters
None.

SOCKS5_HONORBINDPORT
The SOCKS5_HONORBINDPORT setting allows the client to specify the port in a
BIND request. If this setting is not specified, the SOCKS server ignores the client’s
requested port and assigns a random port.

Syntax
set SOCKS5_HONORBINDPORT

Parameters
None.

SOCKS5_ALLOWBLANKETBIND
The SOCKS5_ALLOWBLANKETBIND setting allows the client to specify an IP
address of all zeros (0.0.0.0) in a BIND request. If this setting is not specified, the
client must specify the IP address that will be connecting to the bind port, and an IP
of all zeros is interpreted to mean that any IP address can connect.

Syntax
set SOCKS5_ALLOWBLANKETBIND

Parameters
None.

SOCKS5_STATSFILE
The SOCKS5_STATSFILE setting identifies a different file for storing running
statistics about the SOCKS server.

Syntax
set SOCKS5_STATSFILE full pathname

Parameters
full pathname is the location and name of the statistics file.

The socks5.conf File

Appendix C Proxy Configuration Files 377

Example
set SOCKS5_STATSFILE /tmp/socksstat.any.1080

SOCSK5_QUENCH_UPDATES
The SOCKS5_QUENCH_UPDATES setting tells the SOCKS server not to write a
line to the logfile every hour. This line, if written, provides a brief summary of
statistics. The following is a sample line:
[04/aug/1997:21:00:00] 000 info: 78 requests,
78 successful: connect 77, bind 1, udp 0

Syntax
set SOCKS5_QUENCH_UPDATES

Parameters
None.

SOCKS5_WORKERS
The SOCKS5_WORKERS setting tunes the performance of the SOCKS server by
adjusting the number of worker threads. Worker threads perform authentication
and access control for new SOCKS connections. If the SOCKS server is too slow,
you should increase the number of worker threads. If it is unstable, decrease the
number of worker threads.

The default number of worker threads is 40, and the typical number of worker
threads falls between 20 and 150.

Syntax
set SOCKS5_WORKERS number

Parameters
number is the number of worker threads the SOCKS server will use.

Example
set SOCKS5_WORKERS 40

SOCKS5_ACCEPTS
The SOCKS5_ACCEPTS setting tunes the performance of the SOCKS server by
adjusting the number of accept threads. Accept threads sit on the SOCKS port
listening for new SOCKS requests. If the SOCKS server is dropping connections,
you should increase the number of accept threads. If it is unstable, decrease the
number of accept threads.

The default number of accept threads is 40, and the typical number of accept
threads falls between 20 and 60.

The socks5.conf File

378 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Syntax
set SOCKS5_ACCEPTS number

Parameters
number is the number of accepts threads the SOCKS server will use.

Example
set SOCKS5_ACCEPTS 40

LDAP_URL
The LDAP-URL setting sets the URL for the LDAP server.

Syntax
set LDAP-URL URL

Parameters
URL is the URL for the LDAP server used by SOCKS.

Example
set LDAP-URL ldap://name:8180/0=iPlanet,c=US

LDAP_USER
The LDAP-USER setting sets the user name that the SOCKS server will use when
accessing the LDAP server.

Syntax
set LDAP-USER user name

Parameters
user name is the user name SOCKS will use when accessing the LDAP server.

Example
set LDAP-USER admin

LDAP_PASSWD
The LDAP-PASSWD setting sets the password that the SOCKS server will use
when accessing the LDAP server.

Syntax
set LDAP-PASSWD password

Parameters
password is the password SOCKS will use when accessing the LDAP server.

The socks5.conf File

Appendix C Proxy Configuration Files 379

Example
set LDAP-PASSWD T$09

SOCKS5_TIMEOUT
The SOCKS5-TIMEOUT setting specifies the idle period that the SOCKS server
will keep a connection alive between a client and a remote server before dropping
the connection.

Syntax
set SOCKS5_TIMEOUT time

Parameters
time is the time, in minutes, SOCKS will wait before timing out. The default value
is 10. The value can range from 10 to 60, including both these values.

Example
set SOCKS5_TIMEOUT 30

Proxy Entries

Syntax
proxy-type dest-hostmask dest-portrange proxy-list

Parameters
proxy-type indicates the type of proxy server. This value can be:

• socks5 - SOCKS version 5

• socks4 - SOCKS version 4

• noproxy - a direct connection

dest-hostmask indicates the hosts for which the proxy entry applies.

dest-portrange indicates the ports for which the proxy entry applies.

proxy-list contains the names of the proxy servers to use.

Example
socks5 127.27.27.127 1080 proxy1

Access Control Entries

Syntax
permit|deny auth-type connection-type source-hostmask dest-hostmask source-portrange
dest-portrange [LDAP-group]

The bu.conf File

380 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Parameters
auth-type indicates the authentication method for which this access control line
applies.

connection-type indicates the type of command the line matches. Possible command
types are:

❍ c (connect)

❍ b (bind; open a listen socket)

❍ u (UDP relay)

❍ - (any command)

source-hostmask - indicates the hosts for which the access control entry applies.

dest-hostmask indicates the hosts for which the access control entry applies.

source-portrange indicates the ports for which the access control entry applies.

dest-portrange is the port number of the destination.

LDAP-group is the group to deny or permit access to. This value is optional. If no
LDAP group is identified, the access control entry applies to everyone.

Example
permit u c - - - [0-1023] group1

Specifying Ports
You will need to specify ports for many entries in your socks5.conf file. Ports can
be identified by a name, number, or range. Ranges that are inclusive should be
surrounded by brackets (i.e. []). Ranges that are not inclusive should be in
parentheses.

The bu.conf File
The optional bu.conf file contains batch update directives. You can use these
directives to update many documents at once. You can time these updates to occur
during off-peak hours to minimize the effect on the efficiency of the server. The
format of this file is described in this section.

The bu.conf File

Appendix C Proxy Configuration Files 381

Accept
A valid URL Accept filter consists of any POSIX regular expression. It is used as a
filter to test URLs for retrieval in the case of internal updates, and determines
whether branching occurs for external updates.

This directive may occur any number of times, as separate Accept lines or as
comma or white space delimited entries on a single Accept line and is applied
sequentially. Default behavior is .*, letting all URLs pass.

Syntax
Accept regular expression

Connections
For the Connections directive, n is the number of simultaneous connections to be
used while retrieving. This is a general method for limiting the load on your
machine and, more importantly, the remote servers being contacted.

This directive can occur multiple times in a valid configuration, but only the
smallest value is used.

Syntax
Connections n

Count
The argument n of the Count directive specifies the total maximum number of
URLs to be updated via this process. This is a simple safeguard for limiting the
process and defaults to a value of 300. This directive can occur multiple times in a
valid configuration, but only the smallest value is used.

Syntax
Count n

The bu.conf File

382 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Days
The Days directive specifies on which days you want to allow the starting of batch
updates. You can specify this by naming the days of the week (Sunday,...,
Saturday), and you can use three-letter abbreviations (Sun, Mon, Tue, Wed, Thu,
Fri, Sat).

This directive can occur multiple times in a valid configuration, but only the first
value is used. The default is seven-day operation.

Syntax
Days day1 day2...

Depth
The Depth directive lets you ensure that, while enumerating, all collected objects
are no more than a specified number of links away from the initial URL. The
default is 1.

Syntax
Depth depth

Object boundaries
The Object wrapper signifies the boundaries between individual configurations in
the bupdate.conf file. It can occur any number of times, though each occurrence
requires a unique name.

All other directives are only valid when inside Object boundaries.

Syntax
<Object name=name>
...
</Object>

Reject
A valid URL Reject filter consists of any POSIX regular expression. It is used as a
filter to test URLs for retrieval in the case of internal updates, and determines
whether branching occurs for external updates.

The bu.conf File

Appendix C Proxy Configuration Files 383

This directive may occur any number of times, as separate Reject lines or as
comma or white space delimited entries on a single Reject line, and is applied
sequentially. Default behavior is no reject for internal updates and .* (no branching,
get single URL) for recursive updates.

Syntax
Reject regular expression

Source
In the Source directive, if the argument is the keyword internal, it specifies batch
updates are to be done only on objects currently in the cache (and a directive of
Depth 1 is assumed); otherwise, you specify the name of a URL for recursive
enumeration.

This directive can occur only once in a valid configuration.

Syntax
Source internal

Source URL

Time
The Time directive specifies the time to start and stop updates. Valid values range
from 00:00 to 24:00 (24-hour “military” time).

This directive can occur multiple times in a valid configuration, but only the first
value will be used.

Syntax
Time start - end

Type
This function lets you control the updating of mime types that the proxy caches.
This directive can occur any number of times, in any order.

Syntax
Type ignore

Type inline

The icp.conf File

384 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Type mime_type

Parameters
ignore means that updates will act on all MIME types that the proxy currently
caches. This is the default behavior and supersedes all other Type directives if
specified.

inline means that in-lined data is updated as a special type, regardless of any later
MIME type exclusions, and are meaningful only when doing recursive updates.

mime-type is assumed to be a valid entry from the system mime-types file, and is
included in the list of MIME types to be updated. If the proxy doesn’t currently
cache the given MIME type, the object may be retrieved but is not cached.

The icp.conf File
This file is used to configure the Internet Cache Protocol (ICP) feature of your
server. There are three functions in the icp.conf file, and each can be called as
many times as necessary. Each function should be on a separate line. The three
functions are add_parent, add_sibling, and server.

add_parent (adding parent servers to an ICP neighborhood)
The add_parent function identifies and configures a parent server in an ICP
neighborhood.

Syntax
add_parent name=name icp_port=port number
proxy_port=port number mcast_address=IP address ttl=number round=1|2

Parameters
name specifies the name of the parent server. It can be a dns name or an IP address.

icp_port specifies the port on which the parent listens for ICP messages.

proxy_port specifies the port for the proxy on the parent.

NOTE The above text should all be on one line in the icp.conf file.

The icp.conf File

Appendix C Proxy Configuration Files 385

mcast_address specifies the multicast address the parent listens to. A multicast
address is an IP address to which multiple servers can listen. Using a multicast
address allows a proxy to send one query to the network that all neighbors
listening to that multicast address can receive, therefore eliminating the need to
send a query to each neighbor separately.

ttl specifies the time to live for a message sent to the multicast address. ttl controls
the number of subnets a multicast message will be forwarded to. If the ttl is set to 1,
the multicast message will only be forwarded to the local subnet. If the ttl is 2, the
message will go to all subnets that are one hop away.

round specifies in which polling round the parent will be queried. A polling round
is an ICP query cycle. Possible values are:

❍ 1 means that the parent will be queried in the first query cycle with all
other round one neighbors.

❍ 2 means that the parent will only be queried if none of the neighbors in
polling round one return a “HIT.”

Example
add_parent name=proxy1 icp_port=5151 proxy_port=3333
mcast_address=189.98.3.33 ttl=3 round=2

add_sibling (adding sibling servers to an ICP neighborhood)
The add_sibling function identifies and configures a sibling server in an ICP
neighborhood.

Syntax
add_sibling name=name icp_port=port number proxy_port=port number
mcast_address=IP address ttl=number round=1|2

Parameters
name specifies the name of the sibling server. It can be a dns name or an IP address.

icp_port specifies the port on which the sibling listens for ICP messages.

proxy_port specifies the port for the proxy on the sibling.

NOTE The above text will all be on one line in the icp.conf file.

The icp.conf File

386 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

mcast_address specifies the multicast address the sibling listens to. A multicast
address is an IP address to which multiple servers can listen. Using a multicast
address allows a proxy to send one query to the network that all neighbors
listening to that multicast address can receive, therefore eliminating the need to
send a query to each neighbor separately.

ttl specifies the time to live for a message sent to the multicast address. ttl controls
the number of subnets a multicast message will be forwarded to. If the ttl is set to 1,
the multicast message will only be forwarded to the local subnet. If the ttl is 2, the
message will go to all subnets that are one hop away.

round specifies in which polling round the sibling will be queried. A polling round
is an ICP query cycle. Possible values are:

❍ 1 means that the sibling will be queried in the first query cycle with all
other round one neighbors. This is the default polling round value.

❍ 2 means that the sibling will only be queried if none of the neighbors in
polling round one return a “HIT.”

Example
add_sibling name=proxy2 icp_port=5151 proxy_port=3333
mcast_address=190.99.2.11 ttl=2 round=1

server (configuring the local proxy in an ICP neighborhood)
The server function identifies and configures the local proxy in an ICP
neighborhood.

Syntax
server bind_address=IP address mcast=IP address num_servers=number
icp_port=port number default_route=name default_route_port=port number
no_hit_behavior=fastest_parent|default timeout=seconds

Parameters
bind_address specifies the IP address to which the server will bind. For machines
with more than one IP address, this parameter can be used to determine which
address the ICP server will bind to.

NOTE The above text will all be on one line in the icp.conf file.

NOTE The above text should all be on one line in the icp.conf file.

The icp.conf File

Appendix C Proxy Configuration Files 387

mcast the multicast address to which the neighbor listens. A multicast address is an
IP address to which multiple servers can listen. Using a multicast address allows a
proxy to send one query to the network that all neighbors who are listening to that
multicast address can see, therefore eliminating the need to send a query to each
neighbor separately.

If both a multicast address and bind address are specified for the neighbor, the
neighbor uses the bind address to communicate with other neighbors. If neither a
bind address nor a multicast address is specified, the communication subsystem
will decide which address to use to send the data.

num_servers specifies the number of processes that will service ICP requests.

icp_port specifies the port number to which the server will listen.

default_route tells the proxy server where to route a request when none of the
neighboring caches respond. If default_route and default_route_port are set to
“origin,” the proxy server will route defaulted requests to the origin server. The
meaning of default_route is different depending on the value of no_hit_behavior. If
no_hit_behavior is set to default, the default_route is used when none of the proxy
array members return a hit. If no_hit behavior is set to fastest_parent, the
default_route value is used only if no parent responds.

default_route_port specifies the port number of the machine specified as the
default_route. If default_route and default_route_port are set to “origin,” the proxy
server will route defaulted requests to the origin server.

no_hit_behavior specifies the proxy’s behavior whenever none of the neighbors
returns a “HIT” for the requested document. Possible values are:

❍ fastest_parent means the request is routed through the first parent that
returned a “MISS.”

❍ default means the request is routed to the machine specified as the default
route.

timeout specifies the maximum number of milliseconds the proxy will wait for an
ICP response.

Example
server bind_address=198.4.66.78 mcast=no num_servers=5 icp_port=5151
default_route=proxy1 default_route_port=8080
no_hit_behavior=fastest_parent timeout=2000

NOTE The above text will all be on one line in the icp.conf file.

The ras.conf File

388 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

The ras.conf File
The ras.conf file is used to configure the remote access feature of your proxy
server. This file contains information that the proxy server needs in order to dial
out to the Internet via a modem.

Syntax
UserName name
Password password
Domain
DialEntry entry
MaximumIdleTime minutes
Schedule day:hour;day:hour

Parameters
UserName is the user name assigned by your Internet Service Provider that you
use to dial out to the Internet.

Password is the password of the user.

Domain is the name of the domain against which the user is validated. If the user
does not belong to a domain, leave this parameter blank.

DialEntry is the name of the phonebook entry that you specified when configuring
your RAS server.

MaximumIdleTime is the maximum amount of time the remote connection can be
idle. If the connection remains idle past this time, the proxy server will disconnect
from the remote Internet service provider. A maximum idle time of -1 will keep the
connection open.

Schedule is a list of the days and times when the proxy server is allowed to dial out
to the Internet. The day must be abbreviated into the first three letters of the word
(i.e. sun, mon, tue, wed, thu, fri, sat). Use military time to specify the times. To
specify a time range, place a hyphen between the start and end times (i.e.
1000-2400). Each day:hour pair must be separated by a semicolon.

Example
UserName user1
Password pwd
Domain
DialEntry RASEntry
MaximumIdleTime 15
Schedule mon:1200-2400;wed:1200-2400;fri:1200-2400

The ras.conf File

Appendix C Proxy Configuration Files 389

The ras.conf File

390 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

391

Glossary

Administration Server The HTTP server used to configure any Netscape 2.0
servers, such as iPlanet Web Proxy Server, installed on your machine.

Cache A storage area that contains copies of original data stored locally so that
the data doesn’t have to be retrieved from a remote server each time it is requested.

Cache build The creation of the cache hierarchy.

Cache capacity How much data the cache can hold and still be efficient and
effective. Cache capacity is related to the cache hierarchy in the cache directories.
The larger the hierarchy, the bigger the capacity. The cache capacity should be
configured to be equal to or greater than the cache size.

Cache directory hierarchy The proxy’s directory structure for storing cache files.

Cache Manager A periodic clean-up process to remove old files to make room for
new ones.

Cache Manager daemon A process that monitors the cache size and spawns the
Cache Manager when necessary.

Cache Monitor A process daemon for determining the status of the cache
directory structure.

Cache refresh

392 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Cache root A directory on the proxy server machine that contains all cached files.
The proxy controls which documents are copied to the cache root, and the Cache
Manager daemon purges this directory structure to control the amount of data
stored.

Cache partition You can divide the cache into multiple directories or disk
partitions.

Cache size The total amount of disk space available for the proxy cache directory
structure, which can be specified during initial proxy configuration and can later
be changed through the online forms or the obj.conf configuration file. For
efficiency, the cache size should not exceed the cache capacity.

Cache section Section of the Netscape Proxy cache. The number of cache sections
can be from 1 to 256, and must be a power of two (1, 2, 4, 8, 16, ..., 256). Each cache
section can hold 100-250 megabytes of data; the optimum size is around 125 MB
per section.

Cache up-to-date check A check to determine if the copy in the cache is still
valid, and if not, refresh it.

CERN The European Laboratory for Particle Physics (CERN) invented the World
Wide Web to share information among research groups. This is where the CERN
proxy prototype was produced.

client An individual user or the web browser they are using (such as Netscape
Navigator).

Common logfile format The format used by the server for entering information
into the access logs. The format is the same among all of the major servers.

Content server A server that contains the original documents that are requested
by clients directly or through a proxy server.

DMZ Demilitarized Zone. Taken from the military term for a safety zone
between battle lines, this refers to an area within the firewall. Often this is a single
machine with access to the internal site and the outside network. See also firewall.

DNS Domain Name Service. The system used by machines on a network to
associate standard IP addresses (such as 198.95.251.) with host names (such as
www.netscape.com). Machines typically get this translated information from a
DNS server, or look it up in tables maintained on their systems.

Glossary 393

DNS alias A host name that points to another host name—specifically a DNS
CNAME record. Machines always have only one real name, but they can have
more than one alias. For example, www.[yourdomain].[domain] might be an alias
that points to a real machine called realthing.[yourdomain].[domain] where
the server currently exists.

EMACS A Unix text editor that can also be used to read email and news.

Expire To label a document as “expired,” or too old to serve to a client. The proxy
will retrieve a current copy directly from the content server the next time a client
requests the document. If the content server is unavailable, the expired document
can still be served to the client with a message stating that it isn’t current.

Expires header A header that contains the expiration time of the returned
document, as specified by the remote server.

Extended logfile format Similar to the common logfile format, but it contains
additional information.

File extension The last section of a file name that typically defines the type of file
(for example, .GIF and .HTML). For example, in the filename index.html the file
extension is html.

File type The format of a given file. For example, a graphics file doesn’t have the
same file type as a text file. File types are usually identified by the file extension
(.GIF or .HTML).

Firewall A network configuration, usually both hardware and software, that
forms a fortress between networked computers within an organization and those
outside the organization. It is commonly used to protect information such as a
network’s email and data files within a physical building or organization site. The
area within the firewall is called the demilitarized zone, or DMZ. Often, a single
machine in the DMZ is allowed access to both internal and external computers. The
computer in the DMZ is directly interacting with the Internet, so strict security
measures on it are required.

GIF The Graphics Interchange Format A cross-platform image format originally
created by CompuServe. GIF files are usually much smaller than other graphic file
types (.BMP, .TIFF). GIF is one of the most common interchange formats. GIF
images are readily viewable on Unix, Microsoft Windows, and Apple Macintosh
systems.

Hard restart Terminating the process, and starting it up again.

394 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Host name A name for a machine of the form machine.subdomain.domain,
which is translated into an IP address. For example, www.netscape.com is the
machine www in the subdomain netscape and com domain.

HTML Hypertext Markup Language is a formatting language used for
documents on the World Wide Web. HTML files are plain text files with formatting
codes that tell browsers such as the Netscape Navigator how to display text,
position graphics and form items, and display links to other pages.

HTTP Hypertext Transfer Protocol is the method for exchanging information
between HTTP servers and clients.

HTTPD HTTP daemon, a program that serves information using the HTTP
protocol. The iPlanet Communications Server is often called an httpd.

HTTPS A secure version of HTTP, implemented using the secure sockets layer,
SSL.

IANA The Internet Assigned Numbers Authority, an organization that assigns
port numbers to specific types of communications.

inittab A file that lists programs that need to be restarted if they stop for any
reason (this ensures a program continually runs). It is also called /etc/inittab
because of its location. This isn’t available on all Unix systems.

IP address Internet Protocol address—a set of numbers, separated by dots, that
specifies the actual location of a machine on the Internet.

Jail A state in which a proxy’s access is limited to a given directory. The chroot
directive lets the Unix system administrator place a proxy server into a “jail” where
it has access only to files in a given directory. This helps limit damage if the server’s
security is compromised because the intruder can access only the files in the one
directory.

Last-modified header The last modification time of the document file, returned
in the HTTP response from the server.

MD5 A message digest algorithm by RSA Data Security, Inc., which can be used
to produce a short digest of data of any size, and which has a high probability of
being unique. It is mathematically extremely difficult to reproduce the same
message digest.

MD5 signature A message digest produced by the MD5 algorithm.

Glossary 395

MIME Multi-Purpose Internet Mail Extensions. This is an emerging standard for
multimedia email and messaging.

NIS Network Information Service—a system of programs and data files that
Unix machines use to collect, collate, and share specific information about
machines, users, file systems, and network parameters throughout a network of
computers.

NCSA The National Center for Supercomputing Applications is a research
organization at the University of Illinois at Urbana-Champaign.

Password file A file on Unix machines that stores Unix user login names,
passwords, and user ID numbers. It is also known as /etc/passwd, because of
where it is kept. The proxy also has its own password files for user authentication;
these are not connected with Unix users.

pid Process identification. The name of a process.

proxy Server software, typically installed in the firewall DMZ, that allows access
to the Internet across the firewall. A proxy is a special server that typically runs in
conjunction with firewall software. The proxy server waits for a request from
inside the firewall, forwards the request to the remote server outside the firewall,
reads the response, then sends the response back to the client. iPlanet Web Proxy
Server also provides caching of documents for improved performance, extensive
logging, and fine-grain access control.

RAM Random Access Memory. The physical semiconductor-based memory in a
computer.

rc.local A file that describes programs that are run when the machine starts. It is
also called /etc/rc.local because of its location.

Redirection A system by which clients accessing a particular URL are sent to a
different location, either on the same server or on a different server. This is useful if
a resource has moved and you want the clients to use the new location
transparently. It’s also used to maintain the integrity of relative links when
directories are accessed without a trailing slash.

Regular expression A form of expression that is used in Proxy for wildcard
patterns for access control.

Resource Any document (URL), directory, or program that the server can access
and send to a client.

396 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Root The most privileged user available on Unix machines (also called
superuser). The root user has complete access privileges to all files on the machine.

Section See cache section.

Server daemon A process that, once running, listens for and accepts requests
from clients.

Server root A directory on the server machine dedicated to holding the server
program, configuration, maintenance, and information files.

SOCKS Firewall software that establishes a connection from inside a firewall to
the outside when direct connection would otherwise be prevented by the firewall
software or hardware (for example, the router configuration).

Soft restart A process that causes the server to internally restart, that is, reread its
configuration files, by sending the -HUP signal (signal number one) to the process.
The process itself does not die (as it does in a hard restart).

SSL Secure Sockets Layer. A software library establishing a secure connection
between two parties (client and server) used to implement HTTPS, the secure
version of HTTP.

Superuser The most privileged user available on Unix machines (also called
root). The superuser has complete access privileges to all files on the machine.

telnet A protocol where two machines on the network are connected to each
other and support terminal emulation for remote login.

Timeout A specified time after which the server should give up trying to finish a
service routine that appears hung.

top A program on some Unix systems that shows the current state of system
resource usage.

Top-level domain authority The highest category of host name classification,
usually signifying either the type of organization the domain is (.com is a company,
.edu is an educational institution) or the country of its origin (.us is the United
States, .jp is Japan, .au is Australia, .fi is Finland).

uid User identification. A unique number associated with each Unix user on a
machine.

Glossary 397

URL Uniform Resource Locator. The addressing system used by the server and
the client to request documents. It is often called a location. The format of a URL is
[protocol]://[machine:port]/[document]

An example of a URL is http://www.netscape.com/index.html.

URL list A list in the Netscape cache that contains all the URLs found in the
cache, and links them to the cache files. This file can be browsed using the Cache
Manager.

URL list repair A process that repairs and updates a URL list that has been
damaged by a software failure, a system crash, a disk breakdown, or a full file
system.

white space Any keystroke that leaves space on the screen, such as space bar,
cursor return, line feed, horizontal tab, or vertical tab. In the obj.conf file, you can
continue a directive line by adding white space at the beginning of the next line.

398 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

399

Index

NUMERICS
207 multi-status response 44

A
Accept directive 381
accept threads 194
access

read 52
restricting by browser type 131
write 52

access control 51
choosing what to protect 51
entries (ACEs) 46
files 46
host names and 54
IP addresses and 54
list (ACLs) 46
Not Found message 52
resources and 51
web browsers and 131

access log files
configuring 167
setting preferences 167
viewing 160

ACE
See access control

ACLs
See access control

add_parent function 384

add_sibling function 385
AddLog directive 332
Administration password 206
administration server

about 391
admpw file 206
agents

SNMP 178
API functions

condvar_init 225
condvar_notify 226
condvar_terminate 226
condvar_wait 227
crit_enter 227
fast_dump_cif 228
filebuf_buf2sd 228
filebuf_close 229
filebuf_getc 229
filebuf_open 230
filebuf_open_nostat 231
FREE 232
fs_blk_size 232
func_exec 232
func_find 233
log_error 238
magnus_atrestart 239
make_log_time 240
MALLOC 240
net_ip2host 244
net_read 244
net_socket 245

400 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

netbuf_close 242
netbuf_getc 242
netbuf_grab 243
netbuf_open 243
param_create 246
param_free 247
pblock_copy 248
pblock_create 218, 248
pblock_dup 249
pblock_find 249
pblock_findlong 250
pblock_findval 250
pblock_free 251
pblock_nlinsert 251
pblock_nninsert 252
pblock_nvinsert 252
pblock_pb2env 254
pblock_pblock2str 254
pblock_pinsert 255
pblock_remove 255
pblock_replace_name 256
pblock_str2pblock 257
PERM_FREE 257
PERM_MALLOC 258
PERM_STRDUP 259
protocol_dump822 259
protocol_set_finfo 263
protocol_start_response 263
protocol_status 228, 264
protocol_uri2url 265, 266
REALLOC 267
request_create 268
request_free 268
request_header 268
request_stat_path 269
request_translate_uri 270
sem_grab 271
sem_init 271
sem_release 272
sem_terminate 272
sem_tgrab 273
session_create 273
session_free 274
session_maxdns 274
shem_alloc 278
shexp_casecmp 275
shexp_cmp 275

shexp_match 277
shexp_valid 278
shmem_free 279
STRDUP 279
system_errmsg 285
system_fclose 286
system_flock 286
system_fopenRO 287
system_fopenRW 288
system_fopenWA 288
system_fread 289
system_fwrite 289
system_fwrite_atomic 290
system_gmtime 291
system_localtime 292
system_ulock 292
system_unix2local 293
systhread_current 281
systhread_getdata 281
systhread_newkey 282
systhread_setdata 283
systhread_sleep 283
systhread_start 284
systhread_terminate 284
systhread_timerset 285
uti_uri_escape 310
util_can_exec 293
util_chdir2path 294
util_env_create 295
util_env_find 296
util_env_free 296
util_env_replace 297
util_env_str 297
util_get_current_gmt 298
util_getline 300
util_hostname 301
util_is_mozilla 301
util_is_url 302
util_itoa 302
util_later_than 303
util_make_gmt 303
util_make_local 304
util_move_dir 304
util_move_file 305
util_parse_http_time 305
util_sh_escape 307
util_snprintf 307

Index 401

util_strcasecmp 309
util_strncasecmp 309
util_uri_is_evil 311
util_uri_parse 312
util_uri_unescape 312
util_url_cmp 312
util_url_fix_hosthame 313, 314
util_vsnprintf 314
util_vsprintf 315
util-does_process_exist 295
util-sprintf 308

Arbitrary methods
allowing and blocking 43

archiving log files 177
assign-name function 355
authoring content, host names for 74
AuthTrans directive 333
autoconfiguration file, generating from PAT file 116

automatically 117
manually 116

autoconfiguration files
about 209
creating 140
JavaScript functions 144
Netscape Navigator and 137
return values 143

B
bandwidth, saving 96
batch updates 103

bu.conf file 208, 380
deleting 104
editing 104

bu.conf
about 380–384
directives

Accept 381
Connections 381
Count 381
Days 382
Depth 382
Object 382
Reject 382

Source 383
Time 383
Type 383

bu.conf file
about 208–209
Object 208

buffer.h, described 215

C
C files

directories of 214
cache

about 391
batch updates 103

deleting 104
editing 104

building 391
capacity 391
client interruptions 102
configuring 99
default 100
directory hierarchy, about 391
disk space 89
enabling 96
expiration policy 97
expiring files in 105
file dispersion 91
FTP documents 98

refresh interval 99
Gopher documents 98

refresh interval 99
HTTP documents 96

expiration policy 97
refresh interval 97

local hosts 103
manager 105
maximum file size 102
minimum file size 102
pages requiring authentication and 101
partitions 103

adding 103
described 392
modifying 103

402 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

queries 101
refresh interval 97
refresh intervals 99
refresh, description 391
removing files from 105
repair, description 391
root 392
section, description 392
setting specifics of 95
size

about 392
up-to-date check, description 392

Cache Array Routing Protocol (CARP) 107
cache files

dispersion of 91
Cache Manager

about 391
Daemon, about 391

cache manager
about 105
accessing 105
expiring files 105
removing files 105

Cache Monitor
about 391

cache-enable function 358
cache-setting function 359
caching

about 89
configuration 103
FTP documents 98

refresh intervals 99
Gopher documents 98

refresh intervals 99
HTTP documents 96, 97

refresh interval 97
local hosts 103
pages requiring authentication 101
queries 101

CERN, description 392
chaining proxies 59, 60

IP address forwarding and 62
check-acl function 363
cinfo.h, described 215
Ciphers directive 327

client autoconfiguration mappings 64
client interruptions

caching and 102
client to proxy routing 107
clients

accessing the proxy 39
client, about 392
forwarding IP addresses 62
getting DNS name for 318
getting IP address for 318
HTTP header in variable 219
lists of accesses 167
sessions and 317

code
sample

directories of 214
common log file format

description 392
condvar_init

API function 225
condvar_notify

API function 226
condvar_terminate

API function 226
condvar_wait

API function 227
conf.h, described 216
configuration

manual 197
configuration files 325

bu.conf 208, 380
icp.conf 209, 384
magnus.conf 198, 326
mime.types 204–206
obj.conf 199, 332
parent.pat 211
parray.pat 210
ras.conf 211
restoring backup 38
socks5.conf 207, 370

Connect directive 335
connect method

proxying 58
Connections directive 381
content filtering

Index 403

about 19
content server, about 392
content-type header 43
controlling access to the server 51
conventions used in this book 19
Count directive 381
Create 130
creating functions

described 213
overview 213

crit.h, described 215
crit_enter

API function 227
custom functions

loading 222
using 222

D
daemon.h, described 215
data

structure, session variables for 317
Days directive 382
default object, obj.conf 203
demilitarized zone (DMZ)

See DMZ
deny-service function 203, 364, 369
Depth directive 382
directives

bu.conf 208
format 198
functions and 213
syntax 200

directories
protecting access to 51

disk space, cache and 89
dispersion of cache files 91
DMZ, about 392
DNS 40

about 392
alias 393
names

getting clients 318
using effectively 192

DNS directive 327, 336
dns-config function 336
documents

lists of those accessed 167
variable for client request 219

domain authority, top level, description 396
Domain Name Service

See DNS

E
EMACS 393
ereport.h, described 215
Error directive 339
error log file 159

understanding syntax of 161
viewing 159, 161

ErrorLog directive 328
errors 159

finding most recent system error 285
reporting 220
reporting to log files 221
sending customized messages 339
setting response status codes 220

⁄etc⁄passwd 395
⁄etc⁄rc.local 395
expiration policy 97
expire, about 393
Expires header

about 393
needed to cache query results 102

extended access log format
about 393

extended-2 log format 163

F
fast_dump_cif

404 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

API function 228
file descriptor

closing 286
locking 286
opening read-only 287
opening read-write 288
opening write-append 288
reading into a buffer 289
unlocking 292
writing from a buffer 289
writing without interruption 290

file extension, description 393
file type, description 393
file.h, described 215
filebuf_buf2sd

API function 228
filebuf_close

API function 229
filebuf_getc

API function 229
filebuf_open

API function 230
filebuf_open_nostat

API function 231
files

access control 46
dispersion in cache 91
mapping types 204
protecting access to 51
restricting 133

filter files
creating 130
default access 130

filters
about 18
creating 130
HTML files and 134
MIME types 133
outgoing headers 133
URL filters 130
URLs 129
User-Agent and 131

FindProxyForURL, JavaScript funtion 142
firewall

description 393

flexible logging, about 18
flex-init function 342
fonts used in this book 19
force-type function 359, 361
FREE

API function 232
fs_blk_size

API function 232
FTP documents

caching of 98
refresh interval 99

FTP listing width 194
func.h, described 216

Index 405

refresh interval 99
Graphics Interchange Format

See GIF

H
hard restart 393
HEAD method

proxying 58
Service 368

header files
directories of 214

headers
filtering 133
restricting 132
variable for 219

host names
description 394
restricting access by using 54

HTML tags
filtering content 134

HTML, description 394
HTTP

description 394
HTTP documents

caching of 96, 97
expiration policy for 97
refresh interval for 97

HTTP headers
content-type 43
restricting outgoing 132

http.h, about 216
http-config function 361
HTTPD, about 394
httpd.lib 222
HTTPS

about 394
Hypertext Markup Language

See HTML
Hypertext Transfer Protocol

See HTTP

I
IANA, about 394
icons, proxy internal 206
ICP 41, 119

adding parents 122
adding siblings 124
configuring neighbors 125
editing parent configurations 123
editing sibling configurations 125
enabling 127
enabling routing through 127
neighbors 119
polling rounds 119
removing parents 123
removing siblings 125

icp.conf 209, 384
add_parent function 384
add_sibling function 385
server function 386

icp-init function 345
icp-routefunction 365
Init directive 340
init-batch-update function 346
init-cache function 347
init-proxy function 347
init-proxy-auth function 348
init-ras function 349
inittab

description 394
inode

server uses 342
Internet Assigned Numbers Authority

See IANA
Internet Cache Protocol

See ICP
IP

address, about 394
IP address

access control and 54
forwarding 62
getting clients 318

IP addresses
forwarding to client 41

406 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

J
jail, about 394
Java applets

restricting access to 134
Java IP address checking 41, 62
java-ip-check function 362
JavaScript

filtering 134
proxy autoconfiguration files and 138
return values and 143

K
Keyfile directive 328

L
last-modified

factor 98
setting lm-factor 360

last-modified factor
setting 192

Last-Modified header
description 394
needed to cache query results 102

lm-factor 360
load-modules function 350
LoadObjects directive 328
load-types function 351
local hosts

caching of 103
localtime

getting thread-save value 292
location

See URLs
log analyzer

overview 169
running from Server Manager 175

log files 159
archiving 177

common format 392
configuring 167
error 159, 161
extended format 393
reporting errors to 221

log.h, described 216
log_error 221

API function 238
logs

access 167

M
magnus.conf

about 198–199, 326–??
directives

Ciphers 327
DNS 327
ErrorLog 328
Keyfile 328
LoadObjects 328
Port 329
RootObject 329
Security 330
ServerName 330
SSL2 331
SSL3 331
SSL3Ciphers 331
SSLClientAuth 330

format 198
loading shared objects 222

magnus_atrestart
API function 239

make_log_time
API function 240

makefile 222
MALLOC

API function 240
management information base

See MIB
map function 355
mapping URLs to mirror servers 64
master agent, SNMP 178

Index 407

MD5
description 394
signature, about 394

methods
determining 218
proxy service 58, 368

MIB 179
MIME 204, 206

about 395
mime types icons 206

MIME types
defined 43
filtering 133

mime.types file
about 204–206

mirror sites
about 355
file: URLs, NameTrans 203
mapping URLs to 64

monospaced fonts used in this book 19
Multi-Purpose Internet Mail Extensions

See MIME

N
Named objects, about 203
NameTrans directive 355
name-value pairs

functions for handling 217
National Center for Supercomputing Applications

See NCSA
NCSA

description 395
net.h, described 215
net_ip2host

API function 244
net_read

API function 244
net_socket

API function 245
net_write

API function 246

netbuf_buf2sd
API function 241

netbuf_close
API function 242

netbuf_getc
API function 242

netbuf_grab
API function 243

netbuf_open
API function 243

Netscape MIBs 179
Netscape Navigator

autoconfiguration files and 137
Netscape servers

plug-in API and 213
netscape-http.mib, MIB file 179
netsite.h, described 216
Network Information Service

See NIS
network management station 178
NIS

description 395
NMS

See network management station
nobody user account

as server user 40
Not Found message, access control and 52
NSAPI

directories of files 214

O
obj.conf

about 199–204, 332–369
assign-name function 355
cache-enable function 358
cache-setting function 359
check-acl function 363
deny-service function 203, 369
deny-sevice function 364
directives 332

AddLog 332
AuthTrans 333

408 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

Connect 335
DNS 336
Error 339
Init 340
NameTrans 355
ObjectType 358
PathCheck 363
proxy-retrieve function 43
Route 365
Service 368

dns-config function 336
flex-init function 342
force-type function 359, 361
http-config function 361
icp-init function 345
icp-route function 365
init-batch-update function 346
init-cache function 347
init-proxy function 347
init-proxy-auth function 348
init-ras function 349
java-ip-check function 362
lm-factor 360
load-modules function 350
load-types function 351
map function 355
pac-map function 356, 357
pa-enforce-internal-routing function 366
pa-init-parent-array function 351
pa-init-proxy-array function 353
pa-set-parent-route function 366
pfx2dir function 357
proxy-auth function 334
proxy-log function 333
proxy-retrieve function 368
required objects 202
require-proxy-auth function 364
send-file function 369
set-proxy-server function 362, 366
set-socks-server function 367
structure 199
type-by-extension function 362
unset-proxy-server function 367
unset-socks-server function 367
url-check function 365
using functions in 222
your-dns function 338

Object directive 382
object.h, described 216
objects

configuration 199
defaults 329
example 201
named, about 203
proxy 203

ObjectType directive 358
objset.h, described 216
outgoing headers

restricting 132
overview of this manual 19

P
PAC file

generating from PAT file 116
automatically 117
manually 116

pac files
creating 140
defined 140
serving from the proxy 137

pac-map function 356, 357
pa-enforce-internal-routing function 366
pa-init-parent-array function 351
pa-init-proxy-array function 353
param_create

API function 217, 246
param_free

API function 218, 247
parameters

passing 217
parent arrays 41, 119

routing through 118
parent.pat 211
parray.pat 210
partitions

adding 103
modifying 103

pa-set-parent-route function 366

Index 409

passing data to custom functions 217
passing parameters to functions 217
password file, description 395
passwords

Administration 206
PAT file 107
PAT mappings 64
path name

converting Unix-style to local 293
PathCheck directive 363
pblock 217
pblock.h, described 215
pblock_copy

API function 248
pblock_create 218

API function 248
pblock_dup

API function 249
pblock_find

API function 249
pblock_findlong

API function 250
pblock_findval

API function 250
pblock_free

API function 218, 251
pblock_nlinsert

API function 251
pblock_nninsert

API function 252
pblock_nvinsert

API function 252
pblock_pb2env

API function 254
pblock_pblock2str

API function 254
pblock_pinsert

API function 255
pblock_remove

API function 255
pblock_replace_name

API function 256
pblock_str2pblock

API function 257

PERM_FREE
API function 257

PERM_MALLOC
API function 258

PERM_STRDUP
API function 259

permissions, proxy and 40
pfx2dir function 357
plug-in API

described 213
servers use of 213

polling rounds 119
pool.h, described 215
Port directive 329
port numbers

specifying 40
ports

proxy 39
POST method

proxying 58
Service 368

programs
restricting download of 134

protocol.h, described 216
protocol_dump822

API function 259
PROTOCOL_SERVER_ERROR 220
protocol_set_finfo

API function 263
protocol_start_response

API function 263
protocol_status 220

API function 228, 264
protocol_uri2url

API function 265, 266
protocols

client and 219
prototype for server application functions 217
proxies

chaining 59
IP address forwarding and 62

routing and 59
proxy

chaining 60

410 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

initializing 340
objects 203
reconfiguring 39
starting 23
user account 40

proxy arrays 41, 107
configuring members 113
deleting members 112
editing member information 113
enabling 115
generating a PAC file 116

automatically 117
manually 116

member lists 111
parent arrays 119

routing through 118
redirecting requests in a 116
routing through 114

proxy chaining 59
proxy features overview 18
proxy server

as a web server 137
proxy timeout 42, 191
proxy to proxy routing 107
proxy, described 395
proxy-auth function 334
proxying

about 18
proxy-log function 333
proxy-retrieve function 368

Q
queries

caching of 101

R
RAM

description 395
Random Access Memory

See RAM
RAS 62

configuring 63
enabling 63

ras.conf 211
rc.local, about 395
read access 52
REALLOC

API function 267
redirection, description 395
refresh interval 97
regexp.h, described 215
regular expression mapping 64
regular expressions 32

description 395
regular mapping 64
Reject directive 382
remote access 41, 62

configuring 63
enabling 63

replication
about 18

req.h, described 216
request variable 219
request_create

API function 268
request_free

API function 268
request_header function 219
request_stat_path

API function 269
request_translate_uri

API function 270
request-header

API function 268
require-proxy-auth function 364
reserved ports 195
resources

controlling access to 51
description 395
proxy chaining 60
SOCKS and 61

response status codes
functions and 219

Index 411

setting 220
restarting proxy

hard restart 393
restricting access 51
return values

autoconfiguration files and 143
reverse mapping 64
reverse proxy 69

about 18
as server 69
authoring content 74
load balancing 71
setting up 72

RFC 1521 43
root

description 396
RootObject directive 329
Route directive 365
routing

proxies 59

S
Secure Sockets Layer

See SSL
Security directive 330
sem.h, described 216
sem_grab

API function 271
sem_init

API function 271
sem_release

API function 272
sem_terminate

API function 272
sem_tgrab

API function 273
semaphore

creating 271
deallocating 272
gaining exclusive access 271
releasing 272

testing for exclusive access 273
send-file function 369
server

application functions, prototype for 217
daemon, about 396
mirror 64, 355
reporting errors to 220

Server Administration page 22
server function 386
server management 19
server root

about 396
server variables 218
ServerName directive 330
servers

customizing 213
restricting access to 51
variables for 218, 219

Service directive 368
service methods 368
session

defined 317
method used during 218
resolving the IP address of 274

session structure
creating 273
freeing 274

session variables 218
server variables 219

session.h, described 216
session_create

API function 273
session_free

API function 274
session_maxdns

API function 274
set-proxy-server function 362, 366
set-socks-server function 367
setting response status codes 220
shared memory

allocating 278
freeing 279

shared objects
described 222

412 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

loading 222
shell expression

comparing (case-blind) to a string 275
comparing (case-sensitive) to a string 275, 277
validating 278

shexp.h, described 216
shexp_casecmp

API function 275
shexp_cmp

API function 275
shexp_match

API function 277
shexp_valid

API function 278
shmem.h, described 216
shmem_alloc

API function 278
shmem_free

API function 279
SNMP 178

defined 159
master agent 178
subagents 178

SOCKS 75, 370
accept threads 194
authenticating through chain 87
authentication entries

creating 77
deleting 79
editing 79
moving 79

configuring 76
connection entries

creating 80
deleting 82
editing 82
moving 83

Daemon 207
description 396
enabling 86
name server IP address 67
proxy routing entries

creating 84
routing entries

creating 83
deleting 86

editing 85
moving 86

routing through 87
SOCKS v5 routing entries

creating 83
using effectively 193
using to retrieve resources 61
worker threads 193

SOCKS v5
See SOCKS

socks5.conf
about 207, 370–380
access control entries 379
authentication/ban host entries 371
proxy entries 379
routing entries 372
specifying ports in 380
syntax 370
variables and flags 372

soft restart
about 396

Source directive 383
sprintf

See util_sprintf 308
SSL

about 396
SSL2 directive 331
SSL3 directive 331
SSL3Ciphers directive 331
SSLClientAuth directive 330
starting

Collabra Server 24
status codes 220
STRDUP

API function 279
string

creating a copy of 279
styles in this book 19
subagents

defined 178
superuser, about 396
suppressing outgoing headers 132
system 292
system_errmsg

Index 413

API function 285
system_fclose

API function 286
system_flock

API function 286
system_fopenRO

API function 287
system_fopenRW

API function 288
system_fopenWA

API function 288
system_fread

API function 289
system_fwrite

API function 289
system_fwrite_atomic

API function 290
system_gmtime

API function 291
system_localtime

API function 292
system_ulock

API function 292
system_unix2local

API function 293
systems.h, about 216
systhr.h, about 216
systhread_current

API function 281
systhread_getdata

API function 281
systhread_newkey

API function 282
systhread_setdata

API function 283
systhread_sleep

API function 283
systhread_start

API function 284
systhread_terminate

API function 284
systhread_timerset

API function 285

T
telnet, about 396
terms used in this book 19
that 397
thread

allocating a key for 282
creating 284
getting a pointer to 281
getting data belonging to 281
putting to sleep 283
setting data belonging to 283
setting interrupt timer 285
terminating 284

Time directive 383
timeout

about 396
timeouts 191

proxy timeout 191
top (resource usage program), about 396
top-level domain authority, description 396
Type directive 383
type-by-extension function 362
typestyles used in this book 19

U
uid

description 396
Uniform Resource Locator

See URL
Unix

user accounts 40
unset-proxy-server function 367
unset-socks-server function 367
up-to-date checks 392

controlling 192
URI

variable for 219
URL list

about 397
repair 397

414 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

url-check function 365
URLs

about 397
access restriction 130
denying access to 129
editing mappings to mirror servers 66
filtering 129, 130
filters

creating 130
mapping to mirror servers 64
mapping to mirror sites 355
mappings

editing 66
restricting content 133

user accounts 40
user authorization 54
User Identification

See uid
User-Agent

access to proxy and 131
util.h, described 216
util_can_exec

API function 293
util_chdir2path

API function 294
util_does_process_exist

API function 295
util_env_create

API function 295
util_env_find

API function 296
util_env_free

API function 296
util_env_replace

API function 297
util_env_str

API function 297
util_get_current_gmt

API function 298
util_getline

API function 300
util_hostname

API function 301
util_is_mozilla

API function 301

util_is_url
API function 302

util_itoa
API function 302

util_later_than
API function 303

util_make_gmt
API function 303

util_make_local
API function 304

util_move_dir
API function 304

util_move_file
API function 305

util_parse_http_time
API function 305

util_sh_escape
API function 307

util_snprintf
API function 307

util_sprintf
API function 308

util_strcasecmp
API function 309

util_strncasecmp
API function 309

util_uri_escape
API function 310

util_uri_is_evil
API function 311

util_uri_parse
API function 312

util_uri_unescape
API function 312

util_url_cmp
API function 312

util_url_fix_hostname
API function 313, 314

util_vsnprintf
API function 314

util_vsprintf
API function 315

Index 415

V
variable

client header 219
protocol 219
request information in 219
server 218
servers 219
URI 219

viruses
preventing 133

vsnprintf
See <Italic>util_vsnprintf 314
See <Italic>util_vsprintf 315

W
web browsers

restricting access to proxy 131
web servers

proxy running as 137
WebDAV

207 multi-status response 44
methods supported 43

WebDAV support 43
white space, about 397
Windows NT, compiling for 222
worker threads 193
write access 52

Y
your-dns function 338

416 Sun ONE Web Proxy Server Administrator’s Guide • August 2003

	Introduction
	What iPlanet Web Proxy Server Provides
	What’s in This Book?
	Conventions Used in This Book
	Contacting Sun Microsystems Technical Support

	Starting the Administration and Proxy Servers
	Starting and Stopping the Administration Server
	Starting the Administration Server
	Stopping the Administration Server

	Using the Server Administration Page
	Starting and Stopping iPlanet Web Proxy Server
	Starting the Proxy Server
	Using the Server Administration Page
	Using the Control Panel

	Stopping the Proxy Server
	Using the Server Administration Page
	Using the Control Panel

	Creating a New Proxy Server Instance

	Managing Your Server
	Overview
	Using the Server Manager

	Managing Templates and Resources
	What is a Template?
	Understanding Regular Expressions
	Understanding Wildcard Patterns

	Creating Templates
	Viewing and Removing Templates
	Removing Resources
	Online Forms for Controlling Resources

	Configuring Server Preferences
	Starting and Stopping the Proxy Server
	Viewing Server Settings
	Restoring and Viewing Backup Configuration Files
	Changing System Specifics
	Server Port
	Server User
	Authentication password
	DNS
	ICP
	Proxy Array
	Parent Array
	Remote Access
	Java IP Address Checking
	Proxy Timeout

	Creating MIME Types
	Allowing or Blocking Arbitrary Methods
	WebDAV Support

	Controlling Access to Your Server
	How Does Access Control Work?
	Access Control Files
	ACL File Syntax

	Restricting Access
	Denying Access to a Resource
	Allowing Access to a Resource

	Proxying and Routing URLs
	Enabling Proxying for a Resource
	Configuring Routing for a Resource
	Chaining Proxy Servers
	Routing Through a SOCKS Server
	Sending the Client’s IP Address to the Server
	Using Remote Access
	Configuring Remote Access
	Enabling Remote Access

	Mapping URLs to Other URLs
	Creating a URL Mapping
	Editing Existing Mappings
	Redirecting URLs

	Client Autoconfiguration

	Reverse Proxy
	How Reverse Proxying Works
	Proxy as a Stand-in for a Server
	Proxying for Load Balancing
	Setting up a Reverse Proxy

	Using SOCKS v5
	Using a SOCKS Server
	Configuring SOCKS v5
	Creating SOCKS v5 Authentication Entries
	Editing SOCKS v5 Authentication Entries
	Deleting SOCKS v5 Authentication Entries
	Moving SOCKS v5 Authentication Entries
	Creating SOCKS v5 Connection Entries
	Editing SOCKS v5 Connection Entries
	Deleting SOCKS v5 Connection Entries
	Moving SOCKS v5 Connection Entries
	Creating Routing Entries
	Creating SOCKS v5 Routing Entries
	Creating Proxy Routing Entries

	Editing Routing Entries
	Deleting Routing Entries
	Moving Routing Entries
	Enabling SOCKS

	Authenticating Through a SOCKS Server Chain

	Caching
	How Caching Works
	Understanding the Cache Structure
	Distributing Files in the Cache
	Creating a New Cache
	Restructuring the Cache
	Setting Cache Specifics
	Enabling the Cache
	Caching HTTP Documents
	Setting the HTTP Cache Refresh Interval
	Setting the HTTP Cache Expiration Policy

	Caching FTP and Gopher Documents
	Setting FTP and Gopher Cache Refresh Intervals

	Configuring the Cache
	Setting the Cache Default
	Caching Pages that Require Authentication
	Caching Queries
	Setting the Minimum and Maximum Cache File Sizes
	Setting the Cache Behavior for Client Aborts

	Caching Local Hosts
	Using Cache Batch Updates
	Creating a Batch Update
	Editing or Deleting a Batch Update Configuration

	Accessing Cache Manager Information
	Expiring and Removing Files from the Cache

	Routing through Proxy Arrays
	Creating a Proxy Array Member List
	Deleting Proxy Array Members
	Editing Proxy Array Member List Information

	Configuring Proxy Array Members
	Enabling Routing through a Proxy Array
	Enabling a Proxy Array
	Redirecting Requests in a Proxy Array
	Generating a PAC File from a PAT File
	Manually Generating a PAC File from a PAT File
	Automatically Generating a PAC File from a PAT File

	Routing Through a Parent Array
	Viewing Parent Array Information

	Routing Through ICP Neighborhoods
	Adding Parents to an ICP Neighborhood
	Removing Parents from an ICP Neighborhood
	Editing Configurations for Parents in an ICP neighborhood
	Adding Siblings to an ICP Neighborhood
	Removing Siblings from an ICP Neighborhood
	Editing Configurations for Siblings in an ICP Neighborhood
	Configuring Individual ICP Neighbors
	Enabling ICP
	Enabling Routing Through an ICP Neighborhood

	Filtering Content Through the Proxy
	Filtering URLs
	Creating a Filter File of URLs
	Setting Default Access for a Filter File

	Restricting Access to Specific Web Browsers
	Request Blocking
	Suppressing Outgoing Headers
	Filtering by MIME Type
	Filtering out HTML Tags

	Using the Client Autoconfiguration File
	Understanding Autoconfiguration Files
	What Does the Autoconfiguration File Do?
	Accessing the Proxy as a Web Server

	Using the Server Manager Forms to Create an Autoconfiguration File
	Creating the Autoconfiguration File Manually
	The FindProxyForURL Function
	The Function Return Values
	JavaScript Functions and Environment
	host name-based functions
	Related Utility Functions
	URL/host-name-based Condition
	Time-based Conditions
	Example 1: Proxy All Servers Except Local Hosts
	Example 2: Proxy Local Servers Outside the Firewall
	Example 3: Proxy Only Unresolved Hosts
	Example 4: Connect Directly to a Subnet
	Example 5: Balance Proxy Load with dnsDomainIs()
	Example 6: Balance Proxy Load with shExpMatch()
	Example 7: Proxying a Specific Protocol

	Monitoring the Server’s Status
	Working with Log Files
	Viewing the Error Log File
	Viewing an Access Log File
	Understanding Access Logfile Syntax
	Understanding Status Codes
	Setting Access Log Preferences
	Working with the Log Analyzer
	Transfer Time Distribution Report
	Status Code Report
	Data Flow Report
	Requests and Connections Report
	Cache Performance Report
	Transfer Time Report
	Hourly Activity Report

	Running the Log Analyzer from the Server Manager
	Archiving Log Files

	Monitoring the Server Using SNMP
	How Does SNMP Work?
	The Proxy Server MIB
	Enabling the Subagent

	Using the Performance Monitor

	Proxy Error Log Messages
	Proxy Error Messages
	Catastrophe
	Failure
	Misconfig
	Warning

	SOCKS Error Messages

	Tuning Server Performance
	Using Timeouts Effectively
	Proxy Timeout

	Controlling Up-To-Date Checks
	Setting the Last-modified Factor

	Using DNS Effectively
	Using SOCKS Effectively
	Worker threads
	Accept Threads

	Optimizing Cache Architecture

	Proxy Reserved Ports
	Configuring the Proxy Manually
	The magnus.conf File
	The obj.conf File
	The Structure of obj.conf
	Directive Syntax
	A Sample Object

	Required Objects for obj.conf
	The Default Object

	How the Proxy Server Handles Objects

	The mime.types File
	The admpw File
	The socks5.conf File
	The bu.conf File
	Object Boundaries
	Examples of bu.conf

	The icp.conf File
	The parray.pat File
	The parent.pat File
	The ras.conf File

	Creating Server Plug-in Functions
	What Is the Server Plug-in API?
	Writing Plug-in Functions
	The Server Plug-in API Header Files
	Getting Data from the Server: The Parameter Block
	Passing Parameters to Server Application Functions
	Parameter-manipulating Functions
	Data Structures and Data Access Functions
	Application Function Status Codes

	Reporting Errors to the Server
	Setting an HTTP Response Status Code
	Error Reporting

	Compiling and Linking Your Code
	Loading Your Shared Object
	Using Your Plug-in Functions

	Server Plug-in API Function Definitions
	condvar_init (declared in base\crit.h)
	condvar_notify (declared in base\crit.h)
	condvar_terminate (declared in base\crit.h)
	condvar_wait (declared in base\crit.h)
	crit_enter (declared in base\crit.h)
	daemon_atrestart (declared in netsite.h)
	filebuf_buf2sd (declared in base\buffer.h)
	filebuf_close (declared in base\buffer.h)
	filebuf_getc (declared in base\buffer.h)
	filebuf_open (declared in base\buffer.h)
	filebuf_open_nostat (declared in base\buffer.h)
	FREE (declared in netsite.h)
	func_exec (declared in frame\func.h)
	func_find (declared in frame\func.h)
	http_dump822 (declared in frame\http.h)
	http_hdrs2env (declared in frame\http.h)
	http_scan_headers (declared in frame\http.h)
	http_set_finfo (declared in frame\http.h)
	http_start_response (declared in frame\http.h)
	http_status (declared in frame\http.h)
	http_uri2url (declared in frame\http.h)
	log_error (declared in frame\log.h)
	magnus_atrestart (declared in netsite.h)
	make_log_time (declared in libproxy\util.h)
	MALLOC (declared in netsite.h)
	netbuf_buf2sd (declared in base\buffer.h)
	netbuf_close (declared in base\buffer.h)
	netbuf_getc (declared in base\buffer.h)
	netbuf_grab (declared in base\buffer.h)
	netbuf_open (declared in base\buffer.h)
	net_ip2host (declared in base\net.h)
	net_read (declared in base\net.h)
	net_socket (declared in base\net.h)
	net_write (declared in base\net.h)
	param_create (declared in base\pblock.h)
	param_free (declared in base\pblock.h)
	pblock_copy (declared in base\pblock.h)
	pblock_create (declared in base\pblock.h)
	pblock_dup (declared in base\pblock.h)
	pblock_find (declared in base\pblock.h)
	pblock_findlong (declared in libproxy\util.h)
	pblock_findval (declared in base\pblock.h)
	pblock_free (declared in base\pblock.h)
	pblock_nlinsert (declared in libproxy\util.h)
	pblock_nninsert (declared in base\pblock.h)
	pblock_nvinsert (declared in base\pblock.h)
	pblock_pb2env (declared in base\pblock.h)
	pblock_pblock2str (declared in base\pblock.h)
	pblock_pinsert base\pblock.h)
	pblock_remove (declared in base\pblock.h)
	pblock_replace_name (declared in libproxy\util.h)
	pblock_str2pblock (declared in base\pblock.h)
	PERM_FREE (declared in netsite.h)
	PERM_MALLOC (declared in netsite.h)
	PERM_STRDUP (declared in netsite.h)
	protocol_dump822 (declared in frame\protocol.h)
	protocol_finish_request (declared in frame\protocol.h)
	protocol_handle_session (declared in frame\protocol.h)
	protocol_hdrs2env (declared in frame\protocol.h)
	protocol_parse_request (declared in frame\protocol.h)
	protocol_scan_headers (declared in frame\protocol.h)
	protocol_set_finfo (declared in frame\protocol.h)
	protocol_start_response (declared in frame\protocol.h)
	protocol_status (declared in frame\protocol.h)
	protocol_uri2url (declared in frame\protocol.h)
	protocol_uri2url_dynamic (declared in frame\protocol.h)
	REALLOC (declared in netsite.h)
	request_create (declared in frame\req.h)
	request_free (declared in frame\req.h)
	request_header (declared in frame\req.h)
	request_stat_path (declared in frame\req.h)
	request_translate_uri (declared in frame\req.h)
	sem_grab (declared in base\sem.h)
	sem_init (declared in base\sem.h)
	sem_release (declared in base\sem.h)
	sem_terminate (declared in base\sem.h)
	sem_tgrab (declared in base\sem.h)
	session_create (declared in base\session.h)
	session_free (declared in base\session.h)
	session_maxdns (declared in base\session.h)
	shexp_casecmp (declared in base\shexp.h)
	shexp_cmp (declared in base\shexp.h)
	shexp_match (declared in base\shexp.h)
	shexp_valid (declared in base\shexp.h)
	shmem_alloc (declared in base\shmem.h)
	shmem_free (declared in base\shmem.h)
	STRDUP (declared in netsite.h)
	systhread_attach (declared in base\systhr.h)
	systhread_current (declared in base\systhr.h)
	systhread_getdata (declared in base\systhr.h)
	systhread_init (declared in base\systhr.h)
	systhread_newkey (declared in base\systhr.h)
	systhread_setdata (declared in base\systhr.h)
	systhread_sleep (declared in base\systhr.h)
	systhread_start (declared in base\systhr.h)
	systhread_terminate (declared in base\systhr.h)
	systhread_timerset (declared in base\systhr.h)
	system_errmsg (declared in base\file.h)
	system_fclose (declared in base\file.h)
	system_flock (declared in base\file.h)
	system_fopenRO (declared in base\file.h)
	system_fopenRW (declared in base\file.h)
	system_fopenWA (declared in base\file.h)
	system_fread (declared in base\file.h)
	system_fwrite (declared in base\file.h)
	system_fwrite_atomic (declared in base\file.h)
	system_gmtime (declared in base\file.h)
	system_localtime (declared in base\file.h)
	system_ulock (declared in base\file.h)
	system_unix2local (declared in base\file.h)
	util_can_exec (declared in base\util.h)
	util_chdir2path (declared in base\util.h)
	util_does_process_exist (declared in libproxy\util.h)
	util_env_create (declared in base\util.h)
	util_env_find (declared in base\util.h)
	util_env_free (declared in base\util.h)
	util_env_replace (declared in base\util.h)
	util_env_str (declared in base\util.h)
	util_get_current_gmt (declared in libproxy\util.h)
	util_get_int_from_aux_file (declared in libproxy\cutil.h)
	util_get_long_from_aux_file (declared in libproxy\cutil.h)
	util_get_string_from_aux_file (declared in libproxy\cutil.h)
	util_getline (declared in base\util.h)
	util_host name (declared in base\util.h)
	util_is_mozilla (declared in base\util.h)
	util_is_url (declared in base\util.h)
	util_itoa (declared in base\util.h)
	util_later_than (declared in base\util.h)
	util_make_gmt (declared in libproxy\util.h)
	util_make_local (declared in libproxy\util.h)
	util_move_dir (declared in libproxy\util.h)
	util_move_file (declared in libproxy\util.h)
	util_parse_http_time (declared in libproxy\util.h)
	util_put_string_to_aux_file (declared in libproxy\cutil.h)
	util_sh_escape (declared in base\util.h)
	util_snprintf (declared in base\util.h)
	util_sprintf (declared in base\util.h)
	util_strcasecmp (declared in base\systems.h)
	util_strncasecmp (declared in base\systems.h)
	util_uri_check (declared in libproxy\util.h)
	util_uri_escape (declared in base\util.h)
	util_uri_is_evil (declared in base\util.h)
	util_uri_parse (declared in base\util.h)
	util_uri_unescape (declared in base\util.h)
	util_url_cmp (declared in libproxy\util.h)
	util_url_fix_host name (declared in libproxy\util.h)
	util_url_has_FQDN (declared in libproxy\util.h)
	util_vsnprintf (declared in base\util.h)
	util_vsprintf (declared in base\util.h)

	Server Data Structures
	The Session Data Structure
	The Parameter Block (pblock) Data Structure
	The Pb_entry Data Structure
	The Pb_param Data Structure

	The Client Parameter Block
	The Request Data Structure
	The Stat Data Structure
	The Shared Memory Structure, Shmem_s
	The Netbuf Data Structure
	The Filebuffer Data Structure
	The Cinfo Data Structure
	The SYS_NETFD Data Structure
	The SYS_FILE Data Structure
	The SEMAPHORE Data Structure
	The Sockaddr_in Data Structure
	The CONDVAR Data Structure
	The CRITICAL Data Structure
	The SYS_THREAD Data Structure
	The CacheEntry Data Structure

	Proxy Configuration Files
	The magnus.conf File
	Ciphers
	DNS
	ErrorLog
	LDAPConnPool
	LoadObjects
	Port
	RootObject
	Security
	ServerName
	SSLClientAuth
	SSL2
	SSL3
	SSL3Ciphers

	The obj.conf File
	AddLog
	flex-log (starting proxy logging)

	AuthTrans
	proxy-auth (translating proxy authorization)

	Connect
	DNS
	dns-config (suggest treating certain host names as remote)
	your-dns-function (a plug-in dns function you create)

	Error
	Init
	Init function order in obj.conf
	Calling Init functions
	flex-init (starting the flex-log access logs)
	icp-init (initializes ICP)
	init-batch-update (starting batch updates)
	init-cache (starting the caching system)
	init-proxy (starting the network software for proxy)
	init-proxy-auth (specifying the authentication strategy)
	init-ras (starting remote access)
	load-modules (loading shared object modules)
	load-types (loading MIME-type mappings)
	pa-init-parent-array (initializing a parent array member)
	pa-init-proxy-array (initializing a proxy array member)

	NameTrans
	assign name (associating templates with path)
	map (mapping URLs to mirror sites)
	pac-map (mapping URLs to a local file)
	pat-map (mapping URLs to a local file)
	pfx2dir (replacing path prefixes with directory names)

	ObjectType
	cache-enable (enabling caching)
	cache-setting (specifying caching parameters)
	force-type (assigning MIME types to objects)
	http-config (using keep-alive feature)
	java-ip-check (checking IP addresses)
	type-by-extension (determining file information)

	PathCheck
	check-acl (attaching an ACL to an object)
	deny-service (denying client access)
	require-proxy-auth (requiring proxy authentication)
	url-check (checking URL syntax)

	Route
	icp-route (routing with ICP)
	pa-enforce-internal-routing (enforcing internal distributed routing)
	pa-set-parent-route (setting a hierarchical route)
	set-proxy-server (using another proxy to retrieve a resource)
	set-socks-server (using a SOCKS server to retrieve a resource)
	unset-proxy-server (unsetting a proxy route)
	unset-socks-server (unsetting a SOCKS route)

	Service
	proxy-retrieve (retrieving documents with the proxy)
	send-file (sending text file contents to client)
	deny-service (denying access to a resource)

	The socks5.conf File
	Authentication/Ban Host Entries
	Routing Entries
	Variables and Flags
	Available Settings
	Proxy Entries
	Access Control Entries
	Specifying Ports

	The bu.conf File
	Accept
	Connections
	Count
	Days
	Depth
	Object boundaries
	Reject
	Source
	Time
	Type

	The icp.conf File
	add_parent (adding parent servers to an ICP neighborhood)
	add_sibling (adding sibling servers to an ICP neighborhood)
	server (configuring the local proxy in an ICP neighborhood)

	The ras.conf File

	Glossary

